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Abstract 

Age-associated changes in human circadian rhythms 
 

Michelle Sun, MS 
 

University of Pittsburgh, 2024 
 
 
 
 

Cellular circadian clocks support homeostasis by synchronizing essential biological 

processes to the external day-night cycle. Emerging evidence has demonstrated that the 

functionality of these clocks changes with age. We leverage data from the Genotype-Tissue 

Expression project (GTEx) to examine age-dependent changes in rhythmic gene expression 

programs across 4 human tissues: lung, heart, skeletal muscle, and adrenal gland. Our analysis 

reveals a shift in the age-related timing of gene expression peaks, transitioning from tissue-specific 

clustering to a broad categorization at dawn and dusk. We observe a decline in the rhythmicity of 

genes associated with cell growth and differentiation, paralleled by an increase in the rhythmic 

expression of genes linked to mitochondrial respiration. We find that the inferred circadian clock 

outputs are highly dependent on the methodological approach—ordering donors by time-of-death 

or utilizing circadian phase estimation algorithms leads to different interpretations of the data.  Our 

findings offer insights into the aging transcriptional landscape in humans and highlight the 

influence of methodology in human circadian rhythm research, providing direction for future 

studies. 

Public Health Significance: Understanding how circadian function changes with age can 

contribute to strategies aimed at promoting healthy aging, potentially extending the health span 

and improving quality of life for older adults. 
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1.0 Introduction 

The life of most organisms is influenced by two biological processes: biological rhythms 

and the biology of aging. 

Biological rhythms include any recurrent molecular, physiological, or behavioral process 

that cycles without any geophysical cues. Such rhythms are synchronized to environmental signals 

called zeitgebers which enable coordination between rhythmic processes and the time of day or 

year (Touitou et al., 1992). This allows organisms to anticipate environmental changes and internal 

needs, enhancing survival and function (Moore-Ede et al., 1986). 

The circadian system is a biological rhythm with a period of 24 hours. The central clock of 

the circadian system is the suprachiasmatic nucleus (SCN) of the hypothalamus, which receives 

daily light input to synchronize the circadian oscillations of gene expression in every tissue and 

cell type. While the SCN imprints a whole-body circadian rhythmicity, this central clock works in 

parallel with autonomously regulated circadian clocks in each tissue, known as peripheral clocks. 

The SCN and peripheral tissues all share a similar molecular clock mechanism comprised of 

transcription-translation feedback loops between the core clock genes. Key core clock genes 

include transcriptional activators BMAL1 and CLOCK, and their negative regulators PER and 

CRY. These core clock genes regulate the expression of numerous clock-controlled genes, 

impacting tissue-specific activities (Takahashi et al., 2017). 

The functionality of these rhythms, however, diminishes with age. Studies have shown that 

with age, there are reduced amplitudes and increased scatter in circadian phases, and disrupted cell 

and tissue synchronization (Hu et al., 2009; Farajnia et al., 2012). This manifests in age-related 

declines in circadian behavior such as changes in sleep/wake activity, body temperature, hormone 
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release (Hood and Amir, 2017). Aging is also associated with a higher mortality following repeated 

changes to light/dark cycle, also known as “jetlag” (Inokawa et al., 2020). Recently, Wolff et al. 

(2023) obtained a systems level understanding of the aging circadian transcriptome in mice. They 

carried out a 48-hr circadian transcriptomic analysis in young and old mice across multiple tissues. 

From their results, they suggested that age-associated changes in circadian clock output led to 

reduced predictive homeostasis, likely contributing to the frailty and diminished resilience in the 

old. They further posit that this loss in predictive rhythmic pathways is compensated for by 

increased reactive pathways in response to stressors. For example, in mouse muscle tissue, the loss 

of rhythmic autophagic processes with age is compensated for by a general overexpression of 

autophagy genes in the old during the active phase. 

Our goal is to perform a comparative analysis using human data. Using transcriptomic data 

from the Genotype-Tissue Expression project (GTEx), we detect rhythmically expressed genes 

between two age groups within four tissues: heart, lung, muscle, and adrenal gland tissue.  

In order to reconstruct molecular rhythmicity, the tissue samples are ordered based on the 

time of death (TOD) of the donors. Although this is common practice in previous rhythm studies 

in postmortem human tissue (Chen et al., 2016; Li et al., 2013; Scott et al., 2023), there are 

concerns over discrepancies between actual and annotated TOD, RNA degradation due to 

postmortem delay, and varying chronotypes between individuals. (Zhu et al., 2017; Roenneberg et 

al., 2007). To address these concerns, Talamanca et al. (2023) combined GTEx transcriptomes 

with an algorithm that estimates the circadian phase of donors.  

We compare our results with that of Talamanca et al. and Wolff et al. By doing so, we 

define the age-related changes in human circadian clock output, as well as assess whether novel 
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phase estimation algorithms can help human circadian studies capture findings found in controlled 

mouse time course studies. 
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2.0 Methods 

2.1 Data 

2.1.1 Data source 

Data was retrieved from the Genotype-Tissue Expression (GTEx) project. Gene mRNA 

read count data for skeletal muscle, lung, adrenal medulla, and left ventricle heart tissue was 

downloaded from GTEx V8 (2017-06-05_v8_RNASeQCv1.1.9). Access to complete donor 

phenotype and sample annotations was obtained from dbGaP. 

2.1.2 Data cleaning and processing 

Tissue samples were removed from the study if the donor’s time of death (TOD) was 

unavailable or if they had a death classification of “intermediate” or “slow” death under the 4-

point Hardy Scale. To control sample quality, we selected samples with an RNA integrity number 

(RIN) of 6 or greater, and an ischemic time under 24 hours. We classified tissue samples based on 

the donor’s age as younger (<=45 y) or older (>= 60 y). Not all tissues were collected for each 

donor, and so the final sample size varied across tissues. 

 

Time of Death Analysis in the Zeitgeber Timescale 

The TOD for each subject was normalized to the zeitgeber time (ZT) scale. For each 

subject, TOD was noted down to the exact hour and minute, and the season, but did not include 
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exact date or location. The location was approximated as Philadelphia, PA seeing as it is the largest 

GTEx project donor source site (NIH, 2010). The date was approximated based on the season: 

December 1st for winter; October 1st for fall; April 1st for spring; and July 1st for summer. The 

sunrise time was calculated based on these approximate dates and locations. Subject’s TOD was 

set as ZT = t hours after sunrise. 

 

RNA-seq Data Processing 

The raw count data was normalized to counts per millions of reads (CPM), then underwent 

log2 transformation with a pseudo-count of 1 to avoid log2(0). For each tissue, genes with mean 

log2(cpm+1) < 1 were removed to control for false positives. For rhythmicity analysis, the log-

transformed CPM normalized data (LCPM) was quantile normalized for each tissue using the 

preprocessCore package. 

A principal component analysis (PCA) was performed on the LCPM data for each tissue. 

To see which covariates explained the variation in the first 2 principal components, linear 

regression models were fitted using the lm() function. Covariates of interest included ischemic 

time, Hardy death classification, sex, age, and tissue-specific morbidities (i.e. cardiovascular 

disease in heart tissue). Model selection was performed using bidirectional stepwise AIC (Akaike 

Information Criterion) to choose the most parsimonious model. Based on the results, we regressed 

out ischemic time, and Hardy death classification with a linear regression model on the LCPM 

data. This was done for each gene in each tissue. The residuals of these fits were used for 

downstream rhythmicity analyses. 
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2.2 Statistical analysis 

2.2.1 DiffCircaPipeline rhythmicity analysis 

We employed the DiffCircaPipeline software (Xue et al., 2023) to perform Cosinor model 

fitting and comparison for each tissue. The Cosinor model assumes a sinusoidal relationship 

between gene expression and ZT.  It is defined as (Cornelissan 2014): 

𝑌𝑌𝑖𝑖 = 𝐴𝐴 cos �2𝜋𝜋
𝑃𝑃

(𝑡𝑡𝑖𝑖 − 𝜙𝜙)� + 𝑀𝑀 + 𝜀𝜀𝑖𝑖 , 

where 𝑖𝑖 (1  ≤ 𝑖𝑖  ≤ 𝑛𝑛) is the sample index; 𝑛𝑛  is the number of samples in each age group for each 

tissue; 𝑌𝑌𝑖𝑖 is the quantile normalized LCPM values for genes in sample 𝑖𝑖; 𝑡𝑡𝑖𝑖 is the ZT for sample 𝑖𝑖 ; 

𝐴𝐴  is the amplitude; 𝑀𝑀 is the midline estimating statistic of rhythm (MESOR);𝜙𝜙 is the phase; 𝑃𝑃 is 

the period, fixed at 24 h for circadian rhythms; and 𝜖𝜖𝑖𝑖 is a normally distributed error term. 

Using the trigonometric conversion cos(𝑥𝑥 + 𝑦𝑦) = cos 𝑥𝑥 cos 𝑦𝑦 − sin 𝑥𝑥 sin 𝑦𝑦, the previous 

equation can be rewritten as: 

𝑌𝑌𝑖𝑖 = 𝛽𝛽1 cos(𝜔𝜔𝑡𝑡𝑖𝑖) + 𝛽𝛽2 sin(𝜔𝜔𝑡𝑡𝑖𝑖) + 𝑀𝑀 + 𝜀𝜀𝑖𝑖 , 

In which 𝛽𝛽1 = 𝐴𝐴 cos(𝜔𝜔𝜔𝜔) , 𝛽𝛽2 = 𝐴𝐴 sin(𝜔𝜔𝜔𝜔), and 𝜔𝜔 = 2𝜋𝜋
𝑃𝑃

. Estimates for 𝛽𝛽1and 𝛽𝛽2  are derived 

using ordinary least squares regression, which is then used to calculate the rhythm parameters 

𝐴𝐴 and 𝜙𝜙. 

A gene is determined to be significantly rhythmic based on an F-test. The F-statistic 

compares the model sum of squares (MSS) to the residual sum of squares (RSS): 

𝐹𝐹 =
𝑀𝑀𝑀𝑀𝑀𝑀/2

𝑅𝑅𝑅𝑅𝑅𝑅/(𝑁𝑁 − 3)   ∼  𝐹𝐹(2, 𝑁𝑁 − 3) 
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where 2 represents the degrees of freedom associated with the model, and N-3 is the degrees of 

freedom associated with the error term (number of observations minus number of parameters).  

𝑅𝑅𝑅𝑅𝑅𝑅 = ∑ �𝑌𝑌(𝑡𝑡𝑖𝑖) − 𝑌𝑌�(𝑡𝑡𝑖𝑖)�
2

𝑛𝑛
𝑖𝑖=1   and 𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ �𝑌𝑌�(𝑡𝑡𝑖𝑖) − 𝑌𝑌(𝑡𝑡𝑖𝑖)�

2
𝑛𝑛
𝑖𝑖=1  where 𝑌𝑌�(𝑡𝑡𝑖𝑖) are the predicted 

values and 𝑌𝑌(𝑡𝑡𝑖𝑖) is the mean of the observed data.  

We test the hypotheses 𝐻𝐻0: 𝐴𝐴 = 0 and 𝐻𝐻𝐴𝐴: 𝐴𝐴 ≠ 0. When 𝐴𝐴 = 0 , 𝑌𝑌𝑖𝑖 is not determined by 𝑡𝑡𝑖𝑖. 

Thus, the null hypothesis is rejected when 𝐹𝐹 > 𝐹𝐹1−𝛼𝛼,2,𝑁𝑁−3. For this analysis, 𝛼𝛼 is set to 0.05. 

After rhythmically expressed genes (REGs) are identified separately for each age group, 

they are categorized by type of rhythmicity: arrhythmic, rhythmic in the younger group, rhythmic 

in the older group, and rhythmic in both. This is done using a selective sequential model selection 

(SSMS) procedure to control false positives (identifying genes as within a rhythmic group when 

they are not). This algorithm involves a nested model path, starting with the simplest model 

(arrhythmic) to more complex models (rhythmic in one group, followed by rhythmic in both): 

 P-values are calculated by likelihood ratio testing between models on the path. The 

selected model is decided by a Sidak ForwardStop rule where the step we stop at, 𝑘𝑘 , is determined 

by the p-values of previous steps in relation to the significance level: 

𝑘𝑘� = max �𝑘𝑘:
1
𝑘𝑘
�log(1 − 𝑝𝑝𝑖𝑖)
𝑘𝑘

𝑖𝑖=1

≤ 𝛼𝛼� . 

2.2.2  CHIRAL-based rhythmicity analysis 

Circular HIerarchical Reconstruction Algorithm (CHIRAL) is an algorithm developed by 

Talamenca et al. (2023) for the purpose of assigning donors a phase along the circadian clock. The 
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algorithm involves modeling the LCPM matrix (𝐸𝐸𝑔𝑔𝑔𝑔) of each tissue with a multivariate harmonic 

regression model: 

𝐸𝐸𝑔𝑔𝑔𝑔 =  𝜇𝜇𝑔𝑔 + 𝑎𝑎𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙𝑐𝑐) + 𝑏𝑏𝑔𝑔 sin(𝜙𝜙𝑐𝑐) + 𝜖𝜖, 

in which 𝑔𝑔 refers to gene, 𝑐𝑐 refers to condition (sample), 𝜖𝜖 is a normally distributed error term, 𝑎𝑎𝑔𝑔 

and 𝑏𝑏𝑔𝑔  are gene Fourier parameters (close to zero if genes are non-rhythmic), and 𝜙𝜙𝑐𝑐  are the 

unknown sample phases. 

The process of estimating unknown sample phases is unsupervised in nature. It begins by 

selecting clock reference genes (CRGs). In this case, the CRGs used were: DBP, PER3, TEF, 

NR1D2, PER1, PER2, NPAS2, ARNTL, NR1D1, CRY1, CRY2, CIART. Model inputs are the 

LCPM matrix of CRGs for each sample and Gaussian distributed priors over the gene parameters. 

A Bayesian calculation marginalizes over the gene parameters distribution to derive posterior 

distributions over 𝜙𝜙𝑐𝑐  .The maximum a posteriori estimators are inferred using an expectation 

maximization (EM) procedure. This algorithm iterates between two steps. The expectation (E) step 

uses current estimates to evaluate the “Q function”, a function for the expected log likelihood. 

Then the maximization (M) step computes parameters which maximizes the Q function. These 

estimated parameters are then fed back into the E step. 

During the EM procedures, cosine and sine vectors are constrained to a norm of 1. CRGs 

are weighted based on their rhythmicity, and therefore their informativeness.  

𝜙𝜙𝑐𝑐 refers to tissue sample phases. These are combined in 𝜙𝜙𝑡𝑡𝑡𝑡 , a set of tissue (𝑡𝑡) phases for 

each donor (𝑑𝑑). The donor phases (𝜙𝜙𝑑𝑑) are then calculated based on the assumption that 𝜙𝜙𝑑𝑑 =

 𝜙𝜙𝑡𝑡𝑡𝑡  + 𝛿𝛿𝜙𝜙𝑡𝑡 , where 𝛿𝛿𝜙𝜙𝑡𝑡  is the tissue specific shift in phase that is shared among all donors. 

Because of this assumption, individual deviations from the population mean are ignored. 
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Talamanca et al. did report that majority of tissues were similarly phased, and outliers were tissues 

with weak clocks. Therefore, these tissues were weighted less when assigning 𝜙𝜙𝑑𝑑. 

After phase estimation, rhythmic genes were detected with multivariate harmonic 

regression by inputting the LCPM matrix of all genes: 

𝐸𝐸𝑔𝑔𝑔𝑔 =  𝜇𝜇𝑔𝑔 + 𝑎𝑎𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙𝑑𝑑) + 𝑏𝑏𝑔𝑔 sin(𝜙𝜙𝑑𝑑) + 𝜖𝜖. 

A gene was determined to be significantly rhythmic using a likelihood ratio test in which 

𝐻𝐻0: 𝑎𝑎𝑔𝑔 = 𝑏𝑏𝑔𝑔 = 0 . P-values were computed from a chi-squared distribution and adjusted with 

Benjamini-Hochberg (BH) correction.  

2.2.3 Differential expression analysis 

The TODs were categorized into 4-time domains defined as Active Phase: ZTs (4-10], 

Activity Offset Phase: ZTs (10-16], Rest Phase: ZTs (16-22], and Activity Onset Phase: ZTs (22-

4]. Within each time domain and for each tissue, the DESeq2 R package was utilized to identify 

genes showing increasing/decreasing expression values between age groups. The DESeq2 method 

uses a model based on the negative binomial distribution to account for variability in gene count 

data. The Wald test was used to assess the significance of estimated log2 fold changes and the 

false discovery rate was controlled for using BH correction. 

Rank-rank hypergeometric overlap (RRHO) was utilized to compare the differential 

expression (DE) patterns between our GTEx analysis and published mouse results from Wolff et 

al. (2023). RRHO was performed using the RRHO2 package (Cahill, 2018). This approach 

performs “threshold-free” comparisons because significance cut-offs may miss concordantly 

expressed genes. We inputted the full gene list from our GTEx analysis, regardless of p-value, 

against Wolff et al.’s DE list at a cutoff of q-value > 0.05. Genes were ranked by p-value and log2 
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fold change. For each ranked gene, a significance value was calculated via a hyper-geometric 

distribution which represented the significance of the number of overlapping genes. A chi-squared 

test was performed to identify whether the proportion in the number of concordant/discordant 

genes was significant (p-value < 0.05).  

2.2.4 GO pathway enrichment 

The functional annotations of REGs (p-value < 0.03) and DEGs (q-value < 0.1) were 

examined using the clusterProfiler package in R. Specifically, the enrichGO function calculated 

statistically significant enrichment for gene ontology (GO) terms. This function is based on a 

hypergeometric distribution to check whether the number of selected genes that fall into a specific 

GO term is higher than what would be expected by chance. Multiple comparison correction was 

performed using the Benjamini-Hochberg method. Redundant pathways were filtered out using 

REVIGO. 
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3.0 Results 

This study examined the human circadian transcriptome utilizing samples from the GTEx 

(v8) project. RNA-seq data was analyzed from four tissues: lung, skeletal muscle, heart left 

ventricle, and adrenal medulla. These tissues were selected because Wolff et al. detailed the age-

related circadian changes of these tissues in male mice. This gives an opportunity to compare 

mouse results to human results. Wolff et al. also examined hypothalamus and kidney tissue, but it 

was not included here because we aimed for a sample size of at least 50 donors after stratifying 

subjects into Young (≤45 y) and Old (≥60 y) groups. The final sample sizes are shown in Table 

1. 

 

Table 1: Demographics 

Tissue Age Group N Age (mean years (sd)) Sex = Male (%) 

Lung Young 98 34.1 (7.2) 67% 

Old 136 64.8 (3.2) 68% 

Muscle Young 176 33.3 (7.8) 66% 

Old 194 64.8 (3.2) 72% 

Heart Young 68 34.6 (8) 56% 

Old 103 64.5 (3) 70% 

Adrenal Young 62 35.1 (7.7) 60% 

Old 59 64.6 (3.1) 56% 
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3.1 Circadian transcriptome analysis using TOD and DiffCircaPipeline 

Within each tissue, gene expression data was corrected for sample covariates to reduce 

variability not related to age or circadian oscillations. Samples were ordered by the donor’s time 

of death (TOD). The corrected and ordered data was then fitted to sinusoidal regression models 

with a period of 24 hr using the DiffCircaPipeline package (Xue et al., 2023). Rhythmically 

expressed genes (REGs) were defined based on a raw p-value < 0.03. The sequential series model 

selection (SSMS) procedure, also offered through DiffCircaPipeline, was implemented to 

categorize REGs into four types of rhythmicity: (i) only rhythmic in the older group; (ii) only 

rhythmic in the younger group; (iii) rhythmic in both groups; (iv) arrhythmic. 

Across all tissues except the heart, we found that the number of REGs increased by an 

average of 48% with age. In the lung, there were 248 REGs in Young and 486 in Old (Figure 1A).  

In muscle, there were 287 REGs in Young and 574 REGs in Old (Figure 1B). In the adrenal gland, 

241 REGs were identified in Young and 550 REGs in Old (Figure 1D). Only the heart showed 

little difference with 333 REGs in Young and 335 REGs in Old (Figure 1C). The majority of REGs 

were age-specific with only 2%- 5% of REGs conserved between age groups. Wolff et al. found 

that in mice, the number of REGs tended to decrease with age, and that over 90% of REGs were 

age specific. 
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Figure 1: Heatmap of rhythmically expressed genes (REGs) 
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The majority of identified REGs were tissue-specific, with only five genes shared across 

all tissues in the older group: PER3, CIART, PER2, NR1D2, and ARNTL. These genes are 

considered core clock genes (CCGs) which serve as the main output and regulators of the circadian 

clock (Cox, 2019). Their multi-tissue conservation is consistent with Wolff et al. and previous 

multi-organ mouse studies (Zhang et al., 2014). Unexpectedly, no genes were shared across all 

tissues in the younger group. Additionally, in all tissues except lung, the core clock genes were 

dampened in Young compared to Old. This contradicts Wolff et al.’s results and a previous study 

looking at age-dependent circadian changes in the human postmortem brain (Chen et al., 2016). 

3.2 Comparison of TOD and CHIRAL based analyses 

Our rhythmicity analysis shows contrary findings to Wolff et al. in terms of the number of 

REGs and the expression of core clock genes with age. We wondered if this was due to using TOD 

to order subjects and reconstruct molecular rhythmicity. Therefore, we compared our results and 

Wolff et al’s mouse timecourse results to that of Talamenca et al. (2023). In their recent study, 

Talamanca et al. also looked at age-dependent changes in circadian rhythms in humans. Notably, 

they combined GTEx transcriptomes with CHIRAL, an algorithm they developed to assign 

circadian phase to human donors using a set of weighted clock reference genes. Their age groups 

were defined similarly as Young (<50 y) and Old (>60 y). 

Figure 2 shows the difference in the number of REGs identified. To define rhythmicity, 

Wolff et al. used a raw p-value < 0.01 and Talamanca et al. used a q-value < 0.2. In lung and heart 

tissue, CHIRAL analysis showed a 22% and 55% age-related decrease in the number of REGs 
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respectively. In muscle and adrenal gland tissue, CHIRAL analysis showed a 4.5% and 10% 

increase in the number of REGs respectively. 

Table 2 shows the age-related change in amplitude of 16 CCGs. The CHIRAL analysis 

found no change in the amplitude of most CCGs with age. 

 

 

Figure 2: Number of REGs identified across methods 
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Table 2: Change in amplitude of core clock genes (CCGs) with age 

Blue-shaded cells indicate CCGs that decrease in amplitude with age. Yellow indicates an increase in 

amplitude and gray indicates no change in amplitude. 

 Mouse       TOD       CHIRAL       
  Lung Muscle Heart Adrenal Lung Muscle Heart Adrenal Lung Muscle Heart Adrenal 

Arntl -6.079 1.912 -4.680 -15.253 0.131 0.435 0.574 0.021 0.000 0.000 0.000 0.000 
Bhlhe40 0.983 22.093 1.845 25.787 0.091 0.055 0.167 0.139 0.000 0.000 0.000 0.000 
Bhlhe41 0.758 3.929 -3.358 0.827 0.077 0.126 0.020 0.138 -0.661 0.000 0.000 0.000 

Ciart -4.123 -2.031 -2.178 -0.480 -0.257 0.295 0.331 0.199 0.133 0.518 0.000 0.557 
Clock -13.895 7.716 -0.917 -2.915 0.012 0.058 0.010 -0.009 -0.136 0.000 0.000 0.000 
Cry1 -2.884 -3.519 0.787 -7.758 -0.029 0.166 0.130 -0.083 -0.552 0.000 0.000 0.000 
Cry2 -11.962 4.207 -3.899 1.041 -0.135 0.031 -0.022 -0.006 0.166 0.286 0.000 0.000 
Dbp -40.725 -17.032 -31.690 -2.650 -0.323 0.407 0.288 -0.004 0.000 NA NA 0.000 

Npas2 -1.236 -0.527 -0.859 -5.605 0.035 0.250 0.118 0.207 0.000 -0.182 0.000 0.000 
Nr1d1 -17.238 -30.446 10.979 15.168 -0.291 0.100 0.192 0.049 0.000 0.000 0.000 0.000 
Nr1d2 -51.031 -11.753 -0.415 -3.579 -0.085 0.179 0.201 0.093 0.000 0.000 0.000 0.360 

Per1 -37.034 -14.077 -9.057 -12.196 -0.114 0.133 0.132 0.024 0.000 0.138 0.000 0.000 
Per2 -27.580 -8.944 0.834 -21.464 0.103 0.268 0.457 0.144 0.000 0.000 0.000 0.000 
Per3 -38.505 -10.182 2.242 -7.946 -0.077 0.377 0.485 0.288 0.000 0.000 0.000 0.607 
Rora -7.582 1.182 -2.238 -1.582 -0.076 0.046 -0.115 -0.039 0.000 0.000 0.239 0.000 

Tef -84.231 -28.625 -3.463 -13.690 -0.188 0.204 0.344 0.035 0.000 0.000 0.000 0.000 

Decrease 
amplitude 

14 10 11 12 10 0 2 5 3 1 0 0 

Increase 
amplitude 

2 6 5 4 6 16 14 11 2 3 1 3 

No change in 
amplitude 0 0 0 0 0 0 0 0 11 11 14 13 
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Using the same CCGs from Table 2, we examined the phase order of CCGs. In circadian 

biology, the phase order is tightly regulated in transcription translation feedback loops. For 

example, CLOCK and ARNT1 activate the expression of Per and Cry genes, which then upregulate 

proteins that inhibit their own transcription (Zhang et al., 2014). This crucial phase order is 

conserved between mouse and baboons, even when the exact phases of the genes are not (Mure et 

al., 2018). We assume this essential phase order is likely conserved between mice and humans 

within tissue and age. 

To consider the cyclic properties of these data, we calculated the circular correlation 

coefficient between the CCG phases of mouse time course and CCG phases of either TOD or 

CHIRAL based analysis (Table 3). This reveals that using TOD leads to better coherence between 

mouse and human CCG phases. In Young, the average circular correlation was 0.57 using TOD 

and -0.26 using CHIRAL. In Old, the average circular correlation was 0.41 using TOD and -0.11 

using CHIRAL. This negative correlation implies that CHIRAL has directional errors when 

reconstructing rhythmicity. Figure 3 shows each method’s estimated CCG phase orders in Young 

muscle tissue. 
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Table 3: Circular correlation coefficients of CCG phase orders 

Tissue Age Group Mouse vs. TOD Mouse vs. CHIRAL 

adrenal young 0.774 -0.098 
old -0.080 -0.540 

heart young 0.578 -0.424 
old 0.749 -0.414 

lung young 0.543 -0.668 
old 0.263 -0.235 

muscle young 0.405 0.148 

old 0.690 0.331 
 

 

 

Figure 3: Phase orders of core clock genes across methods in Young lung tissue 
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3.3 Tissue specific analysis of age-related REGs 

Given the moderately strong circular correlation of CCG phase orders for our rhythmicity 

results, we further examined the detected REGs within each tissue. First, the distributions of the 

peak phases of the REGs were explored (Figure 4). For nearly all tissues and ages, the peak phases 

display different distributions of two clusters. In lung and heart, the clusters shift forward by 2-3 

hours with age (Figure 4A, 4C). In adrenal the clusters shift back 2-3 hours with age (Figure 4D). 

When the REGs are combined across all tissue in Figure 5, the peak phases in Old organize into 

two clusters between ZTs 19-5 and ZTs 8-16, suggesting peaks in anticipation of rest and active 

phases. This is a feature of rhythmicity in diurnal primates (Mure et al., 2014). However, in Young, 

the combined peak phases show a greater spread throughout the day. This could suggest that in 

Young, the rhythmicity patterns of each peripheral clock are more distinct. 

The tissue and age-specific clusters of REG peak phases were then examined using Gene 

Ontology (GO)- based annotation for functional pathways. 
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Figure 4: Radial plot of the distribution of estimated peak phases of the REGs from each tissue 
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Figure 5: Radial plot of the distribution of estimated peak phases for all REGs combined across tissue 

3.3.1 Pathway analysis of REGs identified in lung 

Lungs are primarily known for facilitating gas exchange but are also crucial in the 

inflammatory response as the first line of defense against pathogenic microbes.  

In our analysis (Table 4), we saw enrichment for fatty acid metabolism and inositol lipid 

signaling pathways in Young REGs. Alveoli are especially lipid rich and require fatty acids to 

maintain the integrity and fluidity of cellular membranes. Disruption of fatty acid synthesis affects 

the regeneration of alveolar epithelial cells and is implicated in pulmonary fibrosis and acute lung 

injury (Tian et al., 2023). Along the same lines, there is enrichment in maintenance of epithelial 

and mesenchymal cells in Young REGs. For example, autophagic processes in cardiac and 

mesenchymal cells maintain the function of pulmonary airways in the lung (Liao et al., 2019). 

These pathways are not enriched in Old REGs. Rather, in Old, cluster ZT 19-22 includes 

pathways like cilium movement and xenobiotic metabolism. Both are involved in eliminating 

harmful substances in the environment and could be considered reactive functions.  
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Oxidative metabolic pathways and cellular respiration are enriched in Old but not Young 

at ZT0-6. This implies greater energy demands between the rest phase and active phase and will 

be a common pattern seen in the REGs of other tissues as well. Studies in mice have also found 

that the majority of cycling mitochondrial proteins peak during early light phase (corresponds to 

ZT0-6). The rate-limiting mitochondrial enzymes accumulate diurnally and are dependent on 

PER1/2. In PER1/2 knockout mice, the cycling of mitochondrial respiration is dampened 

(Neufield-Cohen et al., 2016). 

It is curious to see mitochondrial respiration pathways only enriched in Old, as 

mitochondrial dysfunction is considered a hallmark of aging. One possible reason is that 

mammalian tissue shows inconsistencies in the rate of mitochondrial decline across the entire 

organism. For example, studies show a decline in mitochondrial respiration with age in human 

muscle, but not blood (Trounce et al., 1989; Ehinger et al., 2024). Similarly, in an animal study of 

344 aging rats, there was no decline in respiration within platelets or heart tissue although changes 

were seen in skeletal muscle and kidney cortex (Jedlicka et al., 2022). In our analysis, we only see 

periodic activity of mitochondrial respiration in Old for lung, heart, and adrenal tissue, but not 

muscle. The tissue-specific rhythmicity of mitochondrial respiration could explain the tissue-

specific stability of mitochondrial function with age. 

Wolff et al. also saw apoptosis enriched in Young and cellular respiration enriched in Old. 

However, their main observation that immune-related pathways lost rhythmicity in the Old was 

not reflected in our analysis. 
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Table 4: GO pathways enriched by REGs that cycle in lung 

Clusters refer to the distribution of REG peak phases in Figure 4A. 

Age Group Cluster (ZT) Pathway GeneRatio P-Value Q-Value 

Young 7 - 14 positive regulation of fatty acid metabolic process 3/63 2.9e-04 1.2e-01 

gastrulation 5/63 5.3e-04 1.2e-01 

cardiac muscle cell apoptotic process 3/63 7.7e-04 1.2e-01 

regulation of cell-substrate adhesion 5/63 9.2e-04 1.2e-01 

mesenchymal cell apoptotic process 2/63 1.2e-03 1.2e-01 

regulation of unsaturated fatty acid biosynthetic process 2/63 1.2e-03 1.2e-01 

protein complex oligomerization 5/63 1.5e-03 1.4e-01 

19 - 4 rhythmic process 11/112 2.2e-06 3.6e-03 

regulation of circadian rhythm 6/112 7.2e-05 4.0e-02 

inositol lipid-mediated signaling 6/112 6.9e-04 1.4e-01 

Old 11 - 17 hippo signaling 5/131 1.4e-05 2.3e-02 

chromatin remodeling 12/131 2.7e-05 2.3e-02 

positive regulation of monocyte differentiation 3/131 3.9e-05 2.3e-02 

fat cell differentiation 9/131 6.2e-05 2.9e-02 

myoblast differentiation 6/131 1.3e-04 3.7e-02 

19 - 22 axoneme assembly 17/71 1.6e-24 1.3e-21 

microtubule-based movement 23/71 6.2e-21 1.7e-18 

cilium organization 21/71 9.4e-19 1.9e-16 

extracellular transport 4/71 2.4e-05 1.1e-03 

xenobiotic metabolic process 4/71 1.3e-03 4.8e-02 

0 - 6 cellular respiration 12/187 6.6e-06 2.5e-03 

protein neddylation 5/187 7.9e-06 2.5e-03 

mitochondrial electron transport, NADH to ubiquinone 6/187 1.2e-05 2.9e-03 

ribonucleoprotein complex biogenesis 15/187 9.5e-05 1.5e-02 

oxidative phosphorylation 8/187 1.3e-04 1.7e-02 

nucleotide biosynthetic process 11/187 2.0e-04 1.9e-02 

iron-sulfur cluster assembly 4/187 2.2e-04 1.9e-02 

endoplasmic reticulum to Golgi vesicle-mediated transport 7/187 3.6e-04 2.4e-02 
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3.3.2 Pathway analysis of REGs identified in heart 

As mentioned in the lung section, heart REGs in Old show enrichment in respiration 

pathways which is not seen in Young. Unlike in lung, this process peaks at ZT5-13, which 

corresponds to the active phase. Heart REGs in Young also show enrichment in heart valve 

morphogenesis and epithelial to mesenchymal transition (EMT). EMT serves as the basis for 

wound healing (Dongre et al., 2019). This supports the pattern found in lung REGs that rhythms 

of cell differentiation, growth, and maintenance  more pronounced in Young.  

Within REGs in both Young and Old, there is enrichment of the adaptive immune response 

and interferon signaling. This occurs at similar times- ZTs 14-23 in Young and ZTs 16-2 in Old. 

Adaptive immune responses are known to be regulated by the circadian clock, with enhanced 

immune reactivity occurring between the rest and active phases (Ince et al., 2023). Our analysis is 

consistent with this. Additionally, the continued rhythmicity of immune-related pathways is 

consistent with Wolff et al.’s finding that unlike other tissues, REG pathways in the heart are 

largely conserved across age. 
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Table 5: GO pathways enriched by REGs that cycle in heart 

Clusters refer to the distribution of REG peak phases in Figure 4C. 

Age Group Cluster (ZT) Pathway GeneRatio P-Value Q-Value 

Young 14 - 23 heart valve morphogenesis 5/137 7.9e-05 7.2e-02 

epithelial to mesenchymal transition 7/137 2.9e-04 7.6e-02 

positive regulation of immune effector process 8/137 8.2e-04 1.5e-01 

protein export from nucleus 4/137 9.3e-04 1.5e-01 

positive regulation of histone acetylation 3/137 1.4e-03 1.7e-01 

positive regulation of adaptive immune response 5/137 2.2e-03 1.7e-01 

C21-steroid hormone metabolic process 3/137 2.5e-03 1.7e-01 

2 - 11 regulation of IRE1-mediated unfolded protein response 3/178 2.9e-04 2.2e-01 

endosome to plasma membrane protein transport 3/178 5.3e-04 2.2e-01 

protein targeting to peroxisome 3/178 8.7e-04 2.2e-01 

Old 5 - 13 mitochondrial respiratory chain complex assembly 12/135 7.0e-12 1.2e-08 

oxidative phosphorylation 11/135 1.1e-08 4.4e-06 

cellular respiration 12/135 2.1e-07 3.5e-05 

energy derivation by oxidation of organic compounds 13/135 1.1e-06 1.3e-04 

16 - 2 response to virus 16/146 1.4e-07 8.8e-05 

interferon-mediated signaling pathway 7/146 1.4e-05 3.3e-03 

protein localization to nucleus 11/146 2.9e-05 5.0e-03 

establishment of RNA localization 8/146 4.4e-05 5.0e-03 

rhythmic process 10/146 1.4e-04 1.4e-02 

circadian rhythm 8/146 2.3e-04 2.0e-02 
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3.3.3 Pathway analysis of REGs identified in muscle 

This analysis found no overlap in the rhythmic processes across age in muscle. Following 

the trend in lung and heart, the most significantly enriched pathway in the REGs of Young muscle 

is cell morphogenesis. In Old, enriched pathways consisted of protein folding, p53 signal 

transduction, and NF-kappaB activity. The purpose of these processes is to maintain homeostasis 

against diverse stressors: unfolded proteins, DNA damage, and pathogens. They are each known 

to regulate the circadian clock. For example, p53 blocks BMAL1/CLOCK binding to the Per2 

promoter resulting in repressed Per2 expression, and NF-kappaB binds to and represses BMAL1 

at the same domain as CRY1 (Miki et al., 2014; Shen et al., 2021).  

The enrichment of these pathways may be associated with our observation of more robust 

CCG rhythms with age. Wolff et al., who found less robust CCG rhythms with age, observed that 

the p53 and NF-kappaB pathways lost rhythmicity with age in muscle, heart, and lung. 
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Table 6: GO pathways enriched in REGs that cycle in muscle 

Clusters refer to the distribution of REG peak phases in Figure 4B. 

Age Group Cluster (ZT) Pathway GeneRatio P-Value Q-Value 

Young 7 - 15 base-excision repair 5/114 6.3e-06 1.2e-02 

steroid biosynthetic process 7/114 1.0e-04 1.0e-01 

19 - 1 regulation of cell morphogenesis 8/90 2.5e-05 4.2e-02 

Old 6 - 14 protein-containing complex disassembly 10/205 3.4e-04 1.0e-01 

positive regulation of NF-kappaB transcription factor activity 8/205 3.9e-04 1.0e-01 

positive regulation of cell projection organization 12/205 5.7e-04 1.2e-01 

regulation of DNA-binding transcription factor activity 14/205 6.7e-04 1.2e-01 

signal transduction by p53 class mediator 8/205 6.8e-04 1.2e-01 

neurotrophin signaling pathway 4/205 7.1e-04 1.2e-01 

protein folding 8/205 3.1e-03 2.6e-01 

15 - 2 regulation of GTPase activity 18/273 7.7e-06 1.9e-02 

vascular process in circulatory system 14/273 3.9e-05 3.4e-02 

rhythmic process 15/273 4.4e-05 3.4e-02 
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3.3.4 Pathway analysis of REGs identified in adrenal medulla 

The adrenal medulla releases catecholamine hormones like epinephrine and 

norepinephrine which regulate the autonomous nervous system. Important features of the adrenal 

medulla include innervation by preganglionic neurons for communicating with the body, and 

chromaffin cells which secrete neurohormones into the blood supply (Hofmann et al., 1981). Given 

the established circadian rhythms of norepinephrine and epinephrine (Linsell et al., 1985), it is 

unsurprising that the adrenal medulla would display REGs related to nervous system function. In 

this analysis (Table 7), we specifically see rhythms in synaptic assembly and chemical-synaptic 

signaling in Young. In Old, there is enrichment in neuron projection and axonogenesis. These 

pathways were not enriched in Wolff et al.’s adrenal gland results, possibly because they 

homogenized both adrenal cortex and medulla tissue. GTEx kept the two tissues distinct. However, 

Wolff et al.’s hypothalamus results did see rhythms in neuron development and projection in Old 

but not Young. 

In Old, there is enrichment in metabolic pathways, including TOR signaling, fatty acid 

catabolism, and ribonucleotide metabolism. This suggests greater provision of energy occurs at 

ZT 9-18, between rest phase and activity onset, which is like Old REGs in the lung. In Old, there 

is rhythmicity in protein quality control not seen in Young. This was also observed in muscle. 

Wolff et al. found in their analysis that unfolded protein response pathways were generally 

maintained across age. 
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Table 7: GO pathways enriched in REGs that cycle in adrenal medulla 

Clusters refer to the distribution of REG peak phases in Figure 4D. 

Age Group Cluster (ZT) Pathway GeneRatio P-Value Q-Value 

Young 23 - 7 cell junction assembly 11/69 6.6e-07 1.0e-03 

synapse assembly 7/69 8.3e-06 4.6e-03 

modulation of chemical synaptic transmission 10/69 1.2e-05 4.6e-03 

regulation of trans-synaptic signaling 10/69 1.2e-05 4.6e-03 

positive regulation of cell projection organization 7/69 3.3e-04 4.2e-02 

adaptive thermogenesis 5/69 3.3e-04 4.2e-02 

11 - 20 No enriched pathways - - - 

Old 22 - 6 regulation of neuron projection development 18/209 3.7e-06 8.5e-03 

axonogenesis 16/209 2.7e-05 1.4e-02 

cell junction assembly 15/209 1.6e-04 5.5e-02 

9 - 18 monocarboxylic acid catabolic process 9/247 6.4e-05 9.9e-02 

protein quality control for misfolded or incompletely 
synthesized proteins 

4/247 4.8e-04 1.1e-01 

ribonucleotide metabolic process 16/247 5.0e-04 1.1e-01 

fatty acid catabolic process 7/247 5.0e-04 1.1e-01 

regulation of TOR signaling 7/247 9.1e-04 1.4e-01 
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3.4 Age-associated differential expression analysis within time domains 

In addition to detecting rhythmic genes, Wolff et al. divided their time course data over 

four time domains and examined temporal differences in age-related changes in genes expression. 

We did a similar analysis with the goal of seeing how translatable Wolff et al.’s mouse results 

were to humans. The tissue samples were binned into four time domains based on donor’s TOD: 

the active phase, activity offset, rest phase, and activity onset. We performed differential 

expression analysis to define time domain specific genes that were upregulated or downregulated 

with age.  

Differentially expressed genes (DEGs) were defined by a cutoff of q-value < 0.1 (Figure 

6). Similar to Wolff et al.’s result, the large majority of identified DEGs were time domain specific 

within tissues, and tissue specific within time domains. The most DEGs identified was in lung 

tissue, with an average of 1696 DEGs identified in each of the four time domain. The least number 

of DEGs identified was in heart tissue with an average of 41 DEGs identified in each time domain. 

This was also found in Wolff et al.’s results and supported their conclusion that heart tissue shows 

the least change in age. 

Our differential expression genes were compared to Wolff et al.’s results using a rank-

rank-hypergeometric-overlap (RRHO). This method allowed us to identify concordant and 

discordant differential patterns between mice and humans within each tissue and time domain. 

Muscle, lung, and heart tissue were included for this analysis. Adrenal was excluded because Wolff 

et al. did not provide the DE results for this tissue. 

High concordance was seen in lung tissue (Figure 7). Except for rest phase, most of the 

genes that significantly overlapped between mice and human were either upregulated in both or 

downregulated in both. Muscle and heart tissues either saw few significantly overlapped genes or 
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saw discordant patterns. This implies that only in lung tissue do mice and humans share age-related 

changes at the same time domains. Wolff et al. expressed that the potential application for their 

DE analysis is to target therapeutics more precisely. Given the RRHO results, these time-of-day 

molecular mappings require a species-specific perspective. 

Table 8 shows pathway enriched in the concordant genes identified in lung tissue. The goal 

is to provide supporting evidence to the lung REG analysis, because certain pathways found 

rhythmic in humans were not rhythmic in mouse, or vice versa. For example, Wolff et al. saw an 

age-related loss in rhythmicity of genes related to the immune system. However, they also found 

in their DE analysis, that there is an upregulation of immune-related genes with age, specifically 

in the active and activity offset phase. They suggest that this time-of-day specific upregulation is 

to compensate for loss of rhythmicity in Young. Similarly, although our analysis did not identify 

any rhythmic pathways related to immune function, we do see that upregulation in immune-related 

DEGs, also in active and activity offset phases.   

Consistent with the lung rhythmicity patterns, the lung DEGs in both human and mouse 

show downregulation in epithelial cell proliferation and an upregulation in cellular respiration at 

activity onset. Within the active phase, there is concordant upregulation in cilium organization. It 

is known that lack of proliferation in aging broncoepitheial cells impairs mucous clearance 

(Brandenburger et al., 2016). Upregulation of cilium activity could be a reactive response to this. 

Lastly, throughout the day, there is concordant downregulation of stress response pathways related 

to endoplasmic reticulum stress and oxidative stress.  
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Figure 6: Heatmap of age-associated DEGs identified within time domains 

Heatmap displays Z-scores of log2fold change. 
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Figure 7: RRHO between mouse and human lung gene sets 

A-D depict heatmaps of the -log10(P-values) between overlapping genes. E-H depict the number of 

overlapping genes found signficant in each condition. 
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Table 8: GO pathways enriched in DEGs that are concordant between mouse and human lung tissue 

Time Domain Direction with Age Pathway GeneRatio P-Value Q-Value 

Active Downregulated positive regulation of response to endoplasmic reticulum stress 3/77 1.2e-04 3.3e-02 

rRNA processing 5/77 2.8e-04 3.3e-02 

regulation of proteolysis involved in protein catabolic process 5/77 3.6e-04 3.3e-02 

Upregulated cilium organization 13/94 9.0e-10 1.7e-07 

respiratory system development 6/94 2.7e-04 1.8e-02 

regulation of innate immune response 6/94 1.7e-03 3.3e-02 

Active Offset Downregulated ribonucleoprotein complex biogenesis 7/69 6.9e-05 5.3e-02 

histone H3 deacetylation 2/69 3.7e-04 1.1e-01 

ncRNA processing 6/69 4.3e-04 1.1e-01 

Upregulated T cell proliferation 5/48 5.4e-05 7.3e-03 

carbohydrate derivative catabolic process 4/48 1.5e-04 1.5e-02 

regulation of G1/S transition of mitotic cell cycle 4/48 1.8e-04 1.5e-02 

Rest Downregulated No enriched pathways - - - 

Upregulated No enriched pathways - - - 

Active Onset Downregulated protein autophosphorylation 12/212 2.9e-07 5.5e-04 

regulation of epithelial cell proliferation 13/212 2.0e-05 2.5e-03 

cell death in response to oxidative stress 6/212 1.1e-04 4.9e-03 

Upregulated muscle cell development 20/247 2.3e-14 4.8e-11 

mitochondrial translation 12/247 1.9e-09 3.5e-07 

cellular respiration 11/247 1.4e-05 5.5e-04 
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4.0 Discussion 

Several rhythmic characteristics and pathways were found similar between Wolff et al.’s 

results and ours. With age, the peak phases of genes tend to distribute into two clusters at active 

onset and active offset times. This could imply that in Young, there is a greater diversity in the 

timing of the daily transcriptional program. On the other hand, in Old, the clusters of peak phases 

could be reactive to stressors occurring during these times.  

Across all tissues, we notice trends in two biological processes. In Young, there tends to 

be rhythmicity in cell growth, differentiation, and tissue development. These pathways are seen 

less in Old. In Old, we see rhythmicity in cellular respiration and oxidative phosphorylation, which 

is not seen in Young. This observation meshes well with the peak phase clustering information. In 

Young, there is a focus on maintaining cell and tissue integrity throughout the day. In Old, energy 

demands during the transitions between rest and active phase are associated with peaks in REGs. 

These results contribute to existing knowledge on aging. A main feature of aging is 

increased cellular senescence, a state of irreversible growth cycle arrest. Senescence is 

accompanied by impaired cellular function. Most notably, mitochondrial dysfunction is both a 

cause and a consequence of senescence. In our analysis, the senescence phenotype likely presents 

as age-associated loss of rhythmicity and gene expression of cell growth and differentiation 

pathways.  

On the other hand, it is unclear how the mitochondrial dysfunction phenotype relates to our 

observed age-associated and time-dependent increases in cellular respiration related rhythmicity 

and gene expression. One possibility is Wolff et al.’s hypothesis of compensatory reactive 

pathways with age: mitochondrial dysfunction in the old creates time-of day specific vulnerability, 
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which is overcome by upregulation of response genes. Previous studies have also found evidence 

of transcriptional upregulation of mitochondrial genes in response to dysfunctional mitochondrial 

biogenesis (Celotto et al., 2011; Bergen et al., 2011; Chen et al., 2022). A second possibility is that 

rhythmicity with age is protective: sustained rhythmicity of mitochondrial respiration genes with 

age in certain tissues contributes to why mitochondrial function declines with age in certain tissues 

but not others (Ehinger et al., 2024). A third possibility is that 24-hour oscillations in the old is 

itself a symptom of dysfunction. Besides 24-hour rhythms, there also exist ultradian rhythms, 

which oscillate with periods less than 24 hours. 8–12-week-old mice (corresponds to 35-40 human 

years) exhibit 12-hr oscillations in mitochondria-associated metabolism pathway (Zhu et al., 

2018). Additionally, certain ultradian rhythms lengthen in period during disease and aging (Lopp 

et al., 2017; Scott et al., 2023) Our analysis was limited to a 24-hour period and cannot detect 

changes in oscillatory period with age. 

In this discussion, we only emphasize the enriched biological processes that exhibited a 

consistent trend across all tissues. Interpretation of our other results is complicated by the reduced 

rhythmicity of CCGs in some Young tissues. It is established that CCGs are more robust in the 

younger organisms. If a pathway was not found rhythmic in certain Young tissues, it may be 

because of study limitations rather than biological truth.  

Several factors may contribute to the lack of REGs detected in Young. According to the 

cohort demographics, the Young group had smaller sample sizes. The Young group also had wider 

age distributions with a standard deviation of 7-8 years compared to 3 years in Old. This may have 

contributed to greater heterogeneity within the Young groups, and difficulty in reconstructing 

rhythmicity. 
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Another obstacle in detecting rhythmic genes was the use of TOD to order donors. We 

introduced Talamanca et al.’s analysis because they similarly used GTEx data to investigate age-

associated circadian changes, but also incorporated CHIRAL, an algorithm for estimating donor 

phase. CHIRAL did improve Talamanca et al.’s ability to detect REGs. Compared to our analysis, 

there is less difference in the number of REGs detected between Young and Old. Talamanca et al. 

also described a stable amplitude for most CCGs with age. 

Our main concern with the CHIRAL-based analysis is its inaccuracies in estimating the 

phase order of CCGs. This would be problematic if someone is interested in the mechanisms and 

causal relationships between specific REGs. On the other hand, the phase orders in our analysis 

were consistent with Wolff et al.’s. However, a confounding factor is that our analysis and Wolff 

et al.’s both detected rhythmicity using the Cosinor model, whereas Talamanca et al. employed a 

multivariate harmonic regression model, described in Methods. While the Cosinor model only fits 

univariate data to a single periodic component, a multivariate harmonic regression accommodates 

multiple variables and periodic components. 

Overall, our findings present multiple avenues for future research. It would be meaningful 

to extend this analysis with more tissue types, a greater range of periods, and narrower continuous 

age intervals. This would enhance the systems-level goal of the study. Phase estimation algorithms 

can be implemented. Specifically, the phase order estimation of CHIRAL could be refined using 

age-specific and tissue-specific clock references, and order-restricted inference methods (Larriba 

et al., 2022). Moreover, conducting functional assays is crucial to decipher the underlying 

biological mechanisms tied to our findings and to investigate potential interventions for promoting 

healthy aging. 
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