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Spurious Numerical Dissipation and Time Accuracy

Farjana Siddiqua, PhD

University of Pittsburgh, 2024

In this thesis, we do the numerical analysis of an advection-diffusion-reaction problem in

bioseparation and a corrected Smagorinsky model for turbulence. Numerical dissipation due

to time discretization schemes often contributes to or causes overdissipation. The goal of this

dissertation is to control spurious numerical dissipation and to acquire long-time high-order

accuracy.

In the first project, we analyze an advection-diffusion-reaction problem with the non-

homogeneous boundary conditions (useful for practical settings) that model the chromatog-

raphy process, a vital stage in bioseparation. We prove stability and error estimates using

finite elements for spatial discretization and the midpoint method for time discretization.

These yield a second-order convergence rate and better total mass conservation. The nu-

merical tests validate the theoretical results.

In the second project, we develop a turbulence model named the Corrected Smagorinsky

Model (CSM) and analyze it. When the ratio of dissipation of turbulent kinetic energy

(TKE) and the production of TKE is equal to 1, we call it statistical equilibrium. We ex-

tend a classical model for turbulence at statistical equilibrium to non-equilibrium turbulence

and propose and analyze algorithms for the solution of the extended model. The classical

Smagorinsky model’s solution is an approximation to a (resolved) mean velocity. Since it is

an eddy viscosity model, it cannot represent a flow of energy from unresolved fluctuations to

the (resolved) mean velocity. This classical Smagorinsky model was corrected to incorporate

this flow and still be well-posed. The computational experiments verify the properties of the

algorithms and show that the model captures the non-equilibrium effects.

In the third project, we analyze the one-leg, two-step variable time step methods of

Dahlquist, Liniger, and Nevanlinna (DLN) for the time discretization in the Corrected

Smagorinsky Model. Turbulent flows strain computational resources in terms of memory
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usage and CPU (central processing unit) speed. The adaptive DLN methods are second-

order accurate and allow large timesteps, hence requiring less memory and fewer FLOPS

(floating point operations per second). We demonstrated the method’s second-order accu-

racy, quantified its numerical dissipation, demonstrated error estimates in addition to proving

the kinetic energy is bounded for various time steps and illustrated theoretical results by

numerical tests.
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1.0 Introduction

Understanding the intricacies of fluid flow dynamics is essential for decision making,

optimizing systems such as weather prediction, climate change, geophysical systems, en-

gineering applications, waste disposal, and cooling etc. Manufacturers can cut expenses,

increase productivity, and lessen their environmental effect by understanding these systems

and modeling their behavior. Computational fluid dynamics (CFD) is of worldwide impor-

tance, as it underlies many different fields and innumerable pragmatic applications. For

example, modeling and simulating flows of liquids and gases is important for understand-

ing river flows, blood flow within the body, the dispersion of smoke, atmospheric streams,

and vehicle aerodynamics. A broad variety of processes and industries rely on an under-

standing of fluid flows; as a result, accurate mathematical modeling of these processes is

critical for increasing efficiency and safety in the industrial setting. Advanced mathemat-

ical models of CFD can become computationally expensive and complex quite quickly, so

it is also important to ensure that CFD models are concise, simple, accurate, and effec-

tive. However, in computational fluid dynamics (CFD), minimizing numerical dissipation

and attaining long-time temporal accuracy are essential elements. Computational simula-

tions can represent complex fluid dynamics phenomena and small-scale flow features more

accurately by decreasing numerical dissipation and improving time accuracy. In [127], a

discussion of numerical dissipation is presented in the framework of characteristics-based

techniques for solving the Euler equations of fluid dynamics and the difficulties associated

with excessive dissipation and its consequences for accurately capturing shock waves and

other discontinuities are emphasized. More discussion of the impact of numerical dissipation

on the accuracy can be found in [5,31,34,53,70,126,132,142,144]. In [104,156,157], the im-

portance of minimizing numerical dissipation in advection-dominated problems is discussed.

In [83, 105], topics related to time integration and the importance of reducing dissipation

for achieving accurate time-stepping solutions are covered. This thesis focuses on reduced
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numerical dissipation while selecting time discretization schemes for two types of problems

in three chapters. We analyzed the advection diffusion reaction problem in Chapter 2 and

developed and analyzed a new turbulent model named the Corrected Smagorinsky Model in

Chapter 3 and Chapter 4. The numerical simulations are performed by using FreeFEM++

and MATLAB.

Applications of advection-diffusion-reaction problem form a wide array of nationally

funded research areas such as oil recovery, pollutant tracking/pollution abatement, chem-

ical processing, and global climate studies. The work in the Chapter 2 builds upon the

thesis work of Wilson [153] and we considered an advection-diffusion-reaction problem with

non-homogeneous boundary conditions which is a simulation tool of chromatography pro-

cess [18–20]. We proved the stability and error estimates using finite elements for spatial

discretization and the midpoint method for the time discretization, improving results in [153].

Due to the absence of numerical dissipation, the accuracy comes in two ways, such as the

rate of convergence is higher and the mass is better conserved when the midpoint method

is used. Numerical tests validate the theoretical results. The nonlinearity of the problem

makes the analysis challenging. We drop the following assumptions in our work that was

used in [153]:

• Liquid phase concentration C(x, t) is nondecreasing in time at every x.

• C(x, t) = 0 on inflow boundary Γin = {x ∈ Γ : −→n · u(x) < 0}.

• C(x, t) is non-negative.

Instead, we considered the non-homogeneous boundary condition at the inflow boundary and

using a maximum principle argument, we proved that the continuous solution is positive and

bounded above for all (x, t) ∈ Ω× (0, T ). Some results of this chapter is published in [136].

In Chapter 3 and Chapter 4, this PhD work improve the stability of viscosity models

and the accuracy of turbulent flow simulation, while reducing computational costs. Tur-

bulence is an essential phenomenon to understand, since it is fundamental to astrophysics,

water flow, geophysics, and engineering. Although it is a significant multiscale phenomenon

that affects our everyday life, turbulence is not well understood from a scientific standpoint.

2



Plane crashes, and climate changes, among other natural events, are sometimes caused by

turbulent effects. The crucial question that arises is: how can we predict when, where, or

how turbulent effects are determined in an application? This is a challenging subject, at the

same time mathematically deep and physically important. Moreover, progress in this area

is only possible through fundamental insights, since it requires bridging the physics of flow,

mathematical theory, and carefully designed simulation. In our work, we sought to develop

an accurate solution for including intermittent energy transfer from fluctuations to means.

To accomplish this, we adapted an eddy viscosity model to nonequilibrium turbulence in

Chapter 3. We developed a numerically efficient model for turbulent flow at statistical

non-equilibrium. The new model does not add the problematic complexity of any additional

fitting parameters, and it naturally extends the Smagorinsky model to nonequilibrium turbu-

lence. Impressively, our model demonstrates the ability to incorporate statistical backscatter

without using negative turbulent viscosities [35, 143, 148]. We validate the model with nu-

merical experiments in Section 3.6 and confirm that the model captures the energy transfer

from fluctuation to means. While comparing results of Backward Euler (BE) discretization

and Linearlized Crank Nicolson (CNLE) discretization in this model, we observe backscatter

in the latter case which indicates that added numerical dissipation in BE prevents us to see

backscatter. The new model represents an important contribution to studies of turbulence,

and CFD modeling. The results of this chapter is published in [137].

Due to the Corrected Smagorinsky Model’s sensitivity to time discretization method,

we do further investigation in Chapter 4 using a one-leg, two-step time discretization DLN

method proposed by Dahlquist, Liniger, and Nevanlinna [47, 96–98]. The DLN method is

a 1-parameter (0 ≤ θ ≤ 1) family of A-stable, 2-step, G-stable methods. In Chapter 4,

we focus on reducing the computational cost and memory usage while speeding up CPU.

Since the adaptive DLN has second-order accuracy and allows for large timesteps, it results

in decreased memory usage and fewer FLOPS. We analyze the DLN methods with vari-

able timesteps applied to the Corrected Smagorinsky model. We prove the kinetic energy

is bounded, show second-order accuracy, quantify its numerical dissipation, and provide er-

3



ror estimates. Several numerical experiments verify the theoretical results. DLN for the

Corrected Smagorinksy has backscatter when θ = 1, which is consistent with the purpose

of this model. On the other hand, we observe that the constant step DLN for θ < 1 has

bigger numerical dissipation, which negatively impacts the backscatter from DLN. We prove

that adapting the time step produces a significant difference in the solution. Some numer-

ical experiments show that backscatter is visible even for θ < 1 when variable timestep is

considered. The results of this chapter is published in [135].
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2.0 A second-order symplectic method for an advection-diffusion-reaction

problem in Bioseparation

In this chapter, an advection-diffusion-reaction problem with non-homogeneous boundary

conditions is considered that models the chromatography process, a vital stage in biosepara-

tion. We do stability analysis and error estimates for constant and affine adsorptions using

the midpoint method for time discretization and finite elements for spatial discretization. In

addition, we did the stability analysis for nonlinear, explicit adsorption in the continuous,

semi-discrete, and fully discreet cases. For nonlinear, explicit adsorption, we also have done

an error analysis for the semi-discrete case and proved the existence of a solution for the

fully discrete case. The numerical tests are performed that validate our theoretical results.

2.1 Introduction

The global market for biopharmaceuticals is expected to hit $856.1 billion by 2030 and

50% of top 100 drugs will most likely be derived from biotechnology [2, 41]. The high de-

mand for biopharmaceuticals is due to their effectiveness in treating various illnesses such as

diabetes, anemia, cancer, etc. [102]. For example, monoclonal antibodies [106, 123], general

products from bioseparation are very useful medications to treat Covid-19 [1, 3, 4]. Other

key factors driving the growth of the market are rising investments in the research and

development of novel treatments, favorable government regulations, and increasing adop-

tion of biopharmaceuticals by the global population [2]. To maximize production capacity

while minimizing costs, manufacturers are constantly developing new methods. As an al-

ternative to constructing new biomanufacturing facilities due to financial risk, integrating

new technologies into existing facilities would be more economically viable. Upstream and

downstream processes are typically part of a biomanufacturing facility. In the upstream
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process, cells cultured by genetically engineered methods release the desired product into a

solution and in the downstream process, the product is purified from the solution [39]. The

capacity of production is often limited by downstream purification, usually including chro-

matography. In the protein chromatography process, when the solution is pushed through

the column, the materials in columns separate the proteins [153]. Ideal media for chro-

matography columns used for bioseparation are resin beds, monoliths, and membranes [149].

Membrane chromatography [18–20] addresses the low efficiency of resin chromatography, and

uses a porous, absorptive membrane as the packing medium instead of the small resin beads

The protein binding capacity is crucial in membrane chromatography as it determines the

volume of membrane required for purification. Most absorption mechanisms, such as ion-

exchange membranes, lose the protein binding capacity at relatively low conductivity and

often require additional processing stages, causing lower yield and higher production costs.

Recent research in [19, 151] has focused on multimodal membrane-based chromatography.

The development of a modeling framework capable of characterizing the chromatography

process under continuous flow circumstances is critical. To model this process for creat-

ing a simulation tool for transport in a porous medium, the reactive transport problem

(advection-diffusion-reaction problem) considered in [9, 43,143,145,153] is given below.

Let Ω be a bounded domain inRd, d = 1, 2, or 3 with piecewise smooth boundary Γ. We

partition the boundary into three non-overlapping segments Γ = Γin∪Γn∪Γout where inflow

boundary, Γin = {x ∈ Γ : −→n ·u(x) < 0}, outflow boundary, Γout = {x ∈ Γ : −→n ·u(x) > 0} and

boundaries comprising no-flow hydraulic zone(s), Γn = Γ\(Γin∪Γout). Let u be a fluid velocity

through the membrane and −→n denote the unit outward normal to Ω. We consider u is given,

which is computed by Darcy [43] satisfying ∇·u = 0 and u ·−→n (x, t) = 0, x ∈ Γn, t > 0. Let

ω be the total porosity of the membrane (0 ≤ ω ≤ 1), ρs be the density of the membrane, D

be the diffusion tensor that represents diffusivity of fluid through the membrane, C and q(C)

be the concentration in the liquid and absorbed phases respectively. For a forcing function

f ∈ L2(0, T ;L2(Ω)), given velocity u and initial concentration C0 ∈ L2(Ω), we consider the
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following initial boundary value problem of finding concentration C(x, t):

ω∂tC + (1− ω)ρs∂tq(C) +∇ · (uC)−∇ · (D∇C) = f, x ∈ Ω, t > 0,

C(x, t) = g, x ∈ Γin, t > 0,

(D∇C) · −→n (x, t) = 0, x ∈ Γn ∪ Γout, t > 0,

C(x, 0) = C0(x), x ∈ Ω.

(1)

For the inflow boundary, we keep the fixed concentration [16, 43]. The illustration of the

Ω

Γin

Γout

Γn Γn

Figure 1: Domain Ω

domain is given in Figure 1.

In this chapter, we consider three cases of isotherms. They are constant isotherm, q(C) =

K, affine isotherm, q(C) = K1 + K2C and nonlinear, explicit isotherm q(C). A typical

example of the nonlinear, explicit isotherm is Langmuir’s isotherm [20,138], q(C) = qmaxKeqC

1+KeqC
,

where Keq is Langmuir equilibrium constant, qmax is the maximum binding capacity of the

porous medium. New insights into adsorption processes have led to implicit representations

of q as a function of C [111,112,114,150]. The main result of this chapter is gaining improved

accuracy by using the midpoint method for time discretization at the same computational

cost as the Backward Euler method. The accuracy comes in two ways, such as the rate

of convergence is higher and the mass is better conserved when the midpoint method is
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used. The fully discrete formulation of the considered problem is given in Section 2.3. The

stability analysis and error analysis for constant and affine q(C) are given in Section 2.4. We

also show the stability analysis for the nonlinear, explicit q(C) in the same section. Error

analysis for nonlinear, explicit q(C) is given in Section 2.4.5. The proof of the existence of

the solution in a fully discrete case is given in Section 2.4.5.1. Numerical tests validating

these estimates are given in Section 2.5.

2.1.1 Related work

The general advection-diffusion equation has been the subject of extensive mathematical

study during the past decades [12, 21, 40, 69, 72, 82]. The analysis and numerical solution

are typically more difficult in the presence of reaction terms, especially nonlinear ones [125].

In [153, 154], constant, linear, and nonlinear adsorptions are analyzed by using Backward

Euler for time discretization and the upwind Petrov-Galerkin (SUPG) finite element for

spatial discretization and numerical validation for each of the priori estimates are provided.

Recently, a computational framework has been developed to model and optimize the capture

chromatography for the purification of monoclonal antibodies [42,129,130].

2.2 Notation and Preliminaries

We denote the L2(Ω) norm and inner product by ∥ · ∥ and, (·, ·) respectively. We denote

the usual Sobolev spaces Wm,p(Ω) with the associated norms ∥ · ∥Wm,p(Ω) and in the case

when p = 2, we denote Wm,2(Ω) = Hm(Ω) = {v ∈ L2(Ω) : ∂αv
∂xα ∈ L2(Ω), |α| ≤ r} where α is

a multi-index, with norm ∥v∥r =
(∑

|α|≤r

∫
Ω

∣∣∣ ∂αv
∂xα

∣∣∣2dΩ)1/2. The function space for the liquid

phase concentration is defined as:

H1
0,Γin

(Ω) := {v : v ∈ H1(Ω) with v = 0 on Γin}.
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We define the space H1/2(Γin) := {g ∈ L2(Γin) : ∥g∥H1/2(Γin)
<∞} where

∥g∥H1/2(Γin)
= inf

G∈H1(Ω)

G

∣∣
Γin=g

∥G∥H1(Ω).

The Bochner Space [6] norms are

∥C∥L2(0,T ;X) =

(∫ T

0

∥C(·, t)∥2Xdt

) 1
2

, ∥C∥L∞(0,T ;X) = ess sup
0≤t≤T

∥C(·, t)∥X .

We also define discrete Lp-norms with p = 2 or ∞

∥C∥L2(0,T,X) =
(
∆t

N∑
n=0

∥Cn∥2X
)
, ∥C∥L∞(0,T,X) = max

0≤n≤N
∥Cn∥X .

For the Finite Element Approximation, we consider a regular triangulation of Ω, Th = {A}

with Ω =
⋃

A∈Th A. We choose a finite dimensional subspace Xh ⊂ H1(Ω) and define

Xh
0,Γin

= {vh ∈ Xh : vh = 0 on Γin}

with Ω a polyhedron, Xh
0,Γin

⊂ H1
0,Γin

(Ω). Let X∗ be the dual space of Xh
0,Γin

, with norm

∥f∥∗ = supv∈Xh
0,Γin

(f,v)
∥∇v∥ . We denoteXh

Γin
as the restriction of functions inXh to the boundary

Γin and define Xh
0 = {vh ∈ Xh : vh = 0 on ∂Ω} with Ω a polyhedron, Xh

0 ⊂ H1
0 (Ω).

Throughout, K will denote a constant taking different values in different instances. We

assume that there exists a k ≥ 1 such that Xh possesses the approximation property,

inf
Ch∈Xh

∥C − Ch∥s ≤ Khr−s∥C∥r, for s = 0, 1 and 1 ≤ r ≤ k + 1. (2)

For example, (2) holds if Xh consists of piecewise polynomials of degree≤ k. We assume

that a similar approximation holds on Xh
0 . In particular, if C ∈ Hr(Ω)∩H1

0 (Ω), we will use

inf
Ch∈Xh

0

∥C − Ch∥1 ≤ Khr−1∥C∥r. (3)

We further assume that the space Xh
Γin

possesses the approximation property

inf
Ch∈Xh

Γin

∥C − Ch∥0,Γin
≤ Khr−1/2∥C∥r−1/2,Γin

. (4)
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Lemma 1. For all v ∈ H1
0,Γin

(Ω), there exists a constant K̃PF such that

∥v∥1 ≤ K̃PF∥∇v∥.

Proof. This is the direct consequence of the Poincaré inequality that holds for v ∈ H1
0,Γin

(Ω)

[58].

Lemma 2. (See [94, p.154]) Let P and P1 be the orthogonal projections with respect to the

L2 inner product (u, v) and H1 inner product (∇u,∇v), respectively. Then, for any w ∈ X,

∇PXhw = P1
∇Xh∇w.

Lemma 3. Let f, g : [0, α] → [0,∞) be continuous and let C be a nonnegative number. If

f(t) ≤ C +
∫ t

0
g(s)f(s)ds, 0 ≤ t < α, then

f(t) ≤ Cexp

∫ t

0

g(s)ds, 0 ≤ t < α.

Lemma 4. Given g ∈ Hr−1/2(Γin) for r ≥ 1, let Πhg denote the Xh
Γin

-interpolant of g. Then,

if Xh satisfies the approximation properties (2)-(4),

inf
Ĉh∈Xh

Ĉh|Γin
=Πhg

∥C − Ĉh∥1 ≤ Khr−1∥C∥r. (5)

Proof. This proof follows the proof of [61, Lemma 4]. We give the proof for the reader’s

convenience. Let ΠhC denote Xh-interpolant of C and Πhg denote Xh
Γin

- interpolant of g.

Then, for Ĉh|Γin
= Πhg, we write the triangle inequality

∥C − Ĉh∥1 ≤ ∥C − ΠhC∥1 + ∥Ĉh − ΠhC∥1. (6)

From the interpolation theory [24], we get,

∥C − ΠhC∥1 ≤ Khr−1∥C∥r. (7)

We may choose Ĉh so that it has the same value at all interior nodes as does ΠhC. Since

Ĉh|Γin
= Πhg and (ΠhC)

∣∣∣
Γin

= Πhg, we get (Ĉh −ΠhC) = 0, which concludes the argument.
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2.2.1 Assumptions and Preliminary Results

We make the following assumptions [153]:

1. ω and ρs are constants in time and space [43].

2. u is nonzero and bounded in L∞ norm [37,133].

3. D(x) = [dij]i,j=1,2,··· ,n is symmetric positive definite and ∥D∥∞ ≤ β1, | ∂
∂xi
dij| ≤ β2, for

all i, j [8, 37, 43,133].

4. There exists a unique solution C ∈ L∞(0, T, L2(Ω)) ∩ L2(0, T,H1(Ω)) [133].

5. q = q(C) ∈ C1 is an explicit, Lipschitz continuous function of C, q(0) = 0, q(C) > 0 for

C > 0 and q(C) is strictly increasing. Moreover, we assume that q′(C) ≥ κ1 > 0 ∀C ≥ 0

[15,43,51,124,125,133].

6. The rate of increase in adsorption is Lipschitz continuous and bounded above so that

dq
dC

= q′(C) ≤ κ2 [43].

7. The second derivative of the adsorption, q′′(C), is Lipschitz continuous and bounded.

Remark 5. In our analysis, we drop the assumption “C(x, t) is nondecreasing in time at

every x and C(x, t) = 0 on Γin” stated in [153]. Instead, we considered the non-homogeneous

boundary condition at the inflow boundary.

In [15, 43, 51, 133, 153], another assumption on the continuous and the discrete solution was

imposed, namely that “C is non-negative”. Using a maximum principle argument, we prove

that the continuous solution is positive and bounded above for all (x, t) ∈ Ω× (0, T ).

Proposition 6. Assuming no forcing term f = 0 and positivity of the initial condition

0 < C0(x), then we have

0 < C(x, t) ≤ max
x∈Ω

{C(x, 0), g(x)} for all (x, t) ∈ Ω× [0, T ).

Proof. Since u is incompressible, we rewrite the convective term as

∇ · (uC) = (∇ · u)C + u ·∇C = u ·∇C.
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Next, we rewrite the adsorption term as

∂q

∂t
=

∂q

∂C

∂C

∂t
= q′(C)

∂C

∂t
.

Then the equation (1) writes

(ω + (1− ω)ρsq
′(C))∂tC + u ·∇C −∇ · (D∇C) = f, x ∈ Ω, t > 0. (8)

Since q′(C) > 0 by assumption (F5), we can divide (8) by (ω + (1 − ω)ρsq
′(C)). Hence,

assuming f = 0, (8) writes,

− ∂tC +
n∑

i,j=1

((ω + (1− ω)ρsq
′(C))−1Dij)

∂2C

∂xi∂xj

+
n∑

j=1

(
(ω + (1− ω)ρsq

′(C))−1
(∂Dij

∂xi
− uj

)) ∂C
∂xj

= 0.

We assume that C0(x) > 0. Suppose the claim in the proposition is false. Then there is a

y ∈ Ω̄ and T > 0 such that C(y, T ) = 0 and C(x, t) > 0 for (x, t) ∈ Ω̄ × [0, T ). Therefore,

by Maximum Principle [120, pages 173-174], maximum of C(x, t) is on the boundary and

(D∇C) · −→n (x, t) < 0. This contradicts the boundary condition we have in (1). Hence, we

proved the claim.
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2.3 Variational Formulation

The standard Galerkin variational formulation for the transport problem (1) is: Find

C ∈ H1(Ω) such that C
∣∣∣
Γin

= g and

(
∂

∂t
(ωC + (1− ω)ρsq(C)), v) + (u ·∇C, v)+(D∇C,∇v) = (f, v), ∀ v ∈ H1

0,Γin
(Ω). (9)

This variational formulation (9) is equivalent to following:

((ω + (1− ω)ρsq
′(C))

∂C

∂t
, v) + (u ·∇C, v)+(D∇C,∇v) = (f, v), ∀ v ∈ H1

0,Γin
(Ω), (10)

where we used Green’s Theorem to the diffusive term, the boundary condition (D∇C) ·

n(x, t) = 0, x ∈ Γn ∪ Γout and the fact that v ∈ H1
0,Γin

to get

−(∇ · (D∇C), v) = −
∫
Γ

(D∇C) · −→n v ds+ (D∇C,∇v) = (D∇C,∇v).

Next, we write a finite element approximation of the variational formulation of the transport

problem. We state both semi-discrete in space and fully discrete approximations.

2.3.1 Semi-Discrete in Space Approximation

We denote gh as an interpolant of g. Then we obtain the following semi-discrete in-space

formulation: Find Ch ∈ Xh such that Ch

∣∣∣
Γin

= gh and ∀ vh ∈ Xh
0,Γin

(Ω),

(
∂

∂t
(ωCh + (1− ω)ρsq(Ch)), vh) + (u ·∇Ch, vh)+(D∇Ch,∇vh) = (f, vh). (11)

The semi-discrete in-space formulation (11) is equivalent to the following: ∀ vh ∈ Xh
0,Γin

(Ω),

((ω + (1− ω)ρsq
′(Ch))

∂Ch

∂t
, vh) + (u ·∇Ch, vh)+(D∇Ch,∇vh) = (f, vh). (12)
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2.3.2 Fully-discrete approximation

We partition the time interval as t0 = 0 < t1 < t2 < · · · < tN = T . Let ∆t = tn+1 − tn

be the time step size, tn = n∆t and fn(x) = f(x, tn). Let C
n
h (x) denote the Finite Element

approximation to C(x, tn). We define tn+1/2 = tn+tn+1

2
. First, we recall the first order

Backward Euler time discretization scheme for Finite Element Approximation (12): Given

Cn
h ∈ Xh, find Cn+1

h ∈ Xh such that Cn+1
h

∣∣∣
Γin

= gh satisfying

(ω
Cn+1

h − Cn
h

∆t
+ (1− ω)ρs

q(Cn+1
h )− q(Cn

h )

∆t
, vh) + (u ·∇Cn+1

h , vh) + (D∇Cn+1
h ,∇vh)

= (fn+1, vh), ∀vh ∈ Xh
0,Γin

(Ω).

(13)

Equivalently,

(ω + (1− ω)ρsq
′(Cn+1

h )
Cn+1

h − Cn
h

∆t
, vh) + (u ·∇Cn+1

h , vh)+ (D∇Cn+1
h ,∇vh)

= (fn+1, vh), ∀vh ∈ Xh
0,Γin

(Ω).

(14)

Next, we propose the midpoint method for time discretization in Finite Element Approxi-

mation (12): Given Cn
h ∈ Xh, find Cn+1

h ∈ Xh such that Cn+1
h

∣∣∣
Γin

= gh satisfying

(ω
Cn+1

h − Cn
h

∆t
+ (1− ω)ρs

q(Cn+1
h )− q(Cn

h )

∆t
, vh) + (u ·∇C

n+1/2
h , vh)+ (D∇C

n+1/2
h ,∇vh)

= (fn+1/2, vh), ∀vh ∈ Xh
0,Γin

(Ω),

(15)

where C
n+ 1

2
h denotes

Cn
h+Cn+1

h

2
.

Equivalently, ∀vh ∈ Xh
0,Γin

(Ω),

((ω + (1− ω)ρsq
′(C

n+1/2
h ))

Cn+1
h − Cn

h

∆t
, vh) + (u ·∇C

n+1/2
h , vh) + (D∇C

n+1/2
h ,∇vh)

= (fn+1/2, vh).

(16)

To simplify computation, we use the refactorization of the midpoint method [29] for time

discretization. Hence, we get the following full discretization: Given Cn
h ∈ Xh, find Cn+1

h ∈
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Xh such that Cn+1
h

∣∣∣
Γin

= gh satisfying

Step 1: Backward Euler step at the half-integer time step tn+1/2,

(ω
C

n+1/2
h − Cn

h

∆t/2
+ (1− ω)ρs

q(C
n+1/2
h )− q(Cn

h )

∆t/2
, vh) + (u ·∇C

n+1/2
h , vh) + (D∇C

n+1/2
h ,∇vh)

= (fn+1/2, vh), ∀vh ∈ Xh
0,Γin

(Ω).

(17)

Equivalently,

((ω + (1− ω)ρsq
′(C

n+1/2
h ))

C
n+1/2
h − Cn

h

∆t/2
, vh) + (u ·∇C

n+1/2
h , vh) + (D∇C

n+1/2
h ,∇vh)

= (fn+1/2, vh), ∀vh ∈ Xh
0,Γin

(Ω).

(18)

Step 2: Forward Euler step at tn+1,

(ω
Cn+1

h − C
n+1/2
h

∆t/2
+ (1− ω)ρs

q(Cn+1
h )− q(C

n+1/2
h )

∆t/2
, vh) + (u ·∇C

n+1/2
h , vh)

+ (D∇C
n+1/2
h ,∇vh) = (fn+1/2, vh), ∀vh ∈ Xh

0,Γin
(Ω).

(19)

Equivalently,

((ω + (1− ω)ρsq
′(C

n+1/2
h ))

Cn+1
h − C

n+1/2
h

∆t/2
, vh) + (u ·∇C

n+1/2
h , vh) + (D∇C

n+1/2
h ,∇vh)

= (fn+1/2, vh), ∀vh ∈ Xh
0,Γin

(Ω).

(20)

Remark 7. Step 2 is equivalent to a linear extrapolation Cn+1
h = 2C

n+1/2
h − Cn

h .
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2.3.3 Time-integrated finite element formulation

For the error analysis for the case of nonlinear, explicit adsorption, we formulate a time-

integrated version of the transport equation introduced in [115] and applied in different mixed

formulations [9, 133, 155]. To develop the time-integrated finite element discretization, we

rewrite (1) by integrating in time to obtain

ωC+(1−ω)ρsq(C)+

∫ t

0

u ·∇Cdt′−∇·
∫ t

0

D∇Cdt′ =

∫ t

0

fdt′+ωC0+(1−ω)q(C0). (21)

Multiplying (21) by v ∈ H1
0,Γin

(Ω) and integrating over Ω, we get,

(ωC, v) + ((1− ω)ρsq(C), v) + (

∫ t

0

u ·∇Cdt′, v)− (∇ ·
∫ t

0

D∇Cdt′, v)

= (

∫ t

0

fdt′, v) + (ωC0, v) + ((1− ω)q(C0), v).

(22)

Then the semi-discrete in-space variational formulation is given by the following: Find Ch ∈

Xh such that Ch

∣∣
Γin

= gh and

(ωCh, vh) + ((1− ω)ρsq(Ch), vh) + (

∫ t

0

u ·∇Chdt
′, vh)− (∇ ·

∫ t

0

D∇Chdt
′, vh)

= (

∫ t

0

fdt′, vh) + (ωC0, vh) + ((1− ω)q(C0), vh), ∀vh ∈ Xh
0,Γin

(Ω).

(23)

2.4 Time-Dependent Analysis

In this section, before we perform the stability and error analysis for the time-dependent

problem, first we construct a continuous extension of the Dirichlet data g inside the domain

Ω, Ĉ to deal with the non-homogeneous boundary condition.

16



2.4.1 Construction of Ĉ

Denote Ĉ as the solution of the following elliptic problem with nonhomogeneous mixed

boundary conditions:

−∇ · (D∇Ĉ) + Ĉ = 0, x ∈ Ω,

Ĉ = g, if x ∈ Γin,

(D∇Ĉ) · −→n = 0, if x ∈ Γn ∪ Γout.

(24)

Lemma 8. For every f ∈ L2(Ω) and every g ∈ H1/2(Γin), there exists a unique solution

Ĉ ∈ H2(Ω) of (24) under the compatibility condition D∇g · −→n = 0 if x ∈ Γin ∩ Γn. The

energy estimates for Ĉ and ∇Ĉ are as follows,

∥Ĉ∥2 ≤ 4(Kβ1)
2∥g∥2L2(Γin)

, (25)

∥∇Ĉ∥2 ≤ 2(Kβ1)
2

λ
∥g∥2L2(Γin)

. (26)

Remark 9. The energy bound given in [66, Theorem 2.3.3.6] is

∥Ĉ∥H2(Ω) ≤ K∥g∥H1/2(Γin)

for all Ĉ ∈ H2(Ω) and some constant K.

Proof. The existence and uniqueness proof for the more general case can be found in [66,

Theorem 2.4.2.7]. For energy bounds, we take the dot product with Ĉ, then apply Green’s

Theorem to the diffusive term to obtain

−(∇ · (D∇Ĉ), Ĉ) = −
∫
Γ

(D∇Ĉ) · −→n Ĉ ds+ (D∇Ĉ,∇Ĉ)

= −
∫
Γin

(D∇Ĉ) · −→n g ds+ (D∇Ĉ,∇Ĉ)
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where we used the boundary condition (D∇Ĉ) · n = 0, x ∈ Γn ∪ Γout and Ĉ(x) = g(x),

x ∈ Γin. Hence, we get the following variational formulation,

∥Ĉ∥2 + (D∇Ĉ,∇Ĉ) =

∫
Γin

(D∇Ĉ) · −→n g ds.

Let λ be the minimum eigenvalue of D.

(D∇Ĉ,∇Ĉ) = (D1/2∇Ĉ,D1/2∇Ĉ) = ∥D1/2∇Ĉ∥2 ≥ λ∥∇Ĉ∥2.

Hence, we get,

∥Ĉ∥2 + λ∥∇Ĉ∥2 ≤
∫
Γin

(D∇Ĉ) · −→n g ds,

≤ ∥D∇Ĉ · −→n ∥L2(Γin)∥g∥L2(Γin),

≤ β1∥∇Ĉ · −→n ∥L2(Γin)∥g∥L2(Γin).

By using the trace theorem [25, p. 316], we get

∥Ĉ∥2 + λ∥∇Ĉ∥2 ≤ Kβ1∥Ĉ∥H2(Ω)∥g∥L2(Γin). (27)

We use the following equivalence of norms [25, p. 271],

∥Ĉ∥H2(Ω) ≤ K(∥Ĉ∥+ ∥∇ ·
(
D∇Ĉ

)
∥).

By using Young and Cauchy-Schwarz inequalities (27) becomes,

1

2
∥Ĉ∥2 + λ∥∇Ĉ∥2 ≤ 2(Kβ1)

2∥g∥2L2(Γin)
.

Hence we get the bounds (25) and (26).

Lemma 10. Let the domain Ω be a convex polyhedral. Given gh ∈ Xh
Γin

, there exists a

Ĉh ∈ Xh such that Ĉh|Γin = gh and ∥Ĉh∥H1(Ω) ≤ K∥gh∥H1/2(Γin).

18



Proof. When Ω is two-dimensional, we use a similar technique as in [67] to prove it. Under

the compatibility condition D∇gh ·−→n = 0, when x ∈ Γin∩Γn, let Ĉ ∈ H1(Ω) be the solution

of

−∇ · (D∇Ĉ) + Ĉ = 0, x ∈ Ω,

Ĉ = gh, when x ∈ Γin,

(D∇Ĉ) · −→n = 0, if x ∈ Γn ∪ Γout.

(28)

Since Xh is assumed to be a continuous finite element subspace, we see that gh is continuous

and piecewise smooth along the boundary Γin, so that gh ∈ H1/2+ϵ(Γin) for 0 < ϵ ≤ 1
2
.

Thus, by elliptic regularity, we derive that Ĉ ∈ H1+ϵ(Ω) and ∥Ĉ∥1+ϵ ≤ K∥gh∥1/2+ϵ,Γin
for

0 < ϵ ≤ 1
2
. Let Ĉh := ΠhĈ be the Xh-interpolant of Ĉ so that Ĉh|Γin

= gh. Then, we have

the estimates ∥Ĉ −ΠhĈ∥1 ≤ Khϵ∥Ĉ∥1+ϵ which can be proven as in, e.g., [56]. Thus, we get

the desired result

∥Ĉh∥1 = ∥ΠhĈ∥1 ≤ ∥Ĉ − ΠhĈ∥1 + ∥Ĉ∥1,

≤ K(hϵ∥Ĉ∥1+ε + ∥Ĉ∥1),

≤ K(hϵ∥gh∥1/2+ϵ,Γin
+ ∥gh∥1/2,Γin

),

≤ K∥gh∥1/2,Γin
.

where in the last step we used an inverse assumption on Xh
Γin

: there exists a constant K,

independent of h, ph such that

∥ph∥s,Γin
≤ Kht−s∥ph∥t,Γin

, ∀ph ∈ Xh
Γin
, 0 ≤ t ≤ s ≤ 1.

Since the usual interpolant such as the one used in the two-dimensional case, is not defined

in three dimensions for Hr(Ω)-functions, r ≤ 3
2
, we use Scott-Zhang interpolant [50] when

Ω is three-dimensional. Scott-Zhang interpolant is well-defined for any function in H1(Ω)

[134].
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Next, to have full insight into the analysis, we start with the simplest case of constant

adsorption. Unlike previous work, in [153] we dropped the assumption “C(x, t) is nonde-

creasing in time at every x” and considered non-homogeneous boundary condition at inflow

boundary.

2.4.2 Constant Isotherm

In this subsection, we state and prove a priori stability and a priori error estimate for the

case of constant adsorption. In this case of adsorption, q(C) = K with K ≥ 0. Since q(C)

is constant, it implies ∂q
∂t

= 0 and hence the variational formulation given in (10) simplifies

to the following: Find C ∈ H1(Ω) such that C
∣∣∣
Γin

= g and :

(ω
∂C

∂t
, v) + (u ·∇C, v) + (D∇C,∇v) = (f, v), ∀v ∈ H1

0,Γin
(Ω). (29)

The semi-discrete in space Finite Element formulation with constant adsorption is as follows:

Find Ch ∈ Xh such that Ch

∣∣∣
Γin

= gh and :

(ω
∂Ch

∂t
, vh) + (u ·∇Ch, vh) + (D∇Ch,∇vh) = (f, vh), ∀vh ∈ Xh

0,Γin
(Ω). (30)

By using Midpoint time discretization, we get a fully discrete approximation: Given Cn
h ∈

Xh, find Cn+1
h ∈ Xh such that Cn+1

h

∣∣∣
Γin

= gh satisfying

(ω
Cn+1

h − Cn
h

∆t
, vh) + (u ·∇C

n+1/2
h , vh)+(D∇C

n+1/2
h ,∇vh) = (fn+1/2, vh), ∀vh ∈ Xh

0,Γin
(Ω).

(31)

For the analysis, we recall the refactorization of midpoint method [29] for time discretization

to get the following full discretization: Given Cn
h ∈ Xh, find Cn+1

h ∈ Xh such that Cn+1
h

∣∣∣
Γin

=

gh satisfying

Step 1: Backward Euler step at the half-integer time step tn+1/2,

(ω
C

n+1/2
h − Cn

h

∆t/2
, vh) + (u ·∇C

n+1/2
h , vh) + (D∇C

n+1/2
h ,∇vh) = (fn+1/2, vh), ∀vh ∈ Xh

0,Γin
(Ω).

(32)
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Step 2: Forward Euler step at tn+1,

(ω
Cn+1

h − C
n+1/2
h

∆t/2
, vh) + (u ·∇C

n+1/2
h , vh) + (D∇C

n+1/2
h ,∇vh)

= (fn+1/2, vh), ∀vh ∈ Xh
0,Γin

(Ω).

(33)

The next theorem gives a stability bound in the sense that the solution is bounded in space.

Theorem 11. Assume that (F1)-(F6) are satisfied and the variational formulation with

constant adsorption given by (29) has a solution C ∈ L∞(0, T, L2(Ω))∩L2(0, T,H1(Ω)) with

f ∈ L2(0, T ;L2(Ω)). Let Ĉ be the continuous extension of the Dirichlet data g inside the

domain Ω and satisfies (24). The bounds on ∥Ĉ∥2 and ∥∇Ĉ∥2 are given in (25) and (26)

respectively. Then we get the following bound:

∥C(t)∥2 + λ

ω

∫ t

0

∥∇C(r)∥2 dr + 2

ω

∫ t

0

∫
Γout

((C)2)(u · −→n )dsdr ≤ 4

ω

∫ t

0

∥u∥2∞
λ

∥Ĉ∥2 dr + 8∥Ĉ∥2

+
(λ
ω
+

4β2
1

λω

)∫ t

0

∥∇Ĉ∥2 dr − 2

ω

∫ t

0

∫
Γin

((g)2)(u · −→n )dsdr + 3∥C0∥2 +
8K2

PF

λω

∫ t

0

∥f∥2 dr.

Proof. Let Ĉ ∈ H1(Ω) such that Ĉ
∣∣∣
Γin

= g. Take v = C − Ĉ ∈ H1
0,Γin

(Ω). Then (29) yields

to

(ω
∂C

∂t
, C − Ĉ) + (u ·∇C,C − Ĉ) + (D∇C,∇

(
C − Ĉ

)
) = (f, C − Ĉ).

Thus, we get,

(ω
∂C

∂t
, C)+(u ·∇C,C)+(D∇C,∇C) = (ω

∂C

∂t
, Ĉ)+(u ·∇C, Ĉ)+(D∇C,∇Ĉ)+(f, C−Ĉ).

(34)

We rewrite the first term in (34),

(ω
∂C

∂t
, C) = ω(

∂C

∂t
, C) =

ω

2

∂

∂t
∥C∥2. (35)

By using the divergence theorem and boundary conditions, we get

(u ·∇C,C) =
1

2

(∫
Γin

((g)2)(u · −→n )ds
)
+

1

2

(∫
Γout

((C)2)(u · −→n )ds
)
. (36)
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Let λ be the minimum eigenvalue of D. Then we get,

(D∇C,∇C) = (D1/2∇C,D1/2∇C) = ∥D1/2∇C∥2 ≥ λ∥∇C∥2. (37)

In the right-hand side terms, we get the following estimates,

(u ·∇C, Ĉ) ≤ ∥u ·∇C∥∥Ĉ∥ ≤ λ

4∥u∥2∞
∥u ·∇C∥2 + ∥u∥2∞

λ
∥Ĉ∥2.

Then by using boundedness of u, we get

(u ·∇C, Ĉ) ≤ λ

4
∥∇C∥2 + ∥u∥2∞

λ
∥Ĉ∥2. (38)

Next,

(D∇C,∇Ĉ) ≤ ∥D∥∞∥∇C∥∥∇Ĉ∥ ≤ β1∥∇C∥∥∇Ĉ∥ ≤ λ

4
∥∇C∥2 + β2

1

λ
∥∇Ĉ∥2. (39)

(f, C − Ĉ) ≤ ∥f∥∥C − Ĉ∥ ≤ 2K2
PF

λ
∥f∥2 + λ

4
∥∇C∥2 + λ

4
∥∇Ĉ∥2. (40)

Next,

(ω
∂C

∂t
, Ĉ) = ω

∂

∂t
(C, Ĉ)− ω(C,

∂Ĉ

∂t
) = ω

∂

∂t
(C, Ĉ). (41)

Combining (35)-(41), we get

∂

∂t

(ω
2
∥C∥2

)
+
λ

4
∥∇C∥2 + 1

2

∫
Γout

((C)2)(u · −→n )ds ≤ ∥u∥2∞
λ

∥Ĉ∥2

+
(λ
4
+
β2
1

λ

)
∥∇Ĉ∥2 − 1

2

(∫
Γin

((g)2)(u · −→n )ds
)
+

2K2
PF

λ
∥f∥2 + ω

∂

∂t
(C, Ĉ).

Next, integrating both sides from 0 to t, we obtain

ω

2
∥C(t)∥2 + λ

4

∫ t

0

∥∇C(r)∥2 dr + 1

2

∫ t

0

(∫
Γout

((C)2)(u · −→n )ds
)
dr

≤
∫ t

0

∥u∥2∞
λ

∥Ĉ∥2 dr +
(λ
4
+
β2
1

λ

)∫ t

0

∥∇Ĉ∥2 dr + ω

2
∥C(0)∥2

− 1

2

∫ t

0

(∫
Γin

((g)2)(u · −→n )ds
)
dr − ω(C(0), Ĉ) +

2K2
PF

λ

∫ t

0

∥f∥2 dr + ω(C(t), Ĉ).

(42)

22



Here,

ω(C(t), Ĉ) ≤ ω∥C(t)∥∥Ĉ∥ ≤ ω

4
∥C(t)∥2 + ω∥Ĉ∥2.

− ω(C(0), Ĉ) ≤ ω|(C(0), Ĉ)| ≤ ω∥C(0)∥∥Ĉ∥ ≤ ω

4
∥C(0)∥2 + ω∥Ĉ∥2

Hence (42) becomes

ω

4
∥C(t)∥2 + λ

4

∫ t

0

∥∇C(r)∥2 dr + 1

2

∫ t

0

(∫
Γout

((C)2)(u · −→n )ds
)
dr

≤
∫ t

0

∥u∥2∞
λ

∥Ĉ∥2 dr +
(λ
4
+
β2
1

λ

)∫ t

0

∥∇Ĉ∥2 dr − 1

2

∫ t

0

(∫
Γin

((g)2)(u · −→n )ds
)
dr

+
ω

4
∥C(0)∥2 + ω∥Ĉ∥2 + 2K2

PF

λ

∫ t

0

∥f∥2 dr + ω

4
∥C(t)∥2 + ω∥Ĉ∥2 + ω

2
∥C(0)∥2.

Simplifying the above inequality and using C(0) = C0, we get the claimed result.

Remark 12. Putting (35), (36) and (41) into (34), we get,

ω

2

∂

∂t
∥C∥2 +

(∫
Γout

(C2)(u · −→n )ds
)
+ (D∇C,∇C) = −

(∫
Γin

(g2)(u · −→n )ds
)
+ (f, C − Ĉ)

ω
∂

∂t
(C, Ĉ) + (u ·∇C, Ĉ) + (D∇C,∇Ĉ).

(43)

If f = 0 and Ĉ = 0 in (43), we get the balance of mass as follows

ω

2

∂

∂t
∥C∥2 +

(∫
Γout

(C2)(u · −→n )ds
)
+ (D∇C,∇C) = −

(∫
Γin

(g2)(u · −→n )ds
)
. (44)

Recall that u · −→n > 0 on Γout and u · −→n < 0 on Γin.

Next theorem gives a priori error estimate for the case of constant adsorption and semi-

discrete in space where we will use the notation:

K2 = max
{(

2 +
8K2

PF∥u∥2∞ + 8β2
1

λ2

)
K2

1 ,
8K2

PFω
2

λ2
K2

1 ,
4ω

λ

}
.
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Theorem 13. Assume that (F1)-(F6) are satisfied and the variational formulation with

constant adsorption given by (29) has an exact solution C ∈ H1(0, T,Hk+1(Ω)) and Ch

solves the semi-discrete in space Finite Element formulation with constant adsorption given

by (30). Then for 1 ≤ r ≤ k + 1 there exists a positive constant K independent of h such

that:

∥C − Ch∥L2(0,T ;H1(Ω)) ≤ K
(
hr−1∥C∥L2(0,T ;Hr(Ω)) + hr−1

∥∥∥∂C
∂t

∥∥∥
L2(0,T ;Hr(Ω))

+ ∥(Ch − Ĉh)(0)∥
)
.

Proof. The weak formulation of continuous and discrete problems are given by (29) and

(30), respectively, where C
∣∣∣
Γin

= g and Ch

∣∣∣
Γin

= gh are required.

First we let v = vh ∈ Xh
0,Γin

⊂ H1
0,Γin

(Ω) in (29) and then subtract (30) from (29) to get

(ω
∂(C − Ch)

∂t
, vh)+(u ·∇(C − Ch), vh)+(D∇(C − Ch),∇vh) = 0, for all vh ∈ Xh

0,Γin
. (45)

Then for any Ĉh ∈ Xh such that Ĉh

∣∣∣
Γin

= gh, we have that

(ω
∂(Ch − Ĉh)

∂t
, vh) + (u ·∇

(
Ch − Ĉh

)
, vh) + (D∇

(
Ch − Ĉh

)
,∇vh) (46)

= (ω
∂(C − Ĉh)

∂t
, vh) + (u ·∇

(
C − Ĉh

)
, vh) + (D∇

(
C − Ĉh

)
,∇vh), ∀vh ∈ Xh

0,Γin
.

We choose vh = Ch − Ĉh ∈ Xh
0,Γin

. Then, we get

(ω
∂(Ch − Ĉh)

∂t
, Ch − Ĉh) + (u ·∇

(
Ch − Ĉh

)
, Ch − Ĉh) + (D∇

(
Ch − Ĉh

)
,∇
(
Ch − Ĉh

)
)

(47)

= (ω
∂(C − Ĉh)

∂t
, Ch − Ĉh) + (u ·∇

(
C − Ĉh

)
, Ch − Ĉh) + (D∇

(
C − Ĉh

)
,∇
(
Ch − Ĉh

)
).

Let ϕh = Ch − Ĉh and η = C − Ĉh. Notice that both Ch and Ĉh are equal to gh on Γin.

Hence ϕh

∣∣∣
Γin

= 0. Hence, (47) becomes

(ω
∂ϕh

∂t
, ϕh)+(u ·∇ϕh, ϕh)+(D∇ϕh,∇ϕh) = (ω

∂η

∂t
, ϕh)+(u ·∇η, ϕh)+(D∇η,∇ϕh). (48)
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We obtain lower bounds for the terms on the left and upper bounds for the term on the right

of (48) by using the assumptions and Young’s and Cauchy-Schwarz inequalities. We rewrite

the first term in (48),

(ω
∂ϕh

∂t
, ϕh) = ω(

∂ϕh

∂t
, ϕh) =

ω

2

∂

∂t
∥ϕh∥2. (49)

Next,

(u ·∇ϕh, ϕh) =
1

2

(∫
Γ

((ϕh)
2)(u · −→n )ds

)
,

=
1

2

(∫
Γin

((ϕh)
2)(u · −→n )ds+

∫
Γout

((ϕh)
2)(u · −→n )ds+

∫
Γn

((ϕh)
2)(u · −→n )ds

)
.

We know that ϕh

∣∣∣
Γin

= 0, on Γout, u · −→n > 0 and on Γn, u · −→n = 0.

Hence, we get,

(u ·∇ϕh, ϕh) =
1

2

(∫
Γout

((ϕh)
2)(u · −→n )ds

)
≥ 0. (50)

Following the same steps in Theorem 11, we get the following bounds

(D∇ϕh,∇ϕh) ≥ λ∥∇ϕh∥2. (51)

(u ·∇η, ϕh) ≤
K2

PF

λ
∥u∥2∞∥η∥21 +

λ

4
∥∇ϕh∥2. (52)

(D∇η,∇ϕh) ≤ β2
1

λ
∥η∥21 +

λ

4
∥∇ϕh∥2. (53)

Next,

(ω
∂η

∂t
, ϕh) ≤ ω

∥∥∥∂η
∂t

∥∥∥∥ϕh∥ ≤ K2
PFω

2

λ

∥∥∥∂η
∂t

∥∥∥2 + λ

4K2
PF

∥ϕh∥2 ≤
K2

PFω
2

λ

∥∥∥∂η
∂t

∥∥∥2 + λ

4
∥∇ϕh∥2.

(54)

Combining (49)-(54) and integrating from 0 to T , we get

∥ϕh(T )∥2 +
λ

2ω

∫ T

0

∥∇ϕh∥2 dt

25



≤
(2K2

PF∥u∥2∞ + 2β2
1

ωλ

)∫ T

0

∥η∥21 dt+
2K2

PFω

λ

∫ T

0

∥∥∥∂η
∂t

∥∥∥2 dt+ ∥ϕh(0)∥2. (55)

Hence, (55) implies∫ T

0

∥∇ϕh∥2 dt ≤
(4K2

PF∥u∥2∞ + 4β2
1

λ2

)∫ T

0

∥η∥21 dt+
4K2

PFω
2

λ2

∫ T

0

∥∥∥∂η
∂t

∥∥∥2 dt+ 2ω

λ
∥ϕh(0)∥2.

(56)

By using the Lemma 1, we get∫ T

0

∥ϕh∥21 dt ≤
(4K2

PF∥u∥2∞ + 4β2
1

λ2

)∫ T

0

∥η∥21 dt+
4K2

PFω
2

λ2

∫ T

0

∥∥∥∂η
∂t

∥∥∥2 dt+ 2ω

λ
∥ϕh(0)∥2.

(57)

Triangle inequality gives

∥C − Ch∥1 ≤ ∥η∥1 + ∥ϕh∥1.

Thus, we get ∫ T

0

∥C − Ch∥21 dt ≤ 2

∫ T

0

∥η∥21 dt+ 2

∫ T

0

∥ϕh∥21 dt. (58)

Now using inequality (57) in (58) yields∫ T

0

∥C − Ch∥21 dt ≤
(
2 +

8K2
PF∥u∥2∞ + 8β2

1

λ2

)∫ T

0

∥η∥21 dt+
8K2

PFω
2

λ2

∫ T

0

∥∥∥∂η
∂t

∥∥∥2 dt
+

4ω

λ
∥ϕh(0)∥2.

Since Ĉh is arbitrary, we have the following inequality∫ T

0

∥C − Ch∥21 dt ≤
(
2 +

8K2
PF∥u∥2∞ + 8β2

1

λ2

)∫ T

0

inf
Ĉh∈Xh

Ĉh|Γin
=gh

∥C − Ĉh∥21 dt

+
8K2

PFω
2

λ2

∫ T

0

inf
Ĉh∈Xh

Ĉh|Γin
=gh

∥∥∥∂(C − Ĉh)

∂t

∥∥∥2 dt+ 4ω

λ
∥ϕh(0)∥2.
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Let gh be the interpolant of g in Xh
Γin

. Then by using Lemma 4, for 1 ≤ r ≤ k + 1 we get,∫ T

0

∥C − Ch∥21 dt ≤
(
2 +

8K2
PF∥u∥2∞ + 8β2

1

λ2

)
K2

1h
2r−2

∫ T

0

∥C∥2r dt

+
8K2

PFω
2K2

1h
2r−2

λ2

∫ T

0

∥∥∥∂C
∂t

∥∥∥2
r
dt+

4ω

λ
∥ϕh(0)∥2.

(59)

Let

K2 = max
{(

2 +
8K2

PF∥u∥2∞ + 8β2
1

λ2

)
K2

1 ,
8K2

PFω
2

λ2
K2

1 ,
4ω

λ

}
.

Thus (59) implies

∥C − Ch∥2L2(0,T ;H1(Ω)) ≤ K2
(
h2r−2∥C∥2L2(0,T ;Hr(Ω)) + h2r−2

∥∥∥∂C
∂t

∥∥∥2
L2(0,T ;Hr(Ω))

+ ∥ϕh(0)∥2
)
.

Consequently, we prove the claim.

Next, we find the energy bound for the discrete version of the adsorption equation (1) for

constant isotherm using the midpoint method for the time discretization. At a continuous

level, we proved C > 0 and bounded by initial and boundary conditions. But at a discrete

level, the Maximum Principle is very hard to implement, usually, the timestep has to be

O(h2) [147].

Theorem 14. Suppose the assumptions (F1)-F(7) are satisfied so that the fully discrete

formulation given by (31) has a smooth solution {Cn
h}Nn=0 ∈ L2(0, T ;H1(Ω)). Then for all

N > 0,

∥CN+1
h ∥2 + 2

ω
∆t

N∑
n=0

(∫
Γout

((C
n+1/2
h )2)(u · −→n )ds

)
+
λ

ω
∆t

N∑
n=0

∥∇C
n+1/2
h ∥2

≤ 4N∆t∥u∥2∞ + 8λω

ωλ
∥Ĉh∥2 +

2N∆t

ω

(∫
Γin

((gh)
2)(−u · −→n )ds

)
+

4N∆tβ2
1 +N∆tλ2

ωλ
∥∇Ĉh∥2

+
8K2

PF

ωλ
∆t

N∑
n=0

∥fn+1/2∥2 + 3∥C0
h∥2.
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Proof. Let Ĉh ∈ Xh such that Ĉh

∣∣∣
Γin

= gh. Take vh = C
n+1/2
h − Ĉh ∈ Xh

0,Γin
(Ω). Then (32)

yields to

(ω(C
n+1/2
h − Cn

h ), C
n+1/2
h ) +

∆t

2
(u ·∇C

n+1/2
h , C

n+1/2
h ) +

∆t

2
(D∇C

n+1/2
h ,∇C

n+1/2
h )

=
∆t

2
(fn+1/2, C

n+1/2
h − Ĉh) + (ω(C

n+1/2
h − Cn

h ), Ĉh) +
∆t

2
(u ·∇C

n+1/2
h , Ĉh)

+
∆t

2
(D∇C

n+1/2
h ,∇Ĉh).

Using polarization identity in the first term, we get,

(
ω

2
∥Cn+1/2

h ∥2 − ω

2
∥Cn

h∥2 +
ω

2
∥Cn+1/2

h − Cn
h∥2) +

∆t

2
(u ·∇C

n+1/2
h , C

n+1/2
h )

+
∆t

2
(D∇C

n+1/2
h ,∇C

n+1/2
h )

=
∆t

2
(fn+1/2, C

n+1/2
h − Ĉh) + (ω(C

n+1/2
h − Cn

h ), Ĉh) +
∆t

2
(u ·∇C

n+1/2
h , Ĉh)

+
∆t

2
(D∇C

n+1/2
h ,∇Ĉh).

(60)

Next, (33) yields to

(ω(Cn+1
h − C

n+1/2
h ), C

n+1/2
h ) +

∆t

2
(u ·∇C

n+1/2
h , C

n+1/2
h ) +

∆t

2
(D∇C

n+1/2
h ,∇C

n+1/2
h )

=
∆t

2
(fn+1/2, C

n+1/2
h − Ĉh) + (ω(Cn+1

h − C
n+1/2
h ), Ĉh) +

∆t

2
(u ·∇C

n+1/2
h , Ĉh)

+
∆t

2
(D∇C

n+1/2
h ,∇Ĉh).

Using polarization identity first term, we get

ω

2
(∥Cn+1

h ∥2 − ∥Cn+1/2
h ∥2 − ∥Cn+1

h − C
n+1/2
h ∥2) + ∆t

2
(u ·∇C

n+1/2
h , C

n+1/2
h )

+
∆t

2
(D∇C

n+1/2
h ,∇C

n+1/2
h )

=
∆t

2
(fn+1/2, C

n+1/2
h − Ĉh) + (ω(Cn+1

h − C
n+1/2
h ), Ĉh) +

∆t

2
(u ·∇C

n+1/2
h , Ĉh)

+
∆t

2
(D∇C

n+1/2
h ,∇Ĉh).

(61)
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Adding (60) and (61), we get

ω

2
(∥Cn+1

h ∥2 − ∥Cn
h∥2 + ∥Cn+1/2

h − Cn
h∥2 − ∥Cn+1

h − C
n+1/2
h ∥2) + ∆t(u ·∇C

n+1/2
h , C

n+1/2
h )

+ ∆t(D∇C
n+1/2
h ,∇C

n+1/2
h ) = ∆t(fn+1/2, C

n+1/2
h − Ĉh) + (ω(Cn+1

h − Cn
h ), Ĉh)

+ ∆t(u ·∇C
n+1/2
h , Ĉh) + ∆t(D∇C

n+1/2
h ,∇Ĉh).

(62)

Using (32) and (33), we get,

1

2
∥Cn+1/2

h − Cn
h∥2 −

1

2
∥Cn+1

h − C
n+1/2
h ∥2 = 0.

Consequently, we have,

ω

2
(∥Cn+1

h ∥2 − ∥Cn
h∥2) + ∆t(u ·∇C

n+1/2
h , C

n+1/2
h ) + ∆t(D∇C

n+1/2
h ,∇C

n+1/2
h )

= ∆t(fn+1/2, C
n+1/2
h − Ĉh) + (ω(Cn+1

h − Cn
h ), Ĉh) + ∆t(u ·∇C

n+1/2
h , Ĉh)

+ ∆t(D∇C
n+1/2
h ,∇Ĉh).

(63)

Doing a similar analysis as in the continuous case, we get,

(u ·∇C
n+1/2
h , C

n+1/2
h ) =

1

2

(∫
Γin

((gh)
2)(u · −→n )ds

)
+

1

2

(∫
Γout

((C
n+1/2
h )2)(u · −→n )ds

)
. (64)

Next,

(D∇C
n+1/2
h ,∇C

n+1/2
h ) ≥ λ∥∇C

n+1/2
h ∥2. (65)

The bounded term on the right side using similar techniques as in continuous case is shown

below:

(u ·∇C
n+1/2
h , Ĉh) ≤

λ

4
∥∇C

n+1/2
h ∥2 + ∥u∥2∞

λ
∥Ĉh∥2. (66)

(D∇C
n+1/2
h ,∇Ĉh) ≤

λ

4
∥∇C

n+1/2
h ∥2 + β2

1

λ
∥∇Ĉh∥2. (67)

(fn+1/2, C
n+1/2
h − Ĉh) ≤

2K2
PF

λ
∥fn+1/2∥2 + λ

4
∥∇C

n+1/2
h ∥2 + λ

4
∥∇Ĉh∥2. (68)
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Putting (64)-(68) into (63), we get,

ω

2
∥Cn+1

h ∥2 − ω

2
∥Cn

h∥2 +
∆t

2

(∫
Γout

((C
n+1/2
h )2)(u · −→n )ds

)
+

∆tλ

4
∥∇C

n+1/2
h ∥2

≤ ∥u∥2∞∆t

λ
∥Ĉh∥2 −

∆t

2

(∫
Γin

((gh)
2)(u · −→n )ds

)
+

∆tβ2
1

λ
∥∇Ĉh∥2

+
2K2

PF∆t

λ
∥fn+1/2∥2 + ∆tλ

4
∥∇Ĉh∥2 + (ω(Cn+1

h − Cn
h ), Ĉh).

(69)

Next, we sum over n = 0 to n = N to get

ω

2
∥CN+1

h ∥2 − ω

2
∥C0

h∥2 +
∆t

2

N∑
n=0

(∫
Γout

((C
n+1/2
h )2)(u · −→n )ds

)
+

∆tλ

4

N∑
n=0

∥∇C
n+1/2
h ∥2

≤ N∥u∥2∞∆t

λ
∥Ĉh∥2 −

N∆t

2

(∫
Γin

((gh)
2)(u · −→n )ds

)
+
N∆tβ2

1

λ
∥∇Ĉh∥2

+
2K2

PF∆t

λ

N∑
n=0

∥fn+1/2∥2 + N∆tλ

4
∥∇Ĉh∥2 + (ω(CN+1

h − C0
h), Ĉh).

(70)

Here,

(ω(CN+1
h − C0

h), Ĉh) ≤
ω

4
∥CN+1

h ∥2 + ω

4
∥C0

h∥2 + 2ω∥Ĉh∥2.

After simplification, we get the desired result.

Remark 15. Putting (64) into (63), we get,

ω

2
∥Cn+1

h ∥2 − ω

2
∥Cn

h∥2 +
∆t

2

(∫
Γout

((C
n+1/2
h )2)(u · −→n )ds

)
+∆t(D∇C

n+1/2
h ,∇C

n+1/2
h )

= −∆t

2

(∫
Γin

((gh)
2)(u · −→n )ds

)
+∆t(fn+1/2, C

n+1/2
h − Ĉh)

+ (ω(Cn+1
h − Cn

h ), Ĉh) + ∆t(u ·∇C
n+1/2
h , Ĉh) + ∆t(D∇C

n+1/2
h ,∇Ĉh).

(71)

If f = 0 and Ĉh = 0 in (71), we get the balance of mass as follows

ω

2
(∥Cn+1

h ∥2 − ∥Cn
h∥2) +

∆t

2

(∫
Γout

((C
n+1/2
h )2)(u · −→n )ds

)
+∆t(D∇C

n+1/2
h ,∇C

n+1/2
h )

=
∆t

2

(∫
Γin

((gh)
2)(−u · −→n )ds

)
.

(72)

Recall that u · −→n > 0 on Γout and u · −→n < 0 on Γin.
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Next theorem gives a priori error estimate for the case of constant adsorption in the

fully discrete case where we will use the notation

K2 = max
{(

2 +
8K2

PF∥u∥2∞ + 8β2
1

λ2

)
K2

2 ,
8K2

PFω
2

λ2
K2

2 ,
8K1TK

2
PF

λ2
,
2ω

λ

}
.

Theorem 16. Suppose the assumptions (F1)-F(7) are satisfied so that the fully discrete

formulation given by (31) has a smooth solution {Cn
h}Nn=0 ∈ L2(0, T ;H1(Ω)) and the vari-

ational formulation with constant adsorption given by (29) has an exact solution C ∈

H1(0, T,Hk+1(Ω)). Let ϕn
h = Ĉh − Cn

h . Then for 1 ≤ r ≤ k + 1 and N > 0 there ex-

ists a positive constant K such that:

∆t
N+1∑
n=0

∥C(tn+1/2)− Ch(tn+1/2)∥21 ≤ K2
(
h2r−2∆t

N+1∑
n=0

∥C(tn+1/2)∥2r + h2r−2
∥∥∥∂C
∂t

∥∥∥2
L2(0,T ;Hr(Ω))

+ (∆t)4∥Cttt∥2L∞(0,T ;L∞) + ∥ϕ0
h∥2
)
.

Proof. Let the approximate solution at time tn+1/2 be C
n+1/2
h . Then by using the midpoint

method, we get, the fully discrete variational formulation as follows:

Given Cn
h ∈ Xh, find Cn+1

h ∈ Xh such that Cn+1
h

∣∣∣
Γin

= gh and satisfying,

(ω
Cn+1

h − Cn
h

∆t
, vh) + (u ·∇C

n+1/2
h , vh)+(D∇C

n+1/2
h ,∇vh) = (fn+1/2, vh), ∀vh ∈ Xh

0,Γin
(Ω).

(73)

Let Ct represent
∂C
∂t
. We write the following variational formulation for the exact solution

C.

(ω
C(tn+1)− C(tn)

∆t
, v) + (u ·∇C(tn+1/2), v) + (D∇C(tn+1/2),∇v)

= (fn+1/2, v) + (rn, v), ∀ v ∈ H1
0,Γin

(Ω).

(74)

where time discretization error, rn = C(tn+1)−C(tn)
∆t

− Ct(tn+1)+Ct(tn)
2

.

Let en = C(tn) − Cn
h and v = vh ∈ Xh

0,Γin
⊂ H1

0,Γin
(Ω) in (74) and then subtract (73) from

(74) to get

(ω
en+1 − en

∆t
, vh) + (u ·∇en+1/2, vh) + (D∇en+1/2,∇vh) = (rn, vh), ∀ vh ∈ Xh

0,Γin
(Ω). (75)
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Then for any Ĉh ∈ Xh such that Ĉh

∣∣∣
Γin

= gh, we write that e
n = C(tn)−Cn

h = C(tn)− Ĉh+

Ĉh − Cn
h . Let ϕ

n
h = Ĉh − Cn

h and ηn = Ĉh − C(tn). Notice that both Cn
h and Ĉh

n
are equal

to gh on Γin. Hence ϕ
n
h

∣∣∣
Γin

= 0. We choose vh = ϕ
n+1/2
h ∈ Xh

0,Γin
. Then (75) becomes

(ω
ϕn+1
h − ϕn

h

∆t
, ϕ

n+1/2
h ) + (u ·∇ϕ

n+1/2
h , ϕ

n+1/2
h ) + (D∇ϕ

n+1/2
h ,∇ϕ

n+1/2
h )

= (ω
ηn+1 − ηn

∆t
, ϕ

n+1/2
h ) + (u ·∇ηn+1/2, ϕ

n+1/2
h ) + (D∇ηn+1/2,∇ϕ

n+1/2
h ) + (rn, ϕ

n+1/2
h ).

We obtain lower bounds for the terms on the left and upper bounds for the term on the right

of (76) by using the assumptions and Young’s and Cauchy-Schwarz inequalities. We rewrite

the first term in (76),

(ω
ϕn+1
h − ϕn

h

∆t
, ϕ

n+1/2
h ) =

ω

2∆t
(∥ϕn+1

h ∥2 − ∥ϕn
h∥2). (76)

Following the same steps in Theorem 13, we get the following bounds

(u ·∇ϕ
n+1/2
h , ϕ

n+1/2
h ) ≥ 0. (77)

(D∇ϕ
n+1/2
h ,∇ϕ

n+1/2
h ) ≥ λ∥∇ϕ

n+1/2
h ∥2. (78)

(u ·∇ηn+1/2, ϕ
n+1/2
h ) ≤ 2K2

PF∥u∥2∞
λ

∥ηn+1/2∥21 +
λ

8
∥∇ϕ

n+1/2
h ∥2. (79)

(D∇ηn+1/2,∇ϕ
n+1/2
h ) ≤ 2β2

1

λ
∥ηn+1/2∥21 +

λ

8
∥∇ϕ

n+1/2
h ∥2. (80)

Next,

(ω
ηn+1 − ηn

∆t
, ϕ

n+1/2
h ) =

( ω
∆t

∫ tn+1

tn

ηtdτ, ϕ
n+1/2
h

)
,

≤ 2K2
PFω

2

λ∆t2
( ∫ tn+1

tn

∥ηt∥dτ
)2

+
λ

8
∥∇ϕ

n+1/2
h ∥2.

Hence, after applying Cauchy-Schwarz inequality we get,

(ω
ηn+1 − ηn

∆t
, ϕ

n+1/2
h ) ≤ 2K2

PFω
2

λ∆t2
( ∫ tn+1

tn

∥ηt∥2dτ
)
+
λ

8
∥∇ϕ

n+1/2
h ∥2. (81)
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Next,

(rn, ϕ
n+1/2
h ) ≤ λ

8
∥∇ϕ

n+1/2
h ∥2 + 2K2

PF

λ
∥rn∥2. (82)

Combining (76)-(82), we get

ω

2∆t
(∥ϕn+1

h ∥2 − ∥ϕn
h∥2) +

λ

2
∥∇ϕ

n+1/2
h ∥2

≤ 2K2
PF∥u∥2∞∥ηn+1/2∥21

λ
+

2β2
1∥ηn+1/2∥21

λ
+

2K2
PFω

2

λ∆t

( ∫ tn+1

tn

∥ηt∥2dτ
)
+

2K2
PF

λ
∥rn∥2.

(83)

Multiplying (83) by 2∆t
ω

and summing over n = 0 to n = N , we get

∥ϕN+1
h ∥2 + λ

ω

N+1∑
n=0

∆t∥∇ϕ
n+1/2
h ∥2 ≤

(4K2
PF∥u∥2∞ + 4β2

1

ωλ

)N+1∑
n=0

∆t∥ηn+1/2∥21

+
4K2

PF

λω

∫ T

0

∥ηt∥2dt+
4K2

PF

ωλ

N+1∑
n=0

∆t∥rn∥2 + ∥ϕ0
h∥2.

(84)

To bound rn, we use Taylor expansion about tn+1/2. Hence,

N+1∑
n=0

∆t∥rn∥2 ≤ K1

N+1∑
n=0

∆t(∆t2∥Cttt∥L∞(0, T ;L∞))2,

≤ K1N∆t(∆t2∥Cttt∥L∞(0,T ;L∞))
2,

≤ K1T (∆t
2∥Cttt∥L∞(0,T ;L∞))

2.

Therefore, (84) implies

∥ϕN+1
h ∥2 + λ

ω

N+1∑
n=0

∆t∥∇ϕ
n+1/2
h ∥2 ≤

(4K2
PF∥u∥2∞ + 4β2

1

ωλ

)N+1∑
n=0

∆t∥ηn+1/2∥21

+
4K2

PFω

λ

∫ T

0

∥ηt∥2dt+
4K1TK

2
PF

ωλ
(∆t2∥Cttt∥L∞(0,T ;L∞))

2 + ∥ϕ0
h∥2.

Hence, we can write,

N+1∑
n=0

∆t∥∇ϕ
n+1/2
h ∥2 ≤

(4K2
PF∥u∥2∞ + 4β2

1

λ2

)N+1∑
n=0

∆t∥ηn+1/2∥2

+
4K2

PFω
2

λ2

∫ T

0

∥ηt∥21dt+
4K1TK

2
PF

λ2
(∆t2∥Cttt∥L∞(0,T ;L∞))

2 +
ω

λ
∥ϕ0

h∥2.
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By using the Lemma 1, we get

N+1∑
n=0

∆t∥ϕn+1/2
h ∥21 ≤

(4K2
PF∥u∥2∞ + 4β2

1

λ2

)N+1∑
n=0

∆t∥ηn+1/2∥21

+
4K2

PFω
2

λ2

∫ T

0

∥ηt∥2dt+
4K1TK

2
PF

λ2
(∆t2∥Cttt∥L∞(0,T ;L∞))

2 +
ω

λ
∥ϕ0

h∥2.

Triangle inequality gives

N+1∑
n=0

∆t∥en+1/2∥21 ≤
N+1∑
n=0

2∆t
(
∥ϕn+1/2

h ∥21 + ∥ηn+1/2∥21
)
.

Thus, we get

N+1∑
n=0

∆t∥en+1/2∥21 ≤
(
2 +

8K2
PF∥u∥2∞ + 8β2

1

λ2

)N+1∑
n=0

∆t∥ηn+1/2∥21

+
8K2

PFω
2

λ2

∫ T

0

∥ηt∥2dt+
8K1TK

2
PF

λ2
(∆t2∥Cttt∥L∞(0,T ;L∞))

2 +
2ω

λ
∥ϕ0

h∥2.

Since Ĉh is arbitrary, we have the following inequality

N+1∑
n=0

∆t∥en+1/2∥21 ≤
(
2 +

8K2
PF∥u∥2∞ + 8β2

1

λ2

)N+1∑
n=0

∆t inf
Ĉh∈Xh

Ĉh|Γin
=gh

∥Cn+1/2 − Ĉh∥21

+
8K2

PFω
2

λ2

∫ T

0

inf
Ĉh∈Xh

Ĉh|Γin
=gh

∥∥∥∂(C − Ĉh)

∂t

∥∥∥2dt+ 8K1TK
2
PF

λ2
(∆t2∥Cttt∥L∞(0,T ;L∞))

2 +
2ω

λ
∥ϕ0

h∥2.

Let gh be the interpolant of g in Xh
Γin

. Then by using Lemma 4, for 1 ≤ r ≤ k + 1 we get,

N+1∑
n=0

∆t∥en+1/2∥21 ≤
(
2 +

8K2
PF∥u∥2∞ + 8β2

1

λ2

)
K2

2h
2r−2

N+1∑
n=0

∆t∥Cn+1/2∥2r

+
8K2

PFω
2

λ2
K2

2h
2r−2

∫ T

0

∥∥∥∂C
∂t

∥∥∥2
r
dt+

8K1TK
2
PF

λ2
(∆t2∥Cttt∥L∞(0,T ;L∞))

2 +
2ω

λ
∥ϕ0

h∥2.

(85)

Let

K2 = max
{(

2 +
8K2

PF∥u∥2∞ + 8β2
1

λ2

)
K2

2 ,
8K2

PFω
2

λ2
K2

2 ,
8K1TK

2
PF

λ2
,
2ω

λ

}
.

Thus (85) implies the claim.
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2.4.3 Affine Isotherm

In the case of affine adsorption, q(C) = K1+K2C withK1, K2 ≥ 0. It implies ∂q
∂t

= K2
∂C
∂t
.

Let ω̄ = (ω + (1 − ω)ρsK2). Hence, the variational formulation given in (10) simplifies to

the following: Find C ∈ H1(Ω) such that C
∣∣∣
Γin

= g and :

(ω̄
∂C

∂t
, v) + (u ·∇C, v) + (D∇C,∇v) = (f, v), for all v ∈ H1

0,Γin
(Ω). (86)

The semi-discrete in space Finite Element formulation with affine adsorption is as follows:

Find Ch ∈ Xh such that Ch

∣∣∣
Γin

= gh and

(ω̄
∂Ch

∂t
, vh) + (u ·∇Ch, vh) + (D∇Ch,∇vh) = (f, vh), for all vh ∈ Xh

0,Γin
(Ω). (87)

For the analysis, we recall the refactorization of midpoint method [29] for time discretization,

and we get the following full discretization: Given Cn
h ∈ Xh, find Cn+1

h ∈ Xh such that

Cn+1
h

∣∣∣
Γin

= gh satisfying

Step 1: Backward Euler step at the half-integer time step tn+1/2

(ω̄
C

n+1/2
h − Cn

h

∆t/2
, vh) + (u ·∇C

n+1/2
h , vh)+(D∇C

n+1/2
h ,∇vh) = (fn+1/2, vh), ∀vh ∈ Xh

0,Γin
(Ω).

(88)

Step 2: Forward Euler step at tn+1

(ω̄
Cn+1

h − C
n+1/2
h

∆t/2
, vh) + (u ·∇C

n+1/2
h , vh)+(D∇C

n+1/2
h ,∇vh) = (fn+1/2, vh), ∀vh ∈ Xh

0,Γin
(Ω).

(89)

Remark 17. All the theorems proved for the constant adsorption are true for the affine

adsorption where ω is replaced by ω̄.
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2.4.4 Nonlinear, Explicit Isotherm

We consider the nonlinear isotherm with an explicit representation, for example, Lang-

muir’s isotherm [20,138] is as follows:

q(C) =
qmaxKeqC

1 +KeqC
, (90)

where Keq is Langmuir equilibrium constant, qmax is the maximum binding capacity of the

porous medium. Recall that for the case of nonlinear isotherm with explicit representation,

∂q

∂t
=

∂q

∂C

∂C

∂t
= q′(C)

∂C

∂t
.

We consider the variational formulation given in (10). The semi-discrete in space formulation

is given in (12) and the fully discrete formulation is given in the Section 2.3.2. Next, we

show the total mass balance for this isotherm. Unlike previous work, in [153] we dropped the

assumption “C(x, t) is nondecreasing in time at every x” and considered non-homogeneous

boundary conditions at inflow boundary.

Theorem 18. Assume that (F1)-(F6) are satisfied and the variational formulation given by

(10) has a solution C ∈ L∞(0, T, L2(Ω))∩L2(0, T,H1(Ω)) with f ∈ L2(0, T ;L2(Ω)). Let Ĉ be

the continuous extension of the Dirichlet data g inside the domain Ω and satisfies (24). The

bounds on ∥Ĉ∥2 and ∥∇Ĉ∥2 are given in (25) and (26) respectively. Let the antiderivative

be A(C) =
∫ C

0
sq′(s)ds. Then we get the following bound:

∥C(t)∥2 + 4

ω

∫
Ω

(1− ω)ρsA(C(t))dΩ +
λ

ω

∫ t

0

∥∇C(r)∥2 dr + 2

ω

∫ t

0

(∫
Γout

((C)2)(u · −→n )ds
)
dr

≤ 4

ω

∫ t

0

∥u∥2∞
λ

∥Ĉ∥2 dr +
(λ
ω
+

4β2
1

λω

)∫ t

0

∥∇Ĉ∥2 dr − 2

ω

∫ t

0

(∫
Γin

((g)2)(u · −→n )ds
)
dr

+ 3∥C(0)∥2 + 8K2
PF

λω

∫ t

0

∥f∥2 dr + 16(ω2 + (1− ω)2ρ2sK
2)

ω2
∥Ĉ∥2 + 4

ω

∫
Ω

(1− ω)ρsA(C(0))dΩ.
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Proof. Let Ĉ ∈ H1(Ω) such that Ĉ
∣∣∣
Γin

= g. Take v = C − Ĉ ∈ H1
0,Γin

(Ω). Then (10) yields

to

((ω + (1− ω)ρsq
′(C))

∂C

∂t
, C − Ĉ) + (u ·∇C,C − Ĉ) + (D∇C,∇

(
C − Ĉ

)
) = (f, C − Ĉ).

Thus, we get,

((ω + (1− ω)ρsq
′(C))

∂C

∂t
, C) + (u ·∇C,C) + (D∇C,∇C)

= ((ω + (1− ω)ρsq
′(C))

∂C

∂t
, Ĉ) + (u ·∇C, Ĉ) + (D∇C,∇Ĉ) + (f, C − Ĉ).

(91)

Let the antiderivative be

A(C(t)) =

∫ C

0

a(s)ds =

∫ C

0

sq′(s)ds.

We rewrite the first term in (91),

((ω + (1− ω)ρsq
′(C))

∂C

∂t
, C) =

∫
Ω

(ω + (1− ω)ρsq
′(C))C

∂C

∂t
dΩ

=
∂

∂t

∫
Ω

(
ω

2
|C|2 + (1− ω)ρsA(C(t))

)
dΩ.

(92)

Next using the same steps in Theorem (11), we get the following bounds:

(u ·∇C,C) =
1

2

(∫
Γin

((g)2)(u · −→n )ds
)
+

1

2

(∫
Γout

((C)2)(u · −→n )ds
)
. (93)

(D∇C,∇C) ≥ λ∥∇C∥2. (94)

(u ·∇C, Ĉ) ≤ λ

4
∥∇C∥2 + ∥u∥2∞

λ
∥Ĉ∥2. (95)

(D∇C,∇Ĉ) ≤ λ

4
∥∇C∥2 + β2

1

λ
∥∇Ĉ∥2. (96)

(f, C − Ĉ) ≤ 2K2
PF

λ
∥f∥2 + λ

4
∥∇C∥2 + λ

4
∥∇Ĉ∥2. (97)
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Next,

((ω + (1− ω)ρsq
′(C))

∂C

∂t
, Ĉ) = ω

∂

∂t
(C, Ĉ) + (1− ω)ρs

∂

∂t
(q(C), Ĉ). (98)

Combining (92)-(98), we get

∂

∂t

∫
Ω

(
ω

2
|C|2 + (1− ω)ρsA(C(t))

)
dΩ +

λ

4
∥∇C∥2 + 1

2

∫
Γout

((C)2)(u · −→n )ds ≤ ∥u∥2∞
λ

∥Ĉ∥2

+
(λ
4
+
β2
1

λ

)
∥∇Ĉ∥2 − 1

2

(∫
Γin

((g)2)(u · −→n )ds
)
+

2K2
PF

λ
∥f∥2 + ω

∂

∂t
(C, Ĉ)

+ (1− ω)ρs
∂

∂t
(q(C), Ĉ).

Let C(0) = C0 and A(C0) = A0. Integrating both sides from 0 to t, we obtain∫
Ω

(
ω

2
|C(t)|2 + (1− ω)ρsA(C(t))

)
dΩ +

λ

4

∫ t

0

∥∇C(r)∥2dr + 1

2

∫ t

0

(∫
Γout

((C)2)(u · −→n )ds
)
dr

≤
∫ t

0

∥u∥2∞
λ

∥Ĉ∥2dr +
(λ
4
+
β2
1

λ

)∫ t

0

∥∇Ĉ∥2dr − 1

2

∫ t

0

(∫
Γin

((g)2)(u · −→n )ds
)
dr

+
2K2

PF

λ

∫ t

0

∥f∥2dr + ω(C(t)− C0, Ĉ) + (1− ω)ρs(q(C(t))− q(C0), Ĉ)

+

∫
Ω

(
ω

2
|C0|2 + (1− ω)ρsA0

)
dΩ.

(99)

Next,

ω(C(t), Ĉ) ≤ ω∥C(t)∥∥Ĉ∥ ≤ ω

8
∥C(t)∥2 + 2ω∥Ĉ∥2.

− ω(C0, Ĉ) ≤ ω|(C0, Ĉ)| ≤ ω∥C0∥∥Ĉ∥ ≤ ω

8
∥C0∥2 + 2ω∥Ĉ∥2.

By using Cauchy-Schwarz and Young’s inequalities, we get,

(1− ω)ρs(q(C(t))− q(C0), Ĉ) ≤
4(1− ω)2ρ2sK

2

ω
∥Ĉ∥2 + ω

8
(∥C(t)∥2 + ∥C0∥2).

Hence after simplification, we prove the claim.

Remark 19. In the case of Langmuir’s isotherm (90),

A(C(t)) = ln(1 + C) +
1

1 + C
+ constant.
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Remark 20. Substituting (92) and (93) into (91), we get,

∂

∂t

∫
Ω

(
ω

2
∥C∥2 + (1− ω)ρsA(C(t))

)
dΩ +

(∫
Γout

(C2)(u · −→n )ds
)
+ (D∇C,∇C)

= −
(∫

Γin

(g2)(u · −→n )ds
)
.+ (f, C − Ĉ)((ω + (1− ω)ρsq

′(C))
∂C

∂t
, Ĉ) + +(u ·∇C, Ĉ)

+ (D∇C,∇Ĉ)

(100)

If f = 0 and Ĉ = 0 in (100), we get the balance of mass as follows

∂

∂t

∫
Ω

(
ω

2
∥C∥2 + (1− ω)ρsA(C(t))

)
dΩ +

(∫
Γout

(C2)(u · −→n )ds
)
+ (D∇C,∇C)

= −
(∫

Γin

(g2)(u · −→n )ds
)
.

(101)

Recall that u · −→n > 0 on Γout and u · −→n < 0 on Γin.

Next, we do another approach to the stability analysis where we will use the following

notation: Q(α) =
∫ α

0
q(s)ds,

E(t) = 3ω

4

∫ t

0

∥D1/2∇C − 8

3
D−1/2Ĉu∥2 dr + 3ω

4

∫ t

0

∥D1/2∇C − 8ρsq(Ĉ)(1− ω)

3ω
D−1/2u∥2 dr

+
3ω

4

∫ t

0

∥D1/2∇C − 8

3
D−1/2∇Ĉ∥2 dr + 3ω

4

∫ t

0

∥D1/2∇C − 8(1− ω)ρsq
′(Ĉ)

3ω
D−1/2∇Ĉ∥2 dr

+ ∥ωC(t) + (1− ω)ρsq(C(t))− 2(ωĈ + (1− ω)ρsq(Ĉ))∥2,

and

B(t) = 3ω

4

∫ t

0

∥8
3
D−1/2Ĉu∥2 dr + 3ω

4

∫ t

0

∥8ρsq(Ĉ)(1− ω)

3ω
D−1/2u∥2 dr + 3ω

4

∫ t

0

∥8
3
D−1/2∇Ĉ∥2 dr

+
3ω

4

∫ t

0

∥8(1− ω)ρsq
′(Ĉ)

3ω
D−1/2∇Ĉ∥2 dr

+ ∥ωC(0) + (1− ω)ρsq(C(0))− 2(ωĈ + (1− ω)ρsq(Ĉ))∥2.
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Theorem 21. Assume that (F1)-(F6) are satisfied. The variational formulation given by

(10) has a solution C ∈ L∞(0, T, L2(Ω)) ∩ L2(0, T,H1(Ω)) with f ∈ L2(0, T ;L2(Ω)). Let Ĉ

be the continuous extension of the Dirichlet data g inside the domain Ω and solution of (24).

We get the following result:

∥ωC(t) + (1− ω)ρsq(C(t))∥2 + ω

∫ t

0

∥D1/2∇C(r)∥2 dr

+ 4(1− ω)ρs

∫ t

0

(∫
Ω

q′(C(r))(D1/2∇C(r))2 dΩ

)
dr ++E(t)

+ 4(1− ω)ρs

∫ t

0

(∫
Γout

Q(C(r))(u · −→n )ds
)
dr + 2ω

∫ t

0

(∫
Γout

C2(u · −→n )ds
)
dr

= ∥ωC0 + (1− ω)ρsq(C0)∥2 + 4

∫ t

0

(f, ωC + (1− ω)ρsq(C)− (ωĈ + (1− ω)ρsq(Ĉ))) dr

+ B(t)− 2ω

∫ t

0

(∫
Γin

g2(u · −→n )ds
)
dr − 4(1− ω)ρs

∫ t

0

(∫
Γin

Q(g)(u · −→n )ds
)
dr.

Proof. Let Ĉ ∈ H1(Ω) such that Ĉ
∣∣∣
Γin

= g. Take v = (ωC + (1− ω)ρsq(C))− (ωĈ + (1−

ω)ρsq(Ĉ)) ∈ H1
0,Γin

(Ω). Then (9) yields to(
∂

∂t
(ωC + (1− ω)ρsq(C)), ωC + (1− ω)ρsq(C)− (ωĈ + (1− ω)ρsq(Ĉ))

)
+

(
u ·∇C, ωC + (1− ω)ρsq(C)− (ωĈ + (1− ω)ρsq(Ĉ))

)
+

(
D∇C,∇

(
ωC + (1− ω)ρsq(C)− (ωĈ + (1− ω)ρsq(Ĉ))

))
= (f, ωC + (1− ω)ρsq(C)− (ωĈ + (1− ω)ρsq(Ĉ))).

Thus, we get,(
∂

∂t
(ωC + (1− ω)ρsq(C)), ωC + (1− ω)ρsq(C)

)
+
(
u ·∇C, ωC + (1− ω)ρsq(C)

)
+ ω(D∇C,∇C) + (1− ω)ρs(q

′(C)D∇C,∇C)

= (f, ωC + (1− ω)ρsq(C)− (ωĈ + (1− ω)ρsq(Ĉ)))

+

(
∂

∂t
(ωC + (1− ω)ρsq(C)), (ωĈ + (1− ω)ρsq(Ĉ))

)
+
(
u ·∇C, (ωĈ + (1− ω)ρsq(Ĉ))

)
+ ω(D∇C,∇Ĉ) + (1− ω)ρs(q

′(Ĉ)D∇C,∇Ĉ).

(102)
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We rewrite the first term in (102),(
∂

∂t
(ωC + (1− ω)ρsq(C)), ωC + (1− ω)ρsq(C)

)
=

1

2

∂

∂t
∥ωC + (1− ω)ρsq(C)∥2. (103)

By using the divergence theorem and boundary conditions, we get

(u ·∇C, ωC + (1− ω)ρsq(C))

=
ω

2

∫
Γin

g2(u · −→n )ds+
ω

2

∫
Γout

C2(u · −→n )ds+ (1− ω)ρs

∫
Γin

Q(g)(u · −→n )ds

+ (1− ω)ρs

∫
Γout

Q(C)(u · −→n )ds.

(104)

Next,

ω(D∇C,∇C) + (1− ω)ρs(q
′(C)D∇C,∇C)

= ω(D1/2∇C,D1/2∇C) + (1− ω)ρs(q
′(C)D1/2∇C,D1/2∇C)

= ω∥D1/2∇C∥2 + (1− ω)ρs

∫
Ω

q′(C)(D1/2∇C)2 dΩ.

Next, in the right-hand side terms, we get the following equalities,

(u ·∇C, ωĈ) = (∇C · u, ωĈ)

= (∇C, ωĈu)

= ω(D1/2∇C,D−1/2Ĉu)

=
3ω

8
(D1/2∇C,

8

3
D−1/2Ĉu)

=
3ω

16
∥D1/2∇C∥2 + 3ω

16
∥8
3
D−1/2Ĉu∥2 − 3ω

16
∥D1/2∇C − 8

3
D−1/2Ĉu∥2,

(105)
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and

(u ·∇C, (1− ω)ρsq(Ĉ))

= (∇C · u, (1− ω)ρsq(Ĉ))

= (∇C, (1− ω)ρsq(Ĉ)u)

= ω(D1/2∇C,
ρsq(Ĉ)(1− ω)

ω
D−1/2u)

=
3ω

8
(D1/2∇C,

8ρsq(Ĉ)(1− ω)

3ω
D−1/2u)

=
3ω

16
∥D1/2∇C∥2 + 3ω

16
∥8ρsq(Ĉ)(1− ω)

3ω
D−1/2u∥2

− 3ω

16
∥D1/2∇C − 8ρsq(Ĉ)(1− ω)

3ω
D−1/2u∥2.

(106)

Furthermore,

ω(D∇C,∇Ĉ)

= ω(D1/2∇C,D−1/2∇Ĉ)

=
3ω

8
(D1/2∇C,

8

3
D−1/2∇Ĉ)

=
3ω

16
∥D1/2∇C∥2 + 3ω

16
∥8
3
D−1/2∇Ĉ∥2 − 3ω

16
∥D1/2∇C − 8

3
D−1/2∇Ĉ∥2,

(107)

and

(D∇C, (1− ω)ρsq
′(Ĉ)∇Ĉ)

= ω(D1/2∇C,
(1− ω)ρsq

′(Ĉ)

ω
D−1/2∇Ĉ)

=
3ω

8
(D1/2∇C,

8(1− ω)ρsq
′(Ĉ)

3ω
D−1/2∇Ĉ)

=
3ω

16
∥D1/2∇C∥2 + 3ω

16
∥8(1− ω)ρsq

′(Ĉ)

3ω
D−1/2∇Ĉ∥2

− 3ω

16
∥D1/2∇C − 8(1− ω)ρsq

′(Ĉ)

3ω
D−1/2∇Ĉ∥2.

(108)
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We also have, (
∂

∂t
(ωC + (1− ω)ρsq(C)), ωĈ + (1− ω)ρsq(Ĉ)

)
=

∂

∂t
(ωC + (1− ω)ρsq(C), ωĈ + (1− ω)ρsq(Ĉ))

− (ωC + (1− ω)ρsq(C),
∂(ωĈ + (1− ω)ρsq(Ĉ))

∂t
)

=
∂

∂t
(ωC + (1− ω)ρsq(C), ωĈ + (1− ω)ρsq(Ĉ)).

(109)

Combining (112)-(118), we get

1

2

∂

∂t
∥ωC + (1− ω)ρsq(C)∥2 +

ω

4
∥D1/2∇C∥2 + ω

2

∫
Γout

C2(u · −→n )ds

+ (1− ω)ρs

∫
Γout

Q(C)(u · −→n )ds+ (1− ω)ρs

∫
Ω

q′(C)(D1/2∇C)2 dΩ

+
3ω

16
∥D1/2∇C − 8

3
D−1/2Ĉu∥2 + 3ω

16
∥D1/2∇C − 8ρsq(Ĉ)(1− ω)

3ω
D−1/2u∥2

+
3ω

16
∥D1/2∇C − 8

3
D−1/2∇Ĉ∥2

+
3ω

16
∥D1/2∇C − 8(1− ω)ρsq

′(Ĉ)

3ω
D−1/2∇Ĉ∥2

= (f, ωC + (1− ω)ρsq(C)− (ωĈ + (1− ω)ρsq(Ĉ))) +
3ω

16
∥8
3
D−1/2Ĉu∥2

+
3ω

16
∥8ρsq(Ĉ)(1− ω)

3ω
D−1/2u∥2 + 3ω

16
∥8
3
D−1/2∇Ĉ∥2 + 3ω

16
∥8(1− ω)ρsq

′(Ĉ)

3ω
D−1/2∇Ĉ∥2

− ω

2

∫
Γin

g2(u · −→n )ds− (1− ω)ρs

∫
Γin

Q(g)(u · −→n )ds

+
∂

∂t
(ωC + (1− ω)ρsq(C), ωĈ + (1− ω)ρsq(Ĉ)).
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Next, integrating both sides from 0 to t, we obtain

1

2
∥ωC(t) + (1− ω)ρsq(C(t))∥2 +

ω

4

∫ t

0

∥∇C(r)∥2 dr + ω

2

∫ t

0

(∫
Γout

C2(u · −→n )ds
)
dr

+ (1− ω)ρs

∫ t

0

(∫
Γout

Q(C(r))(u · −→n )ds
)
dr

+ (1− ω)ρs

∫ t

0

(∫
Ω

q′(C(r))(D1/2∇C(r))2 dΩ

)
dr

+
3ω

16

∫ t

0

∥D1/2∇C(r)− 8

3
D−1/2Ĉu∥2 dr + 3ω

16

∫ t

0

∥D1/2∇C(r)− 8ρsq(Ĉ)(1− ω)

3ω
D−1/2u∥2 dr

+
3ω

16

∫ t

0

∥D1/2∇C(r)− 8

3
D−1/2∇Ĉ∥2 dr

+
3ω

16

∫ t

0

∥D1/2∇C(r)− 8(1− ω)ρsq
′(Ĉ)

3ω
D−1/2∇Ĉ∥2 dr

=

∫ t

0

(f, ωC + (1− ω)ρsq(C)− (ωĈ + (1− ω)ρsq(Ĉ))) dr +
3ω

16

∫ t

0

∥8
3
D−1/2Ĉu∥2 dr

+
3ω

16

∫ t

0

∥8ρsq(Ĉ)(1− ω)

3ω
D−1/2u∥2 dr + 3ω

16

∫ t

0

∥8
3
D−1/2∇Ĉ∥2 dr

+
3ω

16

∫ t

0

∥8(1− ω)ρsq
′(Ĉ)

3ω
D−1/2∇Ĉ∥2 dr + 1

2
∥ωC(0) + (1− ω)ρsq(C(0))∥2

− ω

2

∫ t

0

(∫
Γin

g2(u · −→n )ds
)
dr − (1− ω)ρs

∫ t

0

(∫
Γin

Q(g)(u · −→n )ds
)
dr

+ (ωC(t) + (1− ω)ρsq(C(t)), ωĈ + (1− ω)ρsq(Ĉ))

− (ωC(0) + (1− ω)ρsq(C(0)), ωĈ + (1− ω)ρsq(Ĉ)).

(110)

Here,

(ωC(t) + (1− ω)ρsq(C(t)), ωĈ + (1− ω)ρsq(Ĉ))

=
1

2
(ωC(t) + (1− ω)ρsq(C(t)), 2(ωĈ + (1− ω)ρsq(Ĉ)))

=
1

4
∥(ωC(t) + (1− ω)ρsq(C(t))∥2 +

1

4
∥2(ωĈ + (1− ω)ρsq(Ĉ))∥2

− 1

4
∥ωC(t) + (1− ω)ρsq(C(t))− 2(ωĈ + (1− ω)ρsq(Ĉ))∥2,
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and

− (ωC(0) + (1− ω)ρsq(C(0)), ωĈ + (1− ω)ρsq(Ĉ))

= −1

2
(ωC(0) + (1− ω)ρsq(C(0)), 2(ωĈ + (1− ω)ρsq(Ĉ)))

= −1

4
∥(ωC(0) + (1− ω)ρsq(C(0))∥2 −

1

4
∥2(ωĈ + (1− ω)ρsq(Ĉ))∥2

+
1

4
∥ωC(0) + (1− ω)ρsq(C(0))− 2(ωĈ + (1− ω)ρsq(Ĉ))∥2.

Hence (119) becomes

1

4
∥ωC(t) + (1− ω)ρsq(C(t))∥2 +

ω

4

∫ t

0

∥∇C(r)∥2 dr + ω

2

∫ t

0

(∫
Γout

C2(u · −→n )ds
)
dr +

1

4
E(t)

+ (1− ω)ρs

∫ t

0

(∫
Γout

Q(C(r))(u · −→n )ds
)
dr

+ (1− ω)ρs

∫ t

0

(∫
Ω

q′(C(r))(D1/2∇C(r))2 dΩ

)
dr

=
1

4
∥ωC(0) + (1− ω)ρsq(C(0))∥2 +

∫ t

0

(f, ωC + (1− ω)ρsq(C)− (ωĈ + (1− ω)ρsq(Ĉ))) dr

− ω

2

∫ t

0

(∫
Γin

g2(u · −→n )ds
)
dr − (1− ω)ρs

∫ t

0

(∫
Γin

Q(g)(u · −→n )ds
)
dr +

1

4
B(t).

Simplifying the above inequality and setting C(0) = C0, we get the claimed result.

Next, for stability in the case of semi-discrete in space, we will use the following notation:

Qh(α) =
∫ α

0
P(q(s))ds,

Eh(t) =
3ω

4

∫ t

0

∥D1/2∇Ch −
8

3
D−1/2Ĉhu∥2 dr

+
3ω

4

∫ t

0

∥D1/2∇Ch −
8(1− ω)ρsP1(q′(Ĉh))

3ω
D−1/2∇Ĉh∥2 dr

+ ∥ωCh(t) + (1− ω)ρsP(q(Ch(t)))− 2(ωĈh + (1− ω)ρsP(q(Ĉh)))∥2

+
3ω

4

∫ t

0

∥D1/2∇Ch −
8

3
D−1/2∇Ĉh∥2 dr

+
3ω

4

∫ t

0

∥D1/2∇Ch −
8ρsP(q(Ĉh))(1− ω)

3ω
D−1/2u∥2 dr.
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and

Bh(t) =
3ω

4

∫ t

0

∥8
3
D−1/2Ĉu∥2 dr + 3ω

4

∫ t

0

∥8ρsP(q(Ĉh))(1− ω)

3ω
D−1/2u∥2 dr

+
3ω

4

∫ t

0

∥8(1− ω)ρsP1(q′(Ĉ))

3ω
D−1/2∇Ĉh∥2 dr +

3ω

4

∫ t

0

∥8
3
D−1/2∇Ĉh∥2 dr

+ ∥ωC(0) + (1− ω)ρsP(q(C(0)))− 2(ωĈh + (1− ω)ρsP(q(Ĉh)))∥2.

Theorem 22. Assume that (F1)-(F6) are satisfied. The variational formulation given by

(10) has a solution C ∈ L∞(0, T, L2(Ω)) ∩ L2(0, T,H1(Ω)) with f ∈ L2(0, T ;L2(Ω)). Let Ĉ

be the continuous extension of the Dirichlet data g inside the domain Ω and solution of (24).

We assume Q(α) =
∫ α

0
P(q(s))ds ≥ 0 and P1(q′(Ch)) ≥ 0. We get the following result:

∥ωCh(t) + (1− ω)ρsP(q(Ch(t)))∥2 + ω

∫ t

0

∥D1/2∇Ch(r)∥2 dr

+ 4(1− ω)ρs

∫ t

0

(∫
Ω

P1(q′(Ch(r)))(D
1/2∇Ch(r))

2 dΩ

)
dr

+ 4(1− ω)ρs

∫ t

0

(∫
Γout

Qh(Ch(r))(u · −→n )ds
)
dr + 2ω

∫ t

0

(∫
Γout

C2
h(u · −→n )ds

)
dr + Eh(t)

= ∥ωCh(0) + (1− ω)ρsP(q(Ch(0)))∥2 + Bh(t)

+ 4

∫ t

0

(f, ωCh + (1− ω)ρsP(q(Ch))− (ωĈh + (1− ω)ρsP(q(Ĉh)))) dr

− 2ω

∫ t

0

(∫
Γin

g2h(u · −→n )ds
)
dr − 4(1− ω)ρs

∫ t

0

(∫
Γin

Qh(gh)(u · −→n )ds
)
dr.

Proof. Let Ĉh ∈ Xh(Ω) such that Ĉh

∣∣∣
Γin

= gh. Let P and P1 be the orthogonal projections

with respect to the L2 inner product and H1 inner product, respectively. Take vh = (ωCh +

(1− ω)ρsP(q(Ch)))− (ωĈh + (1− ω)ρsP(q(Ĉh))) ∈ Xh
0,Γin

(Ω). Then (11) yields to(
∂

∂t
(ωCh + (1− ω)ρsq(Ch)), (ωCh + (1− ω)ρsP(q(Ch)))− (ωĈh + (1− ω)ρsP(q(Ĉh)))

)
+

(
u ·∇Ch, (ωCh + (1− ω)ρsP(q(Ch)))− (ωĈh + (1− ω)ρsP(q(Ĉh)))

)
+

(
D∇Ch,∇

(
(ωCh + (1− ω)ρsP(q(Ch)))− (ωĈh + (1− ω)ρsP(q(Ĉh)))

))
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= (f, (ωCh + (1− ω)ρsP(q(Ch)))− (ωĈh + (1− ω)ρsP(q(Ĉh)))).

Thus, we get, (
∂

∂t
(ωCh + (1− ω)ρsq(Ch)), ωCh + (1− ω)ρsP(q(Ch))

)
+
(
u ·∇Ch, ωCh + (1− ω)ρsP(q(Ch))

)
+ ω(D∇Ch,∇Ch)

+ (1− ω)ρs(D∇Ch,P1(q′(Ch)∇Ch))

= (f, ωCh + (1− ω)ρsP(q(Ch))− (ωĈh + (1− ω)ρsP(q(Ĉh))))

+

(
∂

∂t
(ωCh + (1− ω)ρsq(Ch)), (ωĈh + (1− ω)ρsP(q(Ĉh)))

)
+
(
u ·∇C, (ωĈh + (1− ω)ρsP(q(Ĉh)))

)
+ ω(D∇Ch,∇Ĉh)

+ (1− ω)ρs(D∇Ch,P1(q′(Ĉh)∇Ĉh)).

(111)

We rewrite the first term in (102),(
∂

∂t
(ωCh + (1− ω)ρsq(Ch)), ωCh + (1− ω)ρsP(q(Ch))

)
=

1

2

∂

∂t
∥ωCh + (1− ω)ρsP(q(Ch))∥2.

(112)

By using the divergence theorem and boundary conditions, we get

(u ·∇Ch, ωCh + (1− ω)ρsP(q(Ch)))

=
ω

2

∫
Γin

g2h(u · −→n )ds+
ω

2

∫
Γout

C2
h(u · −→n )ds

+ (1− ω)ρs

∫
Γin

Qh(gh)(u · −→n )ds+ (1− ω)ρs

∫
Γout

Qh(Ch)(u · −→n )ds.

(113)

Next,

ω(D∇Ch,∇Ch) + (1− ω)ρsP1(q′(Ch)D∇Ch,∇Ch)

= ω(D1/2∇Ch, D
1/2∇Ch) + (1− ω)ρs(P1(q′(Ch))D

1/2∇Ch, D
1/2∇Ch)

= ω∥D1/2∇Ch∥2 + (1− ω)ρs

∫
Ω

P1(q′(Ch))(D
1/2∇Ch)

2 dΩ.
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Next, in the right-hand side terms, we get the following equalities,

(u ·∇Ch, ωĈh)

= (∇Ch · u, ωĈh)

= (∇Ch, ωĈhu)

= ω(D1/2∇Ch, D
−1/2Ĉhu)

=
3ω

8
(D1/2∇Ch,

8

3
D−1/2Ĉhu)

=
3ω

16
∥D1/2∇Ch∥2 +

3ω

16
∥8
3
D−1/2Ĉhu∥2 −

3ω

16
∥D1/2∇Ch −

8

3
D−1/2Ĉhu∥2,

(114)

and

(u ·∇Ch, (1− ω)ρsP(q(Ĉh)))

= (∇Ch · u, (1− ω)ρsP(q(Ĉh)))

= (∇Ch, (1− ω)ρsP(q(Ĉh))u)

= ω(D1/2∇Ch,
ρsP(q(Ĉh))(1− ω)

ω
D−1/2u)

=
3ω

8
(D1/2∇Ch,

8ρsP(q(Ĉh))(1− ω)

3ω
D−1/2u)

=
3ω

16
∥D1/2∇Ch∥2 +

3ω

16
∥8ρsP(q(Ĉh))(1− ω)

3ω
D−1/2u∥2

− 3ω

16
∥D1/2∇Ch −

8ρsP(q(Ĉh))(1− ω)

3ω
D−1/2u∥2.

(115)

Next,

ω(D∇Ch,∇Ĉh)

= ω(D1/2∇Ch, D
−1/2∇Ĉh)

=
3ω

8
(D1/2∇Ch,

8

3
D−1/2∇Ĉh)

=
3ω

16
∥D1/2∇Ch∥2 +

3ω

16
∥8
3
D−1/2∇Ĉh∥2 −

3ω

16
∥D1/2∇Ch −

8

3
D−1/2∇Ĉh∥2,

(116)
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and

(D∇Ch, (1− ω)ρsP1(q′(Ĉh))∇Ĉh)

= ω(D1/2∇Ch,
(1− ω)ρsP1(q′(Ĉh))

ω
D−1/2∇Ĉh)

=
3ω

8
(D1/2∇Ch,

8(1− ω)ρsP1(q′(Ĉh))

3ω
D−1/2∇Ĉh)

=
3ω

16
∥D1/2∇Ch∥2 +

3ω

16
∥8(1− ω)ρsP1(q′(Ĉh))

3ω
D−1/2∇Ĉh∥2

− 3ω

16
∥D1/2∇Ch −

8(1− ω)ρsP1(q′(Ĉh))

3ω
D−1/2∇Ĉh∥2.

(117)

Next, (
∂

∂t
(ωCh + (1− ω)ρsq(Ch)), ωĈh + (1− ω)ρsP(q(Ĉh))

)
=

∂

∂t
(ωCh + (1− ω)ρsq(Ch), ωĈh + (1− ω)ρsP(q(Ĉh)))

− (ωCh + (1− ω)ρsq(Ch),
∂(ωĈh + (1− ω)ρsP(q(Ĉh)))

∂t
)

=
∂

∂t
(ωCh + (1− ω)ρsq(Ch), ωĈh + (1− ω)ρsP(q(Ĉh))).

(118)

Combining (112)-(118), we get

1

2

∂

∂t
∥ωCh + (1− ω)ρsP(q(Ch))∥2 +

ω

4
∥D1/2∇Ch∥2 +

ω

2

∫
Γout

C2
h(u · −→n )ds

+ (1− ω)ρs

∫
Γout

Qh(Ch)(u · −→n )ds+ (1− ω)ρs

∫
Ω

P1(q′(Ch))(D
1/2∇Ch)

2 dΩ

+
3ω

16
∥D1/2∇Ch −

8

3
D−1/2Ĉhu∥2

+
3ω

16
∥D1/2∇Ch −

8ρsP(q(Ĉ))(1− ω)

3ω
D−1/2u∥2 + 3ω

16
∥D1/2∇Ch −

8

3
D−1/2∇Ĉh∥2

+
3ω

16
∥D1/2∇Ch −

8(1− ω)ρsP1(q′(Ĉh))

3ω
D−1/2∇Ĉh∥2

= (f, ωCh + (1− ω)ρsP(q(Ch))− (ωĈh + (1− ω)ρsP(q(Ĉh)))) +
3ω

16
∥8
3
D−1/2Ĉhu∥2

+
3ω

16
∥8ρsP(q(Ĉ))(1− ω)

3ω
D−1/2u∥2 + 3ω

16
∥8
3
D−1/2∇Ĉh∥2

+
3ω

16
∥8(1− ω)ρsP1(q′(Ĉh))

3ω
D−1/2∇Ĉh∥2

− ω

2

∫
Γin

g2h(u · −→n )ds− (1− ω)ρs

∫
Γin

Qh(gh)(u · −→n )ds
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+
∂

∂t
(ωCh + (1− ω)ρsq(Ch), ωĈh + (1− ω)ρsP(q(Ĉh))).

Next, integrating both sides from 0 to t, we obtain

1

2
∥ωCh(t) + (1− ω)ρsP(q(C(t)))∥2 + ω

4

∫ t

0

∥∇Ch(r)∥2 dr +
ω

2

∫ t

0

(∫
Γout

C2
h(u · −→n )ds

)
dr

+ (1− ω)ρs

∫ t

0

(∫
Γout

Qh(Ch(r))(u · −→n )ds
)
dr

+ (1− ω)ρs

∫ t

0

(∫
Ω

P1(q′(Ch(r)))(D
1/2∇Ch(r))

2 dΩ

)
dr

+
3ω

16

∫ t

0

∥D1/2∇Ch(r)−
8

3
D−1/2Ĉhu∥2 dr

+
3ω

16

∫ t

0

∥D1/2∇Ch(r)−
8ρsP(q(Ĉh))(1− ω)

3ω
D−1/2u∥2 dr

+
3ω

16

∫ t

0

∥D1/2∇Ch(r)−
8

3
D−1/2∇Ĉh∥2 dr

+
3ω

16

∫ t

0

∥D1/2∇Ch(r)−
8(1− ω)ρsP1(q′(Ĉh))

3ω
D−1/2∇Ĉh∥2 dr

=

∫ t

0

(f, ωCh + (1− ω)ρsP(q(Ch))− (ωĈh + (1− ω)ρsP(q(Ĉh)))) dr

+
3ω

16

∫ t

0

∥8ρsP(q(Ĉh))(1− ω)

3ω
D−1/2u∥2 dr + 3ω

16

∫ t

0

∥8
3
D−1/2∇Ĉh∥2 dr

+
3ω

16

∫ t

0

∥8(1− ω)ρsP1(q′(Ĉh))

3ω
D−1/2∇Ĉh∥2 dr +

1

2
∥ωCh(0) + (1− ω)ρsP(q(Ch(0)))∥2

− ω

2

∫ t

0

(∫
Γin

g2h(u · −→n )ds
)
dr − (1− ω)ρs

∫ t

0

(∫
Γin

Qh(gh)(u · −→n )ds
)
dr

+ (ωCh(t) + (1− ω)ρsq(Ch(t)), ωĈh + (1− ω)ρsP(q(Ĉh)))

− (ωCh(0) + (1− ω)ρsq(Ch(0)), ωĈh + (1− ω)ρsP(q(Ĉh))) +
3ω

16

∫ t

0

∥8
3
D−1/2Ĉhu∥2 dr.

(119)

Here,

(ωCh(t) + (1− ω)ρsq(Ch(t)), ωĈh + (1− ω)ρsP(q(Ĉh)))

=
1

2
(ωCh(t) + (1− ω)ρsq(Ch(t)), 2(ωĈh + (1− ω)ρsP(q(Ĉh))))
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=
1

4
∥(ωCh(t) + (1− ω)ρsq(Ch(t))∥2 +

1

4
∥2(ωĈh + (1− ω)ρsP(q(Ĉh)))∥2

− 1

4
∥ωCh(t) + (1− ω)ρsq(Ch(t))− 2(ωĈh + (1− ω)ρsP(q(Ĉh)))∥2,

and

− (ωCh(0) + (1− ω)ρsq(Ch0)), ωĈh + (1− ω)ρsP(q(Ĉh)))

= −1

2
(ωCh(0) + (1− ω)ρsq(Ch(0)), 2(ωĈh + (1− ω)ρsP(q(Ĉh))))

= −1

4
∥(ωCh(0) + (1− ω)ρsq(Ch(0))∥2 −

1

4
∥2(ωĈh + (1− ω)ρsP(q(Ĉh)))∥2

+
1

4
∥ωCh(0) + (1− ω)ρsq(Ch(0))− 2(ωĈh + (1− ω)ρsP(q(Ĉh)))∥2.

Hence (119) becomes

1

4
∥ωCh(t) + (1− ω)ρsP(q(Ch(t)))∥2 +

ω

4

∫ t

0

∥∇Ch(r)∥2 dr +
ω

2

∫ t

0

(∫
Γout

C2
h(u · −→n )ds

)
dr

+ (1− ω)ρs

∫ t

0

(∫
Γout

Qh(Ch(r))(u · −→n )ds
)
dr

+ (1− ω)ρs

∫ t

0

(∫
Ω

P1(q′(Ch(r)))(D
1/2∇Ch(r))

2 dΩ

)
dr +

1

4
Eh(t)

=
1

4
∥ωCh(0) + (1− ω)ρsP(q(Ch(0)))∥2 +

1

4
Bh(t)

+

∫ t

0

(f, ωCh + (1− ω)ρsP(q(Ch))− (ωĈh + (1− ω)ρsP(q(Ĉh)))) dr

− ω

2

∫ t

0

(∫
Γin

g2h(u · −→n )ds
)
dr − (1− ω)ρs

∫ t

0

(∫
Γin

Q(gh)(u · −→n )ds
)
dr

Simplifying the above inequality, we get the claimed result.
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2.4.5 Semi-discrete in space error Estimate

Next theorem gives a priori error estimate for the case of nonlinear adsorption and

semi-discrete in space where we will use the notation:

K2 := exp

(
T+

3T∥u∥2∞∥D−1/2∥2∞
ω

)(
4∥D1/2∥2∞+3ω+4∥u∥2∞∥D−1/2∥2∞+

3(1− ω)2ρ2sK
2

ω

)
K2

1 .

Theorem 23. Assume that (F1)-(F7) are satisfied and the time-integrated method vari-

ational formulation with nonlinear adsorption given by (22) has an exact solution C ∈

H1(0, T,Hk+1(Ω)) and Ch solves the semi-discrete in space method Finite Element formula-

tion with nonlinear adsorption given by (23). Then for 1 ≤ r ≤ k + 1 and for each T > 0,

there exists a constant K2 > 0 independent of h such that

ω

∫ T

0

∥C − Ch∥2dt+ ∥
∫ T

0

D1/2∇(C − Ch)dt
′∥2 ≤ K2h

2r−2

∫ T

0

∥C∥2rdt. (120)

Proof. The weak formulation of continuous and semidiscrete problems are given by (22)

and (23), respectively, where C
∣∣∣
Γin

= g and Ch

∣∣∣
Γin

= gh are required.

First we let v = vh ∈ Xh
0,Γin

⊂ H1
0,Γin

(Ω) in (22) and then subtract (23) from (22) to get

(ω(C − Ch), vh) + ((1− ω)ρs(q(C)− q(Ch)), vh) + (

∫ t

0

u ·∇(C − Ch)dt
′, vh)

− (∇ ·
∫ t

0

D∇(C − Ch)dt
′, vh) = 0, ∀vh ∈ Xh

0,Γin
(Ω).

(121)

We choose vh = Ch − Ĉh = Ch − C + C − Ĉh ∈ Xh
0,Γin

. Then, we get

(ω(C − Ch), C − Ch) + ((1− ω)ρs(q(C)− q(Ch)), C − Ch)

+ (

∫ t

0

u ·∇(C − Ch)dt
′, C − Ch) + (

∫ t

0

D∇(C − Ch)dt
′,∇(C − Ch))

= (ω(C − Ch), C − Ĉh) + ((1− ω)ρs(q(C)− q(Ch)), C − Ĉh)

+ (

∫ t

0

u ·∇(C − Ch)dt
′, C − Ĉh) + (

∫ t

0

D∇(C − Ch)dt
′,∇

(
C − Ĉh

)
).

(122)

Here,

(ω(C − Ch), C − Ch) = ω∥C − Ch∥2,
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((1− ω)ρs(q(C)− q(Ch)), C − Ch) = (1− ω)ρs

∫
Ω

(

∫ 1

0

(q′(θC + (1− θ)Ch))dθ)(C − Ch)
2dΩ,

(

∫ t

0

D∇(C − Ch)dt
′,∇(C − Ch)) = (

∫ t

0

D1/2∇(C − Ch)dt
′,
d

dt

∫ t

0

D1/2∇(C − Ch)dt
′)

=
1

2

d

dt
∥
∫ t

0

D1/2∇(C − Ch)dt
′∥2.

Next, we get the following bounds for the right-hand side terms,

(ω(C − Ch), C − Ĉh) ≤
ε1
2
ω∥C − Ch∥2 +

ω

2ε1
∥C − Ĉh∥2,

(

∫ t

0

D∇(C − Ch)dt
′,∇

(
C − Ĉh

)
) = (

∫ t

0

D1/2∇(C − Ch)dt
′, D1/2∇

(
C − Ĉh

)
)

≤ ∥
∫ t

0

D1/2∇(C − Ch)dt
′∥∥D1/2∥∞∥∇

(
C − Ĉh

)
∥

≤ ε2
2
∥
∫ t

0

D1/2∇(C − Ch)dt
′∥2 + ∥D1/2∥2∞

2ε2
∥∇
(
C − Ĉh

)
∥2,

(

∫ t

0

u ·∇(C − Ch)dt
′, C − Ĉh) = (

∫ t

0

D1/2∇(C − Ch)dt
′, D−1/2u(C − Ĉh))

≤ ε3
2
∥
∫ t

0

D1/2∇(C − Ch)dt
′∥2 + ∥u∥2∞∥D−1/2∥2∞

2ε3
∥C − Ĉh∥2,∣∣∣∣(∫ t

0

u ·∇(C − Ch)dt
′, C − Ch)

∣∣∣∣ = ∣∣∣∣(∫ t

0

D1/2∇(C − Ch)dt
′, D−1/2u(C − Ch))

∣∣∣∣
≤ ε4

2
∥
∫ t

0

D1/2∇(C − Ch)dt
′∥2 + ∥u∥2∞∥D−1/2∥2∞

2ε4
∥C − Ch∥2,

((1− ω)ρs(q(C)− q(Ch)), C − Ĉh) ≤ (1− ω)ρs∥q(C)− q(Ch)∥∥C − Ĉh∥

≤ (1− ω)ρsK∥C − Ch∥∥C − Ĉh∥

≤ ε5
2
∥C − Ch∥2 +

(1− ω)2ρ2sK
2

2ε5
∥C − Ĉh∥2.

Let ε1 =
1
3
, ε2 = ε3 =

1
4
, ε4 =

3∥u∥2∞∥D−1/2∥2∞
ω

, ε5 =
ω
3
. Combining all terms, (122) yields

ω

2
∥C − Ch∥2 + (1− ω)ρs

∫
Ω

(

∫ 1

0

(q′(θC + (1− θ)Ch))dθ)(C − Ch)
2dΩ

+
1

2

d

dt
∥
∫ t

0

D1/2∇(C − Ch)dt
′∥2

≤
(1
2
+

3∥u∥2∞∥D−1/2∥2∞
2ω

)
∥
∫ t

0

D1/2∇(C − Ch)dt
′∥2 + 2∥D1/2∥2∞∥∇

(
C − Ĉh

)
∥2

+
(3ω
2

+ 2∥u∥2∞∥D−1/2∥2∞ +
3(1− ω)2ρ2sK

2

2ω

)
∥C − Ĉh∥2.

(123)
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After integrating (123) in time from t = 0 to t = T , we obtain,

ω

∫ T

0

∥C − Ch∥2dt+ 2(1− ω)ρs

∫ T

0

∫
Ω

(

∫ 1

0

(q′(θC + (1− θ)Ch))dθ)(C − Ch)
2dΩdt

+ ∥
∫ T

0

D1/2∇(C − Ch)dt
′∥2

≤
(
1 +

3∥u∥2∞∥D−1/2∥2∞
ω

) ∫ T

0

∥
∫ t

0

D1/2∇(C − Ch)dt
′∥2dt

+ 4∥D1/2∥2∞
∫ T

0

∥∇
(
C − Ĉh

)
∥2dt

+
(
3ω + 4∥u∥2∞∥D−1/2∥2∞ +

3(1− ω)2ρ2sK
2

ω

) ∫ T

0

∥C − Ĉh∥2dt.

(124)

Then continuous Gronwall’s inequality applied to (124) gives us

ω

∫ T

0

∥C − Ch∥2dt+ 2(1− ω)ρs

∫ T

0

∫
Ω

(

∫ 1

0

(q′(θC + (1− θ)Ch))dθ)(C − Ch)
2dΩdt

+ ∥
∫ T

0

D1/2∇(C − Ch)dt
′∥2

≤ exp

(
T +

3T∥u∥2∞∥D−1/2∥2∞
ω

)
×
(
4∥D1/2∥2∞ ++3ω + 4∥u∥2∞∥D−1/2∥2∞ +

3(1− ω)2ρ2sK
2

ω

)∫ T

0

∥C − Ĉh∥21dt
)
.

(125)

Here 2(1−ω)ρs
∫ T

0

∫
Ω
(
∫ 1

0
(q′(θC +(1− θ)Ch))dθ)(C−Ch)

2dΩdt is a positive term. Hence we

can rewrite (125),

ω

∫ T

0

∥C − Ch∥2dt+ ∥
∫ T

0

D1/2∇(C − Ch)dt
′∥2

≤ exp

(
T +

3T∥u∥2∞∥D−1/2∥2∞
ω

)
×
(
4∥D1/2∥2∞ ++3ω + 4∥u∥2∞∥D−1/2∥2∞ +

3(1− ω)2ρ2sK
2

ω

)∫ T

0

∥C − Ĉh∥21dt
)
.

(126)
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Since Ĉh is arbitrary, we have the following inequality,

ω

∫ T

0

∥C − Ch∥2dt+ ∥
∫ T

0

D1/2∇(C − Ch)dt
′∥2

≤ exp

(
T +

3T∥u∥2∞∥D−1/2∥2∞
ω

)
×
(
4∥D1/2∥2∞ ++3ω + 4∥u∥2∞∥D−1/2∥2∞ +

3(1− ω)2ρ2sK
2

ω

)∫ T

0

inf
Ĉh∈Xh

Ĉh|Γin
=gh

∥C − Ĉh∥21dt
)
.

(127)

Let gh be the interpolant of g in Xh
Γin

. Then by using Lemma 4, for 1 ≤ r ≤ k + 1 we get,

ω

∫ T

0

∥C − Ch∥2dt+ ∥
∫ T

0

D1/2∇(C − Ch)dt
′∥2

≤ exp

(
T +

3T∥u∥2∞∥D−1/2∥2∞
ω

)
×
(
4∥D1/2∥2∞ ++3ω + 4∥u∥2∞∥D−1/2∥2∞ +

3(1− ω)2ρ2sK
2

ω

)
K2

1h
2r−2

∫ T

0

∥C∥2rdt
)
.

(128)

Let

K2 = exp

(
T+

3T∥u∥2∞∥D−1/2∥2∞
ω

)(
4∥D1/2∥2∞+3ω+4∥u∥2∞∥D−1/2∥2∞+

3(1− ω)2ρ2sK
2

ω

)
K2

1 .

Thus (128) implies

ω

∫ T

0

∥C − Ch∥2dt+ ∥
∫ T

0

D1/2∇(C − Ch)dt
′∥2 ≤ K2h

2r−2

∫ T

0

∥C∥2rdt.

Consequently, we prove the claim (120).
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2.4.5.1 Existence of solution of approximate system

In this subsection, we prove the solvability of the approximating system (15) for the

nonlinear, explicit isotherm (90). We first define all necessary operators and prove associated

lemmas to do that. Then, we use the Leray-Schauder fixed-point Thoerem [100, Theorem 16]

to prove the existence of the solution of the approximate system. By adding and subtracting

Ĉh, we can rewrite the fully discretized form Equation (15) as follows:

Given Cn
h − Ĉh ∈ Xh

0,Γin
, find Cn+1

h − Ĉh ∈ Xh
0,Γin

such that

(D∇
(
Cn+1

h − Ĉh

)
,∇vh)

= −2

((
ω + (1− ω)ρsq

′(
Cn+1

h − Ĉh + Cn
h + Ĉh

2
)
)(Cn+1

h − Ĉh)− (Cn
h − Ĉh)

∆t
, vh

)
+ 2(fn+1/2, vh)− (u ·∇

(
Cn+1

h − Ĉh + Cn
h + Ĉh

)
, vh)

+ (∇ · (D∇
(
Cn

h + Ĉh

)
), vh), ∀v ∈ Xh

0,Γin
.

(129)

For simplicity, we drop h throughout this section. By the Lax-Milgram Theorem [25, corol-

lary 5.8],

∀ l ∈ X∗, there exists an unique solution Ψ ∈ X0,Γin
of (D∇Ψ,∇v) = (l, v), ∀v ∈ X0,Γin

.

Then, the operator T : X∗ → X0,Γin
defined by T (l) = Ψ is a well-defined linear and

continuous operator. Indeed, T is a bounded operator:

∥T∥ = sup
l∈X∗

∥T (l)∥X0,Γin

∥l∥∗
= sup

l∈X∗

∥∇Ψ∥
∥l∥∗

≤ 1

λ
, since ∥∇Ψ∥ ≤ 1

λ
∥l∥∗.

Next, we define the nonlinear operator N : X0,Γin
→ X∗ by

N(ψ)

= 2fn+ 1
2 − 2

(
ω + (1− ω)ρsq

′(
ψ + Cn + Ĉ

2
)
)ψ − (Cn − Ĉ)

∆t
− u ·∇

(
ψ + Cn + Ĉ

)
+∇ · (D∇

(
Cn + Ĉ

)
)

and the operator F : X0,Γin
→ X0,Γin

by F = T (N(ψ)).
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Lemma 24. N : X0,Γin → X∗ is a bounded operator, i.e.,

∥N(ψ)∥∗ ≤ ∥u∥∞∥∇ψ∥+ 2ω + 2(1− ω)κ2
∆t

∥ψ∥+ 2ω + 2(1− ω)κ2
∆t

∥Cn − Ĉ∥+ ∥2fn+ 1
2∥∗

+ ∥∇ · (D∇
(
Cn + Ĉ

)
)∥∗ + ∥u∥∞∥∇

(
Cn + Ĉ

)
∥.

Proof. Using the definition, triangle inequality, and Cauchy-Schwarz inequality, we get,

∥N(ψ)∥∗

= ∥2fn+ 1
2 − 2

(
ω + (1− ω)ρsq

′(
ψ + Cn + Ĉ

2
)
)ψ − (Cn − Ĉ)

∆t
− u ·∇

(
ψ + Cn + Ĉ

)
+∇ · (D∇

(
Cn + Ĉ

)
)∥∗,

≤ ∥2fn+ 1
2∥∗ + ∥∇ · (D∇

(
Cn + Ĉ

)
)∥∗ + ∥2ωψ − (Cn − Ĉ)

∆t
∥∗

+ ∥2
(
(1− ω)ρsq

′(
ψ + Cn + Ĉ

2
)
)ψ − (Cn − Ĉ)

∆t
∥∗ + ∥u ·∇

(
ψ + Cn + Ĉ

)
∥∗.

Notice,

∥u ·∇
(
ψ + Cn + Ĉ

)
∥∗ ≤ ∥u∥∞∥∇ψ∥+ ∥u∥∞∥∇

(
Cn + Ĉ

)
∥.

∥2ωψ − (Cn − Ĉ)

∆t
∥∗ ≤

2ω

∆t
∥ψ∥+ 2ω

∆t
∥Cn − Ĉ∥.

Next,

∥2(1− ω)ρsq
′(
ψ + Cn + Ĉ

2
)
ψ − (Cn − Ĉ)

∆t
∥∗ ≤

2(1− ω)κ2
∆t

∥ψ∥+ 2(1− ω)κ2
∆t

∥Cn − Ĉ∥.

Combining all concludes the argument.

Lemma 25. N : X0,Γin → X∗ is a continuous operator.
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Proof. It suffices to show that ∥N(ψ1)−N(ψ2)∥∗ → 0 if ∥∇(ψ1 − ψ2)∥∗ → 0. Here,

∥N(ψ1)−N(ψ2)∥∗

≤ 2ω

∆t
∥ψ2 − ψ1∥∗ + ∥u ·∇(ψ2 − ψ1)∥∗

+
2(1− ω)ρs

∆t
∥q′(ψ2 + Cn + Ĉ

2
)(ψ2 − (Cn − Ĉ))− q′(

ψ1 + Cn + Ĉ

2
)(ψ1 − (Cn − Ĉ))∥∗.

Notice, 2ω
∆t
∥ψ2 − ψ1∥∗ ≤ 2ωKPF

∆t
∥∇(ψ2 − ψ1)∥ and ∥u ·∇(ψ2 − ψ1)∥∗ ≤ ∥u∥∞∥∇(ψ2 − ψ1)∥.

Next,

∥q′(ψ2 + Cn + Ĉ

2
)(ψ2 − ψ1)∥∗ ≤ κ2KPF∥∇(ψ2 − ψ1)∥.

Using Lipschitz continuity of q′ we get,

∥
(
q′(
ψ2 + Cn + Ĉ

2
)− q′(

ψ1 + Cn + Ĉ

2
)

)
(ψ1 − (Cn − Ĉ))∥∗

≤ KKPF∥∇(ψ2 − ψ1)∥∥ψ1 − (Cn − Ĉ)∥.

Hence, using Cauchy-Schwarz, Poincaré-Friedrichs inequalities and Lipschitz continuity of q′

we get,

∥N(ψ1)−N(ψ2)∥∗

≤
(
2ωKPF

∆t
+ ∥u∥∞ +

2(1− ω)ρsκ2KPF

∆t
+

2(1− ω)ρsKKPF

∆t
∥ψ1 − (Cn − Ĉ)∥

)
× ∥∇(ψ2 − ψ1)∥

which concludes the argument.

Lemma 26. If N : X0,Γin → X∗ is a compact operator and T : X∗ → X0,Γin is a bounded

linear operator, T ◦N is compact .

Proof. Let xn ∈ X0,Γin
be a sequence such that ∥xn∥ ≤ 1. Then, since N is compact Nxn

has convergent subsequence , say, Nxnk
→ y. Since T is a bounded linear operator, we

get TNxnk
→ Ty which shows that T ◦ N has a convergent subsequence proving T ◦ N is

compact.
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Lemma 27. F : X0,Γin → X0,Γin is a compact map.

Proof. Since T : X∗ → X0,Γin
is a bounded linear operator, all we need to show that

N : X0,Γin
→ X∗ is a compact map. In Lemma 24 and Lemma 25, we proved that N :

X0,Γin
→ X∗ is a bounded and continuous operator respectively. The Rellich-Kondrachov

Compactness Theorem [59, page 272] ensures the embedding X0,Γin
↪→ L2(Ω) is compact.

Hence, N : X0,Γin
↪→ L2 → X∗ is compact. The following diagram gives a better explanation.

ψ ∈ X0,Γin
L2(Ω) N(ψ) ∈ X∗

X0,Γin

F
T

To prove the solvability of the problem Equation (129), it suffices to show that F has a

fixed point, i.e., a fixed point ψ of ψ = F(ψ) in X0,Γin
exists.

Theorem 28. For any v ∈ X0,Γin and f ∈ X∗, a solution ψ = Cn+1 − Ĉ ∈ X0,Γin exists to

the problem Equation (129).

Proof. Consider ψα = αF(ψα) in X0,Γin
, 0 ≤ α ≤ 1. Hence, we write,

ψα = T

(
2αfn+ 1

2 − 2α
(
ω + (1− ω)ρsq

′(
ψ + Cn + Ĉ

2
)
)ψ − (Cn − Ĉ)

∆t

− αu ·∇
(
ψ + Cn + Ĉ

)
+ α∇ · (D∇

(
Cn + Ĉ

)
)

)
,

which holds if and only if ψα ∈ X0,Γin
satisfies

(D∇ψα,∇v) = −2α

((
ω + (1− ω)ρsq

′(
ψα + Cn + Ĉ

2
)
)ψα − (Cn − Ĉ)

∆t
, v

)
+ 2(αfn+1/2, v)− (αu ·∇

(
ψα + Cn + Ĉ

)
, v)− (αD∇

(
Cn + Ĉ

)
,∇v), ∀v ∈ X0,Γin

.

(130)

59



By the Leray-Schauder fixed-point Thoerem [100, Theorem 16], we only need to prove a

priori bound on ∥∇ψα∥, independent of α. Setting v = ψα in Equation (130) and using

Cauchy-Schwarz, Poincaré-Friedrichs inequalities, we get,

λ∥∇ψα∥ ≤ 2αKPF∥fn+1/2∥+ αKPF∥u ·∇
(
Cn + Ĉ

)
∥+ αβ1∥∇

(
Cn + Ĉ

)
∥

+
2αKPF(ω + α(1− ω)ρsκ2)

∆t
∥Cn − Ĉ∥.

Thus, for 0 ≤ α ≤ 1,

∥∇ψα∥ ≤ 2KPF

λ
∥fn+1/2∥+ KPF

λ
∥u ·∇

(
Cn + Ĉ

)
∥+ β1

λ
∥∇
(
Cn + Ĉ

)
∥

+
2KPF(ω + (1− ω)ρsκ2)

λ∆t
∥Cn − Ĉ∥ := K,

and a solution exists.

Next, we find the energy bound for the fully discrete version of the adsorption equation

(1) for nonlinear, explicit isotherm using the midpoint method for the time discretization. At

a continuous level, we proved C > 0 and bounded by initial and boundary conditions. But

at a discrete level, the Maximum Principle is very hard to implement, usually, the timestep

has to be O(h2) [147]. We will use the following notation: Qh(α) =
∫ α

0
P(q(s))ds,

En
h =

3∆tω

4

N∑
n=0

∥D1/2∇C
n+1/2
h − 8

3
D−1/2Ĉhu∥2

+
3∆tω

4

N∑
n=0

∥D1/2∇C
n+1/2
h − 8ρsP(q(Ĉh))(1− ω)

3ω
D−1/2u∥2

+
3∆tω

4

N∑
n=0

∥D1/2∇C
n+1/2
h − 8

3
D−1/2∇Ĉh∥2

+
3∆tω

4

N∑
n=0

∥D1/2∇C
n+1/2
h − 8(1− ω)ρsP1(q′(Ĉh))

3ω
D−1/2∇Ĉh∥2

+ ∥ωCN+1
h + (1− ω)ρsq(C

N+1
h )− 2(ωĈh + (1− ω)ρsP(q(Ĉh)))∥2,
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and

Bn
h =

3N∆tω

4
∥8
3
D−1/2Ĉhu∥2 +

3N∆tω

4
∥8ρsP(q(Ĉh))(1− ω)

3ω
D−1/2u∥2

+
3N∆tω

4
∥8
3
D−1/2∇Ĉh∥2 +

3N∆tω

4
∥8(1− ω)ρsP1(q′(Ĉh))

3ω
D−1/2∇Ĉh∥2

+ ∥ωC0
h + (1− ω)ρsq(C

0
h)− 2(ωĈh + (1− ω)ρsP(q(Ĉh)))∥2.

Theorem 29. Suppose the assumptions (F1)-F(7) are satisfied so that the fully discrete

formulation given by (15) has a smooth solution {Cn
h}Nn=0 ∈ L2(0, T ;H1(Ω)). Then for all

N > 0,

∥ωCN+1
h + (1− ω)ρsP(q(CN+1

h )∥2 +∆tω
N∑

n=0

∥∇C
n+1/2
h ∥2 + 2∆tω

N∑
n=0

∫
Γout

(C
n+1/2
h )2(u · −→n )ds

+ 4(1− ω)∆tρs

N∑
n=0

∫
Γout

Qh(C
n+1/2
h )(u · −→n )ds

+ 4(1− ω)∆tρs

N∑
n=0

∫
Ω

P1(q′(C
n+1/2
h ))(D1/2∇C

n+1/2
h )2 dΩ +

1

4
En
h

= ∥ωC0
h + (1− ω)ρsP(q(C0

h)∥2 + Bn
h

+ 4∆t
N∑

n=0

(f, ωC
n+1/2
h + (1− ω)ρsP(q(C

n+1/2
h ))− (ωĈh + (1− ω)ρsP(q(Ĉh))))

− 2N∆tω

∫
Γin

g2h(u · −→n )ds− 4(1− ω)N∆tρs

∫
Γin

Qh(gh)(u · −→n )ds.

Proof. Let Ĉh ∈ Xh such that Ĉh

∣∣∣
Γin

= gh. Take

vh = ωC
n+1/2
h + (1− ω)P(q(C

n+1/2
h ))− (ωĈh + (1− ω)ρsP(q(Ĉh))) ∈ Xh

0,Γin
(Ω).

Then (17) yields to

(ωC
n+1/2
h + (1− ω)ρsq(C

n+1/2
h )− ωCn

h − (1− ω)ρsq(C
n
h ), ωC

n+1/2
h + (1− ω)P(q(C

n+1/2
h )))

+
∆t

2
(u ·∇C

n+1/2
h , ωC

n+1/2
h + (1− ω)P(q(C

n+1/2
h )))

+
∆t

2
(D∇C

n+1/2
h ,∇

(
ωC

n+1/2
h + (1− ω)P(q(C

n+1/2
h ))

)
)
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=
∆t

2
(fn+1/2, ωC

n+1/2
h + (1− ω)P(q(C

n+1/2
h ))− (ωĈh + (1− ω)ρsP(q(Ĉh))))

+ (ωC
n+1/2
h + (1− ω)ρsq(C

n+1/2
h )− ωCn

h − (1− ω)ρsq(C
n
h ), (ωĈh + (1− ω)ρsP(q(Ĉh)))

+
∆t

2
(u ·∇C

n+1/2
h , (ωĈh + (1− ω)ρsP(q(Ĉh)))

+
∆t

2
(D∇C

n+1/2
h ,∇

(
(ωĈh + (1− ω)ρsP(q(Ĉh)

)
))

Using polarization identity in the first term, we get,

1

2
(∥ωCn+1/2

h + (1− ω)ρsP(q(C
n+1/2
h ))∥2 + ∥ωCn

h + (1− ω)ρsP(q(Cn
h ))∥2

− ∥ωCn+1/2
h + (1− ω)ρsP((C

n+1/2
h ))− (ωCn

h + (1− ω)ρsP(q(Cn
h )))∥2)

+
∆t

2
(u ·∇C

n+1/2
h , ωC

n+1/2
h + (1− ω)P(q(C

n+1/2
h )))

+
∆t

2
(D∇C

n+1/2
h ,∇

(
ωC

n+1/2
h + (1− ω)P(q(C

n+1/2
h ))

)
)

=
∆t

2
(fn+1/2, ωC

n+1/2
h + (1− ω)P(q(C

n+1/2
h ))− (ωĈh + (1− ω)ρsP(q(Ĉh))))

+ (ωC
n+1/2
h + (1− ω)ρsq(C

n+1/2
h )− ωCn

h − (1− ω)ρsq(C
n
h ), (ωĈh + (1− ω)ρsP(q(Ĉh)))

+
∆t

2
(u ·∇C

n+1/2
h , (ωĈh + (1− ω)ρsP(q(Ĉh)))

+
∆t

2
(D∇C

n+1/2
h ,∇

(
(ωĈh + (1− ω)ρsP(q(Ĉh)

)
)).

(131)

Next, (19) yields to

(ωCn+1
h + (1− ω)ρsq(C

n+1
h )− ωC

n+1/2
h − (1− ω)ρsq(C

n+1/2
h )

, ωC
n+1/2
h + (1− ω)P(q(C

n+1/2
h )))

+
∆t

2
(u ·∇C

n+1/2
h , ωC

n+1/2
h + (1− ω)P(q(C

n+1/2
h )))

+
∆t

2
(D∇C

n+1/2
h ,∇

(
ωC

n+1/2
h + (1− ω)P(q(C

n+1/2
h ))

)
)

=
∆t

2
(fn+1/2, ωC

n+1/2
h + (1− ω)P(q(C

n+1/2
h ))− (ωĈh + (1− ω)ρsP(q(Ĉh))))

+ (ωCn+1
h + (1− ω)ρsq(C

n+1
h )− ωC

n+1/2
h − (1− ω)ρsq(C

n+1/2
h ), (ωĈh + (1− ω)ρsP(q(Ĉh)))

+
∆t

2
(u ·∇C

n+1/2
h , ωĈh + (1− ω)ρsP(q(Ĉh)))

62



+
∆t

2
(D∇C

n+1/2
h ,∇

(
(ωĈh + (1− ω)ρsP(q(Ĉh)

)
))

Using polarization identity first term, we get

1

2
(∥ωCn+1

h + (1− ω)ρsP(q(Cn+1
h ))∥2 − ∥ωCn+1/2

h + (1− ω)ρsP(q(C
n+1/2
h ))∥2

− ∥ωCn+1/2
h + (1− ω)ρsP((C

n+1/2
h ))− (ωCn+1

h + (1− ω)ρsP(q(Cn+1
h )))∥2)

+
∆t

2
(u ·∇C

n+1/2
h , ωC

n+1/2
h + (1− ω)P(q(C

n+1/2
h )))

+
∆t

2
(D∇C

n+1/2
h ,∇

(
ωC

n+1/2
h + (1− ω)P(q(C

n+1/2
h ))

)
)

=
∆t

2
(fn+1/2, ωC

n+1/2
h + (1− ω)P(q(C

n+1/2
h ))− (ωĈh + (1− ω)ρsP(q(Ĉh))))

+ (ωCn+1
h + (1− ω)ρsq(C

n+1
h )− ωC

n+1/2
h − (1− ω)ρsq(C

n+1/2
h ), ωĈh + (1− ω)ρsP(q(Ĉh)))

+
∆t

2
(u ·∇C

n+1/2
h , ωĈh + (1− ω)ρsP(q(Ĉh)))

+
∆t

2
(D∇C

n+1/2
h ,∇

(
(ωĈh + (1− ω)ρsP(q(Ĉh)

)
))

(132)

Adding (131) and (132), we get

1

2
(∥ωCn+1

h + (1− ω)ρsP(q(Cn+1
h ))∥2 − ∥ωCn

h + (1− ω)ρsP(q(Cn
h ))∥2

− ∥ωCn+1/2
h + (1− ω)ρsP((C

n+1/2
h ))− (ωCn+1

h + (1− ω)ρsP(q(Cn+1
h )))∥2

+ ∥ωCn+1/2
h + (1− ω)ρsP((C

n+1/2
h ))− (ωCn

h + (1− ω)ρsP(q(Cn
h )))∥2)

+ ∆t(u ·∇C
n+1/2
h , ωC

n+1/2
h + (1− ω)P(q(C

n+1/2
h )))

+ ∆t(D∇C
n+1/2
h ,∇

(
ωC

n+1/2
h + (1− ω)P(q(C

n+1/2
h ))

)
)

= ∆t(fn+1/2, ωC
n+1/2
h + (1− ω)P(q(C

n+1/2
h ))− (ωĈh + (1− ω)ρsP(q(Ĉh))))

+ (ωCn+1
h + (1− ω)ρsq(C

n+1
h )− ωCn

h − (1− ω)ρsq(C
n
h ), (ωĈh + (1− ω)ρsP(q(Ĉh)))

+ ∆t(u ·∇C
n+1/2
h , ωĈh + (1− ω)ρsP(q(Ĉh)))

+ ∆t(D∇C
n+1/2
h ,∇

(
(ωĈh + (1− ω)ρsP(q(Ĉh)

)
)).

(133)

Using (17) and (19), we get,

− ∥ωCn+1/2
h + (1− ω)ρsP((C

n+1/2
h ))− (ωCn+1

h + (1− ω)ρsP(q(Cn+1
h )))∥2
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+ ∥ωCn+1/2
h + (1− ω)ρsP((C

n+1/2
h ))− (ωCn

h + (1− ω)ρsP(q(Cn
h )))∥2 = 0

Consequently, we have,

1

2
(∥ωCn+1

h + (1− ω)ρsP(q(Cn+1
h ))∥2 − ∥ωCn

h + (1− ω)ρsP(q(Cn
h ))∥2)

+ ∆t(u ·∇C
n+1/2
h , ωC

n+1/2
h + (1− ω)P(q(C

n+1/2
h )))

+ ∆t(D∇C
n+1/2
h ,∇

(
ωC

n+1/2
h + (1− ω)P(q(C

n+1/2
h ))

)
)

= ∆t(fn+1/2, ωC
n+1/2
h + (1− ω)P(q(C

n+1/2
h ))− (ωĈh + (1− ω)ρsP(q(Ĉh))))

+ (ωCn+1
h + (1− ω)ρsq(C

n+1
h )− ωCn

h − (1− ω)ρsq(C
n
h ), (ωĈh + (1− ω)ρsP(q(Ĉh)))

+ ∆t(u ·∇C
n+1/2
h , (ωĈh + (1− ω)ρsP(q(Ĉh)))

+ ∆t(D∇C
n+1/2
h ,∇

(
(ωĈh + (1− ω)ρsP(q(Ĉh)

)
)).

(134)

Doing a similar analysis as in the semidiscrete case, we get,

∆t(u ·∇C
n+1/2
h , ωC

n+1/2
h + (1− ω)ρsP(q(C

n+1/2
h )))

=
∆tω

2

∫
Γin

g2h(u · −→n )ds+
∆tω

2

∫
Γout

(C
n+1/2
h )2(u · −→n )ds

+∆t(1− ω)ρs

∫
Γin

Qh(gh)(u · −→n )ds+∆t(1− ω)ρs

∫
Γout

Qh(C
n+1/2
h )(u · −→n )ds.

(135)

Next,

∆tω(D∇C
n+1/2
h ,∇C

n+1/2
h ) + ∆t(1− ω)ρsP1(q′(C

n+1/2
h ))D∇C

n+1/2
h ,∇C

n+1/2
h )

= ∆tω(D1/2∇C
n+1/2
h , D1/2∇C

n+1/2
h )

+ ∆t(1− ω)ρs(P1(q′(C
n+1/2
h ))D1/2∇C

n+1/2
h , D1/2∇C

n+1/2
h )

= ∆tω∥D1/2∇C
n+1/2
h ∥2 +∆t(1− ω)ρs

∫
Ω

P1(q′(C
n+1/2
h ))(D1/2∇C

n+1/2
h )2 dΩ.
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Next, in the right-hand side terms, we get the following equalities,

∆t(u ·∇C
n+1/2
h , ωĈh)

= ∆t(∇C
n+1/2
h · u, ωĈh)

= ∆t(∇C
n+1/2
h , ωĈhu)

= ∆tω(D1/2∇C
n+1/2
h , D−1/2Ĉhu)

=
3∆tω

8
(D1/2∇C

n+1/2
h ,

8

3
D−1/2Ĉhu)

=
3∆tω

16
∥D1/2∇C

n+1/2
h ∥2 + 3∆tω

16
∥8
3
D−1/2Ĉhu∥2 −

3∆tω

16
∥D1/2∇C

n+1/2
h − 8

3
D−1/2Ĉhu∥2,

(136)

and

∆t(u ·∇C
n+1/2
h , (1− ω)ρsP(q(Ĉh)))

= (∇C
n+1/2
h · u, (1− ω)ρsP(q(Ĉh)))

= ∆t(∇C
n+1/2
h , (1− ω)ρsP(q(Ĉh))u)

= ∆tω(D1/2∇C
n+1/2
h ,

ρsP(q(Ĉh))(1− ω)

ω
D−1/2u)

=
3∆tω

8
(D1/2∇C

n+1/2
h ,

8ρsP(q(Ĉh))(1− ω)

3ω
D−1/2u)

=
3∆tω

16
∥D1/2∇C

n+1/2
h ∥2 + 3∆tω

16
∥8ρsP(q(Ĉh))(1− ω)

3ω
D−1/2u∥2

− 3∆tω

16
∥D1/2∇C

n+1/2
h − 8ρsP(q(Ĉh))(1− ω)

3ω
D−1/2u∥2.

(137)

Next,

∆tω(D∇C
n+1/2
h ,∇Ĉh)

= ∆tω(D1/2∇C
n+1/2
h , D−1/2∇Ĉh)

=
3∆tω

8
(D1/2∇C

n+1/2
h ,

8

3
D−1/2∇Ĉh)

=
3∆tω

16
∥D1/2∇C

n+1/2
h ∥2 + 3∆tω

16
∥8
3
D−1/2∇Ĉh∥2 −

3∆tω

16
∥D1/2∇C

n+1/2
h − 8

3
D−1/2∇Ĉh∥2,

(138)
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and

∆t(D∇C
n+1/2
h , (1− ω)ρsP1(q′(Ĉh))∇Ĉh)

= ∆tω(D1/2∇C
n+1/2
h ,

(1− ω)ρsP1(q′(Ĉh))

ω
D−1/2∇Ĉh)

=
3∆tω

8
(D1/2∇C

n+1/2
h ,

8(1− ω)ρsP1(q′(Ĉh))

3ω
D−1/2∇Ĉh)

=
3∆tω

16
∥D1/2∇C

n+1/2
h ∥2 + 3∆tω

16
∥8(1− ω)ρsP1(q′(Ĉh))

3ω
D−1/2∇Ĉh∥2

− 3∆tω

16
∥D1/2∇C

n+1/2
h − 8(1− ω)ρsP1(q′(Ĉh))

3ω
D−1/2∇Ĉh∥2.

(139)

Combining (135)-(138), we get

1

2
(∥ωCn+1

h + (1− ω)ρsP(q(Cn+1
h ))∥2 − ∥ωCn

h + (1− ω)ρsP(q(Cn
h ))∥2) +

ω∆t

4
∥D1/2∇C

n+1/2
h ∥2

+ (1− ω)∆tρs

∫
Γout

Qh(C
n+1/2
h )(u · −→n )ds+∆t(1− ω)ρs

∫
Ω

P1(q′(C
n+1/2
h ))(D1/2∇C

n+1/2
h )2 dΩ

+
∆tω

2

∫
Γout

(C
n+1/2
h )2(u · −→n )ds+

3∆tω

16
∥D1/2∇C

n+1/2
h − 8

3
D−1/2Ĉhu∥2

+
3∆tω

16
∥D1/2∇C

n+1/2
h − 8ρsP(q(Ĉh))(1− ω)

3ω
D−1/2u∥2

+
3∆tω

16
∥D1/2∇C

n+1/2
h − 8

3
D−1/2∇Ĉh∥2

+
3∆tω

16
∥D1/2∇C

n+1/2
h − 8(1− ω)ρsP1(q′(Ĉh))

3ω
D−1/2∇Ĉh∥2

= ∆t(fn+1/2, ωC
n+1/2
h + (1− ω)ρsP(q(C

n+1/2
h ))− (ωĈh + (1− ω)ρsP(q(Ĉh))))

− ∆tω

2

∫
Γin

g2h(u · −→n )ds+
3∆tω

16
∥8
3
D−1/2Ĉhu∥2

+
3∆tω

16
∥8ρsP(q(Ĉh))(1− ω)

3ω
D−1/2u∥2 + 3∆tω

16
∥8
3
D−1/2∇Ĉh∥2

+
3∆tω

16
∥8(1− ω)ρsP1(q′(Ĉh))

3ω
D−1/2∇Ĉh∥2 − (1− ω)ρs∆t

∫
Γin

Qh(gh)(u · −→n )ds

+ (ωCn+1
h + (1− ω)ρsq(C

n+1
h )− ωCn

h − (1− ω)ρsq(C
n
h ), (ωĈh + (1− ω)ρsP(q(Ĉh))).
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Next, we sum over n = 0 to n = N to obtain

1

2
∥ωCN+1

h + (1− ω)ρsP(q(CN+1
h ))∥2 + ω∆t

4

N∑
n=0

∥D1/2∇C
n+1/2
h ∥2

+
∆tω

2

N∑
n=0

(∫
Γout

(C
n+1/2
h )2(u · −→n )ds

)
+∆t(1− ω)ρs

N∑
n=0

(∫
Γout

Qh(C
n+1/2
h (u · −→n )ds

)
+∆t(1− ω)ρs

N∑
n=0

(∫
Ω

P1(q′(C
n+1/2
h )(D1/2∇C

n+1/2
h )2 dΩ

)

+
3∆tω

16

N∑
n=0

∥D1/2∇C
n+1/2
h − 8

3
D−1/2Ĉhu∥2

+
3∆tω

16

N∑
n=0

∥D1/2∇C
n+1/2
h − 8ρsP(q(Ĉh))(1− ω)

3ω
D−1/2u∥2

+
3∆tω

16

N∑
n=0

∥D1/2∇C
n+1/2
h − 8

3
D−1/2∇Ĉh∥2

+
3∆tω

16

N∑
n=0

∥D1/2∇C
n+1/2
h − 8(1− ω)ρsP1(q′(Ĉh))

3ω
D−1/2∇Ĉh∥2

= ∆t
N∑

n=0

(fn+1/2, ωC
n+1/2
h + (1− ω)ρsP(q(C

n+1/2
h ))− (ωĈh + (1− ω)ρsP(q(Ĉh))))

+
3N∆tω

16
∥8
3
D−1/2Ĉhu∥2 +

3N∆tω

16
∥8ρsP(q(Ĉh))(1− ω)

3ω
D−1/2u∥2

+
3N∆tω

16
∥8(1− ω)ρsP1(q′(Ĉh))

3ω
D−1/2∇Ĉh∥2 +

1

2
∥ωC0

h + (1− ω)ρsP(q(C0
h)∥2

− N∆tω

2

∫
Γin

g2h(u · −→n )ds− (1− ω)N∆tρs

∫
Γin

Q(gh)(u · −→n )ds

+ (ωCN+1
h + (1− ω)ρsq(C

N+1
h , ωĈh + (1− ω)ρsP(q(Ĉh)))

− (ωC0
h + (1− ω)ρsq(C

0
h, ωĈh + (1− ω)ρsP(q(Ĉh))) +

3N∆tω

16
∥8
3
D−1/2∇Ĉh∥2.

(140)

Here,

(ωCN+1
h + (1− ω)ρsq(C

N+1
h ), ωĈh + (1− ω)ρsP(q(Ĉh)))

=
1

2
(ωCN+1

h + (1− ω)ρsq(C
N+1
h ), 2(ωĈh + (1− ω)ρsP(q(Ĉh))))
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=
1

4
∥(ωCN+1

h + (1− ω)ρsq(C
N+1
h )∥2 + 1

4
∥2(ωĈh + (1− ω)ρsP(q(Ĉh)))∥2

− 1

4
∥ωCN+1

h + (1− ω)ρsq(C
N+1
h )− 2(ωĈh + (1− ω)ρsP(q(Ĉh)))∥2,

and

− (ωC0
h + (1− ω)ρsq(C

0
h)), ωĈh + (1− ω)ρsP(q(Ĉh)))

= −1

2
(ωC0

h + (1− ω)ρsq(C
0
h, 2(ωĈh + (1− ω)ρsP(q(Ĉh))))

= −1

4
∥(ωC0

h + (1− ω)ρsq(C
0
h)∥2 −

1

4
∥2(ωĈh + (1− ω)ρsP(q(Ĉh)))∥2

+
1

4
∥ωC0

h + (1− ω)ρsq(C
0
h)− 2(ωĈh + (1− ω)ρsP(q(Ĉh)))∥2.

Hence (140) becomes

1

4
∥ωCN+1

h + (1− ω)ρsP(q(CN+1
h )∥2 + ∆tω

4

N∑
n=0

∥∇C
n+1/2
h ∥2

+
∆tω

2

N∑
n=0

∫
Γout

(C
n+1/2
h )2(u · −→n )ds+

1

4
En
h + (1− ω)∆tρs

N∑
n=0

∫
Γout

Q(C
n+1/2
h )(u · −→n )ds

+ (1− ω)∆tρs

N∑
n=0

∫
Ω

P1(q′(C
n+1/2
h ))(D1/2∇C

n+1/2
h )2 dΩ

=
1

4
∥ωC0

h + (1− ω)ρsP(q(C0
h)∥2 +

1

4
Bn
h

+∆t
N∑

n=0

(f, ωC
n+1/2
h + (1− ω)ρsP(q(C

n+1/2
h ))− (ωĈh + (1− ω)ρsP(q(Ĉh))))

− N∆tω

2

∫
Γin

g2h(u · −→n )ds− (1− ω)N∆tρs

∫
Γin

Q(gh)(u · −→n )ds

Simplifying the above inequality, we get the claimed result.

68



2.5 Numerical Test

In this section, we perform numerical tests to show that the midpoint method described

in Section 2.3.2 gives a second-order convergence rate for the considered PDE model for the

constant, affine, and nonlinear, explicit adsorptions. For checking the order of convergence,

we assume the following: u = (1, 1), D = I, Ω = [0, 1] × [0, 1], ω = 0.5, Xh = the

space of continuous piecewise affine functions, the exact solution is C(x, y, t) = t2(x3− 3
2
x2+

1) cos (π
4
y). The true solution determines the body force f, initial condition C0, and boundary

conditions. The norms used in the table are defined as follows,

∥C∥∞,0 := ess sup
0<t<T

∥C(·, t)∥L2(Ω) and ∥C∥0,0 :=
(∫ T

0

∥C(·, t)∥2L2(Ω) dt

)1/2

.

Next, for the plot of the concentration profile in each case, we consider the following: f = 0,

g = 1, T = 3.0, h = 1/128, dt = 1/128, u = (0, 2x(x − 2)), D = I, Ω = [0, 2] × [0, 10],

ω = 0.5, Xh = the space of continuous piecewise affine functions.

2.5.1 Tests for the case of constant isotherm

In this subsection, we first check the convergence rate for the case of constant isotherm

in the first test, and in the second test, we plot the concentration profile. We also show the

comparison of evolution of total mass

(

∫
Ω

(ωC + (1− ω)ρsq(C))dΩ)

after each test.
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(h,∆t) → ( 1
128
, 1
2
) ( 1

128
, 1
4
) ( 1

128
, 1
8
) ( 1

128
, 1
16
) ( 1

128
, 1
32
)

∥C − Ch∥∞,0 0.0871011 0.0462486 0.0238288 0.0120901 0.00608901

Rate - 0.91328 0.9567 0.97888 0.98955

∥C − Ch∥0,0 0.0622419 0.0340122 0.0179402 0.00923882 0.00469204

Rate - 0.87183 0.92286 0.95742 0.97749

∥∇C −∇Ch∥0,0 0.100308 0.0548173 0.0289367 0.0149649 0.00773043

Rate - 0.87173 0.92173 0.95132 0.95296

∥C − Ch∥0,1 0.11805 0.0645117 0.0340468 0.017587 0.00904294

Rate - 0.87177 0.92204 0.95301 0.95965

Table 1: Temporal convergence rates for the BE approximation with a constant adsorption

model to the non-steady-state problem.

(h,∆t) → ( 1
128
, 1
2
) ( 1

128
, 1
4
) ( 1

128
, 1
8
) ( 1

128
, 1
16
) ( 1

128
, 1
32
)

∥C − Ch∥∞,0 0.0465279 0.011173 0.00269747 0.000664032 0.000164628

Rate - 2.0581 2.0503 2.0223 2.012

∥C − Ch∥0,0 0.0385999 0.00906892 0.00219412 0.000539591 0.000133763

Rate - 2.0896 2.0473 2.0237 2.0122

∥∇C −∇Ch∥0,0 0.714751 0.178008 0.0442268 0.0110284 0.00312606

Rate - 2.0055 2.0089 2.0037 1.8188

∥C − Ch∥0,1 0.715792 0.178239 0.0442812 0.0110416 0.00312892

Rate - 2.0057 2.009 2.0037 1.8192

Table 2: Temporal convergence rates for the midpoint approximation with a constant ad-

sorption model to the non-steady-state problem.
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Figure 2: Constant Isotherm: Temporal rate of convergence of BE and Midpoint, T =

1.0, h = 1/128. Notice that Midpoint is giving order 2 whereas BE is giving order 1.
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Figure 3: Constant Isotherm: Comparison of total mass for exact solution, BE, Midpoint,

T = 1.0, h = 1/128, dt = 1/8. Notice that BE overestimates total mass rather than

underestimates.

IsoValue
0.387141
0.433106
0.463749
0.494391
0.525034
0.555677
0.58632
0.616963
0.647606
0.678249
0.708892
0.739535
0.770178
0.800821
0.831464
0.862107
0.89275
0.923393
0.954036
1.03064

IsoValue
0.387524
0.433819
0.464681
0.495544
0.526407
0.55727
0.588133
0.618996
0.649859
0.680722
0.711585
0.742448
0.773311
0.804174
0.835037
0.8659
0.896763
0.927626
0.958489
1.03565

Figure 4: Constant isotherm: Plot of concentration while using BE (Left) & Midpoint

(Right), f = 0, g = 1, T = 3.0, h = 1/128, dt = 1/128, u = (0, 2x(x− 2)), D = I.
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Figure 5: Constant isotherm: Comparison of total mass, f = 0, g = 1, T = 3.0, h = 1/128,

dt = 1/128, u = (0, 2x(x− 2)), D = I.

2.5.2 Tests for the case of affine isotherm

In this subsection, we first check the convergence rate for the case of affine isotherm in

the first test, and in the second test, we plot the concentration profile. We also show the

comparison of total mass

(

∫
Ω

(ωC + (1− ω)ρsq(C))dΩ)

after each test.
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(h,∆t) → ( 1
128
, 1
2
) ( 1

128
, 1
4
) ( 1

128
, 1
8
) ( 1

128
, 1
16
) ( 1

128
, 1
32
)

∥C − Ch∥∞,0 0.141342 0.075632 0.039242 0.0200057 0.0101035

Rate - 0.90212 0.9466 0.97199 0.98556

∥C − Ch∥0,0 0.0954833 0.0510779 0.0266862 0.0136784 0.00693

Rate - 0.90255 0.93661 0.96419 0.98097

∥∇C −∇Ch∥0,0 0.154705 0.0827994 0.0432733 0.0222213 0.0113464

Rate - 0.90183 0.93614 0.96153 0.96971

∥C − Ch∥0,1 0.181798 0.0972866 0.0508403 0.0260938 0.0132953

Rate - 0.90202 0.93627 0.96227 0.97279

Table 3: Temporal convergence rates for the BE approximation with an affine adsorption

model to the non-steady-state problem.

(h,∆t) → ( 1
128
, 1
2
) ( 1

128
, 1
4
) ( 1

128
, 1
8
) ( 1

128
, 1
16
) ( 1

128
, 1
32
)

∥C − Ch∥∞,0 0.0362764 0.00901857 0.00224664 0.000561211 0.000140536

Rate - 2.0081 2.0051 2.0012 1.9976

∥C − Ch∥0,0 0.0306995 0.00722705 0.00174822 0.000429612 0.000106604

Rate - 2.0867 2.0475 2.0248 2.0108

∥∇C −∇Ch∥0,0 0.712515 0.177229 0.0439172 0.0108973 0.00307773

Rate - 2.0073 2.0128 2.0108 1.824

∥C − Ch∥0,1 0.713176 0.177376 0.043952 0.0109057 0.00307958

Rate - 2.0074 2.0128 2.0108 1.8243

Table 4: Temporal convergence rates for the midpoint approximation with an affine adsorp-

tion model to the non-steady-state problem.
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Figure 6: Affine Isotherm: Temporal rate of convergence of BE and Midpoint, T = 1.0,

h = 1/128. Notice that Midpoint is giving order 2 whereas BE is giving order 1.
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Figure 7: Affine Isotherm: Comparison of total mass for exact solution, BE, Midpoint,

T = 1.0, h = 1/128, dt = 1/8. Notice that BE overestimates total mass rather than

underestimates.

IsoValue
0.000490511
0.0754537
0.125429
0.175405
0.22538
0.275356
0.325331
0.375307
0.425282
0.475258
0.525233
0.575208
0.625184
0.675159
0.725135
0.77511
0.825086
0.875061
0.925037
1.04998

IsoValue
3.47927e-05
0.0750322
0.12503
0.175029
0.225027
0.275025
0.325023
0.375022
0.42502
0.475018
0.525017
0.575015
0.625013
0.675011
0.72501
0.775008
0.825006
0.875004
0.925003
1.05

Figure 8: Affine isotherm: Plot of concentration while using BE (Left) & Midpoint (Right),

f = 0, g = 1, T = 3.0, h = 1/128, dt = 1/128, u = (0, 2x(x− 2)), D = I.
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Figure 9: Affine isotherm: Comparison of total mass, f = 0, g = 1, T = 3.0, h = 1/128,

dt = 1/128, u = (0, 2x(x− 2)), D = I.

2.5.3 Tests for the case of nonlinear, explicit isotherm

In this subsection, we first check the convergence rate for the case of nonlinear, explicit

isotherm in the first test, and in the second test, we plot the concentration profile. We also

show the comparison of total mass (
∫
Ω
(ωC + (1 − ω)ρsq(C))dΩ) after each test. In these

test problems, we use Langmuir’s isotherm with qmax = Keq = 1 where q(C) = qmaxKeqC

1+KeqC
=

C
1+C

. We simplify the problem formulation to a single (nonlinear) transport equation in one

unknown C using
∂q

∂t
=

∂q

∂C

∂C

∂t
=

1

(1 + C)2
∂C

∂t
.

While using Backward Euler discretization, we compute solutions by lagging the nonlinearity

q′(Cn+1
h ) as [49]

q′(Cn+1
h )

Cn+1
h − Cn

h

∆t
≈ q′(Cn

h )
Cn+1

h − Cn
h

∆t
.
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For the midpoint method, we use the standard (second order) linear extrapolation [95] of

C
n+1/2
h while computing q′(C

n+1/2
h ) as

q′(C
n+1/2
h )

Cn+1
h − Cn

h

∆t
≈ q′(

3Cn
h − Cn−1

h

2
)
Cn+1

h − Cn
h

∆t
.

(h,∆t) → ( 1
128
, 1
2
) ( 1

128
, 1
4
) ( 1

128
, 1
8
) ( 1

128
, 1
16
) ( 1

128
, 1
32
)

∥C − Ch∥∞,0 0.0636074 0.0374917 0.0206665 0.0108985 0.00558454

Rate - 0.76262 0.85928 0.92316 0.96462

∥C − Ch∥0,0 0.0522838 0.0310798 0.0169125 0.00883222 0.00451535

Rate - 0.75039 0.87789 0.93724 0.96794

∥∇C −∇Ch∥0,0 0.0847469 0.0502647 0.0273473 0.0143409 0.00746467

Rate - 0.75362 0.87815 0.93126 0.94199

∥C − Ch∥0,1 0.0995773 0.0590973 0.0321544 0.0168424 0.00872408

Rate - 0.75272 0.87808 0.93292 0.94902

Table 5: Temporal convergence rates for the BE approximation with a Langmuir adsorption

model to the non-steady-state problem.
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(h,∆t) → ( 1
128
, 1
2
) ( 1

128
, 1
4
) ( 1

128
, 1
8
) ( 1

128
, 1
16
) ( 1

128
, 1
32
)

∥C − Ch∥∞,0 0.0357416 0.00951864 0.00242801 0.000611192 0.000153313

Rate - 1.9088 1.971 1.9901 1.9951

∥C − Ch∥0,0 0.0307399 0.00741601 0.00181065 0.00044712 0.000111214

Rate - 2.0514 2.0341 2.0178 2.0073

∥∇C −∇Ch∥0,0 0.744766 0.191186 0.0475431 0.0117471 0.00323681

Rate - 1.9618 2.0077 2.0169 1.8597

∥C − Ch∥0,1 0.7454 0.19133 0.0475776 0.0117556 0.00323872

Rate - 1.962 2.0077 2.0169 1.8599

Table 6: Temporal convergence rates for the midpoint approximation with a Langmuir ad-

sorption model to the non-steady-state problem.
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Figure 10: Langmuir Isotherm: Temporal rate of convergence of BE and Midpoint, T = 1.0,

h = 1/128. Notice that Midpoint is giving order 2 whereas BE is giving order 1.
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Figure 11: Langmuir Isotherm: Comparison of total mass for exact solution, BE, Midpoint,

T = 1.0, h = 1/128, dt = 1/8. Notice that BE overestimates total mass rather than

underestimates.

IsoValue
0.00195288
0.0768064
0.126709
0.176611
0.226513
0.276416
0.326318
0.376221
0.426123
0.476025
0.525928
0.57583
0.625732
0.675635
0.725537
0.775439
0.825342
0.875244
0.925146
1.0499

IsoValue
0.000521974
0.075718
0.125849
0.175979
0.22611
0.276241
0.326372
0.376502
0.426633
0.476764
0.526894
0.577025
0.627156
0.677286
0.727417
0.777548
0.827679
0.877809
0.92794
1.05327

Figure 12: Langmuir isotherm: Plot of concentration while using BE (Left) & Midpoint

(Right), f = 0, g = 1, T = 3.0, h = 1/128, dt = 1/128, u = (0, 2x(x− 2)), D = I.
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Figure 13: Langmuir isotherm: Comparison of total mass, f = 0, g = 1, T = 3.0, h = 1/128,

dt = 1/128, u = (0, 2x(x− 2)), D = I.

In Figure 3, Figure 7, and Figure 11, it is observed that the midpoint method gives

exact total mass evolution and BE has an error in total mass evolution. In the Figure 4,

Figure 8 and Figure 12, the concentration front gradually advances through the height of the

membrane over time as it evolves following the contour of the velocity profile. Though we

can’t visibly see the difference among two plots for BE and midpoint in Figure 4, Figure 8

and Figure 12, we can see the significant difference in total mass evolution in Figure 5,

Figure 9, and Figure 13.

81



3.0 Numerical Analysis of a Corrected Smagorinsky Model

The classical Smagorinsky model’s solution is an approximation to a (resolved) mean

velocity. Since it is an eddy viscosity model, it cannot represent a flow of energy from unre-

solved fluctuations to the (resolved) mean velocity. This model has recently been corrected

to incorporate this flow and still be well-posed. Herein we first develop some basic properties

of the corrected model. Next, we perform a complete numerical analysis of two algorithms

for its approximation. They are tested and proven to be effective.

3.1 Introduction

Consider the Smagorinksy model [139]1, with prescribed body force f , kinematic viscosity

ν in the regular and bounded flow domain Ω ⊂ Rd (d = 2, 3), which was later advanced

independently by Ladyzhenskaya [90,91]: ∇ · w = 0 and

wt + w ·∇w − ν∆w +∇q −∇ ·
(
(Csδ)

2|∇w|∇w
)
= f(x). (141)

Here (w, q) approximate an ensemble average of Navier-Stokes solutions, (u, p). This is an

eddy viscosity model with turbulent viscosity, νT = (Csδ)
2|∇w|, where Cs ≈ 0.1, Lilly [107],

δ is a length scale (or grid-scale). Like all eddy viscosity models, the Smagorinsky model

represents a flow of energy from means to unresolved fluctuations (u′ = u− u, for a precise

formula, see Definition 40) and has errors by not representing any intermittent energy flow

from fluctuations back to means. Corrections have recently been made representing this

flow in Jiang and Layton [78] and Rong, Layton, and Zhao [131]. Following their ideas, we

1The mechanically correct formulation is with the ∇sw instead of ∇w in the term −∇·
(
(Csδ)

2|∇w|∇w
)

where ∇s is the symmetric part of the gradient tensor. But since the estimates are the same and analyses
are simpler with ∇w due to Korn’s inequality ∥v∥2H1(Ω) ≤ C[∥v∥2L2(Ω)+∥∇sv∥2L2(Ω)], we use ∇w throughout
the chapter.
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develop a corrected model in Section 3.3. We also analyze and test numerical algorithms for

effective approximation of the resulting corrected model: ∇ · w = 0 and

wt − C4
s δ

2µ−2∆wt + w ·∇w − ν∆w +∇q −∇ ·
(
(Csδ)

2|∇w|∇w
)
= f(x). (142)

Here µ is a constant from Kolmogorov-Prandtl relation [85,119].

The main result of this chapter is the complete numerical analysis and computational

testing of effective algorithms for this model. This chapter gives detailed numerical analyses

in Section 3.4 and Section 3.5. This model can capture the phenomenon of transferring

energy from fluctuation to means, which is tested numerically in Section 3.6.2. There were

few attempts made to extend the model that represents flow from statistical equilibrium to

non-equilibrium. For instance, in a previous work by Jiang and Layton [78], there was an

extra fitting parameter β in the second term of (142) which is needlessly complicated. In

this work, a different idea results in a simpler model with no new fitting parameters other

than from the Smagorinsky model (141).

3.1.1 Related Work

For simulating turbulent flow, there are different approaches, see [57,63,109,116,128,146,

152]. A summary of some recent work in eddy viscosity models of turbulence is presented

in [79]. One of the recent approaches is by adding a term of Kelvin-Voigt form to the

equations for the mean-field [7]. Smagorinsky model is a classical model. Its positive and

negative features are well understood. There has been a lot of work correcting negative

features, for example, Tommy K. Kim [84] did a different modification than ours which

corrects near-wall behavior. The new term in our model has a similarity to the Voigt term

used in Voigt/Kelvin-Voigt/Kelvin Model [141] for viscoelastic fluids. There have been lot

of recent works on the Voigt Model, see for example [13, 86, 92, 93]. Recently, Rong, Layton

and Zhao [131] and Berselli, Lewandowski and Nguyen [17] all studied the extension of the

Baldwin & Lomax model [11] to non-equilibrium ( d
dt
∥u′∥2 ̸= 0, for a precise definition see

Remark 43) problems. A variant of the Smagorinsky model and detailed analysis is presented
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in chapter [36]. Jiang and Layton [78] derived a corrected eddy viscosity model for flow not

at a statistical equilibrium state.

3.2 Notation and Preliminaries

In this section, we introduce some of the notations and results used in this chapter. We

denote by ∥ · ∥ and (·, ·) the L2(Ω) norm and inner product, respectively. We denote the

Lp(Ω) norm by ∥ · ∥Lp . The solution spaces X for the velocity and Q for the pressure are

defined as:

X := {v ∈ L3(Ω) : ∇v ∈ L3(Ω) and v = 0 on ∂Ω},

Q := L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω

q dx = 0},

and V := {v ∈ X : (q,∇ · v) = 0, ∀q ∈ Q}.

The space H−1(Ω) denotes the dual space of bounded linear functionals defined on H1
0 (Ω) =

{v ∈ H1(Ω) : v = 0 on ∂Ω} and this space is equipped with the norm:

∥f∥−1 = sup
0 ̸=v∈X

(f, v)

∥∇v∥
.

The finite element method for this problem involves picking finite element spaces [100] Xh ⊂

X and Qh ⊂ Q. We assume that (Xh, Qh) satisfies the discrete inf-sup condition:

inf
λh∈Qh

sup
vh∈Xh

(λh,∇ · vh)
∥λh∥∥∇vh∥

≥ βh > 0,

where βh is bounded away from zero uniformly in h.

Definition 30. (Trilinear Form) Define the skew symmetrized trilinear form b∗ : X ×X ×

X → R as follows

b∗(u, v, w) :=
1

2
(u ·∇v, w)− 1

2
(u ·∇w, v).
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Lemma 31. (p.114, Girault and Raviart [65]) For any u ∈ V and v, w ∈ X,

b∗(u, v, w) = (u ·∇v, w), and b∗(u, v, v) = 0, ∀ u, v ∈ X.

Lemma 32. For any u, v, w ∈ X,∣∣∣∣∫
Ω

u ·∇v · w dx

∣∣∣∣ ≤ C∥∇u∥∥∇v∥∥∇w∥,∣∣∣∣∫
Ω

u ·∇v · w dx

∣∣∣∣ ≤ C∥u∥1/2∥∇u∥1/2∥∇v∥∥∇w∥.

Lemma 33. (Polarization identity)

(u, v) =
1

2
∥u∥2 + 1

2
∥v∥2 − 1

2
∥u− v∥2. (143)

Lemma 34. (The Poincaré-Friedrichs’ inequality) There is a positive constant CPF =

CPF (Ω) such that

∥u∥ ≤ CPF∥∇u∥, ∀u ∈ X. (144)

Next is a Discrete Gronwall lemma see Lemma 5.1 p.369 [71].

Lemma 35. Let ∆t, B, an, bn, cn, dn for integers n ≥ 0 be nonnegative numbers such that

for l ≥ 1, if

al +∆t
l∑

n=0

bn ≤ ∆t
l−1∑
n=0

dnan +∆t
l∑

n=0

cn +B, for l ≥ 0,

then for all ∆t > 0,

al +∆t
l∑

n=0

bn ≤ exp

(
∆t

l−1∑
n=0

dn

)(
∆t

l∑
n=0

cn +B
)
, for l ≥ 0.

In this chapter, we will need the following well-known lemma, see, e.g., [55, 81,99]

Lemma 36. (Strong Monotonicity (SM) and Local Lipschitz Continuity (LLC))

There exists C1, C2 > 0 such that for all u, v, w ∈ L3(Ω), ∇u, ∇v, ∇w ∈ L3(Ω)

(SM) (|∇u|∇u− |∇w|∇w,∇(u− w)) ≥ C1∥∇(u− w)∥3L3(Ω), (145)

(LLC) (|∇u|∇u− |∇w|∇w,∇v) ≤ C2r∥∇(u− w)∥L3(Ω)∥∇v∥L3(Ω), (146)

where r = max{∥∇u∥L3(Ω), ∥∇w∥L3(Ω)}.
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Proposition 37. (see p.173 [23]) Let Wm,p(Ω) denote the Sobolev space, let p ∈ [1,+∞]

and q ∈ [p, p∗], where 1
p⋆

= 1
p
− 1

d
if p < dim(Ω) = d. There is a C > 0 such that

∥u∥Lq(Ω) ≤ C∥u∥1+d/q−d/p
Lp(Ω) ∥u∥d/p−d/q

W 1,p(Ω), ∀u ∈ W 1,p(Ω) (147)

The weak formulation of (142) is: Find (w, p) ∈ (X,Q) such that

(wt, v) +
C4

s

µ2
δ2(∇wt,∇v) + (w ·∇w, v) + ν(∇w,∇v)

−(p,∇ · v) +
(
(Csδ)

2|∇w|∇w,∇v
)
= (f, v) for all v ∈ X,

(q,∇ · w) = 0 for all q ∈ Q.

(148)

For the stationary Smagorinsky model, Du and Gunzburger [54,55] proved that the discrete

solution converges to the continuous problem under minimal regularity assumptions. The

existence and uniqueness of the strong solution of the Smagorinsky model (141) on a periodic

domain have been discussed [101, 103, 108]. Recently, the error estimates for Smagorinsky

model have also been studied in [30] and it showed that both the accuracy and the stability

are enhanced for flows with high Reynolds numbers. The existence and uniqueness of strong

solutions of the incompressible Navier-Stokes-Voigt model is studied in [13].

Here we omit the proof for the existence of a strong solution for the new CSM Model.

We assume the model has a solution in the following sense.

Definition 38. A solution w of the Corrected Smagorinsky Model (142) is a strong solution

if w satisfies the following

1. w ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;W 1,3(Ω)) ∩ L2(0, T ;L6(Ω)),

2. w(x, t) → w0(x) in L
2(Ω) as t→ 0,

3. w satisfies the model’s weak form (148) for all v ∈ L∞(0, T ;H1(Ω))∩L2(0, T ;W 1,3(Ω))∩

L2(0, T ;L6(Ω)).

Remark 39. Though the existence of strong solutions is not yet proven for the new model,

we believe it is reasonable to assume existence because it is known for the Smagorinsky Model

and the extra Voigt term is linear and regularizing.
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Definition 40. (Mean, Fluctuation and Variance) The ensembles u(x, t;ωj),

j = 1, . . . , J where ω is a a random variable, mean u and fluctuation u′ are defined as follows:

u(x, t) =
1

J

J∑
j=1

u(x, t;ωj), u′(x, t, ωj) = u(x, t;ωj)− u(x, t).

The variance of u and ∇u are, respectively,

V (u) :=

∫
Ω

|u|2 − |u|2 dx, V (∇u) :=

∫
Ω

|∇u|2 − |∇u|2 dx.

Definition 41. (Reynolds Stresses) The Reynolds stresses are

R(u, u) := u⊗ u− u⊗ u = −u′ ⊗ u′.

Ensemble averaging satisfies the following properties, e.g., [110,113,117]

u = u, u′ = 0, w · v = w · v, w · v′ = w · v′ = 0,

w ⊗ v = w ⊗ v, w ⊗ v′ = w ⊗ v′ = 0,
∂

∂t
u =

∂

∂t
u,

∂

∂x
u =

∂

∂x
u.

Theorem 42. Suppose that each realization is a strong solution of the NSE. The ensemble is

generated by different initial data and u(x, 0;ωj) ∈ L2(Ω), f(x, t) ∈ L∞(0,∞;L2(Ω)). Then

the following two properties are satisfied.

Property 1 : (Time averaged dissipativity)

lim
T→∞

1

T

∫ T

0

∫
Ω

R(u, u) : ∇ū dxdt = lim
T→∞

1

T

∫
Ω

ν|∇u′|2 dxdt ≥ 0.

P roperty 2 : (Equation for the evolution of variance of fluctuations)∫
Ω

R(u, u) : ∇ū dx =
1

2

d

dt

∫
Ω

|u′|2 dx+
∫
Ω

ν|∇u′|2 dx. (149)

Proof. Proof of this theorem can be found in Section 2 of [78].

Remark 43. (Statistical steady state and statistical equilibrium, see [78]) The statistical

steady state is P/ϵ = 1 where

ϵ = dissipation of turbulent kinetic energy (TKE) = ν∥∇u′∥2,

P = production of TKE =

∫
Ω

R(u, u) : ∇udx.

Hence, P
ϵ
= 1 implies

∫
Ω
R(u, u) : ∇u dx =

∫
Ω
ν|∇u′|2 dx.
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3.3 Model derivation

In this section, we develop a model for turbulence not at statistical equilibrium unlike

the Smagorinsky model (141).

Consider the Navier-Stokes Equations (NSE) which govern the flow of an incompressible

fluid with velocity u(x, t), pressure p(x, t), prescribed body force f and kinematic viscosity

ν in the regular and bounded flow domain Ω ⊂ Rd(d = 2, 3):

ut + u ·∇u− ν∆u+∇p = f(x) in Ω, and ∇ · u = 0 in Ω. (150)

To derive the Corrected Smagorinsky model, following the work in [78], we begin with an

ensemble of NSE solution u(x, t;wj) with perturbed initial data u(x, 0;ωj) = u0(x;ωj), j =

1, 2, . . . , J, x ∈ Ω.

The goal of a turbulent model solution of (141) and (142) is to approximate u(x, t).

By ensemble averaging the NSE gives a system that is not closed since uu ̸= ūū. Hence

the Reynolds stress tensor, R(u, u) = ūū − uu which is accountable for all effects of the

fluctuations on the mean flow must be modeled [131]. We rewrite uu as uu = ūū−R(u, u).

Note that by using properties in (41), we get R = −u′u′. Hence we get,

ut + ū ·∇ū− ν∆ū+∇p̄−∇ ·R = f(x) in Ω, and ∇ · ū = 0 in Ω. (151)

Take the dot product of the first and second equation in ((151)) with mean flow ū and p̄

respectively and doing integration by parts, we get the energy estimate as follows [78,131]

1

2

d

dt
∥ū∥2︸ ︷︷ ︸

rate of change of kinetic energy

+ ν∥∇ū∥2︸ ︷︷ ︸
energy dissipation due to viscous forces

+

∫
Ω

R(u, u) : ∇ū dx︸ ︷︷ ︸
effect of fluctuation

= (f, ū).︸ ︷︷ ︸
energy input through body force-flow interaction

(152)

In ((152)), if the term
∫
Ω
R(u, u) : ∇ū dx > 0, the effect of R(u, u) is dissipative while

if
∫
Ω
R(u, u) : ∇ū dx < 0, fluctuations u′ transfers energy back to mean ū which causes

increased energy in mean flow.
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Property 1 in Theorem 42 is consistent with the assumption of Boussinesq [22] that

turbulent fluctuations are dissipative on the mean in the time-averaged case. In property 2

of Theorem 42, the term
∫
Ω
ν|∇u′|2 dx is clearly dissipative while d

dt

∫
Ω
|u′|2 dx = 0 for flows

at statistical equilibrium. The idea of any EV model is based on three assumptions [78].

Firstly, the statistical equilibrium assumption that dissipativity holds at each instant time∫
Ω

R(u, u) : ∇ū dx ≃
∫
Ω

ν|∇u′|2 dx. (153)

The second assumption is that ∇u′ aligns with ∇ū. Third, calibration [78] provides that

the action of fluctuating velocities can be represented in terms of mean flow

action(∇u′) ≃ a(ū)∇ū.

Combining all these three assumptions results in the eddy viscosity closure,

−∇ ·R(u, u) ⇐ −∇ · (νT (ū)∇ū) + terms incorporated in ∇p̄.

Here νT denotes the turbulent viscosity. Thus we have the eddy viscosity (EV) model:

∇ · w = 0 and

wt + w ·∇w − ν∆w +∇q −∇ · (νT (w)∇w) = f(x). (154)

The solution (w, q) of ((154)) is an approximation of the ensemble average (ū, p̄). In 1963,

Smagorinsky [139] model νT by

νT = (Csδ)
2|∇w|, (155)

where Cs ≈ 0.1, Lilly [107]. Let ∆x to be the mesh size and δ = ∆x << 1 is the model

length scale [140]. Thus we get the classic Smagorinsky model (141).

By taking the dot product with w, here we have the energy equality for Smagorinsky

model:
1

2

d

dt
∥w∥2 + ν∥∇w∥2 + (Csδ)

2∥∇w∥3L3 = (f, w).

(Csδ)
2∥∇w∥3 ≥ 0 approximates the average energy dissipated by fluctuation. Since it is

positive, it prevents the energy from returning to the mean flow. We aim to remove this flaw
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in the corrected model. Notice that in (153), the term d
dt

∫
Ω
|u′|2 dx is omitted for flows at

statistical equilibrium. This term is accountable for backscatter and other non-equilibrium

effects. To model this term, we must express u′ in terms of ū. One idea in [78] is that since the

Smagorinsky model is dimensionally consistent, it must conform to the Kolmogorov-Prandtl

relation [85,119]

νT = µl
√
k′, (156)

where µ ≈ 0.3 to 0.55, l = turbulent length scale and k′ is the turbulent kinetic energy:

k′(x, t) = 1
2
|u′(x, t)|2. Thus, the Smagorinsky model contains an implicit model of l and k′.

Equating (155) with (156) gives

µl
√
k′ = νT = (Csδ)

2|∇w| = µδ
(C2

s δ

µ
|∇w|

)
.

Here δ is the obvious choice for l. With δ = l, the Smagorinsky Model yields the model

k′ = C4
s δ

2µ−2|∇w|2. Hence, the omitted term responsible for non-equilibrium effects is

modeled as

d

dt

∫
Ω

k′ dx =
d

dt
C4

s δ
2µ−2(∇w,∇w) = C4

s δ
2µ−2(−∆wt, w).

By including C4
s δ

2µ−2∆wt in the model, its energy balance has a consistent representation

of the term 1
2

d
dt
∥u′∥2. As a result, the Corrected Smagorinsky Model (CSM) is: ∇ · w = 0

and

wt − C4
s δ

2µ−2∆wt + w ·∇w − ν∆w +∇q −∇ ·
(
(Csδ)

2|∇w|∇w
)
= f(x). (157)

Here we impose the no-slip boundary condition, w = 0 on ∂Ω.
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3.4 Basic Properties of the Model

In this section, we develop some basic properties of the model which are useful in numer-

ical analysis. In particular, we derive the basic energy estimate, we prove a stability bound

and the uniqueness of the solution. We also analyze the modeling error and numerical error

of the model.

3.4.1 Energy Estimate for the CSM

We will identify the model’s kinetic energy and energy dissipation in Theorem 44.

Theorem 44. Let w be a strong solution of the Corrected Smagorinsky Model (157), then

the following energy estimate holds

1

2

1

|Ω|
d

dt

(
∥w∥2 + C4

s δ
2

µ2
∥∇w∥2

)
+

1

|Ω|
ν∥∇w∥2 + 1

|Ω|
(Csδ)

2∥∇w∥3L3 =
1

|Ω|
⟨f, w⟩.

(158)

Proof. First, we take dot product in ((157)) with w and do integration by parts which is

shown below,∫
Ω

(
wt − C4

s δ
2µ−2∆wt + w ·∇w − ν∆w +∇q −∇ ·

(
(Csδ)

2|∇w|∇w
))

· wdx

=

∫
Ω

f · w dx.

Here,
∫
Ω
wt ·w dx = d

dt

(
1
2

∫
Ω
|w|2 dx

)
. By Lemma (31),

∫
Ω
w ·∇w ·w dx = 0. Next, −ν

∫
Ω
∆w ·

w dx =
∫
Ω
ν|∇w|2 dx. The next term,

∫
Ω
∇q ·w dx =

∫
∂Ω
pw · n̂ ds−

∫
Ω
p∇ · w dx = 0. The

final term,∫
Ω

−∇ ·
(
(Csδ)

2|∇w|∇w
)
w dx =

∫
Ω

(Csδ)
2|∇w|∇w ·∇w dx =

∫
Ω

(Csδ)
2|∇w|3 dx.

91



Hence combining all these terms we get the following energy estimate per unit volume,

1

2

1

|Ω|
d

dt

(
∥w∥2 + C4

s δ
2

µ2
∥∇w∥2

)
+

1

|Ω|
ν∥∇w∥2 + 1

|Ω|
(Csδ)

2∥∇w∥3L3 =
1

|Ω|
⟨f, w⟩.

Remark 45. In (158), we can identify the following quantities:

1. Model kinetic energy of mean flow per unit volume

MKE :=
1

2

1

|Ω|

(
∥w∥2 + C4

s

µ2
δ2∥∇w∥2

)
.

The second term in MKE coming from the Corrected Smagorinsky Model is the turbulent

kinetic energy per unit volume.

2. Rate of energy dissipation of mean flow per unit volume

εCSM(t) :=
1

|Ω|

(
ν∥∇w∥2 + (Csδ)

2∥∇w∥3L3

)
.

This controls the time rate of change of kinetic energy. It’s always positive and it reduces

the accumulation of kinetic energy.

3. Rate of energy input to mean flow per unit volume is 1
|Ω|⟨f, w⟩.

92



3.4.2 Stability

Next, we give the stability bound of the Corrected Smagorinsky Model (157) in The-

orem 46. We prove the model kinetic energy is bounded uniformly in time and the time-

averaged model energy dissipation rate is bounded as well in the same Theorem.

Theorem 46. (Stability of w) (157) is unconditionally stable. The solution w of (157)

satisfies the following inequality

∥w(T )∥2 + C4
s

µ2
δ2∥∇w(T )∥2 ≤ e−αT

{
∥w(0)∥2 + C4

s

µ2
δ2∥∇w(0)∥2 + C

α
(eαT − 1)

}
,

where α = min{ ν
2C2

PF
, µ2ν

C4
s δ

2}, and if f ∈ L2(Ω), we get

max
0≤t<∞

(
∥w∥2 + C4

s δ
2

µ2
∥∇w∥2

)
≤ C ′ <∞.

and

O(
1

T
) +

1

|Ω|
1

T

∫ T

0

(ν
2
∥∇w∥2 + (Csδ)

2∥∇w∥3L3

)
dt ≤ 1

|Ω|
1

T

∫ T

0

C2
PF

2ν
∥f∥2 dt.

Proof. Take L2 inner product of (157) with w, we get the following energy equality,

1

2

d

dt

(
∥w∥2 + c4s

µ2
δ2∥∇w∥2

)
+ ν∥∇w∥2 + (Csδ)

2∥∇w∥3L3 = (f, w). (159)

Consider the RHS of (159), (f, w) ≤ ϵ
2
∥w∥2 + 1

2ϵ
∥f∥2. Thus (159) implies

d

dt

(
∥w∥2 + C4

s

µ2
δ2∥∇w∥2

)
+ ν∥∇w∥2 + ν∥∇w∥2 + 2(Csδ)

2∥∇w∥3L3 ≤ ϵ∥w∥2 + 1

ϵ
∥f∥2.

Using the inequality ∥w∥ ≤ CPF∥∇w∥, we have

d

dt

(
∥w∥2 + C4

s

µ2
δ2∥∇w∥2

)
+

ν

C2
PF

∥w∥2 + ν∥∇w∥2 + 2(Csδ)
2∥∇w∥3L3 ≤ ϵ∥w∥2 + 1

ϵ
∥f∥2.

Pick ϵ = ν
2C2

PF
and drop the term 2(Csδ)

2∥∇w∥3L3 . We obtain

d

dt

(
∥w∥2 + C4

s

µ2
δ2∥∇w∥2

)
+

ν

2C2
PF

∥w∥2 + µ2

C4
s δ

2
ν
(C4

s

µ2
δ2∥∇w∥2

)
≤ 2

ν
C2

PF∥f∥2.
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Let α = min{ ν
2C2

PF
, µ2

C4
s δ

2ν}, resulting in

d

dt

(
∥w∥2 + C4

s

µ2
δ2∥∇w∥2

)
+ α

(
∥w∥2 + C4

s

µ2
δ2∥∇w∥2

)
≤ 2

ν
C2

PF∥f∥2.

Multiply by the integrating factor eαt and integrate from t = 0 to t = T , leading to

∥w(T )∥2 + C4
s

µ2
δ2∥∇w(T )∥2 ≤ e−αT

{
∥w(0)∥2 + C4

s

µ2
δ2∥∇w(0)∥2 + C

α
(eαT − 1)

}
,

where C = 2
ν
C2

PF∥f∥2.

This implies that kinetic energy is uniformly bounded, i.e. if f ∈ L2(Ω), we get

max
0≤t<∞

(
∥w∥2 + C4

s δ
2

µ2
∥∇w∥2

)
≤ C ′ <∞.

Integrate (159) from t = 0 to t = T and divide by |Ω| and T , we have

1

|Ω|
1

2T

{(
∥w(T )∥2 + C4

s

µ2
δ2∥∇w(T )∥2

)
−
(
∥w(0)∥2 + C4

s

µ2
δ2∥∇w(0)∥2

)}
+

1

|Ω|
1

T

∫ T

0

(
ν∥∇w∥2 + (Csδ)

2∥∇w∥3L3

)
dt =

1

|Ω|
1

T

∫ T

0

(f, w) dt.

(160)

Consider the term on the right. Using the Poincaré-Friedrichs’ inequality (144), Cauchy

Schwarz and Young’s inequality gives

1

|Ω|
1

T

∫ T

0

(f, w) dt ≤ 1

|Ω|
1

T

∫ T

0

1√
ν
∥f∥CPF

√
ν∥∇w∥ dt,

≤ 1

|Ω|
1

T

∫ T

0

ν

2
∥∇w∥2 dt+ 1

|Ω|
1

T

∫ T

0

C2
PF

2ν
∥f∥2 dt.

The first term in (160) is bounded by the previous result. Thus,

O(
1

T
) +

1

|Ω|
1

T

∫ T

0

(ν
2
∥∇w∥2 + (Csδ)

2∥∇w∥3L3

)
dt ≤ 1

|Ω|
1

T

∫ T

0

C2
PF

2ν
∥f∥2 dt.

The time-averaged dissipation is bounded.
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3.4.3 Uniqueness

In this subsection, we prove the uniqueness of the strong solution to (157) in Theorem 47.

Theorem 47. The solution w of (157) is unique.

Proof. Suppose (w1, q1) and (w2, q2) are two different solution of (157) and let ϕ, q denote

the difference between two solutions: ϕ = w1 − w2, q = q1 − q2, ϕ satisfies ∇ · ϕ = 0 and

∂

∂t

(
ϕ− C4

s

µ2
δ2∆ϕ

)
+ w1 ·∇w1 − w2 ·∇w2 − ν∆ϕ+∇q

−(Csδ)
2∇ · (|∇w1|∇w1 − |∇w2|∇w2) = 0.

Take the L2 inner product with ϕ and let w̃ represent either w1 or w2, we obtain

1

2

d

dt

(
∥ϕ∥2 + C4

s

µ2
δ2∥∇ϕ∥2

)
+ ν∥∇ϕ∥2

+(Csδ)
2

∫
Ω

[|∇w1|∇w1 − |∇w2|∇w2] ·∇(w1 − w2) dx = −
∫
Ω

ϕ ·∇w̃ · ϕ dx.

Using the Strong Monotonicity (145), we get

1

2

d

dt

(
∥ϕ∥2 + C4

s

µ2
δ2∥∇ϕ∥2

)
+ ν∥∇ϕ∥2 + C1(Csδ)

2∥∇ϕ∥3L3
≤ −

∫
Ω

ϕ ·∇w · ϕ dx.

Consider the RHS, using (147) in 3D space,∣∣∣∣−∫
Ω

ϕ ·∇w · ϕ dx
∣∣∣∣ ≤ ∥∇w∥L3∥ϕ∥2L3 ,

≤ C∥∇w∥L3(∥ϕ∥1/2∥∇ϕ∥1/2)2,

≤ ϵ

2
∥∇ϕ∥2 + C(ϵ)∥∇w∥2L3∥ϕ∥2.

Pick ϵ = 2C4
s

µ2 δ
2, leading to

1

2

d

dt
(∥ϕ∥2 + C4

s

µ2
δ2∥∇ϕ∥2) + ν∥∇ϕ∥2 + C1(Csδ)

2∥∇ϕ∥3L3

≤ C4
s

µ2
δ2∥∇ϕ∥2 + C(ϵ)∥∇w∥2L3∥ϕ∥2,

≤ max{1, C(ϵ)∥∇w∥2L3}(
C4

s

µ2
δ2∥∇ϕ∥2 + ∥ϕ∥2).
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Here a(t) := max{1, C(ϵ)∥∇w1∥2L3} ∈ L1(0, T ), because∫ T

0

1 · ∥∇w1∥2L3 dt ≤
(∫ T

0

13 dt

)1/3

·
(∫ T

0

∥∇w1∥
2× 3

2

L3 dt

)2/3

=

(∫ T

0

13 dt

)1/3

·
(∫ T

0

∥∇w1∥3L3 dt

)2/3

<∞.

Then we can form its antiderivative

A(T ) :=

∫ T

0

a(t) dt <∞, for ∇w ∈ L3(0, T ;L3(Ω)).

Multiplying through by the integrating factor e−A(t) gives

d

dt

[
1

2
e−A(t)

(
∥ϕ∥2 + C4

s δ
2

µ2
∥∇ϕ∥2

)]
+ e−A(t)[ν∥∇ϕ∥2 + C1(Csδ)

2∥∇ϕ∥3L3 ] ≤ 0.

Then, integrating over [0, T ] and multiplying through by eA(t) gives

1

2

(
∥ϕ(T )∥2 + C4

s

µ2
δ2∥∇ϕ(T )∥2

)
+

∫ T

0

(
ν∥∇ϕ∥2 + C1(Csδ)

2∥∇ϕ∥3L3

)
dt

≤ eA(t)1

2

(
∥ϕ(0)∥2 + C4

s

µ2
δ2∥∇ϕ(0)∥2

)
.
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3.4.4 Modelling error

In this subsection, we analyze the error between the solution to the NSE (150) and the

Corrected Smagorinksy Model (157) in Theorem 48.

Theorem 48. Assume ∇ut ∈ L2(Ω) and ∇w ∈ L2(0, T ;L3), let ϕ = uNSE − wSmag be the

modelling error of the Corrected Smagorinsky, then ϕ satisfies the following:

1

2

(
∥ϕ(T )∥2 + C4

s

µ2
δ2∥∇ϕ(T )∥2

)
+

∫ T

0

ν

2
∥∇ϕ∥2 + C1

2
(Csδ)

2∥∇ϕ∥3L3 dt

≤ C∗
{
1

2

(
∥ϕ(0)∥2 + C4

s

µ2
δ2∥∇ϕ(0)∥2

)
+

∫ T

0

(Csδ)
2∥∇u∥3L3 +

C4
s

µ2
δ2∥∇ut∥2 dt

}
.

Here C∗ depends on ν, T,
∫ T

0
∥∇w∥2L3 dt.

Proof. uNSE satisfies ∇ · u = 0 and the following equation

ut + u ·∇u− ν∆u+∇p− (Csδ)
2∇ · (|∇u|∇u)− C4

s

µ2
δ2∆ut

= f − (Csδ)
2∇ · (|∇u|∇u)− C4

s

µ2
δ2∆ut.

(161)

Subtract (157) from (161). We obtain, ∇ · ϕ = 0 and

ϕt −
C4

s

µ2
δ2∆ϕt + u ·∇u− w ·∇w − ν∆ϕ+∇(p− q)

−(Csδ)
2∇ · (|∇u|∇u− |∇w|∇w) = −(Csδ)

2∇ · (|∇u|∇u)− C4
s

µ2
δ2∆ut.

Here, u ·∇u− w ·∇w = u ·∇u− u ·∇w + u ·∇w − w ·∇w = u ·∇ϕ+ ϕ ·∇w.

Take L2 inner product with ϕ gives

1

2

d

dt

(
∥ϕ∥2 + C4

s

µ2
δ2∥∇ϕ∥2

)
+

∫
Ω

ϕ ·∇w · ϕ dx+ ν∥∇ϕ∥2 dx

+(Csδ)
2

∫
Ω

(|∇u|∇u− |∇w|∇w) ·∇(u− w) dx

= (Csδ)
2

∫
Ω

|∇u|∇u : ∇ϕ dx+
C4

s

µ2
δ2
∫
Ω

∇ut : ∇ϕ dx.
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Using Strong Monotonicity (36), we have

1

2

d

dt

(
∥ϕ∥2 + C4

s

µ2
δ2∥∇ϕ∥2

)
+ ν∥∇ϕ∥2 + C1(Csδ)

2∥∇ϕ∥3L3

≤ −
∫
Ω

ϕ ·∇w · ϕ dx+ (Csδ)
2

∫
Ω

|∇u|∇u : ∇ϕ dx+
C4

s

µ2
δ2
∫
Ω

∇ut : ∇ϕ dx.

(162)

Consider the first term in the RHS, similar to the previous steps∣∣∣− ∫
Ω

ϕ ·∇w · ϕ dx
∣∣∣ ≤ ϵ1

2
∥∇ϕ∥2 + C(ϵ1)∥∇w∥2L3∥ϕ∥2.

The second term in the RHS is∣∣∣(Csδ)
2

∫
Ω

|∇u|∇u : ∇ϕ dx
∣∣∣ ≤ (Csδ)

2∥∇ϕ∥L3∥∇u∥2L3 ,

≤ ϵ2
3
(Csδ)

2∥∇ϕ∥3L3 + C(ϵ2)(Csδ)
2(∥∇u∥2L3)3/2,

=
ϵ2
3
(Csδ)

2∥∇ϕ∥3L3 + C(ϵ2)(Csδ)
2∥∇u∥3L3 .

The third term in the RHS satisfies∣∣∣C4
s

µ2
δ2
∫
Ω

∇ut : ∇ϕ dx
∣∣∣ ≤ C4

s

µ2
δ2∥∇ut∥∥∇ϕ∥,

≤ ϵ3
2

C4
s

µ2
δ2∥∇ϕ∥2 + C(ϵ3)

C4
s

µ2
δ2∥∇ut∥2.

Pick ϵ1 = ν, ϵ2 =
3C1

2
, collect all terms, (162) becomes

1

2

d

dt

(
∥ϕ∥2 + C4

s

µ2
δ2∥∇ϕ∥2

)
+
ν

2
∥∇ϕ∥2 + C1

2
(Csδ)

2∥∇ϕ∥3L3

≤ max
{
C(ϵ1)∥∇w∥2L3 ,

ϵ3
2

}
(∥ϕ∥2 + C4

s

µ2
δ2∥∇ϕ∥2)

+C(ϵ2)(Csδ)
2∥∇u∥3L3 + C(ϵ3)

C4
s

µ2
δ2∥∇ut∥2.

Denote a(t) := max
{
C(ϵ1)∥∇w∥2L3 ,

ϵ3
2

}
and its antiderivative is given by

A(T ) :=

∫ T

0

a(t) dt <∞ for ∇w ∈ L2(0, T ;L3).
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Multiplying through by the integrating factor e−A(t) gives

d

dt

[
1

2
e−A(t)

(
∥ϕ∥2 + C4

s δ
2

µ2
∥∇ϕ∥2

)]
+ e−A(t)

[
ν

2
∥∇ϕ∥2 + C1

2
(Csδ)

2∥∇ϕ∥3L3

]
≤ e−A(t)

{
C(ϵ2)(Csδ)

2∥∇u∥3L3 + C(ϵ3)
C4

s δ
2

µ2
∥∇ut∥2

}
.

Then, integrating over [0, T ] and multiplying through by eA(t) gives

1

2

(
∥ϕ(T )∥2 + C4

s

µ2
δ2∥∇ϕ∥2

)
+

∫ T

0

ν

2
∥∇ϕ∥2 + C1

2
(Csδ)

2∥∇ϕ∥3L3 dt

≤ C(ν, T, ∥∇w∥L3)
{1
2

(
∥ϕ(0)∥2 + C4

s

µ2
δ2∥∇ϕ(0)∥2

)
+

∫ T

0

(Csδ)
2∥∇u∥3L3 +

C4
s

µ2
δ2∥∇ut∥2 dt

}
,

and C(ν, T ) depends on ν, T,
∫ T

0
∥∇w∥2L3 dt.

3.5 Numerical error

Consider the semi-discrete approximation of the CSM (157) with grad-div stabilization.

Suppose wh(x, 0) is approximation of w(x, 0). The approximate velocity and pressure are

maps

wh : [0, T ] → Xh , ph : (0, T ] → Qh

satisfying

(wh
t , v

h) +
C4

s

µ2
δ2(∇wh

t ,∇vh) + b∗(wh, wh, vh) + ν(∇wh,∇vh) + γ(∇ · wh,∇ · vh)

−(ph,∇ · vh) +
(
(Csδ)

2|∇wh|∇wh,∇vh
)
= (f, vh) for all vh ∈ Xh,

(qh,∇ · wh) = 0 for all qh ∈ Qh.

(163)

In this section, we analyze the error between the strong solution to the CSM (157) and

the semi-discrete solution to (163) in Theorem 49.
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Theorem 49. (Numerical error of semi-discrete case) Let w be the strong solution of the

CSM (157) (in particular ∥w∥ ∈ L∞(0, T ), ∥∇w∥L2 ∈ L2(0, T ), w ∈ L2(0, T ;W 1,3(Ω)) ∩

L2(0, T ;L6(Ω))) and wh be a solution to the semi-discrete problem (163). Let

a(t) := C(ν)∥∇w∥2L3 +
1

4
∥w∥2L6 .

Then, for T > 0 the error w − wh satisfies

∥(w − wh)(T )∥2 + C4
s δ

2

µ2
∥∇
(
w − wh

)
(T )∥2

+

∫ T

0

{ν
4
∥∇
(
w − wh

)
∥2 + γ∥∇ · (w − wh)∥2 + 2

3
C1(Csδ)

2∥∇
(
w − wh

)
∥3L3

}
dt

≤ exp

(∫ T

0

a(t)dt

){
∥(w − wh)(0)∥2

+
C4

s δ
2

µ2
∥∇
(
w − wh

)
(0)∥2 + inf

vh∈V h
∥(w − vh)(T )∥2

+

∫ T

0

[
C(ν) inf

vh∈V h

(
∥wt − vht ∥2−1 + (

C4
s δ

2

µ2
)2∥∇

(
wt − vht

)
∥2 + ∥∇

(
w − vh

)
∥2
)

+C inf
vh∈V h

(
(Csδ)

2∥∇
(
w − vh

)
∥3/2L3 + δ−1∥w − vh∥3/2L6 + γ∥∇ · (w − vh)∥2

)
+C(γ−1) inf

qh∈Qh
∥p− qh∥2

]
dt
}
.

Proof. Consider the variational problem of the CSM (157): Find w : [0, T ] → X =

L∞(0, T ;L2(Ω))∩L3(0, T ;W 1,3(Ω)) satisfying (148). Let vh ∈ V h = {vh ∈ Xh : (∇·vh, qh) =

0 ∀ qh ∈ Qh}. Since v ∈ X & vh ∈ V h ⊂ Xh ⊂ X, we restrict v = vh in continuous varia-

tional problem. Then subtract semi-discrete problem (163) from continuous problem (148).

Let e = error = w − wh. This gives,

(et, v
h) + (C4

s δ
2µ−2∇et,∇vh) + b∗(w,w, vh)− b∗(wh, wh, vh)

+ν(∇e,∇vh) + γ(∇ · e,∇ · vh) + (Csδ)
2

∫
Ω

(|∇w|∇w − |∇wh|∇wh) : ∇vh dx

− (p− ph,∇ · vh) = 0.

(164)
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We can write,

b∗(w,w, vh)− b∗(wh, wh, vh)

=b∗(w,w, vh)− b∗(wh, w, vh) + b∗(wh, w, vh)− b∗(wh, wh, vh),

=b∗(e, w, vh) + b∗(wh, e, vh).

Also, ∫
Ω

(|∇w|∇w − |∇wh|∇wh) ·∇vh dx

=

∫
Ω

(|∇w|∇w − |∇w̃|∇w̃ + |∇w̃|∇w̃ − |∇wh|∇wh) ·∇vh dx.

Pick w̃ ∈ V h. Let η = w− w̃, ϕh = wh− w̃, ϕh ∈ V h. This implies e = (w− w̃)−(wh− w̃) =

η − ϕh. Then (164) becomes

(ϕh
t , v

h) + (C4
s δ

2µ−2∇ϕh
t ,∇vh) + b∗(e, w, vh) + b∗(wh, e, vh)

+ν(∇ϕh,∇vh) + γ(∇ · ϕh,∇ · vh)

+(Csδ)
2

∫
Ω

(|∇wh|∇wh − |∇w̃|∇w̃) : (∇vh) dx− (p− ph,∇ · vh)

= (ηt, v
h) + (C4

s δ
2µ−2∇ηt,∇vh) + ν(∇η,∇vh) + γ(∇ · η,∇ · vh)

+(Csδ)
2

∫
Ω

(|∇w|∇w − |∇w̃|∇w̃) : (∇vh) dx.

Take vh = ϕh and λh ∈ Qh . Here b∗(wh, e, ϕh) = b∗(wh,η − ϕh, ϕh) = b∗(wh,η, ϕh) since

b∗(wh, ϕh, ϕh) = 0. Using strong monotonocity (36), we get

(Csδ)
2

∫
Ω

(|∇wh|∇wh − |∇w̃|∇w̃) : (∇ϕh) dx ≥ C1(Csδ)
2∥∇ϕh∥3L3 .

Using local Lipschitz continuity (36), we get

(Csδ)
2

∫
Ω

(|∇w|∇w − |∇w̃|∇w̃) : (∇ϕh) dx ≤ (Csδ)
2C2r∥∇η∥L3∥∇ϕh∥L3 ,

where r = max{∥∇w∥L3 , ∥∇w̃∥L3}.
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Hence,

1

2

d

dt

{
∥ϕh∥2 + C4

s δ
2

µ2
∥∇ϕh∥2

}
+ ν∥∇ϕh∥2 + γ∥∇ · ϕh∥2

+b∗(η − ϕh, w, ϕh) + b∗(wh,η, ϕh) + C1(Csδ)
2∥∇ϕh∥3L3

≤ (ηt, ϕ
h) + (C4

s δ
2µ−2∇ηt,∇ϕh) + ν(∇η,∇ϕh) + γ(∇ · η,∇ · ϕh)

+(Csδ)
2C2r∥∇η∥L3∥∇ϕh∥L3 + (p− λh,∇ · ϕh).

We can rewrite it as

1

2

d

dt

{
∥ϕh∥2 + C4

s

µ2
δ2∥∇ϕh∥2

}
+ ν∥∇ϕh∥2 + γ∥∇ · ϕh∥2 + C1(Csδ)

2∥∇ϕh∥3L3

≤ (ηt, ϕ
h) +

C4
s

µ2
δ2(∇ηt,∇ϕh) + ν(∇η,∇ϕh) + (p− λh,∇ · ϕh) + γ(∇ · η,∇ · ϕh)

+(Csδ)
2C2r∥∇η∥L3∥∇ϕh∥L3 − b∗(η, w, ϕh) + b∗(ϕh, w, ϕh)− b∗(wh,η, ϕh).

Next, we find the bounds for the terms in the RHS. For the first five terms on the right, use

the Cauchy Schwarz and Young’s inequality,

|(ηt, ϕ
h)| ≤ ∥ηt∥−1∥∇ϕh∥ ≤ ν

2
∥∇ϕh∥2 + C(ν)∥ηt∥2−1.

C4
s

µ2
δ2|(∇ηt,∇ϕh)| ≤ ∥∇ϕh∥C

4
s δ

2

µ2
∥∇ηt∥,

≤ ν

4
∥∇ϕh∥2 + C(ν)

(
C4

s δ
2

µ2

)2

∥∇ηt∥2.

ν|(∇η,∇ϕh)| ≤ ν∥∇η∥∥∇ϕh∥ ≤ ν

16
∥∇ϕh∥2 + C(ν)∥∇η∥2.

|(p− λh,∇ · ϕh)| ≤ ∥p− λh∥∥∇ · ϕh∥ ≤ γ

4
∥∇ · ϕh∥2 + C(γ−1)∥p− λh∥2.

|γ(∇ · η,∇ · ϕh)| ≤ γ∥∇ · η∥∥∇ · ϕh∥ ≤ γ

4
∥∇ · ϕh∥2 + C(γ)∥∇ · η∥2.

For the fifth term on the right, use the Hölder’s inequality,

(Csδ)
2C2r∥∇η∥L3∥∇ϕh∥L3 ≤ (Csδ)

2

{
C1

3
∥∇ϕh∥3L3 +

2

3
C

−1/2
1 r3/2∥∇η∥3/2L3

}
.
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Next, for the first and the third nonlinear terms, here we follow the estimates in [81, p.1007-

1008, equations (4.5) and (4.6)] and we omit the details.

|b∗(η, w, ϕh)| ≤ 1

4
∥∇w∥2L3∥ϕh∥2 + 1

4
∥η∥2L6 + ϵ1∥∇ϕh∥3L3 + Cϵ

−1/2
1 ∥w∥3/2∥η∥3/2L6 . (165)

|b∗(ϕh, w, ϕh)| ≤ ∥∇w∥L3∥∇ϕh∥2L3 ,

≤ ∥∇w∥L3(∥ϕh∥1/2∥∇ϕh∥1/2)2,

≤ ν

16
∥∇ϕh∥2 + C(ν)∥∇w∥2L3∥ϕh∥2.

|b∗(wh,η, ϕh)| ≤ 1

4
∥w∥2L6∥ϕh∥2 + 1

4
∥∇η∥2L3 + ϵ2∥∇ϕh∥3L3 + Cϵ

−1/2
2 ∥wh∥3/2∥η∥3/2L6 . (166)

Setting ϵ1 = ϵ2 =
1
6
C1(Csδ)

2 and collecting all the terms gives

1

2

d

dt

{
∥ϕh∥2 + C4

s

µ2
δ2∥∇ϕh∥2

}
+
ν

8
∥∇ϕh∥2 + γ

2
∥∇ · ϕh∥2 + 1

3
C1(Csδ)

2∥∇ϕh∥3L3

≤
[
C(ν)∥∇w∥2L3 +

1

4
∥∇w∥2L3 +

1

4
∥w∥2L6

]
∥ϕh∥2

+
{
C(ν)

[
∥ηt∥2−1 + (

C4
s δ

2

µ2
)2∥∇ηt∥2 + ∥∇η∥2

]
+C(γ−1)∥p− λh∥2 + C(γ)∥∇ · γ∥2 + (Csδ)

2r3/2∥∇η∥3/2L3

+
1

4
∥η∥2L6 + δ−1∥w∥3/2∥η∥3/2L6 +

1

4
∥∇η∥2L3 + δ−1∥wh∥3/2∥η∥3/2L6

}
.

Denote a(t) := C(ν)∥∇w∥2L3 +
1
4
∥∇w∥2L3 +

1
4
∥w∥2L6 and its antiderivative is

A(t) :=

∫ T

0

a(t) dt <∞ for w ∈ L2(0, T ;W 1,3(Ω)) ∩ L2(0, T ;L6(Ω)).

Multiplying through by the integrating factor e−A(t) gives

d

dt

[
1

2
e−A(t)

(
∥ϕh∥2 + C4

s δ
2

µ2
∥∇ϕh∥2

)]
+e−A(t)

[
ν

8
∥∇ϕh∥2 + γ

2
∥∇ · ϕh∥2 + 1

3
C1(Csδ)

2∥∇ϕh∥3L3

]
≤ e−A(t)

{
C(ν)

[
∥ηt∥2−1 + (

C4
s δ

2

µ2
)2∥∇ηt∥2 + ∥∇η∥2

]
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+C(γ−1)∥p− λh∥2 + C(γ)∥∇ · η∥2 + (Csδ)
2r3/2∥∇η∥3/2L3 +

1

4
∥η∥2L6

+δ−1∥w∥3/2∥η∥3/2L6 +
1

4
∥∇η∥2L3 + δ−1∥wh∥3/2∥η∥3/2L6

}
.

Integrating over [0, T ] and multiplying through by eA(t) gives

1

2

{
∥ϕh(T )∥2 + C4

s δ
2

µ2
∥∇ϕh(T )∥2

}
+

∫ T

0

(ν
8
∥∇ϕh∥2 + γ

2
∥∇ · ϕh∥2 + 1

3
C1(Csδ)

2∥∇ϕh∥3L3

)
dt

≤ exp

(∫ T

0

a(t)dt

){1
2

(
∥ϕh(0)∥2 + C4

s δ
2

µ2
∥∇ϕh(0)∥2

)
+

∫ T

0

[
C(ν)

(
∥ηt∥2−1 + (

C4
s δ

2

µ2
)2∥∇ηt∥2 + ∥∇η∥2

)
+C(γ−1)∥p− λh∥2 + C(γ)∥∇ · η∥2 + (Csδ)

2r3/2∥∇η∥3/2L3 +
1

4
∥η∥2L6

+δ−1∥w∥3/2∥η∥3/2L6 +
1

4
∥∇η∥2L3 + δ−1∥wh∥3/2∥η∥3/2L6

]
dt
}
.

Apply the Hölder’s inequality gives∫ T

0

r3/2∥∇η∥3/2L3 dt ≤
(∫ T

0

r3 dt

)1/2

∥∇η∥3/2L3(0,T ;L3),∫ T

0

∥w∥3/2∥η∥3/2L6 dt ≤ ∥w∥3/2L2(0,T ;L2)∥η∥
3/2

L6(0,T ;L6),∫ T

0

∥wh∥3/2∥η∥3/2L6 dt ≤ ∥wh∥3/2L2(0,T ;L2)∥η∥
3/2

L6(0,T ;L6).

∥w∥L2(0,T ;L2) and ∥wh∥L2(0,T ;L2) are bounded by problem data by stability bound. Here

r = max{∥∇w∥L3 , ∥∇w̃∥L3} and
(∫ T

0
r3 dt

)1/2
= ∥∇w∥3/2L3(0,T ;L3) or

∥∇w̃∥3/2L3(0,T ;L3) also bounded. Using triangle inequality: ∥e∥ ≤ ∥ϕh∥ + ∥η∥, we obtain the

desired result.

Remark 50. If w̃ is taken to be the Stokes projection, then ∥∇η∥2 does not occur at the

RHS.
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Remark 51. Considering the nonlinear terms (165) and (166), alternatively we have

|b∗(η, w, ϕh)| ≤M∥∇η∥∥∇w∥∥∇ϕh∥ ≤ ϵ∥∇ϕh∥2 + 1

4ϵ
M2∥∇w∥2∥∇η∥2.

|b∗(wh, η, ϕh)| ≤ C∥wh∥1/2∥∇wh∥1/2∥∇η∥∥∇ϕh∥,

≤ ϵ∥∇ϕh∥2 + C(ϵ−1)∥wh∥∥∇wh∥∥∇η∥2.

By taking ϵ = ν/32, we can avoid the term δ−1∥η∥3/2L6 at the RHS but instead we have

ν−1∥∇η∥2.

3.5.1 Time discretization of the Corrected Smagorinsky model

This subsection presents the unconditionally stable, linearly implicit, full discretization

of (157). Let the time step and other quantities be denoted by

time-step = k, tn = nk, fn(x) = f(x, tn),

wh
n(x) = approximation to w(x, tn),

phn(x) = approximation to p(x, tn).

We perform the finite element spatial discretization and the first-order Backward Euler

scheme for time discretization to get the following full discretization: Given (wh
n, p

h
n) ∈

(Xh, Qh), find (wh
n+1, p

h
n+1) ∈ (Xh, Qh) satisfying

(wh
n+1 − wh

n

k
, vh
)
+
C4

s δ
2

µ2

(∇wh
n+1 −∇wh

n

k
,∇vh

)
+ b∗(wh

n, w
h
n+1, v

h)

+ν(∇wh
n+1,∇vh) + (Csδ)

2(|∇wh
n|∇wh

n+1,∇vh)

+γ(∇ · wh
n+1,∇ · vh)− (phn+1,∇ · vh) = (fn+1(x), v

h) ∀ vh ∈ Xh,

(∇ · wh
n+1, q

h) = 0 ∀ qh ∈ Qh.

(167)

This method is semi-implicit. We shall prove it is unconditionally stable in Theorem 52.
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Theorem 52. (167) is unconditionally energy stable. For any N ≥ 1,

(1
2
∥wh

N∥2 +
1

2

C4
s δ

2

µ2
∥∇wh

N∥2
)
+

N−1∑
n=0

1

2

(
∥wh

n+1 − wh
n∥2

+
C4

s δ
2

µ2
∥∇wh

n+1 −∇wh
n∥2
)
+ k

N−1∑
n=0

∫
Ω

[ν + (Csδ)
2|∇wh

n|]|∇wh
n+1|2 dx+

+ γ∥∇ · wh
n+1∥2 =

(1
2
∥wh

0∥2 +
1

2

C4
s δ

2

µ2
∥∇wh

0∥2
)
+ k

N−1∑
n=0

(fn+1, w
h
n+1).

(168)

Proof. Multiply (167) by k and take vh = wh
n+1. Use Lemma (31) to get

b∗(wh
n, w

h
n+1, w

h
n+1) = 0. Hence,

∥wh
n+1∥2 − (wh

n+1, w
h
n) +

C4
s δ

2

µ2
∥∇wh

n+1∥2 −
C4

s δ
2

µ2
(∇wh

n+1,∇wh
n)

+γ∥∇ · wh
n+1∥2 + k

∫
Ω

[ν + (Csδ)
2|∇wh

n|]|∇wh
n+1|2 dx = k(fn+1, w

h
n+1).

For the second and fourth terms, apply the polarization identity (143),

(wh
n+1, w

h
n) =

1

2
∥wh

n+1∥2 +
1

2
∥wh

n∥2 −
1

2
∥wh

n+1 − wh
n∥2,

(∇wh
n+1,∇wh

n) =
1

2
∥∇wh

n+1∥2 +
1

2
∥∇wh

n∥2 −
1

2
∥∇wh

n+1 −∇wh
n∥2.

Collecting terms and summing from n = 0 to N − 1, we get the result.

Remark 53. (168) is an energy equality, we can identify the following quantities:

1. Model kinetic energy = 1
2
∥wh

N∥2 + 1
2
C4

s δ
2

µ2 ∥∇wh
N∥2.

2. Eddy viscosity dissipation =
∫
Ω
(Csδ)

2|∇wh
n||∇wh

n+1|2 dx.

3. Numerical diffusion = 1
2
(∥wh

n+1−wh
n∥2+

C4
s δ

2

µ2 ∥∇wh
n+1−∇wh

n∥2). This numerical diffusion

arises due to the Backward Euler scheme.
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Remark 54. The energy equality (168) can be also written as

1

2k
(∥wh

n+1∥2 − ∥wh
n∥2) +

1

2k
∥wh

n+1 − wh
n∥2 + ν∥∇wh

n+1∥2 + γ∥∇ · wh
n+1∥2

+

{
C4

s δ
2

2kµ2
(∥∇wh

n+1∥2 − ∥∇wh
n∥2) +

C4
s δ

2

2kµ2
∥∇wh

n+1 −∇wh
n∥2

+

∫
Ω

(Csδ)
2|∇wh

n||∇wh
n+1|2 dx

}
= (fn+1, w

h
n+1).

Line one and the RHS are from the backward Euler discretization of the usual NSE. The

bracketed term is a discretized form of model dissipation at t = tn+1. Here the term model

dissipation in the chapter can be positive or negative. When it is positive, it aggregates energy

from mean to fluctuations. When it is negative, energy is transferred from fluctuations back

to the mean.

Remark 55. For (167), the model dissipation is

MDn+1 =
C4

s δ
2

2kµ2
(∥∇wh

n+1∥2 − ∥∇wh
n∥2) +

C4
s δ

2

2kµ2
∥∇wh

n+1 −∇wh
n∥2

+

∫
Ω

(Csδ)
2|∇wh

n||∇wh
n+1|2 dx.

In this Test 8.2, we use both Backward Euler and Crank-Nicolson to see the difference.

We perform the finite element spatial discretization and the linearly implicit Crank-Nicolson

(also called CNLE-CN with Linear Extrapolation) scheme for time discretization to get the

following full discretization: for function w, we denote

wh
n+ 1

2
=
wh

n + wh
n+1

2
, w̃h

n+ 1
2
=

3wh
n − wh

n−1

2
.

Given (wh
n, p

h
n) ∈ (Xh, Qh), find (wh

n+1, p
h
n+1) ∈ (Xh, Qh) satisfying

(wh
n+1 − wh

n

k
, vh
)
+
C4

s δ
2

µ2

(∇wh
n+1 −∇wh

n

k
,∇vh

)
+ b∗(w̃h

n+ 1
2
, wh

n+ 1
2
, vh)

+ν(∇wh
n+ 1

2
,∇vh) + (Csδ)

2(|∇w̃h
n+ 1

2
|∇wh

n+ 1
2
,∇vh)

+γ(∇ · wh
n+ 1

2
,∇ · vh)− (ph

n+ 1
2
,∇ · vh) = (fn+ 1

2
(x), vh) ∀ vh ∈ Xh,

(∇ · wh
n+ 1

2
, qh) = 0 ∀ qh ∈ Qh.

(169)
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We will prove it is unconditionally stable in Theorem 56.

Theorem 56. (169) is unconditionally energy stable. For any N ≥ 1,(
1

2
∥wh

N∥2 +
1

2

C4
s δ

2

µ2
∥∇wh

N∥2
)
+ k

N−1∑
n=0

∫
Ω

[ν + (Csδ)
2|∇w̃h

n+ 1
2
|]|∇wh

n+ 1
2
|2 dx

+ γ∥∇ · wh
n+ 1

2
∥2 =

(
1

2
∥wh

0∥2 +
1

2

C4
s δ

2

µ2
∥∇wh

0∥2
)
+ k

N−1∑
n=0

(
fn+ 1

2
, wh

n+ 1
2

)
.

(170)

Proof. Multiply (169) by k and take vh = wh
n+ 1

2

. Use Lemma (31) to get b∗(w̃h
n+ 1

2

, wh
n+ 1

2

, wh
n+ 1

2

) =

0. Hence,

1

2
∥wh

n+1∥2 −
1

2
∥wh

n∥2 +
1

2

C4
s δ

2

µ2
∥∇wh

n+1∥2 −
1

2

C4
s δ

2

µ2
∥∇wh

n∥2

+γ∥∇ · wh
n+ 1

2
∥2 + k

∫
Ω

[ν + (Csδ)
2|∇w̃h

n+ 1
2
|]|∇wh

n+ 1
2
|2 dx = k(fn+ 1

2
, wh

n+ 1
2
).

Collecting terms and summing from n = 0 to N − 1, we get the result.

Remark 57. (170) is an energy equality, we can identify the following quantities:

1. Model kinetic energy = 1
2
∥wh

N∥2 + 1
2
C4

s δ
2

µ2 ∥∇wh
N∥2.

2. Eddy viscosity dissipation =
∫
Ω
(Csδ)

2|∇w̃h
n+ 1

2

||∇wh
n+ 1

2

|2 dx.

3. No Numerical diffusion.

Remark 58. The energy equality can be also written as

1

2k
(∥wh

n+1∥2 − ∥wh
n∥2) + ν∥∇wh

n+ 1
2
∥2 + γ∥∇ · wh

n+ 1
2
∥2

+

{
C4

s δ
2

2kµ2
(∥∇wh

n+1∥2 − ∥∇wh
n∥2) +

∫
Ω

(Csδ)
2|∇w̃h

n+ 1
2
||∇wh

n+ 1
2
|2 dx

}
= (fn+ 1

2
, wh

n+ 1
2
).

Line one and line three are from the CNLE discretization of the usual NSE. The bracketed

term in the second line is a discretized form of model dissipation at t = tn+1.

Remark 59. For (169), the model dissipation is

MDn+1 =
C4

s δ
2

2kµ2
(∥∇wh

n+1∥2 − ∥∇wh
n∥2) +

∫
Ω

(Csδ)
2|∇w̃h

n+ 1
2
||∇wh

n+ 1
2
|2 dx.
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3.6 Numerical Tests

In this section, we perform two numerical tests. In the first test, we show the numerical

error and the rate of convergence of the Backward Euler scheme. In the second test, we

show among Backward Euler (BE) and Crank-Nicolson with Linear Extrapolation (CNLE),

CNLE exhibits intermittent backscatter.

3.6.1 A test with exact solution

(Taken from V. DeCaria, W. J. Layton and M. McLaughlin [52]) The first experiment

tests the accuracy of the Corrected Smagorinsky Model (157) and the convergence rate of

(167). The following test has an exact solution for the 2D Navier Stokes problem.

Let the domain Ω = (−1, 1)× (−1, 1). The exact solution is as follows:

u(x, y, t) = π sin t(sin 2πy sin2 πx,− sin 2πx sin2 πy).

p(x, y, t) = sin t cosπx sin πy.

This is inserted into the CSM and the body force f(x, t) is calculated.

Uniform meshes were used with 270 nodes per side on the boundary and the degrees of

freedom for the velocity space is 292681 and for the pressure space is 73441. The mesh is

fine enough compared to the time step so that the main error from the time steps is only

considered here. Taylor-Hood elements (P2-P1) were used in this test. We ran the test up

to T = 10. We take Cs = 0.1, µ = 0.4, δ is taken to be the shortest edge of all triangles.

The norms used in the table heading are defined as follows,

∥w∥∞,0 := ess sup
0<t<T

∥w∥L2(Ω) and ∥w∥0,0 :=
(∫ T

0

∥w(·, t)∥2L2(Ω) dt

)1/2

.
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∆t ∥w − wh∥∞,0 rate ∥∇
(
w − wh

)
∥0,0 rate ∥p− ph∥0,0 rate

0.05 3.27068 - 5.25129 - 0.640537 -

0.02 0.823036 1.506 1.59313 1.302 0.235862 1.091

0.01 0.348629 1.239 0.739145 1.108 0.108216 1.124

0.005 0.169429 1.041 0.39714 0.89621 0.0470406 1.202

Table 7: Numerical error and temporal convergence rate, Re = 5, 000, Tfinal = 10, Cs =

0.1, µ = 0.4, δ = 0.0104757.

h = δ ∥w − wh∥∞,0 rate ∥∇
(
w − wh

)
∥0,0 rate ∥p− ph∥0,0 rate

0.08571 57.9769 - 88.1677 - 14.5602 -

0.04221 1.41386 5.244 3.30974 4.635 0.313994 5.418

0.02095 0.407421 1.776 0.95483 1.774 0.0562327 2.455

0.01048 0.169429 1.266 0.39714 1.266 0.0470406 0.258

Table 8: Numerical error and spatial convergence rate, Re = 5, 000, Tfinal = 10, Cs =

0.1, µ = 0.4, ∆t = 0.005.

From the Table 7, we see the temporal convergence rate is 1 which is expected from

Backward Euler (167) discretization. Using Taylor-Hood elements, Theorem 49 predicts

a convergence rate in space of O(h1.75), with a moderate constant, for ∥w − wh∥∞,0 and

∥∇
(
w − wh

)
∥0,0. But with the estimates in Remark 51, the order of convergence is O(h2),

with a large constant 1
ν
. In Table 8, the third and fifth columns show rates O(h1.78) until the

error plateaus (last line) at the error in the time discretization (last line in Table 7). There

is still some gap between the theoretical convergence rate and the actual convergence rate

we get in Table 8. The behavior of the pressure error for this test problem is unclear as well

in Table 8.
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3.6.2 Test2. Flow between offset cylinder

(Taken from N. Jiang and W. J. Layton [78]). This flow problem is tested to show the

transfer of energy from fluctuations back to means in the turbulent flow using the Corrected

Smagorinksy Model (157).

The domain is a disk with a smaller off-center obstacle inside. Let r1 = 1, r2 = 0.1, c =

(c1, c2) = (1/2, 0), then the domain is given by

Ω = {(x, y) : x2 + y2 < r21 and (x− c1)
2 + (y − c2)

2 > r22}.

The flow is driven by a counterclockwise rotational body force

f(x, y, t) = (−4y ∗ (1− x2 − y2), 4x ∗ (1− x2 − y2))T ,

with no-slip boundary conditions on both circles. We discretize in space using Taylor-Hood

elements. There are 80 mesh points around the outer circle and 60 mesh points around the

inner circle. The flow is driven by a counterclockwise force (f=0 on the outer circle). Thus,

the flow rotates about the origin and interacts with the immersed circle.

We start the initial condition by solving the Stokes problem. We compute up to final

time Tfinal = 3. Take Cs = 0.1, µ = 0.3, δ is taken to be the shortest edge of all triangles

≈ 0.0112927, Re=10,000. For Backward Euler (167), we compute the following quantities:

Model dissipation MD =

∫
Ω

(C4
s δ

2

µ2

∇wh
n+1 −∇wh

n

k
·∇wh

n+1

+ (Csδ)
2|∇wh

n||∇wh
n+1|2

)
dx.

Effect of new term from CSM, CSMD =

∫
Ω

C4
s δ

2

µ2

∇wh
n+1 −∇wh

n

k
·∇wh

n+1 dx.

Eddy viscosity dissipation EVD =

∫
Ω

(Csδ)
2|∇wh

n||∇wh
n+1|2 dx.

Viscous dissipation V D = ν∥∇wh
n+1∥2.

For Crank-Nicolson CNLE (169), we compute the following quantities:

Model dissipation MD =

∫
Ω

(C4
s δ

2

µ2

∇wh
n+1 −∇wh

n

k
·∇wh

n+ 1
2
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+ (Csδ)
2|∇w̃h

n+ 1
2
||∇wh

n+ 1
2
|2
)
dx.

Effect of new term from CSM, CSMD =

∫
Ω

C4
s δ

2

µ2

∇wh
n+1 −∇wh

n

k
·∇wh

n+ 1
2
dx.

Eddy viscosity dissipation EVD =

∫
Ω

(Csδ)
2|∇w̃h

n+ 1
2
||∇wh

n+ 1
2
|2 dx.

Viscous dissipation V D = ν∥∇wh
n+ 1

2
∥2.
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Figure 14: Comparison of Backward Euler (167) and linearized Crank-Nicolson (169) with

∆t = 0.01, Re = 10, 000, Tfinal = 3, Cs = 0.1, µ = 0.4, δ = 0.0112927.

It can be seen from the Figure 14, model dissipation MD becomes negative sometimes

for linearized Crank-Nicolson (169) and MD are all positive for Backward Euler (167). Only

CNLE for the Corrected Smagorinksy has a backscatter, which is consistent with the purpose

of this model. Backward Euler has too much numerical diffusion, which makes it harder to

see the backscatter from BE.
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In the Figure 15, we notice the flow becomes smoother as it approaches statistical equi-

librium.

3.6.2.1 Comparison with NSE and standard Smagorinksy

Here we compare the CSM (157) with Navier Stokes (150) and the standard Smagorinsky

(141). The Taylor microscale [100] is defined as

λT := ∥u∥/∥∇u∥

, which represents an average length scale for the flow. We use the same setting but with

Re = 100, 000

to compare the Taylor microscale of each model. All numerical tests are calculated using

Crank-Nicolson with grad-div stabilization

γ = 1.
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Figure 16: Taylor microscale comparison between CSM, NSE and the standard Smagorinsky

with ∆t = 0.01, Re = 100, 000, Tfinal = 10, Cs = 0.1, µ = 0.4, δ = 0.0112927.

To further see the difference between these three models, here we focus on time-interval

[7,10] and see the relative length-scale

λT/h

with h being the mesh size.
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Figure 17: Relative length-scale (λT/h) comparison between CSM, NSE and standard

Smagorinsky with ∆t = 0.01, Re = 100, 000, Cs = 0.1, µ = 0.4, δ = 0.0112927, time-

interval shown as [7, 10].

From Figure 16, notice the CSM has a larger Taylor microscale. Since the CSM models

backscatter, more energy is expected in velocity means. Consistent with this, the averaged

length scale of CSM is larger than Smagorinsky and NSE. And from Figure 17, the relative

length-scale of the CSM at the final time is almost twice as large as the relative length-scale

calculated with NSE and standard Smagorinsky.
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Figure 15: Streamline plot using CNLE (169). There are 270 mesh points around the outer

circle and 180 mesh points around the inner circle.
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4.0 Variable Time Step Method of Dahlquist, Liniger and Nevanlinna(DLN)

for a Corrected Smagorinsky Model

Turbulent flows strain resources, both memory and CPU speed. The DLN method has

greater accuracy and allows larger time steps, requiring less memory and fewer FLOPS. The

DLN method can also be implemented adaptively. The classical Smagorinsky model, as

an effective way to approximate a (resolved) mean velocity, has recently been corrected to

represent a flow of energy from unresolved fluctuations to the (resolved) mean velocity. In

this chapter, we apply a family of second-order, G-stable time-stepping methods proposed

by Dahlquist, Liniger, and Nevanlinna (the DLN method) to one corrected Smagorinsky

model and provide the detailed numerical analysis of the stability and consistency. We prove

that the numerical solutions under any arbitrary time step sequences are unconditionally

stable in the long term and converge in second order. We also provide error estimates under

certain time-step conditions. Numerical tests are given to confirm the rate of convergence

and also to show that the adaptive DLN algorithm helps to control numerical dissipation so

that backscatter is visible.

4.1 Introduction

Eddy viscosity (EV) models are the most common approaches to depict the average of

turbulent flow of Navier-Stokes equations (NSE). Various eddy viscosity models in practical

settings are proposed for analytical and numerical study [14, 60, 62, 73, 74]. Unfortunately,

most EV models have difficulties in simulating backscatter or complex turbulent flow not at

statistical equilibrium due to the neglection of the intermittent energy flow from fluctuations

back to means. To overcome this defect, Jiang and Layton [78] calibrated the standard eddy

viscosity model by fitting the turbulent viscosity coefficient to flow data. Rong, Layton, and
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Zhao [131] extended the usual Baldwin-Lomax model so that the new model can account for

statistical backscatter without artificial negative viscosities. Recently, Siddiqua and Xie [137]

have corrected the classical Smagorinsky model [139] with no new fitting parameters to reflect

a flow of energy from unresolved fluctuations to means in the corrected Smagorinsky model

(CSM henceforth). Most recently, Dai, Liu, Liu, Jiang, and Chen [48] proposed a new

dynamic Smagorinsky model by an artificial neural network for prediction of outdoor airflow

and pollutant dispersion. Herein we give an analysis of the method of Dahlquist, Liniger,

and Nevanlinna [47] (the DLN method henceforth) for the CSM [137] with variable time

steps. Let f(x, t) be the prescribed body force, ν be the kinematic viscosity in the regular

and bounded flow domain Ω ⊂ Rd (d = 2, 3). We analyze the variable step, DLN time

discretization for the CSM: ∇ · w = 0 and

wt − C4
s δ

2µ−2∆wt + w ·∇w − ν∆w +∇q −∇ ·
(
(Csδ)

2|∇w|∇w
)
= f, x ∈ Ω, 0 ≤ t ≤ T.

(171)

Here µ is a constant from Kolmogorov-Prandtl relation [85, 119] and (w, q) approximate an

ensemble average pair of velocity and pressure of Navier-Stokes solutions, (u, p). This is an

eddy viscosity model with turbulent viscosity, νT = (Csδ)
2|∇w|, where Cs ≈ 0.1, (suggested

by Lilly [107]), δ is a length scale (or grid-scale). In [137], the CSMmodel derivation and some

basic properties of the CSM are developed and two algorithms for its numerical simulation are

proposed. However, the significant backscatter of model dissipation is not observed in specific

examples except for Linearized Crank-Nicolson time discretization. Besides that, constant

time discretization in their algorithms (backward Euler and Linearized Crank-Nicolson time-

stepping schemes) excludes the use of time adaptivity since the solution pattern (in terms

of stability and convergence) under extreme time step ratios is hard to expect. Dahlquist,

Liniger, and Nevanlinna designed a one-parameter family of one-leg, second-order methods

for evolutionary equations [47]. This time-stepping method (the DLN method) is proved to

be G-stable (non-linear stable) under any arbitrary time grids [44–46] and hence the ideal
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choice for time discretization of fluid models 1. Herein we apply the fully-discrete DLN

algorithm (finite element space discretization) for the CSM in (171) and present a complete

numerical analysis of the algorithm. We prove that the numerical solutions on arbitrary

time grids are unconditionally long-term stable, and converge to exact solutions at second

order with moderate time step restrictions. Let {tn}Nn=0 be the time grids on interval [0, T ]

and kn = tn+1 − tn is the local time step. Let wh
n and qhn be the numerical approximations of

velocity and pressure at time tn of the CSM in (171) respectively on certain finite element

space with the diameter h, the fully discrete DLN algorithm (with parameter θ ∈ [0, 1]) for

the CSM in (171) is written as follows: ∇ · wh
n+1 = 0 and

α2w
h
n+1 + α1w

h
n + α0w

h
n−1

α2kn − α0kn−1

− C4
s δ

2

µ2
∆
(α2w

h
n+1 + α1w

h
n + α0w

h
n−1

α2kn − α0kn−1

)
+
( 2∑

ℓ=0

β
(n)
ℓ wh

n−ℓ

)
· ∇
( 2∑

ℓ=0

β
(n)
ℓ wh

n−ℓ

)
− ν∆

( 2∑
ℓ=0

β
(n)
ℓ wh

n−ℓ

)
+∇

( 2∑
ℓ=0

β
(n)
ℓ qhn−ℓ

)
+∇ ·

(
(Csδ)

2
∣∣∣∇( 2∑

ℓ=0

β
(n)
ℓ wh

n−ℓ

)∣∣∣∇( 2∑
ℓ=0

β
(n)
ℓ wh

n−ℓ

))
= f

( 2∑
ℓ=0

β
(n)
ℓ thn−ℓ

)
, for 1 ≤ n ≤ N − 1,

(172)

where | · | is the Euclidian norm on Rd and the coefficients in (172) are
α2

α1

α0

 =


1
2
(θ + 1)

−θ

1
2
(θ − 1)

 ,

β
(n)
2

β
(n)
1

β
(n)
0

 =


1
4

(
1 + 1−θ2

(1+εnθ)2
+ ε2n

θ(1−θ2)
(1+εnθ)2

+ θ
)

1
2

(
1− 1−θ2

(1+εnθ)2

)
1
4

(
1 + 1−θ2

(1+εnθ)2
− ε2n

θ(1−θ2)
(1+εnθ)2

− θ
)

 .

The step variability εn = (kn − kn−1)/(kn + kn−1) is the function of two step sizes and

εn ∈ (−1, 1).

The main result of this chapter is the complete numerical analysis of the DLN method and

computational tests showing backscatter phenomena for the CSM model (171). The chapter

is organized as follows. We provide some necessary notations and preliminaries for numerical

analysis in Section 4.2. We present the fully discrete variational formulation in Section 4.3.

1To our knowledge, the DLN method is the only variable step method which is both non-linear stable
and second-order accurate.
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We show that the DLN solutions are long-term, unconditional stable in Theorem 70 of

Section 4.4.1 and perform the variable step error analysis with the moderate time step

restriction in Theorem 73 of Section 4.4.2. Furthermore, in Section 4.5.1, we present the

test problem with exact solutions [52] to confirm the fully discrete DLN algorithm is second-

order in time, and in Section 4.5.2, we present the test problem about flow between offset

cylinders [77] to check the unconditional stability and the efficiency of the time adaptivity

of the DLN algorithm.

4.1.1 Related Work

Due to the fine properties of stability and consistency, the whole DLN family calls great

attention to the simulation of evolutionary equations and fluid models. The DLN method

with θ = 2
3
is suggested in [47] to relieve the conflict between error and stability. Kulikov and

Shindin find that the DLN method with θ = 2√
5
has the best stability at infinity [87]. The

midpoint rule (the DLN method with θ = 1), conserving all quadratic Hamiltonians, has

been thoroughly studied and widely used in computational fluid dynamics [10,26–29,68,89].

Recently, the whole DLN family is applied to some time-dependent fluid model and shows

its outstanding performance in some specific examples [96, 121, 122]. In addition, the DLN

implementation has been simplified by the re-factorization process (adding time filters on

backward Euler method) for wide application [97]. Time adaptivity of the DLN method (by

the local truncation error criterion) is proposed to solve stiff differential systems for both

efficiency and accuracy [98].

4.2 Notations and preliminary results

In this section, we introduce some of the notations and results used in this chapter.

Recall that Ω ⊂ Rd (d = 2, 3) is the bounded domain of the CSM in Equation (171).

Banach space Lp(Ω) (p ≥ 1) contains all Lebesgue measurable function f such that |f |p is
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integrable. For r ∈ {0} ∪N, Sobolev space Wm,p(Ω) with norm ∥.∥m,p contains all functions

whose weak derivatives up to m-th belong to Lp(Ω). Thus Wm,p(Ω) is exactly Lp when

m = 0. We use Hm with norm ∥ · ∥m and semi-norm | · |m to denote the inner product space

Wm,2(Ω). ∥·∥ and (·, ·) denote the L2(Ω) norm and inner product, respectively. The solution

spaces X for the velocity and Q for the pressure are defined as:

X =
{
v ∈

(
L3(Ω)

)d
: ∇v ∈

(
L3(Ω)

)d×d
, v
∣∣
∂Ω

= 0
}
, Q =

{
q ∈ L2(Ω) :

∫
Ω

q dx = 0
}
,

and the divergence-free velocity space is

V =
{
v ∈ X : (q,∇ · v) = 0, ∀q ∈ Q

}
.

X ′ is the dual norm of X with the dual norm

∥f∥−1 = sup
0 ̸=v∈X

(f, v)

∥∇v∥
, ∀f ∈ X ′.

Definition 60. (Trilinear Form) Define the trilinear form b∗ : X ×X ×X → R as follows

b∗(u, v, w) :=
1

2
(u ·∇v, w)− 1

2
(u ·∇w, v), ∀u, v, w ∈ X.

Lemma 61. The nonlinear term b∗(·, ·, ·) is continuous on X×X×X (and thus on V×V×V )

which has the following skew-symmetry property,

b∗(u, v, w) = −b∗(u,w, v), b∗(u, v, v) = 0. (173)

As a consequence, we get

b∗(u, v, w) = (u ·∇v, w), ∀ u ∈ V and v, w ∈ X,

b∗(u, v, v) = 0, ∀ u, v ∈ X.

Proof. Proof of this lemma is standard, see p.114 of Girault and Raviart [65].

122



Lemma 62. For any u, v, w ∈ X

b∗(u, v, w) ≤ C(Ω)∥∇u∥∥∇v∥∥∇w∥,

b∗(u, v, w) ≤ C(Ω)∥u∥1/2∥∇u∥1/2∥∇v∥∥∇w∥. (174)

Proof. By Hölder’s inequality, Poincaré-Friedrichs’s inequality and Ladyzhenskaya’s in-

equality.

Next is a Discrete Grönwall Lemma, see [71, Lemma 5.1, p.369].

Lemma 63. Let ∆t, B be non-negative real numbers and {an}∞n=0, {bn}∞n=0, {cn}∞n=0, {dn}∞n=0

be non-negative sequences of real numbers such that

aℓ +∆t
ℓ∑

n=0

bn ≤ ∆t
ℓ∑

n=0

dnan +∆t
ℓ∑

n=0

cn +B, ∀ℓ ∈ N,

and ∆tdn < 1 for all n, then

aℓ +∆t
ℓ∑

n=0

bn ≤ exp
(
∆t

ℓ∑
n=0

dn
1−∆tdn

)(
∆t

ℓ∑
n=0

cn +B
)
, ∀ℓ ∈ N.

Proof. See [71, p.369].

Lemma 64. (Strong Monotonicity (SM) and Local Lipschitz Continuity (LLC))

There exists C1, C2 > 0 such that for all u, v, w ∈ W 1,3(Ω),

(SM) (|∇u|∇u−|∇w|∇w,∇(u− w))≥C1∥∇(u− w)∥30,3, (175)

(LLC) (|∇u|∇u−|∇w|∇w,∇v)≤C2

(
max{∥∇u∥0,3, ∥∇w∥0,3}

)
∥∇(u− w)∥0,3∥∇v∥0,3.

(176)

Proof. We refer [55,81,99] for proof.
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Let Th be the edge-to-edge triangulation of the domain Ω with diameter h > 0. Xh ⊂ X

and Qh ⊂ Q are certain finite element spaces of velocity and pressure respectively. The

divergence-free subspace of Xh is

V h :=
{
vh ∈ Xh : (ph,∇ · vh) = 0, ∀ph ∈ Qh

}
.

Given (w, q) ∈ X ×Q, the finite element pair (Xh, Qh) satisfies the approximation theorem

(See [24,38]): for any r, s ∈ {0} ∪ N and ℓ ∈ {0, 1},

inf
vh∈Xh

∥w − vh∥ℓ ≤ Chr+ℓ−1∥w∥r+1, for u ∈ (Hr+1)d ∩X,

inf
ph∈Qh

∥q − ph∥ ≤ Chs+1∥q∥s+1, for q ∈ Hs+1 ∩Q, (177)

where r and s are highest degree of polynomials for Xh and Qh respectively. We need the

Lp − L2-type inverse inequality [99].

Theorem 65. Let Θ be the minimum angle in the triangulation of domain Ω ⊂ Rd (d = 2, 3)

and Xh be the finite element space with highest polynomial degree r. For any vh ∈ Xh and

2 ≤ p <∞, there is a constant C = C(Θ, p, r) > 0 such that

∥∇hvh∥0,p ≤ Ch
d
2
( 2−p

p
)∥∇hvh∥, (178)

where ∇h is the element-wise defined gradient operator.

Proof. See [99, p.349-350] for proof.

We assume that (Xh, Qh) satisfies the discrete inf-sup condition:

inf
ph∈Qh

sup
vh∈Xh

(ph,∇ · vh)
∥ph∥∥∇vh∥

≥ C > 0,

where C > 0 is some constant independent of h. We define the Stokes projection Π : V ×Q→

V h ×Qh as follows: given the pair (w, q) ∈ V ×Q, the Stokes projection Π(w, q) =
(
W ,Q

)
satisfies

ν(∇w,∇vh)− (q,∇ · vh) = ν(∇W ,∇vh)− (Q,∇ · vh),

(ph,∇ ·W) = 0, ∀(vh, ph) ∈ Xh ×Qh.
(179)
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The above Stokes projection on V h × Qh is well defined since X ⊂ (H1
0 (Ω))

d if the domain

Ω is bounded. We need the following approximation of Stokes projection (see [64, 80] for

proof)

∥w −W∥ ≤ Ch
(
ν−1 inf

qh∈Qh
∥q − ph∥+ inf

vh∈Xh
|w − vh|1

)
,

∥w −W∥1 ≤ C
(
ν−1 inf

qh∈Qh
∥q − ph∥+ inf

vh∈Xh
|w − vh|1

)
.

(180)

4.3 The variable step DLN method for CSM

We denote w(tn) by wn and q(tn) by qn in the CSM in (171). wh
n ∈ Xh and qhn ∈ Qh

represent the DLN solutions of wn and qn respectively. For convenience, we denote

tn,β =
2∑

ℓ=0

β
(n)
ℓ tn−1+ℓ, wn,β =

2∑
ℓ=0

β
(n)
ℓ w(tn−1+ℓ), wh

n,β =
2∑

ℓ=0

β
(n)
ℓ wh

n−1+ℓ,

qn,β =
2∑

ℓ=0

β
(n)
ℓ q(tn−1+ℓ), qhn,β =

2∑
ℓ=0

β
(n)
ℓ qhn−1+ℓ, fn,β =

2∑
ℓ=0

β
(n)
ℓ f(tn−1+ℓ),

and represent the average time step α2kn − α0kn−1 by k̂n. The variational formulation of

the variable time-stepping DLN scheme (with grad-div stabilizer [33]) in (172) is: given

wh
n, w

h
n−1 ∈ Xh and qhn, q

h
n−1 ∈ Qh, find wh

n+1 and qhn+1 satisfying(α2w
h
n+1 + α1w

h
n + α0w

h
n−1

k̂n
, vh
)
+
C4

s δ
2

µ2

(α2∇wh
n+1 + α1∇wh

n + α0∇wh
n−1

k̂n
,∇vh

)
+ ν(∇wh

n,β,∇vh) + b∗(wh
n,β, w

h
n,β, v

h) + γ(∇ · wh
n,β,∇ · vh)− (qhn,β,∇ · vh)

+
(
(Csδ)

2|∇wh
n,β|∇wh

n,β,∇vh
)
= (fn,β, v

h), ∀vh ∈ Xh,

(∇ · wh
n,β, p

h) = 0, ∀ph ∈ Qh,

(181)

where constant γ > 0 needs to be decided by specific problems. Let w̃h
n denote the standard

(second order) linear extrapolation [95] of wh
n

w̃h
n = β

(n)
2

{(
1 +

kn
kn−1

)
wh

n −
(

kn
kn−1

)
wh

n−1

}
+ β

(n)
1 wh

n + β
(n)
0 wh

n−1.
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After applying the linearly implicit DLN scheme for time discretization, we get the following

discretization:(
α2w

h
n+1 + α1w

h
n + α0w

h
n−1

k̂n
, vh

)
+ ν(∇wh

n,β,∇vh)

+
C4

s δ
2

µ2

(
α2∇wh

n+1 + α1∇wh
n + α0∇wh

n−1

k̂n
,∇vh

)
+ b∗(w̃h

n, w
h
n,β, v

h) + γ(∇ · wh
n,β,∇ · vh)

− (qhn,β,∇ · vh) +
(
(Csδ)

2|∇w̃h
n|∇wh

n,β,∇vh
)
= (f(tn,β), v

h), ∀vh ∈ Xh,

(∇ · wh
n,β, p

h) = 0, ∀ph ∈ Qh.

(182)

4.4 Numerical Analysis

We define the discrete Bochner space with time grids {tn}Nn=0 on time interval [0, T ],

ℓ∞
(
0, N ; (Wm,p)d

)
:=
{
f(·, t) ∈ (Wm,p)d : ∥|f |∥∞,m,p <∞

}
,

ℓp1,β
(
0, N ; (Wm,p2)d

)
:=
{
f(·, t) ∈ (Wm,p2)d : ∥|f |∥p1,m,p2,β <∞

}
,

where the corresponding discrete norms are

∥|f |∥∞,m,p := max
0≤n≤N

∥f(·, tn)∥m,p, ∥|f |∥p1,m,p2,β :=
( N∑

n=1

(kn + kn−1)∥f(·, tn,β)∥p1m,p2

)1/p1
.

Definition 66. For 0 ≤ θ ≤ 1, define the semi-positive symmetric definite matrix G(θ) by

G(θ) =

1
4
(1 + θ)Id 0

0 1
4
(1− θ)Id

 .
We present two Lemmas about stability and consistency of the DLN method.
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Lemma 67. Let {yn}Nn=0 be any sequence in L
2(Ω). For any θ ∈ [0, 1] and n ∈ {1, 2, · · · , N−

1}, we have

( 2∑
ℓ=0

αℓyn−1+ℓ,

2∑
ℓ=0

β
(n)
ℓ yn−1+ℓ

)
=

∥∥∥∥∥∥yn+1

yn

∥∥∥∥∥∥
G(θ)

−

∥∥∥∥∥∥ yn

yn−1

∥∥∥∥∥∥
G(θ)

+
∥∥∥ 2∑

ℓ=0

λ
(n)
ℓ yn−1+ℓ

∥∥∥2, (183)

where the ∥ · ∥G(θ)-norm is∥∥∥∥∥∥uv
∥∥∥∥∥∥
G(θ)

=
1

4
(1 + θ)∥u∥2 + 1

4
(1− θ)∥v∥2, ∀u, v ∈ L2(Ω), (184)

and the coefficients {λ(n)ℓ }2ℓ=0 are

λ
(n)
1 = − θ(1− θ2)√

2(1 + εnθ)
, λ

(n)
2 = −1− εn

2
λ
(n)
1 , λ

(n)
0 = −1 + εn

2
λ
(n)
1 . (185)

Proof. The proof of identity in (183) is just algebraic calculation.

Remark 68. If we replace L2(Ω) by Euclidian space Rd, the identity in (183) still holds and

implies G-stability of the DLN method. (See [44, p.2] for the definition of G-stability.)

Lemma 69. Let Y be any Banach space over R with norm ∥ · ∥Y , {tn}Nn=0 be time grids on

time interval [0, T ] and u be the mapping from [0, T ] to Y . We set

kmax = max
0≤n≤N−1

{kn},

and assume that the mapping u(t) is smooth enough about the variable t, then for any θ ∈

[0, 1],

∥∥∥ 2∑
ℓ=0

β
(n)
ℓ u(tn−1+ℓ)− u(tn,β)

∥∥∥2
Y
≤C(θ)k3max

∫ tn+1

tn−1

∥utt∥2Y dt,

∥∥∥ 1

k̂n

2∑
ℓ=0

αℓu(tn−1+ℓ)− ut(tn,β)
∥∥∥2
Y
≤C(θ)k3max

∫ tn+1

tn−1

∥uttt∥2Y dt. (186)

Proof. We use Taylor’s Theorem and expand u(tn+1), u(tn), u(tn−1) at tn,β. By Hölder’s

inequality, we obtain (186).
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4.4.1 Stability of the DLN scheme for the CSM

The DLN method is a one parameter family of A-stable, 2 step, G-stable methods (0 ≤

θ ≤ 1). It reduces to a one-step midpoint scheme if θ = 1. The important property of it is

G-stability matrix does not depend on the time step ratio but on θ in Lemma 67. In this

section, we prove the unconditional, long-time, variable time step energy-stability of (181)

by using the G-stability property (Lemma 67) of the method.

Theorem 70. The one-leg variable time step DLN scheme by (181) is unconditionally, long-

time stable, i.e. for any integer N > 1,

1+θ

4

(
∥wh

N∥2+
C4

sδ
2

µ2
∥∇wh

N∥2
)
+

1−θ
4

(
∥wh

N−1∥2+
C4

sδ
2

µ2
∥∇wh

N−1∥2
)

+
N−1∑
n=1

(∥∥ 2∑
ℓ=0

λ
(n)
ℓ wh

n−1+ℓ
∥∥2+C4

sδ
2

µ2

∥∥ 2∑
ℓ=0

λ
(n)
ℓ ∇wh

n−1+ℓ
∥∥2)+N−1∑

n=1

k̂n
(ν
2
∥∇wh

n,β∥2+γ∥∇·wh
n,β∥2
)

+
N−1∑
n=1

k̂n

∫
Ω

[
(Csδ)

2|∇wh
n,β|
]
|∇wh

n,β|2dx≤
C(θ)k4max

ν
∥ftt∥2L2(0,T ;X′)+

1

ν
∥|f |∥22,−1,2,β

+
1+θ

4

(
∥wh

1∥2+
C4

sδ
2

µ2
∥∇wh

1∥2
)
+

1−θ
4

(
∥wh

0∥2+
C4

sδ
2

µ2
∥∇wh

0∥2
)
.

(187)

Proof. We set vh = wh
n,β, p

h = qhn,β in (181). By Lemma 31 and identity (183) in Lemma 67,

we obtain( 2∑
ℓ=0

αℓw
h
n−1+ℓ, w

h
n,β

)
+
C4

s δ
2

µ2

( 2∑
ℓ=0

αℓ∇wh
n−1+ℓ,∇wh

n,β

)
+ γk̂n∥∇ · wh

n,β∥2

+k̂n

∫
Ω

(
ν + (Csδ)

2|∇wh
n,β|
)
|∇wh

n,β|2 dx = k̂n(fn,β, w
h
n,β) ≤ k̂n∥fn,β∥−1∥∇wh

n,β∥.

The G-stability relation (67) implies∥∥∥∥∥∥w
h
n+1

wh
n

∥∥∥∥∥∥
2

G(θ)

−

∥∥∥∥∥∥ w
h
n

wh
n−1

∥∥∥∥∥∥
2

G(θ)

+
∥∥∥ 2∑

ℓ=0

λ
(n)
ℓ wh

n−1+ℓ

∥∥∥2+k̂n ∫
Ω

(ν
2
+(Csδ)

2|∇wh
n,β|
)
|∇wh

n,β|2dx

+γk̂n∥∇ · wh
n,β∥2 +

C4
s δ

2

µ2

(∥∥∥∥∥∥∇w
h
n+1

∇wh
n

∥∥∥∥∥∥
2

G(θ)

−

∥∥∥∥∥∥ ∇wh
n

∇wh
n−1

∥∥∥∥∥∥
2

G(θ)

+
∥∥∥ 2∑

ℓ=0

λ
(n)
ℓ ∇wh

n−1+ℓ

∥∥∥2)

≤ k̂n
2ν

∥fn,β∥2−1.

(188)
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By triangle inequality and (186) in Lemma 69, we get,

k̂n
2ν

∥fn,β∥2−1 ≤
k̂n
ν
∥fn,β − f(tn,β)∥2−1 +

k̂n
ν
∥f(tn,β)∥2−1

≤C(θ)k
4
max

ν

∫ tn+1

tn−1

∥ftt∥2−1dt+
(kn + kn−1)

ν
∥f(tn,β)∥2−1.

Summing (188) over n from 1 to N − 1, we have desired result (187).

Remark 71. We identify the following quantities from the energy equality in (187):

1. Model kinetic energy,

EEN
N =

1 + θ

4

(
∥wh

N∥2 +
C4

s δ
2

µ2
∥∇wh

N∥2
)
+

1− θ

4

(
∥wh

N−1∥2 +
C4

s δ
2

µ2
∥∇wh

N−1∥2
)
.

2. Energy dissipation due to viscous force,

EVD
N = ν∥∇wh

N−1,β∥2.

3. Eddy viscosity dissipation,

EEVD
N =

∫
Ω

[
(Csδ)

2|∇wh
N−1,β|

]
|∇wh

N−1,β|2 dx.

4. Numerical dissipation,

END
N =

∥∥∥∥∑2
l=0 λ

N−1
l wh

N−2+l√
k̂N−1

∥∥∥∥2 + C4
s δ

2

µ2

∥∥∥∥∑2
l=0 λ

N−1
l ∇wh

N−2+l√
k̂N−1

∥∥∥∥2.
END
N vanishes if and only if θ ∈ {0, 1}.

5. The model dissipation originating from the CSM in (171),

EMD
N =

C4
s δ

2

k̂N−1µ2

(∥∥∥∥∥∥∇w
h
N

∇wh
N

∥∥∥∥∥∥
2

G(θ)

−

∥∥∥∥∥∥∇wN−1

∇wN−1

∥∥∥∥∥∥
2

G(θ)

+
∥∥∥ 2∑

ℓ=0

λ
(N−1)
ℓ ∇wh

N−2+ℓ

∥∥∥2)
+

∫
Ω

[
(Csδ)

2|∇wh
N−1,β|

]
|∇wh

N−1,β|2dx.

Model dissipation in this chapter can be positive or negative. When it is positive, it

aggregates energy from mean to fluctuations. And when it is negative, energy is being

transferred from fluctuations back to mean.
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Remark 72. The one-leg linearly implicit DLN method by (182) is unconditionally long-time

stable, i.e. for any integer N > 1,

1+θ

4

(
∥wh

N∥2+
C4

sδ
2

µ2
∥∇wh

N∥2
)
+

1−θ
4

(
∥wh

N−1∥2+
C4

sδ
2

µ2
∥∇wh

N−1∥2
)

+
N−1∑
n=1

(∥∥ 2∑
ℓ=0

λ
(n)
ℓ wh

n−1+ℓ
∥∥2+C4

sδ
2

µ2

∥∥ 2∑
ℓ=0

λ
(n)
ℓ ∇wh

n−1+ℓ
∥∥2)+N−1∑

n=1

k̂n
(ν
2
∥∇wh

n,β∥2+γ∥∇·wh
n,β∥2
)

+
N−1∑
n=1

k̂n

∫
Ω

[
(Csδ)

2|w̃h
n,β|
]
|∇wh

n,β|2dx≤
C(θ)k4max

ν
∥ftt∥2L2(0,T ;X′)+

1

ν
∥|f |∥22,−1,β

+
1+θ

4

(
∥wh

1∥2+
C4

sδ
2

µ2
∥∇wh

1∥2
)
+

1−θ
4

(
∥wh

0∥2+
C4

sδ
2

µ2
∥∇wh

0∥2
)
.

(189)

4.4.2 Error Analysis of the DLN Scheme for the CSM

In this section, we analyze the error between the semi-discrete solution and the fully

discrete solution to (171) in Theorem 73 under the following time step condition 1:

C(θ)

ν3
(
k̂n+1∥∇wn+1,β∥4 + k̂n∥∇wn,β∥4 + k̂n−1∥∇wn−1,β∥4

)
< 1, ∀n. (190)

Theorem 73. Let (w(t), q(t)) be sufficiently smooth, strong solution of the CSM. We assume

that the velocity w ∈ X, pressure q ∈ Q, body force f of the CSM in (171) satisfy

w ∈ ℓ2,β(0, N ; (Hr+1)d) ∩ ℓ4,β(0, N ; (Hr+1)d) ∩ ℓ3,β(0, N ; (Hr+1)d) ∩ ℓ3,β(0, N ; (W 1,3)d),

wt ∈ L2
(
0, T ; (Hr+1)d

)
, wttt ∈ L2

(
0, T ; (H1)d

)
,

wtt ∈ L2
(
0, T ; (Hr+1)d

)
∩ L3

(
0, T ; (W 1,3)d

)
∩ L3

(
0, T ; (Hr+1)d

)
∩ L4

(
0, T ; (Hr+1)d

)
,

q ∈ ℓ2,β(0, N ;Hs+1), ftt ∈ L2(0, T ;X ′)

Under the time step condition in (190), the variable time-stepping DLN scheme (with θ ∈

[0, 1]) for the CSM in (181) satisfies: for r, s,∈ {0} ∪ N and any integer N ≥ 2

max
0≤n≤N

∥wh
n − wn∥+ C(θ)

√
ν
(N−1∑

n=1

k̂n∥∇(wh
n,β − wn,β)∥2

)1/2
≤ O

(
k2max, h

r, hs+1, δh
3r
4
− d

8 , δk3/2max

)
.

(191)

1To our best knowledge, time step condition like ∆t < O(ν−3) cannot be avoided for fully-implicit schemes
in error analysis.
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Remark 74. Since δ has the same dimension as h, the spatial convergence rate in (191) is

min{r, s+1} as long as the highest polynomial degree for velocity r ∈ {1, 2}. Thus the DLN

algorithm in (172) is second-order accurate in both time and space if we choose Taylor-Hood

P2− P1 finite element space and set the time step ∆t ≈ h.

Proof. We start with the CSM at time tn,β (1 ≤ n ≤ N − 1). For any vh ∈ V h, the

variational formulation becomes

(wt(tn,β), v
h) +

C4
s δ

2

µ2
(∇wt(tn,β),∇vh) + b∗

(
w(tn,β), w(tn,β), v

h
)
− (q(tn,β),∇ · vh)

+ν(∇w(tn,β),∇vh) +
(
(Csδ)

2|∇w(tn,β)|∇w(tn,β),∇vh
)
=
(
f(tn,β), v

h
)
, ∀vh ∈ V h.

Equivalently,(α2wn+1 + α1wn + α0wn−1

k̂n
, vh
)
+
C4

s δ
2

µ2

(α2∇wn+1 + α1∇wn + α0∇wn−1

k̂n
,∇vh

)
+ b∗(wn,β, wn,β, v

h)−
(
q(tn,β),∇ · vh

)
+ ν(∇wn,β,∇vh) + γ(∇ · wn,β,∇ · vh)

+
(
(Csδ)

2|∇wn,β|∇wn,β,∇vh
)
= (fn,β, v

h) + τn(v
h),

(192)

where the truncation error is

τn(v
h) =

(α2wn+1 + α1wn + α0wn−1

k̂n
− wt(tn,β), v

h
)
+ ν
(
∇
(
wn,β − w(tn,β)

)
,∇vh

)
+
C4

s δ
2

µ2

(α2∇wn+1 + α1∇wn + α0∇wn−1

k̂n
−∇wt(tn,β),∇vh

)
+ b∗(wn,β, wn,β, v

h)− b∗(w(tn,β), w(tn,β), v
h) +

(
f(tn,β)− fn,β, v

h
)

+
(
(Csδ)

2
(
|∇wn,β|∇wn,β − |∇w(tn,β)|∇w(tn,β)

)
,∇vh

)
.

Let Wn be velocity component of Stokes projection of (wn, 0) onto V
h ×Qh. We set

en = wn − wh
n, ηn = wn −Wn, ϕh

n = wh
n −Wn, (193)

en,β =
2∑

ℓ=0

β
(n)
ℓ en−1+ℓ, ηn,β =

2∑
ℓ=0

β
(n)
ℓ ηn−1+ℓ, ϕh

n,β =
2∑

ℓ=0

β
(n)
ℓ ϕh

n−1+ℓ.
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Then the velocity error en can be decomposed as en = ηn−ϕh
n. We subtract the DLN scheme

in (181) from (192) to get the following,(α2en+1 + α1en + α0en−1

k̂n
, vh
)
+
C4

s δ
2

µ2

(α2∇en+1 + α1∇en + α0∇en−1

k̂n
,∇vh

)
+b∗(wn,β, wn,β, v

h)− b∗(wh
n,β, w

h
n,β, v

h) + ν(∇en,β,∇vh) + γ(∇ · en,β,∇ · vh)

+
(
(Csδ)

2(|∇wn,β|∇wn,β − |∇wh
n,β|∇wh

n,β),∇vh
)
=
(
q(tn,β),∇ · vh

)
+ τn(v

h), ∀vh ∈ V h.

Notice that,

b∗(wn,β, wn,β, v
h)− b∗(wh

n,β, w
h
n,β, v

h)

=b∗(wn,β, wn,β, v
h)− b∗(wh

n,β, wn,β, v
h) + b∗(wh

n,β, wn,β, v
h)− b∗(wh

n,β, w
h
n,β, v

h),

=b∗(en,β, wn,β, v
h) + b∗(wh

n,β, en,β, v
h),

and ∫
Ω

(|∇wn,β|∇wn,β − |∇wh
n,β|∇wh

n,β) : ∇vhdx

=

∫
Ω

(|∇wn,β|∇wn,β − |∇Wn,β|∇Wn,β + |∇Wn,β|∇Wn,β − |∇wh
n,β|∇wh

n,β) : ∇vhdx.

Hence,(α2ϕ
h
n+1 + α1ϕ

h
n + α0ϕ

h
n−1

k̂n
, vh
)
+
C4

s δ
2

µ2

(α2∇ϕh
n+1 + α1∇ϕh

n + α0∇ϕh
n−1

k̂n
,∇vh

)
− b∗(en,β, wn,β, v

h)− b∗(wh
n,β, en,β, v

h) + ν(∇ϕh
n,β,∇vh) + γ(∇ · ϕh

n,β,∇ · vh)

+ (Csδ)
2

∫
Ω

(|∇wh
n,β|∇wh

n,β − |∇Wn,β|∇Wn,β) : (∇vh)dx

=
(α2ηn+1 + α1ηn + α0ηn−1

k̂n
, vh
)
+
C4

s δ
2

µ2

(α2∇ηn+1 + α1∇ηn + α0∇ηn−1

k̂n
,∇vh

)
+ (Csδ)

2

∫
Ω

(|∇wn,β|∇wn,β − |∇Wn,β|∇Wn,β) : ∇vhdx

+ ν(∇ηn,β,∇vh) + γ(∇ · ηn,β,∇ · vh)−
(
q(tn,β),∇ · vh

)
− τn(v

h).

(194)
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We set vh = ϕh
n,β in (194) and use (183) in Lemma 67,∥∥∥∥∥∥ϕ

h
n+1

ϕh
n

∥∥∥∥∥∥
2

G(θ)

−

∥∥∥∥∥∥ ϕ
h
n

ϕh
n−1

∥∥∥∥∥∥
2

G(θ)

+
∥∥∥ 2∑

ℓ=0

λ
(n)
ℓ ϕh

n−1+ℓ

∥∥∥2 + νk̂n∥∇ϕh
n,β∥2 + γk̂n∥∇ · ϕh

n,β∥2

+
C4

s δ
2

µ2

(∥∥∥∥∥∥∇ϕ
h
n+1

∇ϕh
n

∥∥∥∥∥∥
2

G(θ)

−

∥∥∥∥∥∥ ∇ϕh
n

∇ϕh
n−1

∥∥∥∥∥∥
2

G(θ)

+
∥∥∥ 2∑

ℓ=0

λ
(n)
ℓ ∇ϕh

n−1+ℓ

∥∥∥2) (195)

+(Csδ)
2k̂n

∫
Ω

(|∇wh
n,β|∇wh

n,β−|∇Wn,β|∇Wn,β) : (∇ϕh
n,β)dx

=
( 2∑

ℓ=0

αℓηn−1+ℓ, ϕ
h
n,β

)
+
C4

s δ
2

µ2

( 2∑
ℓ=0

αℓ∇ηn−1+ℓ,∇ϕh
n,β

)
+ νk̂n(∇ηn,β,∇ϕh

n,β)

+ γk̂n(∇ · ηn,β,∇ · ϕh
n,β) + k̂nb

∗(en,β, wn,β, ϕ
h
n,β) + k̂nb

∗(wh
n,β, en,β, ϕ

h
n,β)

+(Csδ)
2̂kn

∫
Ω

(|∇wn,β|∇wn,β−|∇Wn,β|∇Wn,β) :∇ϕh
n,βdx−k̂n

(
q(tn,β),∇·ϕh

n,β

)
−k̂nτn(ϕh

n,β).

By strong monotonicity property (175) in Lemma 64,

(Csδ)
2̂kn

∫
Ω

(|∇wh
n,β|∇wh

n,β−|∇Wn,β|∇Wn,β) : (∇ϕh
n,β)dx≥C1(Csδ)

2k̂n∥∇ϕh
n,β∥30,3. (196)

By Cauchy Schwarz inequality, Poincaré inequality and Young’s inequality, we obtain

( 2∑
ℓ=0

αℓηn−1+ℓ, ϕ
h
n,β

)
≤ 1

νk̂n

∥∥∥ 2∑
ℓ=0

αℓηn−1+ℓ

∥∥∥2 + νk̂n
32

∥∇ϕh
n,β∥2 (197)

We use the approximation of Stokes projection in (180) and Hölder’s inequality

∥∥∥ 2∑
ℓ=0

αℓηn−1+ℓ

∥∥∥2 ≤Ch2r+2
∥∥∥ 2∑

ℓ=0

αℓwn−1+ℓ

∥∥∥2
r+1

(198)

≤C(θ)h2r+2
(
∥wn+1 − wn∥2r+1 + ∥wn+1 − wn−1∥2r+1

)
≤C(θ)h2r+2(kn + kn−1)

∫ tn+1

tn−1

∥wt∥2r+1dt.

By (198), (197) becomes

( 2∑
ℓ=0

αℓηn−1+ℓ, ϕ
h
n,β

)
≤ C(θ)h2r+2

∫ tn+1

tn−1

∥wt∥2r+1dt+
νk̂n
32

∥∇ϕh
n,β∥2. (199)
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Similarly, we have

C4
s δ

2

µ2

( 2∑
ℓ=0

αℓ∇ηn−1+ℓ,∇ϕh
n,β

)
≤C(θ)h2r

(C4
s δ

2

µ2

)2 ∫ tn+1

tn−1

∥wt∥2r+1dt+
νk̂n
32

∥∇ϕh
n,β∥2. (200)

By the definition of Stokes projection in (179), (∇ηn,β,∇ϕh
n,β) = 0. By Cauchy Schwarz

inequality, Poincaré inequality and Young’s inequality,

γk̂n(∇ · ηn,β,∇ · ϕh
n,β) ≤ γdk̂n∥∇ηn,β∥∥∇ϕh

n,β∥ ≤ Cγ2k̂n
ν

∥∇ηn,β∥2 +
νk̂n
32

∥∇ϕh
n,β∥2. (201)

By the approximation of Stokes projection in (180), triangle inequality and (186) in Lemma

69

∥∇ηn,β∥2 ≤Ch2r
(
∥wn,β − w(tn,β)∥2r+1 + ∥w(tn,β)∥2r+1

)
(202)

≤Ch2r
(
k3max

∫ tn+1

tn−1

∥wtt∥2r+1dt+ ∥w(tn,β)∥2r+1

)
.

Hence (201) becomes

γk̂n(∇ · ηn,β,∇ · ϕh
n,β) (203)

≤Cγ
2h2r

ν

(
k4max

∫ tn+1

tn−1

∥wtt∥2r+1dt+ (kn + kn−1)∥w(tn,β)∥2r+1

)
+
νk̂n
32

∥∇ϕh
n,β∥2.

By (174) in Lemma 62, Young’s inequality and approximation of Stokes projection in 177

k̂nb
∗(en,β, wn,β, ϕ

h
n,β) (204)

=k̂nb
∗(ηn,β, wn,β, ϕ

h
n,β)− k̂nb

∗(ϕh
n,β, wn,β, ϕ

h
n,β)

≤Ck̂n∥∇ηn,β∥∥∇wn,β∥∥∇ϕh
n,β∥+ Ck̂n∥ϕh

n,β∥1/2∥∇wn,β∥∥∇ϕh
n,β∥3/2

≤Ck̂n
ν

∥∇ηn,β∥2∥∇wn,β∥2 +
Ck̂n
ν3

∥∇wn,β∥4∥ϕh
n,β∥2 +

νk̂n
32

∥∇ϕh
n,β∥2

≤Ck̂nh
2r

ν

(
∥wn,β∥4r+1 + ∥∇wn,β∥4

)
+
Ck̂n
ν3

∥∇wn,β∥4∥ϕh
n,β∥2 +

νk̂n
32

∥∇ϕh
n,β∥2

We use triangle inequality, (186) in Lemma 69 and Hölder’s inequality

∥wn,β∥4r+1 ≤C
(
∥wn,β − w(tn,β)∥4r+1 + ∥w(tn,β)∥4r+1

)
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≤C
[(
Ck3max

∫ tn+1

tn−1

1 · ∥wtt∥2r+1dt
)2

+ ∥w(tn,β)∥4r+1

]
≤C(θ)

(
k7max

∫ tn+1

tn−1

∥wtt∥4r+1dt+ ∥w(tn,β)∥4r+1

)
,

∥∇wn,β∥4 ≤C(θ)
(
k7max

∫ tn+1

tn−1

∥∇wtt∥4dt+ ∥∇w(tn,β)∥4
)

Thus (204) becomes

k̂nb
∗(en,β, wn,β, ϕ

h
n,β)

≤C(θ)h
2r

ν

(
k8max

∫ tn+1

tn−1

∥wtt∥4r+1dt+ k8max

∫ tn+1

tn−1

∥∇wtt∥4dt

+ (kn + kn−1)∥w(tn,β)∥4r+1 + (kn + kn−1)∥∇w(tn,β)∥4
)

+
Ck̂n
ν3

∥∇wn,β∥4∥ϕh
n,β∥2 +

νk̂n
32

∥∇ϕh
n,β∥2.

(205)

By (173) and approximation of Stokes projection in (180)

k̂nb
∗(wh

n,β, en,β, ϕ
h
n,β) ≤

Ck̂n
ν

∥∇wh
n,β∥2∥∇ηn,β∥2 +

νk̂n
32

∥∇ϕh
n,β∥2

≤Ch
rk̂n
ν

∥|w|∥2∞,r+1,2∥∇wh
n,β∥2 +

νk̂n
32

∥∇ϕh
n,β∥2. (206)

By Local Lipschitz continuity (176) in Lemma 64

(Csδ)
2̂kn

∫
Ω

(|∇wn,β|∇wn,β−|∇Wn,β|∇Wn,β) : (∇ϕh
n,β)dx (207)

≤(Csδ)
2k̂nC2Rn∥∇ηn,β∥0,3∥∇ϕh

n,β∥0,3

≤C(Csδ)
2C

3/2
2 k̂n√

C1

R3/2
n ∥∇ηn,β∥3/20,3 +

C1(Csδ)
2k̂n

3
∥∇ϕh

n,β∥30,3,

where Rn = max{∥∇wn,β∥0,3, ∥∇Wn,β∥0,3}. By triangle inequality,

Rn ≤ max
{
∥∇wn,β∥0,3,

∥∥∇(Wn,β − wn,β

)∥∥
0,3

+ ∥∇wn,β∥0,3
}
= ∥∇ηn,β∥0,3 + ∥∇wn,β∥0,3.

We use (178) in Theorem 65, triangle inequality and approximation theorem of interpolation

in (177)

∥∇ηn,β∥0,3 ≤ Ch−d/6∥∇ηn,β∥ ≤ Chr−d/6∥wn,β∥r+1
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By the fact: for any a, b, c ∈ R with c > 1,

(|a|+ |b|)c ≤ 2c−1(|a|c + |b|c), (208)

we have

R3/2
n ∥∇ηn,β∥3/20,3 ≤C

(
∥∇ηn,β∥30,3 + ∥∇ηn,β∥3/20,3 ∥∇wn,β∥3/20,3

)
(209)

≤Ch3r−d/2∥wn,β∥3r+1 + Ch3/2r−d/4∥wn,β∥3/2r+1∥∇wn,β∥3/20,3

≤Ch3r−d/2∥wn,β∥3r+1 + Ch3/2r−d/4
(
∥wn,β∥3r+1 + ∥∇wn,β∥30,3

)
.

By triangle inequality, the fact in (208), (186) in Lemma 69 and Hölder’s inequality,

∥wn,β∥3r+1 ≤C∥wn,β − w(tn,β)∥3r+1 + C∥w(tn,β)∥3r+1 (210)

≤C
(
k3max

∫ tn+1

tn−1

∥wtt∥2r+1dt
)3/2

+ C∥w(tn,β)∥3r+1

≤Ck5max

∫ tn+1

tn−1

∥wtt∥3r+1dt+ C∥w(tn,β)∥3r+1.

By (209) and (210), (207) becomes

(Csδ)
2̂kn

∫
Ω

(|∇wn,β|∇wn,β−|∇Wn,β|∇Wn,β) : (∇ϕh
n,β)dx (211)

≤C(Csδ)
2C

3/2
2√

C1

[
(1 + h

3r
2
− d

4 )h
3r
2
− d

4

(
k6max

∫ tn+1

tn−1

∥wtt∥3r+1dt+ (kn + kn−1)∥w(tn,β)∥3r+1

)
+ h

3r
2
− d

4

(
k6max

∫ tn+1

tn−1

∥∇wtt∥30,3dt+ (kn + kn−1)∥∇w(tn,β)∥30,3
)]
.

We choose ph to be L2-projection of q(tn,β) onto Q
h, then

k̂n
(
q(tn,β),∇·ϕh

n,β

)
= k̂n

(
q(tn,β)−ph,∇·ϕh

n,β

)
≤
√
dk̂n∥q(tn,β)−ph∥∥∇ϕh

n,β∥. (212)

By Young’s inequality and approximation of pressure in (177), (212) becomes

k̂n
(
q(tn,β),∇·ϕh

n,β

)
≤ Ch2s+2

ν
(kn + kn−1)∥q(tn,β)∥2s+1 +

νk̂n
32

∥∇ϕh
n,β∥2 (213)
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Now we deal k̂nτn(ϕ
h
n,β): by Cauchy Schwarz inequality, Poincaré inequality and (186) in

Lemma 69, the first three terms become

k̂n

(α2wn+1 + α1wn + α0wn−1

k̂n
− wt(tn,β), ϕ

h
n,β

)
≤Ck̂n

∥∥∥α2wn+1 + α1wn + α0wn−1

k̂n
− wt(tn,β)

∥∥∥∥∇ϕh
n,β∥

≤Ck̂n
ν

∥∥∥α2wn+1 + α1wn + α0wn−1

k̂n
− wt(tn,β)

∥∥∥2 + νk̂n
32

∥∇ϕh
n,β∥2

≤C(θ)k
4
max

ν

∫ tn+1

tn−1

∥wttt∥2dt+
νk̂n
32

∥∇ϕh
n,β∥2, (214)

νk̂n
(
∇(wn,β − w(tn,β)),∇ϕh

n,β

)
≤Ck̂n

ν

∥∥∇wn,β −∇w(tn,β)
∥∥+ νk̂n

32
∥∇ϕh

n,β∥2

≤Ck
4
max

ν

∫ tn+1

tn−1

∥∇wtt∥2dt+
νk̂n
32

∥∇ϕh
n,β∥2, (215)

and

C4
s δ

2k̂n
µ2

(α2∇wn+1 + α1∇wn + α0∇wn−1

k̂n
−∇wt(tn,β),∇ϕh

n,β

)
≤Ck̂n

ν

(C4
s δ

2

µ2

)2∥∥∥∇(α2wn+1 + α1wn + α0wn−1

k̂n
− wt(tn,β)

)∥∥∥2 + νk̂n
32

∥∇ϕh
n,β∥2

≤C(θ)k
4
max

ν

(C4
s δ

2

µ2

)2 ∫ tn+1

tn−1

∥∇wttt∥2dt+
νk̂n
32

∥∇ϕh
n,β∥2. (216)

By (174) in Lemma 62 and triangle inequality, two non-linear terms become

k̂nb
∗(wn,β, wn,β, ϕ

h
n,β

)
− k̂nb

∗(w(tn,β), w(tn,β), ϕh
n,β

)
=k̂nb

∗(wn,β − w(tn,β), wn,β, ϕ
h
n,β

)
+ k̂nb

∗(w(tn,β), wn,β − w(tn,β), ϕ
h
n,β

)
≤Ck̂n

ν

∥∥∇(wn,β − w(tn,β))
∥∥2(∥∇wn,β∥2 + ∥∇w(tn,β)∥2

)
+
νk̂n
32

∥∇ϕh
n,β∥2

≤Ck̂n
ν

∥∥∇(wn,β − w(tn,β))
∥∥2(∥∥∇(wn,β − w(tn,β))

∥∥2 + 2∥∇w(tn,β)∥2
)
+
νk̂n
32

∥∇ϕh
n,β∥2.
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By (186) in Lemma 69 and Hölder’s inequality,

∥∥∇(wn,β − w(tn,β))
∥∥4 ≤C(θ)k7

max

∫ tn+1

tn−1

∥∇wtt∥4dt.

∥∥∇(wn,β − w(tn,β))
∥∥2∥∇w(tn,β)∥2 ≤C(θ)k3max

∫ tn+1

tn−1

∥∇w(tn,β)∥2∥∇wtt∥2dt

≤C(θ)k3
max

∫ tn+1

tn−1

(
∥∇w(tn,β)∥4 + ∥∇wtt∥4

)
dt

≤C(θ)k3
max

∫ tn+1

tn−1

∥∇wtt∥4dt+ C(θ)k4
max

∥∇w(tn,β)∥4.

k̂nb
∗(wn,β, wn,β, ϕ

h
n,β

)
− k̂nb

∗(w(tn,β), w(tn,β), ϕh
n,β

)
(217)

≤
C(θ)k4

max

ν

[(
1 + k4

max

) ∫ tn+1

tn−1

∥∇wtt∥4dt+ (kn + kn−1)∥∇w(tn,β)∥4
]
+
νk̂n
32

∥∇ϕh
n,β∥2.

k̂n
(
f(tn,β)− fn,β, ϕ

h
n,β

)
≤Ck̂n

ν
∥f(tn,β)− fn,β∥2−1 +

νk̂n
32

∥∇ϕh
n,β∥2

≤Ck̂n
ν
k3

max

∫ tn+1

tn−1

∥ftt∥2−1dt+
νk̂n
32

∥∇ϕh
n,β∥2. (218)

By (176) in Lemma 64 and Young’s inequality,

k̂n

(
(Csδ)

2(|∇wn,β|∇wn,β − |∇w(tn,β)|∇w(tn,β)),∇ϕh
n,β

)
(219)

≤k̂n(Csδ)
2C2Sn

∥∥∇(wn,β − w(tn,β))
∥∥
0,3
∥∇ϕh

n,β∥0,3

≤C(Csδ)
2C

3/2
2 k̂n√

C1

S3/2
n

∥∥∇(wn,β − w(tn,β))
∥∥3/2
0,3

+
C1(Csδ)

2k̂n
4

∥∇ϕh
n,β∥30,3,

where Sn = max
{
∥∇wn,β∥0,3, ∥∇w(tn,β)∥0,3

}
. By (186) in Lemma 69 and Young’s inequality,

S3/2
n

∥∥∇(w(tn,β)− wn,β

)∥∥3/2
0,3

(220)

≤C
(∥∥∇(w(tn,β)− wn,β

)∥∥3
0,3

+
∥∥∇(w(tn,β)− wn,β

)∥∥3/2
0,3

∥∇wn,β∥3/20,3

)
≤C(θ)

(
k3max

∫ tn+1

tn−1

∥∇wtt∥20,3dt
)3/2

+ C(θ)
(
k3max

∫ tn+1

tn−1

∥∇wtt∥20,3dt
)3/4

∥∇wn,β∥3/20,3
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≤C(θ)k9/2max

(∫ tn+1

tn−1

∥∇wtt∥20,3dt
)3/2

+ C(θ)k3/2max

(∫ tn+1

tn−1

∥∇wtt∥20,3dt
)3/2

+ C(θ)k3max∥∇wn,β∥30,3

≤C(θ)k9/2max

(∫ tn+1

tn−1

∥∇wtt∥20,3dt
)3/2

+ C(θ)k3/2max

(∫ tn+1

tn−1

∥∇wtt∥20,3dt
)3/2

+ C(θ)k3max

(∥∥∇(w(tn,β)− wn,β

)∥∥3
0,3

+ ∥∇w(tn,β)∥30,3
)
.

≤C(θ)
(
k15/2max + k9/2max + k3/2max

)( ∫ tn+1

tn−1

∥∇wtt∥20,3dt
)3/2

+ C(θ)k3max∥∇w(tn,β)∥30,3.

By Hölder’s inequality,(∫ tn+1

tn−1

∥∇wtt∥20,3dt
)3/2

≤ Ck1/2max

∫ tn+1

tn−1

∥∇wtt∥30,3dt. (221)

By (220) and (221), (219) becomes

k̂n

(
(Csδ)

2(|∇wn,β|∇wn,β − |∇w(tn,β)|∇w(tn,β)),∇ϕh
n,β

)
(222)

≤C(θ)k
3
max(Csδ)

2C
3/2
2√

C1

[(
k6max + k3max + 1

) ∫ tn+1

tn−1

∥∇wtt∥30,3dt+ (kn + kn−1)∥∇w(tn,β)∥30,3
]
.

We combine (196), (199), (200), (203), (204), (206), (211), (213)-(218), (222) in (195) and

then sum (195) over n from 1 to N − 1 to obtain∥∥∥∥∥∥ ϕh
N

ϕh
N−1

∥∥∥∥∥∥
2

G(θ)

+
C4

s δ
2

µ2

∥∥∥∥∥∥ ∇ϕh
N

∇ϕh
N−1

∥∥∥∥∥∥
2

G(θ)

+
N−1∑
n=1

(∥∥∥ 2∑
ℓ=0

λ
(n)
ℓ ϕh

n−1+ℓ

∥∥∥2 + ∥∥∥ 2∑
ℓ=0

λ
(n)
ℓ ∇ϕh

n−1+ℓ

∥∥∥2)

+
N−1∑
n=1

ν

2
k̂n∥∇ϕh

n,β∥2 +
N−1∑
n=1

γk̂n∥∇ · ϕh
n,β∥2 +

N−1∑
n=1

C1(Csδ)
2k̂n∥∇ϕh

n,β∥30,3

≤
N−1∑
n=1

C(θ)k̂n∥∇wn,β∥4

ν3
(
∥ϕh

n+1∥2 + ∥ϕh
n∥2 + ∥ϕh

n−1∥2
)
+
Chr

ν2
∥|w|∥2∞,r+1,2

(N−1∑
n=1

νk̂n∥∇wh
n,β∥2

)

+ F (θ, kmax, h, δ) +

∥∥∥∥∥∥ϕ
h
1

ϕh
0

∥∥∥∥∥∥
2

G(θ)

+
C4

s δ
2

µ2

∥∥∥∥∥∥∇ϕ
h
1

∇ϕh
0

∥∥∥∥∥∥
2

G(θ)

,

(223)

where

F (θ, kmax, h, δ) = C(θ)h2r+2∥wt∥2L2(0,T ;Hr+1) + C(θ)
(C4

s δ
2

µ2

)2
h2r∥wt∥2L2(0,T ;Hr+1)
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+
Cγ2h2r

ν

(
k4max∥wtt∥2L2(0,T ;Hr+1) + ∥|w|∥22,r+1,2,β

)
+
C(θ)h2r

ν

(
k8max∥wtt∥4L4(0,T ;Hr+1) + k8max∥∇wtt∥4L4(0,T ;L2) + ∥|w|∥44,r+1,2,β

+ ∥|∇w|∥44,0,2,β
)

+
C(Csδ)

2C
3/2
2√

C1

[
(1 + h

3r
2
− d

4 )h
3r
2
− d

4

(
k6max∥wtt∥3L3(0,T ;Hr+1) + ∥|w|∥33,r+1,2,β

)
+ h

3r
2
− d

4

(
k6max∥∇wtt∥3L3(0,T ;L3) + ∥|∇w|∥33,0,3,β

)]
+
Ch2s+2

ν
∥|q|∥22,s+1,2,β +

C(θ)k4max

ν
∥wttt∥2L2(0,T ;L2) +

Ck4max

ν
∥∇wtt∥2L2(0,T ;L2)

+
C(θ)k4max

ν

(C4
s δ

2

µ2

)2
∥∇wttt∥2L2(0,T ;L2)

+
C(θ)k4

max

ν

[(
1 + k4

max

)
∥∇wtt∥4L4(0,T ;L2) + ∥|∇w|∥44,0,2,β

]
+
Ck4

max

ν
∥ftt∥2L2(0,T ;X′)

+
C(θ)k3max(Csδ)

2C
3/2
2√

C1

[(
k6max + k3max + 1

)
∥∇wtt∥3L3(0,T ;L3) + ∥|∇w|∥33,0,3,β

]
.

By (187) in Theorem 70,

N−1∑
n=1

νk̂n∥∇wh
n,β∥2 < C(θ).

We set

Dn =
C(θ)k̂n∥∇wn,β∥4

kmaxν3
, 1 ≤ n ≤ N − 1,

and

dn =



D1 n = 0

D1 +D2 n = 1

Dn−1 +Dn +Dn+1 2 ≤ n ≤ N − 2

DN−2 +DN−1 n = N − 1

DN−1 n = N

. (224)
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By the time step restriction in (190), we have kmaxdn < 1 for all n. Then we use the definition

of G(θ)-norm in (184) and apply Grönwall’s inequality in Lemma 63 to (223) (with dn defined

in (224) and ∆t = kmax)

∥ϕh
N∥2 + C(θ)

N−1∑
n=1

ν

2
k̂n∥∇ϕh

n,β∥2 (225)

≤ exp
(N−1∑

n=1

kmaxdn
1− kmaxdn

)[C(θ)hr
ν2

∥|w|∥2∞,r+1,2 + F (θ, kmax, h, δ)

+ C(θ)
(
∥ϕh

1∥2 + ∥ϕh
0∥
)
+
C(θ)C4

s δ
2

µ2

(
∥∇ϕh

1∥2 + ∥∇ϕh
0∥
)]
.

By triangle inequality and approximation of Stokes projection in (177), we have (191).

Remark 75. The Semi-implicit DLN algorithm has been applied to the Navier Stokes equa-

tion [118] and outperforms the corresponding fully implicit algorithm in two aspects: remov-

ing the time step restriction like (190) as well as avoiding the non-linear solver at each time

step. For error analysis of the semi-implicit DLN algorithm for CSM (182), the SM (175)

and LLC (176) conclusions should be adjusted and are left as open problems. To do so, one

can follow the work in [75,76] where a new linear extrapolation of the convecting velocity for

CNLE is proposed that ensures energetic stability without a time-step restriction.

4.5 Numerical Tests

In this section, we perform two numerical tests. In the first test, we show the numerical

error and the rate of convergence of the DLN scheme. In the second test, we show whether

DLN exhibits intermittent backscatter for both the constant time step and variable time

step. In both tests, we consider the DLN algorithm with three particular values of the

parameter θ = 2/3, 2/
√
5, 1. In order to minimize the error constant and maintain strong

stability qualities, the value θ = 2/3 was proposed in [47]. In [87, 88], the value θ = 2/
√
5

was suggested to guarantee the best stability at infinity, i.e. for this value the scheme has
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good performance in long-time simulation. In the case when θ = 1, the DLN method reduces

to the symplectic midpoint rule, having the smallest error constant [98] and conserving all

quadratic Hamiltonians. For test 2, we also consider θ = 0.95, 0.98 so that we can check

how the DLN scheme behaves near θ = 1.

4.5.1 A test with exact solution

(We choose the test problem from DeCaria, Layton, and McLaughlin [52]). The first

experiment tests the accuracy of the DLN algorithm and convergence rate of (182) with

constant time-step. It confirms the second-order convergence of the DLN method. The

following test has an exact solution for the 2D Navier Stokes problem. Let the domain be

Ω = (−1, 1)× (−1, 1). The exact solution is as follows:

u(x, y, t) = π sin t(sin 2πy sin2 πx,− sin 2πx sin2 πy).

p(x, y, t) = sin t cosπx sin πy.

This is inserted into the CSM and the body force f(x, t) is calculated. Taylor-Hood elements

(P2-P1) were used in this test for the spatial discretization. We simulate the test up to

T = 10. and take Cs = 0.1, µ = 0.4, δ is taken to be the shortest edge of all triangles. We

test the constant step DLN with θ = 2/3. We define the error for velocity and pressure to

be

ewn = w(tn)− wh
n, epn = p(tn)− phn.

Let k be the constant time step. We define two discrete norms for the errors as follows

∥|ew|∥∞,0 := max
0≤n≤N

∥ewn∥L2(Ω), ∥|ew|∥0,0 :=
( ∑

0≤n≤N

k∥ewn∥2L2(Ω)

)1/2
,

∥|ep|∥∞,0 := max
0≤n≤N

∥epn∥L2(Ω), ∥|ep|∥0,0 :=
( ∑

0≤n≤N

k∥epn∥2L2(Ω)

)1/2
.
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Time step k Mesh size h ∥|ew|∥∞,0 Rate ∥|∇ew|∥∞,0 Rate ∥|ep|∥∞,0 Rate

0.08 0.08571 6.0302 - 56.8481 - 10.8576 -

0.04 0.04221 0.0498844 6.9175 1.35745 5.3881 0.079143 7.1000

0.02 0.02095 0.0119835 2.0575 0.399758 1.7637 0.0192928 2.0364

0.01 0.01048 0.00297779 2.0087 0.10394 1.9434 0.00490525 1.9757

Table 9: Errors by ∥ · ∥∞,0-norm and Convergence Rate for the constant DLN with θ = 2/3.

Time step k Mesh size h ∥|ew|∥0,0 Rate ∥|∇ew|∥0,0 Rate ∥|ep|∥0,0 Rate

0.08 0.08571 7.8961 - 79.3971 - 12.3373 -

0.04 0.04221 0.107395 6.2001 3.06024 4.6974 0.143315 6.4277

0.02 0.02095 0.024972 2.1045 0.900864 1.7643 0.0345612 2.0520

0.01 0.01048 0.00617647 2.0155 0.234349 1.9427 0.00877951 1.9769

Table 10: Errors by ∥ · ∥0,0-norm and Convergence Rate for the constant DLN with θ = 2/3.

In this test, Section 4.5.1 and Section 4.5.1 show that for a true solution, we get the pre-

dicted rate of convergence. We also see the same behavior for θ = 2/
√
5, 1 (See Appendix).

This is also evident that the DLN allows larger time steps to get the desired accuracy.

4.5.2 Test2. Flow between offset cylinder

(We choose the test problem from Jiang and Layton [78, 2D Test Problem]). This flow

problem is tested to show whether or not the transfer of energy from fluctuations back to

means in the turbulent flow using the Corrected Smagorinksy Model (171) happens. The

domain is a disk with a smaller off-center obstacle inside. Let r1 = 1, r2 = 0.1, c = (c1, c2) =
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(1/2, 0), then the domain is given by

Ω = {(x, y) : x2 + y2 < r21 and (x− c1)
2 + (y − c2)

2 > r22}.

The flow is driven by a counterclockwise rotational body force

f(x, y, t) = (−4y ∗ (1− x2 − y2), 4x ∗ (1− x2 − y2))T ,

with no-slip boundary conditions on both circles. We discretize in space using Taylor-Hood

elements. There are 400 mesh points around the outer circle and 100 mesh points around the

inner circle. The flow is driven by a counterclockwise force (f=0 on the outer circle). Thus,

the flow rotates about the origin and interacts with the immersed circle. We start the initial

condition by solving the Stokes problem. We compute up to the final time Tfinal = 10. Take

Cs = 0.1, µ = 0.4, δ is taken to be the shortest edge of all triangles ≈ 0.0112927, Re=10,000.

For the DLN algorithm in (182), we compute the following quantities:

Model dissipation, EMD
N

=

∫
Ω

(C4
sδ

2

µ2

α2∇wh
N+α1∇wh

N−1+α0∇wh
N−2

k̂N−1

·∇wh
N−1,β+(Csδ)

2|∇w̃h
N−1,β||∇wh

N−1,β|2
)
dx.

Effect of new term from CSM, ECSMD
N

=

∫
Ω

(
C4

s δ
2

µ2

α2∇wh
N + α1∇wh

N−1 + α0∇wh
N−2

k̂N−1

·∇wh
N−1,β

)
dx.

Numerical dissipation, END
N =

∥∥∥∥∑2
l=0 λ

N−1
l wh

N−2+l√
k̂N−1

∥∥∥∥2 + C4
s δ

2

µ2

∥∥∥∥∑2
l=0 λ

N−1
l ∇wh

N−2+l√
k̂N−1

∥∥∥∥2.
Viscous dissipation, EVD

N = ν∥∇wh
N−1,β∥2.

Kinetic Energy, KE =
1

2
∥wh

N∥2.
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Figure 18: Constant time step DLN (182) with k = 0.001, Re = 10, 000, θ = 0.98, Cs =

0.1, µ = 0.4. We do not see backscatter in EMD
N .
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Figure 19: Constant time step DLN (182) with k = 0.001, Re = 10, 000, θ = 0.95, Cs =

0.1, µ = 0.4. We do not see backscatter in EMD
N .
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Figure 20: Constant time step DLN (182) with k = 0.001, Re = 10, 000, θ = 2/
√
5, Cs =

0.1, µ = 0.4. We do not see backscatter in EMD
N .
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Figure 21: Constant time step DLN (182) with k = 0.001, Re = 10, 000, θ = 2/3, Cs =

0.1, µ = 0.4. We do not see backscatter in EMD
N .

For constant time step

k = 0.001 and θ = 1,

we first run the test which reduces the method to a midpoint rule. We saw the results were

very close to the results in [137] (See Appendix). This indicates the accuracy of our imple-

mentation. However, it is unclear that the oscillations in the model dissipation are the effect
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of the new modeling term or normal ringing [28] which is seen in the standard Midpoint rule.

Hence, we need to investigate further. This suggests that approximation would be improved

with a bit of numerical dissipation in the method provided that numerical dissipation van-

ishes as k goes to 0 and it does not dominate the physical dissipation. Figure 18, Figure 19,

and Figure 20 look plausible since the solution seems quasi-periodic even though there is

very negligible backscatter in the model dissipation. We notice that numerical dissipation,

END
N is overwhelming the effect of new backscatter term, ECSMD

N . That’s why we do not see

much backscatter. In Figure 21, we see END
N is still hiding the effect of small negative values

in the ECSMD
N from the model dissipation, EMD

N . Hence, there is no predicted backscatter which

we believe is due to END
N being too big. There is a substantial difference between the DLN

algorithm for the Corrected Smagorinksy when θ = 1 and other values of θ. The only way

to tell which is correct is by adapting the time step to control the END
N . Since END

N is over-

whelming the effect of the new term, it emphasizes that the adaptivity based on dissipation

criteria is important. The minimum dissipation criteria by F. Capuano, B. Sanderse, E. M.

De Angelis, and G. Coppola [32] is to keep the ratio of numerical dissipation, END
N and the

viscous dissipation, EVD
N less than some tolerance, Tol for adapting the time step. Thus adapt

for

χ =

∣∣∣∣END
N

EVD
N

∣∣∣∣ < Tol.

The number of time steps to reach the final time is the indicator of how sensitive the DLN

method is. We fix the final time, T = 10, and report the number of time steps to reach there

in Section 4.5.2 for each value of θ. However, the code has maximum time step

kmax = 0.025

, minimum time step kmin = 0.001, and the initial time step k0 = 0.0001. That means even

if we use the adaptivity by doing dissipation criteria, there are very few times when the

criteria is not satisfied and we see spiking which is visible in Figure 22, Figure 23, Figure 24,
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Figure 25. This is the evidence of sensitivity of the CSM problem. To see the backscatter,

we set the Tol = 0.01 for θ = 0.98, we set the Tol = 0.05 for θ = 0.95, we set the

Tol = 0.15

for θ = 2√
5
. We started the test for all θ with Tol = 0.01 and gradually increased Tol when

we failed to see the backscatter in EMD
N . By increasing Tol, we are allowing more END

N . Hence

instead of seeing less backscatter, we see more backscatter. This is an anomaly for which we

do not have an explanation. It could be because increased tolerance led to larger time steps,

see Section 4.5.2. But in the case of θ = 2
3
for Tol = 0.15, Figure 25 looks plausible even

though we fail to see backscatter in EMD
N . Hence, when θ is smaller, there is more END

N and we

see evidence of backscatter in ECSMD
N , but it’s smaller than the END

N in the method. Next, we

check the effect of the new term in the model on Kinetic Energy (KE) in the flow for each

case. Bigger KE means less energy dissipation. When backscatter is happening, we notice

from Figure 26 that after a certain amount of time, the KE stabilizes or only varies within a

small range. This new term may be highly fluctuating, but it has an impact on KE. Since we

get one pattern for all the cases when backscatter in EMD
N is happening and another pattern

for all the cases when backscatter in EMD
N is not happening, we show one example for

θ = 0.95

in Figure 26.
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Figure 22: Variable Step DLN (182) with Tol = 0.01, Re = 10, 000, θ = 0.98, Cs = 0.1, µ =

0.4. We see backscatter in EMD
N .
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Figure 23: Variable Step DLN (182) with Tol = 0.05, Re = 10, 000, θ = 0.95, Cs = 0.1, µ =

0.4. We see backscatter in EMD
N .
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Figure 24: Variable Step DLN (182) with Tol = 0.15, Re = 10, 000, θ = 2√
5
, Cs = 0.1, µ =

0.4. We see backscatter in EMD
N .
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Figure 25: Variable Step DLN (182) with Tol = 0.15, Re = 10, 000, θ = 2
3
, Cs = 0.1, µ =

0.4. We do not see backscatter in EMD
N .
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Figure 26: Variable Step DLN (182) with Re = 10, 000, θ = 0.95, Cs = 0.1, µ = 0.4. The

left picture is for no backscatter and right picture is for backscatter.

θ Tol Total time steps

0.98 0.01 9575

0.95 0.01 6505

0.95 0.05 1604

2/
√
5 0.01 8988

2/
√
5 0.05 5680

2/
√
5 0.15 1973

2/3 0.01 9944

2/3 0.05 9575

2/3 0.15 7149

Table 11: Total time steps taken to reach T = 10 while using variable DLN for different

values of θ.
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In Section 4.5.2, for the highlighted values, we notice significant backscatter in MD.
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5.0 Conclusions and future perspectives

The first project in Chapter 2 presents a complete stability and error analysis of a

simulation tool for modeling the adsorption process for the constant and affine adsorption

cases. For the nonlinear, explicit adsorption, we proved stability analysis for the continuous,

semi-discrete, and fully discrete cases. For the nonlinear, explicit adsorption, we also proved

the error estimate in the semi-discrete case and the existence of a solution for the fully discrete

case. The error analysis for the nonlinear case in a fully discrete case is more involved and

is currently an open problem. Numerically, we showed that the midpoint method gives

second-order convergence for all adsorption cases. In the future, one can compare results

from a numerical simulation to experimental data. Besides, the next most important step in

developing this simulation tool is coupling the reactive transport problem with porous media

flow Implementing the variable time step methods is another direction that will allow time

adaptivity.

The second project in Chapter 3 demonstrates that the Smagorinsky Model could be

extended to non-equilibrium turbulence. In addition, we showed the statistical backscatter

without using negative turbulent viscosities. We analyze the stability of the model, unique-

ness of the model’s solution, modeling error, and numerical error. Since BE has numerical

diffusion while CNLE does not, we can observe backscatter from CNLE in the second nu-

merical test. We observe that the backscatter is sensitive to the time discretization scheme

in the CSM model.

In the Chapter 4, we analyzed the variable time-stepping DLN algorithm for the CSM.

We showed that the numerical solutions are unconditionally stable in energy over the long

term. We proved that the numerical velocity converges with second-order accuracy under

mild time step limits if the highest polynomial degrees satisfy r = 2 and s = 1, which is

verified by the first numerical test problem in Subsection 4.5.1. It’s clear that to get the

backscattering phenomenon not from the ringing property of the method, we need some
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dissipative methods and we need some control of numerical dissipation, END
N . We therefore

test in Subsection 4.5.2 by adapting the time step using minimum dissipation criteria. The

closer θ = 1, the closer the DLN method gets to be exactly conservative. If it is exactly

conservative, we do not need tight control over END
N . The further we go away from exactly

conservative, the tighter control we need over END
N to see what seems to be true. In the future,

error analysis for a semi-implicit DLN algorithm for CSM to avoid time restriction could be

proven since it’s an important open problem. Furthermore, in 3D, storage can be an issue

and hence analysis of the reduced storage penalty method is also an interesting problem.
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Appendix Additional tables and figures related to Chapter 4

In this appendix, we provide additional some additional tables and figures related to
Chapter 4.

Time step k Mesh size h ∥|ew|∥∞,0 Rate ∥|∇ew|∥∞,0 Rate ∥|ep|∥∞,0 Rate

0.08 0.08571 6.1375 - 59.5951 - 10.2725 -

0.04 0.04221 0.0499412 6.9412 1.35769 5.4560 0.0803944 6.9975

0.02 0.02095 0.0119888 2.0585 0.399817 1.7637 0.0195956 2.0366

0.01 0.01048 0.00297839 2.0091 0.103952 1.9434 0.00502445 1.9635

Table 12: Errors by ∥·∥∞,0-norm and Convergence Rate for the constant DLN with θ = 2/
√
5.

Time step k Mesh size h ∥|ew|∥0,0 Rate ∥|∇ew|∥0,0 Rate ∥|ep|∥0,0 Rate

0.08 0.08571 8.05856 - 86.5876 - 11.9822 -

0.04 0.04221 0.107272 6.2312 3.05843 4.8233 0.143556 6.3831

0.02 0.02095 0.0249452 2.1044 0.900625 1.7638 0.0346417 2.0510

0.01 0.01048 0.00616932 2.0156 0.234285 1.9427 0.00880143 1.9767

Table 13: Errors by ∥·∥0,0-norm and Convergence Rate for the constant DLN with θ = 2/
√
5.
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Time step k Mesh size h ∥|ew|∥∞,0 Rate ∥|∇ew|∥∞,0 Rate ∥|ep|∥∞,0 Rate

0.08 0.08571 6.03148 - 72.2845 - 14.0717 -

0.04 0.04221 0.0499902 6.9147 1.35784 5.7343 0.0831369 7.4031

0.02 0.02095 0.0120016 2.0584 0.399858 1.7638 0.0203057 2.0336

0.01 0.01048 0.00298191 2.0089 0.103961 1.9434 0.00512713 1.9857

Table 14: Errors by ∥ · ∥∞,0-norm and Convergence Rate for the constant DLN with θ = 1.

Time step k Mesh size h ∥|ew|∥0,0 Rate ∥|∇ew|∥0,0 Rate ∥|ep|∥0,0 Rate

0.08 0.08571 8.50684 - 105.23 - 14.0354 -

0.04 0.04221 0.107277 6.3092 3.05802 5.1048 0.14397 6.6072

0.02 0.02095 0.0249479 2.1044 0.90061 1.7636 0.0347625 2.0502

0.01 0.01048 0.0061698 2.0156 0.234279 1.9427 0.00883384 1.9764

Table 15: Errors by ∥ · ∥0,0-norm and Convergence Rate for the constant DLN with θ = 1.
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Figure 27: Constant time step DLN (182) with k = 0.001, Re = 10, 000, θ = 1, Cs =

0.1, µ = 0.4.
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[60] J. H. Ferziger and M. Perić. Computational methods for fluid dynamics. Springer-
Verlag, Berlin, revised edition, 1999.

[61] G. J. Fix, M. D. Gunzburger, and J. S. Peterson. On finite element approximations of
problems having inhomogeneous essential boundary conditions. Computers & math-
ematics with applications, 9(5):687–700, 1983.

[62] G.P. Galdi and W.J. Layton. Approximation of the larger eddies in fluid motions.
II. A model for space-filtered flow. Math. Models Methods Appl. Sci., 10(3):343–350,
2000.

[63] W. K. George. Lectures in turbulence for the 21st century. Chalmers University of
Technology, available at http://www.turbulence-online.com, 2013.

[64] V. Girault and P. Raviart. Finite element methods for Navier-Stokes equations, vol-
ume 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin,
1986. Theory and algorithms.

[65] V. Girault and P. A. Raviart. Finite element approximation of the Navier-Stokes
equations, volume 749 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1979.

[66] P. Grisvard. Elliptic problems in nonsmooth domains. SIAM, 2011.

[67] M. D. Gunzburger and S. L. Hou. Treating inhomogeneous essential boundary con-
ditions in finite element methods and the calculation of boundary stresses. SIAM
journal on numerical analysis, 29(2):390–424, 1992.

[68] E. Hairer, S. P. Nørsett, and G. Wanner. Solving ordinary differential equations. I,
volume 8 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin,
second edition, 1993. Nonstiff problems.

[69] W. Heinrichs. Defect correction for convection-dominated flow. SIAM Journal on
Scientific Computing, 17(5):1082–1091, 1996.

168

http://www.turbulence-online.com


[70] J. S. Hesthaven and T. Warburton. Nodal discontinuous Galerkin methods: algo-
rithms, analysis, and applications. Springer Science & Business Media, 2007.

[71] J. G. Heywood and R. Rannacher. Finite-element approximation of the nonstationary
Navier–Stokes problem. Part IV: Error analysis for second-order time discretization.
SIAM Journal on Numerical Analysis, 27(2):353–384, 1990.
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