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Abstract 

Modeling Community and Genomic Factors of HIV Susceptibility in the All of Us Research 
Program 

Dominika Oliver, M.S. 

University of Pittsburgh, 2024 

Objective: To investigate the association between genes in the region of 46 million base 

pairs (MBP) and 47MBP on chromosome 3, community factors, and HIV susceptibility using the 

All of Us research program. 

Methods: 4100 individuals enrolled in the All of Us research program, 2050 healthy 

controls and 2050 HIV patients, were propensity score-matched on age, sex, and race. Community 

factors from subject resident ZIP codes at time of enrollment were modeled using logistic 

regression against HIV susceptibility for all 4100 subjects. Separately, 3227 individuals with 

available short read genomic information had separate logistic regression models run on 64 

different genetic variants from the chromosome 3 region of interest to determine their association 

with HIV susceptibility alone and controlling for community factors found to be significant in the 

community-factors only model. Relationships were considered statistically significant with a 

Bonferroni-corrected p-value of 8.8099x10-5. 

Results: In the community-only model, race/ethnicity, percentage of individuals on assisted 

income, percentage of individuals with at least a high school education, and percentage of vacant 

housing were found to be significantly related to HIV susceptibility. In the genomics-only models, 

24 genetic variants were found to be statistically significantly related to HIV susceptibility. After 

controlling for community factors, no genetic variants were found to be statistically significantly 

related to HIV susceptibility. 



 v 

Conclusion: This study found no significant genetic relationships to HIV susceptibility 

within the chromosome 3 region of interest after controlling for community factors. This is one of 

the first studies to model both community and HIV factors using a racially diverse cohort. Future 

studies should consider using a larger sample size and a larger genetic region of interest. 
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1.0 Introduction: HIV as a Public Health Issue 

Human immunodeficiency virus (HIV) is a lentivirus whose acquisition is a major public 

health issue in the United States.  In 2023, approximately 1.2 million people in the United live 

with this infection (a prevalence of 11.5 per 100,000 people), many of which (approximately 13%) 

may be unaware of due to lack of testing (Santos et al., 2015).   HIV infection takes place in three 

stages, with the later stage becoming acquired immunodeficiency syndrome (AIDS), resulting in 

reduction or loss of immune function to fight even minor infections (Filip, 2023).  In 2019 US 

dollars, the estimated average lifetime HIV-related medical cost for a person with HIV is $420,285 

(2019 US$) (Bingham, Shrestha, Khurana, Jacobson, & Farnham, 2021).  

 HIV disproportionately affects minority populations, such as non-white or queer 

individuals. For example, Rich and colleagues show an exceptionally high prevalence of HIV 

among queer and minority sex workers compared to White and non-queer sex workers (Rich et 

al., 2017). Additionally,  (Lewis, Herring, Chinnock, & Nelson, 2024). Additionally, innumerable 

studies highlight the disproportionate burden of HIV/AIDS among Black men (Lewis et al., 2024). 

Recent efforts have been made to increase the racial and ethnic diversity in curative HIV/AIDS 

treatment, but recent work by Dube and colleagues shows there is still a persistent gap in HIV 

research in diverse populations in the US (Dube et al., 2022).  

Broadly speaking, there are two types of factors that influence HIV infection susceptibility: 

community factors and genomic factors. In the context of HIV infection research, community 

factors refer to the immediate physical and social surroundings of individuals that increase or 

decrease an individual’s chance of contracting HIV (MacQueen et al., 2001). In contrast, genomic 

factors refer to interactions of an individual’s genome with each other and with their environment, 
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influencing health and HIV disease risk (Lorenzo-Redondo, Ozer, Achenbach, D'Aquila, & 

Hultquist, 2021). While much research has been done on the factors that influence HIV infection, 

there have been none that combine both community and genomic factors in models of HIV 

susceptibility, and fewer that do so in diverse populations. To address this gap, in this study, using 

data from the All of Us Research Program, we combine community data along with genomics to 

investigate the interplay between environment and genetics in HIV susceptibility. 

1.1 Factors Influencing Susceptibility of HIV Infection  

1.1.1 Community Variables  

In the context of HIV infection research, community factors refer to the immediate physical 

and social surroundings of individuals that increase or decrease an individual’s chance of 

contracting HIV (MacQueen et al., 2001). MacQueen’s definition of community factors can be 

further subdivided into demographic and economic factors.  

1.1.2 Economic Factors  

Frew et al. found that financial instability and poverty played a significant role in increasing 

risk-taking behavior in women, increasing likelihood of HIV infection (Frew et al., 2016).  Women 

who had been diagnosed with HIV were interviewed, with factors in their lives being categorized 

as exosystem (community), mesosytem (network), microsystem, and individual.  Factors such as 
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poverty, lack of access to education, housing instability, housing discrimination, and perceived 

discrimination all contributed to an increased likelihood of an HIV infection (Frew et al., 2016).   

1.1.3   Demographic Factors 

Race, ethnicity, and sexual orientation are related to HIV infection disparities.  Benbow et 

al. examined which community, demographic, and economic factors had affected HIV infection 

rates among Latino populations across the United States.  Using  a mixed-effects Poisson model 

they found that counties with fewer Latinos, more rural, and had lower non-Latino-White 

prevalence tended to have higher disparities in HIV infection rates (Benbow, Aaby, Rosenberg, & 

Brown, 2020). Non-straight and queer women are more likely to contract HIV than their 

heterosexual counterparts (Frew et al., 2016). 

1.1.4 Genomic Factors 

Host genetic factors play a crucial role in determining susceptibility to HIV infection and 

progression of the disease to AIDS. Starting in the asymptomatic period, there are differences in 

individual responses. Some individuals stay asymptomatic and others experience general immune 

dysfunction followed by death. The progression phenotype is governed by a complex gamut of 

environmental and genetic factors (Lama & Planelles, 2007). One of those factors is genetic 

variation; homozygotic twins display less variation in susceptibility to HIV infection compared to 

heterozygous twins (Lama & Planelles, 2007). Another active area of research is the identification 

of host protein genes, since HIV relies on specific cellular proteins to invade host cells and 



4 

replicate, including proteins governing viral entry, RNA genome integration, transcription, 

translation, and virion assembly (Lama & Planelles, 2007). 

The CCR5 gene is one gene that has been shown to play a role in HIV susceptibility. The 

CCR5 gene encodes a protein called the CCR5 receptor, which plays a role in the body’s 

inflammatory immune response (Flanagan, 2014; Oppermann, 2004). HIV uses the CCR5 receptor 

as a co-receptor to enter host cells to begin its replication process (Flanagan, 2014). When HIV 

binds to the CD4 receptor on the cell surface, it also interacts with the CCR5 receptor, allowing 

viral entry (Oppermann, 2004). A naturally occurring mutation in the CCR5 gene known as CCR5-

Delta32 is a 32 base pair deletion in the CCR5 gene, homozygosity for which confers strong 

protection against HIV-1. Heterozygous CCR5-delta32 carriers also show reduced susceptibility 

to HIV infection in exposed uninfected individuals (Flanagan, 2014; Lama & Planelles, 2007).  

This mutation is found in 10% of the population, primarily in individuals who are racially white 

and have Amish, Finish, and other European ancestry.  This mutation becomes less prevalent in 

other racial groups:  Individuals with African decent have an allele frequency of 1.8%, South Asian 

have a 1.7% frequency, and East Asian have a 0.016% frequency.   

1.2 Study Objectives and Aims 

The objectives of this study are to:  

(1) Utilize the All of Us research database to construct a cohort of both HIV positive and 

negative individuals 

(2) To conduct a case-control analysis of community and genetic factors influencing HIV 

susceptibility  
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The All of Us Research Program is a large-scale research repository that collects individual 

level demographic information, electronic health record, and genomic data, allowing researchers 

to easily obtain a statistically powerful dataset and utilize various data types without the cost of 

lab work.  Utilizing this framework, we can match patients with Asymptomatic and Symptomatic 

HIV infection with be matched with healthy controls using propensity score matching on key 

demographic factors, as well as import information on CCR5 variants in order to build a logistic 

regression model that can predict HIV susceptibility.   
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2.0 Methods 

2.1 Study Population 

Data was obtained via the All of Us Research Program, a nationwide cohort study 

sponsored by the National Institutes of Health (NIH) that aims to further research in 

underrepresented populations.  One of the biggest strengths of the program is the variety of 

information that it collects, which include survey data, physical measurements, electronic health 

records, and genomic data for consenting participants.  Eligible participants must be 18 years of 

age and reside in the United States during time of enrollment.  As of March 2023, there are over 

700,00 participants in the program with over 400,000 participants sharing electronic health records 

and 250,000 short read genomic samples.  Access to samples is divided into three tiers:  Public, 

Registered, and Control.   

2.2 Preprocessing Steps 

Analysis was conducted in the Research Workbench, a cloud-based environment specific 

to the All of Us Research Program, a cloud-based environment that allows researchers to select 

participants, build a dataset, and conduct analysis within the All of Us framework.  Analysis was 

conducted using both Python and R software packages.   
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2.2.1 Cohort Building and Covariate Selection 

Data for the analytic cohort for this study was obtained in the All of Us Researcher 

Workbench via the Cohort builder, a tool that allows you to select cohorts of participants based on 

demographics, information in their electronic health record, availability of genomic information, 

etc.  Two cohorts were built:  one with asymptomatic HIV patients and one with symptomatic HIV 

patients. Asymptomatic and symptomatic HIV statuses were derived from All of Us  database 

concept IDs which were in turn derived from ICD-10 codes from participant electronic health 

records. Participants were excluded if they declined to share demographic information with 

researchers, which included sex assigned at birth, gender, race, and Hispanic or Latino ethnicity 

origin, or did not have genomic information available.  Individual non-genetic covariates extracted 

from the All of Us research database included gender, race, ethnicity, sex assigned at birth. 

The All of Us research program asks participants for their ZIP code information and 

includes community variables from the American Communities Survey (ACS), a part of the 

Census Bureau.  Additional variables were extracted for the sample to measure community-level 

demographic information through the ZIP-code linked ACS data including percent assisted 

income, percent of individuals in ZIP code with high school education, median income, percent of 

individuals in ZIP code without health insurance, percentage of individuals in the ZIP code living 

below the federal poverty limit, percentage of vacant housing, and Area Deprivation Index score.    

2.2.2 Case-Control Matching    

HIV patients were matched on age and race utilizing the R package MatchIt.  MatchIT 

utilizes Propensity Score Matching, a statistical technique that reduces the effect of confounding 
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variables when estimating the effect of a “treatment” variable.  The basic idea is to match 

participants from a “treatment” group to those with a similar propensity score (i.e., probability of 

being in the treatment group, which is based on based on possible covariates) from the control 

group.  The goal is to ensure balance on covariates between the control group and the experimental 

group to enable causal inference of the treatment effect.  MatchIt provides several options in how 

participants are matched, including nearest neighbor, exact, and kernel.  In this study, propensity 

score matching was used to match HIV patients with control counterparts via age, sex at birth, and 

race, using the six nearest neighbors.   

2.2.3 Genomic Data  

Genomic data in the All of Us Research Program includes data derived from three 

modalities—short read whole genome sequencing (srWGS), long read whole genome sequencing, 

and microarray genotyping arrays. For this study, we used the v7 data release of the VariantDataSet 

(VDS), which is a data storage format for single nucleated polymorphisms (SNPs) and indel 

variant data called from srWGS.        

CCR5 genotypes were extracted using HAIL, an open-source, scalable framework utilizing 

Python developed by the Broad Institute.  HAIL is used in the All of Us Research Program due to 

its utility in handling large-scale genomic data, and can provide several types of analysis including 

variant quality control, population stratification analysis, genome-wide association studies 

(GWAS), and variant annotation.  HAIL utilizes a MatrixTable format, with each participant as 

the column and genes as the rows.   
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2.3 Logistic Regression 

2.3.1 Modeling Infection Susceptibility 

Logistic regressions are one of the most widely used statistical models for categorical 

outcomes. If there are only two events associated with the outcome, like the presence or absence 

of a disease state such as HIV, it can be described as a binary logistic regression. Let pi represent 

the outcome, HIV infection, occurring (Yi = 1) with predictor (Xi) and adjustment covariates (βZi). 

The logistic regression equation is given by equation (1):   

(1) 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑖𝑖) = ln �
𝑝𝑝𝑖𝑖

1 − 𝑝𝑝𝑖𝑖
� = β0 + 𝛽𝛽1𝑋𝑋𝑖𝑖 + 𝜷𝜷𝒁𝒁𝒊𝒊 

𝛽𝛽1 is the fixed effect coefficient for the predictor. The null hypothesis for this model is given by: 

𝐻𝐻0: 𝛽𝛽1 = 0 

This is equivalent to assuming an odds ratio equal to 1, or equivalently, that there is no statistically 

significant relationship between outcome Yi and predictor variable Xi after adjusting for covariates 

βZi. The odds ratio (OR) can be calculated as follows using equation (2):  

(2) 𝑂𝑂𝑂𝑂� =
� 𝑝𝑝𝑖𝑖

1 − 𝑝𝑝𝑖𝑖
�(𝑥𝑥𝑖𝑖 = 1)�

( 𝑝𝑝𝑖𝑖
1 − 𝑝𝑝𝑖𝑖

�(𝑥𝑥𝑖𝑖 = 0)�
=

exp(𝛽𝛽0 + 𝛽𝛽1 + 𝜷𝜷𝒁𝒁𝒊𝒊)
exp(𝛽𝛽0 + 𝜷𝜷𝒁𝒁𝒊𝒊)

= exp (β1) 
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3.0 Results 
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4.0 Summary Statistics  

A total of 4,100 individuals, 2,050 in the HIV cases and 2,050 healthy controls were used 

in this analysis.  Table 1 shows the results of the propensity score matching on age, race, and sex 

assigned at birth.  Demographic covariates include Age, Gender, Sex at Birth, Race, and Hispanic 

or Latino Ethnicity.  Community Variables are associated with the ZIP code that the participant is 

located in and include Percentage Poverty, Percent High School Graduation, Percent on Assisted 

Income, Percentage of Vacant Housing, Percentage of No Health Insurance, and Depravation 

Index.  The model pseudo r-squared is 0.1175. 
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Table 1. Descriptive Statistics between the Control Group and HIV Patient Group following propensity score matching 

Characteristics N Overall   
N = 4100 

Control  
N = 2050 

HIV Patient  
N = 2050 

p-value 

Age 4100 57 (43, 60) 55 (38, 68) 58 (48, 64) < 0.001 

Sex at Birth 4100    0.025 

Female  1,495 (36%) 782 (38%) 713 (35%)  

Male  2,605 (64%) 1,268 (62%) 1,337 (65%)  

Gender 4100    0.041 

Female  1499 (37%) 781 (38%) 713 (35%)  

Male  2,601 (63%) 1,269 (62%) 1,332 (65%)  

Race 4100    <0.001 

Black or 
African 

American 

 2058 (50%) 819 (40%) 1,239 (60%)  

Other  694 (17%) 634 (31%) 60 (2.9%)  

Unknown  312 (7.6%) 0 (0%) 312 (15%)  

White  1,036 (25%) 597 (29%) 439 (21%)  

Ethnicity 4100    <0.001 

Hispanic or 
Latino 

 409 (10%) 51 (2.5%) 358 (17%)  
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Not Hispanic 
or Latino 

 3,619 (90%) 1,999 (98%) 1,692 (83%)  

Assisted 
Income 

4100 16 (13, 22) 15 (11, 19) 17 (15, 22) <0.001 

High School 
Education 

4100 87 (83, 90) 87 (83, 91) 86 (83, 89) <0.001 

Median 
Income 

4100 59,191 
(55,344,71,783) 

61,024 (55,324, 
74,084) 

57,307 (56,249,65,575) <0.001 

No Health 
Insurance 

4100 10.6 (6.9, 12.9) 10.3 (6.9, 12.9) 11.0 (6.9, 12.9) <0.001 

Vacant 
Housing 

4100 11.6 (6.7, 12.4) 10.4 (6.6, 12.4) 12.2 (7.7,12.4) <0.001 

Poverty 4100 18 (14,21) 16 (13, 21) 18 (16, 21) <0.001 

Depravation 
Index 

4100 0.34 (0.30, 
0.39) 

0.33 (0.29, 0.39) 0.35 (0.31, 0.39) <0.001 
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4.1 Logistic Regression Models 

4.1.1 Community Model 

In order to assess what covariates would be included in the full genomic model, a model 

with only the community variables was created.  A logistic model was created using age, race, 

ethnicity, gender, sex at birth, assisted income, high school education, median income, poverty, no 

health insurance, vacant housing, and deprivation index.  In order to assess collinearity, variance 

inflation factor (VIF) was calculated.  If a variable’s VIF is larger than 10, it is likely that they are 

colinear with other variables in the model and redundant.  Sex at Birth, Gender, and Deprivation 

Index all had VIF’s over 40, so Gender and Depravation index were removed.  This makes sense 

since Gender and Sex at Birth are very similar values, and Deprivation Index is an index made of 

the other community factors.   

The final community model found that for demographic factors, Race (OR = .71) and 

Ethnicity (OR = 0.06) greatly contributed to HIV susceptibility, while Age and Sex at Birth did 

not contribute.  Community Factors that were highly statistically significant were Assisted Income 

(OR = 1.13), High School Education (OR = 1.10), Vacant Housing (OR = 0.96), and No Health 

Insurance (OR = 1.06). 

 

Table 2. Summary of community variable logistic regression model 

Characteristic Odds Ratio 95% CI p-value 

Age 1.01 1.00, 1.01 0.009 

Race 0.71 0.63, 0.79 <0.001 
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Ethnicity 0.06 0.04, 0.09 <0.001 

Sex at Birth 0.90 0.77, 1.04 0.14 

Assisted Income 1.13 1.11, 1.16 <0.001 

High School 
Education 

1.10 1.08, 1.13 <0.001 

Poverty 1.01 0.98, 1.03 0.7 

Vacant Housing 0.96 0.93, 0.98 <0.001 

No Health 
Insurance 

1.06 1.04, 1.08 <0.001 

 

4.1.2 Genomic Models 

Of our initial population of 4100, 3447 samples had genomic data available and after 

accounting for sample relatedness, the final model contains 3227 participants and 563 genetic 

variants. Sample relatedness was accounted for using the srWGS Related Kinship Score, with 

kinship scores above 0.1 removed from the final sample ("How the All of Us Genomic Data are 

Organized," 2024). 

  Logistic regression was performed separately for each genetic variant with community 

variables selected as covariates. When building each model, Gender, assisted income and ZIP code 

deprivation index covariates needed to be removed due to their similarity to other variables in the 

model.  The model examined the region on Chromosome 3 at the loci between 46M and 47M as 

this is where the CCR5 gene and similar genes are located.  HAIL does not utilize a p-value 

correction method, so a Bonferroni correction was calculated by dividing the value used for 

statistical significance (0.05) by the 563 variants, meaning that a variant needed to have a p-value 

below 8.8099 × 10-5 to be statistically significant. 
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For each genetic variant, two models were created:  one with only genomic information 

and one with community and demographic covariates.  The purely genomic model creates a table 

and applies a logistic regression to each genetic variant (equation (3)).  The second model adds to 

the first one by including the list of covariates (equation (4)).  Here 𝑝𝑝𝑖𝑖is the probability of being 

an HIV patient, 𝑋𝑋𝑖𝑖 is the genotype being modeled, and, 𝜷𝜷𝒊𝒊𝒁𝒁𝒊𝒊 are the community variables.  

(3) 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑖𝑖) = ln �
𝑝𝑝𝑖𝑖

1 − 𝑝𝑝𝑖𝑖
� = β0 + 𝛽𝛽1𝑋𝑋𝑖𝑖 

 

(4) 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑖𝑖) = ln �
𝑝𝑝𝑖𝑖

1 − 𝑝𝑝𝑖𝑖
� = β0 + 𝛽𝛽1𝑋𝑋𝑖𝑖 + 𝜷𝜷𝒊𝒊𝒁𝒁𝒊𝒊 

 

The model with only genomic information found that there were 24 genetic variants that 

were statistically significant utilizing a Bonferroni-corrected p-value.  Allele frequencies from the 

All of Us Research Program were obtained via the All of Us Data Browser.  General population 

allele frequencies were obtained via the Genome Aggregation Database (gnomAD).   

 

Table 3. Summary of 10 genetic variants with lowest p-value in the logistic regression model with only 

genetics 

Locus Alleles Beta Standard 
Error 

Z-stat p-value N AoU 
Allele 

Frequency 

Population 
Allele 

Frequency 
chr3:46897696 [C, A] 0.467691   0.055594 8.412683   <1e10-6 4 0.110965 0.1234 
chr3:46859905 [C, T] 0.475939 0.057126 8.33138   <1e10-6 4 0.104430 0.1144 
chr3:46860639 [T, G] 0.321823 0.044 7.31417    <1e10-6 4 0.321705 0.1698 
chr3:46370771 [C, T] 0.530833 0.07894 6.724489   <1e10-6 4 0.052021 0.05801 
chr3:46863218 [C, A] 0.286968 0.045018 6.374494 <1e10-6 4 0.274584 0.1567 
chr3:46710663   [G, A] -0.725203   0.122021 -5.94328   <1e10-6 4 0.076727 0.07895 
chr3:46902878 [T, C] 0.423149 0.071801 5.893344 <1e10-6 4 0.074302 0.02651 
chr3:46708966 [T, C] -0.930894   0.165003 -5.641664   <1e10-6 5 0.041635 0.04863 
chr3:46902784 [T, C] 0.307122   0.054849 5.59942 <1e10-6 4 0.655902 0.6624 
chr3:46701258 [C, A] -0.914864   0.165359 -5.532597 <1e10-6 5 0.041793 0.1142 
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 When accounting for covariates, there were no genetic variants that passed the p-value 

threshold for statistical significance.  Listed below are the four genetic variants with the lowest p-

values when covariates were added.   

 

Table 4. Summary of genetic variants with lowest p-value in the logistic regression model accounting for 

covariates 

Locus Alleles Beta Standard 
Error 

Z stat p-
value 

N AoU  
Allele 

Frequency 

Population 
Allele 

Frequency 
chr3:46701257 ["G","A"] -5.40e01 1.83e-01 -2.95e+00 3.23e

-03 
4 0.0417 0.04837 

chr3:46701258 ["C","A"] -5.44e-01 1.84e-01 -2.96e+00 3.06e
-03 

4 0.041793 0.04841 

chr3:46708966 ["T","C"] -5.48e-01 1.83e-01 -2.99e+00 2.79e
-03 

4 0.041635 0.04863 

chr3:46863767 ["C","T"] -7.19e-01 2.51e-01 -2.86e+00 4.21e
-03 

4 0.021570 0.02207 
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Figure 1. Manhattan plot of unadjusted logistic regression of only genetic variables 
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Figure 2. Manhattan plot of adjusted logistic regression results of variants and community and demographic 

covariates 
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5.0 Discussion 

In the United States, approximately 0.36% of the population is diagnosed with HIV.  In the 

All of Us Research program, approximately 2.04% of the study population is an HIV patient, which 

is higher than the general population.   

When examining HIV susceptibility, individuals with Hispanic or Latino ethnicity are 

more susceptible to HIV, and Black and African American individuals are more susceptible to 

HIV than their white counterparts.  This was touched upon by Frew et al. and Benbow when 

examining community factors, finding increased susceptibility due to race and ethnicity factors.   

HIV susceptibility also increases in zip codes as the percentage of individuals receiving assisted 

income increases, percentage of high school education increases, percent of individuals without 

health insurance increases, and the amount of vacant housing decreases.  The effect sizes are small 

(OR of 1.13, 1.10, 1.06, and 0.96) and these metrics do not paint the full picture of a community 

nor the individual factors that may drive risk-taking behavior.    

When examining the genetic variants, it is interesting to note the differences between the 

genetic variants that are statistically significant in the genetic-only model compared to the model 

with genetics and covariates.  Several of the variants with the lowest p-values in the community 

model are located around the 46.70M loci, which are in proximity to the ALS2CL gene, which is 

primarily expressed in the esophagus but also expressed in the skin and possibly affecting the skin 

barrier in a way leading to decreased susceptibility.   The variants in the pure genomic model are 

further down the region (46.85-46.89M), encompassing genes such as PTH1R and MYL3.  

Interestingly, variants such as the 3-46897696-C-A and 3-46859905-C-T variants are primarily 

found in individuals with an African decent, while many of the other significant variants are found 
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in higher proportions individuals with a European ancestry.  Due to the focus on recruiting 

underserved populations, there are some gene variants with differing frequencies between the All 

of Us study population and the general population that has been studied thus far.   

5.1 Strengths and Limitations 

This analysis has several strengths. One of the strengths are the diversity of the population 

being examined.  Many genomic studies focus on patients with a Eurocentric ancestry, but the 

cohort built from this analysis had significant non-White representation. A second strength of this 

analysis was the inclusion of both genomic and community variables, which made this study 

relatively novel.  

This analysis has several limitations. First, there is participation bias. Individuals who 

participate in the All of Us study likely differ from those who did not participate in the All of Us 

study. Second, there is information bias originating from self-selection bias, since only three-

quarters of the identified cohort had genomic information available. Participation in the genomic 

portion of All of Us was voluntary, and those that elected to participate likely differed from those 

that did not elect to participate. Finally, the community variables were from the patient’s ZIP code, 

and information on how long a patient was a resident of that community was not available, and are 

not as informative as individual variables. The overall allele frequency of the CCR5 Delta 32 

mutation in the All of Us Research Program is 7.026%, which is lower than the general population.  

Together these limitations limit the external validity and overall generalizability of this analysis.  
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5.2 Future Considerations 

This analysis only examined a small portion of the genome, a section of about 1 million 

base pairs on Chromosome 3.  In order to examine the full scope of the role of genomics in 

susceptibility, future analysis can utilize a GWAS to examine all relevant genes in the genome.   

A more thorough genetic association study may be beneficial in examining the differences 

in the severity of HIV symptoms between individuals.  The All of Us Research Program contains 

both electronic health record data as well as testing done on samples, making it possible to identify 

individuals in different stages of the pathology.  

The CCR5 Delta 32 mutation and the genes surrounding it are also found to be connected 

to other infectious disease, including COVID infection.  It has been found that the inhibition of the 

CCR5 receptor results in the relief of symptoms for those who are infected with Covid-19.  

Additionally, this region has been associated with other infectious diseases such as Toxoplasma 

gondii and Staphylococcus aureus, and should be included in further research using the All of Us 

Research Program.   

5.3 Public Health Implications 

Modeling susceptibility is how we can determine what populations are most at risk and 

therefore can allocate more resources towards prevention.  This is particularly important for state 

health departments to identify counties that may have higher rates of individuals without health 

insurance or other factors that have been associated with increased susceptibility.   
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Exploring which genomic factors may be associated increased or decreased susceptibility 

to HIV infection is important to both identify populations in need of intervention and explore new 

mechanisms for pharmacological intervention.  Variants such as the CCR5 Delta 32 mutation show 

us the mechanisms of how an individual can be infected with HIV, and by examining these 

differences in a diverse population, we may find better ways to treat and prevent infection.   
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Appendix A Tables 

Appendix Table 1. Descriptive Statistics between the Control Group and HIV Patient Group following 

propensity score matching 

Characteristics N Overall   
N = 4100 

Control  
N = 2050 

HIV Patient  
N = 2050 

p-value 

Age 4100 57 (43, 60) 55 (38, 68) 58 (48, 64) < 0.001 

Sex at Birth 4100    0.025 

Female  1,495 (36%) 782 (38%) 713 (35%)  

Male  2,605 (64%) 1,268 (62%) 1,337 (65%)  

Gender 4100    0.041 

Female  1499 (37%) 781 (38%) 713 (35%)  

Male  2,601 (63%) 1,269 (62%) 1,332 (65%)  

Race 4100    <0.001 

Black or 
African 

American 

 2058 (50%) 819 (40%) 1,239 (60%)  

Other  694 (17%) 634 (31%) 60 (2.9%)  

Unknown  312 (7.6%) 0 (0%) 312 (15%)  

White  1,036 (25%) 597 (29%) 439 (21%)  

Ethnicity 4100    <0.001 

Hispanic or 
Latino 

 409 (10%) 51 (2.5%) 358 (17%)  

Not Hispanic 
or Latino 

 3,619 (90%) 1,999 (98%) 1,692 (83%)  

Assisted 
Income 

4100 16 (13, 22) 15 (11, 19) 17 (15, 22) <0.001 

High School 
Education 

4100 87 (83, 90) 87 (83, 91) 86 (83, 89) <0.001 



25 

Median 
Income 

4100 59,191 
(55,344,71,783) 

61,024 (55,324, 
74,084) 

57,307 (56,249,65,575) <0.001 

No Health 
Insurance 

4100 10.6 (6.9, 12.9) 10.3 (6.9, 12.9) 11.0 (6.9, 12.9) <0.001 

Vacant 
Housing 

4100 11.6 (6.7, 12.4) 10.4 (6.6, 12.4) 12.2 (7.7,12.4) <0.001 

Poverty 4100 18 (14,21) 16 (13, 21) 18 (16, 21) <0.001 

Depravation 
Index 

4100 0.34 (0.30, 
0.39) 

0.33 (0.29, 0.39) 0.35 (0.31, 0.39) <0.001 

 

Appendix Table 2. Summary of community variable logistic regression model 

Characteristic Odds Ratio 95% CI p-value 

Age 1.01 1.00, 1.01 0.009 

Race 0.71 0.63, 0.79 <0.001 

Ethnicity 0.06 0.04, 0.09 <0.001 

Sex at Birth 0.90 0.77, 1.04 0.14 

Assisted Income 1.13 1.11, 1.16 <0.001 

High School 
Education 

1.10 1.08, 1.13 <0.001 

Poverty 1.01 0.98, 1.03 0.7 

Vacant Housing 0.96 0.93, 0.98 <0.001 

No Health 
Insurance 

1.06 1.04, 1.08 <0.001 
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Appendix Table 3. Summary of 10 genetic variants with lowest p-value in the logistic regression model with 

only genetics 

Locus Alleles Beta Standard 
Error 

Z-stat p-value N AoU 
Allele 

Frequency 

Population 
Allele 

Frequency 
chr3:46897696 [C, A] 0.467691   0.055594 8.412683   <1e10-6 4 0.110965 0.1234 
chr3:46859905 [C, T] 0.475939 0.057126 8.33138   <1e10-6 4 0.104430 0.1144 
chr3:46860639 [T, G] 0.321823 0.044 7.31417    <1e10-6 4 0.321705 0.1698 
chr3:46370771 [C, T] 0.530833 0.07894 6.724489   <1e10-6 4 0.052021 0.05801 
chr3:46863218 [C, A] 0.286968 0.045018 6.374494 <1e10-6 4 0.274584 0.1567 
chr3:46710663   [G, A] -0.725203   0.122021 -5.94328   <1e10-6 4 0.076727 0.07895 
chr3:46902878 [T, C] 0.423149 0.071801 5.893344 <1e10-6 4 0.074302 0.02651 
chr3:46708966 [T, C] -0.930894   0.165003 -5.641664   <1e10-6 5 0.041635 0.04863 
chr3:46902784 [T, C] 0.307122   0.054849 5.59942 <1e10-6 4 0.655902 0.6624 
chr3:46701258 [C, A] -0.914864   0.165359 -5.532597 <1e10-6 5 0.041793 0.1142 

 

Appendix Table 4. Summary of genetic variants with lowest p-value in the logistic regression model 

accounting for covariates 

Locus Alleles Beta Standard 
Error 

Z stat p-
value 

N AoU  
Allele 

Frequency 

Population 
Allele 

Frequency 
chr3:46701257 ["G","A"] -5.40e01 1.83e-01 -2.95e+00 3.23e

-03 
4 0.0417 0.04837 

chr3:46701258 ["C","A"] -5.44e-01 1.84e-01 -2.96e+00 3.06e
-03 

4 0.041793 0.04841 

chr3:46708966 ["T","C"] -5.48e-01 1.83e-01 -2.99e+00 2.79e
-03 

4 0.041635 0.04863 

chr3:46863767 ["C","T"] -7.19e-01 2.51e-01 -2.86e+00 4.21e
-03 

4 0.021570 0.02207 
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Appendix B R Code 

Note:  Due to privacy concerns, the code below is just a framework. 

library(tidyverse) 

library(bigrquery) 

library(lubridate) 

Data for each cohort was called using concept ID’s from a database corresponding to 

demographic and zip code data.   

listDF <- list(demographics, zip) 

 

Asymptomatic <- listDF %>% reduce(inner_join, by='person_id') 

Lastdate <- "2024-03-01" 

 

calc_age <- function(birthDate, refDate = Sys.Date(), unit = "year") { 

     

    require(lubridate) 

     

    if(grepl(x = unit, pattern = "year")) { 

        as.period(interval(birthDate, refDate), unit = 'year')$year 

    } else if(grepl(x = unit, pattern = "month")) { 

        as.period(interval(birthDate, refDate), unit = 'month')$month 

    } else if(grepl(x = unit, pattern = "week")) { 

        floor(as.period(interval(birthDate, refDate), unit = 'day')$day / 7) 

    } else if(grepl(x = unit, pattern = "day")) { 

        as.period(interval(birthDate, refDate), unit = 'day')$day 

    } else { 

        print("Argument 'unit' must be one of 'year', 'month', 'week', or 'da
y'") 

        NA 

    } 
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} 

Asymptomatic <- Asymptomatic %>% mutate(ageyear = calc_age(date_of_birth, Las
tdate)) 

 

str(Asymptomatic) 

gender <- ggplot(data = Asymptomatic) + 

            stat_count(mapping = aes(x = gender)) 

 

gender 

Remove <- list("Gender Identity: Additional Options", "I prefer not to answer
", "Not man only, not woman only, prefer not to answer, or skipped", "PMI: Sk
ip", "Gender Identity: Non Binary", "Gender Identity: Transgender") 

 

Asymptomatic <- Asymptomatic[ ! Asymptomatic$gender %in% Remove, ] 

Asymptomatic$genderfact=ifelse(Asymptomatic$gender=='Female', 1 , 

                       ifelse(Asymptomatic$gender=='Male', 2, 

                              ifelse(Asymptomatic$gender=='Gender Identity: T
ransgender', 3, 4))) 

table(Asymptomatic$race) 

 

RemoveRace <- list("PMI: Skip") 

Asymptomatic <- Asymptomatic[ ! Asymptomatic$race %in% RemoveRace, ] 

notindicated <- list("I prefer not to answer", "None Indicated", "None of the
se") 

replacenone <- "unknown" 

 

otherrace <- list("Asian", "Middle Eastern or North African", "Native Hawaiia
n or Other Pacific Islander", "More than one population") 

replaceother <- "other" 

 

Asymptomatic <- Asymptomatic %>% mutate(race = ifelse(race %in% notindicated, 
replacenone, race)) 

 

Asymptomatic <- Asymptomatic %>% mutate(race = ifelse(race %in% otherrace, re
placeother, race)) 

Asymptomatic$racefact=ifelse(Asymptomatic$race=="White", 1, ifelse(Asymptomat
ic$race=="Black or African American", 2, ifelse(Asymptomatic$race=="other", 3
, 4))) 
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table(Asymptomatic$racefact) 

#Ethnicity 

table(Asymptomatic$ethnicity) 

 

Removeeth <- list("PMI: Prefer Not To Answer", "What Race Ethnicity: Race Eth
nicity None Of These") 

 

Asymptomatic <- Asymptomatic[ ! Asymptomatic$ethnicity %in% Removeeth, ] 

Asymptomatic$ethnicityfact=ifelse(Asymptomatic$ethnicity=="Hispanic or Latino
", 1, 2) 

table(Asymptomatic$sex_at_birth) 

 

Removesex <- list("I prefer not to answer", "Intersex", "No matching concept"
, "None", "PMI: Skip") 

 

Asymptomatic <- Asymptomatic[ ! Asymptomatic$sex_at_birth %in% Removesex, ] 

 

Asymptomatic$sex_at_birthfact=ifelse(Asymptomatic$sex_at_birth=="Male", 1, 2) 

 

table(Asymptomatic$sex_at_birthfact) 

Asymptomatic$hivcase <- c(1) 

 

Asymptomatic$hivseverity <- c(1) 

 

Asymptomatic <- Asymptomatic %>% sample_n(2000, replace = FALSE) 

Symptomatic$hivcase <- c(1) 

 

Symptomatic$hivseverity <- c(2) 

#Added variables for HIV suseptibility and severity 

 

control$hivcase <- c(0) 

 

control$hivseverity <- c(0) 

dim(Asymptomatic) 

dim(Symptomatic) 
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dim(control) 

 

master <- rbind(Asymptomatic, Symptomatic, control) 

 

master$a 

m.out <- matchit(hivcase ~ ageyear + sex_at_birthfact + racefact, data = mast
er, 

 

                  method = "nearest", 

 

                  distance = "glm", ratio = 1) 

 

summary(m.out) 

 

#plotting the balance between smokers and non-smokers 

plot(m.out, type = "jitter", interactive = FALSE) 

plot(summary(m.out), abs = FALSE) 

 

#put matched pairs into own dataset 

mastermatched <- match.data(m.out) 

#cleaning final dataset 

str(mastermatched) 

 

finalset <- subset(mastermatched, select = -c(gender_concept_id, date_of_birt
h, race_concept_id, ethnicity_concept_id, sex_at_birth_concept_id)) 

Communitymodel <- glm(hivcase ~ ageyear + racefact + ethnicityfact + sex_at_b
irthfact + genderfact + assisted_income + high_school_education + poverty  + 
vacant_housing + deprivation_index + no_health_insurance, data = finalset, fa
mily = "binomial") 

summary(Communitymodel) 

install.packages("car") 

 

library(car) 

f_calculate_vif <- function(fit) { 

  v <- c(v <- car::vif(fit)) 
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  m <- cbind(v, 1/v) 

  colnames(m) <- c("VIF", "1/VIF") 

  print(m) 

  cat("Mean VIF: ", mean(v)) 

} 

 

f_calculate_vif(Communitymodel) 

Communitymodel2 <- glm(hivcase ~ ageyear + racefact + ethnicityfact + sex_at_
birthfact + assisted_income + high_school_education + poverty + vacant_housin
g + no_health_insurance, data = finalset, family = "binomial") 

 

summary(Communitymodel2) 

f_calculate_vif(Communitymodel2) 

Hosmer-Lemeshow GOF Test 

#install.packages("performance") 

library(performance) 

 

performance::performance_hosmer(Communitymodel2, n_bins = 20) 

logit summary 

logit_summary <- function(x){ 

  stopifnot("glm" %in% class(x)) # input must be of class 'glm' 

   

  preds <- unlist(strsplit(as.character(x$formula[3]), # extract predictors u
sed 

                           split = "[[:space:]]\\+[[:space:]]")) 

  LL <- stats::logLik(x) # log likelihood 

  y <- as.character(x$formula[2]) # outcome variable 

  tStat <- with(x, null.deviance - deviance) # chi-square test statistic 

  McF <- signif(1 - logLik(x)/logLik(glm(as.formula(paste(y, "1", sep = "~"))
, # McFadden's Pseudo R^2 

                             family = binomial(link = "logit"), data = x$data
)), digits = 4) 

  AIC <- x$aic # Akaike information criterion 

  BIC <- (-2 * LL) + (log(length(x$residuals)) * (length(preds) + 1)) # Bayes
ian Information Criterion 
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  pval <- signif(with(x, stats::pchisq(null.deviance - deviance, # p-value of 
model 

                         df.null - df.residual, lower.tail = FALSE)), digits 
= 4) 

   

  mod_stats <- merge(summary(x)$coefficients, exp(confint.default(x)), by = "
row.names") # model stats 

  mod_stats$`Odds Ratio` <- exp(mod_stats$Estimate) # add 'Odds Ratio' 

  mod_stats <- subset(mod_stats, select = -Estimate) # drop 'Estimate' 

  mod_stats <- mod_stats[,c(1, ncol(mod_stats),2:(ncol(mod_stats)-1))] # reor
der columns 

   

 

   

   

  tbl <- data.frame(nrow = length(preds), ncol = 5) # data.frame 

   

  output <- list(LL, y, tStat, McF,AIC, BIC, pval, tbl) # list of diagnostics 

  names(output) <- c("log likelihood", "outcome", "LR chi2", "Pseudo R^2", 

                     "AIC", "BIC", "Prob > chi2","results") # names for list 

   

  output$results <- mod_stats 

   

  return(output) 

} 

logit_summary(Communitymodel2) 
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Appendix C Python Code 

Note:  Due to privacy concerns, the code below is just a framework. 
 
#import Packaages 
 
import os 
import subprocess 
import numpy as np 
import pandas as pd 
import pandas_profiling 
import plotnine 
from plotnine import *  # Provides a ggplot-like interface to matplotlib. 
from IPython.display import display 
 
## Plot setup. 
theme_set(theme_bw(base_size = 11)) # Default theme for plots. 
 
def get_boxplot_fun_data(df): 
  """Returns a data frame with a y position and a label, for use annotating ggplot boxplots. 
 
  Args: 
    d: A data frame. 
  Returns: 
    A data frame with column y as max and column label as length. 
  """ 
  d = {'y': max(df), 'label': f'N = {len(df)}'} 
  return(pd.DataFrame(data=d, index=[0])) 
 
genotype = my_dataframe 
 
#clean and prepare data to join to genomic data. 
 
#Remove Unnessicary Columns (factors, ACS Year, Propensity Score Matching metrics) 
genoremoved = genotype.drop(['american_community_survey_year','zip_code', 'observation_datetime', 

'genderfact', 'racefact', 'ethnicityfact', 'sex_at_birthfact', 'distance', 'weights', 'subclass', 'outcome'], axis=1) 
 
#Create Dummy Variables 
genodummy = pd.get_dummies(genoremoved.set_index(['person_id'])).reset_index() 
 
genodummy['hivcase'].value_counts() 
 
genodummy['hivcase'] = genodummy['hivcase'].astype(int) 
 
genodummy.columns = genodummy.columns.str.replace(' ', '') 
 
genodummy.dtypes 
 
#convert booleans to integers 
 
genodummy.gender_Female = genodummy.gender_Female.replace({True: 1, False: 0}) 
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genodummy.gender_Male = genodummy.gender_Male.replace({True: 1, False: 0}) 
genodummy.race_BlackorAfricanAmerican = genodummy.race_BlackorAfricanAmerican.replace({True: 1, 

False: 0}) 
genodummy.race_White = genodummy.race_White.replace({True: 1, False: 0}) 
genodummy.race_other = genodummy.race_other.replace({True: 1, False: 0}) 
genodummy.race_unknown = genodummy.race_unknown.replace({True: 1, False: 0}) 
genodummy.ethnicity_HispanicorLatino = genodummy.ethnicity_HispanicorLatino.replace({True: 1, False: 

0}) 
genodummy.ethnicity_NotHispanicorLatino = genodummy.ethnicity_NotHispanicorLatino.replace({True: 

1, False: 0}) 
genodummy.sex_at_birth_Female = genodummy.sex_at_birth_Female.replace({True: 1, False: 0}) 
genodummy.sex_at_birth_Male = genodummy.sex_at_birth_Male.replace({True: 1, False: 0}) 
 
#save as a tsv to be complient with genotype data 
genodummy["person_id"] = genodummy["person_id"].astype(str) 
 
genotypes = genodummy 
genotypes.dtypes 
     
genotypes.to_csv('hivphenotypes.tsv', index=False, sep='\t') 
 
#import packages for genomic analysis 
import hail as hl 
from hail.plot import show 
from bokeh.plotting import output_file, save 
import bokeh.io 
from bokeh.io import * 
from bokeh.resources import INLINE 
#bokeh.io.output_notebook(INLINE)  
%matplotlib inline 
 
#Pathways utilized:  GRCh38 reference genome, Clinvar variants 
 
#genomic region that we are examining 
test_intervals = ['chr3:46M-47M'] 
 
mt = hl.filter_intervals( 
    mt, 
    [hl.parse_locus_interval(x,) 
     for x in test_intervals]) 
 
#upload phenotypes 
phenotype_filename 
 
phenoandgeno = hl.import_table(phenotype_filename, 
                              types={'assisted_income': hl.tfloat64, 'high_school_education': …}, 
                              key='person_id') 
 
mt = mt.semi_join_cols(phenoandgeno) 
 
mt = mt.annotate_cols(pheno = phenoandgeno[mt.s]) 
 
#remove related samples 
related_remove = hl.import_table(related_samples_path, 
                                 types={"sample_id":"tstr"}, 
                                key="sample_id") 
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mt = mt.anti_join_cols(related_remove) 
 
#filter variants that are prevalent in less than 1% of the population 
filtered_mt = mt.filter_rows(hl.min(mt.variant_qc.AF) > 0.01, keep = True) 
 
mt = filtered_mt 
 
#List of covariates 
c2=[1.0, mt.pheno.ethnicity_HispanicorLatino, mt.pheno.ageyear, mt.pheno.race_BlackorAfricanAmerican, 
      mt.pheno.race_White, mt.pheno.sex_at_birth_Male, mt.pheno.poverty,mt.pheno.vacant_housing, 

mt.pheno.assisted_income, mt.pheno.high_school_education, mt.pheno.no_health_insurance] 
 
#Create Additive Logistic Regression Model 
log_reg = hl.logistic_regression_rows( 
    test='wald', 
    y=mt.pheno.hivcase, 
    x=mt.GT.n_alt_alleles(), 
    covariates=[1.0] 
) 
 
#Create Additive Logistic Regression Model with Community Covariates 
log_reg_community= hl.logistic_regression_rows( 
    test='wald', 
    y=mt.pheno.hivcase, 
    x=mt.GT.n_alt_alleles(), 
    covariates=c2 
) 
 
#Filter to only genes that pass the Bonferroni Correction 
filteredtable = log_reg.filter(log_reg.p_value < 8.8099e-5) 
 
filteredtable.count() 
 
#Create and output Manhattan Plots 
p2 = hl.plot.manhattan(log_reg_community.p_value) 
 
output_file("manhattannovariates2.html") 
save(p2) 
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