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Abstract 

Deriving Biological Meaning and Clinical Application for Pediatric Sepsis with Data-driven 
Analysis 

 
Yidi Qin, PhD 

 
University of Pittsburgh, 2024 

 
 
 
 

Pediatric sepsis is a life-threatening syndrome characterized by abnormal immune response 

to infection, resulting in organ failure and mortality. However, the success of regular therapies of 

pediatric sepsis has been hindered by the unavoidable heterogeneity within the patient population. 

To enable advanced precision medicine treatment, it is of great importance to identify patients at 

high risk and unravel the potential biological mechanisms driving the heterogeneity. In line with 

this need, this study leveraged clinical, genetic, and epigenetic data to first identify pediatric sepsis 

patients at high risk of severe outcomes and then detect biological markers associated with the 

phenotype of interest. 

Beyond the conventional empirical pediatric sepsis phenotypes, Aim 1 of this study applied 

a machine learning approach to bedside clinical features and derived four computable pediatric 

sepsis phenotypes, PedSep-A, B, C, and D, which exhibited distinct infection resources and sites, 

inflammations, metabolisms, organ failures, and mortalities. Among them, PedSep-D was 

distinguished by significantly more severe outcomes compared to other phenotypes. Following 

this discovery, gene-based analysis in Aim 2 identified several deleterious variants in one exome-

wide significant (LTBP4, p < 5E-8) and two suggestive (PLA2G4E and CCDC157, p < 5E-7) genes 

associated with PedSep-D, demonstrating the contribution of rare variants in pediatric sepsis 

severity. Finally, epigenome-wide association analysis in Aim 3 identified one genome-wide 

significant (cg16704797, p < 9E-8) and 24 suggestive significant (p < 1E-5) differentially 
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methylated CpGs (DMCs), and one significant differentially methylated region (DMR) associated 

with PedSep-D. Functional analysis of the identified DMCs indicated their roles in regulating gene 

expression, immune cell activation, and lipid metabolisms. 

This study has promoted our current knowledge of heterogeneity in pediatric sepsis and 

forwarded our understanding of disease pathology from perspectives of genetics and epigenetics. 

Furthermore, the accomplishment of this work contributed to addressing several gaps between 

current results from established studies and future applications in clinical programs to inform better 

development of precision medicine. The public health significance of findings gained from this 

study is particularly profound, offering the potential to revolutionize the way sepsis is diagnosed 

and treated in children, ultimately leading to more effective and efficient healthcare interventions.  
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1.0 Overall Research Goal and Specific Aims 

Sepsis is a life-threatening syndrome leading to a global health burden on pediatric 

populations. It is generally acknowledged that pediatric sepsis is characterized by a dysregulated 

immune response to infection (Schlapbach et al. 2024). Despite a growing understanding of the 

disease mechanism, the unavoidable heterogeneity of pediatric sepsis has hindered the success of 

regular therapies for critically ill patients (Stanski and Wong 2020). Hence, the field has made 

progress in developing approaches to stratify heterogeneous patients into homogeneous groups 

with shared features, aiming toward precision medicine. Furthermore, the development of next-

generation sequencing and microarray techniques brought more possibilities to elucidate the role 

of genetics and epigenetics in sepsis pathology. 

However, the absence of several critical components in previous studies impedes 

establishing a comprehensive, personalized medicine approach. First, although heterogeneity of 

adult sepsis patients has been recognized (Seymour et al. 2019), knowledge of pediatric sepsis 

subtypes remains limited. Given the immune response variation between children and adults, most 

current pediatric sepsis diagnoses and treatments should only be extrapolated from adult studies 

with caution (Weiss et al. 2020). Thus, studies of pediatric sepsis stratification are essential for 

exploring the heterogeneity in pediatric sepsis and guiding subtype-specific research on children. 

Second, the impact of sepsis host genetics (including adults and children) has been well studied in 

genome-wide association studies (GWASs) designed to discover common variants (Rautanen et 

al. 2015, Hernandez-Beeftink et al. 2022). Nevertheless, relatively little is known about the role of 

rare variants in the field. Additionally, most published exome-wide association studies focused on 

rare variants responsible for sepsis susceptibility instead of its internal heterogeneity (Backman et 
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al. 2021), ignoring the potential multifariousness of the biological basis for distinct subclasses. 

Third, prior studies suggested the involvement of epigenetic factors in pediatric sepsis and 

indicated the possibility of utilizing them as a diagnostic biomarker. However, these studies are 

either conducted in adult cohorts whose results may not be transferrable to pediatric sepsis or suffer 

from power issues with a limited sample size (Binnie et al. 2020, Lorente-Pozo et al. 2021). In line 

with this, it is of great importance to conduct methylation analysis in larger-scale pediatric cohorts 

to enable the detection of epigenetic signatures related to pediatric sepsis subgroups. 

Therefore, the overall goal of this project is to gain a better understanding of pediatric 

sepsis pathology and enable progress toward precision therapeutics by addressing the absent 

critical components. Specifically, this dissertation consists of three components: 

Aim 1: Identify pediatric sepsis subtypes in a data-driven manner via applying unsupervised 

consensus k-means clustering on clinical features 

Aim 2: Uncover the role of rare variants in pediatric sepsis through an exome-wide gene-based 

association analysis  

Aim 3: Detect diagnostic methylation markers of pediatric sepsis groups by an epigenome-wide 

association study (EWAS) 

The phenotype derived in Aim 1 facilitated the identification of pediatric sepsis patients at 

high risk to improve clinical trial design. The gene-based rare variant analysis of Aim 2 broadened 

the spectrum of the genetic basis of pediatric sepsis severity. Epigenome analysis in Aim 3 

strengthened the understanding of host-environment interplay in pediatric sepsis and provided 

more possibilities for biomarker target discovery. Altogether, the knowledge derived from this 

study can provide a roadmap for unraveling heterogeneity lying inside pediatric sepsis and pave 

the way for developing advanced precision medicine.  
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2.0 Introduction 

2.1 Overview of pediatric sepsis 

Pediatric sepsis is a syndrome in children characterized by a dysregulated host immune 

response to pathogen infection, with the potential to cause life-threatening organ dysfunction 

(Goldstein et al. 2005, Schlapbach et al. 2024). In normal scenarios, inflammation serves as a 

crucial response of the immune system to infection. However, when inflammation becomes 

uncontrolled, unregulated, self-sustaining, and intravascular, it can trigger a sequence of events 

that ultimately results in end-organ dysfunction in tissues far from the original insult. Without 

prompt treatment, pediatric sepsis can lead to severe sepsis, septic shock, multiple organ 

dysfunction (MOD), or death within the first 72 hours of admission to the pediatric intensive care 

unit (PICU) (Figure 2.1) (Miranda and Nadel 2023).  

 

 

Figure 2.1 Illustration of pediatric sepsis progression 

Bacterial infection represents one of the prevalent sources of pathogens, as depicted for illustrative purposes in the 
figure © 2004-2023 AboutKidsHealth. 
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2.2 Pathophysiology 

In the context of the normal inflammatory response to infection such as bacteria, innate 

immune cells, especially macrophages, recognize and bind microbial components with their 

surface receptors (Takeuchi and Akira 2010, Watanabe et al. 2019). The interaction between 

immune cells and pathogens initiates the release of proinflammatory cytokines from macrophages 

and the recruitment of other inflammatory cells, such as polymorphonuclear leukocytes (PMNs), 

to the site (Wade and Mandell 1983, Arango Duque and Descoteaux 2014). This orchestrated 

process is regulated by a mixture of proinflammatory and anti-inflammatory mediators secreted 

from macrophages. With this balanced regulation, the host immune system undergoes a normal 

inflammatory process consisting of chemotaxis, adherence, ingestion, phagocytosis, and killing of 

invading pathogens (Rosales and Uribe-Querol 2017).  

However, when the proinflammatory cytokines exceed the confines of the local 

environment and spread throughout the body, the normal inflammatory response escalates into 

pediatric sepsis. This process is usually described as a malignant intravascular inflammation 

(Pinsky and Matuschak 1989). The term “malignant” highlights the uncontrolled, unregulated, and 

self-sustaining nature of pediatric sepsis, while “intravascular” emphasizes the role of the 

bloodstream in distributing proinflammatory cytokines. Most importantly, “inflammation” 

signifies the essence of pediatric sepsis as an exaggeration of the normal inflammatory response.  

Although the exact mechanism triggering the transition from a normal response towards pediatric 

sepsis remains elusive,  it is widely attributed to factors such as the toxic products of pathogens 

(Kellum and Ronco 2023), over-release of proinflammatory cytokines (Angurana et al. 2021), 

complement activation (Li et al. 2021), and host genetic predispositions (Wong 2012, Lu et al. 

2019).  
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Pediatric sepsis may have multiple effects on cells and organs of the human body. 

Widespread cellular injury may take place as a result of the dysregulated inflammatory response. 

Although it is uncertain how pediatric sepsis causes cellular injury, multiple mechanisms have 

been proposed, including tissue ischemia characterized by an insufficient oxygen supply due to 

derangement in the metabolic autoregulation (Bateman et al. 2003); cytopathic injury caused by 

impaired mitochondrial electron transport (Weiss et al. 2019); and an alternate rate of apoptosis of 

activated immune cells resulting from elevated levels of proinflammatory cytokines (Cheng et al. 

2020).  In severe pediatric sepsis, the cellular damage often evolves into organ dysfunction, a 

condition where organs are unable to maintain their essential functions (Lelubre and Vincent 

2018). The organs that are most commonly impacted include the cardiovascular, respiratory 

(pulmonary), neurologic, hematologic, renal, and hepatic organ systems (Figure 2.2).  

 

 

Figure 2.2 Six organ systems in which dysfunction commonly occurs  

Adapted from Christophe Lelubre et. al. (Lelubre and Vincent 2018) using BioRender.com (2024) 
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2.3 Epidemiology 

The overall burden of pediatric sepsis is high globally with important regional differences. 

According to a meta-analysis of 15 studies, the estimated incidence of pediatric sepsis is 

approximately 1.2 million cases per year, including cases from both PICU and hospital settings 

(Fleischmann-Struzek et al. 2018). Varying across by countries, mortality rates ranged from 1% 

to 5% in the pediatric sepsis population, and from 9% to 20% in the severe pediatric sepsis 

population. In the United States, approximately 75,000 children are hospitalized for severe sepsis 

each year with an annual incidence of about 1 case per 1000 population (Hartman et al. 2013).  

2.4 Prevention, diagnosis, and management 

In 2020, the Surviving Sepsis Campaign (SSC) released the most updated international 

guidelines for managing sepsis and septic shock in children, which proposed several 

recommendations for clinical care (Weiss et al. 2020). Essentially, these recommendations indicate 

that early identification and timely intervention are key principles to patient survival. 

Several critical stages are crucial in the clinical care of pediatric sepsis. To prevent pediatric 

sepsis development, advanced practices reducing infection incidences are particularly significant 

in high-risk populations. There are three primary types of infection resources: bacterial, viral, and 

fungal, each characterized by its distinct mechanism of action (Dolin et al. 2019). In addition to 

infection, the major risk factors include age, chronic and serious illness, impaired immunity, and 

breach of natural barriers (Gaines et al. 2012, Mercurio et al. 2023). In the diagnosis and prognosis 

of pediatric sepsis, a variety of clinical features and criteria are widely applied, including systemic 
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inflammatory response syndrome (SIRS) criteria (Goldstein et al. 2005), Sequential Organ Failure 

Assessment (SOFA) criteria (Matics and Sanchez-Pinto 2017), quick Sequential Organ Failure 

Score (qSOFA) (Eun et al. 2021), and Phoenix Criteria Score (Schlapbach et al. 2024). 

Additionally, laboratory tests are required to complement the clinical examination, where 

traditional laboratory hematological, biochemical, and microbiological tests play essential roles. 

Pediatric sepsis management generally consists of three components: infection control, 

hemodynamic stabilization, and modulation of the septic response, during which empirical 

antibiotic therapies and organ-supportive treatment are at the core of all the interventions (Weiss 

et al. 2020). Unfortunately, notwithstanding endeavors of multiple preclinical studies over the last 

three decades, no new effective drug emerged that has improved sepsis patient outcomes, implying 

the challenges in the development of the treatment for the disease. 

2.5 Heterogeneity and precision medicine 

Despite the accumulation of knowledge of pediatric sepsis mechanisms, the underlying 

heterogeneity of the disease has arisen as the primary barrier to achieving optimal treatment 

outcomes (Leligdowicz and Matthay 2019). While clinical diversity in pediatric sepsis is widely 

recognized, there is no comprehensive approach to measuring it. This gap can be partly explained 

by the multifaceted source of heterogeneity at the individual patient level, encompassing factors 

such as infection etiologies, individual comorbidities, environmental exposures, genetic 

backgrounds, and the timeline of diagnosis and treatments (Marshall 2014, Hotchkiss et al. 2016). 

As these factors impact both the disease evolution and intervention response, subgroup-based 

studies that focus on a small subset of patients of interest offer valuable insight for both scientific 
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inquiry and clinical application. This targeted approach, known as precision medicine, has proven 

effective in managing other complex diseases such as cancer, by tailoring prevention, diagnosis, 

and treatment strategies to individual patient characteristics (Dienstmann et al. 2017). Thus, 

implementing precision medicine in the context of pediatric sepsis is advocated as a solution to 

the heterogeneity of the disease. 

2.6 Rationale for the specific aims 

2.6.1 Aim 1: Derivation of pediatric sepsis subtypes 

To tackle the therapeutic challenge brought by heterogeneity, researchers have proposed 

various approaches to identify adult and pediatric sepsis subclasses within the broad syndrome. 

Generally, these approaches strive to classify patients into homogeneous groups by measuring the 

similarity of patients from different perspectives. Sepsis subtyping strategies can be further 

categorized based on distinct research goals (exploratory, prognostic, predictive), computational 

methods (unsupervised, supervised), data types (clinical, biological), or targeted populations 

(adult, pediatric) (DeMerle et al. 2021).  

Usually, there are three study objectives for sepsis patients subtyping: exploration, 

prognosis, and prediction (DeMerle et al. 2021). Depending on the specific objective, researchers 

have been using diverse computational methods on an extensive range of data sources. The first 

category of subtyping analysis is designed to reveal the hidden pathological or molecular pattern 

in a high-dimensional space of patient features, during which a set of subclasses with shared 

characteristics can be naturally produced. Since this objective requires uncovering latent 
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mechanisms from the data automatically and does not involve outcome-related information, 

methods such as unsupervised clustering fit the requirement well and thus have been broadly 

applied. Commonly used unsupervised clustering methods include the k-means clustering (Lloyd 

1982), hierarchical clustering (Jr 1963), mixture models (McLachlan and Basford 1988), and so 

on. Taking advantage of these unsupervised clustering algorithms, researchers have derived 

multiple novel sepsis subtypes from clinical and transcriptomics data (Table 2.1).  
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Table 2.1 Sepsis subtypes identified through unsupervised learning methods 

Subtypes Method Data Population Refs 
A, B, C hierarchical 

clustering 
gene 

expression 
pediatric 

 
(Wong et al. 

2009) 
‘Shock with elevated creatinine’, ‘Minimal 

multi-organ dysfunction syndrome’, 
‘Shock with hypoxemia and altered mental 

status’, ‘Hepatic disease’ 

self-organizing 
maps, k-means 

clustering 

clinical adult (Knox et al. 
2015) 

SRS1, SRS2 hierarchical 
clustering 

gene 
expression 

adult (Davenport 
et al. 2016) 

Mars1-4 hierarchical 
clustering 

gene 
expression 

adult (Scicluna et 
al. 2017) 

Inflammopathic, Adaptive, Coagulopathic k-means and 
PAM clustering 

gene 
expression 

adult and 
pediatric 

(Sweeney et 
al. 2018) 

Profile1-4 latent profile 
analysis (mixture 

models) 

clinical adult (Zhang et al. 
2018) 

‘hyperthermic, slow resolvers’, 
‘hyperthermic, fast resolvers’, 
‘normothermic’, hypothermic 

group-based 
trajectory 
modeling 

(mixture models) 

clinical adult (Bhavani et 
al. 2019) 

α, β, γ, δ k-means 
clustering 

clinical adult (Seymour et 
al. 2019) 

‘Severe, persistent encephalopathy’, 
‘Moderate, resolving hypoxemia’, ‘Severe, 

persistent hypoxemia and shock’, 
‘Moderate, persistent thrombocytopenia 

and shock’ 

subgraph 
augmented 

nonnegative 
matrix 

factorization 

clinical pediatric 
patients with 

multiple 
organ 

dysfunction 
syndrome 
(MODS) 

(Sanchez-
Pinto et al. 

2020) 
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In contrast to the first objective, subtyping conducted for prognostic or predictive purposes 

focuses on subgroups of patients who are more likely to develop a severe outcome or benefit from 

a given therapy, respectively. The outcome-driven prerequisite of these two objectives can be well 

met by supervised learning methods that generalize a model from training data to predict outcomes 

with the highest accuracy. Notably, while supervised methods align with the prognostic and 

predictive objectives well and contribute to health care decisions directly, they cannot replace the 

role of unsupervised methods in exploratory analysis. This is because supervised methods highly 

rely on prior knowledge of outcomes or targeted treatment, so they lack the power to discover new 

subtypes from the patients. 

Although most stratification research concentrates on the adult population, remarkable 

progress has been made in pediatric sepsis subtyping. In most pediatric targeted studies, 

transcriptomic data were analyzed to explain the dynamic outcome of patients. For instance, Wong 

et al. leveraged gene expression profiles to describe transcriptionally distinct subclasses from 

PICU patients (Wong et al. 2009). Following pediatric subtyping, the team further classified adult 

sepsis patients using the same strategy and observed similar biological features in some endotypes, 

albeit not replicable for other endotypes, suggesting a potential interaction between age and 

subtype assignment (Wong et al. 2017). Another important work was accomplished by Carcillo 

and colleagues, where researchers assessed three inflammation phenotypes derived from adult 

sepsis studies and found associations with severe outcomes such as macrophage activation 

syndrome and mortality (Carcillo et al. 2019). Altogether, these achievements proved the intrinsic 

heterogeneity in pediatric sepsis and built a solid foundation for future studies. 

Compared to adult sepsis, the classification of pediatric sepsis patients is in a stage of rapid 

development, while several domains remain elusive. First, regardless of the achievement made in 
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transcriptomic subtyping, gene expression quantification techniques must be performed rapidly at 

a reasonable cost to meet the need for real-time diagnosis. This requirement restricts proof-of-

concept molecular subtypes from being extended to clinical feasibility. Therefore, it is of great 

importance to incorporate routinely available clinical data into pediatric patient stratification. 

Second, when studying high-dimensional pediatric clinical data, conventional knowledge-based 

and supervised subtyping strategies may fail to make full use of data and lose the opportunity to 

uncover a subtype with unrealized biological meaning. Hence, how to choose the proper subtyping 

method is a topic waiting for further study. Third, as various researchers have identified multiple 

subtypes, it raises a question shared by adult sepsis studies: is there a way to assess the validity of 

newly discovered subtypes and examine their relevance to established subtypes? Integrating 

external resources and different types of data into follow-up analysis may serve as a key to 

unraveling this question. Last but not least, a logical next step after subtyping will be transforming 

knowledge gained from pediatric subtypes into practical tools for risk stratification and group-

based management. To our knowledge, there has not been such a tool for pediatric sepsis diagnosis 

and treatment, implying a great potential to be explored in the field. To address the questions 

proposed above to help inform trial design for targeted pediatric sepsis groups, a large-scale 

stratification pipeline using first-day clinical features of pediatric sepsis patients is needed.  

2.6.2 Aim 2: Exome-wide gene-based rare variants analysis on pediatric sepsis patients 

Although sepsis is initiated by infection and is considered a complex disease under the 

effect of multiple factors, the heterogeneity in the host response to sepsis is thought to be partially 

explained by host genetic factors (Villar et al. 2004). The evidence first stems from the landmark 

study published by Sørensen et al. in 1988, where the authors followed 960 families including 
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children placed with adoptive parents unrelated to them, and reported an over five-fold increased 

risk of death observed in infected adoptees with one biological parent who had died from infection 

(Sorensen et al. 1988).  

Stimulated by Sorensen’s work, genetic association studies targeting candidate genes have 

made some progress in connecting well-known functional genes with sepsis (Sutherland and 

Walley 2009). For example, the A allele of the G-to-A polymorphism at the -308 in the promoter 

region of the tumor necrosis factor-α (TNF-α), one of the most important proinflammatory 

cytokines regulating the immune response to infection, was found to be associated with mortality 

in patients with septic shock (Mira et al. 1999). Similarly, several SNPs localized in or adjacent to 

genes such as inflammatory cytokines, (e.g., IL-1 and IL-6), pathogen-recognition receptors (e.g., 

TLR4 and LBP), and immunity genes (e.g., FcγRIIA) have been reported to be associated with 

sepsis susceptibility and outcomes (Lorenz et al. 2002, Schluter et al. 2002, Zhang et al. 2014, 

Beppler et al. 2016, Lu et al. 2018). Notably, Lu et al. conducted a comprehensive literature review 

followed by a meta-analysis to investigate 405 variants within 176 distinct genes. The study 

showed that 29 variants of 23 genes were significantly associated with the risk of sepsis (Lu et al. 

2019). 

Beyond the candidate gene analysis, it is important to unravel novel genetic signals to 

broaden the current knowledge of sepsis. Taking advantage of the high-throughput sequencing 

technique, researchers have conducted several genome-wide association studies (GWAS) on adult 

and pediatric populations to investigate genetic influences on sepsis susceptibility and outcome as 

summarized in Table 2.2 (Rautanen et al. 2015, Srinivasan et al. 2017, Butler-Laporte et al. 2020, 

D'Urso et al. 2020, Rosier et al. 2021, Hernandez-Beeftink et al. 2022). Among the identified SNPs 

from GWAS, several SNPs are located in or near genes that present potential functions in the 



14 

immune response to infection. For example, the FER gene identified by Rautanen et al. in 2015 

encodes a non-transmembrane receptor protein tyrosine kinase that regulates cell adhesion and 

mediates signaling (Hao et al. 1991). It can impact leucocyte recruitment and intestinal barrier 

dysfunction in response to bacterial lipopolysaccharide (McCafferty et al. 2002, Qi et al. 2005). 

Moreover, a mice study found that FER can inhibit neutrophil chemotaxis, thereby hindering 

pathogens clearance and causing tissue damage (Khajah et al. 2013). As another example, the 

SAMD9 gene identified by Hernandez-Beeftink et al. in 2022 encodes a protein that belongs to 

the SAM domain-containing protein family (Aviv et al. 2003), which plays multiple roles in 

cellular processes and regulates inflammatory response during tissue injury and apoptosis 

(Mekhedov et al. 2017).  
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Table 2.2 SNPs identified associated with sepsis and septic shock 

variant-risk allele chr: position mapped gene associated trait ref 
rs4957796-C 5:109066439 FER Sepsis mortality from 

pneumonia 
(Rautanen et 

al. 2015) rs79423885-? 6:103362128 R3HDM2P2, GRIK2 
rs13380717-? 16:86870529 LINC02188, LINC02181 Neonatal sepsis1 (Srinivasan et 

al. 2017) rs2412930-? 4:58722063 LINC02619, LINC02494 
rs946883-? 6:163778989 RN7SL366P, QKI 

rs41461846-? 2:218448631 VIL1 
NA 2:219344165 NA 

rs6717433-? 2:218510988 USP37 
rs114078858-C 1:201742457 NAV1, IPO9-AS1 Sepsis hospital admission (Butler-

Laporte et al. 
2020)2 

rs113187813-C 3:44767224 KIF15 
rs9257270-A 6:28853318 NOP56P1, LINC01623 

rs577432066-G 5:66388602 LINC02229, LINC02065 Sepsis 28-day mortality 
rs79422343-T 4:175635426 GPM6A 

rs142021422-C 7:136773299 PSMMC1P3, CHRM2 
rs181021474-T 7:130000947 Y_RNA, ZC3HC1 
rs140871186-C 9:133030315 EEF1A1P5, GTF3C5 
rs149187226-G 14:92621755 RIN3 
rs147296048-A 7:1953164 MAD1L1 
rs35597084-C 6:31555893 NFKBIL1 Sepsis 90-day mortality 
rs9489328-G 6:97656699 MIR2113, MMS22L Septic shock (D'Urso et al. 

2020) rs11167801-C 5:143090769 ARHGAP26 Septic shock resolution 
rs7698838-T 4:57222516 RPS26P24, IGFBP7-AS1 

rs17128291-A 14:92416482 SLC24A4 
rs368584-G 13:110492726 COL4A2 Septic shock 28-day 

mortality 
1 The only study conducted in non-adult sepsis population in the table. 

2 The GWAS results were extracted from a Mendelian Randomization study framework.   
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Table 2.2 Continued 

variant-risk allele chr: position mapped gene associated trait ref 
rs16857698-G 3:145685067 NA 

 
Septic shock mortality before 

day 7 
(Rosier et al. 

2021) rs5029231-T 3:145701146 
rs6763296-C 3:145709314 
rs16857836-T 3:145752473 

rs4544-C 8:143994806 CYP11B2 
rs11991278-T 8:144001245 
rs6981918-A 8:144007939 
rs956727-G 9:868446933 SLC28A3 

rs79744468-A 12:112927208 PTPNN11 
rs10849640-A 12:119712137 NA 
rs10849641-T 12:119721354 
rs10849642-T 12:119725314 
rs12491812-T 3:50556581 CACNA2D2 Septic shock mortality 

between day 7 and day 28 rs2239753-C 3:50645158 CISH 
rs2239752-T 3:50645413 
rs2239751-C 3:50647888 
rs743753-T 3:50651395 MAPKAPK3 
rs616689-A 3:50668532 

rs9879397-A 3:50685642 
rs2170840-C 3:50686517 
rs12492982-T 3:50698155 
rs2035484-G 3:50721892 DOCK3 

rs17051403-A 3:50751643    
rs17072628-A 3:65229760 NA 
rs7804669-G 8:89929277 NA 
rs7953683-T 12:79993704 PAWR 
rs1502522-G 17:51544776 NA 
rs1393467-C 17:51560869 

rs146257041-G 11:26962266 SLC5A12, FIBIN Sepsis 28-day mortality (Hernandez-
Beeftink et 
al. 2022) 

rs138347802-G 13:60793063 LINC00378 
rs34896991-T 7:93101432 SAMD9 

rs113925942-C 13:92899923 LINC00363, GPC5 
rs183364907-T 14:57642742 SLC35F4 
rs76805442-A 5:85104034 RBBP4P6, PPIAP79 
rs114658749-T 3:196048273 TFRC 
rs114581095-T 3:36005805 RPL36AP17, RFC3P1 
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Although genetic factors contributing to sepsis-related phenotypes have been identified 

from GWAS research, identified risk variants in most of the published GWAS fall outside coding 

regions, limiting a straightforward translation to the disease mechanism (Flores 2015). This is 

because GWAS was initially designed based on the “common disease, common variants” 

hypothesis, in which more focus is put on the higher end of the allele frequency spectrum (Manolio 

et al. 2009). Theoretically, there is an inverse relationship between effect size and population 

frequency of the variant, which results from natural selection. As the high frequency of common 

variants in the population implies less selection pressure from disease, common variants are more 

likely to confer small increments in risk and can only explain a limited proportion of heritability.  

To address the so-called “missing heritability” problem and enable the detection of 

functional genetic factors, several studies have taken advantage of the exome-wide sequencing 

(WES) technique to concentrate on rare variants with a minor allele frequency (MAF) lower than 

1% (Backman et al. 2021). Protein-affecting mutations can heavily predispose individuals to 

disease. Consequentially, disease-related variants are selected against during human evolution, 

leading to a low frequency in the population. Constructed on this principle, studies targeting rare 

variants in coding regions have a high potential to unravel the functional genetic components of 

sepsis. For instance, the aforementioned GWAS of 28-day sepsis mortality followed up their best 

findings in an independent WES study (Taudien et al. 2016), where researchers leveraged 

deleterious rare variants to predict sepsis courses in two ethnic groups. Another attempt is an 

analysis conducted on previously healthy children with bacterial sepsis (Borghesi et al. 2020). 

Applying WES on 176 pediatric patients, the study detected 41 rare variants of uncertain 

significance in a group of targeted primary immunodeficiency genes.  
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Despite the benefits regarding function interpretation and direct biological insight, 

performing analysis with rare variants is much more challenging compared to common variants. 

As one of the dominant issues, the scarcity of rare variants limited the power of classical 

individual-variant-based association tests to discover single novel signals from an exome-wide 

exploratory analysis. A commonly adopted strategy to boost power is to collapse rare variants into 

biologically relevant groups, such as genes, regions, or pathways, and then test cumulatively the 

effects of multiple variants in a group (Povysil et al. 2019). Employing this aggregation strategy 

in the general framework of association tests, researchers have developed numerous methods. 

Most of them can be categorized into two major types: burden test and variance-component test 

(Lee et al. 2014). Burden tests include the CMC method (Li and Leal 2008), WSS (Madsen and 

Browning 2009), MZ test (Morris and Zeggini 2010), etc., in which genetic scores are generated 

through collapsing rare variants. These burden tests assume that a vast majority of variants in a 

tested group are causal, and their effects are in the same direction. Unlike the burden tests, 

variance-component tests, including SKAT (Wu et al. 2011), SSU test (Pan 2009), C-alpha (Neale 

et al. 2011), etc., examine the variance of genetic effects and suppose the existence of both trait-

increasing and trait decreasing variants or a limited number of causal variants. Concerning the 

moderate percentage of causal variants with opposite directions, combined tests such as SKAT-O 

(Lee et al. 2012), Fisher method (Derkach et al. 2013), or MiST (Sun et al. 2013), can take 

advantage of both burden and variance- component tests to gain the largest power. The 

development of these approaches based on the principle of aggregation enables the success of 

causal gene identification for multiple diseases.  

In the field of sepsis, the role of rare variants has not been fully understood. First, although 

GWASs enable linking common variants with sepsis, common variants are often located in non-
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coding regions where the function is currently poorly understood, thereby studies targeting coding 

regions are merited. Second, most works concentrated on targeted regions or gene sets according 

to prior knowledge (Borghesi et al. 2020), limiting the capacity to discover novel functional genes 

related to sepsis. Third, in addition to studying the genetic factors related to sepsis susceptibility 

and mortality, identification of genes related to the patients at high risk of developing severe 

outcomes may provide a deeper insight into disease pathology and yield new therapeutic strategies, 

yet no works have been done for this purpose. Given the three problems proposed above, the Aim 

2 project, which is based on whole-exome sequencing and aggregation test approaches, focused 

on the role of rare variants and revealed their effects on pediatric sepsis subtypes. Insights from 

this project will enhance our knowledge of the genetic basis of sepsis and inform more tailored 

applications in precision medicine. 

2.6.3 Aim 3: Epigenome-wide association analysis on pediatric septic patients 

In addition to host genetics, epigenetics is another crucial source of biological factors 

contributing to disease heterogeneity. Epigenetics encompasses a series of regulation activities that 

show plasticity in response to exogenous environmental exposures and govern gene expression 

without changing the DNA sequence (Goldberg et al. 2007). Therefore, despite the identical 

genetic information shared across organisms, specific regulated genes can be expressed in various 

manners under the mediation of epigenetics. Under the broad terminology of “epigenetics”, there 

are multiple regulatory mechanisms, including but not limited to DNA methylation, post-

translational histone modification, non-coding RNAs, and others (Portela and Esteller 2010). 

Among them, DNA methylation is one of the most widely analyzed modifications, partially 

because of the fast development of its quantification methods (Kurdyukov and Bullock 2016). 
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DNA methylation describes a chemical process in which a methyl or a hydroxymethyl group 

is added to the fifth carbon of a cytosine under the mediation of DNA methyltransferase (DNMT) 

enzyme to form a 5-methylcytosine (Bird 2002). In human cells, this process occurs predominantly 

at cytosine-guanine dinucleotides (CpGs) characterized by a cytosine nucleotide immediately 

followed by a guanine nucleotide along the 5’ to 3’ direction (Jones 2012).  CpGs are generally 

depleted in the human genome, except for enrichment in small genomic regions such as CpG 

islands (CGI) which are rarely methylated (Gardiner-Garden and Frommer 1987). Since over half 

of genes contain CGI in their promoters, transcription of genes is frequently maintained in a 

permissive state. However, hypermethylation in gene promoters can lead to local chromatin 

structural alternation and thereby prevent the binding of transcriptional factors, resulting in gene 

repression. In contrast, hypomethylation in gene promoters is associated with gene activation 

(Jones and Takai 2001).  

 Like genetics studies, array- and sequencing-based methylation profiling technologies 

enable large-scale epigenome-wide association studies (EWASs) to detect differentially 

methylated sites or regions associated with diseases (Rakyan et al. 2011). In site-based studies, the 

general task is to perform genome-wide DNA methylation scanning and compare mean 

methylation levels of each CpG site across groups (such as cases and controls) to identify 

differentially methylated positions (DMPs) (Campagna et al. 2021). Linear regression models are 

frequently applied by researchers in these studies, allowing for adjusting potential confounders 

such as sex, age, cell types, and other potential batch effects. However, site-based studies suffer 

from the limited power issue, especially in studies with small sample sizes. As a solution, region-

based studies have been developed to search for differential methylations at the region level 

(DMR) as opposed to the site level (Campagna et al. 2021). In light of this design, DMR analysis 
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takes high correlation across adjacent CpG sites into account and also offers superior power over 

DMP analysis by reducing the multiple testing burden. Most DMR analysis tools can be 

categorized into two groups, unsupervised and supervised methods (Mallik et al. 2019). The 

unsupervised methods involve PCA (Jolliffe 2002), SPCA (Chen et al. 2008), KPCA (Gao et al. 

2011) , SKAT (Wu et al. 2011), and others. They first utilize annotation information to group 

CpGs into biological meaningful sets such as CGI, CGI shores, and TSS200, then test the 

association between each set and the trait of interest (Zhang et al. 2016). Contrary to unsupervised 

methods that depend on annotation, supervised methods involve bump hunting (Jaffe et al. 2012), 

Comb-p (Pedersen et al. 2012), DMRcate (Peters et al. 2015), Probe Lasso (Butcher and Beck 

2015), and Dmrff (Suderman et al. 2018). These methods take computed p-values from site-based 

analysis as input and scan for regions with consecutive small p-values based on customized 

criteria.  

EWAS analysis has been widely applied in complex diseases such as cancer, diabetes, 

asthma, and so on, while studies in the field of pediatric sepsis remain limited. First, although 

EWAS studies conducted in adult sepsis by Binnie and colleagues recently found hundreds of 

DMR distinguishing septic patients and non-septic controls (Binnie et al. 2020), pediatric sepsis 

methylation studies are restricted by limited cohort size. The two published pediatric studies until 

now included 3 and 17 pediatric sepsis cases, which restricted the power of DMP and DMR 

detection (D. Benet Bosco Dhas 2015, Lorente-Pozo et al. 2021). The second gap to be filled 

involves revealing methylation signals related to pediatric sepsis heterogeneity. Despite the 

attempt of prior studies to identify DMR distinguishing pediatric subgroups such as early and late-

onset pediatric sepsis (Lorente-Pozo et al. 2021), only a few significant regions differentially 

methylated between the two groups have been found due to insufficient power. To fill these 
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knowledge gaps, the Aim 3 project relying on epigenome-wide association analysis with various 

analysis strategies can facilitate understanding how epigenomic components affect pathology in 

pediatric sepsis. The understanding gained from this aim enables uncovering the impact of 

methylation on pediatric sepsis heterogeneity and provides more possibility to further ascertain 

potential therapeutic targets. 

2.7 Public health relevance 

Even though the WHO declared sepsis a global health priority in 2017, the disorder remains 

a major contributor of health loss in adult and pediatric populations. The failure of previous 

therapeutic attempts stems from insufficient knowledge of sepsis pathology. With the development 

of data-driven methods and next-generation sequencing techniques, comprehensively studying 

disease heterogeneity, genetic basis, and transcriptomic dynamics is of great significance in a real-

world application. First, analysis using early-hour bedside clinical data can establish an immediate 

risk stratification system, allowing timely intervention for critically ill patients. Second, 

association studies with whole-exome sequencing data can broaden the spectrum of genetic 

components ever investigated and pave the way for integrating genetic information into clinical 

management. Third, the utilization of methylation microarray data provides us with opportunities 

to capture the diversity at the epigenetic level and determine the environmental factors contributing 

to disease heterogeneity. Therefore, we expect to formulate this study as a roadmap to elucidate 

sepsis pathology, improve disease intervention, guide clinical trial design, and offer hope of 

increasing favorable sepsis outcomes. 
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3.0 Cohort and Data 

3.1 Patient enrollment 

The demographic data, clinical records, and blood samples of all three aims were obtained 

from pediatric sepsis patients of a multicenter cohort PHENOMS (PHENOtyping pediatric sepsis-

induced Multiple organ failure Study) (Carcillo et al. 2019). The enrollment procedure is illustrated 

in Figure 3.1.  

 

 

Figure 3.1 Patient enrollment diagram 
IBD: identity by descent; Missing ID: fail to match WES sample ID and patient ID. 
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Specifically, the cohort enrolled pediatric patients from 2015 to 2017 with written informed 

consent from at least one of the guardians. Children were qualified for enrollment if they met all 

of the four criteria: (1) at the ages between 44 weeks to 18 years old; (2) were suspected of infection 

meeting two or more SIRS (systemic inflammatory response) criteria, see Table 3.1 (Goldstein et 

al. 2005); (3) presented one or more organ failures, see Table 3.2 (Villeneuve et al. 2016); and (4) 

had an indwelling arterial or central venous catheter. Patients without a commitment to aggressive 

PICU care or lack of blood samples were further excluded from the enrollment. With the above 

enrollment criteria, the initial cohort contained 404 individuals. 

 

Table 3.1 SIRS criteria 

Criteria 
1 Core temperature of 38.5 °C or < 36 °C 
2 Tachycardia, defined as a mean heart rate > 2 SD above normal for age in the absence of external stimulus, 

chronic drugs, or painful stimuli; or otherwise unexplained persistent elevation over a 0.5- or 4-hr time period 
OR for children < 1 yr old: bradycardia, defined as a mean heart rate < 10th percentile for age in the absence 
of external vagal stimulus, β-blocker drugs, or congenital heart disease; or otherwise unexplained persistent 

depression over a 0.5-hr time period 
3 Mean respiratory rate > 2 SD above normal for age or mechanical ventilation for an acute process not related 

to underlying neuromuscular disease or the receipt of general anesthesia 
4 Leukocyte count elevated or depressed for age (not secondary to chemotherapy-induced leukopenia) or > 

10% immature neutrophils 
 

Table 3.2 Criteria of organ failure 

Organ failure Criteria 
Cardiovascular need for cardiovascular agent infusion support 

Hepatic total bilirubin > 1.0 mg/dL and alanine aminotransferase (ALT) > 100 units/L 
Hematologic thrombocytopenia < 100,000/mm3 and prothrombin time INR > 1.5 × normal 
Respiratory need for mechanical ventilation support with the ratio of the arterial partial pressure of 

oxygen and the fraction of inspired oxygen (PaO2/FiO2) < 300 without this support 
Neurological Glasgow Coma Scale (GCS) Score < 12 in the absence of sedatives 

Renal serum creatinine > 1.0 mg/dL and oliguria (urine output < 0.5 mL/kg/h) 
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3.2 Data collection 

 
After enrollment, multifaceted data were collected from each patient according to the 

different goals of the three aims. In the Aim 1 project, six demographic features, 46 bedside clinical 

variables, 33 cytokines measured from blood samples, 41 anti-inflammatory/immunomodulatory 

and three organ support therapy records, and infection and in-hospital mortality information were 

obtained from all 404 individuals of the initial cohort. Among them, clinical data and blood 

samples measuring C-reactive protein, Ferritin, sFASL, ADAMTS 13 activity, and whole blood 

ex vivo TNF response to endotoxin were obtained on day one and twice weekly until 28 days of 

PICU. Organ failure and in-hospital mortality were obtained daily until 28 days of PICU.  

In the Aim 2 project, 381 out of 404 parents provided WES consent, and 2 mL of whole 

blood was collected for DNA extraction using standard methods. WES (Whole-exome sequencing) 

was completed on 332 patients from 2018 to 2020. The University of Pittsburgh Genomics 

Research Core performed WES on the Ion Torrent platform. Libraries were constructed by the 

Ampliseq Exome RDY (Thermo Fisher Scientific) with 100 × target coverage. FASTQ files were 

aligned to Homo sapiens reference sequence GRCh37/hg19 to generate VCF files.  

In the Aim 3 project, the 850K DNA methylation microarray profiles (Illumina Infinium 

Methylation EPIC array) were completed from PBMC of 96 patients of the original cohort, based 

on their disease severity (i.e. whether developed immunoparalysis associated MOF, 

thrombocytopenia associated MOF, sequential liver failure associated MOF, or macrophage 

activation syndrome). In Aims 2 and 3, samples were chosen before Aim 1 and no parental DNA 

samples were collected. 
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4.0 Identify Pediatric Sepsis Subtypes through Unsupervised Clustering on Day One 

Bedside Features 

4.1 Forward 

Most parts of the writings, figures, and tables of this chapter are based on a previously 

published manuscript (Qin et al. 2022): 

Qin Y, Kernan KF, Fan Z, Park HJ, Kim S, Canna SW, Kellum JA, Berg RA, Wessel D, 

Pollack MM, Meert K, Hall M, Newth C, Lin JC, Doctor A, Shanley T, Cornell T, Harrison RE, 

Zuppa AF, Banks R, Reeder RW, Holubkov R, Notterman DA, Michael Dean J, Carcillo JA. 

Machine learning derivation of four computable 24-h pediatric sepsis phenotypes to facilitate 

enrollment in early personalized anti-inflammatory clinical trials. Crit Care. 2022 May 

7;26(1):128. doi: 10.1186/s13054-022-03977-3. PMID: 35526000; PMCID: PMC9077858. 

4.2 Introduction 

Sepsis defined by infection and organ failure contributes to 1 of 5 deaths globally, with 3 

million per year occurring in children (Rudd et al. 2020). While there is evidence that sepsis 

mortality increases if treatment is delayed (Weiss et al. 2015), several studies in high-income 

countries where rapid access to intensive care support has been provided, have demonstrated 

patterns of mortality even in previously healthy children with timely treatment (Workman et al. 

2016, Ames et al. 2018, Evans et al. 2018). This indicates that dysregulated host immune activation 
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could be targetable in the pediatric intensive care unit (PICU). Among such conditions are immune 

depression leading to immunoparalysis-associated MOF (IPMOF), thrombotic microangiopathy 

leading to thrombocytopenia-associated MOF (TAMOF), and hyperinflammatory macrophage 

activation syndrome (MAS) driven either by uncontrolled lymphoproliferation manifest as 

sequential liver failure-associated MOF (SMOF) or by macrophage activation without 

lymphoproliferation manifest as combined hepatobiliary dysfunction and disseminated 

intravascular coagulation (Doughty et al. 2002, Nguyen et al. 2008, Hall et al. 2011, Shakoory et 

al. 2016, Wong et al. 2016, Carcillo et al. 2017, Kyriazopoulou et al. 2017, Muszynski et al. 2018). 

The PHENOtyping pediatric sepsis-induced Multiple organ failure Study (PHENOMS) previously 

reported that these conditions developed at a median of day 3 to 7 of sepsis, with TAMOF and 

MAS demonstrating 46% mortality, and IPMOF 16% mortality (Carcillo et al. 2019). Anti-

inflammatory therapies used to reverse TAMOF and MAS include methylprednisolone, 

intravenous immunoglobulin (IVIG), and plasma exchange (Emmenegger et al. 2001, Demirkol et 

al. 2012, Sevketoglu et al. 2014, Fortenberry et al. 2019). Therefore, the current clinical trial 

challenge is to identify these at-risk children for early enrollment when personalized therapies have 

the greatest likelihood to succeed. 

The NIGMS sepsis research working group recommendations call for the use of new 

clinical research approaches in extant clinical data sets to characterize septic patients and improve 

the efficiency of early trials of new sepsis treatments. In this study, we test the hypothesis that 

machine learning methods previously used in adults could be applied to available bedside clinical 

variables including C-reactive protein and ferritin in the extant PHENOMS dataset to derive 24-h 

computable sepsis phenotypes that identify children at risk for the development of TAMOF and 
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MAS for enrollment in early personalized anti-thrombotic and anti-inflammatory clinical trials 

(Horvat et al. 2019, Seymour et al. 2019, Taylor et al. 2020). 

4.3 Methods 

The overall study workflow is illustrated in Fig 4.1, where each of the three colored 

sections corresponds to one or more major analysis steps described in the following subsections. 

The first section in the plot covers the methods from subsection 4.3.2 to 4.3.4. The second section 

covers the methods in subsections 4.3.5 and 4.3.6. The third section covers the methods in 

subsection 4.3.7. Other subsections (4.3.1, 4.3.8, and 4.3.9) described below are not presented in 

the plot. 
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Figure 4.1 Overview of the method 
Qin et al. (Qin et al. 2022) 
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4.3.1 Variable selection and missing data imputation 

To prepare features for clustering, six demographic and 46 clinical day-one variables were 

selected as candidate variables from the initial study. Within this set of features, we further selected 

variables based on correlation and missingness. First, one of the highly correlated variable pairs 

(Pearson correlation > 0.6) was removed based on the missingness (i.e., remove the one with a 

higher missingness) (Akoglu 2018). Among the remaining variables, variables with missingness 

< 20% were selected and imputed to derive completed datasets. The missing pattern was 

investigated by performing Little’s MCAR test, which showed no significant pattern of missing 

completely at random (MCAR) in variables with high missingness (> 2 missing values across all 

samples) (Little 1988). Then, we performed missing data imputation by multiple imputations with 

chained equations (MICE) (Van Buuren S 2011), assuming missing data is conditional on observed 

data and follows the pattern of “missing at random”. MICE is based on the Fully Conditional 

Specification (FCS) approach, where each incomplete variable is imputed by a separate model. 

Using FCS, MICE can impute mixes of continuous, binary, unordered categorical, and ordered 

categorical data.  

4.3.2 Consensus k-means clustering 

After determining the final set for clustering, we first took log transformation on highly 

skewed variables and scaled all variables to prepare data for clustering. For categorical variables, 

we used one-hot representation to encode them to be used in the K-means clustering. Then, we 

used Consensus k-means clustering to identify the optimal number of phenotypes (clusters) and 
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derive the phenotype membership of patients based on the different number of clusters (k) 

(Wilkerson and Hayes 2010).  

The consensus clustering framework increases the robustness of small-sized data clustering 

by providing a solution to represent the most common assignment across multiple runs of a 

clustering algorithm. It takes advantage of subsampling techniques so that perturbations of the 

original data can be simulated. In each subsampling run, a clustering algorithm, i.e. k-means, was 

applied to the perturbed data sets for a given k. Therefore, the employment of the consensus frame 

can provide qualitative and quantitative measurements for internal validation purposes, which 

contributes to the stability of the discovered clusters.  

The consensus k-means method provides multiple visualization approaches to assist in 

determining the optimal number of clusters and evaluating clustering performance. For instance, 

the consensus matrix heatmap is a plot having patients as both rows and columns. The consensus 

value is the frequency the two patients are assigned to the same phenotype among 1000 iterations. 

It ranges from 0 (white, interpreted as two patients are never clustered together) to 1 (dark blue 

interpreted as two patients are always clustered together). A clear separation of white and dark 

blue blocks in the heatmap is an indicator of good partitioning. The Consensus CDF plot shows 

the cumulative distribution functions of the consensus matrix for each k, estimated by a histogram 

of 100 bins. It is used to determine at what number of clusters the CDF reaches an 

approximate maximum; thus, consensus and cluster confidence is at a maximum at this k. It is 

usually used together with the Delta area plot to determine the optimal k. Usually, an “elbow” in 

the Delta area plot is an indicator of the optimal k. The Cluster-consensus plot shows the cluster-

consensus value of clusters at each k. This is the mean of all pairwise consensus values between a 
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cluster’s members. High values indicate a cluster has high stability and low values indicate a 

cluster has low stability. We used 0.5 as a cut-off for diagnostic purposes. 

4.3.3 Validation of clustering  

We used multiple approaches to validate the consensus k-means clustering. First, we used 

KmeansInference method to test if the means are the same across clusters, given different numbers 

of k (Chen and Witten 2023). The kmeansInference method can take the fact that the clusters are 

generated based on the same data used for testing into account and thereby estimate the adjusted 

p-values to avoid bias from the k-means clustering. Next, we used two other methods, latent class 

analysis (LCA) and X-means, to perform clustering and compare with the results from the 

consensus k-means clustering (Pelleg 2000, Hagenaars J.A. 2002). LCA is a model-based 

unsupervised clustering method, which determines the best model (i.e., the optimal number of 

clusters) by the Bayesian information criterion (BIC) (Hagenaars J.A. 2002). X-means is a 

variation of k-means clustering, while it uses BIC as a criterion to determine the best number of 

clusters (Pelleg 2000). The usage of BIC in these two methods enables providing an alternative 

way of elbow plot. 

4.3.4 Dissimilarity visualization of phenotypes 

To assess dissimilarity among the derived consensus k means phenotypes we used 1) a t-

distributed stochastic neighbor embedding (t-SNE) plot labeled by outcomes of interest; 2) chord 

diagrams in terms of a priori clinical characteristics and organ dysfunction patterns; and 3) variable 

contributions to pairwise phenotype discrimination.  
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4.3.5 Heterogeneity of biomarkers across phenotypes 

Following the consensus k means phenotype determination, we correlated the derived 

phenotypes with 33 biomarkers, including 31 cytokines and two functional assays (ex vivo TNF 

response to endotoxin as a marker of immune depression and ADAMTS 13 activity as a marker 

of microvascular thrombosis in the presence of thrombocytopenia). All cytokines were measured 

on a BioPlex 200 System (Bio-Rad) as previously described. To determine the correlation of the 

derived 24-hour phenotypes with biomarkers of the host response, we compared mean and 

standard deviation, median and interquartile range (IQR) for continuous data, and the ratio of the 

cases in binary data. A cytokine heatmap was used to present the log ratio of the median biomarker 

values for various markers of the host response. Red represents a greater median biomarker value 

for that phenotype compared with the median for the entire study cohort, whereas blue represents 

a lower median biomarker value compared with the median for the entire study cohort. 

Hierarchical clustering was used to identify similarities in cytokine patterns across the phenotypes. 

4.3.6 Heterogeneity of outcomes across phenotypes 

Phenotype relationships to primary and secondary outcomes were investigated. The 

primary outcome was in-hospital mortality. The secondary outcomes involved the development of 

new or progressive multiple organ failure, length of stay in the PICU, development of 

immunoparalysis, thrombocytopenia-associated MOF, sequential liver failure-associated MOF, 

macrophage activation syndrome, use of mechanical ventilation, and extracorporeal therapies. To 

investigate the relationship of the derived phenotypes to outcomes (mortality, MOF groups), we 

estimated the association between derived phenotype and outcomes with a multivariate model 
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adjusting for demographic variables (age, sex, race, ethnicity) and PRISM score. We also 

generated phenotype-specific curve plots to assess differences in mortality and the number of 

organ failures over time. 

4.3.7 Exploratory analysis of treatment heterogeneity with phenotypes 

Within each of the derived phenotypes, we first evaluated which of the 41 anti-

inflammatory/immunomodulatory and three organ support therapies given in the parent study by 

bedside clinicians were associated with survival in univariate logistic regression among the subset 

of patients who were given anti-inflammatory therapies by the bedside clinicians. For the 

significant individual treatments, we further applied Elastic Net regression to investigate their 

interactive effects on survival within each of the derived phenotypes. Finally, we performed 

traditional multivariable logistic regression to validate findings from the Elastic Net regression 

model while adjusting for age, sex, ethnicity, race, and total PRISM score.  

4.3.8 Computable prediction of individual membership in phenotypes 

We also developed a computable tool (https://pedsepsis.pitt.edu) that allows one to 

categorize the phenotype of a new individual patient into one of the four derived phenotypes at the 

bedside. Specifically, we first used the same pipeline to standardize and normalize the 25 input 

variables of the new patient as described above. Then we calculated the Euclidean distance from 

this patient to the centroid of each phenotype derived from the unsupervised consensus k-means 

clustering. Comparing the distances to four phenotype centroids, we assign the patient to the 

phenotype with the shortest distance. 
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4.3.9 Other information 

For summary analysis, we presented continuous data as mean (SD) or median (IQR) and 

categorical data as count number (%).  For comparison, we used the Kruskal-Wallis tests for 

continuous data and the chi-square test for categorical data.  Fisher exact tests were applied for 

cells containing less than 5 samples. The threshold for statistical significance was less than 0.05 

for two-sided tests after adjustment for multiple testing. Holm–Bonferroni correction was applied 

to correct for multiple testing. Analyses were performed with R version 3.6.2. 

4.4 Results 

4.4.1 Data preparation 

Out of the 52 bedside variables collected within 24 hours in the PICU, 25 variables had 

less than 20% missingness and less than 60% correlation with any other variable (Appendix Table 

1). These included demographic variables (age, gender, ethnicity, previous health status, post-op 

status), PRISM-related vital signs and laboratory values (systolic blood pressure, heart rate, 

Glasgow Coma Scale Score, hemoglobin, creatinine, platelet count, intubation status), markers of 

inflammation (highest temperature, lowest temperature, number of SIRS criteria, lymphocyte 

count, C-reactive protein level, ferritin level), and organ failures (Organ failure Index, Central 

Nervous System = Glasgow Coma Scale < 12 not explained by use of sedation; 

Cardiovascular = Requirement for vasoactive agents for Systolic Blood Pressure < 5th percentile 

for age; Respiratory = PaO2/FiO2 ratio < 300 requiring mechanical ventilation; Renal = oliguria 
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and serum creatinine > 1 mg/dL; Hepatic = ALT > 100 and Bilirubin > 1 mg / dL; 

Hematologic = Platelet Count < 100 K and INR > 1.5). 

4.4.2 Derivation of clinical sepsis phenotypes 

The derived consensus k-means clustering models found a 4-cluster model was the optimal 

fit, with phenotypes we named PedSep-A, B, C, and D (Fig 4.2). The consensus matrices heat map 

(Fig 4.2A) shows a relatively good partition of patients when k=4, where a clear separation 

between blue and white chunks is observed. The relative change under the CDF (cumulative 

distribution function) curve in Fig 4.2C implied little statistical gain by increasing to a 5- or 6-

class model, with the penalty of overfitting. 

We applied the KmeansInference method to infer the differences between clusters when k 

ranges from 2 to 6 by obtaining valid p-values adjusting for bias from k-means. (Table 4.1). As a 

result, there are significant differences between clusters when k equals 4, indicating that the 4-

cluster model enables to distinguish the patients, although a significant difference was also 

observed when k equals 2. By applying LCA to the same dataset, lower Bayesian information 

criteria (BIC), higher Entropy, as well as adequate group size (> 10% of the cohort) confirmed that 

four underlying phenotypes are optimal (Table 4.2). With the side-by-side rank of variable 

contributions based on both methods (Fig 4.3), we observed similar variable contribution patterns 

between LCA and consensus k-means clustering, implying the identical phenotype characteristics 

derived from the two methods. Moreover, we observed consistency of phenotype membership 

between the two cluster methods. While a subset of patients is reassigned in the confirmatory LCA 

method, the majority of assignments remain robust to the method of clustering. X-means clustering 

found that the optimal number of clusters is two instead of four. To investigate the reason for the 
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inconsistency between consensus k-means clustering and X-means clustering, we used the MASS 

r package to simulate four-dimensional data for four groups, each adhering to a multivariate normal 

distribution (W. N. Venables 2002). Specifically, the four simulated groups were modeled with 

sample sizes corresponding to the PedSep-A, B, C, and D phenotypes. The covariance matrix of 

the four-dimensional data was pre-defined by a positive-definite symmetric matrix, Sigma. The 

means for the four variables were set as follows: (0, 0, 0, 0) for group 1, (0, 0, i, i) for group 2, (i, 

i, 0, 0) for group 3, and (i, i, i, i) for group 4. Then we changed the value of i from 0 to 8 and 

compared the optimal number of clusters inferred separately by k-means and X-means using the 

RWeka r package (Hornik K 2009).  As a result, we found K-means-based algorithm is more 

sensitive than X-means when the difference across clusters is small (Table 4.3). The two methods 

agree with each other when difference across clusters is large enough (i.e. larger than 4 in our 

case). The small differences across four phenotypes explain the shape of the CDF in Figure 4.2 

where we did not observe an ideal step-wise curve as expected as indicated by simulations of Monti 

et al. (Monti 2003). Another method we used to visualize the structure of the data is OPTICS plot 

(Fig 4.4) which shows the reachability distance of each individual. The reachability distances of 

individuals from the same phenotype can imply the density of the phenotype. Although we 

observed several dense samples within PedSep-C phenotype, the majority of PedSep phenotype 

patients were segmented into two valleys rather than four in the OPTICS plot.  
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Figure 4.2 Consensus k-means clustering results 
(A) The consensus matrices heat map (B) Consensus CDF plot (C) Delta area plot presenting relative change in area 
under the CDF curve (D) Tracking plot showing the cluster assignment of patients (columns) for each k (rows) by 
color (E) Cluster-consensus plot. Dark blue: PedSep-A, light green: PedSep-B, light blue: PedSep-C, dark green: 

PedSep-D. (Qin et al. 2022) 
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Table 4.1 Selective p-value from kmeans inference when k = 2-6 

 K=2 K=3 K=4 K=5 K=6 
1 vs 2 3.371E-02 9.122E-01 1.605E-04 9.300E-01 2.086E-03 
1 vs 3  9.492E-03 8.689E-09 5.498E-03 1.889E-05 
2 vs 3  9.580E-01 1.209E-09 8.567E-01 2.238E-10 
1 vs 4   1.549E-02 7.285E-01 4.037E-04 
2 vs 4   1.544E-04 9.016E-01 1.152E-03 
3 vs 4   6.872E-08 3.493E-01 6.985E-11 
1 vs 5    2.946E-01 6.363E-01 
2 vs 5    9.483E-01 2.032E-01 
3 vs 5    4.893E-01 2.662E-01 
4 vs 5    4.579E-01 6.819E-01 
1 vs 6     1.068E-02 
2 vs 6     3.119E-04 
3 vs 6     1.061E-05 
4 vs 6     1.585E-02 
5 vs 6     6.790E-01 

 

 
Table 4.2 Statistical ouput from latent class analysis 

 Statistica Class sizeb N, (%) 
Class 

number 
AIC BIC Entropya 1 2 3 4 5 6 

2 44875 45199 0.917 308(76) 96(24) - - - - 
3 44329 44817 0.872 212(52) 129(32) 63(16) - - - 
4 43774 44426 0.904 144 (36) 142(35) 73(18) 45(11) - - 
5 38542 39359 0.999 146(36) 114(28) 87(22) 34(8) 23(6) - 
6 39540 40520 0.999 98(24) 87(22) 83(21) 74(18) 42(10) 20(5) 

Abbreviations: AIC, Akaike information criterion; BIC, Bayesian information criteria; IQR, interquartile range. a: 
AIC and BIC are information criteria for comparing models, where a lower value suggests a better fit; Entropy is a 

measure between 0 and 1 measures the success of classification, where a value closer to 1 implies a better fit. b: 
class size shows the number of samples assigned to each cluster, relatively large size of each cluster is preferred. 

(Qin et al. 2022) 
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Figure 4.3 Comparison of variables contributing to phenotypes derived from consensus k-means and LCA 
In all panels, the variables are standardized such that all means are scaled to 0 and SDs to 1. A value of 1 for the 

standardized variable value (x-axis) signifies that the mean value for the phenotype was 1 SD higher than the mean 
value for both phenotypes shown in the graph as a whole. CNS - central nervous system; CRP - C-reactive protein; 
GCS - Glasgow Coma Scale; Hemat - Hematologic; Intubate- Intubation with endotracheal tube; OFI- organ failure 
index; Post Op - post-surgery; Pulm- pulmonary; Temp- temperature; SBP- systolic blood pressure; Chronic illness 

– not previously healthy; Ethnicity – higher number with more non-Hispanic; Sex – higher with more males in 
group. (Qin et al. 2022) 
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Table 4.3 Identified number of clusters using two methods based on simulated data 

Method Difference of means (see methods) 
0 1 2 3 4 5 6 7 8 

k-means 2 3 3 4 4 4 4 4 4 
X-means 2 2 2 2 4 4 4 4 4 

 
 

 
Figure 4.4 OPTICS plot colored by phenotype 

The x-axis represents samples linearly ordered based on their spatial distance. The y-axis represents the reachability 
distance of the sample.   
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The size and characteristics of the 4-class model are given in Table 4.3 and Figure 4.4. 

Four derived phenotypes ranged in size from 14% to 34% of the cohort and differed in clinical 

characteristics and organ dysfunction patterns. With the exception of the SIRS criteria number, all 

of the other 24 variables differed among the phenotypes. Compared to all other phenotypes, 

PedSep-A patients were younger and previously healthy, with the lowest CRP and ferritin levels, 

the highest lymphocyte and platelet counts, highest heart rate, and lowest creatinine; PedSep-B 

patients were most likely to be intubated and had the lowest Glasgow Coma Scale Score; PedSep-

C patients had the highest temperature and Glasgow Coma Scale Score, least pulmonary failure, 

and lowest lymphocyte count; and PedSep-D patients had the highest creatinine and number of 

organ failures, including renal, hepatic, and hematologic organ failure, with the lowest platelet 

count. On average, PedSep-B and D patients had multiple organ failure, whereas PedSep-A and C 

patients did not. Ferritin levels were highest in PedSep-C and PedSep-D distinguishing them from 

PedSep-A and B. 
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Table 4.4 Demographic and day one clinical characteristics of the four phenotypes 

Characteristic1  Total  PedSep-A PedSep-B PedSep-C PedSep-D 

No. of patients, N (%)  404 (100)  136 (34)  102 (25)  110 (27)  56 (14)  

Demographic            

Age years* mean (SD)  7 (6)  3 (4)  8 (6) 10 (5)  8 (6) 

Male* N (%) 224 (55.4)  63 (46.3)  68 (66.7)  59 (53.6)  34 (60.7)  

Female* N (%) 180 (44.6)  73 (53.7)  34 (33.3)  51 (46.4)  22 (39.3)  

Hispanic* N (%) 67 (16.6)  28 (20.6)  12 (11.8)  23 (20.9)  4 (7.1)  

Non-Hispanic* N (%)  323 (80.0)  100 (73.5)  86 (84.3)  86 (78.2)  51 (91.1)  

Previous healthy* N (%)  180 (44.6)  96 (70.6)  28 (27.5)  37 (33.6)  19 (33.9)  

Surgery* N (%)  49 (12.1)  6 (4.4)  19 (18.6)  12 (10.9)  12 (21.4)  

Organ Dysfunction            

SIRS criteria, mean (SD)2  2.9 (0.8)  2.9 (0.8)  3.0 (0.8)  2.8 (0.8)  3 (0.8)  

OFI* mean (SD)3  1.8 (0.9)  1.4 (0.5)  2.1 (0.6)  1.4 (0.6)  3.1 (1.0)  

Inflammation            

CRP mg/dL* mean (SD)  11.7 (10.4)  7.3 (7.3)  13.2 (11.5)  15.2 (10.4)  13.1 (11.2)  

Low Temperature oC* mean  36.6 (1.2)  36.7 (0.9)  36.0 (1.6)  37.1 (0.9) 36.3 (1.0)  

High Temperature oC* mean   37.8 (1.3)  37.8 (1.1)  37.4 (1.3)  38.3 (1.2)  37.8 (1.4)  

ALC /mm3 * median (IQR)  1.2 (0.6-2.1)  1.9(1.3-3.2)  1.1(0.6-1.9) 0.6 (0.2-1.0)  1.1(0.6-2.1)  

Ferritin ng/mL* median 
(IQR)  

218 (98.0-625.3)  125(69.8-
207.8)  

223(116.5-
544.2)  

405(176.2-
1485.7)  

610 (221.1-
2482.0)  

Pulmonary            

Pulmonary OFI* N (%)  270 (66.8)  108 (79.4)  87 (85.3) 37 (33.6)  38 (67.9)  

Intubation* N (%)  211 (52.2)  72 (52.9)  94 (92.2)  15 (13.6)  30 (53.6)  

Cardiovascular or Hemodynamic  

Heart rate bpm* mean (SD)  155.4 (31.3)  168.1 (30.8)  146.5 (27.9)  150.4 (27.6)  150.6 (35.8)  

Systolic blood pressure*   

mean (SD) mmHg  

81.9 (19.3)  85.0 (15.7) 74.8 (22.0)  86.3 (17.2)  78.9 (21.9)  

Cardiovascular OFI* N (%)  284 (70.3)  63 (46.3)  92 (90.2)  85 (77.3)  44 (78.6)  

Renal            

Creatinine mg/dL* median 
(IQR)  

0.5 (0.3-0.8)  0.3 (0.2-0.4)  0.6 (0.4-1.0)  0.6 (0.4-0.7)  1.4 (0.6-2.6)  

Renal OFI* N (%)  30 (7.4)  0 (0.0)  0 (0.0)  0 (0.0)  30 (53.6)  
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Hepatic            

Hepatic OFI* N (%)  40 (9.9)  3 (2.2)  9 (8.8)  11 (10.0)  17 (30.4)  

Hematologic            

Hemoglobin g/dL * mean 
(SD)  

9.8 (2.0)  10.1 (1.8)  9.4 (2.1)  10.2 (2.1)  9.1 (1.8)  

Platelets K/mm3 * mean (SD)  171.1 (123.2)  260.1 (122.0)  154.3 (95.1) 118.8 (83.5)  88.2 (108.0)  

Hematologic OFI* N (%)  39 (9.7)  0 (0.0)  0 (0.0)  8 (7.3)  31 (85.7)  

Neurologic            

Glasgow Coma Scale score*   

mean (SD)4,5  

8.7 (5.3)  8.5 (5.2)  4.7 (3.4)  13.2 (3.1)  7.9(5.5)  

CNS OFI N (%)  54 (13.4)  12 (8.8)  24 (23.5)  6 (5.5)  12 (21.4)  

(Qin et al. 2022) 

Abbreviations: IQR, interquartile range; SIRS, systemic inflammatory response syndrome; OFI, organ failure index; 
ALC, absolute lymphocyte count; CNS, central nervous system 

SI conversion factors: To convert alanine transaminase and aspartate aminotransferase to μkat/L, multiply by 
0.0167; bilirubin to μmol/L, multiply by 17.104; C-reactive protein to nmol/L, multiply by 9.524; creatinine 

to μmol/L, multiply by 88.4. 

1 The variables in this Table were log-transformed for modeling. 

2 Indicates SIRS criteria ranging from 0 to 4 including abnormal heart rate, respiratory rate, temperature, and white 
blood cell count. 

3 OFI is an integer score reflecting the number of organ failures. Scores are either 0 or 1 for cardiovascular, hepatic, 
hematologic, respiratory, neurological, and renal, and summed for total range of 0 to 6. Cardiovascular, need for 
cardiovascular agent infusion support; Pulmonary, need for mechanical ventilation support with the ratio of the 
arterial partial pressure of oxygen and the fraction of inspired oxygen (PaO2/FiO2) < 300 without this support; 

Hepatic, total bilirubin > 1.0 mg/dL and alanine aminotransferase (ALT) > 100 units/L; Renal, serum creatinine > 
1.0 mg/dL and oliguria (urine output < 0.5 mL/kg/hr); Hematologic, thrombocytopenia < 100,000/mm3 and 

prothrombin time INR > 1.5 × normal; Central Nervous System, Glasgow Coma Scale (GCS) score < 12 in the 
absence of sedatives.  

4 Corresponds to the minimum or maximum value within 6 hours of hospital presentation. 

5 GCS ranges from 3 to 15. 
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Figure 4.5 Sample distribution and chord plot 

In panel A, visualization of phenotypes using t-distributed stochastic neighbor embedding (t-SNE) technique with 
phenotypes shown in color from the consensus k-means clustering analysis visualizes distinction among four 
phenotypes. In panels B–E, each phenotype is highlighted separately and the ribbons connect to the different 

patterns of clinical variables and organ system dysfunctions on the top of the circle (inflammation = low 
temperature, high temperature, max CRP, max ferritin; organ failure = total OFI; pulmonary = pulmonary OFI, 

intubation; cardiovascular = high heart rate, low systolic blood pressure, cardiovascular OFI; renal = high creatinine, 
renal OFI; hepatic = hepatic OFI; hematologic = low hemoglobin, low platelets, hematologic OFI; neurologic = Low 

Glasgow Coma Score Scale, central nervous system OFI). The chords connect from an individual phenotype to a 
category if the group mean involvement of the variables differs from the overall mean for the entire cohort 

specifically lower for low temperature, systolic blood pressure, hemoglobin, platelets, and Glasgow Coma Scale 
Score, but higher for all other variables. (Qin et al. 2022) 
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4.4.3 Correlation of phenotype with biomarker profiles 

The inflammatory biomarker profiles differed across the four derived computable 

phenotypes. Inflammation evidenced by cytokine signature increased, and immune response 

(whole blood ex vivo TNF response to endotoxin) and coagulation function (ADAMTS13 activity) 

decreased going across PedSep-A, B, C, and D (Table 4.5, Table 4.6, Fig 4.5). PedSep-A showed 

the least inflammation with the lowest M-CSF, IL-8, IL-6, sCD163, MCP1/CCL2, ferritin, C-

reactive protein, IL-10, IL-22, IL-18, IL-18BP, and MIP 1α levels overall; lower CXCL9 than 

PedSep-C and D; lower IL-17a than PedSep-B and C; lower IP10/CXCL10 than PedSep-C; and 

lower IL2Ra than PedSep-D. PedSep-A had the best immune and coagulation function with normal 

whole blood ex vivo TNF response to endotoxin (> 200 pg/mL) and ADAMTS 13 activity. In 

contrast, PedSep-D had the most profound inflammatory response with highest M-CSF, IL-8, SCF, 

sCD163, IL-16, IL-10, TNF, and MIP1α levels, and thrombotic microangiopathic response with 

lowest ADAMTS13 activity decreased to < 57% of control with thrombocytopenia. Consistent 

with this increased inflammation response, the macrophage inhibitor TRAIL was reduced in 

PedSep-D compared to PedSep-C. PedSep-D also had higher CXCL9 than PedSep-B but not 

PedSep-C. 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9077858/figure/Fig3/
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Figure 4.6 Patterns of inflammatory biomarker across phenotypes 
The cytokine heatmap shows the log ratio of the median biomarker values for various markers of the host response 

and their hierarchical cluster relationships. Red represents a greater median biomarker value for that phenotype 
compared with the median for the entire study cohort, whereas blue represents a lower median biomarker value 

compared with the median for the entire study cohort. For example, M-CSF is lower in PedSep-A than the entire 
study cohort and is higher in PedSep-D than the entire study cohort. (Qin et al. 2022) 
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Table 4.5 Biomarker measured at day one by phenotype 

Biomarkera  
  

Total  Phenotype   
PedSep-A  
(n = 136) 

PedSep-B 
(n = 102) 

PedSep-C 
(n = 110) 

PedSep-D 
(n = 56) 

ADAMTS13, %  71.0 (56.0, 88.0)  82.5 (65.0, 95.0)  71.0 (57.0, 89.3)  69.0 (52.5, 84.5)  54.0 (38.0, 66.5)  
SFasLg, pg/ml  44.9 (29.0, 73.2)  58.4 (37.2, 84.6)  43.2 (31.1, 78.1)  38.0 (25.0, 65.9)  36.7 (20.9, 49.3)  
Ex vivo TNF-α, pg/ml  427.8 (97.0, 1023.3)  689.7 (347.1, 1049.2)  331.1 (99.2, 806.8)  212.3 (35.7, 668.0)  278.0 (53.0, 1049.2)  
TNF-α, pg/ml  74.9 (56.2, 105.7)  69.0 (51.9, 85.1)  74.9 (55.4, 101.8)  76.2 (55.4, 108.6)  102.2 (81.4, 131.7)  
sCD163, pg/ml  294096 (195700, 496348)  223123 (163123, 323365)  309800 (185699, 508775)  345238 (248348, 572766)  668162 (280407, 897784)  
IFN-β, pg/ml  6.4 (6.4, 8.2)  6.4 (6.4, 7.2)  6.4 (6.4, 9.9)  6.4 (6.4, 10.8)  6.4 (6.4, 6.4)  
IL-22, pg/ml  26.0 (20.1, 34.2)  22.4 (17.8, 29.5)  28.0 (21.3, 36.9)  27.1 (20.1, 34.2)  31.9 (24.8, 49.2)  
IL-18, pg/ml  424.5 (255.2, 732.9)  326.4 (217.2, 480.9)  461.1 (279.4, 792.1)  576.4 (300.2, 1100.5)  518.4 (344.6, 857.1)  
IL-18BP, pg/ml  16083.6 (9107.0, 29173.7)  9649.8 (6141.4, 16025.1)  16084 (9513, 26918)  22654 (13694, 34513)  30713 (18114, 40878)  
MIG/CXCL9, pg/ml  801.2 (428.4, 2013.6)  576.2 (378.0, 1008.5)  809.8 (432.4, 1963.7)  1125.3 (496.6, 2470.9)  2047.0 (649.8, 4354.5)  
IL-1β, pg/ml  2.8 (2.4, 3.3)  2.6 (2.1, 3.2)  2.8 (2.3, 3.2)  2.9 (2.4, 3.3)  2.9 (2.5, 3.3)  
IL-4, pg/ml  4.7 (3.5, 6.5)  4.9 (3.5, 6.3)  4.9 (3.9, 6.8)  4.7 (3.5, 6.7)  4.3 (3.5, 6.4)  
IL-6, pg/ml  8.8 (6.5, 19.0)  6.9 (5.8, 10.0)  8.7 (6.5, 25.2)  11.1 (7.0, 27.2)  16.8 (8.4, 43.8)  
IL-8, pg/ml  55.0 (31.4, 108.6)  41.2 (27.7, 66.7)  57.1 (34.7, 113.7)  57.5 (35.1, 127.9)  123.5 (71.2, 468.6)  
IL-10, pg/ml  22.5 (17.5, 33.4)  19.3 (15.4, 24.6)  22.5 (18.6, 37.1)  23.7 (18.1, 37.5)  32.8 (24.6, 73.3)  
IL-13, pg/ml  3.1 (3.1, 3.9)  3.1 (3.1, 4.2)  3.1 (3.1, 3.4)  3.1 (3.1, 4.3)  3.1 (3.1, 3.4)  
IL-17A, pg/ml  19.1 (16.5, 23.4)  17.4 (15.6, 21.7)  19.1 (16.5, 26.0)  20.9 (16.7, 26.8)  19.1 (16.5, 23.4)  
IFN-γ, pg/ml  2.8 (2.8, 2.8)  2.8 (2.8, 3.0)  2.8 (2.8, 3.0)  2.8 (2.8, 3.0)  2.8 (2.8, 3.2)  
IP-10/CXCL10, pg/ml  727.8 (343.9, 1963.7)  494.0 (287.3, 1725.7)  705.8 (259.7, 1585.7)  967.7 (409.0, 2334.1)  789.5 (466.8, 2109.7)  
MCP-1/CCL2, pg/ml  142.5 (70.9, 367.6)  103.6 (49.7, 197.2)  169.8 (83.9, 383.3)  184.4 (88.7, 474.6)  240.7 (114.5, 1623.0)  
MIP-1α, pg/ml  0.6 (0.6, 7.7)  0.6 (0.6, 0.6)  0.6 (0.6, 8.1)  0.6 (0.6, 9.0)  6.6 (2.8, 16.1)  
MIP-1β, pg/ml  45.9 (31.4, 70.4)  42.4 (28.1, 56.3)  45.7 (31.9, 73.9)  44.6 (32.9, 77.8)  58.4 (47.9, 95.0)  
MCP-3, pg/ml  92.4 (92.4, 166.0)  92.4 (92.4, 147.8)  92.4 (92.4, 166.0)  119.5 (92.4, 166.0)  119.5 (92.4, 180.6)  
IFN-α2, pg/ml  125.7 (105.8, 140.2)  124.3 (105.8, 140.2)  125.7 (108.8, 144.4)  125.7 (105.8, 140.2)  120.0 (105.8, 137.9)  
IL-1α, pg/ml  9.4 (9.4, 13.2)  9.4 (9.4, 9.9)  9.4 (9.4, 16.4)  9.4 (9.4, 15.6)  9.4 (9.4, 13.2)  
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IL-2RA, pg/ml  378.8 (243.0, 623.2)  345.2 (237.6, 511.6)  385.3 (206.6, 683.1)  380.6 (243.1, 731.5)  449.7 (307.9, 747.5)  
IL-3, pg/ml  612.2 (529.0, 724.4)  624.4 (496.1, 734.6)  636.6 (529.0, 724.4)  612.2 (529.0, 724.4)  586.4 (496.1, 693.0)  
IL-16, pg/ml  569.8 (410.2, 763.0)  544.4 (391.2, 677.2)  590.4 (435.2, 770.2)  529.4 (382.7, 704.3)  858.0 (592.6, 1246.4)  
M-CSF, pg/ml  30.0 (17.0, 55.3)  20.7 (14.2, 33.6)  30.6 (20.3, 54.6)  34.4 (20.3, 58.9)  79.9 (46.2, 122.7)  
SCF, pg/ml  160.2 (118.8, 244.4)  141.6 (115.0, 199.9)  158.2 (113.8, 226.8)  151.5 (114.2, 238.8)  326.1 (227.5, 504.1)  
TRAIL, pg/ml  36.6 (27.9, 54.2)  42.9 (32.9, 65.5)  35.4 (25.4, 54.5)  35.4 (29.1, 45.4)  27.9 (24.1, 40.4)  
CRP, mg/dL  9.8 (3.3, 17.1)  4.3 (1.2, 12.4)  10.1 (4.8, 19.3)  14.3 (7.5, 21.7)  10.7 (3.4, 20.7)  
Ferritin, ng/mL  218.0 (98.0, 625.3)  125.4 (69.8, 207.8)  223.1 (116.5, 544.2)  405.5 (176.2, 1485.7)  610.0 (221.1, 2482.0)  

 

a All biomarkers are measured one time concomitantly in the first day. Values in the table are summarized as median (IQR). (Qin et al. 2022) 
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Table 4.6 Statistical test p-values of differences of biomarkers among phenotypes 

Biomarkera  
  

General  Pairwise 
PedSep-A 
      vs 
PedSep-B 

PedSep-A 
      vs  
PedSep-C 

PedSep-A 
       vs  
PedSep-D 

PedSep-B 
    vs  
PedSep-C 

PedSep-B 
     vs 
PedSep-D 

PedSep-C 
    vs 
PedSep-D 

ADAMTS13  <0.001  0.033  0.001  <0.001  1.000  <0.001  <0.001  
sFasLg  <0.001  0.140  <0.001  <0.001  0.419  0.111  1.000  
Ex vivo TNF-α  <0.001  0.002  <0.001  0.061  0.506  1.000  1.000  
TNF-α  <0.001  0.321  0.152  <0.001  1.000  <0.001  0.002  
sCD163  <0.001  0.008  <0.001  <0.001  0.680  0.0015  0.021  
IFN-β  0.068  0.400  0.320  1.000  1.000  0.400  0.430  
IL-22  <0.001  0.005  0.004  <0.001  1.000  0.270  0.139  
IL-18  <0.001  0.005  <0.001  <0.001  0.695  1.000  1.000  
IL-18BP  <0.001  <0.001  <0.001  <0.001  0.016  <0.001  0.227  
MIG/CXCL9  <0.001  0.053  <0.001  <0.001  1.000  0.025  0.207  
IL-1β  0.071  1.000  0.130  0.250  1.000  1.000  1.000  
IL-4  0.590  1.000  1.000  1.000  1.000  1.000  1.000  
IL-6  <0.001  0.020  <0.001  <0.001  0.759  0.023  0.258  
IL-8  <0.001  0.008  0.002  <0.001  1.000  <0.001  <0.001  
IL-10  <0.001  0.003  <0.001  <0.001  1.000  0.003  0.012  
IL-13  0.824  1.000  1.000  1.000  1.000  1.000  1.000  
IL-17A  <0.001 0.010  <0.001  0.862  1.000  1.000  0.577  
IFN-γ  0.998  1.000  1.000  1.000  1.000  1.000  1.000  
IP-10/CXCL10  0.013  1.000  0.024  0.133  0.267  0.817  1.000  
MCP-1/CCL2  <0.001  0.003  <0.001  <0.001  1.000  0.079  0.371  
MIP-1α  <0.001  <0.001  <0.001  <0.001  1.000  0.006  0.007  
MIP-1β  <0.001  0.168  0.093  <0.001  1.000  0.037  0.084  
MCP-3  0.309  1.000  0.930  0.660  1.000  1.000  1.000  
IFN-α2  0.803  1.000  1.000  1.000  1.000  1.000  1.000  
IL-1α  0.500  1.000  1.000  1.000  1.000  1.000  1.000  
IL-2RA  0.021  1.000  0.462  0.007  1.000  0.565  1.000  
IL-3  0.596  1.000  1.000  1.000  1.000  1.000  1.000  
IL-16  <0.001  0.318  1.000  <0.001  0.488  <0.001  <0.001  
M-CSF  <0.001  <0.001  <0.001  <0.001  1.000  <0.001  <0.001  
SCF  <0.001  0.760  0.850  <0.001  1.000  <0.001  <0.001  
TRAIL  <0.001  0.032  0.003  <0.001  1.000  0.104  0.047  
CRP  <0.001  <0.001  <0.001  0.002  0.137  0.952  0.265  
Ferritin  <0.001  <0.001  <0.001  <0.001  <0.001  <0.001  0.187  

Qin et al. (Qin et al. 2022) 
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4.4.4 Relationship with infection, organ support, and hospital mortality 

PedSep-A had more viral infection, PedSep-B had more pneumonia, and PedSep-C and D 

had more blood infections (Table 4.7, Table 4.8). Patients in PedSep-C had the least mechanical 

ventilation and the shortest length of stay. Patients in PedSep-D required more extracorporeal 

membrane oxygenation than in PedSep-A, and the most continuous renal replacement therapy 

(CRRT) overall. PedSep-A patients required the least CRRT. PICU free days were highest in 

PedSep-C and lowest in PedSep-D (Table 4.7, Table 4.8). 

Hospital mortality was 2% in PedSep-A, 12% in PedSep-B, 10% in PedSep-C, and 34% in 

PedSep-D (PedSep-B vs. A Adj OR 4.11 95% CI (1.11–19.96) p = 0.048; PedSep-C vs. A Adj OR 

4.35 95% CI (1.23–20.43) p = 0.034; PedSep-D vs. A Adj OR 17.25 95% CI (4.93–

92.06) p = 4.42E−05; PedSep-D vs B Adj OR 4.20 95% CI (1.84–9.97) p = 0.0008; and PedSep-D 

vs. C Adj OR 3.97 95% CI (1.62–10.14) p = 0.003) (Table 4.6, Table 4.7). 

The derived mortality curves show all deaths in PedSep-A occurred before seven days, 

whereas deaths in PedSep-B, C, and D continued to accrue after seven days (Fig 4.6). Mortality 

was associated with Central nervous system organ failure, decreased TNF and IL-2Ra levels, and 

increased MCP3 levels in PedSep-A; increased IL-6, IL-8, and MCP1/CCL2 levels in PedSep-B; 

high ferritin, lymphopenia, lower temperature, higher blood pressure, and increased IL-8 levels in 

PedSep-C; and hyperferritinemia, chronic illness, increased MIP-1α, IL-8, and IL-10 levels, and 

decreased IL-18 and sFASL levels in PedSep-D (Fig 4.7, Fig 4.8). 
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Table 4.7 Subsequent outcome characteristics of the four phenotypes 

Characteristice Total PedSep-A PedSep-B PedSep-C PedSep-D 

No. of patients, N (%) 404 (100) 136 (34) 102 (25) 110 (27) 56 (14) 

Development of Subsequent MOF Empirical Phenotypes 

SMOF, N (%) 7 (1.7) 0 (0.0) 0 (0.0) 1 (0.9) 6 (10.7)a,b,c 

TAMOF, N (%) 37 (9.2) 0 (0.0) 6 (5.9)a 3 (2.7) 28 (50.0)a,b,c 

IPMOF, N (%) 85 (21.0) 12 (8.8) 29 (28.4)a 22 (20) 22 (39.3)a 

MAS, N (%) 24 (5.5) 0 (0.0) 3 (2.9) 2 (1.8) 19 (33.9)a,b,c 

NPMOF, N (%) 117 (29.0) 28 (20.6) 25 (24.5) 32 (29.1) 32 (57.1)a,b,c 

Infections 
     

Bacterial infection, N (%) 141 (34.9) 43 (31.6) 33 (32.4) 45 (40.9) 20 (35.7) 

Viral infection, N (%) 114 (28.2) 60 (44.1)b,c,d 21 (20.6) 24 (21.8) 9 (16.1) 

Fungal infection, N (%) 4 (1.0) 0 (0.0) 1 (1.0) 0 (0.0) 3 (5.4) 

Culture negative, N (%) 177 (43.8) 47 (34.6) 52 (51.0) 50 (45.5) 28 (50.0) 

Sites of Infections f 
     

Blood, N (%) 51 (12.6) 10 (7.4) 6 (5.9) 22 (20.0)a,b 13 (23.2)a,b 

Lung, N (%) 76 (18.8) 28 (20.6) 29 (28.4) a,c,d 12 (10.9) 7 (12.5) 

Urine, N (%) 16 (4.0) 4 (2.9) 5 (4.9) 6 (5.5) 1 (1.8) 

Organ Support 
     

MechVent, N (%)  366 (90.6) 134 (98.5)c 101 (99.0)c 79 (71.8) 52 (92.9)c 

ECMO, N (%) 30 (7.4) 5 (3.7) 9 (8.8) 6 (5.5) 10 (17.9)a 

CRRT, N (%) 52 (12.9) 1 (0.7) 7 (6.9) 7 (6.4) 37 (66.1)a,b,c 

Anti-inflammatory Therapies of Interest 

Decadron, N (%) 94 (23.3) 50 (36.8)c,d 22 (21.6) 14 (12.7) 8 (14.3) 

Methylprednisolone, N 
(%) 

117 (29.0) 54 (39.7)b 23 (22.5) 24 (21.8) 16 (28.6) 

IVIG, N (%) 51 (12.6) 6 (4.4) 10 (9.8) 19 (17.3)a 16 (28.6)a 

IVIG + 
Methylprednisolone 

23 (5.7) 3 (2.2) 4 (3.9) 9 (8.2)a 7 (12.5)a 

Plasma exchange, N (%) 25 (6.2) 5 (3.7) 4 (3.9) 4 (3.6) 12 (21.4)a,b,c 

Plasma exchange + ECMO 6 (1.5) 1 (0.7) 1 (1.0) 1 (0.9) 3 (5.4) 

Outcome      

Length of Stay,  9.0 (5.0-17.) 9.0 (5.8-15)c 10.5 (5.3-17)c 6 (2.3-15) 12.5 (7-26.5)c 
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median (IQR), d 

Mortality, N (%) 45 (11.1) 3 (2.2) 12 (11.7)a 11 (10.0)a 19 (33.9)a,b,c 

PICU free days, median 
(IQR), d 

20.0  

(8.0-25.0) 

21.0  

(14.8- 24.0)d 

19.0 

(9.8-24.0) d 

24.0 

(13.3-27)a,b,d 

4.5 

 (0.0-21.0) 

Qin et al. (Qin et al. 2022) 
Abbreviations: SMOF, sequential liver failure associated multiple organ failure; TAMOF, thrombocytopenia 

associated multiple organ failure; IPMOF, immunoparalysis associated multiple organ failure; MAS, macrophage 
activation syndrome; NPMOF, new or progressive multiple organ failure; IQR, interquartile range; MechVent, 

Mechanical Ventilation; ECMO, Extracorporeal Membrane Oxygenation; CRRT, Continuous Renal Replacement 
Therapies; IVIG, intravenous gamma globulin 

 
aThe outcome characteristic of this computable phenotype is significantly higher than PedSep-A (p-value < 0.05) 
bThe outcome characteristic of this computable phenotype is significantly higher than PedSep-B (p-value < 0.05) 
cThe outcome characteristic of this computable phenotype is significantly higher than PedSep-C (p-value < 0.05) 
dThe outcome characteristic of this computable phenotype is significantly higher than PedSep-D (p-value < 0.05) 

e Comparisons across all 4 computable phenotypes were performed using the Kruskal-Wallis test, the χ2 test, or the 
Fisher’s exact test. 

f Obtained at the first 3 days 
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Table 4.8 Statistical test results of differences in subsequent outcome characteristics among the phenotypes 

 Statistical test p-value 
Character
istica 

General                                                Pairwise                      
  

PedSep-A 
vs 

PedSep-B 

PedSep-A 
vs 

PedSep-C 

PedSep-A 
vs 

PedSep-D 

PedSep-B                              
vs 

PedSep-C 

PedSep-B 
vs 

PedSep-D 

PedSep-C 
vs 

PedSep-D 
MOF Empirical Phenotypes 
SMOF <0.001 1.000 1.000 0.003 1.000 0.008 0.027 
TAMOF <0.001 0.017 0.173 <0.001 0.321 <0.001 <0.001 
IPMOF <0.001 0.00083 0.064 <0.001 0.446 0.446 0.064 
MAS <0.001 0.240 0.390 <0.001 0.680 <0.001 <0.001 
NPMOF <0.001 1.000 0.489 <0.001 1.000 <0.001 0.003 
Infections 
Bacterial 
infection 

0.440 1.000 1.000 1.000 1.000 1.000 1.000 

Viral 
infection 

<0.001 0.002 0.002 0.002 1.000 1.000 1.000 

Fungal 
infection 

0.003 1.000 1.000 0.140 1.000 0.510 0.190 

Culture 
negative 

0.049 0.096 0.432 0.336 1.000 1.000 1.000 

Sites 
Blood <0.001 1.000 0.023 0.023 0.023 0.019 1.000 
Lung 0.006 0.634 0.245 0.634 0.014 0.185 0.963 
Urine 0.644 1.000 1.000 1.000 1.000 1.000 1.000 
Organ Support 
MechVent <0.001 1.000 <0.001 0.302 <0.001 0.302 0.013 
ECMO 0.006 0.629 0.983 0.015 0.983 0.629 0.112 
CRRT <0.001 0.067 0.067 <0.001 1.000 <0.001 <0.001 
Anti-inflammatory therapies 
Dexametha
sone 

<0.001 0.057 <0.001 0.002 0.561 0.561 0.926 

Methylpre
dnisolone 

0.009 0.034 0.086 0.203 1.000 1.000 1.000 

IVIG <0.001 0.300 0.002 <0.001 0.231 0.054 0.496 

Methylpre
dnisolone 
+ IVIG 

0.019 0.460 0.029 0.012 0.154 0.105 0.787 

Plasma 
exchange 

<0.001 1.000 1.000 0.002 1.000 0.006 0.002 

ECMO + 
Plasma 
exchange 

0.207 1.000 1.000 0.094 1.000 0.298 0.299 

Outcome 

Length of 
Stay 

<0.001 0.365 0.010 0.052 0.003 0.259 <0.001 
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Mortality <0.001 0.015 0.023 <0.001 0.826 0.006 0.002 

PICU-free 
Days 

<0.001 0.329 0.038 <0.001 0.012 0.003 <0.001 

Qin et al. (Qin et al. 2022) 
Abbreviations: SMOF, sequential liver failure associated multiple organ failure; TAMOF, thrombocytopenia 

associated multiple organ failure; IPMOF, immunoparalysis associated multiple organ failure; MAS, macrophage 
activation syndrome; NPMOF, new or progressive multiple organ failure; IQR, interquartile range; MechVent, 

Mechanical Ventilation; ECMO, Extracorporeal Membrane Oxygenation; CRRT, Continuous Renal Replacement 
Therapies; IVIG, intravenous gamma globulin 

a Comparisons across all 4 phenotypes were performed using the Kruskal-Wallis test for continuous variables, the χ2 
test for categorical variables, or the Fisher’s exact test for cells with less than 5 patients 
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Figure 4.7 Mortality and organ failure curves over 28 days among the four phenotypes 

Number of organ failures and mortality according to PedSep-A, B, C, and D phenotype over 28 days. Both short-
term mortality (panel A) and organ failure (panel B) show significant differences by phenotype (p < 0.001). The 

mean numbers of organ failures and 95% confidence intervals (CI) are calculated each day by non-nested 
observation, where we do not carry forward the OFI at the time the patient leaves the PICU alive or dead. As a 

reference for patients at risk for Panel B, Panel C shows the number of children remaining in the PCU at day 0, 7, 
14, 21, and 28. (Qin et al. 2022) 
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Figure 4.8 Comparison of relationships of 25 variables to mortality in the four phenotypes 

In all panels, the variables are standardized such that all means are scaled to 0 and SDs to 1. A value of 1 for the 
standardized variable value (x-axis) signifies that the mean value for the phenotype was 1 SD higher, or lower 

for − 1, than the mean value for the phenotypes shown in the graph as a whole. CNS central nervous system, CRP C-
reactive protein, GCS Glasgow Coma Scale, Hemat hematologic, Intubate intubation with endotracheal 

tube, OFI organ failure index, Post-Op post-surgery, Pulm pulmonary, Temp temperature, SBP systolic blood 
pressure, Chronic illness those who are not recorded as previous healthy, Ethnicity value is higher with more non-

Hispanics in group, Sex value is higher with more males in group. (Qin et al. 2022) 
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Figure 4.9 Comparison of biomarkers that related to mortality in each phenotype 

In all panels, the variables are standardized such that all means are scaled to 0 and SDs to 1. A value of 1 for the 
standardized variable value (x-axis) signifies that the mean value for the phenotype was 1 SD higher than the mean 

value for both phenotypes shown in the graph as a whole. (Qin et al. 2022) 
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4.4.5 Relationship with empirical phenotypes 

On average, children in PedSep-A and PedSep-C developed less than two organ failures; 

children in PedSep-B developed more than two organ failures; and children in PedSep-D 

developed more than three organ failures over 28 days (Fig 4.6). Children in PedSep-D had the 

highest proclivity to develop immunoparalysis (Adj OR 2.40 95% CI (1.25–4.53); p = 7.20E-03), 

new and progressive organ failure (Adj OR 4.03 95% CI (2.19–7.55); p = 9.48E-06), 

thrombocytopenia-associated MOF (Adj OR 47.51 95% CI (18.83–136.83); p = 1.25E-14), 

sequential liver failure-associated MOF (Adj OR 61.56 95% CI (8.93–1,282.58); p = 3.80E-04), 

and macrophage activation syndrome (Adj OR 38.63 95% CI (13.26–137.75); p = 4.61E-10). 

Immunoparalysis- and thrombocytopenia-associated MOF also occurred more commonly in 

children in PedSep-B and D compared to those in PedSep-A (Table 4.6, Table 4.7). 

4.4.6 Heterogeneous treatment effect 

All 3 organ support therapies and 11 of 41 anti-inflammatory therapies were associated 

with outcomes in univariable analysis (Table 4.9, Fig 4.9) among the children who received anti-

inflammatory therapies and were included in the derived exploratory elastic net regression analysis 

(Fig 4.9). This analysis was not performed in PedSep-A because mortality was very low at 2%. 

The constructed elastic net regression heatmaps visualize heterogeneous mortality association 

patterns across PedSep-B, C, and D (Fig 4.10). Unadjusted mortality odds ratios < 0.1 with use of 

anti-inflammatory agents were not observed with any single therapy; however, unadjusted 

interactions were observed with use of methylprednisolone and IVIG. 
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In adjusted logistic regression modeling, neither methylprednisolone nor IVIG treatment 

alone, nor the combination, was associated with reduced odds of mortality. The interaction term 

identified in elastic net regression analysis between methylprednisolone and IVIG therapies in 

PedSep-D patients remained statistically significant in logistic regression analysis 

(Methylprednisolone * IVIG interaction = 0.03; 95% CI (0.00058–0.66), p = 0.04), indicating that 

the association of IVIG with mortality was modified by exposure to methylprednisolone in 

PedSep-D patients. There was also a significant interaction between PedSep-D membership and 

use of combined methylprednisolone plus IVIG therapy in logistic regression analysis (PedSep-D 

* Methylprednisolone + IVIG combination interaction = 0.04 95% CI (0.001–0.56), p = 0.026) 

interpreted as meaning that the mortality association with exposure to combined 

methylprednisolone plus IVIG use is modified by PedSep-D membership.  
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Table 4.9 Univariable association of 44 therapies with mortality in the subset of patients given anti-

inflammatory therapies 

Therapy General PedSep-A PedSep-B PedSep-C PedSep-D 
ANAKINRA, p-value (No.) 0.017 (5) - (0) 1 (1) 0.055 (3) 0.367 (1) 
BECLOMETHASONE, p-value (No.) 1 (2) - (0) - (0) 1 (2) - (0) 
BORTEZOMIB, p-value (No.) 1 (1) - (0) - (0) - (0) 1 (1) 
CAMPATH, p-value (No.) 1 (2) - (0) 1 (1) 1 (1) - (0) 
CARBOPLATIN, p-value (No.) 1 (1) 1 (1) - (0) - (0) - (0) 
CELLCEPT, p-value (No.) 1 (3) - (0) - (0) 1 (1) 0.526 (2) 
CISPLATIN, p-value (No.) 1 (1) - (0) - (0) 1 (1) - (0) 
CYCLOPHOSPHAMIDE, p-value (No.) 1 (1) - (0) - (0) 1 (1) - (0) 
CYCLOSPORINE, p-value (No.) 0.017 (2) - (0) - (0) 0.147 (1)  0.367 (1) 
CYTARABINE, p-value (No.) 0.342 (3) - (0) - (0) 0.274 (2) 1 (1) 
CYTOGAM, p-value (No.) 0.130 (1) - (0) - (0) - (0)  0.367 (1) 
DAUNORUBICIN, p-value (No.) 1 (1) - (0) - (0) - (0) 1 (1) 
DEXAMETHASON, p-value (No.) 0.580 (94) 1 (50) 1 (22) 0.004 (14) 1 (8) 
DOXORUBICIN, p-value (No.) 1 (1) - (0) - (0) 1 (1) - (0) 
ENBREL, p-value (No.) 0.130 (1) - (0) - (0) 0.147 (1) - (0) 
EPOETIN ALFA, p-value (No.) 1 (1) - (0) - (0) - (0) 1 (1) 
ETANERCEPT, p-value (No.) 1 (1) 1 (1) - (0) - (0) - (0) 
ETOPOSIDE, p-value (No.) 0.128 (5) 1 (1) - (0) 0.020 (2) 0.526 (2) 
FLUDROCORTISONE, p-value (No.) 1 (1) 1 (1) - (0) - (0) - (0) 
FLUOROURACIL, p-value (No.) 1 (1) - (0) - (0) 1 (1) - (0) 
HYDROCORTISONE, p-value (No.) 0.061 (172) 1 (36) 1 (48) 1 (50) 0.724 (38) 
HYDROXYCHLOROQUINE, p-value 
(No.) 

1 (2) 1 (1) - (0) 1 (1) - (0) 

HYDROXYUREA, p-value (No.) 0.017 (2) - (0) - (0) - (0) 0.130 (2) 
IMMUNOGLOBULIN G, p-value (No.) 0.001 (51) 1 (6) 0.113 (10) 0.025 (19) 0.537 (16) 
INFLIXIMAB, p-value (No.) 0.130 (1) - (0) - (0) 0.147 (1) - (0) 

METHYLPREDNISOLONE, p-value 
(No.) 

0.862 (117) 1 (54) 0.714 (23) 0.004 (24) 0.754 (16) 

MYCOPHENOLATE, p-value (No.) 0.001 (8) - (0) 1 (1) 0.009 (4) 0.546 (3) 
NEUPOGEN, p-value (No.) 0.001 (23) - (0) 0.241 (2) 0.012 (12) 0.708 (9) 
PREDNISOLONE, p-value (No.) 0.781 (32) 1 (14) 1 (5) 0.612 (9) 1 (4) 
PROGRAF, p-value (No.) 0.243 (2) - (0) - (0) 0.274 (2) - (0) 
PULMICORT, p-value (No.) 1 (3) 1 (1) 1 (1) 1 (1) - (0) 
RASBURICASE, p-value (No.) 1 (1) - (0) - (0) - (0) 1 (1) 
RITUXIMAB, p-value (No.) 1 (2) 1 (1) 1 (1) - (0) - (0) 
SARGRAMOSTIM, p-value (No.) 0.130 (1) - (0) - (0) - (0) 0.367 (1) 
SIROLIMUS, p-value (No.) 1 (2) - (0) - (0) 1 (1)  1 (1) 
SYMBICORT, p-value (No.) 1 (1) 1 (1) - (0) - (0) - (0) 
TACROLIMUS, p-value (No.) 0.042 (16) 1 (1) 1 (3) 0.021 (5) 1 (7) 
THYMOGLOBULIN, p-value (No.) 0.130 (1) - (0) - (0) 0.147 (1) - (0) 
TOCILIZUMAB, p-value (No.) 1 (1) - (0) - (0) 1 (1) - (0) 
VINCRISTINE, p-value (No.) 1 (1) - (0) - (0) 1 (1) - (0) 
Plasma exchange, p-value (No.) 0.047 (25) 1 (5) 0.067 (4) 1 (4) 1 (12) 
MechVent, p-value (No.) 0.10 (366) 1 (134) 1 (101) 0.032 (79) 1 (52) 
ECMO, p-value (No.) 0.001 (30) 0.11 (5) 0.001 (9) 0.110 (6) 0.073 (10) 
CRRT, p-value (No.) 0.001 (52) 1 (1) 0.003 (7) 0.14 (7) 0.23 (37) 
2-6 columns of table present p values from statistical tests and number of patients treated by each therapy in each 

phenotype. A p value less than 0.05 indicates a significant association between individual therapy and mortality. “-” 
indicates no patient from a specific phenotype treated by this therapy. (Qin et al. 2022) 
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Figure 4.10 Counts of patients receiving 14 therapies alone and in combination 

This heatmap shows the count of treated patients (A) and survivors among treated patients (B) in PedSep-B, C, and 
D. Therapies not associated with outcomes in univariable analysis (eTable 12) were not included. Drugs and Organ 

Support treatments are sorted in alphabetical order.  (Qin et al. 2022) 
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Figure 4.11 Heterogeneous treatment interactions and mortality risks among the phenotypes 

Heatmap of Elastic Net Regression analysis shows the association between 14 individual therapies (diagonal values) 
and their 91 combination interactions (total cells = 105) with mortality in PedSep-B, C, and D among children who 

received anti-inflammatory therapies. Blank cells have no patients. Values in each cell represent odds ratios of 
mortality, where 1 represents no association with mortality. Color in each cell represents direction of effect, where 
red represents mortality direction, green represents survival direction. Cells located at the diagonal are odds ratio of 

association from the 14 individual therapies. (Qin et al. 2022) 
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4.5 Discussion 

Machine learning analysis of patients from the extant PHENOMS study derived four 

computable 24-h phenotypes meeting three of five ‘path forward’ criteria providing impetus for 

their further evaluation in new pediatric sepsis studies (DeMerle et al. 2021). The derived 

computable phenotypes demonstrated clinical relevance with differences in types of presenting 

diagnoses, infections, organ failures, need for organ support therapies, outcomes, and proclivity to 

the development of TAMOF and MAS (Carcillo et al. 2019). Derived consensus k-means 

clustering and t-SNE analyses demonstrated that the computable phenotypes 

are nonsynonymous. The differences in cytokine profiles provide biological plausibility for these 

derived computable phenotypes having different inflammation responses, highlighted in PedSep-

D by decreased ADAMTS13 with TAMOF and increased MIP 1α with MAS. Exploratory 

modeling of interactions between therapies among patients receiving anti-inflammatory 

treatments, derived computable phenotypes, and mortality demonstrated no reduction in mortality 

odds with methylprednisolone, IVIG or the combination; however, it identified a signal for 

methylprednisolone affecting the relationship of IVIG therapy to outcome in PedSep-D patients. 

We speculate that this interaction is reminiscent of the report that addition of methylprednisolone 

to IVIG improves cardiac function in children with COVID19-related multisystem inflammatory 

syndrome (MIS-C) compared to IVIG alone (Son et al. 2021). The very wide confidence intervals 

provide impetus to further evaluate this interaction signal in larger sample sizes using new study 

cohorts. We are presently assessing treatment responsiveness and reproducibility of the four 

derived phenotypes in our NICHD network’s 1000-patient Personalized Immunomodulation in 

Pediatric Sepsis and Multiple Organ Dysfunction trial testing interleukin 1 antagonist protein for 
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hyper-inflammatory sepsis; and, also in the observational 500 patient Second Argentinian 

Pediatric Sepsis Epidemiology Study (PI Roberto Jabornisky).   

PedSep-A is characterized by younger previously healthy children with respiratory failure 

and the least increased inflammation. This resembles the adult α phenotype in the SENECA trial 

(Seymour et al. 2019), and also the MARS 3 and sepsis response signature 2 endotypes, which 

found predominant expression of adaptive immune and B-cell developmental pathways 

(Davenport et al. 2016, Scicluna et al. 2017, Sweeney et al. 2018). Mortality in PedSep-A was low 

at 2% and did not increase after 7 days, making anti-inflammatory clinical trials directed to 

survival less feasible. 

PedSep-B is characterized by multiple organ failure requiring intubation for more severe 

respiratory failure, shock, and central nervous system dysfunction with increased C-reactive 

protein levels and 12% mortality. This is reminiscent of children reported in the Life After 

Pediatric Sepsis Evaluation study (Zimmerman et al. 2020); the shock with hypoxia phenotype in 

adult sepsis-induced MOF (Knox et al. 2015); and the severe hypoxia, altered mental status, and 

shock phenotype in pediatric MOF (Ye and Sanchez-Pinto 2020). 

PedSep-C is distinguished by cardiovascular failure and relative absence of need for 

intubation (14%) with the least pulmonary failure (34%) and need for mechanical ventilation 

(71%), in the presence of elevated C-reactive protein, high ferritin, and lymphopenia, with 10% 

mortality. This is reminiscent of the Toxic Shock (TSS)—Kawasaki syndrome phenotype 

currently being considered as PMIS/MIS-C syndrome (Ebato et al. 2017, Ma et al. 2018, Carter et 

al. 2020, Cook et al. 2020, Son et al. 2021). Similar to TSS and Kawasaki’s, our PedSep-C patients 

showed elevated IL-17a and IP10/CXCL10 levels (Szabo et al. 2017, Chang et al. 2020).  
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PedSep-D patients had cardiovascular, respiratory, liver, renal, hematologic, and 

neurologic dysfunction with 34% mortality; clinical features shared by the adult δ phenotype 

characterized in the SENECA study using electronic health record criteria for Sepsis-3 (Seymour 

et al. 2019); the shock with thrombocytopenia pediatric MOF phenotype (Ye and Sanchez-Pinto 

2020); and previously reported subclasses including the hyperinflammatory sub-phenotype 

reported in acute respiratory distress syndrome, a condition commonly related to sepsis (Calfee et 

al. 2014, Sinha et al. 2020, Yasin et al. 2020). It also resembles sepsis endotypes derived using 

transcriptomic analyses of circulating immune cells, specifically the inflammopathic cluster 

known as sepsis signature 1, or the Molecular Diagnosis and Risk Stratification of Sepsis (MARS) 

2 cluster (Davenport et al. 2016, Scicluna et al. 2017, Sweeney et al. 2018). PedSep-D is 

specifically characterized by hyperferritinemic (ferritin > 500 ng/mL), thrombocytopenic (platelet 

count < 100 K) multiple organ failure with the highest likelihood of new or progressive multiple 

organ failure accruing mortality after 7 days and the lowest number of PICU free days. PedSep-D 

membership identifies children with the highest proclivity for decreased ADAMTS 13 activity 

with thrombocytopenia-associated MOF, and increased MIP 1α with macrophage activation 

syndrome. 

An ongoing external validation analysis was conducted by Caldino Bohn et al to investigate 

pediatric sepsis phenotypes derived by the same method in an Argentina cohort, LMIC (N = 428). 

Variable sets and distributions were similar between PHENOMS and LMIC cohorts. Four 

phenotypes were validated as the optimal number of clusters, where the PedSep-D phenotype was 

the most similar phenotype between the two cohorts. The mortality rates of the four phenotypes 

were similar between the two cohorts , where the PedSep-D phenotype had the highest mortality 

(Argentina 33%; USA 34%). 
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There are limitations to consider in this post hoc machine learning analysis of the parent 

PHENOMS study and its inherent selection bias risks. Although the PHENOMS study represents 

the largest longitudinal multiple center pediatric sepsis-induced MOF cohort with concomitant 

CRP and ferritin levels available (Carcillo et al. 2019), it is small compared to adult standards 

because sepsis occurs 15 times more commonly in adults than in children. Definitions of pediatric 

sepsis and organ failures are also evolving and behind the changes in adult sepsis. Definitions of 

sepsis and organ failure were necessarily limited to those used in the extant study. Only 25 out of 

52 available clinical and laboratory variables available in this parent study had < 20% missingness 

and were included in the machine learning derivation. Only 33 additional biomarkers were 

performed to assess biological plausibility for the computable phenotypes having different 

inflammatory responses. Lactate was not recorded and may be an important missing variable 

(Tonial et al. 2021). Interactions could only be assessed for those therapies given by bedside 

clinicians in a ‘natural experiment’ setting. Our models did not capture all confounders, 

comorbidities, therapies used, reasons for therapies, or site differences in clinical practice. 

Furthermore, combined methylprednisolone plus IVIG and ECMO plus plasma exchange 

therapies were rarely administered. The reproducibility of the derived computable phenotypes 

cannot be assessed in a single extant multiple-center resource-rich study. We are presently 

assessing reproducibility in two ongoing independent cohort studies. 
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5.0 Uncover the Role of Rare Variants in Pediatric Sepsis through an Exome-wide Gene-

based Association Analysis 

5.1 Forward 

Most parts of the writings, figures, and tables of this chapter are under review as of this 

moment. The current version of the manuscript under review is “Yidi Qin, Kate F Kernan, Yulong 

Bai, John R Shaffer, Zsolt Urban, Scott Canna, Robert A. Berg, David Wessel, Murray M. Pollack,  

Kathleen Meert, Mark Hall, Christopher J. Newth, John C. Lin, Tom Shanley, Rick E. Harrison, 

Joseph A Carcillo, and Hyun-Jung Park1. Deleterious variants in LTBP4 are associated with a 

severe pediatric sepsis phenotype established by agnostic method. ” 

5.2 Introduction 

Pediatric sepsis is a life-threatening condition associated with organ failure in children 

predominantly due to a dysregulated host immune response to infection. It is a recognized global 

public health problem that affects 20.3 million children and causes 2.9 million deaths in those 

under five years old every year (World Health Organization 2020). Despite global efforts to 

improve clinical outcomes for pediatric sepsis, its phenotypic heterogeneity remains a significant 

barrier to therapeutic advancement (Cavaillon et al. 2020). Several recent analyses have attempted 

to explore pediatric sepsis phenotypes using either empirical or data-driven analyses (Wong et al. 

2009, Sweeney et al. 2018, Carcillo et al. 2019, Sanchez-Pinto et al. 2020).  However, most of 
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these analyses were limited by small sample size or bedside relevance, failing to incorporate 

statistically significant and clinically reasonable features. Recently, by applying machine learning 

approaches to 25 first-day bedside clinical variables of 404 pediatric sepsis patients with organ 

dysfunction enrolled as part of a multicenter cohort, PHENOtyping sepsis-induced Multiple organ 

failure Study (PHENOMS), between 2015 to 2017, we derived four agnostic phenotypes PedSep-

A, B, C, and D (Qin et al. 2022). The four phenotypes display significantly distinct patterns in 

terms of sources of infections (e.g., bacteria, viremia, fungal), cytokines, organ failure, clinical 

outcomes (e.g., mortality, length of stay in Pediatric Intensive Care Unit (PICU), PICU free days), 

and therapeutic responses, suggesting that they are biologically meaningful, clinically relevant, 

and potentially targetable phenotypes.  

Several studies suggested that host genetic factors contribute to the heterogeneity of 

pediatric sepsis. Evidence for the genetic basis of sepsis stems from the landmark study of 

Sørensen et al. in 1988 (Sorensen et al. 1988), where the authors reported a five-fold higher risk 

of death in infected adoptees with one biological parent who had died from infection. Building on 

this observation, subsequent research has attempted to reveal the genetic factors of sepsis 

susceptibility and outcomes. Many of these studies have focused on known genetic loci or gene 

sets of interest due to their impact on human disease or immunologic function (Asgari et al. 2016, 

Borghesi et al. 2020, Kernan et al. 2022). Despite known associations, these targeted inquiries 

limit the capacity to discover novel functional sepsis-related genes. Alternatively, researchers have 

conducted several genome-wide association studies (GWAS) on adult and pediatric populations to 

identify common variants underlying sepsis susceptibility and outcomes (Rautanen et al. 2015, 

Butler-Laporte et al. 2020, Hernandez-Beeftink et al. 2022). However, although common variants 

have been used to understand the genetic basis of clinical outcomes (e.g., survival from sepsis or 
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hospital admission), they are limited in elucidating the genetic architecture for agnostic pediatric 

sepsis phenotypes with poor outcomes. First, common variants usually have small effects on 

complex traits, making them difficult to detect, requiring a prohibitively large sample size and of 

limited clinical benefit in a large fraction of the population (Manolio et al. 2009). Indeed, the only 

GWAS on 351 extremely premature infants with sepsis could not identify common variants 

separating them from 406 healthy controls, demonstrating the limitation of common variant 

analysis in delineating sepsis susceptibility (Srinivasan et al. 2017). Second, common variants are 

often located in non-coding regions of the genome where the function is currently poorly 

understood (Tam et al. 2019). As a result, out of 27 common variants reported in GWAS Catalog 

as associated with sepsis to date, 26 variants are located in non-coding regions without clearly 

annotated consequences. The only reported GWAS variant in a coding region is a missense variant 

within SAMD9 (rs34896991) with an allele frequency close to 0.01 (Hernandez-Beeftink et al. 

2022). Without involving further functional validation, the large fraction of findings in non-coding 

regions challenges the interpretation of the sepsis GWAS results.  

To address these limitations and delineate the genetic architecture of the agnostic pediatric 

sepsis phenotype with poor outcomes, we performed a gene-based exome-wide rare variant 

analysis using data from the PHENOMS study of severe pediatric sepsis. Using whole-exome 

sequencing data allowed us to investigate rare variants lying in coding regions with potentially 

larger effects. Specifically, to investigate the role of rare variants in distinguishing a previously 

identified PedSep-D phenotype from others (i.e. PedSep-A, B, and C), we performed a gene-based 

rare variant analysis on the pediatric sepsis phenotypes using whole exome sequencing (WES) 

data collected from a subset of the 404 children with sepsis and evidence of organ dysfunction 

(n=319, Figure 1). Additionally, as pediatric sepsis morbidity and mortality were incurred by only 
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a small subset of children, we focused our inquiry on the phenotype characterized by the worst 

outcomes by contradicting it with the rest of the cohort, to identify novel genotype associations 

and provide insights into potential therapies. Altogether, we present the first rare variant burden 

test in the phenotype with the worst outcomes in pediatric sepsis.  

5.3 Method 

5.3.1 DNA extraction and genotyping 

Out of all pediatric patients enrolled in the cohort, a total of 381 parents of the children 

provided WES consent, and 2 mL of whole blood was collected for DNA extraction using standard 

methods. Whole-exome sequencing was successfully completed on 332 patients from 2018 to 2020 

by the University of Pittsburgh Genomics Research Core performed on the Ion Torrent platform. 

Libraries were constructed by the Ampliseq Exome RDY (Thermo Fisher Scientific) with 

100 × target coverage. FASTQ files were aligned to Homo sapiens reference sequence 

GRCh37/hg19 to generate VCF files. Variant calling was performed by GATK (Genome Analysis 

Toolkit) (Van der Auwera GA 2020). 

5.3.2 Quality control 

Two levels of quality control were conducted on 332 samples with completed whole-

exome sequencing data, patient-level, and variant-level. At the patient level, we excluded nine 

individuals without phenotype information. Four pairs of individuals were identified as relatives 
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based on IBD (identity by descent). In each IBD pair, the individual with the higher missingness 

was removed from the analysis. In terms of variant-level quality control, we filtered sites with 

SOR (Strand Odds Ratio) > 3, MQ (root mean square Mapping Quality) < 40, QD (variant 

confidence normalized by depth) < 2.0, average GQ (Genotyping confidence) < 20, average DP 

(Depth) < 10, missingness > 0.05, HWE (Hardy-Weinberg equilibrium p) < 1e-06, and those 

located on sex chromosomes. No imputation of missing genotypes was performed due to concerns 

for potentially low imputation quality of rare variants in datasets with small sample sizes. Quality 

control was performed by software bcftools (v1.9) (Li 2011), VCFtools (v0.1.16) (Danecek et al. 

2011), and PLINK (v1.9) (Purcell et al. 2007). Then variant function was annotated by 

ANNOVAR (Wang et al. 2010).  

5.3.3 Gene-based analysis 

Variants that passed quality control were included if they were in hg19 annotated exon 

regions and had a MAF (minor allele frequency) lower than 1%. Genes with less than three 

qualified variants were excluded from the analysis to ensure there is no inflation in test statistics. 

The final number of genes tested was 3,846. Therefore, the p-value threshold for declaring whole-

exome level significance was 0.05/3846 = 1.3e-05. The suggestive p-value threshold is 0.5/3846 

= 1.3e-04. 

We aggregately examined the relationships between the rare variants and the binary 

indicator of phenotype membership by gene-based association test SKAT (Sequence Kernel 

Association Test) (Wu et al. 2011). SKAT is a widely-employed method to test the association 

between a group of variants and the trait, which increases the power to detect rare variant 

associations by pooling rare variants across a given region of interest, such as chromosome region 
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or gene. In running the SKAT test, a single null model was fitted containing only the covariates to 

be adjusted (i.e., age, sex, and the first four ancestry PCs constructed from common linkage 

disequilibrium (LD)-pruned SNPs). Then the effect of SNPs from each gene was tested between 

PedSep-D group and non-PedSep-D group by variance-component score tests in a mixed model, 

and their statistics were aggregated with weights through a kernel matrix to form a gene-level 

statistic. Compared to other gene-based tests such as the Burden Test and SKAT-O, one advantage 

of applying SKAT in our analysis is that it makes few assumptions about rare-variant effects and 

retains statistical power when variants within a gene have different directions and magnitude of 

effects (Lee et al. 2012). This property aligns with the study design that contrasts one phenotype 

with others and allows us to better account for potential heterogeneity in phenotypes.  

Genes showing whole-exome level significance and suggestive significance were further 

investigated to query the gene function (GeneCards) (Stelzer et al. 2016), common variant 

evidence from previous GWAS analysis (GWAS Catalog) (Sollis et al. 2023), gene enrichment in 

GO biological process (FUMA, Enrichr) (Chen et al. 2013, Watanabe et al. 2017), and gene 

expression level in the GTEx database (Consortium 2013). Rare variants that in the top gene were 

annotated with four different types of score (CADD (Rentzsch et al. 2019), GERP (Davydov et al. 

2010), SIFT (Ng and Henikoff 2001), and Polyphen2 (Adzhubei et al. 2010)) to indicate the effect 

of each variant.  

5.3.4 Comparison of cytokine profiles between rare variants carriers and non-carriers 

To further investigate the effect of variations on inflammation, levels of the 33 pre-

collected biomarkers of the rare variant carriers were further visualized and compared with non-

carrier (Qin et al. 2022). The cytokine heatmap was used to present the log ratio of the median 
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biomarker values of the host response. The red color represents a greater median value for the 

carrier group compared to the median value of the entire cohort, while the blue color represents a 

lower median value for the group compared to the median value oof the entire cohort. Hierarchical 

clustering was used to visualize the similarity of cytokine patterns between rare variant carriers. 

Additionally, we calculated p-values from a pairwise t-test comparing cytokine values of rare 

variant carriers and non-carriers. 

5.3.5 Sensitivity Analysis 

To further validate the top genes identified from the gene-based analysis, we investigated 

the influence of the ancestry information on the genes with a sensitivity analysis performed as 

follows. Briefly, we relabeled the phenotypes of the original PedSep-D samples as “non-PedSep-

D”. Then we selected the same number of samples as PedSep-D group from the original non-

PedSep-D group, maintaining the same racial composition as the original PedSep-D group. 

Specifically, from the 279 samples in the original non-PedSep-D group, we randomly selected 28 

samples with reported race as White, 7 samples with the reported race as Black, 3 samples with 

the reported race as Asian, and 2 samples with the reported race as Unknown. Then we relabeled 

the phenotypes of these randomly selected samples as “PedSep-D”. With this approach, we ran 

100,000 iterations of random selection step, coupled with  SKAT gene-based analysis, to calculate 

how many times the test statistic value is greater than the test statistic value from observed data. 

Thus, we generated an empirical p-value for each gene.  
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5.3.6 Plasma protein quantification 

Blood samples were drawn from 110 patients by venipuncture into EDTA tubes and plasma 

supernatant was collected. Plasma protein was measured by SomaScan proteomic platform based 

on a previously established protocol (SomaLogic, lnc) (Gold et al. 2010). Briefly, the Slow Off-

Rate Modified Aptamer (SOMAmer)-based capture array enables reagents to bind target peptides 

and transform protein signals to nucleotide signals that can be quantified with relative fluorescence 

on a custom Agilent hybridization chip. Quality control involving hybridization controls and 

calibration samples was performed at the sample and SOMAmer levels to detect and mitigate 

technical variations. The plasma protein abundance from the SomeScan assay is reported as 

relative fluorescent units (RFU).  

5.3.7 Serum protein profiling 

The serum protein level of 33 biomarkers, including 31 cytokines and two functional 

assays, were measured at day one of sepsis. The procedures for the functional assays were 

conducted as outlined in prior studies (Qin et al. 2022). Specifically, these assays were used to 

measure the whole blood ex vivo TNF response to endotoxin, indicative of immune suppression, 

and the activity of ADAMTS 13, which signals microvascular clotting in cases of low platelet 

counts. The plasma designated for cytokine analysis was split across three separate tests. 

Measurements of IL-18, IL-18BP, and CXCL9 were carried out with a 25-fold dilution. IFN α, 

sCD163, and IL-22 levels were determined using the Bioplex inflammatory flex-set assay 

according to the guidelines provided by Bio-Rad. The analysis of the remaining cytokines was 
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performed using the Bioplex Group I/II flex-set assay from Bio-Rad. These cytokine levels were 

all assessed using the BioPlex 200 System by Bio-Rad. 

5.4 Results 

5.4.1 PedSep-D phenotype has the highest mortality with unique clinical presentation and 

immune system profile 

Out of 404 pediatric sepsis patients enrolled in the PHENOM cohort, the blood samples of 

319 patients underwent whole-exome sequencing and passed quality control (Figure 5.1, Appendix 

Table 2). These 319 patients were assigned to one of four established phenotypes (PedSep-A, B, 

C, D) as previously determined by the consensus k-means clustering of 25 first-day bedside 

features (Qin et al. 2022). Among them, the sample sizes of PedSep-A, B, C, and D are 116 (36%), 

86 (27%), 77 (24 %), and 40 (13%), respectively (Table 5.1). The proportions of patients in each 

phenotype are close to our original study, in which PedSep-A, B, C, and D contained 34, 25, 27, 

and 14 percent of the 404 patients, respectively.  
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Figure 5.1 Workflow 
IBD: identity by descent; Missing ID: fail to match WES sample ID and patient ID  
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Table 5.1 Demographic and day one clinical characteristics of PedSep-D and Non-PedSep-D patients 

Characteristics PedSep-D Non-PedSep-D 

No. of Patients, N (%) 40 (12.539) 279 (87.461) 

Demographic    
Age, years mean (SD) 8 (6) 6 (6) 

Male, N (%) 25 (62.5) 150 (53.8) 
Hispanic, N (%) 3 (7.7) 47 (17.6) 

Previous healthy, N (%) 17 (42.5) 136 (48.7) 
Surgery, N (%) 8 (20.0) 30 (10.8) 

Organ Dysfunction    
SIRS criteria1, mean (SD) 3.0 (0.8) 2.9 (0.8) 

OFI2, mean (SD) 3.0 (1.1) 1.6 (0.6) 

Inflammation    
CRP, mg/dL mean (SD) 12.8 (11.6) 11.5 (9.9) 

Low temperature, °C mean (SD) 36.4 (1.0) 36.6 (1.3) 
High temperature, °C mean (SD) 37.9 (1.4) 37.8 (1.2) 

ALC, /mm3 median (IQR) 1.3 (0.7-2.4) 1.3 (0.7-2.2) 
Ferritin, ng/mL mean (IQR) 575.0 (195.6-1628.8) 180.0 (87.4-403.0)  

Pulmonary    
Pulmonary OFI, N (%) 25 (62.5) 188 (67.4) 

Intubation, N (%) 22 (55.0) 156 (55.9) 

Cardiovascular or 
Hemodynamic  

    

Heart rate, bpm mean (SD) 145.5 (38.8) 156.3 (30.6) 
Systolic blood pressure, mmHg 

mean (SD) 
79.1 (22.2) 81.7 (19.3) 

CV OFI, N (%) 30 (75.0) 189 (67.7) 

Renal    
Creatinine, mg/dL median (IQR) 1.5 (1.0-3.0) 0.4 (0.3-0.7) 

Renal OFI, N (%) 26 (65.0) 0 (0.0) 

Hepatic    
Hepatic OFI, N (%) 12 (30.0) 19 (6.8) 

Hematologic    
Hemoglobin, g/dL mean (SD) 9.4 (1.8) 10.0 (1.9) 
Platelets, K/mm3 mean (SD) 84.0 (73.7) 192.9 (112.9) 

Hematologic OFI, N (%) 19 (47.5) 7 (2.5) 

Other    
Glasgow Coma Scale score3,4, 

mean (SD) 
7.5 (5.6) 8.5 (5.3) 

CNS OFI, N (%) 9 (22.5) 33 (11.8) 
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IQR interquartile range, SIRS systemic inflammatory response syndrome, OFI organ failure index, CRP high-
sensitivity cardiac C-Reactive protein, ALC absolute lymphocyte count, CNS central nervous system 

 
SI conversion factors: to convert alanine transaminase and aspartate aminotransferase to μkat/L, multiply by 0.0167; 

bilirubin to μmol/L, multiply by 17.104; C-reactive protein to nmol/L, multiply by 9.524; creatinine to μmol/L, 
multiply by 88.4 

 
1 Indicates SIRS criteria ranging from 0 to 4, including abnormal heart rate, respiratory rate, temperature, and white 

blood cell count 
 

2 OFI is an integer score reflecting the number of organ failures. Scores are either 0 or 1 for cardiovascular, hepatic, 
hematologic, respiratory, neurological, and renal, and summed for a total range of 0 to 6. Cardiovascular, need for 

cardiovascular agent infusion support; Pulmonary, need for mechanical ventilation support with the ratio of the 
arterial partial pressure of oxygen and the fraction of inspired oxygen (PaO2/FiO2) < 300 without this support; 

Hepatic, total bilirubin > 1.0 mg/dL and alanine aminotransferase (ALT) > 100 units/L; Renal, serum creatinine > 1.0 
mg/dL and oliguria (urine output < 0.5 mL/kg/h); Hematologic, thrombocytopenia < 100,000/mm3 and prothrombin 

time INR > 1.5 × normal; Central Nervous System, Glasgow Coma Scale (GCS) Score < 12 in the absence of 
sedatives 

 
3 Corresponds to the minimum or maximum value (as appropriate) within six h of hospital presentation 

 
4 GCS ranges from 3 to 15 

 
 

To distinguish each phenotype in its characteristics, biomarkers, and outcomes, we 

compared each phenotype and the other phenotypes in terms of clinical characteristics (Table 5.1, 

Appendix Table 3, 4, 5) and cytokine biomarkers (Table 5.2, Appendix Table 6, 7, 8). Comparing 

patients from PedSep-A vs. all the other patients, PedSep-A is characterized by younger age (3 

versus 9 years old), lower organ failure in all organs (Appendix Table 3), and lower levels of 

inflammation biomarkers including sCD163, IL-22, IL-18, IL-18BP, MIG/CXCL9, IL-6, IL-8, IL-

10, IL-17A, MCP-1/CCL2, MIP-1α, MIP-1β, IL-16, M-CSF, SCF, CRP, and Ferritin (Appendix 

Table 6). PedSep-B is characterized by relatively more organ dysfunction (Appendix Table 4), and 

PedSep-C is characterized by higher values of IL-18, IL-18BP, MIF/CXCL9, IL-6, IL-17A, IP-

10/CXCL10, CRP, and Ferritin (Appendix Table 8), representing higher inflammation, PedSep-D 

is characterized by more organ failure (Table 5.1, higher OFI, more renal, hepatic, and hematologic 

organ failure), lower level of ADAMTS13, and a higher level of sCD163, IL-22, IL-18BP, 

MIG/CXCL9, IL-6, IL-8, IL-10, MIP-1α, IL-16, M-CSF, SCF, CRP, and Ferritin (Table 5.2), 
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showing a profound inflammatory response in the PedSep-D group. Subsequently, PedSep-D 

showed the longest PICU stay length, the fewest PICU-free days, and the highest mortality (Table 

5.3). Altogether, the results highlight that PedSep-D patients had a high risk of developing severe 

outcomes.  

 

Table 5.2 Biomarkers measured at day one by phenotype (N = 319) 

Biomarkera PedSep-D (N = 40) Non-PedSep-D (N = 279) p-value fdr 

ADAMTS13, %  55.0 (38.0, 66.2) 74.0 (58.0, 93.0) 1.219E-6 6.705E-6 
SFasLg, pg/ml  42.4 (32.0, 62.3) 48.1 (31.2, 80.2) 0.175 0.251 
Ex vivo TNF-α, pg/ml  623.3 (187.7, 1049.2) 476.6 (139.4, 1049.2) 0.355 0.457 
TNF-α, pg/ml  728.7 (602.0, 1049.2) 1049.2 (726.5, 1161.9) 0.074 0.122 
sCD163, pg/ml  464600 (270060, 741798) 267704 (174016, 417048) 4.439E-5 1.465E-4 
IFN-β, pg/ml  6.4 (6.4, 6.4) 6.4 (6.4, 8.2) 0.356 0.457 
IL-22, pg/ml  34.2 (25.4, 59.0) 24.8 (20.1, 33.0) 5.013E-4 1.379E-3 
IL-18, pg/ml  518.4 (344.6, 744.9) 398.0 (236.1, 694.2) 0.074 0.122 
IL-18BP, pg/ml  30713 (18613, 40878) 14388 (8034, 24711) 3.347E-7 2.209E-6 
MIG/CXCL9, pg/ml  2462.4 (695.9, 4430.3) 753.6 (412.8, 1528.2) 7.866E-5 2.360E-4 
IL-1β, pg/ml  3.0 (2.6, 3.3) 2.8 (2.3, 3.3) 0.155 0.233 
IL-4, pg/ml  4.3 (3.5, 6.3) 4.7 (3.5, 6.5) 0.360 0.457 
IL-6, pg/ml  17.1 (8.4, 43.8) 8.4 (6.2, 15.0) 6.400E-4 1.625E-3 
IL-8, pg/ml  113.3 (60.7, 316.4) 46.5 (30.3, 77.8) 2.219E-7 1.831E-6 
IL-10, pg/ml  29.9 (24.8, 71.0) 21.1 (16.3, 31.0) 1.051E-5 4.195E-5 
IL-13, pg/ml  3.1 (3.1, 3.4) 3.1 (3.1, 4.3) 0.626 0.688 
IL-17A, pg/ml  19.1 (16.5, 23.0) 18.3 (16.5, 23.4) 0.592 0.674 
IFN-γ, pg/ml  2.8 (2.8, 2.8) 2.8 (2.8, 3.0) 0.089 0.140 
IP-10/CXCL10, pg/ml  960.5 (526.4, 3160.0) 692.5 (315.9, 2007.7) 0.041 0.075 
MCP-1/CCL2, pg/ml  190.9 (107.7, 488.8) 129.7 (56.6, 288.6) 0.016 0.031 
MIP-1α, pg/ml  5.4 (1.7, 13.9) 0.6 (0.6, 5.7) 1.144E-5 4.195E-5 
MIP-1β, pg/ml  56.8 (47.9, 89.3) 43.8 (30.6, 64.2) 2.093E-3 4.934E-3 
MCP-3, pg/ml  92.4 (92.4, 147.8) 92.4 (92.4, 166.0) 0.780 0.784 
IFN-α2, pg/ml  120.0 (105.8, 140.2) 125.7 (105.8, 144.4) 0.522 0.615 
IL-1α, pg/ml  9.4 (9.4, 14.8) 9.4 (9.4, 16.4) 0.784 0.784 
IL-2RA, pg/ml  456.0 (347.0, 660.9) 357.6 (223.9, 579.7) 0.014 0.028 
IL-3, pg/ml  612.2 (496.1, 708.7) 612.2 (529.0, 724.4) 0.428 0.523 
IL-16, pg/ml  1146.9 (756.5, 1346.6) 556.5 (416.4, 702.2) 2.674E-9 2.941E-8 
M-CSF, pg/ml  79.9 (46.2, 117.2) 26.8 (15.4, 43.3) 8.266E-

10 
1.364E-8 
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SCF, pg/ml  344.6 (226.2, 560.4) 145.5 (111.1, 203.7) 1.370E-
11 

4.521E-10 

TRAIL, pg/ml  30.4 (25.4, 42.9) 38.5 (30.4, 55.4) 8.634E-3 1.899E-2 
CRP, mg/dL  10.1 (2.6, 20.7) 9.6 (3.7, 16.3) 0.767 0.784 
Ferritin, ng/mL  575.0 (195.6, 1628.8) 180.0 (87.3, 403.0) 7.697E-6 3.628E-5 

a All biomarkers are measured one time concomitantly in the first day. Values in the table are summarized as median 
(IQR) 
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Table 5.3 Outcome by phenotype (N = 319) 

Outcome PedSep-D Non-PedSep-D p-value 

Length of stay, median (IQR), d 13 (5, 31) 8 (5, 15) 0.018 
Mortality, N (%) 11 (24.5) 17 (6.1) 2.969E-5 

PICU free day, median (IQR), d 11 (0, 21) 21 (13, 25) 4.917E-4 

 

5.4.2 Gene-based test associates LTBP4, PLA2G4E, and CCDC157 with PedSep-D 

To detect genetic factors associated with the sepsis phenotypes, we performed a whole 

exome-wide rare variant analysis. To increase power in detecting associations, we aggregated the 

rare variant association signals by gene and estimated the significance in the following steps (see 

Methods). First, we performed quality control and selected a total of 3,864 genes (see Methods) 

that had more than three variants. Then, we ran SKAT on the WES data to compare PedSep-D 

phenotypes versus the other three phenotypes while adjusting for age, sex, and the first four PCs 

constructed based on common variants. 

As a result, variation in LTBP4 was significantly associated with PedSep-D phenotype at 

the exome-wide level (p-value = 1.069E-05), while variations in PLA2G4E and CCDC157 were 

suggestively associated with PedSep-D phenotype (p-value = 3.288E-05, p = 6.192E-05, 

respectively) (Fig. 5.2, Table 5.4). Four, 4, and 8 rare variants are located in exon regions of genes 

LTBP4, PLA2G4E, and CCDC157, respectively (Table 5.5). All variants encode missense variants 

except one in the LTBP4 gene. However, this silent variant, rs370696272, replaces a common 

leucine codon (CTG, 0.361) with a less common codon (TTG, 0.134) based on the CoCoPUT 

database (Alexaki et al. 2019), explaining its high CADD score (17.55). Most variants in three 

genes were predicted to be deleterious based on their CADD score (12 out of 16 with CADD > 

10), among which SNP rs573310430 in LTBP4 had the highest CADD score of 34, ranked over 
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the top 0.1% in terms of predicted deleteriousness among variants across the whole genome. This 

variant creates an unpaired cysteine in the 14th calcium-binding epidermal growth factor-like 

(cbEGF) domain of LTBP4, a domain stabilized by 3 pairs of cysteines forming intradomain 

disulfide bonds particularly sensitive to the removal or addition of cysteine residues (Downing et 

al. 1996). 

 

 

Figure 5.2 Manhattan plot for PedSep-D vs others (No. of genes = 3,846) 
Red line: whole-exome wide significant –log10(P) value; Blue line: suggested significant –log10(P) value. 

 

 
Table 5.4 SKAT gene-based association test result for PedSep-D vs non-PedSep-D 

Gene Chr # carriers in PedSep-D (%)  # carriers in non-PedSep-D (%)  Odds Ratio P-value  

LTBP4  19  6 (15)  2 (0.7)  24.4  1.069E-5 

PLA2G4E  15  4 (10)  2 (0.7)  15.4 3.288E-5 

CCDC157  22  7 (17.5)  10 (3.6)  5.7 6.192E-5 
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Table 5.5 Information and functional prediction for variants contributing to the gene-level significance 

Gene Variant SNP Informationa 

 
Amino acid 
changeb 

CADD 
scorec 

GERP 
scored 

SIFT 
scoree 

Polyphen2 
scoref 

LTBP4 rs370696272 19:41105311:C:T Leu27Leu 17.55 1.63 - - 

rs573310430 19:41122842:C:T Arg984Cys 34 4.63 0.044 (D) 1.0 (D) 

- 19:41132970:C:T Pro1388Leu 25.8 4.58 0.68 (T) 0.998 (D) 

rs200607327 19:41133005:G:A Gly1437Arg 27 4.58 0.38 (T) 1.0 (D) 

PLA2G4E - 15:42276733:T:G Lys387Gln 23 4.48 0.275 (T) 0.26 (B) 

rs764494895 15:42278161:G:A Ala693Val 11.04 0.591 0.25 (T) 0.004 (B) 

rs143966595 15:42293394:C:T Val212Ile 23.1 5.34 0.099 (T) 0.05 (B) 

rs776016335 15:42298270:T:C Asp148Gly 27.1 5.66 0.002 (D) 1.0 (D) 

CCDC157 rs9606721 22:30762035:A:G Thr16Ala 12.47 1.76 0.28 (T) 0.001 (B) 

rs540507025 22:30762080:C:T Arg31Cys 23.1 2.89 0.002 (D) 1.0 (D) 

rs143249037 22:30766366:G:A Glu158Lys 14.06 1.36 0.282 (T) 0.035 (B) 

- 22:30766438:C:A Gln182Lys 8.248 2.89 0.931 (T) 0.009 (B) 

rs139609945 22:30766496:C:T Thr201Met 8.755 2.19 0.107 (T) 0.155 (B) 

rs1235664314 22:30766672:G:T Asp260Tyr 28.4 5.29 0.008 (D) 1.0 (D) 

rs148283823 22:30766868:G:A Arg325Gln 6.266 0.566 0.712 (T) 0.093 (B) 

rs202178544 22:30772567:T:C Ser698Pro 0.246 -2.83 0.339 (T) 0.0 (B) 
 

aSNPs are listed as chromosome: position (hg19): reference allele: alternative allele. 
bAmino acid substitutions caused by SNPs. 

cCADD (Combined Annotation-Dependent Depletion) score measures the predicted variant effect rank, higher value 
implies a greater damaging effect throughout the human genome reference assembly. A score of 10 indicates that the 

SNP is predicted to be in the top 10% most deleterious substitutions in the human genome, a score 0f 20 indicates 
that the SNP is predicted to be in the top 1% most deleterious substitutions, a score of 30 indicates that the SNP is 

predicted to be in the top 0.1% most deleterious substitutions and so forth. 
dGERP (Genomic Evolutionary Rate Profiling) score indicates position-specific estimates of evolutionary constraint. 
A positive score scale with the level of constraint, a greater score suggests a greater level of evolutionary constraint. 

A negative score indicates that a site is probably evolving neutrally. 
eSIFT (Sorting Intolerant from tolerant) score ranges from 0 to 1. A value less than 0.05 is classified as damaging 

(D), whereas a higher score is classified as tolerated (T). 
fPolyphen2 (Polymorphism Phenotyping v2) score ranges from 0 to 1. Value implies probably damaging" ("D") for 
scores in (0.957, 1); "possibly damaging" ("D") for scores in (0.453, 0.956); "benign" ("B") for scores in (0, 0.452) 

 

We observed well-calibrated test statistics and little evidence of inflation (Fig. 5.3, lambda 

= 0.98) for the exome-wide association analysis.  To explore the effect of infections and diagnosed 

chronic diseases on the top signals, we compared the distribution of bacteria, viral, and fungal 

infections, as well as 14 diseases between carriers and non-carriers of rare variants (Table 5.6, 

Table 5.7). After multiple testing correction, no significant differences were observed, implying 

that the top signals are less likely driven by infection or comorbidity. To explore the allele 
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frequency (AF) of variants contributing to significant and suggestive genes, we compared the AF 

of all variants across three populations (Black, non-finnish European, and Asian) in the gnomAD 

database (Table 5.8). No large difference was observed between the AFs across populations, 

except one SNP rs370696272 with an allele frequency higher than 0.01 in Blacks. To further 

investigate if there is an ancestry difference driving the top signals, we conducted a sensitivity 

analysis by randomly selecting the same number of samples as PedSep-D group while keeping the 

same ancestry distribution, and labeling selected samples as “PedSep-D”. This approach enables 

swapping the phenotype labels with similar ancestry information to keep the ancestry makeup of 

the groups the same while generating a meaningful empirical p-value. With 100,000 iterations of 

permutation for each of the three genes, we observed 0 times that permutated statistics were larger 

than the previously estimated statistic. This further indicates the significance of the three genes is 

not likely driven by ancestry differences. 
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Figure 5.3 QQ plot  

 

Table 5.6 Characteristics of rare variant carriers and non-carriers 

characteristic LTBP4 PLA2G4E CCDC157 
 carriers Non-carriers carriers Non-carriers carriers Non-carriers 
No. of Patients 8 311 6 313 17 302 
Age, median (IQR), y 8 (5, 12) 5 (1, 12) 1 (1, 2) 5 (1, 12)* 3 (2, 10) 5 (1, 12) 
Sex, N (%)       

Female 3 (37.5) 141 (45.3) 4 (66.7) 140 (44.7) 7 (41.1) 137 (45.4) 
Male 5 (62.5) 170 (54.7) 2 (33.3) 173 (55.3) 10 (58.9) 165 (54.6) 

Race, N (%)       
White 3 (37.0) 210 (67.5) 5 (83.3) 208 (66.5) 12 (70.6) 201 (66.6) 
Black 4 (50.0) 63 (20.3) 1 (16.7) 67 (21.4) 4 (23.5) 63 (20.9) 
Asian 0 (0.0) 14 (4.5) 0 (0.0) 14 (4.5) 1 (5.9) 14 (4.6) 
Other 1 (13.0) 24 (7.7) 0 (0.0) 24 (7.7) 0 (0.0) 24 (7.9) 

Ethnicity, N (%)       
Non-Hispanic 6 (75.0) 250 (80.4) 6 (100.0) 250 (79.9) 13 (76.5) 243 (80.5) 

Hispanic 2 (25.0) 48 (15.4) 0 (0.0) 50 (16.0) 2 (11.8) 48 (15.9) 
Unknown 0 (0.0) 13 (4.2) 0 (0.0) 13 (4.2) 2 (11.8) 11 (3.6) 

Previous healthy 5 (62.5) 148 (47.6) 3 (50.0) 150 (47.9) 8 (47.1) 145 (48.0) 
Immunocompromised, 
N (%) 

1 (12.5) 58 (18.6) 1 (16.7) 58 (18.5) 3 (17.6) 56 (18.5) 

PRISM Score, median 
(IQR) 

8.5 (7.25, 
15.75) 

8 (3, 15) 18.5 
(15.75, 
19.00)* 

8 (3, 14) 10 (3, 
15) 

8 (3, 15) 

OFI, median (IQR) 2.5 (2, 
3)* 

2 (1, 2) 2 (1, 3.75) 2 (1, 2) 2 (2, 3)* 2 (1, 2) 
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*: The value in this group is significantly higher than the compared group (p < 0.05). Comparisons were performed 
using the Kruskal-Wallis test for continuous variables, the χ2 test for categorical variables, or the Fisher’s exact test 

for cells with less than 5 patients. 
 

Table 5.7 P-values comparing rare variant carriers with non-carriers 

 LTBP4 PLA2G4E CCDC157 
Age, median (IQR), y 0.453 0.042 0.673 

Sex, N (%) 0.936 0.512 0.931 
Race, N (%) 0.177 0.491 0.809 

Ethnicity, N (%) 0.664 0.471 0.245 
Previous healthy 0.635 1.000 1.000 

Immunocompromised, N (%) 1.000 1.000 1.000 
PRISM Score, median (IQR) 0.380 0.021 0.960 

OFI, median (IQR) 0.016 0.384 0.009 
Infection, N (%) 0.083 0.321 0.400 
Mortality, N (%) 0.150 0.426 1.000 

The tests were performed using the Kruskal–Wallis test, the χ2 test, or the Fisher’s exact test. 

 

 

 

Infection, N (%)       
Bacterial infection 1 (12.5) 113 (36.3) 1 (16.7) 113 (36.1) 7 (41.1) 107 (35.4) 

Viral infection 0 (0.0) 88 (28.3) 2 (33.3) 86 (27.5) 2 (11.8) 86 (28.5) 
Fungal infection 0 (0.0) 2 (0.6) 0 (0.0) 2 (0.6) 0 (0.0) 2 (0.7) 

No infection 7 (87.5) 108 (34.7) 3 (50.0) 110 (35.1) 8 (47.1) 107 (35.4) 
Diagnosis, N (%)       

Leukemia 0 (0.0) 11 (3.5) 1 (16.7) 10 (3.2) 1 (5.9) 10 (3.3) 
Hemo Anemia 0 (0.0) 2 (0.6) 1 (16.7)* 1 (0.3) 1 (5.9) 1 (0.3) 

Rheuma Disease 0 (0.0) 7 (2.3) 0 (0.0) 7 (2.2) 1 (5.9) 6 (2.0) 
IBD 1 (12.5) 2 (0.6) 0 (0.0) 3 (1.0) 0 (0.0) 3 (1.0) 

RenalDisease 0 (0.0) 5 (1.6) 0 (0.0) 5 (1.6) 0 (0.0) 5 (1.7) 
ChromAbnormal 2 (25.0) 45 (14.5) 1 (16.7) 46 (14.7) 4 (23.5) 43 (14.2) 

MetabolicDisease 0 (0.0) 12 (3.9) 0 (0.0) 12 (3.8) 1 (5.9) 11 (3.6) 
Diabetes 1 (12.5) 3 (1.0) 0 (0.0) 4 (1.3) 0 (0.0) 4 (1.3) 

CardiovascularDisease 1 (12.5) 49 (15.8) 0 (0.0) 50 (16.0) 4 (23.5) 46 (15.2) 
Cardio_PostOP 1 (12.5) 15 (4.8) 0 (0.0) 16 (5.1) 2 (11.8) 14 (4.6) 

Trauma 0 (0.0) 3 (1.0) 0 (0.0) 3 (1.0) 0 (0.0) 3 (1.0) 
ShortGut 0 (0.0) 7 (2.3) 0 (0.0) 7 (2.2) 1 (5.9) 6 (2.0) 

LiverDisease 0 (0.0) 9 (2.9) 1 (16.7) 8 (2.6) 1 (5.9) 8 (2.6) 
Bronchiolitis 0 (0.0) 9 (2.9) 0 (0.0) 9 (2.9) 0 (0.0) 9 (3.0) 

Mortality, N (%) 2 (25.0) 26 (8.4) 1 (16.7) 27 (8.6) 1 (5.9) 27 (8.9)  
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Table 5.8 Single variant association and allele frequency for variants contributing to the gene-level significance 

Gene Variant SNP 
Informationa 

 

Allele Frequency in PedSep-Db Allele Frequency in non-PedSep-Dc Allele Frequency in populationd 

Black 
(n = 7) 

White 
(n =28) 

Asian 
(n = 3) 

Black 
(n = 60) 

White 
(n = 185) 

Asian 
(n = 11) 

Black White Asian 

 
LTBP4 

rs370696272 19:41105311:C:T 0.429 
(3/7) 

0.071 
(2/28) 

0 0 0 0 0.01187 0.00005504 0.000 

rs573310430 19:41122842:C:T 0.143 
(1/7) 

0 0 0 0 0 0.00004134 0.000007788 0.000 

- 19:41132970:C:T 0 0 0 0 0.005 
(1/185) 

0 - - - 

rs200607327 19:41133005:G:A 0 0 0 0 0.005 
(1/185) 

0 0.00004143 0.0006489 0.000 

 
PLA2G4E 

- 15:42276733:T:G 0 0 0 0 0.005 
(1/185) 

0 - - - 

rs764494895 15:42278161:G:A 0 0 0 0 0.005 
(1/185) 

0 0.000 0.00006737 0.000 

rs143966595 15:42293394:C:T 0 0.107 
(3/28) 

0 0 0 0 0.0001654 0.0008021 0.000 

rs776016335 15:42298270:T:C 0 0.036 
(1/28) 

0 0 0 0 0.000 0.000 0.00005561 

 
 
 
 

CCDC157 

rs9606721 22:30762035:A:G 0 0.036 
(1/28) 

0 0 0.011 
(2/185) 

0 0.003390 0.02384 0.000 

rs540507025 22:30762080:C:T 0 0 0 0 0.005 
(1/185) 

0 0.000 0.00002669 0.0004897 

rs143249037 22:30766366:G:A 0 0 0 0 0.005 
(1/185) 

0 0.00004008 0.0007048 0.001535 

- 22:30766438:C:A 0 0.143 
(4/28) 

0 0.017 
(1/60) 

0.011 
(2/185) 

0 - - - 

rs139609945 22:30766496:C:T 0 0 0 0.017 
(1/60) 

0 0 0.000 0.0001055 0.000 

rs1235664314 22:30766672:G:T 0 0 0 0.017 
(1/60) 

0 0 0.0001147 0.000 0.000 

rs148283823 22:30766868:G:A 0 0.036 
(1/28) 

0 0 0 0 0.006199 0.00008130 0.000 

rs202178544 22:30772567:T:C 0 0 0 0.033 
(2/60) 

0 0 0.0004134 0.000007778 0.0001507 

a SNPs are listed as chromosome: position (hg19): reference allele: alternative allele. 
b The total number of patients in PedSep-D is 40, including 2 patients with reported race as unknown. 

c The total number of patients in PedSep-D is 279, including 28 patients with reported race as unknown. 
d Allele frequency of three populations according to gnomAD database (v4.0.0). 
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5.4.3 Rare variants of LTBP4 are associated with plasma protein levels of TGF-β 

 Aiming to investigate the function of top signals found from the gene-based analysis, we 

measured day-one plasma protein level (reported as relative fluorescence) of LTBP4 and TGF-β,  

a crucial cytokine regulated by the LTBP4 gene, from 110 patients of the same cohort. The 110 

patients include six LTBP4 rare variants carriers and nine CCDC157 rare variants carriers. By 

comparing protein levels of LTBP4 and TGF-β between carriers and non-carriers, we discovered 

a significant association between LTBP4 rare variant carriers and an increased plasma protein level 

of TGF-β (Figure 5.4A). No significant association was found between LTBP4 rare variant carriers 

and the plasma protein level of LTBP4 (Figure 5.4B). No significant associations were found 

between plasma protein and CCDC157 rare variant carriers (Figure 5.4C and Figure 5.4D). 
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Figure 5.4 Comparison of plasma protein relative fluorescence of TGF-β1 and LTBP4 between rare variant 
carriers and non-carriers 

5.4.4 LTBP4, PLA2G4E, and CCDC157 underlie distinct serum cytokine patterns in 

patients 

To explore the genes’ association with inflammation status, we grouped patients based on 

whether they carried rare variants in one of the three genes of interest, generated a heatmap 

showing the normalized levels of 33 cytokines (Figure 5.5), and statistically tested the group-wise 

differences (Table 5.9, Table 5.10). Comparison between the rare variant carriers and non-carriers 

indicated some similarity shared by carrier groups. For example, a higher level of IL-6 is 

significantly related to both LTBP4 and CCDC157 rare variant carriers (fdr = 0.032 and 0.043, 

respectively), and higher level of M-CSF is significantly related to both PLA2G4E and CCDC157 

rare variant carriers (fdr = 0.013 and 0.011 separately). Simultaneously, several cytokines 
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important in regulating inflammation showed distinct patterns when comparing carriers to non-

carriers with rare variants in LTBP4, PLA2G4E, and CCDC157. For instance, IL-4 is significantly 

higher in LTBP4 rare variant carriers (fdr = 0.025) but is significantly lower in CCDC157 rare 

variant carriers (fdr = 0.035). Compared to non-carriers, PLA2G4E rare variant carriers presented 

significantly higher levels of IL-16, and SCF, but significantly lower levels of CRP (fdr = 0.034, 

0.005, and 0.022, separately), while LTBP4 and CCDC157 rare variant carrier groups showed no 

significant difference with non-carriers for these biomarkers. The ferritin level is uniquely higher 

in LTBP4 rare variant carriers (fdr = 0.023). These results imply that the three genes might be 

involved in different pathological mechanisms driving the phenotype. 

  

 

Figure 5.5 Biomarker heatmap of three genes’ carriers and non-carriers 
The log ratio of the median values of 33 inflammatory biomarkers by rare variants carriers and non-carriers. Red 
represents a greater median biomarker value for that group compared with the median for the entire study cohort, 
whereas blue represents a lower median biomarker value compared with the median for the entire study cohort. 
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Table 5.9 Median cytokine levels of rare variant carriers and non-carriers 

Biomarker LTBP4 PLA2G4E CCDC157 
carriers Non-

carriers 
carriers No-

carriers 
carriers Non-

carriers 
ADAMTS13, %  42.50 71.50* 64.50 71.00 61.00 72.00 
SFasLg, pg/ml  44.21 47.92 58.03 47.30 42.47 48.12 
Ex vivo TNF-α, pg/ml  658.97 484.30 420.97 484.30 312.50 490.30 
TNF-α, pg/ml  101.20 74.90 97.75 74.90 93.55 74.90 
sCD163, pg/ml  425278.00 280412.00 265204.00 283880.00 327821.00 280412.00 
IFN-β, pg/ml  6.40 6.40 6.40 6.40 6.40 6.40 
IL-22, pg/ml  31.85 24.80 24.20 25.40 23.60 25.40 
IL-18, pg/ml  397.90 411.20 504.40 408.90 398.00 412.80 
IL-18BP, pg/ml  29541.00 15477.00 33202.00 15751.00 17799.00 15751.00 
MIG/CXCL9, pg/ml  1482.00 779.00 2035.80 791.70 501.60 807.60 
IL-1β, pg/ml  2.95 2.80 2.90 2.80 2.95 2.80 
IL-4, pg/ml  4.90* 4.70 5.05 4.70 4.30 4.70* 
IL-6, pg/ml  16.60 8.40 6.65 8.60 17.10* 8.40 
IL-8, pg/ml  99.80 49.80 83.15 50.60 81.55* 49.40 
IL-10, pg/ml  27.40 21.70 18.25 21.70 33.10 21.70 
IL-13, pg/ml  3.10 3.10 3.10 3.10 3.10 3.10 
IL-17A, pg/ml  16.95 18.70 19.55 18.30 19.55 18.30 
IFN-γ, pg/ml  2.80 2.80 2.80 2.80 2.80 2.80 
IP-10/CXCL10, pg/ml  1042.50 716.70 492.60 753.30 819.20 726.60 
MCP-1/CCL2, pg/ml  131.90 133.30 248.30 133.35 220.80 131.55 
MIP-1α, pg/ml  5.05 0.60 5.30 0.60 2.85 0.60 
MIP-1β, pg/ml  73.25 45.10 53.85 45.45 55.30 45.10 
MCP-3, pg/ml  92.40 92.40 92.40 92.40 147.80 92.40 
IFN-α2, pg/ml  115.80 125.70 135.60 125.70 128.30 125.70 
IL-1α, pg/ml  9.65 9.40 11.30 9.40 9.90 9.40 
IL-2RA, pg/ml  428.00 371.80 503.60 367.90 380.30 373.60 
IL-3, pg/ml  624.40 612.20 636.00 612.20 572.60 612.20 
IL-16, pg/ml  1015.20 575.90 1055.30* 572.90 607.60 575.90 
M-CSF, pg/ml  46.15 28.70 117.25* 28.70 50.35* 28.10 
SCF, pg/ml  237.40 151.50 287.40* 151.50 210.70 151.50 
TRAIL, pg/ml  35.40 37.90 45.40 37.90 35.40 37.90 
CRP, mg/dL  16.58  9.73 1.34 10.11* 9.24 10.02 
Ferritin, ng/mL  463.90* 187.00 463.50 187.70 321.60 187.00 

* Significant higher value of cytokine in the group. Kruskal-Wallis tests were performed. 
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Table 5.10 Comparison of FDR of tests comparing cytokines between rare variant carriers and non-carriers 

Biomarker LTBP4 PLA2G4E CCDC157 
ADAMTS13, %  0.015 0.95 0.06 
SFasLg, pg/ml  0.624 0.284 0.574 
Ex vivo TNF-α, pg/ml  0.664 0.869 0.738 
TNF-α, pg/ml  0.119 0.937 0.343 
sCD163, pg/ml  0.812 0.703 0.852 
IFN-β, pg/ml  0.131 0.534 0.22 
IL-22, pg/ml  0.46 0.63 0.86 
IL-18, pg/ml  0.903 0.25 0.767 
IL-18BP, pg/ml  0.671 0.493 0.983 
MIG/CXCL9, pg/ml  0.413 0.687 0.088 
IL-1β, pg/ml  0.667 0.86 0.476 
IL-4, pg/ml  0.025 0.186 0.035 
IL-6, pg/ml  0.032 0.172 0.043 
IL-8, pg/ml  0.286 0.396 0.044 
IL-10, pg/ml  0.486 0.085 0.567 
IL-13, pg/ml  0.315 0.801 0.952 
IL-17A, pg/ml  0.097 0.152 0.089 
IFN-γ, pg/ml  0.142 0.309 0.415 
IP-10/CXCL10, pg/ml  0.715 0.319 0.059 
MCP-1/CCL2, pg/ml  0.193 0.267 0.312 
MIP-1α, pg/ml  0.087 0.361 0.184 
MIP-1β, pg/ml  0.059 0.088 0.513 
MCP-3, pg/ml  0.709 0.695 0.163 
IFN-α2, pg/ml  0.418 0.73 0.94 
IL-1α, pg/ml  0.846 0.741 0.287 
IL-2RA, pg/ml  0.677 0.065 0.839 
IL-3, pg/ml  0.825 0.819 0.24 
IL-16, pg/ml  0.163 0.034 0.694 
M-CSF, pg/ml  0.136 0.013 0.011 
SCF, pg/ml  0.516 0.005 0.162 
TRAIL, pg/ml  0.501 0.437 0.796 
CRP, mg/dL   0.189 0.022 0.658 
Ferritin, ng/mL  0.023 0.07 0.652 

Kruskal-Wallis tests were performed. 
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In addition, GTEx tissue-specific expression analysis showed that the three genes are 

expressed in diverse tissues (Figure 5.6A). LTBP4 is highly expressed in multiple tissues, 

including the lung, kidney, stomach, skin, and others. PLA2G4E is specifically expressed in the 

skin. CCDC157 is specifically expressed in the testis. In terms of cell-type specific expression of 

three genes, all of them displayed expression in immune cells of the cardiovascular and pulmonary 

systems, both of which are highly affected by severe sepsis or septic shock (Figure 5.6B).  

 

 

Figure 5.6 Expression of three genes in different tissues and cell types in public database (GTEx) 
A. Heat map of tissue-specific log2 transformed average expression level for three genes based on GTEx v8 RNA 

data. Red color indicates a higher expression within a tissue compared to other tissues, whereas blue color indicates 
a lower expression within a tissue compared to other tissues. B. Dot plot of cell-type-specific expression level for 
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three genes in two sepsis-related tissues (GTEx Single Cell data). The dot color reports the mean expression value 
with each cell type. The dot size reports the fraction of cells in which a gene is detected. Black dot size reports the 

total detected level of all three genes. 

5.5 Discussion 

In this study, rare variants in LTBP4 were significantly associated with the previously 

reported high-mortality PedSep-D phenotype, with additional suggestions of associations with rare 

variants in PLA2G4E and CCDC157. To our knowledge, this is the first time a rare variant burden 

test has been applied to pediatric sepsis with deep phenotyping.  

The top signal found in our study, LTBP4, a member of the latent transforming growth 

factor β binding protein family, shares structural homology with fibrillin and is moderately 

expressed in plasma cells and immune cells (Su and Urban 2021). Mutations in LTBP4 have been 

associated with autosomal recessive cutis laxa type 1C (Urban et al. 2009, Zhang et al. 2020, 

Mazaheri et al. 2022), Duchenne Muscular Dystrophy (DMD) (Kosac et al. 2022), fibrosis-related 

disorders (Lu et al. 2017), cancer (Li et al. 2020), pulmonary disorders, and cardiovascular 

disorders (Rocchiccioli et al. 2017).  PedSep-D patients had the most severe kidney involvement, 

whereas LTBP4 was found to protect against tubular interstitial fibrosis by strengthening 

angiogenesis, downregulating inflammatory gene expression, and facilitating the maintenance of 

mitochondrial structure in tubular epithelial cells (Su et al. 2021). Common variants in LTBP4 

have previously been reported in GWASs to be associated with several traits, including lung 

function (FEV1/FVC) (Shrine et al. 2023), peak expiratory flow (Shrine et al. 2019), hematocrit 

(Vuckovic et al. 2020), hemoglobin (Vuckovic et al. 2020), eosinophil counts (Chen et al. 2020), 

carotid intima-media thickness (Yeung et al. 2022), and diastolic blood pressure (Plotnikov et al. 

2022).  



96 

Notably, LTBP4 plays a regulatory role in the signaling of transforming growth factor β 

(TGF-β). Mouse studies found that gain of function in LTBP4 increases activation of TGF-β, 

whereas loss of function in LTBP4 decreases activation of TGF-β (Rifkin et al. 2022). In addition, 

LTBP4 was shown to bind and stabilize TGF-β receptor 2 (TGFBR2), thus increasing TGF-β 

signaling (Su et al. 2015). TGF-β is a pleiotropic cytokine with crucial immunoregulatory 

properties. It plays an essential role in the pathogenesis of chronic fibrosis in diverse tissues, such 

as the lung, kidney, liver, and skin (Su and Urban 2021). Moreover, TGF-β is a multi-faceted 

cytokine with potent regulatory and inflammatory activity in response to infections. Although its 

function is still under discussion, several studies showed that TGF-β overexpression contributes to 

a wide array of metabolic disorders and dysfunction. Furthermore, overexpressed TGF-β triggers 

epithelial-mesenchymal transition and the overaccumulation of extracellular matrix (ECM), 

leading to immune dysfunction, fibrosis, and the development of cancers (Peng et al. 2022). In the 

field of sepsis, a couple of studies found elevated TGF-β levels in septic animal models and human 

patients (Ayala et al. 1993, Ahmad et al. 1997, Garcia-Lazaro et al. 2005, Huang et al. 2010, de 

Pablo et al. 2012, Xu et al. 2013, Nullens et al. 2018). Notably, Huang et al. examined serum levels 

of TGF-β in 106 burned, septic, and non-septic patients and revealed a significant increase of TGF-

β levels in septic patients compared to non-septic patients, as well as in non-survivors compared 

to survivors, indicating the potential role of TGF-β in sepsis susceptibility and outcome (Huang et 

al. 2010). In addition to these findings, our findings unravel the relationships between sepsis-

severity-related deleterious rare variants of LTBP4 and TGF-β protein level, serving as a 

functional validation of our gene-based analysis. 

As one of the two genes with suggestive significance, the PLA2G4E gene encodes a 

member of the cytosolic phospholipase A2 group IV family involved in membrane tubule-
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mediated transport regulation. It plays an important role in trafficking through the clathrin-

independent endocytic pathway (Capestrano et al. 2014). PLA2G4E was also up-regulated in 

Alzheimer’s disease APP-PS1 transgenic mice lacking CD8 T cells compared to the control group 

(Perez-Gonzalez et al. 2020). Common variants in PLA2G4E have been reported in previous 

GWASs to be associated with several sepsis clinical prognostic factors such as neutrophil count 

(Chen et al. 2020, Kachuri et al. 2021, Sakaue et al. 2021), white blood cell count (Astle et al. 

2016), and mean platelet volume (Chen et al. 2020). As another gene displaying suggestive 

significance, CCDC157 encodes a protein coiled-coil domain containing 157. Common variants 

in CCDC157 have been reported in previous GWASs to be associated with sepsis risk factors such 

as hematocrit (Vuckovic et al. 2020), pulse pressure (Evangelou et al. 2018), and calcium levels 

(Sakaue et al. 2021). No clear function of immune dysregulation has been reported for CCDC157 

to date. 

There are several limitations in this study. First, the tested sample size is small with 40 

samples in the PedSep-D phenotype, limiting the power for detecting associations. Therefore, 

larger independent cohorts are required for result validation and meta-analysis purposes. Second, 

the heterogeneity of the non-PedSep-D group could limit the interpretability of the results. Third, 

only a small proportion of genes (n = 3846) were tested because there weren’t enough rare variants 

present in the others. Fourth, due to the usage of SKAT, this will have low power when all the rare 

variants have effects in the same direction. Fifth, although we observed no clear relevance between 

previous diagnoses of 14 diseases and rare variant carriers of top genes, the possible confounding 

effect of comorbidity cannot be fully ruled out. Sixth, although we account for global ancestry by 

adjusting for top PCs in the association test, the signals from rare variants may be caused by 

ancestry differences. Seventh, although rare variant carriers exhibit elevated cytokine levels, such 
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as M-CSF, this may not conclusively indicate the impact of rare variants on cytokines, especially 

since M-CSF levels are significantly higher in the PedSep-D group compared to other groups. 

Additionally, although we utilized plasma protein to investigate potential functional consequences 

of identified rare variants, other functional analysis utilizing GTEx is based on public adult data 

which may fail to represent the expression of genes in pediatric sepsis patients. Thus, 

transcriptomic and other various types of data has to be collected from children with sepsis to 

corroborate our findings through QTL analyses and other functional genomics approaches 

(Rodenburg 2018). In summary, our pilot study identified rare variants that, if found to have 

functional effects in future studies, might play a role in pointing towards some possible 

mechanisms which may underlie pediatric septic patients at high risk. 
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6.0 Unravel Methylation Markers of Pediatric Sepsis Phenotype at High Risk through an 

Epigenome-wide Association Study (EWAS)  

6.1 Introduction 

Pediatric sepsis is a multifaceted disease leading to 1.2 million worldwide cases in children 

per year, with a mortality rate ranging from 1% to 5% (Massaud-Ribeiro et al. 2022). Resulting in 

life-threatening organ failure, the syndrome is characterized by dysregulation of immune response 

to infection. While significant progress has been made in regular disease management of the 

disease (Weiss et al. 2020), the heterogeneity in environmental exposures and host immune 

responses have hindered efforts to develop targeted therapies for pediatric sepsis patients (Atreya 

and Wong 2019). Acknowledging this heterogeneity, our recent published study reported four 

computational pediatric sepsis phenotypes, PedSep-A, B, C, and D, derived from a multicenter 

cohort through applying machine learning approaches to 25 first-day bedside clinical features (Qin 

et al. 2022). Comparing the four identified phenotypes, we observed reduced heterogeneity within 

phenotypes and differences between phenotypes in terms of their infection resources and sites, 

cytokine patterns, 28-day organ failures and mortalities, and therapeutic responses. These findings 

indicated that the diversity in environmental factors and the host response significantly influenced 

the severity of the disease. For example, children with the PedSep-D phenotype exhibits a high 

risk of abnormal inflammatory activity, leading to a subsequent higher organ failure and mortality 

rates. To improve our comprehension of the disease pathology and formulate precise treatment 

strategies for the high-risk patients, one of the logical next steps is to investigate the interplay 

between environmental and host biological factors which contribute to the disease severity.  
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In this context, there is a growing interest in elucidating the role of epigenetics in pediatric 

sepsis heterogeneity. This interest arises from the fact that epigenetic processes, such as DNA 

methylation, show plasticity in response to exogenous environment and govern gene expression 

without changing the DNA. Since pediatric sepsis heterogeneity is greatly affected by exogenous 

environment and gene expression changes (Mohammed et al. 2019, Yang et al. 2023), DNA 

methylation level analysis is expected to serve as a pivotal source of biological factors deserving 

thorough investigation. Moreover, array- and sequencing-based methylation profiling technologies 

enable large-scale epigenome-wide association studies (EWASs) to identify differentially 

methylated cytosine-phosphate-guanine (CpG) sites (DMCs) or regions (DMRs), thereby 

pinpointing the potential targets for epigenetic therapies (Dhas et al. 2015, Lorente-Pozo et al. 

2021).  

Despite the efforts of previous EWAS analyses for pediatric sepsis, there are several 

limitations that remain unattended. First, existing pediatric sepsis methylation studies are restricted 

by limited cohort size compared to adult sepsis. For instance, the EWAS study conducted by 

Binnie and colleagues recently found hundreds of DMR distinguishing adult septic patients and 

non-septic controls (Binnie et al. 2020), while the two published pediatric studies until now 

separately included 3 and 17 pediatric sepsis patients (Dhas et al. 2015, Lorente-Pozo et al. 2021). 

Thereby, the small size of the pediatric sepsis cohort constrained the ability to detect significant 

associations. The second gap to be filled involves revealing methylation signals related to pediatric 

sepsis patients at high risk. The majority of studies were designed for comparing pediatric sepsis 

patients with healthy controls, overlooking the potential pathological diversity within the patient 

population. Although one prior study of Lorente-Pozo et al identified DMRs distinguishing early 
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and late-onset neonatal sepsis, they focused on comparing mother- and self-acquiring infections 

of infants instead of pediatric septic populations with low and high-risk (Lorente-Pozo et al. 2021).  

To tackle these deficiencies, we aim to investigate the role of the methylome in pediatric 

sepsis severity by performing an epigenome-wide association study on blood DNA methylation 

data from a multicenter cohort of pediatric sepsis (PHENOMS) (Carcillo et al. 2019). As the largest 

pediatric sepsis EWAS study to date, we hope to bring more power to detect novel signals in 

addition to the previous studies. By targeting an agnostic pediatric sepsis phenotype with high risk, 

PedSep-D, and comparing it with the other non-PedSep-D phenotypes, we expect to provide 

insights into pathology of disease severity. Consequently, this study could aid in identifying new 

diagnostic and prognostic biomarkers differentiating pediatric sepsis patients at risk and advancing 

precision medicine.  

6.2 Methods 

6.2.1 Agonistic pediatric sepsis phenotype generation 

The pediatric sepsis phenotypes were derived using an unsupervised machine-learning 

approach as described in our previously published study (Qin et al. 2022). In general, we applied 

consensus k-means clustering to 404 children from the PHENOMS cohort and derived four 

computable phenotypes, PedSep-A, B, C, and D using 25 day-one bedside clinical features. The 

PedSep phenotype of each patient was extracted and used as the phenotype of interest in this study. 
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6.2.2 Methylation data preprocessing 

The 850K DNA methylation microarray profiles (Illumina Infinium Methylation EPIC 

array) were collected from PBMC of 96 patients from the 404 children in the PHENOMS cohort 

(Fig.  6.1). The minfi r package was used to perform normalization and quality control (Aryee et 

al. 2014). Specifically, we first performed a series of quality control steps on the methylation data. 

Patient samples were excluded if the average detection p-value of all probes across the sample is 

greater than 0.01. Probes with the following criteria were excluded: (1) detection p-value of greater 

than 0.01 in one or more samples; (2) bead count lower than 3; (3) probes containing single 

nucleotide polymorphism-introduced artifacts and in cross-reactive regions (Pidsley et al. 2016); 

and (4) probes mapped to sex chromosomes (Appendix Table 9). Then, we normalized the data by 

Quantile normalization function to remove artificial batch effects. Finally, to fit the linear 

regression models with normally distributed dependent variable (i.e., methylation level of CpGs), 

we logit-transformed β values to M values, where M value measures the intensity of methylation 

of a CpG site. 

6.2.3 Single-site-based differentially methylated CpGs analysis 

To identify differentially methylated CpGs (DMCs) differentiating previously derived 

PedSep-D phenotype from non-PedSep-D phenotype, we fitted linear regression models using 

the cate r package. The cate package eliminates undesired variation while accounting for known 

variables in modeling and carries out a high dimensional factor analysis and confounder-adjusted 

multiple testing (Wang et al. 2017). Models compared methylation levels of PedSep-D and non-

PedSep-D phenotype of pediatric sepsis patients, adjusting for the child's age, sex, EPIC array 
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chip, position of samples on the chip, and five cell type proportions (not including neutrophils to 

avoid collinearity) estimated by the FlowSorted.Blood.EPIC r package. The 

FlowSorted.Blood.EPIC r package utilizes blood cell reference data to deconvolute EPIC bulk 

methylation data and provide proportion estimation for six cell types, including T lymphocytes 

(CD4+ and CD8+), B cells (CD19+), monocytes (CD14+), NK cell (CD56+), and Neutrophils 

(Salas et al. 2018).  

To minimize false positive rate while preserving sufficient power, we employed a Bayesian 

method implemented in the BACON r package to correct test-statistic bias and inflation in the 

association study. By taking advantage of prior knowledge of the distribution and the composition 

of test statistics, the BACON method has demonstrated superior performance in empirical null 

distribution estimation compared to other existing methods (Bird 2002). It also yielded the highest 

power when being used in combination with cate. QQ plot and inflation factor derived by the 

BACON method were used to visualize and quantify inflation.  

For the identification of significant findings, we used a p-value of 9×10-8 as the whole-

methylome-wide significance threshold and a p-value of 1×10-5 as the suggestive significance 

threshold following the guidance to control the false positive rate for 850K DNA methylation array 

data (Mansell et al. 2019). The annotations of the reported CpGs were obtained from the UCSC 

genome browser (hg19). 

6.2.4 Region-based differentially methylated region analysis 

Intending to discover differentially methylated regions (DMRs) where multiple 

methylation probes are consistently associated with the PedSep-D phenotype, we employed the 

dmrff r package to combine EWAS summary statistics from nearby sites while taking the 
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correlation between sites into consideration (Suderman et al. 2018). EWAS results derived from 

DMCs analysis were directly input into dmrff.  P-values for each region were Bonferroni-adjusted 

for multiple tests. Results were visualized with a volcano plot. The top probes and regions were 

queried on the EWAS Catalog for relevant genes and functions. The annotations of the reported 

CpGs were obtained from the UCSC genome browser (hg19). 

6.2.5 Cell-type-specific differential methylation analysis 

To investigate whether differentially methylated CpGs (DMCs) identified in bulk 

methylation data exhibit hypermethylation or hypomethylation within distinct cell types, we 

applied the EpiDISH r package for cell-type-specific differential methylation analysis (Zheng et 

al. 2018). This analysis was based on estimated cell-type proportions obtained through blood cell-

type deconvolution. Specifically, we used the CellDMC function of the EpiDISH package to 

examine the association of the DMCs with the PedSep-D/non-PedSep-D phenotype while 

adjusting for age, gender, ethnicity, batch effect, cell-type-proportions, and proportion-phenotype 

interactions to pinpoint cell-type-specific DMCs. The model was solved by least squares with the 

lm function and provides estimated coefficients and statistical significance via p-value for each 

tested CpG. The p-values were further adjusted for multiple testing using the Benjamini-Hochberg 

(BH) False Discovery Rate (FDR) approach.  

6.2.6 Functional downstream analysis 

To explore the function of DMCs identified from the association analysis with public 

databases, we first queried the DMCs in EWAS catalog to explore previously reported associations 
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with immunology traits (Battram et al. 2022). Then, we investigated the enrichment of the DMCs 

nearby genes in GTEx across 30 tissue types (Consortium 2013). We performed biological 

pathway analysis based on Gene Ontology (GO) (Ashburner et al. 2000, Gene Ontology et al. 

2023), Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto 2000), and 

TRANSFAC (TF) (Matys et al. 2006) by using the  gprofiler2 r package (Kolberg et al. 2020). 

Additionally, we examined the association of the top DMCs with transcription of nearby genes 

using publicly available cis expression quantitative trait methylation (cis-eQTMs) from 823 

children’s blood in the HELIX Project (Ruiz-Arenas et al. 2022). 

6.2.7 Correlation between methylation and cytokine levels 

We investigated relationships between top signals and inflammation by conducting 

correlation analysis between methylation and cytokine data. Serum protein data of 33 cytokines 

were collected from the same cohort, detailed information of the data was described in our 

previously published study (Qin et al. 2022). Then we calculated the Spearman’s correlations 

between the methylation level of each CpG and the protein serum level of each cytokine. 

Visualization approaches and statistical test (correlation test) were utilized to qualify and quantify 

the correlation directions and magnitudes.  

6.2.8 Correlation between methylation and metabolite levels 

We explored the function of PedSep-D-related differentially methylated CpGs (DMCs) in 

metabolisms by examining the correlation between methylation levels of DMCs and levels of 

serum metabolites collected from the same samples with available data (N = 26). To reduce the 
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multiple testing burden, we targeted two DMCs contributing to the metabolic pathway enrichment 

and major metabolites from the two pathways. 

6.2.9 Mendelian randomization analysis 

To investigate the potential causal relationships between severity-related DMCs and other 

autoimmune traits of interest, we performed a Mendelian randomization analysis using the 

TwoSampleMR r package (Hemani et al. 2018). To prepare exposure data, methylation quantitative 

trait loci (meQTLs) summary data were obtained from the Genetics of DNA Methylation 

Consortium (GoDMC) (Min et al. 2021). Independent significant instrument variables (SNPs with 

minor allele frequency > 0.01) for the exposure (CpGs) were selected after LD clumping. CpGs 

without associated significant SNPs (p < 5×10-8) were excluded from the MR analysis. To prepare 

outcome data, genome-wide analysis study (GWAS) summary data of three traits, including Sepsis 

28-day mortality, Sepsis, and Rheumatoid arthritis, were extracted from the UK Biobank (Bycroft 

et al. 2018). No subjects overlapped between the exposure and outcome data. Then, we harmonized 

the effect of SNPs for both exposure and outcome data and removed SNPs with strand-ambiguity. 

Lastly, we applied MR-Egger regression method to conduct Mendelian randomization, given that 

it outperformed other methods when pleiotropy occurred (Bowden et al. 2015). FDR control was 

used to adjust for multiple testing. 
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6.3 Results 

6.3.1 PedSep-D phenotype associated with severe outcomes 

Out of the 404 pediatric sepsis patients enrolled into the PHENOM cohort, our study 

focused on 96 children with available blood DNA methylation data (Fig. 6.1). According to our 

computable phenotype assignment as described in the previous study (Qin et al. 2022), there are 

12 patients in PedSep-A (12.5%), 34 patients in PedSep-B (35.4%), 19 patients in PedSep-C 

(19.8%), and 31 patients in PedSep-D (32.3%). The distribution of four phenotypes differs from 

the original cohort, with a lower proportion of PedSep-A patients and a higher proportion of 

PedSep-D patients (PedSep-A: 34% in original cohort; PedSep-D: 14% in original cohort). Given 

the subsampling from the original cohort, we first examined whether the subset of patients with 

available methylation data was representative of the original cohort. For PedSep-D patients, there 

is no significant difference between the subset of patients with and without available methylation 

data (Appendix Table 10). For non-PedSep-D patients, no significant difference was observed in 

most of the clinical characteristics except for OFI, ferritin, creatinine, hepatic OFI, and CNS OFI 

(Appendix Table 11). 
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Figure 6.1 Workflow chart of the study 
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We then compared the differences between PedSep-D and non-PedSep-D groups among 

patients with available methylation data. In terms of demographic day-one clinical characteristics, 

the PedSep-D and non-PedSep-D groups differed in characteristics including organ failure index 

(OFI), day-one ferritin, creatinine, renal organ failure, platelets, and hematologic organ failure 

(Table 6.1). Among the subset of PedSep-D group with available methylation data, the median age 

was 4 (interquartile range (IQR, 1–14) years old, 67.7% were male, 9.5% were Hispanic. In terms 

of infection resources, no significant differences were observed between PedSep-D and non-

PedSep-D groups (Table 6.2). In terms of outcomes, PedSep-D patients presented significantly 

higher mortality rate (41.9% vs 18.5%, p-value = 0.024) and lower PICU-free days (median 0 vs 

17, p-value = 0.011) compared to non-PedSep-D patients (Table 6.3). 

  

https://www.nature.com/articles/s41467-023-41300-y#MOESM1
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Table 6.1 Demographic and day 1 clinical characteristics of PedSep-D and Non-PedSep-D patients with 

methylation data 

Characteristics PedSep-D Non-PedSep-D 
No. of Patients, N (%) 31 (32.3) 65 (67.7) 
Demographic    
Age, years median (IQR) 4 (1, 14) 6 (2, 12) 
Male, N (%) 21 (67.7) 42 (64.6) 
Hispanic, N (%) 2 (9.5) 10 (15.4) 
Previous healthy, N (%) 10 (32.3) 25 (38.5) 
Surgery, N (%) 5 (16.1) 5 (7.7) 
Organ Dysfunction    
SIRS criteria1, median (IQR) 3.0 (2.0, 4.0) 3.0 (2.0, 3.0) 
OFI2, median (IQR) 3.0 (3.0, 4.0) 2.0 (1.0, 2.0) 
Inflammation    
CRP, mg/dL median (IQR) 10.8 (4.7, 23.3) 10.4 (4.8, 18.2) 
Low temperature, °C median (IQR) 36.6 (36.0, 36.9) 36.6 (36.3, 37.2) 
High temperature, °C median (IQR) 37.3 (36.8, 38.9) 37.7 (36.9, 38.5) 
ALC, /mm3 median (IQR) 1.1 (0.6, 2.2) 1.1 (0.6, 1.9) 
Ferritin, ng/mL median (IQR) 639.0 (316.0, 

2294.4) 
275.0 (137.0, 
942.2) 

Pulmonary    
Pulmonary OFI, N (%) 22 (71.0) 43 (66.2) 
Intubation, N (%) 17 (54.8) 39 (60.0) 
Cardiovascular or Hemodynamic      
Heart rate, bpm median (IQR) 152.0 (124.5, 

174.0) 
153.0 (138.0, 
174.0) 

Systolic blood pressure, mmHg 
median (IQR) 

75.0 (58.0, 93.5) 85.0 (72.0, 96.0) 

CV OFI, N (%) 26 (83.9) 50 (76.9) 
Renal    
Creatinine, mg/dL median (IQR) 1.5 (0.7, 2.9) 0.6 (0.3, 0.8) 
Renal OFI, N (%) 18 (58.1) 0 (0.0) 
Hepatic    
Hepatic OFI, N (%) 10 (32.3) 10 (15.4) 
Hematologic    
Hemoglobin, g/dL median (IQR) 9.5 (8.1, 10.3) 9.5 (8.4, 10.3) 
Platelets, K/mm3 median (IQR) 49.0 (30.0, 89.5) 140.0 (89.0, 

221.0) 
Hematologic OFI, N (%) 18 (58.1) 3 (4.6) 
Other    
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Glasgow Coma Scale score3,4, 
median (IQR) 

7.0 (3.0, 15.0) 7.0 (3.0, 14.0) 

CNS OFI, N (%) 8 (25.8) 17 (26.2) 
  

IQR interquartile range, SIRS systemic inflammatory response syndrome, OFI organ failure index, ALC absolute 
lymphocyte count, CNS central nervous system 

 
SI conversion factors: to convert alanine transaminase and aspartate aminotransferase to μkat/L, multiply by 0.0167; 

bilirubin to μmol/L, multiply by 17.104; C-reactive protein to nmol/L, multiply by 9.524; creatinine to μmol/L, 
multiply by 88.4 

 
1 Indicates SIRS criteria ranging from 0 to 4 including abnormal heart rate, respiratory rate, temperature, and white 

blood cell count 
 

2 OFI is an integer score reflecting the number of organ failures. Scores are either 0 or 1 for cardiovascular, hepatic, 
hematologic, respiratory, neurological, and renal, and summed for total range of 0 to 6. Cardiovascular, need for 
cardiovascular agent infusion support; Pulmonary, need for mechanical ventilation support with the ratio of the 
arterial partial pressure of oxygen and the fraction of inspired oxygen (PaO2/FiO2) < 300 without this support; 

Hepatic, total bilirubin > 1.0 mg/dL and alanine aminotransferase (ALT) > 100 units/L; Renal, serum creatinine > 1.0 
mg/dL and oliguria (urine output < 0.5 mL/kg/h); Hematologic, thrombocytopenia < 100,000/mm3 and prothrombin 

time INR > 1.5 × normal; Central Nervous System, Glasgow Coma Scale (GCS) Score < 12 in the absence of 
sedatives 

 
3 Corresponds to minimum or maximum value (as appropriate) within 6 h of hospital presentation 

 
4 GCS ranges from 3 to 15 

 
 

Table 6.2 Infections of PedSep-D and Non-PedSep-D patients 

Infection PedSep-D Non-PedSep-D p-value 
Bacterial infection, N (%) 12  (38.7) 31 (47.7) 0.511 
Viral infection, N (%) 4 (12.9) 7 (10.8) 0.743 
Fungal infection, N (%) 2 (6.5) 1 (1.5) 0.243 

 
 
 

Table 6.3 Outcomes of PedSep-D and Non-PedSep-D patients 

Outcome PedSep-D Non-PedSep-D p-value 
Length of stay, median (IQR), d 14 (9, 32) 12 (6, 21) 0.361 
Mortality, N (%) 13 (41.9) 12 (18.5) 0.024 
PICU free day, median (IQR), d 0 (0, 18) 17 (0, 24) 0.011 
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6.3.2 Differential methylation analysis identified DMCs and DMRs associated with PedSep-

D 

The methylation intensity of 866,061 CpGs were measured in DNA methylation profiling 

using Illumina EPIC array technology. After quality control, a total of 699,145 CpGs remained 

and were included in the association analysis. Differential methylation analysis was conducted on 

single CpGs to test their associations with PedSep-D membership after adjusting for age, sex, chip, 

sample position, cell type proportion, and latent confounders (see Methods). From the QQ plot and 

the estimated inflation factor, we observed well-calibrated test statistics and little evidence of 

inflation (lambda = 1.02), suggesting that batch effect and potential confounders were well-

controlled (Figure 6.2A). Examining the association between CpG methylation and PedSep-D 

membership across all sites, the EWAS identified one hypomethylated CpG (cg16704797, p-value 

= 1.67E-08) associated with PedSep-D compared to non-PedSep--D with genome-wide 

significance (p-value < 9×10-8), and 24 CpGs with suggestive significance (p-value < 1×10-5), with 

13 being hypomethylated and 11 being hypermethylated (Figure 6.2B, Fig 6.2C, Table 6.4). 

Among them, most hypomethylated CpGs are located in the CpG open sea of gene body or 5 UTR 

regions, whereas most hypermethylated CpGs are located in the CpG islands or shores of gene 

promoter or transcription-start site (TSS) regions (Table 6.4). Then we performed differential 

methylation analysis on 32,846 CpG regions and discovered one significant differentially 

methylated region (chr19: 42342974 - 42343444, adjusted p-value = 0.02, Table 6.5). 
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Figure 6.2 Epigenome-wide associations of CpGs with PedSep-D 

A. Quantile-quantile plot shows a departure from the null hypothesis of no association. Confounding and batch 
effects were well-controlled with minimal inflation (λ = 1.02). The λ was calculated using BACON package. B. 

Volcano plot for the epigenome-wide association tests of PedSep-D shows 1 epigenome-wide DMC, and 24 
suggestive DMC. C. Manhattan plot shows that the epigenome-wide DMCs were identified near KLHL29 gene on 
chromosome 2. DMCs with suggestive significance are labeled based on UCSC annotated genes or CpG ID if no 

gene annotation. In both the panel B and C, the epigenome-wide significance level (p-value < 9e-08) is denoted by 
the red line; the suggestive significant level (p-value < 1e-05) is denoted by the blue line. Hypermethylated CpGs 

are colored as orange dots, whereas hypomethylated CpGs are colored as green dots. DMC, differentially 
methylated CpG; EWAS, epigenome-wide association study.  
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Table 6.4 Detailed information of individual differentially methylated CpGs (p-value < 1E-05) 

CpG Name Beta p-value chr position Island1 Gene2 Region3 

cg16704797 -0.04 1.67E-08 chr2 23838416 Open Sea KLHL29 Body 
cg01572694 0.12 3.58E-07 chr17 46657555 N Shore MIR10A TSS1500 
cg03102887 -0.04 7.83E-07 chr3 13598359 Open Sea FBLN2 5'UTR 
cg13652985 0.06 8.11E-07 chr17 46658257 N Shore MIR10A TSS1500 
cg23720929 -0.03 9.38E-07 chr3 195310887 Open Sea APOD 5'UTR 
cg27310485 -0.02 1.13E-06 chr1 153536563 Open Sea S100A2 5'UTR 
cg15601205 -0.03 1.33E-06 chr5 151196814 Open Sea - - 
cg03037150 0.08 1.66E-06 chr12 54402717 Island HOXC8 TSS200 
cg10609524 -0.02 1.69E-06 chr5 100115478 Open Sea - - 
cg23374256 -0.03 1.71E-06 chr6 5192344 Open Sea LYRM4 Body 
cg14285150 0.05 1.84E-06 chr17 46659019 Island - - 
cg03233332 -0.04 1.98E-06 chr7 66118400 N Shore - - 
cg09647390 -0.02 2.16E-06 chr18 13133407 N Shelf - - 
cg22818074 -0.09 2.90E-06 chr15 66764860 Open Sea MAP2K1 Body 
cg24865494 -0.02 3.27E-06 chr1 151205142 Open Sea PIP5K1A Body 
cg23672176 0.02 3.76E-06 chr17 74068680 Island SRP68 TSS200 
cg15564579 0.07 4.33E-06 chr3 119298083 N Shore ADPRH TSS200 
cg23950714 -0.06 4.58E-06 chr5 176935364 S Shelf DOK3 Body 
cg17766219 0.04 5.72E-06 chr3 188696137 Open Sea - - 
cg00216180 -0.02 5.77E-06 chr13 114778713 Island RASA3 Body 
cg07036914 0.03 5.88E-06 chr17 36577690 S Shore - - 
cg19929409 -0.04 7.64E-06 chr14 56755226 Open Sea PELI2 Body 
cg26724018 0.09 8.76E-06 chr11 5716255 Open Sea TRIM22 5'UTR 
cg21150327 0.07 9.32E-06 chr12 96889770 Open Sea CFAP54 Body 
cg26916621 0.06 9.49E-06 chr17 46657346 N Shore MIR10A TSS200 

1. Relation to CpG island. N Shore: north island shore; S Shore: south island shore. 
2. Nearby gene annotated by UCSC database, “–“ indicates no nearby genes annotated. 

3. Regions related to the nearby gene annotated by UCSC database. 
 
 

Table 6.5 Detailed information of differentially methylated regions (adjusted p-value < 0.1) 

# CpG  Beta Adj p-value chr position Island1 Gene2 Region3 

2 -0.04 0.025 chr19 42342974 - 42343444 Open Sea LYPD4 5'UTR 
2 -0.07 0.069 chr18 13133368 - 13133407 N Shelf - - 

1. Relation to CpG island. N Shore: north island shore; S Shore: south island shore. 
2. Nearby gene annotated by UCSC database, “–“ indicates no nearby genes annotated. 

3. Regions related to the nearby gene annotated by UCSC database. 
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6.3.3 Functional analysis revealed the connections of PedSep-D-related DMCs with 

immune cell types, gene expressions, and biological pathways 

To conduct functional analyses using public databases, we analyze PedSep-D related 

DMCs to investigate their roles in different immune cells, cis gene expression regulation, tissue-

specific gene sets, and pathways. To first explore relationships between PedSep-D related DMCs 

and cell types, we first estimated the proportion of six blood immune cell types deconvoluted from 

bulk methylation data using public data as reference. The six blood immune cell types include T 

lymphocytes (CD4+ and CD8+), B cells (CD19+), monocytes (CD14+), NK cell (CD56+), and 

Neutrophils. Among them, PedSep-D was associated with higher monocyte proportion and lower 

CD8+ T-cell proportion (Appendix Table 12, Figure 6.3A). Then we performed cell-type-specific 

differential methylation analysis on top DMCs and discovered a total of eight significant cell-type-

specific DMCs in NK and Neutrophil cell types (four for each cell types), with six hypomethylated 

DMCs and two hypermethylated DMCs (Figure 6.3B). No cell-type-specific DMCs identified 

from cell types displaying different proportions between PedSep-D and other groups (i.e. 

monocytes and CD8 + T-cell). 

To explore relationships between PedSep-D related DMCs and gene expression, we 

queried the summary statistics of cis expression quantitative trait methylation (cis-eQTM) from 

the public available Human Early Life Exposome (HELIX) project (Ruiz-Arenas et al. 2022). By 

mapping cis-eQTM and PedSep-D related DMCs, we identified a total of 661 candidate DMC-

gene pairs. Among them, 16 DMC-gene pairs presented significant associations (FDR < 0.05, 

Appendix Table 13). Notably, three CpGs from a region within MIR10A gene on chr17 associated 

with expression of multiple genes from the homeobox (HOX) gene clusters encoding 

transcriptional factors. 
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Gene set enrichment analysis was conducted based on genes nearby the DMCs. A total of 

16 unique genes were used in the analysis, including ten genes near the hypomethylated DMCs 

and six genes near the hypermethylated DMCs (Table 6.4).  By separately testing the enrichment 

of two gene sets in differentially expressed genes (DEGs) across 30 tissues from GTEx 

(Consortium 2013), we found the genes near the hypomethylated DMCs were enriched in 

downregulated DEGs of kidney, liver, and ovary. By separately testing the enrichment of two gene 

sets in Gene Ontology (GO) (Ashburner et al. 2000, Gene Ontology et al. 2023), Kyoto 

Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto 2000), and TRANSFAC (TF) 

(Matys et al. 2006) pathways,  we found that the genes near the hypomethylated DMCs were 

enriched in seven pathways, including (positive) regulation of MAPK cascade, fc gamma r-

mediated phagocytosis, choline metabolism in cancer, targets of transcription factor Osx, Yersinia 

infection, and phospholipase D signaling pathways (Figure 6.3C). The genes near the 

hypermethylated DMCs were enriched in targets of transcription factors p53 and ZSCAN11 

(Figure 6.3D). 
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Figure 6.3 Functional analysis investigating the relationships between PedSep-D related DMCs and immune 
cell types (A and B) and pathways (C and D) 

A. Estimated cell-type proportion of six immune cell types in PedSep-D and non-PedSep-D phenotype using 96 
samples. Compared to non-PedSep-D group, PedSep-D group has higher proportion of monocyte and low 

proportion of CD8T. B. Estimated cell-type-specific differentially methylated CpGs (DMCs) using 96 samples. Six 
blood cell types were inferred from deconvolution analysis based on reference data. Then we test whether EWAS 

DMCs are specifically differentially methylated in these cell types. The “bulk” column represents the overall effect 
size estimated from EWAS of PedSep-D. Six cell type columns represent the cell-type-specific effect size of each 
CpG on PedSep-D. The color of the cell denotes the direction (green: hypomethylation; orange: hypermethylation) 

and the magnitude of the associations (the darker the stronger). Asterisks denotes the significance of association 
(*:FDR < 0.05; **: FDR < 0.01; ***: FDR < 0.001). C. Biological pathway analysis of genes near Hypomethylated 

CpGs using GO, KEGG, and TF databases (FDR < 0.05). D. Biological pathway of genes near Hypermethylated 
analysis using GO, KEGG, and TF databases (FDR < 0.05). 
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6.3.4 PedSep-D related DMCs presented high correlation with inflammatory biomarkers 

and metabolites 

In addition to conducting functional analyses utilizing public databases, we further 

explored the role of PedSep-D related DMCs in inflammation and metabolism by employing 

cytokine and metabolite profiles collected from the same patients. Firstly, we validated the 

connections between identified DMCs and inflammation by examining the correlation between 

methylation levels of PedSep-D related DMCs and serum protein levels of 33 pro-inflammatory 

and anti-inflammatory cytokines collected at the first day of the patients’ enrollment. Among them, 

we observed three significantly correlated CpG-cytokine pairs after multiple testing corrections 

(33  cytokines × 25 DMCs) (Figure 6.4A). All three significant pairs involve PedSep-D related 

hypomethylated DMCs. To keep consistency with the relationship between hypomethylation of 

DMCs and PedSep-D membership, we reported the correlations as the trend between lower 

methylation levels of DMCs and the corresponding change of serum protein level of cytokines. 

Specifically, the lower methylation level of cg00216180 is significantly correlated with lower 

serum protein level of anti-inflammatory cytokine ADAMTS13. Lower methylation level of 

cg23374256 is significantly correlated with lower serum protein level of anti-inflammatory 

cytokine TRAIL. Lower methylation level of cg27310485 is significantly correlated with higher 

serum protein level of pro-inflammatory cytokine IL-16. No PedSep-D related hypermethylated 

DMCs significantly correlated with cytokine levels.  

Since the pathway enrichment analysis using public datasets implied the relationships 

between PedSep-D related DMCs and choline metabolism pathway and phospholipase D signaling 

pathway, we further investigated the connections by examining the correlation between 

methylation levels of PedSep-D related DMCs and levels of metabolites collected from the same 
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samples with available data (N = 26, Figure 6.4B). To reduce the multiple testing burden, we 

targeted two DMCs contributing to the metabolic pathway enrichment and major metabolites from 

the two pathways (2 metabolites × 2 DMCs). As a result, lower methylation level of cg24865494 

is significantly correlated with higher level of metabolite choline. Lower methylation level of 

cg22818074 is significantly correlated with higher level of metabolite phosphatidylcholine (PC). 

Figure 6.4 Correlation analysis 
A. Spearman’s correlation scatter plots of three significant CpGs-cytokine pairs. R: correlation coefficient; p: 

raw p-value of correlation test. Red dots indicate PedSep-D samples, whereas grey dots indicate non-PedSep-D 
samples. To keep consistency with the relationship between hypomethylation of DMCs and PedSep-D membership, 
we reported the correlations as the trend between lower methylation levels of DMCs and the corresponding change 
of serum protein level of cytokines. Specifically, lower methylation level of cg00216180 is significantly correlated 

with lower serum protein level of anti-inflammatory cytokine ADAMTS13. Lower methylation level of cg23374256 
is significantly correlated with lower serum protein level of anti-inflammatory cytokine TRAIL. Lower methylation 
level of cg27310485 is significantly correlated with higher serum protein level of pro-inflammatory cytokine IL-16. 
B. Spearman’s correlation scatter plots of two significant CpGs-metabolite pairs. R: correlation coefficient; p: 

raw p-value of correlation test. Blue line indicates a negative correlation, whereas red line indicates a positive
correlation. To keep consistency with the relationship between hypomethylation of DMCs and PedSep-D 
membership, we reported the correlations as the trend between lower methylation levels of DMCs and the 

corresponding change of metabolite. Specifically, lower methylation level of cg24865494 is significantly correlated 
with higher level of metabolite choline. Lower methylation level of cg22818074 is significantly correlated with 

higher level of metabolite phosphatidylcholine (PC). 
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6.3.5 PedSep-D related DMCs showed both association and causal relationships with sepsis 

development, mortality, and autoimmune diseases 

To explore the associations between PedSep-D-related DMCs and autoimmune diseases, 

we searched the EWAS Catalog to identify all previously reported significant findings (Battram et 

al. 2022). Out of 25 DMCs with methylome-wide and suggestive significance, 19 DMCs had been 

reported in previous EWASs as being associated with at least one trait. Notably, PedSep-D-related 

DMCs were found to be associated with several autoimmune diseases, including Primary Sjogren’s 

syndrome, Crohn’s disease, Inflammatory Bowel disease (IBD), and Rheumatoid Arthritis 

(Appendix Table 14). 

To further investigate causal relationships between PedSep-related-DMCs and sepsis as 

well as autoimmune diseases, we leveraged summary statistics from publicly available meQTL 

and GWAS biobanks to perform Mendelian randomization (MR) analysis using the MR-Egger 

regression method (see Method). Out of 25 PedSep-D-related DMCs, summary data were available 

for 10 DMCs. The MR analysis suggested a significant relationship between eight, eight, and three 

DMCs with sepsis development, sepsis 28-day mortality, and Rheumatoid arthritis (FDR < 0.05), 

respectively (Figure 6.5). The odds ratio in MR could be interpreted as the change in the odds of 

the phenotype for each unit increase of genetically controlled DNA methylation levels (in a beta-

value scale). We observed some inconsistency between directions inferred using MR analysis 

based on public adult data and our EWAS based on pediatric sepsis patients, which might be 

explained by different population and phenotypes used in two analyses. 

 

 

 

https://www.nature.com/articles/s41467-023-41300-y#Fig5
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Figure 6.5 Mendelian randomization analysis of  10 out of 25 CpGs related to PedSep-D using GoDMC and 

UKB databases 
A. Illustrative plot. Mendelian randomization analysis was performed using MR-Egger regression method to 

investigate the relationships between ten CpGs and four immune traits (A: sepsis; B: sepsis 28-day mortality; C: 
Rheumatoid arthritis). The meQTL data were retrieved from the GoDMC database. The GWAS data were retrieved 
from the UK Biobank. B. Results of Mendelian randomization analysis. The vertical color bar on the right side of 

CpG forest plot represents the direction of effect for PedSep-D. The colors (green or orange) will be helpful to 
compare the direction of effects for PedSep-D and the three immune disease traits. Orange denotes 

hypermethylation (i.e., CpG was positively associated with PedSep-D). Green denotes hypomethylation (i.e., CpG 
was negatively associated with PedSep-D). 
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6.4 Discussion 

We conducted an Epigenome-Wide Association Study (EWAS) on a multicenter pediatric 

sepsis cohort comparing PedSep-D and non-PedSep-D phenotype of pediatric sepsis patients and 

identified one genome-wide significant and 24 suggestive significant DMCs associated with 

PedSep-D, an agnostic pediatric sepsis phenotype characterized by severe outcome. In subsequent 

functional analysis, PedSep-D related DMCs exhibited cell-type-specificity, were involved in gene 

expression regulation, and were enriched in multiple biological pathways. Additionally, we 

validated the relationship between DMCs and inflammatory response by leveraging serum protein 

levels of 33 cytokines and observing high correlations between PedSep-D related DMCs and 

inflammation biomarkers. Finally, we incorporated publicly available data and found that PedSep-

D related DMCs depicted associations and potential causal relationships with adult sepsis and 

autoimmune diseases. Altogether, this study unveiled the role of DNA methylation in pediatric 

sepsis heterogeneity and contributed to the development of personalized therapies by targeting 

agnostic pediatric sepsis phenotype with severe outcome.  

Our findings derived from differential methylation analysis were supported by several 

previous studies. For example, the most significant DMC (cg16704797) revealed in our study is 

hypomethylated in PedSep-D group. This CpG located in the body region of the gene KLHL29, 

which was previously uncovered as an up-regulated differentially expressed gene (DEG) in sepsis 

patient using whole blood RNA-seq data (Vastrad and Vastrad 2023). In terms of other 

suggestively significant DMCs, seven CpGs associated with multiple immune related diseases 

reported from previous EWAS analysis, including Primary Sjogren’s syndrome, Crohn’s disease, 

Inflammatory Bowel disease (IBD), and Rheumatoid Arthritis. For example, three PedSep-D 

related hypermethylated DMCs (cg01572694, cg13652985, and cg26916621) are located in the 
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TSS region of gene MIR10A. MIR10A gene encodes microRNA (miRNA) and is considered as a 

key post-transcriptional regulator that influences anti-inflammatory responses in several diseases, 

including Rheumatoid Arthritis (RA), Inflammatory Bowel Disease (IBD), Colitis, Acute 

Pancreatitis (AP), sepsis, atherosclerosis, and cancer (Das and Rao 2022). Additionally, the 

MIR10A gene is known to be co-expressed with and to target the nearby homeobox (HOX) gene 

clusters that encode transcriptional factors (TF). As one of the members of the HOX TF family, 

the HOX2 gene was found being involved in a regulatory network exclusively associating with 

pediatric sepsis instead of other unrelated inflammatory conditions (Oliveira et al. 2021). 

Furthermore, an in vivo study has discovered the role of DNA methylation in regulating MIR10A 

expression by knocking out DNA methyltransferases colon in cancer cell lines and observing an 

significant gene expression increasing of MIR10A gene and HOX gene cluster (Han et al. 2007). 

In differentially methylated region analysis, the top region (chr19:42342974-42343444) located 

within LYPD4 gene was previously reported being associated with eosinopenia (Kim et al. 2021, 

Gadd et al. 2022), which has been recognized as a reliable diagnostic and prognostic maker of 

sepsis in multiple studies (Abidi et al. 2008, Al Duhailib et al. 2021).  In general, the EWAS results 

of our study align with earlier findings to validate the role of DNA methylation as a crucial 

biological factor associated with inflammatory diseases. Beyond this achievement, our findings 

also extend the role of disease-related signals to indicate their relationships with the severity of 

pediatric sepsis by targeting the patients with the highest risk.  

The functional analysis of this study implies several potential mechanisms linking DNA 

methylation to pediatric sepsis severity. First, our findings suggest the potential role of methylation 

as a mediator of infection and disease severity at the innate immune stage of the sepsis 

manifestation. The cell-type-specific analysis of the study discovered severity-related DMCs 
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presenting differential methylation in neutrophils and natural killer (NK) cells, two immune cells 

that are recruited after the onset of infection and release large amounts of pro-inflammatory 

cytokines to induce pathogen clearance and further exacerbate inflammation (Chiche et al. 2011, 

Kovach and Standiford 2012). Notwithstanding the well-studied role of Neutrophils and natural 

killer (NK) cells in inflammatory diseases including sepsis, our analysis marks the first attempt to 

reveal the cell-type-specific relationship between methylation and the severity of pediatric sepsis. 

Second, the associations between PedSep-D related DMCs and their target genes were investigated 

from summary statistics of HELIX project, highlighting the potential role of identified CpGs in 

gene expression regulation. Third, the enrichment of CpG nearby genes in various tissues may 

reveal the relationship between the methylation alternation in blood and functional failure in 

multiple organ systems. Our tissue-specific DEG enrichment analysis found that genes near 

hypomethylated CpGs enriched in down-regulated DEGs of the kidney and liver, which is 

consistent with organ dysfunction patterns observed in PedSep-D phenotype. Lastly, our pathway 

enrichment analysis suggests the role of methylation regulated genes in biological process related 

to immune response to infections. For example, in the mitogen-activated protein kinase (MAPK) 

cascade regulation pathway, MAPK such as p38 and JNK regulate T cell activation and 

differentiation and mediate production of inflammatory cytokines including TNF-α, IL-1, IL-2, 

and IL-6 (Dong et al. 2002). As another well-established pathway, Fc gamma R-mediated 

phagocytosis pathway sculptures a process where activation of Fc gamma receptors in 

Macrophages leading to the release of products associated with inflammatory response, initiation 

of antibody-dependent cellular cytotoxicity, and phagocytosis, all of which play key roles in host 

immune defense against infections (Fitzer-Attas et al. 2000). Phospholipase D (PLD) signaling 

pathway was recently found being involves in immune responses where PLD isoforms expressed 
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in Neutrophils and Macrophages cells stimulate leukocyte migration, facilitate phagocytosis, and 

generate reactive oxygen species to enhance innate defense activity (Yoe-Sik Bae 2023). Overall, 

by leveraging the public data, our functional analysis provides insights of pathology mechanisms 

driven by methylation and demonstrates the potential biological targets in severe pediatric sepsis 

population.  

In addition to functional analyses utilizing public databases, the relationships between 

inflammation and methylation levels of the identified PedSep-D related DMCs were further 

validated using measured serum protein level of 33 cytokines. Although many of the associations 

between tested CpG-cytokine pairs lost significance after correcting for multiple testing, this 

analysis highlighted three cytokines (ADAMTS13, TRAIL, and IL-16) that exhibited sensitivity 

to methylation alterations. ADAMTS13 (a disintegrin and metalloproteinase with a 

thrombospondin type 1 motif, member 13) is a large protein involved in blood clotting and plays 

a vital role in preventing microvascular thrombosis and inflammation (Lu et al. 2020). TRAIL 

(TNF-related apoptosis-inducing ligand) induces cell apoptosis and suppress inflammation (Wiley 

et al. 1995). In contrast, IL-16 (Interleukin 16) is a pro-inflammatory cytokine functioning as a T-

cell chemoattractant and inducing inflammation (Mathy et al. 2000). The correlations between 

severity-related DMCs and both anti-inflammation and pro-inflammation cytokines reaffirm the 

role of methylation in inflammation responses, emphasizing the need for future investigations.  

Finally, our Mendelian randomization analysis employing large-scale public biobank data 

has indicated that 10 DMCs were associated with sepsis mortality, sepsis, and RA. This result 

potentially suggests that severe sepsis phenotype may be consequences resulting from the 

epigenetic regulatory impacts of the genetic variants. The results from our Mendelian 

randomization also align with the previous studies. For example, we found that cg00216180 on 
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RASA3 was associated with severe sepsis phenotype. Consistently, a recently published GWAS 

identified common variants in RASA3 significantly associated with EBV seropositivity, a 

common infection source of sepsis (Muckian et al. 2023). Subsequent Mendelian randomization 

analysis of this study indicated several environmental causal risk factors for EBV seropositivity. 

Despite the complexity of Mendelian randomization analysis, establishing causal relationships 

between DNA methylation and pediatric sepsis severity is crucial for the development of 

epigenetic therapies. Notably, there have been in vivo sepsis treatments implemented in mice and 

rats by modifying methylation factors (Falcao-Holanda et al. 2021). For instance, Cao et al, treated 

CLP mice with decitabine to degrade DNMTs, and attenuated NF-κB activation, thereby 

suppressing inflammatory cytokine levels and inhibiting sepsis progression (Cao et al. 2020). 

Combined with the existing potential therapy strategies, our findings are expected to propel 

research towards the methylation-based treatments for pediatric sepsis patients in order to 

preventing the development of severe outcomes. 

Our study presents several potential limitations. First, the sample size of 96 is still modest, 

larger scale cohorts are needed for independent replication. Second, the non-PedSep-D group is 

heterogeneous and may limit the interpretability of the results. Third, the suggestive DMCs are not 

genome-wide significant and so many of them may simply represent false positives. Fourth, DNA 

methylation profiling was conducted with blood samples, restricting the generalizability of our 

findings to other tissue types. Fifth, the interpretation of DMC results in each cell type should be 

approached with caution due to the assumption made by the "CellDMC" function in the EpiDISH 

package. This function assumes that all other cell types are at 0% when estimating a specific cell 

type driving the methylation change, whereas our data involve mixed cell types. Subsequent 

studies utilizing single-cell-type based methylation date are warranted to validate our findings.  
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Sixth, although we have used the cis-eQTM data from the HELIX Project to explore the association 

of CpGs and gene expression, our study lacks paired transcriptome data to investigate the impact 

of DNA methylation on gene expression. Seventh, our study did not have mechanistic experiments 

to validate the function of identified CpGs. Yet, our study derives well-calibrated hypotheses that 

can guide future experiments. Eighth, the cross-sectional design limited us to investigate the 

precise causal link between the DNA methylation and pediatric sepsis severity. While our 

Mendelian randomization analysis showed potential causal relationship of severity-related DMCs 

with inflammatory diseases and outcomes, it is important to investigate the association in a 

longitudinal design. Finally, some functional analysis presented here are based on data in adults 

for a sepsis case/normal control scenario, which might not be directly relevant to the pediatric 

PedSep-D vs. non-PedSep-D results.   

In summary, our EWAS identified blood DNA methylation signatures associated with the 

PedSep-D phenotype at the high risk of developing severe outcome. Downstream analysis revealed 

that identified CpGs play important regulatory roles in various tissues, immune cells, and 

pathways, and are highly relevant to the inflammatory response. Furthermore, the identified CpGs 

were associated with additional inflammatory and immune traits, such as Primary Sjogren’s 

syndrome, Crohn’s disease, Inflammatory Bowel disease (IBD), and Rheumatoid Arthritis. Our 

findings serve as a foundation for further exploration into the intricate interplay between 

environmental factors, epigenetics, host response, and disease pathobiology of pediatric sepsis. 

Together with other existing findings, our study provides insights into epigenetic components of 

pediatric sepsis and guidance of the clinical management of the high risk pediatric sepsis 

population. 
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7.0 Conclusion 

7.1 Summary 

This dissertation investigated heterogeneity within pediatric sepsis by integrating clinical, 

whole exome sequencing, methylation, protein, and metabolism data.  In Chapter 4, we employed 

machine learning approaches to derive four pediatric sepsis phenotypes presenting distinct 

inflammatory patterns and clinical outcomes. Notably, the identification of PedSep-D phenotype 

characterized by the most severe inflammation and poor outcomes enables the efficient enrollment 

of early anti-inflammatory trials targeting patients at high risk. In Chapter 5, a comprehensive 

whole-exome-wide association analysis was conducted in a gene-based manner to investigate the 

role of rare variants in pediatric sepsis heterogeneity. This analysis revealed one exome-wide and 

two suggestive significant genes associated with the PedSep-D phenotype, highlighting several 

deleterious rare variants that may underlie these associations. Subsequent functional analysis of 

plasma protein suggested a potential role for the top-identified gene in modulating inflammatory 

cytokine activities. Chapter 6 delves into an epigenome-wide association analysis to explore the 

role of methylome in pediatric sepsis heterogeneity. By targeting the PedSep-D phenotype, the 

study found one genome-wide and 24 suggestive significant differentially methylated CpGs 

displaying cell-type-specificity and relating to immune cell regulation and lipid metabolism. The 

findings presented in the three chapters advance our understanding of pediatric sepsis 

heterogeneity, as well as the complex genetic and epigenetic landscape underlying the disease, 

offering new insights into sepsis pathology and potential avenues for personalized treatment 

strategies. 
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7.2 Significance 

This dissertation contributed to bridging the knowledge gaps in pediatric sepsis in multiple 

aspects. First, although adult sepsis studies have unraveled several subtypes within the scope of its 

broad definition, the heterogeneity of sepsis was validated in the children population by applying 

machine learning methods to first-day bedside clinical variables, facilitating the development of 

precision medicine approaches tailored to pediatric sepsis patients at risk. Moreover, the whole-

exome-wide association analysis showed for the first time the role of rare variants in sepsis severity, 

followed by functional analysis targeting the top signals. Additionally, the epigenome-wide 

association analysis served as the first pilot study to examine the relationships between methylation 

factors and pediatric sepsis severity. Altogether, the insights garnered from this dissertation 

enhance our understanding of pediatric sepsis heterogeneity and its potential biological 

underpinnings. These contributions are poised to guide the direction of future research and refine 

clinical practices in the realm of pediatric sepsis, marking a significant step forward in the field. 

7.3 Future research 

Beyond the scope of this dissertation, several potential research directions could be further 

explored. First, additional studies should be conducted to validate the four pediatric sepsis 

phenotypes reported in this study, which would contribute to confirming the universality and 

robustness of the four PedSep phenotypes. Second, longitudinal studies can be implemented to 

monitor the disease progression of patients in different phenotypes over time. These studies could 

indicate the possibility of observing four phenotypes as a result of different stages of disease 
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progression. Trajectory analysis could also provide insights into the transitions across phenotypes 

in the long term and help refine therapeutic approaches. Third, conducting genetic and epigenetic 

association studies to compare the four PedSep phenotypes in a pair-wise manner using a large 

scale cohort is desired to fully understand the heterogeneity of the disease. Fourth, in-depth 

functional studies with the usage of in vitro and in vivo models on the significant genes identified 

are merited. Finally, more comprehensive integrative analysis using multi-omics data (e.g. 

transcriptomic, proteomic, etc. ) collected from the pediatric sepsis population could be beneficial 

to provide the new insights into the regulatory mechanisms and interactions that contribute to 

sepsis heterogeneity. 
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Appendix A Supplemental materials for Chapter 4 

Appendix Table 1 list of 25 variables used to construct the clusters 

 Category Variable 
1  

 
demographic 

Age 
2 Gender 
3 Ethnicity 
4 Previous healthy 
5 Post-surgery 
6  

 
 

PRISM-related vital signs and laboratory values 

Systolic blood pressure 
7 Heart rate 
8 Glasgow Coma Scale Score 
9 Hemoglobin 
10 Creatinine 
11 Platelet count 
12 Intubation status 
13  

 
Markers of inflammation 

Highest temperature 
14 Lowest temperature 
15 Number of SIRS criteria 
16 Lymphocyte count 
17 C-reactive protein level 
18 Ferritin  level 
19  

 
 

Organ failure 

Organ failure index 
20 Central Nervous System organ failure 
21 Cardiovascular organ failure 
22 Respiratory organ failure 
23 Renal organ failure 
24 Hepatic organ failure 
25 Hematologic organ failure 
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Appendix B  Supplemental materials for Chapter 5 

Appendix Table 2 Demographic and clinical characteristics of patients with and without available WES data 

Characteristics With WES data Without WES data p-value1 fdr 

No. of Patients, N (%) 319 (79.0) 85 (21.0)    

Demographic      
Age, years mean (SD) 7 (6) 8 (6) 0.154 0.428 

Male, N (%) 175 (54.9) 49 (57.6) 0.736 0.969 
Hispanic, N (%) 50 (15.7) 17 (20.0) 0.329 0.587 

Previous healthy, N (%) 153 (48.0) 27 (31.8) 0.011 0.039 
Surgery, N (%) 38 (11.9) 11 (12.9) 0.943 1.000 

Organ Dysfunction      
SIRS criteria2, mean (SD) 2.9 (0.8) 3.0 (0.8) 0.252 0.525 

OFI3, mean (SD) 1.7 (0.9) 1.9 (0.9) 0.200 0.465 

Inflammation      
CRP, mg/dL mean (SD) 11.6 (10.1) 12.1 (11.5) 0.910 1.000 

Low temperature, °C mean (SD) 36.6 (1.2) 36.6 (0.9) 0.884 1.000 
High temperature, °C mean (SD) 37.8 (1.3) 37.9 (1.3) 0.477 0.745 

ALC, /mm3 median (IQR) 1.3 (0.7-2.2) 0.9 (0.2-1.5) 2.249E-4 0.002 
Ferritin, ng/mL mean (IQR) 188.4 (94.1-493.0) 404.0 (183.6-2636.0) 9.507E-6 2.377E-4 

Pulmonary      
Pulmonary OFI, N (%) 213 (66.8) 57 (67.1) 1.000 1.000 

Intubation, N (%) 178 (55.8) 33 (38.8) 7.766E-3 0.039 

Cardiovascular or Hemodynamic         
Heart rate, bpm mean (SD) 154.9 (31.9) 157.1 (29.1) 0.516 0.759 

Systolic blood pressure, mmHg mean 
(SD) 

81.4 (19.7) 83.9 (17.7) 0.321 0.587 

CV OFI, N (%) 219 (68.7) 65 (76.5) 0.205 0.465 

Renal      
Creatinine, mg/dL median (IQR) 0.5 (0.3-0.9) 0.5 (0.3-0.7) 0.731 0.969 

Renal OFI, N (%) 26 (8.2) 4 (4.7) 0.357 0.595 

Hepatic      
Hepatic OFI, N (%) 31 (9.7) 9 (10.6) 0.838 1.000 

Hematologic      
Hemoglobin, g/dL mean (SD) 9.9 (1.9) 9.3 (2.2) 3.395E-3 0.021 
Platelets, K/mm3 mean (SD) 179.3 (114.5) 140.5 (148.5) 7.419E-5 9.274E-4 

Hematologic OFI, N (%) 26 (8.2) 13 (15.3) 0.061 0.192 
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Other      
Glasgow Coma Scale score4,5, mean 

(SD) 
8.4 (5.3) 10.1 (5.0) 9.611E-3 0.039 

CNS OFI, N (%) 42 (13.2) 12 (14.1) 0.960 1.000 
 

IQR interquartile range, SIRS systemic inflammatory response syndrome, OFI organ failure index, ALC absolute 
lymphocyte count, CNS central nervous system 

 
SI conversion factors: to convert alanine transaminase and aspartate aminotransferase to μkat/L, multiply by 0.0167; 

bilirubin to μmol/L, multiply by 17.104; C-reactive protein to nmol/L, multiply by 9.524; creatinine to μmol/L, 
multiply by 88.4 

 
1 Comparisons across all 4 phenotypes were performed using the Kruskal–Wallis test, the χ2 test, or the Fisher’s 

exact test 
 

2 Indicates SIRS criteria ranging from 0 to 4 including abnormal heart rate, respiratory rate, temperature, and white 
blood cell count 

 
3 OFI is an integer score reflecting the number of organ failures. Scores are either 0 or 1 for cardiovascular, hepatic, 

hematologic, respiratory, neurological, and renal, and summed for total range of 0 to 6. Cardiovascular, need for 
cardiovascular agent infusion support; Pulmonary, need for mechanical ventilation support with the ratio of the 
arterial partial pressure of oxygen and the fraction of inspired oxygen (PaO2/FiO2) < 300 without this support; 

Hepatic, total bilirubin > 1.0 mg/dL and alanine aminotransferase (ALT) > 100 units/L; Renal, serum creatinine > 1.0 
mg/dL and oliguria (urine output < 0.5 mL/kg/h); Hematologic, thrombocytopenia < 100,000/mm3 and prothrombin 

time INR > 1.5 × normal; Central Nervous System, Glasgow Coma Scale (GCS) Score < 12 in the absence of 
sedatives 

 
4 Corresponds to minimum or maximum value (as appropriate) within 6 h of hospital presentation 

 
5 GCS ranges from 3 to 15 
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Appendix Table 3 Demographic and day 1 clinical characteristics of PedSep-A and Non-PedSep-A patients 

Characteristics PedSep-A Non-PedSep-A 

No. of Patients, N (%) 116 (36.4)  203 (63.6) 

Demographic    
Age, years mean (SD) 3 (4) 9 (6) 

Male, N (%) 52 (44.8) 123 (60.6) 
Hispanic, N (%) 24 (22) 26 (13.2) 

Previous healthy, N (%) 79 (68.1) 74 (36.5) 
Surgery, N (%) 3 (2.6) 35 (17.2) 

Organ Dysfunction    
SIRS criteria1, mean (SD) 2.9 (0.8) 2.9 (0.8) 

OFI2, mean (SD) 1.3 (0.5) 2.0 (0.9) 

Inflammation    
CRP, mg/dL mean (SD) 7.4 (7.3) 14.1 (10.7) 

Low temperature, °C mean (SD) 36.7 (0.9) 36.5 (1.4) 
High temperature, °C mean (SD) 37.8 (1.0) 37.8 (1.4) 

ALC, /mm3 median (IQR) 1.9 (1.3-3.4) 1.0 (0.5-1.7) 
Ferritin, ng/mL mean (IQR) 204.2 (71.5-210.5) 260.7 (130.7-681.6)  

Pulmonary    
Pulmonary OFI, N (%) 89 (76.7) 124 (61.1) 

Intubation, N (%) 62 (53.4) 116 (57.1) 

Cardiovascular or Hemodynamic      
Heart rate, bpm mean (SD) 168.6 (29.6) 147.1 (30.5) 

Systolic blood pressure, mmHg mean (SD) 85.1 (15.9) 79.2 (21.3) 
CV OFI, N (%) 54 (46.6) 165 (81.3) 

Renal    
Creatinine, mg/dL median (IQR) 0.3 (0.2-0.4) 0.6 (0.4-1.2) 

Renal OFI, N (%) 0 (0.0) 26 (12.8) 

Hepatic    
Hepatic OFI, N (%) 3 (2.6) 28 (13.8) 

Hematologic    
Hemoglobin, g/dL mean (SD) 10.1 (1.8) 9.8 (2.0) 
Platelets, K/mm3 mean (SD) 257.2 (110.3) 134.7 (90.7) 

Hematologic OFI, N (%) 0 (0.0) 26 (12.8) 

Other    
Glasgow Coma Scale score3,4, mean (SD) 8.4 (5.2) 8.3 (5.4) 

CNS OFI, N (%) 10 (8.6) 32 (15.8) 
  

IQR interquartile range, SIRS systemic inflammatory response syndrome, OFI organ failure index, ALC absolute 
lymphocyte count, CNS central nervous system 
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SI conversion factors: to convert alanine transaminase and aspartate aminotransferase to μkat/L, multiply by 0.0167; 
bilirubin to μmol/L, multiply by 17.104; C-reactive protein to nmol/L, multiply by 9.524; creatinine to μmol/L, 

multiply by 88.4 
 

1 Indicates SIRS criteria ranging from 0 to 4 including abnormal heart rate, respiratory rate, temperature, and white 
blood cell count 

 
2 OFI is an integer score reflecting the number of organ failures. Scores are either 0 or 1 for cardiovascular, hepatic, 

hematologic, respiratory, neurological, and renal, and summed for total range of 0 to 6. Cardiovascular, need for 
cardiovascular agent infusion support; Pulmonary, need for mechanical ventilation support with the ratio of the 
arterial partial pressure of oxygen and the fraction of inspired oxygen (PaO2/FiO2) < 300 without this support; 

Hepatic, total bilirubin > 1.0 mg/dL and alanine aminotransferase (ALT) > 100 units/L; Renal, serum creatinine > 1.0 
mg/dL and oliguria (urine output < 0.5 mL/kg/h); Hematologic, thrombocytopenia < 100,000/mm3 and prothrombin 

time INR > 1.5 × normal; Central Nervous System, Glasgow Coma Scale (GCS) Score < 12 in the absence of 
sedatives 

 
3 Corresponds to minimum or maximum value (as appropriate) within 6 h of hospital presentation 

 
4 GCS ranges from 3 to 15 
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Appendix Table 4 Demographic and day 1 clinical characteristics of PedSep-B and Non-PedSep-B patients 

Characteristics PedSep-B Non-PedSep-B 

No. of Patients, N (%) 86 (26.959) 233 (73.041) 

Demographic    
Age, years mean (SD) 8 (6) 6 (6) 

Male, N (%) 56 (65.1) 119 (51.1) 
Hispanic, N (%) 10 (12.2) 40 (17.9) 

Previous healthy, N (%) 26 (30.2) 127 (54.5) 
Surgery, N (%) 18 (20.9) 20 (8.6) 

Organ Dysfunction    
SIRS criteria1, mean (SD) 3.0 (0.8) 2.9 (0.8) 

OFI2, mean (SD) 2.1 (0.6) 1.6 (0.9) 

Inflammation    
CRP, mg/dL mean (SD) 13.5 (11.1) 11.0 (9.6) 

Low temperature, °C mean (SD) 35.9 (1.7) 36.8 (0.9) 
High temperature, °C mean (SD) 37.3 (1.3) 38.0 (1.2) 

ALC, /mm3 median (IQR) 1.1 (0.7-2.0) 1.3 (0.7-2.4) 
Ferritin, ng/mL mean (IQR) 198.2 (111.6-535.2) 183.0 (89.0-481.7)  

Pulmonary    
Pulmonary OFI, N (%) 73 (84.9) 140 (60.1) 

Intubation, N (%) 80 (93.0) 98 (42.1) 

Cardiovascular or Hemodynamic      
Heart rate, bpm mean (SD) 144.9 (29.4)  158.6 (32.0) 

Systolic blood pressure, mmHg mean (SD) 73.5 (22.0) 84.3 (17.9) 
CV OFI, N (%) 78 (90.7) 141 (60.5) 

Renal    
Creatinine, mg/dL median (IQR) 0.6 (0.3-0.8) 0.4 (0.3-0.8) 

Renal OFI, N (%) 0 (0.0) 26 (11.2) 

Hepatic    
Hepatic OFI, N (%) 9 (10.5) 22 (9.4) 

Hematologic    
Hemoglobin, g/dL mean (SD) 9.6 (2.1) 10.1 (1.9) 
Platelets, K/mm3 mean (SD) 155.7 (96.2) 187.9 (119.5) 

Hematologic OFI, N (%) 0 (0.0) 26 (11.2) 

Other    
Glasgow Coma Scale score3,4, mean (SD) 4.5 (3.3) 9.8 (5.2) 

CNS OFI, N (%) 19 (22.1) 23 (9.9) 
  

IQR interquartile range, SIRS systemic inflammatory response syndrome, OFI organ failure index, ALC absolute 
lymphocyte count, CNS central nervous system 
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SI conversion factors: to convert alanine transaminase and aspartate aminotransferase to μkat/L, multiply by 0.0167; 
bilirubin to μmol/L, multiply by 17.104; C-reactive protein to nmol/L, multiply by 9.524; creatinine to μmol/L, 

multiply by 88.4 
 

1 Indicates SIRS criteria ranging from 0 to 4 including abnormal heart rate, respiratory rate, temperature, and white 
blood cell count 

 
2 OFI is an integer score reflecting the number of organ failures. Scores are either 0 or 1 for cardiovascular, hepatic, 

hematologic, respiratory, neurological, and renal, and summed for total range of 0 to 6. Cardiovascular, need for 
cardiovascular agent infusion support; Pulmonary, need for mechanical ventilation support with the ratio of the 
arterial partial pressure of oxygen and the fraction of inspired oxygen (PaO2/FiO2) < 300 without this support; 

Hepatic, total bilirubin > 1.0 mg/dL and alanine aminotransferase (ALT) > 100 units/L; Renal, serum creatinine > 1.0 
mg/dL and oliguria (urine output < 0.5 mL/kg/h); Hematologic, thrombocytopenia < 100,000/mm3 and prothrombin 

time INR > 1.5 × normal; Central Nervous System, Glasgow Coma Scale (GCS) Score < 12 in the absence of 
sedatives 

 
3 Corresponds to minimum or maximum value (as appropriate) within 6 h of hospital presentation 

 
4 GCS ranges from 3 to 15 
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Appendix Table 5 Demographic and day 1 clinical characteristics of PedSep-C and Non-PedSep-C patients 

Characteristics PedSep-C Non-PedSep-C 

No. of Patients, N (%) 77 (24.138) 242 (75.862) 

Demographic    
Age, years mean (SD) 10 (5) 6 (6) 

Male, N (%) 42 (54.5) 133 (55.0) 
Hispanic, N (%) 13 (17.1) 37 (16.1) 

Previous healthy, N (%) 31 (40.3) 122.0 (50.4) 
Surgery, N (%) 9 (11.7) 29 (12.0) 

Organ Dysfunction    
SIRS criteria1, mean (SD) 2.8 (0.8) 2.9 (0.8) 

OFI2, mean (SD) 1.3 (0.5) 1.9 (0.9) 

Inflammation    
CRP, mg/dL mean (SD) 15.4 (9.6) 10.5 (10.0) 

Low temperature, °C mean (SD) 37.2 (0.9) 36.4 (1.3) 
High temperature, °C mean (SD) 38.4 (1.3) 37.6 (1.2) 

ALC, /mm3 median (IQR) 0.6 (0.3-1.1) 1.5 (1.0-2.7) 
Ferritin, ng/mL mean (IQR) 260.7 (165.0-3616.4) 173.5 (87.1-443.8)  

Pulmonary    
Pulmonary OFI, N (%) 26 (33.8) 187 (77.3) 

Intubation, N (%) 14 (18.2) 164.0 (67.8) 

Cardiovascular or Hemodynamic      
Heart rate, bpm mean (SD) 150.4 (26.7) 156.4 (33.3) 

Systolic blood pressure, mmHg mean (SD) 85.7 (18.0) 80 (20.0) 
CV OFI, N (%) 57 (74.0) 162 (66.9) 

Renal    
Creatinine, mg/dL median (IQR) 0.5 (0.4-0.7) 0.4 (0.3-0.9) 

Renal OFI, N (%) 0 (0.0) 26 (10.7) 

Hepatic    
Hepatic OFI, N (%) 7 (9.1) 24 (9.9) 

Hematologic    
Hemoglobin, g/dL mean (SD) 10.4 (1.9) 9.8 (1.9) 
Platelets, K/mm3 mean (SD) 137.6 (82.9) 192.5 (120.0) 

Hematologic OFI, N (%) 7 (9.1) 19 (7.9) 

Other    
Glasgow Coma Scale score3,4, mean (SD) 13.1 (3.2) 6.9 (5.0) 

CNS OFI, N (%) 4 (5.2) 38 (15.7) 
  

IQR interquartile range, SIRS systemic inflammatory response syndrome, OFI organ failure index, ALC absolute 
lymphocyte count, CNS central nervous system 
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SI conversion factors: to convert alanine transaminase and aspartate aminotransferase to μkat/L, multiply by 0.0167; 
bilirubin to μmol/L, multiply by 17.104; C-reactive protein to nmol/L, multiply by 9.524; creatinine to μmol/L, 

multiply by 88.4 
 

1 Indicates SIRS criteria ranging from 0 to 4 including abnormal heart rate, respiratory rate, temperature, and white 
blood cell count 

 
2 OFI is an integer score reflecting the number of organ failures. Scores are either 0 or 1 for cardiovascular, hepatic, 

hematologic, respiratory, neurological, and renal, and summed for total range of 0 to 6. Cardiovascular, need for 
cardiovascular agent infusion support; Pulmonary, need for mechanical ventilation support with the ratio of the 
arterial partial pressure of oxygen and the fraction of inspired oxygen (PaO2/FiO2) < 300 without this support; 

Hepatic, total bilirubin > 1.0 mg/dL and alanine aminotransferase (ALT) > 100 units/L; Renal, serum creatinine > 1.0 
mg/dL and oliguria (urine output < 0.5 mL/kg/h); Hematologic, thrombocytopenia < 100,000/mm3 and prothrombin 

time INR > 1.5 × normal; Central Nervous System, Glasgow Coma Scale (GCS) Score < 12 in the absence of 
sedatives 

 
3 Corresponds to minimum or maximum value (as appropriate) within 6 h of hospital presentation 

 
4 GCS ranges from 3 to 15 
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Appendix Table 6 Biomarkers measured at day 1 by phenotype PedSep-A (N = 319) 

Biomarkera PedSep-A (N = 116) Non-PedSep-A (N = 203) p-value 

ADAMTS13, %  83.0 (65.0, 95.0) 66.0 (48.0, 83.5) <0.001 
SFasLg, pg/ml  59.8 (39.1, 87.0) 40.8 (29.4, 66.3) <0.001 
Ex vivo TNF-α, 
pg/ml  

691.0 (334.0, 1049.2) 385.9 (97.1, 944.3) <0.001 

TNF-α, pg/ml  1049.2 (728.0, 1049.2) 1049.2 (604.1, 1049.2) 0.721 
sCD163, pg/ml  212829 (155490, 300033) 340338 (215555, 580440) <0.001 
IFN-β, pg/ml  6.4 (6.4, 6.4) 6.4 (6.4, 8.2) 0.118 
IL-22, pg/ml  22.4 (17.8, 29.5) 28.3 (22.1, 38.4) <0.001 
IL-18, pg/ml  329.6 (222.6, 533.6) 485.9 (294.6, 882.7) <0.001 
IL-18BP, pg/ml  9445 (6185, 16011) 20764 (12054, 33449) <0.001 
MIG/CXCL9, pg/ml  619.3 (406.0, 1061.2) 1026.0 (490.6, 2883.8) <0.001 
IL-1β, pg/ml  2.6 (2.1, 3.1) 2.8 (2.4, 3.3) 0.071 
IL-4, pg/ml  4.7 (3.5, 6.3) 4.7 (3.5, 6.5) 0.799 
IL-6, pg/ml  6.9 (5.8, 9.7) 10.9 (6.5, 30.2) <0.001 
IL-8, pg/ml  38.0 (26.4, 65.5) 59.5 (36.3, 130.5) <0.001 
IL-10, pg/ml  19.3 (15.4, 24.6) 25.0 (18.1, 40.3) <0.001 
IL-13, pg/ml  3.1 (3.1, 4.3) 3.1 (3.1, 3.5) 0.416 
IL-17A, pg/ml  17.4 (15.1, 21.7) 20.0 (16.5, 25.1) <0.001 
IFN-γ, pg/ml  2.8 (2.8, 3.0) 2.8 (2.8, 2.8) 0.477 
IP-10/CXCL10, 
pg/ml  

492.2 (268.5, 1691.1) 850.5 (381.0, 2361.3) 0.008 

MCP-1/CCL2, pg/ml  103.5 (48.3, 190.8) 178.6 (84.3, 400.5) <0.001 
MIP-1α, pg/ml  0.6 (0.6, 0.6) 2.0 (0.6, 10.7) <0.001 
MIP-1β, pg/ml  42.8 (28.1, 57.2) 50.7 (34.5, 81.1) <0.001 
MCP-3, pg/ml  92.4 (92.4, 147.8) 92.4 (92.4, 166.0) 0.269 
IFN-α2, pg/ml  125.7 (105.8, 142.3) 125.7 (105.8, 142.8) 0.542 
IL-1α, pg/ml  9.4 (9.4, 11.6) 9.4 (9.4, 16.4) 0.183 
IL-2RA, pg/ml  343.5 (235.8, 504.6) 401.8 (243.4, 696.7) 0.014 
IL-3, pg/ml  612.2 (496.1, 734.6) 612.2 (529.0, 724.4) 0.976 
IL-16, pg/ml  544.1 (398.1, 660.5) 635.5 (453.6, 836.7) <0.001 
M-CSF, pg/ml  19.7 (13.8, 34.0) 36.2 (21.6, 78.6) <0.001 
SCF, pg/ml  138.2 (111.4, 192.7) 167.5 (115.4, 269.8) <0.001 
TRAIL, pg/ml  42.9 (32.9, 64.2) 35.4 (27.9, 48.5) <0.001 
CRP, mg/dL  4.6 (1.3, 12.4) 11.4 (6.2, 20.8) <0.001 
Ferritin, ng/mL  121.0 (71.0, 204.5) 260.9 (130.6, 682.4) <0.001 

  

a All biomarkers are measured one time concomitantly in the first day. Values in table are summarized as median 
(IQR). 
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Appendix Table 7 Biomarkers measured at day 1 by phenotype PedSep-B (N = 319) 

Biomarkera PedSep-B (N = 86) Non-PedSep-B (N = 233) p-value 

ADAMTS13, %  70.5 (56.2, 89.2) 72.0 (53.8, 88.2) 0.710 
SFasLg, pg/ml  38.4 (29.9, 67.9) 49.0 (31.9, 79.5) 0.160 
Ex vivo TNF-α, 
pg/ml  

336.3 (99.2, 806.8) 564.7 (184.3, 1049.2) 0.022 

TNF-α, pg/ml  1049.2 (1049.2, 1500.0) 957.3 (602.2, 1049.2) 0.023 
sCD163, pg/ml  309800 (179839, 508713) 276625 (177921, 427838) 0.363 
IFN-β, pg/ml  6.4 (6.4, 10.5) 6.4 (6.4, 6.4) 0.014 
IL-22, pg/ml  28.0 (21.3, 36.0) 24.8 (20.1, 34.2) 0.166 
IL-18, pg/ml  444.0 (258.8, 820.7) 400.3 (250.4, 665.8) 0.386 
IL-18BP, pg/ml  16142 (8938, 27901) 16000 (8699, 27428) 0.920 
MIG/CXCL9, pg/ml  772.7 (403.0, 2033.0) 810.5 (458.8, 1993.6) 0.658 
IL-1β, pg/ml  2.8 (2.1, 3.3) 2.8 (2.4, 3.3) 0.984 
IL-4, pg/ml  4.7 (3.9, 6.8) 4.7 (3.5, 6.5) 0.293 
IL-6, pg/ml  8.9 (6.5, 22.3) 8.4 (6.2, 17.1) 0.583 
IL-8, pg/ml  54.7 (34.7, 113.7) 49.4 (30.1, 88.7) 0.242 
IL-10, pg/ml  22.4 (18.0, 37.7) 21.7 (16.3, 32.8) 0.322 
IL-13, pg/ml  3.1 (3.1, 3.5) 3.1 (3.1, 4.1) 0.787 
IL-17A, pg/ml  19.1 (16.5, 25.1) 18.3 (15.6, 23.4) 0.060 
IFN-γ, pg/ml  2.8 (2.8, 3.0) 2.8 (2.8, 2.8) 0.127 
IP-10/CXCL10, 
pg/ml  

705.8 (257.2, 1723.9) 769.1 (354.8, 2284.0) 0.409 

MCP-1/CCL2, pg/ml  169.9 (83.5, 377.0) 130.8 (57.4, 300.8) 0.159 
MIP-1α, pg/ml  0.6 (0.6, 10.2) 0.6 (0.6, 5.8) 0.210 
MIP-1β, pg/ml  43.4 (32.3, 70.1) 46.7 (31.5, 66.7) 0.978 
MCP-3, pg/ml  92.4 (92.4, 166.0) 92.4 (92.4, 147.8) 0.821 
IFN-α2, pg/ml  125.7 (112.6, 148.3) 125.7 (105.8, 140.2) 0.181 
IL-1α, pg/ml  9.4 (9.4, 16.4) 9.4 (9.4, 13.2) 0.211 
IL-2RA, pg/ml  401.8 (199.2, 689.9) 364.7 (246.1, 561.6) 0.520 
IL-3, pg/ml  624.4 (529.0, 724.4) 612.2 (512.5, 724.4) 0.412 
IL-16, pg/ml  605.0 (444.1, 759.8) 575.9 (418.2, 778.0) 0.752 
M-CSF, pg/ml  30.6 (19.8, 54.6) 28.1 (15.6, 50.8) 0.250 
SCF, pg/ml  152.8 (109.2, 229.5) 154.2 (116.1, 232.2) 0.680 
TRAIL, pg/ml  35.4 (25.4, 51.3) 39.1 (30.3, 53.5) 0.204 
CRP, mg/dL  10.2 (6.0, 19.6) 9.4 (2.9, 16.2) 0.069 
Ferritin, ng/mL  199.5 (111.0, 545.0) 182.3 (88.6, 481.8) 0.354 

 

a All biomarkers are measured one time concomitantly in the first day. Values in table are summarized as median 
(IQR). 
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Appendix Table 8 Biomarkers measured at day 1 by phenotype PedSep-C (N = 319) 

Biomarkera PedSep-C (N = 77) Non-PedSep-C (N = 242) p-value 

ADAMTS13, %  69.0 (47.0, 84.0) 73.0 (57.0, 93.0) 0.061 
SFasLg, pg/ml  42.7 (28.2, 66.9) 49.3 (33.0, 79.5) 0.077 
Ex vivo TNF-α, 
pg/ml  

384.8 (78.2, 485.4) 526.7 (230.7, 1049.2) 0.021 

TNF-α, pg/ml  938.9 (430.0, 1049.2) 1049.2 (728.0, 1049.2) 0.268 
sCD163, pg/ml  334582 (206378, 489112) 262850 (174207, 422271) 0.028 
IFN-β, pg/ml  6.4 (6.4, 8.2) 6.4 (6.4, 8.2) 0.946 
IL-22, pg/ml  26.0 (20.1, 33.0) 24.8 (20.1, 34.2) 0.440 
IL-18, pg/ml  510.7 (269.2, 918.1) 391.5 (240.6, 638.6) 0.012 
IL-18BP, pg/ml  22755 (14543, 32016) 13654 (7423, 26090) <0.001 
MIG/CXCL9, pg/ml  1145.3 (535.7, 2394.1) 753.6 (428.4, 1781.8) 0.037 
IL-1β, pg/ml  2.8 (2.4, 3.3) 2.8 (2.2, 3.2) 0.339 
IL-4, pg/ml  4.7 (3.5, 6.5) 4.7 (3.5, 6.5) 0.506 
IL-6, pg/ml  10.3 (6.9, 28.4) 8.1 (6.0, 16.4) 0.009 
IL-8, pg/ml  49.4 (30.5, 92.2) 51.0 (31.4, 91.1) 0.919 
IL-10, pg/ml  22.5 (17.5, 37.0) 21.7 (16.3, 30.6) 0.232 
IL-13, pg/ml  3.1 (3.1, 4.3) 3.1 (3.1, 3.9) 0.795 
IL-17A, pg/ml  20.9 (17.4, 26.8) 18.3 (15.6, 22.6) 0.014 
IFN-γ, pg/ml  2.8 (2.8, 2.8) 2.8 (2.8, 3.0) 0.288 
IP-10/CXCL10, 
pg/ml  

985.1 (412.6, 2704.1) 668.5 (303.5, 1939.3) 0.025 

MCP-1/CCL2, pg/ml  169.1 (83.9, 455.5) 125.8 (57.2, 290.6) 0.060 
MIP-1α, pg/ml  0.6 (0.6, 9.0) 0.6 (0.6, 6.1) 0.164 
MIP-1β, pg/ml  48.4 (33.0, 79.6) 45.5 (31.4, 64.5) 0.167 
MCP-3, pg/ml  119.5 (92.4, 166.0) 92.4 (92.4, 147.8) 0.430 
IFN-α2, pg/ml  125.7 (105.8, 140.2) 125.7 (105.8, 144.4) 0.838 
IL-1α, pg/ml  9.4 (9.4, 16.4) 9.4 (9.4, 16.4) 0.678 
IL-2RA, pg/ml  367.7 (239.4, 696.7) 380.6 (243.0, 575.4) 0.844 
IL-3, pg/ml  612.2 (529.0, 724.4) 612.2 (529.0, 724.4) 0.840 
IL-16, pg/ml  563.6 (413.5, 743.3) 590.2 (432.5, 795.6) 0.391 
M-CSF, pg/ml  31.9 (17.3, 54.7) 28.1 (15.6, 51.1) 0.269 
SCF, pg/ml  148.9 (112.1, 216.6) 154.2 (115.4, 233.8) 0.397 
TRAIL, pg/ml  35.4 (30.4, 45.4) 39.1 (27.9, 56.4) 0.336 
CRP, mg/dL  14.4 (9.2, 21.2) 8.1 (2.6, 15.5) <0.001 
Ferritin, ng/mL  260.7 (165.0, 664.6) 172.5 (87.1, 447.0) <0.001 

  

a All biomarkers are measured one time concomitantly in the first day. Values in table are summarized as median 
(IQR). 
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Appendix C Supplemental materials for Chapter 6 

 

Appendix Table 9 Number of CpGs filtered in each quality control (QC) step 

 QC steps # probes filtered 
1 Detection p-value of greater than 0.01 in one or more samples 11,142 
2 Bead count lower than 3 86,391 
3 Containing single nucleotide polymorphism-introduced artifacts 

and in cross-reactive regions 
67,031 

4 Mapped to sex chromosomes 19,627 
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Appendix Table 10 Demographic and day 1 clinical characteristics of PedSep-D patients with and without 

available methylation data 

Characteristics With methylation 
data 

Without 
methylation data 

p-value1 

No. of Patients, N 31 25   
Demographic     
Age, years median (IQR) 4 (1, 14) 11 (4, 13) 0.138 
Male, N (%) 21 (67.7) 13 (52.0) 0.278 
Hispanic, N (%) 2 (9.5) 2 (8.0) 1.000 
Previous healthy, N (%) 10 (32.3) 9 (36.0) 0.784 
Surgery, N (%) 5 (16.1) 7 (28.0) 0.338 
Organ Dysfunction     
SIRS criteria2, median (IQR) 3.0 (2.0, 4.0) 3.0 (2.0, 4.0) 0.854 
OFI3, median (IQR) 3.0 (3.0, 4.0) 2.0 (3.0, 3.0) 0.077 
Inflammation     
CRP, mg/dL median (IQR) 10.8 (4.7, 23.3) 10.5 (3.4, 16.5) 0.589 
Low temperature, °C median (IQR) 36.6 (36.0, 36.9) 36.4 (36.2, 36.9) 0.773 
High temperature, °C median 
(IQR) 

37.3 (36.8, 38.9) 37.3 (36.9, 38.0) 0.895 

ALC, /mm3 median (IQR) 1.1 (0.6, 2.2) 1.3 (0.8, 2.1) 0.882 
Ferritin, ng/mL median (IQR) 639.0 (316.0, 2294.4) 537.0 (202.0, 

2906.0) 
0.744 

Pulmonary     
Pulmonary OFI, N (%) 22 (71.0) 16 (64.0) 0.774 
Intubation, N (%) 17 (54.8) 13 (52.0) 1.000 
Cardiovascular or 
Hemodynamic  

     

Heart rate, bpm median (IQR) 152.0 (124.5, 174.0) 160.0 (144.0, 169.0) 0.615 
Systolic blood pressure, mmHg 
median (IQR) 

75.0 (58.0, 93.5) 83.0 (65.0, 95.0) 0.335 

CV OFI, N (%) 26 (83.9) 18 (72.0) 0.338 
Renal     
Creatinine, mg/dL median (IQR) 1.5 (0.7, 2.9) 1.3 (0.6, 1.9) 0.644 
Renal OFI, N (%) 18 (58.1) 12 (48.0) 0.591 
Hepatic     
Hepatic OFI, N (%) 10 (32.3) 7 (28.0) 0.778 
Hematologic     
Hemoglobin, g/dL median (IQR) 9.5 (8.1, 10.3) 8.7 (7.2, 10.7) 0.817 
Platelets, K/mm3 median (IQR) 49.0 (30.0, 89.5) 83.0 (17.0, 151.0) 0.526 
Hematologic OFI, N (%) 18 (58.1) 13 (52.0) 0.788 
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Other     
Glasgow Coma Scale score4,5, 
median (IQR) 

7.0 (3.0, 15.0) 8.0 (3.0, 14.0) 0.913 

CNS OFI, N (%) 8 (25.8) 4 (16.0) 0.516 
 

IQR interquartile range, SIRS systemic inflammatory response syndrome, OFI organ failure index, ALC absolute 
lymphocyte count, CNS central nervous system 

 
SI conversion factors: to convert alanine transaminase and aspartate aminotransferase to μkat/L, multiply by 0.0167; 

bilirubin to μmol/L, multiply by 17.104; C-reactive protein to nmol/L, multiply by 9.524; creatinine to μmol/L, 
multiply by 88.4 

 
1 Comparisons across all 4 phenotypes were performed using the Kruskal–Wallis test, the χ2 test, or the Fisher’s 

exact test 
 

2 Indicates SIRS criteria ranging from 0 to 4 including abnormal heart rate, respiratory rate, temperature, and white 
blood cell count 

 
3 OFI is an integer score reflecting the number of organ failures. Scores are either 0 or 1 for cardiovascular, hepatic, 

hematologic, respiratory, neurological, and renal, and summed for total range of 0 to 6. Cardiovascular, need for 
cardiovascular agent infusion support; Pulmonary, need for mechanical ventilation support with the ratio of the 
arterial partial pressure of oxygen and the fraction of inspired oxygen (PaO2/FiO2) < 300 without this support; 

Hepatic, total bilirubin > 1.0 mg/dL and alanine aminotransferase (ALT) > 100 units/L; Renal, serum creatinine > 1.0 
mg/dL and oliguria (urine output < 0.5 mL/kg/h); Hematologic, thrombocytopenia < 100,000/mm3 and prothrombin 

time INR > 1.5 × normal; Central Nervous System, Glasgow Coma Scale (GCS) Score < 12 in the absence of 
sedatives 

 
4 Corresponds to minimum or maximum value (as appropriate) within 6 h of hospital presentation 

 
5 GCS ranges from 3 to 15 
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Appendix Table 11 Demographic and day 1 clinical characteristics of non-PedSep-D patients with and 

without available methylation data 

Characteristics With methylation 
data 

Without 
methylation data 

p-value1 

No. of Patients, N 65 283   
Demographic     
Age, years median (IQR) 6 (2, 12) 6 (1, 12) 0.394 
Male, N (%) 42 (64.6) 148 (52.3) 0.075 
Hispanic, N (%) 10 (15.4) 53 (18.7) 0.783 
Previous healthy, N (%) 25 (38.5) 136 (48.1) 0.171 
Surgery, N (%) 5 (7.7) 32 (11.3) 0.506 
Organ Dysfunction     
SIRS criteria2, median (IQR) 3.0 (2.0, 3.0) 3.0 (2.0, 4.0) 0.582 
OFI3, median (IQR) 2.0 (1.0, 2.0) 1.0 (1.0, 2.0) < 0.001 
Inflammation     
CRP, mg/dL median (IQR) 10.4 (4.8, 18.2) 9.4 (2.9, 16.5) 0.210 
Low temperature, °C median (IQR) 36.6 (36.3, 37.2) 36.7 (36.2, 37.3) 0.582 
High temperature, °C median 
(IQR) 

37.7 (36.9, 38.5) 37.7 (36.9, 38.7) 0.675 

ALC, /mm3 median (IQR) 1.1 (0.6, 1.9) 1.2 (0.6, 2.1) 0.876 
Ferritin, ng/mL median (IQR) 275.0 (137.0, 942.2) 183.6 (87.0, 424.4) 0.002 
Pulmonary     
Pulmonary OFI, N (%) 43 (66.2) 189 (66.8) 1.000 
Intubation, N (%) 39 (60.0) 142 (50.2) 0.170 
Cardiovascular or 
Hemodynamic  

     

Heart rate, bpm median (IQR) 153.0 (138.0, 174.0) 156.0 (136.5, 176.5) 0.602 
Systolic blood pressure, mmHg 
median (IQR) 

85.0 (72.0, 96.0) 83.0 (72.0, 93.0) 0.806 

CV OFI, N (%) 50 (76.9) 190 (67.1) 0.139 
Renal     
Creatinine, mg/dL median (IQR) 0.6 (0.3, 0.8) 0.4 (0.3, 0.7) 0.011 
Renal OFI, N (%) 0 (0.0) 0 (0.0) 1.000 
Hepatic     
Hepatic OFI, N (%) 10 (15.4) 13 (4.6) 0.004 
Hematologic     
Hemoglobin, g/dL median (IQR) 9.5 (8.4, 10.3) 9.9 (8.6, 11.4) 0.082 
Platelets, K/mm3 median (IQR) 140.0 (89.0, 221.0) 177.0 (98.5, 254.5) 0.121 
Hematologic OFI, N (%) 3 (4.6) 5 (1.8) 0.173 
Other     
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Glasgow Coma Scale score4,5, 
median (IQR) 

7.0 (3.0, 14.0) 10.0 (3.0, 15.0) 0.081 

CNS OFI, N (%) 17 (26.2) 25 (8.8) < 0.001 
 

IQR interquartile range, SIRS systemic inflammatory response syndrome, OFI organ failure index, ALC absolute 
lymphocyte count, CNS central nervous system 

 
SI conversion factors: to convert alanine transaminase and aspartate aminotransferase to μkat/L, multiply by 0.0167; 

bilirubin to μmol/L, multiply by 17.104; C-reactive protein to nmol/L, multiply by 9.524; creatinine to μmol/L, 
multiply by 88.4 

 
1 Comparisons across all 4 phenotypes were performed using the Kruskal–Wallis test, the χ2 test, or the Fisher’s 

exact test 
 

2 Indicates SIRS criteria ranging from 0 to 4 including abnormal heart rate, respiratory rate, temperature, and white 
blood cell count 

 
3 OFI is an integer score reflecting the number of organ failures. Scores are either 0 or 1 for cardiovascular, hepatic, 

hematologic, respiratory, neurological, and renal, and summed for total range of 0 to 6. Cardiovascular, need for 
cardiovascular agent infusion support; Pulmonary, need for mechanical ventilation support with the ratio of the 
arterial partial pressure of oxygen and the fraction of inspired oxygen (PaO2/FiO2) < 300 without this support; 

Hepatic, total bilirubin > 1.0 mg/dL and alanine aminotransferase (ALT) > 100 units/L; Renal, serum creatinine > 1.0 
mg/dL and oliguria (urine output < 0.5 mL/kg/h); Hematologic, thrombocytopenia < 100,000/mm3 and prothrombin 

time INR > 1.5 × normal; Central Nervous System, Glasgow Coma Scale (GCS) Score < 12 in the absence of 
sedatives 

 
4 Corresponds to minimum or maximum value (as appropriate) within 6 h of hospital presentation 

 
5 GCS ranges from 3 to 15 
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Appendix Table 12 Estimated cell type proportion in PedSep-D and non-PedSep-D phenotypes 

Cell type PedSep-D Non-PedSep-D p-value* 
NK cell, mean (sd) 0.046 (0.043) 0.033 (0.021) 0.175 
Neutrophil, mean (sd) 0.623 (0.177) 0.617 (0.193) 0.925 
Monocyte, mean (sd) 0.141 (0.102) 0.095 (0.062) 0.003 
CD8 T-cell, mean (sd) 0.053 (0.075) 0.071 (0.062) 0.042 
CD4 T-cell, mean (sd) 0.069 (0.046) 0.096 (0.063) 0.073 
B-cell, mean (sd) 0.067 (0.045) 0.088 (0.087) 0.531 

* t-test. 
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Appendix Table 13 Summary statistics of significant DMC-gene pairs from the HELIX project 

CpG CpG gene1 TC gene2 log2FC p-value FDR 
cg01572694 MIR10A HOXB2 0.14 4.56E-22 3.01E-19 
cg01572694 MIR10A HOXB3;HOXB4;MIR10A 0.03 4.64E-20 1.53E-17 
cg14285150  HOXB2 0.21 4.48E-17 9.87E-15 
cg26916621 MIR10A HOXB2 0.19 8.55E-17 1.13E-14 
cg26916621 MIR10A HOXB3;HOXB4;MIR10A 0.05 8.55E-17 1.13E-14 
cg01572694 MIR10A HOXB-AS1 0.06 3.62E-12 3.98E-10 
cg26916621 MIR10A HOXB-AS1 0.08 1.32E-10 1.25E-08 
cg14285150  HOXB3;HOXB4;MIR10A 0.04 2.01E-10 1.66E-08 
cg14285150  SKAP1 0.13 3.61E-07 2.66E-05 
cg01572694 MIR10A SKAP1 0.07 5.28E-07 3.49E-05 
cg14285150  HOXB-AS1 0.07 1.64E-06 9.88E-05 
cg26916621 MIR10A SKAP1 0.09 7.09E-05 3.90E-03 
cg23950714 DOK3 FAM153A;FAM153C -0.07 1.67E-04 7.89E-03 
cg23950714 DOK3 FAM153C -0.10 1.64E-04 7.89E-03 
cg23950714 DOK3  0.05 7.92E-04 3.27E-02 
cg23950714 DOK3 FAM153C -0.05 7.87E-04 3.27E-02 
1. CpG gene: nearest gene of the CpG; 2. TC gene: transcript cluster. All data in the table comes from summary 

statistics of the HELIX project. FDR were calculated based on p-value. 
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Appendix Table 14 DMCs associated traits in EWAS Catalog 

CpG Trait Tissue Age beta p-value 
cg16704797 
(hypo) 
 

tissue buccal cells 
and PBMC 

children 0.158 2.70E-88 

age whole blood children -0.009 1.80E-15 
age whole blood children 0.001 1.20E-12 
gestational age cord blood infants -0.0003 5.02E-05 

cg01572694 
(hyper) 

age whole blood children -0.008 0 
age whole blood children 0.034 0 
tissue buccal cells 

and PBMC 
children 0.274 4.00E-

116 
age 4 vs 0 whole blood NA NA 3.00E-86 
Primary Sjogren’s syndrome whole blood NA NA 3.81E-16 
sex umbilical 

artery 
infants NA 2.80E-11 

smoking whole blood adults -0.008 5.10E-09 
gestational age cord blood infants 0.008 1.80E-07 
smoking CD4+ T 

cells, 
monocyte 

adults -0.008 7.90E-07 

Crohn’s disease whole blood adults 0.035 9.20E-07 
incident COPD whole blood adults (18 

- 65 years) 
-0.019 5.10E-05 

Inflammatory Bowel disease whole blood adults -0.026 6.00E-05 
cg03102887 
(hypo) 
 

HNF4A protein level whole blood adults (18 
- 65 years) 

1.58 5.80E-07 

UBE2G2 protein level whole blood adults (18 
- 65 years) 

1.49 2.20E-06 

PRKCG protein level whole blood adults (18 
- 65 years) 

1.44 4.30E-06 

ARHGAP36 protein level whole blood adults (18 
- 65 years) 

1.38 1.30E-05 

TRAPPC3 protein level whole blood adults (18 
- 65 years) 

1.34 2.00E-05 

VAV3 protein level whole blood adults (18 
- 65 years) 

1.31 3.30E-05 

optimal NICU network 
neurobehavioral scale 
profile 

buccal cells infants -0.039 8.30E-05 

VWA2 protein level whole blood adults (18 
- 65 years) 

1.23 9.70E-05 

cg23720929 
(hypo) 
 

tissue buccal cells 
and PBMC 

children 0.007 3.50E-79 

APOD gene expression whole blood adults NA 4.30E-15 
Primary Sjogren’s syndrome whole blood NA NA 1.92E-09 
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DMCs associated traits in EWAS Catalog (continued) 
CpG Trait Tissue Age Beta p-value 
cg227310485 
(hypo) 
 

tissue buccal cells 
and PBMC 

children 0.633 3.90E-
142 

age whole blood children -0.0005 2.40E-07 
age whole blood children 0.0005 5.50E-05 

cg15601205 
(hypo) 

eosinophilia nasal polyp adults -0.01 2.70E-12 

cg03037150 
(hyper) 

Rheumatoid arthritis whole blood adults 0.012 8.51E-12 

cg23374256 
(hypo) 
 

tissue buccal cells 
and PBMC 

children -0.021 6.70E-25 

human immunodeficiency 
virus 

whole blood adults NA 1.64E-06 

age whole blood children -0.003 5.40E-05 
LRIG1 protein level whole blood adults (18 

-65 years) 
0.86 9.70E-05 

cg14285150 
(hyper) 

age whole blood children -0.006 0 
age whole blood children 0.027 0 
tissue buccal cells 

and PBMC 
children 0.004 1.60E-

152 
infant sex umbilical 

artery 
infants NA 3.10E-12 

HOXB2 gene expression whole blood adults NA 1.70E-10 
gestational age cord blood infants 0.0002 3.28E-06 
gestational age cord blood infants 0.0001 3.49E-05 

cg03233332 
(hypo) 
 

tissue buccal cells 
and PBMC 

children 0.292 2.80E-71 

age whole blood children 0.001 4.20E-15 
alcohol consumption per 
day 

CD14+ 
monocyte 

adults -0.0002 7.50E-05 

cg22818074 
(hypo) 
 

incident COPD whole blood adults (18 
-65 years) 

0.024 1.10E-11 

smoking whole blood adults NA 5.00E-07 
cg23672176 
(hyper) 

age whole blood children -3.40E-
05 

2.70E-06 

CTNNB1 protein level whole blood adults (18 
-65 years) 

-0.91 8.30E-05 
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DMCs associated traits in EWAS Catalog (continued) 
CpG Trait Tissue Age Beta p-value 
cg23950714 
(hypo) 
 

age whole blood children 0.002 0 
tissue buccal cells 

and PBMC 
children -0.215 2.10E-71 

clear cell renal carcinoma clear cell 
renal 
carcinoma 
tumor cells, 
adjacent 
healthy cells 

adults NA 7.87E-28 

gestational age cord blood infants -0.009 1.20E-14 
Alzheimer’s disease braak 
stage 

prefrontal 
cortex 

adults -0.069 2.00E-10 

gestational age cord blood infants -0.001 4.94E-08 
GZMK protein level whole blood adults (18 

-65 years) 
0.81 4.20E-06 

braak stage prefrontal 
cortex 

geriatrics -0.124 1.10E-05 

cg17766219 
(hyper) 

KRT1 protein level whole blood adults (18 
-65 years) 

0.66 3.80E-05 

cg00216180 
(hypo) 
 

tissue buccal cells 
and PBMC 

children 0.030 1.70E-27 

age whole blood children -0.001 2.60E-11 
maternal body mass index cord blood infants -0.0003 9.80E-11 
age whole blood children 0.002 4.00E-10 
maternal body mass index cord blood infants -0.003 9.30E-09 

cg07036914 
(hyper) 

tissue buccal cells 
and PBMC 

children 0.085 1.60E-40 

age whole blood children 0.002 4.30E-10 
CHST9 protein level whole blood adults (18 

-65 years) 
0.346 8.10E-05 

cg19929409 
(hypo) 
 

age whole blood children -0.002 0 
age whole blood children 0.002 3.90E-31 
Rheumatoid arthritis whole blood adults -0.029 6.98E-10 
age whole blood children 0.007 6.30E-06 
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DMCs associated traits in EWAS Catalog (continued) 
CpG Trait Tissue Age Beta p-value 
cg26724018 
(hyper) 

age whole blood children -0.010 0 
age whole blood children 0.044 0 
tissue buccal cells 

and PBMC 
children -0.452 1.50E-

151 
gestational age whole blood infants -0.007 4.20E-17 
gestational age cord blood infants -0.001 8.33E-13 
gestational age cord blood infants -0.001 1.18E-12 
gestational age cord blood infants -0.007 1.20E-10 
Primary Sjogren’s 
syndrome 

whole blood NA NA 1.31E-08 

alcohol consumption per 
day 

whole blood adults -7.60E-
05 

2.49E-07 

birthweight cord blood infants -38.1 8.60E-06 
1-hour glucose cord blood infants -0.306 1.30E-05 
1-hour glucose cord blood infants -1.232 3.30E-05 

cg21150327 
(hyper) 

Incident Type 2 Diabetes whole blood adults (18 
-65 years) 

-0.028 1.80E-05 

prevalent Rheumatoid 
arthritis (self-reported) 

whole blood adults (18 
-65 years) 

-0.048 6.40E-05 

All data was queried from EWAS Catalog. Hypo: hypomethylated in PedSep-D; Hyper: hypermethylated in PedSep-
D. NA indicates no available data. 
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