
Cache Side Channel Attacks on Modern Processors

by

Yanan Guo

M.S., University of Pittsburgh, 2020

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2024

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Yanan Guo

It was defended on

May 31st 2024

and approved by

Samuel Dickerson, Ph.D., Associate Professor, Department of Electrical and Computer

Engineering

Jingtong Hu, Ph.D., Associate Professor, Department of Electrical and Computer

Engineering

Peipei Zhou, Ph.D., Assistant Professor, Department of Electrical and Computer

Engineering

Youtao Zhang, Ph.D., Professor, Department of Computer Science, School of Computing

and Information

Wenjie Xiong, Ph.D., Assistant Professor, Bradley Department of Electrical and Computer

Engineering, Virginia Tech

Dissertation Director: Jun Yang, Ph.D., Professor, Department of Electrical and Computer

Engineering

ii

Copyright © by Yanan Guo

2024

iii

Cache Side Channel Attacks on Modern Processors

Yanan Guo, PhD

University of Pittsburgh, 2024

Modern CPUs feature many microarchitectural structures shared among users. Although

such resource sharing offers performance benefits, it also creates opportunities for side chan-

nel attacks. Attackers capable of manipulating microarchitectural states can bring these

structures into specific states, and then monitor any unintended state changes induced by

the victim. Cache timing covert channels and side channel attacks, or cache attacks for

short, are extremely potent. Attackers can exploit changes in cache states to leak sensitive

information from another user. For performance and efficiency purposes, modern CPUs of-

ten include instructions and designs that allow users to directly influence cache states. This

inadvertently makes it easier for attackers to manipulate these states, potentially resulting

in new and more efficient cache attacks. This dissertation analyzes how these instructions

and designs can be exploited for powerful cache attacks and develops mitigation strategies

against these attacks.

First, we reverse engineer the prefetch-for-write instruction (PREFETCHW) on Intel CPUs

and uncover a severe vulnerability on them. Based on this vulnerability, we develop two new

cache attacks. These attacks significantly outperform arguably the most prevalent cache

attack, Flush+Reload, in both bandwidth and temporal resolution.

Second, we study the non-temporal prefetch instruction (PREFETCHNTA) on Intel pro-

cessors and uncover its unique behavior within the cache hierarchy. This behavior enables

a fast route to trigger cache conflicts. We demonstrate that applying this instruction in

conflict-based cache attacks can significantly improve the attack performance.

Third, the CPU uncore has been a frequent target for side channel attacks, as it is

shared among all users. Many studies suggest using uncore resource partitioning as a coun-

termeasure, given that most uncore attacks stem from resource contention. However, we

show that such partitioning is not foolproof. Specifically, we reverse engineer the details of

the uncore frequency scaling technique on Intel processors and discover that this technique

iv

creates a robust side channel that cannot be stopped by traditional defense designs based

on partitioning.

Finally, we study the potential countermeasures against these new attacks and propose

defense mechanisms to mitigate each of these attacks with minimal impact on performance.

v

Table of Contents

Preface . xiv

1.0 Introduction . 1

1.1 Problem Statement . 2

1.2 Research Overview . 2

1.3 Dissertation Organization . 4

2.0 Background . 6

2.1 CPU Cache Architecture . 6

2.2 Cache Covert Channels and Side Channel Attacks (Cache Attacks) 7

2.2.1 Existing Cache Attacks . 7

2.2.2 Existing Countermeasures against Cache Attacks 10

2.3 Goal of This Dissertation . 11

3.0 New Coherence-Based Cache Attacks with The PREFETCHW Instruction . 12

3.1 Overview . 12

3.2 Cache Coherence . 14

3.3 Prefetch . 18

3.4 Characterizing The Prefetch-For-Write Instruction 18

3.5 Covert Channels Based on PREFETCHW . 24

3.5.1 Threat Model . 24

3.5.2 Prefetch+Load . 25

3.5.3 Prefetch+Prefetch . 26

3.6 Side Channel Attacks Based on PREFETCHW 27

3.6.1 Basic Idea and Assumptions . 27

3.6.2 Prefetch+Reload . 28

3.6.3 Prefetch+Prefetch . 30

3.7 Evaluation . 31

3.7.1 Covert Channel Evaluation . 31

vi

3.7.2 Side Channel Evaluation . 33

3.7.2.1 Side Channel Attack on Cryptographic Code 33

3.7.2.2 Side Channel Attack on Keystroke Timing 36

3.7.2.3 Attack Stealthiness . 37

3.7.2.4 Windowless Prefetch+Prefetch 39

3.7.3 Prefetch-Based Channels in Transient Execution Attacks 41

3.8 Discussion . 43

3.8.1 Attack Reliability . 43

3.8.2 PREFETCHW on AMD processors . 44

3.9 Chapter Summary . 45

4.0 New Conflict-Based Cache Attacks with The PREFETCHNTA Instruction . 46

4.1 Overview . 46

4.2 Cache Replacement Policy . 48

4.3 Characterizing The Non-Temporal Prefetch Instruction 50

4.3.1 Non-Temporal Prefetch . 50

4.3.2 Key Properties . 50

4.3.2.1 Insertion Policy . 50

4.3.2.2 Updating Policy . 55

4.3.2.3 Timing Variance . 56

4.4 A Covert Channel Based on PREFETCHNTA 57

4.4.1 Threat Model . 57

4.4.2 NTP+NTP . 58

4.4.2.1 Channel Protocol . 58

4.4.2.2 Channel Capacity . 61

4.4.2.3 Channel Reliability . 63

4.5 Side Channel Attacks Based on PREFETCHNTA 64

4.5.1 Prime+Scope with PREFETCHNTA . 65

4.5.1.1 Prime+Scope . 65

4.5.1.2 Prime+Prefetch+Scope . 66

4.5.1.3 Faster Preparation Step . 67

vii

4.5.2 Reload+Refresh with PREFETCHNTA 68

4.5.2.1 Reload+Refresh . 68

4.5.2.2 Prefetch+Refresh . 70

4.5.2.3 Faster Attacks . 72

4.6 Discussion . 72

4.6.1 Fast Eviction Set Construction . 72

4.6.2 PREFETCHNTA with Non-Inclusive LLCs 75

4.7 Chapter Summary . 76

5.0 Cache Attacks Based on Uncore Frequency Scaling 77

5.1 Overview . 77

5.2 CPU On-Chip Interconnect . 79

5.3 CPU Power Management . 81

5.3.1 CPU Frequency Scaling . 81

5.3.2 CPU Idle Power Management . 83

5.4 Prior Uncore Covert Channels . 83

5.5 UFS Characterization . 85

5.5.1 UFS with LLC/Interconnect Utilization 86

5.5.2 UFS with Core Stalling . 89

5.5.3 UFS Granularity . 91

5.5.4 UFS across Processors . 93

5.5.5 Summary of UFS Behavior . 94

5.6 UFS-Based Covert Channel . 94

5.6.1 Threat Model . 95

5.6.2 Measuring Uncore Frequency . 95

5.6.3 UF-variation . 97

5.6.3.1 Channel Protocol . 97

5.6.3.2 Channel Capacity . 100

5.6.3.3 Channel Reliability . 101

5.6.4 Comparison of Uncore Covert Channels 102

5.7 Side Channel Attacks . 105

viii

5.8 Discussion . 107

5.8.1 Evaluation with Background Workloads 107

5.8.2 Remote Covert Channel with UFS . 108

5.8.3 Applicability to Non-Intel Processors 109

5.9 Chapter Summary . 109

6.0 Countermeasures . 110

6.1 Countermeasures against Attacks Based on Cache-Controlling Instructions . 110

6.2 Countermeasures against Attacks Based on UFS 112

7.0 Related Work . 114

7.1 Prefetch-Based Attacks . 114

7.2 Cache Coherence Vulnerabilities . 115

7.3 Attacks Based on Frequency Scaling and Power Management 115

8.0 Conclusion and Future Work . 117

8.1 Conclusion . 117

8.2 Future Work on Cache Attacks . 118

Bibliography . 120

ix

List of Tables

1 The evaluated processors for the two observations. 23

2 The specifications of the tested processors. 32

3 The maximum capacities of the prefetch-based channels. 35

4 The specifications of the tested processors. 51

5 The maximum channel capacities of NTP+NTP and Prime+Probe. 63

6 # of operations for reverting the cache state with a 16-way associative LLC. . . 72

7 Platform details. 86

8 The maximum channel capacities of UF-variation (as a cross-core channel) with

the stress-ng tool. 102

9 The comparison of uncore covert channels; ✓ means the channel is functional

while ✗ means it is not. 104

10 The channel capacities of UF-variation (as a cross-core channel) with background

cloud applications. 108

x

List of Figures

1 The four possible states of a private cache line, when using the MESI protocol. 15

2 The illustration of cache coherence state changes. The state of a line changes from

M (shown in (a)) to S (shown in (b)) when a CPU core is loading it; conversely,

the state changes from S to M when a CPU core is writing it. Dashed lines shows

the request path of the read/write operation. 16

3 The illustration of an LLC access with the target cache line in M state (a), and

S state (b). 17

4 The timing measurement results in thread1 of Listing 3.1 and Listing 3.2. . . . 22

5 The details of the three steps in Prefetch+Reload. 29

6 The capacities and bit-error-rates of the prefetch-based channels on various Intel

processors. 34

7 A segment of the prefetch latencies measured in Prefetch+Prefetch while attack-

ing GnuPG; part of the the exponent e shown here is “111001011001”. 36

8 The access latencies measured in Step 3 of Prefetch+Reload when a user types

“abcdefg1234” in gedit; we monitor address 0x7b980 of libgdk.so.1 37

9 The cache miss rates of 1) the attacker processes in various cache attacks and 2)

three workloads in SPEC 2017. 38

10 The accuracy of Prefetch+Prefetch and Flush+Reload on our Intel Core i7-6700

processor, with different waiting window sizes. 40

11 The distributions of the amount of secret bytes that can be accessed and encoded

in a transient window, when leaking by Flush+Reload and Prefetch+Prefetch,

respectively. 44

12 The state change details of an LLC set upon CPU requests; changes after each

request are highlighted. 49

13 The experiment steps and results for verifying that prefetched data are evicted

earlier than other data. 52

xi

14 The experiment steps and results for learning the insertion policy of PREFETCHNTA. 53

15 The experiment steps and results for learning the updating policy of PREFETCHNTA. 54

16 The execution times of PREFETCHNTA when the target data is the L1 cache, LLC,

and DRAM. 56

17 How the state of the target LLC set changes during the NTP+NTP covert channel. 60

18 The operations of the sender and receiver in each iteration of NTP+NTP, when

using two LLC sets; the receiver always detects the bit sent in the last iteration

instead of the current iteration. 61

19 The capacities and bit-error-rates of NTP+NTP and Prime+Probe. 62

20 The total latency of the preparation step, for the two attack primitives. 68

21 Sequence of the LLC set states during Reload+Refresh. 69

22 Sequence of the LLC set states during Prefetch+Refresh. 70

23 The total latency of the attacker’s operations in each attack iteration, for Reload+Refresh

and the two versions of Prefetch+Refresh. 71

24 The execution time of the two algorithms. 75

25 The architecture of our Intel Xeon Gold 6142 processor; the I/O controllers are

omitted. 80

26 The layout of the uncore freq. limitation register. 82

27 The median uncore frequencies (in GHz) with different thread counts and LLC

access types. 88

28 The uncore frequencies based on the number of stalled cores and active but not

stalled cores. 91

29 Uncore frequency trace upon initiating the stalling loop. 91

30 Uncore frequency trace upon stopping the stalling loop. 92

31 Uncore frequency trace upon initiating the stalling loop on Proc. 1. 92

32 The LLC access latencies under different uncore frequencies; the latencies are

measured all on core (3,3). 0-hop latencies, 1-hop latencies, 2-hop latencies, and

3-hop latencies are collected when accessing LLC slice (3,3), LLC slice (2,3), LLC

slice (2,2), and LLC slice (2,1), respectively. The latencies are collected in a 10

ms window. 96

xii

33 The LLC access latency trace and the corresponding uncore frequency trace when

sending “1101001011” through the channel. The transmission interval is 38 ms.

The LLC access latencies are 1-hop latencies. 99

34 The channel capacities and error rates of UF-variation, in the cross-core and

cross-processor scenarios, respectively. 100

35 The uncore frequency traces captured while the victim compresses files with

varying sizes. 106

36 The uncore frequency traces captured while the victim is accessing varying domains.107

xiii

Preface

I would like to take this opportunity to thank everyone who has helped me during my

Ph.D. journey. This dissertation would not have been possible without their support.

First and foremost, I want to express my deepest gratitude to my advisor, Dr. Jun

Yang. Over the past six years, she has provided constant support and guidance to me. I

really struggled to conduct research and publish papers for almost the first three years of my

Ph.D.. However, during that time, she always believed in me and encouraged me. Dr. Yang

is an outstanding scholar and advisor from whom I have learned a lot about both research

and life. I really appreciate her for providing me with the opportunity to do my Ph.D. with

her. I believe that this will be a memory to cherish forever.

I also wish to thank my committee members, Dr. Youtao Zhang, Dr. Wenjie Xiong,

Dr. Peipei Zhou, Dr. Jingtong Hu, and Dr. Samuel Dickerson. I am grateful for their sugges-

tions and for serving on my committee. In addition, I want to thank Dr. Xulong Tang, who

started his assistant professor journey around the same time I began my Ph.D. study. He

provided extensive help, especially during the challenging time when I struggled to publish

papers. His support meant a lot to me.

I am deeply grateful to my parents, Lanfu Liu and Yuanzhang Guo, for their constant

love and support. I regret not being able to visit them during my entire Ph.D. journey and

feel sad seeing them age over video calls. I really hope to see them in person soon.

I also want to extend my thanks to Andrew Zigerelli. Andrew is the person who got

me into this field. He has a deep passion for computer security and loves sharing what he

knows about it. Over the last six years, he has greatly enriched my knowledge of computer

security. Andrew also provided immense mental support throughout this journey. I often

doubt whether I am a qualified researcher, but Andrew constantly and sincerely reassures

me that I am doing great in my field. Andrew also took care of many things in my life so

that I could focus more on research. I cannot imagine completing this Ph.D. without him.

I also want to sincerely thank Yubo Du. Yubo is a very happy person, and my life became

much happier after she joined our group. I truly enjoy spending time with her and greatly

xiv

appreciate that she stayed with me every day during my last days in Pittsburgh. She is

the nicest person I know. Whenever I had complaints or felt disappointed about something,

Yubo was always there to listen and understand. During my job search, she made food

for me, took care of Lucky, and did everything she could to help. I am so glad to see her

doing great in her research. She always says it is because I helped her a lot, but I know it’s

really because she is so brilliant and hardworking. I have no doubt that she will become an

amazing researcher one day, and I wish her all the best on this journey.

I also want to thank Dr. Xin Xin. Xin and I shared the same office for five years, and

during this time, I learned a lot from him. Observing how he conducts himself and his

research greatly influenced me. When I reflect on the changes in myself from before my

Ph.D. study to now, I realize that one of the significant changes is that I have become more

like Xin. Xin helped me a lot during these years, especially when I was struggling to get my

papers published. He involved me in his project, which provided me with valuable learning

experiences. Furthermore, he is an excellent chef; without him, I would have starved during

my Ph.D. His support and friendship have been invaluable.

Next, I want to thank Liang. Liang is a unique person in our group. He brought a lot

of laughter to our lab, which was one reason I always wanted to work in the lab instead

of home. Additionally, I want to thank my other labmates, Aditya Pawar, Congming Gao,

Chen Li, and Tyler Garrett. They have helped me a lot throughout my Ph.D.

I want to use this special paragraph to thank Ruobing Han. Ruobing significantly

changed my perspective on life. I used to worry a lot about research and publication, but

he helped me understand that life is more than just research. There are many other great

things we can do. He also provided valuable suggestions when I faced a really tough career

choice. I wish him a bright future.

In addition, I want to thank Lucky Guo, my lovely dog who always stayed with me

during the tough days. I always worked late at night, which unfortunately kept him up as

well. Sometimes I focused too much on research and forgot to feed him on time. But as far

as I know, he never complained about it.

Finally, I want to thank Yanan Guo. I was tough and brave throughout this journey,

and I am glad that I never gave up and made it to this point. I am truly proud of myself.

xv

1.0 Introduction

Computer security has become very critical today, since a significant amount of personal

and sensitive information is stored on computers and other digital devices. Attackers of-

ten break into these systems, stealing valuable information and leading to serious privacy

breaches, financial losses, and other severe consequences.

One important category of computer threats is side channel attacks. These attacks ex-

ploit indirect information flows from a system’s physical or logical behavior to gain access

to sensitive data. Among these attacks, cache timing side channel attacks (and covert chan-

nels), or cache attacks for short, are particularly noteworthy: they are not only easy to

carry out but also very difficult to detect. Cache attacks exploit the CPU cache’s behavior:

different cache behaviors, such as hits and misses, create significant timing differences to the

execution of an instruction. Attackers can use these timing variances to infer secrets from a

victim, such as cryptographic keys and personal data (e.g., [134, 55, 136, 81, 130, 28, 133,

56, 57, 67, 77, 89, 88, 97, 129, 138, 139, 65, 15, 17, 106, 29, 107, 41, 64]). Since the first

successful cache attack in 2005, which leaked an AES encryption key [91], there has been a

continuous increase in the number and sophistication of these attacks.

For example, early cache attacks were demonstrated in the local private cache within a

CPU core (e.g., [91, 136]), and researchers later found that cross-core attacks on the last-

level cache (LLC) are practical as well (e.g., [81, 66]). In addition, early cache attacks only

exploit cache hits and misses while the later ones also utilize other cache states, such as

ages (e.g., [130, 28]) and dirtiness (e.g., [36]), to leak information. Recently, cache attacks

have also become powerful primitives used in transient execution attacks (e.g., [74, 78, 102,

118, 108, 117, 103, 114, 119, 26, 24]). In addition, the growing threat of cache attacks has

prompted researchers to develop numerous defense mechanisms against them (e.g., [32, 27,

95, 96, 128, 52]).

Given the prominence of cache attacks, it is crucial to thoroughly understand their land-

scape. In this dissertation, we aim to uncover previously unknown cache attacks on modern

computing systems. We will also analyze whether existing countermeasures can effectively

1

prevent these attacks and whether new countermeasure designs are required. By doing so,

we provide valuable insights into the landscape of cache attacks and help enhance the overall

security of digital systems, protecting sensitive information from malicious attackers and

safeguarding user security and privacy.

1.1 Problem Statement

In many cache attacks, the attacker needs to manipulate the cache and bring it into a

known state, and then monitors how the victim’s execution changes this state. For per-

formance and efficiency, modern CPUs often incorporate advanced instructions and designs

that allow users to directly influence microarchitectural states, including cache states. These

enhancements enable more efficient processing and improved performance for legitimate ap-

plications. However, it also makes it much easier for the attacker to manipulate these

hardware states. By exploiting these vulnerabilities, the attacker can potentially launch new

and more effective side channel attacks. This issue gets even worse when these new features

are implemented with vulnerabilities such as insufficient access controls. This dissertation

focuses on analyzing the new cache attacks that arise from the advanced features present in

modern CPUs and developing effective mitigation strategies. Specifically, in this dissertation,

we seek to answer the following two questions:

• Whether and how do the advanced designs and instructions on modern CPUs enable new

and more powerful cache attacks?

• If new attacks exist, what strategies can be employed to prevent them?

1.2 Research Overview

We focus on the security issues facilitated by two special-purpose prefetch instructions,

PREFETCHW and PREFETCHNTA, as well as the frequency scaling technique on Intel processors.

Specifically, we reverse engineer the implementation details of these instructions and this

2

technique, identify the new attacks they cause, and propose countermeasures to address

these vulnerabilities. The details of these studies are as follows:

Coherence-based cache attacks. In most cache attacks, the attacker repeatedly evicts

the victim’s data from one cache level and waits for the victim to load it back. Cross-core

cache attacks usually target the last-level cache, evicting the data from it to memory. As

a result, there is frequent data transfer between the on-chip cache hierarchy and off-chip

memory during the attack. This data transfer is slow, and thus significantly limits the speed

and resolution of the attack. In contrast, our study enables two new cross-core cache at-

tacks, in which the data is only moved within the cache hierarchy, markedly enhancing the

attack performance. Specifically, we discover a serious security flaw in Intel CPUs related

to the prefetch-for-write instruction, PREFETCHW. With this vulnerability, the attacker can

use PREFETCHW to change the cache coherence state of the data. This change intrinsically

moves the data between the private caches of different cores, enabling a novel cross-core

private cache eviction method. Based on this method, we develop two cache attacks named

Prefetch+Prefetch and Prefetch+Reload, respectively. These attacks significantly outper-

form arguably the most prevalent cache attack, Flush+Reload, showing a 3× increase in

bandwidth and a 43× improvement in resolution on certain CPUs.

Cache attacks bypassing set associativity. In conflict-based cache attacks, the attacker

deliberately causes cache conflicts to evict the victim data and learn the victim’s access

pattern. Conflict-based attacks are considered more practical than others, since they usually

do not assume any system features. However, they are typically much slower because building

conflicts in a cache set requires the attacker to prime the set, i.e., filling the set with the

attacker’s cache lines, which involves extensive cache operations and takes very long to finish.

We found that on recent Intel CPUs, it is actually possible to build set conflicts in the LLC

without priming the LLC set. Specifically, PREFETCHNTA is an x86 prefetch instruction for

non-temporal data. According to the x86 vendors [3, 8], using this instruction can minimize

the LLC pollution caused by data prefetching. We reverse engineer the implementation of

PREFETCHNTA on Intel CPUs and found that with this instruction, the attacker can cause

conflicts in a certain way of an LLC set, without filling the entire set. Consequently, we build

the first conflict-based cache attack without priming the cache set. The speed of this attack

3

is over 3× higher than the speed of prior conflict-based cache attacks. This instruction also

enables a new eviction set construction algorithm which is w times more efficient than the

state-of-the-art, where w is the LLC set associativity (e.g., 16 on some Intel CPUs).

Frequency scaling attacks. A CPU consists of multiple cores and an uncore. The un-

core comprises all the on-chip components excluding the cores, such as the last-level cache

and the on-chip interconnect. Modern Intel CPUs incorporate uncore frequency scaling, a

power management technique that dynamically adjusts the uncore frequency when the CPU

operates in low-power mode. Our study shows that while this frequency scaling improves

power efficiency, it also introduces new side channel attacks. Specifically, we demonstrate

that this technique causes the uncore frequency to vary depending on the workloads running

on the cores. An attacker can use the uncore frequency variations to deduce information

about other running workloads. This attack has crucial implications for defensive designs.

Many research proposals suggest building a secure uncore through uncore resource partition-

ing, since most existing uncore attacks, such as attacks on the last-level cache, stem from

resource contention. However, our study proves that uncore attacks are not just about con-

tention. Even with future partitioning mechanisms in place, the inherent fact that the entire

uncore operates at the same frequency could still pose security threats. This underscores

the need for more comprehensive secure uncore designs.

Countermeasures. We conduct a thorough analysis of the potential countermeasure mech-

anisms for the attacks proposed above. We found that the attacks based on the special-

purpose prefetch instructions can be prevented using one or more existing countermeasure

designs. However, as explained above, the attack based on uncore frequency scaling cannot

be mitigated by any existing countermeasures. Therefore, we propose several software-level

mitigation solutions that can be immediately implemented to protect users.

1.3 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 introduces CPU cache

structures, existing cache attacks and defenses, as well as the objective of this dissertation.

4

Chapter 3 introduces two new coherence-based cache attacks utilizing the PREFETCHW in-

struction. Chapter 4 introduces a new conflict-based cache attack utilizing the PREFETCHNTA

instruction. Chapter 5 introduces a new cache attack based on uncore frequency scaling.

Chapter 6 discusses the countermeasures against these new attacks. Chapter 7 discusses the

related work. Chapter 8 summarizes this dissertation and discusses future work.

5

2.0 Background

2.1 CPU Cache Architecture

Most CPU caches on modern x86 processors are divided into L1, L2, and L3. The L1

and L2 caches are very fast but relatively small. Typically, they are organized separately for

each CPU core, and are thus often referred to as private caches. In contrast, the L3 cache,

also known as last-level cache (LLC), is a larger but slower cache, shared among CPU cores.

Caches operate on fixed-size (e.g., 64 bytes) data blocks called cache lines. Additionally,

caches are usually set-associative: a cache is organized into multiple cache sets. Every cache

set consists of multiple equivalent cache ways, and each of them can store one cache line. The

address bits of a cache line determine which cache set that this line is mapped to. Most LLCs

in Intel processors are inclusive, meaning that data present in private caches are necessarily

also present in the LLC (and conversely, data not in the LLC are not in the private caches).

However, recent Intel server processors (e.g., Intel Xeon Scalable processors [14, 132]) use

non-inclusive LLCs, i.e., cache lines in private caches may not be present in the LLC. For

non-inclusive LLCs, a separate directory structure is required for tracking the cache lines

that are in the private caches but not in the LLC.

When a CPU core performs a memory access request, it first checks whether the target

cache line is present in its L1 or L2 cache. If present, the request results in a private cache

hit; if not, it is a private cache miss and the core must further check the LLC (and the

directory for a non-inclusive LLC). If the cache line is found, the request finishes and the

data is sent to the CPU. If not, the cache forwards the request to the memory controller,

which can read data from DRAM.

6

2.2 Cache Covert Channels and Side Channel Attacks (Cache Attacks)

Covert channels and side channels are methods used to extract or communicate sensitive

information in unintended ways. A covert channel enables the transmission of information

between two entities (the sender and the receiver) that are not supposed to communicate

directly, bypassing traditional security mechanisms. Side channels, on the other hand, involve

the extraction of information by observing and measuring unintended information flow in

a system. A covert channel becomes a side channel (a.k.a., side channel attack) when the

victim (sender) is unintentionally sending secrets to the attacker (receiver) through the covert

channel.

A cache covert channel is a method by which the sender can covertly transmit informa-

tion to the receiver by manipulating the state of the CPU cache. For example, the sender

intentionally brings a certain cache line into cache (or not) to encode 1-bit data, and the

receiver decodes the data by measuring the access time of this cache line. Similarly, if a vic-

tim application’s execution causes cache state changes that can be observed by the attacker

(e.g., through timing information), then there exists a cache side channel attack.

In this section, we give an overview of the prior studies on cache covert channels and

side channel attacks, as well as the mitigations against them. Note that we refer to “cache

covert channels and side channel attacks” as “cache attacks” in the rest of this dissertation.

2.2.1 Existing Cache Attacks

There are typically two types of cache attacks. The first type utilizes the contention

on certain cache hardware (e.g., the ring interconnect [90] or L1 cache ports [87, 135]):

the attacker passively monitors the latency of accessing this hardware resource to infer the

victim’s usage of it. Such attacks are usually referred to as contention-based attacks or

stateless attacks. The other type utilizes cache states: the attacker actively brings the cache

line/cache set to a certain state, then lets the victim execute (which potentially changes

the state), and later checks the state again to infer the victim’s behavior. Such attacks are

often referred to as eviction-based attacks or stateful attacks. In this overview, we focus on

7

stateful attacks because they are more related to the attacks proposed in this dissertation.

We can further divide stateful attacks into private cache attacks and LLC attacks, based on

the cache level from which the attacker evicts the victim’s data.

Private cache attacks. In private cache attacks, the attacker learns the victim’s cache

behavior by monitoring the state of the victim’s data in the private cache. For example, in L1

Evict+Reload, the attacker evicts the victim’s data (which is shared with the attacker) from

the L1 cache to the L2 cache by building set conflicts, and waits for the victim’s execution.

Later the attacker accesses this data and times the access to determine it is in the L1 or

L2 cache: if it is in the L1 cache, it means the victim accessed the data and brought it

back to the L1 cache, otherwise the victim did not access. Private cache attacks could have

high-bandwidth since they do not create slow DRAM accesses. However, most private cache

attacks require the attacker to be on the same physical core with the victim1 (e.g., [130, 89]),

and many of them further require Simultaneous multithreading (SMT). This significantly

limits the attacks, as cloud providers may allocate users to different cores and may disable

SMT for security [20, 33, 83].

LLC attacks. In LLC attacks (e.g., [134, 69, 81]), the attacker monitors the state of the

victim’s data in the LLC. The LLC is usually shared among CPU cores. Thus, different

than private cache attacks, LLC attacks do not require the attacker to be on the same

core as the victim. These attacks are considered more practical. However, DRAM accesses

are usually involved in LLC attacks. To monitor the victim’s access on the LLC data, the

attacker needs to first evict the victim’s data from the LLC to memory. For example, in

Flush+Reload [134], the attacker flushes the victim’s cache line (which is shared with the

attacker) from the LLC (and also the private caches), and waits for the victim’s execution.

Later the attacker accesses this cache line and times the access to determine it is in the LLC

or not: if it is in the LLC (i.e., faster to access), it means the victim accessed this cache line

and brought it back to the LLC, otherwise the victim did not access. The bandwidths of

LLC attacks are usually bottlenecked by DRAM latencies.

1The directory Prime+Probe attack [132] and its optimization, the directory Prime+Scope attack [93],
are an exception: they are cross-core private cache attacks. The details of these attacks are discussed later
in this section.

8

Orthogonal to private cache attacks and LLC attacks, we can also divide stateful attacks

into two categories based on whether they rely on the existence of shared data (between the

attacker and victim).

Attacks with shared data. The required data sharing for these attacks is usually achieved

with page deduplication or shared libraries. Eviction+Reload and Flush+Reload mentioned

above are two typical attacks that rely on data sharing. In addition, Gruss et al. proposed a

variant of Flush+Reload, named Flush+Flush [55], that also requires shared data. Instead

of reloading the victim’s cache line, it flushes this cache line again and times the flushing to

learn the victim’s behavior. This attack is stealthier than Flush+Reload because it does not

generate any accesses (to the victim’s cache line) and is then hard to detect using performance

counters.

Instead of checking whether the victim brought the target cache line to cache, some

attacks work by checking whether the victim changed the cache state of the target cache

line. For example, in prior work [133, 67], the attacker monitors the changes to the coherence

state of the target cache line. In Reload+Refresh [28], the attacker instead monitors the

changes to the age of the target cache line.

Attacks without shared data. Attacks that do not assume data sharing are arguably

more practical: security-conscious operating systems/hypervisors may disable implicit data

sharing across processes/virtual machines. Prime+Probe [81, 66] is one of such attacks. The

attacker first primes the cache set that the victim’s cache line is mapped into by filling the

set with her own cache lines. This evicts the victim’s cache line. Then after waiting for

a period of time, the attack probes this set (by re-accessing the cache lines in the priming

stage) and measures the probing latency: if the victim accessed her cache line and brought it

back to this cache set, one of the attacker’s cache lines was evicted and it now takes longer to

probe; if the victim did not access then it is faster to probe. Prime+Probe can work both on

the private cache and the LLC. But the LLC Prime+Probe is much more powerful since it

can work across CPU cores. In the rest of this dissertation, we refer to “LLC Prime+Probe”

as “Prime+Probe”.

The prerequisite of Prime+Probe is having an inclusive LLC: when the victim’s cache

line is evicted from the LLC, it is also evicted from the private caches (if present). Yan et al.

9

later proposed a directory Prime+Probe attack which builds set conflicts in the coherence

directory [132], enabling Prime+Probe on platforms with non-inclusive LLCs. Very recently,

Purnal et al. presented an optimization of Prime+Probe, named Prime+Scope. In this

attack, the attacker primes the target LLC set in a special way such that the eviction

candidate in this set is known to the attacker. By doing this, this attack achieves a much

higher resolution than Prime+Probe.

Note that there are other ways to classify cache attacks. For example, based on how

the attacker evicts the victim’s data (from a certain cache level), stateful cache attacks

can be divided into flush-based attacks (e.g., [134, 55, 133, 67]) and conflict-based attacks

(e.g., [81, 93, 56]).

2.2.2 Existing Countermeasures against Cache Attacks

Researchers have proposed many secure cache designs to mitigate cache attacks over the

past decade. Many prior studies suggest defending attacks that require data sharing by

simply disabling data sharing across security domains [95, 96, 128]. For attacks that do not

require data sharing, we discuss the two most popular countermeasure strategies.

Cache partitioning is considered to be one of the most effective methods for defending

cache attacks. It divides the cache into multiple partitions and assigns them to different

security domains. This prevents the data from different domains from interfering with each

other in the cache, and thus prevents the information leakage across domains. Early solutions

(e.g., [72]) divide the cache among its ways: each security domain is assigned a certain number

of ways in each cache set, and different domains do not share their ways. Although these

designs offer strong security guarantees, they have very poor scalability due to the limited

number of ways in each cache set. More recent solutions divide the cache among its sets:

each security domain is assigned a group of cache sets (e.g., [39, 113]).

Another approach to defend cache attacks is to randomize the mapping from a memory

address (cache line) to a cache set [96, 52, 128, 95]. This approach can also be combined with

other techniques (e.g., skewed cache) to further improve the security guarantee. For example,

ScatterCache [128] uses a randomized cache mapping and adopts skewed associativity to

10

partition the cache into multiple skews; each skew uses a different (and randomized) set

mapping. In addition, PhantomCache [111] uses restricted randomization which limits the

randomized mapping of a memory address within only a certain number of sets. Upon a

load or store operation, this design requires many cache accesses to check whether the target

cache line is in cache, significantly increasing the power consumption.

2.3 Goal of This Dissertation

To protect user security and privacy, it is crucial to prevent cache attacks on CPUs.

However, recent advancements in modern CPU design pose significant challenges to this: for

performance and efficiency reasons, modern CPUs include features (e.g., instructions) that

allow software-level users to more directly influence cache states. Unfortunately, this also

makes it easier for attackers to manipulate and observe cache states. As a result, new and

potentially more powerful cache attacks may emerge on modern CPUs. Therefore, in this

dissertation, we aim to first study the new attacks enabled by these advancements in CPU

design. Then, we will analyze whether these attacks can be defended using existing secure

cache designs and, if not, explore how we can mitigate these attacks.

11

3.0 New Coherence-Based Cache Attacks with The PREFETCHW Instruction

3.1 Overview

Based on how the attacker evicts the victim’s data, most cache attacks can be classified

into flush-based attacks(e.g., [134, 55, 133, 67]) and conflict-based attacks(e.g., [81, 93, 56]).

Flush-based attacks usually assume data sharing between the attacker and victim. Thus, the

attacker directly performs CLFLUSH on the victim’s data to evict it from all cache levels. For

conflict-based attacks, the attacker instead achieves the eviction by constructing set conflicts,

i.e., the attacker fills the cache set (that the victim’s data occupies) with her own data. Many

secure cache designs have been proposed to defend cache attacks. For example, flush-based

attacks can be prevented by modifying CLFLUSH (to make it a privileged instruction), as

suggested in prior work [134, 96, 128, 131]. Conflict-based attacks can be defended by

stopping/limiting attackers from discovering congruent addresses [96, 128]. Thus, in this

dissertation we present new cache eviction methods to enable practical cache attacks.

PREFETCHW is an x86 prefetch instruction introduced in 2000. It is now available on

all Intel Xeon Scalable processors and recent Core processors (since Broadwell). According

to the technology manual [3], the function of this instruction is to prepare data for future

writes. It is different from other prefetch instructions (e.g., PREFETCHT0) which only move

the target cache line closer to the CPU core (i.e., to a higher cache level) to get ready for

future accesses. PREFETCHW moves the cache line to the requesting core’s L1 data cache

(L1D cache), as well as sets the coherence state of the cache line to be Modified. This can

accelerate future write operations from this requesting core, because a cache line in Modified

state indicates that 1) the current private cache has exclusive ownership of this cache line,

meaning a write operation on this cache line can be directly served by the private cache, and

2) this cache line is already marked as dirty, so the flag (i.e., the dirty bit) does not need to

be changed when serving a write operation. For correctness, setting the coherence state of

a cache line to Modified causes all copies of this cache line in other cores’ private caches to

be invalidated [34, 13].

12

In this dissertation, we make two important observations regarding PREFETCHW on Intel

processors. First, although its purpose is to accelerate future writes, PREFETCHW works on

data with read-only permission. Second, the execution time of PREFETCHW is related to the

current coherence state of the target data. With the first observation, an attacker on a

different core than the victim can use PREFETCHW on the shared data between the attacker

and the victim (which is usually read-only [134]), to evict this data from the victim’s private

cache. In addition, the second observation means that the attacker can time the execution

of PREFETCHW on the shared data between the attacker and victim to learn the coherence

state changes of this data, which could be related to the victim’s cache accesses.

Based on these two observations, we first propose two new covert channels, named

Prefetch+Load and Prefetch+Prefetch. In Prefetch+Load, the sender transmits a bit by

prefetching (with PREFETCHW) the shared data between the sender and receiver (for “1”)

or not prefetching (for “0”). The receiver (on a different core) receives the bit by loading

this data and timing the load to determine if it is a local private cache hit (for “0”) or a

remote private cache hit (for “1”). In Prefetch+Prefetch, the sender transmits a bit by load-

ing (or not) the shared data, and the receiver receives the bit by prefetching the data and

timing the prefetch instruction to determine whether the sender loaded. We show that our

prefetch-based channels have very high capacities: on our Kaby Lake processor, when only

using one shared cache line between the sender and receiver, the capacities are 840KB/s

for Prefetch+Load, and 822KB/s for Prefetch+Prefetch, which are the highest single-line

capacities among all existing CPU cache covert channels.

We then modify the covert channels and build the Prefetch+Reload and Prefetch+

Prefetch side channel attacks, which can be used to leak the victim’s access patterns, similar

to previous cache attacks (e.g., [134, 55, 81, 130, 28, 133, 136]). Prefetch+Prefetch can be

directly used as a side channel attack by letting the victim be the sender, and the attacker

be the receiver, since in this attack the sender transmits signals by accessing (or not) the

shared data. However, in Prefetch+Load, the sender is sending signals by prefetching (or

not), which is unlikely a side channel. Thus, we modify it and build Prefetch+Reload,

where the attacker owns two threads running on different cores. The attacker first uses one

thread to prefetch and waits for the victim’s possible access, and then reloads using the other

13

thread. When the attacker reloads, she will get a last level cache (LLC) hit if the victim

accessed this data; otherwise she will get a remote private cache hit. Then, the attacker

can determine the victim’s behavior using timing information: a remote private cache hit

and an LLC hit take different amounts of time to finish. We show that our attacks can

be deployed on Intel processors to leak secrets from real-world applications, and that they

can be used in transient execution attacks, making those attacks faster (and more potent)

than before. To the best of our knowledge, our prefetch-based attacks are the first cross-core

private cache side channel attacks that can work with both inclusive and non-inclusive LLCs:

in our attacks, the victim’s data is only evicted from the private cache but never the LLC.

In this chapter, we refer to “prefetch using PREFETCHW” as “prefetch”.

3.2 Cache Coherence

In multi-core systems, a cache line can be present in multiple private caches, due to data

sharing. A cache coherence protocol1 is required for maintaining data consistency among

the copies of a cache line in different private caches: each private cache line is assigned a

coherence state, and the LLC needs to track this state to prevent the use of stale data. For

inclusive LLCs, the coherence states of private cache lines are stored together with the tag

array in the LLC since all the private cache lines are also in the LLC. For non-inclusive

LLCs, the directory structure mentioned earlier is used for storing the coherence states of

cache lines that are in the private caches but not the LLC.

Most modern x86 processors use variants of the MESI coherence protocol [13, 34]. In

the rest of this section, we use inclusive cache as an example to introduce MESI. For non-

inclusive caches, the protocol is essentially the same, except that a cache line in a private

cache might not be present in the LLC. With MESI, there are four possible states of a private

cache line:

1In this dissertation, we only focus on the cache coherence inside a processor; this should not be confused
with the coherence among sockets (processors) [67].

14

Private
Cache

Private
Cache

Private
Cache

Private
Cache

Private
Cache

Private
Cache

Private
Cache

Private
Cache

Private
Cache

Private
Cache

Private
Cache

Private
Cache

R/WR/W RR

Core 0 Core 1 Core 2Core 0 Core 1 Core 2Core 0 Core 1 Core 2

Core 0 Core 1 Core 2Core 0 Core 1 Core 2Core 0 Core 1 Core 2

R/WR/W

Core 0 Core 1 Core 2Core 0 Core 1 Core 2Core 0 Core 1 Core 2

(I)nvalid (I)nvalid (S)hared (S)hared (I)nvalid

(E)xclusive (I)nvalid (I)nvalid (I)nvalid (I)nvalid (I)nvalid

(M)odified

Shared Last-Level Cache (LLC)Shared Last-Level Cache (LLC)Shared Last-Level Cache (LLC)

Stale data

Shared Last-Level Cache (LLC)Shared Last-Level Cache (LLC)

Stale data

Shared Last-Level Cache (LLC)Shared Last-Level Cache (LLC)Shared Last-Level Cache (LLC)

Valid data

Shared Last-Level Cache (LLC)Shared Last-Level Cache (LLC)

Valid data

Shared Last-Level Cache (LLC)Shared Last-Level Cache (LLC)Shared Last-Level Cache (LLC)

Valid data

Shared Last-Level Cache (LLC)Shared Last-Level Cache (LLC)

Valid data

Shared Last-Level Cache (LLC)Shared Last-Level Cache (LLC)Shared Last-Level Cache (LLC)

Valid data

Shared Last-Level Cache (LLC)Shared Last-Level Cache (LLC)

Valid data

(a) M (b) S

(c) E (d) I

RR

Core 0 Core 1 Core 2Core 0 Core 1 Core 2Core 0 Core 1 Core 2

Figure 1: The four possible states of a private cache line, when using the MESI protocol.

• Modified (M), in which the cache line is only present in one private cache and is dirty,

i.e., the copy of this cache line in the LLC contains stale data (Figure 1(a)). Additionally,

when a private cache line is in M state, the current owner core has read/write permission

for it.

• Shared (S), in which the cache line is present in one or more private caches and is clean,

i.e., the data of this cache line matches all other copies (both in other private caches and

the LLC). The current core can only read this cache line (Figure 1(b)).

• Exclusive (E), in which the cache line is only present in one private cache, and is clean

(Figure 1(c)). The current core can read/write this cache line; however, a write operation

will change the state of this cache line to M.

• Invalid (I), in which the cache line is invalid, and thus the current core has neither

read nor write permission for it (Figure 1(d)).

15

With MESI, a memory request from a CPU core will sometimes 1) change the coherence

state of the target cache line, and 2) take different amounts of time to finish, depending on

the coherence state of the target cache line.

State transitions. There are many different coherence state transitions, we only discuss

the two scenarios related to our attacks. First, as shown in Figure 2(a), when a CPU core

(core 1) is reading a cache line that is present in the LLC and the private cache of another

core (core 0) in M state, this read request will first miss in its private cache and then search

the LLC. Although this target cache line can be found in the LLC, its content is potentially

stale. Thus, the LLC will fetch the data from the owner private cache (in core 0) that

contains the up-to-date data of this cache line, change the coherence state of this cache line

in that private cache (in core 0) to S, update the content of this cache line in the LLC, and

then return the updated cache line to the requesting core (core 1) as well as fill its private

cache with a copy of this cache line in S state. Thus, after serving this read request, the

target cache line is present in two private caches, and is in S state in both caches, as shown

in Figure 2(b). This case is usually referred to as remote private cache hit.

Read from Core 1

Private

Cache

Private

Cache

Core 0 Core 1

Shared LLCShared LLCShared LLC

Stale data

Shared LLCShared LLC

Stale data

Private

Cache

Private

Cache

Core 0 Core 1

Shared LLCShared LLCShared LLC

Valid data

Shared LLCShared LLC

Valid data

Write from Core 0

(I)nvalid(M)odified (S)hared (S)hared

Core 1
reads

LLC forwards the read

Core 0
writes

LLC sends invalidation

1

2

1

2

(a) (b)

Figure 2: The illustration of cache coherence state changes. The state of a line changes from

M (shown in (a)) to S (shown in (b)) when a CPU core is loading it; conversely, the state

changes from S to M when a CPU core is writing it. Dashed lines shows the request path of

the read/write operation.

16

Second, as shown in Figure 2(b), when a CPU core (core 0) is trying to write a cache

line that is in S state in its own private cache, this private cache (in core 0) needs to send

request to the LLC to acquire write permission before it can serve this write operation. As

a result, the LLC will send invalidation signal(s) to the other private cache(s) that the cache

line is present in (in core 1), and then change the state of the cache line in the private cache

of the requesting core (core 0) to M so that the requesting core can write this cache line in

its private cache. Thus, after this write operation, the target cache line is only present in

the requesting core’s private cache, and is in M state, as shown in Figure 2(a).

Private

Cache

Private

Cache

Core 0 Core 1

Shared LLCShared LLCShared LLC

Stale data

Shared LLCShared LLC

Stale data

Private

Cache

Private

Cache

Core 0 Core 1

Shared LLCShared LLCShared LLC

Valid data

Shared LLCShared LLC

Valid data

(S)hared

Read

(M)odified (I)nvalid

Read

(I)nvalid

Slower than

(a) (b)

Figure 3: The illustration of an LLC access with the target cache line in M state (a), and S

state (b).

Timing difference. As one can observe in Figure 3, if a CPU core is reading a cache

line that is not present in its private cache but is present in the LLC, the total latency it

takes to finish this read request can be different when this cache line has different coherence

states: a remote private cache hit is much slower than an LLC hit. When another core has

a copy of this cache line in M state in its private cache, this request results in a remote

private cache hit. As explained earlier, serving this request will require fetching data from

the owner private cache. In contrast, when all the private cache copies of this cache line are

in S state, the data of this cache line in the LLC is up-to-date. This means the LLC can

serve this read request directly, resulting in an LLC hit. Due to these different execution

paths, an LLC hit is much faster than a remote private cache hit. This has been observed

17

by previous work [133] and has been verified in our experiments. On an Intel Core i7-6700

processor, an LLC hit takes less than 60 cycles to finish and a remote private cache hit takes

about 90 cycles.

3.3 Prefetch

Prefetch is a technique to boost performance by fetching data and placing them closer

to the CPU core (e.g., from the LLC to L1 cache) before they are needed. Prefetch can

be performed in two ways: 1) hardware prefetch, which is implemented in cache hardware

and is transparent to users (e.g., the adjacent cache line prefetcher); 2) software prefetch,

which needs to be explicitly done by the programmer/compiler. Recent x86 CPUs offer many

different instructions for software prefetch, such as PREFETCHT0, PREFETCHT1, PREFETCHT2,

PREFETCHNTA, and PREFETCHW.2 These instructions are used to hint the processor that a

memory location is very likely to be accessed soon [3], then the processor will prefetch the

corresponding data into certain level of cache, thereby accelerating future accesses to this

data. Software prefetch is an important way to improve performance. For example, compilers

sometimes inject prefetch instructions to accelerate for loops.

3.4 Characterizing The Prefetch-For-Write Instruction

Among the prefetch instructions discussed in Section 3.3, PREFETCHW (or PREFETCHWT1

on some CPU models) works slightly differently than the others. It not only brings the

data close to the CPU core, but also changes the coherence state of the data: PREFETCHW

places the target data cache line into the L1D cache3 and sets the coherence state of this

cache line to M. According to the technology manual [12, 3], the role of PREFETCHW is to

accelerate future writes on the target cache line. As explained in Section 2.1, the CPU core

2Some CPU models (e.g., Intel Xeon Phi Processor 7200) use PREFETCHWT1 instead of PREFETCHW.
3PREFETCHW can only be used on data but not instructions [12, 3]. Thus, the cache line will be brought

into L1D cache.

18

can directly write a cache line in its local L1 cache iff the state of this cache line is E/M.

Thus, PREFETCHW pre-sets the coherence state of the target cache line to M so that future

writes on this cache line will likely have an L1 hit. PREFETCHW sets the cache line state to M

instead of E because writing a cache line in E state results in changing the state to M, and

thus has higher latency than writing a cache line that is already in M state.

Most of the recent Intel desktop and server processors (since the Broadwell microarchi-

tecture) support PREFETCHW. When used appropriately, it can significantly improve perfor-

mance. However, we make two observations about PREFETCHW on Intel processors, which can

be leveraged to create security vulnerabilities.

Observation 1 PREFETCHW successfully executes on data with read-only permission.

We observe this by monitoring the coherence state changes of the data, using timing

information. Specifically, as shown in Listing 3.1, we run a program with two threads

(thread0 and thread1, both in one process), and pin them on different physical cores. We

use mmap [6] to map part of a system file (e.g., glibc) as a read-only data block (in cache

line size) in this program and name it d0: both threads can only read d0. If any thread

tries to write d0, it will trigger a segmentation fault. thread0 and thread1 both consist of a

for loop with the same amount of iterations. In each iteration, thread0 first executes, then

waits for thread1 to execute. After thread1 finishes this iteration, they both move to the

next iteration and repeat this procedure again. We use pthread mutex locking [7] to ensure

that in each iteration thread0 and thread1 execute sequentially (the implementation details

of locking is omitted in Listing 3.1).

We run the code in Listing 3.1 twice: in the first experiment (i.e., expt idx = 0 in line

3), in each iteration of the for loop, thread0 performs PREFETCHW on d0, and then thread1

loads d0 as well as times the load. In the second experiment (i.e., expt idx = 1 in line 3), in

each iteration thread0 stays idle and then thread1 still loads d0 and times the load.

Figure 4 shows a segment of the timing results from thread1 (in line 15) in both of the

above experiments on an Intel Core i7-6700 processor. Note that we observe similar results

on other Intel processors that support PREFETCHW. In experiment 0, thread0 prefetches d0 in

each iteration, which causes thread1 to take around 90 cycles to load d0 after the prefetch.

19

1 void ∗ thread0 (void ∗ addr d0 , i n t expt idx) {
2 f o r (i n t i = 0 ; i < 1000000; i++){
3 /∗ check the experiment index ∗/
4 i f (expt idx == 0) {
5 /∗ execute pre fetchw on d0∗/
6 pre fetchw (addr d0) ;}
7 /∗ l e t thread1 execute 1 i t e r a t i o n ∗/
8 wa i t f o r t h r e ad1 () ;
9 }}

10
11 void ∗ thread1 (void ∗ addr d0) {
12 f o r (i n t i = 0 ; i < 1000000; i++){
13 /∗ l e t thread0 execute 1 i t e r a t i o n ∗/
14 wa i t f o r t h r e ad0 () ;
15 i n t r e s u l t = read and t ime (addr d0) ;
16 }}
17
18
19 i n t main () {
20 /∗ open and map a f i l e as read−only ∗/
21 i n t fd = open (FILE NAME, ORDONLY) ;
22 i n t ∗ addr d0 = mmap(fd , PROTREAD, . . .) ;
23
24 /∗ pin thread0 on core0 and launch i t ∗/
25 /∗ pin thread1 on core1 and launch i t ∗/
26 . . .

Listing 3.1: The code snippet to verify Observation 1.

In contrast, in experiment 1, thread0 stays idle, which causes thread1 to take only around

30 cycles to load d0. This timing difference infers that d0 is in different states in the above

two experiments. In experiment 0, every time when thread0 prefetches, it will load d0 to its

private cache and set the coherence state of it to be M. According to MESI, explained in

Section 2.1, this will invalidate the copy of d0 in the private cache of thread1 (if it exists).

Therefore, when thread1 later loads d0, it will have a remote private cache hit (see Figure 2).

This load also changes the state of d0 from M to S and fills a copy of it in the private cache

of thread1. Thus, the same cache behavior (i.e., invalidating the copy of d0 in the private

20

1 void ∗ thread0 (void ∗ addr d0 , i n t expt idx) {
2 f o r (i n t i = 0 ; i < 1000000; i++){
3 /∗ check the experiment index ∗/
4 i f (expt idx == 0) {
5 read (addr d0) ;}
6 /∗ l e t thread1 execute 1 i t e r a t i o n ∗/
7 wa i t f o r t h r e ad1 ()
8 }}
9

10 void ∗ thread1 (void ∗ addr d0) {
11 f o r (i n t i = 0 ; i < 1000000; i++){
12 /∗ l e t thread0 execute 1 i t e r a t i o n ∗/
13 wa i t f o r t h r e ad0 () ;
14 i n t t1 = rd t s c () ; /∗ get time stamp∗/
15 pre fetchw (addr d0) ;
16 i n t r e s u l t = rd t s c ()−t1 ;
17 }}
18
19 i n t main () {
20 /∗ open and map a f i l e as read−only ∗/
21 i n t fd = open (FILE NAME, ORDONLY) ;
22 i n t ∗ addr d0 = mmap(fd , PROTREAD, . . .) ;
23
24 /∗ pin thread0 on core0 and launch i t ∗/
25 /∗ pin thread1 on core1 and launch i t ∗/
26 . . .

Listing 3.2: The code snippet to verify Observation 2.

cache of thread1) will happen when thread0 prefetches in the next iteration. However, in

experiment 1, since thread0 is not prefetching, when thread1 loads d0, it will very likely have

a local private cache hit, which is much faster than a remote private cache hit (30 cycles4 vs.

90 cycles on the tested processor).

Rationale. We observe reliable cache state changes on read-only data when executing

PREFETCHW, with a F-score of 1.0 (n = 1000000). This indicates that Intel processors very

unlikely perform a write permission check when executing PREFETCHW. This does not cause

4Due to the granularity of time stamp counters, this measured latency is in fact longer than the real
private cache access latency.

21

any error in the architecture level, because PREFETCHW only has microarchitectural effects:

although it can get a cache line ready for future writes, if later the program without write

permission for this cache line actually tries to write it, it will still trigger a fault and likely

terminate the process. However, later we will show that allowing coherence-based cache

invalidation (which should only happen upon writes) on read-only data cause significant

security problems. This is because in cache attacks based on shared memory, the attacker

can manipulate the coherence state of the shared data (which is usually read-only) between

the victim and attacker to monitor the victim’s access to this data.

Observation 2 The execution time of PREFETCHW is related to the coherence state of the

target cache line.

We observe this with the program shown in Listing 3.2. We still use two threads pinned

on different physical cores, and let them execute sequentially in each iteration of the for loop.

Again, we run the program twice: in experiment 0 (expt idx = 0 in line 3), in each iteration,

thread0 loads d0, and then thread1 performs PREFETCHW on d0 and times the prefetch. In

experiment 1, thread0 stays idle and thread1 still prefetches and times the prefetch in each

iteration.

1000 1020 1040 1060 1080 1100
0

20

40

60

80

100

La
te

nc
y

(c
yc

le
s)

Iteration ID

 Experiment 0
 Experiment 1

Listing 1
1000 1020 1040 1060 1080 1100
0

40

80

120

160

La
te

nc
y

(c
yc

le
s)

Iteration ID

 Experiment 0
 Experiment 1

Listing 2

Figure 4: The timing measurement results in thread1 of Listing 3.1 and Listing 3.2.

Figure 4 shows the execution time of PREFETCHW observed by thread1 (in line 16) on our

Intel Core i7-6700 processor in both experiments. In the first experiment, it always takes

22

around 130 cycles for PREFETCHW to finish; however, in the second experiment it only takes

around 70 cycles. This is because in the first experiment, after thread0 loads d0, the state

of d0 becomes S, and a copy of d0 is filled into the private cache of thread0 (see Figure 2).

Then when thread1 prefetches, it needs to change the state from S to M, which means it has

to inform the LLC to invalidate the copy of d0 in the private cache of thread0. However, in

the second experiment, since thread0 stays idle, when thread1 prefetches, d0 is already in

M state. Thus, in this case PREFETCHW does not cause any state change and finishes much

faster.

Table 1: The evaluated processors for the two observations.

Processor Microarch. LLC Type Observ.1 Observ.2

Intel Core i7-6700 Skylake Inclusive ✓ ✓

Intel Core i7-6800K Skylake Inclusive ✓ ✓

Intel Core i7-7700K Kaby Lake Inclusive ✓ ✓

Intel Core i9-10900X Cascade Lake Non-incl. ✓ ✓

Intel Xeon Silver 4114 Skylake-SP Non-incl. ✓ ✓

Intel Xeon Platinum 8151 Skylake-SP Non-incl. ✓ ✓

Intel Xeon Platinum 8124M Skylake-SP Non-incl. ✓ ✓

Intel Xeon Platinum 8175M Skylake-SP Non-incl. ✓ ✓

Intel Xeon Platinum 8259CL Skylake-SP Non-incl. ✓ ✓

Intel Xeon Platinum 8275CL Skylake-SP Non-incl. ✓ ✓

Intel Xeon Platinum 8375C Ice Lake Non-incl. ✓ ✗

Affected processors. We have tested these two observations on many Intel processors

including the available 1st/2nd/3rd Generation Intel Xeon Salable Processors on AWS EC2,

and five Intel desktop/server processors we own. As shown in Table 1, Observation 1 is valid

on all the tested processors, and Observation 2 is valid on most, excluding the Intel Xeon

Platinum 8375C processor. On this processor, there is no difference on the execution time

23

of PREFETCHW when the target data is different coherence states: PREFETCHW always takes 70

to 80 cycles to finish, even when the target data is not already in M state.

In general, we believe that Observation 1 should be valid on all Intel processors that

support PREFETCHW, and Observation 2 should be valid on most of them. Note that all

1st/2nd/3rd Generation Intel Xeon Scalable processors and most Intel Core i7/i9 processors

(other than the early generations before Broadwell) support PREFETCHW.

3.5 Covert Channels Based on PREFETCHW

Based on the observations in Section 3.4, we build two new cache covert channels:

Prefetch+Load and Prefetch+Prefetch. In this section, we first introduce the threat model,

then discuss the details of each attack.

3.5.1 Threat Model

We assume that the two essential parties in the attack, the sender and receiver, are

two unprivileged processes that are running on the same processor with multiple CPU

cores. The sender and receiver can launch themselves on different physical cores (e.g., using

taskset [11]). We also assume that the sender and receiver can share data; however, the

shared data can be read-only (e.g., via shared library or page deduplication),5 similar to

previous attacks [133, 130, 55, 134, 28]. In addition, the sender and receiver should agree on

pre-defined channel protocols, including the synchronization, core allocation, data encoding,

and error correction protocols. We do not have requirement on the LLC inclusivity; our

attacks work with both inclusive and non-inclusive LLCs. We also do not require SMT;

SMT can be turned off for security.

5Page deduplication (a.k.a kernel same-page merging [19]) was originally created for virtual environments
but is now included in OSs. Although many cloud providers no longer use it, it is usually still available in
OSs [28].

24

3.5.2 Prefetch+Load

We build the first covert channel, Prefetch+Load, following Observation 1. Algorithm 1

shows the details of it. In this attack, the sender and receiver first agree on the shared cache

line used to transmit information. Then in each iteration of the attack, the sender transmits

a bit “1” by performing PREFETCHW on the shared cache line, or a bit “0” by idling. The

receiver loads the same cache line and times the load to determine if it is a remote private

cache hit or local private cache hit: the receiver receives a bit “1” when having a remote

private cache hit, and otherwise receives a bit “0”.

Note that different than the experiments in Section 3.4, the sender and receiver cannot

synchronize using pthread mutex locking, since they do not belong to the same process.

Thus, we let the sender and receiver synchronize the transmission using time stamp counters

(TSCs), as done in prior covert channels (e.g., [130, 133, 134, 55, 93]).

Algorithm 1: Prefetch+Load Covert Channel

line0: the shared cache line between the sender and receiver
message[n]: the n-bit long message to transfer on the channel
Th0: the timing threshold for distinguishing local and remote private cache hit
———————————————————————————————————————
Sender Algorithm
———————————————————————————————————————
// Send 1 bit in each iteration.
for i = 0; i < n; i++ do

sync with receiver();
if message[i] == 1 then

Prefetch line0;
else

Do not prefetch;

———————————————————————————————————————
Receiver Algorithm
———————————————————————————————————————
// Detect 1 bit in each iteration.
for i = 0; i < n; i++ do

sync with sender();
Access line0 and time the access;
if access time > Th0 then

Received a bit “1”;
else

Received a bit “0”;

25

3.5.3 Prefetch+Prefetch

Our second attack, Prefetch+Prefetch, is based on Observation 2. As shown in Algo-

rithm 2, in each iteration of the attack, the sender transmits “1” by loading the shared

cache line, or transmits “0” by idling. After this, the receiver performs PREFETCHW on the

shared cache line and times the prefetch to decode the bit: when the sender sends “1”, it

takes longer for the receiver to prefetch than when the sender sends “0”. Prefetch+Prefetch

follows the same synchronization method with Prefetch+Load.

Algorithm 2: Prefetch+Prefetch Covert Channel

line0: the shared cache line between the sender and receiver
message[n]: the n-bit long message to transfer on the channel
Th0: the timing threshold on PREFETCHW to distinguish M and S states
———————————————————————————————————————
Sender Algorithm
———————————————————————————————————————
// Send 1 bit in each iteration.
for i = 0; i < n; i++ do

sync with receiver();
if message[i] == 1 then

Load line0;
else

Do not load;

———————————————————————————————————————
Receiver Algorithm
———————————————————————————————————————
// Detect 1 bit in each iteration.
for i = 0; i < n; i++ do

sync with sender();
Prefetch line0 and time the prefetch;
if prefetch time > Th0 then

Received a bit “1”;
else

Received a bit “0”;

26

3.6 Side Channel Attacks Based on PREFETCHW

3.6.1 Basic Idea and Assumptions

In the Prefetch+Prefetch covert channel, the sender is sending the signal by “accessing

(or not) the shared data”. Thus, this attack can be directly applied as a side channel attack

to leak a victim’s access pattern on the shared data: the victim is the sender, and the attacker

is the receiver. This leakage (the victim’s access pattern) is same as the one in previous cache

attacks (e.g., [55, 134, 133, 56]).

However, Prefetch+Load cannot be directly used as a side channel, because the sender

is transmitting the signal by “prefetching (or not) the shared data”. In other words, the

attacker (receiver) can only detect the victim’s (sender’s) prefetch patterns on the shared

data. Since software prefetch is not as common as memory accesses in real-world applications,

the attack opportunities are limited. However, we can modify the attack slightly to make it

work more generally.

We term the new attack Prefetch+Reload. The attacker prefetches the shared data to

pre-set the coherence state, and then waits for the victim to possibly access this data. Later

the attacker reloads the data (using a different thread on a different core, explained later)

and uses the timing information to learn the current coherence state of the data, which

leaks whether the victim has loaded this data (thus changing the coherence state). Different

than Prefetch+Load, in Prefetch+Reload, the attacker needs to have two threads running

on different cores.

Threat model. We assume a similar threat model as the one for the covert channels. First,

the attacker is an unprivileged process that can 1) run on the same processor with the victim

and 2) share data with the victim (e.g., through a shared library). The attacker aims at

leaking the victim’s access pattern on a shared data block, as in [134, 55]. In addition, the

attacker can launch her thread(s) on different core(s) than the victim’s.

For Prefetch+Reload, the attacker needs to have two threads running on different physical

cores; but for Prefetch+Prefetch, there is still only one thread required in the attacker’s

process, which is the same setup as the covert channels.

27

3.6.2 Prefetch+Reload

In this attack, we assume that the attacker controls two threads named Trojan and Spy.

Trojan and Spy should be located on different cores, which are also both different than the

victim’s core, i.e., Trojan, Spy, and the victim all run on different cores. As mentioned in

Section 2.1, the execution times of a remote private cache hit and an LLC hit are different.

The Prefetch+Reload attacker uses this timing difference to observe cache state changes

caused by the victim’s accesses. Specifically, before the victim accesses the target shared

cache line, Trojan executes PREFETCHW on this cache line, which invalidates the copies of this

cache line in the victim’s and Spy’s private caches (if they exist), and places a copy of this

cache line (in M state) in Trojan’s private cache, as shown in Step 1 of Figure 5. Then, if

the victim accesses this cache line, according to MESI, the coherence state changes from M

to S, and the copy of this cache line in the LLC is updated (although the content did not

change, see Section 2.1) and is now valid (Step 2 in the left path of Figure 5).

Unfortunately, Trojan cannot observe this state change caused by the victim’s access:

if Trojan accesses (reloads) this cache line, she will get a private cache hit, no matter if

the victim accessed this line or not. This is because the victim’s read does not invalidate

the copy in Trojan’s private cache (Step 2 in the left path of Figure 5). However, Spy is

able to distinguish whether the victim accessed this cache line. Trojan’s original PREFETCHW

invalidated the copy in Spy’s private cache. Thus, if Spy now accesses this cache line, she

will get an LLC hit if the victim has accessed this cache line after Trojan’s prefetch (Step

3 in the left path of Figure 5); otherwise, she will get a remote private cache hit (Step 3

in the right path of Figure 5). We recall that Spy can distinguish these two situations by

timing the access (the difference is over 30 cycles on our desktop processor). Based on this,

we build Prefetch+Reload. Similar to previous cache attacks, each iteration in this attack

contains three steps, as shown in Figure 5:

Step 1: Trojan performs PREFETCHW on the target cache line and becomes the exclusive

owner of this cache line.

Step 2: The attacker waits for the victim’s behavior: if the victim accesses this cache line,

its coherence state will become S, meaning the copy in the LLC is now valid.

28

Trojan prefetches

Yes

Spy accesses:

LLC hit

1

2

3

No (No state changes)2
Victim

accesses

Private

Cache

(I)nvalid

Private

Cache

(S)hared

Private

Cache

(S)hared

Shared LLCShared LLC

Valid data

Trojan Spy Victim

Private

Cache

(S)hared

Private

Cache

(S)hared

Private

Cache

(S)hared

Shared LLCShared LLC

Valid data

Trojan Spy Victim

Spy accesses:

Remote private cache hit

3

Private

Cache

(I)nvalid

Private

Cache

(M)odified

Private

Cache

(I)nvalid

Shared LLCShared LLC

Trojan Spy Victim

Private

Cache

(S)hared

Private

Cache

(S)hared

Private

Cache

(I)nvalid

Shared LLCShared LLC

Valid data

Trojan Spy Victim

Stale data

Private

Cache

(I)nvalid

Private

Cache

(M)odified

Private

Cache

(I)nvalid

Shared LLCShared LLC

Trojan Spy Victim

Stale data

Figure 5: The details of the three steps in Prefetch+Reload.

29

Step 3: Spy accesses this cache line and times the access to determine it was a remote

private cache hit or an LLC hit. If it was a remote private cache hit, then the

victim did not access this cache line; otherwise the victim did access.

LLC presence. Prefetch+Reload requires that the target shared cache line is present in

the LLC, so that Spy can get an LLC hit in Step 3, if the victim has accessed this cache

line. This is naturally true for inclusive LLCs, since all the cache lines in the private cache

are also present in the LLC. However, it is not guaranteed for non-inclusive LLCs. In those

caches, a cache line is directly brought into the private cache when loaded from DRAM,

bypassing the LLC; it usually goes to the LLC when evicted from the private cache due to

cache replacement [14, 132]. Thus, strictly speaking, it is the attacker’s responsibility to

ensure the presence of this cache line in the LLC, if it is non-inclusive. For example, before

the attacker starts the attack loop, she can first build set conflicts in her private cache to

evict this cache line to the LLC.

In fact, empirically we found that in Step 1, when PREFETCHW invalidates the copies of

the target cache line in Spy and the victim’s private caches, this cache line will be placed

in the LLC if it does not already exist. Therefore, in practice the attacker does not need to

explicitly place this cache line in the LLC.

3.6.3 Prefetch+Prefetch

Following the Prefetch+Prefetch covert channel, we build the Prefetch+Prefetch side

channel attack. The attacker learns if the victim accessed the shared cache line by timing

PREFETCHW. In contrast to the Prefetch+Reload side channel attack, each iteration in this

attack only has two steps:

Step 1: The attacker prefetches the target shared cache line using PREFETCHW, and times this

operation to learn whether the victim accessed this cache line in the last iteration.

Step 2: The attacker waits for the victim’s behavior.

As explained earlier in Section 3.4, in Step 1 above, if the victim accessed this cache line,

PREFETCHW executes slower; if the victim did not access, PREFETCHW executes faster.

30

In contrast to most previous cross-core cache attacks, which can only work on the LLC

and require repeatedly evicting the target cache line to DRAM (e.g., Flush+Reload), the

proposed prefetch-based attacks work on the private cache. Thus, the target cache line is

always kept in the on-chip cache hierarchy. Compared to cross-core LLC attacks, cross-core

private cache attacks have two benefits. First, higher bandwidth, since cache accesses are

fast and are usually much faster than DRAM accesses. This is especially important when

the attacks are used as covert channels. Second, stealthier, since there are less cache misses,

especially LLC misses involved in the attacks [23]. To the best of our knowledge, the proposed

prefetch-based attacks are the first cross-core private cache side channel attacks that can work

regardless of the LLC inclusivity.

3.7 Evaluation

We evaluate the proposed covert channels and side channel attacks on modern Intel

processors. For covert channels, we evaluate the channel capacities, comparing them to

previous cache covert channels on CPU. For side channel attacks, we demonstrate how they

can be used to leak information from common applications. For side channel attacks, we

demonstrate how they can be used to leak information from common applications. We also

collect the cache miss rates of our attacks and compare them to SPEC 2017 [9] workloads to

show the attack stealthiness. In addition, we also show how our attacks strengthen transient

execution attacks.

3.7.1 Covert Channel Evaluation

We implement Prefetch+Load, Prefetch+Prefetch, and Prefetch+Reload on four Intel

processors, including two desktop processors and two server processors. Note that although

Prefetch+Reload is introduced as a side channel attack in Section 3.6, it can be a covert

channel as well. Table 2 lists the specifications of the four tested processors. The two desktop

processors have inclusive LLCs, and the server processors have non-inclusive LLCs.

31

We use one shared cache line between the sender and receiver to transmit secrets. Al-

though using more shared cache lines or using channel coding techniques (e.g., [55]) may

further improve the channel capacity [55, 133]; here we do not include them since we aim at

showing the conservative results (i.e., the lower bounds).

Table 2: The specifications of the tested processors.

Desktop processors Server processors

Platform Core

i7-6700

Core

i7-7700K

Xeon Platinum

8124M

Xeon Platinum

8151

Microarchitecture Skylake Kaby Lake Skylake-SP Skylake-SP

Num of cores 4 4 N/A6 N/A

Frequency 3.4 GHz 4.2 GHz 3.0 GHz 3.4 GHz

LLC type Inclusive Inclusive Non-inclusive Non-inclusive

We measure the channel capacity and bit error rate of each attack, under different trans-

mission intervals. Although the raw transmission rate increases when decreasing the trans-

mission interval, the bit error rate may also increase, especially when the interval is too

short. To find the best transmission rate, we use the channel capacity metric (as in [92, 90]).

This metric is computed by multiplying the raw transmission rate with 1−H(e), where e is

the bit error rate and H is the binary entropy function. The results are shown in Figure 6.

The bit error rates of all three attacks stay low (lower than 0.6%) and are almost constant,

when the raw transmission rate is under a threshold (e.g., 660 KB/s for Prefetch+Reload in

Figure 6(a)). Thus, the channel capacity increases proportionally to the raw transmission

rate. It reaches the peak when the raw transmission rate is around this threshold. Beyond

this threshold, the increasing error rate causes a decrease in the channel capacity. The peak

channel capacities of the three attacks are summarized in Table 3. Prefetch+Reload always

6We use Intel Xeon Scalable processors on Amazon AWS EC2 platform, and we leased four physical cores
on the tested processors for our experiments.

32

has lower capacity than the other two attacks because more cache operations are involved

in each iteration of Prefetch+Reload.

Our prefetch-based attacks are faster than almost all existing cache attacks on x86 CPUs.

First, for attacks tested on desktop processors, the ring interconnect contention-based at-

tack [90] is reported with a very high capacity which is 518 KB/s on a 4.0 GHz desktop

processor. Flush+Reload and Flush+Flush have capacities of 298 KB/s and 496 KB/s on

a 3.6 GHz desktop processor [55], respectively. Prime+Scope [93], the optimized attack for

Prime+Probe, achieves 438 KB/s on a 3.5 GHz desktop processor. Second, most of the at-

tacks that were tested on server processors, including the L1 LRU attack [130], the directory

Prime+Probe attack [132], and the Flush+Coherence attack [133] have capacities of less

than 200 KB/s. The directory version of Prime+Scope achieves 387 KB/s.

To the best of our knowledge, our attacks are only slower than Streamline [100]. This

attack claims to achieve a capacity of 1801 KB/s. However, it has such a high channel

capacity because the sender and receiver use 64 MB shared data to transmit secrets; our

results are based on one shared cache line (64 B).

3.7.2 Side Channel Evaluation

3.7.2.1 Side Channel Attack on Cryptographic Code

Our first attack targets cryptographic libraries, where the access patterns to some in-

structions are related to the value of the cryptographic key. More specifically, we target

the square-and-multiply algorithm [53] which is used in GnuPG 1.4.13 for ciphers such as

RSA [98] and ElGamal [45]: leaking the exponent e of this algorithm leaks the private key.

As shown in Algorithm 3, in each loop iteration, it first executes a sqr and a mod instruction.

Then, if the exponent bit is “1”, a mul and another mod instruction are executed; otherwise

they are skipped. Thus, by monitoring the access pattern to the cache lines that contain sqr

and mul, the attacker can leak each bit of the exponent e and therefore the decryption key.

Implementation. As done in the Flush+Reload attack on GnuPG [134], we use mmap

to map the pages that contain sqr and mul into the attacker’s address space. Note that

during the execution of the victim (GnuPG), the cache lines containing those instructions

33

200 400 600 800 1000
200

400

600

800

1000
 Prefetch+Reload capa.
 Prefetch+Load capa.
 Prefetch+Prefetch capa.
 Prefetch+Reload error rate
 Prefetch+Load error rate
 Prefetch+Prefetch error rate

Raw Transmission Rate (KB/s)

C
ha

nn
el

 C
ap

ac
ity

 (K
B

/s
)

 Prefetch+Reload capa. Prefetch+Load capa. Prefetch+Prefetch capa. Prefetch+Reload error rate Prefetch+Load error rate Prefetch+Prefetch error rate

0

10

20

30

 B
it

Er
ro

r R
at

e
(%

)

200 400 600 800 1000
200

400

600

800

1000
 Prefetch+Reload capa.
 Prefetch+Load capa.
 Prefetch+Prefetch capa.
 Prefetch+Reload error rate
 Prefetch+Load error rate
 Prefetch+Prefetch error rate

Raw Transmission Rate (KB/s)

C
ha

nn
el

 C
ap

ac
ity

 (K
B

/s
)

 Prefetch+Reload capa. Prefetch+Load capa. Prefetch+Prefetch capa. Prefetch+Reload error rate Prefetch+Load error rate Prefetch+Prefetch error rate

0

10

20

30

 B
it

Er
ro

r R
at

e
(%

)

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 02 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

 P r e f e t c h + R e l o a d c a p a . P r e f e t c h + R e l o a d e r r o r r a t e
 P r e f e t c h + P r e f e t c h c a p a . P r e f e t c h + P r e f e t c h e r r o r r a t e
 P r e f e t c h + L o a d c a p a . P r e f e t c h + L o a d e r r o r r a t e

R a w T r a n s m i s s i o n R a t e (K B / s)

Ch
an

ne
l C

ap
ac

ity
(KB

/s)

0

1 0

2 0

3 0

 Bi
t E

rro
r R

ate
 (%

)
(a) Intel Core i7-6700

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 02 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

 P r e f e t c h + R e l o a d c a p a . P r e f e t c h + R e l o a d e r r o r r a t e
 P r e f e t c h + P r e f e t c h c a p a . P r e f e t c h + P r e f e t c h e r r o r r a t e
 P r e f e t c h + L o a d c a p a . P r e f e t c h + L o a d e r r o r r a t e

R a w T r a n s m i s s i o n R a t e (K B / s)

Ch
an

ne
l C

ap
ac

ity
(KB

/s)

0

1 0

2 0

3 0

 Bi
t E

rro
r R

ate
 (%

)

(b) Intel Core i7-7700K

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 02 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

 P r e f e t c h + R e l o a d c a p a . P r e f e t c h + R e l o a d e r r o r r a t e
 P r e f e t c h + P r e f e t c h c a p a . P r e f e t c h + P r e f e t c h e r r o r r a t e
 P r e f e t c h + L o a d c a p a . P r e f e t c h + L o a d e r r o r r a t e

R a w T r a n s m i s s i o n R a t e (K B / s)

Ch
an

ne
l C

ap
ac

ity
(KB

/s)

0

1 0

2 0

3 0
 Bi

t E
rro

r R
ate

 (%
)

(c) Intel Xeon Platinum 8124M

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 02 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

 P r e f e t c h + R e l o a d c a p a . P r e f e t c h + R e l o a d e r r o r r a t e
 P r e f e t c h + P r e f e t c h c a p a . P r e f e t c h + P r e f e t c h e r r o r r a t e
 P r e f e t c h + L o a d c a p a . P r e f e t c h + L o a d e r r o r r a t e

R a w T r a n s m i s s i o n R a t e (K B / s)

Ch
an

ne
l C

ap
ac

ity
(KB

/s)

0

1 0

2 0

3 0

 Bi
t E

rro
r R

ate
 (%

)
(d) Intel Xeon Platinum 8151

Figure 6: The capacities and bit-error-rates of the prefetch-based channels on various Intel

processors.

are brought into the victim’s L1 instruction cache (L1I cache). However, since we map

the instruction pages as data blocks in the attacker’s address space, the same cache lines

containing those instructions are brought to the attacker’s L1D cache. Thus, although

PREFETCHW can only prefetch cache lines into L1D cache, it can still leak the victim’s access

patterns to instructions.

34

Table 3: The maximum capacities of the prefetch-based channels.

Desktop processors Server processors

Platform Core

i7-6700

(3.4 GHz)

Core

i7-7700K

(4.2 GHz)

Xeon Platinum

8124M

(3.0 GHz)

Xeon Platinum

8151

(3.4 GHz)

Prefetch+Reload 631 KB/s 782 KB/s 394 KB/s 476 KB/s

Prefetch+Load 709 KB/s 840 KB/s 586 KB/s 680 KB/s

Prefetch+Prefetch 721 KB/s 822 KB/s 556 KB/s 605 KB/s

Algorithm 3: Square-and-multiply Exponentiation

Input: base b, modulo m, exponent e = (en1...e0)2

Output: be mod m

r ← 1

for i = n− 1; i >= 0; i−− do

r ← r2 mod n

if ei == 1 then
r ← r ∗ b mod n

Results. For simplicity, we only show the attack results of Prefetch+Prefetch on the Intel

Xeon Platinum 8151 processor. However, we have performed this attack on other processors

listed in Table 2 too, using both Prefetch+Prefetch and Prefetch+Reload. Here we use a

waiting latency of 500 cycles in each iteration of Prefetch+Prefetch. Figure 7 shows the

timing measurement results from the attacker for 200 samples: a lower prefetch latency (less

than 100 cycles) indicates that the victim did not access the target cache line during the

last iteration; a higher prefetch latency (around 200 cycles) means the victim did access.

As explained above, an access to sqr followed by an access to mul indicates a bit “1”, and

35

1000 1050 1100 1150 1200
0

100

200

300

 Square
 Multiply

Pr
ef

et
ch

 L
at

en
cy

 (c
yc

le
s)

Sample ID

Bit "0" Bit "1"

Figure 7: A segment of the prefetch latencies measured in Prefetch+Prefetch while attacking

GnuPG; part of the the exponent e shown here is “111001011001”.

two consecutive accesses to sqr (one from the current iteration, one from the next iteration)

indicate a bit “0” (in the current iteration). Thus, part of the exponent e shown in Figure 7

is “111001011001”. The average attack accuracy is 96.2%.

3.7.2.2 Side Channel Attack on Keystroke Timing

Our second attack focuses on leaking the precise timing information of keystrokes, i.e.,

detecting when a keyboard input occurs. This leakage is important since it can assist recon-

structing typed words from users [137, 110, 75]. Previous work shows that certain functions

in graphics libraries are called when a keystroke happens (e.g., [123, 55]). Thus, we can

monitor the accesses to the cache lines containing these functions to detect keystrokes.

Implementation. We attack an address in the shared GDK library which is invoked when

processing keystrokes. Specifically, we launch gedit as the victim, and input keystrokes in

it. At the same time, we run the prefetch-based attacks to monitor accesses to the address

selected in the GDK library, and record the timing measurement results. The attacker

process raises an alarm when a keystroke is detected.

36

0.0E+0 2.0E+9 4.0E+9 6.0E+9 8.0E+9
20

40

60

80

100

120

R
el

oa
d

La
te

nc
y

(c
yc

le
s)

Time (cycles)

a b c d e f g 1 2 3 4

Figure 8: The access latencies measured in Step 3 of Prefetch+Reload when a user types

“abcdefg1234” in gedit; we monitor address 0x7b980 of libgdk.so.7

Results. Figure 8 shows the timing trace collected by Prefetch+Reload when the user

is typing “abcdefg1234” in gedit, on our Intel Core i7-6700 processor. Again, the attack

has been done on the other desktop processor too (but not on the server processors since

EC2 instances do not come with GUI). As one can observe, when a keystroke occurs, the

reload operation (in Step 3 of Prefetch+Reload) takes around 50 cycles to finish; it takes

over 80 cycles to reload when there is no keystroke. This significant timing difference makes

keystrokes very detectable. During the attack, we observe zero false positives and zero false

negatives.

3.7.2.3 Attack Stealthiness

Since most previous cross-core attacks have a large amount of cache misses, especially

LLC misses, prior work (e.g., [23]) has suggested detecting the attacker process by monitor-

ing the cache miss rates of each process. In this section, we show that our prefetch-based

attacks cannot be detected in this way. We use performance counters to collect the at-

tacker’s miss rates to L1D cache, L2 cache and LLC, while attacking GnuPG and user inputs

7We found the appropriate library and address to monitor following the method in prior work [56].

37

(keystrokes), respectively. The results are in Figure 9. As one can observe, the LLC miss

rates of Prefetch+Reload are less than 1% in both attack scenarios. For Prefetch+Prefetch,

the LLC miss rates are a little higher (about 10%) because there are fewer LLC accesses.

Intel Core i7-6700
L1D L2 LLC

Prefetch+Reload

mcf

fontonik3d

perlbench

Flush+Reload

Prefetch+Prefetch

G
n

u
P

G

Prefetch+Reload

Flush+Reload

Prefetch+Prefetch

K
ey

st
ro

ke
SP

EC
 2

0
1

7

Intel Core i7-7700K
L1D L2 LLC

Intel Core i7-6700
L1D L2 LLC

Prefetch+Reload

mcf

fontonik3d

perlbench

Flush+Reload

Prefetch+Prefetch

G
n

u
P

G

Prefetch+Reload

Flush+Reload

Prefetch+Prefetch

K
ey

st
ro

ke
SP

EC
 2

0
1

7

Intel Core i7-7700K
L1D L2 LLC

Figure 9: The cache miss rates of 1) the attacker processes in various cache attacks and 2)

three workloads in SPEC 2017.

To compare, in Figure 9 we also list the attacker’s cache miss rates of Flush+Reload as

well as the cache miss rates of three typical SPEC 2017 workloads that have high, medium,

and low memory access locality, respectively. From this figure, the LLC miss rates of our

prefetch-based attacks are lower than or similar to the ones of SPEC workloads. In contrast,

in Flush+Reload, the attacker has very high LLC miss rates: they are about 70% to 80%

when attacking GnuPG, and are over 90% when attacking user inputs. These are much higher

than the LLC miss rates of all the three SPEC workloads. In fact, from our experiments,

there are only two workloads (out of 23) in SPEC that have an LLC miss rate higher than

30%.

38

Although in the prefetch-based attacks, the target cache line is always evicted from L1D

cache, the miss rates to L1D cache are still less than 1% because other data accesses (to

the cache lines which are not used for leaking secrets) cause a lot of L1 hits. This means

we cannot detect the attacks by monitoring the L1 miss rate. In addition, Prefetch+Reload

has high miss rates to L2 cache (similar to Flush+Reload). However, as shown in Figure 9,

SPEC 2017 workloads can also have high miss rates to L2 cache, making it hard to detect

those attacks through L2 miss rates.

Our attacks may be detected using performance counters related to software prefetch.

For example, ls pref instr disp.store prefetch w counts the total amount of dispatched

PREFETCHW instructions; ls inef sw pref.data pipe sw pf dc hit counts the amount of

prefetch instructions that did not fetch data outside of the private cache. These two per-

formance counters together may identify a process that repeatedly uses PREFETCHW on data

that is not in the local private cache. However, such a process is not necessarily an attacker,

because a program using PREFETCHW to accelerate a loop could also have this behavior: in

each iteration, the data required for the next iteration is prefetched from the LLC. Thus,

using these two performance counters may result in false positives. Other finer-grained per-

formance counters such as the ones related to read for ownership (RFO) requests may give

a better attacker signature. We leave finding effective combinations of performance counters

as future work.

3.7.2.4 Windowless Prefetch+Prefetch

Using the terminology in prior work [93], PREFETCHW has two important properties: 1)

PREFETCHW is preserving, meaning the measurement (prefetching and timing the prefetch)

does not change the state in the absence of the victim’s event; 2) PREFETCHW is also con-

current, meaning it detects the events that temporally overlap with it. With these two

features, Prefetch+Prefetch can be used in a windowless way (no waiting window between

two consecutive prefetches is necessary). We verify this using the following experiment.

We use two processes, the victim and attacker. The victim process first waits a random

amount of time, and then triggers an event (accessing the target shared cache line). This

39

2 0 0 4 0 0 1 0 0 0 1 0 0 0 00 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

Ac
cu

rac
y

W i n d o w S i z e (c y c l e s)

 P r e f e t c h + P r e f e t c h
 F l u s h + R e l o a d

Figure 10: The accuracy of Prefetch+Prefetch and Flush+Reload on our Intel Core i7-6700

processor, with different waiting window sizes.

process terminates after triggering the event. The attacker process runs Prefetch+Prefetch

with a waiting window in each attack iteration to detect the victim’s event. The attacker

process terminates after detecting the event or after the victim process terminates. We run

this experiment with different window sizes and repeat the experiment for 1000 times for each

window size. Figure 10 shows the attacker’s detection accuracy on our Intel Core i7-6700

processor. Note that the results on other processors in Table 2 are similar. For comparison,

we also show the accuracy of Flush+Reload on the same processor. For Prefetch+Prefetch,

the attacker’s detection accuracy does not change when the window size varies; the at-

tacker always has a very high detection accuracy which is around 1. This indicates that

Prefetch+Prefetch, unlike prior attacks such as Flush+Reload, can always be used as a

windowless attack. Such a windowless attack has much higher temporal resolution than a

windowed attack since the latter’s resolution is bounded by the window size. For example, to

reach 95% detection accuracy, Flush+Reload needs a waiting window with over 4000 cycles.

40

3.7.3 Prefetch-Based Channels in Transient Execution Attacks

Transient execution attacks such as Spectre [74] and Meltdown [78] usually require a

microarchitectural covert channel to transfer the secrets to the attacker. Currently, most

transient execution attacks (e.g., [74, 78, 118, 30, 102]) use the Flush+Reload channel because

it is simple, reliable, and ubiquitous. Here we demonstrate that prefetch-based channels can

also work with transient execution attacks to leak secrets, and may even work better than

Flush+Reload. We use Spectre v1 as an example to show the details and benefits of using

prefetch-based channels in transient execution attacks.

Higher bandwidth. When using Flush+Reload, the sender operation in Spectre is a

memory access where the address depends on the secret value. Since Prefetch+Reload

and Prefetch+Prefetch use the same sender function as Flush+Reload, a victim program

vulnerable to Spectre with Flush+Reload is also vulnerable to Spectre with Prefetch+Reload

and Prefetch+Prefetch. We have verified this using the Spectre v1 PoC code [10]. We modify

it accordingly such that Prefetch+Reload or Prefetch+Prefetch is used in the attacker code;

the victim remains the same. In addition, as observed in prior work [78], the leakage rate of a

transient execution attack is significantly affected by the capacity of the covert channel used

in the attack. Since Prefetch+Reload and Prefetch+Prefetch have much higher capacities

than Flush+Reload, Spectre works faster with these two channels. For example, on our

Intel Core i7-6700 processor, when leaking an 8-bit secret in each transmission, the leakage

rate of Spectre is 3.02 times and 1.61 times as fast when using Prefetch+Prefetch and

Prefetch+Reload, respectively, as compared to Flush+Reload.

More leakage in the transient window. When using Spectre with Flush+Reload, the

data access for sending (encoding) the secret in the transient window is a slow DRAM access,

since this data was flushed by the attacker. In contrast, the data access for secret encoding

is a remote private cache hit when using Prefetch+Reload or Prefetch+Prefetch, which is

usually faster than a DRAM access. This indicates that within the same transient window,

more encoding operations can be performed using the two prefetch-based channels than

Flush+Reload, and thus more secrets may be leaked. An example Spectre v1 gadget that

can benefit from this is shown in Listing 3.3. There are n operations in the branch, where

41

each operation accesses a secret and encodes it to a cache index. The secrets are array1[x]

to array1[x+n] (when x is out of bounds); each of the secrets is encoded to an index of a

sub-array in array2. The more of these n operations we can perform in the transient window,

the more secrets we can leak out at once.

i f (x+n < a r r a y 1 s i z e)
{

y0 = array2 [0] [array1 [x] ∗ 4096] ;
y2 = array2 [1] [array1 [x+1] ∗ 4096] ;
. . .
yn = array2 [2] [array1 [x+n] ∗ 4096] ;

}

Listing 3.3: The Spectre v1 code example when a bounds check is followed by multiple

secret accessing and encoding operations. This code is essentially a for loop in a condi-

tional branch; we show the unrolled version for clarity.

This gadget might be found in a victim; it is essentially the original Spectre v1 gadget

with multiple secrets accessed and encoded in the branch (instead of one). Additionally, in

the scenario where the attacker has control over the gadget (e.g., spectre-type-meltdown),8

the attacker can build such a gadget to leak multiple secrets in one transient window and

thus accelerate the attack. We still prove this with the Spectre v1 PoC code and modify the

attacker code to use Prefetch+Reload or Prefetch+Prefetch. We also modify the victim code

to simulate the gadget in Listing 3.3 where n secrets are accessed and encoded in the branch.

We run this code and collect the amount of these n secrets the victim can transmit within one

transient window, and draw the histograms in Figure 11. We omit the results when leaking

by Prefetch+Reload since its encoding stage is same as the one of Prefetch+Prefetch.

On the desktop processors, the victim can transmit up to 17 8-bit secrets speculatively

when using Prefetch+Reload or Prefetch+Prefetch, while the victim can transmit at most 8

secrets when using Flush+Reload. However, on server processors, the amount of transmitted

8Spectre can be used for exception suppression in Meltdown.

42

secrets when using prefetch-based channels is only slightly larger than the one when using

Flush+Reload. This is because on these processors, the latency of a remote private cache

hit is much longer, compared to desktop processors (160 cycles vs. 90 cycles). Note that

although same-core private cache attacks, such as the L1 LRU attack [130], can also achieve

more secret encodings in a transient window than Flush+Reload, these attacks are less

practical, because they are limited by the number of private cache sets. In these attacks,

secret values are encoded into the cache set index instead of cache line index.

Other transient execution attacks. All of the three prefetch-based channels can be

used in transient execution attacks when the attacker has full control of the gadget (e.g.,

Meltdown). As shown above, Prefetch+Reload and Prefetch+Prefetch has faster encoding

operations than Flush+Reload, enabling more leakage in a transient window. The same is

true for Prefetch+Load, since a remote private cache hit for PREFETCHW is usually faster than

a DRAM access. In a Meltdown PoC with the three prefetch-based channels, we can reliably

leak 8 bytes in the transient window on Our Intel Core i7-6700 processor; we can only leak

6.1 bytes on average when using Flush+Reload.

3.8 Discussion

3.8.1 Attack Reliability

According to Intel [3], a prefetch instruction will not fetch any data when the request

buffer between the L1 and L2 cache is full. This may reduce the performance of the prefetch-

based attacks, when SMT is available and a memory-intensive thread is located on the same

core as the attacker thread. We verified this by running stress -m 1 in a co-located thread

(i.e., the hyperthread sibling) of the attacker thread: this causes many prefetch instructions

from the attacker to be ignored, which significantly reduces the attack performance. For

example, on our Intel Core i7-6700 processor, the channel capacity of Prefetch+Prefetch is

reduced to 56 KB/s. However, SMT enables many security vulnerabilities (e.g., [116]) and

thus is often suggested to be disabled. In fact, if SMT is available, the attacker can always

43

2

4

6

8

10

12

14

16

0.0 0.2 0.4 0.6
 Flush+Reload

N
um

 o
f L

ea
ke

d
By

te
s

0.0 0.2 0.4 0.6
Prefetch+Prefetch

(a) Intel Core i7-6700

2
4
6
8

10
12
14
16
18

0.0 0.2 0.4 0.6
 Flush+Reload

N
um

 o
f L

ea
ke

d
By

te
s

0.0 0.2 0.4 0.6
Prefetch+Prefetch

(b) Intel Core i7-7700K

2

4

6

8

10

12

14

16

0.0 0.2 0.4 0.6
 Flush+Reload

N
um

 o
f L

ea
ke

d
By

te
s

0.0 0.2 0.4 0.6
Prefetch+Prefetch

(c) Intel Xeon Platinum 8124M

2

4

6

8

10

12

14

16

0.0 0.2 0.4 0.6
 Flush+Reload

N
um

 o
f L

ea
ke

d
By

te
s

0.0 0.2 0.4 0.6
Prefetch+Prefetch

0.910.69

(d) Intel Xeon Platinum 8151

Figure 11: The distributions of the amount of secret bytes that can be accessed and encoded

in a transient window, when leaking by Flush+Reload and Prefetch+Prefetch, respectively.

launch same-core private cache attacks instead. Our cross-core private cache attacks target

the scenarios where same-core attacks are impractical or impossible.

3.8.2 PREFETCHW on AMD processors

Modern AMD processors also support PREFETCHW; this instruction was originally invented

by AMD [12], and was later adopted by Intel. We performed the same experiments as the

44

ones in Section 3.4 on AMD desktop and server processors. However, from our experiments,

PREFETCHW does not cause any coherence state changes on data with read-only permission;

it only works on data with write permission. Thus, we believe that AMD processors actually

have permission checks for PREFETCHW.

3.9 Chapter Summary

In this chapter, we proposed the first two cross-core private cache side channel attacks

that work with both inclusive and non-inclusive LLCs. One of the prefetch instructions on

x86 processors, PREFETCHW, prepares the data for future writes by modifying the coherence

state of the data. We made two important microarchitectural observations on PREFETCHW.

First, it works on data with read-only permission. Second, its execution time is related

to the coherence state of the target data. Given these observations, the coherence state

modifications by PREFETCHW enable significant security vulnerabilities. Using PREFETCHW, we

first built two covert channels that have very high capacities. We also demonstrated that

these high-capacity covert channels enable more powerful transient execution attacks. We

then slightly modified the covert channels to build two side channel attacks and showed that

these attacks leak information from real-world applications.

45

4.0 New Conflict-Based Cache Attacks with The PREFETCHNTA Instruction

4.1 Overview

Conflict-based cache attacks are an important class of cache attacks where the attacker

(receiver) deliberately causes cache conflicts to learn the victim’s (sender’s) access pattern.

For example, in Prime+Probe [81, 66], the attacker first primes a cache set by filling it with

the attacker’s cache lines, and then waits for the victim’s execution: if the victim accesses

her own cache line that is mapped to this set, one of the attacker’s lines is evicted. Later

the attacker probes the cache set and times the probing to learn whether the victim accessed

her cache line. Conflict-based attacks are very practical since they usually do not assume

any system features (such as page deduplication). However, when used as covert channels,

their bandwidths are limited. This is because priming a cache set requires many accesses

and takes very long to finish. For example, to build Prime+Probe on a 16-way associative

LLC, priming the set needs about 16 cache accesses. In this dissertation, we seek to answer

the following question:

Is it possible to cause cache conflicts without encountering the effort in priming the cache

set?

x86 processors feature many prefetch instructions. Developers or compilers can use these

instructions to inform the processor that a memory location will be accessed or modified

soon. Then, the processor preloads the data (usually in cache line level) and places it closer

to the CPU core, in order to accelerate future requests. PREFETCHNTA is one of the x86

prefetch instructions. When executing PREFETCHNTA on Intel processors with an inclusive

LLC, the target data is brought into the requesting core’s local L1 cache as well as the

LLC [3, 4]. However, to avoid LLC pollution, the prefetched data is not placed into the

most recently used position in the LLC set, and will be chosen for LLC replacement sooner

than a regular cache fill. In this dissertation, we reverse-engineer the detailed cache be-

havior of PREFETCHNTA on Intel processors and make three important observations. First,

46

PREFETCHNTA installs the target cache line into the LLC set as the eviction candidate. Sec-

ond, when PREFETCHNTA hits in the LLC, it does not update the age of this cache line in

the LLC. Third, the execution time of PREFETCHNTA is related to the location of the target

cache line in the memory hierarchy.

When filling a cache line into the LLC using PREFETCHNTA, it replaces the current eviction

candidate in the set and then the prefetched line becomes the new eviction candidate. This

means, when two processes both prefetch their own cache lines into the same LLC set, they

will compete for the eviction candidate position (cache way), causing conflicts in one way of

the LLC set. Based on this, we propose a new conflict-based cache covert channel, named

NTP+NTP (Non-Temporal Prefetch). In this channel, the sender and receiver first agree on

the LLC set for transmitting secrets. Then in each iteration of the transmission, the sender

sends one bit by prefetching her cache line into the target LLC set (for “1”) or not prefetching

(for “0”). The receiver receives the bit by prefetching the receiver’s cache line (which is also

mapped into this target LLC set), and times the prefetch to determine if it is an LLC miss

(for “1”) or not (for “0”). If the sender prefetches her cache line into the LLC, it evicts the

receiver’s cache line that was prefetched into the same set; later the receiver’s prefetch will

miss in the LLC. We show that NTP+NTP has very high capacity as a conflict-based covert

channel: on our Skylake processor, the capacity of NTP+NTP is 302 KB/s which is over

3× than the capacity of Prime+Probe. To the best of our knowledge, NTP+NTP is the first

conflict-based LLC covert channel that does not require priming the cache set.

Although NTP+NTP is unlikely a side channel, we found that PREFETCHNTA can be

used in many cache side channel attacks that are based on replacement state changes to

make the attacks more efficient. This is because PREFETCHNTA makes it easier for users

to manipulate cache replacement states. For example, Prime+Scope [93] is a cache attack

proposed very recently. Prime+Scope achieves the highest-to-date temporal resolution for

cache attacks, and is thus very powerful. However, this attack has strict requirements on

the replacement state of the target LLC set. To satisfy the requirements, it uses a very long

access sequence to prime the LLC set. On our Skylake processor, the priming comprises

192 cache references and takes about 1900 cycles to finish. This long priming step limits

the attack from detecting frequent victim events. In contrast, when using PREFETCHNTA,

47

the priming only needs 33 cache references and takes about 1000 cycles to finish, resulting

in a much faster attack. In addition, using PREFETCHNTA makes cache conflicts occur more

often and thus makes eviction set construction faster. In this dissertation, we propose a new

eviction set construction algorithm which significantly outperforms the state-of-the-art.

In this chapter, we refer to “prefetch using PREFETCHNTA” as “prefetch”.

4.2 Cache Replacement Policy

When the CPU core loads a cache line that is not present in a cache level (i.e., cache

miss), the cache line is usually filled to this cache level (into a certain set). If the set this

cache line is mapped into is already full, one of the lines that are currently cached in this set

will be evicted to make space for this new cache line. The cache replacement policy decides

which line should be evicted, i.e., the eviction candidate.

LRU. LRU is one of the most widely used replacement policies as it provides high cache

utilization and thus good performance. LRU always selects the least recently used cache line

in a set as the eviction candidate. Thus, when using LRU, we need to track the age of each

cache line in a set. For a w-way associative cache, logw bits are necessary to record the age

of each way (cache line) in a set, for a total of w logw for each set. This makes tracking and

updating the ages of cache lines very expensive in terms of storage and latency.

Pseudo LRU. Recent x86 CPUs use pseudo LRU algorithms to achieve high cache hit rate

as well as maintain low age updating/tracking overhead. Typical Pseudo LRU algorithms

include Tree-LRU [109] and Bit-LRU [82]. Prior work [28] has reverse engineered that recent

Intel Core processors use Quad-age LRU for their LLCs. With this policy, each cache line

in an LLC set is assigned with two bits to represent its age. Thus, the maximum (oldest)

age for a cache line is 3, and the minimum (youngest) age is 0. The details of this policy are

shown as follows:

48

- Insertion policy. When a cache line is filled into the LLC, its age is initialized as 2.1

- Replacement policy. When replacement is necessary, Quad-age LRU searches all the

ways in the target LLC set in order, and evicts the cache line that is stored in the first

way with age 3; if such a way does not exist, it increases the age of every way by 1 and

searches again.

- Updating policy. When an access request from the CPU core hits in the LLC, the age

of the target cache line is reduced by 1 (if the age is 0 then it will not be changed).

Figure 12 shows an example of how the state of an LLC set changes with a sequence of

CPU requests. In this figure, the replacement policy checks the cache lines in the set from

the left to right, when looking for the eviction candidate.

Initial state of the LLC set:

CPU request: load l1, hits in the LLC.

0l22l12l0 l4 21l3 l5 10l22l12l0 l4 21l3 l5 1

0l23l12l0 l4 21l3 l5 10l23l12l0 l4 21l3 l5 1

CPU request: load l6, misses in the LLC and evicts l0 .

1l23l12l6 l4 32l3 l5 21l23l12l6 l4 32l3 l5 2

CPU request: load l7, misses in the LLC and evicts l1.

1l22l72l6 l4 32l3 l5 21l22l72l6 l4 32l3 l5 2

2l0

Cache line Age

T
im

e

Figure 12: The state change details of an LLC set upon CPU requests; changes after each

request are highlighted.

1On early Intel processors (before Skylake), sometimes cache lines are inserted into the LLC with the age
initialized as 3.

49

4.3 Characterizing The Non-Temporal Prefetch Instruction

4.3.1 Non-Temporal Prefetch

Among the prefetch instructions discussed in Section 3.3, PREFETCHNTA works slightly

different than the others: it minimizes the LLC pollution when fetching data into the cache

hierarchy. To accelerate future accesses from the requesting core, PREFETCHNTA places the

target cache line into the requesting core’s private cache; with an inclusive LLC, this cache

line has to be also brought into the LLC (if not already present). However, prefetching a cache

line into the LLC may replace cache lines from other threads and degrade their performance.

According to Intel [3], using PREFETCHNTA can reduce this disturbance to other data cached

in the LLC: a cache line prefetched with this instruction will not be placed into the most

recently used position (in the LLC set) and may be chosen for replacement faster than a

regular LLC fill. Thus, when the target cache line is only accessed once in the entire execution

path, the user should prefetch it using PREFETCHNTA. We reverse engineer the detailed cache

behavior of PREFETCHNTA in this section, and will explain why this instruction raises severe

security concerns in the next section.

Experiment platform. The experiments in this chapter are all performed on two Intel

processors, Core i7-6700 and Core i7-7700K. The processor parameters are listed in Table 4.

In this section we only show the results on the Core i7-6700 processor due to limited space.

Note that in this section we disable the hardware prefetcher to get accurate reverse engineer-

ing results. In the following sections, we enable the hardware prefetcher when evaluating the

attacks for generality, and avoid triggering the hardware prefetcher using the techniques in

prior work [55, 74].

4.3.2 Key Properties

4.3.2.1 Insertion Policy

We first verify that a prefetched cache line is evicted faster/sooner than a loaded cache

line in the same LLC set, using a four-step experiment. To prepare the experiment, we

50

Table 4: The specifications of the tested processors.

Platform Core i7-6700 Core i7-7700K

Microarchitecture Skylake Kaby Lake

Num of cores 4 4

Frequency 3.4 GHz 4.2 GHz

L1 associativity 8 8

L1 type Private Private

L2 associativity 4 4

L2 type Private, non-inclusive Private, non-inclusive

LLC associativity 16 16

LLC type Shared, inclusive Shared, inclusive

construct an eviction set, i.e., a group of cache lines that are all mapped to one specific set

(the target set) in the LLC. This eviction set consists of w+1 cache lines where w is the set

associativity of the LLC (16 for our processors). These cache lines are named l0, l1,..., lw.

As shown in Figure 13, this experiment consists of the following steps:

Step 1: We make the target LLC set empty. This can be achieved by loading the cache

lines in the eviction set into the LLC and then flushing all of them with CLFLUSH.

Step 2: We pick la from the eviction set, where 0 ≤ a ≤ w − 1. Then, we first load the

cache lines before la in the eviction set into the LLC (l0 to la−1, if a ̸= 0), and then

prefetch la. After the prefetch, we load the rest of the cache lines until the LLC

set is full (la+1 to lw−1, if a ̸= w − 1). We add LFENCE after each load/prefetch

operation to ensure that the cache lines are filled into the LLC in order.

Step 3: We load lw into the LLC which evicts one of the existing cache lines in the target

set.

51

Step 4: We load la and time the load to learn whether this prefetched line was evicted in

Step 3. If la was evicted, it takes longer (typically more than 150 cycles) to load,

otherwise it takes much shorter to load (less than 100 cycles).

Step 1: Prepare an empty LLC set.

Step 2: Load l0 to la-1, prefetch la, then load la+1 to lw-1.

Step 3: Load lw (evicts one cache line in this set).

Timing result

Step 4: Load la and time the load.

2...2l12l0 ... 2?la lw-1 2 2...2l12l0 ... 2?la lw-1 2

0 4 8 1 2 1 61 0 0

2 0 0

3 0 0

La
ten

cy
(cy

cle
s)

T h e v a l u e o f " a "
Figure 13: The experiment steps and results for verifying that prefetched data are evicted

earlier than other data.

We run the above experiment with a changing from 0 to w−1 and repeat the experiment

10000 times for each value of a. The average load latencies in Step 4 are shown in Figure 13:

it always takes over 200 cycles to reload the prefetched line (la), meaning la was always

evicted from the LLC in Step 3, regardless of its position in the set. This proves that a

prefetched cache line is easier to be evicted than cache lines loaded into the LLC.

The above experiment indicates that a prefetched cache line is distinctively inserted into

the LLC, so that the replacement policy will choose it to be evicted sooner than other cache

lines. We hypothesize two possible hardware-level implementations to achieve this: 1) a

prefetched cache line is inserted into the LLC set with the age initialized to be 3 instead

of 2 (cf. Section 4.2); 2) a prefetched cache line is inserted into the LLC set with age 2 as

52

Step 1: Prepare the LLC set.

Step 2: Flush la and then prefetch la.

Step 3: Load l’1 to l’w-1 in order, find the evicted line after each load.

3...3l12l0 ... 3?la lw-1 33...3l12l0 ... 3?la lw-1 3

3...3l12l0 ... 33la lw-1 33...3l12l0 ... 33la lw-1 3

Eviction result

Loaded line Evicted line

l’1 l1

l’2 l2

l’a la

l’w-2 lw-2

l’w-1 lw-1

Figure 14: The experiment steps and results for learning the insertion policy of PREFETCHNTA.

normal, but this line is flagged for “early eviction” in the LLC, i.e., a prefetched line and a

line with age 3 are treated unequally by the replacement policy. As shown in Figure 14, we

then perform the following experiment to know which option has more likely been chosen by

Intel. In this experiment, we use two eviction sets that are mapped to the same LLC set (l0

to lw and l′0 to l′w).

Step 1: We prepare the target LLC set as shown in Step 1 of Figure 14. This can be achieved

by first filling the set with lw and l1, l2,..., lw−1 in that order, and then loading l0

to evict lw (cf. Section 4.2).

Step 2: We flush la (1 ≤ a ≤ w− 1) and then prefetch la. It is brought back to this flushed

location.

Step 3: We load l′1 to l′w−1 into the LLC in order and check which cache line in this set is

evicted after loading each of them.2

2Checking if a cache line is evicted can be done by loading it and timing the load. Note that we should
start over the experiment before checking the next cache line to avoid the noise caused by the measurement.

53

With each possible value of a, we run the experiment 10000 times. The eviction results

in Step 3 are shown in Figure 14. We get the same results in each trial regardless of the value

of a: when loading l′1 to l′w−1 into this LLC set, l1 to lw−1 are evicted in order (from the left

to right in Figure 14). This indicates that the prefetched cache line (la) is treated equally as

a cache line whose age is 3. Thus, we believe that a prefetched cache line is inserted into the

LLC set with age 3 instead of being flagged for early eviction. This experiment also verified

the replacement policy introduced in Section 4.2.

Property #1: On an LLC miss, PREFETCHNTA inserts the target cache line into the LLC

with the age initialized as 3.

The initial state.

2l12l0 lw-2 22... lw-1 3

lw-2 N/AN/A... lw-1 N/A

... N/A lw-1 N/A

L1

LLC

L2

Step 1: Evict lw-1 from the L1 and L2 cache.

Step 2: Prefetch lw-1.

2l12l0 lw-2 22... lw-1 ?

l'w-2 N/AN/A... l'w-1 N/A

... N/A l'w-1 N/A

L1

LLC

L2

Step 3: Load lw to evict one line from the LLC set.

Step 4: Load lw-1 and time the load.

Timing result

1 0 0 0 1 0 5 0 1 1 0 0 1 1 5 0 1 2 0 0
1 0 0

2 0 0

3 0 0

La
ten

cy
(cy

cle
s)

S a m p l e I D

Figure 15: The experiment steps and results for learning the updating policy of PREFETCHNTA.

54

4.3.2.2 Updating Policy

In this section, we study the cache behavior of PREFETCHNTA when the target cache line is

already in the LLC (but not in the private cache). Specifically, we are interested in whether

an LLC hit caused by PREFETCHNTA updates the age of the target cache line in the LLC like

a load instruction (cf. Section 4.2). In this experiment, we need two eviction sets: one for

the LLC (l0 to lw) and one for the L1 and L2 cache (l′0 to l′w); l
′
0 to l′w are all mapped into

the same L1/L2 set with l0 to lw, but different LLC sets. Then, we prepare the target LLC

set as the initial state shown in Figure 15: the LLC set is filled with l0 to lw−1; the ages of

l0 to lw−2 are 2 but the age of lw−1 is 3. Thus, lw−1 is the eviction candidate in the LLC set.

lw−1 may be also present in the L1/L2 cache. After the preparation, we run the following

four steps (as shown in Figure 15) to learn whether prefetching lw−1 updates its age from 3

to 2:

Step 1: We access l′0 to l′w multiple times to ensure that lw−1 is no longer present in the L1

and L2 cache.3 This step is necessary because if lw−1 is present in the L1 or L2

cache, when prefetching lw−1, the request will not reach the LLC and we cannot

learn the updating policy in the LLC.

Step 2: We prefetch lw−1. This results in an LLC hit and may update the age of lw−1 in

the LLC.

Step 3: We load a new cache line lw into the LLC which evicts one of the existing lines in

the LLC set.

Step 4: We access lw−1 and time the access to learn whether it was evicted in Step 3: if

lw−1 was not evicted, then PREFETCHNTA updated its age in Step 2 (from 3 to 2),

otherwise PREFETCHNTA did not update the age in Step 2.

We repeat the above experiment 10000 times and Figure 15 shows a segment of the

collected timing results (in Step 4). It always takes over 200 cycles to load lw−1, meaning

lw−1 was likely in DRAM before it’s loaded in Step 4. Thus, we can safely conclude that

PREFETCHNTA did not update its age (from 3 to 2) so it was chosen by the replacement policy

3w + 1 cache lines are enough to evict lw−1 from both the L1 and L2 cache because L1 Associativity +
L2 Associativity < LLC Associativity on our processors.

55

1 0 0 0 1 0 5 0 1 1 0 0 1 1 5 0 1 2 0 00

1 0 0

2 0 0

3 0 0

4 0 0

La
ten

cy
(cy

cle
s)

S a m p l e I D

 L 1 h i t
 L L C h i t
 D R A M a c c e s s

Figure 16: The execution times of PREFETCHNTA when the target data is the L1 cache, LLC,

and DRAM.

and got evicted from the LLC in Step 3. Similarly, we have verified that PREFETCHNTA does

not update the age of a cache line from 2 to 1, or 1 to 0 either, when hitting in the LLC.

Property #2: On an LLC hit, PREFETCHNTA does not update the age of the target cache

line in the LLC.

4.3.2.3 Timing Variance

Prior work (e.g., [134, 132, 81, 66]) has shown that the execution time of a regular load

instruction is related to the location of the target data in the memory hierarchy. Here we

analyze whether PREFETCHNTA also has such timing variance. Specifically, we measure the

execution time of PREFETCHNTA in three scenarios where the target cache line (lt) is present

in the L1 cache, not in the L1/L2 cache but present in the LLC, and not cached at all,

respectively. The detailed operations for each scenario are as follows:

Scen. 1: We load lt so that it is brought into the L1 cache; then we prefetch lt and time the

prefetch.

Scen. 2: We still load lt first, as done in Scen. 1. However, before we prefetch lt and

measure the timing, we build set conflicts in the L1 and L2 cache to ensure that

lt is evicted from them.

56

Scen. 3: We first build set conflicts in the LLC to ensure that lt is evicted from the entire

cache hierarchy, and then we time the prefetch on it.

We test each scenario 10000 times and a segment of the collected timing results are shown

in Figure 16. When the target cache line is present in the L1 cache, it takes around 70 cycles

to prefetch it; it takes 90 to 100 cycles to prefetch when the cache line is only in the LLC,

and over 200 cycles when the cache line is not cached at all.

Property #3: The execution time of PREFETCHNTA is related to the cache level of the

target cache line.

4.4 A Covert Channel Based on PREFETCHNTA

Based on the properties of PREFETCHNTA that are reverse-engineered in Section 4.3, we

build a new conflict-based cache covert channel. In this section, we first introduce the threat

model, then discuss the details of this channel.

4.4.1 Threat Model

We use a similar threat model to previous conflict-based cache covert channels (e.g., [81]).

We assume that the two essential parties for the channel, the sender and receiver are two

unprivileged processes running on the same processor (but potentially different cores) with

an inclusive LLC. We also assume that the sender and receiver are able to construct eviction

sets for the LLC (e.g., using methods proposed in prior work [81, 93, 94, 121]). In addition,

the sender and receiver should agree on the pre-defined channel protocols, including the

synchronization, data encoding, target LLC set(s), and error correction protocols. Note that

we do not assume any shared data between the sender and receiver, resulting in a more

practical channel than channels relying on data sharing (e.g., [134, 55, 28, 67, 133, 59]).

57

Algorithm 4: NTP+NTP Covert Channel

ds: the sender’s data (cache line) for transmitting signals
dr: the receiver’s data (cache line) for transmitting signals
message[n]: the n-bit long message to be transferred
Th0: the timing threshold for distinguishing prefetch hit and miss
———————————————————————————————————————
Sender Algorithm
———————————————————————————————————————
// Send 1 bit in each iteration.
for i = 0; i < n; i++ do

synchronization();
if message[i] == 1 then

Prefetch ds;
else

Do not prefetch;
wait for receiver();

———————————————————————————————————————
Receiver Algorithm
———————————————————————————————————————
// Detect 1 bit in each iteration.
for i = 0; i < n; i++ do

synchronization();
wait for sender();
Prefetch dr and time the prefetch;
if prefetch time > Th0 then

Received a bit “1”;
else

Received a bit “0”;

4.4.2 NTP+NTP

4.4.2.1 Channel Protocol

When prefetching a cache line into the LLC, it replaces the current eviction candidate

of the LLC set. According to the replacement policy explained in Section 4.2, this eviction

candidate is the first cache line in the set whose age is 3. Since the prefetched cache line’s age

is also set as 3 (cf. Property #1), it now becomes the first cache line in the set with age 3.

This means that prefetching a cache line into the LLC evicts the current eviction candidate

in the set, and then the prefetched cache line becomes the new eviction candidate. With

this knowledge, we can build a covert channel where the sender and receiver communicate

by competing (or not) for one way in an LLC set (i.e., the eviction candidate way). The

58

sender and receiver can simply achieve this by prefetching their own cache lines which are

mapped into the same LLC set. We name this covert channel NTP+NTP (Non-Temporal

Prefetch+Non-Temporal Prefetch).

Basic channel protocol. In NTP+NTP, the sender and receiver first need to ensure that

the sender’s cache line ds and the receiver’s cache line dr are mapped to the same LLC set,

as done in prior work [81, 93, 66]. Then, the receiver prepares the channel by prefetching dr

into the LLC.4 After this, the sender and receiver can communicate following Algorithm 4.

One bit is transmitted in each iteration: the sender sends “1” by prefetching ds into this

target LLC set, or sends “0” by not prefetching. After this, the receiver receives the bit by

prefetching dr and times the prefetch. If the sender sends “1”, then dr should have been

evicted from the LLC (by ds); it takes longer for the receiver to prefetch. In contrast, if the

sender sends “0”, dr is still in the LLC so it is faster for the receiver to prefetch. The sender

and receiver can synchronize using the time stamp counters (TSCs).

The state change details in the target LLC set during the covert channel are shown in

Figure 17. Before the sender and receiver start the covert channel, the target LLC set is in

a random state, i.e., it is filled with random cache lines in random ages. When the receiver

prefetches dr for channel preparation, dr becomes the first (left-most) cache line in the set

with age 3, i.e., the eviction candidate. Thus, if now the sender prefetches ds (to send “1”),

it evicts dr and then ds becomes the new eviction candidate since it is now the first cache

line with age 3. Therefore, when the receiver later prefetches dr (for receiving the bit), it

takes over 200 cycles to finish the prefetch (cf. Property #3). This prefetch also evicts ds

and then dr is the eviction candidate again, i.e., this LLC set is ready for transmitting the

next bit. In contrast, if the sender does not prefetch ds in this iteration (to send “0”), then

dr is not evicted. Later when the receiver prefetches dr, it will get an LLC hit (or a private

cache hit) which takes less than 100 cycles. In addition, this prefetch does not update the

age of dr (cf. Property #2). Thus, dr is still the eviction candidate and this LLC set is ready

for the next iteration. In summary, the receiver’s operation, prefetching dr and timing the

prefetch, is able to measure the bit from the sender in the current iteration, as well as reset

4We assume that the target set does not have empty ways which is true for most cases. The receiver can
also prepare an eviction set and load it before the channel starts to ensure there is no empty way.

59

Initially the LLC set is in a random state.

The receiver prefetches dr to prepare the channel.

The sender prefetches ds to send “1” or stay idling to

send “0”.

(a) bit = 1

(b) bit = 0

The receiver prefetches dr and times the prefetch to

receive the bit.

(a) bit = 1

(b) bit = 0 3dr0l12l0 lw-1 3......

3dr0l12l0 lw-1 3......

3dr0l12l0 lw-1 3......

3ds0l12l0 lw-1 3......

3dr0l12l0 lw-1 3......

3l20l12l0 lw-1 3......

Figure 17: How the state of the target LLC set changes during the NTP+NTP covert

channel.

the state of the target LLC set so that it is ready for transmitting the next bit.

Compared to Prime+Probe. Prior conflict-based covert channels such as Prime+Probe

and its variants [81, 93] require the sender and receiver together access at least w + 1 cache

lines in each iteration to cause cache conflicts; w is the set associativity of the LLC. For

example, if the sender sends a bit by loading (or not) a single cache line ds, in each iteration

the receiver needs to prime the target LLC set (by accessing at least w cache lines) to evict

ds and get ready for the next iteration. This is because after the sender loads ds, it may

become the youngest cache line in the target LLC set. To evict ds, the receiver needs to first

access all other w − 1 cache lines in the set to “refresh” their ages and make ds the oldest

cache line in the set. Then, the receiver accesses a cache line that is not present in the LLC,

causing set conflict and thus evicting ds.

In NTP+NTP, the sender inserts ds into the target LLC set as the oldest cache line.

Thus, the receiver is able to evict it using only one operation. Essentially, the sender and

receiver can use PREFETCHNTA to bypass the w-way associativity of the LLC and use it as a

60

one-way associative LLC. This results in much more efficient LLC conflicts and thus a faster

covert channel.

8

ds0 Set 0

dr1 Set 1

Sender:

Receiver: Sender sends “1” (prefetches ds0)

dr0 Set 0

dr1 Set 1

Receiver:

Sender:

Receiver receives “1” (prefetches dr0)

Sender sends “0” (does not prefetch ds1)

ds0 Set 0

dr1 Set 1

Sender:

Receiver:

Receiver receives “0” (prefetches dr1)

Sender sends “1” (prefetches ds0)

dr0 Set 0

ds1 Set 1

Receiver:

Sender:

Receiver receives “1” (prefetches dr0)

Sender sends “1” (prefetches ds1)

dr0 Set 0

dr1 Set 1

Sender:

Receiver:

Receiver receives “1” (prefetches dr1)

Sender sends “0” (does not prefetch ds0)

T
im

e
 (

T
)

Sender: uses ds0 for Set 0, ds1 for Set 1.

Receiver: uses dr0 for Set 0, dr1 for Set 1.

T=0

T=1

T=2

T=3

T=4

Figure 18: The operations of the sender and receiver in each iteration of NTP+NTP, when

using two LLC sets; the receiver always detects the bit sent in the last iteration instead of

the current iteration.

4.4.2.2 Channel Capacity

We implement NTP+NTP and Prime+Probe on two Intel processors (as listed in Table 4)

to test their bandwidths. For Prime+Probe, we use the example implementation discussed

above: the sender accesses (or not) one cache line, and the receiver primes with w cache

lines.

The bandwidth of NTP+NTP is limited when using one target LLC set: if the cache line

in an LLC way is in-flight (e.g., waiting for the memory response), this cache line cannot be

evicted regardless of its age. This means dr cannot evict ds if ds is still in-flight when the

prefetch request of dr reaches the LLC. Thus, we need to space out the prefetches from the

61

0 1 0 0 2 0 0 3 0 0 4 0 0
5 0

1 0 0

2 0 0

3 0 0

 N T P + N T P c a p a . N T P + N T P e r r o r r a t e
 P r i m e + P r o b e c a p a . P r i m e + P r o b e e r r o r r a t e

R a w T r a n s m i s s i o n R a t e (K B / s)

Ch
an

ne
l C

ap
ac

ity
(KB

/s)

0

1 0

2 0

3 0

 Bi
t E

rro
r R

ate
 (%

)

(a) The Skylake processor

0 1 0 0 2 0 0 3 0 0 4 0 0
5 0

1 0 0

2 0 0

3 0 0

 N T P + N T P c a p a . N T P + N T P e r r o r r a t e
 P r i m e + P r o b e c a p a . P r i m e + P r o b e e r r o r r a t e

R a w T r a n s m i s s i o n R a t e (K B / s)

Ch
an

ne
l C

ap
ac

ity
(KB

/s)

0

1 0

2 0

3 0

 Bi
t E

rro
r R

ate
 (%

)
(b) The Kaby Lake processor

Figure 19: The capacities and bit-error-rates of NTP+NTP and Prime+Probe.

sender and receiver (in each iteration). To avoid the slowdown caused by the spacing, we

use two LLC sets in NTP+NTP and let the sender and receiver access different sets in each

iteration. As shown in Figure 18, the receiver is always detecting the bit that was sent one

iteration earlier. For fair comparison, we also use two sets in Prime+Probe. However, we

do not use the sets as in Figure 18 since it does not benefit Prime+Probe much. Instead,

we just use the two sets to transfer two bits in each iteration.

62

We measure the channel capacities and bit error rates of both channels, under different

transmission intervals. Although the raw transmission rate increases when decreasing the

transmission interval, the bit error rate may also increase, especially when the interval is too

short. To find the best transmission rate, we use the channel capacity metric (as in [92, 90]).

This metric is computed by multiplying the raw transmission rate with 1 − H(e), where

e is the bit error rate and H is the binary entropy function. The results are shown in

Figure 19. The bit error rates of both channels stay low (lower than 0.5% for NTP+NTP,

1.5% for Prime+Probe) and are almost constant, when the raw transmission rate is under

a threshold (e.g., 304 KB/s for NTP+NTP in Figure 19 (a)). Thus, the channel capacity

increases proportionally to the raw transmission rate. It reaches the peak when the raw

transmission rate is around this threshold. Beyond this threshold, the increasing error rate

causes a decrease in the channel capacity. The peak capacities of the two channels are

summarized in Table 5.

Table 5: The maximum channel capacities of NTP+NTP and Prime+Probe.

Platform Skylake Kaby Lake

NTP+NTP 302 KB/s 275 KB/s

Prime+Probe 86 KB/s 81 KB/s

4.4.2.3 Channel Reliability

Similar to prior conflict-based covert channels, NTP+NTP is also affected by noise from

other processes accessing data mapped to the target LLC set. For example, in a transmission

iteration, although the victim sends “0” by not prefetching ds, the receiver may receive “1”

if other processes access their data and evict dr, i.e., a false positive occurs.

This problem can be solved by using a more reliable data encoding method [81, 66, 84],

rather than the very simple method in Algorithm 4. For example, multiple LLC sets can be

used to send one bit. Note that the error caused by other processes’ accesses in one attack

iteration will not affect the next iteration: once the receiver prefetches dr, dr is the eviction

63

/∗ ev s e t i s the e v i c t i o n s e t f o r priming ∗/
/∗ the scope l i n e addr i s in ev s e t [0] ∗/
f o r (i = 0 ; i < 3 ; i++) {

f o r (j = 0 ; j < 13 ; j+=4) {
memaccess ((void ∗) ev s e t [j +0]) ;
memaccess ((void ∗) ev s e t [j +1]) ;
memaccess ((void ∗) ev s e t [0]) ;
memaccess ((void ∗) ev s e t [0]) ;
memaccess ((void ∗) ev s e t [j +2]) ;
memaccess ((void ∗) ev s e t [0]) ;
memaccess ((void ∗) ev s e t [0]) ;
memaccess ((void ∗) ev s e t [j +3]) ;
memaccess ((void ∗) ev s e t [j +0]) ;
memaccess ((void ∗) ev s e t [j +1]) ;
memaccess ((void ∗) ev s e t [j +2]) ;
memaccess ((void ∗) ev s e t [j +3]) ;
memaccess ((void ∗) ev s e t [j +0]) ;
memaccess ((void ∗) ev s e t [j +1]) ;
memaccess ((void ∗) ev s e t [j +2]) ;
memaccess ((void ∗) ev s e t [j +3]) ;}}

Listing 4.1: The preparation step in Prime+Scope.

candidate again. If other processes flush their data in the target LLC set, it will create

empty ways, which can also impact the performance of NTP+NTP. However, CLFLUSH is

rarely used in daily applications [96, 134, 128], and this problem can also be avoided by using

a more reliable channel encoding method.

4.5 Side Channel Attacks Based on PREFETCHNTA

NTP+NTP introduced in the last section is unlikely a side channel because the sender is

transmitting the signal by “prefetching (or not) a cache line”. In other words, the attacker

(receiver) can only detect the victim’s (sender’s) prefetch patterns on a cache line, resulting

in very limited attack opportunities to normal applications. However, the properties of

64

PREFETCHNTA reverse-engineered in Section 4.3 make it much easier for users to manipulate

the replacement states (ages) of cache lines in the LLC than before. Thus, attackers can also

use PREFETCHNTA to improve the existing cache attacks that are based on cache replacement

states, making them more efficient and accurate. In this section, we use two cache attacks

that were proposed very recently as examples to show how they can benefit from using

PREFETCHNTA.

4.5.1 Prime+Scope with PREFETCHNTA

4.5.1.1 Prime+Scope

Prime+Scope [93] proposed in 2021 is an LLC attack based on set conflicts. Prime+Scope

is similar to Prime+Probe, but it has much higher temporal resolution. In each iteration of

Prime+Scope, the attacker first primes the target LLC set with a special pattern to ensure

two things. First, the target LLC set is occupied by the attacker’s cache lines. Second, the

current eviction candidate (a.k.a. the scope line, ls) in the LLC set is also present in the

attacker’s private cache. Then, the attacker repeatedly accesses the scope line and times

the access to detect the victim’s access to her own cache line (which is also mapped to this

LLC set). When the victim has not yet accessed her cache line in the current iteration, the

attacker’s accesses to ls always hit in the private cache; once the victim accesses her cache

line and brings it to the LLC, ls is evicted and the attacker reaches an LLC miss. Then, the

current iteration ends; the attacker primes this set again and moves to the next iteration.

Note that the attacker can repeatedly access ls without disturbing its replacement state in

the LLC and changing the eviction candidate. This is because private cache hits do not

update the replacement state of the LLC copy.

Prime+Scope is an important attack because it has very high temporal resolution. On our

processors, loading a cache line that is in the private cache and timing the load together only

take around 70 cycles. Thus, with Prime+Scope, the attacker can locate the victim’s access in

the time domain with a granularity of 70 cycles. For example, the attacker can know that the

victim’s access happened when 70 < current time < 140 or when 140 < current time < 210.

In comparison, the resolution of Prime+Probe is over 2000 cycles [93].

65

/∗ prime the e v i c t i o n s e t n t imes ∗/
f o r (i = 0 ; i < n ; i++)

f o r (j = 1 ; j <= 16 ; j++)
memaccess ((void ∗) ev s e t [j]) ;

/∗ pr e f e t ch the scope l i n e a f t e r priming ∗/
p r e f e t ch n t a ((void ∗) ev s e t [0]) ;

Listing 4.2: The preparation step with PREFETCHNTA.

There are two necessary conditions for building this high-resolution attack. First, the

attacker needs to know the eviction candidate (ls) of the target LLC set after priming.

Second, ls needs to be present in the private cache after priming, otherwise once the attacker

accesses ls, it is no longer the eviction candidate in the LLC. These two requirements make

the attack very challenging because they are intuitively contradictory: being the eviction

candidate means ls is accessed less frequently than other cache lines; being present in the

private cache means ls is accessed more frequently than other cache lines. To satisfy the

requirements, the original Prime+Scope uses very long and complicated access sequences

to manipulate the replacement states of both the private cache and the LLC. The access

sequence5 for our Skylake processor is shown in Listing 4.1. It contains 192 cache references

in total. This long access sequence results in a slow preparation (priming) step. Thus,

although Prime+Scope has high temporal resolution in each attack iteration, it requires a

long preparation step between two consecutive iterations. Therefore, the attacker may miss

the victim’s accesses when the victim is repeatedly accessing her cache line with a high

frequency, resulting in a high attack error rate.

4.5.1.2 Prime+Prefetch+Scope

The two key requirements in Prime+Scope can be satisfied in a much easier way when

using PREFETCHNTA. As explained in Section 4.4.2, when prefetching a cache line, it is installed

5This pattern is not optimal. For example, it could be more efficient with knowing the details of the L1
replacement policy. Prime+Scope does not assume that knowledge for generality.

66

in the LLC set as the eviction candidate, and at the same time it is brought into the L1

cache. Thus, the preparation step in Prime+Scope can be done using the operations shown

in Listing 4.2. We first prime the LLC set by accessing the eviction set (consisting of w

cache lines without ls) several times, so that the victim’s data in this set gets old and can be

reliably evicted. Then we prefetch ls to install it into the L1 cache, as well as the LLC as the

eviction candidate. Note that on tested processors, priming the eviction set twice is enough

for reliably evicting the victim’s data (with over 99.99% probability). Thus, on our Skylake

processor, we only need 33 cache references (compared to 192 in the original Prime+Scope),

resulting in a more efficient attack.

4.5.1.3 Faster Preparation Step

We test the total latency of the preparation step in each attack iteration. For the original

Prime+Scope, to prepare the attack iteration, the attacker primes the target LLC set with a

long pattern that takes a long period of time to finish. As shown in Figure 20, the preparation

takes on average 1906 cycles on our Skylake processor (and 1762 on Kaby Lake). In contrast,

with PREFETCHNTA, although the attacker needs to first prime the LLC set and then prefetch

the scope line, the priming pattern is much shorter. The entire preparation step only takes

1043 cycles on the Skylake processor (and 1138 on Kaby Lake).

The faster preparation step can make Prime+Prefetch+Scope more reliable and accu-

rate than Prime+Scope. To prove this, we use three threads (T1 and T2) pinned on two

different cores. T1 accesses a predetermined address every 1.5K cycles, as ground truth.

T2 continuously monitors the LLC set for events using one of the attacks. We consider it

a false negative if an event (from T1) is not detected. From the experiments on our Sky-

lake processor, the false negative rate is about 50% for Prime+Scope. However, when using

Prime+Prefetch+Scope, this rate is reduced to less than 2%.

67

0 1 0 0 0 2 0 0 0 3 0 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Cu
mu

lat
ive

 Di
str

ibu
tio

n F
un

ctio
n

C P U C y c l e s

 P r i m e + S c o p e
 P r i m e + P r e f e t c h + S c o p e

(a) The Skylake processor

0 1 0 0 0 2 0 0 0 3 0 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Cu
mu

lat
ive

 Di
str

ibu
tio

n F
un

ctio
n

C P U C y c l e s

 P r i m e + S c o p e
 P r i m e + P r e f e t c h + S c o p e

(b) The Kaby Lake processor

Figure 20: The total latency of the preparation step, for the two attack primitives.

4.5.2 Reload+Refresh with PREFETCHNTA

4.5.2.1 Reload+Refresh

Reload+Refresh [28] is one of the first attacks that leak the victim’s information by

monitoring the replacement state changes to the victim’s cache line. Reload+Refresh is

an LLC attack and it assumes shared data between the attacker and victim. To learn

the victim’s access pattern on the shared cache line (dt), the attacker needs to prepare an

eviction set (l0 to lw−1) that is mapped to same LLC set with dt. Each attack iteration in

Reload+Refresh consists of five steps, as shown in Figure 21. In Step 1, the attacker fills

the target LLC set with dt and l0 to lw−2 in order. After this, all the cache lines in this set

are in age 2. Since dt is the first line in the set, it is the eviction candidate. Then in Step

2, the attacker waits for the victim; if the victim accesses dt, its age is updated to 1, and l0

becomes the eviction candidate. Then in Step 3, the attacker forces replacement in this set

by loading lw−1. Either dt or l0 is evicted depending on whether the victim accessed dt in

68

Step 2. Then in Step 4, the attacker reloads dt and times the load to learn whether it was

evicted in the last step and infer whether the victim accessed it in Step 2. Finally in Step

5, the attacker reverts the changes in this set to prepare for the next attack iteration. The

attacker first flushes dt and lw−1 and then loads dt and l0 so that the states of dt and l0 are

reset. After this, the attacker accesses l1 to lw−2 in order, to refresh their ages from 3 back

to 2.

2l12l02dt lw-2 22...

1) The attacker fills the set with dt and l0 to lw-2.

2) The attacker waits; the next state of the set depends on

whether the victim accesses dt (a) or not (b).

2l12l01dt lw-2 22...(a)

2l12l02dt lw-2 22...(b)

3) The attacker loads lw-1 to cause set conflict.

3l12lw-12dt lw-2 33...(a)

3l13l02lw-1 lw-2 33...
(b)

4) The attacker reloads dt and times the load.

(a)

(b)

5) The attacker reverts the changes to the set.

3l12lw-11dt lw-2 33...

3l12dt2lw-1 lw-2 33...

Figure 21: Sequence of the LLC set states during Reload+Refresh.

Reload+Refresh is a powerful attack since it is much stealthier (on the victim’s side) com-

pared to prior LLC attacks such as Flush+Reload [134]. However, similar to Prime+Scope,

many operations are needed in Reload+Refresh to reset the LLC state (in Step 5). In

Flush+Reload, after measuring the victim’s behavior (by reloading the shared data), the

attacker only needs to flush this data to reset the state. In contrast, in Reload+Refresh

the attacker needs to perform two flushes, two memory accesses, and w − 2 serialized LLC

69

3l13l03dt lw-2 33...

1) The attacker prefetches dt and l0 to lw-2 into the LLC.

2) The attacker waits; the next state of the set depends on

whether the victim accesses dt (a) or not (b).

3l13l02dt lw-2 33...(a)

3l13l03dt lw-2 33...(b)

3) The attacker prefetches lw-1 to cause set conflict.

3l13lw-12dt lw-2 33...(a)

3l13l03lw-1 lw-2 33...
(b)

4) The attacker prefetches dt and times the prefetch.

(a)

(b)

5) The attacker reverts the changes to the set.

3l13lw-12dt lw-2 33...

3l13l03dt lw-2 33...

Figure 22: Sequence of the LLC set states during Prefetch+Refresh.

accesses. Due to these operations, the state reset step and the entire attack iteration take

very long to finish.

4.5.2.2 Prefetch+Refresh

We propose a new attack named Prefetch+Refresh which works in a similar way to

Reload+Refresh but with much less operations for resetting the state in each iteration. As

shown in Figure 22, this attack also consists of five steps. In Step 1, the attacker prepares

the target LLC set similar to the one in Reload+Refresh; however, the attacker initializes

the age of each cache line to 3 instead of 2. Then in Step 2, the attacker waits for the

victim; if the victim accesses dt, its age is changed from 3 to 2. Later in Step 3, the attacker

prefetches lw−1 (instead of loading it) to cause conflict in this set. Then in Step 4, the

attacker prefetches dt, as well as measures the prefetch latency to learn the victim’s behavior

70

in Step 2. Eventually in Step 5, the attacker reverts the changes to this LLC set. If we

compare the state of this LLC set after Step 4 and the state in Step 1, only the two left most

lines are potentially changed: if the victim accessed dt, now its age is 2 instead of 3, and

the second cache line from the left is lw−1 instead of l0. Thus, the attacker does not need to

access l1 to lw−2 to change their ages, as done in Reload+Refresh. This results in a faster

state reverting step in Prefetch+Refresh.

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Cu
mu

lat
ive

 Di
str

ibu
tio

n F
un

ctio
n

C P U C y c l e s

 P r e f e t c h + R e f r e s h _ 1
 P r e f e t c h + R e f r e s h _ 2
 R e l o a d + R e f r e s h

(a) The Skylake processor

5 0 0 1 0 0 0 1 5 0 0 2 0 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Cu
mu

lat
ive

 Di
str

ibu
tio

n F
un

ctio
n

C P U C y c l e s

 P r e f e t c h + R e f r e s h _ 1
 P r e f e t c h + R e f r e s h _ 2
 R e l o a d + R e f r e s h

(b) The Kaby Lake processor

Figure 23: The total latency of the attacker’s operations in each attack iteration, for

Reload+Refresh and the two versions of Prefetch+Refresh.

We propose two options for the attacker to revert the states of these two cache lines in

Step 5. First, the attacker can simply flush dt and lw−1 and then reload dt and l0 to undo

the state changes. In the second option, the attacker still flushes and reloads dt. But she

does not flush lw−1 and reload l0, she instead uses l0 to cause set conflict (in Step 3) in

the next attack iteration, if the victim accessed dt. In other words, the attacker exchanges

the roles of l0 and lw−1. The second option makes Step 5 even faster compared to the first

option; however, it slightly increases the complexity of the attack. The attacker needs to

71

dynamically determine the cache line to use in Step 3 in each iteration. Table 6 shows the

operations needed in Step 5 in Reload+Refresh and the two versions of Prefetch+Refresh.

Table 6: # of operations for reverting the cache state with a 16-way associative LLC.

Attack Method # of flushes # of DRAM

accesses

of LLC

accesses

Reload+Refresh 2 2 14

Prefetch+Refresh v1 2 2 0

Prefetch+Refresh v2 1 1 0

4.5.2.3 Faster Attacks

We test the total latency of performing all the attacker operations in each iteration.

For Reload+Refresh, the operations include loading lw−1 (to cause conflict), reloading dt,

flushing dt and lw−1, reloading dt and l0, and accessing l1 to lw−2 (with pointer chasing).

As shown in Figure 23, the average latency of a Reload+Refresh iteration (without the

waiting window) is 1601 cycles on our Skylake processor (and 1767 cycles on the Kaby Lake

processor). In contrast, when using Prefetch+Refresh (v1), the attacker does not need to

access l1 to lw−1, and thus the average latency of an iteration is reduced to 1165 (and 1369)

cycles. In Prefetch+Refresh (v2), flushing lw−1 and reloading l0 are eliminated and the

average latency is only 873 (and 1054) cycles.

4.6 Discussion

4.6.1 Fast Eviction Set Construction

Conflict-based cache attacks such as Prime+Probe require the attacker to build eviction

sets: given a target address, the attacker needs to find groups of addresses that are mapped

72

into the same set with it (i.e., congruent with it) in the target cache such as the LLC.

As mentioned in Section 4.4.2, the properties of PREFETCHNTA allow us to achieve one-

way competition in an LLC set. As a result, with PREFETCHNTA, set conflicts occur more

frequently than before when searching for congruent addresses. This leads to a more efficient

algorithm for constructing eviction sets. Algorithm 5 shows our eviction set construction

method. It repeatedly measures the prefetch latency of the target cache line lt, and before

each measurement, it prefetches a new candidate line lc (which is potentially congruent with

lt). If the prefetched lc is congruent with lt, lt is evicted and later it takes longer to prefetch

it; then this lc is added to the congruent address list. If the prefetched lc is not congruent

with lt, it takes shorter to prefetch and lt remains being the eviction candidate in the set

after the prefetch; the algorithm then moves on to test the next candidate lc. The algorithm

keeps looking for congruent addresses until enough are found.

Algorithm 5: Eviction Set Construction

Input: lt, the target cache line for which an eviction set is desired

Output: EV, the eviction set

EV ←− an empty list

ev count ←− 0

while ev count < ev desired size do
prefetch lt

do
lc ←− a candidate line

prefetch lc

while prefetch lt is fast;

EV[ev count] ←− lc

ev count++

end

The state-of-the-art eviction set construction method [93] uses a similar algorithm with

ours. However, it accesses lt and lc in each searching iteration instead of prefetching them

(in line 4, line 7, and line 8 of Algorithm 5). With this approach, a congruent cache line can

73

only be observed (lt can be evicted) if about w congruent lines have been tested/accessed

since the last time lt was brought into the LLC (in line 4), where w is the LLC associativity.

This is because when accessing lt (in line 4), it becomes the youngest cache line in the LLC

set which will not be evicted until about w congruent cache lines are accessed (accessing EV

between line 4 and line 5 can slightly reduce this number). When lt is finally evicted, we only

know that the last accessed lc is congruent with it. In contrast, when using PREFETCHNTA,

prefetching each congruent cache line can evict lt since lt is installed as the eviction candidate,

making the algorithm much more efficient compared to the state-of-the-art. We test the

execution time of these two approaches, and the results are shown in Figure 24.

We provide an analysis on the time complexities of Algorithm 5 and the state-of-the-

art [93]. We only analyze the number of memory references as they dominate the execution

time. Similar to prior work [121], we assume that from the physical address, c bits are used

for set index, the s-bit hash value of the c set index bits and higher bits are used for slice

index, and users control the lowest γ bits of set index bits. We also assume that the attacker

samples from a large set of addresses M . M contains addresses that coincide with lt (the

target address) on the user-controlled γ set index bits. We denote the event that lc ← M

(uniform sampling) is congruent with lt as C, which causes a set and slice conflict. Then,

the probability of this event is given by:

p := P (C) = 2γ−c−s (4-1)

The attacker’s goal is to find a minimal set of addresses EV = {ev0, ev1, ...} (EV ⊆M)

that can be used to reliably evict lt. For simplicity, in this analysis we assume the LRU

policy. Thus, |EV | = w, where w is the associativity. Repeatedly sampling and counting

the number of successes follows a binomial distribution, where the success probability p is as

above. Suppose the number of trials in the experiment is n := p−1, the expected number of

successes is given by np. We then expect np = p−1 · p = 1 success, i.e., we find one member

of EV after p−1 samples, on average.

The state-of-the-art approach is the same with Algorithm 5, but using load instead

prefetch in line 4, line 7, and line 8. To find one evx, in Step 1 it loads lt into cache (line

74

4); lt is now the MRU line in the LLC. Then in Step 2 it repeatedly samples lc and checks

if lt is evicted after accessing lc, until lt is evicted (line 5-8). Since lt is the MRU line, w

congruent addresses need to be sampled (and accessed) in Step 2 to evict lt. Thus, using

linearity of the expectation, Step 2 samples lc w · p−1 times on average. Then, to find all w

evx, it repeats Step 1 and Step 2 w times, resulting in O(w+w ·w ·p−1) = O(w2p−1) memory

references. We should mention that in a noiseless environment, we can take advantage of

LRU order to access O(p−1) in Step 2 every other round. However, this does not change the

asymptotics of the algorithm. Note that line 8 does not update the replacement state of lt

in the LLC since this access should be filtered by lower-level caches.

For our approach (Algorithm 5), in Step 1 (line 4) lt is the LRU line after prefetching.

Thus, in Step 2, one congruent address needs to be sampled and prefetched to evict lt; Step

2 only needs to sample p−1 times. Then, to obtain ev0 to evw−1, the total amount of memory

references is O(w + w · p−1) = O(wp−1).

S k y l a k e K a b y L a k e0 . 0

0 . 2

0 . 4

0 . 6

Ex
ec

uti
on

 Ti
me

 (m
s) B a s e l i n e

 O u r s

Figure 24: The execution time of the two algorithms.

4.6.2 PREFETCHNTA with Non-Inclusive LLCs

Most Intel server processors use non-inclusive LLCs. On such processors, PREFETCHNTA

brings data only to the L1 cache and the coherence directory, but not the LLC [3]. Thus, the

covert channels and side channel attacks discussed in this chapter cannot directly work on

75

those processors. However, if prefetched data are easier to be evicted from a set-associative

coherence directory than loaded data, it may be possible for us to build fast set conflicts in the

directory, resulting in a directory version of NTP+NTP. Verifying this vulnerability requires

comprehensively understanding the replacement policy of the directory. Unfortunately, the

directory policy has not yet been fully reverse engineered [132, 93, 94]. We leave it as future

work.

Note that according to [8], on some AMD processors prefetched data are placed into a

software-invisible buffer (instead of cache/directory). Therefore, it may be possible to build

conflicts using PREFETCHNTA in this buffer and create a new covert channel.

4.7 Chapter Summary

In this chapter, we reverse-engineered the detailed cache behaviors of PREFETCHNTA, the

non-temporal data prefetch instruction, on Intel processors. From the results, we found that

using PREFETCHNTA, two cache lines that are mapped into the same LLC set can compete

for the eviction candidate way in the set, achieving cache conflicts without priming the

cache set for the first time. Based on this, we proposed Prefetch+Prefetch, a conflict-based

cache covert channel which has much higher bandwidth compared to existing conflict-based

channels such as Prime+Probe. In addition, we showed how PREFETCHNTA can be used in

cache side channel attacks to improve their performance. We also demonstrated a new LLC

eviction set construction algorithm which is significantly faster than the state-of-the-art.

76

5.0 Cache Attacks Based on Uncore Frequency Scaling

5.1 Overview

Following Intel’s terminology, a multi-core processor consists of multiple cores and an

uncore. The uncore typically includes the last-level cache (LLC), the on-chip interconnect,

the memory controllers (MCs), and other components. Over the last two decades, the

microarchitectural resources in both the cores (e.g., branch predictor [16, 46, 47]) and the

uncore (e.g., the LLC [81, 66, 132]) have been exploited to mount covert channels (and side

channel attacks). However, covert channels based on the uncore components are a more

serious threat to the security of modern systems, as the uncore is shared among all the

applications running on the processor.

Fortunately, in recent years, there has been a growing focus on uncore covert channels,

leading to the development of countermeasures against them (e.g., [62, 21, 38, 86, 18]). Since

most uncore covert channels are based on uncore resource contention/conflict, partitioning

the uncore hardware resources among users is a promising countermeasure approach. Various

partitioning strategies with different granularities have been proposed to mitigate different

uncore covert channels. For example, inside the uncore of a processor, LLC set partition-

ing [113] can defend covert channels based on LLC set conflicts (e.g., Prime+Probe [84]); tile

partitioning may mitigate covert channels based on interconnect contention (e.g., the mesh

contention [37]). In addition, for a multi-processor (multi-socket) system, one can also use a

coarse-grained mechanism which assigns each user to a separate processor. In this scenario,

each user has its own uncore, and users are not allowed to make cross-socket memory allo-

cations/accesses, resulting in no cross-socket uncore contention. With all these partitioning

designs, we ask the following questions:

Can uncore partitioning prevent all uncore covert channels? Can we build a practical

uncore covert channel that remains functional even with one or more partitioning mechanisms

in place?

77

Recently, Chen et al. [31] provided a preliminary answer to these questions by proposing

a covert channel based on uncore idle power management. This channel cannot be stopped

by existing uncore partitioning designs; however, it requires an “idle” system, making it

highly susceptible to noise from co-located users and thus likely impractical on real systems.

Therefore, we must explore alternative solutions.

There is an ever-growing need for improving power efficiency, as higher power usage

directly translates into higher operational costs for data centers. The power consumption

of a processor is closely related to its frequency. Thus, adjusting the processor frequency

based on the workloads has been widely used on Intel processors to reduce power usage.

Earlier Intel processors use a common frequency for the cores and the uncore. On more

recent processors, the uncore frequency is controlled independently and can be different than

the core frequency. In addition, Intel has introduced a mechanism called uncore frequency

scaling (UFS) for their Xeon processors, which adjusts the uncore frequency based on uncore

needs [60, 25]. This UFS mechanism, however, may actually introduce practical uncore covert

channels that cannot be prevented by uncore partitioning.

In this chapter, we conduct a series of experiments to study the detailed behavior of

UFS. We have three important observations from the results. First, the power monitoring

unit (PMU) continuously monitors the system status, and adjusts the uncore frequency by

increasing, decreasing, or maintaining it approximately every 10 ms. Second, when there is

low demand for uncore resources, the uncore frequency remains relatively low. There are

(at least) two situations that can cause the uncore to operate at a higher frequency: 1) high

uncore utilization, such as frequent LLC accesses and dense interconnect traffic, and 2) a

significant proportion of active cores being stalled. Third, we found that for a multi-processor

system, all the uncores in different processors always maintain similar frequencies.

Next, based on these observations, we propose a new uncore covert channel that can

operate as both a cross-core and cross-processor channel. We name this covert channel UF-

variation. Specifically, the sender manipulates the uncore frequency (e.g., by controlling the

density of LLC accesses) and encodes the data into the uncore frequency variation within each

transmission interval. For example, the sender increases the uncore frequency in the interval

to send a bit “1”, and decreases it to send a bit “0”. The receiver then obtains the data

78

by observing the uncore frequency variation within a transmission interval. We found that

the LLC access latencies differ significantly when the uncore operates at different frequency

levels. Thus, the receiver can indirectly determine the uncore frequency by timing the LLC

accesses. We test the channel capacities of UF-variation and show that UF-variation can

achieve a capacity of 46 bit/s in the cross-core case, and 31 bit/s in the cross-processor case.

Compared to other covert channels, the capacities of UF-variation are limited. However,

we show that UF-variation remains functional even with one or more uncore partitioning

mechanisms enabled, while most prior uncore covert channels can be prevented by those

mechanisms.

Finally, we demonstrate how UFS can be used for side channel attacks to profile the

activities of co-located users. For example, when used for website fingerprinting, the UFS-

based attack can achieve a top-1 accuracy of 82.18%.

5.2 CPU On-Chip Interconnect

On multi-core processors, an on-chip interconnect is used to connect the processor cores,

LLC slices, MCs, and other components (e.g., the PCIe controller). This interconnect facili-

tates efficient data transmission and coordination between these essential components. Early

generations of Intel server-grade processors (Intel Xeon processors) use a ring interconnect

(often referred to as a ring bus), allowing data to circulate in a loop-like manner. Recent

Intel Intel Xeon processors use a mesh interconnect which has a grid-like layout with multiple

horizontal and vertical channels, enabling more direct on-chip communication.

As shown in Figure 25, with a mesh interconnect, the processor chip is structured as

a 2D matrix of tiles; each tile can be either a core tile which consists of a core (and an

LLC+directory slice), or a controller tile which consists of an integrated MC. Note that

there are three types of CPU dies for Intel Xeon processors based on Skylake: LCC, HCC,

and XCC, which represent low, high, and extreme core counts, respectively. The XCC die

features 30 tiles (28 core tiles + 2 controller tiles), arranged in a 5×6 grid. However, some

79

tiles might be intentionally disabled1 by Intel. For example, our Xeon Gold 6142 processor

which uses the XCC die, has 16 cores and 16 LLC slices, meaning 12 out of 28 core tiles are

disabled (Figure 25).

x

(0,0)

IMC

x

(2,0)

x

(3,0)

x

(4,0)

Tile

(0,2)

x

(1,2)

Tile

(2,2)

x

(3,2)

Tile

(4,2)

Tile

(0,3)

x

(1,3)

Tile

(2,3)

Tile

(3,3)

x

(4,3)

Tile

(0,4)

Tile

(1,4)

x

(2,4)

Tile

(3,4)

x

(4,4)

Tile

(0,5)

IMC

Tile

(2,5)

x

(3,5)

x

(4,5)

Tile

(0,1)

Tile

(1,1)

Tile

(2,1)

Tile

(3,1)

Tile

(4,1)

3 hops2 hops1 hop

Core

L1/L2 Cache

LLC Slice

Directory Slice

Router

Tiles that are turned off.

CPU Core.

CPU Uncore.

Figure 25: The architecture of our Intel Xeon Gold 6142 processor; the I/O controllers are

omitted.

On an Intel Xeon processor, physical addresses are uniformly distributed to LLC slices

using a slice hash function. This function is static, meaning a given physical address will

always be mapped to a particular LLC slice in this processor. The specific hash function

used in a processor is determined by the number of tiles in the processor. For example,

all processors with 28 active core tiles use the same hash function, which has been reverse

engineered [85]. Note that an unprivileged user, who cannot access the physical address of

a given virtual address, may not directly know the LLC slice a virtual address is mapped

1The routers in the disabled tiles are still functional.

80

to. However, the user can infer this mapping indirectly using timing information, as access

latencies (from a specific core) may vary across different LLC slices.

CPU uncore. According to Intel’s terminology, a multi-core processor is composed of sev-

eral cores and an uncore. A core is a logically independent computing unit with ALUs, FPUs,

registers, and private caches. The uncore, on the other hand, comprises the components that

are not part of the individual cores but are essential for the overall functionality and perfor-

mance of the processor. Typically, the uncore includes the LLC, on-chip interconnect, and

other components (e.g., MCs). The uncore is shared by all the cores on the processor.

5.3 CPU Power Management

Reducing the power consumption of processors (especially server processors) has become

increasingly vital these days. As a result, Intel has integrated many power efficiency features

into its processors. In this section, we only focus on the features that are related to our

design.

5.3.1 CPU Frequency Scaling

Core frequency scaling. Intel processors use the common power saving approach, Dy-

namic Voltage and Frequency Scaling (DVFS) [4], to adjust the frequencies of the cores,

based on the workloads. This frequency adjustment works at the granularity of P-states.

Each P-state corresponds to a different operating point of the core, in 100 MHz frequency

increments. Recent Intel processors offer two mechanisms for P-state selection, namely

SpeedStep and SpeedShift. With SpeedStep, the operating system (OS) is responsible for

controlling and selecting P-states. In contrast, when SpeedShift is enabled, the P-state se-

lection is controlled by the hardware rather than the OS. However, the OS can give hints to

the hardware, such as restricting the range of allowed P-states.

Uncore frequency scaling. Early Intel processors use either a fixed uncore frequency

(e.g., for Nehalem and Westmere) or a common frequency for both cores and the uncore

81

(e.g., for Sandy Bridge and Ivy Bridge). Since Haswell, the uncore frequency can be set

independently of the core frequencies, and UFS was introduced on Intel Xeon processors

to dynamically control the frequency of the uncore, based on the needs for the uncore [60]:

UFS increments, decrements, or leaves unchanged uncore frequency based on whether the

uncore is under stress, under-utilized, or stable, respectively. This ensures that the uncore

components can deliver optimal performance when required, while conserving energy during

periods of reduced activity or demand. Unlike DVFS (for cores), the selection of uncore

frequency is always managed by hardware using built-in power management algorithms.

However, the OS can restrain the uncore frequency selection, through model specific registers

(MSRs). Specifically, the OS can specify the maximum and minimum uncore frequencies by

writing to UNCORE RATIO LIMIT, as shown in Figure 26, and the hardware will only adjust

the uncore frequency within this range. On Intel Xeon Scalable Processors, the default

minimum frequency is 1.2 GHz, and the maximum frequency is 2.4 GHz.

Reserved 7-bit frequency (in 100 MHz)

Min freq. Max freq.

0781563

Figure 26: The layout of the uncore freq. limitation register.

The specifics of UFS on Intel processors are undocumented. According to our experi-

ments (and prior studies such as [60]), in general the uncore frequency is dynamically adjusted

only when all the active cores are running at a frequency lower than (or equal to) the base

frequency2 (i.e., UFS is enabled). When at least one core is running at a higher frequency,

the uncore consistently stays at the maximum frequency specified in UNCORE RATIO LIMIT

(i.e., UFS is disabled). Note that UFS is also disabled if the OS sets the minimum and

maximum uncore frequencies to be the same.

2The conditions may vary depending on the processor model.

82

5.3.2 CPU Idle Power Management

Computing tasks often involve idle periods, during which the processor core enters a low-

power state to save energy. Modern processors support multiple core power states, known

as C-states [3]. A specific C-state is denoted as Cn, where n is the index. C0 is the normal

operating state where the core is 100% active, while other states (C1 to Cn) represent idle

states (also called sleep states) where the core is inactive and some components of the core

are powered down. A deeper C-state indicates more powered-down components and better

power efficiency; however, it also means that it takes more time for the core to become fully

active (i.e., longer exit latency). The OS primarily manages the C-state selection. Typically,

it chooses a C-state based on the intensity of the workloads running on the core. If the

workloads are intense, the core is more likely to stay in a shallow C-state during idle periods;

otherwise, it stays in a deeper C-state.

When all the cores of a processor are idle, the uncore is also (partially) turned off to

further reduce the idle power consumption. Similar to C-states, modern processors support

several package C-states (i.e., PC-states), which indicate the power state of the uncore [31].

Again, the uncore is fully active when it is in PC0, with deeper PC-state meaning more

uncore components are turned off and there is a longer exit latency for the uncore. The

selection of PC-state is usually driven by the selection of C-state. On Intel processors, the

PC-state index is no larger than the smallest C-state index (among all the cores on the

processor).

5.4 Prior Uncore Covert Channels

Over the last few years, researchers have proposed many covert channels exploiting the

uncore components. We discuss these covert channels in this section.

Covert channels based on the LLC. In this type of covert channels, the sender intention-

ally modifies the LLC state to send the data; the receiver then checks the LLC state (e.g.,

through timing information) to receive the data [55, 134, 81, 71, 28, 93, 133]. For example,

83

in Prime+Probe [81], the data is transmitted through set conflicts. To send a bit “1”, the

sender loads its own data into an LLC set, evicting the receiver’s data in this set; to send a

bit “0”, the sender does not load the data and the receiver’s data remains in this set. The

receiver then determines the bit by checking whether its data is evicted from the LLC, based

on the access latency of this data.

Covert channels based on the interconnect. As explained in Section 5.2, modern

processors use interconnects for on-chip data transmission. Recent work [90, 122, 37, 43]

discovered that LLC accesses from different cores may contend for interconnect bandwidth

(for both ring and mesh interconnects), resulting in longer access latencies. Thus, the in-

terconnect can be utilized for a covert channel: the sender sends a bit by generating LLC

accesses that are transmitted through the interconnect (for “1”) or not (for “0”). At the

same time, the receiver generates LLC accesses that contend with the sender’s accesses on

the interconnect, and measures the LLC access latencies to receive the data.

Covert channels based on other uncore components. Some covert channels exploit

contention in other uncore components, such as MCs, PMUs, and PCIe controllers [124, 49].

Although the specifics may vary across channels, the overall concept remains the same:

contention for limited hardware resources can affect the access time to those resources,

enabling covert communication.

Covert channels based on the idle power states. Since multiple PC-states exist, it is

possible to encode information into these PC-states and form a covert channel. Specifically,

as PC-states are driven by C-states, the sender can force the uncore to enter a certain

PC-state by controlling the workload on a core (assuming there is no other active cores).

The receiver can then infer the PC-state by examining the exit latency of the uncore (cf.

Section 5.3.2). For example, this latency can be measured through a network interface card:

the receiver records the timestamp when a packet arrives (T1), and the timestamp when

the interrupt service routine starts (T2). Since serving this package requires waking up the

uncore and a core, T2−T1 is the sum of this core’s exit latency and the uncore’s exit latency.

If the receiver is aware of the core’s C-state and its exit latency, the receiver can infer the

uncore’s exit latency and thus the PC-state from T2− T1. Compared to other uncore covert

channels, this Uncore-idle channel is much less reliable, as it can only work in an “idle”

84

environment. If there are other workloads running on the same processor, keeping at least

one core fully active, the uncore stays in PC0, and this channel no longer functions.

As explained above, most previous uncore covert channels are based on uncore resource

contention/conflict. This means that they are likely to be mitigated by partitioning uncore

components among users. In this dissertation, we demonstrate that even with such par-

titioning mechanisms in place, whether it is partitioning spatially or temporally, the very

fact that uncore is shared by all the tenants could lead to covert channels. Given that the

entire uncore operates in a single frequency domain, a covert channel based on uncore fre-

quency variation could be a good candidate. However, the reliability of the existing design,

Uncore-idle [31], is quite low, as it requires an “idle” system. Therefore, in this dissertation,

we investigate the feasibility of covert channels based on an alternative source of uncore

frequency variation, specifically, UFS.

5.5 UFS Characterization

In order to exploit UFS for a practical covert channel, we must first answer a fundamental

question: “how do Intel processors dynamically adjust the uncore frequency using UFS?”.

For example, we must understand which factors lead to uncore frequency changes. Thus, in

this section, we study the details of UFS.

Experiment platform. Unless otherwise specified, all the experiments in this chapter

are performed on a dual-socket system with two Intel Xeon processors. An overview of

this system is given in Table 7. Figure 25 shows the architectural details of one of these

processors. Note that the basic architectures of the two processors are the same; however,

the tiles that are turned off are different (cf. Section 5.2). Figure 25 corresponds to Processor

0 on our platform; the details of Processor 1 are omitted due to the limited space. In this

section, the uncore frequency is obtained by reading the MSR. Specifically, Intel provides

the MSR, U PMON UCLK FIXED CTR, which is incremented by one at each tick of the uncore

clock. Thus, by repeatedly reading this MSR, we can indirectly obtain the current uncore

frequency.

85

Table 7: Platform details.

Processor 2× Intel Xeon Gold 6142

Microarchitecture Skylake-SP

Num of cores 2×16

Core base frequency 2.6 GHz

UFS 1.2-2.4 GHz

L1 cache 8-way associative, private, 32KB+32KB

L2 cache 16-way associative, private, inclusive, 1024KB

LLC 11-way associative, shared, non-inclusive, 22528KB

Operating system Ubuntu 22.04.1

Frequency driver Intel cpufreq

Frequency governor powersave

5.5.1 UFS with LLC/Interconnect Utilization

The idea behind UFS is to adjust the uncore frequency based on the needs for uncore.

Naturally, we then expect that the uncore frequency is higher when there is higher uncore

utilization. In this section, we conduct experiments to verify this hypothesis.

Experiments. We study the uncore frequency under various uncore utilization levels, fo-

cusing on the utilization of the LLC and the interconnect. To control the uncore utilization

level, we need to regulate the amount of LLC accesses and interconnect traffic. To achieve

this, we use a group of threads to generate LLC accesses and pin each thread to a different

core on the same processor. All the accesses from the same thread target the same LLC slice,

while accesses from different threads target different LLC slices. Then, we can manipulate

the uncore utilization by varying two parameters: 1) the total number of threads and 2)

the on-chip distance (hops, cf. Figure 25) between the CPU core and the target LLC slice

for each thread. The first parameter mainly affects the LLC utilization, with more threads

86

indicating higher LLC access density. The second parameter mainly affects the interconnect

utilization, with longer core-to-LLC distance indicating more interconnect traffic.

/∗ n i s the number o f e v i c t i o n l i s t s . ∗/
/∗ m i s the number o f addre s s e s in each l i s t . ∗/
/∗ EV l i s t s [n] [m] i s used to s t o r e a l l the e v i c t i o n

l i s t s , EVs(0) to EVs(n−1) . ∗/
whi l e ((i++) < Total Rounds) {

f o r (j = 0 ; j < m; j++)
f o r (k = 0 ; k < n ; k++)

memaccess (EV l i s t s [k] [j]) ;}

Listing 5.1: The loop used in each thread to creat LLC accesses (and traffic on the

interconnect), referred to as the traffic loop.

Generate LLC accesses. To create LLC accesses, we must bypass the L2 cache (and L1).

We achieve this using eviction lists: we define an eviction list, EVj(i), as a group of cache

lines (addresses) that are mapped into the ith L2 set, as well as the jth LLC slice. Then, a

thread that targets the sth LLC slice operates as follows:

Step 1: Create n eviction lists, EVs(0) to EVs(n− 1); each list contains m addresses.

Step 2: Repeatedly access the addresses in EVs(0) to EVs(n − 1) and in each round, al-

ternate the accesses to addresses in different eviction lists, as shown in Listing 5.1.

With a proper m and n, all these accesses are likely to miss in the L2 cache and

hit in the sth LLC slice (explained below).

Let WL2 and WLLC be the associativities of the L2 cache and the LLC, respectively.

Then, to ensure that all the accesses in Step 2 are likely to be served by the LLC, m should

be large enough (e.g., larger than WL2) to avoid L2 hits, and small enough (e.g., smaller

than WL2+WLLC) to avoid LLC misses. For our processor where WL2 = 16 and WLLC = 11,

we use 20 cache lines in each eviction list, i.e., m = 20. In addition, to guarantee L2 misses,

the m addresses in the same L2 set (same eviction list) must always be accessed in a fixed

order (assuming the LRU policy). To guarantee this order, we use multiple L2 sets (multiple

87

1 . 5 1 . 5 1 . 5 1 . 5 1 . 5 1 . 5 1 . 5 1 . 5 1 . 5 1 . 5

2 . 1 2 . 2 2 . 3 2 . 3 2 . 3 2 . 3 2 . 3 2 . 3 2 . 3 2 . 3

2 . 2 2 . 2 2 . 3 2 . 3 2 . 3 2 . 3 2 . 4 2 . 4 2 . 4 2 . 4

2 . 3 2 . 4 2 . 4 2 . 4 2 . 4 2 . 4 2 . 4 2 . 4 2 . 4 2 . 4

2 . 4 2 . 4 2 . 4 2 . 4 2 . 4 2 . 4 2 . 4 2 . 4 2 . 4 2 . 4

1 2 3 4 5 6 7 8 1 5 1 6

LL
C T

raf
fic

Ty
pe

o f t h r e a d s
1 . 2

1 . 8

2 . 4

3 . 0
3 - h o p

2 - h o p

1 - h o p

0 - h o p

N o n e

Figure 27: The median uncore frequencies (in GHz) with different thread counts and LLC

access types.

eviction lists) and alternate the accesses to different sets: in this case the accesses to the

same L2 set are separated (by accesses to other L2 sets) in the program order, and are thus

unlikely to be close enough to get reordered by hardware. Here we use 64 L2 sets (64 eviction

lists), i.e., n = 64.

Results. We measure the uncore frequency with varying thread counts and core-to-LLC

distances. Our results show that when we first launch the thread(s), the uncore frequency

adjusts accordingly and eventually stabilizes at a certain level (since each thread executes a

loop). The stabilized frequencies are given in Figure 27. First of all, for a given core-to-LLC

distance (for all the threads), executing more threads results in higher uncore frequencies.

For example, when all the threads are accessing their local LLC slices (i.e., 0-hop traffic), the

uncore frequency increases from 2.1 GHz to 2.3 GHz if the thread count increases from 1 to

16. Likewise, given a specific thread count, the uncore frequency is higher if the threads are

accessing further LLC slices. In addition, when accessing LLC slices that are 3 hops away

from the core, the uncore frequency reaches 2.4 GHz (i.e., the maximum uncore frequency,

cf. Table 7), even with just one thread running.

88

For reference, in Figure 27 we also show the uncore frequency with only L2 accesses and

no LLC access. In this scenario, the uncore does not stay at a certain frequency; instead,

it alternates between 1.4 GHz and 1.5 GHz. For simplicity, we refer to this situation as

“staying at 1.5 GHz” in the rest of this chapter.

These results confirm that the uncore frequency changes based on the uncore utilization,

including both the LLC and the interconnect utilization. Higher utilization results in higher

uncore frequency. Without any traffic on the interconnect, the frequency can only go up

to 2.3 GHz; in contrast, it can go up to the maximum uncore frequency (2.4 GHz) with

interconnect traffic.

5.5.2 UFS with Core Stalling

We conducted several supplementary experiments and studies, in addition to those pre-

sented in Section 5.5.1, to determine if other factors influence uncore frequency changes. It

is shown that the uncore frequency is also related to the number of cores that are stalled

due to waiting for load or store operations.3

Experiments. We use a similar approach to the one in Section 5.5.1. We again launch

a group of threads accessing the LLC slices; however, instead of accessing each address

independently, we access them through pointer chasing. That is, the data at a pointer

address dictates the subsequent pointer address. This ensures that the subsequent load

cannot be executed until the current load is completed, i.e., the CPU core is stalled due to

waiting for a load to finish. The example code is shown in Listing 5.2; here we only use one

eviction list since the access order is already guaranteed by pointer-chasing.

Results. Our experiments show that with pointer chasing, the uncore frequency always

stabilizes at 2.4 GHz, regardless of the thread count and the core-to-LLC distance. This

means, the uncore frequency reaches 2.4 GHz even when running just one thread accessing

the local LLC slice. Recall that without pointer chasing (as in Section 5.5.1), with this

setup the uncore frequency is only 2.1 GHz. To better understand this difference, we use

Linux perf tools to profile the pointer-chasing threads and gather data from two counters:

3This aligns with the design in Intel’s patent [25].

89

/∗ EV l i s t [m] conta in s a l l the addrs in the e v i c t i o n l i s t . ∗/
/∗ ∗EV l i s t [i] = EV l i s t [i +1] , with i in [0 , m−2] . ∗/
/∗ ∗EV l i s t [m−1] = EV l i s t [0] . ∗/
cur rent addr = EV l i s t [0] ;
whi l e ((i++) < Total Rounds) {

cur rent addr = ∗(cur rent addr) ;}

Listing 5.2: The loop used in each thread to stall the core, referred to as the stalling loop.

1) cycle activity.stalls mem any, which represents the total time that the execution is

stalled due to an outstanding memory operation, and 2) cycles, which is the total execu-

tion time. The results show that, the ratio of these two data is approximately 0.77 for each

pointer-chasing thread. For comparison, this ratio is only about 0.3 for the traffic threads

used in Section 5.5.1. It is notable that if the pointer chasing happens within L2 (no uncore

activity), the stalling ratio is 0.14, and uncore will not boost its frequency. Thus, we hy-

pothesize that the uncore frequency increases (to the maximum uncore frequency) when the

stalling time within a given time period for one or more cores surpasses a certain threshold.

In the rest of this chapter, we use the term “a core is stalled” to indicate that “the stalling

time of a core in almost every time period is above this threshold”.

In the above experiments, all the threads running on the processor are the pointer-chasing

threads. As a result, all the cores that are active are stalled. We found that, the uncore

frequency may not reach 2.4 GHz when only some of the active cores are stalled, and others

are not. We test this by launching some threads that do not stall the CPU cores alongside the

pointer-chasing threads. As shown in Figure 28, when two active cores are stalled, if there

are four (or more) other active cores which are not stalled, the uncore frequency stabilizes

at 1.8 or 1.5 GHz, rather than 2.4 GHz. Similarly, when three cores are stalled and six

(or more) cores are active but not stalled, the uncore frequency is 1.8 or 1.5 GHz. These

observations indicate that the uncore frequency is indeed influenced by the proportion of the

active cores that are stalled; the uncore frequency only rises to 2.4 GHz if more than 1/3

active cores are stalled.

90

0 3 6 9 12 15
1.2

1.6

2.0

2.4
U

nc
or

e
Fr

eq
ue

nc
y

(G
H

z)

of unstalled active cores

 1 stalled core 2 stalled cores 3 stalled cores
 4 stalled cores 5 stalled cores

Figure 28: The uncore frequencies based on the number of stalled cores and active but not

stalled cores.

0 4 0 8 0 1 2 0 1 6 01 . 0

1 . 5

2 . 0

2 . 5

Un
co

re
Fre

qu
en

cy
(G

Hz
)

T i m e (m s)

1 0 . 4 1 0 . 4 9 . 9 9 . 8 9 . 8 9 . 8 1 0 . 3 9 . 7

T h e s t a l l i n g l o o p s t a r t s

Figure 29: Uncore frequency trace upon initiating the stalling loop.

5.5.3 UFS Granularity

In the previous experiments, we focused on the stabilized uncore frequencies under spe-

cific workloads. However, for building a covert channel with UFS, it is also important to

91

0 4 0 8 0 1 2 0 1 6 01 . 0

1 . 5

2 . 0

2 . 5

Un
co

re
Fre

qu
en

cy
(G

Hz
)

T i m e (m s)

9 . 8 9 . 9 1 0 . 3 9 . 3 1 0 . 3 1 0 . 4 9 . 9 9 . 8
T h e s t a l l i n g l o o p s t o p s

Figure 30: Uncore frequency trace upon stopping the stalling loop.

0 4 0 8 0 1 2 0 1 6 01 . 0

1 . 5

2 . 0

2 . 5

T i m e (m s)

Un
co

re
Fre

qu
en

cy
(G

Hz
) P r o c e s s o r 0

 P r o c e s s o r 1

Figure 31: Uncore frequency trace upon initiating the stalling loop on

Proc. 1.

understand the details of the frequency adjustment period (before stabilization). For in-

stance, we need to know the total time it takes for the frequency to rise from 1.5 GHz to 2.4

GHz after a core becomes stalled. In this section, we investigate this aspect.

Frequency increase. We launch a thread that first runs a nop loop, and then switches

to a stalling loop (cf. Listing 5.2). We record the uncore frequency trace while the thread

92

is running, collecting the uncore frequency every 200 µs. The result is shown in Figure 29.

Before the stalling loop starts, the uncore frequency is 1.5 GHz. Once the stalling loop starts,

the uncore frequency increases by 100 MHz approximately every 10 ms; after the frequency

reaches 2.4 GHz, it stabilizes. In addition, we tried launching multiple such threads together

and letting each thread access a further LLC slice, but neither of these options can make

the uncore frequency increase faster, i.e., it still only changes every 10 ms. Similar results

apply when using a traffic loop (cf. Listing 5.1) instead of the stalling loop. Thus, we

believe that the frequency control hardware checks the system status approximately every

10 ms and decides whether and how to update the uncore frequency. Additionally, similar to

the P-states for cores, the uncore also has different operating points in 100 MHz frequency

increments. Moreover, it takes slightly longer than 10 ms to change from 1.5 GHz to 1.6

GHz. We believe this is because the starting time of the stalling loop is not aligned with the

frequency update periods.

Frequency decrease. We use a similar method to measure how the uncore frequency

decreases. Specifically, we launch a thread which first runs a stalling loop and then switches

to a nop loop. The recorded uncore frequency trace is shown in Figure 30: once the stalling

loop stops, the frequency decreases by 100 MHz every 10 ms, until it reaches 1.5 GHz (and

starts to fluctuate around 1.5 GHz). Again, similar results apply when using a traffic loop.

5.5.4 UFS across Processors

After analyzing UFS within a processor, now we study how UFS works across processors

(sockets). Figure 31 shows the uncore frequency traces for both processors when starting

a stalling loop on a core of Processor 0. As discussed earlier, the uncore frequency of

Processor 0 increases after the loop starts. Interestingly, the uncore frequency of Processor

1 also increases, even though there is nothing running on Processor 1 that can trigger this

increment. In addition, the frequency increment on Processor 1 starts about 10 ms later than

the increment on Processor 0. Thus, during the frequency adjustment period, the uncore

frequency of Processor 1 is always 100 MHz less than the uncore frequency of Processor 0.

Eventually, the uncore frequency of Processor 1 stabilizes at 2.3 GHz instead of 2.4 GHz.

93

We perform further tests where we run different workloads on Processor 0 to make its

uncore frequency stay at different levels (e.g., 2.1 GHz). Then we examine the uncore

frequency of Processor 1. It turns out that the uncore frequency adjustment on Processor

1 always starts later than the one on Processor 0. In addition, its stabilized frequency is

always the same or slightly lower than the one of Processor 0.

5.5.5 Summary of UFS Behavior

The UFS behavior discussed in this section can be summarized as follows:

- The uncore has different operating points in 100 MHz frequency increments. The system

status is checked about every 10 ms to decide whether to increase, decrease, or maintain

the uncore frequency.

- The uncore frequency is influenced by the uncore utilization, higher utilization leads to

higher frequency (within the allowed frequency range).

- The uncore frequency is also affected by the proportion of active cores stalled due to

cache/memory accesses; the uncore remains at the maximum frequency when more than

1/3 of the active cores on the processor are stalled.

- The uncore frequencies of processors (in the same system) are correlated: when the uncore

frequency of a processor increases, the ones of other processors also increase.

Note that this summary does not represent the complete design of UFS. There might

be other factors that can affect the uncore frequency. Our goal is to utilize UFS to build a

covert channel, instead of uncovering every detail about UFS.

5.6 UFS-Based Covert Channel

We use the findings in Section 5.5 to build the first covert channel based on UFS. The

basic idea of the sender is to transmit information by manipulating the uncore frequency

(through controlling the workload being executed). Simultaneously, the receiver obtains the

94

information by monitoring the uncore frequency. In this section, we first introduce the threat

model, and then provide an in-depth discussion of this channel’s details.

5.6.1 Threat Model

Like all other covert channels, the UFS-based covert channel involves two parties: the

sender and the receiver. We assume that the sender and the receiver are two unprivileged

processes or virtual machines that are either 1) running on the same processor (but different

cores) or 2) running on the same computing system (but different processors). We also

assume the processors in the system are Intel processors that dynamically adjust their uncore

frequency using UFS. In addition, the sender and the receiver agree on pre-defined channel

protocols, such as the synchronization protocol.

Apart from the above, no additional assumptions are made on the sender or the receiver.

For example, we do not assume memory sharing techniques (e.g., page deduplication [19]) or

HugePages [2] which are required in many uncore covert channels (e.g., [81, 134, 132, 67]). We

also do not require memory allocations/accesses across non-uniform memory access (NUMA)

domains, unlike some prior cross-processor covert channels [122].

5.6.2 Measuring Uncore Frequency

The receiver in the UFS-based covert channel needs to monitor the uncore frequency, in

order to receive information. In Section 5.5, we obtain the uncore frequency by reading the

MSR. However, accessing MSRs is generally only allowed for privileged users. Since we do

not require the receiver to have privileged permission, we need to find a different and more

accessible method to probe the uncore frequency.

Our insight is that, the uncore frequency can be obtained indirectly, by measuring the

access latencies to uncore components (e.g., the LLC). Intuitively, a lower uncore frequency

means that the uncore components are working at a lower speed, resulting in slower accesses

to those components (and vice versa). Figure 32 shows the LLC access latencies at various

uncore frequencies. We force the uncore to operate at a certain frequency by setting the

minimum and maximum uncore frequencies to be the same (cf. Figure 26). It is shown that,

95

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 . 0 2 . 1 2 . 2 2 . 3 2 . 45 0

6 0

7 0

8 0

9 0

1 0 0

LL
C A

cce
ss

La
ten

cy
(cy

cle
s) 2 5 % ~ 7 5 %

 1 % ~ 9 9 %
 M e d i a n L i n e
 M e a n

(a) 0-hop LLC access

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 . 0 2 . 1 2 . 2 2 . 3 2 . 45 0

6 0

7 0

8 0

9 0

1 0 0

LL
C A

cce
ss

La
ten

cy
(cy

cle
s) 2 5 % ~ 7 5 %

 1 % ~ 9 9 %
 M e d i a n L i n e
 M e a n

(b) 1-hop LLC access

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 . 0 2 . 1 2 . 2 2 . 3 2 . 45 0

6 0

7 0

8 0

9 0

1 0 0

LL
C A

cce
ss

La
ten

cy
(cy

cle
s) 2 5 % ~ 7 5 %

 1 % ~ 9 9 %
 M e d i a n L i n e
 M e a n

(c) 2-cop LLC access

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 . 0 2 . 1 2 . 2 2 . 3 2 . 45 0

6 0

7 0

8 0

9 0

1 0 0

LL
C A

cce
ss

La
ten

cy
(cy

cle
s) 2 5 % ~ 7 5 %

 1 % ~ 9 9 %
 M e d i a n L i n e
 M e a n

(d) 3-hop LLC access

Figure 32: The LLC access latencies under different uncore frequencies; the latencies are

measured all on core (3,3). 0-hop latencies, 1-hop latencies, 2-hop latencies, and 3-hop

latencies are collected when accessing LLC slice (3,3), LLC slice (2,3), LLC slice (2,2), and

LLC slice (2,1), respectively. The latencies are collected in a 10 ms window.

for a given LLC slice, the average access latency decreases as the uncore frequency increases.

Consequently, the receiver can use the LLC access latency to accurately determine the uncore

frequency.

Measurement noise. Listing 5.3 shows the code snippet of the measurement loop in the

receiver: it sequentially accesses every cache line in the eviction list and times the access.

96

/∗ EV l i s t [m] conta in s the addrs the ev i c . l i s t . ∗/
whi l e ((i++) < Total Measure) {

f o r (j = 0 ; j < m; j++) {
mfence () ;
l f e n c e () ;
t1 = rdtscp () ;
memaccess (EV l i s t [j]) ;
t2 = rdtscp () ;
a c c e s s l a t e n c y [i ∗m+j] = t2−t1 ;}}

Listing 5.3: The measurement loop in the receiver.

All of these accesses should hit in the LLC. Since this measurement loop creates a lot of

LLC accesses, it is essential to know how this loop affects the uncore frequency. If running

this loop makes the uncore constantly stay at a very high frequency, it will be difficult or

even impossible for the sender to manipulate the uncore frequency (to send data). In fact,

we found that when only running this loop, the uncore frequency stays low (at 1.5 GHz).

This is because the memory fences used in the loop keep the LLC access density relatively

low.

5.6.3 UF-variation

In this section we explain the covert channel in details. For generality, in the rest of

this chapter we use freq max to represent the maximum uncore frequency (2.4 GHz on our

processor), and use freq min to represent the minimum active uncore frequency (1.5 GHz

on our processor).

5.6.3.1 Channel Protocol

Intuitively, with UFS, the sender can encode the data into the uncore frequency values:

to send different data, the sender creates different amounts of LLC traffic (cf. Figure 27)

or different levels of core stalling to make the uncore frequency stay at different levels.

However, we do not use this approach because it results in a very long transmission interval

97

and thus a limited transmission rate. In Figure 29, the uncore frequency increases by 100

MHz every time when the hardware checks the system status (every 10 ms), during the

frequency adjustment period. We found that this only happens when we apply heavy LLC

traffic or have severely stalled cores (where the stabilized frequency is freq max). In contrast,

with lighter LLC traffic or less severely stalled cores where the stabilized frequency is lower

than freq max, the uncore frequency is not increased in every 10 ms during the adjustment

period. As a result, it takes much longer for the uncore frequency to adjust. For example,

when launching one thread accessing the local LLC slice (where the stabilized frequency is

2.1 GHz, cf. Figure 27), it takes over 50 ms for the uncore frequency to even change from

1.5 GHz to 1.6 GHz.

Algorithm 6: The UF-variation Covert Channel
Input: Tfreq max: the LLC latency at freq max.
Input: Tfreq min: the LLC latency at freq min.
Input: message[n]: the n-bit message to be transmitted.

Sender:
// Algorithm steps for the sender
for i = 0; i < n; i++ do

sync channel();
if message[i] == 1 then

stalling loop(); // Or a heavy LLC traffic loop

Receiver :
// Algorithm steps for the receiver
for i = 0; i < n; i++ do

sync channel();
T1 = measure avg LLC latency();
wait();
T2 = measure avg LLC latency();
if T2 < T1 or T1 = T2 = Tfreq max then

Received a bit “1”;

if T2 > T1 or T1 = T2 = Tfreq min then
Received a bit “0”;

Thus, in our covert channel, we only use heavy LLC traffic or severely stalled cores (to

control the uncore frequency). This ensures that the frequency changes frequently (every 10

ms), which allows a shorter transmission interval and thus a higher transmission rate.

98

The covert channel we propose, named UF-variation, encodes data into the uncore fre-

quency variation. The channel protocol is shown in Algorithm 6. The sender uses the stalling

loop (Listing 5.2) which can severely stall the core to control the uncore frequency.4 1-bit

of data is transmitted in each transmission interval. To send a bit “1”, the sender executes

this loop and the uncore frequency increases every 10 ms (unless it’s already at freq max).

To send “0”, the sender does not execute the loop and the frequency decreases every 10 ms

(unless it’s already at freq min). On the other hand, the receiver monitors the LLC access

latencies, and compares the average latency near the beginning of the interval (T1) and the

average latency near the end of the interval (T2). If 1) T2 < T1 or 2) both T1 and T2 match

the latency at freq max, it means the uncore frequency is increasing or staying at freq max

in this interval. Thus, the receiver receives a bit “1”. Otherwise, if 1) T2 > T1 or 2) both

T1 and T2 match the latency at freq min, it means the uncore frequency is decreasing or

staying at freq min, and the receiver gets a bit “0”.

0 1 0 0 2 0 0 3 0 0 4 0 00 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

T i m e (m s)

Un
co

re
Fre

qu
en

cy
(G

Hz
)

6 0

7 0

8 0

9 0

1 0 0

1 1 0

 LL
C A

cce
ss

La
ten

cy
(cy

cle
s)

1 01 1 1 1 10 0 0

Figure 33: The LLC access latency trace and the corresponding uncore frequency trace when

sending “1101001011” through the channel. The transmission interval is 38 ms. The LLC

access latencies are 1-hop latencies.

4The sender can also use a heavy traffic loop (cf. Listing 5.1) instead of a stalling loop.

99

0 2 0 4 0 6 0
1 0

3 0

5 0

7 0 C r o s s - c o r e c h a n n e l
 C r o s s - p r o c e s s o r c h a n n e l

T r a n s m i s s i o n R a t e (b p s)

Ch
an

ne
l C

ap
ac

ity
(bi

t/s
)

0

1 0

2 0

3 0

 Bi
t E

rro
r R

ate
 (%

)

Figure 34: The channel capacities and error rates of UF-variation, in the cross-core and

cross-processor scenarios, respectively.

In this channel, the transmission interval should be long enough for the frequency to

change (i.e., at least 10 ms). Figure 33 provides an example of sending “1101001011” through

this channel. In the first interval, the sender sends “1” by executing the stalling loop, the

frequency increases from 1.5 to 1.8 GHz and the LLC latency decreases from 79 to 71 cycles.

Then in the second interval, the sender continues the stalling loop to send “1”, the frequency

continues to increase from 1.8 to 2.2 GHz and the LLC latency further decreases from 71

to 63 cycles. In the third interval, the sender sends “0” and stops the stalling loop, the

frequency thus decreases from 2.2 to 1.9 GHz and the LLC latency increases from 63 to 68

cycles.

5.6.3.2 Channel Capacity

In this section, we evaluate the throughput of UF-variation as a cross-core covert channel

and a cross-processor covert channel, respectively.

Configuration. We create a proof-of-concept implementation of UF-variation, where the

sender and the receiver are single-threaded processes that synchronize using time stamp

counters. The receiver calculates the average LLC latencies for the first and last 5 ms in an

100

interval and compares them. We use the metric channel capacity (as in [31]) to quantify the

throughput performance. It can be calculated by multiplying the raw transmission rate with

(1−H(e)), where e represents the bit error rate and H denotes the binary entropy function.

Figure 34 shows the channel capacities and bit error rates of UF-variation under different

raw transmission rates (i.e., different transmission intervals). When the transmission rate is

low (e.g., below 47 bit/s for the cross-core channel), the error rate is very low and remains

almost constant. Thus, the channel capacity increases proportionally to the transmission

rate. When the transmission rate is higher (i.e., intervals are smaller), the error rate starts

to increase which causes a decrease in the channel capacity. In the cross-core scenario, the

channel capacity peaks at 46 bit/s given a transmission rate of 47.6 bit/s (interval of 21 ms).

In the cross-processor scenario, the capacity peaks at 31 bit/s given a transmission rate of

33 bit/s (interval of 33 ms). Although the channel capacity of UF-variation is lower than

many prior uncore covert channels, it is effective under a wider range of situations than prior

channels. We discuss the details of this later in Section 5.6.4.

5.6.3.3 Channel Reliability

Like other uncore covert channels, UF-variation can be affected by noise from other

processes running on this system. There are mainly two categories of noise that can influence

UF-variation. First, the execution of other processes may affect the proportion of the active

cores that are stalled, and thus affect the uncore frequency. For example, in Algorithm 6, the

sender only launches one thread and uses the stalling loop to control the uncore frequency.

This works well when only the sender and receiver are using the processor: when the sender

sends a “1”, 1/2 of the active cores are stalled, causing the uncore frequency to rise. However,

if there are two threads from other processes running on this processor (which do not stall

the cores), only 1/4 active cores are stalled when the sender sends a “1”. Consequently,

the uncore frequency does not increase, and the receiver cannot differentiate between “1”

and “0”. Nevertheless, this type of noise can always be avoided by using the traffic loop to

control the uncore frequency instead. Moreover, if the sender can access multiple cores, this

issue can be resolved by stalling multiple cores simultaneously. For example, on a 16-core

101

processor, if the sender stalls 6 cores, then it is guaranteed that over 1/3 active cores are

stalled when the sender sends a “1”.

Second, other processes with heavy LLC utilization or stalling loops may keep the uncore

frequency high even when the sender sends a “0”. Here we test the channel capacity of UF-

variation while running stress-ng |cache N to stress the CPU cache in the background

(using N threads), similar to prior work [37, 90, 59]. The results are shown in Table 8. The

channel is affected by the phases where stress-ng keeps the uncore frequency at freq max.

The channel capacity is lower when those phases appear more often or last longer. As shown

in the table, UF-variation can tolerate the cache stressing when N < 9. When N is higher,

the error rate becomes excessive and the covert channel is no longer functional. We compare

the reliability of UF-variation to the reliabilities of other covert channels in Section 5.6.4.

Table 8: The maximum channel capacities of UF-variation (as a cross-core channel) with

the stress-ng tool.

stress-ng -N N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9

Capacity (bit/s) 8.6 7.2 6.8 5.1 4.4 3.0 2.4 0.2 0

5.6.4 Comparison of Uncore Covert Channels

Table 9 compares UF-variation to the existing uncore covert channel techniques based

on prerequisites, robustness against defenses, and reliability.

Prerequisites. Covert channels typically have some requirements for the system setup.

The most fundamental requirement for an uncore covert channel is co-location, i.e., the

sender and receiver are able to run simultaneously on the same system. In addition to

this basic prerequisite, some uncore covert channels have further requirements. Common

additional requirements include memory sharing, the presence of the clflush instruction (or

similar instructions), and transactional memory techniques (e.g., Intel TSX). Although these

requirements facilitate powerful covert channels in terms of speed and reliability, they also

102

significantly restrict the channel’s applicability. For example, memory sharing is discouraged

in cloud environments, and special instructions like clflush may not be accessible to users

in non-native environments (e.g., within a browser).

Effectiveness under defenses. In recent years, numerous defense approaches against

uncore covert channels have been proposed. It is expected that real processors will soon

implement one or more of these defenses. Thus, it is important to know whether a covert

channel remains functional under a specific defense mechanism. The main lines of defense

designs are based on randomization and isolation. First, by randomizing the address-to-set

mapping in the LLC (e.g., [52]), it becomes challenging to force or observe LLC set conflicts,

which are essential for many LLC covert channels. Arguably, a more promising method is

partitioning uncore components among users (e.g., [22, 42, 113, 125]), since most uncore

covert channels are based on uncore resource contention/conflict. We discuss two types of

partitioning mechanisms here.

The first one is a coarse-grained partitioning approach where the sender and receiver

are on different processors in the system and the NUMA-strict policy is enforced, i.e., mem-

ory allocations/accesses across NUMA domains are not allowed. The second one is a more

fine-grained partitioning mechanism, where the sender and receiver can run on the same

processor but in different security domains. In this case, all the uncore buffering structures

such as LLC slices and queues in the MCs are partitioned among domains: for example, with

two domains, each domain is assigned with half of the LLC slices (8 on our processor). Addi-

tionally, all the communication paths such as the interconnect work with a time-multiplexed

scheduling policy so that traffic from different domains is partitioned and served in different

time periods [127], avoiding contention.5

Reliability. We evaluate the reliabilities of the channels by examining their functionalities

while running stress-ng -- cache 4 in the background, i.e., whether the receiver can still

distinguish between “1” and “0”. Note that we use four stressing threads here because this

results in a processor load of 37.5%, which is close to the processor load observed in modern

data centers [51].

5We do not assume a spatial partitioning design like Intel Sub-NUMA Clustering [5] for preventing
interconnect contention, since the traffic to peripheral devices from different domains may still contend in
this scenario.

103

Table 9: The comparison of uncore covert channels; ✓ means the channel is functional while

✗ means it is not.

Attack
technique

Leakage
source

Prerequisites Defenses Reliability

No
shared
mem.

No
clflush

No TSX
Rand.
LLC

Fine
partition

Coarse
partition

stress-ng

-cache 4

Flush+Reload [134]

Data reuse

✗ ✗ ✓ ✓ ✗ ✗ ✓

Flush+Flush [55] ✗ ✗ ✓ ✓ ✗ ✗ ✓

Reload+Refresh [28] ✗ ✗ ✓ ✗ ✗ ✗ ✓

Prime+Probe [81]

LLC set conflict

✓ ✓ ✓ ✗ ✗ ✗ ✓

Prime+Abort [41] ✓ ✓ ✗ ✗ ✗ ✗ ✓

SPP [120] ✓ ✓ ✓ ✓ ✗ ✗ ✓

Mesh-contention [122]
Interconnect contention

✓ ✓ ✓ ✓ ✗ ✗ ✓

Ring-contention [90] ✓ ✓ ✓ ✓ ✗ ✗ ✓

IccCoresCovert [61] PMU contention ✓ ✓ ✓ ✓ ✓ ✗ ✓

Uncore-idle [31] Idle power control ✓ ✓ ✓ ✓ ✓ ✓ ✗

UF-variation UFS ✓ ✓ ✓ ✓ ✓ ✓ ✓

Comparison. As shown in Table 9, covert channels based on data reuse usually require

memory sharing and special-purpose instructions, meaning they can be defended by simply

disabling the required features. Covert channels based on LLC set conflicts typically do

not have additional requirements; however, most of them can be mitigated by randomized

LLC designs (other than SPP), and all of them can be prevented by uncore partitioning.

Covert channels based on interconnect contention do not have additional requirements as

well, but they also cannot work under either of the two partitioning designs. IccCoresCovert

relies on the contention for the voltage regulator in the PMU. Thus, it cannot work under

the coarse-grained partitioning where the PMU is no longer shared. In addition, all these

above-mentioned covert channels remain functional with four cache stressing threads.

Uncore-idle (cf. Section 5.4) and UF-variation are the only two channels that cannot

be stopped by any of the listed defenses. Unlike other uncore channels, these two channels

are not based on hardware contention or conflict. Thus, randomizing the LLC mapping or

partitioning uncore resources cannot prevent them. However, Uncore-idle which is based on

104

the uncore idle power management, is highly susceptible to noise: as long as one core in the

entire system is fully active, all the uncores (in all the processors) are active and the covert

channel no longer exists. In contrast, UF-variation demonstrates better reliability.

5.7 Side Channel Attacks

In this section, we provide a preliminary study on exploiting UFS for side channel attacks.

The two factors that affect the uncore frequency (uncore utilization and core stalling) can

both be used to construct side channel attacks. Here we focus on the latter.

Attack methodology. As explained in Section 5.5.2, the uncore frequency is related to the

proportion of active cores that are stalled. This proportion (and thus the frequency) may

change depending on whether the victim’s core(s) are active, reflecting the victim’s core(s)

utilization. Specifically, the attacker executes a stalling thread and a non-stalling thread.

Then, when the victim’s core(s) are inactive or minimally utilized, the uncore frequency

stays at freq max, since more than 1/3 of the active cores are stalled. However, if the

victim’s core(s) become active (but not stalled), the uncore frequency decreases because less

than 1/3 active cores are stalled now. The core(s) activity may be related to some sensitive

information of the victim, as shown in prior work [40]. Here we show two example attacks,

file size profiling and website fingerprinting.

File size profiling. In this case, the victim is executing a python program to compress

a file. The total execution time of the program is correlated with the size of the file. As

a result, if the attacker determines the execution time of this program by monitoring the

uncore frequency, the attacker can deduce the file size and it might even be able to further

infer which specific file the victim is compressing. The attacker collects the uncore frequency

every 3 ms. Some of the captured frequency traces are shown in Figure 35. When the victim

is compressing a smaller file, the uncore frequency is at freq min for a shorter period. The

attacker can distinguish the file sizes at a granularity of 300KB with an accuracy of over

99%. Note that the attacker is running the helper threads (the stalling/non-stalling threads,

as explained above) while collecting the trace.

105

0 3 0 0 6 0 0 9 0 01 . 0

1 . 5

2 . 0

2 . 5

Un
co

re
Fre

qu
en

cy
(G

HZ
)

T i m e (m s)
0 3 0 0 6 0 0 9 0 01 . 0

1 . 5

2 . 0

2 . 5

Un
co

re
Fre

qu
en

cy
(G

HZ
)

T i m e (m s)
0 3 0 0 6 0 0 9 0 01 . 0

1 . 5

2 . 0

2 . 5

Un
co

re
Fre

qu
en

cy
(G

HZ
)

T i m e (m s)

Figure 35: The uncore frequency traces captured while the victim compresses files with

varying sizes.

Website fingerprinting. Prior work [40] has shown that core(s) utilization can be used for

website fingerprinting. The victim in this attack is a user browsing webpages in a browser,

and the attacker aims to determine the website the victim is accessing through the uncore

frequency trace. Similar to previous fingerprinting-based attacks [122, 35, 40], we utilize

machine learning to develop an attack with two phases: the training phase and the attack

phase. In the training phase, the attacker collects uncore frequency traces for each of the

top 100 websites according to Alexa [1] while accessing them. The attacker then uses these

traces to train an RNN classifier. We use the same model and hyperparameters as [122]. In

the attack phase, when the victim is accessing a website, the attacker collects the uncore

frequency trace and feeds it to the classifier. In both phases, the attacker records the uncore

frequency every 3 ms. Note that in both phases the attacker also needs to run the helper

threads (the stalling/non-stalling threads), as explained in the attack methodology before.

Figure 36 shows examples of collected traces. The top-1 accuracy for website fingerprint-

ing is 82.18%, while the top-5 accuracy is 91.48%. In addition to identifying the accessed

website, the attacker can also learn how the website is used. For example, the attacker is

able to differentiate between successful and unsuccessful login attempts on hotrcrp.com.

106

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 01 . 0

1 . 5

2 . 0

2 . 5

Un
co

re
Fre

qu
en

cy
(G

Hz
)

T i m e (m s)
0 1 k 2 k 3 k 4 k 5 k1 . 0

1 . 5

2 . 0

2 . 5

T i m e (m s)

a m a z o n . c o m

0 1 k 2 k 3 k 4 k 5 k1 . 0

1 . 5

2 . 0

2 . 5

T i m e (m s)

g o o g l e . c o m

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 01 . 0

1 . 5

2 . 0

2 . 5

Un
co

re
Fre

qu
en

cy
(G

Hz
)

T i m e (m s)
0 1 k 2 k 3 k 4 k 5 k1 . 0

1 . 5

2 . 0

2 . 5

T i m e (m s)

h o t c r p . c o m
(l o g i n s u c c e e d)

0 1 k 2 k 3 k 4 k 5 k1 . 0

1 . 5

2 . 0

2 . 5

T i m e (m s)

h o t c r p . c o m
(l o g i n f a i l)

Figure 36: The uncore frequency traces captured while the victim is accessing varying do-

mains.

5.8 Discussion

5.8.1 Evaluation with Background Workloads

Here we examine how running background cloud applications can impact UF-variation

(and the side channels). We focus on three types of cloud applications as listed in Table 10.

In-memory and graph analytics are derived from CloudSuite [48]. For web serving, we use

the Apache server: we run an Apache HTTP server on the same machine with UF-variation,

and run a client on a separate machine within the local network. The client repeatedly sends

request to the server, similar to the setup in prior work [122].

107

Table 10: The channel capacities of UF-variation (as a cross-core channel) with background

cloud applications.

In-mem analytics Graph analytics

Application Web serving Small

dataset

Large

dataset

Workload

PR

Workload

CC

Channel capacity (bit/s) 44 40 31 6 2

The evaluation results for UF-variation are shown in Table 10. The web-serving workload

has minimal impact on the channel capacity of UF-variation. In contrast, graph analytics

workloads which have very high uncore utilization, significantly reduce the channel capacity.

Compared to UF-variation, the UFS side channels are more vulnerable to background work-

loads, especially to the ones with high uncore utilization. For example, with graph analytics

(for CC), UF-variation is still functional (although with a very limited capacity), but the

accuracy of website fingerprinting is reduced to almost the level of random guessing, unless

the attacker can take multiple samples during the attack.

5.8.2 Remote Covert Channel with UFS

Prior work [112] demonstrated a covert channel over the network: the sender attempts

to send data through the network to the receiver located in the same physical network. The

sender has the ability to send packets to the network, but the receiver is not permitted to

use the networking stack (e.g., it is in a container). Using UFS, we can build a reversed

form of this covert channel where the sender without network access can transmit bits to

a remote receiver. Specifically, the sender manipulates the uncore frequency on the local

machine. The receiver (on a different machine) collects the data by pinging the sender’s

machine and logging the response time. We found that this response time correlates with

108

the uncore frequency (on the sender’s machine): when the uncore frequency is at freq max,

the average response time is 0.8 ms less than when it’s at freq min.

5.8.3 Applicability to Non-Intel Processors

We examined the uncore frequencies of AMD processors and the results suggest that

on those processors, the uncore frequency does not correlate with the uncore utilization

or core stalling ratio. Thus, we cannot directly apply UF-variation on AMD processors.

However, the insight in our study—that uncore frequency variations reflect core workload

patterns—can inspire new attack methodologies. For example, we found that the uncore

frequency of an AMD processor is tied to the highest core frequency among all the cores.

Prior work [19,59] has shown that the core frequency can reveal information of the application

running on the core (such as the data being processed). Thus, an adversary could potentially

use the uncore frequency to infer the information of the application running on another core,

resulting in a new form of uncore covert/side channel.

5.9 Chapter Summary

In this chapter, we presented the first covert channel based on UFS. We showed that

the uncore utilization and the proportion of active cores that are stalled are two key factors

affecting the uncore frequency. Based on this observation, we developed a new covert channel,

UF-variation, with a channel capacity of 46 bit/s. We further showed that although UF-

variation has lower capacities than previous uncore covert channels, it remains functional

even with uncore partitioning in place, while previous channels do not. We demonstrated

that it is possible to build side channel attacks such as website fingerprinting attacks, utilizing

UFS.

109

6.0 Countermeasures

In this chapter, we discuss the potential countermeasures for the three new attack meth-

ods proposed in this dissertation. We focus on 1) proposing the countermeasures tailored for

each of these attacks and 2) analyzing whether the existing secure cache designs explained

in Section 2 can stop these new attacks.

6.1 Countermeasures against Attacks Based on Cache-Controlling

Instructions

In general, the attacks introduced by the instructions that allow the software-level users

to directly control specific cache states can be prevented by disabling such instructions.

However, this unfortunately also prevents benign users from utilizing these instructions to

achieve better performance, and is thus not a preferred solution. Therefore, in this section

we propose several countermeasures to particularly defend each of these attacks. We also

show that these attacks can be mitigated through one or more existing countermeasures

discussed in Chapter 2.

Countermeasures against attacks based on PREFETCHW. First of all, these attacks based

on PREFETCHW (cf. Chapter 3) can be prevented through modifications on the microarchitec-

ture behavior of PREFETCHW. The complete protection is two-fold. First, PREFETCHW should

perform write permission checks, just as a regular memory write instruction, and trigger a

fault or ignore this instruction if the target data is not writable. Second, PREFETCHW should

execute in constant time. These modifications may introduce some performance overhead.

We do not suggest eliminating PREFETCHW since it is important for improving write perfor-

mance.

Second, similar to many prior cache attacks [134, 55, 133], our attacks also require data

sharing between the attacker and the victim. Thus, disabling implicit data sharing across

security domains, as suggested in previous defense studies (e.g., [128, 95, 96]) can also be

110

used to stop our attacks. However, it is important to note that this solution may significantly

increase the system’s memory pressure.

Countermeasures against attacks based on PREFETCHNTA. NTP+NTP (cf. Chap-

ter 4) uses a similar threat model with prior conflict-based cache covert channels such as

Prime+Probe. Thus, countermeasures to mitigate conflict-based channels (cf. Chapter 2)

may also defend NTP+NTP. This includes 1) partitioning-based defenses (e.g., [80, 101,

22, 39, 58]) which partition the cache so that data from different security domains do not

interfere with each other, and 2) randomization-based defenses (e.g., [96, 128, 111]) which

make it very hard (if not impossible) to build set conflicts by modifying set index mapping.

However, for randomization-based designs that rely on the random replacement policy [128],

using PREFETCHNTA might weaken its security guarantee by a factor of w, where w is the

associativity.

In addition, a countermeasure for NTP+NTP specifically is to change the LLC insertion

policy for both prefetched and loaded cache lines. For example, cache lines can be loaded

into the LLC with age 1 and prefetched into the LLC with age 2. Then, a prefetched

cache line is still evicted sooner than a loaded cache line, but the prefetched cache line is

no longer guaranteed to be the eviction candidate in the set. Thus, NTP+NTP can no

longer work reliably. In addition, with this modified policy, the speed of our eviction set

construction method (Algorithm 5) is significantly reduced. We build Python models of both

the original Intel LLC policy and this modified policy, and simulate both our eviction set

construction method and the state-of-the-art [93] with these two policies. With Intel LLC

policy, our method requires 7.25× less memory references compared to the state-of-the-art.

In contrast, with the modified policy, this improvement is reduced to 1.26×.

However, this countermeasure also weakens the performance benefit of PREFETCHNTA.

With the original Intel LLC policy, prefetched cache lines can occupy at most one way in an

LLC set, ensuring that the upper bound of LLC pollution is 1/w, where w is the associativity.

This is no longer guaranteed with the modified policy.

111

6.2 Countermeasures against Attacks Based on UFS

As UF-variation (cf. Chapter 5) does not require data sharing or building cache conflicts,

none of the existing countermeasure designs can be used to mitigate UF-variaion. Thus, we

propose the following defense mechanisms to prevent this channel. These are all software-

level solutions that can be used immediately to protect users.

Fixing the uncore frequency. The prerequisite of UF-variation is that the uncore fre-

quency is dynamically adjusted with UFS (based on the running workloads). Thus, to

prevent this covert channel, the system software can disable UFS. That is, the system soft-

ware can set the minimum and maximum uncore frequencies to be the same (cf. Figure 26),

forcing the uncore to operate at a fixed frequency (freq fix). However, it may be difficult to

determine the value of freq fix. Using a high frequency increases the energy consumption.

For example, for graph analytics applications [48], fixing the uncore frequency at freq max

increases the energy consumption by 7%. In contrast, using a low uncore frequency reduces

the performance. A more desirable method is to randomize the uncore frequency: instead of

always using a particular uncore frequency, every certain period of time, the system software

randomly selects a frequency (from within the allowed frequency range) to set as the uncore

frequency (i.e., freq fix). This can guarantee security while maintaining a balance between

the performance and energy consumption.

Restricting the frequency range for UFS. Using a smaller frequency range for UFS,

compared to the default range, can mitigate the website fingerprinting side channel attack.

From our experiments, limiting the range for UFS to no larger than 0.2 GHz (e.g., from

1.5 GHz to 1.7 GHz) makes it very difficult to distinguish the uncore frequency traces for

different websites. However, this method cannot stop the covert channel (UF-variation).

When using a smaller frequency range for UFS, the temporal resolution of UFS remains

the same as before (i.e., 10 ms). Further, some of the conditions for triggering frequency

increase/decrease also remain the same. For example, with more than 1/3 active cores being

stalled, the uncore frequency still increases by 0.1 GHz every 10 ms, until reaching the highest

frequency allowed. Thus, the channel capacity of UF-variation remains the same as long as

the maximum and minimum frequencies for UFS are not set to be equal (cf. Figure 26).

112

Maintaining high uncore utilization. The UFS-based covert/side channels can also be

prevented by maintaining high uncore utilization: one can use a background thread that is

always stressing the uncore to make it stay at freq max.

113

7.0 Related Work

We have already discussed previous work on cache attacks and defenses in Chapter 2.

Here we discuss prior studies on prefetch-based attacks, CPU vulnerabilities related to cache

coherence, and attacks based on frequency scaling and power management.

7.1 Prefetch-Based Attacks

Gruss et al. [54] made two observations about prefetch instructions on Intel processors.

They found that the execution time of a prefetch instruction, such as PREFETCHT0, leaks the

translation levels of inaccessible kernel addresses. Using this, they built an attack to break

Kernel Address Space Layout Randomization (KASLR). They also observed that prefetch

instructions change the cache state of inaccessible kernel memory, but recent work [104]

proved this incorrect. In fact, their observation is the result of transient execution caused

by a Spectre gadget in the kernel, not the prefetch instruction.

Very recently, Lipp et al. [76] observed that on AMD processors, the timing (and power

consumption) of a prefetch instruction on an inaccessible kernel address leaks the translation

level and TLB state of this address. They used this to break KASLR and leak kernel memory

(with Spectre) on AMD processors. These two prefetch attacks are orthogonal to our attacks.

They focus on specifically attacking the kernel; we instead focus on building general cache

timing attacks.

Regarding hardware prefetch attacks, Shin et al. [105] attacked OpenSSL, leaking the

private key by leveraging the Intel stride prefetcher. Rohan et al. [99] reverse-engineered the

stream prefetcher on Intel processors, using it to build a covert channel.

114

7.2 Cache Coherence Vulnerabilities

Although we are the first to propose cross-core private cache side channel attacks leverag-

ing cache coherence protocol invalidations, cache coherence protocols have been exploited in

many different attacks. Trippel et al. [115] discovered that a transient write may change the

coherence state of the target data, which can be used as a covert channel in transient execu-

tion attacks. In addition, previous studies [63, 74, 50] mention that “bouncing” cache lines

between private caches may be used as a replacement for CLFLUSH or set conflicts in Spectre

and Rowhammer attacks. However, in this method, coherence states are manipulated by

write operations. This means it requires that at least part of the target cache line happens

to contain writable data (unless Meltdown-RW [73, 44] can be exploited). Unfortunately, as

discussed in [50], this requirement is impractical for general side channel attacks.

Prior work [67, 77] built cross-core attacks on AMD and ARM processors, respectively,

based on cache coherence. An Evict+Reload attack on Intel processors with non-inclusive

LLCs was proposed in [132]. In these three attacks, the attacker learns the victim’s behavior

by distinguishing between remote private cache hits and DRAM accesses. A variant of

Flush+Reload attack on x86 processors was proposed in [133]. It works by distinguishing

between remote private cache hits and LLC hits. These attacks are more general than the

ones discussed earlier, but they all suffer from low bandwidth as DRAM accesses are involved

in the attacks.

7.3 Attacks Based on Frequency Scaling and Power Management

Covert channels. CPU power management systems dynamically adjust the CPU core

frequencies to prevent exceeding the power (thermal) limits: the core frequencies are related

with the available power headroom). Khatamifard et al. [70] show that this principle can be

used to construct covert channels. Kalmbach et al. [68] propose TurboCC, a new mechanism

for creating cross-core covert channels. With Intel Turbo Boost 2, the maximum CPU

frequency is selected based on the number of active cores. TurboCC utilizes this and encodes

115

information into the maximum CPU frequency by placing load on a certain amount of CPU

cores.

Side channel attacks. Dipta et al. [40] found that DVFS feature on modern processors

can be utilized to perform website fingerprinting attacks and keystroke attacks. Specifically,

the selection of P-states is related to the utilization of the core, which is further related to

private information such as the website loaded in the browser. Wang et al. [126] discover

that when turbo boost is enabled, DVFS-induced CPU frequency adjustments depend on

the power consumption which is data dependent. This indicates that the CPU frequency

adjusts based on the data it is processing, and result in different performance with different

data. This observation fundamentally undermines constant-time programming. In addition,

Liu et al. [79] show that a privileged adversary can extract AES-NI keys using the frequency

side channel after reducing the power limits to fractions of their default values.

116

8.0 Conclusion and Future Work

In this chapter, we conclude this dissertation and discuss future research directions in

the field of cache attacks.

8.1 Conclusion

In this dissertation, we showed that the recent hardware developments in modern proces-

sors that aggressively push the performance optimization boundaries enable new and more

powerful cache attacks.

Specifically, we first showed that the prefetch-for-write instruction on Intel processors,

PREFETCHW, allows software-level users to directly control the data’s cache coherence state,

even for read-only data. This leads to a cross-core private cache eviction method. Based on

this method, we developed the first two cross-core private cache attacks that work with both

inclusive and non-inclusive LLCs.

Then, we demonstrated that the non-temporal prefetch instruction on Intel processors,

PREFETCHNTA, can be used by software to manipulate the cache replacement state (i.e., the

eviction candidate of a cache set). With this instruction, conflict-based cache attacks become

much faster than previously expected. In addition, this instruction enables a new algorithm

for building eviction sets, which outperforms the state-of-the-art by several times.

Next, we found that recent Intel processors incorporate an advanced frequency scaling

design which dynamically adjusts the frequency of the uncore based on the uncore utilization

as well as the core stalling ratio. Based on this design, we developed a highly practical

and robust attack that 1) works across different processors (sockets) in the same system

and 2) remains effective with existing defense mechanisms for uncore attacks (e.g., uncore

partitioning) in place.

Finally, we studied the countermeasures against the above attacks. We found that al-

though the attacks based on the special-purpose prefetch instructions can be defended by

117

one or more existing countermeasures, the attacks based on uncore frequency scaling can

bypass all existing countermeasures, calling for more comprehensive defense solutions.

8.2 Future Work on Cache Attacks

This dissertation studied three specific designs on modern CPUs that can trigger new

cache attacks. In fact, there are many other advanced designs on CPUs, such as hetero-

geneous cores, that may also trigger security issues. In the future, it is very important

for researchers to continue to investigate these designs and understand their security im-

plications. In addition, modern CPUs are continually evolving and becoming increasingly

complex with sophisticated functional designs. Moreover, each new generation of CPUs in

recent years has introduced additional instructions. It is very time-consuming to analyze the

microarchitectural details and discover potential side channels manually every time new fea-

tures occur. To streamline this task, it is critical to develop automated tools for side-channel

detection. These tools should examine the new processor features with common hardware

flaws that can trigger side channels. For example, with a new CPU instruction, we can use

these tools to test whether proper permission checks are implemented for it, whether its

execution time is data-dependent, and whether its execution has any speculative microar-

chitectural effects. These tools can substantially reduce the effort required by researchers

to identify side channels. They can also be used by processor vendors to proactively resolve

security issues before their products reach the market.

Second, unlike CPUs, the security of accelerators like GPUs and FPGAs has received

significantly less attention. Given the growing use of these accelerators, it is critical to

understand their security implications and develop countermeasures. Similar to CPUs, ac-

celerators are increasingly being shared among users, raising the risk of side channel attacks.

However, accelerators may face unique side-channel vulnerabilities compared to CPUs: ac-

celerators are designed for different purposes than CPUs, and thus their hardware naturally

differs. For example, while CPUs typically use non-shared translation look-aside buffers

(TLBs) among their computing units, GPUs often employ shared TLBs. Therefore, we may

118

not be able to directly apply the attacks and defenses that are well established for CPUs

to accelerators. Instead, to protect accelerator users from potential side channels, we need

to 1) reverse engineer the accelerator microarchitectural details, 2) identify the associated

security issues, and 3) develop countermeasures with low overhead. For instance, recently

researchers have revealed that the cache replacement policy in modern GPUs takes into

account the ‘dirtiness’ of cache lines, which is not the case for CPUs. This points to the

potential for new (and possibly more severe) cache attacks, calling for specialized secure

cache designs for GPUs. However, this is only an initial step; many hardware components

on GPUs remain unexplored today and require future efforts.

119

Bibliography

[1] Alexa top websites. Available at https://www.expireddomains.net/

alexa-top-websites.

[2] Huge pages and transparent huge pages. Available at https://access.redhat.

com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_

tuning_guide/s-memory-transhuge.

[3] Intel® 64 and IA-32 architectures optimization reference manual. Available at https:
//cdrdv2.intel.com/v1/dl/getContent/671488.

[4] Intel® 64 and IA-32 architectures software developer’s manual. Available at https:
//cdrdv2.intel.com/v1/dl/getContent/671200.

[5] Intel® Xeon® processor scalable family technical overview. Available at
https://www.intel.com/content/www/us/en/developer/articles/technical/

xeon-processor-scalable-family-technical-overview.html.

[6] mmap(2) — linux manual page. Available at https://man7.org/linux/man-pages/
man2/mmap.2.html.

[7] pthread mutex lock(3p) — linux manual page. Available at https://man7.org/

linux/man-pages/man3/pthread_mutex_lock.3p.html.

[8] Software optimization guide for the AMD family 15h processors. Available at https:
//www.amd.com/system/files/TechDocs/47414_15h_sw_opt_guide.pdf.

[9] SPEC CPU 2017. Available at https://www.spec.org/cpu2017.

[10] Spectre PoC. Available at https://github.com/crozone/SpectrePoC.

[11] taskset(1) — linux manual page. Available at https://man7.org/linux/man-pages/
man1/taskset.1.html.

[12] 3dnow! technology manual, 2000. Available at https://www.amd.com/system/

files/TechDocs/21928.pdf.

120

https://www.expireddomains.net/alexa-top-websites
https://www.expireddomains.net/alexa-top-websites
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/s-memory-transhuge
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/s-memory-transhuge
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/s-memory-transhuge
https://cdrdv2.intel.com/v1/dl/getContent/671488
https://cdrdv2.intel.com/v1/dl/getContent/671488
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://man7.org/linux/man-pages/man2/mmap.2.html
https://man7.org/linux/man-pages/man2/mmap.2.html
https://man7.org/linux/man-pages/man3/pthread_mutex_lock.3p.html
https://man7.org/linux/man-pages/man3/pthread_mutex_lock.3p.html
https://www.amd.com/system/files/TechDocs/47414_15h_sw_opt_guide.pdf
https://www.amd.com/system/files/TechDocs/47414_15h_sw_opt_guide.pdf
https://www.spec.org/cpu2017
https://github.com/crozone/SpectrePoC
https://man7.org/linux/man-pages/man1/taskset.1.html
https://man7.org/linux/man-pages/man1/taskset.1.html
https://www.amd.com/system/files/TechDocs/21928.pdf
https://www.amd.com/system/files/TechDocs/21928.pdf

[13] Intel quickpath architecture, 2012. Available at http://www.intel.com/pressroom/
archive/reference/whitepaperQuickPath.pdf.

[14] Intel® Xeon® scalable processor: The foundation of data centre innovation, 2017.
Available at https://simplecore-ger.intel.com/swdevcon-uk/wp-content/

uploads/sites/5/2017/10/UK-Dev-Con_Toby-Smith-Track-A_1000.pdf.

[15] Onur Acıiçmez. Yet another microarchitectural attack: Exploiting I-cache. In ACM
workshop on Computer security architecture, 2007.

[16] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. Predicting secret keys via
branch prediction. In Topics in Cryptology–CT-RSA 2007: The Cryptographers’ Track
at the RSA Conference, 2006.

[17] Onur Acıiçmez and Werner Schindler. A vulnerability in RSA implementations
due to instruction cache analysis and its demonstration on OpenSSL. In Topics in
Cryptology–CT-RSA 2008: The Cryptographers’ Track at the RSA Conference 2008,
2008.

[18] Samira Mirbagher Ajorpaz, Daniel Moghimi, Jeffrey Neal Collins, Gilles Pokam, Nael
Abu-Ghazaleh, and Dean Tullsen. Evax: Towards a practical, pro-active & adap-
tive architecture for high performance & security. In 55th IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2022.

[19] Andrea Arcangeli, Izik Eidus, and Chris Wright. Increasing memory density by using
KSM. In Proceedings of the linux symposium, 2009.

[20] Lucian Armasu. OpenBSD will disable Intel Hyper-Threading to avoid Spectre-
like exploits (updated), 2018. Available at https://www.tomshardware.com/news/
openbsd-disables-intel-hyper-threading-spectre,37332.html.

[21] Zelalem Birhanu Aweke and Todd Austin. Øzone: Efficient execution with zero timing
leakage for modern microarchitectures. In 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2018.

[22] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig, Matthias
Klimmek, Ahmad-Reza Sadeghi, and Emmanuel Stapf. CURE: A security architec-
ture with CUstomizable and Resilient Enclaves. In 30th USENIX Security Symposium,
2021.

121

http://www.intel.com/pressroom/archive/reference/whitepaper QuickPath.pdf
http://www.intel.com/pressroom/archive/reference/whitepaper QuickPath.pdf
https://simplecore-ger.intel.com/swdevcon-uk/wp-content/uploads/sites/5/2017/10/UK-Dev-Con_Toby-Smith-Track-A_1000.pdf
https://simplecore-ger.intel.com/swdevcon-uk/wp-content/uploads/sites/5/2017/10/UK-Dev-Con_Toby-Smith-Track-A_1000.pdf
https://www.tomshardware.com/news/openbsd-disables-intel-hyper-threading-spectre,37332.html
https://www.tomshardware.com/news/openbsd-disables-intel-hyper-threading-spectre,37332.html

[23] Mohammad-Mahdi Bazm, Thibaut Sautereau, Marc Lacoste, Mario Sudholt, and
Jean-Marc Menaud. Cache-based side-channel attacks detection through Intel cache
monitoring technology and hardware performance counters. In Third International
Conference on Fog and Mobile Edge Computing (FMEC), 2018.

[24] Mohammad Behnia, Prateek Sahu, Riccardo Paccagnella, Jiyong Yu, Zirui Neil Zhao,
Xiang Zou, Thomas Unterluggauer, Josep Torrellas, Carlos Rozas, Adam Morrison,
et al. Speculative interference attacks: Breaking invisible speculation schemes. In 26th
ACM International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2021.

[25] Malini K Bhandaru, Ankush Varma, James R Vash, Monica Wong-Chan, Eric J
DeHaemer, Christopher Allan Poirier, Scott P Bobholz, et al. Dynamically controlling
interconnect frequency in a processor, April 26 2016. US Patent 9,323,316.

[26] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessandro
Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. SMoTherSpectre: Exploit-
ing speculative execution through port contention. In 2019 ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2019.

[27] Samira Briongos, Gorka Irazoqui, Pedro Malagón, and Thomas Eisenbarth.
Cacheshield: Detecting cache attacks through self-observation. In Eighth ACM Con-
ference on Data and Application Security and Privacy, 2018.

[28] Samira Briongos, Pedro Malagón, José M Moya, and Thomas Eisenbarth.
Reload+Refresh: Abusing cache replacement policies to perform stealthy cache at-
tacks. In 29th USENIX Security Symposium, 2020.

[29] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom. Flush,
Gauss, and Reload-a cache attack on the BLISS lattice-based signature scheme. In
International Conference on Cryptographic Hardware and Embedded Systems, 2016.

[30] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Marina
Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, et al. Fallout:
Leaking data on Meltdown-resistant CPUs. In 2019 ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2019.

[31] Paizhuo Chen, Lei Li, and Zhice Yang. Cross-VM and cross-processor covert channels
exploiting processor idle power management. In 30th USENIX Security Symposium,
2021.

122

[32] Jonghyeon Cho, Taehun Kim, Soojin Kim, Miok Im, Taehyun Kim, and Youngjoo
Shin. Real-time detection for cache side channel attack using performance counter
monitor. Applied Sciences, 10(3):984, 2020.

[33] Thomas Claburn. RIP Hyper-Threading? ChromeOS axes key Intel CPU feature
over data-leak flaws – Microsoft, Apple suggest snub, 2019. Available at https:

//www.theregister.co.uk/2019/05/14/intel_hyper_threading_mitigations/.

[34] Pat Conway and Bill Hughes. The AMD Opteron Northbridge Architecture. IEEE
Micro, 2007.

[35] Jack Cook, Jules Drean, Jonathan Behrens, and Mengjia Yan. There’s always a bigger
fish: A clarifying analysis of a machine-learning-assisted side-channel attack. In 49th
Annual International Symposium on Computer Architecture, 2022.

[36] Yujie Cui and Xu Cheng. Abusing cache line dirty states to leak information in
commercial processors. In 2022 IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2022.

[37] Miles Dai, Riccardo Paccagnella, Miguel Gomez-Garcia, John McCalpin, and Mengjia
Yan. Don’t mesh around: Side-channel attacks and mitigations on mesh interconnects.
In 31st USENIX Security Symposium, 2022.

[38] Shuwen Deng, Wenjie Xiong, and Jakub Szefer. Analysis of secure caches using a
three-step model for timing-based attacks. Journal of Hardware and Systems Security,
3(4):397–425, 2019.

[39] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi. HybCache: Hybrid
side-channel-resilient caches for trusted execution environments. In 29th USENIX
Security, 2020.

[40] Debopriya Roy Dipta and Berk Gulmezoglu. DF-SCA: Dynamic frequency side chan-
nel attacks are practical. arXiv preprint arXiv:2206.13660, 2022.

[41] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen. Prime+Abort:
A timer-free high-precision L3 cache attack using Intel TSX. In 26th USENIX Security
Symposium, 2017.

[42] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and Dmitry Pono-
marev. Non-monopolizable caches: Low-complexity mitigation of cache side channel

123

https://www.theregister.co.uk/2019/05/14/intel_hyper_threading_mitigations/
https://www.theregister.co.uk/2019/05/14/intel_hyper_threading_mitigations/

attacks. ACM Transactions on Architecture and Code Optimization (TACO), 8(4):1–
21, 2012.

[43] Sankha Baran Dutta, Hoda Naghibijouybari, Nael Abu-Ghazaleh, Andres Marquez,
and Kevin Barker. Leaky buddies: Cross-component covert channels on integrated
CPU-GPU systems. In ACM/IEEE 48th Annual International Symposium on Com-
puter Architecture (ISCA), 2021.

[44] Morris Dworkin. Recommendation for block cipher modes of operation. methods and
techniques. Technical report, National Inst of Standards and Technology Gaithersburg
MD Computer security Div, 2001.

[45] T. Elgamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theor., 2006.

[46] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Jump over ASLR:
Attacking branch predictors to bypass ASLR. In 49th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), 2016.

[47] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Understanding
and mitigating covert channels through branch predictors. ACM Transactions on
Architecture and Code Optimization (TACO), 13(1):1–23, 2016.

[48] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad Al-
isafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia Ailamaki,
and Babak Falsafi. Clearing the clouds: A study of emerging scale-out workloads on
modern hardware. Acm sigplan notices, 47(4):37–48, 2012.

[49] Andrew Ferraiuolo, Yao Wang, Danfeng Zhang, Andrew C Myers, and G Edward
Suh. Lattice priority scheduling: Low-overhead timing-channel protection for a shared
memory controller. In 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2016.

[50] Anders Fogh. Row hammer, java script and MESI, 2016. Available at https:

//dreamsofastone.blogspot.com/2016/02/row-hammer-java-script-and-mesi.

html.

[51] Peter Garraghan, Paul Townend, and Jie Xu. An analysis of the server characteristics
and resource utilization in Google Cloud. In 2013 IEEE International Conference on
Cloud Engineering (IC2E), 2013.

124

https://dreamsofastone.blogspot.com/2016/02/row-hammer-java-script-and-mesi.html
https://dreamsofastone.blogspot.com/2016/02/row-hammer-java-script-and-mesi.html
https://dreamsofastone.blogspot.com/2016/02/row-hammer-java-script-and-mesi.html

[52] Lukas Giner, Stefan Steinegger, Antoon Purnal, Maria Eichlseder, Thomas Unterlug-
gauer, Stefan Mangard, and Daniel Gruss. Scatter and split securely: Defeating cache
contention and occupancy attacks. In 2023 IEEE Symposium on Security and Privacy
(SP), 2023.

[53] Daniel M. Gordon. A survey of fast exponentiation methods. J. Algorithms, 1998.

[54] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan Mangard.
Prefetch side-channel attacks: Bypassing SMAP and kernel ASLR. In 2016 ACM
SIGSAC Conference on Computer and Communications Security (CCS), 2016.

[55] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. Flush+Flush:
A fast and stealthy cache attack. In 13th International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment (DIMVA), 2016.

[56] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template attacks: Au-
tomating attacks on inclusive last-level caches. In 24th USENIX Security Symposium,
2015.

[57] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache games–bringing access-
based cache attacks on AES to practice. In 2011 IEEE Symposium on Security and
Privacy (S&P), 2011.

[58] Yanan Guo, Andrew Zigerelli, Youtao Zhang, and Jun Yang. IVcache: Defending
cache side channel attacks via invisible accesses. In Proceedings of the 2021 on Great
Lakes Symposium on VLSI (GLSVLSI), 2021.

[59] Yanan Guo, Andrew Zigerelli, Youtao Zhang, and Jun Yang. Adversarial Prefetch:
New cross-core cache side channel attacks. In 2022 IEEE Symposium on Security and
Privacy (S&P), 2022.

[60] Daniel Hackenberg, Robert Schöne, Thomas Ilsche, Daniel Molka, Joseph Schuchart,
and Robin Geyer. An energy efficiency feature survey of the Intel Haswell processor.
In 2015 IEEE international parallel and distributed processing symposium workshop,
2015.

[61] Jawad Haj-Yahya, Lois Orosa, Jeremie S Kim, Juan Gómez Luna, A Giray Yağlıkçı,
Mohammed Alser, Ivan Puddu, and Onur Mutlu. Ichannels: Exploiting current man-
agement mechanisms to create covert channels in modern processors. In ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA), 2021.

125

[62] Austin Harris, Shijia Wei, Prateek Sahu, Pranav Kumar, Todd Austin, and Mohit
Tiwari. Cyclone: Detecting contention-based cache information leaks through cyclic
interference. In 52nd Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), 2019.

[63] Jann Horn. CPU security bug: information leak using speculative execu-
tion, 2017. Available at https://bugs.chromium.org/p/project-zero/issues/

attachmentText?aid=287305.

[64] Taylor Hornby. Side-channel attacks on everyday applications: Distinguishing inputs
with Flush+Reload. BlackHat USA, 2016.

[65] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical timing side channel attacks
against kernel space ASLR. In 2013 IEEE Symposium on Security and Privacy (S&P),
2013.

[66] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. S $ A: A shared cache attack
that works across cores and defies VM sandboxing–and its application to AES. In
2015 IEEE Symposium on Security and Privacy (S&P), 2015.

[67] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Cross processor cache attacks.
In 11th ACM on Asia conference on computer and communications security (Asia
CCS), 2016.

[68] Manuel Kalmbach, Mathias Gottschlag, Tim Schmidt, and Frank Bellosa. Turbocc:
A practical frequency-based covert channel with intel turbo boost. arXiv preprint
arXiv:2007.07046, 2020.

[69] Mehmet Kayaalp, Nael Abu-Ghazaleh, Dmitry Ponomarev, and Aamer Jaleel. A high-
resolution side-channel attack on last-level cache. In 53rd Annual Design Automation
Conference (DAC), 2016.

[70] S Karen Khatamifard, Longfei Wang, Amitabh Das, Selcuk Kose, and Ulya R
Karpuzcu. Powert channels: A novel class of covert communicationexploiting power
management vulnerabilities. In 2019 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), 2019.

[71] Jinchun Kim, Seth H. Pugsley, Paul V. Gratz, A. L. Narasimha Reddy, Chris Wilk-
erson, and Zeshan Chishti. Path confidence based lookahead prefetching. In 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2016.

126

https://bugs.chromium.org/p/project-zero/issues/attachmentText?aid=287305
https://bugs.chromium.org/p/project-zero/issues/attachmentText?aid=287305

[72] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas Devadas, and Joel
Emer. DAWG: A defense against cache timing attacks in speculative execution pro-
cessors. In 51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2018.

[73] Vladimir Kiriansky and Carl Waldspurger. Speculative buffer overflows: Attacks and
defenses. arXiv preprint arXiv:1807.03757, 2018.

[74] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. Spectre attacks: Exploiting speculative execution. In 2019 IEEE
Symposium on Security and Privacy (S&P), 2019.

[75] Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano Giuffrida, Herbert Bos, and
Kaveh Razavi. NetCAT: Practical cache attacks from the network. In 2020 IEEE
Symposium on Security and Privacy (S&P), 2020.

[76] Moritz Lipp, Daniel Gruss, and Michael Schwarz. AMD prefetch attacks through
power and time. In 31st USENIX Security Symposium, 2022.

[77] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan Man-
gard. Armageddon: Cache attacks on mobile devices. In 25th USENIX Security
Symposium, 2016.

[78] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders
Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and
Mike Hamburg. Meltdown: Reading kernel memory from user space. In 27th USENIX
Security Symposium, 2018.

[79] Chen Liu, Abhishek Chakraborty, Nikhil Chawla, and Neer Roggel. Frequency throt-
tling side-channel attack. In 2022 ACM SIGSAC Conference on Computer and Com-
munications Security, 2022.

[80] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser,
and Ruby B Lee. Catalyst: Defeating last-level cache side channel attacks in cloud
computing. In 2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2016.

127

[81] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. Last-level cache
side-channel attacks are practical. In 2015 IEEE Symposium on Security and Privacy
(S&P), 2015.

[82] Adam Malamy, Rajiv N Patel, and Norman M Hayes. Methods and apparatus for im-
plementing a pseudo-LRU cache memory replacement scheme with a locking feature,
1994.

[83] Andrew Marshall, Michael Howard, Grant Bugher, Brian Harden, Charlie Kaufman,
Martin Rues, and Vittorio Bertocci. Security best practices for developing Windows
Azure applications. Microsoft Corp, 42:12–15, 2010.

[84] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner, Daniel Gruss,
Carlo Alberto Boano, Stefan Mangard, and Kay Römer. Hello from the other side:
SSH over robust cache covert channels in the cloud. In Network and Distributed
System Security Symposium (NDSS), 2017.

[85] John D. McCalpin. Address hashing in Intel processors, 2018.

[86] Samira Mirbagher-Ajorpaz, Gilles Pokam, Esmaeil Mohammadian-Koruyeh, Elba
Garza, Nael Abu-Ghazaleh, and Daniel A Jiménez. Perspectron: Detecting invariant
footprints of microarchitectural attacks with perceptron. In 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2020.

[87] Ahmad Moghimi, JanWichelmann, Thomas Eisenbarth, and Berk Sunar. Memjam: A
false dependency attack against constant-time crypto implementations. International
Journal of Parallel Programming, 47:538–570, 2019.

[88] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and Angelos D Keromytis.
The spy in the sandbox: Practical cache attacks in JavaScript and their implica-
tions. In 2015 ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2015.

[89] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures:
the case of AES. In 2006 Cryptographers’ track at the RSA conference, 2006.

[90] Riccardo Paccagnella, Licheng Luo, and Christopher W Fletcher. Lord of the Ring(s):
Side channel attacks on the CPU on-chip ring interconnect are practical. In 30th
USENIX Security Symposium, 2021.

128

[91] Colin Percival. Cache missing for fun and profit, 2005.

[92] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan Man-
gard. DRAMA: Exploiting DRAM addressing for cross-CPU attacks. In 25th USENIX
Security Symposium, 2016.

[93] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede. Prime+Scope: Overcoming
the observer effect for high-precision cache contention attacks. In 2021 ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2021.

[94] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede. Double trouble: Combined
heterogeneous attacks on non-inclusive cache hierarchies. In 31st USENIX Security
Symposium, 2022.

[95] Moinuddin K Qureshi. CEASER: Mitigating conflict-based cache attacks via
encrypted-address and remapping. In 51st Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO), 2018.

[96] Moinuddin K Qureshi. New attacks and defense for encrypted-address cache. In
ACM/IEEE 46th Annual International Symposium on Computer Architecture (ISCA),
2019.

[97] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, you, get
off of my cloud: Exploring information leakage in third-party compute clouds. In 2009
ACM SIGSAC conference on Computer and Communications Security (CCS), 2009.

[98] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[99] Aditya Rohan, Biswabandan Panda, and Prakhar Agarwal. Reverse engineering the
stream prefetcher for profit. In 2020 IEEE European Symposium on Security and
Privacy Workshops (EuroS&PW), 2020.

[100] Gururaj Saileshwar, Christopher W Fletcher, and Moinuddin Qureshi. Streamline: A
fast, flushless cache covert-channel attack by enabling asynchronous collusion. In 26th
ACM International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2021.

[101] Gururaj Saileshwar, Sanjay Kariyappa, and Moinuddin Qureshi. Bespoke cache en-
claves: Fine-grained and scalable isolation from cache side-channels via flexible set-

129

partitioning. In 2021 International Symposium on Secure and Private Execution En-
vironment Design (SEED), 2021.

[102] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina,
Thomas Prescher, and Daniel Gruss. ZombieLoad: Cross-privilege-boundary data
sampling. In 2019 ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2019.

[103] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and Daniel Gruss.
NetSpectre: Read arbitrary memory over network. In 24th European Symposium on
Research in Computer Security, 2019.

[104] Martin Schwarzl, Thomas Schuster, Michael Schwarz, and Daniel Gruss. Speculative
dereferencing: Reviving Foreshadow. In 25th International Conference on Financial
Cryptography and Data Security (FC), 2021.

[105] Youngjoo Shin, Hyung Chan Kim, Dokeun Kwon, Ji Hoon Jeong, and Junbeom Hur.
Unveiling hardware-based data prefetcher, a hidden source of information leakage. In
2018 ACM SIGSAC Conference on Computer and Communications Security (CCS),
2018.

[106] Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell, Daniel Genkin, Yossi Oren, and
Yuval Yarom. Prime+Probe 1, JavaScript 0: Overcoming browser-based side-channel
defenses. In 30th USENIX Security Symposium, 2021.

[107] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser, Prateek Mittal,
Yossi Oren, and Yuval Yarom. Robust website fingerprinting through the cache oc-
cupancy channel. In 28th USENIX Security Symposium, 2019.

[108] Dimitrios Skarlatos, Mengjia Yan, Bhargava Gopireddy, Read Sprabery, Josep Tor-
rellas, and Christopher W. Fletcher. MicroScope: Enabling microarchitectural replay
attacks. In ACM/IEEE 46th Annual International Symposium on Computer Archi-
tecture (ISCA), 2019.

[109] Kimming So and Rudolph N Rechtschaffen. Cache operations by MRU change. IEEE
Transactions on Computers, 37(6), 1988.

[110] Dawn Xiaodong Song, David A Wagner, and Xuqing Tian. Timing analysis of
keystrokes and timing attacks on ssh. In 10th USENIX Security Symposium, 2001.

130

[111] Qinhan Tan, Zhihua Zeng, Kai Bu, and Kui Ren. PhantomCache: Obfuscating cache
conflicts with localized randomization. In Network and Distributed System Security
Symposium (NDSS), 2020.

[112] Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. Packet chasing: Spying
on network packets over a cache side-channel. In ACM/IEEE 47th Annual Interna-
tional Symposium on Computer Architecture (ISCA), 2020.

[113] Daniel Townley, Kerem Arıkan, Yu David Liu, Dmitry Ponomarev, and Oğuz Ergin.
Composable cachelets: Protecting enclaves from cache side-channel attacks. In 31st
USENIX Security Symposium, 2022.

[114] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. Checkmate: Automated
synthesis of hardware exploits and security litmus tests. In 51st IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), 2018.

[115] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. MeltdownPrime and Spec-
trePrime: Automatically-synthesized attacks exploiting invalidation-based coherence
protocols. arXiv preprint arXiv:1802.03802, 2018.

[116] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the keys to the Intel SGX kingdom with transient out-of-
order execution. In 27th USENIX Security Symposium, 2018.

[117] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina Minkin, Daniel
Genkin, Yarom Yuval, Berk Sunar, Daniel Gruss, and Frank Piessens. LVI: Hijacking
transient execution through microarchitectural load value injection. In 2020 IEEE
Symposium on Security and Privacy (S&P), 2020.

[118] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. RIDL: Rogue in-
flight data load. In 2019 IEEE Symposium on Security and Privacy (S&P), 2019.

[119] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel Genkin, and Yuval
Yarom. CacheOut: Leaking data on Intel CPUs via cache evictions. In 2021 IEEE
Symposium on Security and Privacy (S&P), 2021.

[120] Tarunesh Verma, Achilleas Anastasopoulos, and Todd Austin. These aren’t the caches
you’re looking for: Stochastic channels on randomized caches. In 2022 IEEE Inter-

131

national Symposium on Secure and Private Execution Environment Design (SEED),
2022.

[121] Pepe Vila, Boris Köpf, and José F Morales. Theory and practice of finding eviction
sets. In 2019 IEEE Symposium on Security and Privacy (S&P), 2019.

[122] Junpeng Wan, Yanxiang Bi, Zhe Zhou, and Zhou Li. MeshUp: Stateless cache side-
channel attack on CPU mesh. In 2022 IEEE Symposium on Security and Privacy
(SP), 2022.

[123] Daimeng Wang, Ajaya Neupane, Zhiyun Qian, Nael B Abu-Ghazaleh, Srikanth V
Krishnamurthy, Edward JM Colbert, and Paul Yu. Unveiling your keystrokes: A
cache-based side-channel attack on graphics libraries. In Network and Distributed
System Security Symposium (NDSS), 2019.

[124] Yao Wang, Andrew Ferraiuolo, and G Edward Suh. Timing channel protection for a
shared memory controller. In 2014 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), 2014.

[125] Yao Wang, Andrew Ferraiuolo, Danfeng Zhang, Andrew C Myers, and G Edward Suh.
Secdcp: secure dynamic cache partitioning for efficient timing channel protection. In
Proceedings of the 53rd Annual Design Automation Conference, 2016.

[126] Yingchen Wang, Riccardo Paccagnella, Elizabeth Tang He, Hovav Shacham, Christo-
pher W Fletcher, and David Kohlbrenner. Hertzbleed: Turning power side-channel
attacks into remote timing attacks on x86. In 31st USENIX Security Symposium,
2022.

[127] Hassan MG Wassel, Ying Gao, Jason K Oberg, Ted Huffmire, Ryan Kastner, Fred-
eric T Chong, and Timothy Sherwood. SurfNoC: A low latency and provably non-
interfering approach to secure networks-on-chip. ACM SIGARCH Computer Archi-
tecture News, 41(3):583–594, 2013.

[128] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz, Daniel Gruss,
and Stefan Mangard. ScatterCache: Thwarting cache attacks via cache set random-
ization. In 28th USENIX Security Symposium, 2019.

[129] Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers in the Hyper-Space: High-speed
covert channel attacks in the cloud. In 21st USENIX Security Symposium, 2012.

132

[130] Wenjie Xiong and Jakub Szefer. Leaking information through cache LRU states. In
2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA), 2020.

[131] Mengjia Yan, Bhargava Gopireddy, Thomas Shull, and Josep Torrellas. Secure
hierarchy-aware cache replacement policy (SHARP): Defending against cache-based
side channel atacks. ACM SIGARCH Computer Architecture News, 45(2):347–360,
2017.

[132] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher Fletcher, Roy Camp-
bell, and Josep Torrellas. Attack directories, not caches: Side channel attacks in a
non-inclusive world. In 2019 IEEE Symposium on Security and Privacy (S&P), 2019.

[133] Fan Yao, Milos Doroslovacki, and Guru Venkataramani. Are coherence protocol states
vulnerable to information leakage? In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2018.

[134] Yuval Yarom and Katrina Falkner. Flush+Reload: A high resolution, low noise, L3
cache side-channel attack. In 23rd USENIX Security Symposium, 2014.

[135] Yuval Yarom, Daniel Genkin, and Nadia Heninger. CacheBleed: A timing attack
on OpenSSL constant-time RSA. ACM SIGARCH Computer Architecture News,
45(2):347–360, 2017.

[136] Younis A Younis, Kashif Kifayat, Qi Shi, and Bob Askwith. A new Prime and Probe
cache side-channel attack for cloud computing. In 2015 IEEE International Confer-
ence on Computer and Information Technology; Ubiquitous Computing and Commu-
nications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and
Computing, 2015.

[137] Kehuan Zhang and Xiaofeng Wang. Peeping tom in the neighborhood: Keystroke
eavesdropping on multi-user systems. In 18th USENIX Security Symposium, 2009.

[138] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Cross-VM side
channels and their use to extract private keys. In 2012 ACM SIGSAC conference on
Computer and communications security (CCS), 2012.

[139] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Cross-tenant
side-channel attacks in PaaS clouds. In 2014 ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2014.

133

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1 The evaluated processors for the two observations.
	2 The specifications of the tested processors.
	3 The maximum capacities of the prefetch-based channels.
	4 The specifications of the tested processors.
	5 The maximum channel capacities of NTP+NTP and Prime+Probe.
	6 # of operations for reverting the cache state with a 16-way associative LLC.
	7 Platform details.
	8 The maximum channel capacities of UF-variation (as a cross-core channel) with the stress-ng tool.
	9 The comparison of uncore covert channels; 51 means the channel is functional while 55 means it is not.
	10 The channel capacities of UF-variation (as a cross-core channel) with background cloud applications.

	List of Figures
	1 The four possible states of a private cache line, when using the MESI protocol.
	2 The illustration of cache coherence state changes. The state of a line changes from M (shown in (a)) to S (shown in (b)) when a CPU core is loading it; conversely, the state changes from S to M when a CPU core is writing it. Dashed lines shows the request path of the read/write operation.
	3 The illustration of an LLC access with the target cache line in M state (a), and S state (b).
	4 The timing measurement results in thread1 of Listing 3.1 and Listing 3.2.
	5 The details of the three steps in Prefetch+Reload.
	6 The capacities and bit-error-rates of the prefetch-based channels on various Intel processors.
	7 A segment of the prefetch latencies measured in Prefetch+Prefetch while attacking GnuPG; part of the the exponent e shown here is ``111001011001''.
	8 The access latencies measured in Step 3 of Prefetch+Reload when a user types ``abcdefg1234'' in gedit; we monitor address 0x7b980 of libgdk.so.
	9 The cache miss rates of 1) the attacker processes in various cache attacks and 2) three workloads in SPEC 2017.
	10 The accuracy of Prefetch+Prefetch and Flush+Reload on our Intel Core i7-6700 processor, with different waiting window sizes.
	11 The distributions of the amount of secret bytes that can be accessed and encoded in a transient window, when leaking by Flush+Reload and Prefetch+Prefetch, respectively.
	12 The state change details of an LLC set upon CPU requests; changes after each request are highlighted.
	13 The experiment steps and results for verifying that prefetched data are evicted earlier than other data.
	14 The experiment steps and results for learning the insertion policy of PREFETCHNTA.
	15 The experiment steps and results for learning the updating policy of PREFETCHNTA.
	16 The execution times of PREFETCHNTA when the target data is the L1 cache, LLC, and DRAM.
	17 How the state of the target LLC set changes during the NTP+NTP covert channel.
	18 The operations of the sender and receiver in each iteration of NTP+NTP, when using two LLC sets; the receiver always detects the bit sent in the last iteration instead of the current iteration.
	19 The capacities and bit-error-rates of NTP+NTP and Prime+Probe.
	20 The total latency of the preparation step, for the two attack primitives.
	21 Sequence of the LLC set states during Reload+Refresh.
	22 Sequence of the LLC set states during Prefetch+Refresh.
	23 The total latency of the attacker's operations in each attack iteration, for Reload+Refresh and the two versions of Prefetch+Refresh.
	24 The execution time of the two algorithms.
	25 The architecture of our Intel Xeon Gold 6142 processor; the I/O controllers are omitted.
	26 The layout of the uncore freq. limitation register.
	27 The median uncore frequencies (in GHz) with different thread counts and LLC access types.
	28 The uncore frequencies based on the number of stalled cores and active but not stalled cores.
	29 Uncore frequency trace upon initiating the stalling loop.
	30 Uncore frequency trace upon stopping the stalling loop.
	31 Uncore frequency trace upon initiating the stalling loop on Proc. 1.
	32 The LLC access latencies under different uncore frequencies; the latencies are measured all on core (3,3). 0-hop latencies, 1-hop latencies, 2-hop latencies, and 3-hop latencies are collected when accessing LLC slice (3,3), LLC slice (2,3), LLC slice (2,2), and LLC slice (2,1), respectively. The latencies are collected in a 10 ms window.
	33 The LLC access latency trace and the corresponding uncore frequency trace when sending ``1101001011'' through the channel. The transmission interval is 38 ms. The LLC access latencies are 1-hop latencies.
	34 The channel capacities and error rates of UF-variation, in the cross-core and cross-processor scenarios, respectively.
	35 The uncore frequency traces captured while the victim compresses files with varying sizes.
	36 The uncore frequency traces captured while the victim is accessing varying domains.

	Preface
	1.0 Introduction
	1.1 Problem Statement
	1.2 Research Overview
	1.3 Dissertation Organization

	2.0 Background
	2.1 CPU Cache Architecture
	2.2 Cache Covert Channels and Side Channel Attacks (Cache Attacks)
	2.2.1 Existing Cache Attacks
	2.2.2 Existing Countermeasures against Cache Attacks

	2.3 Goal of This Dissertation

	3.0 New Coherence-Based Cache Attacks with The PREFETCHW Instruction
	3.1 Overview
	3.2 Cache Coherence
	3.3 Prefetch
	3.4 Characterizing The Prefetch-For-Write Instruction
	3.5 Covert Channels Based on PREFETCHW
	3.5.1 Threat Model
	3.5.2 Prefetch+Load
	3.5.3 Prefetch+Prefetch

	3.6 Side Channel Attacks Based on PREFETCHW
	3.6.1 Basic Idea and Assumptions
	3.6.2 Prefetch+Reload
	3.6.3 Prefetch+Prefetch

	3.7 Evaluation
	3.7.1 Covert Channel Evaluation
	3.7.2 Side Channel Evaluation
	3.7.2.1 Side Channel Attack on Cryptographic Code
	3.7.2.2 Side Channel Attack on Keystroke Timing
	3.7.2.3 Attack Stealthiness
	3.7.2.4 Windowless Prefetch+Prefetch

	3.7.3 Prefetch-Based Channels in Transient Execution Attacks

	3.8 Discussion
	3.8.1 Attack Reliability
	3.8.2 PREFETCHW on AMD processors

	3.9 Chapter Summary

	4.0 New Conflict-Based Cache Attacks with The PREFETCHNTA Instruction
	4.1 Overview
	4.2 Cache Replacement Policy
	4.3 Characterizing The Non-Temporal Prefetch Instruction
	4.3.1 Non-Temporal Prefetch
	4.3.2 Key Properties
	4.3.2.1 Insertion Policy
	4.3.2.2 Updating Policy
	4.3.2.3 Timing Variance

	4.4 A Covert Channel Based on PREFETCHNTA
	4.4.1 Threat Model
	4.4.2 NTP+NTP
	4.4.2.1 Channel Protocol
	4.4.2.2 Channel Capacity
	4.4.2.3 Channel Reliability

	4.5 Side Channel Attacks Based on PREFETCHNTA
	4.5.1 Prime+Scope with PREFETCHNTA
	4.5.1.1 Prime+Scope
	4.5.1.2 Prime+Prefetch+Scope
	4.5.1.3 Faster Preparation Step

	4.5.2 Reload+Refresh with PREFETCHNTA
	4.5.2.1 Reload+Refresh
	4.5.2.2 Prefetch+Refresh
	4.5.2.3 Faster Attacks

	4.6 Discussion
	4.6.1 Fast Eviction Set Construction
	4.6.2 PREFETCHNTA with Non-Inclusive LLCs

	4.7 Chapter Summary

	5.0 Cache Attacks Based on Uncore Frequency Scaling
	5.1 Overview
	5.2 CPU On-Chip Interconnect
	5.3 CPU Power Management
	5.3.1 CPU Frequency Scaling
	5.3.2 CPU Idle Power Management

	5.4 Prior Uncore Covert Channels
	5.5 UFS Characterization
	5.5.1 UFS with LLC/Interconnect Utilization
	5.5.2 UFS with Core Stalling
	5.5.3 UFS Granularity
	5.5.4 UFS across Processors
	5.5.5 Summary of UFS Behavior

	5.6 UFS-Based Covert Channel
	5.6.1 Threat Model
	5.6.2 Measuring Uncore Frequency
	5.6.3 UF-variation
	5.6.3.1 Channel Protocol
	5.6.3.2 Channel Capacity
	5.6.3.3 Channel Reliability

	5.6.4 Comparison of Uncore Covert Channels

	5.7 Side Channel Attacks
	5.8 Discussion
	5.8.1 Evaluation with Background Workloads
	5.8.2 Remote Covert Channel with UFS
	5.8.3 Applicability to Non-Intel Processors

	5.9 Chapter Summary

	6.0 Countermeasures
	6.1 Countermeasures against Attacks Based on Cache-Controlling Instructions
	6.2 Countermeasures against Attacks Based on UFS

	7.0 Related Work
	7.1 Prefetch-Based Attacks
	7.2 Cache Coherence Vulnerabilities
	7.3 Attacks Based on Frequency Scaling and Power Management

	8.0 Conclusion and Future Work
	8.1 Conclusion
	8.2 Future Work on Cache Attacks

	Bibliography

