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Abstract 

Statistical modeling of Epstein-Barr virus infection using scRNA-Seq host expression 

Japan Patel, MS 

University of Pittsburgh, 2024 

 
 
 

Epstein-Barr virus (EBV) is a ubiquitous virus that infects the majority of people 

worldwide. EBV replication is characterized by latent and lytic cycles where viral gene expression 

during latency is associated with certain cancers, such as Burkitt's Lymphoma and Nasopharyngeal 

Carcinoma (NPC). The field’s understanding of viral-host mechanisms of EBV in epithelial cells 

is incomplete. To determine host gene expression profiles which influence the lifecycle of EBV 

we modeled Single Cell RNA Sequencing (scRNA-seq) data of EBV-infected cell lines by a 

Random Forest algorithm and multinomial logistic regression approaches. This methodology 

allowed us to refine EBV infection status into established and newly identified classifications, 

defining subcategories of lytic and latent cycles as well as unveiling specific host genes and 

biological pathways influential to EBV pathogenesis. Our analysis revealed that certain host genes, 

implicated in pathways related to viral mRNA translation, keratinization, neutrophil degranulation, 

and cytokine signaling, play a significant role in shaping the viral-host interaction landscape. 

Traditionally, scRNA-data is limited by the prevalence of false negatives which arise due to low 

abundance of EBV transcripts in most cells. These host genes served as surrogate markers of 

infection which enabled us to predict infection status in cells that otherwise appear as void of EBV 

infection. Future in-vivo and in-vitro analysis should be conducted on a variety of epithelial and 

B-cell lines to detect conserved host markers of EBV infection to further the field’s understanding 

of EBV viral-host interactions possibly contributing to the development diagnostic markers or 

therapeutic targets for EBV associated diseases. 
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1.0 Introduction 

Epstein-Barr virus (EBV) is a ubiquitous γ-herpesvirus which affects more than 90% of 

individuals worldwide [1]. EBV replication is characterized by latent and lytic cycles where viral 

gene expression during latency is associated with certain B-cell lymphomas and epithelial 

carcinomas, such as Burkitt's Lymphoma and Nasopharyngeal Carcinoma (NPC). EBV associated 

NPC is endemic to Southeast Asia with incidence rates ranging from 3-25/100,000 persons [2]. 

Certain at-risk populations in the United States, such as Asian Americans, show elevated incidence 

of approximately 10/100,000 persons compared to 0.5/100,000 persons in low-risk populations. 

Only 10% of NPC cases are diagnosed during Stage I when five-year survival exceeds 90%, 

compared to 60% survival for Stage IV patients.  

The nasopharynx is composed of pseudostratified epithelium and multiple cell types, 

establishing a unique biology where in vivo detection of EBV is infrequent and factors of NPC 

onset are difficult to study using traditional approaches [3]. Differentiation of infected epithelial 

cells can trigger the reactivation of EBV from latency to the lytic phase which influences viral-

host gene interactions. We hypothesize that statistical modeling of Single Cell RNA Sequencing 

(scRNA-seq) data of EBV-infected cell lines will reveal insights into viral-host genome 

interactions adding to the incomplete model of EBV pathogenesis and NPC onset. To investigate 

host expression profiles which contribute to EBV infection status, we implemented a unique data 

analysis methodology leveraging scRNA-seq data to model EBV infection status by a Random 

Forest algorithm and multinomial logistic regression approaches. Our data explores well known 

EBV infection states as well as proposes novel infection profiles to elucidate influential host genes 

vital to the mechanisms of EBV pathogenesis. These influential host genes are surrogate markers 
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of infection states, addressing the problem of misidentification of false negatives within the 

scRNA-seq dataset produced by a low abundance of EBV transcripts.  
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2.0 Methods 

2.1 Single Cell Data 

2.1.1 Single Cell Methods 

Six HK1 cell lines, originating from a differentiated NPC tumor biopsy specimen and 

infected with EBV stably expressing either China 1 or a vector control LMP1 sequence variant 

(known as LMP1 strain), were established in Air Liquid Interface (ALI) for simultaneous 

collection at days 0, 2, and 4 post-infection [3]. China 1 is noted as the dominant LMP1 strain in 

NPC tumor biopsies and throat washing samples overexpressing primary oncogene Latent 

Membrane Protein 1 (LMP-1) [4]. Samples were multiplexed into two libraries (Ch1 and IRES) 

using TotalSeq-C0251 (Biolegend). Single-cell RNA sequencing (scRNA-seq) was conducted 

using the 10x Genomics 5' v2 library. Data was accessed and analyzed in Python and R 

environments through the University of Pittsburgh Center for Research Computing.  

Cellranger (v. 7.1.0) was employed to demultiplex and align scRNA-seq data against a 

tailored reference, combining the human genome (GRCh38), EBV Akata reference genome 

(KC207813.1), and the HA-tagged LMP-1 sequence, integrated using a Python script [5]. Akata 

is a strain of EBV isolated from Burkitt’s lymphoma cells that can be effectively induced to enter 

lytic cycles [6].  
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2.1.2 Seurat Workflow 

Seurat (v. 4.3.0) was used to process Cellranger outputs [7]. Initial steps involved filtering 

cells to uphold quality control metrics. Low quality cells often exhibit mitochondrial 

contamination, thus cells with more than 20% mitochondrial counts were removed. Low quality 

cells or empty droplets tend to have few genes whereas cell doublets or multiplets exhibit high 

gene count. Cells with RNA feature counts less than 200 or greater than 9000 were not retained.  

Following quality control steps, the data was normalized by the “LogNormalize” function 

in the Seurat package [7]. This global-scaling method normalized gene expression measurements 

for every cell, multiplied each by a scale factor of 10,000, and log-transformed the data.  

Variable genes were selected following data normalization. Genes exhibiting high between 

cell variability often highlight biological effects in scRNA-seq data. The “FindVariableFeatures” 

function from the Seurat package was used to identify 3500 variable genes by utilizing a variance 

stabilizing transformation (VST) approach [7]. VST considered the relationship between the log-

variance and the log-mean and fitted a line using local polynomial regression, Locally Weighted 

Scatter-plot Smoother (LOESS) [8]. LOESS is a nonparametric method with relaxed linearity 

assumptions to fit a smooth curve between two variables. LOESS fitted multiple models to 

localized subsets of the data. For each point, LOESS selected a subset of data points that were 

closest to the point of interest. The selection was based on a parameter that defined the proportion 

of the data to be used in each local fit. The selected data points were weighted based on their 

distance from the point of interest, with points closer to the target receiving higher weights. A 

linear model was fitted to the selected and weighted data points. These steps were repeated for 

each point in the dataset, resulting in a smooth curve. The following assumptions were made:  
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1. The mean of y around point x can be approximated through a class of parametric 

functions based on polynomial regression. 

2. Errors in estimating y are independently and randomly distributed with mean 0.  

The data was then scaled using a linear transformation by the “ScaleData” function from 

the Seurat package [7]. The data was transformed such that the mean gene expression across all 

cells was 0 and the variance was 1. Principle Component Analysis (PCA) was conducted on the 

scaled data. PCA begins by computing the covariance matrix of the scaled data to evaluate 

variation between genes. Eigen-decomposition was conducted on this covariance matrix to extract 

the eigenvalues and eigenvectors. The eigenvalues represent the amount of variance captured by 

each principal component, while the eigenvectors defined the direction of these components in the 

multidimensional space. The principal components were ranked according to their corresponding 

eigenvalues, with higher eigenvalues indicating components that capture more variance. This step 

reduced the dimensionality of the data, with the first principal component accounting for the largest 

possible variance, and each subsequent component capturing the maximum remaining variance 

under orthogonality to preceding components.  

We utilized a K-nearest neighbor (KNN) graph-based clustering approach, where cells are 

represented as nodes, and edges are drawn between cells exhibiting similar gene expression 

patterns. Clustering analysis leveraged the PCA dimensionality-reduced data, specifically utilizing 

the first 12 principal components to define the cellular distance metric. The “FindNeighbors” 

function from the Seurat package, constructed a KNN graph based on Euclidean distances within 

the PCA-reduced space [7]. The graph's edge weights were refined using Jaccard similarity to 

reflect the shared overlap in local neighborhoods of cells. Modularity optimization techniques were 

applied to partition the graph into clusters. The Louvain algorithm iteratively grouped cells to 
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optimize a standard modularity function, indicating the strength of division of the graph into 

clusters.  

2.1.3 Single Cell Visualizations 

Uniform Manifold Approximation and Projection (UMAP) was utilized for dimensionality 

reduction and visualization of cellular clusters. The UMAP algorithm utilized results from 

previous PCA to project high-dimensional data into a two-dimensional space. Violin plots were 

generated using the “VlnPlot” function from the Seurat package to visualize the distribution of 

gene expression levels across different cellular conditions or clusters [7]. The proportional 

composition of cell types across different conditions or clusters was illustrated using stacked bar 

plots, generated by the ggplot2 package [9]. Scatterplots plots were generated to compare the 

expression levels of multiple genes across all cells using the ggplot2 package. Heatmaps were 

created using the “ComplexHeatmap” package to depict the expression patterns of genes across 

different cellular conditions and clusters [10]. Heatmaps included hierarchical clustering to group 

genes and cells based on similarities in expression profiles. Visualizations were used to determine 

unique five cellular infection states (LF3 associated Δ-lytic, LMP-1/BNLF2a associated Δ-lytic, 

LMP-1/BNLF2a+LF3 associated Δ-lytic, lytic cells undergoing host shutoff, and lytic cells not 

undergoing host shutoff).  

2.1.4 Differential Gene Testing 

Differential gene testing was conducted using the “FindMarkers” function from the Seurat 

package [7]. This test utilized the non-parametric Wilcoxon rank sum test to discern genes 
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exhibiting significant differences in expression levels between any two distinct cellular 

populations [11]. The null hypothesis posits that there is no difference in the distribution of gene 

expression levels between the two compared groups. The alternative hypothesis contends that there 

exists a difference (two-sided) in the distribution of gene expression levels between the groups. 

The Wilcoxon rank sum test assumes:  

1. Independence between groups. 

2. Ability to rank data. 

The test ranked all observations across both groups simultaneously and compared the sum 

of ranks in one group against the sum of ranks in the other. The difference in these rank-sums 

served as the basis for evaluating the significance of the observed difference in gene expression 

between cell populations. The FindMarkers function yielded several key metrics [7]: 

1. Average Log-Fold Change (AvgLog2FC), a measure of the magnitude of differential 

expression between two groups. Calculated as the logarithm (base 2) of the ratio of the 

average expression levels of a gene in two groups. This metric indicated changes in 

magnitude of the average gene expression in one group compared to another. Positive 

values indicate upregulation and negative values indicate downregulation in the first group 

relative to the second. 

2. Proportion of cells within the first group (PCT1) and the second group (PCT2) where 

the gene of interest is detected above a threshold level of expression (|AvgLog2FC|>0.25).  

3. Unadjusted p-value is calculated from the test statistics derived from the median ranks 

of gene expression levels between the two groups.  

4. The adjusted p-value accounts for the multiple comparisons through Bonferroni 

correction. This was done by dividing the desired overall α level (0.05) by the number of 
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tests conducted. This calculation yielded a stricter threshold for statistical significance 

reducing the chance of false positives. 

Differentially expressed genes were determined to be candidate predicters for subsequent model 

fitting. 

2.2 Random Forest Modeling 

2.2.1 Random Forest Methods 

A Random Forest algorithm was employed for regression tasks using the ranger package 

[11]. The Random Forest algorithm utilized ensemble learning, where multiple decision trees were 

constructed during the training phase [13]. The model predicted outcomes based on the mean of 

the predictions from all trees in the forest.  

Combined gene lists derived from Differential Gene Testing, infection states derived from 

single cell visualizations, cell identifiers, and normalized gene expression values were merged to 

curate a dataset tailored for subsequent analysis. A 'class' (classification) variable, denoting 

different cellular infection states, was transformed into a categorical factor variable. To promote 

analytical reproducibility and consistency, a specific seed (123) was set. 

Following common machine learning practices, the dataset was randomly divided, 

allocating 70% to the training set and the remaining 30% to the testing set. The model was 

configured to generate 500 decision trees and the number of variables to fit at each split was 

determined by the square root of the total number of variables in the dataset.  
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Post-training, the model's classification ability was evaluated on the testing set. Predicted 

classifications were juxtaposed against actual classifications to construct a confusion matrix. From 

the confusion matrix generated by comparing the actual and predicted classifications on the test 

set, sensitivity (true positive rate) was calculated as the proportion of true positive observations to 

the total actual positives, defined as: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
TP

TP + FN
 

where TP represents true positives and FN represents false negatives. Similarly, specificity (true 

negative rate) was determined as the proportion of true negative observations to the total actual 

negatives, defined as: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
TN

TN + FP
 

where TN represents true negatives and FP represents false positives [14]. Each candidate 

predictor variable was given a relative importance score based on model contribution. The top 50 

predictor genes were used to determine significant biological pathways using Reactome [21]. 

2.2.2 Random Forest Assumptions 

The Random Forest algorithm assumes [13]: 

1. The errors across individual trees are uncorrelated.  

2. The ensemble of trees will provide superior prediction accuracy compared to any single 

tree within the forest. 
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2.3 Multinomial Logistic Regression Modeling 

2.3.1 Multinomial Logistic Regression with AIC 

The top 25 genes based on Random Forest importance score were incorporated into a 

multinomial logistic regression model [15] using the nnet package [16]. 

log�
𝑃𝑃(𝑌𝑌 = 𝑘𝑘)
𝑃𝑃(𝑌𝑌 = 𝐾𝐾)� = 𝛽𝛽0𝑘𝑘 + 𝛽𝛽1𝑘𝑘𝑋𝑋1 + 𝛽𝛽2𝑘𝑘𝑋𝑋2 + ⋯+ 𝛽𝛽𝑝𝑝𝑝𝑝𝑋𝑋𝑝𝑝 

where: 

𝑃𝑃(𝑌𝑌 = 𝑘𝑘) is the probability of the dependent variable being in category k, 

𝑃𝑃(𝑌𝑌 = 𝐾𝐾) is the probability of the dependent variable being in the reference category, 

𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑝𝑝 are the independent predictor variables, 

𝛽𝛽0𝑘𝑘,𝛽𝛽1𝑘𝑘, … ,𝛽𝛽𝑝𝑝𝑝𝑝 are the coefficients for category k which will be estimated by the model. 

Similar to the dataset used for the previous random forest model, this model utilized a 

merged dataset containing combined gene lists derived from top ranking genes by Random Forest 

importance score, infection states derived from single cell visualizations as a factor variable, cell 

identifiers, and normalized gene expression values. 

Gene selection was optimized by implementing an Akaike Information Criterion (AIC) 

iterative gene elimination strategy. A loop mechanism assessed the impact of removing each gene 

on the model's AIC. For each iteration, a temporary model excluding one gene was constructed to 

compute the AIC, enabling the identification of the gene whose exclusion reduced the AIC. This 

gene was then permanently excluded in subsequent iterations to minimize AIC. This process was 

repeated until no further reduction in AIC was observed upon gene exclusion. The predictive 

performance of the model was evaluated using a confusion matrix, sensitivity, and specificity. 
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2.3.2 Multinomial Logistic Regression Assumptions 

The multinomial logistic regression model assumes [15]: 

1. Independence of irrelevant alternatives. 

2. Linearity of independent variables and log-odds. 

3. No perfect multicollinearity. The Variance Inflation Factor (VIF) was calculated using 

the “vif” function from the car package to assess multicollinearity among the predictors. 

4. Sufficiently large sample size. 

5. Multinomial distribution of the dependent variable. 

2.3.3 Multinomial Logistic Regression with Elastic Net 

The same dataset was utilized to fit a multinomial logistic regression model with an Elastic 

Net penalty [17] using the “cv.glmnet” function from the glmnet package [18,19]. Multinomial 

logistic regression modeled the log-odds of the probabilities of K-1 classifications as a linear 

combination of the predictors compared to reference category K. The probability of observing 

category k for a set of predictors x is given by [15,17]:  

𝑃𝑃(𝑌𝑌 = 𝑘𝑘|𝑥𝑥) =
exp (𝛽𝛽0𝑘𝑘 + 𝛽𝛽𝑘𝑘𝑇𝑇𝑥𝑥)

1 + � exp(β0i + βiT𝑥𝑥)𝐾𝐾−1
𝑖𝑖=1

 

and 

𝑃𝑃(𝑌𝑌 = 𝐾𝐾|𝑥𝑥) =
1

1 + � exp(β0i + βiT𝑥𝑥)𝐾𝐾−1
𝑖𝑖=1

 

where: 

Y is a categorical response variable with K categories, 
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x is the vector of predictor variables, 

𝛽𝛽0𝑘𝑘 is the intercept term for category k, 

𝛽𝛽𝑘𝑘 is the vector of coefficients for category k. 

The Elastic Net penalty for each non-intercept coefficient in the above model is defined as [17]: 

𝜆𝜆 �
1 − α

2
�𝛽𝛽𝑗𝑗2
𝑃𝑃

𝑗𝑗=1

+ � |𝛽𝛽𝑗𝑗|
𝑃𝑃

𝑗𝑗=1

� 

where: 

𝜆𝜆 is a regularization parameter adjusting the strength of the penalty, 

α is a parameter to adjust lasso and ridge penalties (α = 1: lasso,α = 0: ridge), 

𝛽𝛽𝑗𝑗 represents non-intercept coefficients for all predictor variables across all categories k, 

p is the total number of predictor variables. 

Combining the multinomial logistic regression model with the Elastic Net penalty yields: 

−�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝛽𝛽) − 𝜆𝜆�
1 − α

2
�𝛽𝛽𝑗𝑗2
𝑃𝑃

𝑗𝑗=1

+ � |𝛽𝛽𝑗𝑗|
𝑃𝑃

𝑗𝑗=1

�� 

to be minimized where: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝛽𝛽) is the log-likelihood of the multinomial logistic regression model. 

The Elastic Net regularization technique combined the properties of Lasso and Ridge 

penalties to regularize regression models. The initial α parameter was set to 0.5, to choose a 

balanced Elastic Net approach that equally weighs the lasso and ridge penalties. The best 𝜆𝜆 value 

identified during cross-validation was used to finalize the model. The predictive performance of 

the model was evaluated using a confusion matrix, sensitivity, and specificity. 
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3.0 Results 

3.1 Single Cell Data 

3.1.1 Single Cell Visualizations 

Samples from 6 samples representing two LMP1 condition states at three early time points 

post ALI-induced reactivation (Fig 1B) were combined into one comprehensive dataset 

encompassing a total of 31,619 cells, with 12 distinct cellular clusters (Fig. 1A). 

 

 

 

Figure 1A and 1B. UMAP of cellular clustering and sample origin 
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LMP-1 is the principal oncoprotein and crucial for EBV pathogenesis, reprogramming host cellular 

mechanisms to promote oncogenic transformation, cell proliferation, and survival, among other 

functions [23]. It activates various signaling pathways contributing to the development of the 

tumor microenvironment and influencing metabolism, immune defenses, and antioxidative 

responses. The dataset examines early time points to reveal early reactivation effects before host-

shutoff alters host gene expression profiles. 

UMAP visualizations of cellular clusters by sample origin (Fig. 1B), indicated samples 

predominantly clustered according to time point post-reactivation, rather than by the LMP1 

condition (China 1 or IRES). This indicates that the time point is a stronger classifier of the global 

transcription pattern than the additional stable expression of LMP1. Each cluster exhibited a 

unique distribution of cells originating from the six samples (Fig. 2).  

 

 

Figure 2. Proportion of sample origin by cluster 
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Cluster 11 displayed unique heterogeneity containing a proportional distribution of cells 

from all six samples. The violin plot of EBV gene expression by cluster (Fig. 3), designated cluster 

11 as abundant in viral gene expression compared to other clusters, indicating that cluster 11 is the 

lytic cluster. 

 

 

Figure 3. Violin plot of EBV gene expression by cluster 

 

The heatmap of EBV gene expression by cluster (Fig. 4) revealed unique transcriptional 

profiles across different clusters. Similarly to Fig. 3, Cluster 11 expressed complete activation of 

the lytic cascade, showcasing the presence of gene expression across latent, immediate early, early, 

late, and unassigned EBV genes. 
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Figure 4. Heatmap of EBV gene expression by cluster 

 

In contrast, other clusters only displayed notable expression patterns in three LMP-1 

annotations (LMP-1, LMP-1/BNLF2b, and LMP-1/BNLF2a) and two unassigned annotations, 

LF3 and Desert. Desert represented regions within the EBV genome that are not annotated. Cluster 

11 was categorized as a lytic group of cells whereas all other clusters were categorized as ∆-lytic. 

The tables presented in Fig. 5 show the distribution of cells by cellular cluster and infection 

classification. The notable differences between total cells and those exhibiting EBV transcripts 

within Δ-lytic clusters (1-10; 12) revealed the primary limitation of scRNA-seq data; most cells 

appear as uninfected due to a low abundance of EBV transcripts.  
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   Total EBV    

Cluster 

0 6153 1788 
Lytic 

LMP1 6262 
1 5564 2555 LF3 4492 
2 4630 1438 LMP1+LF3 2088 
3 3603 1254 

Δ-Lytic 
HS 44 

4 2484 883 nHS 257 
5 2379 474    

6 2165 779    

7 2024 927    

8 815 250    

9 780 375    

10 603 308    

11 301 301    

12 118 41    

Figure 5. Table of cells by classification 

 

Among 31,318 Δ-lytic cells, the heatmap of LMP1/BNLF2a and LF3 (Fig. 6) encompasses 

10,754 cells. Notably, 4,492 cells expressed LF3 alone, 6,262 cells expressed LMP-1/BNLF2a 

alone, and 2088 cells exhibited co-expression of both LF3 and LMP1/BNLF2a. Therefore, 

LMP1/BNLF2a and LF3 expression was used to sub-categorize Δ-lytic cells. 
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Figure 6. Heatmap of LMP1/BNLF2a and LF3 expression in Δ-lytic cells 

 

The transcript for the primary EBV oncoprotein (LMP1) overlaps with the BNLF2a 

transcript and is therefore represented as LMP1/BNLF2a. LF3 can initiate from latent and lytic 

promoters and is contained within the 12kb deletion in the B958 EBV genome which is the original 

strain of EBV capable of showing immortalization of B cells [24]. LF3 is a paralog of BHLF1 and 

are some of the most abundant transcripts expressed during lytic infection. Both LF3 and BHLF1 

are also expressed during latency and deletion of the BHLF1 gene attenuates EBV immortalization 

[25], although LF3 is naturally deleted in the B95-8 EBV strain that is used in immortalizing B-

cells [26]. 

The violin plot illustrating the expression of BGLF5, a marker of host shutoff, across all 

clusters (Fig. 7) identified distinctively concentrated expression in the lytic cluster [20]. 
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Figure 7. Violin plot of BGLF5 expression by cluster 

 

The RNase activity of BGLF5 mediates host shutoff by mRNA degradation of both poly-

adenylated and non-poly-adenylated transcripts [27]. Current configuration of the 10X Genomics 

libraries selectively enrich for poly-adenylated transcripts. Thus, shutoff of the most abundantly 

expressed viral transcript (EBER) which is non-poly-adenylated is not observable. However, 

downregulation of host genes is observable. BGLF5 expression was negligible in Δ-lytic clusters. 

The exclusive expression pattern in the lytic cluster suggested a population of cells undergoing 

host shutoff, a process where the virus inhibits host protein synthesis to favor viral gene expression. 

The scatterplot comparing the unique molecular identifiers (UMIs) associated with EBV genes 

(red) to the UMIs for all genes (blue) within each cell (Fig. 8) revealed a distinct population of 

cells characterized by a higher proportion of EBV gene UMIs compared to all gene UMIs. 
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Figure 8. Scatter plot comparing EBV gene and all gene UMIs 

 

This observation indicated a subset of cells where EBV transcription was 

disproportionately high, suggesting active viral gene expression patterns that may be 

overshadowing the host cell's transcriptome. EBV gene UMIs were divided by all gene UMIs per 

cell, representing the proportion of EBV gene to total gene transcripts within individual cells. The 

scatterplot which mapped the ratio of EBV gene UMIs to all gene UMIs in each cell, with an 

overlay of BGLF5 expression level (Fig. 9), revealed a population of cells characterized by both a 

high proportion of EBV gene UMIs and elevated expression of BGLF5. The expression of BGLF5 

identified these cells as part of the lytic cluster (Fig. 7), undergoing host shutoff. 

 



 21 

 

Figure 9. Scatterplot comparing proportion of EBV gene UMIs to all gene UMIs by BGLF5 expression 

 

The delineation between the Δ-lytic and lytic groups was marked by their respective EBV 

to all gene UMI proportions; the Δ-lytic group exhibited proportions ranging from 0 to 0.37, while 

the lytic group's proportions spanned from 0.003 to 0.87. The ability to distinguish cells engaging 

in host shutoff is an advantage of scRNA-seq over conventional bulk RNA-seq, the parameters of 

which have not yet been defined by prior literature or exploited in differential gene analysis. 

3.2 Random Forest Modeling 

3.2.1 Random Forest Results 

The tables presented in Fig. 10 are confusion matrices derived from the Random Forest 

model, which categorize the predictions of the five different EBV infection classifications (LF3 
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associated Δ-lytic, LMP-1/BNLF2a associated Δ-lytic, LMP-1/BNLF2a+LF3 associated Δ-lytic, 

lytic cells undergoing host shutoff, and lytic cells not undergoing host shutoff). 

 

Random Forest 

Proportion EBV UMI = 
0.37 

Predicted 
Δ-Lytic Lytic 

LMP1 LF3 LMP1+LF3 HS nHS 

Actual 

LMP1 1548 315 1 0 0 
LF3 287 1064 0 0 0 

LMP1+LF3 516 112 1 0 0 
HS 3 0 0 14 0 

nHS 46 36 0 0 0 

Proportion EBV UMI = 
0.20 

Predicted 
Δ-Lytic Lytic 

LMP1 LF3 LMP1+LF3 HS nHS 

Actual 

LMP1 1543 319 2 0 0 
LF3 292 1059 0 0 0 

LMP1+LF3 517 110 2 0 0 
HS 10 2 0 12 0 

nHS 47 28 0 0 0 

Proportion EBV UMI = 
0.12 

Predicted 
Δ-Lytic Lytic 

LMP1 LF3 LMP1+LF3 HS nHS 

Actual 

LMP1 1535 328 1 0 0 
LF3 270 1080 1 0 0 

LMP1+LF3 510 116 3 0 0 
HS 21 12 0 14 0 

nHS 26 26 0 0 0 

Proportion EBV UMI = 
0.08 

Predicted 
Δ-Lytic Lytic 

LMP1 LF3 LMP1+LF3 HS nHS 

Actual 

LMP1 1545 316 3 0 0 
LF3 268 1083 0 0 0 

LMP1+LF3 510 113 6 0 0 
HS 36 17 0 14 0 

nHS 15 17 0 0 0 
Figure 10. Random Forest summary 
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The matrices were separated by the proportion of EBV UMIs to all gene UMIs, with each 

table reflecting a different proportion threshold (greater than or less than 0.37, 0.08, 0.12, and 

0.20), for example HS (host shut off) denotes a proportion greater than 0.37 and nHS (no host shut 

off) denotes a proportion less than 0.37. The rows represent the actual classifications of EBV 

infection, while the columns correspond to the predicted classifications by the model. Diagonal 

values indicate correct predictions, where the model’s classification aligns with the actual 

classification, and off-diagonal values represent misclassifications. The tables presented in Fig. 11 

display sensitivity and specificity metrics from the Random Forest model, which quantify model 

accuracy of the five different EBV infection classifications for each of the four EBV UMI 

proportions.  

 

 

 

 

 

 

 

 

 

 

 

 



 24 

Random Forest 
Proportion 

EBV 
UMI = 

0.37 

Δ-Lytic Lytic 

LMP1 LF3 LMP1+LF3 HS nHS 

Sensitivity 0.830472 0.787565 0.00159 0.823529 0 
Specificity 0.590188 0.821373 0.999698 1 1 

       

Proportion 
EBV 

UMI = 
0.20 

Δ-Lytic Lytic 

LMP1 LF3 LMP1+LF3 HS nHS 

Sensitivity 0.82779 0.783864 0.00318 0.5 0 
Specificity 0.583454 0.822917 0.999396 1 1 

       

Proportion 
EBV 

UMI = 
0.12 

Δ-Lytic Lytic 

LMP1 LF3 LMP1+LF3 HS nHS 

Sensitivity 0.823498 0.799408 0.004769 0.297872 0 
Specificity 0.602213 0.814043 0.999396 1 1 

       

Proportion 
EBV 

UMI = 
0.08 

Δ-Lytic Lytic 

LMP1 LF3 LMP1+LF3 HS nHS 

Sensitivity 0.828863 0.801628 0.009539 0.208955 0 
Specificity 0.601251 0.821373 0.999095 1 1 

Figure 11. Random Forest sensitivity and specificity 

 

The tables presented in Fig. 12 display Reactome pathway analysis of the top 50 genes 

from the Forest model with importance scores [21]. 
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Pathway Analysis  
        
Viral mRNA 
Translation Keratinization  

Neutrophil 
Degranulation 

RPL13 11.44078  KRT15 23.33335  S100A7 12.64868 
RPS2 10.2332  KRT16 24.12137  GSTP1 10.97858 

RPL18A 11.04989  JUP 16.35692  S100A8 33.35091 
RPL32 12.60838  PERP 9.7588  S100A9 34.19331 
RPS18 9.742981  KRT13 24.62746  SLPI 15.28682 
RPLP1 11.18593  KRT6A 14.33602  HSP90AB1 10.0238 
RPL12 15.87549  SPRR1A 21.44978  S100A11 13.14203 
RPS24 10.15674  DSC2 17.62421  LGALS3 20.62328 

   SPRR1B 43.61339  CSTB 24.40935 
        

Cytokine Signaling  
Pathways with less than 

3 Entities Not Found 
MT2A 31.75472  CLDN4 53.56539  SCEL 10.96989 

ANXA1 14.81194  CD24 50.35485  RAB11FIP1 13.91565 
IL1RN 17.07174  ELF3 34.92743  CYSRT1 13.28588 

YWHAZ 11.20575  NECTIN4 26.6372  S100A16 13.22095 
   CAV1 23.71347  TACSTD2 50.9853 
   CDKN2B 18.31926  MAL2 57.41673 
   KLK6 15.77327  PITX1 27.18976 
   AQP3 12.56929  KLK10 16.85305 
   CAST 12.50293    
   PFN1 11.28674    
   MT1E 11.05495    
   MDK 9.743815    

Figure 12. Pathway analysis of influential genes with importance scores 

 

The dot plot presented in Fig. 13 displays the expression profile of identified influential 

pathways (Fig. 12). Lytic cells undergoing host shutoff were characterized by both a 

downregulation and decreased abundance of host genes belonging to keratinization, neutrophil 

degranulation, and cytokine signaling pathways in addition to a downregulation but comparable 

abundance of the viral mRNA translation pathway. 
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Figure 13. Dot plot of influential pathways of all infection states 

3.3 Multinomial Logistic Regression Modeling 

3.3.1 Multinomial Logistic Regression Assumptions 

The tables presented in Fig. 14 display VIF metrics from the multinomial logistic 

regression model with iterative AIC reduction based variable selection. The VIFs measure 

multicollinearity among predictor variables for each of the five EBV infection classifications. 
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Variance Inflation Factor - Multinomial Logistic Regression AIC 
Proportion EBV UMI 

0.37 0.08 0.12 0.2 
Gene VIF Gene VIF Genes VIF Genes VIF 

MAL2 178.8008 CD24 12.30758 MAL2 14.25656 CD24 44.30813 
CLDN4 121.5907 MAL2 9.532307 CLDN4 7.018979 MAL2 33.64846 

TACSTD2 308.2492 CLDN4 4.43511 CD24 19.07352 CLDN4 17.7081 
CD24 313.658 TACSTD2 22.0784 TACSTD2 32.85541 TACSTD2 63.81294 
ELF3 115.552 ELF3 5.802699 ELF3 8.542363 ELF3 18.80182 

S100A9 113.4903 MT2A 17.05919 S100A9 6.666901 S100A9 17.99887 
MT2A 494.7283 KRT15 22.60199 KRT16 12.32568 MT2A 49.4106 
PITX1 140.8052 S100A9 4.782769 KRT15 32.9648 KRT16 24.19165 
KRT13 75.50219 KRT16 8.427786 MT2A 22.00865 CSTB 62.97505 
CSTB 259.5024 PITX1 4.823701 PITX1 7.177241 CAV1 45.81189 
KRT16 154.8858 CSTB 24.93538 KRT13 4.875467 KRT15 62.1836 
CAV1 262.4517 CAV1 17.2875 IL1RN 5.830894 IL1RN 12.1491 
KRT15 299.3498 KRT13 3.377745 CSTB 31.73975 KRT13 14.91353 

LGALS3 175.0134 JUP 17.06359 KLK10 11.07507 KLK10 25.71368 
CDKN2B 109.7493 IL1RN 3.891209 KRT6A 19.41581 PITX1 20.04855 

IL1RN 85.26432 LGALS3 7.212126 ANXA1 47.20069 SLPI 19.9254 
KLK10 137.852 KRT6A 13.67992 JUP 22.74084 RPL12 99.55335 

JUP 231.7729 KLK10 7.160552 CAV1 21.98149 JUP 42.60141 
RPL12 289.5157 SLPI 5.785015 LGALS3 10.65643 SPRR1A 11.02541 
KLK6 166.1318   SLPI 9.059008 SCEL 14.9553 

Figure 14. VIF summary 

3.3.2 Multinomial Logistic Regression with AIC 

The tables presented in Fig. 15 are confusion matrices derived from the multinomial 

logistic regression model with iterative AIC reduction based variable elimination (see Fig. 10 for 

more details). 
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Multinomial Logistic Regression - AIC 

Proportion EBV UMI = 
0.37 

Predicted 
Δ-Lytic Lytic 

LMP1 LF3 LMP1+LF3 HS nHS 

Actual 

LMP1 5034 787 79 2 2 
LF3 787 3695 8 2 0 

LMP1+LF3 1578 388 121 1 0 
HS 2 3 0 39 0 

nHS 127 120 6 2 2 

Proportion EBV UMI = 
0.20 

Predicted 
Δ-Lytic Lytic 

LMP1 LF3 LMP1+LF3 HS nHS 

Actual 

LMP1 5069 1121 70 2 0 
LF3 809 3677 3 3 0 

LMP1+LF3 1578 378 132 0 0 
HS 15 23 2 39 0 

nHS 106 108 5 3 0 

Proportion EBV UMI = 
0.12 

Predicted 
Δ-Lytic Lytic 

LMP1 LF3 LMP1+LF3 HS nHS 

Actual 

LMP1 5058 1124 76 4 0 
LF3 801 3684 5 2 0 

LMP1+LF3 1586 374 127 1 0 
HS 4 2 1 41 2 

nHS 65 83 6 2 0 

Proportion EBV UMI = 
0.08 

Predicted 
Δ-Lytic Lytic 

LMP1 LF3 LMP1+LF3 HS nHS 

Actual 

LMP1 5070 1118 69 5 0 
LF3 806 3681 3 2 0 

LMP1+LF3 1575 381 130 2 0 
HS 82 70 5 42 0 

nHS 39 60 3 1 0 
Figure 15. Multinomial logistic regression with AIC summary 
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The tables presented in Fig. 16 display sensitivity and specificity metrics from the 

multinomial logistic regression model with iterative AIC reduction based variable elimination (see 

Fig. 11 for more details). 

 

Multinomial Logistic Regression - AIC 
Proportion 

EBV 
UMI = 

0.37 

Δ-Lytic Lytic 

LMP1 LF3 LMP1+LF3 HS nHS 

Sensitivity 5.786207 0.822573 0.061515 0.886364 0.007782 
Specificity 0.637553 0.843482 0.991306 0.999451 0.99984 

       

Proportion 
EBV 

UMI = 
0.20 

Δ-Lytic Lytic 

LMP1 LF3 LMP1+LF3 HS nHS 

Sensitivity 0.809486 0.818566 0.063218 0.493671 0 
Specificity 0.635518 0.811582 0.992763 0.999388 1 

       

Proportion 
EBV 

UMI = 
0.12 

Δ-Lytic Lytic 

LMP1 LF3 LMP1+LF3 HS nHS 

Sensitivity 0.807729 0.820125 0.060824 0.82 0 
Specificity 0.638078 0.814984 0.991971 0.999308 0.999845 

       

Proportion 
EBV 

UMI = 
0.08 

Δ-Lytic Lytic 

LMP1 LF3 LMP1+LF3 HS nHS 

Sensitivity 0.809645 0.819457 0.062261 0.211055 0 
Specificity 0.636443 0.81172 0.992764 0.999228 1 

Figure 16. Multinomial logistic regression with AIC sensitivity and specificity 
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3.3.3 Multinomial Logistic Regression with Elastic Net 

The tables presented in Fig. 17 are confusion matrices derived from the multinomial 

logistic regression model with an Elastic Net penalty (see Fig. 10 for more details). 
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Multinomial Logistic Regression - Elastic Net 

Proportion EBV UMI = 
0.37 

Predicted 
Δ-Lytic Lytic 

LMP1 LF3 LMP1+LF3 HS nHS 

Actual 

LMP1 5047 1137 75 3 0 
LF3 799 3686 5 2 0 

LMP1+LF3 1567 388 133 0 0 
HS 4 5 0 35 0 

nHS 124 119 9 2 3 

Proportion EBV UMI = 
0.20 

Predicted 
Δ-Lytic Lytic 

LMP1 LF3 LMP1+LF3 HS nHS 

Actual 

LMP1 5061 1125 1585 2 0 
LF3 795 3691 373 2 0 

LMP1+LF3 1585 373 130 0 0 
HS 16 22 2 39 0 

nHS 103 109 7 3 0 

Proportion EBV UMI = 
0.12 

Predicted 
Δ-Lytic Lytic 

LMP1 LF3 LMP1+LF3 HS nHS 

Actual 

LMP1 5058 1123 78 3 0 
LF3 781 3704 5 48 0 

LMP1+LF3 1597 376 115 0 0 
HS 3 2 0 40 2 

nHS 64 84 6 2 0 

Proportion EBV UMI = 
0.08 

Predicted 
Δ-Lytic Lytic 

LMP1 LF3 LMP1+LF3 HS nHS 

Actual 

LMP1 5057 1127 75 3 0 
LF3 790 3694 6 2 0 

LMP1+LF3 1586 378 123 1 0 
HS 81 73 6 39 0 

nHS 38 60 3 1 0 
Figure 17. Multinomial logistic regression with Elastic Net summary 

 

The tables presented in Fig. 18 display sensitivity and specificity metrics from the 

multinomial logistic regression model with an Elastic Net penalty (see Fig. 11 for more details). 
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Multinomial Logistic Regression - Elastic Net 
Proportion 

EBV 
UMI = 

0.37 

Δ-Lytic Lytic 

LMP1 LF3 LMP1+LF3 HS nHS 

Sensitivity 0.805973 0.82057 0.063697 0.795455 0.011673 
Specificity 0.637553 0.809386 0.991949 0.999466 1 

       

Proportion 
EBV 

UMI = 
0.20 

Δ-Lytic Lytic 

LMP1 LF3 LMP1+LF3 HS nHS 

Sensitivity 0.6511 0.759309 0.062261 0.493671 0 
Specificity 0.65531 0.839697 0.847932 0.999532 1 

       

Proportion 
EBV 

UMI = 
0.12 

Δ-Lytic Lytic 

LMP1 LF3 LMP1+LF3 HS nHS 

Sensitivity 0.807729 0.816219 0.055077 0.851064 0 
Specificity 0.641968 0.814685 0.991911 0.995937 0.999845 

       

Proportion 
EBV 

UMI = 
0.08 

Δ-Lytic Lytic 

LMP1 LF3 LMP1+LF3 HS nHS 

Sensitivity 0.807569 0.822351 0.058908 0.19598 0 
Specificity 0.637407 0.810658 0.991859 0.999459 1 

Figure 18. Multinomial logistic regression with Elastic Net sensitivity and specificity 

3.4 Iterative Analysis 

Random Forest model development of all infection classifications is largely driven by 

changes in host expression profile pertaining to lytic cells undergoing host shutoff (Fig. 13). As 

such, a random forest model was fitted removing cells undergoing host shutoff. The tables 

presented in Fig. 19 are confusion matrices and sensitivity and specificity metrics derived from 

the random forest model after removing host shutoff cells (see Fig. 10 and Fig. 11 for more details). 
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Random Forest 

Proportion EBV UMI 
= 0.37 

Predicted 
Δ-Lytic Lytic 

LMP1 LF3 LMP1+LF3 nHS 

Actual 

LMP1 1548 315 1 0 
LF3 287 1064 0 0 

LMP1+LF3 516 112 1 0 
nHS 46 36 0 0 

Proportion EBV 
UMI = 0.37 

Δ-Lytic Lytic 
LMP1 LF3 LMP1+LF3 nHS 

Sensitivity 0.830472 0.787565 0.00159 0 
Specificity 0.588264 0.820194 0.999697 1 

Figure 19. Random Forest model removing host shut off cells 

 

The dot plot presented in Fig. 20 displays the expression profile of identified influential 

pathways (Fig. 12), once lytic cells undergoing host shutoff were removed from the random forest 

model (Fig. 19). 

 

 

Figure 20. Dot plot of influential pathways of all non-host shutoff infection states 
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Lytic cells not undergoing host shutoff were characterized by a downregulation but 

comparable abundance of host genes belonging to keratinization and neutrophil degranulation 

pathways when compared to the LMP-1/BNLF2a associated Δ-lytic classification. Cells belonging 

to the LF3 dependent Δ-lytic classification show a similar keratinization host gene expression 

profile to lytic cells undergoing host shutoff in addition to a downregulation and decreased 

abundance of neutrophil degranulation host genes when compared to the LMP-1/BNLF2a 

associated Δ-lytic classification. 

Random Forest model development after removing host shutoff cells is largely influenced 

by changes in host expression profile pertaining to lytic cells not undergoing host shutoff (Fig. 20). 

As such, a random forest model was fit removing lytic cells to better understand differences 

between Δ-lytic infection states. The tables presented in Fig. 19 are confusion matrices and 

sensitivity and specificity metrics derived from the random forest model after removing host 

shutoff cells (see Fig. 10 and Fig. 11 for more details). 

 

Random Forest 

Proportion EBV UMI 
= 0.37 

Predicted 
Δ-Lytic 

LMP1 LF3 LMP1+LF3 

Actual 
LMP1 1524 335 23 
LF3 259 1092 0 

LMP1+LF3 483 107 30 

Proportion EBV 
UMI = 0.37 

Δ-Lytic 
LMP1 LF3 LMP1+LF3 

Sensitivity 0.809777 0.80829 0.048387 
Specificity 0.623541 0.823341 0.992886 

Figure 21. Random Forest model removing lytic cells 
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The dot plot presented in Fig. 22 displays the expression profile of identified influential pathways 

(Fig. 12), once lytic were removed from the random forest model (Fig. 21). 

 

 

Figure 22. Dot plot of influential pathways of all Δ-lytic infection states 

 

LF3 dependent Δ-lytic cells were characterized by a downregulation of host genes 

belonging to keratinization and neutrophil degranulation pathways when compared to LMP-

1/BNLF2a and LMP1+LF3 associated Δ-lytic cells. Clear differentiation between LMP-

1/BNLF2a and LMP1+LF3 associated Δ-lytic cells was unsuccessful.  

Traditionally, scRNA-data is limited by the prevalence of false negatives which arise due 

to low abundance of EBV transcripts in most cells. The random forest model (Fig. 10) was used 

to predict the infection states of false negatives. 5046 of 18,476 false negative cells were classified 

as LMP-1/BNLF2a associated Δ-lytic cells, 13,428 were classified as LF3 associated Δ-lytic, and 

2 were classified as lytic undergoing host shutoff with a EBV UMI ratio cutoff of 0.37 (Fig. 23).  

 

 



 36 

Random Forest 

Proportion EBV 
UMI = 0.37 

Predicted 
Δ-Lytic Lytic 

LMP1 LF3 LMP1+LF3 HS nHS 
5046 13428 0 2 0 

Figure 23. Predicting false negatives from the Random Forest model 

 

UMAPs displaying both predicted (Fig. 23) and known infection states (Fig. 24A) and cell 

cycle phases (Fig. 24B) show unique characteristics of LMP-1/BNLF2a and LF3 associated Δ-

lytic cell classifications. 

 

 

Figure 24A and 24B. UMAP of predicted infection states and cell cycle phases 

 

LMP-1/BNLF2a associated Δ-lytic cells cluster together on the UMAP space and belong 

exclusively to the G1 phase, LF3 associated Δ-lytic cells cluster together and belong to both the 

G1 and G2M phase, and LMP-1/BNLF2a + LF3 associated Δ-lytic cells are scattered throughout 
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the UMAP space with greater overlap with the LMP-1/BNLF2a associated Δ-lytic classification 

when compared to the LF3 associated Δ-lytic classification. 
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4.0 Discussion and Conclusions 

4.1 Discussion 

Early stages of EBV infection can reveal the viral impact of EBV on host cell 

environments. During this phase, EBV undergoes either lytic replication or latent integration into 

the host genome dictating the course of EBV pathogenesis [1]. Understanding the host effects 

contributing to this mechanism may inform potential translational targets for EBV-associated NPC 

in the form of diagnostic and therapeutic strategies.  

Fig. 1A and 1B show cells cluster according to timepoint post-infection rather than 

infection type, suggesting that cell cycle effects are primary drivers of gene expression profiles. 

To highlight transcriptional effects rather than cell cycle effects all samples were compiled into 

one comprehensive dataset. Cluster 11 represents a distinct profile, not overlapping with the 

standard day 0, 2, or 4 classifications as the other clusters do, suggesting that cluster 11 may be 

indicative of a cellular state unique to EBV infection or response. Fig. 2 further showcases the 

unique heterogeneity exclusive to cluster 11, containing proportional quantities of cells from all 

six samples when compared to other clusters.  

The pronounced EBV gene expression in cluster 11, as demonstrated in Fig. 3 and 4, 

strongly suggests that this cluster is driven by EBV lytic gene effects. The comprehensive 

expression of the lytic cascade in cluster 11 defines this cluster as a lytic group of cells in a state 

of active viral replication or reactivation. This contrasts with other clusters where the EBV gene 

expression is limited to specific LMP-1 annotations and two unassigned gene annotations, 

indicative of a Δ-lytic state defined as either latent or some transitory infection state. LMP-1 
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annotations include LMP-1, LMP-1/BNLF2b, and LMP-1/BNLF2a where BNLF2b and BNLF2a 

cannot be entirely separated from LMP-1 due to overlapping regions within the EBV genome, in 

the same orientation. Unassigned annotations include LF3 and DESERT, where DESERT 

represents regions of the EBV genome that were not successfully annotated.  

In ∆-lytic clusters, cells exhibiting expression of LMP-1 and LMP-1/BNLF2b were found 

to be a subset of those expressing LMP-1/BNLF2a. The Δ-lytic expression pattern outlined in Fig. 

6 allowed the classification of EBV-infected Δ-lytic cells into cells expressing LF3, LMP-

1/BNLF2a, or both LMP-1/BNLF2a and LF3. This analysis establishes three categories of EBV 

Δ-lytic infection status, either LMP-1/BNLF2a associated Δ-lytic, LF3 associated Δ-lytic, or  

LMP-1/BNLF2a+LF3 associated Δ-lytic infection. 

BGLF5 is an early lytic categorized EBV gene which plays a role in host shutoff during 

the lytic phase by degrading mRNA, thus reducing host protein synthesis and enhancing viral 

replication [20]. The distinct expression of BGLF5 within cluster 11, as highlighted by Fig. 7, 

provides evidence of host shutoff events in some of these cells. The lack of BGLF5 expression in 

Δ-lytic clusters underscores the unique state of cluster 11 and its potential role in categorizing EBV 

pathogenesis. This is further supported by Fig. 8 which reveals a distinct population of cells 

characterized by a higher proportion of EBV gene UMIs compared to all gene UMIs.  

This group of cells is confirmed by Fig. 9. The distinct population of cells within cluster 

11, characterized by both a high proportion of EBV gene UMIs and elevated BGLF5 expression, 

substantiates the hypothesis that these cells are in an advanced stage of the lytic cycle where host 

shutoff occurs. The Δ-lytic group exhibited proportions ranging from 0 to 0.37, while the lytic 

group's proportions spanned from 0.003 to 0.87. This analysis allowed for two categorizations 

within the lytic cluster, lytic cells with a proportion greater than 0.37 that were undergoing host 
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shutoff (HS) and lytic cells with a proportion less than or equal to 0.37 which were expressing 

viral genes, but not undergoing host shutoff (nHS). As the proportion of EBV UMIs to all gene 

UMIs overlaps from 0.03 to 0.37 between lytic and Δ-lytic clusters, Q1, Q2, and Q3 (0.08, 0.12, 

0.20) were also tested. Ultimately, five novel classifications of EBV infection status were 

established:  LF3 associated Δ-lytic, LMP-1/BNLF2a associated Δ-lytic, LMP-1/BNLF2a+LF3 

associated Δ-lytic, lytic cells undergoing host shutoff, and lytic cells not undergoing host shutoff. 

To determine predictors for model fitting among the five EBV infection statuses, a non-

parametric Wilcoxon rank sum test identified genes with significant differences in gene 

expression, helping to highlight potential markers indicative of each infection status and guide the 

development of predictive models for EBV infection classifications. 

A Random Forest algorithm was utilized to classify cells based on their EBV infection 

status, leveraging the significant genes identified as predictors. The confusion matrices in Fig. 10 

and sensitivity and specificity calculations in Fig. 11 demonstrate the model’s performance across 

various EBV UMI proportion thresholds, illustrating the predictive accuracy for each EBV 

infection classification. Based on Fig. 11 Sensitivity did not change for LF3 associated Δ-lytic, 

LMP-1/BNLF2a associated Δ-lytic, LMP-1/BNLF2a+LF3 associated Δ-lytic, and lytic cells not 

undergoing host shutoff classifications. Sensitivity for the lytic cells undergoing host shutoff 

classification increased from 0.21 to 0.82 from an increase in EBV UMI proportion of 0.08 to 0.37. 

Low sensitivities for LMP-1/BNLF2a+LF3 associated Δ-lytic and lytic cells undergoing host 

shutoff, and incorrect classification of these categories to LMP-1/BNLF2a and LF3 associated Δ-

lytic classifications across all EBV UMI proportions indicates the model is unable to accurately 

predict LMP-1/BNLF2a+LF3 associated Δ-lytic and lytic cells undergoing host shutoff 

classifications. Specificity remained consistent across all classifications for all proportions.  
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The random forest model ranked the predictors by an importance score and the top 50 

ranked genes were analyzed using Reactome pathway analysis [21]. From Fig. 12, the most 

influential genes from the Random Forest model belong to viral mRNA translation, keratinization, 

neutrophil degranulation, and cytokine signaling pathways. Lytic cells undergoing host shutoff 

were characterized by both a downregulation and decreased abundance of host genes belonging to 

keratinization, neutrophil degranulation, and cytokine signaling pathways in addition to a 

downregulation but comparable abundance of the viral mRNA translation pathway (Fig. 13). 

The top 25 genes from the Random Forest model by importance score were utilized as 

candidate predictors for a multinomial logistic regression model. The impact of removing any of 

the 25 genes on the model's AIC was observed and variables were iteratively removed until no 

further reduction in AIC was observed upon variable exclusion. Fig. 14 indicates that an increase 

in EBV UMI proportion corresponds to an increase in the degree of multicollinearity between 

predicter variables. However, based on Fig. 16 while specificity remains consistent across varying 

EBV UMI proportions, sensitivity for lytic cells undergoing host shutoff increased from 0.21 to 

0.82 from an increase in proportion of 0.08 to 0.37. Similar to the Random Forest model, this 

method failed to successfully identify lytic cells not undergoing host shutoff and 

LMP1/BNLF2a+LF3 associated Δ-Lytic cells for any EBV UMI proportion cutoff.  

To account for multicollinearity between predictor variables a multinomial logistic 

regression model with an Elastic Net penalty was utilized to combine effects of Lasso and Ridge 

penalties [17]. Lasso encourages the sum of the absolute values of the regression coefficients to 

be sufficiently small, effectively shrinking some coefficients to zero, thus aiding in variable 

selection. Ridge encourages the sum of the squares of the coefficients to be sufficiently small, 

which does not set coefficients to zero but rather shrinks them towards zero. This aids in addressing 
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multicollinearity by ensuring that the model coefficients are not overly sensitive to changes in the 

model. Elastic Net aims to combine these two properties to improve both variable selection and 

address multicollinearity concerns, resulting in a model that is robust against overfitting. When 

comparing this model (Fig. 15 and Fig. 16) to the Random Forest model, the sensitivity for an 

EBV UMI proportion of 0.2 decreased from 0.83 to 0.65. Similar to the previous models, the 

multinomial logistic regression model with an Elastic Net penalty was unable to accurately predict 

lytic cells not undergoing host shutoff and LMP1/BNLF2a+LF3 associated Δ-Lytic cells for any 

EBV UMI proportion cutoff. 

No one model seems to substantially outperform the other models in predicting infection 

status. Fig. 11, 16, and 18 indicate regardless of chosen model, lytic cells not undergoing host 

shutoff and LMP1/BNLF2+LF3 associated Δ-Lytic cells were unable to be accurately 

distinguished from the LMP-1/BNLF2a and LF3 associated ∆-lytic classifications. This is likely 

due to significant similarities in gene expression profiles between these classifications. Fig. 13 

indicates that lytic cells undergoing host shutoff were characterized by dramatic changes to host 

expression profiles and downregulation of identified host gene pathways.  

To elucidate differences between other categories, a random forest model was fit after 

omitting lytic cells undergoing host shutoff (Fig. 19). While sensitivity and specificity remained 

consistent with previous models containing all five classifications, a different expression profile 

of influential genes was observed (Fig. 20). Lytic cells not undergoing host shutoff were 

characterized by a downregulation but comparable abundance of host genes belonging to 

keratinization and neutrophil degranulation pathways when compared to the LMP-1/BNLF2a 

associated Δ-lytic classification. Cells belonging to the LF3 dependent Δ-lytic classification show 

a similar keratinization host gene expression profile to lytic cells undergoing host shutoff in 
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addition to a downregulation and decreased abundance of neutrophil degranulation host genes 

when compared to the LMP-1/BNLF2a associated Δ-lytic classification. However, cells belonging 

to the LMP-1/BNLF2a+LF3 associated Δ-lytic classification showed a nearly identical expression 

profile to the LMP-1/BNLF2a associated Δ-lytic classification. This analysis successfully 

differentiated the lytic cells not undergoing host shutoff classification from the other three Δ-lytic 

classifications.  

To differentiate between the remaining three Δ-lytic classifications, a random forest model 

was fit after omitting all lytic cells (Fig. 21). While sensitivity and specificity remained consistent 

with all previous models and LF3 associated Δ-lytic cells were generally characterized by a 

downregulation of host genes belonging to keratinization and neutrophil degranulation pathways, 

some unique host genes emerged. LF3 associated Δ-lytic cells in contrast to LMP-1/BNLF2a and 

LMP-1/BNLF2a+LF3 associated Δ-lytic cells observed specific upregulation of HSP90AB1, 

MT2A, CAV1, NPM1, S100A2, and MIR205HG genes. Expression profiles of LMP-1/BNLF2a 

and LMP-1/BNLF2a+LF3 associated Δ-lytic cells remained nearly identical, suggesting that the 

LMP-1 effects overshadow the effects of LF3 in cells which contain both transcripts.    

4.2 Limitations 

4.2.1 Single Cell Limitations 

Limitations of the single-cell methods used may include potential bias introduced during 

cell collection, sensitivity to detect lowly expressed genes, and the challenge of fully capturing 

transient states of EBV infection. Additionally, the analysis relies on existing annotations, which 
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might not fully represent all EBV strains or capture certain genes due to overlapping regions. The 

annotation used was customized for a 5’ single cell library and is the Akata reference EBV strain 

used in the experimented cell lines. These results may not be conserved under similar methods 

applied to other epithelial or B-cell cell lines. The reliance on computational algorithms for 

clustering and differential expression analysis might also introduce variability, dependent on 

parameter settings and the statistical models applied.  

The normalization process assumes that cells have roughly equal total RNA content, which 

justifies scaling gene expression measurements by a constant factor across all cells. However, this 

might not account for natural variations in RNA content between different cell types or states, 

potentially leading to overestimation or underestimation of gene expression levels in cells with 

unusually high or low RNA content that make it past the filtering steps. This simplification can 

affect the interpretation of gene expression differences across conditions or cell types. 

Variable feature selection in the Seurat workflow utilizes LOESS which introduces two 

assumptions [8]. The first being the mean of y around point x can be approximated through a class 

of parametric functions based on polynomial regression. The approximation of the mean response 

as a parametric function might not capture complex biological interactions accurately, potentially 

oversimplifying underlying patterns. The second assumption posits that the errors in estimating y 

are independently and randomly distributed with mean 0. The assumption of independent and 

identically distributed errors assumes homoscedasticity, which may not hold for biological data 

where technical and biological variances can introduce heteroscedasticity, impacting the reliability 

of predictions. 
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4.2.2 Random Forest Limitations 

The random forest model assumes the errors across individual trees are uncorrelated and 

the ensemble of trees will provide superior prediction accuracy compared to any single tree within 

the forest [13]. While averaging the results across a multitude of trees reduces the risk of 

overfitting, the assumption that errors across trees are uncorrelated may not hold if the data has 

inherent correlations unable to be addressed by random sampling. While the ensemble generally 

outperforms individual trees, the improvement in prediction accuracy isn't guaranteed if the model 

overfits the training data. 

4.2.3 Multinomial Logistic Regression Limitations 

The multinomial logistic regression model introduces five assumptions, three of which 

introduce potential limitations to this methodology [15]. The first is independence of irrelevant 

alternatives. This assumption implies that the choice between outcomes is unaffected by the 

presence or absence of additional choices. In biological contexts, this may not hold due to complex 

interactions where the presence of one outcome could influence the likelihood of another. The 

second is linearity of independent variables and log-odds. Biological processes often exhibit non-

linear dynamics, making this assumption too simplistic, potentially leading to inaccurate 

estimations of effect sizes. The third is no perfect multicollinearity. While the VIF metrics help 

identify multicollinearity and the Elastic Net penalty helps to mitigate multicollinearity among 

predictors, high-dimensional data such as gene expression profiles often exhibit multicollinearity 

due to biological pathways involving multiple co-expressed genes. This can make it difficult to 

discern the individual contribution of predictors.  
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4.3 Future Directions 

Future directions should focus on applying this methodology to publicly available NPC 

tumor datasets and sequenced B-cell lines to validate and extend these findings. Other 

methodologies such as SLIDE: Significant Latent Factor Interaction Discover and Exploration 

may also be considered to identify latent factors contributing to the underlying pathology of EBV 

infection [28]. Such tools are optimized for high-dimensional omics datasets without assumptions 

pertaining to mechanisms of data generation. A combination of approaches is necessary to identify 

conserved host markers and influential pathways in the landscape of modern multi-omic datasets.  

Ultimately, both in vivo and in vitro studies would be needed to extend these findings and 

further elucidate the mechanisms behind EBV's impact on host cell environments and its role in 

NPC pathogenesis. Identification of conserved host markers of EBV infection between a 

combination of computational approaches and experimental validation would enhance the field’s 

ability to better understand EBV viral-host interactions and contribute to improving EBV 

associated disease outcomes. In the short term such markers may play a role in the development 

of EBV associated NPC screening protocols in at risk populations. If further validated, these 

pathways and markers may assist in creating the groundwork for the development of targeted 

therapeutic strategies, decreasing the disease burden of EBV associated disease.  
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Appendix A Appendices and Supplemental Content 

Appendix A.1 R Script 

#0: Environment: 
{ 
  ##0.1: Working Directory: 
  { 
    getwd() 
    setwd("/bgfs/kshair/shared/kshair_jap282/Single-Cell_NPC/Seurat/")  
     
  } 
   
  ##0.2: Packages: 
  { 
    library(Seurat) 
    library(SeuratWrappers) 
    library(SeuratObject) 
    library(DoubletFinder) 
    library(infercnv) 
    library(tidyverse) 
    library(ggplot2) 
    library(ggpubr) 
    library(reshape2) 
    library(SingleR) 
    library(celldex) 
    library(pROC) 
    library(EnhancedVolcano) 
    library(monocle3) 
    library(harmony) 
    library(patchwork) 
    library(pheatmap) 
    library(ComplexHeatmap) 
    library(presto) 
    library(tictoc) 
    library(corrplot) 
    library(openxlsx) 
    library(UpSetR) 
    library(writexl) 
    library(Matrix) 
    library(irlba) 
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    library(RColorBrewer) 
    library(circlize) 
    library(randomForest) 
    library(ranger) 
    library(nnet) 
    library(caret) 
    library(MASS) 
    library(glmnet) 
    library(car) 
  } 
   
  ##0.3: Markers: 
  { 
 
      EBV <- c("EBNA-1", "EBNA-1/EBNA-3B/EBNA-3C", "EBNA-1/EBNA-

3B/EBNA-3C/EBNA-3A", 
                           "EBNA-1/EBNA-LP/EBNA-3B/EBNA-3C/EBNA-3A", "EBNA-3A", 

"LMP-1", "LMP-1/BNLF2b", 
                           "EBNA-3B/EBNA-3C", "LMP-1/BNLF2a", "EBNA-2", "EBNA-

2/EBNA-LP", 
                           "EBNA-LP", "LMP-2A", "LMP-2B", "LMP-2A/LMP-2B", "LMP-

2A/LMP-2B/BNRF1", 
                           "RPMS1","BRLF1/BZLF1", "BRLF1","BALF1", "BALF2", "BALF5", 

"BARF1", "BaRF1", 
                           "BBLF2/BBLF3", "BBLF4", "BcRF1", "BDLF4", "BDLF4/BDLF3.5", 

"BFLF1", "BFLF2", 
                           "BFRF1", "BFRF1/BFRF1A", "BFRF2", "BFRF2/BFRF1", 

"BFRF2/BFRF3", "BGLF4", 
                           "BGLF4/BGLF5", "BGLF4/BGLF3.5", "BGLF5", "BHRF1", "BKRF4", 

"BLLF2/BLLF1", 
                           "BLLF3", "BMRF1", "BMRF2", "BORF2", "BRRF1", "BSLF1", 

"BSLF2/BMLF1", 
                           "BSLF2/BMLF1/BSLF1", "BVRF1", "BXLF1", "BZLF2","BALF4", 

"BALF4/BALF3", "BBLF1", 
                           "BBLF1/BGLF5", "BBRF1", "BBRF2", "BBRF2/BBRF1", "BBRF3", 

"BcLF1", "BCRF1", 
                           "BDLF1", "BDLF2", "BDLF3", "BDLF3.5", "BFRF3", "BGLF1", 

"BGLF1/BGLF2", 
                           "BGLF1/BDLF4", "BGLF2", "BILF2", "BKRF2", "BLLF1", "BLRF1", 

"BLRF2", "BNRF1", 
                           "BORF1", "BRRF2", "BSRF1", "BTRF1", "BTRF1/BcRF1", "BVLF1", 

"BVRF2", "BVRF2/BdRF1", 
                           "BXLF2", "BXRF1", "BXRF1/BVRF1","BALF3", "BFRF1A", 

"BGLF3", "BGLF3.5", 
                           "BGLF3.5/BGLF3", "BGRF1/BDRF1", "BILF1", "BKRF3", 

"BKRF3/BKRF2", "BOLF1", 
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                           "BPLF1", "BPLF1/BOLF1", "LF1", "LF2", "LF2/LF1", "LF3", 
"HALMP1", "DESERT", "LMP-2A", "LMP-2B") 

 
   
  } 
   
  ##0.4: Cell-cycle Markers: 
  { 
    s.genes <- cc.genes$s.genes 
    g2m.genes <- cc.genes$g2m.genes 
     
  } 
} 
 
#1: Data 
{ 
    #Shair_Ch1 
    { 
      Shair_05_0_df <- Read10X(data.dir = "/bgfs/kshair/shared/kshair_alb635/Single-

Cell_NPC/Seurat/Shair/Shair_05_Akata-Collapse/Ch1-ALI-
4/sample_filtered_feature_bc_matrix") #There was confusion in labeling 

      Shair_05_0_df <- CreateSeuratObject(counts = Shair_05_0_df$`Gene Expression`, 
project = "Ch1_0", min.cells = 3, min.features = 200) 

       
      Shair_05_2_df <- Read10X(data.dir = "/bgfs/kshair/shared/kshair_alb635/Single-

Cell_NPC/Seurat/Shair/Shair_05_Akata-Collapse/Ch1-ALI-
0/sample_filtered_feature_bc_matrix") #There was confusion in labeling 

      Shair_05_2_df <- CreateSeuratObject(counts = Shair_05_2_df$`Gene Expression`, 
project = "Ch1_2", min.cells = 3, min.features = 200) 

       
      Shair_05_4_df <- Read10X(data.dir = "/bgfs/kshair/shared/kshair_alb635/Single-

Cell_NPC/Seurat/Shair/Shair_05_Akata-Collapse/Ch1-ALI-
2/sample_filtered_feature_bc_matrix") #There was confusion in labeling 

      Shair_05_4_df <- CreateSeuratObject(counts = Shair_05_4_df$`Gene Expression`, 
project = "Ch1_4", min.cells = 3, min.features = 200) 

    } 
    #Shair_IRES 
    { 
      Shair_06_0_df <- Read10X(data.dir = "/bgfs/kshair/shared/kshair_alb635/Single-

Cell_NPC/Seurat/Shair/Shair_06_Akata-Collapse/IRES-ALI-
0/sample_filtered_feature_bc_matrix") #There was confusion in labeling 

      Shair_06_0_df <- CreateSeuratObject(counts = Shair_06_0_df$`Gene Expression`, 
project = "IRES_0", min.cells = 3, min.features = 200) 
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      Shair_06_2_df <- Read10X(data.dir = "/bgfs/kshair/shared/kshair_alb635/Single-
Cell_NPC/Seurat/Shair/Shair_06_Akata-Collapse/IRES-ALI-
2/sample_filtered_feature_bc_matrix") #There was confusion in labeling 

      Shair_06_2_df <- CreateSeuratObject(counts = Shair_06_2_df$`Gene Expression`, 
project = "IRES_2", min.cells = 3, min.features = 200) 

       
      Shair_06_4_df <- Read10X(data.dir = "/bgfs/kshair/shared/kshair_alb635/Single-

Cell_NPC/Seurat/Shair/Shair_06_Akata-Collapse/IRES-ALI-
4/sample_filtered_feature_bc_matrix") #There was confusion in labeling 

      Shair_06_4_df <- CreateSeuratObject(counts = Shair_06_4_df$`Gene Expression`, 
project = "IRES_4", min.cells = 3, min.features = 200) 

    } 
  } 
   
#2: Merge Data 
{ 
    #Shair_CL: 
    { 
      Shair_CL_df <-  merge(x = Shair_05_0_df, 
                            y = c(Shair_05_2_df, Shair_05_4_df,  
                                  Shair_06_0_df, Shair_06_2_df, Shair_06_4_df), 
                            add.cell.ids = c("Ch1_0", "Ch1_2", "Ch1_4", 
                                             "IRES_0", "IRES_2", "IRES_4"), 
                            project = "Shair") 
      gc() 
    } 
  } 
   
#3: Standard Processing 
{ 
    #Shair CL: 
    { 
    Shair_CL_df[["percent.mt"]] <- PercentageFeatureSet(Shair_CL_df, pattern = "^MT-

") 
    Shair_CL_df <- subset(Shair_CL_df, subset = nFeature_RNA > 200 & nFeature_RNA 

< 9000 & percent.mt < 20) 
    Shair_CL_df <- NormalizeData(Shair_CL_df) 
    Shair_CL_df <- FindVariableFeatures(Shair_CL_df, selection.method = "vst", 

nfeatures = 3500) 
    Shair_CL_df <- ScaleData(Shair_CL_df, features = rownames(Shair_CL_df)) 
    Shair_CL_df <- RunPCA(Shair_CL_df, features = VariableFeatures(object = 

Shair_CL_df)) 
    Shair_CL_df <- RunUMAP(Shair_CL_df, dims = 1:30) 
    Shair_CL_df <- FindNeighbors(Shair_CL_df, dims = 1:30) 
    Shair_CL_df <- FindClusters(Shair_CL_df, resolution = 0.5) 
     



 51 

    Shair_CL_df = CellCycleScoring(Shair_CL_df,  
                                   s.features = s.genes,  
                                   g2m.features = g2m.genes,  
                                   set.ident = F) 
     
    Shair_CL_dfPlot <- DimPlot(Shair_CL_df,  
                               reduction = "umap",  
                               pt.size = 0.1,  
                               raster = F,  
                               label = T,  
                               label.box = T) + 
      NoLegend()  
     
    Shair_CL_dfPlot 
    } 
  } 
 
#4: Figures 
{ 
  #UMAP 
  { 
    #Cluster 
    { 
      Idents(Shair_CL_df) <- Shair_CL_df$seurat_clusters 
      Shair_CL_dfPlot <- DimPlot(Shair_CL_df,  
                                 reduction = "umap",  
                                 pt.size = 0.25,  
                                 raster = F,  
                                 label = T,  
                                 label.box = T) + 
        NoLegend()  
       
      Shair_CL_dfPlot 
       
    } 
    #Origin 
    { 
      Idents(Shair_CL_df) <- Shair_CL_df$orig.ident 
      Shair_CL_dfPlot <- DimPlot(Shair_CL_df,  
                                 reduction = "umap",  
                                 pt.size = 0.25,  
                                 raster = F,  
                                 label = T,  
                                 label.box = T) + 
        NoLegend()  
      Idents(Shair_CL_df) <- Shair_CL_df$seurat_clusters 
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      Shair_CL_dfPlot 
    } 
    #Cell Cylce 
    { 
      DimPlot(Shair_CL_df, reduction = "umap", group.by = "Phase", label = FALSE, 

pt.size = 0.05) + 
        ggtitle("UMAP of Cell Cycle Phases") 
    } 
  } 
   
  #Violin 
  { 
    Idents(Shair_CL_df) <- Shair_CL_df$seurat_clusters 
    VlnPlot(Shair_CL_df, features = EBV, stack = T) + NoLegend() 
    VlnPlot(object = Shair_CL_df, features = 'BGLF5', split.by = 'seurat_clusters') 
  } 
   
  #Barplot 
  { 
    data_to_plot <- Shair_CL_df@meta.data %>% 
      group_by(seurat_clusters, orig.ident) %>% 
      summarise(count = n()) %>% 
      mutate(proportion = count / sum(count, na.rm = TRUE)) %>% 
      ungroup() %>% 
      arrange(seurat_clusters, orig.ident) 
    data_to_plot_wide <- pivot_wider(data_to_plot, names_from = orig.ident, values_from 

= proportion, values_fill = list(proportion = 0)) 
    ggplot(data_to_plot, aes(y = factor(seurat_clusters), x = proportion, fill = orig.ident)) + 
      geom_bar(stat = "identity") + 
      labs(y = "Cluster", x = "Proportion", fill = "orig Identity") + 
      theme_minimal() + 
      coord_flip() 
  } 
   
#Heatmap 
  { 
  #EBV Heatmap 
    { 
    Shair_CL_df_EBV <- Shair_CL_df 
    Shair_CL_df_EBV <- subset(Shair_CL_df, features = EBV) 
    genes <- Shair_CL_df_EBV[EBV, ] 
    keep.cells <- colnames(genes[, colSums(genes) != 0]) 
    Shair_CL_df_EBV <- Shair_CL_df_EBV[, keep.cells] 
    mat <- Shair_CL_df_EBV[["RNA"]]@data %>% as.matrix() 
    cluster_anno <- Shair_CL_df_EBV@meta.data$seurat_clusters 
    quantile(mat, c(.01, .99)) 
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    quantile(mat, c(.01, .999)) 
    quantile(mat, c(.01, .9999)) 
    col_fun = circlize::colorRamp2(c(0, 1, 2, 3), 

c("papayawhip","#FF00FF","black","#FFFF00")) 
    Heatmap(mat, name = "Normalized Expression",   
            column_split = factor(cluster_anno), 
            cluster_columns = TRUE, 
            show_column_dend = FALSE, 
            cluster_column_slices = FALSE, 
            column_title_gp = gpar(fontsize = 8), 
            column_gap = unit(0.5, "mm"), 
            cluster_rows = FALSE, 
            show_row_dend = FALSE, 
            col = col_fun, 
            row_names_gp = gpar(fontsize = 4), 
            column_title_rot = 45, 
            top_annotation = HeatmapAnnotation(foo = anno_block(gp = gpar(fill = 

scales::hue_pal()(9)))), 
            show_column_names = FALSE, 
            use_raster = TRUE, 
            raster_quality = 10) 
   
   
  } 
 
  #LMP1 LF3 Heatmap 
    { 
    Shair_CL_df_n11 <- subset(Shair_CL_df, idents = "11", invert = TRUE) 
    levels(Shair_CL_df_n11) 
    latent <- c("LMP-1/BNLF2a","LF3") 
    Shair_CL_df_n11_filter <- subset(Shair_CL_df_n11, features = latent) 
    Shair_CL_df_n11_filter@meta.data$infect <- "delta_lytic" 
    Idents(Shair_CL_df_n11_filter) <- Shair_CL_df_n11_filter$infect 
    levels(Shair_CL_df_n11_filter) 
    genes <- Shair_CL_df_n11_filter[latent, ] 
    keep.cells <- colnames(genes[, colSums(genes) != 0]) 
    Shair_CL_df_n11_filter <- Shair_CL_df_n11_filter[, keep.cells] 
    mat <- Shair_CL_df_n11_filter[["RNA"]]@data %>% as.matrix() 
    cluster_anno <- Shair_CL_df_n11_filter@meta.data$infect 
    quantile(mat, c(.01, .99)) 
    quantile(mat, c(.01, .999)) 
    quantile(mat, c(.01, .9999)) 
    col_fun = circlize::colorRamp2(c(0, 1, 2, 3), 

c("papayawhip","#FF00FF","black","#FFFF00")) 
    Heatmap(mat, name = "Normalized Expression",   
            column_split = factor(cluster_anno), 
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            cluster_columns = TRUE, 
            show_column_dend = FALSE, 
            cluster_column_slices = FALSE, 
            column_title_gp = gpar(fontsize = 8), 
            column_gap = unit(0.5, "mm"), 
            cluster_rows = TRUE, 
            show_row_dend = FALSE, 
            col = col_fun, 
            row_names_gp = gpar(fontsize = 4), 
            column_title_rot = 45, 
            top_annotation = HeatmapAnnotation(foo = anno_block(gp = gpar(fill = 

scales::hue_pal()(9)))), 
            show_column_names = FALSE, 
            use_raster = TRUE, 
            raster_quality = 5) 
    } 
     
 
     
  } 
   
#Dotplot 
  { 
  #Dotplot nCountRNA EBV and All 
  { 
      metadata_1 <- Shair_CL_df@meta.data 
      data_1 <- data.frame( 
        CellID = rownames(metadata_1), 
        nCount_RNA = metadata_1$nCount_RNA 
      ) 
      Shair_CL_df_filter <- subset(Shair_CL_df, features = EBV) 
      metadata_2 <- Shair_CL_df_filter@meta.data 
      data_2 <- data.frame( 
        CellID = rownames(metadata_2), 
        nCount_RNA = metadata_2$nCount_RNA 
      ) 
      combined_data <- merge(data_1, data_2, by = "CellID") 
      colnames(combined_data) 
      colnames(combined_data)[colnames(combined_data) == "nCount_RNA.x"] <- 

"nCount_RNA_All" 
      colnames(combined_data)[colnames(combined_data) == "nCount_RNA.y"] <- 

"nCount_RNA_EBV" 
      colnames(combined_data) 
      sorted_data <- arrange(combined_data, nCount_RNA_EBV, nCount_RNA_All) 
      sorted_data <- sorted_data %>% 
        mutate(Number_ID = row_number()) 
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      long_data <- tidyr::pivot_longer(sorted_data, cols = c("nCount_RNA_All", 
"nCount_RNA_EBV"), names_to = "ID", values_to = "nCount_RNA") 

 
      ggplot(long_data, aes(x = Number_ID, y = nCount_RNA, color = ID)) + 
        geom_point(alpha = 0.6, size = 0.5) + 
        scale_color_manual(values = c("nCount_RNA_All" = "blue", "nCount_RNA_EBV" 

= "red")) + 
        theme_minimal(base_size = 14) +  
        theme(axis.ticks.x = element_blank(), 
              legend.position = "right", 
              legend.key.size = unit(0.5, "cm"), 
              legend.title.align = 0.5, 
              legend.text = element_text(size = 12)) + 
        labs(x = "Cells sorted by EBV gene nCountRNA", y = "nCount_RNA",  
             title = "nCount_RNA All Cells") 
       
    } 
  #Ratio Dotplot 
  { 
      sorted_data$Ratio <- sorted_data$nCount_RNA_EBV / 

sorted_data$nCount_RNA_All 
      ggplot(sorted_data, aes(x = Number_ID, y = Ratio)) + 
        geom_point() +  
        theme_minimal() + 
        theme(axis.title.x = element_blank(), 
              axis.text.x = element_blank(), 
              axis.ticks.x = element_blank()) + 
        labs(y = "nCount_RNA_EBV / nCount_RNA_All", title = "Dot Plot of Ratio 

(EBV/All RNA Counts)") 
      BGLF5_expression <- GetAssayData(Shair_CL_df, assay = "RNA", layer = 

"data")["BGLF5", ] 
      BGLF5_expression_df <- as.data.frame(BGLF5_expression) 
      BGLF5_expression_df$CellID <- rownames(BGLF5_expression_df) 
      sorted_data <- merge(sorted_data, BGLF5_expression_df, by = "CellID") 
      ggplot(sorted_data, aes(x = Number_ID, y = Ratio, color = BGLF5_expression)) + 
        geom_point(alpha = 0.6, size = 1.5) + 
        scale_color_gradientn(colors = c("blue", "red", "yellow"), name = 

"BGLF5\nExpression") + 
        theme_minimal(base_size = 14) +  
        theme(axis.ticks.x = element_blank(), 
              legend.position = "right", 
              legend.key.size = unit(0.5, "cm"), 
              legend.title.align = 0.5, 
              legend.text = element_text(size = 12)) +  
        labs(x = "Cells sorted by EBV gene nCountRNA", y = "nCountRNA EBV/ALL",  
             title = "Dot Plot of Proportion (EBV/All RNA Counts) by BGLF5") 
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  } 
    # Reactome Dotplot Iteration 1 
    { 
      top_50_1 <- 

c("RPL13","RPS2","RPL18A","RPL32","RPS18","RPLP1","RPL12","RPS24", 
"KRT15","KRT16", "JUP", 

                  
"PERP","KRT13","KRT6A","SPRR1A","DSC2","SPRR1B","S100A7","GSTP1","S100A8","S1
00A9","SLPI", 

                  
"HSP90AB1","S100A11","LGALS3","CSTB","MT2A","ANXA1","IL1RN","YWHAZ", 
"CLDN4","CD24","ELF3",     

                  "NECTIN4","CAV1","CDKN2B", "KLK6", 
"AQP3","CAST","PFN1","MT1E","MDK","SCEL","RAB11FIP1", 

                  "CYSRT1","S100A16","TACSTD2","MAL2","PITX1","KLK10" 
      ) 
       
      DotPlot(Shair_CL_df_data, features = top_50_1, cols = c("blue", "red")) + 
        theme(axis.text.x = element_text(angle = 45, hjust = 1)) 
    } 
    # Reactome Dotplot Iteration 2 
    { 
      top_50_2 <- 

c("KRT15","PKP1","KRT16","JUP","KRT13","KRT6A","CSTA","SPRR1A","DSC2","SPRR1
B","S100A8", 

                    
"S100A9","SLPI","HEBP2","HSP90AB1","LGALS3","CSTB","MAL2","CD24","CLDN4","T
ACSTD2","ELF3", 

                    "MT2A","PITX1","KLK10","CDKN2B","KLK6 
","CAV1","IL1RN","S100A16","NECTIN4","KLF5","NPM1", 

                    
"S100A2","AQP3","CAST","SCEL","TM4SF1","IER2","MIR205HG","RHOD","ALDH1A3","
ARF6","GPRC5A", 

                    "PLSCR1","DNAJB1","CLTB","NDFIP1","LDHB","CALML3") 
       
      Idents(Shair_CL_df_data) <- Shair_CL_df_data$class 
      DotPlot(Shair_CL_df_data, features = top_50_2, cols = c("blue", "red")) + 
        theme(axis.text.x = element_text(angle = 45, hjust = 1)) 
    } 
    # Reactome Dotplot Iteration 3 
    { 
      top_50_3 <- 

c("KRT15","PKP1","KRT16","JUP","KRT13","KRT6A","CSTA","SPRR1A","DSC2","SPRR1
B","S100A8", 
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"S100A9","SLPI","HSP90AB1","LGALS3","CSTB","CST3","CD24","MAL2","CLDN4","TAC
STD2","ELF3", 

                    
"MT2A","PITX1","KLK10","KLK6","CAV1","IL1RN","CDKN2B","CAST","AQP3","KLF5",
"S100A16", 

                    
"GPRC5A","NPM1","NECTIN4","SCEL","TM4SF1","ALDH1A3","S100A2","IER2","MIR205
HG","HM13", 

                    
"SLC9A3R1","DNAJB1","ARF6","NDFIP1","CYB5R1","ANXA11","CLTB") 

      Idents(Shair_CL_df_data) <- Shair_CL_df_data$class 
      DotPlot(Shair_CL_df_data, features = top_50_3, cols = c("blue", "red")) + 
        theme(axis.text.x = element_text(angle = 45, hjust = 1)) 
    } 
  } 
} 
 
#5: Analysis 
{ 
  #Calculate Quantiles 
  { 
  filtered_data <- sorted_data[sorted_data$Ratio >= 0.05, ] 
  quartiles <- quantile(filtered_data$Ratio, probs = c(0.25, 0.5, 0.75, 1)) 
  print(quartiles) 
} 
 
  #037 
  { 
#Prepare Dataset 
{ 
Shair_CL_df_LF3<-Shair_CL_df 
Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, idents = "11", invert = TRUE) 
cells_to_remove <- WhichCells(Shair_CL_df, expression = `LMP-1/BNLF2a` > 0) 
Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, cells = cells_to_remove, invert = TRUE) 
Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, subset = LF3 > 0) 
final_cell_ids <- colnames(Shair_CL_df_LF3) 
Shair_CL_df_LF3 <- subset(Shair_CL_df, cells = final_cell_ids) 
Shair_CL_df_LMP1 <- Shair_CL_df 
Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, idents = "11", invert = TRUE) 
cells_to_remove_LF3 <- WhichCells(Shair_CL_df_LMP1, expression = LF3 > 0) 
Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, cells = cells_to_remove_LF3, invert 

= TRUE) 
Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, subset = `LMP-1/BNLF2a` > 0) 
final_cell_ids <- colnames(Shair_CL_df_LMP1) 
Shair_CL_df_LMP1 <- subset(Shair_CL_df, cells = final_cell_ids) 
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Shair_CL_df_cluster11 <- subset(Shair_CL_df, idents = "11") 
metadata_cluster11 <- Shair_CL_df_cluster11@meta.data 
data_cluster11 <- data.frame( 
  CellID = rownames(metadata_cluster11), 
  nCount_RNA = metadata_cluster11$nCount_RNA) 
Shair_CL_df_cluster11_filter <- subset(Shair_CL_df_cluster11, features = EBV) 
metadata_cluster11_filter <- Shair_CL_df_cluster11_filter@meta.data 
data_cluster11_filter <- data.frame( 
  CellID = rownames(metadata_cluster11_filter), 
  nCount_RNA = metadata_cluster11_filter$nCount_RNA) 
combined_data_cluster11 <- merge(data_cluster11, data_cluster11_filter, by = "CellID") 
colnames(combined_data_cluster11)[colnames(combined_data_cluster11) == 

"nCount_RNA.x"] <- "nCount_RNA_All" 
colnames(combined_data_cluster11)[colnames(combined_data_cluster11) == 

"nCount_RNA.y"] <- "nCount_RNA_EBV" 
sorted_data_cluster11 <- combined_data_cluster11 %>% 
  arrange(nCount_RNA_EBV, nCount_RNA_All) %>% 
  mutate(Number_ID = row_number()) 
sorted_data_cluster11 <- combined_data_cluster11 %>% 
  arrange(nCount_RNA_EBV, nCount_RNA_All) %>% 
  mutate(Number_ID = row_number(), 
         Ratio = nCount_RNA_EBV / nCount_RNA_All) 
sorted_data_cluster11_filtered <- sorted_data_cluster11 %>% 
  filter(Ratio <= 0.37) 
cell_ids_to_keep <- sorted_data_cluster11_filtered$CellID 
Shair_CL_df_nHS <- subset(Shair_CL_df, cells = cell_ids_to_keep) 
sorted_data_cluster11_filtered <- sorted_data_cluster11 %>% 
  filter(Ratio > 0.37) 
cell_ids_to_keep <- sorted_data_cluster11_filtered$CellID 
Shair_CL_df_HS <- subset(Shair_CL_df, cells = cell_ids_to_keep) 
Shair_CL_df_LMP1_LF3 <- Shair_CL_df 
Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df_LMP1_LF3, idents = "11", invert = 

TRUE) 
Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df_LMP1_LF3, subset = `LMP-

1/BNLF2a` > 0 & LF3 > 0) 
final_cell_ids <- colnames(Shair_CL_df_LMP1_LF3) 
Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df, cells = final_cell_ids) 
Shair_CL_df_HS@meta.data$class <- "HS" 
Idents(Shair_CL_df_HS) <- Shair_CL_df_HS$class 
levels(Shair_CL_df_HS) 
Shair_CL_df_nHS@meta.data$class <- "nHS" 
Idents(Shair_CL_df_nHS) <- Shair_CL_df_nHS$class 
levels(Shair_CL_df_nHS) 
Shair_CL_df_LF3@meta.data$class <- "LF3" 
Idents(Shair_CL_df_LF3) <- Shair_CL_df_LF3$class 
levels(Shair_CL_df_LF3) 
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Shair_CL_df_LMP1@meta.data$class <- "LMP1" 
Idents(Shair_CL_df_LMP1) <- Shair_CL_df_LMP1$class 
levels(Shair_CL_df_LMP1) 
Shair_CL_df_LMP1_LF3@meta.data$class <- "LMP1_LF3" 
 
levels(Shair_CL_df_LMP1_LF3) 
Shair_CL_df_data <- merge(x = Shair_CL_df_HS, y = c(Shair_CL_df_nHS, 

Shair_CL_df_LF3, Shair_CL_df_LMP1, Shair_CL_df_LMP1_LF3), add.cell.ids = c("HS", 
"nHS", "LF3", "LMP1", "LMP1_LF3"), project = "Combined") 

Idents(Shair_CL_df_data) <- Shair_CL_df_data$class 
levels(Shair_CL_df_data) 
cell_ids <- colnames(Shair_CL_df_data) 
class_labels <- Idents(Shair_CL_df_data) 
gene_expression_data <- GetAssayData(Shair_CL_df_data, layer = "data") 
gene_expression_df <- as.data.frame(t(gene_expression_data)) 
cell_class_df <- data.frame(CellID = cell_ids, Class = as.character(class_labels)) 
final_dataset <- cbind(cell_class_df, gene_expression_df) 
} 
 
#DGT 
{ 
HS.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "HS", ident.2 = NULL) 
HS.markers_filtered <- subset(HS.markers, p_val_adj < 0.05) 
nHS.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "nHS", ident.2 = NULL) 
nHS.markers_filtered <- subset(nHS.markers, p_val_adj < 0.05) 
nHS.HS.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "nHS", ident.2 = "HS") 
nHS.HS.markers_filtered <- subset(nHS.HS.markers, p_val_adj < 0.05) 
LMP1.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1", ident.2 = NULL) 
LMP1.markers_filtered <- subset(LMP1.markers, p_val_adj < 0.05) 
LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LF3", ident.2 = NULL) 
LF3.markers_filtered <- subset(LF3.markers, p_val_adj < 0.05) 
LMP1.LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1", ident.2 = 

"LF3") 
LMP1.LF3.markers_filtered <- subset(LMP1.LF3.markers, p_val_adj < 0.05) 
LMP1_LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1_LF3", ident.2 

= NULL) 
LMP1_LF3.markers_filtered <- subset(LMP1_LF3.markers, p_val_adj < 0.05) 
combined_gene_list <- unique(c(rownames(HS.markers_filtered), 
                              rownames(nHS.markers_filtered), 
                              rownames(nHS.HS.markers_filtered), 
                              rownames(LMP1.markers_filtered), 
                              rownames(LF3.markers_filtered), 
                              rownames(LMP1_LF3.markers_filtered), 
                              rownames(LMP1.LF3.markers_filtered))) 
combined_gene_list_filtered <- setdiff(combined_gene_list, EBV) 
} 
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#Random Forest 
{ 
valid_genes <- intersect(combined_gene_list_filtered, colnames(final_dataset)) 
trimmed_dataset <- final_dataset[, c("CellID", "Class", valid_genes)] 
trimmed_dataset$Class <- as.factor(trimmed_dataset$Class) 
set.seed(123) 
train_indices <- sample(nrow(trimmed_dataset), size = 0.7 * nrow(trimmed_dataset)) 
train_data <- trimmed_dataset[train_indices, -1] 
test_data <- trimmed_dataset[-train_indices, -1] 
x_train <- train_data[, !(names(train_data) %in% c("CellID", "Class"))] 
y_train <- train_data$Class 
x_test <- test_data[, !(names(test_data) %in% c("CellID", "Class"))] 
y_test <- test_data$Class 
rf_model <- ranger( 
  dependent.variable.name = "y_train", 
  data = data.frame(x_train, y_train = y_train), 
  num.trees = 500, 
  mtry = sqrt(ncol(x_train)), 
  importance = 'impurity' 
) 
pred_class <- predict(rf_model, data.frame(x_test), type="response") 
predictions <- pred_class$predictions 
confusionMatrix <- table(y_test, Predictions = predictions) 
print(confusionMatrix) 
importance_scores <- rf_model$variable.importance 
ordered_importance <- sort(importance_scores, decreasing = TRUE) 
print(head(ordered_importance, n=50)) 
print(ordered_importance) 
gene_names <- names(ordered_importance) 
print(gene_names) 
gene_names<-data.frame(gene_names) 
gene_names 
} 
 
#Mult Log Reg 
{ 
top_25_genes <- names(ordered_importance)[1:25] 
final_dataset_filtered <- final_dataset[, c("CellID", "Class", top_25_genes)] 
final_dataset_filtered$Class <- as.factor(final_dataset_filtered$Class) 
current_dataset <- final_dataset_filtered 
min_aic <- Inf 
optimal_dataset <- current_dataset 
removed_genes <- c() 
repeat { 
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  aic_values <- setNames(numeric(ncol(current_dataset) - 2), colnames(current_dataset)[-
(1:2)]) 

   
  for (gene in names(aic_values)) { 
    dataset_minus_gene <- current_dataset[, !colnames(current_dataset) %in% c(gene, 

"CellID")] 
    model <- multinom(Class ~ ., data = dataset_minus_gene, trace = FALSE) 
    aic_values[gene] <- AIC(model) 
  } 
   
  gene_to_remove <- names(which.min(aic_values)) 
  new_aic <- min(aic_values) 
   
  if (new_aic < min_aic) { 
    min_aic <- new_aic 
    current_dataset <- current_dataset[, !colnames(current_dataset) %in% 

c(gene_to_remove, "CellID")] 
    optimal_dataset <- current_dataset 
    removed_genes <- c(removed_genes, gene_to_remove) 
    cat("Removed gene:", gene_to_remove, "New AIC:", new_aic, "\n") 
  } else { 
    break 
  } 
} 
 
final_model <- multinom(Class ~ ., data = optimal_dataset, trace = FALSE) 
summary(final_model) 
predicted_probs <- predict(final_model, newdata = optimal_dataset, type = "probs") 
predicted_class <- apply(predicted_probs, 1, which.max) 
predicted_class <- levels(optimal_dataset$Class)[predicted_class] 
actual_class <- optimal_dataset$Class 
confusion_matrix <- table(Predicted = predicted_class, Actual = actual_class) 
print(confusion_matrix) 
vif_values <- vif(final_model) 
print(vif_values) 
} 
 
#Elastic Net 
{ 
  top_25_genes <- names(ordered_importance)[1:25] 
  predictors <- as.matrix(final_dataset[, top_25_genes])  
  response <- as.factor(final_dataset$Class) 
  set.seed(123) 
  cv_model <- cv.glmnet(predictors, response, family = "multinomial", type.multinomial 

= "grouped", 
                        alpha = 0.5) 
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  best_lambda <- cv_model$lambda.min 
  plot(cv_model) 
  predicted_probs <- predict(cv_model, newx = predictors, s = "lambda.min", type = 

"response") 
  predicted_class <- apply(predicted_probs, 1, which.max) 
  predicted_class <- colnames(predicted_probs)[predicted_class] 
  actual_class <- response 
  confusion_matrix <- table(Predicted = predicted_class, Actual = actual_class) 
  print(confusion_matrix) 
  summary(cv_model) 
} 
  } 
   
  #Predict EBV Null 
  { 
     
    cell_ids_HS <- colnames(Shair_CL_df_HS) 
    cell_ids_nHS <- colnames(Shair_CL_df_nHS) 
    cell_ids_LF3 <- colnames(Shair_CL_df_LF3) 
    cell_ids_LMP1 <- colnames(Shair_CL_df_LMP1) 
    cell_ids_LMP1_LF3 <- colnames(Shair_CL_df_LMP1_LF3) 
    Shair_CL_df$cell_type <- "unknown" 
    Shair_CL_df$cell_type[cell_ids_HS] <- "HS" 
    Shair_CL_df$cell_type[cell_ids_nHS] <- "nHS" 
    Shair_CL_df$cell_type[cell_ids_LF3] <- "LF3" 
    Shair_CL_df$cell_type[cell_ids_LMP1] <- "LMP1" 
    Shair_CL_df$cell_type[cell_ids_LMP1_LF3] <- "LMP1_LF3" 
    Shair_CL_df_unknown <- subset(Shair_CL_df, subset = cell_type == "unknown" & 

`LMP-1/BNLF2a` == 0 & LF3 == 0) 
    cell_ids_unknown <- colnames(Shair_CL_df_unknown) 
    Shair_CL_df_unknown@meta.data$class <- "unknown" 
    gene_expression_data_unknown <- GetAssayData(Shair_CL_df_unknown, slot = 

"data") 
    gene_expression_df_unknown <- as.data.frame(t(gene_expression_data_unknown)) 
    cell_class_df <- data.frame(CellID = cell_ids_unknown, Class = rep("unknown", 

length(cell_ids_unknown))) 
    unknown_dataset <- cbind(cell_class_df, gene_expression_df_unknown) 
    valid_genes_unknown <- intersect(valid_genes, colnames(unknown_dataset)) 
    unknown_dataset_filtered <- unknown_dataset[, c("CellID", "Class", 

valid_genes_unknown)] 
    x_unknown <- unknown_dataset_filtered[, !(names(unknown_dataset_filtered) %in% 

c("CellID", "Class"))] 
    unknown_predictions <- predict(rf_model, data = data.frame(x_unknown), type = 

"response") 
    predicted_classes <- unknown_predictions$predictions 
    unknown_dataset_filtered$Predicted_Class <- predicted_classes 
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    levels_mapping <- levels(trimmed_dataset$Class) 
    unknown_dataset_filtered$Predicted_Class <- levels_mapping[predicted_classes] 
    Shair_CL_df_unknown@meta.data$Predicted_Class <- 

unknown_dataset_filtered$Predicted_Class[match(colnames(Shair_CL_df_unknown), 
unknown_dataset_filtered$CellID)] 

    Shair_CL_df$cell_type <- factor(Shair_CL_df$cell_type) 
    levels(Shair_CL_df$cell_type) <- unique(c(levels(Shair_CL_df$cell_type), 

levels(unknown_dataset_filtered$Predicted_Class))) 
    Shair_CL_df$cell_type[cell_ids_unknown] <- 

Shair_CL_df_unknown@meta.data$Predicted_Class 
    DimPlot(Shair_CL_df, reduction = "umap", group.by = "cell_type", label = FALSE, 

pt.size = 0.05,  
            cols = colorRampPalette(brewer.pal(5, 

"Set1"))(length(unique(Shair_CL_df$cell_type)))) + 
      ggtitle("UMAP of Predicted Infection Classifications") 
  } 
 
  #008 
  { 
    #Prepare Dataset 
    { 
      Shair_CL_df_LF3<-Shair_CL_df 
      Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, idents = "11", invert = TRUE) 
      cells_to_remove <- WhichCells(Shair_CL_df, expression = `LMP-1/BNLF2a` > 0) 
      Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, cells = cells_to_remove, invert = 

TRUE) 
      Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, subset = LF3 > 0) 
      final_cell_ids <- colnames(Shair_CL_df_LF3) 
      Shair_CL_df_LF3 <- subset(Shair_CL_df, cells = final_cell_ids) 
      Shair_CL_df_LMP1 <- Shair_CL_df 
      Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, idents = "11", invert = TRUE) 
      cells_to_remove_LF3 <- WhichCells(Shair_CL_df_LMP1, expression = LF3 > 0) 
      Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, cells = cells_to_remove_LF3, 

invert = TRUE) 
      Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, subset = `LMP-1/BNLF2a` > 0) 
      final_cell_ids <- colnames(Shair_CL_df_LMP1) 
      Shair_CL_df_LMP1 <- subset(Shair_CL_df, cells = final_cell_ids) 
      Shair_CL_df_cluster11 <- subset(Shair_CL_df, idents = "11") 
      metadata_cluster11 <- Shair_CL_df_cluster11@meta.data 
      data_cluster11 <- data.frame( 
        CellID = rownames(metadata_cluster11), 
        nCount_RNA = metadata_cluster11$nCount_RNA) 
      Shair_CL_df_cluster11_filter <- subset(Shair_CL_df_cluster11, features = EBV) 
      metadata_cluster11_filter <- Shair_CL_df_cluster11_filter@meta.data 
      data_cluster11_filter <- data.frame( 
        CellID = rownames(metadata_cluster11_filter), 
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        nCount_RNA = metadata_cluster11_filter$nCount_RNA) 
      combined_data_cluster11 <- merge(data_cluster11, data_cluster11_filter, by = 

"CellID") 
      colnames(combined_data_cluster11)[colnames(combined_data_cluster11) == 

"nCount_RNA.x"] <- "nCount_RNA_All" 
      colnames(combined_data_cluster11)[colnames(combined_data_cluster11) == 

"nCount_RNA.y"] <- "nCount_RNA_EBV" 
      sorted_data_cluster11 <- combined_data_cluster11 %>% 
        arrange(nCount_RNA_EBV, nCount_RNA_All) %>% 
        mutate(Number_ID = row_number()) 
      sorted_data_cluster11 <- combined_data_cluster11 %>% 
        arrange(nCount_RNA_EBV, nCount_RNA_All) %>% 
        mutate(Number_ID = row_number(), 
               Ratio = nCount_RNA_EBV / nCount_RNA_All) 
      sorted_data_cluster11_filtered <- sorted_data_cluster11 %>% 
        filter(Ratio <= 0.08) 
      cell_ids_to_keep <- sorted_data_cluster11_filtered$CellID 
      Shair_CL_df_nHS <- subset(Shair_CL_df, cells = cell_ids_to_keep) 
      sorted_data_cluster11_filtered <- sorted_data_cluster11 %>% 
        filter(Ratio > 0.08) 
      cell_ids_to_keep <- sorted_data_cluster11_filtered$CellID 
      Shair_CL_df_HS <- subset(Shair_CL_df, cells = cell_ids_to_keep) 
      Shair_CL_df_LMP1_LF3 <- Shair_CL_df 
      Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df_LMP1_LF3, idents = "11", invert 

= TRUE) 
      Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df_LMP1_LF3, subset = `LMP-

1/BNLF2a` > 0 & LF3 > 0) 
      final_cell_ids <- colnames(Shair_CL_df_LMP1_LF3) 
      Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df, cells = final_cell_ids) 
      Shair_CL_df_HS@meta.data$class <- "HS" 
      Idents(Shair_CL_df_HS) <- Shair_CL_df_HS$class 
      levels(Shair_CL_df_HS) 
      Shair_CL_df_nHS@meta.data$class <- "nHS" 
      Idents(Shair_CL_df_nHS) <- Shair_CL_df_nHS$class 
      levels(Shair_CL_df_nHS) 
      Shair_CL_df_LF3@meta.data$class <- "LF3" 
      Idents(Shair_CL_df_LF3) <- Shair_CL_df_LF3$class 
      levels(Shair_CL_df_LF3) 
      Shair_CL_df_LMP1@meta.data$class <- "LMP1" 
      Idents(Shair_CL_df_LMP1) <- Shair_CL_df_LMP1$class 
      levels(Shair_CL_df_LMP1) 
      Shair_CL_df_LMP1_LF3@meta.data$class <- "LMP1_LF3" 
      Idents(Shair_CL_df_LMP1_LF3) <- Shair_CL_df_LMP1_LF3$class 
      levels(Shair_CL_df_LMP1_LF3) 
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      Shair_CL_df_data <- merge(x = Shair_CL_df_HS, y = c(Shair_CL_df_nHS, 
Shair_CL_df_LF3, Shair_CL_df_LMP1, Shair_CL_df_LMP1_LF3), add.cell.ids = c("HS", 
"nHS", "LF3", "LMP1", "LMP1_LF3"), project = "Combined") 

      levels(Shair_CL_df_data) 
      cell_ids <- colnames(Shair_CL_df_data) 
      class_labels <- Idents(Shair_CL_df_data) 
      gene_expression_data <- GetAssayData(Shair_CL_df_data, layer = "data") 
      gene_expression_df <- as.data.frame(t(gene_expression_data)) 
      cell_class_df <- data.frame(CellID = cell_ids, Class = as.character(class_labels)) 
      final_dataset <- cbind(cell_class_df, gene_expression_df) 
    } 
     
    #DGT 
    { 
      HS.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "HS", ident.2 = NULL) 
      HS.markers_filtered <- subset(HS.markers, p_val_adj < 0.05) 
      nHS.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "nHS", ident.2 = NULL) 
      nHS.markers_filtered <- subset(nHS.markers, p_val_adj < 0.05) 
      nHS.HS.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "nHS", ident.2 = 

"HS") 
      nHS.HS.markers_filtered <- subset(nHS.HS.markers, p_val_adj < 0.05) 
      LMP1.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1", ident.2 = 

NULL) 
      LMP1.markers_filtered <- subset(LMP1.markers, p_val_adj < 0.05) 
      LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LF3", ident.2 = NULL) 
      LF3.markers_filtered <- subset(LF3.markers, p_val_adj < 0.05) 
      LMP1.LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1", ident.2 = 

"LF3") 
      LMP1.LF3.markers_filtered <- subset(LMP1.LF3.markers, p_val_adj < 0.05) 
      LMP1_LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1_LF3", 

ident.2 = NULL) 
      LMP1_LF3.markers_filtered <- subset(LMP1_LF3.markers, p_val_adj < 0.05) 
      combined_gene_list <- unique(c(rownames(HS.markers_filtered), 
                                     rownames(nHS.markers_filtered), 
                                     rownames(nHS.HS.markers_filtered), 
                                     rownames(LMP1.markers_filtered), 
                                     rownames(LF3.markers_filtered), 
                                     rownames(LMP1_LF3.markers_filtered), 
                                     rownames(LMP1.LF3.markers_filtered))) 
      combined_gene_list_filtered <- setdiff(combined_gene_list, EBV) 
    } 
     
    #Random Forest 
    { 
      valid_genes <- intersect(combined_gene_list_filtered, colnames(final_dataset)) 
      trimmed_dataset <- final_dataset[, c("CellID", "Class", valid_genes)] 
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      trimmed_dataset$Class <- as.factor(trimmed_dataset$Class) 
      set.seed(123) 
      train_indices <- sample(nrow(trimmed_dataset), size = 0.7 * nrow(trimmed_dataset)) 
      train_data <- trimmed_dataset[train_indices, -1] 
      test_data <- trimmed_dataset[-train_indices, -1] 
      x_train <- train_data[, !(names(train_data) %in% c("CellID", "Class"))] 
      y_train <- train_data$Class 
      x_test <- test_data[, !(names(test_data) %in% c("CellID", "Class"))] 
      y_test <- test_data$Class 
      rf_model <- ranger( 
        dependent.variable.name = "y_train", 
        data = data.frame(x_train, y_train = y_train), 
        num.trees = 500, 
        mtry = sqrt(ncol(x_train)), 
        importance = 'impurity' 
      ) 
      pred_class <- predict(rf_model, data.frame(x_test), type="response") 
      predictions <- pred_class$predictions 
      confusionMatrix <- table(y_test, Predictions = predictions) 
      print(confusionMatrix) 
      importance_scores <- rf_model$variable.importance 
      ordered_importance <- sort(importance_scores, decreasing = TRUE) 
      print(head(ordered_importance, n=50)) 
      print(ordered_importance) 
      gene_names <- names(ordered_importance) 
      print(gene_names) 
      gene_names<-data.frame(gene_names) 
      gene_names 
    } 
     
    #Mult Log Reg 
    { 
      top_25_genes <- names(ordered_importance)[1:25] 
      final_dataset_filtered <- final_dataset[, c("CellID", "Class", top_25_genes)] 
      final_dataset_filtered$Class <- as.factor(final_dataset_filtered$Class) 
      current_dataset <- final_dataset_filtered 
      min_aic <- Inf 
      optimal_dataset <- current_dataset 
      removed_genes <- c() 
      repeat { 
        aic_values <- setNames(numeric(ncol(current_dataset) - 2), 

colnames(current_dataset)[-(1:2)]) 
         
        for (gene in names(aic_values)) { 
          dataset_minus_gene <- current_dataset[, !colnames(current_dataset) %in% c(gene, 

"CellID")] 
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          model <- multinom(Class ~ ., data = dataset_minus_gene, trace = FALSE) 
          aic_values[gene] <- AIC(model) 
        } 
         
        gene_to_remove <- names(which.min(aic_values)) 
        new_aic <- min(aic_values) 
         
        if (new_aic < min_aic) { 
          min_aic <- new_aic 
          current_dataset <- current_dataset[, !colnames(current_dataset) %in% 

c(gene_to_remove, "CellID")] 
          optimal_dataset <- current_dataset 
          removed_genes <- c(removed_genes, gene_to_remove) 
          cat("Removed gene:", gene_to_remove, "New AIC:", new_aic, "\n") 
        } else { 
          break 
        } 
      } 
       
      final_model <- multinom(Class ~ ., data = optimal_dataset, trace = FALSE) 
      summary(final_model) 
      predicted_probs <- predict(final_model, newdata = optimal_dataset, type = "probs") 
      predicted_class <- apply(predicted_probs, 1, which.max) 
      predicted_class <- levels(optimal_dataset$Class)[predicted_class] 
      actual_class <- optimal_dataset$Class 
      confusion_matrix <- table(Predicted = predicted_class, Actual = actual_class) 
      print(confusion_matrix) 
      vif_values <- vif(final_model) 
      print(vif_values) 
    } 
     
    #Elastic Net 
    { 
      top_25_genes <- names(ordered_importance)[1:25] 
      predictors <- as.matrix(final_dataset[, top_25_genes])  
      response <- as.factor(final_dataset$Class) 
      set.seed(123) 
      cv_model <- cv.glmnet(predictors, response, family = "multinomial", 

type.multinomial = "grouped", 
                            alpha = 0.5) 
      best_lambda <- cv_model$lambda.min 
      plot(cv_model) 
      predicted_probs <- predict(cv_model, newx = predictors, s = "lambda.min", type = 

"response") 
      predicted_class <- apply(predicted_probs, 1, which.max) 
      predicted_class <- colnames(predicted_probs)[predicted_class] 
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      actual_class <- response 
      confusion_matrix <- table(Predicted = predicted_class, Actual = actual_class) 
      print(confusion_matrix) 
      summary(cv_model) 
    } 
  } 
 
  #012 
  { 
    #Prepare Dataset 
    { 
      Shair_CL_df_LF3<-Shair_CL_df 
      Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, idents = "11", invert = TRUE) 
      cells_to_remove <- WhichCells(Shair_CL_df, expression = `LMP-1/BNLF2a` > 0) 
      Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, cells = cells_to_remove, invert = 

TRUE) 
      Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, subset = LF3 > 0) 
      final_cell_ids <- colnames(Shair_CL_df_LF3) 
      Shair_CL_df_LF3 <- subset(Shair_CL_df, cells = final_cell_ids) 
      Shair_CL_df_LMP1 <- Shair_CL_df 
      Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, idents = "11", invert = TRUE) 
      cells_to_remove_LF3 <- WhichCells(Shair_CL_df_LMP1, expression = LF3 > 0) 
      Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, cells = cells_to_remove_LF3, 

invert = TRUE) 
      Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, subset = `LMP-1/BNLF2a` > 0) 
      final_cell_ids <- colnames(Shair_CL_df_LMP1) 
      Shair_CL_df_LMP1 <- subset(Shair_CL_df, cells = final_cell_ids) 
      Shair_CL_df_cluster11 <- subset(Shair_CL_df, idents = "11") 
      metadata_cluster11 <- Shair_CL_df_cluster11@meta.data 
      data_cluster11 <- data.frame( 
        CellID = rownames(metadata_cluster11), 
        nCount_RNA = metadata_cluster11$nCount_RNA) 
      Shair_CL_df_cluster11_filter <- subset(Shair_CL_df_cluster11, features = EBV) 
      metadata_cluster11_filter <- Shair_CL_df_cluster11_filter@meta.data 
      data_cluster11_filter <- data.frame( 
        CellID = rownames(metadata_cluster11_filter), 
        nCount_RNA = metadata_cluster11_filter$nCount_RNA) 
      combined_data_cluster11 <- merge(data_cluster11, data_cluster11_filter, by = 

"CellID") 
      colnames(combined_data_cluster11)[colnames(combined_data_cluster11) == 

"nCount_RNA.x"] <- "nCount_RNA_All" 
      colnames(combined_data_cluster11)[colnames(combined_data_cluster11) == 

"nCount_RNA.y"] <- "nCount_RNA_EBV" 
      sorted_data_cluster11 <- combined_data_cluster11 %>% 
        arrange(nCount_RNA_EBV, nCount_RNA_All) %>% 
        mutate(Number_ID = row_number()) 
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      sorted_data_cluster11 <- combined_data_cluster11 %>% 
        arrange(nCount_RNA_EBV, nCount_RNA_All) %>% 
        mutate(Number_ID = row_number(), 
               Ratio = nCount_RNA_EBV / nCount_RNA_All) 
      sorted_data_cluster11_filtered <- sorted_data_cluster11 %>% 
        filter(Ratio <= 0.12) 
      cell_ids_to_keep <- sorted_data_cluster11_filtered$CellID 
      Shair_CL_df_nHS <- subset(Shair_CL_df, cells = cell_ids_to_keep) 
      sorted_data_cluster11_filtered <- sorted_data_cluster11 %>% 
        filter(Ratio > 0.12) 
      cell_ids_to_keep <- sorted_data_cluster11_filtered$CellID 
      Shair_CL_df_HS <- subset(Shair_CL_df, cells = cell_ids_to_keep) 
      Shair_CL_df_LMP1_LF3 <- Shair_CL_df 
      Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df_LMP1_LF3, idents = "11", invert 

= TRUE) 
      Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df_LMP1_LF3, subset = `LMP-

1/BNLF2a` > 0 & LF3 > 0) 
      final_cell_ids <- colnames(Shair_CL_df_LMP1_LF3) 
      Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df, cells = final_cell_ids) 
      Shair_CL_df_HS@meta.data$class <- "HS" 
      Idents(Shair_CL_df_HS) <- Shair_CL_df_HS$class 
      levels(Shair_CL_df_HS) 
      Shair_CL_df_nHS@meta.data$class <- "nHS" 
      Idents(Shair_CL_df_nHS) <- Shair_CL_df_nHS$class 
      levels(Shair_CL_df_nHS) 
      Shair_CL_df_LF3@meta.data$class <- "LF3" 
      Idents(Shair_CL_df_LF3) <- Shair_CL_df_LF3$class 
      levels(Shair_CL_df_LF3) 
      Shair_CL_df_LMP1@meta.data$class <- "LMP1" 
      Idents(Shair_CL_df_LMP1) <- Shair_CL_df_LMP1$class 
      levels(Shair_CL_df_LMP1) 
      Shair_CL_df_LMP1_LF3@meta.data$class <- "LMP1_LF3" 
      Idents(Shair_CL_df_LMP1_LF3) <- Shair_CL_df_LMP1_LF3$class 
      levels(Shair_CL_df_LMP1_LF3) 
      Shair_CL_df_data <- merge(x = Shair_CL_df_HS, y = c(Shair_CL_df_nHS, 

Shair_CL_df_LF3, Shair_CL_df_LMP1, Shair_CL_df_LMP1_LF3), add.cell.ids = c("HS", 
"nHS", "LF3", "LMP1", "LMP1_LF3"), project = "Combined") 

      levels(Shair_CL_df_data) 
      cell_ids <- colnames(Shair_CL_df_data) 
      class_labels <- Idents(Shair_CL_df_data) 
      gene_expression_data <- GetAssayData(Shair_CL_df_data, layer = "data") 
      gene_expression_df <- as.data.frame(t(gene_expression_data)) 
      cell_class_df <- data.frame(CellID = cell_ids, Class = as.character(class_labels)) 
      final_dataset <- cbind(cell_class_df, gene_expression_df) 
    } 
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    #DGT 
    { 
      HS.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "HS", ident.2 = NULL) 
      HS.markers_filtered <- subset(HS.markers, p_val_adj < 0.05) 
      nHS.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "nHS", ident.2 = NULL) 
      nHS.markers_filtered <- subset(nHS.markers, p_val_adj < 0.05) 
      nHS.HS.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "nHS", ident.2 = 

"HS") 
      nHS.HS.markers_filtered <- subset(nHS.HS.markers, p_val_adj < 0.05) 
      LMP1.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1", ident.2 = 

NULL) 
      LMP1.markers_filtered <- subset(LMP1.markers, p_val_adj < 0.05) 
      LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LF3", ident.2 = NULL) 
      LF3.markers_filtered <- subset(LF3.markers, p_val_adj < 0.05) 
      LMP1.LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1", ident.2 = 

"LF3") 
      LMP1.LF3.markers_filtered <- subset(LMP1.LF3.markers, p_val_adj < 0.05) 
      LMP1_LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1_LF3", 

ident.2 = NULL) 
      LMP1_LF3.markers_filtered <- subset(LMP1_LF3.markers, p_val_adj < 0.05) 
      combined_gene_list <- unique(c(rownames(HS.markers_filtered), 
                                     rownames(nHS.markers_filtered), 
                                     rownames(nHS.HS.markers_filtered), 
                                     rownames(LMP1.markers_filtered), 
                                     rownames(LF3.markers_filtered), 
                                     rownames(LMP1_LF3.markers_filtered), 
                                     rownames(LMP1.LF3.markers_filtered))) 
      combined_gene_list_filtered <- setdiff(combined_gene_list, EBV) 
    } 
     
    #Random Forest 
    { 
      valid_genes <- intersect(combined_gene_list_filtered, colnames(final_dataset)) 
      trimmed_dataset <- final_dataset[, c("CellID", "Class", valid_genes)] 
      trimmed_dataset$Class <- as.factor(trimmed_dataset$Class) 
      set.seed(123) 
      train_indices <- sample(nrow(trimmed_dataset), size = 0.7 * nrow(trimmed_dataset)) 
      train_data <- trimmed_dataset[train_indices, -1] 
      test_data <- trimmed_dataset[-train_indices, -1] 
      x_train <- train_data[, !(names(train_data) %in% c("CellID", "Class"))] 
      y_train <- train_data$Class 
      x_test <- test_data[, !(names(test_data) %in% c("CellID", "Class"))] 
      y_test <- test_data$Class 
      rf_model <- ranger( 
        dependent.variable.name = "y_train", 
        data = data.frame(x_train, y_train = y_train), 
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        num.trees = 500, 
        mtry = sqrt(ncol(x_train)), 
        importance = 'impurity' 
      ) 
      pred_class <- predict(rf_model, data.frame(x_test), type="response") 
      predictions <- pred_class$predictions 
      confusionMatrix <- table(y_test, Predictions = predictions) 
      print(confusionMatrix) 
      importance_scores <- rf_model$variable.importance 
      ordered_importance <- sort(importance_scores, decreasing = TRUE) 
      print(head(ordered_importance, n=50)) 
      print(ordered_importance) 
      gene_names <- names(ordered_importance) 
      print(gene_names) 
      gene_names<-data.frame(gene_names) 
      gene_names 
    } 
     
    #Mult Log Reg 
    { 
      top_25_genes <- names(ordered_importance)[1:25] 
      final_dataset_filtered <- final_dataset[, c("CellID", "Class", top_25_genes)] 
      final_dataset_filtered$Class <- as.factor(final_dataset_filtered$Class) 
      current_dataset <- final_dataset_filtered 
      min_aic <- Inf 
      optimal_dataset <- current_dataset 
      removed_genes <- c() 
      repeat { 
        aic_values <- setNames(numeric(ncol(current_dataset) - 2), 

colnames(current_dataset)[-(1:2)]) 
         
        for (gene in names(aic_values)) { 
          dataset_minus_gene <- current_dataset[, !colnames(current_dataset) %in% c(gene, 

"CellID")] 
          model <- multinom(Class ~ ., data = dataset_minus_gene, trace = FALSE) 
          aic_values[gene] <- AIC(model) 
        } 
         
        gene_to_remove <- names(which.min(aic_values)) 
        new_aic <- min(aic_values) 
         
        if (new_aic < min_aic) { 
          min_aic <- new_aic 
          current_dataset <- current_dataset[, !colnames(current_dataset) %in% 

c(gene_to_remove, "CellID")] 
          optimal_dataset <- current_dataset 
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          removed_genes <- c(removed_genes, gene_to_remove) 
          cat("Removed gene:", gene_to_remove, "New AIC:", new_aic, "\n") 
        } else { 
          break 
        } 
      } 
       
      final_model <- multinom(Class ~ ., data = optimal_dataset, trace = FALSE) 
      summary(final_model) 
      predicted_probs <- predict(final_model, newdata = optimal_dataset, type = "probs") 
      predicted_class <- apply(predicted_probs, 1, which.max) 
      predicted_class <- levels(optimal_dataset$Class)[predicted_class] 
      actual_class <- optimal_dataset$Class 
      confusion_matrix <- table(Predicted = predicted_class, Actual = actual_class) 
      print(confusion_matrix) 
      vif_values <- vif(final_model) 
      print(vif_values) 
    } 
     
    #Elastic Net 
    { 
      top_25_genes <- names(ordered_importance)[1:25] 
      predictors <- as.matrix(final_dataset[, top_25_genes])  
      response <- as.factor(final_dataset$Class) 
      set.seed(123) 
      cv_model <- cv.glmnet(predictors, response, family = "multinomial", 

type.multinomial = "grouped", 
                            alpha = 0.5) 
      best_lambda <- cv_model$lambda.min 
      plot(cv_model) 
      predicted_probs <- predict(cv_model, newx = predictors, s = "lambda.min", type = 

"response") 
      predicted_class <- apply(predicted_probs, 1, which.max) 
      predicted_class <- colnames(predicted_probs)[predicted_class] 
      actual_class <- response 
      confusion_matrix <- table(Predicted = predicted_class, Actual = actual_class) 
      print(confusion_matrix) 
      summary(cv_model) 
    } 
  } 
 
  #020 
  { 
    #Prepare Dataset 
    { 
      Shair_CL_df_LF3<-Shair_CL_df 
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      Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, idents = "11", invert = TRUE) 
      cells_to_remove <- WhichCells(Shair_CL_df, expression = `LMP-1/BNLF2a` > 0) 
      Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, cells = cells_to_remove, invert = 

TRUE) 
      Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, subset = LF3 > 0) 
      final_cell_ids <- colnames(Shair_CL_df_LF3) 
      Shair_CL_df_LF3 <- subset(Shair_CL_df, cells = final_cell_ids) 
      Shair_CL_df_LMP1 <- Shair_CL_df 
      Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, idents = "11", invert = TRUE) 
      cells_to_remove_LF3 <- WhichCells(Shair_CL_df_LMP1, expression = LF3 > 0) 
      Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, cells = cells_to_remove_LF3, 

invert = TRUE) 
      Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, subset = `LMP-1/BNLF2a` > 0) 
      final_cell_ids <- colnames(Shair_CL_df_LMP1) 
      Shair_CL_df_LMP1 <- subset(Shair_CL_df, cells = final_cell_ids) 
      Shair_CL_df_cluster11 <- subset(Shair_CL_df, idents = "11") 
      metadata_cluster11 <- Shair_CL_df_cluster11@meta.data 
      data_cluster11 <- data.frame( 
        CellID = rownames(metadata_cluster11), 
        nCount_RNA = metadata_cluster11$nCount_RNA) 
      Shair_CL_df_cluster11_filter <- subset(Shair_CL_df_cluster11, features = EBV) 
      metadata_cluster11_filter <- Shair_CL_df_cluster11_filter@meta.data 
      data_cluster11_filter <- data.frame( 
        CellID = rownames(metadata_cluster11_filter), 
        nCount_RNA = metadata_cluster11_filter$nCount_RNA) 
      combined_data_cluster11 <- merge(data_cluster11, data_cluster11_filter, by = 

"CellID") 
      colnames(combined_data_cluster11)[colnames(combined_data_cluster11) == 

"nCount_RNA.x"] <- "nCount_RNA_All" 
      colnames(combined_data_cluster11)[colnames(combined_data_cluster11) == 

"nCount_RNA.y"] <- "nCount_RNA_EBV" 
      sorted_data_cluster11 <- combined_data_cluster11 %>% 
        arrange(nCount_RNA_EBV, nCount_RNA_All) %>% 
        mutate(Number_ID = row_number()) 
      sorted_data_cluster11 <- combined_data_cluster11 %>% 
        arrange(nCount_RNA_EBV, nCount_RNA_All) %>% 
        mutate(Number_ID = row_number(), 
               Ratio = nCount_RNA_EBV / nCount_RNA_All) 
      sorted_data_cluster11_filtered <- sorted_data_cluster11 %>% 
        filter(Ratio <= 0.20) 
      cell_ids_to_keep <- sorted_data_cluster11_filtered$CellID 
      Shair_CL_df_nHS <- subset(Shair_CL_df, cells = cell_ids_to_keep) 
      sorted_data_cluster11_filtered <- sorted_data_cluster11 %>% 
        filter(Ratio > 0.20) 
      cell_ids_to_keep <- sorted_data_cluster11_filtered$CellID 
      Shair_CL_df_HS <- subset(Shair_CL_df, cells = cell_ids_to_keep) 
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      Shair_CL_df_LMP1_LF3 <- Shair_CL_df 
      Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df_LMP1_LF3, idents = "11", invert 

= TRUE) 
      Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df_LMP1_LF3, subset = `LMP-

1/BNLF2a` > 0 & LF3 > 0) 
      final_cell_ids <- colnames(Shair_CL_df_LMP1_LF3) 
      Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df, cells = final_cell_ids) 
      Shair_CL_df_HS@meta.data$class <- "HS" 
      Idents(Shair_CL_df_HS) <- Shair_CL_df_HS$class 
      levels(Shair_CL_df_HS) 
      Shair_CL_df_nHS@meta.data$class <- "nHS" 
      Idents(Shair_CL_df_nHS) <- Shair_CL_df_nHS$class 
      levels(Shair_CL_df_nHS) 
      Shair_CL_df_LF3@meta.data$class <- "LF3" 
      Idents(Shair_CL_df_LF3) <- Shair_CL_df_LF3$class 
      levels(Shair_CL_df_LF3) 
      Shair_CL_df_LMP1@meta.data$class <- "LMP1" 
      Idents(Shair_CL_df_LMP1) <- Shair_CL_df_LMP1$class 
      levels(Shair_CL_df_LMP1) 
      Shair_CL_df_LMP1_LF3@meta.data$class <- "LMP1_LF3" 
      Idents(Shair_CL_df_LMP1_LF3) <- Shair_CL_df_LMP1_LF3$class 
      levels(Shair_CL_df_LMP1_LF3) 
      Shair_CL_df_data <- merge(x = Shair_CL_df_HS, y = c(Shair_CL_df_nHS, 

Shair_CL_df_LF3, Shair_CL_df_LMP1, Shair_CL_df_LMP1_LF3), add.cell.ids = c("HS", 
"nHS", "LF3", "LMP1", "LMP1_LF3"), project = "Combined") 

      levels(Shair_CL_df_data) 
      cell_ids <- colnames(Shair_CL_df_data) 
      class_labels <- Idents(Shair_CL_df_data) 
      gene_expression_data <- GetAssayData(Shair_CL_df_data, layer = "data") 
      gene_expression_df <- as.data.frame(t(gene_expression_data)) 
      cell_class_df <- data.frame(CellID = cell_ids, Class = as.character(class_labels)) 
      final_dataset <- cbind(cell_class_df, gene_expression_df) 
    } 
     
    #DGT 
    { 
      HS.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "HS", ident.2 = NULL) 
      HS.markers_filtered <- subset(HS.markers, p_val_adj < 0.05) 
      nHS.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "nHS", ident.2 = NULL) 
      nHS.markers_filtered <- subset(nHS.markers, p_val_adj < 0.05) 
      nHS.HS.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "nHS", ident.2 = 

"HS") 
      nHS.HS.markers_filtered <- subset(nHS.HS.markers, p_val_adj < 0.05) 
      LMP1.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1", ident.2 = 

NULL) 
      LMP1.markers_filtered <- subset(LMP1.markers, p_val_adj < 0.05) 
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      LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LF3", ident.2 = NULL) 
      LF3.markers_filtered <- subset(LF3.markers, p_val_adj < 0.05) 
      LMP1.LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1", ident.2 = 

"LF3") 
      LMP1.LF3.markers_filtered <- subset(LMP1.LF3.markers, p_val_adj < 0.05) 
      LMP1_LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1_LF3", 

ident.2 = NULL) 
      LMP1_LF3.markers_filtered <- subset(LMP1_LF3.markers, p_val_adj < 0.05) 
      combined_gene_list <- unique(c(rownames(HS.markers_filtered), 
                                     rownames(nHS.markers_filtered), 
                                     rownames(nHS.HS.markers_filtered), 
                                     rownames(LMP1.markers_filtered), 
                                     rownames(LF3.markers_filtered), 
                                     rownames(LMP1_LF3.markers_filtered), 
                                     rownames(LMP1.LF3.markers_filtered))) 
      combined_gene_list_filtered <- setdiff(combined_gene_list, EBV) 
    } 
     
    #Random Forest 
    { 
      valid_genes <- intersect(combined_gene_list_filtered, colnames(final_dataset)) 
      trimmed_dataset <- final_dataset[, c("CellID", "Class", valid_genes)] 
      trimmed_dataset$Class <- as.factor(trimmed_dataset$Class) 
      set.seed(123) 
      train_indices <- sample(nrow(trimmed_dataset), size = 0.7 * nrow(trimmed_dataset)) 
      train_data <- trimmed_dataset[train_indices, -1] 
      test_data <- trimmed_dataset[-train_indices, -1] 
      x_train <- train_data[, !(names(train_data) %in% c("CellID", "Class"))] 
      y_train <- train_data$Class 
      x_test <- test_data[, !(names(test_data) %in% c("CellID", "Class"))] 
      y_test <- test_data$Class 
      rf_model <- ranger( 
        dependent.variable.name = "y_train", 
        data = data.frame(x_train, y_train = y_train), 
        num.trees = 500, 
        mtry = sqrt(ncol(x_train)), 
        importance = 'impurity' 
      ) 
      pred_class <- predict(rf_model, data.frame(x_test), type="response") 
      predictions <- pred_class$predictions 
      confusionMatrix <- table(y_test, Predictions = predictions) 
      print(confusionMatrix) 
      importance_scores <- rf_model$variable.importance 
      ordered_importance <- sort(importance_scores, decreasing = TRUE) 
      print(head(ordered_importance, n=50)) 
      print(ordered_importance) 
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      gene_names <- names(ordered_importance) 
      print(gene_names) 
      gene_names<-data.frame(gene_names) 
      gene_names 
    } 
     
    #Mult Log Reg 
    { 
      top_25_genes <- names(ordered_importance)[1:25] 
      final_dataset_filtered <- final_dataset[, c("CellID", "Class", top_25_genes)] 
      final_dataset_filtered$Class <- as.factor(final_dataset_filtered$Class) 
      current_dataset <- final_dataset_filtered 
      min_aic <- Inf 
      optimal_dataset <- current_dataset 
      removed_genes <- c() 
      repeat { 
        aic_values <- setNames(numeric(ncol(current_dataset) - 2), 

colnames(current_dataset)[-(1:2)]) 
         
        for (gene in names(aic_values)) { 
          dataset_minus_gene <- current_dataset[, !colnames(current_dataset) %in% c(gene, 

"CellID")] 
          model <- multinom(Class ~ ., data = dataset_minus_gene, trace = FALSE) 
          aic_values[gene] <- AIC(model) 
        } 
         
        gene_to_remove <- names(which.min(aic_values)) 
        new_aic <- min(aic_values) 
         
        if (new_aic < min_aic) { 
          min_aic <- new_aic 
          current_dataset <- current_dataset[, !colnames(current_dataset) %in% 

c(gene_to_remove, "CellID")] 
          optimal_dataset <- current_dataset 
          removed_genes <- c(removed_genes, gene_to_remove) 
          cat("Removed gene:", gene_to_remove, "New AIC:", new_aic, "\n") 
        } else { 
          break 
        } 
      } 
       
      final_model <- multinom(Class ~ ., data = optimal_dataset, trace = FALSE) 
      summary(final_model) 
      predicted_probs <- predict(final_model, newdata = optimal_dataset, type = "probs") 
      predicted_class <- apply(predicted_probs, 1, which.max) 
      predicted_class <- levels(optimal_dataset$Class)[predicted_class] 
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      actual_class <- optimal_dataset$Class 
      confusion_matrix <- table(Predicted = predicted_class, Actual = actual_class) 
      print(confusion_matrix) 
      vif_values <- vif(final_model) 
      print(vif_values) 
    } 
     
    #Elastic Net 
    { 
      top_25_genes <- names(ordered_importance)[1:25] 
      predictors <- as.matrix(final_dataset[, top_25_genes])  
      response <- as.factor(final_dataset$Class) 
      set.seed(123) 
      cv_model <- cv.glmnet(predictors, response, family = "multinomial", 

type.multinomial = "grouped", 
                            alpha = 0.5) 
      best_lambda <- cv_model$lambda.min 
      plot(cv_model) 
      predicted_probs <- predict(cv_model, newx = predictors, s = "lambda.min", type = 

"response") 
      predicted_class <- apply(predicted_probs, 1, which.max) 
      predicted_class <- colnames(predicted_probs)[predicted_class] 
      actual_class <- response 
      confusion_matrix <- table(Predicted = predicted_class, Actual = actual_class) 
      print(confusion_matrix) 
      summary(cv_model) 
    } 
  } 
   
  #Iteration 2 
  { 
  #Prepare Dataset 
  { 
    Shair_CL_df_LF3<-Shair_CL_df 
    Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, idents = "11", invert = TRUE) 
    cells_to_remove <- WhichCells(Shair_CL_df, expression = `LMP-1/BNLF2a` > 0) 
    Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, cells = cells_to_remove, invert = 

TRUE) 
    Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, subset = LF3 > 0) 
    final_cell_ids <- colnames(Shair_CL_df_LF3) 
    Shair_CL_df_LF3 <- subset(Shair_CL_df, cells = final_cell_ids) 
    Shair_CL_df_LMP1 <- Shair_CL_df 
    Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, idents = "11", invert = TRUE) 
    cells_to_remove_LF3 <- WhichCells(Shair_CL_df_LMP1, expression = LF3 > 0) 
    Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, cells = cells_to_remove_LF3, 

invert = TRUE) 
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    Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, subset = `LMP-1/BNLF2a` > 0) 
    final_cell_ids <- colnames(Shair_CL_df_LMP1) 
    Shair_CL_df_LMP1 <- subset(Shair_CL_df, cells = final_cell_ids) 
    Shair_CL_df_cluster11 <- subset(Shair_CL_df, idents = "11") 
    metadata_cluster11 <- Shair_CL_df_cluster11@meta.data 
    data_cluster11 <- data.frame( 
      CellID = rownames(metadata_cluster11), 
      nCount_RNA = metadata_cluster11$nCount_RNA) 
    Shair_CL_df_cluster11_filter <- subset(Shair_CL_df_cluster11, features = EBV) 
    metadata_cluster11_filter <- Shair_CL_df_cluster11_filter@meta.data 
    data_cluster11_filter <- data.frame( 
      CellID = rownames(metadata_cluster11_filter), 
      nCount_RNA = metadata_cluster11_filter$nCount_RNA) 
    combined_data_cluster11 <- merge(data_cluster11, data_cluster11_filter, by = 

"CellID") 
    colnames(combined_data_cluster11)[colnames(combined_data_cluster11) == 

"nCount_RNA.x"] <- "nCount_RNA_All" 
    colnames(combined_data_cluster11)[colnames(combined_data_cluster11) == 

"nCount_RNA.y"] <- "nCount_RNA_EBV" 
    sorted_data_cluster11 <- combined_data_cluster11 %>% 
      arrange(nCount_RNA_EBV, nCount_RNA_All) %>% 
      mutate(Number_ID = row_number()) 
    sorted_data_cluster11 <- combined_data_cluster11 %>% 
      arrange(nCount_RNA_EBV, nCount_RNA_All) %>% 
      mutate(Number_ID = row_number(), 
             Ratio = nCount_RNA_EBV / nCount_RNA_All) 
    sorted_data_cluster11_filtered <- sorted_data_cluster11 %>% 
      filter(Ratio <= 0.37) 
    cell_ids_to_keep <- sorted_data_cluster11_filtered$CellID 
    Shair_CL_df_nHS <- subset(Shair_CL_df, cells = cell_ids_to_keep) 
    Shair_CL_df_LMP1_LF3 <- Shair_CL_df 
    Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df_LMP1_LF3, idents = "11", invert = 

TRUE) 
    Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df_LMP1_LF3, subset = `LMP-

1/BNLF2a` > 0 & LF3 > 0) 
    final_cell_ids <- colnames(Shair_CL_df_LMP1_LF3) 
    Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df, cells = final_cell_ids) 
    Shair_CL_df_nHS@meta.data$class <- "nHS" 
    Idents(Shair_CL_df_nHS) <- Shair_CL_df_nHS$class 
    levels(Shair_CL_df_nHS) 
    Shair_CL_df_LF3@meta.data$class <- "LF3" 
    Idents(Shair_CL_df_LF3) <- Shair_CL_df_LF3$class 
    levels(Shair_CL_df_LF3) 
    Shair_CL_df_LMP1@meta.data$class <- "LMP1" 
    Idents(Shair_CL_df_LMP1) <- Shair_CL_df_LMP1$class 
    levels(Shair_CL_df_LMP1) 
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    Shair_CL_df_LMP1_LF3@meta.data$class <- "LMP1_LF3" 
    Idents(Shair_CL_df_LMP1_LF3) <- Shair_CL_df_LMP1_LF3$class 
    levels(Shair_CL_df_LMP1_LF3) 
    Shair_CL_df_data <- merge(x = Shair_CL_df_LMP1, y = c(Shair_CL_df_nHS, 

Shair_CL_df_LF3, Shair_CL_df_LMP1_LF3), add.cell.ids = c("LMP1","nHS", "LF3", 
"LMP1_LF3"), project = "Combined") 

    levels(Shair_CL_df_data) 
    cell_ids <- colnames(Shair_CL_df_data) 
    class_labels <- Idents(Shair_CL_df_data) 
    gene_expression_data <- GetAssayData(Shair_CL_df_data, layer = "data") 
    gene_expression_df <- as.data.frame(t(gene_expression_data)) 
    cell_class_df <- data.frame(CellID = cell_ids, Class = as.character(class_labels)) 
    final_dataset <- cbind(cell_class_df, gene_expression_df) 
  } 
   
  #DGT 
  { 
    nHS.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "nHS", ident.2 = NULL) 
    nHS.markers_filtered <- subset(nHS.markers, p_val_adj < 0.05) 
    LMP1.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1", ident.2 = 

NULL) 
    LMP1.markers_filtered <- subset(LMP1.markers, p_val_adj < 0.05) 
    LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LF3", ident.2 = NULL) 
    LF3.markers_filtered <- subset(LF3.markers, p_val_adj < 0.05) 
    LMP1_LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1_LF3", 

ident.2 = NULL) 
    LMP1_LF3.markers_filtered <- subset(LMP1_LF3.markers, p_val_adj < 0.05) 
    LMP1.LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1", ident.2 = 

"LF3") 
    LMP1.LF3.markers_filtered <- subset(LMP1.LF3.markers, p_val_adj < 0.05) 
    combined_gene_list <- unique(c(rownames(nHS.markers_filtered), 
                                   rownames(LMP1.markers_filtered), 
                                   rownames(LF3.markers_filtered), 
                                   rownames(LMP1_LF3.markers_filtered), 
                                   rownames(LMP1.LF3.markers_filtered))) 
    combined_gene_list_filtered <- setdiff(combined_gene_list, EBV) 
  } 
   
  #Random Forest 
  { 
    valid_genes <- intersect(combined_gene_list_filtered, colnames(final_dataset)) 
    trimmed_dataset <- final_dataset[, c("CellID", "Class", valid_genes)] 
    trimmed_dataset$Class <- as.factor(trimmed_dataset$Class) 
    set.seed(123) 
    train_indices <- sample(nrow(trimmed_dataset), size = 0.7 * nrow(trimmed_dataset)) 
    train_data <- trimmed_dataset[train_indices, -1] 
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    test_data <- trimmed_dataset[-train_indices, -1] 
    x_train <- train_data[, !(names(train_data) %in% c("CellID", "Class"))] 
    y_train <- train_data$Class 
    x_test <- test_data[, !(names(test_data) %in% c("CellID", "Class"))] 
    y_test <- test_data$Class 
    rf_model <- ranger( 
      dependent.variable.name = "y_train", 
      data = data.frame(x_train, y_train = y_train), 
      num.trees = 500, 
      mtry = sqrt(ncol(x_train)), 
      importance = 'impurity' 
    ) 
    pred_class <- predict(rf_model, data.frame(x_test), type="response") 
    predictions <- pred_class$predictions 
    confusionMatrix <- table(y_test, Predictions = predictions) 
    print(confusionMatrix) 
    importance_scores <- rf_model$variable.importance 
    ordered_importance <- sort(importance_scores, decreasing = TRUE) 
    print(head(ordered_importance, n=50)) 
  } 
  } 
   
  #Iteration 3 
  { 
    #Prepare Dataset 
    { 
      Shair_CL_df_LF3<-Shair_CL_df 
      Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, idents = "11", invert = TRUE) 
      cells_to_remove <- WhichCells(Shair_CL_df, expression = `LMP-1/BNLF2a` > 0) 
      Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, cells = cells_to_remove, invert = 

TRUE) 
      Shair_CL_df_LF3 <- subset(Shair_CL_df_LF3, subset = LF3 > 0) 
      final_cell_ids <- colnames(Shair_CL_df_LF3) 
      Shair_CL_df_LF3 <- subset(Shair_CL_df, cells = final_cell_ids) 
      Shair_CL_df_LMP1 <- Shair_CL_df 
      Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, idents = "11", invert = TRUE) 
      cells_to_remove_LF3 <- WhichCells(Shair_CL_df_LMP1, expression = LF3 > 0) 
      Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, cells = cells_to_remove_LF3, 

invert = TRUE) 
      Shair_CL_df_LMP1 <- subset(Shair_CL_df_LMP1, subset = `LMP-1/BNLF2a` > 0) 
      final_cell_ids <- colnames(Shair_CL_df_LMP1) 
      Shair_CL_df_LMP1 <- subset(Shair_CL_df, cells = final_cell_ids) 
      Shair_CL_df_LMP1_LF3 <- Shair_CL_df 
      Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df_LMP1_LF3, idents = "11", invert 

= TRUE) 



 81 

      Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df_LMP1_LF3, subset = `LMP-
1/BNLF2a` > 0 & LF3 > 0) 

      final_cell_ids <- colnames(Shair_CL_df_LMP1_LF3) 
      Shair_CL_df_LMP1_LF3 <- subset(Shair_CL_df, cells = final_cell_ids) 
      Shair_CL_df_LF3@meta.data$class <- "LF3" 
      Idents(Shair_CL_df_LF3) <- Shair_CL_df_LF3$class 
      levels(Shair_CL_df_LF3) 
      Shair_CL_df_LMP1@meta.data$class <- "LMP1" 
      Idents(Shair_CL_df_LMP1) <- Shair_CL_df_LMP1$class 
      levels(Shair_CL_df_LMP1) 
      Shair_CL_df_LMP1_LF3@meta.data$class <- "LMP1_LF3" 
      Idents(Shair_CL_df_LMP1_LF3) <- Shair_CL_df_LMP1_LF3$class 
      levels(Shair_CL_df_LMP1_LF3) 
      Shair_CL_df_data <- merge(x = Shair_CL_df_LMP1, y = c(Shair_CL_df_LF3, 

Shair_CL_df_LMP1_LF3), add.cell.ids = c("LF3", "LMP1", "LMP1_LF3"), project = 
"Combined") 

      levels(Shair_CL_df_data) 
      cell_ids <- colnames(Shair_CL_df_data) 
      class_labels <- Idents(Shair_CL_df_data) 
      gene_expression_data <- GetAssayData(Shair_CL_df_data, layer = "data") 
      gene_expression_df <- as.data.frame(t(gene_expression_data)) 
      cell_class_df <- data.frame(CellID = cell_ids, Class = as.character(class_labels)) 
      final_dataset <- cbind(cell_class_df, gene_expression_df) 
    } 
     
    #DGT 
    { 
      LMP1.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1", ident.2 = 

NULL) 
      LMP1.markers_filtered <- subset(LMP1.markers, p_val_adj < 0.05) 
      LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LF3", ident.2 = NULL) 
      LF3.markers_filtered <- subset(LF3.markers, p_val_adj < 0.05) 
      LMP1_LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1_LF3", 

ident.2 = NULL) 
      LMP1_LF3.markers_filtered <- subset(LMP1_LF3.markers, p_val_adj < 0.05) 
      LMP1.LF3.markers <- FindMarkers(Shair_CL_df_data, ident.1 = "LMP1", ident.2 = 

"LF3") 
      LMP1.LF3.markers_filtered <- subset(LMP1.LF3.markers, p_val_adj < 0.05) 
      combined_gene_list <- unique(c(                                     

rownames(LMP1.markers_filtered), 
                                     rownames(LF3.markers_filtered), 
                                     rownames(LMP1_LF3.markers_filtered), 
                                     rownames(LMP1.LF3.markers_filtered))) 
      combined_gene_list_filtered <- setdiff(combined_gene_list, EBV) 
    } 
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    #Random Forest 
    { 
      valid_genes <- intersect(combined_gene_list_filtered, colnames(final_dataset)) 
      trimmed_dataset <- final_dataset[, c("CellID", "Class", valid_genes)] 
      trimmed_dataset$Class <- as.factor(trimmed_dataset$Class) 
      set.seed(123) 
      train_indices <- sample(nrow(trimmed_dataset), size = 0.7 * nrow(trimmed_dataset)) 
      train_data <- trimmed_dataset[train_indices, -1] 
      test_data <- trimmed_dataset[-train_indices, -1] 
      x_train <- train_data[, !(names(train_data) %in% c("CellID", "Class"))] 
      y_train <- train_data$Class 
      x_test <- test_data[, !(names(test_data) %in% c("CellID", "Class"))] 
      y_test <- test_data$Class 
      rf_model <- ranger( 
        dependent.variable.name = "y_train", 
        data = data.frame(x_train, y_train = y_train), 
        num.trees = 500, 
        mtry = sqrt(ncol(x_train)), 
        importance = 'impurity' 
      ) 
      pred_class <- predict(rf_model, data.frame(x_test), type="response") 
      predictions <- pred_class$predictions 
      confusionMatrix <- table(y_test, Predictions = predictions) 
      print(confusionMatrix) 
      importance_scores <- rf_model$variable.importance 
      ordered_importance <- sort(importance_scores, decreasing = TRUE) 
      print(head(ordered_importance, n=50)) 
    } 
  } 
   
} 
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