
Title Page

Statistical modeling of Epstein-Barr virus infection using scRNA-Seq host expression

by

Japan Patel

B.S. Mathematical Biology, University of Pittsburgh, 2022

B.S. Economics, University of Pittsburgh, 2022

Submitted to the Graduate Faculty of the

School of Public Health in partial fulfillment

of the requirements for the degree of

Master of Science

University of Pittsburgh

2024

 ii

Committee Membership Page

UNIVERSITY OF PITTSBURGH

SCHOOL OF PUBLIC HEALTH

This thesis was presented

by

Japan Patel

It was defended on

April 16, 2024

and approved by

Jeanine M Buchanich MEd, MPH, PhD, Associate Professor, Department of Biostatistics

Jiebiao Wang PhD, Assistant Professor, Department of Biostatistics

Kathy H.Y. Shair PhD, Assistant Professor, Department of Microbiology & Molecular Genetics

Thesis Advisor: Jeanine M Buchanich, Associate Professor, Department of Biostatistics

 iii

Copyright © by Japan Patel

2024

 iv

Abstract

Statistical modeling of Epstein-Barr virus infection using scRNA-Seq host expression

Japan Patel, MS

University of Pittsburgh, 2024

Epstein-Barr virus (EBV) is a ubiquitous virus that infects the majority of people

worldwide. EBV replication is characterized by latent and lytic cycles where viral gene expression

during latency is associated with certain cancers, such as Burkitt's Lymphoma and Nasopharyngeal

Carcinoma (NPC). The field’s understanding of viral-host mechanisms of EBV in epithelial cells

is incomplete. To determine host gene expression profiles which influence the lifecycle of EBV

we modeled Single Cell RNA Sequencing (scRNA-seq) data of EBV-infected cell lines by a

Random Forest algorithm and multinomial logistic regression approaches. This methodology

allowed us to refine EBV infection status into established and newly identified classifications,

defining subcategories of lytic and latent cycles as well as unveiling specific host genes and

biological pathways influential to EBV pathogenesis. Our analysis revealed that certain host genes,

implicated in pathways related to viral mRNA translation, keratinization, neutrophil degranulation,

and cytokine signaling, play a significant role in shaping the viral-host interaction landscape.

Traditionally, scRNA-data is limited by the prevalence of false negatives which arise due to low

abundance of EBV transcripts in most cells. These host genes served as surrogate markers of

infection which enabled us to predict infection status in cells that otherwise appear as void of EBV

infection. Future in-vivo and in-vitro analysis should be conducted on a variety of epithelial and

B-cell lines to detect conserved host markers of EBV infection to further the field’s understanding

of EBV viral-host interactions possibly contributing to the development diagnostic markers or

therapeutic targets for EBV associated diseases.

 v

Table of Contents

1.0 Introduction ... 1

2.0 Methods .. 3

2.1 Single Cell Data ... 3

2.1.1 Single Cell Methods ...3

2.1.2 Seurat Workflow ..4

2.1.3 Single Cell Visualizations ..6

2.1.4 Differential Gene Testing ..6

2.2 Random Forest Modeling .. 8

2.2.1 Random Forest Methods ...8

2.2.2 Random Forest Assumptions ..9

2.3 Multinomial Logistic Regression Modeling ... 10

2.3.1 Multinomial Logistic Regression with AIC ...10

2.3.2 Multinomial Logistic Regression Assumptions ...11

2.3.3 Multinomial Logistic Regression with Elastic Net ..11

3.0 Results .. 13

3.1 Single Cell Data ... 13

3.1.1 Single Cell Visualizations ..13

3.2 Random Forest Modeling .. 21

3.2.1 Random Forest Results ..21

3.3 Multinomial Logistic Regression Modeling ... 26

3.3.1 Multinomial Logistic Regression Assumptions ...26

 vi

3.3.2 Multinomial Logistic Regression with AIC ...27

3.3.3 Multinomial Logistic Regression with Elastic Net ..30

3.4 Iterative Analysis .. 32

4.0 Discussion and Conclusions ... 38

4.1 Discussion .. 38

4.2 Limitations .. 43

4.2.1 Single Cell Limitations ...43

4.2.2 Random Forest Limitations ..45

4.2.3 Multinomial Logistic Regression Limitations ...45

4.3 Future Directions .. 46

Appendix A Appendices and Supplemental Content .. 47

Appendix A.1 R Script ... 47

Bibliography .. 83

 vii

List of Figures

Figure 1A and 1B. UMAP of cellular clustering and sample origin 13

Figure 2. Proportion of sample origin by cluster ... 14

Figure 3. Violin plot of EBV gene expression by cluster ... 15

Figure 4. Heatmap of EBV gene expression by cluster ... 16

Figure 5. Table of cells by classification.. 17

Figure 6. Heatmap of LMP1/BNLF2a and LF3 expression in Δ-lytic cells 18

Figure 7. Violin plot of BGLF5 expression by cluster ... 19

Figure 8. Scatter plot comparing EBV gene and all gene UMIs ... 20

Figure 9. Scatterplot comparing proportion of EBV gene UMIs to all gene UMIs by BGLF5

expression... 21

Figure 10. Random Forest summary .. 22

Figure 11. Random Forest sensitivity and specificity .. 24

Figure 12. Pathway analysis of influential genes with importance scores 25

Figure 13. Dot plot of influential pathways of all infection states .. 26

Figure 14. VIF summary .. 27

Figure 15. Multinomial logistic regression with AIC summary ... 28

Figure 16. Multinomial logistic regression with AIC sensitivity and specificity 29

Figure 17. Multinomial logistic regression with Elastic Net summary 31

Figure 18. Multinomial logistic regression with Elastic Net sensitivity and specificity 32

Figure 19. Random Forest model removing host shut off cells .. 33

Figure 20. Dot plot of influential pathways of all non-host shutoff infection states 33

 viii

Figure 21. Random Forest model removing lytic cells .. 34

Figure 22. Dot plot of influential pathways of all Δ-lytic infection states 35

Figure 23. Predicting false negatives from the Random Forest model 36

Figure 24A and 24B. UMAP of predicted infection states and cell cycle phases 36

 1

1.0 Introduction

Epstein-Barr virus (EBV) is a ubiquitous γ-herpesvirus which affects more than 90% of

individuals worldwide [1]. EBV replication is characterized by latent and lytic cycles where viral

gene expression during latency is associated with certain B-cell lymphomas and epithelial

carcinomas, such as Burkitt's Lymphoma and Nasopharyngeal Carcinoma (NPC). EBV associated

NPC is endemic to Southeast Asia with incidence rates ranging from 3-25/100,000 persons [2].

Certain at-risk populations in the United States, such as Asian Americans, show elevated incidence

of approximately 10/100,000 persons compared to 0.5/100,000 persons in low-risk populations.

Only 10% of NPC cases are diagnosed during Stage I when five-year survival exceeds 90%,

compared to 60% survival for Stage IV patients.

The nasopharynx is composed of pseudostratified epithelium and multiple cell types,

establishing a unique biology where in vivo detection of EBV is infrequent and factors of NPC

onset are difficult to study using traditional approaches [3]. Differentiation of infected epithelial

cells can trigger the reactivation of EBV from latency to the lytic phase which influences viral-

host gene interactions. We hypothesize that statistical modeling of Single Cell RNA Sequencing

(scRNA-seq) data of EBV-infected cell lines will reveal insights into viral-host genome

interactions adding to the incomplete model of EBV pathogenesis and NPC onset. To investigate

host expression profiles which contribute to EBV infection status, we implemented a unique data

analysis methodology leveraging scRNA-seq data to model EBV infection status by a Random

Forest algorithm and multinomial logistic regression approaches. Our data explores well known

EBV infection states as well as proposes novel infection profiles to elucidate influential host genes

vital to the mechanisms of EBV pathogenesis. These influential host genes are surrogate markers

 2

of infection states, addressing the problem of misidentification of false negatives within the

scRNA-seq dataset produced by a low abundance of EBV transcripts.

 3

2.0 Methods

2.1 Single Cell Data

2.1.1 Single Cell Methods

Six HK1 cell lines, originating from a differentiated NPC tumor biopsy specimen and

infected with EBV stably expressing either China 1 or a vector control LMP1 sequence variant

(known as LMP1 strain), were established in Air Liquid Interface (ALI) for simultaneous

collection at days 0, 2, and 4 post-infection [3]. China 1 is noted as the dominant LMP1 strain in

NPC tumor biopsies and throat washing samples overexpressing primary oncogene Latent

Membrane Protein 1 (LMP-1) [4]. Samples were multiplexed into two libraries (Ch1 and IRES)

using TotalSeq-C0251 (Biolegend). Single-cell RNA sequencing (scRNA-seq) was conducted

using the 10x Genomics 5' v2 library. Data was accessed and analyzed in Python and R

environments through the University of Pittsburgh Center for Research Computing.

Cellranger (v. 7.1.0) was employed to demultiplex and align scRNA-seq data against a

tailored reference, combining the human genome (GRCh38), EBV Akata reference genome

(KC207813.1), and the HA-tagged LMP-1 sequence, integrated using a Python script [5]. Akata

is a strain of EBV isolated from Burkitt’s lymphoma cells that can be effectively induced to enter

lytic cycles [6].

 4

2.1.2 Seurat Workflow

Seurat (v. 4.3.0) was used to process Cellranger outputs [7]. Initial steps involved filtering

cells to uphold quality control metrics. Low quality cells often exhibit mitochondrial

contamination, thus cells with more than 20% mitochondrial counts were removed. Low quality

cells or empty droplets tend to have few genes whereas cell doublets or multiplets exhibit high

gene count. Cells with RNA feature counts less than 200 or greater than 9000 were not retained.

Following quality control steps, the data was normalized by the “LogNormalize” function

in the Seurat package [7]. This global-scaling method normalized gene expression measurements

for every cell, multiplied each by a scale factor of 10,000, and log-transformed the data.

Variable genes were selected following data normalization. Genes exhibiting high between

cell variability often highlight biological effects in scRNA-seq data. The “FindVariableFeatures”

function from the Seurat package was used to identify 3500 variable genes by utilizing a variance

stabilizing transformation (VST) approach [7]. VST considered the relationship between the log-

variance and the log-mean and fitted a line using local polynomial regression, Locally Weighted

Scatter-plot Smoother (LOESS) [8]. LOESS is a nonparametric method with relaxed linearity

assumptions to fit a smooth curve between two variables. LOESS fitted multiple models to

localized subsets of the data. For each point, LOESS selected a subset of data points that were

closest to the point of interest. The selection was based on a parameter that defined the proportion

of the data to be used in each local fit. The selected data points were weighted based on their

distance from the point of interest, with points closer to the target receiving higher weights. A

linear model was fitted to the selected and weighted data points. These steps were repeated for

each point in the dataset, resulting in a smooth curve. The following assumptions were made:

 5

1. The mean of y around point x can be approximated through a class of parametric

functions based on polynomial regression.

2. Errors in estimating y are independently and randomly distributed with mean 0.

The data was then scaled using a linear transformation by the “ScaleData” function from

the Seurat package [7]. The data was transformed such that the mean gene expression across all

cells was 0 and the variance was 1. Principle Component Analysis (PCA) was conducted on the

scaled data. PCA begins by computing the covariance matrix of the scaled data to evaluate

variation between genes. Eigen-decomposition was conducted on this covariance matrix to extract

the eigenvalues and eigenvectors. The eigenvalues represent the amount of variance captured by

each principal component, while the eigenvectors defined the direction of these components in the

multidimensional space. The principal components were ranked according to their corresponding

eigenvalues, with higher eigenvalues indicating components that capture more variance. This step

reduced the dimensionality of the data, with the first principal component accounting for the largest

possible variance, and each subsequent component capturing the maximum remaining variance

under orthogonality to preceding components.

We utilized a K-nearest neighbor (KNN) graph-based clustering approach, where cells are

represented as nodes, and edges are drawn between cells exhibiting similar gene expression

patterns. Clustering analysis leveraged the PCA dimensionality-reduced data, specifically utilizing

the first 12 principal components to define the cellular distance metric. The “FindNeighbors”

function from the Seurat package, constructed a KNN graph based on Euclidean distances within

the PCA-reduced space [7]. The graph's edge weights were refined using Jaccard similarity to

reflect the shared overlap in local neighborhoods of cells. Modularity optimization techniques were

applied to partition the graph into clusters. The Louvain algorithm iteratively grouped cells to

 6

optimize a standard modularity function, indicating the strength of division of the graph into

clusters.

2.1.3 Single Cell Visualizations

Uniform Manifold Approximation and Projection (UMAP) was utilized for dimensionality

reduction and visualization of cellular clusters. The UMAP algorithm utilized results from

previous PCA to project high-dimensional data into a two-dimensional space. Violin plots were

generated using the “VlnPlot” function from the Seurat package to visualize the distribution of

gene expression levels across different cellular conditions or clusters [7]. The proportional

composition of cell types across different conditions or clusters was illustrated using stacked bar

plots, generated by the ggplot2 package [9]. Scatterplots plots were generated to compare the

expression levels of multiple genes across all cells using the ggplot2 package. Heatmaps were

created using the “ComplexHeatmap” package to depict the expression patterns of genes across

different cellular conditions and clusters [10]. Heatmaps included hierarchical clustering to group

genes and cells based on similarities in expression profiles. Visualizations were used to determine

unique five cellular infection states (LF3 associated Δ-lytic, LMP-1/BNLF2a associated Δ-lytic,

LMP-1/BNLF2a+LF3 associated Δ-lytic, lytic cells undergoing host shutoff, and lytic cells not

undergoing host shutoff).

2.1.4 Differential Gene Testing

Differential gene testing was conducted using the “FindMarkers” function from the Seurat

package [7]. This test utilized the non-parametric Wilcoxon rank sum test to discern genes

 7

exhibiting significant differences in expression levels between any two distinct cellular

populations [11]. The null hypothesis posits that there is no difference in the distribution of gene

expression levels between the two compared groups. The alternative hypothesis contends that there

exists a difference (two-sided) in the distribution of gene expression levels between the groups.

The Wilcoxon rank sum test assumes:

1. Independence between groups.

2. Ability to rank data.

The test ranked all observations across both groups simultaneously and compared the sum

of ranks in one group against the sum of ranks in the other. The difference in these rank-sums

served as the basis for evaluating the significance of the observed difference in gene expression

between cell populations. The FindMarkers function yielded several key metrics [7]:

1. Average Log-Fold Change (AvgLog2FC), a measure of the magnitude of differential

expression between two groups. Calculated as the logarithm (base 2) of the ratio of the

average expression levels of a gene in two groups. This metric indicated changes in

magnitude of the average gene expression in one group compared to another. Positive

values indicate upregulation and negative values indicate downregulation in the first group

relative to the second.

2. Proportion of cells within the first group (PCT1) and the second group (PCT2) where

the gene of interest is detected above a threshold level of expression (|AvgLog2FC|>0.25).

3. Unadjusted p-value is calculated from the test statistics derived from the median ranks

of gene expression levels between the two groups.

4. The adjusted p-value accounts for the multiple comparisons through Bonferroni

correction. This was done by dividing the desired overall α level (0.05) by the number of

 8

tests conducted. This calculation yielded a stricter threshold for statistical significance

reducing the chance of false positives.

Differentially expressed genes were determined to be candidate predicters for subsequent model

fitting.

2.2 Random Forest Modeling

2.2.1 Random Forest Methods

A Random Forest algorithm was employed for regression tasks using the ranger package

[11]. The Random Forest algorithm utilized ensemble learning, where multiple decision trees were

constructed during the training phase [13]. The model predicted outcomes based on the mean of

the predictions from all trees in the forest.

Combined gene lists derived from Differential Gene Testing, infection states derived from

single cell visualizations, cell identifiers, and normalized gene expression values were merged to

curate a dataset tailored for subsequent analysis. A 'class' (classification) variable, denoting

different cellular infection states, was transformed into a categorical factor variable. To promote

analytical reproducibility and consistency, a specific seed (123) was set.

Following common machine learning practices, the dataset was randomly divided,

allocating 70% to the training set and the remaining 30% to the testing set. The model was

configured to generate 500 decision trees and the number of variables to fit at each split was

determined by the square root of the total number of variables in the dataset.

 9

Post-training, the model's classification ability was evaluated on the testing set. Predicted

classifications were juxtaposed against actual classifications to construct a confusion matrix. From

the confusion matrix generated by comparing the actual and predicted classifications on the test

set, sensitivity (true positive rate) was calculated as the proportion of true positive observations to

the total actual positives, defined as:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
TP

TP + FN

where TP represents true positives and FN represents false negatives. Similarly, specificity (true

negative rate) was determined as the proportion of true negative observations to the total actual

negatives, defined as:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
TN

TN + FP

where TN represents true negatives and FP represents false positives [14]. Each candidate

predictor variable was given a relative importance score based on model contribution. The top 50

predictor genes were used to determine significant biological pathways using Reactome [21].

2.2.2 Random Forest Assumptions

The Random Forest algorithm assumes [13]:

1. The errors across individual trees are uncorrelated.

2. The ensemble of trees will provide superior prediction accuracy compared to any single

tree within the forest.

 10

2.3 Multinomial Logistic Regression Modeling

2.3.1 Multinomial Logistic Regression with AIC

The top 25 genes based on Random Forest importance score were incorporated into a

multinomial logistic regression model [15] using the nnet package [16].

log�
𝑃𝑃(𝑌𝑌 = 𝑘𝑘)
𝑃𝑃(𝑌𝑌 = 𝐾𝐾)� = 𝛽𝛽0𝑘𝑘 + 𝛽𝛽1𝑘𝑘𝑋𝑋1 + 𝛽𝛽2𝑘𝑘𝑋𝑋2 + ⋯+ 𝛽𝛽𝑝𝑝𝑝𝑝𝑋𝑋𝑝𝑝

where:

𝑃𝑃(𝑌𝑌 = 𝑘𝑘) is the probability of the dependent variable being in category k,

𝑃𝑃(𝑌𝑌 = 𝐾𝐾) is the probability of the dependent variable being in the reference category,

𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑝𝑝 are the independent predictor variables,

𝛽𝛽0𝑘𝑘,𝛽𝛽1𝑘𝑘, … ,𝛽𝛽𝑝𝑝𝑝𝑝 are the coefficients for category k which will be estimated by the model.

Similar to the dataset used for the previous random forest model, this model utilized a

merged dataset containing combined gene lists derived from top ranking genes by Random Forest

importance score, infection states derived from single cell visualizations as a factor variable, cell

identifiers, and normalized gene expression values.

Gene selection was optimized by implementing an Akaike Information Criterion (AIC)

iterative gene elimination strategy. A loop mechanism assessed the impact of removing each gene

on the model's AIC. For each iteration, a temporary model excluding one gene was constructed to

compute the AIC, enabling the identification of the gene whose exclusion reduced the AIC. This

gene was then permanently excluded in subsequent iterations to minimize AIC. This process was

repeated until no further reduction in AIC was observed upon gene exclusion. The predictive

performance of the model was evaluated using a confusion matrix, sensitivity, and specificity.

 11

2.3.2 Multinomial Logistic Regression Assumptions

The multinomial logistic regression model assumes [15]:

1. Independence of irrelevant alternatives.

2. Linearity of independent variables and log-odds.

3. No perfect multicollinearity. The Variance Inflation Factor (VIF) was calculated using

the “vif” function from the car package to assess multicollinearity among the predictors.

4. Sufficiently large sample size.

5. Multinomial distribution of the dependent variable.

2.3.3 Multinomial Logistic Regression with Elastic Net

The same dataset was utilized to fit a multinomial logistic regression model with an Elastic

Net penalty [17] using the “cv.glmnet” function from the glmnet package [18,19]. Multinomial

logistic regression modeled the log-odds of the probabilities of K-1 classifications as a linear

combination of the predictors compared to reference category K. The probability of observing

category k for a set of predictors x is given by [15,17]:

𝑃𝑃(𝑌𝑌 = 𝑘𝑘|𝑥𝑥) =
exp (𝛽𝛽0𝑘𝑘 + 𝛽𝛽𝑘𝑘𝑇𝑇𝑥𝑥)

1 + � exp(β0i + βiT𝑥𝑥)𝐾𝐾−1
𝑖𝑖=1

and

𝑃𝑃(𝑌𝑌 = 𝐾𝐾|𝑥𝑥) =
1

1 + � exp(β0i + βiT𝑥𝑥)𝐾𝐾−1
𝑖𝑖=1

where:

Y is a categorical response variable with K categories,

 12

x is the vector of predictor variables,

𝛽𝛽0𝑘𝑘 is the intercept term for category k,

𝛽𝛽𝑘𝑘 is the vector of coefficients for category k.

The Elastic Net penalty for each non-intercept coefficient in the above model is defined as [17]:

𝜆𝜆 �
1 − α

2
�𝛽𝛽𝑗𝑗2
𝑃𝑃

𝑗𝑗=1

+ � |𝛽𝛽𝑗𝑗|
𝑃𝑃

𝑗𝑗=1

�

where:

𝜆𝜆 is a regularization parameter adjusting the strength of the penalty,

α is a parameter to adjust lasso and ridge penalties (α = 1: lasso,α = 0: ridge),

𝛽𝛽𝑗𝑗 represents non-intercept coefficients for all predictor variables across all categories k,

p is the total number of predictor variables.

Combining the multinomial logistic regression model with the Elastic Net penalty yields:

−�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝛽𝛽) − 𝜆𝜆�
1 − α

2
�𝛽𝛽𝑗𝑗2
𝑃𝑃

𝑗𝑗=1

+ � |𝛽𝛽𝑗𝑗|
𝑃𝑃

𝑗𝑗=1

��

to be minimized where:

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝛽𝛽) is the log-likelihood of the multinomial logistic regression model.

The Elastic Net regularization technique combined the properties of Lasso and Ridge

penalties to regularize regression models. The initial α parameter was set to 0.5, to choose a

balanced Elastic Net approach that equally weighs the lasso and ridge penalties. The best 𝜆𝜆 value

identified during cross-validation was used to finalize the model. The predictive performance of

the model was evaluated using a confusion matrix, sensitivity, and specificity.

 13

3.0 Results

3.1 Single Cell Data

3.1.1 Single Cell Visualizations

Samples from 6 samples representing two LMP1 condition states at three early time points

post ALI-induced reactivation (Fig 1B) were combined into one comprehensive dataset

encompassing a total of 31,619 cells, with 12 distinct cellular clusters (Fig. 1A).

Figure 1A and 1B. UMAP of cellular clustering and sample origin

 14

LMP-1 is the principal oncoprotein and crucial for EBV pathogenesis, reprogramming host cellular

mechanisms to promote oncogenic transformation, cell proliferation, and survival, among other

functions [23]. It activates various signaling pathways contributing to the development of the

tumor microenvironment and influencing metabolism, immune defenses, and antioxidative

responses. The dataset examines early time points to reveal early reactivation effects before host-

shutoff alters host gene expression profiles.

UMAP visualizations of cellular clusters by sample origin (Fig. 1B), indicated samples

predominantly clustered according to time point post-reactivation, rather than by the LMP1

condition (China 1 or IRES). This indicates that the time point is a stronger classifier of the global

transcription pattern than the additional stable expression of LMP1. Each cluster exhibited a

unique distribution of cells originating from the six samples (Fig. 2).

Figure 2. Proportion of sample origin by cluster

 15

Cluster 11 displayed unique heterogeneity containing a proportional distribution of cells

from all six samples. The violin plot of EBV gene expression by cluster (Fig. 3), designated cluster

11 as abundant in viral gene expression compared to other clusters, indicating that cluster 11 is the

lytic cluster.

Figure 3. Violin plot of EBV gene expression by cluster

The heatmap of EBV gene expression by cluster (Fig. 4) revealed unique transcriptional

profiles across different clusters. Similarly to Fig. 3, Cluster 11 expressed complete activation of

the lytic cascade, showcasing the presence of gene expression across latent, immediate early, early,

late, and unassigned EBV genes.

 16

Figure 4. Heatmap of EBV gene expression by cluster

In contrast, other clusters only displayed notable expression patterns in three LMP-1

annotations (LMP-1, LMP-1/BNLF2b, and LMP-1/BNLF2a) and two unassigned annotations,

LF3 and Desert. Desert represented regions within the EBV genome that are not annotated. Cluster

11 was categorized as a lytic group of cells whereas all other clusters were categorized as ∆-lytic.

The tables presented in Fig. 5 show the distribution of cells by cellular cluster and infection

classification. The notable differences between total cells and those exhibiting EBV transcripts

within Δ-lytic clusters (1-10; 12) revealed the primary limitation of scRNA-seq data; most cells

appear as uninfected due to a low abundance of EBV transcripts.

 17

 Total EBV

Cluster

0 6153 1788
Lytic

LMP1 6262
1 5564 2555 LF3 4492
2 4630 1438 LMP1+LF3 2088
3 3603 1254

Δ-Lytic
HS 44

4 2484 883 nHS 257
5 2379 474

6 2165 779

7 2024 927

8 815 250

9 780 375

10 603 308

11 301 301

12 118 41

Figure 5. Table of cells by classification

Among 31,318 Δ-lytic cells, the heatmap of LMP1/BNLF2a and LF3 (Fig. 6) encompasses

10,754 cells. Notably, 4,492 cells expressed LF3 alone, 6,262 cells expressed LMP-1/BNLF2a

alone, and 2088 cells exhibited co-expression of both LF3 and LMP1/BNLF2a. Therefore,

LMP1/BNLF2a and LF3 expression was used to sub-categorize Δ-lytic cells.

 18

Figure 6. Heatmap of LMP1/BNLF2a and LF3 expression in Δ-lytic cells

The transcript for the primary EBV oncoprotein (LMP1) overlaps with the BNLF2a

transcript and is therefore represented as LMP1/BNLF2a. LF3 can initiate from latent and lytic

promoters and is contained within the 12kb deletion in the B958 EBV genome which is the original

strain of EBV capable of showing immortalization of B cells [24]. LF3 is a paralog of BHLF1 and

are some of the most abundant transcripts expressed during lytic infection. Both LF3 and BHLF1

are also expressed during latency and deletion of the BHLF1 gene attenuates EBV immortalization

[25], although LF3 is naturally deleted in the B95-8 EBV strain that is used in immortalizing B-

cells [26].

The violin plot illustrating the expression of BGLF5, a marker of host shutoff, across all

clusters (Fig. 7) identified distinctively concentrated expression in the lytic cluster [20].

 19

Figure 7. Violin plot of BGLF5 expression by cluster

The RNase activity of BGLF5 mediates host shutoff by mRNA degradation of both poly-

adenylated and non-poly-adenylated transcripts [27]. Current configuration of the 10X Genomics

libraries selectively enrich for poly-adenylated transcripts. Thus, shutoff of the most abundantly

expressed viral transcript (EBER) which is non-poly-adenylated is not observable. However,

downregulation of host genes is observable. BGLF5 expression was negligible in Δ-lytic clusters.

The exclusive expression pattern in the lytic cluster suggested a population of cells undergoing

host shutoff, a process where the virus inhibits host protein synthesis to favor viral gene expression.

The scatterplot comparing the unique molecular identifiers (UMIs) associated with EBV genes

(red) to the UMIs for all genes (blue) within each cell (Fig. 8) revealed a distinct population of

cells characterized by a higher proportion of EBV gene UMIs compared to all gene UMIs.

 20

Figure 8. Scatter plot comparing EBV gene and all gene UMIs

This observation indicated a subset of cells where EBV transcription was

disproportionately high, suggesting active viral gene expression patterns that may be

overshadowing the host cell's transcriptome. EBV gene UMIs were divided by all gene UMIs per

cell, representing the proportion of EBV gene to total gene transcripts within individual cells. The

scatterplot which mapped the ratio of EBV gene UMIs to all gene UMIs in each cell, with an

overlay of BGLF5 expression level (Fig. 9), revealed a population of cells characterized by both a

high proportion of EBV gene UMIs and elevated expression of BGLF5. The expression of BGLF5

identified these cells as part of the lytic cluster (Fig. 7), undergoing host shutoff.

 21

Figure 9. Scatterplot comparing proportion of EBV gene UMIs to all gene UMIs by BGLF5 expression

The delineation between the Δ-lytic and lytic groups was marked by their respective EBV

to all gene UMI proportions; the Δ-lytic group exhibited proportions ranging from 0 to 0.37, while

the lytic group's proportions spanned from 0.003 to 0.87. The ability to distinguish cells engaging

in host shutoff is an advantage of scRNA-seq over conventional bulk RNA-seq, the parameters of

which have not yet been defined by prior literature or exploited in differential gene analysis.

3.2 Random Forest Modeling

3.2.1 Random Forest Results

The tables presented in Fig. 10 are confusion matrices derived from the Random Forest

model, which categorize the predictions of the five different EBV infection classifications (LF3

 22

associated Δ-lytic, LMP-1/BNLF2a associated Δ-lytic, LMP-1/BNLF2a+LF3 associated Δ-lytic,

lytic cells undergoing host shutoff, and lytic cells not undergoing host shutoff).

Random Forest

Proportion EBV UMI =
0.37

Predicted
Δ-Lytic Lytic

LMP1 LF3 LMP1+LF3 HS nHS

Actual

LMP1 1548 315 1 0 0
LF3 287 1064 0 0 0

LMP1+LF3 516 112 1 0 0
HS 3 0 0 14 0

nHS 46 36 0 0 0

Proportion EBV UMI =
0.20

Predicted
Δ-Lytic Lytic

LMP1 LF3 LMP1+LF3 HS nHS

Actual

LMP1 1543 319 2 0 0
LF3 292 1059 0 0 0

LMP1+LF3 517 110 2 0 0
HS 10 2 0 12 0

nHS 47 28 0 0 0

Proportion EBV UMI =
0.12

Predicted
Δ-Lytic Lytic

LMP1 LF3 LMP1+LF3 HS nHS

Actual

LMP1 1535 328 1 0 0
LF3 270 1080 1 0 0

LMP1+LF3 510 116 3 0 0
HS 21 12 0 14 0

nHS 26 26 0 0 0

Proportion EBV UMI =
0.08

Predicted
Δ-Lytic Lytic

LMP1 LF3 LMP1+LF3 HS nHS

Actual

LMP1 1545 316 3 0 0
LF3 268 1083 0 0 0

LMP1+LF3 510 113 6 0 0
HS 36 17 0 14 0

nHS 15 17 0 0 0
Figure 10. Random Forest summary

 23

The matrices were separated by the proportion of EBV UMIs to all gene UMIs, with each

table reflecting a different proportion threshold (greater than or less than 0.37, 0.08, 0.12, and

0.20), for example HS (host shut off) denotes a proportion greater than 0.37 and nHS (no host shut

off) denotes a proportion less than 0.37. The rows represent the actual classifications of EBV

infection, while the columns correspond to the predicted classifications by the model. Diagonal

values indicate correct predictions, where the model’s classification aligns with the actual

classification, and off-diagonal values represent misclassifications. The tables presented in Fig. 11

display sensitivity and specificity metrics from the Random Forest model, which quantify model

accuracy of the five different EBV infection classifications for each of the four EBV UMI

proportions.

 24

Random Forest
Proportion

EBV
UMI =

0.37

Δ-Lytic Lytic

LMP1 LF3 LMP1+LF3 HS nHS

Sensitivity 0.830472 0.787565 0.00159 0.823529 0
Specificity 0.590188 0.821373 0.999698 1 1

Proportion
EBV

UMI =
0.20

Δ-Lytic Lytic

LMP1 LF3 LMP1+LF3 HS nHS

Sensitivity 0.82779 0.783864 0.00318 0.5 0
Specificity 0.583454 0.822917 0.999396 1 1

Proportion
EBV

UMI =
0.12

Δ-Lytic Lytic

LMP1 LF3 LMP1+LF3 HS nHS

Sensitivity 0.823498 0.799408 0.004769 0.297872 0
Specificity 0.602213 0.814043 0.999396 1 1

Proportion
EBV

UMI =
0.08

Δ-Lytic Lytic

LMP1 LF3 LMP1+LF3 HS nHS

Sensitivity 0.828863 0.801628 0.009539 0.208955 0
Specificity 0.601251 0.821373 0.999095 1 1

Figure 11. Random Forest sensitivity and specificity

The tables presented in Fig. 12 display Reactome pathway analysis of the top 50 genes

from the Forest model with importance scores [21].

 25

Pathway Analysis

Viral mRNA
Translation Keratinization

Neutrophil
Degranulation

RPL13 11.44078 KRT15 23.33335 S100A7 12.64868
RPS2 10.2332 KRT16 24.12137 GSTP1 10.97858

RPL18A 11.04989 JUP 16.35692 S100A8 33.35091
RPL32 12.60838 PERP 9.7588 S100A9 34.19331
RPS18 9.742981 KRT13 24.62746 SLPI 15.28682
RPLP1 11.18593 KRT6A 14.33602 HSP90AB1 10.0238
RPL12 15.87549 SPRR1A 21.44978 S100A11 13.14203
RPS24 10.15674 DSC2 17.62421 LGALS3 20.62328

 SPRR1B 43.61339 CSTB 24.40935

Cytokine Signaling
Pathways with less than

3 Entities Not Found
MT2A 31.75472 CLDN4 53.56539 SCEL 10.96989

ANXA1 14.81194 CD24 50.35485 RAB11FIP1 13.91565
IL1RN 17.07174 ELF3 34.92743 CYSRT1 13.28588

YWHAZ 11.20575 NECTIN4 26.6372 S100A16 13.22095
 CAV1 23.71347 TACSTD2 50.9853
 CDKN2B 18.31926 MAL2 57.41673
 KLK6 15.77327 PITX1 27.18976
 AQP3 12.56929 KLK10 16.85305
 CAST 12.50293
 PFN1 11.28674
 MT1E 11.05495
 MDK 9.743815

Figure 12. Pathway analysis of influential genes with importance scores

The dot plot presented in Fig. 13 displays the expression profile of identified influential

pathways (Fig. 12). Lytic cells undergoing host shutoff were characterized by both a

downregulation and decreased abundance of host genes belonging to keratinization, neutrophil

degranulation, and cytokine signaling pathways in addition to a downregulation but comparable

abundance of the viral mRNA translation pathway.

 26

Figure 13. Dot plot of influential pathways of all infection states

3.3 Multinomial Logistic Regression Modeling

3.3.1 Multinomial Logistic Regression Assumptions

The tables presented in Fig. 14 display VIF metrics from the multinomial logistic

regression model with iterative AIC reduction based variable selection. The VIFs measure

multicollinearity among predictor variables for each of the five EBV infection classifications.

 27

Variance Inflation Factor - Multinomial Logistic Regression AIC
Proportion EBV UMI

0.37 0.08 0.12 0.2
Gene VIF Gene VIF Genes VIF Genes VIF

MAL2 178.8008 CD24 12.30758 MAL2 14.25656 CD24 44.30813
CLDN4 121.5907 MAL2 9.532307 CLDN4 7.018979 MAL2 33.64846

TACSTD2 308.2492 CLDN4 4.43511 CD24 19.07352 CLDN4 17.7081
CD24 313.658 TACSTD2 22.0784 TACSTD2 32.85541 TACSTD2 63.81294
ELF3 115.552 ELF3 5.802699 ELF3 8.542363 ELF3 18.80182

S100A9 113.4903 MT2A 17.05919 S100A9 6.666901 S100A9 17.99887
MT2A 494.7283 KRT15 22.60199 KRT16 12.32568 MT2A 49.4106
PITX1 140.8052 S100A9 4.782769 KRT15 32.9648 KRT16 24.19165
KRT13 75.50219 KRT16 8.427786 MT2A 22.00865 CSTB 62.97505
CSTB 259.5024 PITX1 4.823701 PITX1 7.177241 CAV1 45.81189
KRT16 154.8858 CSTB 24.93538 KRT13 4.875467 KRT15 62.1836
CAV1 262.4517 CAV1 17.2875 IL1RN 5.830894 IL1RN 12.1491
KRT15 299.3498 KRT13 3.377745 CSTB 31.73975 KRT13 14.91353

LGALS3 175.0134 JUP 17.06359 KLK10 11.07507 KLK10 25.71368
CDKN2B 109.7493 IL1RN 3.891209 KRT6A 19.41581 PITX1 20.04855

IL1RN 85.26432 LGALS3 7.212126 ANXA1 47.20069 SLPI 19.9254
KLK10 137.852 KRT6A 13.67992 JUP 22.74084 RPL12 99.55335

JUP 231.7729 KLK10 7.160552 CAV1 21.98149 JUP 42.60141
RPL12 289.5157 SLPI 5.785015 LGALS3 10.65643 SPRR1A 11.02541
KLK6 166.1318 SLPI 9.059008 SCEL 14.9553

Figure 14. VIF summary

3.3.2 Multinomial Logistic Regression with AIC

The tables presented in Fig. 15 are confusion matrices derived from the multinomial

logistic regression model with iterative AIC reduction based variable elimination (see Fig. 10 for

more details).

 28

Multinomial Logistic Regression - AIC

Proportion EBV UMI =
0.37

Predicted
Δ-Lytic Lytic

LMP1 LF3 LMP1+LF3 HS nHS

Actual

LMP1 5034 787 79 2 2
LF3 787 3695 8 2 0

LMP1+LF3 1578 388 121 1 0
HS 2 3 0 39 0

nHS 127 120 6 2 2

Proportion EBV UMI =
0.20

Predicted
Δ-Lytic Lytic

LMP1 LF3 LMP1+LF3 HS nHS

Actual

LMP1 5069 1121 70 2 0
LF3 809 3677 3 3 0

LMP1+LF3 1578 378 132 0 0
HS 15 23 2 39 0

nHS 106 108 5 3 0

Proportion EBV UMI =
0.12

Predicted
Δ-Lytic Lytic

LMP1 LF3 LMP1+LF3 HS nHS

Actual

LMP1 5058 1124 76 4 0
LF3 801 3684 5 2 0

LMP1+LF3 1586 374 127 1 0
HS 4 2 1 41 2

nHS 65 83 6 2 0

Proportion EBV UMI =
0.08

Predicted
Δ-Lytic Lytic

LMP1 LF3 LMP1+LF3 HS nHS

Actual

LMP1 5070 1118 69 5 0
LF3 806 3681 3 2 0

LMP1+LF3 1575 381 130 2 0
HS 82 70 5 42 0

nHS 39 60 3 1 0
Figure 15. Multinomial logistic regression with AIC summary

 29

The tables presented in Fig. 16 display sensitivity and specificity metrics from the

multinomial logistic regression model with iterative AIC reduction based variable elimination (see

Fig. 11 for more details).

Multinomial Logistic Regression - AIC
Proportion

EBV
UMI =

0.37

Δ-Lytic Lytic

LMP1 LF3 LMP1+LF3 HS nHS

Sensitivity 5.786207 0.822573 0.061515 0.886364 0.007782
Specificity 0.637553 0.843482 0.991306 0.999451 0.99984

Proportion
EBV

UMI =
0.20

Δ-Lytic Lytic

LMP1 LF3 LMP1+LF3 HS nHS

Sensitivity 0.809486 0.818566 0.063218 0.493671 0
Specificity 0.635518 0.811582 0.992763 0.999388 1

Proportion
EBV

UMI =
0.12

Δ-Lytic Lytic

LMP1 LF3 LMP1+LF3 HS nHS

Sensitivity 0.807729 0.820125 0.060824 0.82 0
Specificity 0.638078 0.814984 0.991971 0.999308 0.999845

Proportion
EBV

UMI =
0.08

Δ-Lytic Lytic

LMP1 LF3 LMP1+LF3 HS nHS

Sensitivity 0.809645 0.819457 0.062261 0.211055 0
Specificity 0.636443 0.81172 0.992764 0.999228 1

Figure 16. Multinomial logistic regression with AIC sensitivity and specificity

 30

3.3.3 Multinomial Logistic Regression with Elastic Net

The tables presented in Fig. 17 are confusion matrices derived from the multinomial

logistic regression model with an Elastic Net penalty (see Fig. 10 for more details).

 31

Multinomial Logistic Regression - Elastic Net

Proportion EBV UMI =
0.37

Predicted
Δ-Lytic Lytic

LMP1 LF3 LMP1+LF3 HS nHS

Actual

LMP1 5047 1137 75 3 0
LF3 799 3686 5 2 0

LMP1+LF3 1567 388 133 0 0
HS 4 5 0 35 0

nHS 124 119 9 2 3

Proportion EBV UMI =
0.20

Predicted
Δ-Lytic Lytic

LMP1 LF3 LMP1+LF3 HS nHS

Actual

LMP1 5061 1125 1585 2 0
LF3 795 3691 373 2 0

LMP1+LF3 1585 373 130 0 0
HS 16 22 2 39 0

nHS 103 109 7 3 0

Proportion EBV UMI =
0.12

Predicted
Δ-Lytic Lytic

LMP1 LF3 LMP1+LF3 HS nHS

Actual

LMP1 5058 1123 78 3 0
LF3 781 3704 5 48 0

LMP1+LF3 1597 376 115 0 0
HS 3 2 0 40 2

nHS 64 84 6 2 0

Proportion EBV UMI =
0.08

Predicted
Δ-Lytic Lytic

LMP1 LF3 LMP1+LF3 HS nHS

Actual

LMP1 5057 1127 75 3 0
LF3 790 3694 6 2 0

LMP1+LF3 1586 378 123 1 0
HS 81 73 6 39 0

nHS 38 60 3 1 0
Figure 17. Multinomial logistic regression with Elastic Net summary

The tables presented in Fig. 18 display sensitivity and specificity metrics from the

multinomial logistic regression model with an Elastic Net penalty (see Fig. 11 for more details).

 32

Multinomial Logistic Regression - Elastic Net
Proportion

EBV
UMI =

0.37

Δ-Lytic Lytic

LMP1 LF3 LMP1+LF3 HS nHS

Sensitivity 0.805973 0.82057 0.063697 0.795455 0.011673
Specificity 0.637553 0.809386 0.991949 0.999466 1

Proportion
EBV

UMI =
0.20

Δ-Lytic Lytic

LMP1 LF3 LMP1+LF3 HS nHS

Sensitivity 0.6511 0.759309 0.062261 0.493671 0
Specificity 0.65531 0.839697 0.847932 0.999532 1

Proportion
EBV

UMI =
0.12

Δ-Lytic Lytic

LMP1 LF3 LMP1+LF3 HS nHS

Sensitivity 0.807729 0.816219 0.055077 0.851064 0
Specificity 0.641968 0.814685 0.991911 0.995937 0.999845

Proportion
EBV

UMI =
0.08

Δ-Lytic Lytic

LMP1 LF3 LMP1+LF3 HS nHS

Sensitivity 0.807569 0.822351 0.058908 0.19598 0
Specificity 0.637407 0.810658 0.991859 0.999459 1

Figure 18. Multinomial logistic regression with Elastic Net sensitivity and specificity

3.4 Iterative Analysis

Random Forest model development of all infection classifications is largely driven by

changes in host expression profile pertaining to lytic cells undergoing host shutoff (Fig. 13). As

such, a random forest model was fitted removing cells undergoing host shutoff. The tables

presented in Fig. 19 are confusion matrices and sensitivity and specificity metrics derived from

the random forest model after removing host shutoff cells (see Fig. 10 and Fig. 11 for more details).

 33

Random Forest

Proportion EBV UMI
= 0.37

Predicted
Δ-Lytic Lytic

LMP1 LF3 LMP1+LF3 nHS

Actual

LMP1 1548 315 1 0
LF3 287 1064 0 0

LMP1+LF3 516 112 1 0
nHS 46 36 0 0

Proportion EBV
UMI = 0.37

Δ-Lytic Lytic
LMP1 LF3 LMP1+LF3 nHS

Sensitivity 0.830472 0.787565 0.00159 0
Specificity 0.588264 0.820194 0.999697 1

Figure 19. Random Forest model removing host shut off cells

The dot plot presented in Fig. 20 displays the expression profile of identified influential

pathways (Fig. 12), once lytic cells undergoing host shutoff were removed from the random forest

model (Fig. 19).

Figure 20. Dot plot of influential pathways of all non-host shutoff infection states

 34

Lytic cells not undergoing host shutoff were characterized by a downregulation but

comparable abundance of host genes belonging to keratinization and neutrophil degranulation

pathways when compared to the LMP-1/BNLF2a associated Δ-lytic classification. Cells belonging

to the LF3 dependent Δ-lytic classification show a similar keratinization host gene expression

profile to lytic cells undergoing host shutoff in addition to a downregulation and decreased

abundance of neutrophil degranulation host genes when compared to the LMP-1/BNLF2a

associated Δ-lytic classification.

Random Forest model development after removing host shutoff cells is largely influenced

by changes in host expression profile pertaining to lytic cells not undergoing host shutoff (Fig. 20).

As such, a random forest model was fit removing lytic cells to better understand differences

between Δ-lytic infection states. The tables presented in Fig. 19 are confusion matrices and

sensitivity and specificity metrics derived from the random forest model after removing host

shutoff cells (see Fig. 10 and Fig. 11 for more details).

Random Forest

Proportion EBV UMI
= 0.37

Predicted
Δ-Lytic

LMP1 LF3 LMP1+LF3

Actual
LMP1 1524 335 23
LF3 259 1092 0

LMP1+LF3 483 107 30

Proportion EBV
UMI = 0.37

Δ-Lytic
LMP1 LF3 LMP1+LF3

Sensitivity 0.809777 0.80829 0.048387
Specificity 0.623541 0.823341 0.992886

Figure 21. Random Forest model removing lytic cells

 35

The dot plot presented in Fig. 22 displays the expression profile of identified influential pathways

(Fig. 12), once lytic were removed from the random forest model (Fig. 21).

Figure 22. Dot plot of influential pathways of all Δ-lytic infection states

LF3 dependent Δ-lytic cells were characterized by a downregulation of host genes

belonging to keratinization and neutrophil degranulation pathways when compared to LMP-

1/BNLF2a and LMP1+LF3 associated Δ-lytic cells. Clear differentiation between LMP-

1/BNLF2a and LMP1+LF3 associated Δ-lytic cells was unsuccessful.

Traditionally, scRNA-data is limited by the prevalence of false negatives which arise due

to low abundance of EBV transcripts in most cells. The random forest model (Fig. 10) was used

to predict the infection states of false negatives. 5046 of 18,476 false negative cells were classified

as LMP-1/BNLF2a associated Δ-lytic cells, 13,428 were classified as LF3 associated Δ-lytic, and

2 were classified as lytic undergoing host shutoff with a EBV UMI ratio cutoff of 0.37 (Fig. 23).

 36

Random Forest

Proportion EBV
UMI = 0.37

Predicted
Δ-Lytic Lytic

LMP1 LF3 LMP1+LF3 HS nHS
5046 13428 0 2 0

Figure 23. Predicting false negatives from the Random Forest model

UMAPs displaying both predicted (Fig. 23) and known infection states (Fig. 24A) and cell

cycle phases (Fig. 24B) show unique characteristics of LMP-1/BNLF2a and LF3 associated Δ-

lytic cell classifications.

Figure 24A and 24B. UMAP of predicted infection states and cell cycle phases

LMP-1/BNLF2a associated Δ-lytic cells cluster together on the UMAP space and belong

exclusively to the G1 phase, LF3 associated Δ-lytic cells cluster together and belong to both the

G1 and G2M phase, and LMP-1/BNLF2a + LF3 associated Δ-lytic cells are scattered throughout

 37

the UMAP space with greater overlap with the LMP-1/BNLF2a associated Δ-lytic classification

when compared to the LF3 associated Δ-lytic classification.

 38

4.0 Discussion and Conclusions

4.1 Discussion

Early stages of EBV infection can reveal the viral impact of EBV on host cell

environments. During this phase, EBV undergoes either lytic replication or latent integration into

the host genome dictating the course of EBV pathogenesis [1]. Understanding the host effects

contributing to this mechanism may inform potential translational targets for EBV-associated NPC

in the form of diagnostic and therapeutic strategies.

Fig. 1A and 1B show cells cluster according to timepoint post-infection rather than

infection type, suggesting that cell cycle effects are primary drivers of gene expression profiles.

To highlight transcriptional effects rather than cell cycle effects all samples were compiled into

one comprehensive dataset. Cluster 11 represents a distinct profile, not overlapping with the

standard day 0, 2, or 4 classifications as the other clusters do, suggesting that cluster 11 may be

indicative of a cellular state unique to EBV infection or response. Fig. 2 further showcases the

unique heterogeneity exclusive to cluster 11, containing proportional quantities of cells from all

six samples when compared to other clusters.

The pronounced EBV gene expression in cluster 11, as demonstrated in Fig. 3 and 4,

strongly suggests that this cluster is driven by EBV lytic gene effects. The comprehensive

expression of the lytic cascade in cluster 11 defines this cluster as a lytic group of cells in a state

of active viral replication or reactivation. This contrasts with other clusters where the EBV gene

expression is limited to specific LMP-1 annotations and two unassigned gene annotations,

indicative of a Δ-lytic state defined as either latent or some transitory infection state. LMP-1

 39

annotations include LMP-1, LMP-1/BNLF2b, and LMP-1/BNLF2a where BNLF2b and BNLF2a

cannot be entirely separated from LMP-1 due to overlapping regions within the EBV genome, in

the same orientation. Unassigned annotations include LF3 and DESERT, where DESERT

represents regions of the EBV genome that were not successfully annotated.

In ∆-lytic clusters, cells exhibiting expression of LMP-1 and LMP-1/BNLF2b were found

to be a subset of those expressing LMP-1/BNLF2a. The Δ-lytic expression pattern outlined in Fig.

6 allowed the classification of EBV-infected Δ-lytic cells into cells expressing LF3, LMP-

1/BNLF2a, or both LMP-1/BNLF2a and LF3. This analysis establishes three categories of EBV

Δ-lytic infection status, either LMP-1/BNLF2a associated Δ-lytic, LF3 associated Δ-lytic, or

LMP-1/BNLF2a+LF3 associated Δ-lytic infection.

BGLF5 is an early lytic categorized EBV gene which plays a role in host shutoff during

the lytic phase by degrading mRNA, thus reducing host protein synthesis and enhancing viral

replication [20]. The distinct expression of BGLF5 within cluster 11, as highlighted by Fig. 7,

provides evidence of host shutoff events in some of these cells. The lack of BGLF5 expression in

Δ-lytic clusters underscores the unique state of cluster 11 and its potential role in categorizing EBV

pathogenesis. This is further supported by Fig. 8 which reveals a distinct population of cells

characterized by a higher proportion of EBV gene UMIs compared to all gene UMIs.

This group of cells is confirmed by Fig. 9. The distinct population of cells within cluster

11, characterized by both a high proportion of EBV gene UMIs and elevated BGLF5 expression,

substantiates the hypothesis that these cells are in an advanced stage of the lytic cycle where host

shutoff occurs. The Δ-lytic group exhibited proportions ranging from 0 to 0.37, while the lytic

group's proportions spanned from 0.003 to 0.87. This analysis allowed for two categorizations

within the lytic cluster, lytic cells with a proportion greater than 0.37 that were undergoing host

 40

shutoff (HS) and lytic cells with a proportion less than or equal to 0.37 which were expressing

viral genes, but not undergoing host shutoff (nHS). As the proportion of EBV UMIs to all gene

UMIs overlaps from 0.03 to 0.37 between lytic and Δ-lytic clusters, Q1, Q2, and Q3 (0.08, 0.12,

0.20) were also tested. Ultimately, five novel classifications of EBV infection status were

established: LF3 associated Δ-lytic, LMP-1/BNLF2a associated Δ-lytic, LMP-1/BNLF2a+LF3

associated Δ-lytic, lytic cells undergoing host shutoff, and lytic cells not undergoing host shutoff.

To determine predictors for model fitting among the five EBV infection statuses, a non-

parametric Wilcoxon rank sum test identified genes with significant differences in gene

expression, helping to highlight potential markers indicative of each infection status and guide the

development of predictive models for EBV infection classifications.

A Random Forest algorithm was utilized to classify cells based on their EBV infection

status, leveraging the significant genes identified as predictors. The confusion matrices in Fig. 10

and sensitivity and specificity calculations in Fig. 11 demonstrate the model’s performance across

various EBV UMI proportion thresholds, illustrating the predictive accuracy for each EBV

infection classification. Based on Fig. 11 Sensitivity did not change for LF3 associated Δ-lytic,

LMP-1/BNLF2a associated Δ-lytic, LMP-1/BNLF2a+LF3 associated Δ-lytic, and lytic cells not

undergoing host shutoff classifications. Sensitivity for the lytic cells undergoing host shutoff

classification increased from 0.21 to 0.82 from an increase in EBV UMI proportion of 0.08 to 0.37.

Low sensitivities for LMP-1/BNLF2a+LF3 associated Δ-lytic and lytic cells undergoing host

shutoff, and incorrect classification of these categories to LMP-1/BNLF2a and LF3 associated Δ-

lytic classifications across all EBV UMI proportions indicates the model is unable to accurately

predict LMP-1/BNLF2a+LF3 associated Δ-lytic and lytic cells undergoing host shutoff

classifications. Specificity remained consistent across all classifications for all proportions.

 41

The random forest model ranked the predictors by an importance score and the top 50

ranked genes were analyzed using Reactome pathway analysis [21]. From Fig. 12, the most

influential genes from the Random Forest model belong to viral mRNA translation, keratinization,

neutrophil degranulation, and cytokine signaling pathways. Lytic cells undergoing host shutoff

were characterized by both a downregulation and decreased abundance of host genes belonging to

keratinization, neutrophil degranulation, and cytokine signaling pathways in addition to a

downregulation but comparable abundance of the viral mRNA translation pathway (Fig. 13).

The top 25 genes from the Random Forest model by importance score were utilized as

candidate predictors for a multinomial logistic regression model. The impact of removing any of

the 25 genes on the model's AIC was observed and variables were iteratively removed until no

further reduction in AIC was observed upon variable exclusion. Fig. 14 indicates that an increase

in EBV UMI proportion corresponds to an increase in the degree of multicollinearity between

predicter variables. However, based on Fig. 16 while specificity remains consistent across varying

EBV UMI proportions, sensitivity for lytic cells undergoing host shutoff increased from 0.21 to

0.82 from an increase in proportion of 0.08 to 0.37. Similar to the Random Forest model, this

method failed to successfully identify lytic cells not undergoing host shutoff and

LMP1/BNLF2a+LF3 associated Δ-Lytic cells for any EBV UMI proportion cutoff.

To account for multicollinearity between predictor variables a multinomial logistic

regression model with an Elastic Net penalty was utilized to combine effects of Lasso and Ridge

penalties [17]. Lasso encourages the sum of the absolute values of the regression coefficients to

be sufficiently small, effectively shrinking some coefficients to zero, thus aiding in variable

selection. Ridge encourages the sum of the squares of the coefficients to be sufficiently small,

which does not set coefficients to zero but rather shrinks them towards zero. This aids in addressing

 42

multicollinearity by ensuring that the model coefficients are not overly sensitive to changes in the

model. Elastic Net aims to combine these two properties to improve both variable selection and

address multicollinearity concerns, resulting in a model that is robust against overfitting. When

comparing this model (Fig. 15 and Fig. 16) to the Random Forest model, the sensitivity for an

EBV UMI proportion of 0.2 decreased from 0.83 to 0.65. Similar to the previous models, the

multinomial logistic regression model with an Elastic Net penalty was unable to accurately predict

lytic cells not undergoing host shutoff and LMP1/BNLF2a+LF3 associated Δ-Lytic cells for any

EBV UMI proportion cutoff.

No one model seems to substantially outperform the other models in predicting infection

status. Fig. 11, 16, and 18 indicate regardless of chosen model, lytic cells not undergoing host

shutoff and LMP1/BNLF2+LF3 associated Δ-Lytic cells were unable to be accurately

distinguished from the LMP-1/BNLF2a and LF3 associated ∆-lytic classifications. This is likely

due to significant similarities in gene expression profiles between these classifications. Fig. 13

indicates that lytic cells undergoing host shutoff were characterized by dramatic changes to host

expression profiles and downregulation of identified host gene pathways.

To elucidate differences between other categories, a random forest model was fit after

omitting lytic cells undergoing host shutoff (Fig. 19). While sensitivity and specificity remained

consistent with previous models containing all five classifications, a different expression profile

of influential genes was observed (Fig. 20). Lytic cells not undergoing host shutoff were

characterized by a downregulation but comparable abundance of host genes belonging to

keratinization and neutrophil degranulation pathways when compared to the LMP-1/BNLF2a

associated Δ-lytic classification. Cells belonging to the LF3 dependent Δ-lytic classification show

a similar keratinization host gene expression profile to lytic cells undergoing host shutoff in

 43

addition to a downregulation and decreased abundance of neutrophil degranulation host genes

when compared to the LMP-1/BNLF2a associated Δ-lytic classification. However, cells belonging

to the LMP-1/BNLF2a+LF3 associated Δ-lytic classification showed a nearly identical expression

profile to the LMP-1/BNLF2a associated Δ-lytic classification. This analysis successfully

differentiated the lytic cells not undergoing host shutoff classification from the other three Δ-lytic

classifications.

To differentiate between the remaining three Δ-lytic classifications, a random forest model

was fit after omitting all lytic cells (Fig. 21). While sensitivity and specificity remained consistent

with all previous models and LF3 associated Δ-lytic cells were generally characterized by a

downregulation of host genes belonging to keratinization and neutrophil degranulation pathways,

some unique host genes emerged. LF3 associated Δ-lytic cells in contrast to LMP-1/BNLF2a and

LMP-1/BNLF2a+LF3 associated Δ-lytic cells observed specific upregulation of HSP90AB1,

MT2A, CAV1, NPM1, S100A2, and MIR205HG genes. Expression profiles of LMP-1/BNLF2a

and LMP-1/BNLF2a+LF3 associated Δ-lytic cells remained nearly identical, suggesting that the

LMP-1 effects overshadow the effects of LF3 in cells which contain both transcripts.

4.2 Limitations

4.2.1 Single Cell Limitations

Limitations of the single-cell methods used may include potential bias introduced during

cell collection, sensitivity to detect lowly expressed genes, and the challenge of fully capturing

transient states of EBV infection. Additionally, the analysis relies on existing annotations, which

 44

might not fully represent all EBV strains or capture certain genes due to overlapping regions. The

annotation used was customized for a 5’ single cell library and is the Akata reference EBV strain

used in the experimented cell lines. These results may not be conserved under similar methods

applied to other epithelial or B-cell cell lines. The reliance on computational algorithms for

clustering and differential expression analysis might also introduce variability, dependent on

parameter settings and the statistical models applied.

The normalization process assumes that cells have roughly equal total RNA content, which

justifies scaling gene expression measurements by a constant factor across all cells. However, this

might not account for natural variations in RNA content between different cell types or states,

potentially leading to overestimation or underestimation of gene expression levels in cells with

unusually high or low RNA content that make it past the filtering steps. This simplification can

affect the interpretation of gene expression differences across conditions or cell types.

Variable feature selection in the Seurat workflow utilizes LOESS which introduces two

assumptions [8]. The first being the mean of y around point x can be approximated through a class

of parametric functions based on polynomial regression. The approximation of the mean response

as a parametric function might not capture complex biological interactions accurately, potentially

oversimplifying underlying patterns. The second assumption posits that the errors in estimating y

are independently and randomly distributed with mean 0. The assumption of independent and

identically distributed errors assumes homoscedasticity, which may not hold for biological data

where technical and biological variances can introduce heteroscedasticity, impacting the reliability

of predictions.

 45

4.2.2 Random Forest Limitations

The random forest model assumes the errors across individual trees are uncorrelated and

the ensemble of trees will provide superior prediction accuracy compared to any single tree within

the forest [13]. While averaging the results across a multitude of trees reduces the risk of

overfitting, the assumption that errors across trees are uncorrelated may not hold if the data has

inherent correlations unable to be addressed by random sampling. While the ensemble generally

outperforms individual trees, the improvement in prediction accuracy isn't guaranteed if the model

overfits the training data.

4.2.3 Multinomial Logistic Regression Limitations

The multinomial logistic regression model introduces five assumptions, three of which

introduce potential limitations to this methodology [15]. The first is independence of irrelevant

alternatives. This assumption implies that the choice between outcomes is unaffected by the

presence or absence of additional choices. In biological contexts, this may not hold due to complex

interactions where the presence of one outcome could influence the likelihood of another. The

second is linearity of independent variables and log-odds. Biological processes often exhibit non-

linear dynamics, making this assumption too simplistic, potentially leading to inaccurate

estimations of effect sizes. The third is no perfect multicollinearity. While the VIF metrics help

identify multicollinearity and the Elastic Net penalty helps to mitigate multicollinearity among

predictors, high-dimensional data such as gene expression profiles often exhibit multicollinearity

due to biological pathways involving multiple co-expressed genes. This can make it difficult to

discern the individual contribution of predictors.

 46

4.3 Future Directions

Future directions should focus on applying this methodology to publicly available NPC

tumor datasets and sequenced B-cell lines to validate and extend these findings. Other

methodologies such as SLIDE: Significant Latent Factor Interaction Discover and Exploration

may also be considered to identify latent factors contributing to the underlying pathology of EBV

infection [28]. Such tools are optimized for high-dimensional omics datasets without assumptions

pertaining to mechanisms of data generation. A combination of approaches is necessary to identify

conserved host markers and influential pathways in the landscape of modern multi-omic datasets.

Ultimately, both in vivo and in vitro studies would be needed to extend these findings and

further elucidate the mechanisms behind EBV's impact on host cell environments and its role in

NPC pathogenesis. Identification of conserved host markers of EBV infection between a

combination of computational approaches and experimental validation would enhance the field’s

ability to better understand EBV viral-host interactions and contribute to improving EBV

associated disease outcomes. In the short term such markers may play a role in the development

of EBV associated NPC screening protocols in at risk populations. If further validated, these

pathways and markers may assist in creating the groundwork for the development of targeted

therapeutic strategies, decreasing the disease burden of EBV associated disease.

 47

Appendix A Appendices and Supplemental Content

Appendix A.1 R Script

#0: Environment:
{
 ##0.1: Working Directory:
 {
 getwd()
 setwd("/bgfs/kshair/shared/kshair_jap282/Single-Cell_NPC/Seurat/")

 }

 ##0.2: Packages:
 {
 library(Seurat)
 library(SeuratWrappers)
 library(SeuratObject)
 library(DoubletFinder)
 library(infercnv)
 library(tidyverse)
 library(ggplot2)
 library(ggpubr)
 library(reshape2)
 library(SingleR)
 library(celldex)
 library(pROC)
 library(EnhancedVolcano)
 library(monocle3)
 library(harmony)
 library(patchwork)
 library(pheatmap)
 library(ComplexHeatmap)
 library(presto)
 library(tictoc)
 library(corrplot)
 library(openxlsx)
 library(UpSetR)
 library(writexl)
 library(Matrix)
 library(irlba)

 48

 library(RColorBrewer)
 library(circlize)
 library(randomForest)
 library(ranger)
 library(nnet)
 library(caret)
 library(MASS)
 library(glmnet)
 library(car)
 }

 ##0.3: Markers:
 {

 EBV <- c("EBNA-1", "EBNA-1/EBNA-3B/EBNA-3C", "EBNA-1/EBNA-

3B/EBNA-3C/EBNA-3A",
 "EBNA-1/EBNA-LP/EBNA-3B/EBNA-3C/EBNA-3A", "EBNA-3A",

"LMP-1", "LMP-1/BNLF2b",
 "EBNA-3B/EBNA-3C", "LMP-1/BNLF2a", "EBNA-2", "EBNA-

2/EBNA-LP",
 "EBNA-LP", "LMP-2A", "LMP-2B", "LMP-2A/LMP-2B", "LMP-

2A/LMP-2B/BNRF1",
 "RPMS1","BRLF1/BZLF1", "BRLF1","BALF1", "BALF2", "BALF5",

"BARF1", "BaRF1",
 "BBLF2/BBLF3", "BBLF4", "BcRF1", "BDLF4", "BDLF4/BDLF3.5",

"BFLF1", "BFLF2",
 "BFRF1", "BFRF1/BFRF1A", "BFRF2", "BFRF2/BFRF1",

"BFRF2/BFRF3", "BGLF4",
 "BGLF4/BGLF5", "BGLF4/BGLF3.5", "BGLF5", "BHRF1", "BKRF4",

"BLLF2/BLLF1",
 "BLLF3", "BMRF1", "BMRF2", "BORF2", "BRRF1", "BSLF1",

"BSLF2/BMLF1",
 "BSLF2/BMLF1/BSLF1", "BVRF1", "BXLF1", "BZLF2","BALF4",

"BALF4/BALF3", "BBLF1",
 "BBLF1/BGLF5", "BBRF1", "BBRF2", "BBRF2/BBRF1", "BBRF3",

"BcLF1", "BCRF1",
 "BDLF1", "BDLF2", "BDLF3", "BDLF3.5", "BFRF3", "BGLF1",

"BGLF1/BGLF2",
 "BGLF1/BDLF4", "BGLF2", "BILF2", "BKRF2", "BLLF1", "BLRF1",

"BLRF2", "BNRF1",
 "BORF1", "BRRF2", "BSRF1", "BTRF1", "BTRF1/BcRF1", "BVLF1",

"BVRF2", "BVRF2/BdRF1",
 "BXLF2", "BXRF1", "BXRF1/BVRF1","BALF3", "BFRF1A",

"BGLF3", "BGLF3.5",
 "BGLF3.5/BGLF3", "BGRF1/BDRF1", "BILF1", "BKRF3",

"BKRF3/BKRF2", "BOLF1",

 49

 "BPLF1", "BPLF1/BOLF1", "LF1", "LF2", "LF2/LF1", "LF3",
"HALMP1", "DESERT", "LMP-2A", "LMP-2B")

 }

 ##0.4: Cell-cycle Markers:
 {
 s.genes <- cc.genes$s.genes
 g2m.genes <- cc.genes$g2m.genes

 }
}

#1: Data
{
 #Shair_Ch1
 {
 Shair_05_0_df <- Read10X(data.dir = "/bgfs/kshair/shared/kshair_alb635/Single-

Cell_NPC/Seurat/Shair/Shair_05_Akata-Collapse/Ch1-ALI-
4/sample_filtered_feature_bc_matrix") #There was confusion in labeling

 Shair_05_0_df <- CreateSeuratObject(counts = Shair_05_0_df$`Gene Expression`,
project = "Ch1_0", min.cells = 3, min.features = 200)

 Shair_05_2_df <- Read10X(data.dir = "/bgfs/kshair/shared/kshair_alb635/Single-

Cell_NPC/Seurat/Shair/Shair_05_Akata-Collapse/Ch1-ALI-
0/sample_filtered_feature_bc_matrix") #There was confusion in labeling

 Shair_05_2_df <- CreateSeuratObject(counts = Shair_05_2_df$`Gene Expression`,
project = "Ch1_2", min.cells = 3, min.features = 200)

 Shair_05_4_df <- Read10X(data.dir = "/bgfs/kshair/shared/kshair_alb635/Single-

Cell_NPC/Seurat/Shair/Shair_05_Akata-Collapse/Ch1-ALI-
2/sample_filtered_feature_bc_matrix") #There was confusion in labeling

 Shair_05_4_df <- CreateSeuratObject(counts = Shair_05_4_df$`Gene Expression`,
project = "Ch1_4", min.cells = 3, min.features = 200)

 }
 #Shair_IRES
 {
 Shair_06_0_df <- Read10X(data.dir = "/bgfs/kshair/shared/kshair_alb635/Single-

Cell_NPC/Seurat/Shair/Shair_06_Akata-Collapse/IRES-ALI-
0/sample_filtered_feature_bc_matrix") #There was confusion in labeling

 Shair_06_0_df <- CreateSeuratObject(counts = Shair_06_0_df$`Gene Expression`,
project = "IRES_0", min.cells = 3, min.features = 200)

 50

 Shair_06_2_df <- Read10X(data.dir = "/bgfs/kshair/shared/kshair_alb635/Single-
Cell_NPC/Seurat/Shair/Shair_06_Akata-Collapse/IRES-ALI-
2/sample_filtered_feature_bc_matrix") #There was confusion in labeling

 Shair_06_2_df <- CreateSeuratObject(counts = Shair_06_2_df$`Gene Expression`,
project = "IRES_2", min.cells = 3, min.features = 200)

 Shair_06_4_df <- Read10X(data.dir = "/bgfs/kshair/shared/kshair_alb635/Single-

Cell_NPC/Seurat/Shair/Shair_06_Akata-Collapse/IRES-ALI-
4/sample_filtered_feature_bc_matrix") #There was confusion in labeling

 Shair_06_4_df <- CreateSeuratObject(counts = Shair_06_4_df$`Gene Expression`,
project = "IRES_4", min.cells = 3, min.features = 200)

 }
 }

#2: Merge Data
{
 #Shair_CL:
 {
 Shair_CL_df <- merge(x = Shair_05_0_df,
 y = c(Shair_05_2_df, Shair_05_4_df,
 Shair_06_0_df, Shair_06_2_df, Shair_06_4_df),
 add.cell.ids = c("Ch1_0", "Ch1_2", "Ch1_4",
 "IRES_0", "IRES_2", "IRES_4"),
 project = "Shair")
 gc()
 }
 }

#3: Standard Processing
{
 #Shair CL:
 {
 Shair_CL_df[["percent.mt"]] <- PercentageFeatureSet(Shair_CL_df, pattern = "^MT-

")
 Shair_CL_df <- subset(Shair_CL_df, subset = nFeature_RNA > 200 & nFeature_RNA

< 9000 & percent.mt < 20)
 Shair_CL_df <- NormalizeData(Shair_CL_df)
 Shair_CL_df <- FindVariableFeatures(Shair_CL_df, selection.method = "vst",

nfeatures = 3500)
 Shair_CL_df <- ScaleData(Shair_CL_df, features = rownames(Shair_CL_df))
 Shair_CL_df <- RunPCA(Shair_CL_df, features = VariableFeatures(object =

Shair_CL_df))
 Shair_CL_df <- RunUMAP(Shair_CL_df, dims = 1:30)
 Shair_CL_df <- FindNeighbors(Shair_CL_df, dims = 1:30)
 Shair_CL_df <- FindClusters(Shair_CL_df, resolution = 0.5)

 51

 Shair_CL_df = CellCycleScoring(Shair_CL_df,
 s.features = s.genes,
 g2m.features = g2m.genes,
 set.ident = F)

 Shair_CL_dfPlot <- DimPlot(Shair_CL_df,
 reduction = "umap",
 pt.size = 0.1,
 raster = F,
 label = T,
 label.box = T) +
 NoLegend()

 Shair_CL_dfPlot
 }
 }

#4: Figures
{
 #UMAP
 {
 #Cluster
 {
 Idents(Shair_CL_df) <- Shair_CL_df$seurat_clusters
 Shair_CL_dfPlot <- DimPlot(Shair_CL_df,
 reduction = "umap",
 pt.size = 0.25,
 raster = F,
 label = T,
 label.box = T) +
 NoLegend()

 Shair_CL_dfPlot

 }
 #Origin
 {
 Idents(Shair_CL_df) <- Shair_CL_df$orig.ident
 Shair_CL_dfPlot <- DimPlot(Shair_CL_df,
 reduction = "umap",
 pt.size = 0.25,
 raster = F,
 label = T,
 label.box = T) +
 NoLegend()
 Idents(Shair_CL_df) <- Shair_CL_df$seurat_clusters

 52

 Shair_CL_dfPlot
 }
 #Cell Cylce
 {
 DimPlot(Shair_CL_df, reduction = "umap", group.by = "Phase", label = FALSE,

pt.size = 0.05) +
 ggtitle("UMAP of Cell Cycle Phases")
 }
 }

 #Violin
 {
 Idents(Shair_CL_df) <- Shair_CL_df$seurat_clusters
 VlnPlot(Shair_CL_df, features = EBV, stack = T) + NoLegend()
 VlnPlot(object = Shair_CL_df, features = 'BGLF5', split.by = 'seurat_clusters')
 }

 #Barplot
 {
 data_to_plot <- Shair_CL_df@meta.data %>%
 group_by(seurat_clusters, orig.ident) %>%
 summarise(count = n()) %>%
 mutate(proportion = count / sum(count, na.rm = TRUE)) %>%
 ungroup() %>%
 arrange(seurat_clusters, orig.ident)
 data_to_plot_wide <- pivot_wider(data_to_plot, names_from = orig.ident, values_from

= proportion, values_fill = list(proportion = 0))
 ggplot(data_to_plot, aes(y = factor(seurat_clusters), x = proportion, fill = orig.ident)) +
 geom_bar(stat = "identity") +
 labs(y = "Cluster", x = "Proportion", fill = "orig Identity") +
 theme_minimal() +
 coord_flip()
 }

#Heatmap
 {
 #EBV Heatmap
 {
 Shair_CL_df_EBV <- Shair_CL_df
 Shair_CL_df_EBV <- subset(Shair_CL_df, features = EBV)
 genes <- Shair_CL_df_EBV[EBV,]
 keep.cells <- colnames(genes[, colSums(genes) != 0])
 Shair_CL_df_EBV <- Shair_CL_df_EBV[, keep.cells]
 mat <- Shair_CL_df_EBV[["RNA"]]@data %>% as.matrix()
 cluster_anno <- Shair_CL_df_EBV@meta.data$seurat_clusters
 quantile(mat, c(.01, .99))

 53

 quantile(mat, c(.01, .999))
 quantile(mat, c(.01, .9999))
 col_fun = circlize::colorRamp2(c(0, 1, 2, 3),

c("papayawhip","#FF00FF","black","#FFFF00"))
 Heatmap(mat, name = "Normalized Expression",
 column_split = factor(cluster_anno),
 cluster_columns = TRUE,
 show_column_dend = FALSE,
 cluster_column_slices = FALSE,
 column_title_gp = gpar(fontsize = 8),
 column_gap = unit(0.5, "mm"),
 cluster_rows = FALSE,
 show_row_dend = FALSE,
 col = col_fun,
 row_names_gp = gpar(fontsize = 4),
 column_title_rot = 45,
 top_annotation = HeatmapAnnotation(foo = anno_block(gp = gpar(fill =

scales::hue_pal()(9)))),
 show_column_names = FALSE,
 use_raster = TRUE,
 raster_quality = 10)

 }

 #LMP1 LF3 Heatmap
 {
 Shair_CL_df_n11 <- subset(Shair_CL_df, idents = "11", invert = TRUE)
 levels(Shair_CL_df_n11)
 latent <- c("LMP-1/BNLF2a","LF3")
 Shair_CL_df_n11_filter <- subset(Shair_CL_df_n11, features = latent)
 Shair_CL_df_n11_filter@meta.data$infect <- "delta_lytic"
 Idents(Shair_CL_df_n11_filter) <- Shair_CL_df_n11_filter$infect
 levels(Shair_CL_df_n11_filter)
 genes <- Shair_CL_df_n11_filter[latent,]
 keep.cells <- colnames(genes[, colSums(genes) != 0])
 Shair_CL_df_n11_filter <- Shair_CL_df_n11_filter[, keep.cells]
 mat <- Shair_CL_df_n11_filter[["RNA"]]@data %>% as.matrix()
 cluster_anno <- Shair_CL_df_n11_filter@meta.data$infect
 quantile(mat, c(.01, .99))
 quantile(mat, c(.01, .999))
 quantile(mat, c(.01, .9999))
 col_fun = circlize::colorRamp2(c(0, 1, 2, 3),

c("papayawhip","#FF00FF","black","#FFFF00"))
 Heatmap(mat, name = "Normalized Expression",
 column_split = factor(cluster_anno),

 54

 cluster_columns = TRUE,
 show_column_dend = FALSE,
 cluster_column_slices = FALSE,
 column_title_gp = gpar(fontsize = 8),
 column_gap = unit(0.5, "mm"),
 cluster_rows = TRUE,
 show_row_dend = FALSE,
 col = col_fun,
 row_names_gp = gpar(fontsize = 4),
 column_title_rot = 45,
 top_annotation = HeatmapAnnotation(foo = anno_block(gp = gpar(fill =

scales::hue_pal()(9)))),
 show_column_names = FALSE,
 use_raster = TRUE,
 raster_quality = 5)
 }

 }

#Dotplot
 {
 #Dotplot nCountRNA EBV and All
 {
 metadata_1 <- Shair_CL_df@meta.data
 data_1 <- data.frame(
 CellID = rownames(metadata_1),
 nCount_RNA = metadata_1$nCount_RNA
)
 Shair_CL_df_filter <- subset(Shair_CL_df, features = EBV)
 metadata_2 <- Shair_CL_df_filter@meta.data
 data_2 <- data.frame(
 CellID = rownames(metadata_2),
 nCount_RNA = metadata_2$nCount_RNA
)
 combined_data <- merge(data_1, data_2, by = "CellID")
 colnames(combined_data)
 colnames(combined_data)[colnames(combined_data) == "nCount_RNA.x"] <-

"nCount_RNA_All"
 colnames(combined_data)[colnames(combined_data) == "nCount_RNA.y"] <-

"nCount_RNA_EBV"
 colnames(combined_data)
 sorted_data <- arrange(combined_data, nCount_RNA_EBV, nCount_RNA_All)
 sorted_data <- sorted_data %>%
 mutate(Number_ID = row_number())

 55

 long_data <- tidyr::pivot_longer(sorted_data, cols = c("nCount_RNA_All",
"nCount_RNA_EBV"), names_to = "ID", values_to = "nCount_RNA")

 ggplot(long_data, aes(x = Number_ID, y = nCount_RNA, color = ID)) +
 geom_point(alpha = 0.6, size = 0.5) +
 scale_color_manual(values = c("nCount_RNA_All" = "blue", "nCount_RNA_EBV"

= "red")) +
 theme_minimal(base_size = 14) +
 theme(axis.ticks.x = element_blank(),
 legend.position = "right",
 legend.key.size = unit(0.5, "cm"),
 legend.title.align = 0.5,
 legend.text = element_text(size = 12)) +
 labs(x = "Cells sorted by EBV gene nCountRNA", y = "nCount_RNA",
 title = "nCount_RNA All Cells")

 }
 #Ratio Dotplot
 {
 sorted_data$Ratio <- sorted_data$nCount_RNA_EBV /

sorted_data$nCount_RNA_All
 ggplot(sorted_data, aes(x = Number_ID, y = Ratio)) +
 geom_point() +
 theme_minimal() +
 theme(axis.title.x = element_blank(),
 axis.text.x = element_blank(),
 axis.ticks.x = element_blank()) +
 labs(y = "nCount_RNA_EBV / nCount_RNA_All", title = "Dot Plot of Ratio

(EBV/All RNA Counts)")
 BGLF5_expression <- GetAssayData(Shair_CL_df, assay = "RNA", layer =

"data")["BGLF5",]
 BGLF5_expression_df <- as.data.frame(BGLF5_expression)
 BGLF5_expression_df$CellID <- rownames(BGLF5_expression_df)
 sorted_data <- merge(sorted_data, BGLF5_expression_df, by = "CellID")
 ggplot(sorted_data, aes(x = Number_ID, y = Ratio, color = BGLF5_expression)) +
 geom_point(alpha = 0.6, size = 1.5) +
 scale_color_gradientn(colors = c("blue", "red", "yellow"), name =

"BGLF5\nExpression") +
 theme_minimal(base_size = 14) +
 theme(axis.ticks.x = element_blank(),
 legend.position = "right",
 legend.key.size = unit(0.5, "cm"),
 legend.title.align = 0.5,
 legend.text = element_text(size = 12)) +
 labs(x = "Cells sorted by EBV gene nCountRNA", y = "nCountRNA EBV/ALL",
 title = "Dot Plot of Proportion (EBV/All RNA Counts) by BGLF5")

 56

 }
 # Reactome Dotplot Iteration 1
 {
 top_50_1 <-

c("RPL13","RPS2","RPL18A","RPL32","RPS18","RPLP1","RPL12","RPS24",
"KRT15","KRT16", "JUP",

"PERP","KRT13","KRT6A","SPRR1A","DSC2","SPRR1B","S100A7","GSTP1","S100A8","S1
00A9","SLPI",

"HSP90AB1","S100A11","LGALS3","CSTB","MT2A","ANXA1","IL1RN","YWHAZ",
"CLDN4","CD24","ELF3",

 "NECTIN4","CAV1","CDKN2B", "KLK6",
"AQP3","CAST","PFN1","MT1E","MDK","SCEL","RAB11FIP1",

 "CYSRT1","S100A16","TACSTD2","MAL2","PITX1","KLK10"
)

 DotPlot(Shair_CL_df_data, features = top_50_1, cols = c("blue", "red")) +
 theme(axis.text.x = element_text(angle = 45, hjust = 1))
 }
 # Reactome Dotplot Iteration 2
 {
 top_50_2 <-

c("KRT15","PKP1","KRT16","JUP","KRT13","KRT6A","CSTA","SPRR1A","DSC2","SPRR1
B","S100A8",

"S100A9","SLPI","HEBP2","HSP90AB1","LGALS3","CSTB","MAL2","CD24","CLDN4","T
ACSTD2","ELF3",

 "MT2A","PITX1","KLK10","CDKN2B","KLK6
","CAV1","IL1RN","S100A16","NECTIN4","KLF5","NPM1",

"S100A2","AQP3","CAST","SCEL","TM4SF1","IER2","MIR205HG","RHOD","ALDH1A3","
ARF6","GPRC5A",

 "PLSCR1","DNAJB1","CLTB","NDFIP1","LDHB","CALML3")

 Idents(Shair_CL_df_data) <- Shair_CL_df_data$class
 DotPlot(Shair_CL_df_data, features = top_50_2, cols = c("blue", "red")) +
 theme(axis.text.x = element_text(angle = 45, hjust = 1))
 }
 # Reactome Dotplot Iteration 3
 {
 top_50_3 <-

c("KRT15","PKP1","KRT16","JUP","KRT13","KRT6A","CSTA","SPRR1A","DSC2","SPRR1
B","S100A8",

 57

"S100A9","SLPI","HSP90AB1","LGALS3","CSTB","CST3","CD24","MAL2","CLDN4","TAC
STD2","ELF3",

"MT2A","PITX1","KLK10","KLK6","CAV1","IL1RN","CDKN2B","CAST","AQP3","KLF5",
"S100A16",

"GPRC5A","NPM1","NECTIN4","SCEL","TM4SF1","ALDH1A3","S100A2","IER2","MIR205
HG","HM13",

"SLC9A3R1","DNAJB1","ARF6","NDFIP1","CYB5R1","ANXA11","CLTB")

 Idents(Shair_CL_df_data) <- Shair_CL_df_data$class
 DotPlot(Shair_CL_df_data, features = top_50_3, cols = c("blue", "red")) +
 theme(axis.text.x = element_text(angle = 45, hjust = 1))
 }
 }
}

#5: Analysis
{
 #Calculate Quantiles
 {
 filtered_data <- sorted_data[sorted_data$Ratio >= 0.05,]
 quartiles <- quantile(filtered_data$Ratio, probs = c(0.25, 0.5, 0.75, 1))
 print(quartiles)
}

 #037
 {
#Prepare Dataset
{
Shair_CL_df_LF3<-Shair_CL_df
Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, idents = "11", invert = TRUE)
cells_to_remove <- WhichCells(Shair_CL_df, expression = `LMP-1/BNLF2a` > 0)
Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, cells = cells_to_remove, invert = TRUE)
Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, subset = LF3 > 0)
final_cell_ids <- colnames(Shair_CL_df_LF3)
Shair_CL_df_LF3 <- subset(Shair_CL_df, cells = final_cell_ids)
Shair_CL_df_LMP1 <- Shair_CL_df
Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, idents = "11", invert = TRUE)
cells_to_remove_LF3 <- WhichCells(Shair_CL_df_LMP1, expression = LF3 > 0)
Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, cells = cells_to_remove_LF3, invert

= TRUE)
Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, subset = `LMP-1/BNLF2a` > 0)
final_cell_ids <- colnames(Shair_CL_df_LMP1)
Shair_CL_df_LMP1 <- subset(Shair_CL_df, cells = final_cell_ids)

 58

Shair_CL_df_cluster11 <- subset(Shair_CL_df, idents = "11")
metadata_cluster11 <- Shair_CL_df_cluster11@meta.data
data_cluster11 <- data.frame(
 CellID = rownames(metadata_cluster11),
 nCount_RNA = metadata_cluster11$nCount_RNA)
Shair_CL_df_cluster11_filter <- subset(Shair_CL_df_cluster11, features = EBV)
metadata_cluster11_filter <- Shair_CL_df_cluster11_filter@meta.data
data_cluster11_filter <- data.frame(
 CellID = rownames(metadata_cluster11_filter),
 nCount_RNA = metadata_cluster11_filter$nCount_RNA)
combined_data_cluster11 <- merge(data_cluster11, data_cluster11_filter, by = "CellID")
colnames(combined_data_cluster11)[colnames(combined_data_cluster11) ==

"nCount_RNA.x"] <- "nCount_RNA_All"
colnames(combined_data_cluster11)[colnames(combined_data_cluster11) ==

"nCount_RNA.y"] <- "nCount_RNA_EBV"
sorted_data_cluster11 <- combined_data_cluster11 %>%
 arrange(nCount_RNA_EBV, nCount_RNA_All) %>%
 mutate(Number_ID = row_number())
sorted_data_cluster11 <- combined_data_cluster11 %>%
 arrange(nCount_RNA_EBV, nCount_RNA_All) %>%
 mutate(Number_ID = row_number(),
 Ratio = nCount_RNA_EBV / nCount_RNA_All)
sorted_data_cluster11_filtered <- sorted_data_cluster11 %>%
 filter(Ratio <= 0.37)
cell_ids_to_keep <- sorted_data_cluster11_filtered$CellID
Shair_CL_df_nHS <- subset(Shair_CL_df, cells = cell_ids_to_keep)
sorted_data_cluster11_filtered <- sorted_data_cluster11 %>%
 filter(Ratio > 0.37)
cell_ids_to_keep <- sorted_data_cluster11_filtered$CellID
Shair_CL_df_HS <- subset(Shair_CL_df, cells = cell_ids_to_keep)
Shair_CL_df_LMP1_LF3 <- Shair_CL_df
Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df_LMP1_LF3, idents = "11", invert =

TRUE)
Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df_LMP1_LF3, subset = `LMP-

1/BNLF2a` > 0 & LF3 > 0)
final_cell_ids <- colnames(Shair_CL_df_LMP1_LF3)
Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df, cells = final_cell_ids)
Shair_CL_df_HS@meta.data$class <- "HS"
Idents(Shair_CL_df_HS) <- Shair_CL_df_HS$class
levels(Shair_CL_df_HS)
Shair_CL_df_nHS@meta.data$class <- "nHS"
Idents(Shair_CL_df_nHS) <- Shair_CL_df_nHS$class
levels(Shair_CL_df_nHS)
Shair_CL_df_LF3@meta.data$class <- "LF3"
Idents(Shair_CL_df_LF3) <- Shair_CL_df_LF3$class
levels(Shair_CL_df_LF3)

 59

Shair_CL_df_LMP1@meta.data$class <- "LMP1"
Idents(Shair_CL_df_LMP1) <- Shair_CL_df_LMP1$class
levels(Shair_CL_df_LMP1)
Shair_CL_df_LMP1_LF3@meta.data$class <- "LMP1_LF3"

levels(Shair_CL_df_LMP1_LF3)
Shair_CL_df_data <- merge(x = Shair_CL_df_HS, y = c(Shair_CL_df_nHS,

Shair_CL_df_LF3, Shair_CL_df_LMP1, Shair_CL_df_LMP1_LF3), add.cell.ids = c("HS",
"nHS", "LF3", "LMP1", "LMP1_LF3"), project = "Combined")

Idents(Shair_CL_df_data) <- Shair_CL_df_data$class
levels(Shair_CL_df_data)
cell_ids <- colnames(Shair_CL_df_data)
class_labels <- Idents(Shair_CL_df_data)
gene_expression_data <- GetAssayData(Shair_CL_df_data, layer = "data")
gene_expression_df <- as.data.frame(t(gene_expression_data))
cell_class_df <- data.frame(CellID = cell_ids, Class = as.character(class_labels))
final_dataset <- cbind(cell_class_df, gene_expression_df)
}

#DGT
{
HS.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "HS", ident.2 = NULL)
HS.markers_filtered <- subset(HS.markers, p_val_adj < 0.05)
nHS.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "nHS", ident.2 = NULL)
nHS.markers_filtered <- subset(nHS.markers, p_val_adj < 0.05)
nHS.HS.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "nHS", ident.2 = "HS")
nHS.HS.markers_filtered <- subset(nHS.HS.markers, p_val_adj < 0.05)
LMP1.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1", ident.2 = NULL)
LMP1.markers_filtered <- subset(LMP1.markers, p_val_adj < 0.05)
LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LF3", ident.2 = NULL)
LF3.markers_filtered <- subset(LF3.markers, p_val_adj < 0.05)
LMP1.LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1", ident.2 =

"LF3")
LMP1.LF3.markers_filtered <- subset(LMP1.LF3.markers, p_val_adj < 0.05)
LMP1_LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1_LF3", ident.2

= NULL)
LMP1_LF3.markers_filtered <- subset(LMP1_LF3.markers, p_val_adj < 0.05)
combined_gene_list <- unique(c(rownames(HS.markers_filtered),
 rownames(nHS.markers_filtered),
 rownames(nHS.HS.markers_filtered),
 rownames(LMP1.markers_filtered),
 rownames(LF3.markers_filtered),
 rownames(LMP1_LF3.markers_filtered),
 rownames(LMP1.LF3.markers_filtered)))
combined_gene_list_filtered <- setdiff(combined_gene_list, EBV)
}

 60

#Random Forest
{
valid_genes <- intersect(combined_gene_list_filtered, colnames(final_dataset))
trimmed_dataset <- final_dataset[, c("CellID", "Class", valid_genes)]
trimmed_dataset$Class <- as.factor(trimmed_dataset$Class)
set.seed(123)
train_indices <- sample(nrow(trimmed_dataset), size = 0.7 * nrow(trimmed_dataset))
train_data <- trimmed_dataset[train_indices, -1]
test_data <- trimmed_dataset[-train_indices, -1]
x_train <- train_data[, !(names(train_data) %in% c("CellID", "Class"))]
y_train <- train_data$Class
x_test <- test_data[, !(names(test_data) %in% c("CellID", "Class"))]
y_test <- test_data$Class
rf_model <- ranger(
 dependent.variable.name = "y_train",
 data = data.frame(x_train, y_train = y_train),
 num.trees = 500,
 mtry = sqrt(ncol(x_train)),
 importance = 'impurity'
)
pred_class <- predict(rf_model, data.frame(x_test), type="response")
predictions <- pred_class$predictions
confusionMatrix <- table(y_test, Predictions = predictions)
print(confusionMatrix)
importance_scores <- rf_model$variable.importance
ordered_importance <- sort(importance_scores, decreasing = TRUE)
print(head(ordered_importance, n=50))
print(ordered_importance)
gene_names <- names(ordered_importance)
print(gene_names)
gene_names<-data.frame(gene_names)
gene_names
}

#Mult Log Reg
{
top_25_genes <- names(ordered_importance)[1:25]
final_dataset_filtered <- final_dataset[, c("CellID", "Class", top_25_genes)]
final_dataset_filtered$Class <- as.factor(final_dataset_filtered$Class)
current_dataset <- final_dataset_filtered
min_aic <- Inf
optimal_dataset <- current_dataset
removed_genes <- c()
repeat {

 61

 aic_values <- setNames(numeric(ncol(current_dataset) - 2), colnames(current_dataset)[-
(1:2)])

 for (gene in names(aic_values)) {
 dataset_minus_gene <- current_dataset[, !colnames(current_dataset) %in% c(gene,

"CellID")]
 model <- multinom(Class ~ ., data = dataset_minus_gene, trace = FALSE)
 aic_values[gene] <- AIC(model)
 }

 gene_to_remove <- names(which.min(aic_values))
 new_aic <- min(aic_values)

 if (new_aic < min_aic) {
 min_aic <- new_aic
 current_dataset <- current_dataset[, !colnames(current_dataset) %in%

c(gene_to_remove, "CellID")]
 optimal_dataset <- current_dataset
 removed_genes <- c(removed_genes, gene_to_remove)
 cat("Removed gene:", gene_to_remove, "New AIC:", new_aic, "\n")
 } else {
 break
 }
}

final_model <- multinom(Class ~ ., data = optimal_dataset, trace = FALSE)
summary(final_model)
predicted_probs <- predict(final_model, newdata = optimal_dataset, type = "probs")
predicted_class <- apply(predicted_probs, 1, which.max)
predicted_class <- levels(optimal_dataset$Class)[predicted_class]
actual_class <- optimal_dataset$Class
confusion_matrix <- table(Predicted = predicted_class, Actual = actual_class)
print(confusion_matrix)
vif_values <- vif(final_model)
print(vif_values)
}

#Elastic Net
{
 top_25_genes <- names(ordered_importance)[1:25]
 predictors <- as.matrix(final_dataset[, top_25_genes])
 response <- as.factor(final_dataset$Class)
 set.seed(123)
 cv_model <- cv.glmnet(predictors, response, family = "multinomial", type.multinomial

= "grouped",
 alpha = 0.5)

 62

 best_lambda <- cv_model$lambda.min
 plot(cv_model)
 predicted_probs <- predict(cv_model, newx = predictors, s = "lambda.min", type =

"response")
 predicted_class <- apply(predicted_probs, 1, which.max)
 predicted_class <- colnames(predicted_probs)[predicted_class]
 actual_class <- response
 confusion_matrix <- table(Predicted = predicted_class, Actual = actual_class)
 print(confusion_matrix)
 summary(cv_model)
}
 }

 #Predict EBV Null
 {

 cell_ids_HS <- colnames(Shair_CL_df_HS)
 cell_ids_nHS <- colnames(Shair_CL_df_nHS)
 cell_ids_LF3 <- colnames(Shair_CL_df_LF3)
 cell_ids_LMP1 <- colnames(Shair_CL_df_LMP1)
 cell_ids_LMP1_LF3 <- colnames(Shair_CL_df_LMP1_LF3)
 Shair_CL_df$cell_type <- "unknown"
 Shair_CL_df$cell_type[cell_ids_HS] <- "HS"
 Shair_CL_df$cell_type[cell_ids_nHS] <- "nHS"
 Shair_CL_df$cell_type[cell_ids_LF3] <- "LF3"
 Shair_CL_df$cell_type[cell_ids_LMP1] <- "LMP1"
 Shair_CL_df$cell_type[cell_ids_LMP1_LF3] <- "LMP1_LF3"
 Shair_CL_df_unknown <- subset(Shair_CL_df, subset = cell_type == "unknown" &

`LMP-1/BNLF2a` == 0 & LF3 == 0)
 cell_ids_unknown <- colnames(Shair_CL_df_unknown)
 Shair_CL_df_unknown@meta.data$class <- "unknown"
 gene_expression_data_unknown <- GetAssayData(Shair_CL_df_unknown, slot =

"data")
 gene_expression_df_unknown <- as.data.frame(t(gene_expression_data_unknown))
 cell_class_df <- data.frame(CellID = cell_ids_unknown, Class = rep("unknown",

length(cell_ids_unknown)))
 unknown_dataset <- cbind(cell_class_df, gene_expression_df_unknown)
 valid_genes_unknown <- intersect(valid_genes, colnames(unknown_dataset))
 unknown_dataset_filtered <- unknown_dataset[, c("CellID", "Class",

valid_genes_unknown)]
 x_unknown <- unknown_dataset_filtered[, !(names(unknown_dataset_filtered) %in%

c("CellID", "Class"))]
 unknown_predictions <- predict(rf_model, data = data.frame(x_unknown), type =

"response")
 predicted_classes <- unknown_predictions$predictions
 unknown_dataset_filtered$Predicted_Class <- predicted_classes

 63

 levels_mapping <- levels(trimmed_dataset$Class)
 unknown_dataset_filtered$Predicted_Class <- levels_mapping[predicted_classes]
 Shair_CL_df_unknown@meta.data$Predicted_Class <-

unknown_dataset_filtered$Predicted_Class[match(colnames(Shair_CL_df_unknown),
unknown_dataset_filtered$CellID)]

 Shair_CL_df$cell_type <- factor(Shair_CL_df$cell_type)
 levels(Shair_CL_df$cell_type) <- unique(c(levels(Shair_CL_df$cell_type),

levels(unknown_dataset_filtered$Predicted_Class)))
 Shair_CL_df$cell_type[cell_ids_unknown] <-

Shair_CL_df_unknown@meta.data$Predicted_Class
 DimPlot(Shair_CL_df, reduction = "umap", group.by = "cell_type", label = FALSE,

pt.size = 0.05,
 cols = colorRampPalette(brewer.pal(5,

"Set1"))(length(unique(Shair_CL_df$cell_type)))) +
 ggtitle("UMAP of Predicted Infection Classifications")
 }

 #008
 {
 #Prepare Dataset
 {
 Shair_CL_df_LF3<-Shair_CL_df
 Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, idents = "11", invert = TRUE)
 cells_to_remove <- WhichCells(Shair_CL_df, expression = `LMP-1/BNLF2a` > 0)
 Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, cells = cells_to_remove, invert =

TRUE)
 Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, subset = LF3 > 0)
 final_cell_ids <- colnames(Shair_CL_df_LF3)
 Shair_CL_df_LF3 <- subset(Shair_CL_df, cells = final_cell_ids)
 Shair_CL_df_LMP1 <- Shair_CL_df
 Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, idents = "11", invert = TRUE)
 cells_to_remove_LF3 <- WhichCells(Shair_CL_df_LMP1, expression = LF3 > 0)
 Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, cells = cells_to_remove_LF3,

invert = TRUE)
 Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, subset = `LMP-1/BNLF2a` > 0)
 final_cell_ids <- colnames(Shair_CL_df_LMP1)
 Shair_CL_df_LMP1 <- subset(Shair_CL_df, cells = final_cell_ids)
 Shair_CL_df_cluster11 <- subset(Shair_CL_df, idents = "11")
 metadata_cluster11 <- Shair_CL_df_cluster11@meta.data
 data_cluster11 <- data.frame(
 CellID = rownames(metadata_cluster11),
 nCount_RNA = metadata_cluster11$nCount_RNA)
 Shair_CL_df_cluster11_filter <- subset(Shair_CL_df_cluster11, features = EBV)
 metadata_cluster11_filter <- Shair_CL_df_cluster11_filter@meta.data
 data_cluster11_filter <- data.frame(
 CellID = rownames(metadata_cluster11_filter),

 64

 nCount_RNA = metadata_cluster11_filter$nCount_RNA)
 combined_data_cluster11 <- merge(data_cluster11, data_cluster11_filter, by =

"CellID")
 colnames(combined_data_cluster11)[colnames(combined_data_cluster11) ==

"nCount_RNA.x"] <- "nCount_RNA_All"
 colnames(combined_data_cluster11)[colnames(combined_data_cluster11) ==

"nCount_RNA.y"] <- "nCount_RNA_EBV"
 sorted_data_cluster11 <- combined_data_cluster11 %>%
 arrange(nCount_RNA_EBV, nCount_RNA_All) %>%
 mutate(Number_ID = row_number())
 sorted_data_cluster11 <- combined_data_cluster11 %>%
 arrange(nCount_RNA_EBV, nCount_RNA_All) %>%
 mutate(Number_ID = row_number(),
 Ratio = nCount_RNA_EBV / nCount_RNA_All)
 sorted_data_cluster11_filtered <- sorted_data_cluster11 %>%
 filter(Ratio <= 0.08)
 cell_ids_to_keep <- sorted_data_cluster11_filtered$CellID
 Shair_CL_df_nHS <- subset(Shair_CL_df, cells = cell_ids_to_keep)
 sorted_data_cluster11_filtered <- sorted_data_cluster11 %>%
 filter(Ratio > 0.08)
 cell_ids_to_keep <- sorted_data_cluster11_filtered$CellID
 Shair_CL_df_HS <- subset(Shair_CL_df, cells = cell_ids_to_keep)
 Shair_CL_df_LMP1_LF3 <- Shair_CL_df
 Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df_LMP1_LF3, idents = "11", invert

= TRUE)
 Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df_LMP1_LF3, subset = `LMP-

1/BNLF2a` > 0 & LF3 > 0)
 final_cell_ids <- colnames(Shair_CL_df_LMP1_LF3)
 Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df, cells = final_cell_ids)
 Shair_CL_df_HS@meta.data$class <- "HS"
 Idents(Shair_CL_df_HS) <- Shair_CL_df_HS$class
 levels(Shair_CL_df_HS)
 Shair_CL_df_nHS@meta.data$class <- "nHS"
 Idents(Shair_CL_df_nHS) <- Shair_CL_df_nHS$class
 levels(Shair_CL_df_nHS)
 Shair_CL_df_LF3@meta.data$class <- "LF3"
 Idents(Shair_CL_df_LF3) <- Shair_CL_df_LF3$class
 levels(Shair_CL_df_LF3)
 Shair_CL_df_LMP1@meta.data$class <- "LMP1"
 Idents(Shair_CL_df_LMP1) <- Shair_CL_df_LMP1$class
 levels(Shair_CL_df_LMP1)
 Shair_CL_df_LMP1_LF3@meta.data$class <- "LMP1_LF3"
 Idents(Shair_CL_df_LMP1_LF3) <- Shair_CL_df_LMP1_LF3$class
 levels(Shair_CL_df_LMP1_LF3)

 65

 Shair_CL_df_data <- merge(x = Shair_CL_df_HS, y = c(Shair_CL_df_nHS,
Shair_CL_df_LF3, Shair_CL_df_LMP1, Shair_CL_df_LMP1_LF3), add.cell.ids = c("HS",
"nHS", "LF3", "LMP1", "LMP1_LF3"), project = "Combined")

 levels(Shair_CL_df_data)
 cell_ids <- colnames(Shair_CL_df_data)
 class_labels <- Idents(Shair_CL_df_data)
 gene_expression_data <- GetAssayData(Shair_CL_df_data, layer = "data")
 gene_expression_df <- as.data.frame(t(gene_expression_data))
 cell_class_df <- data.frame(CellID = cell_ids, Class = as.character(class_labels))
 final_dataset <- cbind(cell_class_df, gene_expression_df)
 }

 #DGT
 {
 HS.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "HS", ident.2 = NULL)
 HS.markers_filtered <- subset(HS.markers, p_val_adj < 0.05)
 nHS.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "nHS", ident.2 = NULL)
 nHS.markers_filtered <- subset(nHS.markers, p_val_adj < 0.05)
 nHS.HS.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "nHS", ident.2 =

"HS")
 nHS.HS.markers_filtered <- subset(nHS.HS.markers, p_val_adj < 0.05)
 LMP1.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1", ident.2 =

NULL)
 LMP1.markers_filtered <- subset(LMP1.markers, p_val_adj < 0.05)
 LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LF3", ident.2 = NULL)
 LF3.markers_filtered <- subset(LF3.markers, p_val_adj < 0.05)
 LMP1.LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1", ident.2 =

"LF3")
 LMP1.LF3.markers_filtered <- subset(LMP1.LF3.markers, p_val_adj < 0.05)
 LMP1_LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1_LF3",

ident.2 = NULL)
 LMP1_LF3.markers_filtered <- subset(LMP1_LF3.markers, p_val_adj < 0.05)
 combined_gene_list <- unique(c(rownames(HS.markers_filtered),
 rownames(nHS.markers_filtered),
 rownames(nHS.HS.markers_filtered),
 rownames(LMP1.markers_filtered),
 rownames(LF3.markers_filtered),
 rownames(LMP1_LF3.markers_filtered),
 rownames(LMP1.LF3.markers_filtered)))
 combined_gene_list_filtered <- setdiff(combined_gene_list, EBV)
 }

 #Random Forest
 {
 valid_genes <- intersect(combined_gene_list_filtered, colnames(final_dataset))
 trimmed_dataset <- final_dataset[, c("CellID", "Class", valid_genes)]

 66

 trimmed_dataset$Class <- as.factor(trimmed_dataset$Class)
 set.seed(123)
 train_indices <- sample(nrow(trimmed_dataset), size = 0.7 * nrow(trimmed_dataset))
 train_data <- trimmed_dataset[train_indices, -1]
 test_data <- trimmed_dataset[-train_indices, -1]
 x_train <- train_data[, !(names(train_data) %in% c("CellID", "Class"))]
 y_train <- train_data$Class
 x_test <- test_data[, !(names(test_data) %in% c("CellID", "Class"))]
 y_test <- test_data$Class
 rf_model <- ranger(
 dependent.variable.name = "y_train",
 data = data.frame(x_train, y_train = y_train),
 num.trees = 500,
 mtry = sqrt(ncol(x_train)),
 importance = 'impurity'
)
 pred_class <- predict(rf_model, data.frame(x_test), type="response")
 predictions <- pred_class$predictions
 confusionMatrix <- table(y_test, Predictions = predictions)
 print(confusionMatrix)
 importance_scores <- rf_model$variable.importance
 ordered_importance <- sort(importance_scores, decreasing = TRUE)
 print(head(ordered_importance, n=50))
 print(ordered_importance)
 gene_names <- names(ordered_importance)
 print(gene_names)
 gene_names<-data.frame(gene_names)
 gene_names
 }

 #Mult Log Reg
 {
 top_25_genes <- names(ordered_importance)[1:25]
 final_dataset_filtered <- final_dataset[, c("CellID", "Class", top_25_genes)]
 final_dataset_filtered$Class <- as.factor(final_dataset_filtered$Class)
 current_dataset <- final_dataset_filtered
 min_aic <- Inf
 optimal_dataset <- current_dataset
 removed_genes <- c()
 repeat {
 aic_values <- setNames(numeric(ncol(current_dataset) - 2),

colnames(current_dataset)[-(1:2)])

 for (gene in names(aic_values)) {
 dataset_minus_gene <- current_dataset[, !colnames(current_dataset) %in% c(gene,

"CellID")]

 67

 model <- multinom(Class ~ ., data = dataset_minus_gene, trace = FALSE)
 aic_values[gene] <- AIC(model)
 }

 gene_to_remove <- names(which.min(aic_values))
 new_aic <- min(aic_values)

 if (new_aic < min_aic) {
 min_aic <- new_aic
 current_dataset <- current_dataset[, !colnames(current_dataset) %in%

c(gene_to_remove, "CellID")]
 optimal_dataset <- current_dataset
 removed_genes <- c(removed_genes, gene_to_remove)
 cat("Removed gene:", gene_to_remove, "New AIC:", new_aic, "\n")
 } else {
 break
 }
 }

 final_model <- multinom(Class ~ ., data = optimal_dataset, trace = FALSE)
 summary(final_model)
 predicted_probs <- predict(final_model, newdata = optimal_dataset, type = "probs")
 predicted_class <- apply(predicted_probs, 1, which.max)
 predicted_class <- levels(optimal_dataset$Class)[predicted_class]
 actual_class <- optimal_dataset$Class
 confusion_matrix <- table(Predicted = predicted_class, Actual = actual_class)
 print(confusion_matrix)
 vif_values <- vif(final_model)
 print(vif_values)
 }

 #Elastic Net
 {
 top_25_genes <- names(ordered_importance)[1:25]
 predictors <- as.matrix(final_dataset[, top_25_genes])
 response <- as.factor(final_dataset$Class)
 set.seed(123)
 cv_model <- cv.glmnet(predictors, response, family = "multinomial",

type.multinomial = "grouped",
 alpha = 0.5)
 best_lambda <- cv_model$lambda.min
 plot(cv_model)
 predicted_probs <- predict(cv_model, newx = predictors, s = "lambda.min", type =

"response")
 predicted_class <- apply(predicted_probs, 1, which.max)
 predicted_class <- colnames(predicted_probs)[predicted_class]

 68

 actual_class <- response
 confusion_matrix <- table(Predicted = predicted_class, Actual = actual_class)
 print(confusion_matrix)
 summary(cv_model)
 }
 }

 #012
 {
 #Prepare Dataset
 {
 Shair_CL_df_LF3<-Shair_CL_df
 Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, idents = "11", invert = TRUE)
 cells_to_remove <- WhichCells(Shair_CL_df, expression = `LMP-1/BNLF2a` > 0)
 Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, cells = cells_to_remove, invert =

TRUE)
 Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, subset = LF3 > 0)
 final_cell_ids <- colnames(Shair_CL_df_LF3)
 Shair_CL_df_LF3 <- subset(Shair_CL_df, cells = final_cell_ids)
 Shair_CL_df_LMP1 <- Shair_CL_df
 Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, idents = "11", invert = TRUE)
 cells_to_remove_LF3 <- WhichCells(Shair_CL_df_LMP1, expression = LF3 > 0)
 Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, cells = cells_to_remove_LF3,

invert = TRUE)
 Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, subset = `LMP-1/BNLF2a` > 0)
 final_cell_ids <- colnames(Shair_CL_df_LMP1)
 Shair_CL_df_LMP1 <- subset(Shair_CL_df, cells = final_cell_ids)
 Shair_CL_df_cluster11 <- subset(Shair_CL_df, idents = "11")
 metadata_cluster11 <- Shair_CL_df_cluster11@meta.data
 data_cluster11 <- data.frame(
 CellID = rownames(metadata_cluster11),
 nCount_RNA = metadata_cluster11$nCount_RNA)
 Shair_CL_df_cluster11_filter <- subset(Shair_CL_df_cluster11, features = EBV)
 metadata_cluster11_filter <- Shair_CL_df_cluster11_filter@meta.data
 data_cluster11_filter <- data.frame(
 CellID = rownames(metadata_cluster11_filter),
 nCount_RNA = metadata_cluster11_filter$nCount_RNA)
 combined_data_cluster11 <- merge(data_cluster11, data_cluster11_filter, by =

"CellID")
 colnames(combined_data_cluster11)[colnames(combined_data_cluster11) ==

"nCount_RNA.x"] <- "nCount_RNA_All"
 colnames(combined_data_cluster11)[colnames(combined_data_cluster11) ==

"nCount_RNA.y"] <- "nCount_RNA_EBV"
 sorted_data_cluster11 <- combined_data_cluster11 %>%
 arrange(nCount_RNA_EBV, nCount_RNA_All) %>%
 mutate(Number_ID = row_number())

 69

 sorted_data_cluster11 <- combined_data_cluster11 %>%
 arrange(nCount_RNA_EBV, nCount_RNA_All) %>%
 mutate(Number_ID = row_number(),
 Ratio = nCount_RNA_EBV / nCount_RNA_All)
 sorted_data_cluster11_filtered <- sorted_data_cluster11 %>%
 filter(Ratio <= 0.12)
 cell_ids_to_keep <- sorted_data_cluster11_filtered$CellID
 Shair_CL_df_nHS <- subset(Shair_CL_df, cells = cell_ids_to_keep)
 sorted_data_cluster11_filtered <- sorted_data_cluster11 %>%
 filter(Ratio > 0.12)
 cell_ids_to_keep <- sorted_data_cluster11_filtered$CellID
 Shair_CL_df_HS <- subset(Shair_CL_df, cells = cell_ids_to_keep)
 Shair_CL_df_LMP1_LF3 <- Shair_CL_df
 Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df_LMP1_LF3, idents = "11", invert

= TRUE)
 Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df_LMP1_LF3, subset = `LMP-

1/BNLF2a` > 0 & LF3 > 0)
 final_cell_ids <- colnames(Shair_CL_df_LMP1_LF3)
 Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df, cells = final_cell_ids)
 Shair_CL_df_HS@meta.data$class <- "HS"
 Idents(Shair_CL_df_HS) <- Shair_CL_df_HS$class
 levels(Shair_CL_df_HS)
 Shair_CL_df_nHS@meta.data$class <- "nHS"
 Idents(Shair_CL_df_nHS) <- Shair_CL_df_nHS$class
 levels(Shair_CL_df_nHS)
 Shair_CL_df_LF3@meta.data$class <- "LF3"
 Idents(Shair_CL_df_LF3) <- Shair_CL_df_LF3$class
 levels(Shair_CL_df_LF3)
 Shair_CL_df_LMP1@meta.data$class <- "LMP1"
 Idents(Shair_CL_df_LMP1) <- Shair_CL_df_LMP1$class
 levels(Shair_CL_df_LMP1)
 Shair_CL_df_LMP1_LF3@meta.data$class <- "LMP1_LF3"
 Idents(Shair_CL_df_LMP1_LF3) <- Shair_CL_df_LMP1_LF3$class
 levels(Shair_CL_df_LMP1_LF3)
 Shair_CL_df_data <- merge(x = Shair_CL_df_HS, y = c(Shair_CL_df_nHS,

Shair_CL_df_LF3, Shair_CL_df_LMP1, Shair_CL_df_LMP1_LF3), add.cell.ids = c("HS",
"nHS", "LF3", "LMP1", "LMP1_LF3"), project = "Combined")

 levels(Shair_CL_df_data)
 cell_ids <- colnames(Shair_CL_df_data)
 class_labels <- Idents(Shair_CL_df_data)
 gene_expression_data <- GetAssayData(Shair_CL_df_data, layer = "data")
 gene_expression_df <- as.data.frame(t(gene_expression_data))
 cell_class_df <- data.frame(CellID = cell_ids, Class = as.character(class_labels))
 final_dataset <- cbind(cell_class_df, gene_expression_df)
 }

 70

 #DGT
 {
 HS.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "HS", ident.2 = NULL)
 HS.markers_filtered <- subset(HS.markers, p_val_adj < 0.05)
 nHS.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "nHS", ident.2 = NULL)
 nHS.markers_filtered <- subset(nHS.markers, p_val_adj < 0.05)
 nHS.HS.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "nHS", ident.2 =

"HS")
 nHS.HS.markers_filtered <- subset(nHS.HS.markers, p_val_adj < 0.05)
 LMP1.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1", ident.2 =

NULL)
 LMP1.markers_filtered <- subset(LMP1.markers, p_val_adj < 0.05)
 LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LF3", ident.2 = NULL)
 LF3.markers_filtered <- subset(LF3.markers, p_val_adj < 0.05)
 LMP1.LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1", ident.2 =

"LF3")
 LMP1.LF3.markers_filtered <- subset(LMP1.LF3.markers, p_val_adj < 0.05)
 LMP1_LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1_LF3",

ident.2 = NULL)
 LMP1_LF3.markers_filtered <- subset(LMP1_LF3.markers, p_val_adj < 0.05)
 combined_gene_list <- unique(c(rownames(HS.markers_filtered),
 rownames(nHS.markers_filtered),
 rownames(nHS.HS.markers_filtered),
 rownames(LMP1.markers_filtered),
 rownames(LF3.markers_filtered),
 rownames(LMP1_LF3.markers_filtered),
 rownames(LMP1.LF3.markers_filtered)))
 combined_gene_list_filtered <- setdiff(combined_gene_list, EBV)
 }

 #Random Forest
 {
 valid_genes <- intersect(combined_gene_list_filtered, colnames(final_dataset))
 trimmed_dataset <- final_dataset[, c("CellID", "Class", valid_genes)]
 trimmed_dataset$Class <- as.factor(trimmed_dataset$Class)
 set.seed(123)
 train_indices <- sample(nrow(trimmed_dataset), size = 0.7 * nrow(trimmed_dataset))
 train_data <- trimmed_dataset[train_indices, -1]
 test_data <- trimmed_dataset[-train_indices, -1]
 x_train <- train_data[, !(names(train_data) %in% c("CellID", "Class"))]
 y_train <- train_data$Class
 x_test <- test_data[, !(names(test_data) %in% c("CellID", "Class"))]
 y_test <- test_data$Class
 rf_model <- ranger(
 dependent.variable.name = "y_train",
 data = data.frame(x_train, y_train = y_train),

 71

 num.trees = 500,
 mtry = sqrt(ncol(x_train)),
 importance = 'impurity'
)
 pred_class <- predict(rf_model, data.frame(x_test), type="response")
 predictions <- pred_class$predictions
 confusionMatrix <- table(y_test, Predictions = predictions)
 print(confusionMatrix)
 importance_scores <- rf_model$variable.importance
 ordered_importance <- sort(importance_scores, decreasing = TRUE)
 print(head(ordered_importance, n=50))
 print(ordered_importance)
 gene_names <- names(ordered_importance)
 print(gene_names)
 gene_names<-data.frame(gene_names)
 gene_names
 }

 #Mult Log Reg
 {
 top_25_genes <- names(ordered_importance)[1:25]
 final_dataset_filtered <- final_dataset[, c("CellID", "Class", top_25_genes)]
 final_dataset_filtered$Class <- as.factor(final_dataset_filtered$Class)
 current_dataset <- final_dataset_filtered
 min_aic <- Inf
 optimal_dataset <- current_dataset
 removed_genes <- c()
 repeat {
 aic_values <- setNames(numeric(ncol(current_dataset) - 2),

colnames(current_dataset)[-(1:2)])

 for (gene in names(aic_values)) {
 dataset_minus_gene <- current_dataset[, !colnames(current_dataset) %in% c(gene,

"CellID")]
 model <- multinom(Class ~ ., data = dataset_minus_gene, trace = FALSE)
 aic_values[gene] <- AIC(model)
 }

 gene_to_remove <- names(which.min(aic_values))
 new_aic <- min(aic_values)

 if (new_aic < min_aic) {
 min_aic <- new_aic
 current_dataset <- current_dataset[, !colnames(current_dataset) %in%

c(gene_to_remove, "CellID")]
 optimal_dataset <- current_dataset

 72

 removed_genes <- c(removed_genes, gene_to_remove)
 cat("Removed gene:", gene_to_remove, "New AIC:", new_aic, "\n")
 } else {
 break
 }
 }

 final_model <- multinom(Class ~ ., data = optimal_dataset, trace = FALSE)
 summary(final_model)
 predicted_probs <- predict(final_model, newdata = optimal_dataset, type = "probs")
 predicted_class <- apply(predicted_probs, 1, which.max)
 predicted_class <- levels(optimal_dataset$Class)[predicted_class]
 actual_class <- optimal_dataset$Class
 confusion_matrix <- table(Predicted = predicted_class, Actual = actual_class)
 print(confusion_matrix)
 vif_values <- vif(final_model)
 print(vif_values)
 }

 #Elastic Net
 {
 top_25_genes <- names(ordered_importance)[1:25]
 predictors <- as.matrix(final_dataset[, top_25_genes])
 response <- as.factor(final_dataset$Class)
 set.seed(123)
 cv_model <- cv.glmnet(predictors, response, family = "multinomial",

type.multinomial = "grouped",
 alpha = 0.5)
 best_lambda <- cv_model$lambda.min
 plot(cv_model)
 predicted_probs <- predict(cv_model, newx = predictors, s = "lambda.min", type =

"response")
 predicted_class <- apply(predicted_probs, 1, which.max)
 predicted_class <- colnames(predicted_probs)[predicted_class]
 actual_class <- response
 confusion_matrix <- table(Predicted = predicted_class, Actual = actual_class)
 print(confusion_matrix)
 summary(cv_model)
 }
 }

 #020
 {
 #Prepare Dataset
 {
 Shair_CL_df_LF3<-Shair_CL_df

 73

 Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, idents = "11", invert = TRUE)
 cells_to_remove <- WhichCells(Shair_CL_df, expression = `LMP-1/BNLF2a` > 0)
 Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, cells = cells_to_remove, invert =

TRUE)
 Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, subset = LF3 > 0)
 final_cell_ids <- colnames(Shair_CL_df_LF3)
 Shair_CL_df_LF3 <- subset(Shair_CL_df, cells = final_cell_ids)
 Shair_CL_df_LMP1 <- Shair_CL_df
 Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, idents = "11", invert = TRUE)
 cells_to_remove_LF3 <- WhichCells(Shair_CL_df_LMP1, expression = LF3 > 0)
 Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, cells = cells_to_remove_LF3,

invert = TRUE)
 Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, subset = `LMP-1/BNLF2a` > 0)
 final_cell_ids <- colnames(Shair_CL_df_LMP1)
 Shair_CL_df_LMP1 <- subset(Shair_CL_df, cells = final_cell_ids)
 Shair_CL_df_cluster11 <- subset(Shair_CL_df, idents = "11")
 metadata_cluster11 <- Shair_CL_df_cluster11@meta.data
 data_cluster11 <- data.frame(
 CellID = rownames(metadata_cluster11),
 nCount_RNA = metadata_cluster11$nCount_RNA)
 Shair_CL_df_cluster11_filter <- subset(Shair_CL_df_cluster11, features = EBV)
 metadata_cluster11_filter <- Shair_CL_df_cluster11_filter@meta.data
 data_cluster11_filter <- data.frame(
 CellID = rownames(metadata_cluster11_filter),
 nCount_RNA = metadata_cluster11_filter$nCount_RNA)
 combined_data_cluster11 <- merge(data_cluster11, data_cluster11_filter, by =

"CellID")
 colnames(combined_data_cluster11)[colnames(combined_data_cluster11) ==

"nCount_RNA.x"] <- "nCount_RNA_All"
 colnames(combined_data_cluster11)[colnames(combined_data_cluster11) ==

"nCount_RNA.y"] <- "nCount_RNA_EBV"
 sorted_data_cluster11 <- combined_data_cluster11 %>%
 arrange(nCount_RNA_EBV, nCount_RNA_All) %>%
 mutate(Number_ID = row_number())
 sorted_data_cluster11 <- combined_data_cluster11 %>%
 arrange(nCount_RNA_EBV, nCount_RNA_All) %>%
 mutate(Number_ID = row_number(),
 Ratio = nCount_RNA_EBV / nCount_RNA_All)
 sorted_data_cluster11_filtered <- sorted_data_cluster11 %>%
 filter(Ratio <= 0.20)
 cell_ids_to_keep <- sorted_data_cluster11_filtered$CellID
 Shair_CL_df_nHS <- subset(Shair_CL_df, cells = cell_ids_to_keep)
 sorted_data_cluster11_filtered <- sorted_data_cluster11 %>%
 filter(Ratio > 0.20)
 cell_ids_to_keep <- sorted_data_cluster11_filtered$CellID
 Shair_CL_df_HS <- subset(Shair_CL_df, cells = cell_ids_to_keep)

 74

 Shair_CL_df_LMP1_LF3 <- Shair_CL_df
 Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df_LMP1_LF3, idents = "11", invert

= TRUE)
 Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df_LMP1_LF3, subset = `LMP-

1/BNLF2a` > 0 & LF3 > 0)
 final_cell_ids <- colnames(Shair_CL_df_LMP1_LF3)
 Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df, cells = final_cell_ids)
 Shair_CL_df_HS@meta.data$class <- "HS"
 Idents(Shair_CL_df_HS) <- Shair_CL_df_HS$class
 levels(Shair_CL_df_HS)
 Shair_CL_df_nHS@meta.data$class <- "nHS"
 Idents(Shair_CL_df_nHS) <- Shair_CL_df_nHS$class
 levels(Shair_CL_df_nHS)
 Shair_CL_df_LF3@meta.data$class <- "LF3"
 Idents(Shair_CL_df_LF3) <- Shair_CL_df_LF3$class
 levels(Shair_CL_df_LF3)
 Shair_CL_df_LMP1@meta.data$class <- "LMP1"
 Idents(Shair_CL_df_LMP1) <- Shair_CL_df_LMP1$class
 levels(Shair_CL_df_LMP1)
 Shair_CL_df_LMP1_LF3@meta.data$class <- "LMP1_LF3"
 Idents(Shair_CL_df_LMP1_LF3) <- Shair_CL_df_LMP1_LF3$class
 levels(Shair_CL_df_LMP1_LF3)
 Shair_CL_df_data <- merge(x = Shair_CL_df_HS, y = c(Shair_CL_df_nHS,

Shair_CL_df_LF3, Shair_CL_df_LMP1, Shair_CL_df_LMP1_LF3), add.cell.ids = c("HS",
"nHS", "LF3", "LMP1", "LMP1_LF3"), project = "Combined")

 levels(Shair_CL_df_data)
 cell_ids <- colnames(Shair_CL_df_data)
 class_labels <- Idents(Shair_CL_df_data)
 gene_expression_data <- GetAssayData(Shair_CL_df_data, layer = "data")
 gene_expression_df <- as.data.frame(t(gene_expression_data))
 cell_class_df <- data.frame(CellID = cell_ids, Class = as.character(class_labels))
 final_dataset <- cbind(cell_class_df, gene_expression_df)
 }

 #DGT
 {
 HS.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "HS", ident.2 = NULL)
 HS.markers_filtered <- subset(HS.markers, p_val_adj < 0.05)
 nHS.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "nHS", ident.2 = NULL)
 nHS.markers_filtered <- subset(nHS.markers, p_val_adj < 0.05)
 nHS.HS.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "nHS", ident.2 =

"HS")
 nHS.HS.markers_filtered <- subset(nHS.HS.markers, p_val_adj < 0.05)
 LMP1.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1", ident.2 =

NULL)
 LMP1.markers_filtered <- subset(LMP1.markers, p_val_adj < 0.05)

 75

 LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LF3", ident.2 = NULL)
 LF3.markers_filtered <- subset(LF3.markers, p_val_adj < 0.05)
 LMP1.LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1", ident.2 =

"LF3")
 LMP1.LF3.markers_filtered <- subset(LMP1.LF3.markers, p_val_adj < 0.05)
 LMP1_LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1_LF3",

ident.2 = NULL)
 LMP1_LF3.markers_filtered <- subset(LMP1_LF3.markers, p_val_adj < 0.05)
 combined_gene_list <- unique(c(rownames(HS.markers_filtered),
 rownames(nHS.markers_filtered),
 rownames(nHS.HS.markers_filtered),
 rownames(LMP1.markers_filtered),
 rownames(LF3.markers_filtered),
 rownames(LMP1_LF3.markers_filtered),
 rownames(LMP1.LF3.markers_filtered)))
 combined_gene_list_filtered <- setdiff(combined_gene_list, EBV)
 }

 #Random Forest
 {
 valid_genes <- intersect(combined_gene_list_filtered, colnames(final_dataset))
 trimmed_dataset <- final_dataset[, c("CellID", "Class", valid_genes)]
 trimmed_dataset$Class <- as.factor(trimmed_dataset$Class)
 set.seed(123)
 train_indices <- sample(nrow(trimmed_dataset), size = 0.7 * nrow(trimmed_dataset))
 train_data <- trimmed_dataset[train_indices, -1]
 test_data <- trimmed_dataset[-train_indices, -1]
 x_train <- train_data[, !(names(train_data) %in% c("CellID", "Class"))]
 y_train <- train_data$Class
 x_test <- test_data[, !(names(test_data) %in% c("CellID", "Class"))]
 y_test <- test_data$Class
 rf_model <- ranger(
 dependent.variable.name = "y_train",
 data = data.frame(x_train, y_train = y_train),
 num.trees = 500,
 mtry = sqrt(ncol(x_train)),
 importance = 'impurity'
)
 pred_class <- predict(rf_model, data.frame(x_test), type="response")
 predictions <- pred_class$predictions
 confusionMatrix <- table(y_test, Predictions = predictions)
 print(confusionMatrix)
 importance_scores <- rf_model$variable.importance
 ordered_importance <- sort(importance_scores, decreasing = TRUE)
 print(head(ordered_importance, n=50))
 print(ordered_importance)

 76

 gene_names <- names(ordered_importance)
 print(gene_names)
 gene_names<-data.frame(gene_names)
 gene_names
 }

 #Mult Log Reg
 {
 top_25_genes <- names(ordered_importance)[1:25]
 final_dataset_filtered <- final_dataset[, c("CellID", "Class", top_25_genes)]
 final_dataset_filtered$Class <- as.factor(final_dataset_filtered$Class)
 current_dataset <- final_dataset_filtered
 min_aic <- Inf
 optimal_dataset <- current_dataset
 removed_genes <- c()
 repeat {
 aic_values <- setNames(numeric(ncol(current_dataset) - 2),

colnames(current_dataset)[-(1:2)])

 for (gene in names(aic_values)) {
 dataset_minus_gene <- current_dataset[, !colnames(current_dataset) %in% c(gene,

"CellID")]
 model <- multinom(Class ~ ., data = dataset_minus_gene, trace = FALSE)
 aic_values[gene] <- AIC(model)
 }

 gene_to_remove <- names(which.min(aic_values))
 new_aic <- min(aic_values)

 if (new_aic < min_aic) {
 min_aic <- new_aic
 current_dataset <- current_dataset[, !colnames(current_dataset) %in%

c(gene_to_remove, "CellID")]
 optimal_dataset <- current_dataset
 removed_genes <- c(removed_genes, gene_to_remove)
 cat("Removed gene:", gene_to_remove, "New AIC:", new_aic, "\n")
 } else {
 break
 }
 }

 final_model <- multinom(Class ~ ., data = optimal_dataset, trace = FALSE)
 summary(final_model)
 predicted_probs <- predict(final_model, newdata = optimal_dataset, type = "probs")
 predicted_class <- apply(predicted_probs, 1, which.max)
 predicted_class <- levels(optimal_dataset$Class)[predicted_class]

 77

 actual_class <- optimal_dataset$Class
 confusion_matrix <- table(Predicted = predicted_class, Actual = actual_class)
 print(confusion_matrix)
 vif_values <- vif(final_model)
 print(vif_values)
 }

 #Elastic Net
 {
 top_25_genes <- names(ordered_importance)[1:25]
 predictors <- as.matrix(final_dataset[, top_25_genes])
 response <- as.factor(final_dataset$Class)
 set.seed(123)
 cv_model <- cv.glmnet(predictors, response, family = "multinomial",

type.multinomial = "grouped",
 alpha = 0.5)
 best_lambda <- cv_model$lambda.min
 plot(cv_model)
 predicted_probs <- predict(cv_model, newx = predictors, s = "lambda.min", type =

"response")
 predicted_class <- apply(predicted_probs, 1, which.max)
 predicted_class <- colnames(predicted_probs)[predicted_class]
 actual_class <- response
 confusion_matrix <- table(Predicted = predicted_class, Actual = actual_class)
 print(confusion_matrix)
 summary(cv_model)
 }
 }

 #Iteration 2
 {
 #Prepare Dataset
 {
 Shair_CL_df_LF3<-Shair_CL_df
 Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, idents = "11", invert = TRUE)
 cells_to_remove <- WhichCells(Shair_CL_df, expression = `LMP-1/BNLF2a` > 0)
 Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, cells = cells_to_remove, invert =

TRUE)
 Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, subset = LF3 > 0)
 final_cell_ids <- colnames(Shair_CL_df_LF3)
 Shair_CL_df_LF3 <- subset(Shair_CL_df, cells = final_cell_ids)
 Shair_CL_df_LMP1 <- Shair_CL_df
 Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, idents = "11", invert = TRUE)
 cells_to_remove_LF3 <- WhichCells(Shair_CL_df_LMP1, expression = LF3 > 0)
 Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, cells = cells_to_remove_LF3,

invert = TRUE)

 78

 Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, subset = `LMP-1/BNLF2a` > 0)
 final_cell_ids <- colnames(Shair_CL_df_LMP1)
 Shair_CL_df_LMP1 <- subset(Shair_CL_df, cells = final_cell_ids)
 Shair_CL_df_cluster11 <- subset(Shair_CL_df, idents = "11")
 metadata_cluster11 <- Shair_CL_df_cluster11@meta.data
 data_cluster11 <- data.frame(
 CellID = rownames(metadata_cluster11),
 nCount_RNA = metadata_cluster11$nCount_RNA)
 Shair_CL_df_cluster11_filter <- subset(Shair_CL_df_cluster11, features = EBV)
 metadata_cluster11_filter <- Shair_CL_df_cluster11_filter@meta.data
 data_cluster11_filter <- data.frame(
 CellID = rownames(metadata_cluster11_filter),
 nCount_RNA = metadata_cluster11_filter$nCount_RNA)
 combined_data_cluster11 <- merge(data_cluster11, data_cluster11_filter, by =

"CellID")
 colnames(combined_data_cluster11)[colnames(combined_data_cluster11) ==

"nCount_RNA.x"] <- "nCount_RNA_All"
 colnames(combined_data_cluster11)[colnames(combined_data_cluster11) ==

"nCount_RNA.y"] <- "nCount_RNA_EBV"
 sorted_data_cluster11 <- combined_data_cluster11 %>%
 arrange(nCount_RNA_EBV, nCount_RNA_All) %>%
 mutate(Number_ID = row_number())
 sorted_data_cluster11 <- combined_data_cluster11 %>%
 arrange(nCount_RNA_EBV, nCount_RNA_All) %>%
 mutate(Number_ID = row_number(),
 Ratio = nCount_RNA_EBV / nCount_RNA_All)
 sorted_data_cluster11_filtered <- sorted_data_cluster11 %>%
 filter(Ratio <= 0.37)
 cell_ids_to_keep <- sorted_data_cluster11_filtered$CellID
 Shair_CL_df_nHS <- subset(Shair_CL_df, cells = cell_ids_to_keep)
 Shair_CL_df_LMP1_LF3 <- Shair_CL_df
 Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df_LMP1_LF3, idents = "11", invert =

TRUE)
 Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df_LMP1_LF3, subset = `LMP-

1/BNLF2a` > 0 & LF3 > 0)
 final_cell_ids <- colnames(Shair_CL_df_LMP1_LF3)
 Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df, cells = final_cell_ids)
 Shair_CL_df_nHS@meta.data$class <- "nHS"
 Idents(Shair_CL_df_nHS) <- Shair_CL_df_nHS$class
 levels(Shair_CL_df_nHS)
 Shair_CL_df_LF3@meta.data$class <- "LF3"
 Idents(Shair_CL_df_LF3) <- Shair_CL_df_LF3$class
 levels(Shair_CL_df_LF3)
 Shair_CL_df_LMP1@meta.data$class <- "LMP1"
 Idents(Shair_CL_df_LMP1) <- Shair_CL_df_LMP1$class
 levels(Shair_CL_df_LMP1)

 79

 Shair_CL_df_LMP1_LF3@meta.data$class <- "LMP1_LF3"
 Idents(Shair_CL_df_LMP1_LF3) <- Shair_CL_df_LMP1_LF3$class
 levels(Shair_CL_df_LMP1_LF3)
 Shair_CL_df_data <- merge(x = Shair_CL_df_LMP1, y = c(Shair_CL_df_nHS,

Shair_CL_df_LF3, Shair_CL_df_LMP1_LF3), add.cell.ids = c("LMP1","nHS", "LF3",
"LMP1_LF3"), project = "Combined")

 levels(Shair_CL_df_data)
 cell_ids <- colnames(Shair_CL_df_data)
 class_labels <- Idents(Shair_CL_df_data)
 gene_expression_data <- GetAssayData(Shair_CL_df_data, layer = "data")
 gene_expression_df <- as.data.frame(t(gene_expression_data))
 cell_class_df <- data.frame(CellID = cell_ids, Class = as.character(class_labels))
 final_dataset <- cbind(cell_class_df, gene_expression_df)
 }

 #DGT
 {
 nHS.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "nHS", ident.2 = NULL)
 nHS.markers_filtered <- subset(nHS.markers, p_val_adj < 0.05)
 LMP1.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1", ident.2 =

NULL)
 LMP1.markers_filtered <- subset(LMP1.markers, p_val_adj < 0.05)
 LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LF3", ident.2 = NULL)
 LF3.markers_filtered <- subset(LF3.markers, p_val_adj < 0.05)
 LMP1_LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1_LF3",

ident.2 = NULL)
 LMP1_LF3.markers_filtered <- subset(LMP1_LF3.markers, p_val_adj < 0.05)
 LMP1.LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1", ident.2 =

"LF3")
 LMP1.LF3.markers_filtered <- subset(LMP1.LF3.markers, p_val_adj < 0.05)
 combined_gene_list <- unique(c(rownames(nHS.markers_filtered),
 rownames(LMP1.markers_filtered),
 rownames(LF3.markers_filtered),
 rownames(LMP1_LF3.markers_filtered),
 rownames(LMP1.LF3.markers_filtered)))
 combined_gene_list_filtered <- setdiff(combined_gene_list, EBV)
 }

 #Random Forest
 {
 valid_genes <- intersect(combined_gene_list_filtered, colnames(final_dataset))
 trimmed_dataset <- final_dataset[, c("CellID", "Class", valid_genes)]
 trimmed_dataset$Class <- as.factor(trimmed_dataset$Class)
 set.seed(123)
 train_indices <- sample(nrow(trimmed_dataset), size = 0.7 * nrow(trimmed_dataset))
 train_data <- trimmed_dataset[train_indices, -1]

 80

 test_data <- trimmed_dataset[-train_indices, -1]
 x_train <- train_data[, !(names(train_data) %in% c("CellID", "Class"))]
 y_train <- train_data$Class
 x_test <- test_data[, !(names(test_data) %in% c("CellID", "Class"))]
 y_test <- test_data$Class
 rf_model <- ranger(
 dependent.variable.name = "y_train",
 data = data.frame(x_train, y_train = y_train),
 num.trees = 500,
 mtry = sqrt(ncol(x_train)),
 importance = 'impurity'
)
 pred_class <- predict(rf_model, data.frame(x_test), type="response")
 predictions <- pred_class$predictions
 confusionMatrix <- table(y_test, Predictions = predictions)
 print(confusionMatrix)
 importance_scores <- rf_model$variable.importance
 ordered_importance <- sort(importance_scores, decreasing = TRUE)
 print(head(ordered_importance, n=50))
 }
 }

 #Iteration 3
 {
 #Prepare Dataset
 {
 Shair_CL_df_LF3<-Shair_CL_df
 Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, idents = "11", invert = TRUE)
 cells_to_remove <- WhichCells(Shair_CL_df, expression = `LMP-1/BNLF2a` > 0)
 Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, cells = cells_to_remove, invert =

TRUE)
 Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, subset = LF3 > 0)
 final_cell_ids <- colnames(Shair_CL_df_LF3)
 Shair_CL_df_LF3 <- subset(Shair_CL_df, cells = final_cell_ids)
 Shair_CL_df_LMP1 <- Shair_CL_df
 Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, idents = "11", invert = TRUE)
 cells_to_remove_LF3 <- WhichCells(Shair_CL_df_LMP1, expression = LF3 > 0)
 Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, cells = cells_to_remove_LF3,

invert = TRUE)
 Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, subset = `LMP-1/BNLF2a` > 0)
 final_cell_ids <- colnames(Shair_CL_df_LMP1)
 Shair_CL_df_LMP1 <- subset(Shair_CL_df, cells = final_cell_ids)
 Shair_CL_df_LMP1_LF3 <- Shair_CL_df
 Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df_LMP1_LF3, idents = "11", invert

= TRUE)

 81

 Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df_LMP1_LF3, subset = `LMP-
1/BNLF2a` > 0 & LF3 > 0)

 final_cell_ids <- colnames(Shair_CL_df_LMP1_LF3)
 Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df, cells = final_cell_ids)
 Shair_CL_df_LF3@meta.data$class <- "LF3"
 Idents(Shair_CL_df_LF3) <- Shair_CL_df_LF3$class
 levels(Shair_CL_df_LF3)
 Shair_CL_df_LMP1@meta.data$class <- "LMP1"
 Idents(Shair_CL_df_LMP1) <- Shair_CL_df_LMP1$class
 levels(Shair_CL_df_LMP1)
 Shair_CL_df_LMP1_LF3@meta.data$class <- "LMP1_LF3"
 Idents(Shair_CL_df_LMP1_LF3) <- Shair_CL_df_LMP1_LF3$class
 levels(Shair_CL_df_LMP1_LF3)
 Shair_CL_df_data <- merge(x = Shair_CL_df_LMP1, y = c(Shair_CL_df_LF3,

Shair_CL_df_LMP1_LF3), add.cell.ids = c("LF3", "LMP1", "LMP1_LF3"), project =
"Combined")

 levels(Shair_CL_df_data)
 cell_ids <- colnames(Shair_CL_df_data)
 class_labels <- Idents(Shair_CL_df_data)
 gene_expression_data <- GetAssayData(Shair_CL_df_data, layer = "data")
 gene_expression_df <- as.data.frame(t(gene_expression_data))
 cell_class_df <- data.frame(CellID = cell_ids, Class = as.character(class_labels))
 final_dataset <- cbind(cell_class_df, gene_expression_df)
 }

 #DGT
 {
 LMP1.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1", ident.2 =

NULL)
 LMP1.markers_filtered <- subset(LMP1.markers, p_val_adj < 0.05)
 LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LF3", ident.2 = NULL)
 LF3.markers_filtered <- subset(LF3.markers, p_val_adj < 0.05)
 LMP1_LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1_LF3",

ident.2 = NULL)
 LMP1_LF3.markers_filtered <- subset(LMP1_LF3.markers, p_val_adj < 0.05)
 LMP1.LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1", ident.2 =

"LF3")
 LMP1.LF3.markers_filtered <- subset(LMP1.LF3.markers, p_val_adj < 0.05)
 combined_gene_list <- unique(c(

rownames(LMP1.markers_filtered),
 rownames(LF3.markers_filtered),
 rownames(LMP1_LF3.markers_filtered),
 rownames(LMP1.LF3.markers_filtered)))
 combined_gene_list_filtered <- setdiff(combined_gene_list, EBV)
 }

 82

 #Random Forest
 {
 valid_genes <- intersect(combined_gene_list_filtered, colnames(final_dataset))
 trimmed_dataset <- final_dataset[, c("CellID", "Class", valid_genes)]
 trimmed_dataset$Class <- as.factor(trimmed_dataset$Class)
 set.seed(123)
 train_indices <- sample(nrow(trimmed_dataset), size = 0.7 * nrow(trimmed_dataset))
 train_data <- trimmed_dataset[train_indices, -1]
 test_data <- trimmed_dataset[-train_indices, -1]
 x_train <- train_data[, !(names(train_data) %in% c("CellID", "Class"))]
 y_train <- train_data$Class
 x_test <- test_data[, !(names(test_data) %in% c("CellID", "Class"))]
 y_test <- test_data$Class
 rf_model <- ranger(
 dependent.variable.name = "y_train",
 data = data.frame(x_train, y_train = y_train),
 num.trees = 500,
 mtry = sqrt(ncol(x_train)),
 importance = 'impurity'
)
 pred_class <- predict(rf_model, data.frame(x_test), type="response")
 predictions <- pred_class$predictions
 confusionMatrix <- table(y_test, Predictions = predictions)
 print(confusionMatrix)
 importance_scores <- rf_model$variable.importance
 ordered_importance <- sort(importance_scores, decreasing = TRUE)
 print(head(ordered_importance, n=50))
 }
 }

}

 83

Bibliography

[1] Wong Y, Meehan MT, Burrows SR, Doolan DL, Miles JJ. Estimating the global burden of
Epstein-Barr virus-related cancers. J Cancer Res Clin Oncol. 2022 Jan;148(1):31-46. doi:
10.1007/s00432-021-03824-y. Epub 2021 Oct 27. PMID: 34705104; PMCID:
PMC8752571.

[2] Wang Q, Xie H, Li Y, Theodoropoulos N, Zhang Y, Jiang C, Wen C, Rozek LS, Boffetta P.
Racial and ethnic disparities in nasopharyngeal cancer with an emphasis among Asian
Americans. Int J Cancer. 2022 Oct 15;151(8):1291-1303. doi: 10.1002/ijc.34154. Epub
2022 Jun 22. Erratum in: Int J Cancer. 2023 Feb 15;152(4):E3. PMID: 35666524.

[3] Ziegler P, Tian Y, Bai Y, Abrahamsson S, Bäckerholm A, Reznik AS, Green A, Moore JA,
Lee SE, Myerburg MM, Park HJ, Tang KW, Shair KHY. A primary nasopharyngeal three-
dimensional air-liquid interface cell culture model of the pseudostratified epithelium
reveals differential donor- and cell type-specific susceptibility to Epstein-Barr virus
infection. PLoS Pathog. 2021 Apr 29;17(4):e1009041. doi: 10.1371/journal.ppat.1009041.
PMID: 33914843; PMCID: PMC8112674.

[4] Banko A, Miljanovic D, Lazarevic I, Cirkovic A. A Systematic Review of Epstein-Barr Virus
Latent Membrane Protein 1 (LMP1) Gene Variants in Nasopharyngeal Carcinoma.
Pathogens. 2021 Aug 20;10(8):1057. doi: 10.3390/pathogens10081057. PMID: 34451521;
PMCID: PMC8401687.

[5] Zheng, Grace X.Y., Terry, Jessica M., [...] Bielas, Jason H. (2017). Massively parallel digital
transcriptional profiling of single cells. Nature Communications. 8: 1-12,
doi:10.1038/ncomms14049

[6] Lee J, Kosowicz JG, Hayward SD, Desai P, Stone J, Lee JM, Liu JO, Ambinder RF.
Pharmacologic Activation of Lytic Epstein-Barr Virus Gene Expression without Virion
Production. J Virol. 2019 Sep 30;93(20):e00998-19. doi: 10.1128/JVI.00998-19. PMID:
31341058; PMCID: PMC6798122.

[7] Yuhan Hao, Stephanie Hao, Erica Andersen-Nissen, William M. Mauck III, Shiwei Zheng,
Andrew Butler, Maddie J. Lee, Aaron J. Wilk, Charlotte Darby, Michael Zagar, Paul
Hoffman, Marlon Stoeckius, Efthymia Papalexi, Eleni P. Mimitou, Jaison Jain, Avi
Srivastava, Tim Stuart, Lamar B. Fleming, Bertrand Yeung, Angela J. Rogers, Juliana M.
McElrath, Catherine A. Blish, Raphael Gottardo, Peter Smibert, & Rahul Satĳa (2021).
Integrated analysis of multimodal single-cell data. Cell.

[8] Cleveland, W.S.1979.Robust Locally Weighted Regression and Smoothing Scatterplots.
Journal of the American Statistical Association 74:829-836

 84

[9] Hadley Wickham (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New
York.

[10] Gu Z, Eils R, Schlesner M (2016). “Complex heatmaps reveal patterns and correlations in
multidimensional genomic data.” Bioinformatics. doi:10.1093/bioinformatics/btw313.

[11] Haynes, W. (2013). Wilcoxon Rank Sum Test. In: Dubitzky, W., Wolkenhauer, O., Cho, KH.,
Yokota, H. (eds) Encyclopedia of Systems Biology. Springer, New York, NY.
https://doi.org/10.1007/978-1-4419-9863-7_1185

[12] Marvin N. Wright, & Andreas Ziegler (2017). ranger: A Fast Implementation of Random
Forests for High Dimensional Data in C++ and R. Journal of Statistical Software, 77(1),
1–17.

[13] Breiman, L. Random Forests. Machine Learning 45, 5–32 (2001).
https://doi.org/10.1023/A:1010933404324

[14] Trevethan R. Sensitivity, Specificity, and Predictive Values: Foundations, Pliabilities, and
Pitfalls in Research and Practice. Front Public Health. 2017 Nov 20;5:307. doi:
10.3389/fpubh.2017.00307. PMID: 29209603; PMCID: PMC5701930.

[15] Hirokazu Yanagihara, Ken-ichi Kamo, Shinpei Imori, Kenichi Satoh, Bias-corrected AIC for
selecting variables in multinomial logistic regression models, Linear Algebra and its
Applications, Volume 436, Issue 11, 2012, Pages 4329-4341, ISSN 0024-3795,
https://doi.org/10.1016/j.laa.2012.01.018.

[16] W. N. Venables, & B. D. Ripley (2002). Modern Applied Statistics with S. Springer.

[17] Liuyuan Chen, Jie Yang, Juntao Li, Xiaoyu Wang, "Multinomial Regression with Elastic Net
Penalty and Its Grouping Effect in Gene Selection", Abstract and Applied Analysis, vol.
2014, Article ID 569501, 7 pages, 2014. https://doi.org/10.1155/2014/569501

[18] Friedman J, Tibshirani R, Hastie T (2010). “Regularization Paths for Generalized Linear
Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1–22.
doi:10.18637/jss.v033.i01.

[19] Tay JK, Narasimhan B, Hastie T (2023). “Elastic Net Regularization Paths for All Generalized
Linear Models.” Journal of Statistical Software, 106(1), 1–31. doi:10.18637/jss.v106.i01.

[20] Rowe M, Glaunsinger B, van Leeuwen D, Zuo J, Sweetman D, Ganem D, Middeldorp J,
Wiertz EJ, Ressing ME. Host shutoff during productive Epstein-Barr virus infection is
mediated by BGLF5 and may contribute to immune evasion. Proc Natl Acad Sci U S A.
2007 Feb 27;104(9):3366-71. doi: 10.1073/pnas.0611128104. Epub 2007 Feb 21. PMID:
17360652; PMCID: PMC1805610.

 85

[21] Milacic M, Beavers D, Conley P, Gong C, Gillespie M, Griss J, Haw R, Jassal B, Matthews
L, May B, Petryszak R, Ragueneau E, Rothfels K, Sevilla C, Shamovsky V, Stephan R,
Tiwari K, Varusai T, Weiser J, Wright A, Wu G, Stein L, Hermjakob H, D’Eustachio P.
The Reactome Pathway Knowledgebase 2024. Nucleic Acids Research. 2024. doi:
10.1093/nar/gkad1025

[22] Ratnasiri K, Wilk AJ, Lee MJ, Khatri P, Blish CA. Single-cell RNA-seq methods to
interrogate virus-host interactions. Semin Immunopathol. 2023 Jan;45(1):71-89. doi:
10.1007/s00281-022-00972-2. Epub 2022 Nov 21. PMID: 36414692; PMCID:
PMC9684776.

[23] Wang L, Ning S. New Look of EBV LMP1 Signaling Landscape. Cancers (Basel). 2021 Oct
29;13(21):5451. doi: 10.3390/cancers13215451. PMID: 34771613; PMCID:
PMC8582580.

[24] Yetming KD, Lupey-Green LN, Biryukov S, Hughes DJ, Marendy EM, Miranda JL, Sample
JT. The BHLF1 Locus of Epstein-Barr Virus Contributes to Viral Latency and B-Cell
Immortalization. J Virol. 2020 Aug 17;94(17):e01215-20. doi: 10.1128/JVI.01215-20.
PMID: 32581094; PMCID: PMC7431786.

[25] Yetming KD, Lupey-Green LN, Biryukov S, Hughes DJ, Marendy EM, Miranda JL, Sample
JT. The BHLF1 Locus of Epstein-Barr Virus Contributes to Viral Latency and B-Cell
Immortalization. J Virol. 2020 Aug 17;94(17):e01215-20. doi: 10.1128/JVI.01215-20.
PMID: 32581094; PMCID: PMC7431786.

[26] Xue SA, Griffin BE. Complexities associated with expression of Epstein-Barr virus (EBV)
lytic origins of DNA replication. Nucleic Acids Res. 2007;35(10):3391-406. doi:
10.1093/nar/gkm170. Epub 2007 May 3. PMID: 17478522; PMCID: PMC1904260.

[27] Rowe M, Glaunsinger B, van Leeuwen D, Zuo J, Sweetman D, Ganem D, Middeldorp J,
Wiertz EJ, Ressing ME. Host shutoff during productive Epstein-Barr virus infection is
mediated by BGLF5 and may contribute to immune evasion. Proc Natl Acad Sci U S A.
2007 Feb 27;104(9):3366-71. doi: 10.1073/pnas.0611128104. Epub 2007 Feb 21. PMID:
17360652; PMCID: PMC1805610.

[28] Javad Rahimikollu, Hanxi Xiao, Anna E. Rosengart, Tracy Tabib, Paul Zdinak, Kun He, Xin
Bing, Florentina Bunea, Marten Wegkamp, Amanda C. Poholek, Alok V Joglekar, Robert
A Lafyatis, Jishnu Das bioRxiv 2022.11.25.518001; doi:
https://doi.org/10.1101/2022.11.25.518001

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Figures
	1.0 Introduction
	2.0 Methods
	2.1 Single Cell Data
	2.1.1 Single Cell Methods
	2.1.2 Seurat Workflow
	2.1.3 Single Cell Visualizations
	2.1.4 Differential Gene Testing

	2.2 Random Forest Modeling
	2.2.1 Random Forest Methods
	2.2.2 Random Forest Assumptions

	2.3 Multinomial Logistic Regression Modeling
	2.3.1 Multinomial Logistic Regression with AIC
	2.3.2 Multinomial Logistic Regression Assumptions
	2.3.3 Multinomial Logistic Regression with Elastic Net

	3.0 Results
	3.1 Single Cell Data
	3.1.1 Single Cell Visualizations
	Figure 1A and 1B. UMAP of cellular clustering and sample origin
	Figure 2. Proportion of sample origin by cluster
	Figure 3. Violin plot of EBV gene expression by cluster
	Figure 4. Heatmap of EBV gene expression by cluster
	Figure 5. Table of cells by classification
	Figure 6. Heatmap of LMP1/BNLF2a and LF3 expression in Δ-lytic cells
	Figure 7. Violin plot of BGLF5 expression by cluster
	Figure 8. Scatter plot comparing EBV gene and all gene UMIs
	Figure 9. Scatterplot comparing proportion of EBV gene UMIs to all gene UMIs by BGLF5 expression

	3.2 Random Forest Modeling
	3.2.1 Random Forest Results
	Figure 10. Random Forest summary
	Figure 11. Random Forest sensitivity and specificity
	Figure 12. Pathway analysis of influential genes with importance scores
	Figure 13. Dot plot of influential pathways of all infection states

	3.3 Multinomial Logistic Regression Modeling
	3.3.1 Multinomial Logistic Regression Assumptions
	Figure 14. VIF summary

	3.3.2 Multinomial Logistic Regression with AIC
	Figure 15. Multinomial logistic regression with AIC summary
	Figure 16. Multinomial logistic regression with AIC sensitivity and specificity

	3.3.3 Multinomial Logistic Regression with Elastic Net
	Figure 17. Multinomial logistic regression with Elastic Net summary
	Figure 18. Multinomial logistic regression with Elastic Net sensitivity and specificity

	3.4 Iterative Analysis
	Figure 19. Random Forest model removing host shut off cells
	Figure 20. Dot plot of influential pathways of all non-host shutoff infection states
	Figure 21. Random Forest model removing lytic cells
	Figure 22. Dot plot of influential pathways of all Δ-lytic infection states
	Figure 23. Predicting false negatives from the Random Forest model
	Figure 24A and 24B. UMAP of predicted infection states and cell cycle phases

	4.0 Discussion and Conclusions
	4.1 Discussion
	4.2 Limitations
	4.2.1 Single Cell Limitations
	4.2.2 Random Forest Limitations
	4.2.3 Multinomial Logistic Regression Limitations

	4.3 Future Directions

	Appendix A Appendices and Supplemental Content
	Appendix A.1 R Script

	Bibliography

