
 

  

Title Page 
Assessing the Impact of Metal and PFAS Exposure on Chronic Kidney Disease 

An NHANES Data Analysis 
 
 
 
 
 
 
 

by 
 

Nuo Wei 
 

BS Applied Mathematics, University at Buffalo, 2022 
 
 
 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of the 
 

Department of Biostatistics 
 

School of Public Health in partial fulfillment 
  

of the requirements for the degree of 
 

Master of Science 
 
 
 
 
 
 
 
 
 

University of Pittsburgh 
 

2024



 ii 

COMMITTEE PAGE 
UNIVERSITY OF PITTSBURGH 

 
SCHOOL OF PUBLIC HEALTH 

 
 
 
 

This thesis was presented 
 

by 
 
 

Nuo Wei 
 
 

It was defended on 
 

April 26, 2024 
 

and approved by 
 

Thesis Advisor: Jeanine M Buchanich, PhD, Associate Professor, 
Biostatistics School of Public Health, University of Pittsburgh 

 
Jiebiao Wang, PhD, Assistant Professor 

Biostatistics School of Public Health, University of Pittsburgh 
 

Alison P Sanders, PhD, Assistant Professor  
Environmental Occupational health School of Public Health, University of Pittsburgh 

 
 
 
 
 
 
 

 
  



 iii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by Nuo Wei 
 

2024 
  



 iv 
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An NHANES Data Analysis 

 
Nuo Wei, MS  

 
University of Pittsburgh, 2024 

 
 
 
 

Introduction: Chronic exposure to nephrotoxic substances is a public health concern, as 

these agents can significantly impair renal function, leading to chronic kidney disease (CKD), a 

condition characterized by a gradual loss of kidney function over time. The goal of this study was 

to explore whether exposure to certain metals (lead, cadmium, arsenic) and per- and 

polyfluoroalkyl substances (PFAS) was associated with CKD.  

Methods: To analyze the association between single and mixed metal and/or PFAS 

exposures with CKD (n=983) in a nationally representative U.S. population, we utilized data from 

the National Health and Nutrition Examination Survey (NHANES) collected between 2011 and 

2016 in which CKD was defined by estimated glomerular rate (eGFR) <60 mL/min/1.73m2. Single 

contaminant survey-weighted models were applied to enhance generalizability to the broader U.S. 

population. To assess mixture effects, we applied Weighted Quantile Sum (WQS) to assess the 

contributions of metals and PFAS jointly.  

Result:  In individual metal models, urinary lead and cadmium were inversely associated 

with the presence of CKD. In contrast, arsenic, PFOA, and PFOS did not show a significant 

association with CKD odds. Lead and cadmium were linked to a reduced likelihood of CKD. Age 

and hypertension were significant covariates, with increased age and the presence of hypertension 

correlating with higher odds of CKD. The WQS model found that a combined mixture of 
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contaminants was associated with increased eGFR. WQS analysis further identified cadmium and 

lead as top contributors to the mixture's association with higher continuous eGFR.  
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1.0 Introduction 

1.1 Background 

Chronic Kidney Disease (CKD) represents a significant public health concern, affecting 

10% of the of the global population. (Kovesdy, 2022) CKD is more common among older adults 

and people with high blood pressure and represents a substantial burden on low- and middle-

income countries. CKD is of the leading causes of death worldwide and is one of the few non-

communicable diseases for which related deaths have increased over past 20 years. (Kovesdy, 

2022) The pathophysiology of CKD involves the gradual deterioration of kidney function, leading 

to the inability of the kidneys to effectively filter waste and excess fluids from the body. Current 

international guidelines define CKD as a serious health condition that mostly progresses without 

obvious symptoms in the early stages. (Mayo Foundation for Medical Education and Research, 

2023) It is characterized by a decrease in kidney function, indicating by estimated glomerular 

filtration rate (eGFR) lower than 60 mL/min/1.73 m² or by markers of kidney damage persisting 

for at least three months. (Altamura et al., 2023) The disease’s global surge is largely due to 

increased prevalence of traditional risk factors associated with development of work, such as 

diabetes, hypertension and obesity (Jin et al., 2018). 

A prior study by Jin et al concluded that decreased kidney function was associated with 

reduced levels of metals in urine. (Jin et al., 2018) This association is not limited to kidney function 

levels below the normal range but is observed across the entire range of eGFR. This suggests that 

as kidney function declines, urinary excretion of metals also decreases. Furthermore, abnormal 
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levels of metals in urine may vary depending on an individual's eGFR value and age, meaning 

these factors need to be considered when assessing the health effects of urinary metal levels.  

Many studies have examined the association of metal and PFAS and CKD or eGFR. 

Urinary levels of lead were nonlinearly and positively related to eGFR based on examining 

continuous relationship between urinary excretion rates of metals and eGFR in restricted cubic 

spline regression model (Jin et al., 2018). When using urinary creatinine to adjust urine 

concentration, urinary cadmium was positively associated with serum creatinine eGFR, and 

adjusted cadmiums had significant or borderline significant positive associations with eGFR 

(Weaver et al., 2014). In a dose-response relationship, total arsenic levels were significantly 

associated with CKD, particularly among participants with total arsenic levels greater than 20.74 

and creatinine 11.78 microg/g or less (Hsueh et al., 2009). A strong relationship between each 

serum PFAS and eGFR in CKD in populations with anemia, but in the anemic population in the 

absence of CKD, there was a relatively weak relationship between PFAS and eGFR. This 

relationship held regardless of the presence or absence of diabetes, although it appeared to be 

stronger in patients with diabetes (Conway et al., 2018). 
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2.0 Methods 

2.1 Data and Weighted Survey Design 

2.1.1 Data Source 

This study utilized data derived from the 2011-2016 National Health and Nutrition 

Examination Survey (NHANES). This survey encompassed a series of interviews that gather 

comprehensive information about demographic and socioeconomic factors, dietary habits, and 

health-related issues. Furthermore, it included a variety of medical, dental, and physiological 

evaluations, along with laboratory tests, all of which are carried out by qualified professionals. The 

primary objective of NHANES was to ascertain and comprehend the incidence of major diseases 

and the risk factors associated with them within the non-institutionalized American population, 

which is vital in shaping public health policies and strategies (“Centers for Disease Control and 

Prevention,” 2024).  

2.1.2 Weighted Survey Design 

The NHANES consisted of a series of interviews, allowing us to apply weights to represent 

the results across the entire population. In NHANES, there were three sampling schemas: sampling 

weight, primary sampling unit (PSU), and strata. In order to represent the United States population, 

each sample participant was given a sample weight. 
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2.1.2.1 Sampling Weights  

In the NHANES, sample weights for each participant were developed through a three-step 

process to ensure the survey results were representative of the U.S. population. Initially, a base 

weight was calculated to account for the unequal probabilities of selection, addressing the issue of 

certain demographic groups being over-sampled. Subsequently, adjustments were made for non-

response, ensuring that the sample accurately reflected the entire population, despite variations in 

response rates across different groups. Finally, post-stratification adjustments were applied to align 

the survey estimates with demographic information of the U.S. population as provided by the 

Census Bureau, thereby correcting any discrepancies and ensuring the survey's representativeness. 

(“Centers for Disease Control and Prevention,” 2024). 

 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑤𝑤𝐵𝐵𝑤𝑤𝑤𝑤ℎ𝑡𝑡 =
1

𝑓𝑓𝑤𝑤𝑓𝑓𝐵𝐵𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐵𝐵𝑝𝑝𝑤𝑤𝑓𝑓𝑤𝑤𝑡𝑡𝑝𝑝
 

Where 

𝐹𝐹𝑤𝑤𝑓𝑓𝐵𝐵𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐵𝐵𝑝𝑝𝑤𝑤𝑓𝑓𝑤𝑤𝑡𝑡𝑝𝑝

=  (𝑃𝑃𝑝𝑝(𝑃𝑃𝑃𝑃𝑃𝑃 𝑤𝑤𝐵𝐵 𝐵𝐵𝐵𝐵𝑓𝑓𝐵𝐵𝑠𝑠𝑡𝑡𝐵𝐵𝑠𝑠) × 𝑃𝑃𝑝𝑝(𝐵𝐵𝐵𝐵𝑤𝑤𝑠𝑠𝐵𝐵𝑓𝑓𝑡𝑡 𝑝𝑝𝑓𝑓 𝑡𝑡ℎ𝐵𝐵 𝑃𝑃𝑃𝑃𝑃𝑃 𝑤𝑤𝐵𝐵 𝐵𝐵𝐵𝐵𝑓𝑓𝐵𝐵𝑠𝑠𝑡𝑡𝐵𝐵𝑠𝑠)

× 𝑃𝑃𝑝𝑝(ℎ𝑝𝑝𝑜𝑜𝐵𝐵𝐵𝐵ℎ𝑝𝑝𝑓𝑓𝑠𝑠 𝑤𝑤𝐵𝐵 𝐵𝐵𝐵𝐵𝑓𝑓𝐵𝐵𝑠𝑠𝑡𝑡𝐵𝐵𝑠𝑠) × 𝑃𝑃𝑝𝑝(𝑤𝑤𝑓𝑓𝑠𝑠𝑤𝑤𝑖𝑖𝑤𝑤𝑠𝑠𝑜𝑜𝐵𝐵𝑓𝑓 𝑤𝑤𝐵𝐵 𝐵𝐵𝐵𝐵𝑓𝑓𝐵𝐵𝑠𝑠𝑡𝑡𝐵𝐵𝑠𝑠)) 

 

2.1.2.2 Primary Sampling Unit (PSU) 

PSUs, typically single counties, or groups of contiguous counties, were chosen based on 

Probability Proportional to Size (PPS), favoring areas with larger populations and higher 

concentrations of specific demographic subgroups targeted for oversampling. Certain PSUs with 

a large Measure of Size (MOS) were automatically included in the sample. The PSUs were then 
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divided into smaller segments, like city blocks, where again PPS was utilized for selection. Within 

each segment, dwelling units were listed, and households were randomly chosen, with a greater 

selection probability assigned to areas rich in oversampled demographics. Finally, from these 

households, individuals were randomly selected based on specific age-sex-race/ethnicity criteria, 

aiming for an average of two sampled individuals per household, to participate in NHANES, thus 

creating a stratified, multi-stage approach to accurately reflect the diverse U.S. population. 

(“Centers for Disease Control and Prevention,” 2024). 

2.1.2.3 Strata  

Stratification involved dividing the survey population into smaller, more homogenous 

groups in order to improve the precision of estimated weight based on specific characteristics such 

as age, sex, race, ethnicity, or other relevant demographic factors. Create and provide Masked 

Variance Units (MVUs) in the demographic data files for each survey cycle. These MVUs 

generated variance estimates that were very close to those estimated using the actual design 

variables and were applied to all analyses of the publicly released data. The variable name for the 

pseudo-stratum of the masked variance unit was "sdmvstra," and the variable name for the pseudo-

PSU (Primary Sampling Unit) of the masked variance unit was "sdmvpsu." (“Centers for Disease 

Control and Prevention,” 2024). 

2.1.3 Limit of Detection 

The most common strategy for dealing with values below the limit of detection is 

imputation. This involves replacing censored values with zero, some fraction of the detection limit, 

and the detection limit itself. In NHANES, if the variable name ends in “LC” it means that this 
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variable was below the limit of detection, in this case, values “0” means the result was at or above 

the limit, and “1” means the result was below the limit. Equating the value of concentrations below 

the detection limit (LOD) to the square root of the detection limit divided by two has little effect 

on the geometric mean estimate. It was not necessary for calculating geometric means if the 

proportion of results below the detection limit was greater than 40%. Due to improvements in 

analytical methods, LOD values sometimes changed over time even for the same chemical 

(“Centers for Disease Control and Prevention,” 2022). Table 1 below shows that values of LOD 

for metals did change a lot between 2011 and 2013, especially for urine arsenic and cadmium.  

 

Table 1 LODs for Five Contaminants of Interest 

 2011-2012 2013-2014 2015-2016 

Lead, urine (ug/L) 0.08 0.03 0.03 

Cadmium, urine (ug/L) 0.056 0.036 0.036 

Arsenic, urine (ug/L) 1.25 0.26 0.26 

n-perfluorooctanoic acid  
(n-PFOA) (ng/mL) 

0.1 0.1 0.1 

n-perfluorooctane sulfonic acid 
(n-PFOS) (ng/mL) 

0.2 0.1 0.1 

2.1.4 Outcome Variables 

eGFR can be calculated using a formula that accounts for various factors such as creatinine 

levels, a waste product that results from normal muscle wear and tear, and/or cystatin C, a protein 

that slows down the breakdown of other protein cells. Additionally, the formula includes factors 

for age and sex. In this research, the eGFR was calculated using the CKD-EPI equation without 

race variables (Delgado et al., 2022). A lower eGFR may indicate kidneys are not filtering blood 
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efficiently and is an important indicator for diagnosing CKD which may be diagnosed clinically 

when eGFR measures below 60 mL/min/1.73m2 (GFR categories G3a-G5) or markers of kidney 

damage are present at least 3 months apart (Inker et al., 2014). 

𝐵𝐵𝑒𝑒𝐹𝐹𝑒𝑒 =  142 ∗  𝑠𝑠𝑤𝑤𝑓𝑓(
𝑃𝑃𝑠𝑠𝑝𝑝
𝜅𝜅

, 1 )𝛼𝛼 ∗  𝑠𝑠𝐵𝐵𝑚𝑚(
𝑃𝑃𝑠𝑠𝑝𝑝
𝜅𝜅

, 1 )−1.2 ∗ 0.994𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 1.012(𝑤𝑤𝑓𝑓 𝑓𝑓𝐵𝐵𝑠𝑠𝐵𝐵𝑓𝑓𝐵𝐵) 

The formula includes Scr, serum creatinine, and k, which was 0.7 for females and 0.9 for 

males, as well as α, which was -0.241 for females and -0.302 for males. The formula also utilized 

min to indicate the minimum of Scr/k or 1 and max to indicate the maximum of Scr/k or 1 (Delgado 

et al., 2022). 

The study analyzed the eGFR data by calculating serum creatinine levels obtained from the 

NHANES standard Biochemistry Profile files three survey cycles: 2011-2012, 2013-2014, and 

2015-2016. NHANES employs rigorous quality control (QC) procedures for serum creatinine 

analysis, which include the use of blind QC specimens, assaying controls at different times during 

the day, running BioRad Liquid Unassayed Multiqual Controls at both the beginning and end of 

sample analysis, and ensuring that results are within ±2 standard deviations, with further guidance 

provided by a Quality Control Flow Chart (“Centers for Disease Control and Prevention,” 2017). 

2.1.5 Explanatory Variables 

The exposure characteristics considered included concentrations of micrograms per liter 

(ug/L) for urine lead, cadmium, and arsenic, and nanograms per milliliter (ng/mL) for serum PFOA 

and PFOS. This method measured multiple metals in urine samples through mass spectrometry, 

where liquid specimens are prepared by simple dilution, then introduced into an inductively 

coupled plasma (ICP) ionization source, reduced to small droplets via a nebulizer, and 
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subsequently passed through a series of regions including a focusing area, a dynamic reaction cell 

(DRC), a quadrupole mass filter, and finally to the detector, allowing for rapid selective counting 

of individual isotopes (“Centers for Disease Control and Prevention,” 2018). The method 

measured multiple PFAS in serum sample through High-performance liquid chromatography 

(HPLC) separates analytes from other serum components, followed by detection and quantification 

through negative-ion TurboIonSpray ionization, a variant of electrospray ionization, and tandem 

mass spectrometry, enabling rapid detection of PFAS in human serum with detection limits in the 

low parts per billion (ppb or ng/mL) range (“Centers for Disease Control and Prevention,” 2018). 

Table 2 below listed different variables, their descriptions, the NHANES file in which they could 

be found, and the years the data were collected. Each variable was a specific substance that had 

been measured in the urine or serum of NHANES participants, such as lead, cadmium, arsenic, 

PFOA, and PFOS, and the table provided the units of measurement for each substance. 

 

Table 2 Table of Explanatory Variables 

Variable  Description NHANES file Year 

Lead (numeric) Lead, urine (ug/L) Metals-Urine 
(UM_H) 

2011-2016 
Laboratory 

Cadmium (numeric) Cadmium, urine 
(ug/L) 

Metals-Urine 
(UM_H) 

2011-2016 
Laboratory 

Arsenic (numeric) Urinary arsenic, total 
(ug/L) 

Arsenics - Total & 
Speciated - Urine 
(UAS_G) 

2011-2016 
Laboratory 

PFOA (numeric) n-perfluorooctanoic 
acid (n-PFOA) 
(ng/mL) 

Perfluoroalkyl and 
Polyfluoroalkyl 
(PFAS_I) 

 

2011-2016 
Laboratory 

PFOS (numeric) n-perfluorooctane 
sulfonic acid (n-

Perfluoroalkyl and 
Polyfluoroalkyl 

2011-2016 
Laboratory 
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PFOS) (ng/mL) (PFAS_I) 
 

2.1.6 Covariates 

The selection of potential covariates was informed by a study by Nan et al. (Nan et al., 

2023), which highlighted the significance of understanding the relationship between metal 

exposure and kidney function while controlling for various variables. This led to the inclusion of 

a diverse array of covariates: age as a quantitative measure including those aged 18 and above, 

self-reported gender (categorized as male or female), and BMI, which was calculated using the 

formula: weight (lb) / [height (in)] ^2 * 703(“Centers for Disease Control and Prevention,” 2024).  

Self-reported smoking status was assessed through participants' responses to a questionnaire, 

categorizing them as everyday smokers, occasional smokers, or non-smokers. Self-reported 

diabetes status was determined by a doctor's diagnosis, which utilized a combination of a doctor's 

diagnosis, fasting plasma glucose levels ≥ 126 mg/dL, glycohemoglobin levels ≥ 6.5%, or the use 

of anti-diabetic medication. (American Diabetes, 2010) Self-reported hypertension status was 

based on a doctor’s diagnosis which was identified by a systolic blood pressure (SBP) of 130 

mmHg or higher, or a diastolic blood pressure (DBP) of 80 mmHg or above. (Whelton et al., 2018), 

and self-reported alcohol consumption was determined by asking participants whether they had 

consumed at least 12 alcoholic beverages of any type in the past year. Given that NHANES 

provided two types of urine measurements—one corrected for urine creatinine and the other not—

urine creatinine was included as a covariate to account for this variable. This adjustment refined 

the analysis by controlling urine creatinine levels, which may affect the concentrations of other 
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substances measured in the urine. Below, Table 3 lists the different covariates, their descriptions, 

the NHANES file in which they were found, and the years the data were collected. 

 

Table 3 Table of Covariates 

Variable  Description NHANES file Year 

Covariates    

Age(numeric) Age in years of the 
participant at the time 
of screening. 
Individuals 80 and 
over are topcoded at 
80 years of age. 

Demographic 
Variables & Sample 
Weights (DEMO_G) 

2011-2016 
Demographics 

Gender (Categorical) Gender of the 
participant. 

Demographic 
Variables & Sample 
Weights (DEMO_G) 

 

2011-2016 
Demographics 

BMI (numeric) Body Measures 
Component Status 
Code 

Body Measures 
(BMX_J) 

2011-2016 
Examination 

nicotine exposure 

(Smoking) 

(Categorical) 

Do you now smoke 
cigarettes? 

 

Smoking - Cigarette 
Use (SMQ_I) 

 

2011-2016 
Questionnaire 

Diabetes 
(Categorical) 

have you/has ever 
been told by a doctor 
or health professional 
that has diabetes or 
sugar diabetes? 

Diabetes (P_DIQ) 2011-2016 
Questionnaire 

Hypertension 
(Categorical) 

ever been told by a 
doctor or other health 
professional that had 
hypertension, also 
called high blood 
pressure? 

Blood Pressure & 
Cholesterol (BPQ) 

2011-2016 
Questionnaire 



11 

Alcohol use 
(Numeric) 

In any one year, 
(have you/has SP) 
had at least 12 drinks 
of any type of 
alcoholic beverage? 
By a drink, I mean a 
12 oz. beer, a 5 oz. 
glass of wine, or a 
one and a half ounces 
of liquor. 

Alcohol Use 
(ALQ_G) 

2011-2016 
Questionnaire 

Creatinine (Numeric) Creatinine, urine 
(mg/dL) 
 

Metals-Urine 
(UM_H) 

2011-2016 
Laboratory 

2.2 Logistic Regression 

2.2.1 Weighted Logistic Regression 

We used a weighted survey design to investigate the relationship between the health 

condition and individuals metal or PFAS exposure, because the outcomes were two binary 

variables valued at 0 or 1. These models adjusted for the probability of exposure to different metals 

and their potential impact on kidney function and hypertension status, with covariates including 

age, gender, BMI, smoking status, diabetes, hypertension, alcohol use, and urine creatinine. To 

assess model fit, we used R-squared and Adjusted R-squared values to determine how well our 

linear regression models explained the variance in the outcome variables. A higher R-squared 

value indicates that the model explains a greater portion of the variability.  

Suppose that the United Stated population𝑃𝑃 = {1,2, …𝑁𝑁} was divided into ℎ = 1,2, …𝑁𝑁 

strata which were county segments, each stratum was further divided into 𝑗𝑗 = 1,2, …𝑓𝑓ℎ primary 

sample units (PSU) which were each Household NHANES considered in survey.  Each of PSU 



12 

was constituted by 𝑤𝑤 = 1,2, …𝑓𝑓ℎ𝑗𝑗  secondary sample units (SSU) which was individual who 

participated in study. It was also assumed that observations consisted of  𝑓𝑓′ℎ𝑗𝑗 SSU chosen from 

𝑓𝑓ℎ′  PSU in the stratum h. 𝑓𝑓 =  ∑ ∑ ∑ 𝑓𝑓ℎ𝑗𝑗𝑗𝑗
𝑛𝑛ℎ𝑗𝑗
′

𝑗𝑗=1
𝑛𝑛𝑘𝑘
′

𝑗𝑗=1
𝐻𝐻
ℎ=1  was the total number of the observed data, and 

each sample had an corresponding sampling weight determined by inverse of 𝑤𝑤ℎ𝑗𝑗𝑗𝑗𝑗𝑗 = 1
𝜋𝜋ℎ𝑗𝑗𝑗𝑗𝑘𝑘

 for the 

ℎ𝑗𝑗𝑤𝑤𝑗𝑗-th unit.  

𝐿𝐿𝑝𝑝𝑤𝑤𝑤𝑤𝑡𝑡{p�Yℎ𝑗𝑗𝑗𝑗𝑗𝑗 = 1�xℎ𝑗𝑗𝑗𝑗𝑗𝑗�}  =  ln {
𝑃𝑃�𝑌𝑌ℎ𝑗𝑗𝑗𝑗𝑗𝑗 = 1�𝑚𝑚ℎ𝑗𝑗𝑗𝑗𝑗𝑗�

(1 − 𝑃𝑃�𝑌𝑌ℎ𝑗𝑗𝑗𝑗𝑗𝑗 = 1�𝑚𝑚ℎ𝑗𝑗𝑗𝑗𝑗𝑗�
}  = 𝑚𝑚ℎ𝑗𝑗𝑗𝑗𝑗𝑗′ β 

In this equation,Yℎ𝑗𝑗𝑗𝑗𝑗𝑗 was the probability of the outcome being 1 given the covariates xℎ𝑗𝑗𝑗𝑗𝑗𝑗, 

β was the regression coefficients, and 𝑚𝑚ℎ𝑗𝑗𝑗𝑗𝑗𝑗′  was the transpose of the covariate’s matrix for the 

ℎ𝑗𝑗𝑤𝑤𝑗𝑗-th unit (Cassy et al., 2016). 

2.3 Weighted Quantile Sum Regression 

In our study, Weighted Quantile Sum (WQS) regression was utilized to construct a 

weighted index in a supervised manner to assess the overall effect of environmental exposure, as 

well as the contribution of each component of the mixture to this overall effect. The WQS model 

estimated a body burden index to identify 'bad actors' in a set of highly correlated environmental 

chemicals (Carrico et al., 2015). This index was then incorporated into a regression model along 

with appropriate covariates to evaluate its association with a dependent variable or outcome. 

𝑤𝑤(𝜇𝜇)  = 𝛽𝛽0 + 𝛽𝛽1(�𝑤𝑤𝑗𝑗𝑞𝑞𝑗𝑗

𝑐𝑐

𝑗𝑗=1

) + 𝑍𝑍′𝜙𝜙 
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𝑤𝑤𝑗𝑗was the unknown weight associated with each component of the mixture, which were 

estimated by bootstrap samples, 𝑞𝑞𝑗𝑗was the value for letting the values of the c components be 

scored into quantiles such as (1st, 2nd , 3rd quartile) for 𝑤𝑤 = 1 to c. ∑ 𝑤𝑤𝑗𝑗𝑞𝑞𝑗𝑗𝑐𝑐
𝑗𝑗=1  represents the index 

that weights and sums the components included in the metal mixture, 𝛽𝛽0is the intercept, 𝛽𝛽1 is the 

coefficient associated to the WQS index,  𝑍𝑍′𝜙𝜙 are the vector of covariates and parameters. A 

training dataset which was used in the ensemble step to make sure weighted indices and a 

validation dataset were required in WQS. ∑ 𝑤𝑤𝑗𝑗 𝑐𝑐
𝑗𝑗=1 = 1 𝐵𝐵𝑓𝑓𝑠𝑠 0 ≤ 𝑤𝑤𝑗𝑗 ≤ 1  were constraints for 

estimating weights.  

When the weights of each ensemble step sample were estimated, the WQS index was 

𝑊𝑊𝑊𝑊𝑃𝑃 =  ∑ 𝑤𝑤𝚥𝚥���𝑞𝑞𝑗𝑗𝑐𝑐
𝑗𝑗=1 , where 𝑤𝑤𝚥𝚥��� was the weights found to be associated with positive or negative 

correlations in the aggregation step 𝑤𝑤𝑗𝑗   = 1
𝐵𝐵
∑ 𝑤𝑤𝑗𝑗(𝑏𝑏)
𝐵𝐵
𝑏𝑏=1 𝑓𝑓(𝛽𝛽1(𝑏𝑏)�)  where 𝑓𝑓(𝛽𝛽1(𝑏𝑏)�)  was a the 

predetermined "signal function" of the estimated slope parameter associated with the WQS in the 

bootstrap sample (constrained sum of 1). Utilizing of validation data and modeling to determine 

the significance of WQS index (Renzetti et al., 2023). 

𝑤𝑤(𝜇𝜇)  = 𝛽𝛽0 + 𝛽𝛽1𝑊𝑊𝑊𝑊𝑃𝑃 + 𝑍𝑍′𝜙𝜙 

In this study, the WQS permitted the evaluation of the mixture effect of multiple toxicants 

simultaneously—such as lead, cadmium, arsenic, PFOA, and PFOS—represented as a weighted 

index, which collectively contributed to the risk of CKD. The outcome variable for our analysis 

was the numerical values of eGFR. Covariates included a range of personal health factors, such as 

age, gender, BMI, smoking status, hypertension, diabetes status, and urine creatinine. Models were 

run both including and excluding people with hypertension.  
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3.0 Result 

3.1 Study Population 

This study included participants aged 18 and older who had available exposure 

measurements for contaminants of interest: urine lead, cadmium, or arsenic, as well as serum 

PFOA or PFOS. Individuals with missing data for the exposure of interest, serum creatinine, and 

covariates were excluded from the dataset (Figure 1). We applied R code to merge multiple 

datasets from NHANES relevant to our analysis variables, using the `left_join` function from the 

`dplyr` package, and matched them with ̀ SEQN` identifiers. As described in Figure1, among 9971 

participants from NHANES 2015-2016, we included 5992 participants that were over the age of 

18. Additionally, we excluded 607 participants with missing values on serum creatinine, 3157 

participants with missing values on metal exposure, and 1999 participants with missing values on 

PFAS from the study. After excluding 24 missing values on covariates, 199 participants are 

considered in 2015-2016.   Among the 10175 participants from NHANES 2013-2014, we included 

6113 individuals aged 18 and above. We then excluded 489 participants due to missing serum 

creatinine values, 3229 participants due to missing data on metal exposure, and 2146 participants 

due to missing data on PFAS. Additionally, 27 participants were excluded because of missing 

values on covariates. Consequently, 222 participants were considered for the study in 2013-2014. 

From a total of 9756 participants in 2011-2012, we selected 5864 participants who were over the 

age of 18. However, exclusions were made as follows: 707 for missing serum creatinine levels, 

3047 for incomplete urinary metal exposure data, and 577 for absent serum PFAS information. An 

additional 977 were excluded due to missing covariate data, leaving 556 participants eligible for 
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the study period of 2011-2012. Three years of datasets were combined using the `full_join` 

function, based on common variable identifiers. As a result, the study cohort amounted to 983 

participants in the primary study. 

 

 

Figure 1 Flow Diagram of Outcome 
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3.2 Summary Statistics 

Tables 4 and 5 provide summaries of continuous and categorical variables, respectively, 

including descriptions of data before and after weighting. Table 4 presents the mean and standard 

deviations for continuous variables, while Table 5 details the proportions of categorical variables.  

Analysis with the primary outcome of CKD included 983 participants, the weighted mean 

and standard deviation for eGFR were 97.91 and 19.57 mL/min/1.73m2, respectively. 

Furthermore, 68 participants were identified as having CKD, representing 6.9% of the primary 

outcome. 

 

Table 4 Summary Statistics for Continuous Variables in Outcomes 

Variable Unweighted Mean 
±Standard Deviation 

Weighted Mean  
±Standard Deviation 

Outcome   

eGFR, (mL/min/1.73m2) 95.49 ± 21.65 97.91 ±19.57 

Exposure   

Lead, urine (ug/L) 0.72± 1.06 0.70 ±1.13 

Cadmium, urine (ug/L) 0.54 ± 0.67 0.51 ± 0.73 

Arsenic, urine (ng/mL) 15.88 ± 33.42 12.71 ± 24.4 

PFOA, serum (ng/mL) 2.42 ± 3.10  2.66 ± 4.55 

PFOS, serum (ng/mL) 8.47 ± 12.3 7.39 ± 8.57 

Covariates   

Age, year 49.49 ± 16.67 48.26 ± 15.58 

BMI, kg/m^2  28.85 ± 6.86 28.75 ± 6.71 

Creatinine, urine (mg/dL) 125.97 ± 84.18 117.97 ± 81.39 
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Table 5 Summary Statistics for Cateogrical Variables in Outcomes 

 Details Unweighted 
Frequency 

Unweighted 
Percent 

Weighted 
Percent 

Outcome     

CKD No CKD 
CKD 

915 
68 

93.1 
6.9 

95.8 
4.2 

Covariates     

Gender Male 
Female 

571 
412 

58.1 
41.9 

53.9 
46.1 

nicotine exposure 
(Smoking) 

Not at all 
Some day 
Every day 

311 
48 

624 

31.6 
4.9 

63.5 

32.6 
5.5 

61.8 

Diabetes  No 
Yes 

846 
137 

86.1 
13.9 

89.1 
10.9 

Hypertension  No 
Yes 

588 
395 

59.8 
40.1 

63.2 
36.8 

Alcohol use  No 
Yes 

138 
845 

14.0 
85.98 

10.4 
89.6 

3.3 Weighted Binary Logistic Models 

3.3.1 Lead 

As shown in Table 6, we conducted binary logistic regression to explore the associations 

between CKD and urinary lead levels, while adjusting for personal health factors as covariates. 

The model with age included lead exposure, age, gender, BMI, urinary creatinine, diabetes status, 

hypertension status, and alcohol consumption as predictors. The odds ratio of 0.27 for lead meant 

that each unit increase in urine lead was associated with a 73% decrease in the odds of having 
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CKD, and this association was statistically significant with a p-value of 0.02. The statistically 

significant predictors in this model were age and hypertension. Age had an odds ratio of 1.13, 

indicating that for each additional year of age, the odds of having CKD increased by 13%. 

Hypertension also appeared as a significant covariate with an odds ratio of 2.56, suggesting that 

the odds of having CKD were 2.56 times higher for individuals with hypertension compared to 

those without hypertension. 

In the model without age, smoking status, diabetes, and hypertension were significant 

predictors. Diabetes had an odds ratio of 2.8, indicating that the odds of having CKD were 2.8 

times higher for individuals with diabetes compared to those without diabetes. Hypertension also 

appeared as a significant covariate with an odds ratio of 6.36, suggesting that the odds of having 

CKD were 6.36 times higher for individuals with hypertension compared to those without 

hypertension. 
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Table 6 Weighted Binary Logistic Regression to Predict CKD for Lead Exposure  

 
Variable 

 
Details 

With Age Without Age 

Odd ratio [95% CI] P-value Odd ratio [95% CI] P-value 

Exposure      

Lead(numeric) Lead, urine 
(ug/L) 

0.27 [0.09, 0.79] 0.02 * 0.68 [0.36, 1.30] 0.26 

Covariates      

Age(numeric) Age 1.13 [1.08, 1.18] 1.1e^-0.5 * ---- ---- 

Gender (Categorical) 
Reference: men 

Women 1.63 [0.69, 3.85] 0.27 1.47 [0.69, 3.22] 0.34 

BMI (numeric) Body Measures 
Component 

Status (kg/m**2) 

0.99 [0.94, 1.05] 0.78     
 

0.97 [0.92, 1.02] 0.21     
 

Creatinine (numeric) Creatinine, urine 
(mg/dL) 

 

1.01 [1.01, 1.01] 1.37e^-0.5 * 1.00 [1.00, 1.01] 0.03 * 

Smoking status 
Reference: Not at all 

Some day 2.63 [0.71, 9.80] 0.16 0.64 [0.16, 2.49] 0.52 

Every day 1.21 [0.49, 2.98] 0.69  0.41 [0.22, 0.74] 0.01 *  

Diabetes 
(Categorical) 

Reference: No 

Yes 0.40 [0.16, 1.00] 
 

 

0.06 2.80 [1.18, 6.68] 0.03 * 
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Hypertension 
(Categorical) 

Reference: No 

Yes 2.56 [1.27, 5.16] 0.01 *  6.36 [3.43, 11.79] 9.58e-07 

*  

Alcohol use 
(Categorical) 

Reference: No 

Yes 0.83 [0.31, 2.24] 0.72     
 

0.59 [0.25, 1.44] 0.26     
 

* Indicates P-value <0.05. 
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3.3.2 Cadmium 

In Table 7, we conducted a binary logistic regression analysis to explore the associations 

between CKD and urinary cadmium levels, while adjusting for personal health factors as 

covariates. The model included cadmium exposure, age, gender, BMI, urinary creatinine, diabetes 

status, hypertension status, and alcohol consumption as predictors. An odds ratio of 0.40 for 

cadmium meant that each unit increase in urine cadmium was associated with a 60% decrease in 

the odds of having CKD, and this association was statistically significant with a p-value of 0.003. 

It's important to note that the statistically significant predictors in this model were age and 

hypertension. Age had an odds ratio of 1.13, indicating that for each additional year of age, the 

odds of having CKD increased by 13%. Hypertension also appeared as a significant covariate with 

an odds ratio of 2.87, suggesting that the odds of having CKD were 2.87 times higher for 

individuals with hypertension compared to those without hypertension. 

For the model without age, smoking status, diabetes, and hypertension were significant 

predictors. Diabetes had an odds ratio of 2.82, indicating that the odds of having CKD were 2.82 

times higher for individuals with diabetes compared to those without diabetes. Hypertension also 

appeared as a significant covariate with an odds ratio of 6.46, suggesting that the odds of having 

CKD were 6.46 times higher for individuals with hypertension compared to those without 

hypertension. 
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Table 7 Weighted Binary Logistic Regression to Predict CKD for Cadmium Exposure  

 
Variable 

 
Details 

With Age Without Age 

Odd ratio [95% CI] P-value Odd ratio [95% CI] P-value 

Exposure      

Cadmium (numeric) Cadmium, urine 
(ug/L) 

0.40 [0.23, 0.70] 0.0027 * 
 

0.87[0.69,1.10] 0.26  
 

Covariates      

Age(numeric) Age 1.13 [1.07, 1.18] 2.33e^-0.5 * --- --- 

Gender (Categorical) 
Reference: men 

Women 2.31 [0.92, 5.80] 0.08 
 

1.56 [0.70, 3.45] 0.28 
 

BMI (numeric) Body Measures 
Component Status 

(kg/m**2) 

0.99 [0.93, 1.05] 0.77 
 

0.97 [0.92, 1.03] 0.29     
 

Creatinine (numeric) Creatinine, urine 
(mg/dL) 

1.01 [1.00, 1.01] 0.0002 * 1.00 [1.00, 1.01] 0.07 

Smoking status 
Reference: Not at all 

Some day 3.03 [0.92, 9.99] 0.08 0.66 [0.17, 2.54] 0.54    

Every day 1.41 [0.57, 3.49] 0.46 0.41 [0.23, 0.75] 0.01 *  

Diabetes 
(Categorical) 

Reference: No 

Yes 2.55 [0.99, 6.57] 0.06 2.82 [1.18, 6.76] 0.03 * 
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Hypertension 
(Categorical) 

Reference: No 

Yes 2.87 [1.47, 5.60] 0.004 * 6.46 [3.41, 12.25] 1.51e-06 *  

Alcohol use 
(Categorical) 

Reference: No 

Yes 0.93 [0.35, 2.48] 0.89 
 

0.61 [0.25, 1.47] 0.28     
 

* Indicates P-value <0.05. 
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3.3.3 Arsenic 

In Table 8, we conducted a binary logistic regression to explore the associations between 

CKD and urinary arsenic levels, while adjusting for personal health factors as covariates. The 

model included arsenic exposure, age, gender, BMI, urinary creatinine, diabetes status, 

hypertension status, and alcohol consumption as predictors. However, this association was not 

statistically significant, with a p-value of 0.227. The statistically significant predictors in this 

model were age and hypertension. Age had an odds ratio of 1.12, indicating that for each additional 

year of age, the odds of having CKD increased by 12%. Hypertension also appeared as a significant 

covariate with an odds ratio of 2.62, suggesting that the odds of having CKD were 2.62 times 

higher for individuals with hypertension compared to those without hypertension. 

In the model without age, smoking status, diabetes, and hypertension were significant 

predictors. Diabetes had an odds ratio of 2.77, indicating that the odds of having CKD were 2.77 

times higher for individuals with diabetes compared to those without diabetes. Hypertension also 

appeared as a significant covariate with an odds ratio of 6.25, suggesting that the odds of having 

CKD were 6.25 times higher for individuals with hypertension compared to those without 

hypertension. 



25 

Table 8 Weighted Binary Logistic Regression to Predict CKD for Arsenic Exposure  

 
Variable 

 
Details 

With Age Without Age 

Odd ratio [95% CI] P-value Odd ratio [95% CI] P-value 

Exposure      

Arsenic(numeric) Urinary arsenic, 
total (ug/L) 

0.99[0.97,1.01] 0.23 
 

1.00 [0.99, 1.01] 0.58 
 

Covariates      

Age(numeric) Age 1.12 [1.06, 1.17] 8.35e^-0.5 
* 

--- --- 

Gender (Categorical) 
Reference: men 

Women 1.62 [0.65, 4.05] 0.31 
 

1.50 [0.67, 3.33] 0.33 
 

BMI (numeric) Body Measures 
Component Status 

(kg/m**2) 

1.01 [0.96, 1.06] 0.65    
 

0.97 [0.92, 1.03] 0.33    
 

Creatinine (numeric) Creatinine, urine 
(mg/dL) 

1.01 [1.00, 1.01] 0.005 * 1.00 [1.00, 1.01] 0.14 

Smoking status 
Reference: Not at all 

Some day 2.52 [0.76, 8.40] 0.14     0.65 [0.17, 2.53] 0.54     

Every day 1.07 [0.44, 2.59] 0.89  0.40 [0.22, 0.72] 0.004 *  

Diabetes 
(Categorical) 

Reference: No 

Yes 2.45 [0.99, 6.05] 0.06 2.77 [1.16, 6.66] 0.03 * 

Hypertension Yes 2.62 [1.33, 5.17] 0.0085 *  6.25 [3.34, 11.69] 1.43e-06 *  
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(Categorical) 
Reference: No 

Alcohol use 
(Categorical) 

Reference: No 

Yes 0.85 [0.32, 2.25] 0.75 
 

0.60 [0.25, 1.46] 0.27 
 

* Indicates P-value <0.05. 
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3.3.4 PFOA 

In Table 9, we conducted a binary logistic regression analysis to explore the associations 

between CKD and serum PFOA levels, while adjusting for personal health factors as covariates. 

The model included PFOA exposure, age, gender, BMI, urinary creatinine, diabetes status, 

hypertension status, and alcohol consumption as predictors. PFOA was not statistically significant 

in predicting the presence of CKD, with a p-value of 0.47. The significant covariate in this model 

was age, with an odds ratio of 1.12 and a p-value of 0.0001, implying that for each additional year 

of age, the odds of having CKD increased by 12%. The only other significant predictor in this 

model was hypertension, with an odds ratio of 2.7, suggesting that the odds of having CKD were 

2.7 times higher for individuals with hypertension compared to those without. 

In the model without age, smoking status, diabetes, and hypertension were significant 

predictors. Diabetes had an odds ratio of 2.77, indicating that the odds of having CKD were 2.77 

times higher for individuals with diabetes compared to those without diabetes. Hypertension 

appeared as a significant covariate with an odds ratio of 6.24, suggesting that the odds of having 

CKD were 6.24 times higher for individuals with hypertension compared to those without 

hypertension. 
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Table 9 Weighted Binary Logistic Regression to Predict CKD for PFOA Exposure  

 
Variable 

 
Details 

With Age Without Age 

Odd ratio [95% CI] P-value Odd ratio [95% CI] P-value 

Exposure       

PFOA (numeric) n-perfluorooctanoic 
acid (n-PFOA) 

(ng/mL) 

0.93 [0.78, 1.11] 0.46 
 

0.98 [0.87, 1.10] 0.69 
 

Covariates      

Age(numeric) Age 1.12 [1.06, 1.17] 0.0001 * --- --- 

Gender (Categorical) 
Reference: men 

Women 1.63 [0.65, 4.12] 0.31 
 

1.48 [0.65, 3.37] 0.35 
 

BMI (numeric) Body Measures 
Component Status 

(kg/m**2) 

1.01 [0.96, 1.07] 0.67 0.97 [0.92, 1.03] 0.34 

Creatinine (numeric) Creatinine, urine 
(mg/dL) 

1.00 [1.00, 1.01] 0.015 * 1.00 [1.00, 1.01] 0.16 

Smoking status 
Reference: Not at all 

Some day 2.32 [0.63, 8.50] 0.21   0.65 [0.17, 2.50] 0.53   

 Every day 1.02 [0.42, 2.52] 0.96     0.39 [0.22, 0.70] 0.003 *     

Diabetes 
(Categorical) 

Reference: No 

Yes 2.40 [1.01, 5.73] 0.06  2.77 [1.17, 6.58] 0.03 *  
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Hypertension 
(Categorical) 

Reference: No 

Yes 2.70 [1.38, 5.25] 0.006 * 
 

6.24 [3.36, 11.60] 1.2e-06 * 

Alcohol use 
(Categorical) 

Reference: No 

Yes 0.79 [0.31, 2.03] 0.63  0.59 [0.25, 1.42] 0.25  
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3.3.5 PFOS 

In Table 10, we conducted a binary logistic regression analysis to explore the associations 

between CKD and serum PFOS levels, while adjusting for personal health factors as covariates. 

The model included PFOS exposure, age, gender, BMI, urinary creatinine, diabetes status, 

hypertension status, and alcohol consumption as predictors. However, PFOS was not statistically 

significant in predicting the presence of CKD, with a p-value of 0.71. The significant covariate in 

this model was age, with an odds ratio of 1.11 and a p-value of 0.0001, implying that for each 

additional year of age, the odds of having CKD increased by 11%. The other significant predictor 

in this model was hypertension, which had an odds ratio of 2.68, suggesting that the odds of having 

CKD were 2.68 times higher for individuals with hypertension compared to those without. 

In the model without age, PFOS, smoking status, diabetes, and hypertension were 

significant predictors. An odds ratio of 1.02 for PFOS meant that each unit increase in PFOS was 

associated with a 2% increase in the odds of having CKD, and this association was statistically 

significant with a p-value of 0.04. Diabetes had an odds ratio of 2.91, indicating that the odds of 

having CKD were 2.91 times higher for individuals with diabetes compared to those without 

diabetes. Hypertension appeared as a significant covariate with an odds ratio of 6, suggesting that 

the odds of having CKD were 6 times higher for individuals with hypertension compared to those 

without. Other covariates like gender, BMI, smoking status, and alcohol use were included in the 

model, but none of them showed statistical significance in this context. 
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Table 10 Weighted Binary Logistic Regression to Predict CKD for PFOS Exposure  

 
Variable 

 
Details 

With Age Without Age 

Odd ratio [95% CI] P-value Odd ratio [95% CI] P-value 

Exposure       

PFOS (numeric) n-perfluorooctane 
sulfonic acid (n-
PFOS) (ng/mL) 

1.00 [0.98, 1.03] 0.71 
 

1.02 [1.00, 1.04] 0.04 * 
 

Covariates      

Age(numeric) Age 1.11 [1.06, 1.17] 0.0001 * --- --- 

Gender (Categorical) 
Reference: men 

Women 1.70 [0.65, 4.44] 0.29 1.67 [0.71, 3.91] 0.25 

BMI (numeric) Body Measures 
Component Status 

(kg/m**2) 

1.01 [0.96, 1.07] 0.62     
 

0.98 [0.93, 1.03] 0.40     
 

Creatinine (numeric) Creatinine, urine 
(mg/dL) 

1.00 [1.00, 1.01] 0.011 * 1.00 [1.00, 1.01] 0.15 

Smoking status 
Reference: Not at all 

Some day 2.53 [0.70, 9.14] 0.16  0.64 [0.16, 2.62] 0.54  

Every day 1.12 [0.47, 2.64] 0.80 0.45 [0.26, 0.78] 0.01 * 

Diabetes 
(Categorical) 

Reference: No 

Yes 2.51 [1.04, 6.04] 

 

0.05  
 

2.91 [1.20, 7.06] 

 

0.02 *  
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Hypertension 
(Categorical) 

Reference: No 

Yes 2.68 [1.37, 5.27] 0.0068 * 6.00 [3.25, 11.10] 1.53e-06 * 

Alcohol use 
(Categorical) 

Reference: No 

Yes 0.84 [0.33, 2.12] 0.71     
 

0.63 [0.27, 1.45] 0.29     
 

* Indicates P-value <0.05. 
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3.4 Weighted Quantile Sum Regression 

The WQS index with hypertension had an estimate of 2.28, indicating a positive 

relationship between contaminants and eGFR with higher exposure to certain contaminants being 

associated with increased eGFR. As the weighted exposure to these contaminants increased, the 

outcome variable eGFR also increased. The p-value associated with the WQS index was less than 

0.05, indicating that the association between the combined exposures and the outcome was 

statistically significant. It was also important to note that while the overall WQS index was 

significantly associated with the outcome, individual exposures might have significant effects that 

were not captured by this model. Other covariates in the model, such as age, urinary creatinine, 

and hypertension status, showed significant associations with the outcome.  

In the WQS regression model without hypertension (n = 588), the index had an estimate of 

1.72, indicating a positive relationship between contaminants and eGFR with higher exposure to 

certain contaminants being associated with increased eGFR. The covariates age and urinary 

creatinine were statistically significant. Age and eGFR are negatively correlated, meaning that as 

age increases, eGFR decreases. Tables 11 provide summaries of WQS and covariates, respectively, 

including descriptions of data with and without hypertension. 
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Table 11 Summary of Weighted Quantile Sum Regression 

 
Variable 

 
Details 

With Hypertension Without Hypertension 

Estimate P-value Estimate P-value 

WQS WQS index 2.28     1.20e-08 * 
 

1.72     0.002 * 
 

Covariates      

Age(numeric) Age -0.96 
 

2e-16 * 
 

-0.82 
 

2e-16 * 
 

Gender (Categorical) 
Reference: men 

Women -2.18 
 
 

0.11 
 

0.41 
 
 

0.79 
 

BMI (numeric) body Measures 
Component Status 

(kg/m**2) 

0.09 
 

0.34 
 
 

0.09 
 

0.44 
 
 

Creatinine (numeric) Creatinine, urine 
(mg/dL) 

-0.09 
 
 

5.31e-16* 
 

-0.06 
 
 

2.77e-06 * 
 

Diabetes 
(Categorical) 

Reference: No 

Yes 1.27 
 
 

0.51     

 

-2.31 
 
 

0.44     

 

Smoking status 
Reference: No at all 

Some day -5.40 0.19 -5.49 0.08 

Not at all -1.71 0.24     -0.41 0.81     
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Hypertension 
(Categorical) 

Reference: No 

Yes 4.51 
 

0.00158 * 
 

--- -- 

Alcohol use 
(Categorical) 

Reference: No 

Yes 0.93 
 

0.62     -0.67 
 

0.76     

* Indicates P-value <0.05. 



36 

According to Table 12 and Figure 2, cadmium had the highest mean weight at 0.5, 

suggesting it had the strongest association with the outcome among the contaminants considered. 

Lead followed closely with a weight of 0.4 in the model with hypertension. 

According to Table 12 and Figure 3, cadmium had the highest mean weight at 0.373, again 

suggesting it had the strongest association with the outcome among the contaminants considered. 

Lead closely followed with a weight of 0.277 in the model without hypertension. 

These two indicators had the greatest impact on the outcome for both models. Arsenic, 

PFOA, and PFOS, on the other hand, had relatively low mean weights, indicating that they had 

negligible associations with the outcome in this model. The accompanying bar plot visually 

represented these weights, with substantial bars for cadmium and lead reflecting their higher 

weights, while arsenic, PFOA, and PFOS had almost imperceptible bars, indicating their minimal 

weights. 

 

Table 12 Summary of WQS Index 

Mix name  Mean weight with 

Hypertension 

Mean weight without 

Hypertension 

Cadmium 0.508 0.373 

Lead 0.406 0.277 

Arsenic 0.048 0.141 

PFOA 0.020 0.132 

PFOS 0.018 0.078 
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Figure 2 Bar Plot of WQS Index with Hypertension 

 

 

Figure 3 Bar Plot of WQS Index without Hypertension 
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Figure 4 suggested that there was a positive linear association between the WQS index and 

the outcome variable eGFR in the presented data set, indicating that as "wqs" increased, the "y_adj" 

variable also increased on average. The mixture of metals contributed to the increase in eGFR. 

This finding was consistent with previous information showing that the WQS index was a 

significant predictor of the outcome in the regression model. 

 

 

Figure 4 Scatter Plot of WQS Index with Hypertension 
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Figure 5, a scatter plot, displayed the relationship between metal and PFAS concentrations 

and numeric eGFR. The trend line in the figure showed a slight rise followed by a fall, suggesting 

that in the lower index concentration range, eGFR might slightly increase, but in the higher index 

concentration range, eGFR decreased instead. This trend indicated that high concentrations of 

metals could have a negative impact on kidney function. 

 

 

Figure 5 Scatter Plot of WQS Index without Hypertension 
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4.0 Discussion 

The goal of this study was to identify relationships between metals and presence of CKD 

with characteristics of individual health status such as age, gender, BMI, smoking, diabetes, 

hypertension, and alcohol use under NHANES weighted survey design.  

In summary, the logistic regression with age suggests that there were two statistically 

significant inverse relationships between urine lead and cadmium and the presence of CKD with 

0.27 (95%CI: 0.09, 0.79) odds ratio for lead and 0.4 (95%CI: 0.23, 0.70) odds ratio for cadmium. 

Consistent with previous results, urinary levels of lead and cadmium increased with eGFR (Jin et 

al., 2018; Weaver et al., 2014). From weighted quantile sum, it shows that cadmium and lead were 

the two most contributing to numeric eGFR with mean weight 0.51 and 0.41 which were consistent 

with previous studies. However, arsenic, PFOA, and PFOS were not associated with the odds of 

presence of CKD. In contrast to the existing literature that has reported linear increases in urinary 

levels of arsenic and other metals with eGFR (Jin et al., 2018) and PFAS are inversely associated 

with kidney function in CKD (Conway et al., 2018). For covariates, we observed that age and 

presence of hypertension were two most significant characteristics among all the regressions 

models, what we could confirm were that as age increases, the odds ratios of CKD would also 

increase, similarly, compared with individual without hypertension, the odds ratios of CKD within 

individual with hypertension would also increase.  

The logistic regression analysis without age suggests that PFOS has a statistically 

significant positive association with CKD, with an odds ratio of 1.02 (95% CI: 1.00, 1.04). This 

aligns with previous research indicating that each PFAS was inversely associated with kidney 

function in CKD (Conway et al., 2018). However, lead, cadmium, arsenic, and PFOA were not 
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associated with increased odds of CKD. Notably, removing age from the model resulted in 

significant changes to the odds ratio for lead and cadmium, potentially due to collinearity or 

because age may have a stronger confounding effect. Furthermore, smoking status, diabetes, and 

hypertension remain significant predictors in models without age. Hypertension’s effect was 

similar to models with age, and the odds ratio for CKD among individuals with diabetes was higher 

compared to those without diabetes.  

In WQS models without hypertension, lead and cadmium contribute less to numeric eGFR 

compared to WQS models with hypertension, with mean weights of 0.373 and 0.277 respectively. 

However, cadmium and lead are still the two most significant contributors to numeric eGFR. The 

trend in the scatter plot suggests that high concentrations of metals may have a negative impact on 

kidney function. 

eGFR was assessed by serum creatinine, which may not be an ideal marker since it is 

typically used in conjunction with cystatin C, but this was not measured in NHANES. Data on 

covariates such as smoking, diabetes, hypertension, and alcohol use were collected from self-

reported NHANES questionnaire data, which may lead to recall bias. This bias could be minimized 

by replacing self-reports with objective data, such as using medical records to verify the accuracy 

of reports. The global prevalence of chronic kidney disease (CKD) is estimated at 10% (Kovesdy, 

2022), while the prevalence in the United States is 15% (Kidney Disease, 2023). However, in our 

data, the prevalence is only 4.2%. This discrepancy might be because the survey participants were 

relatively healthy and more capable and willing to take the survey.  

Another critical limitation of this study is the inadequate sample size for explanatory 

variables. Sample size plays an important role in ensuring the statistical power to detect significant 

associations between variables. In this context, a larger sample size might have provided the 
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statistical power necessary to detect subtler associations, especially for arsenic, PFOA, and PFOS. 

Additionally, a small sample size could affect the generalizability of the findings to the broader 

population, as it may not represent the diversity within the whole population. In future research, it 

is possible to obtain more robust sample sizes without removing different datasets from production. 

For example, if we are studying the relationship between metals and CKD, there is no need to 

remove PFAS from the original dataset. This approach could lead to a more reliable sample size.  

Previous studies (Sanders et al., 2019) have shown that metal levels in urine are inversely 

related to eGFR. However, this relationship no longer emerges when metal levels are assessed in 

blood. To verify this phenomenon in future analysis, two additional regression analyses could be 

conducted, using blood lead and cadmium as predictor variables, respectively, to confirm their 

association with eGFR. Based on our findings, there is a notable relationship between metals such 

as lead and cadmium and the lower odds of CKD. This relationship varies depending on factors 

such as age, hypertension, and diabetes, indicating that these individual characteristics may 

influence the impact of metal exposure on kidney function. In summary, the relationship between 

metal exposure and kidney function is intricate and may be influenced by a variety of covariates. 

Future studies could explore these associations in larger sample sizes to provide more statistical 

power and improve the generalizability of results. Additionally, considering other markers for 

eGFR could help improve the accuracy of the results. By conducting additional regression analyses 

with blood levels of metals, future studies can verify the observed relationships between urine 

metals and CKD, offering deeper insights into the biological mechanisms.  
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Appendix A Code in R 

```{r} 
library(dplyr) 
library(ggplot2) 
library(stringr) 
library(stringi) 
library(openxlsx) 
library(tidyverse)  
library(haven) 
library(emmeans)  
library(car) 
library(survey) 
library(table1) 
library(gWQS) 
library(jtools) 
 
``` 
 
```{r} 
 
 
Creatinine.serum15 <- read_xpt("E:/University of Pittsburgh/Master Second Year/BIOST 2022 
Thesis/2015data/BIOPRO_I.XPT") 
 
metal.urine15 <- read_xpt("E:/University of Pittsburgh/Master Second Year/BIOST 2022 
Thesis/2015data/UMS_I.XPT") 
arsenic.urine15 <- read_xpt("E:/University of Pittsburgh/Master Second Year/BIOST 2022 
Thesis/2015data/UTASS_I.XPT") 
PFAS15 <- read_xpt("E:/University of Pittsburgh/Master Second Year/BIOST 2022 
Thesis/2015data/PFAS_I.XPT") 
 
DEMO15 <- read_xpt("E:/University of Pittsburgh/Master Second Year/BIOST 2022 
Thesis/2015data/DEMO_I.XPT") 
 
bmi15 <- read_xpt("E:/University of Pittsburgh/Master Second Year/BIOST 2022 
Thesis/2015data/BMX_I.XPT") 
nicotine15  <- read_xpt("E:/University of Pittsburgh/Master Second Year/BIOST 2022 
Thesis/2015data/SMQ_I.XPT") 
diabete15 <- read_xpt("E:/University of Pittsburgh/Master Second Year/BIOST 2022 
Thesis/2015data/DIQ_I.XPT") 
Hypertension15 <- read_xpt("E:/University of Pittsburgh/Master Second Year/BIOST 2022 
Thesis/2015data/BPQ_I.XPT") 
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alcohol15 <- read_xpt("E:/University of Pittsburgh/Master Second Year/BIOST 2022 
Thesis/2015data/ALQ_I.XPT") 
pressure15 <- read_xpt("E:/University of Pittsburgh/Master Second Year/BIOST 2022 
Thesis/2015data/BPX_I.XPT") 
 
creatin.urine15 <- read_xpt("E:/University of Pittsburgh/Master Second Year/BIOST 2022 
Thesis/2015data/ALB_CR_I.XPT") 
 
 
 
 
 
``` 
 
 
 
```{r} 
nhanesAnalysis15 <- DEMO15 %>% 
  select("SEQN","RIAGENDR","RIDAGEYR","SDMVSTRA","SDMVPSU") %>%  
  rename(age = RIDAGEYR, gender = RIAGENDR, strata= SDMVSTRA, psu = SDMVPSU) %>% 
  filter(age>=18) %>%  
  mutate(gender = factor(gender, labels=c("Men", "Women"))) 
 
 
 
Creatinine15 <- Creatinine.serum15 %>% select(SEQN, LBXSCR) %>% 
rename(Creatinine.serum = LBXSCR) 
 
lead_cad15 <- metal.urine15 %>% select (SEQN,URXUPB,URXUCD) %>% rename(lead = 
URXUPB, cadmium = URXUCD) 
arsenic15 <- arsenic.urine15 %>% select(SEQN, URXUAS) %>% rename(arsenic = URXUAS) 
pfas15 <- PFAS15 %>% select (SEQN,WTSB2YR,LBXNFOA,LBXNFOS) %>% 
rename(subsampleweight2 = WTSB2YR,PFOA = LBXNFOA, PFOS = LBXNFOS) 
 
 
bmi.c15 <- bmi15 %>% select(SEQN, BMXBMI) %>% rename(BMI = BMXBMI) 
 
smoking.c15 <- nicotine15 %>% select(SEQN, SMQ040) %>% rename(smoking_status = 
SMQ040)%>%  
  filter(smoking_status == 1 | smoking_status == 2 | smoking_status == 3) %>% 
  mutate(smoking_status = factor(smoking_status, labels=c("Every day", "Some days", "Not at 
all"))) 
 
 
diabete.c15 <- diabete15 %>% select(SEQN, DIQ010) %>% rename(have_diabetes = 
DIQ010)%>% 
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  filter(have_diabetes == 1 | have_diabetes == 2) %>% 
  mutate(have_diabetes = factor(have_diabetes, labels=c("Yes", "No"))) 
 
 
hypertension.c15 <- Hypertension15 %>% select(SEQN, BPQ020) %>% 
rename(have_hypertnesion = BPQ020)%>% 
  filter(have_hypertnesion == 1 | have_hypertnesion == 2) %>% 
  mutate(have_hypertnesion = factor(have_hypertnesion, labels=c("Yes", "No"))) 
 
alcohol.c15 <- alcohol15 %>% select(SEQN, ALQ101) %>% rename(have_drink = ALQ101)%>% 
  filter(have_drink == 1 | have_drink == 2) %>% 
  mutate(have_drink = factor(have_drink, labels=c("Yes", "No"))) 
 
 
creatin15 <- creatin.urine15 %>% select(SEQN, URXUCR) %>% rename(Creatinine.urine = 
URXUCR) 
 
 
 
``` 
 
 
 
 
```{r} 
# primary outcome  
one15 <- nhanesAnalysis15 %>% 
   left_join(Creatinine15, by = "SEQN")   %>% drop_na() 
 
#one 
 
one15 <- one15 %>% 
   left_join(lead_cad15, by = "SEQN")   %>% drop_na() 
 
one15 <- one15 %>% 
   left_join(arsenic15, by = "SEQN")   %>% drop_na() 
 
one15 <- one15 %>% 
   left_join(pfas15, by = "SEQN")   %>% drop_na() 
 
one15 <- one15 %>% 
   left_join(bmi.c15, by = "SEQN")   %>% drop_na() 
 
one15 <- one15 %>% 
   left_join(smoking.c15, by = "SEQN")   %>% drop_na() 
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one15 <- one15 %>% 
   left_join(diabete.c15, by = "SEQN")   %>% drop_na() 
 
one15 <- one15 %>% 
   left_join(hypertension.c15, by = "SEQN")   %>% drop_na() 
 
one15 <- one15 %>% 
   left_join(alcohol.c15, by = "SEQN")   %>% drop_na() 
 
one15 <- one15 %>% 
   left_join(creatin15, by = "SEQN")   %>% drop_na() 
 
 
one15 #205 
``` 
 
```{r} 
 
 
Creatinine.serum13 <- read_xpt("E:/University of Pittsburgh/Master Second Year/BIOST 2022 
Thesis/2013data/BIOPRO_H.XPT") 
 
metal.urine13 <- read_xpt("E:/University of Pittsburgh/Master Second Year/BIOST 2022 
Thesis/2013data/UMS_H.XPT") 
arsenic.urine13 <- read_xpt("E:/University of Pittsburgh/Master Second Year/BIOST 2022 
Thesis/2013data/UTASS_H.XPT") 
PFAS13 <- read_xpt("E:/University of Pittsburgh/Master Second Year/BIOST 2022 
Thesis/2013data/SSPFAS_H.XPT") 
 
DEMO13 <- read_xpt("E:/University of Pittsburgh/Master Second Year/BIOST 2022 
Thesis/2013data/DEMO_H.XPT") 
 
bmi13 <- read_xpt("E:/University of Pittsburgh/Master Second Year/BIOST 2022 
Thesis/2013data/BMX_H.XPT") 
nicotine13  <- read_xpt("E:/University of Pittsburgh/Master Second Year/BIOST 2022 
Thesis/2013data/SMQ_H.XPT") 
diabete13 <- read_xpt("E:/University of Pittsburgh/Master Second Year/BIOST 2022 
Thesis/2013data/DIQ_H.XPT") 
Hypertension13 <- read_xpt("E:/University of Pittsburgh/Master Second Year/BIOST 2022 
Thesis/2013data/BPQ_H.XPT") 
alcohol13 <- read_xpt("E:/University of Pittsburgh/Master Second Year/BIOST 2022 
Thesis/2013data/ALQ_H.XPT") 
pressure13 <- read_xpt("E:/University of Pittsburgh/Master Second Year/BIOST 2022 
Thesis/2013data/BPX_H.XPT") 
 
``` 



47 

 
```{r} 
nhanesAnalysis13 <- DEMO13 %>% 
  select("SEQN","RIAGENDR","RIDAGEYR","SDMVSTRA","SDMVPSU") %>%  
  rename(age = RIDAGEYR, gender = RIAGENDR, strata= SDMVSTRA, psu = SDMVPSU) %>% 
  filter(age>=18) %>%  
  mutate(gender = factor(gender, labels=c("Men", "Women"))) 
 
 
 
Creatinine13 <- Creatinine.serum13 %>% select(SEQN, LBXSCR) %>% 
rename(Creatinine.serum = LBXSCR) 
 
lead_cad13 <- metal.urine13 %>% select (SEQN,URXUPB,URXUCD,URXUCR) %>% 
rename(lead = URXUPB, cadmium = URXUCD,Creatinine.urine = URXUCR)  
arsenic13 <- arsenic.urine13 %>% select(SEQN, URXUAS) %>% rename(arsenic = URXUAS)  
pfas13 <- PFAS13 %>% select (SEQN,WTSSBH2Y,SSNPFOA,SSNPFOS) %>% 
rename(subsampleweight2=WTSSBH2Y,PFOA = SSNPFOA, PFOS = SSNPFOS) 
 
 
bmi.c13 <- bmi13 %>% select(SEQN, BMXBMI) %>% rename(BMI = BMXBMI) 
smoking.c13 <- nicotine13 %>% select(SEQN, SMQ040) %>% rename(smoking_status = 
SMQ040)%>%  
  filter(smoking_status == 1 | smoking_status == 2 | smoking_status == 3) %>% 
  mutate(smoking_status = factor(smoking_status, labels=c("Every day", "Some days", "Not at 
all"))) 
 
 
diabete.c13 <- diabete13 %>% select(SEQN, DIQ010) %>% rename(have_diabetes = 
DIQ010)%>%filter(have_diabetes == 1 | have_diabetes == 2) %>% 
  mutate(have_diabetes = factor(have_diabetes, labels=c("Yes", "No"))) 
 
 
hypertension.c13 <- Hypertension13 %>% select(SEQN, BPQ020) %>% 
rename(have_hypertnesion = BPQ020)%>%filter(have_hypertnesion == 1 | have_hypertnesion 
== 2) %>% 
  mutate(have_hypertnesion = factor(have_hypertnesion, labels=c("Yes", "No"))) 
 
alcohol.c13 <- alcohol13 %>% select(SEQN, ALQ101) %>% rename(have_drink = 
ALQ101)%>%filter(have_drink == 1 | have_drink == 2) %>% 
  mutate(have_drink = factor(have_drink, labels=c("Yes", "No"))) 
``` 
 
```{r} 
# primary outcome  
one13 <- nhanesAnalysis13 %>% 
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   left_join(Creatinine13, by = "SEQN")   %>% drop_na() 
 
#one 
 
one13 <- one13 %>% 
   left_join(lead_cad13, by = "SEQN")   %>% drop_na() 
 
one13 <- one13 %>% 
   left_join(arsenic13, by = "SEQN")   %>% drop_na() 
 
one13 <- one13 %>% 
   left_join(pfas13, by = "SEQN")   %>% drop_na() 
 
one13 <- one13 %>% 
   left_join(bmi.c13, by = "SEQN")   %>% drop_na() 
 
one13 <- one13 %>% 
   left_join(smoking.c13, by = "SEQN")   %>% drop_na() 
 
one13 <- one13 %>% 
   left_join(diabete.c13, by = "SEQN")   %>% drop_na() 
 
one13 <- one13 %>% 
   left_join(hypertension.c13, by = "SEQN")   %>% drop_na() 
 
one13 <- one13 %>% 
   left_join(alcohol.c13, by = "SEQN")   %>% drop_na() 
 
 
one13 #222 
``` 
 
```{r} 
 
 
Creatinine.serum11 <- read_xpt("E:/University of Pittsburgh/Master Second Year/BIOST 2022 
Thesis/2011data/BIOPRO_G.XPT") 
 
metal.urine11 <- read_xpt("E:/University of Pittsburgh/Master Second Year/BIOST 2022 
Thesis/2011data/UHMS_G.XPT") 
arsenic.urine11 <- read_xpt("E:/University of Pittsburgh/Master Second Year/BIOST 2022 
Thesis/2011data/UASS_G.XPT") 
PFAS11 <- read_xpt("E:/University of Pittsburgh/Master Second Year/BIOST 2022 
Thesis/2011data/PFC_G.XPT") 
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DEMO11 <- read_xpt("E:/University of Pittsburgh/Master Second Year/BIOST 2022 
Thesis/2011data/DEMO_G.XPT") 
 
bmi11 <- read_xpt("E:/University of Pittsburgh/Master Second Year/BIOST 2022 
Thesis/2011data/BMX_G.XPT") 
nicotine11  <- read_xpt("E:/University of Pittsburgh/Master Second Year/BIOST 2022 
Thesis/2011data/SMQ_G.XPT") 
diabete11 <- read_xpt("E:/University of Pittsburgh/Master Second Year/BIOST 2022 
Thesis/2011data/DIQ_G.XPT") 
Hypertension11 <- read_xpt("E:/University of Pittsburgh/Master Second Year/BIOST 2022 
Thesis/2011data/BPQ_G.XPT") 
alcohol11 <- read_xpt("E:/University of Pittsburgh/Master Second Year/BIOST 2022 
Thesis/2011data/ALQ_G.XPT") 
pressure11 <- read_xpt("E:/University of Pittsburgh/Master Second Year/BIOST 2022 
Thesis/2011data/BPX_G.XPT") 
 
``` 
 
```{r} 
nhanesAnalysis11 <- DEMO11 %>% 
  select("SEQN","RIAGENDR","RIDAGEYR","SDMVSTRA","SDMVPSU") %>%  
  rename(age = RIDAGEYR, gender = RIAGENDR, strata= SDMVSTRA, psu = SDMVPSU) %>% 
  filter(age>=18) %>%  
  mutate(gender = factor(gender, labels=c("Men", "Women"))) 
 
 
 
Creatinine11 <- Creatinine.serum11 %>% select(SEQN, LBXSCR) %>% 
rename(Creatinine.serum = LBXSCR) 
 
lead_cad11 <- metal.urine11 %>% select (SEQN,URXUPB,URXUCD,URXUCR) %>% 
rename(lead = URXUPB, cadmium = URXUCD,Creatinine.urine=URXUCR)  
arsenic11 <- arsenic.urine11 %>% select(SEQN, URXUAS) %>% rename(arsenic = URXUAS) 
pfas11 <- PFAS11 %>% select (SEQN,WTSA2YR,LBXPFOA,LBXPFOS) %>% 
rename(subsampleweight2=WTSA2YR,PFOA = LBXPFOA, PFOS = LBXPFOS) 
 
 
bmi.c11 <- bmi11 %>% select(SEQN, BMXBMI) %>% rename(BMI = BMXBMI) 
smoking.c11 <- nicotine11 %>% select(SEQN, SMQ040) %>% rename(smoking_status = 
SMQ040)%>% 
  filter(smoking_status == 1 | smoking_status == 2 | smoking_status == 3) %>% 
  mutate(smoking_status = factor(smoking_status, labels=c("Every day", "Some days", "Not at 
all"))) 
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diabete.c11 <- diabete11 %>% select(SEQN, DIQ010) %>% rename(have_diabetes = 
DIQ010)%>%filter(have_diabetes == 1 | have_diabetes == 2) %>% 
  mutate(have_diabetes = factor(have_diabetes, labels=c("Yes", "No"))) 
 
 
hypertension.c11 <- Hypertension11 %>% select(SEQN, BPQ020) %>% 
rename(have_hypertnesion = BPQ020)%>%filter(have_hypertnesion == 1 | have_hypertnesion 
== 2) %>% 
  mutate(have_hypertnesion = factor(have_hypertnesion, labels=c("Yes", "No"))) 
 
alcohol.c11 <- alcohol11 %>% select(SEQN, ALQ101) %>% rename(have_drink = 
ALQ101)%>%filter(have_drink == 1 | have_drink == 2) %>% 
  mutate(have_drink = factor(have_drink, labels=c("Yes", "No"))) 
``` 
 
```{r} 
# primary outcome  
one11 <- nhanesAnalysis11 %>% 
   left_join(Creatinine11, by = "SEQN")   %>% drop_na() 
 
#one 
 
one11 <- one11 %>% 
   left_join(lead_cad11, by = "SEQN")   %>% drop_na() 
 
one11 <- one11 %>% 
   left_join(arsenic11, by = "SEQN")   %>% drop_na() 
 
one11 <- one11 %>% 
   left_join(pfas11, by = "SEQN")   %>% drop_na() 
 
one11 <- one11 %>% 
   left_join(bmi.c11, by = "SEQN")   %>% drop_na() 
 
one11 <- one11 %>% 
   left_join(smoking.c11, by = "SEQN")   %>% drop_na() 
 
one11 <- one11 %>% 
   left_join(diabete.c11, by = "SEQN")   %>% drop_na() 
 
one11 <- one11 %>% 
   left_join(hypertension.c11, by = "SEQN")   %>% drop_na() 
 
one11 <- one11 %>% 
   left_join(alcohol.c11, by = "SEQN")   %>% drop_na() 
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one11 #556 
``` 
```{r} 
 
one11 #556 
one13 #222 
one15 #205 
 
final_data <- one11 %>% 
   full_join(one13) %>% 
  full_join(one15) 
 
final_data 
``` 
 
 
```{r} 
calculate_eGFR <- function(Scr, Age, gender_f) { 
   
  Scr <- as.numeric(as.character(Scr)) 
  Age <- as.numeric(as.character(Age)) 
   
  isfemale <- ifelse(gender_f == "Women", TRUE, FALSE) 
  kappa <- ifelse(isfemale, 0.7, 0.9) 
  alpha <- ifelse(isfemale, -0.241, -0.302) 
  female <- ifelse(isfemale, 1.012, 1) 
 
  eGFR <- 142 * (min(Scr / kappa, 1) ** alpha) * (max(Scr / kappa, 1) ** -1.2) * (0.994 ** Age) 
* female 
  return(eGFR) 
} 
 
#calculate_eGFR(0.68,43,"Women") 
 
eGFR_values <- apply(final_data, 1, function(x) calculate_eGFR(x['Creatinine.serum'], x['age'], 
x['gender'])) 
 
final_data$eGFR <- eGFR_values 
final_data 
 
 
 
final_data1 <- final_data %>% 
  mutate(group = ifelse(eGFR < 60, 1, 0)) %>% 
  mutate(CKD_condition = factor(group, level = c(0, 1), labels = c("no CKD", "CKD")))%>% 
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  mutate(subsampleweight6=1/3 * subsampleweight2) 
 
final_data1 
 
 
#sum(final_data1$arsenic == 0.88) 
 
 
``` 
 
```{r} 
 
#final_data1[final_data1$strata == 129,] 
 
final_data1$strata <- ifelse(final_data1$strata == 128, 129, final_data1$strata) 
 
 
final_data1$smoking_status <-factor(final_data1$smoking_status, levels = c("Not at all", "Some 
days", "Every day")) 
final_data1$have_diabetes <-factor(final_data1$have_diabetes, levels = c("No", "Yes")) 
final_data1$have_hypertnesion <-factor(final_data1$have_hypertnesion, levels = c("No", "Yes")) 
final_data1$have_drink <-factor(final_data1$have_drink, levels = c("No", "Yes")) 
 
 
 
 
nhanesDesign <- svydesign(id      = ~psu, 
                          strata  = ~strata, 
                          weights = ~subsampleweight6, 
                          nest    = TRUE, 
                          data    = final_data1) 
 
 
 
 
 
table1(~. , data = final_data1%>%select(-SEQN,-strata,-psu,-subsampleweight2, -
subsampleweight6,-group)) 
 
 
 
summarise(final_data1, mean=mean(eGFR), sd=sd(eGFR)) 
summarise(final_data1, mean=mean(arsenic), sd=sd(arsenic)) 
summarise(final_data1, mean=mean(BMI), sd=sd(BMI)) 
summarise(final_data1, mean=mean(age), sd=sd(age)) 
summarise(final_data1, mean=mean(Creatinine.urine), sd=sd(Creatinine.urine)) 
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#hist(final_data1$Creatinine.serum) 
 
``` 
 
```{r} 
 
svymean(~eGFR, nhanesDesign, na.rm = TRUE)#97.906  
sqrt(coef(svyvar(~eGFR, nhanesDesign)))#19.56278   
 
svymean(~lead, nhanesDesign, na.rm = TRUE)#0.69587 
sqrt(coef(svyvar(~lead, nhanesDesign)))#1.125008  
 
svymean(~cadmium, nhanesDesign, na.rm = TRUE)#0.51189  
sqrt(coef(svyvar(~cadmium, nhanesDesign)))#0.7294955  
 
svymean(~arsenic, nhanesDesign, na.rm = TRUE)#12.711  
sqrt(coef(svyvar(~arsenic, nhanesDesign)))#24.40041    
 
svymean(~PFOA, nhanesDesign, na.rm = TRUE)#2.6557  
sqrt(coef(svyvar(~PFOA, nhanesDesign)))#4.552953     
 
svymean(~PFOS, nhanesDesign, na.rm = TRUE)#7.3932    
sqrt(coef(svyvar(~PFOS, nhanesDesign)))#8.568516   
 
svymean(~age, nhanesDesign, na.rm = TRUE)#48.252    
sqrt(coef(svyvar(~age, nhanesDesign)))#15.5736    
 
svymean(~BMI, nhanesDesign, na.rm = TRUE)#28.748    
sqrt(coef(svyvar(~BMI, nhanesDesign)))#6.713616    
 
svymean(~Creatinine.urine, nhanesDesign, na.rm = TRUE)    
sqrt(coef(svyvar(~Creatinine.urine, nhanesDesign))) 
 
svymean(~CKD_condition, nhanesDesign, na.rm = TRUE) 
svymean(~gender, nhanesDesign, na.rm = TRUE) 
svymean(~smoking_status, nhanesDesign, na.rm = TRUE) 
svymean(~have_diabetes, nhanesDesign, na.rm = TRUE) 
svymean(~have_hypertnesion, nhanesDesign, na.rm = TRUE) 
svymean(~have_drink, nhanesDesign, na.rm = TRUE) 
 
``` 
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```{r} 
# model_lead <- svyglm(CKD_condition ~ lead + 
#                        age + gender + BMI + Creatinine.urine +smoking_status+have_diabetes + 
have_hypertnesion + have_drink, 
#                              family = quasibinomial, 
#                              design = nhanesDesign, 
#                              data = final_data1) 
 
 
model_lead <- svyglm(CKD_condition ~ lead + 
                       gender + BMI + Creatinine.urine +smoking_status+have_diabetes + 
have_hypertnesion + have_drink, 
                             family = quasibinomial, 
                             design = nhanesDesign, 
                             data = final_data1) 
 
summ(model_lead, 
 digits = getOption("jtools-digits", default = 5), exp = T, vifs = T, 
 model.fit = getOption("summ-model.fit", FALSE), 
 confint = getOption("summ-confint", TRUE), 
 ci.width = getOption("summ-ci.width", 0.95)) 
 
 
 
# model_lead <- svyglm(eGFR ~ arsenic + 
#                        age + gender + BMI + Creatinine.urine +smoking_status+have_diabetes + 
have_hypertnesion + have_drink, 
#                              design = nhanesDesign, 
#                              data = final_data1) 
 
 
summary(model_lead) 
 
``` 
 
```{r} 
# model_lead <- svyglm(CKD_condition ~ lead + 
#                       age + 
#                       gender  
#                      + BMI 
#                     + Creatinine.urine 
#                   +have_diabetes  
#                 + have_hypertnesion 
#                      + have_drink 
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#                      , 
#                              family = quasibinomial, 
#                              design = nhanesDesign, 
#                              data = final_data1) 
#  
#  
#  
# summ(model_lead, 
#  digits = getOption("jtools-digits", default = 5), exp = T, vifs = T, 
#  model.fit = getOption("summ-model.fit", FALSE), 
#  confint = getOption("summ-confint", TRUE), 
#  ci.width = getOption("summ-ci.width", 0.95)) 
``` 
 
 
 
```{r} 
 
age_lead <- svyglm(CKD_condition ~ lead, 
                             family = quasibinomial, 
                             design = nhanesDesign, 
                             data = final_data1) 
 
 
 
summ(age_lead, 
 digits = getOption("jtools-digits", default = 5), exp = T, vifs = F, 
 model.fit = getOption("summ-model.fit", FALSE), 
 confint = getOption("summ-confint", TRUE), 
 ci.width = getOption("summ-ci.width", 0.95)) 
 
 
 
 
# summary(glm(lead ~ age, data = final_data1)) 
# summary(glm(age ~ lead, data = final_data1)) 
 
``` 
 
 
 
 
 
 
 
 



56 

```{r} 
# model_cad <- svyglm(CKD_condition ~ cadmium + 
#                        age + gender + BMI + Creatinine.urine +smoking_status+have_diabetes + 
have_hypertnesion + have_drink, 
#                              family = quasibinomial, 
#                              design = nhanesDesign, 
#                              data = final_data1) 
 
 
model_cad <- svyglm(CKD_condition ~ cadmium + 
                        gender + BMI + Creatinine.urine +smoking_status+have_diabetes + 
have_hypertnesion + have_drink, 
                             family = quasibinomial, 
                             design = nhanesDesign, 
                             data = final_data1) 
 
summary(model_cad) 
 
# exp(-4.243212) 
# 1-exp(-4.243212) 
 
summary_model <- summary(model_cad) 
 
 
coefficients <- summary_model$coefficients[, 1]  # Estimates are usually in the first column 
std_errors <- summary_model$coefficients[, 2]    # Std. Errors are usually in the second column 
 
odds_ratios <- exp(coefficients) 
 
ci_lower <- exp(coefficients - 1.96 * std_errors) 
ci_upper <- exp(coefficients + 1.96 * std_errors) 
 
results <- data.frame( 
  Odds_Ratio = odds_ratios, 
  CI_Lower = ci_lower, 
  CI_Upper = ci_upper 
) 
 
print(results) 
round(results, 2) 
 
``` 
 
 
 
```{r} 
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# model_cad <- svyglm(CKD_condition ~ cadmium + 
#                        age + gender + BMI + Creatinine.urine +smoking_status+have_diabetes + 
have_hypertnesion + have_drink, 
#                              family = quasibinomial, 
#                              design = nhanesDesign, 
#                              data = final_data1) 
#  
#  
# summ(model_cad, 
#  digits = getOption("jtools-digits", default = 5), exp = T, vifs = T, 
#  model.fit = getOption("summ-model.fit", FALSE), 
#  confint = getOption("summ-confint", TRUE), 
#  ci.width = getOption("summ-ci.width", 0.95)) 
#  
#  
#  
#  
# model_cad <- svyglm(CKD_condition ~ age, 
#                     family = quasibinomial, 
#                              design = nhanesDesign, 
#                              data = final_data1) 
#  
#  
# summ(model_cad, 
#  digits = getOption("jtools-digits", default = 5), exp = T, vifs = F, 
#  model.fit = getOption("summ-model.fit", FALSE), 
#  confint = getOption("summ-confint", TRUE), 
#  ci.width = getOption("summ-ci.width", 0.95)) 
#  
#  
# summary(glm(cadmium ~ age, data = final_data1)) 
# summary(glm(age ~ cadmium, data = final_data1)) 
 
``` 
 
 
 
 
 
 
 
 
```{r} 
# model_ars <- svyglm(CKD_condition ~ arsenic + 
#                        age + gender + BMI + Creatinine.urine +smoking_status+have_diabetes + 
have_hypertnesion + have_drink, 
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#                              family = quasibinomial, 
#                              design = nhanesDesign, 
#                              data = final_data1) 
 
 
model_ars <- svyglm(CKD_condition ~ arsenic + 
                       gender + BMI + Creatinine.urine +smoking_status+have_diabetes + 
have_hypertnesion + have_drink, 
                             family = quasibinomial, 
                             design = nhanesDesign, 
                             data = final_data1) 
 
 
summary(model_ars) 
 
# exp(-4.243212) 
# 1-exp(-4.243212) 
 
summary_model <- summary(model_ars) 
 
 
coefficients <- summary_model$coefficients[, 1]  # Estimates are usually in the first column 
std_errors <- summary_model$coefficients[, 2]    # Std. Errors are usually in the second column 
 
odds_ratios <- exp(coefficients) 
 
ci_lower <- exp(coefficients - 1.96 * std_errors) 
ci_upper <- exp(coefficients + 1.96 * std_errors) 
 
results <- data.frame( 
  Odds_Ratio = odds_ratios, 
  CI_Lower = ci_lower, 
  CI_Upper = ci_upper 
) 
 
print(results) 
round(results, 2) 
 
``` 
 
```{r} 
 
# model_ars <- svyglm(CKD_condition ~ arsenic + age 
#                         + gender + BMI + Creatinine.urine+have_diabetes + have_hypertnesion + 
have_drink, 
#                              family = quasibinomial, 
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#                              design = nhanesDesign, 
#                              data = final_data1) 
#  
#  
# summ(model_ars, 
#  digits = getOption("jtools-digits", default = 5), exp = T, vifs = T, 
#  model.fit = getOption("summ-model.fit", FALSE), 
#  confint = getOption("summ-confint", TRUE), 
#  ci.width = getOption("summ-ci.width", 0.95)) 
#  
#  
#  
# summary(glm(arsenic ~ age, data = final_data1)) 
# summary(glm(age ~ arsenic, data = final_data1)) 
#  
#  
# model_ars <- svyglm(CKD_condition ~ arsenic + age 
#                         + gender + BMI + Creatinine.urine+have_diabetes + have_hypertnesion + 
have_drink, 
#                              family = quasibinomial, 
#                              design = nhanesDesign, 
#                              data = final_data1) 
#  
#  
# summ(model_ars, 
#  digits = getOption("jtools-digits", default = 5), exp = T, vifs = T, 
#  model.fit = getOption("summ-model.fit", FALSE), 
#  confint = getOption("summ-confint", TRUE), 
#  ci.width = getOption("summ-ci.width", 0.95)) 
 
 
``` 
 
 
 
 
 
 
 
 
 
 
 
```{r} 
# model_pfoa <- svyglm(CKD_condition ~PFOA + 
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#                        age + gender + BMI + Creatinine.urine+smoking_status+have_diabetes + 
have_hypertnesion + have_drink, 
#                              family = quasibinomial, 
#                              design = nhanesDesign, 
#                              data = final_data1) 
 
 
model_pfoa <- svyglm(CKD_condition ~PFOA + 
                       gender + BMI + Creatinine.urine+smoking_status+have_diabetes + 
have_hypertnesion + have_drink, 
                             family = quasibinomial, 
                             design = nhanesDesign, 
                             data = final_data1) 
 
# summ(model_pfoa, 
#  digits = getOption("jtools-digits", default = 5), exp = T, vifs = T, 
#  model.fit = getOption("summ-model.fit", FALSE), 
#  confint = getOption("summ-confint", TRUE), 
#  ci.width = getOption("summ-ci.width", 0.95)) 
 
 
 
# summary(glm(PFOA ~ age, data = final_data1)) 
# summary(glm(age ~ PFOA, data = final_data1)) 
 
# model_pfoa <- svyglm(CKD_condition ~PFOA, 
#                              family = quasibinomial, 
#                              design = nhanesDesign, 
#                              data = final_data1) 
#  
summary(model_pfoa) 
 
 
 
 
summary_model <- summary(model_pfoa) 
 
 
coefficients <- summary_model$coefficients[, 1]  # Estimates are usually in the first column 
std_errors <- summary_model$coefficients[, 2]    # Std. Errors are usually in the second column 
 
odds_ratios <- exp(coefficients) 
 
ci_lower <- exp(coefficients - 1.96 * std_errors) 
ci_upper <- exp(coefficients + 1.96 * std_errors) 
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results <- data.frame( 
  Odds_Ratio = odds_ratios, 
  CI_Lower = ci_lower, 
  CI_Upper = ci_upper 
) 
 
print(results) 
round(results, 2) 
``` 
 
 
 
 
 
 
 
 
```{r} 
# model_pfos <- svyglm(CKD_condition ~  PFOS + 
#                        age + gender + BMI + Creatinine.urine +smoking_status+have_diabetes + 
have_hypertnesion + have_drink, 
#                              family = quasibinomial, 
#                              design = nhanesDesign, 
#                              data = final_data1) 
 
# model_pfos <- svyglm(CKD_condition ~  PFOS, 
#                              family = quasibinomial, 
#                              design = nhanesDesign, 
#                              data = final_data1) 
 
 
model_pfos <- svyglm(CKD_condition ~  PFOS + 
                       gender + BMI + Creatinine.urine +smoking_status+have_diabetes + 
have_hypertnesion + have_drink, 
                             family = quasibinomial, 
                             design = nhanesDesign, 
                             data = final_data1) 
 
# summ(model_pfos, 
#  digits = getOption("jtools-digits", default = 5), exp = T, vifs = T, 
#  model.fit = getOption("summ-model.fit", FALSE), 
#  confint = getOption("summ-confint", TRUE), 
#  ci.width = getOption("summ-ci.width", 0.95)) 
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# summary(glm(PFOS ~ age, data = final_data1)) 
# summary(glm(age ~ PFOS, data = final_data1)) 
 
 
summary(model_pfos) 
 
 
 
 
summary_model <- summary(model_pfos) 
 
 
coefficients <- summary_model$coefficients[, 1]  # Estimates are usually in the first column 
std_errors <- summary_model$coefficients[, 2]    # Std. Errors are usually in the second column 
 
odds_ratios <- exp(coefficients) 
 
ci_lower <- exp(coefficients - 1.96 * std_errors) 
ci_upper <- exp(coefficients + 1.96 * std_errors) 
 
results <- data.frame( 
  Odds_Ratio = odds_ratios, 
  CI_Lower = ci_lower, 
  CI_Upper = ci_upper 
) 
 
print(results) 
round(results, 2) 
``` 
 
 
 
```{r} 
ggplot(data=final_data1, aes(x=eGFR, y=lead)) + 
  geom_point() + 
  labs(title="eGFR and lead") + xlab("eGFR (mL/min/1.73m^2)") + ylab("lead (μg/L)") 
 
 
 
ggplot(data=final_data1, aes(x=eGFR, y=cadmium)) + 
  geom_point() + 
  labs(title="eGFR and cadmium") + xlab("eGFR (mL/min/1.73m^2)") + ylab("cadmium (μg/L)") 
 
ggplot(data=final_data1, aes(x=eGFR, y=arsenic)) + 
  geom_point() + 
  labs(title="eGFR and arsenic") + xlab("eGFR (mL/min/1.73m^2)") + ylab("arsenic (μg/L)") 
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ggplot(data=final_data1, aes(x=eGFR, y=PFOA)) + 
  geom_point() + 
  labs(title="eGFR and PFOA") + xlab("eGFR (mL/min/1.73m^2)") + ylab("PFOA (μg/L)") 
 
ggplot(data=final_data1, aes(x=eGFR, y=PFOS)) + 
  geom_point() + 
  labs(title="eGFR and PFOS") + xlab("eGFR (mL/min/1.73m^2)") + ylab("PFOS (μg/L)") 
 
 
 
summary(final_data1$arsenic) 
 
 
 
``` 
 
 
```{r} 
ggplot(data=final_data1, aes(x=eGFR, y=lead)) + 
  geom_point() + 
  labs(title="eGFR and lead") + xlab("eGFR (mL/min/1.73m^2)") + ylab("lead (μg/L)") 
 
ggplot(data=final_data1, aes(x=eGFR, y=cadmium)) + 
  geom_point() + 
  labs(title="eGFR and cadmium") + xlab("eGFR (mL/min/1.73m^2)") + ylab("cadmium (μg/L)") 
 
ggplot(data=final_data1, aes(x=eGFR, y=log10(arsenic))) + 
  geom_point() + 
  labs(title="eGFR and arsenic") + xlab("eGFR (mL/min/1.73m^2)") + ylab("arsenic (μg/L)") 
 
ggplot(data=final_data1, aes(x=eGFR, y=PFOA)) + 
  geom_point() + 
  labs(title="eGFR and PFOA") + xlab("eGFR (mL/min/1.73m^2)") + ylab("PFOA (μg/L)") 
 
ggplot(data=final_data1, aes(x=eGFR, y=PFOS)) + 
  geom_point() + 
  labs(title="eGFR and PFOS") + xlab("eGFR (mL/min/1.73m^2)") + ylab("PFOS (μg/L)") 
``` 
 
 
 
```{r} 
 
metals <- c(names(final_data1)[7:8], names(final_data1)[10],names(final_data1)[12:13]) 
metals 
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test <- final_data1 
test[metals] <- lapply(test[metals], log10) 
#test$eGFR <- log10(test$eGFR) 
 
 
# ggplot(data=test, aes(x=eGFR, y=lead)) + geom_point() 
# ggplot(data=test, aes(x=eGFR, y=cadmium)) + geom_point() 
# ggplot(data=test, aes(x=eGFR, y=arsenic)) + geom_point() 
# ggplot(data=test, aes(x=eGFR, y=PFOA)) + geom_point() 
# ggplot(data=test, aes(x=eGFR, y=PFOS)) + geom_point() 
 
# second_outcome <- gwqs(eGFR ~ wqs+ 
#                          age+ gender + BMI +Creatinine.urine+ 
#                          have_diabetes+smoking_status + have_hypertnesion + have_drink, 
#                        mix_name = metals, data = test, 
#                        q = 5, validation = 0.6, b = 10, b1_pos = FALSE, rh = 10, 
#                        family = "gaussian", seed = 3024) 
 
 
second_outcome <- gwqs(eGFR ~ wqs+ 
                         age+ gender + BMI +Creatinine.urine+ 
                         have_diabetes+smoking_status +have_hypertnesion+ have_drink, 
                       mix_name = metals, data = test, 
                       q = 10, validation = 0.6, b = 100, b1_pos = TRUE,  
                       family = "gaussian", seed = 2017) 
 
gwqs_scatterplot(second_outcome) 
 
 
summary(second_outcome) 
 
gwqs_weights_tab(second_outcome) 
 
gwqs_barplot(second_outcome) 
 
 
``` 
```{r} 
 
metals <- c(names(final_data1)[7:8], names(final_data1)[10],names(final_data1)[12:13]) 
metals 
 
 
test <- final_data1 



65 

test[metals] <- lapply(test[metals], log10) 
 
test1 <- test %>% filter(have_hypertnesion == "No") 
 
 
second_outcome <- gwqs(eGFR ~ wqs+ 
                         age+ gender + BMI +Creatinine.urine+ 
                         have_diabetes+smoking_status + have_drink, 
                       mix_name = metals, data = test1, 
                       q = 10, validation = 0.6, b = 100, b1_pos = TRUE,  
                       family = "gaussian", seed = 2017) 
 
gwqs_scatterplot(second_outcome) 
 
 
summary(second_outcome) 
 
gwqs_weights_tab(second_outcome) 
 
gwqs_barplot(second_outcome) 
 
``` 
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