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The integration of datasets from multiple sites or scanners in neuroimaging studies has

become increasingly prevalent. However, the presence of substantial technical variability as-

sociated with scanners poses a challenge that can introduce unintended biases in downstream

analyses. Moreover, this scanner-related variability, known as scanner effects, can manifest

in longitudinal neuroimaging data due to potential scanner upgrades or replacements at

sites. Harmonization methods have emerged as techniques to address scanner effects on

multi-scanner neuroimaging data, encompassing both brain images and image-derived sum-

mary measures. Harmonization can be accomplished through various approaches, including

the estimation and removal of scanner effects, as well as adapting the multi-scanner data to

a scanner-middle-ground space or a target scanner domain. In these approaches, matched

data can serve as additional labeled dataset to uncover scanner effects in the multi-scanner

data. Harmonization methods that utilize matched data are referred to as supervised harmo-

nization methods, leading many sites to collect additional matched data to facilitate harmo-

nization. However, the current availability of neuroimaging data often lacks such matched

data. Consequently, a thorough understanding of scanner effects and the development of

both supervised and unsupervised harmonization methods are imperative.

This dissertation contributes to the field of harmonization of T1-weighted MRIs. Firstly,

scanner effects and two harmonization methods for mitigating scanner effects in both images

and image-derived measures are investigated. Secondly, MISPEL, a novel supervised image

harmonization method is developed. MISPEL leverages matched data to learn a mapping to

a scanner-middle-ground space. Third, a novel unsupervised image harmonization method,

ESPA, is proposed. ESPA simulates scanner effects as augmentations on images and learns to

harmonize images by adapting them to a scanner-middle-ground space. These contributions

aim to enhance the understanding and effectiveness of harmonization techniques.
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1.0 Introduction

There is a growing interest in the neuroimaging community to combine imaging data

from a variety of diverse datasets so as to enable having large-scale multi-study data with

desirable breadth of biological variability, and conducting analyses that have high statistical

power, reliability, and robustness (Madan, 2017, 2021; Mar et al., 2013; Milham et al.,

2018). Despite the promise of massive data aggregation initiatives, large-scale neuroimaging

analyses from such data collections often suffer from issues of technical variability due to

scanner heterogeneity across studies, which may introduce bias in neuroimaging measures

(Clark et al., 2022; Kruggel et al., 2010; Potvin et al., 2019), as well as alterations of the

biological signals of clinical interest (Shinohara et al., 2017, 2014a), among other unwanted

and unexpected artifacts. Other than data aggregation, such technical variability can be

observed in longitudinal data collected in sites with multiple scanners and/or sites with

scanner upgrades or replacements (Beer et al., 2020). Figure 1 is an example of such technical

variability among the axial slices of 3T T1-weighted (T1-w) MRIs taken from an individual

by different scanners and with short time gap. Although these images were expected to be

identical, the cross-scanner technical variability can be observed as discrepancy in contrast

and histogram of these slices in Figure 1a, as well as differences in their volume distributions

of gray matter (GM) and white matter (WM) tissue types, Figure 1b.

This technical variability is primarily attributed to intensity unit effects and scanner ef-

fects (Wrobel et al., 2020). Intensity unit effects arise from the arbitrary nature of the image

intensity scale, which can lead to variations in the interpretation of intensity units and make

direct quantitative analysis of image intensities challenging (Nyúl and Udupa, 1999; Shino-

hara et al., 2011, 2014b; Wrobel et al., 2020). Intensity unit effects have been long recognized

and addressed by intensity standardization and normalization methods (Shah et al., 2011).

Scanner effects refer to any post-normalization/standardization inter- or intra-scan variation

that is not biological in nature (Fortin et al., 2016) and stems from scanner and acquisition

differences (Dinsdale et al., 2021). The group of methods that aim to remove scanner ef-

fects is referred to as harmonization. Unlike normalization, harmonization is a complex and

1



(a) Technical variability in images. (b) Technical variability in volumes.

Figure 1: Example of technical variability in pooled multi-scanner T1-w MRIs.

For this example, images are axial slices of T1-w MRIs taken with short time gap from an

individual on four different 3T scanners: General Electric (GE), Philips, Siemens Prisma

(SiemensP), and Siemens Trio (SiemensT). Specifications of these scanners can be found

in Table 3 in section 4.1.1 . Figure (a) depicts the technical variability of the slices as

dissimilarity in their contrast, as well as discrepancy among histograms of their whole brain.

Figure (b) shows the technical variability of the slices in terms of their tissue type volumetric

dissimilarity. Histograms of matched images have identical axes and correspond (from left

to right) to GE, Philips, SiemensP, and SiemensT scanners.

challenging task due to (1) a lack of thorough understanding of scanner effects, (2) a lack of

standardized criteria for assessment of scanner effects and evaluation of harmonization, and

(3) a limited number of available harmonization methods.

In this dissertation, our primary focus lies in understanding and mitigating cross-scanner

technical variability, particularly scanner effects. Thus far, we are aware that cross-scanner

discrepancies leading to scanner effects have been recognized in scanner manufacturer (Takao

et al., 2014), scanner upgrade (Han et al., 2006), scanner drift (Takao et al., 2011), scanner

strength (Han et al., 2006), and gradient non-linearities (Jovicich et al., 2006). However,

despite the recent noticeable growth in the number of studies dedicated to scanner effects
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and harmonization (Cackowski et al., 2021; Dewey et al., 2019, 2020; Liu et al., 2021; Zuo

et al., 2021b), there is a lack of understanding regarding how these scanner effects manifest

in images. One primary reason for this could be the absence of a ground truth for these

studies, which leaves them without standardized evaluation criteria and consequently renders

their observations partially inconsistent and challenging to compare. Based on the findings

corroborated by several of these studies, it is now established that scanner effects can vary

across individual’s image voxels (Chen et al., 2020a) and consequently brain regions (Beer

et al., 2020). Furthermore, it is also recognized that scanner effects alter brain tissue contrast

and consequently impact the outcomes of tissue segmentations (Meyer et al., 2019).

The best experimental design setup to understand scanner effects and evaluate harmo-

nization is to conduct a matched study, in which traveling subjects are scanned on different

scanners, collecting a matched image dataset (Dewey et al., 2019; Zuo et al., 2021b). A

matched image dataset comprises a set of matched images using more than two scanners.

These matched images are expected to depict biologically similar brains, with differences

solely attributable to scanner effects. A matched dataset can encompass matched image

datasets or datasets of any brain measures derived from matched images. By utilizing the

matched dataset, scanner effects and harmonization can be estimated through evaluating

dissimilarities and similarities within matched images/measures, respectively. Such dataset

with only two scanners is referred to as a paired dataset and shares the same characteristics

as a matched dataset.

The currently available harmonization methods exhibit two prevalent drawbacks: (1)

over-correction, and (2) brain structural modifications. Over-correction occurs when bio-

logical or clinical variables are corrected in addition to or instead of scanner effects (Liu

et al., 2023). This can happen if scanner effects are correlated with other variables in the

data. Structural modifications involve alterations to the brain’s structure during the image

harmonization process (Zuo et al., 2021b). To deal with structural modifications, a group of

methods restricts harmonization to the contrast or style of images. For example, CALAMITI

(Zuo et al., 2021b) harmonizes images by adapting them to the contrast of images in a tar-

get scanner. This method can thus suffer from over-correction if data across scanners differ

biologically in their populations. As a solution, a style-transfer harmonization method was
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designed to adapt images to the style of an individual target image (Liu et al., 2023). Al-

though this method addresses population-wise over-correction, it may over-correct images to

the style of the target image, which may still convey biological information. One example

could be the white matter hyper-intensity which appears on images as their style (Debette

and Markus, 2010).

To mitigate the issues of over-correction and brain structural modification, one approach

is to utilize matched data (Torbati et al., 2023). The distinctive design of matched datasets

enables the identification of scanner effects, manifested as dissimilarities among its matched

images or measures. Matched data serves as labeled data for harmonization, making it an

optimal source for learning harmonization techniques (Dewey et al., 2019). Depending on

their reliance on this data, harmonization methods can be categorized into three traditional

groups: (1) supervised, (2) semi-supervised, and (3) unsupervised harmonization methods

(Zuo et al., 2021b). Supervised harmonization methods are less susceptible to over-correction

and brain structural modifications since they can directly and exclusively address scanner

effects. However, the applicability of these methods is limited to datasets for which matched

data is available. Additionally, these methods may lack robustness due to the typically

limited collection of matched data for a restricted number of individuals (Dewey et al., 2019;

Modanwal et al., 2020). To overcome these issues, many sites have begun to collect such

additional data on a larger scale (Duchesne et al., 2019; Hawco et al., 2022; Magnotta et al.,

2020; Maikusa et al., 2021).

A novel and more straightforward perspective on harmonization to tackle the associ-

ated issues and limitations with matched data involves simulating scanner effects through

augmentation methods. Such scanner-specific augmentation methods could be used in self-

supervised augmentation-based frameworks (Chen et al., 2020b) for generating scanner-free

pretext, or they can be used for simulating matched data to pretrain harmonization meth-

ods of any type. Any of these usages help harmonization models with their possible lack of

robustness due to data size. This approach also deals with the over-correction and structural

brain modification issues. Over-correction is addressed by data stratification and population

matching strategies, which are feasible in the scanner effects simulation process. Structural

modifications can be also addressed by limiting the augmentation methods to appearance-
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based modifications of images.

The remainder of this chapter outlines the three primary contributions of this disser-

tation. Firstly, it delves into the investigation of two cross-scanner technical variability

removal methods for harmonizing image-derived measures. Secondly, it introduces a super-

vised harmonization method named MISPEL. Lastly, it presents the development of ESPA,

an unsupervised harmonization framework utilizing scanner-specific augmentation methods.

1.1 Investigating two methods of cross-scanner technical variability removal in

harmonization of image-derived measures

The cross-scanner technical variability that exists in multi-scanner data could signifi-

cantly bias any down-stream analysis that is being conducted on neuroimaging data. A

good testbed for estimating scanner effects and evaluating harmonization could be any of

such analyses. We therefore selected derivation of biomarkers of Alzheimer's disease (AD)

from aggregated neuroimaging data as our downstream task and used it to study scanner

effects and investigate two harmonization methods. We hypothesized that the pipeline of

cross-scanner technical variability removal from both images and image-derived measures

would result in better removal of unwanted variability and consequently would improve har-

monization of our image-derived biomarkers of AD. Accordingly, we selected RAVEL (Fortin

et al., 2016) and ComBat (Johnson et al., 2007) for removing technical variability from im-

ages and image-derived measures, respectively. RAVEL is a framework for normalizing and

subsequently harmonizing images by removing their inter-subject variability. ComBat is a

location and scale adjustment method for harmonization of image-derived measures.

Additionally, we assumed that scanner effects and harmonization can be estimated as

dissimilarity and similarity within paired neuroimaging data, respectively. Accordingly, we

collected a paired dataset consisting of 16 healthy subjects scanned on General Electric

(GE) 1.5T and Siemens 3T MRI scanners and designed and evaluated a set of similarity and

dissimilarity metrics on this data.
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1.2 Developing image harmonization methods for T1-weighted MRIs

As mentioned earlier, harmonization methods can target either images or image-derived

measures and can be categorized as either task-agnostic or task-specific methods. Among

the various harmonization scenarios, task-agnostic image harmonization methods represent

a more generalized and interpretable category. They are generalized in that they can serve as

an independent preprocessing step for any downstream tasks and are considered interpretable

because harmonization accuracy can be assessed directly on images. Therefore, we chose

to focus on developing task-agnostic image harmonization approaches. In this work, we

have introduced both supervised and unsupervised image harmonization methods tailored

specifically for T1-weighted MRIs.

1.2.1 MISPEL: Multi-scanner Image harmonization via Structure Preserving

Embedding Learning

We have devised a supervised image harmonization method named MISPEL (Multi-

scanner Image Harmonization via Structure Preserving Embedding Learning). Our hypoth-

esis posits that harmonization can be achieved for scanners within a matched dataset by con-

structing a model that maps matched images from the dataset to a scanner-middle-ground

space, where matched images lose scanner effects by becoming similar to each other. To

address this, MISPEL was developed with several key objectives: (1) generalization to mul-

tiple (more than two) scanners, (2) preservation of the structural (anatomical) information

of the original brains, and (3) learning harmonization on a matched dataset. Subsequently,

MISPEL can harmonize unmatched images from the scanners for which the matched dataset

was collected.

To train and validate our model, we collected a matched image dataset comprising 18

subjects scanned across four 3T scanners. We proceeded with the assumption that scan-

ner effects and harmonization could be inferred through the measurement of dissimilarities

and similarities within the matched images, respectively. Enhancing our metrics for image

similarity and dissimilarity, we rigorously assessed the harmonization efficacy of MISPEL by
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evaluating (1) visual similarity of images, (2) similarity in gray matter-white matter contrast,

(3) consistency in volumetric and segmentation attributes, and (4) similarity in biological

attributes. Additionally, we focused on small vessel disease (SVD) as the clinical marker

of interest within the matched dataset, exploring whether MISPEL harmonization could

maintain or even enhance group distinctions associated with SVD.

1.2.2 ESPA: An unsupervised harmonization framework via Enhanced Struc-

ture Preserving Augmentation

We developed an unsupervised image harmonization framework, named ESPA, in addi-

tion to an extensive set of experiments for evaluating this framework. Our hypothesis posits

that harmonization for scanners can be acquired through mappings to their scanner-middle-

ground domain via a framework that concurrently simulates matched data for the scanners

using appearance-based augmentation methods and learns the corresponding mappings from

this simulated data. For this hypothesis, we developed the ESPA framework with the fol-

lowing objectives: (1) generalizing to multiple scanners (more than two), (2) addressing the

over-correction issue during harmonization, (3) preserving the structural (anatomical) infor-

mation of brains, and (4) enhancing the robustness of harmonization methods, particularly

the supervised harmonization methods. ESPA represents an extension of MISPEL with a

significant modification: rather than relying on matched data, we employ two novel structure-

preserving augmentation methods to simulate matched data. These methods, namely tissue-

type contrast augmentation and GAN-based residual augmentation, focus on modifying the

appearance and contrast of images.

We additionally formulate a comprehensive set of evaluation criteria based on the matched

data gathered for MISPEL. Our evaluation encompasses five key analyses: (1) validation of

domain adaptation in augmentation methods, (2) validation of brain structure preservation

in augmentation methods, (3) validation of augmentation removal in ESPA, (4) validation of

ESPA harmonization, and (5) an ablation study. These criteria serve as the basis for com-

paring ESPA with the current state-of-the-art supervised and unsupervised harmonization

methods.
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2.0 Background

In this chapter, Section 2.1 delves into brain MRI and its associated biomarkers. Sec-

tion 2.2 elaborates on brain MRI artifacts and outlines preprocessing steps to mitigate them.

Section 2.3 provides background information on multi-scanner neuroimaging data and the

impact of scanner effects. Section 2.4 discusses various approaches used for harmonization

and outlines the goals that should be set for this task. Furthermore, Section 2.5 describes the

limitations and challenges inherent in current harmonization methods. Lastly, Section 2.6

provides an overview of existing harmonization methods.

2.1 Brain MRI and brain MRI biomarkers

Magnetic Resonance Imaging (MRI) has revolutionized the field of neuroimaging by

providing detailed anatomical and functional information about the brain. MRI utilizes a

powerful magnetic field and radio waves to generate high-resolution images of brain struc-

tures and functions. These images are produced based on the interaction between hydrogen

atoms in water molecules and the magnetic field, allowing for exquisite visualization of brain

anatomy and pathology (Brown et al., 2014). MRI scans are performed at various imag-

ing sites equipped with different types of MRI scanners. MRI scanners vary in magnetic

field strength, with higher-field scanners (e.g., 3 Tesla) providing improved signal-to-noise

ratio and spatial resolution compared to lower-field scanners (e.g., 1.5 Tesla). Additionally,

advanced MRI scanners may be equipped with specialized coils and sequences that enable en-

hanced imaging capabilities, such as ultra-high-resolution structural imaging, and functional

connectivity mapping. These technological advancements continue to expand the diagnostic

and research potential of brain MRI (Jezzard and Clare, 1999; Setsompop et al., 2012).

MRI imaging encompasses various modalities, each tailored to different aspects of brain

examination. T1-weighted MRI offers distinct contrasts between brain tissues, rendering

cerebrospinal fluid (CSF) dark, gray matter (GM) medium gray, and white matter (WM)
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bright. In contrast, T2-weighted MRI is highly sensitive to tissue water content, resulting

in CSF appearing bright, GM medium gray, and WM darker than in T1-weighted images.

Diffusion-weighted imaging (DWI) captures the random motion of water molecules within

tissues, making it particularly useful at detecting acute stroke. Diffusion tensor imaging

(DTI) delves into white matter microstructure by mapping water diffusion in multiple di-

rections, offering valuable insights into WM integrity and connectivity (Basser et al., 1994;

Le Bihan et al., 2001). Additionally, functional MRI (fMRI) measures brain activity by de-

tecting changes in blood flow and oxygenation levels, providing insights into brain function

during tasks or at rest.

MRI serves as a cornerstone in clinical neurology, playing an essential role in diagnosing

and monitoring plenty of neurological conditions. Its utility spans from detecting and char-

acterizing brain tumors, vascular abnormalities, neurodegenerative diseases, to inflammatory

disorders such as multiple sclerosis. Moreover, MRI stands as a pivotal tool in preoperative

planning, treatment surveillance, and post-treatment evaluation. Complementing its diag-

nostic abilities, functional MRI (fMRI) offers clinicians a non-invasive means to map brain

activity, aiding in the localization of critical brain regions prior to surgical interventions and

facilitating the assessment of neurological function in patients with brain injuries or disorders

(Filippi et al., 2013; Raichle, 2009).

Concurrently, MRI biomarkers emerge as quantifiable metrics derived from MRI data,

shedding light on specific facets of brain structure, function, or pathology. Within the realm

of neurological disorders, notably Alzheimer’s disease (AD), these biomarkers serve as invalu-

able tools for diagnosis, monitoring disease progression, and advancing our understanding

of the underlying mechanisms. In AD research, MRI biomarkers offer insights into brain

atrophy, white matter integrity, and alterations in functional connectivity, thereby enriching

our comprehension of the disease trajectory (Filippi et al., 2013; Raichle, 2009).
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2.2 Brain MRI artifacts and preprocessing steps

Like any imaging modality, MRI of the brain is susceptible to various artifacts that can

degrade image quality and compromise diagnostic accuracy. An artifact, in the context of

medical imaging, refers to any anomaly or distortion present in the image that is not rep-

resentative of the true anatomy or pathology being imaged (Mahesh, 2013). Understanding

the causes of these artifacts, their identification, and appropriate preprocessing steps is cru-

cial for obtaining reliable brain MRI images for clinical interpretation and research analysis.

Brain MRI artifacts can arise from a variety of sources, including hardware imperfections,

physiological factors, patient motion, and environmental interference. Common types of

artifacts encountered in brain MRI include:

• Motion artifact: Patient motion during image acquisition can lead to blurring or ghost-

ing of brain images, particularly problematic in studies involving pediatric or restless

patients (Maclaren et al., 2018).

• Susceptibility artifact: Variations in magnetic susceptibility between tissues can cause

signal loss or distortion, particularly at tissue-air interfaces such as the sinuses or near

metallic implants (Brown et al., 2014).

• Gradient non-linearity artifact: Imperfections in the magnetic field gradients can

lead to spatial distortions and misregistration of brain structures (Nacher, 2007).

• Chemical shift artifact: Differences in precession frequencies between fat and water

molecules can result in misregistration and signal misinterpretation, particularly prob-

lematic in spectroscopic imaging (Dixon, 1984).

• RF interference artifact: External radiofrequency (RF) interference from nearby elec-

tronic devices can introduce spurious signals, manifesting as bright or dark bands in the

brain image (Lustig et al., 2007).

Accurate identification of brain MRI artifacts is essential for implementing appropriate

mitigation strategies. Visual inspection by trained radiologists remains a primary method

for artifact identification. Additionally, various software tools and algorithms have been
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developed to automatically detect and correct specific types of artifacts (Newton, 2016).

Mitigation strategies may include:

• Motion correction techniques: Utilizing motion tracking and retrospective image

registration algorithms to correct for patient motion during brain image acquisition (Ma-

claren et al., 2013).

• Gradient distortion correction: Calibration and correction algorithms to compensate

for gradient non-linearity and spatial distortions in brain MRI (Nacher, 2009).

• Susceptibility artifact reduction: Employing specialized sequences such as susceptibility-

weighted imaging (SWI) or multi-echo gradient echo sequences to minimize susceptibility

artifacts in brain imaging (Haacke et al., 2009).

• Parallel imaging: Utilizing parallel imaging techniques to accelerate brain MRI acqui-

sition and reduce susceptibility to motion artifacts (de Zwart et al., 2006).

• Post-processing filtering: Application of image filtering techniques, such as spatial

and temporal filtering, to reduce noise and enhance brain MRI image quality (Castleman,

1996).

Preprocessing of brain MRI data is essential for optimizing image quality and preparing

the data for further analysis. Common preprocessing steps include:

• Noise reduction: Applying noise reduction techniques, such as Gaussian smoothing or

wavelet denoising, to improve signal-to-noise ratio (SNR) in brain MRI images (Manjón

et al., 2008).

• Intensity normalization: Normalizing brain MRI image intensities to correct for in-

tensity unit effects possibly stem from variations in scanner parameters and acquisition

protocols (Shinohara et al., 2014b).

• Motion correction: Registration-based techniques to correct for inter-slice and intra-

slice motion artifacts in brain MRI (Thesen et al., 2000).

• Bias field correction: Correction of intensity variations caused by non-uniformity in

the RF field or gradient non-linearity in brain MRI (Tustison et al., 2010).

• Spatial registration: Alignment of brain MRI volumes to a common reference space

for inter-subject analysis or longitudinal studies (Avants et al., 2008).
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Brain MRI artifacts represent a significant challenge in clinical neuroimaging, potentially

compromising diagnostic accuracy and reliability. Understanding the underlying causes of

artifacts and implementing appropriate preprocessing steps are essential for obtaining high-

quality brain MRI images suitable for clinical interpretation and research analysis.

2.3 Multi-scanner MRI data and scanner effects

Having a large sample size serves as a motivating factor for many neuroimaging studies to

collect imaging data from a diverse range of datasets. These datasets are typically acquired

from different sites, each equipped with its own set of scanners. Examples of such multi-site

studies include the Adolescent Brain Cognitive Development (ABCD) (Jernigan et al., 2018),

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Mueller et al., 2005), and the Aus-

tralian Imaging, Biomarkers and Lifestyle Flagship Study of Aging (AIBL) (Ellis et al., 2009).

The presence of a large sample size brings several advantages to both hypothesis-driven and

exploratory analyses. One such benefit is the increase in statistical power during hypothesis

testing, leading to heightened confidence in rejecting the null hypothesis and uncovering true

effects (Suresh and Chandrashekara, 2012). Another advantage is the enhanced generaliz-

ability of data and study outcomes. Aggregating data across multiple datasets allows for

more comprehensive coverage of biological and clinical variables, such as age, race, gender,

and health status, within neuroimaging studies. This comprehensive data makes it feasi-

ble to conduct studies that necessitate variables with a wide range of values. For instance,

the study of the association between age and brain volumes requires a substantial age span

(Pomponio et al., 2020). Furthermore, studies utilizing multiple datasets can serve as a

testbed for validating the generalizability of study outcomes on independent cohorts (Ram-

spek et al., 2021). Additionally, in studies employing machine learning models as outputs,

the utilization of large, varied, and representative datasets can facilitate the development

of models that generalize well to unseen data (An et al., 2022; Aslani et al., 2020; Dinsdale

et al., 2021).

The benefits previously mentioned can potentially be undermined by scanner effects.
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These effects, which refer to variations occurring post-normalization/standardization that

are unrelated to biological factors (Fortin et al., 2016), stem from differences in scanners and

acquisition methods (Dinsdale et al., 2021). When dealing with datasets involving multiple

scanners, scanner effects emerge as a significant source of variability, surpassing MRI artifacts

due to the intricate differences among scanners, including hardware, software, and acquisition

protocols (Han et al., 2006; Jovicich et al., 2006; Takao et al., 2011). Research suggests that

scanner effects persist prominently even after within-scanner preprocessing steps aimed at

mitigating MRI artifacts, even gradient non-linearity as a scanner-related artifact (Fortin

et al., 2016). Scanner effects appear to be unavoidable during the process of aggregating

or even collecting neuroimaging data (Dewey et al., 2021). The only scenario that can

eliminate scanner effects in data collection for a study is to exclusively collect the data at a

single site using a single scanner. However, this is far from the typical data collection process.

Even if we limit ourselves to a single site, neuroimaging datasets are usually acquired using

the available set of scanners at that site. As a result, scanner effects become an inherent

phenomenon in most of the available neuroimaging datasets. Moreover, there is always the

possibility of scanner upgrades or replacements at a site. While this may rarely occur during

the data collection phase of cross-sectional studies, it can be highly probable in longitudinal

studies (Sederevicius et al., 2022). Similarly, any other scenario involving data collection

and aggregation across multiple sites leads to the presence of scanner effects too.

It has been widely demonstrated that scanner effects can have an adverse impact on

downstream analyses in neuroimaging data (Fortin et al., 2018, 2017, 2016). These effects

can introduce bias, overshadow the intended biological or clinical signal of interest, and

consequently render the results unreliable. Several studies have highlighted the presence

of scanner effects in derived measures of regional healthy tissue and brain lesion volumes

(Jovicich et al., 2013; Schnack et al., 2010; Schwartz et al., 2019). Shinohara et al. (2014a)

also provided evidence of striking differences in raw image intensities across different sites

in the ADNI (Mueller et al., 2005) and AIBL (Ellis et al., 2009) studies. In addition,

Heinen et al. (2016) investigated scanner effects on brain volume measures extracted from

pooled MRIs acquired using both 1.5T and 3T scanners. They showed that scanner effects

can manifest as variations in volumetric accuracy when manual tissue segmentations were
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available for evaluation. This evidence highlights the importance of harmonization pipelines

as a means of addressing scanner effects. Such pipelines play a crucial role in ensuring

the reproducibility of analyses and fostering trust in the results of neuroimaging studies

(Karayumak et al., 2019; Ning et al., 2020; Yu et al., 2018).

2.4 Harmonization approaches and goals

There are two prevailing perspectives regarding harmonizing neuroimaging data. The

first perspective involves harmonizing either (1) images or (2) image-derived measures, lead-

ing to two broad categories of harmonization methods. Harmonizing images presents greater

challenges due to the complexity of neuroimages, yet offers greater interpretability when

assessing harmonization accuracy at the image level (Torbati et al., 2021). Alternatively,

harmonization can be viewed as either an independent preprocessing step providing har-

monized data for downstream tasks (Dewey et al., 2019), or as an integral component of

methods targeting specific tasks (Dinsdale et al., 2021). Methods falling into the former

category are termed task-agnostic, while those in the latter are referred to as task-specific

harmonization. In the task-specific approach, harmonization is embedded within a model

designed for a specific downstream task, allowing for leveraging task-related signals during

the harmonization process but potentially limiting generalizability (An et al., 2022).

Concerning the harmonization approach, task-specific methods are heavily influenced

by the task they aim to address. However, in task-agnostic harmonization, two primary

approaches are commonly employed: (1) removal of scanner effects from the data (Fortin

et al., 2016; Johnson et al., 2007), and (2) adaptation of the data to a target scanner domain

or a scanner-variant component of a target individual’s data (Dewey et al., 2019; Liu et al.,

2023; Zuo et al., 2021b). In the former approach, scanner effects are regarded as unwanted

variability that can be estimated and eliminated from the neuroimaging data. Conversely,

the latter approach considers scanner effects as causing domain shift, treating data from

different scanners as distinct domains. Harmonization is achieved by adapting the data to

(1) a scanner-middle-ground domain, (2) the domain of a target scanner, or (3) the scanner-
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variant component of data for a target individual, resulting in harmonized images with

similar scanner characteristics.

Regardless of the chosen harmonization perspective and approach, harmonization meth-

ods are generally expected to achieve three main objectives: (1) addressing scanner effects,

(2) preserving the biological and clinical information within the data, and (3) enhancing

downstream tasks by mitigating the impact of scanner effects (Beer et al., 2020; Dewey

et al., 2019, 2020).

2.5 Limitations and challenges of harmonization approaches

The current harmonization approaches and methods may present certain limitations and

challenges.

• Over-correction. This phenomenon refers to the correction of biological or clinical

variables, potentially in addition to or instead of scanner effects (Liu et al., 2021, 2023).

Depending on the chosen harmonization approach, there is a risk of over-correction if

scanner effects are statistically correlated with other variables in the data (Bayer et al.,

2022a). This occurrence has the potential to disrupt downstream studies conducted

on harmonized data, as it can impact the desired biological and clinical variables or

confounding factors that are necessary for data modeling (Solanes et al., 2021).

• Brain structural modifications. This phenomenon can occur in image harmonization

methods and involves the modification of the brain’s structure during the harmonization

process. This effect is predominantly observed in methods that utilize Image-to-Image

translation approaches for harmonization (Torbati et al., 2023; Zuo et al., 2021b).

• Matched data requirement. Matched images are images of the same individual cap-

tured by more than two scanners within a short time period. A matched image dataset

consists of such matched images for multiple individuals. Matched images are expected

to be images of biologically similar brain with differences due to solely scanner effects.

Matched data can be matched image datasets or datasets of any measures derived from

matched images. Matched data serves as a means to identify and quantify scanner ef-
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fects. Dissimilarities observed within matched images enable the detection of scanner

effects. Matched data essentially serves as labeled data for the harmonization task, and

methods that utilize such data are known as supervised methods. Supervised image har-

monization methods could be designed to leverage matched data to learn harmonization

with least possibility of biological, clinical, and structural modifications and therefore

tackle the two former challenges. However, the availability of matched data restricts

the applicability of supervised harmonization methods to the data they can harmonize.

Furthermore, supervised harmonization methods are susceptible to a lack of robustness

due to the inherently limited size of matched data.

• Additional labeled data requirement. Some harmonization methods utilize addi-

tional labeled data from desired downstream tasks during the harmonization process.

These methods typically leverage this data to preserve various aspects of the original

data, such as brain anatomy, throughout the harmonization procedure.

• Target domain determination. There exists a group of harmonization methods that

learns mappings for adapting data of scanners to a selected domain, called target domain.

Using these mappings, data of all scanners could get the same scanner characteristics

as that of the target domain. A target domain could be the domain of data (image or

image-derived measures) in a target scanner or the scanner-variant component of a single

target image. Even though adapting data to a target domain seems as a straightforward

harmonization approach, it introduces the new challenge of determining the “best” do-

main. Selecting such domain is not a trivial task when, for example, motion artifacts

in images could be of concern (Alexander-Bloch et al., 2016; Torbati et al., 2021). For

instance, Tian et al. (2022) employed visual screening to select their target scanner.

However, this approach may not be the most reliable strategy since factors that lead to

errors or inefficiency in downstream tasks could be imperceptible to the human eye.

• Number of scanner limitation. The effectiveness of harmonization methods in ac-

commodating multiple scanners depends on the specific methodology employed. Con-

sequently, certain harmonization approaches may encounter limitations regarding the

number of scanners they can effectively harmonize within a given dataset (Torbati et al.,

2023).

16



2.6 Related work

A significant number of harmonization methods have been specifically developed for the

harmonization of diffusion MRI data. In a study by Pinto et al. (2020), these methods were

classified into two categories based on the type of data they aim to harmonize: diffusion

parametric map harmonization and diffusion weighted image harmonization. The diffusion

parametric map harmonization category includes works such as those by Jahanshad et al.

(2013); Kochunov et al. (2014); Prohl et al. (2019); Salimi-Khorshidi et al. (2009); Teipel

et al. (2012); Timmermans et al. (2019); Zhu et al. (2019). On the other hand, the diffusion

weighted image harmonization approaches consist of methods proposed by Fortin et al.

(2017); Hansen et al. (2022); Karayumak et al. (2019); Mirzaalian et al. (2015, 2016, 2018).

It is worth noting that these methods are specifically designed for diffusion MRI data and

are data-dependent, which limits their applicability to other imaging modalities. Therefore,

we have excluded this group from our literature review.

In this section, we delve into harmonization methods with broader applicability across

various data modalities. We begin by categorizing these methods according to the type of

data they aim to harmonize, distinguishing between the harmonization of (1) images and

(2) image-derived measures. Further categorization includes (1) task-agnostic and (2) task-

specific harmonization methods. We then provide a detailed exploration of methods within

each category, focusing on their specific harmonization approaches: (1) removal of scanner

effects, (2) adaptation of data to a scanner-middle-ground domain, (3) adaptation of data

to a target scanner domain, (4) adaptation of data to a target image contrast or style, and

(5) task-related approach. Additionally, we summarize this classification in Table 1.

2.6.1 Harmonizing images

In this section, we will discuss the methods specifically designed for harmonizing images.
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2.6.1.1 Task-agnostic harmonization

• Removal of scanner effects

In this group of methods, the primary objective is to achieve image harmonization by

estimating and removing scanner effects. One notable approach within this category is

RAVEL (Removal of Artificial Voxel Effect by Linear Regression) (Fortin et al., 2016),

which provides a framework for intensity normalization and harmonization. The process

begins with a White Stripe normalization step (Shinohara et al., 2014b), followed by a

voxel-wise harmonization strategy applied to the images. Within this strategy, RAVEL

utilizes singular value decomposition on CSF voxels, which are known to be unaffected

by disease status and clinical covariates. By doing so, RAVEL estimates the components

associated with scanner effects. RAVEL then employs these estimated components to

harmonize the images by removing the scanner effects from the voxel intensities using

a linear regression model. For a more comprehensive understanding, please refer to

Algorithm 1 in Section 3.2.1.

This harmonization approach appears to be the most straightforward strategy for image

harmonization; however, the estimation of scanner effects can pose challenges. For in-

stance, when dealing with images containing motion artifacts, the application of RAVEL

may lead to inconsistent image harmonization across subjects. These artifacts can affect

the CSF area of the brain, potentially resulting in their extraction as scanner effects.

• Adaptation of data to a scanner-middle-ground domain

This group of methods typically consists of supervised harmonization approaches that

utilize additional matched data provided for multi-scanner datasets. The purpose of these

methods is to learn mappings that facilitate the adaptation of matched scanner domains

to a scanner-middle-ground domain. Within this domain, the matched images become

more similar across scanners, resulting in a reduction in scanner effects. Since the domain

was learned using matched images, the harmonization mapping is expected to minimize

biological, clinical, and structural modifications to the least extent possible. The learned

mappings can then be applied to harmonize images from each individual scanner within

the multi-scanner dataset, even if the images are not necessarily matched. However, it is
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important to note that these methods have limitations and can only harmonize images

from scanners with available matched data.

DeepHarmony (Dewey et al., 2019) is a supervised deep-learning harmonization frame-

work that utilizes two U-Net networks (Ronneberger et al., 2015) to learn mappings

between two scanners. The first U-Net is employed to learn a mapping from the domain

of the first scanner to the domain of the second scanner. Subsequently, the second U-Net

learns a mapping from the images of the second scanner to the domain of the output

images in the first U-Net. By applying these learned mappings to the images from both

scanners, all the images are transformed into a shared middle-ground domain, resulting in

harmonization. However, it is important to note that this methodology, which focuses on

learning the mappings between two scanners, restricts the applicability of DeepHarmony

to multi-scanner data with only two scanners.

• Adaptation of data to a target scanner domain

This group of methods involves learning mappings that facilitate the adaptation of im-

ages from the scanners within multi-scanner datasets to the domain of a target scanner.

By applying these mappings, the images from all scanners can effectively lose scanner

effects and achieve similar scanner characteristics, specifically those of the target scanner.

However, harmonization methods using this approach present the user with the challenge

of selecting the target scanner.

Mica (Multi-site Image harmonization by cumulative distribution functions Alignment)

(Wrobel et al., 2020) and RIDA (Robust Intensity Distribution Alignment) (Sederevicius

et al., 2022) are two supervised harmonization methods that utilize additional matched

data to learn mappings from images of one scanner to those of a target scanner. These

methods operate based on the assumption that the mappings between scanners can be

represented as transformations in the cumulative distribution functions (CDFs) of their

respective matched images. Specifically, they learn these CDF transformations for all

matched images and subsequently utilize their average to derive the ultimate mapping for

harmonization. This mapping can then be utilized to harmonize images of the scanners,

even if they are not necessarily matched. Additionally, RIDA introduces the hypothesis

that scanner effects may have distinct impacts on different brain regions. As a result,
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RIDA incorporates image segmentation and considers CDF transformations for specific

brain regions rather than the entire brain image. It is important to note that both

methods were designed specifically for harmonizing data involving only two scanners.

The remaining methods in this category are unsupervised methods. A significant portion

of these methods employs CycleGAN (Zhu et al., 2017) to learn the mappings between

images from two different scanners. While Zhao et al. (2019) apply CycleGAN to har-

monize cortical thickness maps, Modanwal et al. (2020) and Bashyam et al. (2020) use

this framework for harmonizing dynamic contrast-enhanced magnetic resonance imag-

ing (DCE-MRI) of breasts and T1-weighted MRIs of brains, respectively. Regardless of

the targeted data type, these methods rely on the CycleGAN framework illustrated in

Figure 2 to achieve image harmonization. As depicted in the figure, CycleGAN consists

of two generative adversarial networks (GANs). Given the input image from ScannerA

(XA), generator GB : ScannerA→ ScannerB is used to generate harmonized images of

ScannerA (X
′
A = GB(XA)). Discriminator DB was designed to classify harmonized im-

ages of ScannerA, i.e. X
′
A, from images of ScannerB (XB ∈ ScannerB). The other GAN

is designed to learn the mapping from ScannerB to ScannerA. For this, the generator

GA : ScannerB → ScannerA is designed to generate harmonized images of ScannerB

(X
′
B = GA(XB)). The discriminator DA was designed to classify harmonized images of

ScannerB, i.e. X
′
B, from images of ScannerA (XA ∈ ScannerA). The purpose of having

the second GAN is to provide a corresponding reconstruction loss for images. This loss for

XA is equal to ||XA−X
′′
A|| in whichX

′′
A = GA(X

′
A) = GA(GB(XA)). The same reconstruc-

tion loss can be defined for XB as ||XB −X
′′
B|| in which X

′′
B = GB(X

′
B) = GB(GA(XB)).

These reconstruction losses help the whole harmonization network to learn a one-to-one

mapping between images of scanners. Either of the trained generators (GA or GB) could

then be used to map images of their source scanner to the domain of their target scanner.

These methods that utilize the CycleGAN network may have several limitations. Firstly,

they are restricted to harmonizing multi-scanner data involving only two scanners. Sec-

ondly, the learned mappings in these methods lack interpretability, meaning that these

mappings can introduce changes to image variabilities beyond the scanner effects. This

can lead to two significant drawbacks. Firstly, the mappings have the potential to alter
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Figure 2: Harmonization with CycleGAN method. This figure was modified and

borrowed from (Zhong et al., 2020).

the anatomy of images, particularly when GANs are susceptible to the mode collapse

problem (Thanh-Tung and Tran, 2020). Secondly, the images from the source scanner

may acquire population-wise characteristics of the target scanner if the domains (image

sets of the two scanners) significantly differ in that aspect. We refer to this phenomenon

as over-correction.

A group of harmonization methods has been developed to address these limitations.

Bashyam et al. (2022) propose the use of StarGAN (Choi et al., 2018) as an alternative

to CycleGAN, enabling harmonization across more than two scanners. StarGAN employs

a conditional GAN (cGAN) framework, which incorporates an additional input: a one-

hot vector representing the scanner labels. This vector specifies the target scanner for
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the cGAN. The cGAN is trained to learn mappings between all pairs of scanners by

conditioning each iteration on learning a mapping from the input image to a randomly

selected target scanner. To ensure cycle-consistency, i.e., the reconstruction loss, the

reverse mapping is also performed in each iteration. During the harmonization process,

the generator in the trained StarGAN requires input images from all scanners, along

with the label indicating the target scanner.

A group of methods has focused on modifying the CycleGAN framework to control and

enhance the interpretability of the learned mappings. Robinson et al. (2020) propose that

scanner effects can be interpreted as appearance and spatial transformations in images.

To incorporate this idea, they modify the CycleGAN framework by introducing image-

and-spatial transformation networks (Lee et al., 2019) as the generator modules. These

networks help constrain the mappings to meaningful appearance and shape transforma-

tions. In another approach, Ren et al. (2021) adopted a multi-task learning strategy to

enhance the harmonization of the CycleGAN network while preserving anatomical infor-

mation during image generation. They considered two tasks: harmonization and brain

segmentation. Simultaneously, they trained two supervised deep learning segmentation

models alongside the CycleGAN harmonization network. Each segmentation module was

assigned to one of the two scanners, and they were trained on both the original images

from their respective scanner and the images that underwent harmonization to match

the domain of the assigned scanner. To preserve the anatomy during harmonization, the

authors incorporated the modified output of the segmentation models as image structural

priors within the layers of the generators in the CycleGAN framework. The rationale

behind this transfer was to retain the anatomical information of the images during the

mapping process for harmonization. Consequently, the transfer was made from the seg-

mentation model of each scanner to the generator responsible for mapping the images of

that specific scanner. However, it is important to note that this harmonization approach

is limited to datasets that possess segmentation labels for images from both scanners. In

a different method, Chang et al. (2022) employed a two-stage framework consisting of a

CycleGAN for learning the mappings and a histogram matching module to recover any

anatomical information that may have been lost during the mapping process. While this
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approach was initially applied to pelvic MRIs, it could potentially be extended to brain

MRIs as well.

Another group of methods also aims to map images to the domain of a target scanner,

but their approach to harmonization differs from learning cross-scanner mappings. These

methods employ adversarial autoencoders (AD-AEs) or variational autoencoders (VAEs)

to learn latent embeddings that are invariant to scanner variations. These embeddings

capture essential image information while remaining independent of the specific scanner

used. During network training, the models learn two key tasks: (1) extracting these

scanner-invariant embeddings from the images, and (2) reconstructing the images back

to their original domain using the generated embeddings. During the harmonization pro-

cess, instead of reconstructing the images in their original scanner’s domain, the model

constructs the images in the domain of the target scanner. This approach enables harmo-

nization across multiple scanners, making these methods suitable for datasets involving

more than two scanners.

HarMOnAE (Fatania et al., 2022) utilizes an AD-AE network to implement this harmo-

nization strategy for images. It employs a single AD-AE for harmonizing images from

all scanners. During training, the encoder takes an input image X (from any scanner)

and produces its latent embedding Z. This embedding is then passed to a pre-trained

classifier that predicts the scanner of image X. The prediction loss from this classifier is

used to adversarially update the encoder, generating scanner-invariant embeddings Zs.

Finally, the decoder uses the scanner ID of image X and the generated Z to reconstruct

the image in its original scanner domain. The trained encoder-decoder can be used to

harmonize images from all scanners, with the decoder requiring the scanner ID of the

target scanner for reconstructing images in that specific domain. In a similar harmo-

nization framework, Moyer et al. (2020) employ a VAE network instead of an AD-AE.

They propose that learning scanner-invariant embeddings can be achieved by penalizing

the network to minimize the mutual information between Z and the scanner ID of Z’s

corresponding image. This strategy serves as a substitute for the scanner classifier used

in the AD-AE. Although initially implemented for diffusion MRIs, this method can be

adapted for other modalities as well.
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Both of these methods may encounter the over-correction phenomenon. Moreover, they

are susceptible to information loss during harmonization, as the generated latent embed-

dings have been shown to be biased towards the least informative scanner (Moyer and

Golland, 2021).

• Adaptation of data to a target image contrast or style

This group of methods aims to adapt images of scanners to the scanner-variant com-

ponents of a target image, rather than domain of a target scanner. During the model

training phase, these methods learn two key tasks: (1) extracting or generating the

scanner-variant components of the images, and (2) reconstructing the original images by

incorporating these components into the process. When it comes to harmonization, the

trained models utilize the scanner-variant component of a target image to reconstruct the

images. By employing this harmonization strategy, these methods can overcome the main

challenges faced by harmonization methods that target the scanner domain. Specifically,

they can address the limitations of being restricted to harmonizing data from only two

scanners and the lack of interpretable harmonization transformations. Such advantages

can be realized because these methods have a framework that is applicable to images

from any number of scanners, and their harmonization transformation is intentionally

designed to focus on the scanner-variant components. The primary challenge in these

methods is the precise extraction of the scanner-variant components from the images.

Any inaccuracies in this extraction process can lead to changes in the harmonized im-

ages. For instance, if the scanner-variant components still contain structural information

of the target image, the harmonized images may undergo brain structural modifications.

Additionally, if the scanner-variant components encompass biological or clinical informa-

tion of the target image, the harmonization process may result in an over-correction of

these variabilities in the images.

Methods in this group focus on the contrast-based components or style of images as the

scanner-variant components. The CALAMITI method was initially proposed in (Dewey

et al., 2020) and later improved upon in (Zuo et al., 2021a,b). CALAMITI considers

the contrast-based components of images as its scanner-variant component. It comprises

an encoder-decoder network and requires additional inter-modality paired data for the
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harmonization of multi-scanner data. The inter-modality paired image dataset comprises

images from two predetermined modalities, captured from each subject using the same

scanner with a short time gap. In this dataset, individuals undergo scanning using differ-

ent scanners, while their inter-modality paired images are acquired on the same scanner.

This dataset assists CALAMITI in disentangling images into their scanner-variant com-

ponents (scanner effects) and scanner-invariant components (anatomical information).

The encoder in CALAMITI takes an inter-modality image pair from any scanner and

learns to encode these images into their scanner-variant and scanner-invariant compo-

nents. The two extracted scanner-invariant components of the image pair are expected

to be similar as they originate from similar brains. The decoder is then trained to recon-

struct the input image pair using their respective scanner-variant components and one

of the two decomposed scanner-invariant components, selected randomly during model

training. The incorporation of randomness and a designed image reconstruction loss en-

courages CALAMITI to learn the disentanglement of images into their scanner-variant

and -invariant components. For image harmonization, CALAMITI first decomposes the

image into its components and then reconstructs the image using its scanner-invariant

component and the scanner-variant component of a target image. Later, Tian et al.

(2022) developed a supervised version of CALAMITI using paired image datasets in-

stead of inter-modality paired data.

The other methods in this group do not use any type of paired data for extracting the

scanner-variant component of images. They consider the style of images as the scanner-

variant component and used unsupervised style transfer strategies for harmonization.

For example, Liu and Yap (2021) proposed a content-style disentangled cycle translation

framework for harmonization. In their framework, they first use two individual encoders

to disentangle images into their scanner-variant and -invariant components. They then

use a cycle-consistent GAN framework to learn style-based transformations between im-

ages of scanners. For such transformation, they modify the generators to learn mappings

from the two components of images, instead of the images. This way, the generator takes

the scanner-invariant component of an image as well as the scanner-variant component

of a target image and learn to map the image to style of the target image. The learning
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strategy in this cycle-consistent GAN network resembles that of the CycleGAN network.

This cycle-consistent network can also provide the two encoders with two separate con-

sistency losses. These losses are used to force the encoders to learn disentangling images

into their scanner-variant and -invariant components.

In another approach, Liu et al. (2021, 2023) also employ the cycle-consistent style trans-

lation framework. However, unlike other methods, they do not disentangle images into

scanner-variant and -invariant components. Instead, they focus solely on extracting the

style of images as the scanner-variant component and utilize it to map images to the style

of a target image. For extracting style of images, they train an encoder on images. For

the style transformation, they employ a modified CycleGAN network with generators

that take images and the target style as input to generate the transformed images. This

modified CycleGAN network incorporates consistency losses for both the images and the

styles. The style consistency loss plays a crucial role in compelling the encoder to learn

the extraction of image styles.

2.6.1.2 Task-specific harmonization

This group of methods approaches harmonization as a task-specific problem. In this

approach, harmonization is not treated as a standalone preprocessing task; rather, it is

integrated into a model that is specifically designed for a desired downstream task. This

approach offers several advantages, such as (1) the ability to leverage the downstream task

for harmonization, and (2) the ability to account for confounding factors during data harmo-

nization. However, it is important to note that this approach may limit the generalizability

of the harmonization method, as it is tailored to be task-specific rather than task-agnostic.

Methods in this group (Aslani et al., 2020; Dinsdale et al., 2021) utilize a traditional

encoder-decoder network along with an adversarial classifier to predict the domain (scanner)

of images. While the encoder-decoder network handles the main task, the adversarial classi-

fier’s role is to eliminate the scanner effects from the encoder-decoder. The network training

in this framework consists of three main stages. In the first stage, the encoder-decoder net-

work is optimized for the main task. The encoder extracts latent embeddings from the input
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image, and the decoder learns to perform the main task using these embeddings. In the

second stage, the adversarial classifier is individually trained to take the latent embeddings

from the encoder and predict the scanner of the image. In the third stage, the two encoder-

decoder networks and the classifier are trained simultaneously and adversarially. During

this stage, the encoder-decoder network should remain optimized for the main task, while

the encoder generates embeddings that confuse the classifier. The trained encoder-decoder

network then serves as a scanner-invariant framework for the main task. Aslani et al. (2020)

proposed such a framework for the brain segmentation task. Dinsdale et al. (2021) extended

this idea with three similar frameworks, each designed for regression, classification, and seg-

mentation tasks respectively. They also expanded their network to account for confounders

other than the scanner effects by adding an adversarial classifier for each confounder.

These methods employ a similar strategy to the adversarial and variational autoencoder

models, which aim to learn scanner-invariant latent embeddings for harmonization. Likewise,

these methods may encounter the issue of over-correction and the potential loss of image

information during the harmonization process. It has been demonstrated that the generated

latent embeddings of these methods tend to be biased towards the least informative scanner

(Moyer and Golland, 2021).

2.6.2 Harmonizing image-derived measures

In this section, we will outline the methods specifically developed for harmonizing image-

derived measures.

2.6.2.1 Task-agnostic harmonization

• Removal of scanner effects

ComBat (Johnson et al., 2007) and its extensions are widely recognized methods in this

category. ComBat is a location and scale adjustment method that utilizes an empiri-

cal Bayes (EB) framework to harmonize image-derived measures in multi-scanner data,

particularly when there are only a few images available for each scanner. It addresses
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harmonization individually for each image-derived measure while leveraging information

from all other measures in the process. ComBat operates on three key assumptions.

Firstly, it assumes that each measure can be modeled as a linear combination of the

overall mean of the measure, individual biological/clinical variables, scanner effects, and

Gaussian noise. Secondly, it assumes that scanner effects manifest as additive and multi-

plicative factors on the measures. Lastly, it assumes that scanner effects tend to impact

all of the derived measures in a similar manner.

ComBat proposes to remove scanner effects from the distribution (the linear model) of

a derived measure by correcting the location and scale of its distribution. Accordingly,

it proposes to harmonize the measure across scanners by standardizing it, using additive

and multiplicative parameters of scanner effects specific to that measure. The ComBat

harmonization process begins by normalizing all imaging measures to ensure comparable

distributions across measures. This normalization effectively removes measure scales as a

source of variability, ensuring consistency in the data. Subsequently, ComBat estimates

the scanner effect parameters and applies the standardization procedure for each measure

within each scanner individually. For estimating the scanner effect parameters of a

particular measure of a scanner, ComBat employs an EB framework to estimate the

distribution of the overall mean scanner effects parameters across all imaging measures

of the corresponding scanner. It then derives the scanner effects parameters specific to

the desired measure from this overall distribution that was estimated for all measures.

This approach enables ComBat to handle cases with a limited number of images per

scanner by utilizing the pooled information from all measures of that scanner.

ComBat has been applied to derive measures from various modalities, including DTI

(Fortin et al., 2017), MRI (Fortin et al., 2018), and fMRI (Nielson et al., 2018; Yu et al.,

2018). Several extensions of ComBat have also been proposed to address its limita-

tions. Chen et al. (2020a) investigated the impact of scanner effects on cortical thickness

measures obtained from ADNI data (Mueller et al., 2005). They demonstrated that

scanner effects can influence the correlation between derived measures across scanners.

To address this, they introduced CovBat, which adjusts for scanner effects in both the

covariance and the mean and standard deviation of the measures. Pomponio et al. (2020)
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explored the association between age (a biological variable) and brain volumes (derived

measures) using a large dataset spanning different age groups. To account for scanner

effects, they developed ComBat-GAM, a generalized additive model version of ComBat

that allows for nonlinear associations between age and brain volumes during the har-

monization process. Beer et al. (2020) proposed longitudinal-ComBat, a mixed effects

variant of ComBat designed for longitudinal data. This extension considers within-study

participant variability, specifically the correlation among imaging measures collected over

time for each subject. Maikusa et al. (2021) introduced TS-ComBat, which incorporates

individual effects estimated from data obtained from traveling subjects (matched data).

This enhancement allows ComBat to account for unknown individual effects in addition

to known effects included as biological variables in its linear model.

Other extensions of ComBat have been developed to enhance its harmonization perfor-

mance. Chen et al. (2022a) introduced distributed ComBat (d-ComBat) for harmonizing

distributed data, addressing the challenges of data sharing when restricted by privacy

policies. Unlike ComBat, which requires aggregated data for its initial measure-wise stan-

dardization step, d-ComBat proposes an estimation process to calculate the necessary

parameters, enabling harmonization without sharing data. The remaining harmoniza-

tion process follows the standard ComBat approach. Da-Ano et al. (2021) proposed

bootstrap ComBat (B-ComBat) as a more robust extension. B-ComBat utilizes a Monte

Carlo method to repetitively estimate the parameters of scanner effects and subsequently

averages them to improve robustness.

Even though ComBat and its extensions have demonstrated acceptable success in har-

monizing imaging measures in numerous studies (Foy et al., 2020; Radua et al., 2020; Yu

et al., 2018), evaluating their accuracy of harmonization at the image level remains chal-

lenging. This lack of transparency makes these methods less interpretable and difficult

to improve, as it hinders the investigation of scanner effects and potential causes of har-

monization failures. To address this issue, Neuroharmony (Garcia-Dias et al., 2020) was

proposed. It utilizes a random forest model to translate the behavior of ComBat into

image quality metrics (IQMs). However, this approach adds complexity by indirectly

targeting IQMs instead of directly harmonizing the images themselves. Furthermore,
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Neuroharmony’s harmonization performance is limited to that of ComBat, leading to

potential failures in harmonizing measures where ComBat falls short as well.

Another major risk of using ComBat and its extensions, except TS-ComBat, is the over-

correction of biological variability (Obenauer et al., 2019). ComBat is prone to removing

the biological variability that is correlated to scanner effects and was not known to be

considered in the linear model of ComBat. TS-ComBat was designed to address this

issue using matched data, however, such data are not available for all studies. There is

another group of harmonization methods addressing this issue without requiring matched

data (An et al., 2022; Bayer et al., 2022a; Wang et al., 2021). Wang et al. (2021) pro-

posed a normalizing-flow-based method to learn the bijection (one-to-one correspondence

mapping) from a neuroimaging measures of a source scanner to that of a target scanner.

These mappings are used for harmonizing measures. For coming up with these map-

pings, they apply a counterfactual inference upon a structural causal model. In their

model, the neuroimaging measure is modeled as the result of known confounders (site,

gender, and age), and exogenous noise variables of the measure as well as each of the

known variables. The mappings are learned through an inference step that addresses the

counterfactual question of the form: “what would the value of the measures from source

and target scanners would be, if they had been acquired from the same scanner?” This

harmonization method can then address the over-correction by preserving the unknown

confounders through capturing them as the exogenous noise variables. The two other

methods in this category are task-specific harmonization approaches.

2.6.2.2 Task-specific harmonization

Bayer et al. (2022a) introduce harmonization for normative modeling, which involves

mapping the variability in biological response variables (e.g., cortical thickness measures) to

covariates (e.g., age) in order to redefine the response variable variation explained by the

new covariates (e.g., scanner effects). Normative modeling aims to capture individual-level

variation, aligning with the principles of personalized medicine. As an example, consider

a normative model with cortical thickness measures as the response variable and age as

30



the covariate. By knowing an individual’s age, this model can estimate the deviation of

their cortical thickness measures from the normative age curve of cortical thickness (Bayer

et al., 2022b), considering other covariates. Bayer et al. (2022a) employed a hierarchical

Bayesian method for normative modeling and proposed incorporating the scanner as one of

the covariates in the model to achieve harmonization. Instead of removing scanner effects

from the model and potentially encountering over-correction issues, they incorporate it within

the process of estimating variation in their model.

In another approach, An et al. (2022) proposed incorporating the downstream task into

the harmonization process to address the issue of over-correction that may occur for the

task. They developed a framework consisting of two networks: (1) a variational autoencoder

(VAE) proposed in (Moyer et al., 2020) for harmonization, and (2) a task-specific network.

To prevent over-correction, they utilize the performance of the task-specific network as a

regularizer during the training of the VAE network for harmonization. By this strategy,

they penalize their network if their signal of interest is being over-corrected along with

scanner effects.

Table 1: Categorization of harmonization methods

Harmonization Category Harmonization Approach Harmonization Method

Harmonization of
Task agnostic

Removal of scanner effects (Fortin et al., 2016)

Domain adaptation: (Dewey et al., 2019)*

images

Scanner middle ground

Domain adaptation:

(Wrobel et al., 2020)*, (Sederevicius et al., 2022)*, (Zhao et al., 2019),

Target domain

(Modanwal et al., 2020), (Bashyam et al., 2020), (Bashyam et al., 2022),

(Robinson et al., 2020), (Ren et al., 2021), (Chang et al., 2022),

(Fatania et al., 2022), (Moyer et al., 2020)

Domain adaptation:
(Tian et al., 2022)*, (Zuo et al., 2021a), (Zuo et al., 2021b),

Target image component
(Dewey et al., 2020), (Liu and Yap, 2021), (Liu et al., 2023),

(Liu et al., 2021)

Task specific Task-related approach (Dinsdale et al., 2021), (Aslani et al., 2020)

Harmonization of Task agnostic Removal of scanner effects

(Maikusa et al., 2021)*, (Fortin et al., 2017), (Fortin et al., 2018),

image-derived measures

(Nielson et al., 2018), (Yu et al., 2018), (Chen et al., 2020a),

(Pomponio et al., 2020), (Beer et al., 2020), (Johnson et al., 2007),

(Chen et al., 2022a), (Da-Ano et al., 2021), (Garcia-Dias et al., 2020),

(Wang et al., 2021)

Task specific Task-related approach (Bayer et al., 2022a), (An et al., 2022)

* denotes supervised harmonization methods.
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3.0 Investigating two methods of cross-scanner technical variability removal in

harmonization of image-derived measures

In this section, we investigated two methods of cross-scanner technical variability removal

in harmonization of image-derived measures. As a testbed for studying these methods, we

selected deriving biomarkers of Alzheimer's disease (AD) from aggregated neuroimaging

data and study harmonization of these measures. We hypothesized that the pipeline of

technical variability removal from both images and image-derived measures would result in

better removal of unwanted variability and consequently would improve harmonization of our

image-derived biomarkers of AD.

For neuroimaging data, we used paired dataset of T1-weighted (T1-w) MRIs on General

Electric (GE) 1.5T and Siemens 3T MRI scanners. We elaborated on this dataset and

the derived biomarkers in Sections 3.1.1 and 3.3, respectively. For removing the technical

variability from images, we selected RAVEL (Fortin et al., 2016), which is a framework for

normalizing and subsequently harmonizing images by removing their inter-subject variability.

RAVEL will be explained in Section 3.1.2. We also used ComBat (Johnson et al., 2007) for

harmonizing image-derived measures ; i.e., our selected biomarkers of AD. ComBat will be

elaborated in Section 3.2.2. Lastly, we investigated the pipeline of these two methods, called

RAVEL-ComBat in Section 3.2.2 to test our hypothesis. Figure 3 shows the experimental

setup that we conducted for RAVEL, ComBat, and RAVEL-ComBat. For assessing technical

variability and evaluating the three methods, we used the metrics estimating dissimilarity

and similarity within paired images. These metrics will be explained in Section 3.3 and the

results will be reported in Section 3.4.

3.1 Paired data

A paired image dataset is a set of paired images that are the images of each individual

scanned on two scanners with short time gap. Paired images are expected to be images
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Figure 3: Experimental setup for RAVEl, ComBat, and RAVEL-ComBat. RAW images and

image segmentation will be explained in Sections 3.1.2 and 3.3, respectively.

of biologically similar brain with differences solely due to scanner effects. We can provide

a paired dataset of the summary measures pertinent to AD by applying a segmentation

pipeline to the paired image dataset. We then assume that using the paired dataset of these

summary measures, we can estimate the scanner effects and assess the harmonization by

metrics of dissimilarity and similarity within the paired measures, respectively.

3.1.1 Study population and image acquisition

The sample used for collecting paired image dataset consists of 16 subjects that are part

of an ongoing project (Normal aging, RF1 AG025516 to W.E. Klunk). These 16 subjects

were scanned on both GE 1.5T and Siemens 3T MRI scanners, separated by at most 3

months. The median age in the sample was 77.5 years (range=70-79 years) and 25% (n=4)

were males. T1-weighted MRIs were acquired coronally on a GE Signa 1.5T MRI scanner

with a birdcage volume coil (TE = 5 ms; TR = 25 ms; Flip Angle = 40◦; Pulse Sequence

= SPGR) and sagittally on a Siemens MAGNETOM Prisma 3T MRI scanner (TE = 2.22

ms; TI = 1000 ms; TR = 2400 ms; Flip Angle = 8◦; Pulse Sequence = MPRAGE). No

scanner-specific non-uniformity correction was applied to the 1.5T MRI. Siemen’s Prescan
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Normalize was applied to the 3T MRI. Image matrix and voxel sizes were 256 × 256 × 124

mm and 0.94× 0.94× 1.5 mm, respectively, for the 1.5T T1-w MRI and 240× 256× 160 mm

and 1.0× 1.0× 1.2 mm, respectively, for the 3T T1-w MRI.

3.1.2 Image preprocessing

The paired image dataset were preprocessed in R (R Core Team, 2020) following the

exact preprocessing steps1 prescribed before using RAVEL. Accordingly, all images were

first registered to a high-resolution T1-w image atlas (Oishi et al., 2009) using the non-linear

symmetric diffeomorphic image registration algorithm proposed in (Avants et al., 2008).

Then, the N4 bias correction (Tustison et al., 2010) was applied to each of the images to

correct for spatial intensity inhomogeneity. Images were then skull-stripped using the brain

mask provided in (Fortin et al., 2016). Throughout Section 3, these preprocessed but not

intensity normalized images will be referred to as RAW images.

3.2 Methods

3.2.1 RAVEL (Removal of Artificial Voxel Effect by Linear regression)

RAVEL (Fortin et al., 2016) is a voxel-wise normalization and harmonization framework

that is applied to images. Figure 3 shows the experimental setup for RAVEL. This technique

takes the RAW set of MRIs as input and: (1) applies the White Stripe intensity normaliza-

tion (Shinohara et al., 2014b); and (2) estimates and removes the remaining inter-subject

unwanted intensity variation, detailed in Algorithm 1. The first step is an individual-level

intensity normalization method for removing discrepancy of intensities across subjects within

tissue types (Shinohara et al., 2014b). It first extracts the normal-appearing white matter

voxels of the image and estimates moments of their intensity distribution. It then uses these

moments in the z-score transformation for normalizing the voxels of all brain tissue types.

1https://github.com/Jfortin1/RAVEL
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The second step extracts the singular value decomposition of the observed variability in con-

trol voxels (e.g., cerebrospinal fluid voxels) from the population of participants and selects

the first b components of the decomposition as an estimation of the unwanted intensity vari-

ation. These steps can be found in Algorithm 1. Once the unwanted variation is estimated

from the control voxels, RAVEL then models the intensity values of all the image voxels

as a linear combination of the unwanted variables and the clinical covariates (Algorithm 1).

Using this model, the technical variability is estimated for each voxel and then removed from

the original voxel intensity values (Algorithm 1). Henceforth, the set of RAVEL-corrected

images and their derived biomarkers will be referred to as RAVEL-corrected.

Although adjusting for clinical covariates are optional in RAVEL correction, we investi-

gated the effects of age and gender on density plots of the tissue types. While controlling for

gender did not change the plots, age widened them. It was observed that the higher rank

resulted in greater overlap. Since better overlap and narrower density plots are desired, we

fit RAVEL to our data by setting the decomposition rank (b) to three and controlling for no

clinical variables. More details on the fitting process are provided in Appendix A.1.

Algorithm 1 RAVEL intensity correction.

Results: RAVEL-corrected voxels, VRAV EL.

-p, b: number of clinical covariates, and unwanted variables (decomposition rank), respectively.
-VWS : k ×m matrix of White-Striped RAW voxel intensities.
-VWS

c : kc ×m matrix of control voxels in White-Striped RAW images.
-X: m× p matrix of clinical covariates.
-Z: m× b matrix of unwanted variables.
-R: k ×m matrix of residuals.
-α: k × 1 vector of baseline intensities (average intensities).
-β: k × p coefficient matrix corresponding X.
-γ: k × b coefficient matrix corresponding Z.

Algorithm:
The unwanted intensity variation estimation.
1. Centering the VWS

c : V∗
c = VWS

c − vc1
T .

2. Estimating unwanted variables, Z, via singular value decomposition: Z = Wb where V∗
c =

UbDbW
T
b +Rc is the truncated singular value decomposition of rank b for V∗

c .
The unwanted inter-subject intensity variation removal.
3. Modeling all voxels as VWS = α1T + βXT + γZT +R.
4. Estimating the coefficients: β̂, γ̂ ← Solve(VWS = α1T + βXT + γZT +R).
5. Computing RAVEL-corrected voxels: VRAV EL : VWS − γ̂ZT .
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3.2.2 ComBat (Combating Batch effects)

ComBat2 (Johnson et al., 2007) is an empirical location (mean) and scale (variance)

adjustment based on empirical Bayes (EB) estimation for harmonizing numerical data. Data

is first modeled as a linear combination of the biological variables of interest and scanner

effects. Scanner effects appear as additive and multiplicative effects. Data adjustments are

then made to harmonize across scanners. Here, our focus is on analyzing image-derived

biomarkers of AD, henceforth called features. As shown in Figure 3, these biomarkers are

extracted from RAW images. Using ComBat, the value for each feature f , i.e. Yijf , for

subject j for site/scanner i is first modeled as follows:

Yijf = αf +Xijβf + γif + δifϵijf . (1)

Here αf is the average for feature f , Xij is the design vector of biological variables, βf

is the vector of regression coefficients corresponding to Xij, and γif and δif are the additive

and multiplicative terms for site/scanner i and feature f , respectively. The error terms, ϵijf ,

are assumed to be independent with distribution N(0, σ2
f ). The estimated parameters of

scanner effects are γ∗
if and δ∗if , respectively. Data are harmonized as follows:

Y ∗
ijf =

Yijf − (α̂f +Xijβ̂f + γ∗
if )

δ∗if
+ α̂f +Xijβ̂f , (2)

where α̂f represents the average over the values of feature f for all subjects, and β̂f is

estimated using a feature-wise ordinary least-squares approach. See (Johnson et al., 2007) for

details on derivation of Equation 2 and the non-parametric ComBat framework. Henceforth,

the image-derived biomarkers harmonized using ComBat will be referred to as ComBat-

harmonized.

Here we have used the parametric EB framework and did not adjust ComBat for age and

gender. We tested the addition of age, gender or age and gender to our model using F -tests.

None of the F -tests were significant, therefore no age, gender or age and gender effects were

2Used the public code from https://github.com/ncullen93/neuroCombat
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added to the ComBat model. The biomarkers of AD (will be explained in Section 3.3) consist

of cortical thickness and volume values, for which separate ComBat models were prepared.

3.2.3 RAVEL-Combat (Pipeline of RAVEL and ComBat)

RAVEL and ComBat were used together in this order to harmonize image-derived

biomarkers based on intensity corrected images. Figure 3 summarizes the pipeline, which we

refer to as RAVEL-ComBat. Henceforth, the biomarkers harmonized using RAVEL-ComBat

will be referred to as RAVEL-ComBat-harmonized.

3.3 Data analysis

We first assessed the intensity normalization effect of RAVEL. For this, we compared

voxel intensity density plots for RAW, White Stripe (WS)-normalized, and RAVEL-corrected

images for three brain tissue types, using the tissue mask provided in the EveTemplate

package (Oishi et al., 2009): cerebrospinal fluid (CSF), gray matter (GM), and white matter

(WM).

For biomarkers of AD, we used the cortical thickness for entorhinal, fusiform, inferior

parietal, inferior temporal, and middle temporal regions, as well as the volume measure

of the entorhinal, inferior temporal, middle temporal, amygdala, and hippocampus. For

segmentation of these measures, we used FreeSurfer 7.1.1 (FS) (Fischl, 2012) and applied

it to RAW and RAVEL-corrected images wherever needed in setups in Figure 3. FS was

consistently run on native-space MRIs. For the RAVEL pipeline, non-linear registration to

template space was performed specifically for skull-stripping and RAVEL processing, and

inverse transformations were consistently applied to RAVEL images to return them to native

space prior to running FS. In examining RAW FS vs RAVEL FS volume and cortical thick-

ness measures, with and without ComBat, we did not want to confound comparisons with

inconsistent preprocessing steps, e.g., bias correction and skull-stripping. As such, prepro-

cessing involved: (1) nonlinear registration to a common template; (2) N4 bias correction;
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and (3) skullstripping for RAW, RAVEL, ComBat, and RAVEL-ComBat pipelines. Subse-

quently, as stated previously, for both the RAW and RAVEL pipelines, preprocessed MRIs

were returned to native space prior to running FS, and subsequently ComBat. We extracted

these 10 biomarkers for both hemispheres of images an resulted in having 20 image-derived

summary measures.

We then estimated the scanner effects of the extracted summary measures and evaluated

harmonization effect of RAVEL as well as ComBat and RAVEL-ComBat. We measured

scanner effects and evaluated harmonization using metrics measuring dissimilarities and

similarities within summary measures of paired images, respectively. For this, we designed

two metrics: 1) bias: the mean of cross-scanner differences (Siemens 3T - GE 1.5T), compared

using paired t-tests with p < 0.05 indicating statistical significance, and 2) variance: the root

mean square deviation (RMSD) of measures across scanners.

Lastly, to evaluate segmentation accuracy, a neuroradiologist visually rated FS-derived

hippocampal segmentations of RAW and RAVEL-corrected MRIs. The segmentations of

RAW and RAVEL-corrected MRIs were overlaid on RAW images for segmentation evalu-

ation by our neuroradiologist. A four-point scale was used for rating the accuracy of the

segmentations (1 = poor, 2 = some errors, 3 = good, 4 = excellent). The rater was blinded to

subject demographics, segmentation method, and image preprocessing, normalization, and

correction. We did not have the ground truth segmentation, thus we presented the relative

accuracy.

3.4 Results

We first show the technical variability in RAW and corrected images in Section 3.4.1.

We then present the results of applying other methods, including RAVEL, ComBat, and

the RAVEL-ComBat pipeline to 20 image-derived measures (10 AD biomarkers for both

hemispheres) in Sections 3.4.2, 3.4.3, and 3.4.4, respectively.
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(a) RAW.

(b) White Striped.

(c) RAVEL corrected

Figure 4: Density plots of MRI voxel intensities by tissue type (cerebrospinal fluid (CSF),

grey matter (GM), and white matter (WM)) across scanners (GE 1.5T (cyan) and Siemens

3T (orange)) for (a) RAW, (b) White-Striped, and (c) RAVEL-corrected MRIs. Note that

White Stripe increases the overlap of the densities greatly for WM, which was the intent of

the method, but there is still some non-overlapping regions for GM and CSF, which RAVEL

improves. Initially referenced in section 3.4.1.

3.4.1 Technical variability in RAW data

Figure 4 displays the intensity density plots for each of the three brain tissues (CSF

in column one, GM in column two, and WM in column three) and different levels of data

processing (RAW: panel a, White Stripe: panel b, and RAVEL: panel c). Densities are shown
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in cyan for the 1.5T scanner and in orange for the 3T scanner. Results indicate that: (1)

the distribution of RAW image intensities vary substantially between- and within-scanners;

(2) White Stripe substantially improves the distance between densities, especially in white

matter; and (3) RAVEL further improves the distance between densities, especially in CSF

and GM.

Table 2, provides bias (mean of cross-scanner differences) and variance (RMSD values) of

the 20 measures extracted for RAW, RAVEL, ComBat, and RAVEL-ComBat. Also, for each

method in Table 2, the statistically significant biases and increased RMSDs (compared to

their corresponding values in RAW data) were highlighted and presented in bold, respectively.

Focusing on these two metrics for RAW data in Table 2, we observed scanner effects as: (1)

statistically significant bias for 11 summary measures, and (2) deviation of values across

scanners for all summary measures. We also showed the within-scanner mean and SD of the

summary measures for the 4 methods in Appendix A.2.

3.4.2 RAVEL

3.4.2.1 Segmentation accuracy

Neuroradiological ratings comparing hippocampal segmentation of RAW to RAVEL-

corrected images revealed that RAVEL neither significantly improved nor deteriorated the

FS segmentations. In fact, ratings of the left hemisphere segmentation in Figure 5a showed

that RAVEL performed slightly worse than RAW, by having a greater number of erroneous

(5 to 1) and fewer good (26 to 29) and excellent (1 to 2) segmentations. However, for the

right hemisphere segmentations (Figure 5b), RAVEL performed similarly to RAW, by having

similar erroneous (2 to 2), one more good (29 to 28), and one less excellent segmentations (1

to 2). The Wilcoxon hypothesis testing on collected ratings of RAW and RAVEL for the left

and right hemispheres resulted in (W -value = 10.0, p-value = 0.096) and (W -value =12.0,

p-value = 0.705), respectively.

Two single cases are illustrated in Figures 6 and 7, showing the hippocampal segmen-

tation on RAW brain images by method with arrows pointing to the erroneous segmented
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(a) Left hemisphere (b) Right hemisphere

Figure 5: Visual ratings of FS-based hippocampal segmentations for RAW and RAVEL-

corrected (RAVEL) MRIs, using a four-point rating scale (1 = poor, 2 = some errors, 3 =

good, and 4 = excellent). Initially referenced in section 3.4.2.1.

voxels. Figure 6 presents one single case in which RAVEL results in a more accurate hip-

pocampal segmentation than RAW. The RAW brain image, without any segmentation on, is

depicted in Figure 6a. Figure 6b shows that the segmentation based on RAW images (in yel-

low) has extraneous segmented voxels over the CSF and adjacent white matter areas, when

compared to segmentation based on RAVEL (in red). The orange area shows the overlap

of the two segmentations and the remained yellow and red areas are for RAW and RAVEL

segmentations, respectively. Figure 7a depicts the RAW brain image for the second case.

Figure 7b presents this case in which RAVEL (in red) results in a less accurate hippocampal

segmentation than RAW (in yellow), by not capturing the entire hippocampus, pointed by

arrows. The overlapped area of these two segmentations is in orange.

3.4.2.2 Harmonization

For most of the derived imaging measures reported in Table 2, RAVEL decreased bias

(13 decreases versus 7 increases) and increased variability (SD) of differences (6 decreases

versus 14 increases), when compared to the measures from the RAW data in column 1. The
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(a) The non-preprocessed image with no segmentation over-
laid on.

(b) Hippocampal segmentation for RAVEL-corrected images
(in red) is more accurate than that of RAW images (in yel-
low). The overlapped area is depicted in orange. Arrows
show that extraneous segmented voxels over the CSF and
adjacent white matter areas exist in the RAW image.

Figure 6: Axial, sagittal, and coronal slices of a single subject MRI with overlaid hippocampal

segmentations generated by FS for RAW and RAVEL-corrected images. Initially referenced

in section 3.4.2.1.

comparison has been done based on absolute values of bias. The number of measures with

statistically significant bias decreased from 11 for RAW to 6 for RAVEL and the RAVEL-

corrected images resulted in change of RMSDs as variances (11 decreases versus 9 increases),

when compared to RAW. Figure 8 presents these total number of changes (decrease, increase,

and no change) in (a) bias, (b) variation (SD) of cross-scanner differences, and (c) variance

(RMSD), in addition to (d) the number of statistically significant biases over all 20 summary

measures.

Columns fourth and fifth in Table 2 show the mean (SD) of cross-scanner differences
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(a) The non-preprocessed image with no segmentation over-
laid on.

(b) Hippocampal segmentation for RAVEL-corrected images
(in red) is less accurate than that of RAW images (in yellow).
The overlapped area is depicted in orange. Arrows show
the missed hippocampal voxels in the segmentation for the
RAVEL-corrected image.

Figure 7: Axial, sagittal, and coronal slices of two single subjects MRI with overlaid hip-

pocampal segmentations generated by FS for RAW and RAVEL-corrected images. Initially

referenced in section 3.4.2.1.

and RMSD values for all summary measures extracted from the RAVEL-corrected images.

These results are complemented by the statistically significant biases (highlighted values)

and increased RMSDs (values in bold). This table is accompanied by Figure 9, visualizing

the results of this table for the summary measures, including volumes of respectively inferior

temporal and middle temporal for left and right hemispheres, as well as cortical thickness of

entorhinal and inferior parietal in left hemisphere. In Figure 9, the cross-scanner differences

of all subjects were depicted as a line plot for each method. The smoother line plots indicate

methods which resulted in lower variation (SD) of cross-scanner differences. The line plots
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(a) Bias. (b) Variation (SD) of differences.

(c) Variance (RMSD). (d) Statistically significant bias.

Figure 8: Bar plots showing number of summary measures with changes (classified as de-

crease, increase, and no change) in (a) cross-scanner bias, (b) variation (SD), and (c) variance

(RMSD) for tested methods compared to RAW. Part (d) shows the number of regional sum-

mary measures with statistically significant cross-scanner bias for each method. Statistical

measures were calculated over 20 FS-derived summary measures (listed in Section 3.3).

closer to x-axis depict methods, which resulted in smaller variances (cross-scanner differences

are closer to zero).

Based on the results in Table 2, the volume of inferior temporal (left hemisphere) is one of

the measures that RAVEL harmonized by decreasing bias, SD of differences, and variance,

resulting in no statistically significant differences of bias. These results were supported

in Figure 9a where the line plot for RAVEL is smoother than RAW and closer to x-axis.

However, the results in Table 2 showed that RAVEL resulted in increased variance for the
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rest of the 3 summary measures. Such pattern could also be observed in Figures 9b, c, and

d, as the plots for RAVEL deviated from x-axis due to increased peaks when compared to

the plots for RAW.

Based on our observations, RAVEL had some potential harmonization effect on our

data by showing decrease in either bias, variance, or number of summary measures with

Table 2: Mean (SD) of cross-scanner differences (Siemens 3T - GE 1.5T) as well as cross-

scanner RMSDs, for biomarkers relevant to AD. These statistics were prepared for each of

the RAW, RAVEL, ComBat, and RAVEL-ComBat methods. For each method, the increased

RMSD values (compared to RAW) were reported in bold and the statistical significant

differences (p < 0.05) were highlighted. Information on confidence intervals of the t-tests is

reported in Appendix A.3.

RAW RAVEL ComBat RAVEL-ComBat

Mean(SD) RMSD Mean(SD) RMSD Mean(SD) RMSD Mean(SD) RMSD

ROIs Cortical Thickness (mm)

Left

Entorhinal 0.22 (0.23) 0.31 0.19 (0.42) 0.45 0.08 (0.22) 0.23 0.18 (0.40) 0.43

Fusiform 0.24 (0.10) 0.26 0.10 (0.23) 0.25 0.11 (0.09) 0.14 0.10 (0.22) 0.23

Inferior Parietal -0.05 (0.10) 0.11 -0.15 (0.20) 0.25 -0.04 (0.10) 0.10 -0.04 (0.19) 0.19

Inferior Temporal 0.25 (0.17) 0.30 0.06 (0.27) 0.27 0.11 (0.16) 0.19 0.08 (0.24) 0.25

Middle Temporal 0.08 (0.15) 0.17 -0.01 (0.19) 0.18 0.02 (0.15) 0.15 0.03 (0.19) 0.18

Right

Entorhinal 0.23 (0.45) 0.49 0.17 (0.34) 0.37 0.08 (0.43) 0.43 0.15 (0.32) 0.35

Fusiform 0.22 (0.11) 0.25 0.05 (0.20) 0.20 0.10 (0.10) 0.14 0.06 (0.20) 0.20

Inferior Parietal -0.02 (0.07) 0.07 -0.07 (0.15) 0.16 -0.02 (0.07) 0.07 -0.01 (0.14) 0.14

Inferior Temporal 0.26 (0.11) 0.28 0.09 (0.16) 0.18 0.11 (0.10) 0.15 0.08 (0.15) 0.17

Middle Temporal 0.05 (0.16) 0.16 -0.01 (0.13) 0.13 0.01 (0.16) 0.15 0.03 (0.13) 0.13

ROIs Volume (cm)
3

Left

Entorhinal 0.08 (0.25) 0.26 0.19 (0.41) 0.44 0.01 (0.25) 0.24 0.12 (0.40) 0.40

Inferior Temporal 0.79 (1.09) 1.09 0.78 (0.84) 0.92 0.31 (0.65) 0.70 0.26 (0.73) 0.75

Middle Temporal 0.16 (0.84) 0.83 -0.35 (1.05) 1.07 -0.16 (0.74) 0.73 -0.23 (0.98) 0.98

Amygdala 0.13 (0.20) 0.27 0.09 (0.15) 0.17 0.06 (0.19) 0.19 0.04 (0.14) 0.14

Hippocampus -0.08 (0.15) 1.25 -0.19 (0.19) 0.27 -0.03 (0.14) 0.14 -0.05 (0.18) 0.20

Right

Entorhinal 0.09 (0.27) 0.91 0.12 (0.33) 0.34 0.01 (0.26) 0.25 0.07 (0.32) 0.32

Inferior Temporal 0.98 (0.80) 0.23 0.67 (0.89) 1.09 0.42 (0.71) 0.80 0.41 (0.85) 0.92

Middle Temporal 0.21 (0.92) 0.16 0.06 (0.85) 0.82 -0.10 (0.79) 0.77 0.02 (0.78) 0.76

Amygdala 0.05 (0.09) 0.10 0.02 (0.08) 0.08 0.03 (0.09) 0.09 0.01 (0.08) 0.08

Hippocampus -0.09 (0.15) 0.17 -0.10 (0.24) 0.26 -0.03 (0.14) 0.14 -0.04 (0.24) 0.24
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statistically significant bias. However, this effect does not seem to be consistent among

(1) summary measures (increased bias and variance for some summary measures), and (2)

subjects (increased SD of differences for some summary measures, for example Figures 9b,

c, and d).

(a) Volume of inferior temporal (left). (b) Volume of middle temporal (right).

(c) Cortical thickness of entorhinal (left). (d) Cortical thickness of inferior parietal (left).

Figure 9: Line plots depicting cross-scanner differences (Siemens 3T - GE 1.5T) for all

subjects and methods. The plots depicted for 4 summary measures which were also reported

in Table 2. The plotted differences were in millimeter (mm) and cubic centimeter (cm)3

for cortical thicknesses and volumes, respectively. A smoother line plot indicates a lower

SD of differences and a plot closer to x-axis (zero differences) shows lower variance. The

line plots showed that in (a) all three methods succeed in harmonization, in (b) all methods

increased variance, in (c) and (d) RAVEL and RAVEL-ComBat increased variance while

ComBat succeed in harmonization.
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3.4.3 ComBat

Results for ComBat-harmonized measures in Table 2 showed that ComBat decreased bias

and SD of cross-scanner differences for most of the measures. Considering absolute values

of bias, these statistics were 18 and 14 decreases for bias and SD of differences, respectively,

while no changes have been seen for the rest of measures. These results were supported

by the decreased number of statistically significant biases (11 for RAW decreased to 5 for

ComBat) and RMSD values (17 decreases, 2 increases, and 1 no change). These statistics

were depicted in Figure 8.

Based on the results in Table 2, ComBat successfully harmonized volume of inferior

temporal and cortical thickness of entorhinal (both for left hemisphere), by decreasing bias,

SD of differences, and variance as well as removing statistical significance of bias. These

results were supported by the corresponding line plots of ComBat in Figures 9a and c, where

they were similar to RAW but smoother and closer to x-axis. However, the results for cortical

thickness of inferior parietal (left hemisphere) did not change noticeably (ComBat almost

overlapped RAW in Figure 9d) and the volume of middle temporal (right) still retained the

increase in variance (Figure 9b).

Based on our observations, ComBat had potential harmonization effect on our data

by showing decrease in bias, variance, SD of differences, or number of summary measures

with statistically significant bias. This effect seems to be more consistent across summary

measures and subjects which makes ComBat to be preferred over RAVEL for the task of

harmonizing image-derived measures.

3.4.4 RAVEL-ComBat pipeline

Results of comparing RAVEL-ComBat to RAW in Table 2 showed that this method de-

creased bias for most of the summary measures (18 decreases versus 2 no changes), when the

absolute values of bias were compared. The number of summary measures with statistically

significant bias decreased from 11 for RAW to 1 for this pipeline. However, RAVEL-ComBat

almost increased the SD of differences (6 decreases versus 14 increases) as well as the variance
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for almost half of the summary measures (11 decreases versus 9 increases). These results

were summarized in Figure 8.

Results in Table 2 showed that RAVEL-ComBat followed almost similar pattern with

RAVEL in harmonization of the 4 selected summary measures. RAVEL-ComBat success-

fully harmonized volume of inferior temporal (left), while increased the variance for the

other 3 measures. These results were also visualized in Figure 9 where all the line plots

for RAVEL-ComBat closely followed RAVEL’s. However, comparing these two methods,

minor improvements have been observed for RAVEL-ComBat which were (1) decreasing the

number of biases and (2) resulting smaller increases in RMSD values (the number of changes

in variance are similar between the methods). Such differences could be seen for cortical

thickness of inferior parietal (left) in Figure 9d.

Even though RAVEL-ComBat was improved by ComBat and showed decreased number

of biases, it was still more similar to RAVEL in terms of harmonizing image derived measures.

Although the number of statistically significant biases decreased noticeably using RAVEL-

ComBat, the harmonized measures still suffer from increased SD of differences and variance

when compared to RAW and ComBat. In conclusion, ComBat would be preferred over

RAVEL and RAVEL-ComBat as these two methods are inconsistent among subjects and

summary measures.

3.5 Discussion

In this study, we focused on harmonization of 10 image-derived biomarkers of AD. We

hypothesized that the pipeline of technical variability removal from images, using RAVEL,

and image-derived measures, using ComBat, would result in better removal of unwanted

variability and consequently would improve harmonization of our image-derived biomarkers

of AD. Accordingly, we collected a paired cohort of 16 healthy elderly study participants

scanned on two different MRI scanners, GE 1.5T and Siemens 3T. We assumed that technical

variability manifests as within-subject differences for summary measures and reducing these

differences would achieve harmonization appearing as lowered bias and variance for measures
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of these biomarkers for both hemispheres.

Consistent with previous reports, our results showed that RAVEL further normalized

the White-Stripe-normalized images, specifically CSF and GM areas (Fortin et al., 2016).

Moreover, RAVEL preserved the anatomical information of images. For example, it pre-

served the segmentation accuracy for the hippocampus. These results are consistent with

the previous findings from the group's previously reported results for a multi-site Down

Syndrome study (Minhas et al., 2020). Regarding the harmonization of our summary mea-

sures, RAVEL, ComBat, and RAVEL-ComBat effectively harmonized the 1.5T and 3T MRI

summary measures in this study, in that all techniques reduced the number of statistically

significant biases across the regional cortical thicknesses and volumes examined. ComBat,

however, demonstrated a more consistent harmonization effect across subjects and summary

measures as compared to RAVEL and RAVEL-ComBat. Based on the results on our data,

ComBat would be preferred to RAVEL and RAVEL-ComBat for the task of harmonizing

image-derived measures, to avoid the inconsistency across subjects and summary measures

that were observed with the other two pipelines.

Despite demonstrating an overall reduction in the number of statistically significant

biases between FreeSurfer outcome measures from 1.5T and 3T MRI scans (Table 2 and

Figure 8d), the application of RAVEL introduced a significant difference in the left inferior

parietal cortical thickness and increased RMSD across multiple regional cortical thickness

and volume measures (Table 2). There are multiple possibilities as to why RAVEL intro-

duced unwanted differences and variability. The quality of FreeSurfer segmentations, and

therefore outcome measures, is dependent on the GM-WM contrast in the T1 MR image,

with increased contrast resulting in more accurate FreeSurfer segmentations. To examine

the effects of RAVEL on GM-WM contrast for the 1.5T and 3T scans, we calculated the

area under the receiver operating characteristic (AUROC) for classification of voxel intensity

values as GM relative to WM. For this, we first extracted the histograms of GM and WM

using the tissue mask in the EveTemplate package (Oishi et al., 2009). We then looked at

the classification of GM voxels from WM as the problem of estimating the separation of their

histograms. For classifying the GM and WM voxels, we set the voxel intensity thresholds

from one end of the union of histograms to the other. Every threshold position generated
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(a) Line plots and histogram plots for RAW.

(b) Line plots and histogram plots for RAVEL.

Figure 10: AUROC for classification of voxel intensity values as GM relative to WM. The

AUROCs were estimated as the separation of the GM and WM histograms. On the left, the

line plots depict the AUROC of the classification for all subjects. On the right, the plots

show the overlap/separation of the histograms of tissues for one single subject. The two

plots were depicted separately for each scanner (GE 1.5T and Siemens 3T), for RAW (a)

and RAVEL (b).

a point on the AUC curve. A complete separation of histogram would result in AUROC =

1 and completely overlapped histograms would give AUROC = 0.5. AUROC values across

subjects for 1.5T and 3T scans before and after RAVEL are shown in Figure 10. RAW 3T

scans consistently had better GM-WM contrast than RAW 1.5T scans (mean(SD) RAW

3T AUROC: 0.849(0.028); mean(SD) RAW 1.5T AUROC: 0.812(0.033)). The application

of RAVEL reduced the mean of absolute differences between 3T and 1.5T AUROC values

from 0.037 ± 0.021 to 0.017 ± 0.018. As such, just as RAVEL effectively corrected MRI

voxel intensity distributions across scanners, it also corrected GM-WM contrasts. However,
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in doing so, RAVEL reduced GM-WM contrast, on average, across 3T MRIs (mean(SD)

RAW 3T AUROC: 0.849(0.028); mean(SD) RAVEL 3T AUROC: 0.840(0.018)). This reduc-

tion in contrast may have reduced quantitative accuracy and increased variability in cortical

thickness and volume FreeSurfer measures.

Differences in motion artifacts may have also affected and possibly confounded harmo-

nization of FreeSurfer outcome measures via RAVEL. Previous studies have demonstrated

that motion artifacts, including blurring, ghosting, and ringing, reduce FreeSurfer measures

of regional GM cortical thickness and volume (Alexander-Bloch et al., 2016; Backhausen

et al., 2016). The effect of motion artifacts on RAVEL is not well understood, and charac-

terizing it is beyond the scope of this study. Nevertheless, motion artifacts may introduce

variability in CSF regions, from which the unwanted scanner-associated variation component

is estimated for RAVEL. In this study, motion artifacts, or the lack thereof, were not consis-

tent across 1.5T and 3T MRI acquisitions. Significant motion artifacts were observed in the

frontal cortex of the 1.5T scan but not 3T scan for a single subject, as shown in Figure 11.

(a) 1.5T scan. (b) 3T scan.

Figure 11: Inconsistent motion artifact across scanners for a single subject in our data. More

significant motion artifacts were observed in the frontal cortex of 1.5T scan (a) relative to

the 3T scan (b).

Further investigation into ComBat led to some additional insight with respect to effects

of preprocessing before applying ComBat. In this study we applied the preprocessing steps
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recommended for RAVEL to our images for all four methods (RAW, RAVEL, ComBat, and

RAVEL-ComBat) in order to avoid confounding the comparisons with inconsistent pipeline.

However, the choice of preprocessing could affect the results of RAW and ComBat, which

do not necessarily need any preprocessing before the segmentation with FreeSurfer. We

investigated this issue by skipping the preprocessing step in the process of preparing RAW

and ComBat-harmonized images and generated two new sets of data. We then compared

RAW and ComBat with their corresponding new data using paired t-test. Our results showed

that preprocessing could be a source of variability and resulted in statistically significant

different values for summary measures within each scanner in our experiment: RAW (1.5T: 9

measures, 3T: 10 measures) and ComBat (1.5T: 9 measures, 3T: 7 measures). This significant

effect of the preprocessing step on results should be considered in studies when ComBat is

used for the purpose of data harmonization and not for method comparison. The details of

the experiments were reported in Appendix A.4. Moreover, ComBat could be modified for

handling the dependence for within-subject scans which is the case for our paired cohort.

Thus, we added the subjects as a fixed effect to ComBat which resulted in a non-significant

F -test when tested versus the original ComBat. We also handled the dependence by adapting

the longitudinal Combat (Beer et al., 2020): we ran the model without the inclusion of time

but, we included a random intercept. We present these results in Appendix A.5.
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4.0 Multi-scanner harmonization of paired neuroimaging data via structure

preserving embedding learning

In this section, we developed a supervised image harmonization method: MISPEL (Multi-

scanner Image harmonization via Structure Preserving Embedding Learning). We hypoth-

esized that harmonization can be achieved for scanners within a matched dataset by con-

structing a model that maps matched images from the dataset to a scanner-middle-ground

space, where matched images lose scanner effects by becoming similar to each other. For such

model, we designed MISPEL to (1) generalize to multiple (more than two) scanners, (2) pre-

serve the structural (anatomical) information of the original brains, (3) learn harmonization

on a matched dataset, and (4) later harmonize unmatched images of the scanners for which

the matched dataset was collected.

For the matched dataset, we collected T1-w matched images of 18 subjects for four 3T

scanners. We elaborate more on this dataset and its preprocessing pipeline in Section 4.1.

We also cover MISPEL and its training and harmonization strategy in Section 4.2. We

compare MISPEL with one method of normalization, White Stripe, and two methods of

harmonization, RAVEL and CALAMITI (Zuo et al., 2021b). We elaborate on these methods

in Section 4.3. Moreover, we investigate MISPEL and our competing methods using our

evaluation criteria described in Section 4.4. Lastly, we report the results of our comparisons

in Section 4.5 and discuss them in Section 4.6.

4.1 Matched data

A matched image dataset is a set of matched images. Matched images are the images of

each individual scanned on more than two scanners with short time gap. Matched images

are expected to be images of biologically similar brain with differences solely due to scanner

effects. We thus can estimate the scanner effects and assess the harmonization by metrics of

dissimilarity and similarity within the matched images, respectively.
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4.1.1 Study population and image acquisition

The sample used in this study consists of 18 participants which are part of an ongoing

project (UH3 NS100608 grant to J. Kramer and C. DeCarli). The median age of the partic-

ipants was 72 years (range 51-78 years) and 44% (N = 8) were males. All participants were

cognitively unimpaired with either a low or high degree of small vessel disease (SVD) as pre-

viously defined (Wilcock et al., 2021)). T1-weighted (T1-w) images were acquired for each

participant on each of four different 3T scanners [GE, Philips, SiemensP, and SiemensT

(Table 3)]. For each participant, these matched images were taken at most four months

apart, a time period over which we assume no biological changes could occur in the brain

and differences observed between any pairs of scans are solely due to the scanner effects. In

a matched dataset, the scanner and harmonization effects can be estimated based on the

dissimilarity and similarity of matched images, respectively. The details of estimation of

scanner effects and evaluation of harmonization methods are provided in Section 4.4.

Table 3: Scanner specifications

Scanner Name GE Philips SiemensP SiemensT
Manufacturer General Electrics Philips Siemens Siemens
Scanner Hardware DISCOVERY-MR750w 3T Achieva-dStream 3T Prisma-fit 3T TrioTim 3T
Scanner software 27-LX-MR-Software-release: 5.6.1-5.6.1.0 syngo-MR-E11 syngo-MR-B17

DV26.0-R03-1831.b
Receive Coil 32Ch-Head MULTI-COIL BC 32Ch-Head
T1-w Sequence Type BRAVO ME-MPRAGE ME-MPRAGE ME-MPRAGE
Resolution (mm) 1.0× 1.0× 0.5 1.0× 1.0× 1.0 1.0× 1.0× 1.0 1.0× 1.0× 1.0
TE/∆TE (ms) 3.7 1.66/1.9 1.64/1.86 1.64/1.86
TR (ms) 9500 2530 2530 2530
TI (ms) 600 1300 1100 1200

4.1.2 Image preprocessing

We use RAVEL as one of our harmonization methods in this study. In order to prevent

confounding our evaluation with inconsistent preprocessing steps, we preprocessed all images

using the pipeline prescribed for RAVEL (Fortin et al., 2016). Therefore, we first used a
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non-linear symmetric diffeomorphic image registration algorithm (Avants et al., 2008) to

register images to a high-resolution T1-w image atlas (Oishi et al., 2009). We then applied

the N4 bias correction method (Tustison et al., 2010) to the registered images to correct

them for spatial intensity inhomogeneity. As the last step of the pipeline, we skull-stripped

the images using the mask provided in (Fortin et al., 2016). We also scaled images in one

additional step, in which intensity values of each image were divided by their within-mask

average intensity value. Throughout this manuscript, these preprocessed images are referred

to as RAW and used as input to our methods.

4.2 MISPEL

Our proposed framework, MISPEL, is a convolutional deep neural network for harmo-

nizing images from multiple scanners, for which a matched dataset is available. Although it

is more desirable to train a harmonization method on the whole images rather than slices,

this is not possible due to our current GPU limitations. Accordingly, we designed a two-step

training framework for MISPEL which consists of units of 2D encoder and decoder modules

for each of the scanners. The 2D network is trained on axial slices, since this orientation has

the highest resolution in our images. Algorithm 2 and Figure 12 describe our framework.

Notations and Assumptions. We consider M scanners for the matched data where

each subject is scanned on all M scanners. The axial slices across all the subjects are

combined for a total of N scans for each scanner. The dataset thus consists of Xj=1:N
i=1:M where

Xj
i is the axial slice j from scanner i, and i = 1 : M denotes i ∈ {1, . . . ,M}. We note that

for each subject, the scans are coregistered across the scanners to the mean template. Thus,

for each j, we assume the scans Xj
1 , X

j
2 , . . . , X

j
M are anatomically similar and have the same

image size of H by W . The goal is to learn a framework which derives harmonized slices

X̄j=1:N
i=1:M , where X̄j

1 ≈ · · · ≈ X̄j
m ≈ · · · ≈ X̄j

M .
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Figure 12: Illustration of MISPEL. For each of j = 1 : N input scans and for each

of i = 1 : M scanners, Enci (U-Net) outputs the corresponding latent embeddings:

Zj
i = Enci(X

j
i ). The corresponding Deci (linear function) maps the embeddings to the

output: X̄j
i = Deci(Z

j
i ). Step 1: Embedding Learning: Enci=1:M and Deci=1:M are up-

dated using the embedding coupling loss (Lcoup) and the reconstruction loss (Lrecon). Step

2: Harmonization: Only Deci=1:M are updated using the harmonization loss (Lharm) and

the reconstruction loss (Lrecon). Refer to Algorithm 1 for details on training.

4.2.1 Encoder-Decoder unit

Encoder. For each scanner i, its encoder network Enci decomposes each scan Xj
i to

its set of latent embeddings Zj
i = [Zj

i,1, . . . , Z
j
i,L] where Zj

i,l is the lth latent embedding of

Xj
i . The number of embeddings L is heuristically chosen and fixed. We use a 2D U-Net

(Ronneberger et al., 2015) for each Enci, and the latent embedding Zj
i,l ∈ RH×W is of size

identical to Xj
i .

Decoder. After each Enci, its corresponding decoder network Deci maps the latent

embeddings Zj
i to the image space X̄j

i . Since Z
j
i and Xj

i have the same sizes, we let Deci to
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be a linear function:

X̄j
i =

L∑
l=1

γi,lZ
j
i,l, (3)

where γi,l is the coefficient for Zj
i,l. Thus, each Deci learns the set of linear combination

coefficients γi,1, . . . , γi,L, which is essentially a 1× 1 convolution.

Algorithm 2 MISPEL
Variables:
- i: Scanner index
- j: Slice index
- l: Embedding’s component index
- T1, T2: Max training iterations for Step 1 and Step 2
- H,W : Height and width of each scan
- Xj

i ∈ RH×W : Axial slice j from scanner i

- Zj
i,l ∈ RH×W : Latent embedding l of Xj

i

- Zj
i = [Zj

i,1, . . . , Z
j
i,L]: L latent embeddings of Xj

i

- X̄j
i ∈ RH×W : Harmonized Xj

i

Networks:
- Enci: Encoder U-Net for X

j
i → Zj

i & Deci: Decoder linear map for Zj
i → X̄j

i

Algorithm:

1: procedure Step 1: Embedding Learning
2: for t = 1, . . . , T1 or until Xj

i ≈ X̄j
i do

3: for each slice j do
4: for each scanner i do
5: Zj

i ← Enci(X
j
i ) (embeddings)

6: X̄j
i ← Deci(Z

j
i ) (reconstruction)

7: end for
8: Update Deci=1:M and Enci=1:M (Equation (6))
9: end for
10: end for
11: end procedure (end Step 1)
12: procedure Step 2: Harmonization
13: for t = 1, . . . , T2 or until X̄j

1 ≈ · · · ≈ X̄j
M do

14: for each slice j do
15: for each scanner i do
16: Zj

i ← Enci(X
j
i ) (embeddings)

17: X̄j
i ← Deci(Z

j
i ) (harmonization)

18: end for
19: Update only Deci=1:M (Equation (8))
20: end for
21: end for
22: end procedure (end Step 2)
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4.2.2 Two-step training for harmonization

Note that each Enci-Deci setup achieves Xj
i → Zj

i → X̄j
i only with respect to each

scanner i and cannot achieve harmonization by itself. Thus, producing X̄j=1:N
i=1:M which are

harmonized across M scanners requires a mechanism to enforce such similarity. For instance,

one may näıvely train all Enci=1:M and Deci=1:M to directly impose X̄j
1 ≈ · · · ≈ X̄j

M with

a loss function. However, in practice, the coregistered scans exhibit small structural differ-

ences, and this may not guarantee preserving the brain structure. Recall that the desired

harmonization we seek must preserve the structure while matching the intensities. As we

show next, we implement a two-step training which addresses such issues: (1) first learning

the embeddings with structural information, and (2) harmonizing the intensities with the

embeddings without altering the structures.

Step 1: Embedding Learning. Algorithm 1 lines 1:11 show Step 1. For slice j

and scanner i, we first use the corresponding Enci for the input scan Xj
i to compute its

embeddings Zj
i . Then, using Deci, we also compute the output X̄j

i . Then, we update Enci

and Deci via two loss functions.

Reconstruction Loss. To derive our embeddings, we train Enci and Deci to accurately

reconstruct the input: X̄j
i = Enci(Deci(X

j
i )). We use the following reconstruction loss which

enforces each output X̄j
i to be similar to its input Xj

i :

Lrecon(Xj
i=1:M , X̄j

i=1:M ) =

M∑
i=1

MAE(Xj
i , X̄

j
i ), (4)

where MAE(Xj
i , X̄

j
i ) is the pixel-wise mean absolute error. Since each Deci is a linear

combination of the embeddings, this reconstruction process forces the embeddings to hold

structural information as shown in Figure 12.

Embedding Coupling Loss. We also incorporate a coupling mechanism to ensure

that the embeddings across the scanners roughly capture similar characteristics of the scans.

Namely, we seek Zj
1,l ≈ · · · ≈ Zj

M,l for each l:

Lcoup(Zj
1,l, . . . , Z

j
M,l) =

1

LP

L∑
l=1

P∑
p=1

var(Zj
1,l(p), . . . , Z

j
M,l(p)), (5)
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where Zj
i,l(p) denotes the p’th element of Zj

i,l and var computes the variance. Minimizing

this loss “couples” the l’th embeddings of M scanners. In practice, this loss only needs to

be weakly imposed throughout training without degrading the embedding quality.

The combined loss for Step 1 is

Lstep1 = λ1Lrecon(Xj
i=1:M , X̄j

i=1:M ) + λ2Lcoup(Zj
1,l, . . . , Z

j
M,l), (6)

where λ1 > 0 and λ2 > 0 are the weights. For each of j = 1 : N slices, we update Enci=1:M

and Deci=1:M . We repeat this for either T1 times or until the model accurately reconstructs

(i.e., Xj
i ≈ X̄j

i for all j).

Step 2: Harmonization. After Step 1, we continue with the Step 2 training (Al-

gorithm 1 lines 12:22.) Similar to Step 1, for each slice j and scanner i, we derive the

embeddings Zj
i and then the output X̄j

i . In this particular training step, we update only

Deci=1:M to achieve harmonization with the following loss.

Harmonization Loss. We finally impose the image similarity across the outputs X̄j
i=1:M

across the scanners. Specifically, we consider all pairwise similarities:

Lharm(X̄j
i=1:M ) =

2

M(M − 1)

M∑
i=1

M∑
k=i+1

MAE(X̄j
i , X̄

j
k), (7)

which computes the MAE for all combinations of pairs. One may concern about how a pixel-

wise loss such as MAE may inadvertently alter the structures to maximize the similarity.

We stress that only Deci=1:M are updated while Enci=1:M are fixed. Thus, the intensities

will be harmonized by updating γi,l of the embeddings in Equation (3), but the structures

are guaranteed to make no further changes since the embeddings are fixed.

The final loss for Step 2 also incorporates the reconstruction loss Lrecon to ensure the

harmonized slices do not overly deviate from their originals:

Lstep2 = λ3Lrecon(Xj
i=1:M , X̄j

i=1:M ) + λ4Lharm(X̄j
i=1:M ), (8)

where λ3 > 0 and λ4 > 0. Similar to Step 1, for each of j = 1 : N slices, we update Deci=1:M .

We repeat this for either T2 times or until the harmonized images are similar enough (i.e.,

X̄j
1 ≈ · · · ≈ X̄j

M for all j.). Once the training ends, the resulting outputs X̄j=1:N
i=1:M will be the

desired harmonized slices.
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4.2.3 Harmonization practicality

The typical approach for supervised harmonization methods involves utilizing matched

data to train models that capture scanner effects specific to the scanners from which the

matched data originated (Dewey et al., 2019; Wrobel et al., 2020). Once trained, these

models can be applied to harmonize images acquired from any of the scanners involved in

the training dataset. Notably, the images undergoing harmonization do not necessarily have

to be matched, and the harmonization process can be applied independently to images from

each scanner. To demonstrate the practicality of MISPEL in harmonization, we conducted a

6-fold cross-validation at the subject level, employing a 12/3/3 split for training, validation,

and testing, respectively. In this setup, the images of validation and test sets are treated as

unmatched images and are harmonized individually. Moreover, these images are harmonized

by models that have not seen them during their training.

We used RAW images as the input of MISPEL. As explained in Section 4.2.2, we started

by training each of the 6 models (i.e. datasets) with Step 1 and then continued with Step 2.

For tuning the hyper-parameters of the models, we used the images of the validation sets. In

Step 1, we fixed λ1 = 1 and trained models for λ2 ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and L ∈ {4, 6, 8}.

We then selected appropriate values of these hyperparameters for each of the 6 models based

on the Lstep1 values for their validation sets. In Step 2, we fixed the models for λ3 = 1 and

trained the models for λ4 = {1, 2, 3, 4, 5, 6}. We selected appropriate values of λ4 for each

model based on the Lstep2 for their validation sets. The training was conducted on NVIDIA

RTX5000 for T1 = 100 and T2 = 100 with the batch size of 4. For both steps, we used ADAM

optimizer (Kingma and Ba, 2014) with a learning rate of 0.01. Training of each model took

approximately 200 and 30 minutes for Step 1 and Step 2, respectively.

We then used the tuned models for harmonizing their corresponding test sets. In the

next section, we explain that two of our competing methods, WS and RAVEL, were designed

to be applied to all images at once. For ease of comparing MISPEL to these methods, we

pooled all the MISPEL-harmonized test sets as one harmonized set. This is the dataset that

is used in Section 4.5 for reporting the harmonization performance of MISPEL.
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4.3 Competing methods

We compared MISPEL with one method of intensity normalization, White Stripe (WS),

and two methods of harmonization, RAVEL and CALAMITI. We selected WS and RAVEL

as they (1) are widely applied to MRI neuroimaging data, (2) can be applied to multiple

(more than two) scanners, and (3) do not require specifications of a target scanner. We

considered CALAMITI as our main competing method since it can be slightly modified and

applied to matched data, and could be regarded as one of the state-of-the-art methods in

harmonization. We emphasize that determining the ultimate state-of-the-art harmonization

method is not trivial as harmonization lacks standardized evaluation criteria.

4.3.1 White Stripe

It is an individual-level intensity normalization method for removing discrepancy of in-

tensities across subjects within tissue types (Shinohara et al., 2014b). It first extracts the

normal-appearing white matter voxels of the image and estimates moments of their intensity

distribution. It then uses these moments in the z-score transformation for normalizing the

voxels of all brain tissue types.

4.3.2 RAVEL

It is an intensity normalization and harmonization framework (Fortin et al., 2016). It ini-

tializes with a WS normalization step and then applies a voxel-wise harmonization strategy

to images. In the harmonization strategy, RAVEL first estimates the components of scanner

effects by applying singular value decomposition to cerebrospinal fluid (CSF) voxels of im-

ages. These voxels are known to be unassociated with disease status and clinical covariates

and are representative of scanner effects. RAVEL then uses these voxels to estimate scanner

effects and harmonizes the images by removing the estimated scanner effects from the voxel

intensities. Throughout the estimation of the scanner effects, we considered the status of

the subjects (cognitively normal with low or high degree of SVD) as the biological/clinical
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covariates. We also set the components of scanner effects to 1, as suggested in the origi-

nal work (Fortin et al., 2016). For further details on the biological/clinical covariates and

components of scanner effects, see Algorithm 1 in Section 3.2.1.

4.3.3 CALAMITI

It is an unsupervised deep-learning method for harmonizing multi-scanner inter-modality

paired dataset (Zuo et al., 2021b). CALAMITI maps images of scanners to the contrast

of a target image. Inter-modality paired dataset consists of images of two predetermined

modalities taken from one individual on the same scanner with a short time gap. This

dataset can have paired images of multiple scanners. For simplicity, we refer to these images

as paired in the description of this method. CALAMITI should be first trained on paired

images of two scanners, one of which should be the target scanner. It could then be fine-tuned

to map images of other scanners to the target domain. During the training, CALAMITI first

gets the paired images as inputs and generates a disentangled representation that captures

the mutual scanner-invariant anatomical information (β) of images as well as the scanner-

variant contrast information (θ)s of their modalities and scanner. It then synthesizes the

input paired images using their generated mutual β and θs. For harmonizing an input image,

the trained model is used to generate the β of the image and θ of the target image. The

model then synthesizes the harmonized image (adapted image to the target domain) using

these two components.

We used CALAMITI as a supervised method by simply training it on our inter-scanner

paired data. Like MISPEL, we used the 6-fold cross-validation strategy for training and

testing the models. We also pooled the harmonized test sets to have one set of data to

report the harmonization performance of CALAMITI in Section 4.5. Following its original

paper, we went through one step of normalization and trained CALAMITI using the WS-

normalized RAW images. Instead of conducting fine-tuning, we went for a simpler approach

and trained 3 individual models to map GE, Philips, and SiemensP to SiemensT as our

target scanner. We used the same machines used for MISPEL and trained CALAMITI

with the hyper-parameters reported in its original paper. For being comparable and fair to
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other methods, we trained CALAMITI on 2D axial slices and skipped its super-resolution

preprocessing step and post-harmonization slice-to-slice consistency enhancement step.

Among the competing methods, we regard CALAMITI as a state-of-the-art harmoniza-

tion method to compare against MISPEL, and we emphasize that WS and RAVEL were

not designed to use matched data in their technical variability removal process. Specifically,

WS is an intensity normalization method, which does not account for scanner information.

However, it is beneficial to study scanner effects and harmonization on the WS-normalized

data to emphasize the importance of harmonization for neuroimaging data. On the other

hand, RAVEL was designed to remove the inter-subject technical variability of images after

intensity normalization. Although RAVEL does not account for scanner information either,

scanner effects may appear in the singular value decomposition component extracted in-

dividually for each of the subjects from their CSF tissue in this framework. As such, we

regard RAVEL as a normalization and harmonization framework that can be compared to

CALAMITI and MISPEL to evaluate the advantages of using and accounting for matched

data in harmonization methodology.

4.4 Data analysis

A harmonization method is expected to remove scanner effects while preserving the bio-

logical variables of interest in the data. In our specific matched dataset, the matched images

are assumed to be biologically identical but differ due to scanner differences. Thus, the

scanner effects can be estimated as dissimilarity of the matched images, and removing the

scanner effects can be regarded as increasing their similarity. We investigated the dissimilar-

ity and similarity of matched images using four evaluation criteria: (1) image similarity, (2)

GM-WM contrast similarity, (3) volumetric and segmentation similarity, and (4) biological

similarity. We also selected SVD as the clinical signal of interest in our data and investi-

gated whether we could preserve or even enhance the SVD group differences in our data

after harmonization.

We performed our evaluation metrics for all five methods: RAW, White Stripe, RAVEL,

63



CALAMITI, and MISPEL. The entire matched dataset was used in evaluating each method

unless otherwise mentioned. Many of our evaluation metrics require pairwise image-to-

image comparison, for which we considered all possible combinations of scanner pairs : {(GE,

Philips), (GE, SiemensP), (GE, SiemensT), (Philips, SiemensP), (Philips, SiemensT), and

(SiemensP, SiemensT)}. Throughout this manuscript, the two matched images of each

scanner pair are referred to as paired images. To determine the statistical significance of any

comparisons, we used paired t-test with p < 0.05 denoting the significance.

Scanner effects could appear as contrast dissimilarity across images of different scanners

(Dewey et al., 2019, 2020; Liu et al., 2021). More specifically, such dissimilarity could appear

as tissue-specific contrast differences in images (Meyer et al., 2019). We, therefore, assessed

scanner effects and evaluated harmonization using an image similarity metric to measure

the similarity of cross-scanner images in their appearance, as well as a GM-WM contrast

similarity metric to assess the tissue contrast similarity of images.

We first investigated the image similarity. For this, we assessed the visual quality of the

matched slices for all methods. We also quantified the similarity of all paired images using

the structural similarity index measure (SSIM). SSIM is a pairwise metric that compares

two images in terms of their luminance, contrast, and structure. A harmonization method

is expected to increase the visual and structural similarity of paired images.

Second, we investigated the GM-WM contrast similarity of images. The GM-WM

contrast can highly influence the quality of segmentation methods, and increased contrast is

expected to result in more accurate segmentation. The GM-WM contrast of an image can

be estimated as the separability of its histograms of GM and WM voxels. This separability

was conducted as the classification of GM and WM voxels of an image in (Torbati et al.,

2021) and reported as the area under the receiver operating characteristic (AUROC) values,

with AUROC = 100% denoting perfect classification (complete separation of histograms)

and AUROC = 50% showing random classification (complete overlap of histograms). For

calculating AUROC, we first labeled GM and WM voxels of the image using the tissue

mask in the EveTemplate package (Oishi et al., 2009). We then classified these voxels using

intensity thresholds selected from the range of intensity values of the GM and WM voxels.

Lastly, we formed the AUC curve of the image using the result of each classification. A
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harmonization method is expected to increase the GM-WM contrast similarity.

Third, we investigated the volumetric and segmentation similarity criterion for

images. The most practical benefit of harmonization is to enable unbiased multi-scanner

neuroimaging analyses with minimal scanner effects. Tissue-specific regional neuroimaging

measures are the basis of these analyses, and therefore, the volumetric and segmentation

similarity of these measures across paired images is a crucial metric for evaluating harmo-

nization. We segmented and measured the volumes of the two brain tissue types: GM and

WM. We then analyzed the similarity of each of these two tissue types separately in four

ways: (1) volume distributions, (2) volumetric bias, (3) volumetric variance, and (4) seg-

mentation overlap. For volumetric distributions, we compared the distributions of volumes

of each tissue type across their four scanners. These plots show the harmonization perfor-

mance of methods as the similarity of the distributions of their harmonized measures across

scanners. Most of the metrics used in the three other criteria are pairwise comparisons, thus

we applied them separately to all of the 6 scanner pairs. Volumetric bias and variance are

two metrics assessing the similarity of measures across scanners in two different ways. For

volumetric bias, we calculated the absolute differences between volumes of paired images of

each scanner pair and evaluated the harmonization based on the mean of these differences

over all individuals of the scanner pair. We used root-mean-square deviation (RMSD) for

estimating the volumetric variance of paired images of all individuals within each scanner

pair. RMSD of a scanner pair denotes the deviation of volumes of one scanner from that of

the other scanner. Lastly, we used Dice similarity score (DSC) to estimate the overlap of tis-

sue segmentation of paired images of each scanner pair. The mean of these DSC values over

paired images of all subjects was used as an evaluation metric for harmonization. A harmo-

nization method is expected to result in (1) similar distribution of volumes across scanners,

(2) minimal (ideally zero) bias, (3) minimal (ideally zero) variance, and (4) maximal (ideally

complete) segmentation overlap; for both tissue types and all scanner pairs.

We conducted the volumetric and segmentation similarity evaluation using two segmen-

tation tools: (1) FSL FAST (version 6.0.3) (Zhang et al., 2001), and (2) segmentation in Sta-

tistical Parametric Mapping (SPM12) (Ashburner and Friston, 2005). These frameworks are

widely used for tissue segmentation in neuroimaging studies, however, the results of these two
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segmentation algorithms could have moderate to large differences (Tudorascu et al., 2016).

We, therefore, assessed volumes from each segmentation tool independently. Originally, the

output of WS, RAVEL, CALAMITI, and MISPEL methods were images in template space,

as all methods used RAW images as input. The RAW images were non-linearly registered to

a T1-w image atlas (Oishi et al., 2009) in the preprocessing step, Section 4.1.2. Using their

inverse transformations, processed images of all methods were transferred to their native

space and then used as inputs of the two segmentation tools for tissue volume extraction

and then volumetric similarity evaluation. On the other hand, for having a meaningful tis-

sue segmentation overlap, segmentations and accordingly their images should remain in their

template space. Thus, we also ran FSL and SPM frameworks on the template-space images

to generate the segmentations and then evaluate the segmentation overlap similarity. For all

runs of the segmentation frameworks, we set the tissue class probability thresholds to 0.8.

Fourth, we investigated the biological similarity of images using biomarkers of Alzheimer’s

disease (AD). We studied the bias (mean of cross-scanner absolute differences) and variance

(RMSD) for these biomarkers. For bias, we calculated the cross-scanner absolute differences

of all scanner pairs and reported their mean (SD). For variance, we calculated the mean of

RMSDs across all scanner pairs. We report these metrics for all 5 methods and all biomarkers

of AD. As biomarkers of AD, we investigated cortical thickness measures of the entorhinal

and inferior temporal cortices, as well as volume measures of the hippocampus and amyg-

dala. These summary measures are the sum of measures over both hemispheres, and they

were extracted using FreeSurfer 7.1.1 (FS) (Fischl, 2012). These regions have previously

been found to be most relevant to AD (Schwarz et al., 2016). We extracted these measures

across all harmonization methods for 17 of the 18 total subjects. RAVEL-harmonized images

of a single subject failed FS segmentation due to an error in the corpus callosum segmen-

tation step. Thus, for a fair comparison across methods, we omitted this subject from the

experiments on biomarkers of AD. We also skipped skull stripping and bias correction steps

in the FS processing pipeline, as RAW images had already gone through skull-stripping and

N4 bias correction during image preprocessing (Section 4.1.2).

Fifth and last, we investigated whether each harmonization method preserved or even

enhanced a biological/clinical signal of interest in our matched data. We selected
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SVD as our clinical signal of interest and investigated the effect size between two groups of

low and high SVD in our data. For this experiment, we calculated Cohen’s d effect sizes of

the two SVD groups for each of our FS-derived biomarkers of AD individually. For each of

the biomarkers, we calculated the size effects of the scanners separately and reported the

mean (SD) of these values across scanners. A harmonization method is expected to not

deteriorate the effect sizes of groups after harmonization.

4.5 Results

In this section, we report our evaluation criteria on RAW, WS-normalized, RAVEL-,

CALAMITI-, and MISPEL-harmonized images. For a more convenient comparison with

RAW, WS and RAVEL, we pooled harmonized images of each of CALAMITI and MISPEL

as one dataset.

4.5.1 Image similarity

The similarity of images across normalization and harmonization methods is depicted in

Figures 13 and 14. Visual assessment of processed images in Figure 13 revealed that (1)

scanner effects are present in the matched RAW images and appear most significantly as

differences in image contrast, (2) White Stripe made matched images more similar, but at

the expense of decreased contrast, (3) RAVEL improved upon WS by increasing contrast

relative to WS-normalized images, (4) CALAMITI improved similarity of the matched images

by adapting contrast across all scanners to that of the RAW SiemensT, and (5) MISPEL

improved the similarity of images similarly to CALAMITI but visually smoothed images to

some extent.

For a quantitative understanding of similarity of images, we explored the SSIM distribu-

tion of the matched images of all subjects for the 6 scanner pairs enumerated in Section 4.4.

These distributions are depicted as violin plots for the five methods: RAW, WS, RAVEL,

CALAMITI, and MISPEL in Figure 14. The violin plots with the smallest SSIM mean
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Figure 13: Visual assessment of matched images of a slice. Rows and columns corre-

spond to methods and scanners, respectively. All four methods: WS, RAVEL, CALAMITI,

and MISPEL made the matched slices of RAW more similar, with CALAMITI and MISPEL

preserving their contrast the most.

belong to RAW, indicating scanner effects exist in our matched dataset as dissimilarity of

images. Scanner pairs including GE have long-tailed distributions, which indicates that GE

images are most dissimilar to others. Moreover, the SiemensP-SiemensT scanner pair had

the largest SSIM mean, indicating that these two are the most similar scanners.

We observed that WS, RAVEL, CALAMITI, and MISPEL improved SSIM of RAW for

all of its scanner pairs, except for CALAMITI for the SiemensP-SiemensT scanner pair.

Lastly, we observed that MISPEL outperformed the other three methods. All comparisons

were statistically significant (assessed using paired t-tests), except for CALAMITI for the

Philips-SiemensP and SiemensP-SiemensT pairs.
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Figure 14: Structural similarity index measures (SSIM) for the matched dataset.

The SSIM distributions of images of scanner pairs were depicted as violin plots for each

of the methods. A harmonization method is expected to have the highest mean of SSIM.

MISPEL improved SSIMs of RAW and outperformed the other three methods.

4.5.2 GM-WM contrast similarity

We quantified the GM-WM contrast of an image using the AUROC values denoting the

separation of histograms of GM and WM voxel intensities. High AUROC indicates higher

contrast, with 100% the highest. In Figure 15, we depicted the spaghetti plots of AUROC

values of images of all subjects across the four scanners. A harmonization method is expected

to (1) make the AUROC of matched images similar, i.e., results in overlapped lines, and (2)

not deteriorate the AUROC of images.

Figure 15a shows that scanner effects exist in RAW data and appeared as dissimilarity of

GM-WM contrast in matched dataset, i.e., distant lines in this plot. Figure 15b shows that

WS does not change AUROCs of RAW. On the other hand, Figures 15c, 15d, and 15e show

respectively that RAVEL, CALAMITI, and MISPEL resulted in more overlapped lines, with

MISPEL having the highest overlap.

Figure 16 shows the bar plots indicating the mean AUROC of images of each scanner.
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(a) RAW. (b) WS.

(c) RAVEL. (d) CALAMITI.

(e) MISPEL.

Figure 15: GM-WM contrast spaghetti plots. The GM-WM contrast was estimated

as AUROC values and was depicted for images of all subjects as spaghetti plots. In these

plots, each line corresponds to one scanner. A harmonization method that performs well

should show overlap of the lines. Plots showed that MISPEL outperformed WS, RAVEL,

and CALAMITI with the highest overlap of the lines.

MISPEL is the only method that increased the mean AUROC of RAW images for all scan-

ners. We also observed that: (1) WS did not change the mean AUROC value of RAW, (2)

RAVEL improved the contrast for GE and Philips, but made it worse for SiemensP and

SiemensT, and (3) CALAMITI improved the mean AUROC of GE and Philips and did not
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affect that of other scanners. In addition to these results, MISPEL seems to be the most

successful method in bringing the mean AUROC of the scanners closer to each other. In

summary, we show that MISPEL is the only method that satisfied both harmonization cri-

teria determined for GM-WM contrast similarity.

Figure 16: GM-WM contrast bar plots. Each bar indicates the mean AUROC of im-

ages of each scanner, with error bars denoting the standard deviation for each method. A

harmonization method is expected to not deteriorate the GM-WM contrast of images. Plots

show that MISPEL outperformed WS, RAVEL, and CALAMITI reflected in the similarity

of the boxplots.

4.5.3 Volumetric and segmentation similarity

We estimated the volumetric and segmentation similarity of GM and WM tissue types

based on four criteria: (1) volume distributions, (2) volumetric bias, (3) volumetric variance,

and (4) segmentation overlap. We performed our evaluation for FSL and SPM segmenta-

tion frameworks and expected the harmonization methods to result in: (1) similar volume

distributions across scanners, (2) minimal bias, (3) minimal variance, and (4) maximal seg-

mentation overlap; for both tissue types and both segmentation frameworks.
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(a) FSL framework. MISPEL outperformed WS, RAVEL, and CALAMITI by resulting in more
similar volume distributions across scanners for both tissue types.

(b) SPM framework. No visually significant noticeable harmonization was observed for any of
the methods.

Figure 17: Volume distribution boxplots. Boxplots denote the volume distribution of

GM and WM tissue types for images of each scanner. These boxplots were depicted for

all five methods and explored for two segmentation frameworks: (a) FSL and (b) SPM.

A harmonization method is expected to result in similar distributions of volumes across

scanners.

4.5.3.1 Volume distributions

Figure 17 shows boxplots of volumes of the two tissue types, GM and WM, across the four

scanners for all five methods, with Figures 17a and 17b depicting these boxplots for volumes

extracted by FSL and SPM frameworks, respectively. Plots in Figure 17a showed that

scanner effects exist in the matched volumes derived through FSL and appeared as dissimilar

boxplots for RAW across scanners. When compared to RAW, WS and RAVEL resulted in
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more dissimilar boxplots for FSL-derived volumes of both GM and WM. On the other hand,

we noticed that the use of CALAMITI and MISPEL helped towards harmonization of data.

CALAMITI made GE and Philips more similar to SiemensP and SiemensT for both GM

and WM, but increased variance for distributions of all scanners for WM. Similarly, MISPEL

made GE more similar to SiemensP and SiemensT for both GM and WM volumes.

Figure 17b showed that scanner effects exist in RAW volumes extracted by SPM too.

Our normalization and harmonization methods though resulted in relatively minor changes

in SPM-derived GM and WM volumes, with CALAMITI and MISPEL showing the most

noticeable changes. Both CALAMITI and MISPEL made Philips closer to SiemensP and

SiemensT for GM volumes. They also made GE closer to these two scanners for WM.

In summary, MISPEL and CALAMITI outperformed WS and RAVEL in harmonizing

FSL-derived volumes and none of the methods resulted in visually significant assessed har-

monization for the SPM-derived volumes, when volumetric distribution similarity of both

GM and WM volumes were used as the evaluation metric. Results for the statistical assess-

ment of harmonization of FSL- and SPM-derived GM and WM volumes are presented in the

next section.

4.5.3.2 Volumetric bias

Table 4 shows mean and standard deviation (SD) of cross-scanner absolute differences

of all paired volumes in each scanner pair. We calculated these statistics for volumes of GM

and WM tissue types extracted using FSL and SPM segmentation frameworks, for all five

methods. We also presented the distributions of these differences as violin plots in Figure 18.

Using paired t-test, we compared each of these distributions to their equivalent distributions

in RAW.

A harmonization method is expected to result in minimal (ideally zero) mean of ab-

solute differences (bias), with no major increase in SD of the differences. The SD values

indicate the consistency of harmonization across subjects. A harmonization method should

harmonize images of all subjects to a comparable degree, and thus should not increase the

SDs drastically. Likewise visually, the violin plots in Figure 18 for harmonized images are
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expected to be centered as close as possible to zero.

We observed that scanner effects exist in the RAW volumes extracted through FSL

framework and appeared for all scanner pairs as non-zero bias values. We also observed

that MISPEL resulted in the largest number of smallest biases for FSL-derived volumes,

when compared to the other three methods. This number was 11 out of a total of 12

cases, which are the 6 scanner pairs of the 2 tissue types. 8 out of these 11 biases were

significantly different than their equivalents in RAW. Moreover, we noticed that MISPEL

did not significantly increase the SD of distributions, just 2 increases out of 12, in which

only the SD of GM for the GE-Philips pair had a major increase. On the other hand, WS,

Table 4: Mean absolute differences for GM and WM volumes. Mean (SD) of cross-

scanner absolute differences of volumes for all scanner pairs and all methods. The volumes

are for GM and WM tissue types and were extracted through two segmentation frameworks:

FSL and SPM. A harmonization method that works is expected to have low values of mean

and SD for all paired scanners. MISPEL outperformed WS, RAVEL, and CALAMITI by

having the largest number of smallest means and not significantly increasing the values of

SD, for both FSL and SPM. The distributions with the smallest means are in bold. Also, the

distributions that showed statistically significant t-statistics when compared to RAW were

marked by *.

Framework Tissue Method
Mean (SD) of Volumetric Absolute Differences for Paired Dataset

GE-Philips GE-SiemensP GE-SiemensT Philips-SiemensP Philips-SiemensT SiemensP-SiemensT

FSL

GM

RAW 19.82 (9.10) 55.84 (16.54) 46.53 (16.94) 39.70 (15.28) 29.00 (15.75) 12.14 (9.17)

WS 43.53 (56.27) 56.66 (29.56) 46.34 (31.84) 49.31 (40.21) 43.09 (49.92) 18.00 (15.37)

RAVEL 27.53 (32.28) 52.88 (16.60) 39.22 (22.41) 38.87 (17.79) 24.65 (20.50) 17.53 (9.35)

CALAMITI 32.29 (21.87)* 26.07 (33.88)* 32.18 (31.05) 28.06 (16.00)* 26.07 (17.98) 26.02 (26.47)*

MISPEL 11.10 (17.81) 19.04 (10.91)* 14.26 (14.14)* 19.48 (9.59)* 10.73 (9.28)* 11.10 (8.31)

WM

RAW 15.39 (11.29) 59.59 (20.92) 42.45 (18.37) 67.30 (13.41) 50.16 (16.43) 17.89 (15.48)

WS 46.99 (54.09)* 100.63 (64.18)* 71.35 (47.72)* 119.73 (79.23)* 81.41 (41.29)* 41.03 (50.11)

RAVEL 43.95 (36.46)* 65.02 (37.96) 42.42 (34.98) 89.59 (49.34) 57.60 (23.77) 32.18 (39.53)

CALAMITI 61.39 (37.88)* 28.57 (23.69)* 59.84 (64.36) 65.60 (24.08) 68.64 (46.78) 58.07 (74.88)*

MISPEL 38.56 (14.31)* 24.95 (18.39)* 15.73 (15.60)* 57.09 (13.30)* 42.27 (11.87)* 15.34 (14.01)

SPM

GM

RAW 48.22 (20.82) 23.45 (12.67) 19.37 (11.23) 63.57 (15.90) 44.65 (16.94) 19.86 (13.77)

WS 48.60 (21.35) 21.75 (13.15) 14.94 (12.70) 65.72 (15.54) 46.84 (18.99) 19.46 (13.53)

RAVEL 46.12 (22.48) 10.44 (7.57)* 15.22 (9.77) 53.82 (18.48)* 39.14 (20.99) 15.26 (12.85)*

CALAMITI 42.22 (36.06) 37.85 (28.09) 49.62 (41.39)* 46.81 (23.06)* 28.44 (19.67)* 51.51 (34.64)*

MISPEL 42.74 (15.04) 16.28 (10.44) 18.06 (15.41) 41.07 (15.77)* 30.28 (17.58)* 14.65 (10.15)

WM

RAW 21.06 (15.98) 40.40 (18.08) 35.45 (20.87) 53.16 (11.74) 48.22 (12.32) 9.06 (7.31)

WS 25.97 (20.29)* 40.18 (23.46) 34.18 (27.71) 54.43 (11.43) 48.80 (13.16) 9.69 (7.53)

RAVEL 22.49 (15.69) 35.60 (19.36)* 34.02 (21.03) 47.64 (10.95)* 46.48 (12.14) 8.41 (8.00)

CALAMITI 40.14 (21.52)* 16.24 (9.80)* 20.13 (18.07)* 49.31 (16.99) 34.67 (16.21)* 20.21 (17.92)*

MISPEL 19.82 (15.10) 27.34 (14.73)* 19.88 (17.08)* 43.61 (11.00)* 35.05 (12.66)* 14.43 (7.34)*
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RAVEL, and CALAMITI showed increases in SD of differences for all 12 distributions, with

WS showing the most drastic increases (Figure 18). In general, RAVEL and CALAMITI

harmonized FSL-derived volumes to some extent. Compared to RAW, RAVEL resulted in 5

decreased biases and CALAMITI resulted in 6 decreases. However, CALAMITI also resulted

in drastically increased biases for the WM volumes of 5 of the scanner pairs (Figure 18a).

(a) FSL framework.

(b) SPM framework.

Figure 18: Absolute difference violin plots. The distributions of absolute differences

of paired volumes as violin plots for all scanner pairs. The volumes are for GM and WM

tissue types and extracted using two segmentation frameworks: (a) FSL and (b) SPM.

A harmonization method is expected to result in short and fat (wide) violins, with mean

values centered at zero. MISPEL outperformed WS, RAVEL, and CALAMITI by having

largest number of these violin plots for both FSL and SPM. The distributions that showed

statistically significant t-statistics when compared to RAW were marked by **.

Results of RAW volumes extracted by SPM show that SPM is also sensitive to scanner

effects. MISPEL and CALAMITI decreased bias for 11 and 7 cases, respectively. They
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resulted in the largest numbers of smallest biases for SPM: 5 and 4 out of 12 cases for

MISPEL and CALAMITI, respectively. Among these cases, 3 for each of MISPEL and

CALAMITI showed statistically significant differences when compared to RAW. On the

other hand, CALAMITI increased SD for 8 out of 12 cases, while other methods did not

show any major increases. This can be observed in Table 4 as well as Figure 18b. WS and

RAVEL harmonized the SPM-derived volumes to some extent by decreasing the biases of 5

and 11 cases, respectively. They also resulted in a few smallest biases: 1 case for WS and 2

cases for RAVEL.

Summarizing Table 4 and Figure 18, we observed that MISPEL outperformed WS,

RAVEL, and CALAMITI when FSL and SPM were used for extracting volumes and volu-

metric bias and SD of differences were used as harmonization evaluation metrics.

4.5.3.3 Volumetric variance

Figure 19 shows bar plots that indicate the RMSD of paired volumes in each of the

scanner pairs. We calculated these values for volumes of GM and WM tissue types and

depicted them for all five methods. Figure 19 contains these sets of bar plots for volumes

extracted through FSL and SPM frameworks in Figures 19a and 19b, respectively. Ideal

harmonization would result in a zero RMSD for each scanner pair.

We observed that scanner effects exist in RAW volumes for both segmentation frame-

works and appeared as non-zero RMSD values. Also, MISPEL outperformed WS, RAVEL,

and CALAMITI, showing the smallest RMSD values: 6 and 8 out of 12 cases for FSL and

SPM, respectively. These statistics are 0 and 1 for CALAMITI as well as 0 and 3 for RAVEL.

We also observed that WS did not improve the RMSD values of any 12 scanner pairs for

FSL, when compared to RAW. However, it performed better for SPM by decreasing the

number of worse cases to 6. MISPEL, CALAMITI, and RAVEL deteriorated some of the

RMSDs too. Among these methods, MISPEL deteriorated the least number of cases, 4 for

each of the FSL- and SPM-derived volumes.

In summary, we observed that MISPEL outperformed WS, RAVEL, and CALAMITI

when FSL and SPM were used for deriving volumes and volumetric variance was used as the
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(a) FSL framework.

(b) SPM framework.

Figure 19: Root-mean-square deviation (RMSD) bar plots for GM and WM vol-

umes. Bar plots indicate the RMSD of paired volumes in scanner pairs. These values were

calculated for volumes of GM and WM tissue types and depicted for all five methods. These

set of bar plots were depicted for volumes extracted through two segmentation frameworks:

(a) FSL and (b) SPM. A harmonization method is expected to lower values of RMSDs. MIS-

PEL outperformed WS, RAVEL, and CALAMITI by having the largest number of smallest

RMSD values for volumes of both FSL and SPM.

harmonization evaluation metric.

4.5.3.4 Segmentation overlap

Figure 20 shows bar plots that indicate the mean DSC of all paired segmentations in

each scanner pair. We calculated the means of DSCs for segmentations of GM and WM

tissue types and depicted them for all five methods. Figure 20 contains these sets of bar

plots for segmentations extracted through FSL and SPM frameworks in Figures 20a and 20b,
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(a) FSL framework.

(b) SPM framework.

Figure 20: Dice similarity score (DSC) bar plots. Bar plots indicate the means of DSCs

of all paired segmentations in scanner pairs. These values were calculated for segmentations

of GM and WM tissue types and depicted for all four methods. These set of bar plots were

depicted for volumes extracted through two segmentation frameworks: (a) FSL and (b) SPM.

A harmonization method is expected to result in high mean of DSCs. MISPEL outperformed

WS, RAVEL, and CALAMITI by having the largest DSC means for all scanner pairs in both

FSL and SPM.

respectively. DSC shows the overlap of two paired segmentations. A good harmonization

method would result in an increased mean of DCSs for all scanner pairs, with 1 indicating

the highest.

We observed in Figure 20 that scanner effects exist in RAW segmentations of both FSL

and SPM and appeared as relatively low means of DSC values. MISPEL outperformed

WS, RAVEL, and CALAMITI in harmonization by having the largest means of DSC for

all scanner pairs for both FSL and SPM. We compared the DSC distributions of MISPEL
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with their equivalents in RAW using paired t-test and all improvements of MISPEL over

RAW were statistically significant. Results also showed that while WS decreased the DSC

for two scanner pairs for FSL, it did better for SPM by increasing the means for 6 of the

cases. RAVEL performed slightly better than WS by increasing 6 and decreasing 3 of the

DSC means for FSL and improved 9 cases for SPM. CALAMITI showed 10 and 6 increases

for FSL and SPM, respectively, while decreasing the rest of the cases. Using paired t-tests,

we observed that these DSCs were statistically significantly larger than that of their RAW

equivalents.

In summary, MISPEL outperformed WS and RAVEL, when FSL and SPM were used as

segmentation frameworks and segmentation overlap was used as the harmonization evalua-

tion metric.

4.5.4 Biological similarity

We investigated biological similarity of images over several biomarkers of AD: cortical

thickness values of the entorhinal and inferior temporal cortices, as well as volume measures

of the hippocampus and amygdala. As the evaluation criteria, we selected (1) biomarker

bias, and (2) biomarker variance. A harmonization method is expected to result in minimal

bias and variance for the biomarkers.

Table 5 shows the biomarker bias for each of the AD biomarkers. We reported this metric

for all 5 methods. For each method, we first calculated the absolute differences between

paired measures of all the scanner pairs and then reported their overall mean (SD). We

also compared the distribution of differences for each of the methods to that of RAW, using

paired t-test. Moreover, Figure 21 shows the mean of RMSDs across all scanner pairs for

each of the methods. These means were calculated for each of the AD biomarkers separately.

We observed in Table 5 and Figure 21 that scanner effects appeared as non-zero bias and

variance values for the biomarker measures in the RAW data, respectively. We also noticed

that MISPEL resulted in the largest number of statistically-significant smallest biases: 3 out

of 4. MISPEL did not harmonize hippocampus. It slightly increased cross-scanner volumetric

differences for hippocampus, but this increase is not statistically significant. On the other

79



hand, WS and RAVEL statistically significantly increased the distribution of differences for

all biomarkers, except for amygdala. CALAMITI showed similar performance. This method

resulted in increase in distribution of differences for 3 biomarkers while being statistically

significant for 2 of them. The same trend of results was also seen for the mean of RMSD

values in Figure 21.

In summary, we observed that MISPEL outperformed WS, RAVEL, and CALAMITI

when harmonization was investigated as bias and variance across scanners in FS-derived

biomarkers of AD.

4.5.5 Analysis on biological variables of interest

We investigated whether harmonization could succeed in preserving or strengthening

SVD-related group differences in our data. For this, we studied the Cohen’s d effect sizes of

SVD groups in each of the scanners. We calculated these values for each of the biomarkers

and methods separately. Table 6 shows mean (SD) of these Cohen’s d values over all scan-

Table 5: Mean absolute differences for biomarkers of AD. Mean (SD) of cross-scanner

absolute differences were calculated for paired measures across all scanner pairs. The mea-

sures are the FS-derived cortical thicknesses for the entorhinal and inferior temporal cortices,

as well as volumes for the hippocampus and amygdala. A harmonization method is expected

to decrease mean and SD of differences in RAW. MISPEL showed the best harmonization

performance by having the largest number of smallest mean of differences. The distribu-

tions with the smallest means are in bold. Also, the distributions that showed statistically

significant t-statistics when compared to RAW were marked by *.

Mean (SD) of absolute differences over all scanner pairs

Cortical Thickness (mm) Volume (cm
3
)

Method Entorhinal Inferior Temporal Hippocampus Amygdala

RAW 0.62 (0.42) 0.46 (0.36) 0.30 (0.23) 0.25 (0.20)

WS 1.00 (0.73)* 0.63 (0.48)* 0.43 (0.52)* 0.23 (0.30)

RAVEL 0.84 (0.57)* 0.56 (0.41)* 0.41 (0.29)* 0.24 (0.21)

CALAMITI 0.87 (0.60)* 0.45 (0.32) 0.71 (0.54)* 0.30 (0.26)

MISPEL 0.46 (0.34)* 0.25 (0.24)* 0.32 (0.26) 0.19 (0.18)*
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Figure 21: Root-mean-square deviation (RMSD) bar plots for biomarkers of AD.

Each bar indicates the mean RMSD of paired measures of all scanner pairs for each of

the methods. The RMSDs were reported for each of the FS-derived biomarkers of AD. A

harmonization method is expected to lower values of RMSDs. MISPEL outperformed WS,

RAVEL, and CALAMITI by having the largest number of smallest RMSD values..

ners. A harmonization method is expected to not reduce these means of Cohen’s d after

harmonization, that is to preserve group differences. We observed that MISPEL increased

Table 6: Mean (SD) of Cohen’s d measures for biomarkers of AD. Mean (SD) of

Cohen’s d values were calculated over all scanners for biomarkers of AD and all methods. A

harmonization method is expected to preserve or increase the effect sizes calculated relative

to RAW. Increased effect sizes relative to RAW are in bold.

Mean (SD) of Cohen’s d measures over all scanners

Cortical Thickness Volume

Method Entorhinal Inferior Temporal Hippocampus Amygdala

RAW 0.46 (0.14) 0.66 (0.38) 0.76 (0.20) 0.74 (0.26)

WS 0.50 (0.11) 0.62 (0.39) 0.29 (0.13) 0.40 (0.11)

RAVEL 0.49 (0.18) 0.62 (0.34) 0.26 (0.11) 0.30 (0.22)

CALAMITI 0.50 (0.51) 0.57 (0.65) 0.31 (0.13) 0.28 (0.10)

MISPEL 0.71 (0.09) 0.73 (0.14) 0.73 (0.20) 0.80 (0.17)
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effect sizes for all of the biomarkers, except for hippocampus. MISPEL resulted in a minor

decrease in Cohen’s d of hippocampus. On the other hand, WS, RAVEL, and CALAMITI

resulted in major decreases for hippocampus and amygdala, a minor decrease for inferior

temporal, and a minor increase for entorhinal. In summary, we observed that MISPEL suc-

ceeded in preserving our biological signal of interest and outperformed other methods in this

respect.

4.6 Discussion

In this study, we presented MISPEL, a supervised deep harmonization technique for re-

moving scanner effects from images of multiple scanners, while preserving their biological

and anatomical information. Unlike other supervised or unsupervised methods, MISPEL is

a multi-scanner method mapping images to a scanner middle-ground space in which images

are harmonized. We evaluated MISPEL against commonly used intensity normalization and

harmonization methods (White Stripe, RAVEL, and CALAMITI) using a set of evaluation

criteria including image similarity, GM-WM tissue contrast, tissue volumes and segmenta-

tion similarity, and biological similarity in a dataset of matched T1 MR images acquired

from 4 different 3T scanners. We also investigated whether these methods could preserve

or even enhance the SVD group differences as a biological signal of interest. We found

that (1) scanner effects appear in our dataset as dissimilarity in image appearance/contrast,

GM-WM contrast, tissue type volumetric and segmentation distributions, and distributions

of regional measures of AD; (2) White Stripe normalized images, but did not achieve har-

monization; (3) RAVEL and CALAMITI achieved harmonization to some extent; and (4)

MISPEL outperformed all other methods in harmonization.

Based on the evaluated harmonization metrics, we observed that images of GE were more

similar to those of Philips and images of SiemensP showed more similarity to SiemensT’s.

We also observed that scanner effects appeared mainly as the dissimilarity between pairs

of GE or Philips and SiemensP or SiemensT. We observed that removing intensity unit

effects using White Stripe successfully normalized images (Appendix B.1) and resulted in

82



improved image similarity, but did not majorly enhance other metrics we used for evaluating

harmonization. The relative failure to harmonize may be due to the fact that WS is an

intensity normalization method, which does not account for scanner information. We also

observed that WS increased the variability of image-derived measures across subjects. Such

behavior was observed in bias and variance metrics for GM and WM volumes, as well as

biomarkers of AD. This was expected as WS is an individual-level method. This property of

WS makes the normalization of any new unseen image more convenient but may also result

in inconsistent normalization across images. WS also decreased the effect size for volumetric

biomarkers of AD, when SVD group differences were studied. In fact, scaling and centering

the intensity distributions does not necessarily remove scanner effects; on the contrary, over-

matching distributions could result in the removal of other sources of variability that could

be of interest (Fortin et al., 2016). These results show that scanner effects are not addressed

solely through intensity normalization and a more comprehensive harmonization method is

necessary.

RAVEL is an unsupervised normalization and harmonization framework that could ex-

tract components of scanner effects for each of the subjects as inter-subject variability across

their CSF area. Our results show that RAVEL achieved harmonization to some extent rel-

ative to White Stripe, but was outperformed by MISPEL. RAVEL increased the similarity

of images in their appearance/contrast, GM-WM contrast, and tissue type volumes and seg-

mentation overlap when the SPM framework was used. However, RAVEL could not achieve

harmonization for FSL-derived GM and WM volumes. Moreover, it deteriorated the bias

and variance for biomarkers of AD, except for volumes of the Amygdala. RAVEL also did not

preserve the SVD group differences when volumetric biomarkers were investigated. These

relative failures could be due to several reasons. First, RAVEL uses neither the information

of scanners nor the matched data during its harmonization process. Second, RAVEL is prone

to remove some biological variability across subjects, if such variability is not accounted for

in RAVEL modeling. RAVEL also showed large variability and inconsistent harmonization

across subjects, especially for FSL-derived volumes. Such results have been also reported in

(Torbati et al., 2021) when RAVEL was used for harmonizing paired images of GE 1.5T and

Siemens 3T scanners and FreeSurfer was used. Similar results were observed for WS. Thus,
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such behavior of RAVEL could be due to using WS in its normalization step.

For a fair comparison with CALAMITI, we used it in a supervised manner by applying it

to our inter-scanner paired dataset instead of inter-modality paired data as discussed in (Zuo

et al., 2021b). Results showed that CALAMITI achieved harmonization to some extent rela-

tive to White Stripe. However, it did not perform better than RAVEL and was outperformed

by MISPEL. CALAMITI improved similarity of images in their appearance/contrast, GM-

WM contrast, and tissue type volumes and segmentation overlap when the SPM framework

was used. CALAMITI did not show consistent harmonization for FSL-derived volumes. It

resulted in both increased and decreased biases for these measures. Moreover, CALAMITI

showed large variability and inconsistent harmonization across subjects for both FSL- and

SPM-derived volumes. This method did not achieve harmonization for AD biomarkers ei-

ther. It deteriorated the bias and variance for the entorhinal and hippocampus measures.

It also deteriorated the SVD group differences for all biomarkers, except for the entorhi-

nal. These failures in harmonization could be due to CALAMITI’s harmonization approach.

CALAMITI encodes paired images into their mutual scanner-invariant anatomical compo-

nents, and their individual contrast and scanner-variant components. For harmonizing an

image, it synthesizes the harmonized image by using its anatomical component and the

target scanner’s contrast component. Such methodology is prone to losing some anatomi-

cal information of images, if it could not segregate the anatomical and contrast components

properly. Similar harmonization failures were observed for CALAMITI in (Zuo et al., 2021b)

when image-derived summary measures were investigated.

MISPEL outperformed White Stripe, RAVEL, and CALAMITI based on all harmoniza-

tion evaluation criteria. MISPEL mapped images to a middle-ground harmonized space, in

which matched images were made more similar in contrast by removing scanner effects. For

our data, GE and Philips images were more similar to those of SiemensP and SiemensT,

in terms of GM-WM contrast and tissue type volumetric distributions. It should be noted

that no directed mapping or a target scanner was selected for MISPEL harmonization, and

MISPEL does not require a selected target. In fact, MISPEL naturally finds this middle-

ground space. GE and Philips images were made more similar to SiemensP and SiemensT,

with relatively minimal change made to SiemensP and SiemensT by MISPEL, likely due to
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SiemensP and SiemensT images being most similar and therefore biasing the middle-ground

space found by MISPEL. For this scenario of data, not requiring a target scanner could be

regarded as an advantage for MISPEL over other deep-learning based harmonization frame-

works. Other widely used statistical harmonization methods, including WS, RAVEL, and

ComBat, also do not require a target scanner. However, harmonizing to a middle-ground

rather than a specified target could be problematic in other scenarios, such as if the data

were collected on a majority of lower-quality scanners. This may bias MISPEL to learn a

lower-quality middle-ground space for harmonizing images and degrade the quality of images

from more advanced scanners. In such cases, MISPEL could potentially be modified to map

images to a target scanner.

Additionally, our volumetric and segmentation evaluations demonstrate that MISPEL

image-based harmonization significantly enhances downstream image analysis results across

different frameworks. Notably, improvements were observed across both FSL and SPM

segmentation platforms, which have previously shown considerable discrepancies in segmen-

tation outcomes, even among healthy volunteers (Tudorascu et al., 2016). MISPEL also

showed success in harmonization of biomarkers of AD and enhancing the SVD group differ-

ences when these biomarkers were used. The improved performance of MISPEL compared to

RAVEL and CALAMITI could be due to the design choices for MISPEL. First, U-Net (Ron-

neberger et al., 2015) units were used as the encoder-decoder units in MISPEL. The U-Net

could preserve the structure of brain by transferring the information of images from encoder

layers to the decoder layers. Second, the loss functions for MISPEL were selected cautiously

to tackle the contrast discrepancy within paired images and preserve their anatomy. Even

so, MISPEL is far from perfect. We observed that MISPEL showed better harmonization for

cortical thickness biomarkers relative to volumetric measures. MISPEL improved volumetric

bias and variance for the amygdala and preserved the SVD group differences in amygdala

volumes, but MISPEL also slightly reduced the SVD group differences in hippocampal vol-

umes.

One possible reason for the suboptimal performance of MISPEL in hippocampal-derived

harmonization metrics could be related to its 2D network. Such a network may result in

slice-to-slice inconsistency for harmonized images. To evaluate this, we assessed slice-to-slice
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consistency measures for each of the RAW and MISPEL-harmonized images. We collected an

array of SSIM measures between each adjacent axial slice of each image. We then paired each

of the harmonized images with their equivalent RAW image and calculated the correlation

between SSIM consistency measures of images of each pair. A harmonization method that

preserves the slice-to-slice consistency of RAW images should have a statistically significant

correlation near 1 over all pairs. We conducted this experiment for slices of each brain

orientation separately and observed 0.994 (ranges: [0.969, 0.999]), 0.992 (ranges: [0.962,

0.999]), and 0.991 (ranges: [0.973, 0.998]) mean of correlations across subjects for axial,

sagittal, and coronal slices, respectively. These high correlations demonstrate that slice-to-

slice inconsistency is not a significant concern for MISPEL when trained exclusively on axial

slices. As such, further investigation is necessary to optimize MISPEL for multi-scanner

studies where focal regional volumes are of interest.
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5.0 ESPA: An unsupervised harmonization framework via Enhanced

Structure Preserving Augmentation

In this section, we introduce ESPA, an unsupervised image harmonization framework,

alongside an extensive array of experiments to assess its efficacy. Our hypothesis suggests

that harmonization for scanners can be acquired through mappings to their scanner-middle-

ground domain via a framework that concurrently simulates matched data for the scanners

using appearance-based augmentation methods and learns the corresponding mappings from

this simulated data. To test this hypothesis, we developed ESPA with the following objec-

tives: (1) accommodating multiple scanners (more than two), (2) mitigating over-correction

issues during harmonization, (3) preserving the structural (anatomical) integrity of brain

images, and (4) enhancing the robustness of harmonization methods, particularly supervised

ones.

ESPA expands upon MISPEL with a notable adjustment: instead of depending on

matched data, we employ two novel structure-preserving augmentation methods—tissue-

type contrast augmentation and GAN-based residual augmentation—to simulate matched

data, limiting modifications to image appearance and contrast. Further details on ESPA and

our augmentation methods are provided in Section 5.1. In configuring augmentations, we

utilize two sets of data referred to as source and multi-scanner data, elaborated along with

their preprocessing steps in Section 5.2. ESPA is compared against state-of-the-art (SOTA)

supervised and unsupervised methods, detailed in Section 5.3, with the model training proce-

dures for ESPA and the competing methods outlined in Section 5.4. Furthermore, we assess

ESPA and the competing methods using the evaluation criteria detailed in Section 5.5. Fi-

nally, the results of our comparisons are presented in Section 5.6, followed by a discussion of

these findings in Section 5.7.
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5.1 ESPA

ESPA, crafted as an unsupervised task-agnostic image-harmonization framework, adapts

images to a scanner-middle-ground domain. In achieving this adaptation, we employed our

harmonization technique, MISPEL (detailed in Section 4.2), albeit with a significant modifi-

cation. Instead of relying on matched data, we introduce a novel approach wherein we simul-

taneously generate and utilize simulated matched images during the training of MISPEL.

This approach equips MISPEL with simulated data of substantial size, offering a solution to

the model robustness challenge in harmonization, particularly concerning supervised harmo-

nization methods. The simulated matched images are generated using our novel structure-

preserving augmentation methods. Initially, each augmentation method is individually con-

figured to adapt images of the source scanner to those of the target scanners. During this

adaptation process, over-correction can be mitigated through population matching strategies

between source and and target domains. Subsequently, the configured augmentations are in-

tegrated into two distinct ESPA frameworks to generate simulated matched images and learn

two harmonization frameworks. Integrating appearance-based augmentation methods into

MISPEL as a structure-preserving framework considers the brain’s structure more effectively

during harmonization. The ESPA harmonization process is depicted in Figure 22.

In Section 5.1.1, we delve into the notations and assumptions used in training ESPA.

Following that, Section 5.1.2 provides a brief overview of MISPEL. Finally, the configuration

steps for our augmentation methods are elucidated in Sections 5.1.3 and 5.1.4.

5.1.1 Notations and Assumptions

We refer to the data targeted for harmonization asmulti-scanner data. This data contains

images of M scanners. We consider another set of data with images of one arbitrary scanner

and refer to it as source data. Throughout this chapter, we refer to scanners of the source

and multi-scanner data as the source scanner and target scanners, respectively. Source data,

Xn=1:N , consists of N scans with a total of Xk=1:K
n=1:N slices where K is the number of axial slices

of an image. Our goal is to design augmentation methods to adapt images of the source data
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Figure 22: Illustration of ESPA. For each of the m = 1 : M target scanners, a data

augmentation model, Data Augmentationm, is first configured. All M configured augmen-

tation models are then individually applied to each of the k = 1 : K axial slices of the

n = 1 : N source scans, Xk=1:K
n=1:N , to generate the simulated matched data: X̃k=1:K

n=1:N,m=1:M .

For each of the m = 1 : M scanners, a unit of an encoder (U-Net Encoderm) and a linear

decoder (Linear Decoderm) is considered in MISPEL. All M units of encoder-decoder are

applied to each of their corresponding k = 1 : K axial slices of the n = 1 : N simulated

matched data: X̃k=1:K
n=1:N,m=1:M . U-Net Encoderm maps its input slice X̃k

n,m to its correspond-

ing latent embeddings Zk
n,m. The corresponding Decoderm maps its input embeddings to the

output: X̄k
n,m. During these mappings, which incorporate loss functions such as Embedding

Coupling, Harmonization, and Reconstruction, harmonized matched images are generated

as X̄k=1:K
n=1:N,m=1:M . These images are mapped to a scanner-middle-ground domain, where

X̄k
n,1 ≈ · · · ≈ X̄k

n,m ≈ · · · ≈ X̄k
n,M (for all n images and k axial slices).

to those of the M scanners in the multi-scanner data. These methods are applied to the slices

in source data, Xk=1:K
n=1:N , to generate our desired simulated matched data. We refer to this

simulated set as X̃k=1:K
n=1:N,m=1:M in which X̃k

n,m=1:M are simulated matched slices for Xk
n. ESPA

uses the augmented methods to sample variations of such data during its training to learn

generating their harmonized images X̄k=1:K
n=1:N,m=1:M . Harmonized images X̄k=1:K

n=1:N,m=1:M are

images mapped to a scanner-middle-ground domain, where X̄k
n,1 ≈ · · · ≈ X̄k

n,m ≈ · · · ≈ X̄k
n,M

(for all n images and k axial slices).
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5.1.2 MISPEL

MISPEL (Figure 22) specializes in harmonizing images of scanners for which matched

data is available. It uses encoder-decoder units for each scanner, translating input slices into

latent embeddings using a U-Net (Ronneberger et al., 2015) as encoder. Linear decoding

combines these embeddings to reconstruct the input image, ensuring similarity between em-

beddings and reconstructed images across scanners for harmonization. Additionally, MIS-

PEL maintains brain structure by ensuring similarity between reconstructed and original

images. These operations were respectively referred to as Embedding Coupling, Harmoniza-

tion, and Reconstruction in Figures 12 and 22. For further information about MISPEL, see

Section 4.2.

5.1.3 Tissue-type contrast augmentation

Scanner effects can impact brain tissue contrast, as demonstrated by Meyer et al. (2019).

To address this issue, we utilize a three-step augmentation approach aimed at adjusting

tissue contrast from a source scanner to a target scanner while maintaining brain structure.

This method builds upon previous work by Meyer et al. (2021) initially developed for brain

segmentation purposes. It is important to note that this augmentation technique adapts

images from the source scanner to a single target scanner. Therefore, for each of the M

target scanners, we should configure M distinct tissue-type contrast augmentation methods.

Step 1: Estimating the distributions of tissue types. In this step, we apply the

Gaussian Mixture Model (Reynolds et al., 2009) to the intensity values of the brain voxels

in source image Xn. The intensity set {v1, . . . , vP}, where P is the total number of brain

voxels in the image, is modeled as

p(vp) = ΣT=3
t=1 πtN (vp|µt, σ

2
t ), (9)

with t denoting brain tissue types, N (µt, σ
2
t ) representing a Gaussian distribution with mean

µt and variance σ2
t , and πt as the mixing coefficient. Using Bayes’ rule, we compute the
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probability of each class label C as

p(C = t|v) = πtN (v|µt, σ
2
t )

Σ3
t′=1πt′N (v|µt′ , σ

2
t′)

(10)

Step 2: Modifying tissue type distributions. We adapt this method step to align

images from our source data with those of a single target scanner in our multi-scanner

data. To achieve this, we adjust the tissue type distributions of images in the source data by

sampling from estimated normal distributions capturing directional differences in tissue-type

parameters between the source data images and those of the target scanner. The desired

modified tissue type distribution of the source image Xn is determined as

N (µ
′
t, σ

′2
t ) = (µt − qµt , σ

2
t − qσ2

t
), (11)

where qµt and qσ2
t
are adaptation terms sampled from the determined distributions of dif-

ferences. To calculate these terms, we first compute directional differences of distribution

parameters from all source images to all target images. One instance of such differences is

denoted as
Df

µt
= µn,t − µl,t, (12)

and
Df

σ2
t
= σ2

n,t − σ2
l,t, (13)

where (µn,t, σ
2
n,t) and (µl,t, σ

2
l,t) are distribution parameter pairs for images n and l in the

source data and target scanner, respectively, and f denotes the f th difference in a total of F

calculated differences. Finally, we compute the adaptation terms as

qµt = Mean(Df=1:F
µt

) + rµ, (14)

and
qσ2

t
= Mean(Df=1:F

σ2
t

) + rσ, (15)

where rµ and rσ are sampled from the uniform distributions U(−Std(Df=1:F
µt

), Std(Df=1:F
µt

))

and U(−Std(Df=1:F

σ2
t

), Std(Df=1:F

σ2
t

)), and Mean(·) and Std(·) denote the mean and standard

deviation functions.

Step 3: Reconstructing augmented image. For reconstructing the augmented image

for source image Xn, we adapt each voxel value vp for each tissue type as

v′p,t = µ′
t + dptσ

′
t, (16)
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where dpt = (vp − µt)/σt maintains the original relative distance of voxel intensity from the

mean intensity of tissue type t in the images, preserving structural brain information. We

then compute the augmented intensity voxel v′p as

v′p = ΣT=3
t=1 p(C = t|vp)v′p,t (17)

After calculating all v′p for p ∈ {1, . . . , P}, we obtain the adapted image of Xn aligned with

the tissue-type distribution of the single target scanner.

5.1.4 GAN-based residual augmentation

Scanner effects can be more intricate than tissue-type modifications and can vary across

brain regions. Thus, we develop a GAN-based augmentation method to generate and sample

scanner effects as images (residuals) added to the original images. By limiting scanner effects

as additive components to images, we consider brain structure during augmentation. For

this purpose, we introduce Residual StarGAN, which performs image-to-image translation

between all pairs of our scanner domains (source and target scanners) using a single generator

and discriminator pair (Figure 23(a)). We elaborated on the interactions between these two

modules within a GAN network for harmonization under the topic of Adaptation of data to

a target scanner domain, covered in Section 2.6.1.1. Residual StarGAN is a modification

of StarGAN (Choi et al., 2018), where we replace the generator with a Residual Generator,

and include noise as input to this generator for sampling. The Residual Generator comprises

the StarGAN Generator followed by the Additive Module (Figure 23(b)). The StarGAN

Generator generates the residuals to be added to the image in the Additive Module for

domain adaptation. The process of adapting an image from the source scanner to the

domain of a target scanner in Residual StarGAN is depicted in Figure 23(b). These steps

mirror those outlined in StarGAN, with details provided in (Choi et al., 2018). We utilize the

trained Residual Generator as our residual augmentation method which is used for adapting

images of the source scanner to any of the target scanners.
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Figure 23: Illustration of Residual StarGAN. (a) Overview of Residual StarGAN, com-

prising two modules: a StarGAN Discriminator and a Residual Generator. These modules

facilitate domain adaptation between all pairs of scanner domains (source and target scan-

ners). (b) Steps in Residual StarGAN for scanner domain adaptation, illustrated for adapting

an image from the source to one target scanner. (1) The Residual Generator receives the

source image (referred to as real image), target scanner label, and random noise as input.

It generates the residual, which is added to the source image to produce the adapted im-

age to the target scanner domain (referred to as fake image). The input source image is

concatenated with spatially replicated target scanner labels and random noise before being

processed by the Residual Generator. (2) Residual Generator takes the fake image, source

scanner label, and the same random noise generated in (1) as input. It then tries to recon-

struct the real (source) image from the fake (adapted) image given the source scanner label.

(3) Residual Generator tries to fool the StarGAN Discriminator. It tries to generate fake

images that are not only indistinguishable from real images, but also classifiable as images

of the target scanner by the StarGAN Discriminator.
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5.2 Data

5.2.1 Study populations and image acquisition

We opted for source data comprising 192 T1-w images obtained from a 3T Siemens Trio

scanner within the OAISIS-3 dataset (LaMontagne et al., 2019). Additionally, our multi-

scanner data is the matched dataset detailed in Section 4.1.1. This dataset encompasses

3T T1-w images across four scanners: General Electrics (GE), Philips, Siemens Prisma

(SiemensP), and Siemens Trio (SiemensT). In ESPA, we treated this data as unmatched for

the multi-scanner data, utilizing its matched aspect for our evaluation. Participants in the

matched dataset had a median age of 72 years (with a range of 51-78 years), with 44% being

male and all being cognitively unimpaired, except for 10 individuals showing a high degree

of small vessel disease (SVD). We specifically selected the source data from the OAISIS-

3 dataset to align with the demographics of the matched data. We refer to this process

of population matching as our approach to mitigating over-correction during augmentation

configuration. Detailed scanner specifications for both the source and multi-scanner data

are provided in Table 7. For further insights into the matched data, refer to Section 4.1.1.

Table 7: Scanner specifications for source and multi-scanner data

Multi-scanner (matched) data Source data

Scanner Name GE Philips SiemensP SiemensT –

Manufacturer General Electrics Philips Siemens Siemens Siemens
Scanner Hardware DISCOVERY-MR750w 3T Achieva-dStream 3T Prisma-fit 3T TrioTim 3T TrioTim 3T
Resolution (mm) 1.0× 1.0× 0.5 1.0× 1.0× 1.0 1.0× 1.0× 1.0 1.0× 1.0× 1.0 1.0× 1.0× 1.0
TE (ms) 3.7 1.66 1.64 1.64 3.16
TR (ms) 9500 2530 2530 2530 2400

5.2.2 Image preprocessing

We conducted preprocessing on both the source and multi-scanner datasets, following a

pipeline similar to that outlined in Section 4.1.2. This pipeline includes non-linear registra-

tion (Avants et al., 2008) to a T1-w atlas (Oishi et al., 2009), N4 bias correction (Tustison
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et al., 2010), skull-stripping via brain masking, and image scaling by dividing images by

their mean intensity. The preprocessed matched data is referred to as RAW. For additional

information on the preprocessing pipeline, please see Section 4.1.2.

5.3 Competing methods

In our pursuit of SOTA methods, we employed MISPEL and modified CALAMITI as

supervised techniques. MISPEL leverages matched scanner data to learn harmonization,

enabling the adaptation (harmonization) of unseen unmatched scanner images to a scanner-

middle-ground space. The modified CALAMITI approach utilizes matched data to initially

disentangle images into their scanner-invariant anatomical component and scanner-variant

contrast component. Subsequently, it learns reconstructing images using these two com-

ponents. During harmonization, all images are mapped to the contrast of a target image

using the scanner-invariant component of the image and the scanner-variant component of

the target image. Detailed explanations of these methods can be found in Sections 4.2 and

4.3.3, respectively.

We also utilized the unsupervised SOTA method known as style-transfer harmonization

(Style-Trans) for our study, as introduced by Liu et al. (2023). This method considers

the style of images as the scanner-variant component and operates within a content-style

disentangled cycle translation framework for harmonization. Within this framework, two

individual encoders are employed to initially disentangle images into their scanner-variant

and -invariant components. Subsequently, a cycle-consistent GAN framework is utilized to

learn style-based transformations between images from different scanners. Specifically, the

generators are modified to learn mappings from the two components of images as input,

rather than directly from the images themselves. This modification enables the generator

to take the scanner-invariant component of an image and the scanner-variant component of

a target image, allowing it to learn to map the image to the style of the target image for

harmonization.
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5.4 Training setup

In this chapter, our setup was devised to implement harmonization on the prepro-

cessed multi-scanner data (RAW), enabling evaluation on matched data. For MISPEL and

CALAMITI, we conducted 6-fold cross-validation on the matched data, partitioning sub-

jects into 12/3/3 for train/validation/test sets. Subsequently, we combined the harmonized

test sets into one harmonized set for our evaluation step. Further details on the training

strategies for these methods can be found in Sections 4.2.3 and 4.3.3, respectively.

Liu et al. (2023) trained the Style-Trans model on T1-weighted images of 718 subjects

from 5 diverse sites, including the UK Biobank (Sudlow et al., 2015), Parkinson’s Progression

Markers Initiative (Marek et al., 2018), Alzheimer Disease Neuroimaging Initiative (Mueller

et al., 2005), Adolescent Brain Cognitive Development (Jernigan et al., 2018), and Inter-

national Consortium for Brain Mapping (Mazziotta et al., 2001). They made their model

publicly available along with their target image in a Github repository1. Leveraging their

trained model, we applied it to the RAW data to achieve harmonization by aligning it with

their target image style.

ESPA follows the same cross-validation approach for RAW: partitioning subjects into

12/3/3 for train/validation/test sets. We treated this folded RAW data as unmatched for

the multi-scanner data in ESPA. ESPA has a 3-steps training and harmonization process

for which we split source data into 12/20/20 and 100/20/20 splits of train/validation/test

sets for its first two steps, respectively. (1) In the initial step, two augmentation methods

are configured individually to adapt images of 12 source images to 12 training images within

each of the 4 scanners in each fold of the multi-scanner dataset. (2) The second step involves

training ESPA by creating variations of simulated matched data, individually applying aug-

mentations to 100 source training images. Separate sets of models for folds, referred to as

ESPATC and ESPARes, are trained for tissue-type contrast augmentation and GAN-based

residual augmentation, respectively. (3) In the final step, these models are individually

applied to images of 3 test subjects in their corresponding folds in the multi-scanner data.

Harmonized test sets are combined across folds as harmonized version of RAW for evaluation.

1https://github.com/USC-IGC/style_transfer_harmonization
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Model training and hyper-parameter tuning for all methods were conducted on NVIDIA

RTX5000. These procedures for MISPEL and modified CALAMITI were detailed in Sec-

tions 4.2.3 and 4.3.3, respectively. We omitted this step for Style-Trans, as we utilized the

authors’ pre-trained model for our experiments. In ESPATC, the tissue-type contrast aug-

mentation does not have any hyper-parameter for tuning. Regarding ESPARes, we trained

Residual StarGAN using the hyper-parameters recommended in (Choi et al., 2018). For

training the MISPEL framework in either ESPATC or ESPARes, we selected hyper-parameters

from the ranges outlined in Section 4.2.3. Additionally, we set T1, T2, and batch size param-

eters to 100, 400, and 32, respectively. T1 and T2 are training iterations for Step 1 and Step

2 in MISPEL, respectively.

5.5 Data analysis

Our evaluation analyses are five-fold: (1) validation on domain adaptation in augmen-

tation methods, (2) validation on brain structure preservation in augmentation methods,

(3) validation on augmentation removal in ESPA, (4) validation on harmonization, and (5)

ablation study. Several of our evaluation metrics necessitate pairwise image-to-image com-

parisons, requiring us to consider all potential combinations of scanner pairs : {(GE, Philips),

(GE, SiemensP), (GE, SiemensT), (Philips, SiemensP), (Philips, SiemensT), and (SiemensP,

SiemensT)}. Our results are presented for the pool of all these image pairs. When we men-

tion target scanners, we are referring to GE, Philips, SiemensP, and SiemensT, in that

specific sequence.

First, we assessed whether our augmentation methods achieved domain adaptation. This

involved testing the performance of a scanner classifier on augmented images generated by

each method. Domain adaptation occurs when the classifier accurately predicts the target

scanner to which the augmented image has adapted. To conduct this analysis, we trained,

optimized, and evaluated 6 scanner classifiers separately for the 6 folds in the multi-scanner

data. For this procedure, we used images from both the corresponding fold of the multi-

scanner data and the source data designated to the first step of ESPA. To ensure balanced
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classification, we utilized images from only 3 subjects from each of the source validation

and test sets. For the classifier, we employed the discriminator network as introduced in

(Bashyam et al., 2022). For the augmented images, we applied the configured augmentations

of each fold to the 20 source test images designated for the first step in ESPA.

Second, we assessed whether brain structure is being preserved in augmentation meth-

ods. We expect augmentations to result in minor structural modifications which can be

evaluated by visualizing augmentations and augmented images as well as estimating the

structural similarity of augmented images to their original images. To accomplish this, we

initially generated the augmented images by separately applying the configured augmenta-

tions of each fold to the 20 source test images designated for the first step in ESPA. For

visual assessment, we presented one original source slice alongside its applied augmentation

and resulting augmented image, repeating this process for all three brain orientations. Ad-

ditionally, we quantified the structural similarity between augmented and original images

using structural similarity index measure (SSIM). We reported these values as the cross-fold

mean and cross-fold standard deviation (SD) of SSIM scores for all of the augmented im-

ages adapted to target scanners. We anticipate that high SSIM values will corroborate the

preservation of brain structure.

Third, we evaluated the capability of our cross-validated ESPATC and ESPARes models

to eliminate the simulated augmentations applied to the images. Removal aimed to decrease

dissimilarity between augmented images of a source image. Mean Average Error (MAE) and

Jensen–Shannon Divergence (JD) metrics were used to assess this dissimilarity, reported as

mean±SD for images of all scanner pairs and folds. Initially, we augmented images of the

source test set designated for the second step in ESPA, using the configured augmentation of

each fold. Then, the trained ESPA models of each fold were applied to their corresponding

augmented image sets to obtain augmented-free (harmonized) images.

Fourth, we estimated scanner effects and evaluated harmonization on RAW and harmo-

nized RAW, respectively. A harmonization method aims to eliminate scanner effects while

maintaining the biological variables of interest present in the data. In our particular matched

dataset, the matched images are presumed to be biologically identical but exhibit differences

due to variations in scanners. Consequently, the scanner effects can be inferred by analyz-
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ing the dissimilarity among the matched images, and the removal of these effects can be

viewed as enhancing their similarity. Our investigation into the dissimilarity and similarity

of matched images involved three evaluation criteria: (1) image similarity, (2) GM-WM con-

trast similarity, and (3) biological similarity. Additionally, we identified SVD as the clinical

signal of interest in our dataset and explored whether we could retain or potentially improve

the differentiation between SVD groups following harmonization.

Scanner effects may manifest as variations in contrast across images captured by different

scanners (Dewey et al., 2019, 2020; Liu et al., 2021). Specifically, these differences might

present as variations in tissue-specific contrast within images (Meyer et al., 2019). To address

this, we conducted an evaluation of scanner effects and harmonization effectiveness. We

employed an image similarity metric to gauge the visual consistency of images across

scanners and a GM-WM contrast similarity metric to assess the similarity in tissue

contrast across images. In evaluating image similarity, we examined the visual quality of

matched slices across all methods. Additionally, we measured the structural similarity of

paired images for all scanner pairs. For this, we measured the mean ± SD of SSIMs for all of

these images. An effective harmonization method is anticipated to enhance both the visual

and structural resemblance of paired images.

Furthermore, we explored the GM-WM contrast similarity of the images. The contrast

of GM and WM can significantly impact the performance of segmentation techniques, with

heightened contrast expected to yield more precise segmentation results. This contrast can

be assessed by estimating the separability of the histograms of GM and WM voxels within

an image. This separability was quantified through voxel classification as GM or WM, and

represented by the area under the receiver operating characteristic (AUROC) curve. An

AUROC value of 100% indicates perfect classification (complete separation of histograms),

while a value of 50% suggests random classification (complete overlap of histograms). To

compute AUROC, we initially labeled the GM andWM voxels using the tissue mask provided

in the EveTemplate package (Oishi et al., 2009). Subsequently, we classified these voxels

based on intensity thresholds selected from the range of intensity values of GM and WM

voxels. Finally, we generated the AUROC curve for the image using the outcomes of each

classification. A harmonization method is anticipated to enhance the GM-WM contrast
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similarity across scanners resulting in comparable AUROCs.

We further examined the biological similarity of images by analyzing biomarkers of

Alzheimer’s disease (AD). Specifically, we assessed bias (mean of cross-scanner absolute

differences) and variance (root mean square deviation, RMSD) for these biomarkers. To

calculate bias, we determined the cross-scanner absolute differences for all scanner pairs and

reported their mean (SD). For variance, we computed the mean of cross-scanner RMSDs for

all scanner pairs. These metrics were evaluated for all 6 methods and all AD biomarkers.

The biomarkers we investigated included cortical thickness measures of the entorhinal, in-

ferior temporal, middle temporal, inferior parietal, and fusiform cortices, as well as volume

measures of the amygdala, hippocampus, entorhinal, middle temporal, and inferior temporal

regions. These summary measures represent the total measures over both hemispheres and

were derived using FreeSurfer 7.1.1 (FS) (Fischl, 2012). These regions have been previously

identified as highly relevant to AD (Schwarz et al., 2016). We omitted the skull stripping

and bias correction steps in the FS processing pipeline, as RAW images had already under-

gone skull-stripping and N4 bias correction during image preprocessing (Section 5.2.2). A

harmonization method is expected to decrease both bias and variance.

We concluded our harmonization evaluation by examining whether each harmonization

method preserved or potentially enhanced a biological/clinical signal of interest

in our matched data. Our chosen clinical signal of interest is SVD, and we explored the

effect size between two groups representing low and high SVD in our dataset. To conduct

this analysis, we computed Cohen’s d effect sizes for the two SVD groups across each of our

FreeSurfer (FS)-derived biomarkers of AD individually. For each biomarker, we calculated

the effect sizes of the scanners separately and reported the mean (SD) of these values across

scanners. It is expected that a harmonization method does not diminish the effect sizes of

the groups following harmonization.

Fifth and last, we conducted an ablation study to demonstrate the effectiveness of our

augmentation methods. Specifically, we trained ESPA with random contrast and brightness

augmentations as described in (Chaitanya et al., 2021). These techniques involve contrast

transformation (Xn−E(Xn))∗b+E(Xn) and brightness transformation Xn+c, where b and

c are uniformly sampled from [0.8, 1.2] and [−0.1, 0.1], respectively, with E(Xn) representing
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the mean brain intensity values in the original scan Xn. To evaluate the effectiveness of these

augmentation methods, we replicated our experiments to validate augmentation removal and

assessed structural image similarity for harmonization using combination of these two aug-

mentation techniques. We aimed to ensure that the ESPA employing these augmentation

methods resulted in augmentation removal but no harmonization, thereby highlighting the

effectiveness of our proposed methods: tissue-type contrast and GAN-based residual aug-

mentations.

For evaluating augmentation removal, we assumed that a decrease in dissimilarity among

augmented images of an original image would indicate successful removal. To measure

this dissimilarity, we calculated the MAE and JD measures for both the augmented and

augmented-free (ESPA-harmonized) images of the source test set designated for the second

step in ESPA. The mean±SD of each of these measures was reported as an estimate of the de-

sired dissimilarity. Additionally, for harmonization evaluation, we assessed image similarity

before and after harmonization for RAW data. For image similarity assessment, we com-

puted the mean±SD of SSIM scores for paired images of all scanner pairs in each of the two

sets: RAW and ESPA-harmonized. By ESPA-harmonized, we mean the ESPA model trained

with simulated data generated through random contrast and brightness augmentations. An

increase in SSIM after harmonization indicates successful harmonization.

5.6 Results

5.6.1 Validation on domain adaptation in augmentation methods

Initially, we assessed the ability of our trained classifiers to predict the scanner origin

in the cross-folded multi-scanner data. The cross-fold accuracy of the classifiers for all

scanners averaged 78.6 ± 1.9%, with cross-fold accuracies of [85.2 ± 5.7, 81.0 ± 2.5, 73.9 ±

4.1, 74.4 ± 4.2]% for the target scanners: [GE, Philips, SiemensP, SiemensT], respectively.

Subsequently, we generated a set of augmented images for evaluation purposes. This involved

individually applying the configured augmentations of each fold to our 20 source test images.
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Figure 24: Visualizing augmentations and augmented images for one axial slice. A single

axial slice, designated as the Original Image, was replicated across all scanners.

The classifiers were then utilized to classify the augmented images, resulting in an average

cross-fold accuracy of 88.2 ± 3.9% for tissue-type contrast augmentation, with cross-fold

accuracies of [86.1±6.9, 86.5±7.2, 91.3±2.8, 89.0±3.4]% for the target scanners. Likewise,

for residual augmentation, the cross-fold accuracy averaged 88.1± 3.9%, with accuracies of

[86.4±5.7, 84.3±2.5, 92.3±4.1, 89.4±4.2]% for the target scanners. Despite the classifiers’

limited performance attributable to the small training image size, these findings underscore

the effectiveness of our augmentation techniques in facilitating domain adaptation.

5.6.2 Validation on brain structure preservation in augmentation methods

In Figures 24, 25, and 26, we depicted both augmentations and augmented images, each

featuring axial, sagittal, and coronal slices, respectively. Augmentations are images that

may contain both negative and positive intensity values. Our depiction presents the absolute

values of these intensities. Upon observation, we noted no apparent structural changes in

the resulting augmented images, a conclusion supported by our SSIM comparisons between
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Figure 25: Visualizing augmentations and augmented images for one sagittal slice. A single

sagittal slice, designated as the Original Image, was replicated across all scanners.

Figure 26: Visualizing augmentations and augmented images for one coronal slice. A single

coronal slice, designated as the Original Image, was replicated across all scanners.

augmented and original images. For the tissue-type contrast augmentation, our analysis

revealed a mean±SD of mean SSIMs across folds as 0.999 ± 0.0008. Across folds, the
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mean±SD of mean SSIMs for the target scanners: [GE, Philips, SiemensP, SiemensT] were

[0.9980 ± 0.0009, 0.9993 ± 0.0010, 0.9993 ± 0.0008, 0.9994 ± 0.0006]. These statistics for

SD of SSIMs are 0.0009 ± 0.0001: [0.0013 ± 0.0006, 0.0004 ± 0.0001, 0.0003 ± 0.0001,

0.0002±0.0001]. Regarding the GAN-based residual augmentation, such cross-fold statistics

for mean and SD of SSIMs were observed as 0.941 ± 0.009: [0.941 ± 0.010, 0.938 ± 0.014,

0.943±0.006, 0.942±0.009] and 0.006±0.0023: [0.003±0.0005, 0.004±0.0006, 0.005±0.0005,

0.005± 0.0010], respectively.

The resulting mean and SD of SSIMs were notably smaller than cross-scanner SSIMs

observed for scanner pairs in RAW, measuring 0.81±0.05. As a result, this indicates that

our augmentation methods led to minimal structural modifications, even smaller than the

structural modifications caused by scanner effects observed in the matched data.

Table 8: Validation on augmentation removal in ESPATC for scanner pairs.

Mean (SD) of MAE

Method GE-Philips GE-SiemensP GE-SiemensT Philips-SiemensP Philips-SiemensT SiemensP-SiemensT

Augmented 0.085 (0.046) 0.073 (0.025) 0.076 (0.024) 0.065 (0.055) 0.068 (0.038) 0.061 (0.022)

Harmonized 0.035 (0.008)* 0.028 (0.005)* 0.028 (0.005)* 0.032 (0.011)* 0.032 (0.010)* 0.024 (0.005)*

Mean (SD) of JD

Method GE-Philips GE-SiemensP GE-SiemensT Philips-SiemensP Philips-SiemensT SiemensP-SiemensT

Augmented 0.036 (0.035) 0.038 (0.037) 0.036 (0.037) 0.010 (0.014) 0.010 (0.012) 0.009 (0.007)

Harmonized 0.018 (0.019)* 0.021 (0.018)* 0.018 (0.019)* 0.006 (0.005)* 0.004 (0.005)* 0.006 (0.005)

Statistically significantly changes (paired t-test, p < 0.05) were marked *.

5.6.3 Validation on augmentation removal in ESPA

For ESPATC, the mean ± SD of MAE and JD decreased from 0.071± 0.037 to 0.030±

0.009, and 0.023 ± 0.030 to 0.012 ± 0.015 before and after harmonization, respectively.

Similarly, for the ESPARes, MAE values decreased from 0.403 ± 0.107 to 0.135 ± 0.023,

and JD values decreased from 0.012± 0.009 to 0.007±0.006. All changes were statistically

significant (paired t-test, p < 0.05), indicating successful augmentation removal from images.

These statistics were also reported for ESPATC and ESPARes in Tables 8 and 9, respectively.
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5.6.4 Validation on harmonization

5.6.4.1 Image similarity

Scanner effects manifest visually, as depicted in Figure 27, through noticeable cross-

scanner contrast discrepancies in RAW slices, which were mitigated post-harmonization

across all methods. Nevertheless, certain drawbacks were observed with specific methods.

For instance, CALAMITI disrupted image contrast, while MISPEL and Style-Trans intro-

duced slight smoothing effects. On the contrary, ESPATC and ESPARes exhibited superior

visual quality. The structural similarity, as measured by the mean±SD of SSIMs for all

images of scanner pairs, exhibited a notable increase across all methods. Specifically, it rose

significantly from 0.81± 0.05 for RAW to 0.83± 0.04, 0.87±0.04, 0.87±0.05, 0.83± 0.05,

and 0.85± 0.05 for CALAMITI, MISPEL, Style-Trans, ESPATC, and ESPARes, respectively.

Notably, MISPEL and Style-Trans demonstrated the most substantial increase. All observed

enhancements compared to RAW were statistically significant (p < 0.05), as confirmed by

paired t-tests.

Table 9: Validation on augmentation removal in ESPARes for scanner pairs.

Mean (SD) of MAE

Method GE-Philips GE-SiemensP GE-SiemensT Philips-SiemensP Philips-SiemensT SiemensP-SiemensT

Augmented 0.446 (0.087) 0.450 (0.095) 0.502 (0.097) 0.344 (0.068) 0.389 (0.067) 0.286 (0.061)

Harmonized 0.150 (0.019)* 0.148 (0.019)* 0.148 (0.019)* 0.127 (0.016)* 0.127 (0.016)* 0.110 (0.016)*

Mean (SD) of JD

Method GE-Philips GE-SiemensP GE-SiemensT Philips-SiemensP Philips-SiemensT SiemensP-SiemensT

Augmented 0.007 (0.004) 0.022 (0.004) 0.025 (0.005) 0.007 (0.001) 0.009 (0.001) 0.002 (0.000)

Harmonized 0.008 (0.008) 0.008 (0.007)* 0.007 (0.006)* 0.010 (0.007) 0.004 (0.005)* 0.006 (0.004)*

Statistically significantly changes (paired t-test, p < 0.05) were marked *.
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Figure 27: Visual assessment of scanner effects and harmonization across matched images.

5.6.4.2 GM-WM contrast similarity

We measured the GM-WM contrast of an image using AUROC values, which represent

the separation of histograms of GM and WM voxel intensities. A high AUROC indicates

higher contrast, with 100% being the highest achievable value. A harmonization method

is expected to achieve two objectives: (1) not deteriorate the AUROC of images, and (2)

make the AUROC of matched images similar. Figure 28 displays bar plots indicating the

mean AUROC of images for each scanner, before and after harmonization. All harmonization

106



Figure 28: GM-WM contrast bar plots. Each bar indicates the mean AUROC of images

of each scanner, with error bars denoting the standard deviation for each method.

methods improved the AUROC values of the scanners and made them similar across scanners.

MISPEL demonstrated the best performance in this regard, followed by ESPARes.

5.6.4.3 Biological similarity

We quantified bias for biomarkers of AD as mean±SD of cross-scanner differences for all

scanner pairs, as outlined in Table 10. Interestingly, our findings indicated that an increase

in SSIM (seen in Section 5.6.4.1) does not necessarily equate to improved harmonization

for biological variables. For instance, CALAMITI worsened bias for 9 biomarkers, while it

achieved improved SSIM. Moreover, Style-Trans was surpassed by ESPATC and ESPARes

in assessing biological similarity, despite achieving the highest SSIM. Specifically, ESPATC

and ESPARes outperformed MISPEL and Style-Trans, reducing bias for 7 and 9 biomarkers,

respectively, compared to 5 for MISPEL and Style-Trans. Notably, ESPATC demonstrated

the largest reductions in bias for 4 cases, while MISPEL, ESPARes, and Style-Trans exhibited

decreases for 3, 2, and none, respectively. Paired t-tests (p < 0.05) revealed significant

decreases in 5, 5, and 4 cases for ESPATC, ESPARes, and MISPEL, respectively, whereas

none were significant for Style-Trans. These statistics were also depicted in Figure 30.
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We also visualized the root mean square deviation (RMSD) of the biomarkers using bar

plots in Figure 29. The interpretation of RMSD results closely resembles that of bias, as

depicted in Figure 30. Specifically, CALAMITI worsened RMSD for 9 biomarkers. Addi-

tionally, ESPATC and ESPARes outperformed MISPEL and Style-Trans with each achieving

6 decreases compared to 4 for each of MISPEL and Style-Trans. Notably, ESPARes achieved

the most largest decreases with 4 cases, whereas MISPEL, Style-Trans, and ESPATC achieved

decreases in 2, 1, and 2 cases, respectively.

5.6.4.4 Analysis on biological variables of interest

We also explored whether harmonization preserved or enhanced biological signals by

comparing Cohen’s d effect sizes between low and high SVD groups for each AD biomarker.

Cohen’s d was computed separately for each scanner, and the mean±SD across scanners

was reported in Table 10. Harmonization success was determined by an increase in Cohen’s

d compared to RAW. Our findings in Figure 30 revealed CALAMITI and Style-Trans’s

failure, possibly due to deteriorated contrast and over-correction. ESPATC and ESPARes

each surpassed MISPEL with 7 increases, while yielding the best Cohen’s d values for 2 and

6 biomarkers, respectively, compared to MISPEL’s 5 increases and 0 best increases.

5.6.5 Ablation study

To demonstrate the efficacy of our augmentation methods (tissue-type contrast and GAN-

based residual augmentations), we trained ESPA with the combination of random contrast

and brightness augmentation (Chaitanya et al., 2021). We repeated experiments for vali-

dation on augmentation removal, confirming reduction in MAE and JD from 0.164 ± 0.088

and 0.028 ± 0.025 to 0.099 ± 0.037 and 0.013 ± 0.016, respectively. All changes were

statistically significant (paired t-test, p < 0.05), indicating successful augmentation removal

from images. However, our structural similarity analysis for harmonization yielded SSIMs

similar to that of RAW, suggesting no significant modification in harmonized images across

scanners and thus no harmonization.
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5.7 Discussion

In this study, we introduced ESPA, an unsupervised image harmonization framework de-

signed to learn mappings from images of scanners to their scanner-middle-ground domain for

Table 10: Bias and Cohen’s d values for biomarkers of AD. Mean (SD) of cross-

scanner absolute differences were calculated as bias for biomarkers of all scanner pairs. The

distributions with the smallest bias are in bold. Also, the distributions that showed sta-

tistically significant t-statistics when compared to RAW were marked by *. Mean (SD) of

Cohen’s d values were calculated over all scanners for the biomarkers. Largest increased

effect sizes relative to RAW are in bold.

Mean ±SD of absolute differences over all scanner pairs (Bias)

Cortical Thickness (mm) Volume (cm3)

Method Entorhinal Inferior Middle Inferior Fusiform Amygdala Hippo.2 Entorhinal Middle Inferior

Temp.1 Temp. Parietal Temp. Temp.

RAW 0.62±0.4 0.46±0.4 0.22±0.2 0.25±0.2 0.38±0.3 0.25±0.2 0.30±0.2 0.56±0.4 1.48±1.1 1.19±1.1

Sup.3
CALAMITI 0.87±0.6* 0.45±0.3 0.40±0.4* 0.37±0.4* 0.43±0.3 0.30±0.3 0.71±0.5* 0.62±0.5 2.78±2.6* 2.31±2.1*

MISPEL 0.46±0.3* 0.25±0.2* 0.25±0.3 0.34±0.3* 0.36±0.3 0.19±0.2* 0.32±0.3 0.37±0.3* 1.55±1.7 1.50±1.6

Unsup.4

Style-Trans 5 0.54±0.4 0.51±0.4 0.31±0.3* 0.37±0.3* 0.39±0.3 0.22±0.2 0.25±0.2 0.47±0.4 1.36±1.2 1.62±1.3*

ESPATC 0.66±0.5 0.28±0.2* 0.17±0.1* 0.21±0.2 0.29±0.2* 0.21±0.2* 0.34±0.3 0.53±0.5 1.10±0.8* 1.21±1.2

ESPARes 0.57±0.4 0.28±0.2* 0.26±0.2 0.22±0.2 0.32±0.2* 0.18±0.2* 0.29±0.2 0.45±0.3* 1.31±0.9 1.04±0.8*

Mean ±SD of Cohen’s d measures over all scanner pairs

Cortical Thickness (mm) Volume (cm3)

Method Entorhinal Inferior Middle Inferior Fusiform Amygdala Hippo. Entorhinal Middle Inferior

Temp. Temp. Parietal Temp. Temp.

RAW 0.46±0.1 0.66±0.4 1.14±0.2 0.97±0.3 0.74±0.2 0.74±0.3 0.76±0.2 0.51±0.1 0.61±0.4 0.81±0.3

Sup.
CALAMITI 0.50±0.5 0.57±0.6 0.31±0.2 0.40±0.3 0.54±0.5 0.28±0.1 0.31±0.1 −0.31±0.6 0.14±0.1 0.18±0.2

MISPEL 0.71±0.1 0.73±0.1 1.21±0.3 0.92±0.1 0.57±0.2 0.80±0.2 0.73±0.2 0.17±0.2 0.63±0.4 0.69±0.2

Unsup.

Style-Trans 0.21±0.4 0.53±0.5 0.75±0.2 0.51±0.4 0.33±0.4 0.56±0.1 0.28±0.2 0.16±0.2 0.60±0.3 0.54±0.1

ESPATC 0.61±0.3 0.84±0.2 1.12±0.2 1.20±0.1 0.67±0.1 0.87±0.2 0.50±0.2 0.54±0.4 0.78±0.4 1.26±0.1

ESPARes 0.73±0.4 1.00±0.2 1.23±0.3 1.30±0.2 0.69±0.2 1.00±0.3 0.55±0.1 0.24±0.1 0.92±0.3 1.08±0.2

1Temp.: Temporal, 2Hippo.: Hippocampus, 3Sup.: Supervised, 4Unsup.: Unsupervised, 5Style-Trans: Style
Transfer Harmonization
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(a) Cortical Thickness. (b) Volume.

Figure 29: Root-mean-square deviation (RMSD) bar plots for biomarkers of AD.

Each bar indicates the mean RMSD of paired measures of all scanner pairs for each of the

methods

harmonization. Within ESPA, we employ MISPEL as our chosen harmonization framework,

utilizing simulated matched data generated through our two novel augmentation methods.

These methods aim to adapt images of an arbitrary source scanner to those of target scan-

ners, while emphasizing on preserving their brain structure. The simulated matched data

generated by our augmentation methods is flexible in size, accommodating source dataset

of any desired scale. This flexibility enhances the robustness of our harmonization model,

which could be a challenge for supervised harmonization methods. Additionally, leverag-

ing MISPEL alongside our structure-preserving augmentation techniques ensures that the

anatomical structure of brains is appropriately accounted for in ESPA. Furthermore, the

potential for over-correction is mitigated through population-matching between the source

and target scanner populations during the simulation-based domain adaptation process.

We devised two sets of augmentation methods: (1) tissue-type contrast augmentation,

and (2) GAN-based residual augmentation. The first method operates under the assump-

tion that scanner effects manifest as disparities in brain tissue type distributions, while the

second method posits that these effects can vary across brain regions and can be simulated

as additive augmentations to images. To assess the effectiveness of these augmentations,
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(a) Bias.

(b) Variance (RMSD).

(c) Cohen’s d.

Figure 30: Statistics on bias, variance, and Cohen’s d for biomarkers of AD.

we validated their performance in domain adaptation, focusing on their capability to pre-

serve brain structure throughout this process. Additionally, we assessed their performance

in harmonization. For the harmonization evaluation, we constructed two instances of the
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ESPA harmonization framework, ESPATC and ESPARes, each utilizing one of these methods

for data augmentation. We then compared the performance of these frameworks against

SOTA harmonization methods, including MISPEL and a modified version of CALAMITI as

supervised methods, as well as Style-Trans as an unsupervised method.

Our findings indicate that: (1) scanner effects manifest in our dataset as disparities in

image appearance/contrast, GM-WM contrast, and distributions of regional biomarkers of

AD; (2) CALAMITI and Style-Trans achieved harmonization to some degree, with Style-

Trans demonstrating superior performance compared to CALAMITI; (3) MISPEL achieved

harmonization and surpassed Style-Trans in downstream tasks, particularly when analyzing

effect sizes for SVD groups; (4) both ESPATC and ESPARes achieved structure-preserving

domain adaptation and outperforming MISPEL in harmonization; and (5) ESPARes is pre-

ferred over ESPATC due to its superior harmonization capabilities and ability to simulate

region-wise scanner effects.

Our initial analyses on the validity of augmentation demonstrated the effectiveness of

both augmentation methods in adapting images from the source scanner to the target scan-

ners. We assessed this capability by evaluating the prediction accuracy of classifiers trained

to classify the scanners to which the images were adapted. Notably, both augmentation

methods yielded similar accuracies, which may not adequately capture the full extent of

their adaptation performance. It’s possible that our assessment is hindered by the limited

classification ability of the classifiers, stemming from the small sample size on which they

were trained. To explore this further, additional investigation using unmatched data of larger

size is warranted.

Our analysis of the brain structure preservation capability of the augmentations revealed

their success in this aspect. Visualization of the harmonized images demonstrated that the

structural integrity of the brain was maintained. Notably, this preservation was observed

across all three brain orientations, highlighting a distinctive characteristic of ESPA. This

framework was trained solely on 2D axial slices, yet it effectively preserved brain structure

in orientations other than that it was specifically trained on. This stands in contrast to many

existing harmonization methods, such as (Dewey et al., 2019; Liu et al., 2023; Zuo et al.,

2021b), where brain modifications in orientations different from the trained one were prob-
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lematic. To address this issue, these methods proposed training three separate harmonization

models per orientation and averaging their outputs to obtain the final harmonized images.

However, this approach significantly increases the time and cost complexity of harmonization

methods.

Based on the evaluated harmonization metrics, we observed that images of GE were more

similar to those of Philips and images of SiemensP showed more similarity to SiemensT’s.

We also observed that scanner effects appeared mainly as the dissimilarity between pairs of

GE or Philips and SiemensP or SiemensT. The harmonization results revealed that while

CALAMITI achieved some degree of harmonization, it was outperformed by Style-Trans.

Specifically, CALAMITI improved the similarity of images in terms of appearance/contrast

and GM-WM contrast. However, it failed to harmonize AD biomarkers, resulting in deteri-

orated bias and variance for the majority (9) of the biomarkers. Similarly, it worsened the

differences observed in the SVD group for the same number of biomarkers. These shortcom-

ings in harmonization could be attributed to CALAMITI’s failure to adequately disentangle

scanner-variant components from the images. Another contributing factor could be over-

correction in this method. The low Cohen’s d values may be indicative of over-correction

of contrast in the images, potentially causing SVD signatures such as white matter hyper-

intensity (WMH) to be over-corrected as well. Further investigation into these hypotheses

is warranted.

Further harmonization analyses revealed that Style-Trans achieved superior harmoniza-

tion compared to CALAMITI, despite not utilizing matched data. Notably, Style-Trans

demonstrated acceptable harmonization performance, comparable to MISPEL, across all

harmonization metrics except for Cohen’s d for SVD groups. Style-Trans deteriorated this

metric for all AD biomarkers, potentially attributed to over-correction resulting from its

style transfer approach. It is possible that WMH as signature of SVD have been corrected

to match the style of the target images used by this method. Additional investigation into

these hypotheses is necessary.

MISPEL showcased superior harmonization compared to Style-Trans, effectively achiev-

ing harmonization across image similarity, GM-WM contrast similarity, and biological sim-

ilarity. Moreover, it enhanced differentiation among SVD groups using biomarkers of AD.
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Despite these notable strengths, MISPEL was surpassed by ESPATC and ESPARes, particu-

larly in terms of biological similarity and Cohen’s d for SVD groups.

Our ablation study underscored the inadequacy of randomly selected contrast and bright-

ness augmentations in yielding significant harmonization, emphasizing the necessity for more

refined augmentation methods, as exemplified by our approach. This highlights the complex-

ity of scanner effects for downstream tasks compared to contrast and appearance-based vari-

ability in natural images, as demonstrated by frameworks like SimCLR (Chen et al., 2020b),

which successfully addressed natural image classification using randomly tuned appearance-

based augmentation methods. However, our ablation study revealed that if harmonization is

to be approached as a task-specific method using the SimCLR framework, more sophisticated

augmentations, such as our novel ones, are imperative. For such framework, we advocate

for GAN-based residual augmentation, as implemented in our ESPARes, which yielded the

best harmonization results among all compared methods and better simulated scanner ef-

fects at a region-wise level. Nevertheless, our augmentation methods were not flawless. Both

ESPATC and ESPARes exacerbated size effects when using the hippocampus as a biomarker

of interest. Further investigation into this phenomenon is warranted, alongside exploration

of our methods across more brain regions.
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6.0 Conclusion and future work

In this dissertation, our main focus is on understanding, illustrating, and addressing

scanner effects. We aim to address several current issues related to scanner effects, including

the lack of understanding of these effects, the absence of standardized criteria for assessing

them and evaluating harmonization, and the limited availability of harmonization methods.

To achieve this, we conducted three studies specifically designed for T1-weighted MRIs:

(1) In the first study, we employed matched data as the best available experimental setup

to assess scanner effects and evaluate harmonization. Our investigation encompassed scanner

effects on images and image-derived measures. Furthermore, we utilized matched data to

establish our harmonization evaluation criteria and to evaluate two SOTA harmonization

methods at the time.

(2) In the second study, we utilized matched data as labeled data to develop MISPEL, a

supervised harmonization method. While supervised harmonization methods, such as MIS-

PEL, are less susceptible to the two current harmonization issues, including over-correction

and brain structural modifications resulting from the use of matched data, they do have two

shortcomings: not all datasets include additional matched data, and there is a possibility of

lack of model robustness due to the small size of matched data.

(3) In the third study, we introduced ESPA as an unsupervised harmonization framework.

ESPA is an extension of MISPEL that proposes using simulated matched data instead of

actual matched data. By providing simulations of matched data of flexible size, ESPA can

overcome issues associated with supervised harmonization. Additionally, it can address over-

correction and mitigate brain structure modifications during its simulation process.

Our contributions to MRI image processing can be further enhanced through several av-

enues of future work. Evaluating methods on larger or varied matched datasets presents an

opportunity for improvement, although such data is not currently publicly available. Con-

sequently, new experimental setups utilizing larger unmatched datasets could prove bene-

ficial. Additionally, employing matched data with phantoms has the potential to enhance

the reliability of methods and experiments, thereby reducing the image artifacts to solely
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scanner effects. While our methods have primarily focused on T1-w MRIs, exploring other

image modalities could yield valuable insights. Expanding experiments to encompass more

brain regions would offer a more comprehensive assessment of the methods’ effectiveness

across different anatomical areas. Furthermore, future evaluations could involve more exten-

sive variation of hyper-parameters to potentially optimize results across all aspects of our

evaluation criteria. This approach would provide a deeper understanding of the methods’

performance and their adaptability to different settings.

6.1 Investigating two methods of cross-scanner technical variability removal in

harmonization of image-derived measures

Chapter 3 delved into two harmonization methods: RAVEL, which focuses on normaliz-

ing and harmonizing images, and ComBat, designed for harmonizing image-derived measures.

To test these methods, we selected top 10 biomarkers of AD from a paired dataset compris-

ing T1-w MRIs of 16 subjects obtained from General Electric 1.5T and Siemens 3T MRI

scanners. Our harmonization criteria were tailored using paired data, with metrics evaluat-

ing dissimilarity and similarity across paired images and measures. We assessed images for

normalization and segmentation accuracy across scanners, while biomarkers were evaluated

for bias and variance. Our findings revealed varying degrees of harmonization achieved by

RAVEL, ComBat, and the RAVEL-ComBat pipeline. Specifically, RAVEL effectively nor-

malized images, particularly in the GM and CSF regions, while preserving brain anatomy,

as evidenced by our experiments on hippocampus segmentation. However, it exhibited low

variance, indicating inconsistent harmonization across subjects, a trend also observed in the

RAVEL-ComBat pipeline. In contrast, ComBat demonstrated superior harmonization when

bias and variance were analyzed. While our results partially support our hypothesis that

indicates removing cross-scanner technical variability from both images and image-derived

measures enhances harmonization of AD biomarkers, we recommend a more consistent ap-

proach than RAVEL for use in this setup.

The primary objectives of this chapter were to investigate the scanner effect in paired
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data and develop harmonization evaluation criteria, which were further expanded upon in

our subsequent two chapters. Alongside these goals, we also aimed to assess the performance

of SOTA methods at the time without necessarily intending to enhance them. Nonetheless,

it’s noteworthy to highlight their advancements, particularly RAVEL, as potential avenues

for further research.

• One possible reason for RAVEL’s inconsistent behavior across subjects could be its se-

lected normalization strategy, referred to as White Stripe (WS). WS is an individual-level

method, which makes the normalization of any new, unseen image more convenient. How-

ever, this approach may also result in inconsistent normalization across images. Scaling

and centering the intensity distributions does not necessarily remove scanner effects; on

the contrary, over-matching distributions could result in the removal of other sources of

variability that could be of interest (Fortin et al., 2016). This possibility could be further

investigated, and RAVEL could be improved by using a different normalization method.

• Another possible reason for RAVEL’s inconsistency could be incorrectly capturing motion

artifacts as scanner effects in the CSF area. This idea can be investigated by identifying

subjects causing high values of RMSD and examining their images for motion artifacts.

If motion artifacts are the issue, the identified subjects should have one image with

artifacts and another scan taken by a different scanner without artifacts, resulting in

high cross-scanner differences and consequently increased RMSD.

• As the final solution, RAVEL could be replaced by another image harmonization method.

ComBat has shown acceptable harmonization in terms of adjusting distributions of

biomarkers across scanners. This method could be adapted at the image level for har-

monizing images, as initiated in (Chen et al., 2022b). However, this direction may face

its own difficulties, as distribution matching must be implemented at the voxel intensity

level, and errors in image registration could pose challenges.
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6.2 Multi-scanner harmonization of paired neuroimaging data via structure

preserving embedding learning

Chapter 4 introduces a supervised image harmonization method, MISPEL: Multi-scanner

Image harmonization via Structure Preserving Embedding Learning. MISPEL leverages pre-

collected matched data from scanners to learn how to map their images to a scanner-middle-

ground domain, effectively reducing scanner effects by making the images more similar to

each other. The mappings can then be used to harmonize unmatched images from the

scanners. To acquire these mappings, MISPEL employs encoder-decoder units tailored for

each scanner’s images, facilitating harmonization across multiple scanners. Each unit en-

codes images into latent embeddings (in the form of images) and decodes them back into

harmonized images. The harmonization process enforces similarity between latent and de-

coded images across scanners. Throughout the mapping learning, MISPEL preserves brain

structure, maintaining the resemblance of harmonized images to their originals. Notably,

MISPEL handles over-correction, as it solely accounts for dissimilarity within matched im-

ages primarily attributed to scanner effects.

The matched dataset we used consists of T1-w matched images from 18 subjects, acquired

across four 3T scanners: General Electric, Philips, Siemens Prisma, and Siemens Trio. Lever-

aging this dataset, we broadened our harmonization evaluation criteria to encompass (1) im-

age similarity, (2) GM-WM contrast similarity, (3) volumetric and segmentation similarity

of tissue types, and (4) biological similarity, delving into biomarkers of AD. Additionally, we

singled out small vessel disease (SVD) as a key clinical signal of interest and explored the

potential preservation or enhancement of SVD group differences post-harmonization. Our

experimental design involved the use of various segmentation platforms to illustrate scanner

effects and the effectiveness of harmonization across different platforms.

We compared MISPEL with the SOTA harmonization methods at the time, including

RAVEL and CALAMITI. Our results indicated that RAVEL and supervised CALAMITI

achieved harmonization to some extent. However, MISPEL outperformed all other methods

based on all harmonization evaluation criteria. These findings support our hypothesis that

harmonization can be achieved for scanners within a matched dataset by constructing a model

118



that maps matched images from the dataset to a scanner-middle-ground space, where matched

images lose scanner effects by becoming similar to each other. There are several aspects by

which MISPEL can be extended or explored, including the following:

• Selecting a target scanner to which images are mapped could be challenging and con-

troversial. On the other hand, harmonizing images to a scanner-middle-ground space

rather than a specified target scanner could be problematic in scenarios where data were

collected primarily using lower-quality scanners. This may bias MISPEL to learn a lower-

quality middle-ground space for harmonizing images, potentially degrading the quality

of images from more advanced scanners. While this was not the case with our matched

dataset, it is a possibility that should be considered. In such cases, MISPEL could be

easily modified to map images to a specified target scanner.

• With the current design of MISPEL, a separate encoder-decoder unit is required for each

scanner. This could potentially make running MISPEL impossible on GPUs with smaller

RAM capacity for larger number of scanners. One possible solution is to use a single

encoder-decoder unit for all scanners. MISPEL could be easily modified to such design.

• It has been observed that MISPEL may introduce minor blurriness to images. This

blurriness could be attributed to our selection of the loss function, specifically the Em-

bedding Coupling Loss, which aims to make embeddings similar in their characteristics

across scanners. We chose to ensure that the embeddings have similar variance, which

may be the reason for the blurriness. To mitigate this issue, we can explore alterna-

tive loss functions such as Mean Absolute Error (MAE) and Structural Similarity Index

Measure (SSIM).

• Even though MISPEL has shown major success in harmonization, there are minor short-

comings as well. For example, it slightly reduced the differences between groups identified

through small vessel disease (SVD) in hippocampal volumes. This could be related to its

2D network architecture, which may result in slice-to-slice inconsistency for harmonized

images. Although our results showed no signs of such inconsistency, it may be worth-

while to develop a 2.5D version of MISPEL. In a 2.5D MISPEL setting, three separate

2D networks could be trained for each brain orientation, and the final harmonized image

could be generated as the average of the three images resulting from these networks.
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6.3 ESPA: An unsupervised harmonization framework via Enhanced

Structure Preserving Augmentation

Chapter 5 introduces ESPA, an unsupervised harmonization framework that extends

MISPEL. ESPA proposes using simulated matched data instead of actual matched data. To

achieve this, ESPA employs two novel appearance-based augmentation methods designed to

adapt images from an arbitrary source scanner to those of target scanners. Utilizing simu-

lated matched data, ESPA learns how to map images to the target scanners’ middle-ground

domain. The first augmentation method, tissue-type contrast augmentation, assumes that

scanner effects can manifest as tissue-type distribution discrepancies across scanners. The

second augmentation method, GAN-based residual augmentation, assumes that augmenta-

tion can be simulated as a region-wise additive image during domain adaptation between

source and target scanners. This additive image is then added to the original image to make

augmented image. ESPA addresses concerns about model robustness due to the small sample

size of matched data. It can generate a large simulated matched dataset of any desired size.

It also accounts for brain structural changes and over-correction using structure-preserving

augmentations and population matching during simulation, respectively.

We utilized the same matched dataset as in Chapter 4 for both simulated matched data

generation and evaluation. This data was used in its unmatched version for the simulation.

Our evaluation setup consisted of five main components: (1) validation of domain adaptation

in augmentation methods, (2) validation of brain structure preservation in augmentation

methods, (3) validation of augmentation removal in ESPA, (4) validation of harmonization,

and (5) an ablation study. For the harmonization validation, we employed the same analyses

as in Chapter 4. We compared the performance of ESPA with SOTA methods of the time,

including MISPEL, supervised CALAMITI, and Style-Trans.

Our findings indicated that both ESPATC and ESPARes, trained respectively with the two

augmentation methods, achieved structure-preserving domain adaptation and outperformed

the selected SOTA methods in harmonization. We also concluded that ESPARes is preferred

over ESPATC due to its superior harmonization capabilities and ability to simulate region-

wise scanner effects. These results support our hypothesis that harmonization for scanners
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can be achieved through mappings to their scanner-middle-ground domain via a framework

that concurrently simulates matched data for the scanners using appearance-based augmen-

tation methods and learns the corresponding mappings from this simulated data. There are

several aspects by which ESPA can be extended or explored, including the following:

• When adapting images to a scanner-middle-ground domain likewise MISPEL, there’s a

risk of image quality deterioration, especially when the majority of images for harmo-

nization are of low quality. To address this challenge, MISPEL can be easily modified

for domain adaptation towards a target scanner.

• Our analyses on MISPEL revealed no slice-to-slice inconsistency post-harmonization.

Furthermore, we did not visually observe such problems in our augmented methods

utilizing either of our augmentation techniques. This reduces the necessity of employing

2.5D or 3D networks for ESPA. However, within the neuroimaging or vision domains,

networks trained on 3D images are highly preferred, yet they have not been largely

developed due to the scarcity of scans. This is why studies resort to using 2D networks

to increase the volume of images for training. With our simulation strategy, we can

generate simulated matched data of the desired size, enabling the training of 3D networks

for harmonization.

• It is worthwhile to assess the effectiveness of pre-training existing harmonization methods

using our augmentations for providing simulated data. We hypothesize that incorporat-

ing a pre-training step will enhance their harmonization performance. Additionally,

our augmentation methods could offer another advantage by being integrated into task-

specific harmonization frameworks. SimCLR, originally designed for natural images,

augments various sources of variability in such images to generate embeddings, typically

utilized in downstream tasks like image classification. SimCLR could potentially be

adapted into a task-specific harmonization framework. However, selecting appropriate

augmentation methods poses a challenge, as our ablation study revealed the inefficacy

of simple contrast and brightness variability as augmentation for harmonization. Hence,

it is worthwhile to explore whether our augmentation methods can be utilized to modify

SimCLR to generate embeddings to be used in neuroimaging downstream tasks.

• While ESPA has demonstrated significant success in harmonization, it also exhibits minor
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shortcomings. Both ESPATC and ESPARes showed a decline in the preservation of size

effects when utilizing hippocampal volume as a biomarker of interest. Notably, none

of the SOTA harmonization methods employed in this dissertation, including RAVEL,

MISPEL, supervised CALAMITI, and Style-Trans, were able to improve size effect for

volume of this region. We suggest the harmonization of this biomarker as a challenge for

future harmonization methodologies.
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Appendix A Additional Results from Section 3

A.1 Fitting RAVEL for hyper-parameters

For fitting RAVEL to our data, we explored the effects of the decomposition rank b

and the biological variables age and gender on density plots of tissue types: CSF, GM, and

WM. Figure 31 contains the plots for which rank was set to either one, two, or three. The

results showed that the higher rank, in our case three, gave us greater overlap of the plots,

which means better intensity normalization. In the second set of experiments, we controlled

models for age and/or gender. The density plots for each of these settings were depicted in

Figure 32, in which rank was fixed to three. We observed that while controlling for gender did

not change the density plots, age widened them, specifically the plots for the WM and GM.

Wider density plots could be an evidence of resulting in images with lower quality/contrast,

which was the exact case for our images. Based on these observations, we decided to fix rank

to three and control for no biological variables, when we fitted the final model.
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(a) Rank = 1.

(b) Rank = 2.

(c) Rank = 3.

Figure 31: Density plots of MRI voxel intensities by tissue type (cerebrospinal fluid (CSF),

grey matter (GM), and white matter (WM)) across scanners (GE 1.5T (cyan) and Siemens

3T (orange)) by setting (a) Rank = 1, (b) Rank = 2, and (c) Rank = 3.
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(a) No biological variables.

(b) Age.

(c) Gender.

(d) Age and gender.

Figure 32: Density plots of MRI voxel intensities by tissue type (cerebrospinal fluid (CSF),

grey matter (GM), and white matter (WM)) across scanners (GE 1.5T (cyan) and Siemens

3T (orange)), controlling for (a) no biological variables, (b) age, (c) gender, and (d) age and

gender.
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A.2 Within-scanner descriptive statistics of summary measures

Table 11: Descriptive statistics, including mean and standard deviation (SD) for FreeSurfer-

derived cortical thickness and volume measures relevant to AD. These statistics are reported

for the RAW, RAVEL-corrected, ComBat-harmonized, and RAVEL-ComBat-harmonized

measures across GE 1.5T and Siemens 3T scanners. Initially referenced in section 3.1.

Values 0.00 and −0.00 indicate values < 0.005 and < −0.005, respectively.

RAW RAVEL ComBat RAVEL-ComBat

1.5T 3T 1.5T 3T 1.5T 3T 1.5T 3T

ROIs Cortical Thickness (mm)

Left

Entorhinal 2.96 (0.29) 3.18 (0.37) 2.93 (0.29) 3.12 (0.40) 3.03 (0.28) 3.11 (0.36) 2.94 (0.28) 3.12 (0.38)

Fusiform 2.25 (0.18) 2.50 (0.15) 2.37 (0.25) 2.47 (0.17) 2.32 (0.17) 2.43 (0.16) 2.37 (0.21) 2.47 (0.19)

Inferior Parietal 2.13 (0.15) 2.08 (0.13) 2.22 (0.21) 2.07 (0.13) 2.13 (0.14) 2.09 (0.14) 2.18 (0.18) 2.12 (0.15)

Inferior Temporal 2.32 (0.21) 2.57 (0.17) 2.48 (0.30) 2.54 (0.18) 2.39 (0.19) 2.50 (0.17) 2.47 (0.26) 2.55 (0.21)

Middle Temporal 2.52 (0.24) 2.60 (0.25) 2.59 (0.22) 2.57 (0.23) 2.55 (0.23) 2.57 (0.25) 2.56 (0.21) 2.60 (0.24)

Right

Entorhinal 3.00 (0.40) 3.24 (0.35) 3.04 (0.24) 3.22 (0.31) 3.08 (0.38) 3.16 (0.36) 3.05 (0.22) 3.21 (0.30)

Fusiform 2.32 (0.18) 2.54 (0.18) 2.43 (0.20) 2.48 (0.16) 2.38 (0.17) 2.48 (0.18) 2.42 (0.18) 2.48 (0.18)

Inferior Parietal 2.14 (0.19) 2.13 (0.15) 2.20 (0.20) 2.13 (0.14) 2.15 (0.18) 2.12 (0.15) 2.17 (0.18) 2.16 (0.16)

Inferior Temporal 2.33 (0.20) 2.59 (0.15) 2.41 (0.17) 2.51 (0.16) 2.40 (0.18) 2.52 (0.15) 2.42 (0.15) 2.50 (0.16)

Middle Temporal 2.55 (0.19) 2.60 (0.21) 2.60 (0.16) 2.59 (0.21) 2.57 (0.19) 2.58 (0.20) 2.58 (0.15) 2.61 (0.20)

ROIs Volume (cm)
3

Left

Entorhinal 1.64 (0.32) 1.72 (0.30) 1.54 (0.34) 1.74 (0.38) 1.68 (0.32) 1.68 (0.29) 1.58 (0.34) 1.70 (0.35)

Inferior Temporal 8.05 (1.03) 8.84 (1.57) 8.48 (1.00) 8.91 (1.53) 8.29 (1.10) 8.60 (1.42) 8.56 (1.04) 8.82 (1.41)

Middle Temporal 8.80 (1.58) 8.96 (2.00) 9.26 (1.44) 8.91 (1.81) 8.96 (1.66) 8.80 (1.84) 9.21 (1.47) 8.97 (1.69)

Amygdala 1.40 (0.26) 1.53 (0.30) 1.43 (0.21) 1.52 (0.25) 1.43 (0.26) 1.50 (0.28) 1.46 (0.22) 1.50 (0.23)

Hippocampus 3.85 (0.46) 3.77 (0.48) 4.00 (0.47) 3.81 (0.49) 3.82 (0.46) 3.79 (0.46) 3.94 (0.47) 3.86 (0.46)

Right

Entorhinal 1.60 (0.34) 1.69 (0.36) 1.55 (0.33) 1.67 (0.35) 1.65 (0.35) 1.65 (0.33) 1.57 (0.33) 1.65 (0.33)

Inferior Temporal 7.71 (1.23) 8.69 (1.62) 7.98 (1.37) 8.64 (1.52) 7.99 (1.29) 8.41 (1.49) 8.11 (1.38) 8.51 (1.43)

Middle Temporal 9.48 (1.35) 9.70 (1.87) 9.74 (1.39) 9.80 (1.73) 9.64 (1.43) 9.54 (1.71) 9.76 (1.42) 9.78 (1.61)

Amygdala 1.55 (0.21) 1.60 (0.21) 1.56 (0.19) 1.58 (0.20) 1.56 (0.21) 1.59 (0.20) 1.57 (0.19) 1.57 (0.19)

Hippocampus 3.99 (0.40) 3.90 (0.44) 4.09 (0.46) 3.99 (0.42) 3.96 (0.40) 3.93 (0.42) 4.06 (0.45) 4.02 (0.41)
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A.3 Confidence intervals of bias for summary measures

Table 12: Mean (95% confidence interval) of cross-scanner differences, (Siemens 3T - GE

1.5T), for cortical thickness and volume measures relevant to AD. These statistics were

prepared for each of the RAW, RAVEL, ComBat, and RAVEL-ComBat methods, using

the paired t-test. The measures with statistically significant differences (P < 0.05) were

highlighted. Values 0.00 and −0.00 indicate values < 0.005 and < −0.005, respectively.

RAW RAVEL ComBat RAVEL-ComBat

ROIs Cortical Thickness (mm)

Left

Entorhinal 0.22 (0.09, 0.34) 0.19 (-0.03, 0.41) 0.08 (-0.04, 0.20) 0.18 (-0.04, 0.39)

Fusiform 0.24 (0.19, 0.30) 0.10 (-0.02, 0.23) 0.11 (0.06, 0.16) 0.10 (-0.02, 0.22)

Inferior Parietal -0.05 (-0.11, 0.0) -0.15 (-0.26, -0.04) -0.04 (-0.09, 0.01) -0.04 (-0.16, 0.04)

Inferior Temporal 0.25 (0.16, 0.34) 0.06 (-0.08, 0.20) 0.11 (0.02, 0.19) 0.08 (-0.05, 0.21)

Middle Temporal 0.08 (0.00, 0.16) -0.01 (-0.11, 0.09) 0.02 (-0.06, 0.10) 0.03 (-0.07, 0.13)

Right

Entorhinal 0.23 (0.00, 0.47) 0.17 (-0.01, 0.35) 0.08 (-0.15, 0.31) 0.15 (-0.02, 0.33)

Fusiform 0.22 (0.17, 0.28) 0.05 (-0.06, 0.16) 0.10 (0.04, 0.15) 0.06 (-0.04, 0.17)

Inferior Parietal -0.02 (-0.06, 0.02) -0.07 (-0.15, 0.01) -0.02 (-0.06, 0.01) -0.01 (-0.09, 0.06)

Inferior Temporal 0.26 (0.19, 0.32) 0.09 (0.01, 0.18) 0.11 (0.06, 0.17) 0.08 (0.00, 0.17)

Middle Temporal 0.05 (-0.03, 0.14) -0.01 (-0.08, 0.06) 0.01 (-0.08, 0.09) 0.03 (-0.04, 0.10)

ROIs Volume (cm)
3

Left

Entorhinal 0.08 (-0.05, 0.22) 0.19 (-0.03, 0.41) 0.01 (-0.12, 0.14) 0.12 (-0.09, 0.33)

Inferior Temporal 0.79 (0.37, 1.21) 0.43 (-0.01, 0.88) 0.31 (-0.03, 0.66) 0.26 (-0.13, 0.65)

Middle Temporal 0.16 (-0.29, 0.61) -0.35 (-0.91, 0.21) -0.16 (-0.55, 0.24) -0.23 (-0.76, 0.29)

Amygdala 0.13 (0.03, 0.23) 0.09 (0.01, 0.17) 0.06 (-0.04, 0.16) 0.04 (-0.04, 0.11)

Hippocampus -0.08 (-0.16, -0.01) -0.19 (-0.29, -0.09) -0.03 (-0.1, 0.05) -0.05 (-0.18, 0.01)

Right

Entorhinal 0.09 (-0.05, 0.23) 0.12 (-0.05, 0.29) 0.01 (-0.13, 0.15) 0.07 (-0.10, 0.24)

Inferior Temporal 0.98 (0.55, 1.40) 0.67 (0.19, 1.14) 0.42 (0.04, 0.80) 0.41 (-0.05, 0.86)

Middle Temporal 0.21 (-0.27, 0.70) 0.06 (-0.39, 0.51) -0.10 (-0.52, 0.32) 0.02 (-0.40, 0.44)

Amygdala 0.05 (0.01, 0.10) 0.02 (-0.03, 0.06) 0.03 (-0.02, 0.08) 0.01 (-0.04, 0.05)

Hippocampus -0.09 (-0.16, -0.01) -0.10 (-0.23, 0.03) -0.03 (-0.11, 0.04) -0.04 (-0.17, 0.08)
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A.4 Experiments on different preprocessing pipelines

To investigate the effects of different preprocessing methods on RAW and ComBat data,

we created two new datasets, each with its preprocessing steps removed. Specifically, we

generated RAWOrig and ComBatOrig datasets by excluding the preprocessing steps used for

RAW and ComBat data generation, respectively. We then conducted paired t-tests with a

95% confidence interval (CI) to compare RAWOrig with RAW and ComBatOrig with ComBat.

The results of these comparisons were documented in Tables 13 and 14 for each scanner. In

these tables, the first two columns represent the mean (SD) of the datasets being compared,

while the third column displays the results of the comparison: the mean directional differ-

ences (95% CI) obtained from the t-test. Statistically significant differences (p < 0.05) are

highlighted in the tables.
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Table 13: Comparing different preprocessing pipelines for generating RAW data using paired

t-test. For each scanner, the first two columns are the mean (SD) of the corresponding data

and the third column is the mean of directional differences (95% confidence interval) of data

in the first two columns. The statistically significant differences (p < 0.05) are highlighted

in the tables. Values 0.00 and −0.00 indicate values < 0.005 and < −0.005, respectively.

1.5T 3T

RAWOrig RAW RAWOrig - RAW RAWOrig RAW RAWOrig - RAW

ROIs Cortical Thickness (mm) Cortical Thickness (mm)

Left

Entorhinal 3.06 (0.39) 2.96 (0.29) 0.10 (-0.26, 0.06) 3.42 (0.39) 3.18 (0.37) 0.24 (-0.36, -0.12)

Fusiform 2.42 (0.15) 2.25 (0.18) 0.17 (-0.22, -0.11) 2.50 (0.17) 2.50 (0.15) 0.00 (-0.05, 0.05)

Inferior Parietal 2.20 (0.14) 2.13 (0.15) 0.07 (-0.13, -0.02) 2.07 (0.14) 2.08 (0.13) -0.01 (-0.02, 0.05)

Inferior Temporal 2.43 (0.17) 2.32 (0.21) 0.11 (-0.19, -0.02) 2.55 (0.17) 2.57 (0.17) -0.02 (-0.04, 0.09)

Middle Temporal 2.63 (0.25) 2.52 (0.24) 0.11 (-0.19, -0.03) 2.60 (0.23) 2.60 (0.25) 0.00 (-0.06, 0.05)

Right

Entorhinal 3.17 (0.42) 3.00 (0.40) 0.17 (-0.32, -0.01) 3.58 (0.40) 3.24 (0.35) 0.34 (-0.52, -0.16)

Fusiform 2.47 (0.16) 2.32 (0.18) 0.14 (-0.22, -0.07) 2.60 (0.20) 2.54 (0.18) 0.05 (-0.11, -0.00)

Inferior Parietal 2.20 (0.16) 2.14 (0.19) 0.05 (-0.13, 0.02) 2.16 (0.14) 2.13 (0.15) 0.03 (-0.08, 0.02)

Inferior Temporal 2.41 (0.17) 2.33 (0.20) 0.08 (-0.18, 0.02) 2.65 (0.16) 2.59 (0.15) 0.06 (-0.11, -0.01)

Middle Temporal 2.68 (0.20) 2.55 (0.19) 0.13 (-0.21, -0.05) 2.67 (0.20) 2.60 (0.21) 0.07 (-0.12, -0.01)

ROIs Volume (cm)
3

Volume (cm)
3

Left

Entorhinal 1.68 (0.27) 1.64 (0.32) 0.04 (-0.26, 0.19) 1.68 (0.34) 1.72 (0.30) -0.05 (-0.07, 0.16)

Inferior Temporal 8.20 (1.73) 8.05 (1.03) 0.15 (-0.65, 0.35) 8.50 (1.57) 8.84 (1.57) -0.34 (0.12, 0.56)

Middle Temporal 8.49 (1.90) 8.80 (1.58) -0.31 (-0.00, 0.63) 8.54 (1.86) 8.96 (2.00) -0.42 (0.14, 0.70)

Amygdala 1.39 (0.21) 1.40 (0.26) -0.01 (-0.05, 0.08) 1.46 (0.31) 1.53 (0.30) -0.07 (-0.01, 0.15)

Hippocampus 3.97 (0.58) 3.85 (0.46) 0.11 (-0.22, -0.01) 3.76 (0.55) 3.77 (0.48) -0.01 (-0.08, 0.09)

Right

Entorhinal 1.45 (0.28) 1.60 (0.34) -0.15 (0.03, 0.27) 1.59 (0.34) 1.69 (0.36) -0.10 (-0.01, 0.21)

Inferior Temporal 7.77 (1.49) 7.71 (1.23) 0.06 (-0.41, 0.29) 8.39 (1.51) 8.69 (1.62) -0.30 (0.05, 0.56)

Middle Temporal 9.63 (1.71) 9.48 (1.35) 0.14 (-0.53, 0.24) 9.55 (1.75) 9.70 (1.87) -0.15 (-0.08, 0.38)

Amygdala 1.43 (0.19) 1.55 (0.21) -0.11 (0.05, 0.18) 1.43 (0.23) 1.60 (0.21) -0.17 (0.10, 0.24)

Hippocampus 4.02 (0.49) 3.99 (0.40) 0.04 (-0.15, 0.07) 3.86 (0.52) 3.90 (0.44) -0.04 (-0.06, 0.14)
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Table 14: Comparing different preprocessing pipelines for generating ComBat data using

paired t-test. For each scanner, the first two columns are the mean (SD) of the corresponding

data and the third column is the mean of directional differences (95% confidence interval)

of data in the first two columns. The statistically significant differences (p < 0.05) are

highlighted in the tables. Values 0.00 and −0.00 indicate values < 0.005 and < −0.005,

respectively.

1.5T 3T

ComBatOrig ComBat ComBatOrig - ComBat ComBatOrig ComBat ComBatOrig - ComBat

ROIs Cortical Thickness (mm) Cortical Thickness (mm)

Left

Entorhinal 3.14 (0.38) 3.03 (0.28) 0.11 (-0.05, 0.26) 3.35 (0.37) 3.11 (0.36) 0.23 (0.12, 0.34)

Fusiform 2.43 (0.15) 2.32 (0.17) 0.11 (0.06, 0.16) 2.48 (0.16) 2.43 (0.16) 0.05 (0.01, 0.10)

Inferior Parietal 2.16 (0.14) 2.13 (0.14) 0.04 (-0.02, 0.09) 2.11 (0.13) 2.09 (0.14) 0.02 (-0.01, 0.05)

Inferior Temporal 2.45 (0.16) 2.39 (0.19) 0.06 (-0.02, 0.14) 2.52 (0.17) 2.50 (0.17) 0.03 (-0.04, 0.09)

Middle Temporal 2.61 (0.24) 2.55 (0.23) 0.06 (-0.01, 0.14) 2.62 (0.22) 2.57 (0.25) 0.05 (-0.00, 0.10)

Right

Entorhinal 3.26 (0.41) 3.08 (0.38) 0.18 (0.03, 0.33) 3.49 (0.38) 3.16 (0.36) 0.33 (0.15, 0.50)

Fusiform 2.49 (0.16) 2.38 (0.17) 0.11 (0.03, 0.18) 2.57 (0.18) 2.48 (0.18) 0.09 (0.04, 0.14)

Inferior Parietal 2.18 (0.16) 2.15 (0.18) 0.03 (-0.04, 0.10) 2.18 (0.13) 2.12 (0.15) 0.05 (0.0, 0.10)

Inferior Temporal 2.46 (0.16) 2.4 (0.18) 0.06 (-0.03, 0.15) 2.59 (0.15) 2.52 (0.15) 0.08 (0.03, 0.12)

Middle Temporal 2.66 (0.20) 2.57 (0.19) 0.10 (0.02, 0.18) 2.68 (0.19) 2.58 (0.20) 0.10 (0.05, 0.15)

ROIs Volume (cm)
3

Volume (cm)
3

Left

Entorhinal 1.40 (0.22) 1.43 (0.26) -0.03 (-0.10, 0.04) 1.44 (0.29) 1.50 (0.28) -0.06 (-0.13, 0.02)

Inferior Temporal 3.90 (0.56) 3.82 (0.46) 0.08 (-0.02, 0.18) 3.82 (0.55) 3.79 (0.46) 0.03 (-0.06, 0.11)

Middle Temporal 1.43 (0.19) 1.56 (0.21) -0.13 (-0.20, -0.06) 1.43 (0.22) 1.59 (0.20) -0.15 (-0.22, -0.08)

Amygdala 3.97 (0.48) 3.96 (0.40) 0.01 (-0.09, 0.12) 3.91 (0.51) 3.93 (0.42) -0.02 (-0.11, 0.08)

Hippocampus 1.68 (0.27) 1.68 (0.32) 0.00 (-0.22, 0.23) 1.68 (0.32) 1.68 (0.29) -0.01 (-0.12, 0.10)

Right

Entorhinal 8.25 (1.67) 8.29 (1.10) -0.04 (-0.49, 0.42) 8.46 (1.54) 8.60 (1.42) -0.15 (-0.36, 0.07)

Middle Temporal 8.50 (1.85) 8.96 (1.66) -0.46 (-0.75, -0.17) 8.53 (1.81) 8.80 (1.84) -0.28 (-0.53, -0.02)

Inferior Temporal 1.47 (0.27) 1.65 (0.35) -0.17 (-0.29, -0.05) 1.57 (0.33) 1.65 (0.33) -0.08 (-0.18, 0.02)

Amygdala 9.62 (1.67) 9.64 (1.43) -0.02 (-0.38, 0.35) 9.55 (1.70) 9.54 (1.71) 0.01 (-0.20, 0.22)

Hippocampus 7.86 (1.45) 7.99 (1.29) -0.13 (-0.46, 0.21) 8.30 (1.47) 8.41 (1.49) -0.11 (-0.34, 0.12)
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A.5 Comparing ComBat-harmonized and Longitudinal-ComBat-harmonized

biomarkers of AD

Table 15: Mean (SD) of FreeSurfer-derived cortical thickness and volume measures relevant

to AD. These statistics are reported for the ComBat-harmonized and Longitudinal-ComBat-

harmonized measures within GE 1.5T and Siemens 3T scanners.

ComBat Longitudinal ComBat

1.5T 3T 1.5T 3T

ROIs Cortical Thickness (mm)

Left

Entorhinal 3.03 (0.28) 3.11 (0.36) 3.07 (0.28) 3.07 (0.37)

Fusiform 2.32 (0.17) 2.43 (0.16) 2.37 (0.18) 2.38 (0.15)

Inferior Parietal 2.13 (0.14) 2.09 (0.14) 2.11 (0.15) 2.10 (0.13)

Inferior Temporal 2.39 (0.19) 2.50 (0.17) 2.44 (0.20) 2.45 (0.17)

Middle Temporal 2.55 (0.23) 2.57 (0.25) 2.56 (0.23) 2.56 (0.25)

Right

Entorhinal 3.08 (0.38) 3.16 (0.36) 3.13 (0.39) 3.11 (0.36)

Fusiform 2.38 (0.17) 2.48 (0.18) 2.43 (0.18) 2.44 (0.18)

Inferior Parietal 2.15 (0.18) 2.12 (0.15) 2.14 (0.19) 2.13 (0.15)

Inferior Temporal 2.40 (0.18) 2.52 (0.15) 2.45 (0.19) 2.46 (0.15)

Middle Temporal 2.57 (0.19) 2.58 (0.20) 2.58 (0.19) 2.57 (0.21)

ROIs Volume (cm)
3

Left

Entorhinal 1.68 (0.32) 1.68 (0.29) 1.68 (0.32) 1.68 (0.30)

Inferior Temporal 8.29 (1.10) 8.6 (1.42) 8.41 (1.03) 8.49 (1.52)

Inferior Parietal 8.96 (1.66) 8.80 (1.84) 8.89 (1.58) 8.87 (1.97)

Amygdala 1.43 (0.26) 1.50 (0.28) 1.46 (0.26) 1.47 (0.29)

Hippocampus 3.82 (0.46) 3.79 (0.46) 3.82 (0.46) 3.80 (0.48)

Right

Entorhinal 9.64 (1.43) 9.54 (1.71) 1.65 (0.35) 1.65 (0.35)

Inferior Temporal 1.65 (0.35) 1.65 (0.33) 9.6 (1.35) 9.58 (1.82)

Inferior Parietal 7.99 (1.29) 8.41 (1.49) 8.15 (1.23) 8.26 (1.59)

Amygdala 1.56 (0.21) 1.59 (0.20) 1.57 (0.22) 1.58 (0.21)

Hippocampus 3.96 (0.40) 3.93 (0.42) 3.95 (0.40) 3.93 (0.43)
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Appendix B Additional Results from Section 4

B.1 White stripe normalization in matched data

(a) GE-Philips pair.

(b) GE-SiemensP pair.

(c) GE-SiemensT pair.

(d) Philips-SiemensP pair.

(e) Philips-SiemensT pair.

(f) SiemensP-SiemensT pair.

Figure 33: Histograms of gray matter (GM) and white matter (WM) voxels for RAW and

White Stripe (WS)-normalized images of all subjects. These histograms were plotted for all

6 scanner pairs. WS makes the plots more centered, overlapped, and therefore comparable

across subjects. WS usually outputs images with negative intensity values. For plotting the

histograms, we shifted the WS-normalized images to have positive intensity values.
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