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Intracortical Brain-Computer Interfaces (iBCIs) intercept neuronal signals, allowing par-

alyzed individuals to perform movements and regain daily function. However, these ad-

vancements are mostly confined to laboratory settings due to high power consumption and

bandwidth requirements for communication and computation in decoders, limiting their

portability.

Decoders are often trained offline, requiring significant memory to store neural recordings,

and are typically implemented on standard hardware architectures, which increases latency

and power consumption. This research aims to develop mobile BCIs with low-power, low-

latency decoders that can be used outside labs or hospitals.

Neuromorphic decoders present a promising solution by addressing power and latency

constraints. These architectures process spiking data from iBCIs directly, eliminating the

need for binning or spike counting and reducing latency and power consumption. Hierarchy

of Time-Surfaces (HOTS) is particularly promising for BCI applications, using clustering to

analyze data patterns, potentially making HOTS more interpretable than other machine-

learning techniques. Online clustering may offer solutions to continual and incremental

learning challenges, allowing BCIs to adapt to shifts in neural activity and new tasks without

recalibrating or retraining decoders.

However, HOTS presents some challenges: It requires exponential decay kernels that are

difficult to implement efficiently on digital hardware, and it shows lower accuracy compared

to backpropagation-based spiking neural networks. Additionally, HOTS’s current learning

rule does not support continual and incremental learning.

This thesis addresses these issues. For hardware, it explores using electrochemical

(ECRAM) memristor dynamics to implement exponential decay in HOTS decoders, po-

tentially reducing circuit complexity and energy consumption. For software, it proposes
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Sup3r, a learning algorithm that improves accuracy and skips uninformative events, enhanc-

ing efficiency and stability in online learning. Sup3r demonstrates continual and incremental

learning, making it a fundamental advancement for HOTS models, applicable beyond BCI

to various fields.

The hope is that these combined solutions will pave the way for low-power, adaptive

neuromorphic decoders, enabling patients to regain autonomy outside the laboratory setting.
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Preface

I recall an IGN interview [43] with Gabe Newell, the founder of Steam, in which he was

asked to comment on his experience developing Half-Life, one of the most successful and

genre-defining games of our time.

Surprisingly, Gabe remembered his disappointment with the project because, as a devel-

oper, you don’t have a full view of the product you’re making. You mostly remember the

missing features you couldn’t include before the deadline.

Even though my Ph.D. is everything but “genre-defining”, I can understand what Gabe

meant in that Interview. This was a difficult project, born out of the necessity of writing

a thesis on a topic that had to include the scientific work done before the proposal, fit the

expectation for a biomedical engineering thesis, but also be general enough to keep me on

the tracks of neuromorphic engineering. The last year was especially tough since my time

had to be cut short by the absence of funding after my former advisor left the lab to reach

for sunnier horizons. This problem convinced me to leave the US as soon as possible and

focus on finding where to go next, further reducing the time I had left to work on the thesis.

For these reasons, I, too, see only the missing features.

Before writing this page, I asked myself many times if this Ph.D. was truly worth it, and

while at first glance you might conclude that the answer is “no,” the jury is still out.

This is because a Ph.D. is not only the papers we write or the time we spend with

our advisors. In Pittsburgh, I grew as a person and built wonderful memories with my

wife Chiara, who I want to thank first for always being my “pilastro centrale”. Her love and

support always fished me out of the darkest waters. The same could be said about my family:

my mom, Daniela, my father, Valerio, and my sister Alice, aka Nana (which means small in

Italian); you always made me feel close to you, even a quarter of the planet Earth away. In

Pittsburgh, I have met some incredible people (a non-comprehensive list): Arianna, Erick,

Lee, Luigi, Matteo, Philip, Daniel, Camila, Monique, Aaron (the best dungeon master I have

ever met), Shantanu, Jiwon, Adiya, Anna (for the amazing Japanese recipes and for letting

me believe my explanations made sense), Shruti, Becca Steph and August (with whom we
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just had a wonderful trip in Sicily).

Last year’s conferences also allowed me to build friendships across time zones with Jason

Eshraghian, the green ogre of Neuromorphic engineering, and my once-lost-but-now-refund

brother Hugo Ladret. I will never forget Maxime Fabre’s mad cooking skills or the nurturing

Willian, who saved me from the altitude-induced nausea of Telluride. I Love you all.

This Ph.D. would not have been possible without the plethora of amazing professors

and scientists that I met at Pitt and CNBC. The first thank you goes to my advisor, Andy

Schwartz; while I was struggling and feeling my passion wavering, I could always mend myself

with a morning chat with you, where I felt I learned the most. Another colossal thank you

goes to Himanshu Akolkar, the northern star I could always point at whenever I was lost

at sea; you truly have the qualities of an excellent advisor. Another incredible thanks go

to my committee, especially Neeraj Gandhi, for hearing my ramblings and allowing me to

eject myself from a burning zeppelin (my former lab). I also want to thank some of the

best professors I had the chance to meet at Pitt: Caroline Runyan, Aaron Batista, Helen

Schwerdt, and Carl Olson. Thanks to you, I am a better scientist, and you will always be a

source of inspiration for my work.

Finally, I want to thank my new partners in crime, Alessandro Milozzi and Michele

Mastella. You reminded me to dream and shoot for the stars.

To you, the reader, a TLDR. If you are a Ph.D. student and you feel disappointed by

your thesis, remember that you are not alone, that every lesson learned is not lost, and that

a Ph.D. is so much more than a thesis.

Introduction

A brain-computer interface (BCI) is a system that allows direct communication between

the brain and an external device, such as a computer or a prosthetic limb, bypassing the

peripheral nervous system and conventional controls. BCIs are actively researched as a

promising technology that might mitigate the effects of several life-altering pathologies, such

as stroke and locked-in syndrome, restoring movements and sensation [86, 118, 123]. More-
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over, BCIs are a fundamental neuroscientist’s tool to understand the brain’s inner workings

and approach fundamental questions on brain physiology and pathology, such as under-

standing how the brain processes and encodes information and ultimately generates behavior

[86, 118, 123]. Among BCIs, Intracortical brain-computer interfaces allow the highest spa-

tial and temporal resolution, as they can record single neuronal action potential thanks to

electrodes that are placed directly in the cortex, making iBCIs ”the highest level of control

for BCIs applications”[86]. For example, in 2021, iBCIs have been shown to reach up to 90

characters/min in decoding letter handwriting from the motor cortex with more than 90%

accuracy [115], while ECoG BCIs, based on electrodes placed on the brain surface with a

lower spatial resolution, have been shown to reach ≈47% on a limited 50 words vocabulary

[63] in the same year. Thanks to their precision, iBCIs have been used to control robotic

arms in 3D [87] achieving both reach and grasp on human patients [39, 18, 117]. iBCIs

have also been used to restore patients’ control over their limbs when combined with muscle

stimulation [10, 2], and are currently being investigated to decode complex tasks like vocal

articulation for speech decoding and synthesis [99, 98].

Even though iBCIs have been known for more than 40 years, their availability outside

research laboratories remains limited [49, 123, 96]. Because of their low portability [79, 49,

123, 96], their use is often restricted to brief sessions in controlled environments. The same

problem can be identified in animal research, where implanted animals need to be tethered

to the recording equipment or in the proximity of wireless stations[96], making untethered

free-moving brain decoding impossible.

This is because transmission of neural data from intracortical electrodes requires high

bandwidth (≈46Mbit/s on a single 96-electrode device from Simeral et al. [96]) to accommo-

date the vast amount of information generated by neuronal activity. However, bandwidth is

not the only problem associated with wireless transmission, especially when aiming at im-

plantable devices that could one day be placed within the skull or under the scalp [64, 79, 124].

In these devices, power must be limited to keep the temperature increase of the nearby tissue

below 0.5C [66]. One obvious solution is to reduce the need for energy-expensive communica-

tion by compressing the electrode signal after amplification and cleaning[113]. This approach

could prove even more advantageous by moving the entire decoding stack on-device since
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the information transfer rate once movement intention is decoded in the few bits per second

when decoding 2d cursor position text speech and handwriting[79].

Unfortunately, this is still impractical due to the poor integration of neural decoders.

While many decoders assume simple relations [11] between neural activity and decoded

quantities, they train offline, which requires storing several neural recordings in memory.

Moreover, training is often required multiple times a week because of the shift in neural

activity[72, 22, 27]. Additionally, the neuron firing rate is estimated via time binning, which

introduces latency and computational overhead. For these reasons, neural decoders have

invariably been implemented on Von Neumann architectures that separate CPU, memory,

and storage, reducing integration and increasing power consumption and latency.

Neuromorphic hardware represents one possible solution to integrate the decoding stack

on-chip while reducing power consumption [92, 94, 12, 8, 25]. Neuromorphic devices are

hardware-based neural networks that are inspired by computational models of spiking neu-

rons. Similarly to biological neurons, neuromorphic neurons encode information through the

analog timing between asynchronous digital pulses (”events” or ”spikes”). This makes them

able to directly interface with the action potentials from iBCIs, removing the need for time

binning. Neuromorphic hardware is also highly energy efficient, with analog implementations

in literature reaching as low as 10pJ per spike on the old 180 nm process [65].

Among different neuromorphic architectures, Hierarchy Of Time-Surfaces (HOTS) [51]

might offer other interesting properties for iBCIs. HOTS networks are trained by clustering

patterns of spikes (time-surfaces) and treating each neuron as a centroid of the clustering

algorithm, similar to bag-of-words [19]. This feature makes HOTS a good candidate for neu-

romorphic decoders because clustering might offer better explainability than conventional

SNNs trained with backpropagation. Moreover, clustering offers an intuitive implementation

of continual and incremental learning[9], meaning that future decoders based on this algo-

rithm might be able to re-calibrate during decoding and learn new tasks without forgetting

previous ones.

However, HOTS architectures suffer from different fundamental problems. Time-surfaces

are generated by interpolating spikes with exponential decay kernels. These kernels re-

quire digital clocked counters to calculate approximate linear decay or memory accesses to
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store and retrieve spike timings before computing the exponential decay through special-

ized hardware blocks or look-up tables, making HOTS implementation on digital hardware

unpractical and energy inefficient. Moreover, HOTS networks have a notorious gap with

backpropagation-based Spiking Neural Networks in terms of accuracy and training time, as

layers are trained sequentially before finally training an external classifier. This is because,

similarly to bag-of-features models, HOTS networks need a standard classifier (like a support

vector machine or a linear classifier) to classify input data[51, 81, 106], by accumulating the

state of the network over a predefined time-bin. This makes HOTS not entirely compati-

ble with neuromorphic hardware and makes other properties of clustering-based algorithms,

such as continual and incremental learning, currently inaccessible.

In this thesis, I explored possible solutions to these problems in order to make HOTS a

viable solution for the next generation of neuromorphic decoders.

In Chapter 1, I present a novel approach to implementing time-surface exponential decay

using the volatile properties of an electrochemical memristive (ECRAM) device. Memristors

are currently being researched as a way to implement weights for neural network accelera-

tors [50, 104, 4, 108, 114] and to implement local learning rules such as clustering[48] and

STDP [5]. Among these devices, ECRAM memristors are a promising solution to increase

precision for stored weights while reducing power consumption for write and read operations.

Combined with the findings in Chapter 1, ECRAM devices could offer an all-in-one solution

to implement exponential decay in time surfaces, store HOTS centroids, and compute local

learning rules, allowing for compact and trainable HOTS decoders.

Chapter 2 introduces Sup3r, a learning algorithm that enables HOTS networks to be

trained end-to-end without the need for additional classifiers. Sup3r is designed to be local,

so it does not require passing global data, such as weights and centroids, to other network

centroids during training. Additionally, Sup3r is an online learning rule, which means it

can be trained on a single sample of data at a time. These combined properties make it

a viable solution for on-chip learning and capable of leveraging memristors, such as those

used in Chapter 1, to train locally. Preliminary results show that Sup3r-HOTS reduces the

performance gap against backpropagation while cutting uninformative events, potentially

reducing unnecessary computation in HOTS networks. Additionally, I demonstrate that
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Sup3r can grant HOTS networks the ability to adapt to data distribution shifts (continual

learning) and learn new tasks without forgetting (incremental learning).
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1.0 Using ECRAM Devices To Implement Temporal Dynamics in HOTS

Networks

This chapter is the fusion of two papers I worked on during a collaboration with Feng

Xiong’s lab from the ECE department here at Pitt with the aim of developing a neuromorphic

chip with a novel ECRAM device called LiWES (Lithium WO3 Electrochemical Synapse).

While the scope of the project shrank considerably, it demonstrated the feasibility of using

the volatile properties of this class of devices for Spiking Neural Networks. In the first paper

[109], I ideated and developed a toy problem to highlight the use of LiWES on a single

neuron SNN (Here reported as section1.2.2). In the second paper [82], I simulated a full-

sized HOTS network using LiWES volatile properties and tested its accuracy on widely used

neuromorphic datasets while also analyzing the effect of device stochasticity and short-term

dynamics on the proposed task. The remaining sections of this chapter are from this second

paper.

1.1 Introduction

The last decade has brought considerable progress in AI, mainly owing to the advent of

Graphics Processing Units (GPUs) and other hardware accelerators. However, this progress

has not been matched from the perspective of emulating general intelligence and cognition.

Ideas such as deep multilayer learning and backpropagation have helped solve a particular

class of well-defined problems but require high energy and vast amounts of labeled data

[74, 40]. These requirements drastically limit on-board ”intelligence” and reduce autonomy.

Thus, essential functionalities such as continuous always-on learning with a reasonable power

budget are still out of reach.

Neuromorphic engineering holds the promise of mitigating these restrictions [85, 58].

Recently, this field has reached a level of maturity that allows it to impact several other

domains where autonomy and low power on-the-edge computation are crucial. One core
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principle is to remove the separation of memory and computation, typical of Von Neumann

architectures, by taking inspiration from neurons and synapses and more closely integrating

computation and memory.

Many researchers have taken an interest in memristive devices, given their ability to

implement tunable nonvolatile weights similar to synaptic efficacy in biological synapses.

Following this paradigm, memristors have been applied to many network-based computa-

tional approaches. Doygu et al. simulated memristor networks able to learn sequences of

inputs [50]. Suri et al. used another simulated network of phase-changing memristors to

learn MNIST letters[104]. Systems that perform STDP (Spike Time Dependent Plastic-

ity) using RRAM (REsistive RAM) devices [4] or that implement recursive networks using

PCM memristors have also been reported [26]. Vincent et al. simulated a network of STT-

MRAM devices for car detection [108]. Networks of memristors have also been proposed

to implement the k-means algorithm [48] and unsupervised learning [114]. In all of these

examples, the synaptic devices modeled using memristors working in a “static” fashion, i.e.,

as a fixed scalar multiplier of spike events, before integration by the “neuron membrane”.

This approach has been widely adopted because of its simplicity of implementation and

mathematical tractability, as synaptic operations can be described by simple linear algebra.

In recent years, a different approach has surfaced. Several works have demonstrated the

presence of transient conductance responses in memristive devices akin to short-term plastic-

ity (STP) and Excitatory/Inhibitory Post Synaptic Potentials (EPSP/IPSP)[119, 111, 121,

67]. These memristors with “volatile” properties are extremely promising for implementing

neuromorphic networks that need physical devices capable of temporal computation [7]. In

these devices, input events (i.e., voltage pulses) cause temporary changes in conductance that

exponentially relax back to baseline, like EPSPs and IPSPs in biological synapses. More-

over, the conductance change is potentiated when multiple input events are close in time

(STP). These short-term dynamics allow the modeling of temporal kernels and short-term

plasticity without the need for additional circuitry. Electrochemical memristors (ECRAM)

exhibit both STP and EPSPs simultaneously [93, 125]. However, in memristors with oscilla-

tory properties, [41, 59, 73], STP is not present. Moreover, some devices can produce EPSPs

with multiple exponential decays, making the range of possible dynamics extremely complex.
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We are still far from understanding the entire repertoire of short-term dynamics in volatile

memristors, let alone being able to exploit them in real, practical scenarios. Many works

utilizing the short-term dynamics of memristive devices have demonstrated only simple net-

works (or even single neurons) operating on limited examples[103, 83, 110, 102, 7, 121, 67], or

use memristor dynamics for different spiking neuron operations such as adaptive thresholds

[91] and synaptic traces [23]. At the time of writing, the relationship between the different

types of dynamics in representing temporal information from spiking data and recognition

rates on real-world neuromorphic datasets has not been studied. Understanding this relation-

ship will enable the design of custom neuromorphic systems that make full use of memristive

dynamics for efficient computation.

This chapter focuses on an ECRAM device called LiWES (Lithium WO3 Electrochemical

Synapse), which demonstrated different types of volatile dynamics (STP and multiple expo-

nential decays) in a range of ten to hundred milliseconds (required by many neuromorphic

datasets), high precision of 1024 states, and low reading power [110].

Section 1.2 briefly introduces this device and its properties. Section 1.2.1 presents a

mathematical model to simulate the device response, which is then used to test the device

behavior on a small toy problem in section 1.2.2. In the following sections, the same model

is also used to simulate a full Hierarchy of time-surfaces (HOTS) architecture [51] on more

complex datasets (N-MNIST [68] and POKERDVS [89]). These sections focus on answering

the following questions:

1) Can we use LiWES pulse response to implement HOTS exponential decay operations?

2) Is the device stochasticity reducing the network accuracy?

3) Are STP and multiple exponential decays useful properties for SNN architectures?
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1.2 Testing LiWES, A LixWO3 Electrochemical Synapse For Spiking Neural

Networks

“Volatile” memristors enable efficient implementations of temporal computing, as they

combine temporal dynamics and short-term plasticity in a single device. Among these,

electrochemical memristors [29] have become good candidates thanks to their low power

consumption, linear and symmetric response, low variability, and high reliability [29, 55, 30,

120, 125, 77, 112, 107, 122, 57, 56]. Wan et al. previously proposed a novel electrochemical

memristor [110] based on Lithium Ions and Tungsten Oxide (LixWO3). This memristor has

the advantages of low programming voltage (0.2 V), fast programming speed (500 ns), and

high precision (1024 states corresponding to 1024 10ms 0.5V “write” pulses before reaching

saturation), wide conductance range (∼ 1µs to ∼ 200µs), with a channel area of 400x200µm2.

These devices have been used to model synapses and to implement electrochemical ran-

dom access memory (ECRAM) [105]. They are especially suitable for neuromorphic net-

works because they can model synaptic dynamics and short-term plasticity (STP) with

time constants ranging from a few to hundreds of milliseconds. We focus on a version of

LixWO3 memristor that uses a self-gate design in which transitory effects dominate long-term

effects[112].

This structure of the LixWO3 memristor is illustrated in Fig. 1(a). Unlike conventional

two-terminal memristors, the LixWO3 electrochemical is composed of three terminals, the

(S)ource, (D)rain and (G)ate. The memristor is built by deposition of tungsten oxide (WO3)

films on a LaALO3 substrate. Lithium ions introduced via an electrolyte gel can flow between

the gate and channel. When embedded into the tungsten oxide films, they act as short or

long-term doping charges, changing the film conductance [110]. The conductance between

the source and the drain terminal, GDS, is considered to be the synaptic weight of the device.

The memristor’s electrical behavior is illustrated in Fig. 1(b). The conductance GDS can

be read by applying a small DC reading voltage (VDS = 100mV) across the source and drain.

During the “write” phase, we modulate GDS by applying a square voltage pulse between the

gate and drain. The channel conductance increases linearly. Once the pulse is removed, the

conductance decays following a double exponential decay function. Reading can be carried
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Figure 1: The structure and operation of the physical LixWO3 electrochemical synapse

modelled in this paper. (a) The LixWO3 electrochemical synapse is a three-terminal device

with a (S)ource, (G)ate and (D)rain. The gate and channel between S and D are built by

deposition of tungsten oxide (WO3) films (red) on a LaALO3 substrate (green). The films

are connected to gold terminals (yellow). Lithium (Li+) and ClO4− ions are introduced by

applying a drop of electrolyte gel (blue) on top of the device. (b) The electrical behavior of

the memristor in response to a square WRITE voltage pulse applied between (G) and (D)

and a small DC READ voltage (0.1 V) applied between (S) and (D). (c) The electrochemical

behavior of the memristor.
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out in parallel and does not interfere with writing. This design allows for lower programming

voltages and better state retention [107]. State retention and low programming voltage are

important when designing standard memristive networks for spiking and artificial neural

network implementations. These allow for stable networks with low power consumption.

Multiple small pulses can be used to change the device conductance gradually, allowing the

artificial networks to mimic their biological counterparts.

Fig. 1(c) illustrates the electrochemical operation. At rest (no gate to drain voltage

applied), the Li+ and ClO4− ions are in equilibrium between the tungsten oxide films and

the electrolyte gel. The positive “write” pulse creates an electric field, which causes Li+

ions to accumulate at the channel/electrolyte interface and charge-balancing ClO4− ions

to accumulate at the gate. Doping of the channel by the Li+ ions increases the channel

conductance. During the relaxation phase, after the removal of the write pulse, the ions

return to equilibrium and the channel conductance returns to its resting value. The double

exponential decay response can be explained by the Kohlrausch-Williams-Watts (KWW)

relaxation model [116, 53], which has also been found in other electrochemical devices [125].

Changing the material properties enables “programming” the exponential decays in the

range of tens to hundreds of milliseconds, which is optimal for the temporal integration of

events for many real-world datasets [51, 76]. Due to the double exponential decay, closely

spaced pulses generate accumulation. This property allows the memristor to exhibit short-

term plasticity (STP) similar to biological neurons. Moreover, the high number of pulses

required to reach saturation (1024) makes it more than capable of working on the proposed

datasets, where the maximum number of events per pixel is 48, corresponding to a max of

48 “write” pulses per single synapse/device. Together, these properties make this device

an excellent candidate for studying the computational benefits of memristors’ dynamics for

neuromorphic time-based learning applications.

1.2.1 Mathematical Model Of Synaptic Dynamics

Following [116, 53, 112, 110, 125], we developed a mathematical model to predict the

electrical behavior of the LixWO3 memristor by first modelling its response to a single square
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write pulse, then combining the responses.

Given a spike train with spike times {ti} indexed by i ∈ {0, 1, 2, . . .}, the conductance

response is given by

G(t) =
∑
i

(G1,i(t) +G2,i(t)) + η(t) (1-1)

where G1,i(t) + G2,i(t) is the memristor’s response to all spikes up to and including the ith

spike for times t ∈ (ti, ti+1], and η(t) is zero-mean Gaussian white noise with variance σ2. To

model the double exponential decay, we express the response as the sum of two components,

Gk,i(t) for k ∈ {1, 2}, each modeling a single exponential response.

We define the components Gk,i(t) recursively:

Gk,i(t) =


Lk,i(t) for ti < t ≤ min(ti + w, ti+1)

Ek,i(t) for ti + w < t ≤ ti+1

0 otherwise

(1-2)

where w > 0 is the width of the write pulse. Lk,i(t) models the linear rise in conductance

starting from Gk,i−1(ti) to Gk,i−1(ti) + Ak,i, where Ak,i is the peak conductance change due

to the ith write pulse.

Lk,i(t) = Gk,i−1(ti) + Ak,i

(
t− ti
w

)
(1-3)

Ek,i(t) models an exponential decay in conductance from Gk,i−1(ti) +Ak,i to zero with time

constant τk,i.

Ek,i(t) = (Gk,i−1(ti) + Ak,i) e
−
(

t−ti−w

τk,i

)
(1-4)

Fig. 2 shows our model for a given pulse width w at time ti.

We can see from (1-2), (1-3), and (1-4) that Gk,i(t) depends on the conductance at the

start of the ith pulse, Gk,i−1(ti). This models STP, where past pulses all contribute to the

current device conductance. To model the hypothetical memristor without STP in section

IV C, we remove Gk,i(t) from (1-3) and (1-4)

Lstp
k,i (t) = Ak,i

(
t− ti
w

)
(1-5)
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Estp
k,i (t) = Ak,ie

−
(

t−ti−w

τk,i

)
(1-6)

so that every new pulse resets the peak conductance to Ak,i, rewriting any conductance value

from previous pulses.

As we are also interested in studying the effect of device stochasticity on computation,

we consider two models: an ideal model and a stochastic model.

In the ideal model, the peak conductance changes and time constants are the same for

all pulses, i.e., Ak,i = Ak and τk,i = τk for k ∈ {1, 2}, where Ak and τk are positive constants.

The noise is zero (η(t) = 0).

In the stochastic model, the Ak,i and τk,i are drawn from an independent and identically

distributed discrete time (i.i.d.) random process in i, where each sample is drawn from a

Gaussian distribution,

Ak,i ∼ N (Ak, σ
2
Ak
). (1-7)

τk,i ∼ N (τk, σ
2
τk
). (1-8)

where negative samples are rectified.

The dynamics of the LiWES can be tuned by changing the write pulse properties, such

as pulse width and amplitude [110]. To replicate the device behavior for a given pulse, we

need to obtain the mean and standard deviation of the model parameters (A1, A2, τ1, τ2).

We first compute the rest conductance by averaging the conductance before pulse onset and

subtracting this from the data. We then combine (1-1) and (1-2) to compute the response,

which we split into two parts:

Grise(t) = (A1 + A2)

(
t− t0
w

)
for t0 < t ≤ t0 + w (1-9)

Gdecay(t) = A1e
−
(

t−t0−w
τ1

)
+ A2e

−
(

t−t0−w
τ2

)
for t0 + w < t (1-10)

We fit the model parameters (A1, A2, τ1, τ2) using the least squares fit between the experimen-

tal data after the write pulse (t > t0 + w) and Gdecay(t) using the Gauss-Newton algorithm.

We use the model and fitted parameters to predict the responses for t ≤ t0 + w.

To find the parameters of the stochastic model, we repeated the model fit using data from

multiple recordings of pulses with different pulse amplitudes (ranging from 1V to 4V ) and
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steady state (in green). The model presents a linear increase (in blue) for the duration of

the pulse. At its end, it will relax to a steady state following a double exponential decay (in

gold).
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Table 1: Model parameters (mean ± s.d.) obtained with a pulse with fixed 1V amplitude

but varying duration.

1V A1 τ1 A2 τ2 ση

200us 0.57±.27 5ms±2ms 0.5±.05 92ms±18ms 0.0464

500us 0.74±.18 16ms±9ms 0.26±.06 588ms±31ms 0.0245

750us 0.78±.19 10ms±2ms 0.23±.03 513ms±98ms 0.0149

1ms 0.75±.29 10ms±3ms 0.22±.02 390ms±68ms 0.0097

durations (ranging from 200µs to 1 ms). Based on these fits, we calculated the distributions

of the model parameters. We report the fitting results in Table 1 and Table 2. The tables

show the mean and standard deviations of the parameter estimates fitted over 20 recordings

for the 200us 1V pulse and 5 recordings for the remaining conditions. The variance of the

noise ση was set to the mean square error of the fit. For details, refer to the supplementary

materials.

We can use equations (1-1)-(1-8) and the distributions specified in Tables 1 and 2 to

simulate the response of any number of devices to any set of spike trains. Figure 3 compares

the output of our stochastic model with the response of an actual device to the same spike

train. Note that due to the stochasticity, we do not expect spike-to-spike matching of the

Table 2: Model parameters (mean ± s.d.) obtained with a pulse with fixed 200us duration

but varying amplitude.

200us A1 τ1 A2 τ2 ση

1V 0.57±.27 5ms±2ms 0.5±.05 92ms±18ms 0.0464

2V 0.54±.29 7ms±1ms 0.35±.02 122ms±20ms 0.0244

3V 0.77±.24 13ms±6ms 0.23±.02 373ms±98ms 0.0189

4V 0.75±.17 11ms±3ms 0.25±.01 501ms±101ms 0.0159

10



responses. Rather, the statistics and timing of the responses will be similar.

1.2.2 LiWES Volatile Response For Temporal Computation

The goal of this section is to show how LiWES devices’ dynamic behaviors could be

used to boost classification performance in highly time-dependent scenarios. The principle

behind the proposed computation is that when the LiWES devices receive a set of spikes,

their conductance value will change depending on the temporal structure (individual spike

timings) of the input spike train. Furthermore, in the absence of LTP when using LixWO3

self-gate and channel, the conductance of the device will be uniquely determined by the

input spiking pattern and the time of integration,[51, 3] granting the device the ability to

integrate temporal information and distinguish between different spike patterns.

In standard neuromorphic SNNs with NO-STP synapses, the synaptic efficacy (or weight),

which remains fixed during inference, is used to simply scale current pulses directed toward

the post-synaptic neuron. In these models, the temporal integration of stimuli is left solely to

the neuron, whereas in STP-enabled networks, synapses also encode temporal information

through weight changes, enriching network dynamics[6, 61, 54] and increasing the ability

of neurons to discriminate between temporal stimuli [13]. For this reason, when compared

with NO-STP synapses, a network including the proposed LiWES device should increase

its performance in highly time-dependent tasks, such as the classification of different spike

patterns. To test this hypothesis, we propose a test tailored to compare LiWES to an IDEAL

synapse (a noiseless LiWES device) and a standard NO-STP synapse. Here, we connect a

post-synaptic neuron, modeled with Leaky Integrate and Fire profile (parametrized with the

membrane decay constant τm and spiking threshold = ∞), to a pre-synaptic neuron, which

is a Poisson Spike generator (Figure 4a). As shown in Figure 3, the channel conductance re-

sponse of LiWES shows a spike profile, where the conductance quickly reaches the maximum

conductance level followed by an exponential decay back to initial conductance level, due to

ionic-gating governed STP effect. Thus, we are able to model the conductance response of

LiWES as shown in Figure 4b.

In the proposed task, we generate multiple pre-synaptic neuron spike trains with a fixed
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of 1V 200us. We sample the response parameters from the parameter distributions obtained

from fitting our model to experimental data.
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maximum duration. As each spike sequence is randomly generated at a fixed frequency,

therefore, it differs from the others mainly by its temporal characteristics (the timestamps of

individual spikes), and it represents a single class of a classification problem. The beginning

of each spike train is delimited by tonset. A “sequence end spike” is added at the end of

each spike train at a specific time t end (Figure 4c), and the post-synaptic neuron membrane

potential is read out at t read (Figure 4d, representing the output of the system. Each spike

train is presented to the synapse multiple times to obtain multiple membrane potential

readouts for the same “class” (or spike pattern). To calculate the class separability of the

readouts, we define a distance metric as the difference between the Euclidean distance of

points between different classes (interclass distance) and the distance of the points within

the same class (intraclass distance) in Figure 4e. As the membrane potential of the post-

synaptic neuron is always read out at the same time (t read) after the last spike (t end), a neuron

unable to integrate temporal information will have similar membrane potential for different

spike patterns, and therefore, it will have an average interclass distance of zero or close to

zero. However, for an STP-enabled neuron, its membrane value depends on previous spiking

activity, which gives different values of interclass distance based on different classes. This is

the case shown in Figure 4f, where a fast spiking neuron (τm = 10 ms) is stimulated with

Poisson generated spikes at a slow mean of 10 Hz frequency. The number of classes used for

this simulation was 50, each one presented ten times (for intraclass measurement), for a total

number of 500 points. In this case, class separability (interclass distance–intraclass distance)

is ≈3.8 ×10τ4 for the NO-STP synapse, ≈4.9 × 10-2 for LiWES device (≈128× higher relative

to NO-STP synapse), and ≈8.6 × 10-2 for the IDEAL synapse (≈226× higher compared with

NO-STP synapse), with using a synaptic weight k of 4.3 (see the Experimental Section for

model build details). As both comparison synapses (NO-STP and IDEAL synapses) are

totally deterministic, their mean intraclass distance is 0. The same simulation parameters

are used in Figure 4g for a much slower post-synaptic neuron (τm = 100 ms). Even though

the post-synaptic neuron is relatively slower to integrate temporal information, a boost in

class separation (≈1.4× in LiWES and ≈1.7× in the IDEAL synapse, relative to the NO-

STP synapse) can still be achieved owing to the natural stochastic STP in LiWES. The

class separability is ≈8.4 × 10-2, ≈1.2 × 10-1, and ≈1.4 × 10-1, for the NO-STP synapse,

13



LiWES device, and the IDEAL synapse, respectively, with using a synaptic weight k of

16.7. By implementing the temporal spiking information in STP of LiWES, we improve the

pattern classification performance (up to 128× compared with NO-STP synapse) in highly

time-dependent scenarios.

1.3 Memristor Implementation Of HOTS

The Hierarchy of Event-Based Time-Surfaces (HOTS) architecture is a neuromorphic

architecture for unsupervised pattern recognition [51]. HOTS networks are highly versatile

and can be applied to the output of neuromorphic sensors for different modalities [51, 42, 32,

81]. Moreover, HOTS neurons are more mathematically tractable than other Spiking Neural

Network (SNN) models. This feature makes it easier to isolate the effects of memristive

dynamics on network behavior using the analysis we describe in the next section.

A HOTS network maps each input spike to an output spike from one of the neurons in

the network. HOTS networks draw inspiration from clustering. Each neuron in a HOTS

network represents a cluster corresponding to a pattern of events within a spatial window.

The diversity of possible input patterns is reflected by the diversity of patterns represented

by the neurons in the network. In order to represent event patterns as points to cluster,

HOTS introduces the concept of the Time-Surface. Every time a neuron produces an event,

it triggers the creation of a Time-Surface, an array representing the time history of events

at that and neighboring neurons.

This section describes a model of a HOTS implementation that exploits the dynamics

of LixWO3 memristors to create the time-surfaces. The process of creating time-surfaces is

shown in Fig. 5, where we assume input comes from an event-based vision sensor and the

task is digit recognition. Input images (a) are captured by the event-based sensor (b), which

emit trains of events at each pixel in response to brightness changes (c)[51].

Each event i from an event-based vision sensor can be described by the tuple:

evi = (xi, yi, pi, ti) (1-11)
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Figure 4: SNNs computation-based STP of LiWES. a) The diagram of network, a Poisson pre-
synaptic (PRE) neuron connected to a Leaky and Integrate and Fire post-synaptic (POST) neuron
through a synapse (NO-STP, LiWES or IDEAL synapse). b) An example of a Poisson train spike
eliciting activity in LiWES and the consequently generated membrane potential. c–e) An example
of the proposed spike-based SNNs computation model for classification performance benchmark.
c) The PRE-Neuron produces multiple random spike trains; at the end of each one, we add a
“sequence end” spike occurring always at the same timestamp (tend). Each spike train represents
a different class in a classification problem. d) We then record multiple POST-Neuron responses
(three responses per each spike train), to better characterize the device noise and cycle-to-cycle
variation, and finally, we save the membrane value after the “sequence end spike” (at t read). e)
Finally, for each point, we calculate the interclass distance between points of different spike trains
and the intraclass distance between points of the same spike train class. These measures indicate
how much each point position encodes for temporal information, and how well the points are
separable in a classification task. f,g) The classification result of the benchmarked synapses. f)
The classification comparison for a 10 Hz Poisson PRE-Neuron and a fast POST-Neuron (τm = 10
ms). g) The classification comparison for the same 10 Hz Poisson PRE-Neuron but a much slower
POST-Neuron (τm = 100 ms).
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where xi and yi are the pixel positions, pi is the polarity (the direction of brightness change

in the pixel), and ti is the timestamp.

In the original version of HOTS, every incoming event gives rise to an instantaneous

rise exponential decay kernel with no memory. In our model, incoming events give rise to

double exponential decays with STP. We assign a LiWES memristor to each spatial location

and polarity (x, y, p), and using the events at (x, y, p) to generate WRITE signals to that

memristor, which generate changes in its conductance Gx,y,p(t) following the model described

in Section 1.2.1. For each event evi, we create a time-surface by sampling the conductance

at all memristors within a square spatial window of lateral size l around (xi, yi), i.e.

Si(m,n, p) = Gxi+m,yi+n,p(ti) (1-12)

for m,n ∈ {−(l − 1)/2, . . . , (l − 1)/2} and for all polarities p, where the subscripts indicate

the memristor’s location and polarity.

We use an unsupervised clustering method, such as the K-means algorithm, to cluster

the time-surfaces. The clusters capture recurring spatio-temporal features of the input data.

Each input event generates an output event at the same location and time, but whose polarity

is given by the closest cluster. Thus, the number of possible polarities of output events is

equal to the number of clusters.

We can define a multiple layer architecture by defining each layer k as a single iteration

of this process. Its input events are

evki = (xk
i , y

k
i , p

k
i , t

k
i ) (1-13)

Its output events are:

evk+1
i = (xk+1

i , yk+1
i , pk+1

i , tk+1
i ) (1-14)

where superscripts index the layer number, xk+1
i = xk

i , y
k+1
i = yki and tk+1

i = tki . The output

events of one layer become the input to the next. However, to increase spatial integration

from layer to layer, we often sub-sample the output events of one layer before inputting them

to the next layer.

Fig. 5(g)-(m) shows an example of a two-layer architecture. In (g), we plot the most

recent input events before a reference event ev1i . We sample the memristor conductances in
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Figure 5: Top row (a-f): Mapping spatio-temporal event patterns into Time-Surface features
using memristive synapses. Bottom row (g-m): N-MNIST classification using the memristive HOTS
network. An input digit (a) is presented to the event-based sensor (b), which produces asynchronous
event streams (c) at each pixel based on the luminance variation over time. Each pixel stream is
input to a memristor (d), which interpolates the spike train with exponential decay kernels (in
red) with time constants τ1 and τ2, resulting in time-varying conductances (e). For each new
event evi (indicated in light blue), we generate a Time-Surface by sampling the conductances from
memristors at neighboring pixels, resulting in a 2D map that encodes temporal correlations between
events at different pixels (f). The spiking activity (g) from the event-based sensor has two polarities,
indicating increases (orange) or decreases (blue) in luminance. This figure shows the polarity of the
last spike at each pixel, if any, during the last 10ms before a reference event ev1i . time-surfaces (h)
are created by sampling changes to memristor conductances in a square neighborhood around the
reference event, shown in red. time-surfaces are clustered (i). Input events produce output events
(j) with the same location and time stamp, but polarity determined by the closest cluster index.
This new set of events is spatially sub-sampled, resulting in a larger effective neighborhood size. In
the next layer, these are used as inputs to generate new time-surfaces (k) that are again mapped to
clusters (l) to produce output events (m). This process can be repeated multiple times to increase
the temporal and spatial scale of the classified features.
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the square neighborhood around (x1
i , y

1
i ) (shown as the red square) to produce a Time-Surface

S1
i (h, only one polarity shown). This Time-Surface gets assigned to a cluster of Layer 1

(i), producing a new output event ev2i with a new polarity p2i (j). Due to sub-sampling,

time-surfaces in layer 2 usually correspond to larger effective neighborhoods in layer 1. The

entire process can be repeated, as shown in Fig. 5(k,l,m), until we achieve a desired amount

of temporal and spatial integration.

Similarly to [51], we create a feature vector for each spike activity recording by building

a histogram H of the polarities of spikes from the last layer collected across all pixels and

over the entire recording.

We classify the feature vector using a polynomial Support Vector Classifier (SVC). In

our comparative experiments seeking to elucidating the effect of different facets of the mem-

ristor dynamics on the computed features, we used the simpler Euclidean distance approach

proposed in the original HOTS paper [51]. For each label, we computed a template Hlabel by

averaging over all the histograms with that label in the training set. To classify new digits,

we performed template matching using the Euclidean distance measure.

1.4 Experimental Results

1.4.1 The Effects Of Programmable Integration Constants On Accuracy

Tables 1 and 2 show that different pulse settings (Voltage and duration) give rise to

different decay time constants. The ability to tune integration constants is fundamental

for neuromorphic applications, as spike rates vary between different applications. While

these results do not enable us to model the full relationship between pulse settings and

time constants, they do enable us to investigate whether different applications benefit from

different time constants.

We tested the two-layer network shown in Fig. 5(g to m) on the N-MNIST [68] and

POKERDVS [89] datasets. The sub-sampling factor was 7, which reduces the N-MNIST

resolution from 28x28 in layer 1 to 4x4 in layer 2 and the POKERDVS resolution from
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Table 3: percent classification accuracy for different pulse parameters

Pulse settings (200µs,1V) (200µs,2V) (200µs,3V) (200ms,4V) (500µs,1V) (750µs,1V) (1ms,1V)

N-MNIST 90.90 ± 0.22 90.92 ± 0.24 91.15 ± 0.37 90.93 ± 0.21 90.09 ± 0.16 90.95 ± 0.19 91.27 ± 0.29

POKERDVS 98.0 ± 3.31 96.50 ± 3.90 97.50 ± 4.03 98.00 ± 3.32 97.00 ± 3.32 96.50 ± 3.20 97.50 ± 4.03

35x35 in layer 1 to 5x5 in layer 2. The Time-Surface lateral dimensions for N-MNIST results

are l[1] = 7 and, l[2] = 3 respectively, for the first and second layer. The Time-Surface lateral

dimensions for POKERDVS results are l[1] = 5 and l[2] = 7. The number of clusters for the

N-MNIST results is N [1] = 32 and N [2] = 96. The POKERDVS network was smaller with

only N [1] = 8 and N [2] = 64 clusters. To eliminate the effect of device stochasticity and

enable comparison with other work on these datasets, which typically do not include device

stochasticity, we used the ideal model described in Section 1.2.1.

Since our implementation of HOTS uses K-means for learning the time-surfaces, which

requires relatively little data to train, we only use 10% of the training set for the N-MNIST

results. Files were randomly selected at each run. However, our testing results are reported

based on performance on the entire test set.

Table 3 compares the test-set classification accuracies on the two datasets for all the pulse

settings listed in Tables 1 and 2. These results were calculated over 5 runs on N-MNIST and

10 runs on POKERDVS. We classified with a polynomial support vector machine of order

3. We report results with additional classifiers in our supplementary materials.

Our results show that we obtained the best performance on the N-MNIST and POK-

ERDVS datasets using different pulse parameters, which resulted in very different time

constants. The best performance for N-MNIST were obtained for 1V 1ms-long pulses, which

gave time constants τ1 = 10 ms and τ2 = 390ms. The best performance for POKERDVS

were obtained for 200µs-long pulses with amplitude either 1V (τ1 = 5ms, τ2 = 92ms) or 4V

(τ1 = 11ms, τ2 = 501ms). These differences highlight the importance of the ability to tune

time constants.

Our LiWES memristive HOTS network achieves state-of-the-art performance on N-MIST

(91.27%), exceeding that reported by Sironi et al. [97] and Iyer et al. [46], despite the use

of only 10% of the training data.
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1.4.2 The Effects Of Stochastic Dynamics On Accuracy

To analyze the effects of stochastic dynamics on recognition rate on a neuromorphic

architecture, we compared the performance of HOTS architectures on the N-MNIST dataset

using the stochastic memristor model (the ’Noisy’ network) and the ideal memristor model

(the ’Ideal’ network) defined in Section 1.2.1.

Since the implementation of in-situ learning on the memristive chip was beyond the

scope of this paper, we limited noise analysis to inference only. Calculation and clustering

of time-surfaces was performed using the Ideal network model only. The Noisy network and

the Ideal network share the same sets of clusters, but in the case of the Noisy network, the

Time-Surfaces generated by the test set were perturbed by the device stochasticity.

The computation time for this test was heavily dependent on the number of clusters and

the number of files. For this reason, we set the number of clusters to N [1] = 32 for layer 1

and N [2] = 64 for layer 2. We tested only on a random selection of 10% of the test set every

run, and averaged performance over 60 runs.

To ensure the generality of our results, we included results using both the Support Vector

Classifier (SVC) and the Euclidean distance classifier (Eucl.). Thus, we considered four cases:

Ideal SVC, Noisy SVC, Ideal Eucl. and Noisy Eucl. Each network was trained on the same

training sets of N-MNIST data and tested on the same randomly chosen N-MNIST test sets.

We also measured classification performance for both layers of the architecture.

The results in Table 4 and Figure 6(a)) show that while different classifiers result in

different absolute accuracy, stochasticity in the memristor dynamics does not significantly

affect the classification accuracy (t-test p > 0.05).

However, device stochasticity does influence both time-surfaces and cluster assignment.

Fig. 6(b) compares time-surfaces computed over the entire array (l = 28) using the Ideal

and Noisy models. Although the digit is still recognizable in the Noisy time-surface, we can

clearly see additional variation in the individual pixels.

As shown in Figs. 6(c) and (d), this variation leads to incorrect cluster (i.e., polarity)

assignment of Time-Surfaces, a phenomenon we refer to as ’dislocation’ (Fig. 6(e). The

mean percentage of events suffering from cluster dislocation in a single run was 10.58% in
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Figure 6: (a) Recognition rates of the Ideal and Noisy networks with the Support Vector and
Euclidean Classifiers. (b) A qualitative comparison between Time-Surfaces computed over the
entire input using the Ideal and Noisy memristor models. (c and d) The effect of Time-Surface
perturbation on cluster (i.e., polarity) assignment in Layers 1 and 2. Blue dots indicate events
where the Ideal and Noisy networks make the same cluster assignment. Otherwise, the Ideal
(orange dots) and Noisy (green dots) assign events to different clusters. (e) We call this effect
cluster dislocation. (f and g) The Mutual Information between the cluster response and the N-
MNIST digit labels for Layers 1 and 2 at different Temporal Integration scales. (h) The Mutual
Information Percentage Loss due to cluster dislocation. The effect of dislocation is small and
constant across all timescales, except for a singularity when the temporal window is zero due
to division by zero MI when computing the percentage. More importantly, cluster dislocation is
equally likely to increase or decrease Mutual Information.
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Table 4: Classification accuracy of the Ideal and Noisy Networks with Euclidean and SVC

classifiers

One HOTS Layer Two HOTS Layers

Ideal Eucl 60.67%± 2.21% 76.12%± 1.98%

Noisy Eucl 60.69%± 2.33% 76.66%± 2.26%

Ideal SVC 84.54%± 1.37% 86.56%± 1.33%

Noisy SVC 84.55%± 1.33% 86.76%± 1.26%

Layer 1 and 7.09% in Layer 2, suggesting that multiple layers might decrease the noise effect.

One possible explanation for the maintenance of high classification accuracy despite

cluster dislocation is that by summarizing events across the entire recording, histogram-based

classifiers are ”averaging out” the effect of a relatively small number of cluster dislocations.

If this were true, then we might expect classifiers integrating information over shorter time

scales to be far more affected by dislocation error.

To determine whether this is not the case, we calculated the Mutual Information (MI)

between events at different time scales and labels, using a method originally presented by

Akolkar et al.[3]. In this method, we choose a layer k, and sample a random event at that layer

from our dataset evli. We create a temporal window of length δ centered on its timestamp

tki . We then look across different recordings to calculate the probability of finding another

event with the same polarity pki in the same temporal window. We can then calculate the

MI between the probability of a response R (equal to 1 if an event with polarity pki is present

and 0 otherwise), P (R), and the probability of the stimulus S (the label of the input), P (S).

We repeat this process multiple times including all polarities pi averaging the result. This

value tells us how well the spiking activity of the layer k at timescale δ encodes the dataset

labels. We include additional information on this method in our Supplementary materials.

By computing the MI at different timescales δ, we can see how well spiking activity at

different time scales encodes information about the stimulus labels. Since there is only one

label for each recording in the N-MNIST and POKERDVS datasets, we expect the MI to
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decrease monotonically as the timescale δ decreases, since shorter timescales contain less

information (fewer spikes).

By comparing the MI computed for the Ideal and Noisy networks, we can see how cluster

dislocation affects the MI. If it is true that classifiers integrating information over shorter

timescales are more affected by dislocation error, then we would expect the Noisy network’s

MI to decrease faster than the Ideal network’s MI as delta decreases.

Figs. 6(f-g) plot the MI for the Ideal and Noisy networks computed over ten runs using the

N-MNIST dataset. As expected, the MI for both networks decreases as δ decreases. However,

the two curves do not diverge as δ gets smaller, showing the introduction of cluster dislocation

due to noise has little effect on the mutual information. We can show this more clearly using

the Mutual Information Percentage Loss, defined by (MIIdeal − MINoisy)/MIIdeal. Fig.

6(h) plots the Percentage Loss for each individual run. It remains largely constant across

timescale, rarely exceeding 5% for the first layer and 2% for the second layer. In addition, the

Mutual Information Percentage Loss is equally likely to be positive or negative 6(h). This

suggests that rather than causing events to be mapped to less-informative clusters, cluster

dislocation often results in events being mapped to equally, if not more, informative clusters.

The MI information loss might be considerably higher for different memristors or datasets.

This could affect the accuracy of neuromorphic implementations. One possible solution

suggested by this analysis is to exploit the monotonically increasing relationship between

timescale and MI shown in Figs. 6(f) and (g), which indicates that the lost information

might be recovered by increasing the time window size. However, the window size will

negatively impact latency.

1.4.3 Computational Benefits Of Memristive Dynamics

In this section, we investigate whether the more complex dynamics of volatile LiWES

memristors bring computational benefits compared to the simpler dynamics assumed in

standard HOTS implementations.

We compare the classification accuracy of single-layer HOTS networks built with Ideal

Memristor, a simulated Memristor without STP, and two traditional single-decay HOTS
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architectures. In order to simulate a memristor without STP, we use the ideal model with

Eq. (1-5,1-6), which causes the memristor response to reset to A1+A2 at each new incoming

event evi after the end of the write pulse of width w has been reached. Additionally, we set a

single exponential decay model by setting k = 1, obtaining the original single decay response

without STP used for HOTS [51]. Each network was tested with 30 runs of the N-MNIST

dataset. Both the training set and test set were independently sampled for each run.

(Fig 7) shows the results. For brevity, we only show results with the Euclidean classifier.

Suppl. Table 3 contains additional results. The Memristor model is significantly more

accurate than the Memristor without STP and the two single decay HOTS models. Enabling

STP results in the largest increase in accuracy.

Our results also suggest that the double exponential decay better integrates temporal

information. Figure 8 shows the effects of STP and double-exponential decays on the time-

surface representations. Fig. 8(a) shows a full digit time-surface at a given time t0 and

a 11x11 Region-Of-Interest (ROI) with three distinct sub-regions. The ROIs are plotted

in 8(b), with the sub-regions showing the model response to ’Recent events’, ’Past events’

and ’Sensor noise’. The last region represents a portion of the frame where the digit is not

present. Activity is only caused by the typical salt and pepper noise of the DVS [58].

Fig. 8(c) shows the standard deviation of activity in the sub-regions, which is an indirect

measure of the amount of information about recent, past, or noise events represented by the

time-surface. Exponential decay kernels de-emphasize activity that is too fast or slow com-

pared to their decay time-constants. This is evident when compare the standard deviation

for recent events (light blue) in the HOTS Long Decay and for past events (dark blue) in

the HOTS Short Decay.

In the original HOTS model [51], time-surfaces were computed using single exponential

decay kernels. Thus, each layer is sensitive to activity only at a single temporal scale.

Integration across multiple scales was obtained using multiple layers with increasingly longer

time constants. However, the LiWES memristor has double exponential decay response with

both short and long time constants. This enables a single layer to integrate information

across multiple time scales simultaneously. Thus, the standard deviations of activity for

recent and past events are comparable. This is true for both the Memristor model and the
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Memristor without STP.

The standard deviation from the sensor noise region (in green) achieves its maximum

for the HOTS Long Decay model and its minimum for the Memristor model. Longer de-

lays cause the time-surfaces to accumulate multiple random events, increasing the standard

deviation. In contrast, STP reduces standard deviation by summing the effect of multiple

spikes, suppressing the effect of random events. This is consistent with our finding that the

Memristor w/STP has smaller standard deviation in the sensor noise region compared to

the Memristor w/o STP. This effect might also account for our finding that performance of

the network is insensitive to device stochasticity.

1.5 Discussion

Currently, available neuromorphic processors are still in their infancy, as they aim to

replicate biological neurons using silicon [45, 78, 15, 21]. However, their application has been

limited due to several factors. First, our understanding of the brain is incomplete, lacking a

comprehensive theory explaining its operations. Second, the different physical substrates of

silicon and biological brains make it difficult to replicate the fundamental operation of tempo-

ral integration in the brain using neuromorphic architectures. Current solutions implement

temporal integration digitally [20, 70] or through a combination of capacitors and transis-

tors [62]. In contrast, this work utilizes an electrochemical memristor [110] with transitory

conductance response to implement temporal integration on a single component, opening a

path towards the development of compact and energy-efficient neuromorphic systems.

Advancements in technology offer a broader range of materials that could potentially fa-

cilitate the design of improved silicon-based brains. Architectures using this device challenge

the conventional choices for abstraction level and partitioning in mixed-signal neuromorphic

processors. These designs can employ more advanced computation building blocks and de-

sign rules. Determining the appropriate level of abstraction [38] remains an open question.

The level of abstraction closely interacts with the physical substrate and the computational

model design.
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Figure 7: In this test, we compare the recognition rate of our memristor model (with STP
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HOTS with a single ”long” decay, or a single ”short” decay. Both double exponential decay

and STP significantly (p < 0.01) improve accuracy over traditional single-decay w/o STP

HOTS.
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Figure 8: The effect of multiple exponential decays and STP on the Time-Surface repre-

sentation. (a) time-surfaces for the same input computed using (left to right) HOTS with

Ideal Memristor model, HOTS with the Ideal Memristor model but without STP, and the

original HOTS with time constants of 5ms and 92ms. (b) Zoom in views of the 11x11 Region

Of Interest (ROI), where we identify three sub-regions: recent events (light blue), previous

events (dark blue), and sensor noise (green). (c) Plots of the standard deviation of activ-

ity in the three regions, which we use as a measure of information and noise. Because of

STP, the Memristor model scores the lowest Standard Deviation in the sensor noise region

(green). Networks with the double exponential decay (both for the Memristor model and

the Memristor w/o STP) have similar standard deviation in windows corresponding to Past

and Recent events. In contrast, HOTS single decay models can only represent information

at a single timescale, resulting in near zero standard deviations for past events with short

decays and for recent events for long decays.
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The commonly used level of abstraction, which closely resembles direct biological repli-

cation, models neural computation using coupled ordinary differential equations. The tem-

poral dynamics of this model enable information integration over time, while the coupling

across state variables models spatial information integration [1]. Analog continuous time

VLSI circuits, such as those described by Mead [60], are commonly used to implement this

level of abstraction. Although these circuits offer low power consumption, they suffer from

drawbacks such as mismatch and limited programmability.

A related level of abstraction involves coupled difference equations and is commonly

implemented using digital design methodologies in standard CMOS processes or FPGAs

[45, 78, 15, 21]. However, even with fully custom designs, these implementations fail to

achieve the low power levels sought by neuromorphic engineers.

Hybrid substrates present an intriguing design space that can leverage the advantages

of both analog and digital domains [100]. The most prevalent hybrid model utilizes analog

circuits for computation and digital circuits for communication [84, 16, 44]. This approach

recognizes that digital circuits operate much faster than the typical spike rate of neurons, en-

abling a single digital bus to carry signals from multiple neurons. Multi-chip Address Event

Representation (AER) networks [71, 28] embody this level of abstraction, where computa-

tion within each chip utilizes analog continuous time circuits, while communication between

circuits is digital and often asynchronous.

In this context, we advocate for a hybrid model that employs a different partitioning in

the abstraction. Rather than dividing along the lines of function (computation vs. commu-

nication), we propose a partitioning based on dimension (time vs. space). We argue that

analog implementation is optimal for temporal integration of signals, particularly spiking

signals, while digital technologies are better suited for spatial integration. Newly developed

memristive technologies [67, 121, 93, 102] provide an excellent physical substrate for tempo-

ral integration. In contrast, spatial integration, which requires signal communication across

space, is best achieved using digital technologies.

The memristive network we study moves in the direction of the proposed partitioning.

It exhibits space-time separability, as it integrates information over time, pixel by pixel, or

more generally, neuron by neuron, followed by spatial integration across pixels or neurons.
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Space-time separability is a well-known principle in digital signal processing algorithms,

offering significant implementation advantages [37].

However, not all neuromorphic algorithms exhibit space-time separability. For instance,

not every set of coupled differential equations can be expressed as a space-time separable set

of operations, with the majority being unable to do so.

Nevertheless, we argue that a large and compelling class of algorithms, operating at an

abstract scale without relying on spiking neurons, specifically those utilizing time-surfaces

and hierarchies of time-surfaces (HOTS) [51, 97, 35], naturally exhibit space-time separa-

bility as described earlier. These algorithms are ideally suited for implementation using a

combination of memristive devices for temporal integration and digital spatial integration,

particularly clustering and mapping to the nearest cluster centers. By combining HOTS with

a novel three-terminal memristor (LixWO3), we illustrate how such architectures can be em-

ployed for pattern recognition while remaining robust against non-idealities encountered in

memristive devices, such as random mismatch and noise.

1.6 Conclusion

Recent developments in semiconductor technology have led to the design and creation

of a new class of devices called memristors. It has been predicted that memristors will be

used in the near future as the atomic component of more advanced and complex systems,

which can provide performance superior to conventional transistor-based hardware [101]. In

neuromorphic engineering, memristors are more commonly used as ”static” synaptic weights

for the spatial integration of signals. While the temporal dynamics of memristors are known

in the literature, we still need to understand their computational properties better to be able

to exploit them fully in practical scenarios.

In this work, we used a LixWO3 electrochemical memristor to test the effect of pro-

grammable time constants, double exponential decay and STP on the widely used N-MNIST

dataset and POKERDVS dataset. We used single-pulse recordings to build a model of the

device and then used it to simulate a HOTS network. The ability to program time constants
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is important, as different tasks generate spike activity with different temporal dynamics as

evidenced by our results comparing the best pulse parameters for the M-NIST and POK-

ERDVS datasets. In this work, we assumed that time constants for all memristors in the

network had the same statistics, but moving forward, it may be interesting to investigate

setting time constants layer by layer or even neuron by neuron. We showed that the intrinsic

stochasticity of the device did not impact accuracy (VI.B section). However, we also showed

a relationship between latency and accuracy that could be used to offset accuracy loss by

increasing integration time in devices with less precise temporal dynamics. This is especially

important as it extends our considerations to memristors other than the one we tested, such

as two-terminal memristors that also exhibit STP [67, 102].

One limitation of our results is that we could not include device mismatch in our simu-

lation, as we have yet to realize a LiWES array, which would allow us to characterize this

mismatch. However, we have modelled cycle-to-cycle variation, which also gives rise to mis-

match in time-surfaces, albeit over time rather than space. Nonetheless, our results showing

robustness to this type of mismatch suggest that our network may also be robust to spatial

mismatch. This is a promising avenue for future work.

The last section (VI.C) explored the computational properties of STP and the double

exponential dynamics. Both STP and double exponential decay dynamics increased the

accuracy of the network compared to the original HOTS network with single exponentials

and no-STP. STP contributes to reducing ”Noise” in the network. Multiple exponential

dynamics allow temporal integration across a broader time scales. Since time-surfaces are

based on an exponential decay kernel, akin to biological EPSP/IPSPs, we expect our results

to generalize to a wider class of models, such as integrate and fire neurons. These results

are of particular importance as they highlight the practical use of less explored properties of

this class of memristive devices and allow us to envision a future where memristors are used

for temporal data processing and synaptic weight, eliminating the need for more complex

analog or digital circuits.

Taken as a whole, our work provides strong evidence that the volatile properties of

memristors can become a powerful tool for building a more specialized class of neuromorphic

systems while reducing design complexity.
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2.0 Sup3r: A Semi-Supervised Algorithm for increasing Sparsity, Stability,

And Separability In Hierarchy Of Time-Surfaces architectures.

This chapter focuses on a novel learning rule for HOTS I started developing while still

collaborating with Feng’s group. During this period, I got galvanized by the potential of

memristive devices for implementing local learning rules while growing increasingly frustrated

with HOTS problems and limitations. One of the fundamental limitations is layer-wise

learning, in which every layer has to be trained separately via k-means or other clustering

algorithms. This method is time-consuming, expensive memory-wise when performed offline

(as all data has to be loaded in memory to perform a centroid update), and underperforming

(compared to SNN trained with backpropagation).

However, clustering offers a different interpretation for training neural networks alto-

gether compared to backpropagation, where the training process is categorized as function

fitting. For its compositionality, clustering offers a natural implementation of continual and

incremental learning, properties that could be extremely useful for applications where data

is time-varying. This is often the case of biomedical data and, more specifically, neural

recordings.

For these reasons I became interested in the search of a novel algorithm for end-to-

end supervised clustering that could also prove the properties of continual end incremental

learning on HOTS. Inspiration for this work came from insightful discussions with prof Carl

R. Olson, Caroline Runyan, Himanshu Akolkar, and Andy Schwartz.

Since my time at Pitt ended prematurely due to lack of funds, this work was not con-

cluded, but it is publicly accessible via arXiv [80] and will be completed in the following

months. The following sections are the ones published on arXiv version 2. This work was

authored by me, under the supervision of Himanshu Akolkar, and Ryad Benosman.
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2.1 Introduction

Hierarchy Of Time-Surfaces is a neuromorphic algorithm used to extract features from

patterns of events [51]. This is possible thanks to a type of representation called time-surface

or time-vector, where events are interpolated by exponential decay kernels and collected to

represent relative time differences between the activation of units in the network. Time-

surfaces are one of the most common representations in the neuromorphic field since they

allow to interface event data with traditional machine learning and computer vision algo-

rithms [31, 33]. In HOTS, time-surfaces are clustered together using algorithms like k-means

to extract common activity patterns, and layers of units are built by considering each cen-

troid as a neuron that can emit a new event when an input time-surface is assigned to

it. For this reason, HOTS shares many points in common with bag-of-words or bag-of-

features algorithms[19]. For instance, HOTS requires an external classifier on histograms

of features to classify information. Similarly to bag-of-words algorithms, HOTS classifiers

are histograms that accumulate features over a given temporal window to produce an input

vector to traditional machine learning algorithms like Support Vector Machines and Multi-

Layer Perceptrons[106, 81, 51, 82]. This approach limits compatibility with neuromorphic

hardware and can nullify latency and energy efficiency advantages that are found in neuro-

morphic systems. Compared to Spiking Neural Networks (SNNs) trained with backpropaga-

tion through time, HOTS lags in accuracy [97, 34, 95, 51]. However, feature engineering and

model tweaking can often bridge the gap on selected tasks [34, 97]. This is not surprising as

it is known that clustering algorithms can reach comparable accuracy to small Convolutional

Neural Networks (CNNs) when carefully tuned [17]. Moreover, clustering-based algorithms

like HOTS are still worth investigating because of properties that might be inherited from

clustering, like better explainability [69, 47] compared to more complex SNNs and continual

and incremental learning[9, 75, 52]. This work presents Sup3r, a Semi-Supervised algorithm

for increasing Sparsity Stability and Separability in the Hierarchy of Time-Surfaces. This

algorithm can train end-to-end HOTS networks online, ditching the classifier for a Deep

Neural Network architecture where every last unit encodes for a different label. We show

that Sup3r can learn class-informative patterns and rejects events from confounding fea-
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tures, reducing the number of processed events. Moreover, Sup3r allows the HOTS network

to adapt to distribution shifts in the data (continual learning) and learn new tasks without

forgetting (incremental learning). Finally, preliminary results on N-MNIST show that Sup3r

can reach comparable accuracy to a similarly sized Artificial Neural Network (ANN) trained

with back-propagation.

2.2 Time-surfaces And Time-Vectors

HOTS originally introduced the concept of time-surfaces [51]. These descriptors encode

relative timings between events of units within a defined neighborhood and were historically

used on events generated by event-based cameras [90]. This type of camera does not out-

put frames but an asynchronous stream of events generated by individual pixels detecting

brightness changes. Thus, in the context of vision, an event i can be described as the tuple:

evi = (xi, yi, pi, ti) (2-1)

where ti is the timestamp of the event, xi and yi are the horizontal and vertical coordi-

nates of the pixels generating the event, and pi ∈ [0, 1] is the polarity of the event, which is

0 when the event signifies a decrease in brightness for the given pixel and 1 when it signifies

an increase. To generalize to different modalities and uses, we can redefine events as:

evi = (xi, pi, ti) (2-2)

where x is now a vector (in bold) representing any possible space coordinates depending

on the event-based sensor type. In the case of events generated by event-based cameras

x = (x, y) [51], whereas in the case of neuromorphic cochleas x = ch representing the

channel index [81]. To generalize, we consider pi ∈ N as we now use it to index events

produced by multiple units at the same spatial location [51, 81]. Time-surfaces are built by

centering a squared window Ri of lateral size l around every xi and collecting the last event

emitted by neighboring pixels in a time context Ti:
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Ti = max
j≤i

{tj|xj ∈ Ri} (2-3)

Finally, time-surfaces are built by applying an exponential decay kernel on the time

context:

tsi = e−
(ti−Ti)

τ (2-4)

time-vectors tvi are a more general definition of time surface where the number of di-

mensions is one or more than two [81]. In HOTS, time-surfaces are clustered with clustering

algorithms like k-means. Whenever a time-surface is assigned to a centroid, it produces

an event. These events can be used to generate new time-surfaces that can be clustered

with longer taus to integrate and extract more complex patterns of activities [51]. Events

outputted by a layer k are so defined:

evk+1
i = (xi

k+1, pk+1
i , tk+1

i ) (2-5)

where xi
k+1 = xi

k, tk+1
i = tki , and pk+1

i = fk
i with f being the ”firing” feature/centroid

assigned to the input time-surface tski .

2.3 A Hierarchy Of Time-Surfaces And Time-Vectors

A fundamental principle behind HOTS networks is the increase of spatial neighborhood

Rk and τ k at every layer to extract longer and more complex spatial and temporal patterns.

In this work, we use the same principle, with the difference of the last layer K (where K

denotes the last layer of a network with layer index k) where RK is always including all

coordinates x. This is somewhat different from traditional HOTS implementation, where it

is often the external classifier that integrates all the possible spatial coordinates.
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2.4 Sparsity, Separability, And Stability In Spiking Networks

Sup3r aims to remove external classifiers from HOTS by using the network’s last layer as

a classifier for a pattern recognition problem. In that case, we expect the number of clusters

to equal the number of classes in the problem and for each cluster to generate events only

when the correct class is presented to the network. In this context, the classifier will have to

limit the firing to only one unit (high Sparsity) for the whole duration of the stimuli (high

Stability). In the context of clustering, this also means that classes assigned to different

centroids must be well Separated. Conveniently, we can represent these three concepts

using a time-vector called feedback-time-vector ftvK , built on the output events evK+1
i of

our classifier. Rather than pulling the last event in a given neighborhood R (eq. 2-3), we

pull the last event of every polarity in the last layer:

FTK
i = max

j≤i
{tK+1

j |pK+1
j } (2-6)

We use ftvk to differentiate feedback time-vectors from standard time-vectors tvK or

time-surfaces tsK built on the input events evKi . We then use it to build the descriptor S:

SK
i = G(ftvK

i [f ]−
NK∑
l ̸=f

ftvK
i [l]

K − 1
) (2-7)

Where f is the index of the feedback-time-vector element corresponding to the ”firing”

centroid (last event) that triggered its generation, and NK is the number of clusters for layer

K. G is a sign function that is positive if the ”firing” centroid corresponds to the correct

class label, negative if otherwise:

G =

+ for f = cc

− for f ̸= cc

(2-8)

where cc is the index of the correct class. To see how this descriptor relates to Sparsity,

Stability, and Separability, let us look at the limits for S. If the classifier has a stable,
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sparse, and correct response (only one unit active, corresponding to the correct class index

cl), S will tend to 1:

SK
i = +(1−

NK∑
l ̸=f

0

K − 1
) = 1 (2-9)

Conversely, if only one unit is active, but it corresponds to the wrong class label, G will

be negative:

SK
i = −(1−

NK∑
l ̸=f

0

K − 1
) = −1 (2-10)

indicating a fully sparse and stable but wrong response, meaning the classifier does not

correctly separate the classes.

In case the activity of the classifier is dense, meaning that all clusters are firing events

at approximately the same time, the feedback time-vectors will become fully populated by

ones, making S = 0:

SK
i = G(1−

NK∑
l ̸=f

1

K − 1
) = G(1− K − 1

K − 1
) = G(0) = 0 (2-11)

Thus, S amplitude ∈ [0, 1] represents the degree of sparsity and stability of the last

layer activation, where 1 denotes a fully sparse and stable response, and 0 indicates a dense

and unstable activity. We can extend this descriptor to every layer of the network k to

characterize the degree of Sparsity, Stability, and Separability of all the centroids in multi-

layer networks. The only difference with layer K is that intermediate layers will output

events with spatial coordinates since they are not integrating over all coordinates x (sec.

2.3). Therefore, the feedback time context FT k
i will be defined as such:

FTk
i = max

j≤i
{tk+1

j |xk+1
i ,pk+1

j } (2-12)

meaning that FTk
i pulls events with different polarities pk+1

j and the same spatial coor-

dinates xk+1
i .
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2.5 Learning Class-Relevant Features

Since we want to develop an online and local learning rule, we cannot resort to backprop-

agation to maximize S, especially if we consider that HOTS neurons are not differentiable.

Therefore, we resort to a different approach, focusing on using a modified online k-means

learning rule. The learning rule we propose is described by the following equation:

∆ckf = α∆Sk+1
i qk

i,f + βSk+1
i qk

i,f (2-13)

where α andβ are learning rates, ckf represents the position of the ”firing” centroid,

assigned to a novel time-surface tski and qk
i,f = tski − ckf . If we assume Sk

i ,∆Sk
i = 1 and

η = α + β, the equation takes the form of online k-means [9]:

∆ckf = η qk
i,f = η (tski − ckf ) (2-14)

As shown (eq: 2-13), the proposed learning rule comprises two terms that weight the

online k-means equation (eq: 2-14) by ∆S and S. The first term allows centroids to only

move in the direction of a set of features when they are associated with an increase in S.

Conversely, centroids will move away from features that decrease S (such as features of

the wrong class or class-unrelated features), ensuring that only class-relevant features are

learned. As S → 1, ∆S → 0 that makes the first term of equation 2-13 tend to 0. This

ensures the learning rate will decrease as we approach a maximum, but it can cause the

centroids never to reach the center of mass of clusters. For this reason, the second term of

the learning rule is weighted by S but with a different learning rate β < α to ensure it is not

adding instability to local maxima.

2.6 Individual Thresholds

One problem arising from the presented learning rule is the choice of the decision bound-

aries for the cluster assignments. In k-means, the decision boundaries are defined as the
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equidistant points between two adjacent clusters, similar to the borders of a Voronoi dia-

gram. Inconveniently, the learning rule presented with equation 2-13 is not compatible with

this type of decision boundary. The reason is that this type of segmentation will always

assign every sample to a centroid, making it impossible to learn only class-relevant features.

This means that when some centroids are pushed to more relevant features, the less relevant

features will be assigned to other nearby clusters, reducing their specificity and ultimately

lowering classification accuracy. To avoid this scenario, we introduce individual thresholds

thk
n, where n is the cluster index for layer k. We initially assign every sample to the closest

cluster as done in k-means, but now, every cluster will generate a new event only when

the sample distance to the cluster is less than thk
n. When this happens, we tune individual

thresholds with the equation:

∆thk
f = γ∆Sk+1

i e−
∥qki,f ∥2

dk + δSk+1
i e−

∥qki,f ∥2
dk (2-15)

where d is a parameter used to control how close to the border samples need to be to

have an effect on the threshold update. We also update nearby thresholds with a competitive

rule to reduce the number of events produced by the network and threshold overlap between

adjacent clusters. If a sample falls within the decision boundaries of other ”non-firing”

clusters, represented by the index nf , and ∆S and S are positive, we update their thresholds

with the following equation:

∆thk
nf = −γ∆Sk+1

i e−
∥qki,nf ∥2

dk − δSk+1
i e−

∥qki,nf ∥2
dk (2-16)

Similarly to equation 2-13, both rule presents two terms: one weighted by ∆Sk+1
i and

one weighted by Sk+1
i . The first term changes the decision boundaries to include samples

associated with an increase of S and reject samples associated with its decrease. In the

situation where the network is consistently wrong or consistently right, this first term will

tend to 0, requiring a second term weighted by Sk+1
i to increase network firing rate and

stability for correct classes and reduce them for incorrect ones. As noted for equation 2-13,

δ < γ to ensure the stability of the learning rule.
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2.7 Network Initialization

Similarly to k-means, centroid initialization is an important step to ensure good results

[36]. Random initialization might put the centroids too far away from the feature spaces or

regions where the sum of updates from the learning rule might push centroids even further

from any meaningful features. However, we are not interested in state-of-the-art initialization

techniques since they might obfuscate the actual performance results of Sup3r. Therefore,

we initialize centroids on the average time-surfaces from a small batch of data and add noise

drawn from a uniform distribution:

ckj = (1− ζ) tsk + ζ µts U
k
j (2-17)

Were U represents a matrix with the same shape as ckj and composed of random values

pulled from a uniform distribution. Since tsi with small τ are mostly 0 while tsi with high τ

are mostly 1, we scale U by the average of the elements in tsk, defined as µts. This approach

is extremely simple. In the future, more complex approaches could be explored to ensure

the convergence of most features and boost learning speed and accuracy.

2.8 Results

2.8.1 Synthetic Benchmark

Hierarchy of Time-Surfaces uses unsupervised clustering algorithms such as online k-

means to extract recurring features in the data. While this approach can be effective for

pre-training on large quantities of unlabeled data, it presents several drawbacks compared

to state-of-the-art neuromorphic networks that use approximate gradient methods based on

Back Propagation Through Time. One problem is the need for an external non-neuromorphic

classifier, which we outlined in the introduction. A second problem is the loss of accuracy

when learning non-class-relevant features. To best represent this problem, we design a tai-

lored neuromorphic synthetic benchmark. We propose a visual pattern classification task
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requiring a three-layered network (fig. 9). The proposed task is to classify two ”sentences”

(”v/v yty” and ”vxv yty”) composed of two ”words” each made of three ”characters” drawn

by lattice of 5x5 Poisson spiking neurons, for a total of 5x30 neurons (as can be seen in fig.

9a). Yellow pixels correspond to ”high” firing rate while blue pixels correspond to ”low”

firing rate. We use Poisson neurons and background firing rate to introduce variability per

every sample. The training set consists of 1000 different recordings (500 for each sentence)

of 10ms. This visual pattern is then classified by a three-layered convolutional HOTS neural

network (fig. 9b) where the first layer (N1 = 3) responds to individual characters, the second

layer (N2 = 6) responds to single words, and the last layer (N3 = 2) classifies the entire

sentence. It should be noted that the number of HOTS centroids for each layer (Ni) does

not correspond to the actual number of clusters in the data. In the first layer, the number

of clusters is five (all the possible characters: ”v, /, x, y, t”), while in the second layer,

this number is three (all the possible words in the dataset: ”v/v, vxv, yty”). This choice is

motivated by the need to represent real-world scenarios in which the number of clusters is

unknown. This can be especially problematic when the number of centroids is less than the

actual number of clusters in the data, as similar clusters representing two features of distinct

classes might be assigned a single centroid. This is the case of layer 1, making it likely for

the same centroid to represent similar characters like ”x” and ”/”. These two characters are

the only difference in the two sentences in the dataset (fig 9a), making them class-relevant

features. Failure to assign separate centroids to ”x” and ”/” means that layer 1 will respond

similarly to the two sentences, causing the other network layers to fail to separate the two

sentences.

2.8.1.1 Classification Results

We show the classification results of a separate test set of 1000 recordings (500 recordings

for each sentence). We test Sup3r against a comparable network with k -means features.

Figure 10 shows the features from layer 1 for both architectures. As expected, Sup3r can

leverage Separability Sparsity and Stability from higher layers to extract ”x” and ”/” (fig.

10a) without utilizing the third centroid. Oppositely, k -means must assign every centroid
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Figure 9: The visual classification benchmark to test Sup3r on a small 3-layered network. a)

The test is composed of a ”sentence” (blue) classification task, where two different sentences

are each composed of two among three different ”words” (green), which are composed of

three of five different ”characters” (orange). The only difference between the two sentences

consists of two characters, ”x” and ”/”, which are contained in the top word. To generate

spiking data, sentences are written by a lattice of 5x30 Poisson neurons firing at a high firing

rate for the yellow pixels and a low firing rate for the blue pixels. b) The convolutional HOTS

network used to solve the task. The gray rectangles represent the output dimensionality of

each layer. N is the number of clusters responding to the six different characters in a sentence

(Layer 1), to the two words in a sentence (Layer 2), and finally to the entire sentence (Layer

3).
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to a group of samples and minimize their variance, an optimization technique that forces

similar features to share a centroid when the number of centroids is below the number of

actual clusters in the dataset. In figure 10b, we define the network accuracy by calculating

the percentage of events assigned to the right sentence in a single recording. The k -means

algorithm causes HOTS to fail to recognize the two sentences, resulting in ≈55.36% accuracy

(close to the chance level). Conversely, Sup3r reaches ≈99.92% accuracy while using only two

centroids. Since Sup3r can reject any event produced by the non-class-relevant features, it

outputs only≈14.33% of the input events (fig. 10c), potentially reducing energy consumption

in hardware implementations. To train the network we used the following parameters: α =

1 · 10−4, β = 1 · 10−5, γ = 1 · 10−4, δ = 5 · 10−6, τ1 = 1s,τ2 = 1ms, τ3 = 1ms and ftv taus

fτ2 = 100ms and fτ3 = 10ms. We also report the results in table 5.

2.8.1.2 Continual Learning

Sup3r learning signal SK
i is composed of a local signal (coming only from the next layer )

and a global signal G. It is important to note that the local signal is entirely unsupervised, as

there is no need to know the correct label to calculate it (eq. 2-7). This opens the possibility

of keeping the unsupervised learning running while inferring to adapt to potential shifts in

the class distributions. To test this feature, we design a test set of 1750 recordings by shifting

”x” and ”/” characters in the test sentences. To shift the characters, we subtract pixels from

“x” to add them to ”/” incrementally, with the final shift causing the two letters to swap

entirely (fig. 11a). Every shift lasts for 250 recordings, with the last shift lasting for 1000 to

ensure convergence and stability. Looking at the Sup3r centroids, we can see them adapting

to the shift so that ”x” and ”/” become swapped (fig. 11b). To evaluate Sup3r accuracy, in

figure 11c, we test the network against an ablated network with no unsupervised learning.

As expected, Sup3r adapts to distribution shifts while maintaining the original accuracy

(>99%), while the ablated network fails the task, ending with 0% accuracy. This final test

was performed with 10 independently trained networks with 10 distinct test sets. To train

the network, we used the same parameters we used for the classification results.
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Figure 10: Neuromorphic benchmark results, comparing Sup3r against k-means for feature

extraction. a) Layer 1 features extracted with k-means (light blue) and Sup3r (orange).

k-means fails to extract class-relevant features, while Sup3r can correctly extract ”x” ”/”,

leaving one centroid unused. b) Consequently, k-means fails the classification task, per-

forming close to the chance level (≈55.36% accuracy, calculated as the percentage of events

assigned to the correct class), while Sup3r can solve the task with ≈99.92% accuracy. Since

Sup3r rejects events from non-class-relevant characters, only ≈14.33% of events are propa-

gated in the network (calculated as the ratio between the number of the last layer output

events divided by the number of the first layer input events). Conversely, the k-means net-

work outputs the same number of input events.

Table 5: Classification results (Mean on 10 networks trained and tested on independently

generated synthetic datasets)

Accuracy Processed events

Sup3r Network 99.92% 14.33%
k-means 55.53% 100%
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Figure 11: Continual learning test with Sup3r. In this test, we perform a class shift in the

two sentences by subtracting pixels from ”x” and adding them to ”/” every 250 sentences

(a), with the final shift lasting 1000 sentences. Sup3r centroids slowly adapt to the shift

(b). In (c), Sup3r network accuracy remains high and returns to ¿99%, while the same

network without unsupervised learning fails the task (Ablation). This test is performed with

ten independently trained networks and randomized test sets. Accuracy is reported as the

average across runs in dark colors with min and max values in light colors.
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Table 6: Incremental Learning results (Mean on 10 networks trained and tested on indepen-

dently generated synthetic datasets)

Task 1 Task 2 Task 1 after Task 2

Sup3r Network 99.92% 99.99% 99.96%

2.8.1.3 Incremental Learning

Our hypothesis is that Sup3r ability to extract sparse class-relevant features makes it a

natural candidate for Incremental Learning. Since we are extracting a set of sparse class-

relevant features, Sup3r might learn new tasks simply by adding new centroids and fixing

the previous ones to avoid catastrophic forgetting.

To test this hypothesis, we design a new task (task 2) in which a Sup3r network has

to learn two novel sentences, ”vpv yty” and ”vov yty”, after being trained on the previous

classification task (task 1) in section 2.8.1. We then tested the same network on task 1 after

retraining on task 2 to demonstrate that it did not suffer catastrophic forgetting. We show

the results in Table 6.

The results show that the network can train on Task 2 and preserve the accuracy pre-

viously reached on Task 1. To train the network, we used the same parameters we used for

the classification results.

2.9 Sup3r Against Backpropagation

We present preliminary results to show how Sup3r compares against backpropagation.

We use the N-MNIST dataset [68] a neuromorphic version of the popular MNIST dataset

[24]. This allows us to compare a Sup3r-HOTS network with a traditional ANN. The Sup3r

HOTS network has a single hidden layer with 32 centroids and spatial neighborhood R1 = 9.

The ANN has the same architecture with a single convolutional hidden layer with 32 units

with sigmoid activation and filter size 9x9. We train the ANN with stochastic gradient
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Table 7: Sup3r NMNIST comparison

Sup3r on N-MNIST ANN on MNIST HOTS on N-MNIST[82]

Test Accuracy 94.98% 95.61% 91.27%

% Processed Events 72.61% N/A 100%

*HOTS implementation consisting of 2 layers (32-96 centroids) of double exponential

time-surfaces and an SVM polynomial classifier [82].

descent and a learning rate of 0.05. Other Sup3r parameters where τ1 = 100ms, τ2 = 1ms ,

α = 5 ·10−3, β = 5 ·10−6, γ = 1 ·10−4, δ = 1 ·10−7. The reason for such low learning rates was

the batch-based training implemented on GPU via OpenCL to achieve higher parallelism and

reduce computation time. In this implementation, ∆ckf are summed for every event, causing

large centroid and threshold updates, which are compensated by lowering the learning rate.

Table 7 shows the result of this comparison.

Sup3r accuracy is comparable to an ANN on MNIST and higher than HOTS best results

[82] on a two-layered network (32-96 centroids) with double exponential decay time-surfaces

and a polynomial SVM classifier, while cutting off 28% of events. While these results are

promising, it is important to underline that they are preliminary. The reason is that this

test was implemented on OpenCL for GPU acceleration, prioritizing code readability and

debugging rather than hardware optimization. This limited the number of experiments we

run on N-MNIST. A single epoch of the N-MNIST dataset runs between 2 hours and 45

minutes on an NVIDIA 2060 Super, depending on the number of processed events in the

network, as computation is done event by event. This is due to the high CPU usage to queue

multiple kernels per event, the much bigger N-MNIST dataset compared to his frame-based

counterpart (several thousands of sparse events compared to a single 28x28 frame), and to

HOTS, which requires several small matrix operations like multiplications and accumulation

to process a single event. Exploiting vendor-specific optimized kernels, sparse libraries,

kernel launching from GPU, and matrix operations should significantly reduce computation

time and allow for an exhaustive hyperparameter analysis and testing on more complex
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architectures and datasets.

2.10 Conclusion

In this paper, we presented Sup3r, a novel learning algorithm for training Hierarchy of

time-surfaces algorithms. Our results show that this algorithm can extract class-relevant fea-

tures, reduce the number of processed events, and enable incremental and continual learning

without the need for external classifiers. Moreover, preliminary results show that this al-

gorithm could reach comparable accuracy to backpropagation on a small network. All the

results together make Sup3r the best way to train HOTS networks end-to-end. Future works

will have to focus on accelerating Sup3r on GPUs, testing it on more complex datasets and

deep-layered architectures, and reducing the excessive number of hyperparameters. Another

point of interest could be to adapt Sup3r to work on much more popular Spiking Neural

Network models like Integrate and Fire neurons.
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3.0 Conclusions

This thesis focused on fundamental hardware and software challenges of future iBCIs

neuromorphic decoders.

From a hardware perspective, the thesis explored the use of ECRAM memristor’s volatile

properties to implement temporal synapses and time-surfaces within a single device. This

marks an incremental step for developing efficient and compact hardware decoders capable

of processing spiking data with low latency and efficiency.

On the software side, this thesis proposed Sup3r, an online learning algorithm that

enables Incremental and Continual learning on HOTS. On future neuromorphic decoders,

this algorithm will enable adaptation to data distribution shifts to avoid re-calibrating and

learning new tasks, resulting in a significant life improvement for iBCIs users.

However, further research is needed to develop a neuromorphic decoder based on Sup3r

and ECRAM memristors. Primarily, we need to demonstrate a hardware implementation of

a Spiking neural network on an ECRAM crossbar array using standard CMOS fabrication.

Encouragingly, recent developments, such as the demonstration of the first crossbar array on

CMOS technology [14], demonstrate the feasibility of this approach, although lacking any

analysis of the device’s volatile properties. Additionally, efforts must be directed toward

mapping Sup3r-HOTS onto ECRAM crossbar arrays and designing specialized hardware

blocks to implement the proposed learning rule and HOTS neurons.

On the software front, further work is needed to validate this decoder’s efficacy through

animal trials to fully characterize accuracy, latency, energy consumption, and robustness to

shifts in recorded activity. Another possible research avenue is to generalize Sup3r to perform

regression. This is necessary to enable fine movement decoding to control end effectors such

as robotic arms.

In conclusion, while initial steps have been made, the journey towards realizing a fully

functional neuromorphic decoder based on Sup3r and ECRAM memristors remains ongoing,

with further research and experimentation required to bridge existing gaps and unlock the

full potential of these technologies. In the future, such decoders will enable scalable, robust,
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and efficient iBCIs, enabling patients to regain autonomy outside controlled environments

and research labs.
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Appendix Examples And Results

A.1 Testing LiWES, A LixWO3 Electrochemical Synapse For Spiking Neural

Networks

A.1.1 Model Fitting And Parameters Estimation

After defining the model, we need to estimate its parameters, namely, A1, A2, τ1, τ2. We

apply a single voltage pulse at the Gate using a function generator (Tektronix AFG3252C).

We then read the channel current IDS by applying a small reading voltage bias (100 mV)

between source (S) and drain (D) using a Keithley Semiconductor Parameter Analyzer (4200-

SCS) at a sampling rate of 6 ms, no additional circuit is required. We calculate the device

conductance using Ohm’s rule; GDS = IDS/V DS. This temporal precision is not enough

to evaluate Grise, as all the pulse durations are sub-millisecond. Therefore, we can only

determine the parameters by fitting Gdecay. Before fitting, we scale the data by removing

the mean base conductance at the steady state, and we normalize by dividing the data by

the mean maximum conductance over multiple recordings. After this step, we fit Gdecay

using the Gauss-Newton algorithm in the statistical analysis software JMP®. We can now

obtain sets of all the necessary parameters from multiple recordings of the LixWO3 synaptic

memristor.

A.1.2 Mutual Information

Information was calculated using this equation:

Iδ(S;R) =
∑
s

P (s)
∑
r

P (r|s)δlog2(
P (r|s)δ
P (r)δ

) (Supp. Eq: 1)

with r being the response of the network, either a 1 or a 0, representing the presence

of an event ev
[k]
i with a given polarity p, and s being the “type” of the stimuli eliciting the

response (the N-MNIST digit). In other words, Iδ(S;R) gives a measure of how reliably

a single cluster of the network, tends to respond to the same type of input stimuli. Since
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we used an equal number of different digits to calculate Iδ the probability of s is uniform

P (s) = 1/10. For P (r)δ, we randomly extracted events ev
[k]
i from single recordings, and

then calculated the probability of finding an event ev
[k]
j with the same polarity, in any other

recording, within a time window of length δ centered around the time stamp ti of the original

event. Similarly to Akolkar et al. [3] responses were binary, so if multiple events with the

same polarity were present within the time window of the same recording, only one was

considered. To calculate P (r|s)δ, we repeated the process used for P (r)δ but only searched

events over multiple recordings of the same digit s. Finally, we calculated Iδ(S;R) over

different time windows sizes (δ) and averaged the response for all the different polarities and

multiple runs, defining a metric (MI) of how much information can be extracted from the

network response in a given time window [Fig. 5(f,g)]. The results we show were calculated

on the same recordings used for the individual runs in Fig. 5(a), in order to offer a true

comparison between the recognition rate and mutual information. In order to validate the

use of the proposed Mutual Information calculation as a proper metric for the stochasticity

of the device and its effects on recognition rates, we simulated a hypothetical device with the

same parameters used for the results shown in Fig. 5, but increasing the standard deviation

of the model parameters by 2x, 5x, 10x. These results are reported in Supp. Fig 13 and

show that both Mutual Information and recognition rate decrease for higher deviation in the

device response (higher standard deviation in the stochastic parameters Eq. [6,7]).

A.1.3 Short Term Plasticity And Time-Surface Normalization

While STP could play a role in averaging and removing noise, it also presents a problem

for clustering algorithms as k-means. In HOTS-like algorithms, Time-Surfaces are naturally

bounded between 0 and 1; however, in this model, the memristor conductance is the sum

of multiple events, which causes Time-Surfaces to reach values above 1. Unbound Time-

Surfaces can impact classification, causing the clustering algorithm to perform poorly [17].

To avoid this problem, we normalized Time-Surfaces before clustering with k-means.
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Table 8: Classification accuracy using memristors dynamics vs original exponential decay

kernel of HOTS

Avg. Accuracy ± Std. Deviation t-test p-value (vs Memristor w/o STP)

Memristor w/o STP 56.92%± 1.73% N.A.

2 Layers HOTS N [2] = 32 54.96%± 2.19% 3.52 ∗ 10−7

2 Layers HOTS N [2] = 64 57.92%± 1.84% 0.003

Results obtained with N [1] = 32 clusters over 60 consecutive runs.

A.1.4 1 Layer Memristor Model Vs. 2 Layers Of Traditional HOTS

In addition to comparing a single memristor layer and a single HOTS layer, we also tested

two layers of HOTS against a single memristor layer w/o STP (Suppl. Table 8). Interestingly,

keeping the same number of clusters for both layers N [1,2] = 32 causes a significantly lower

accuracy than the double exponential decay of the Memristor model. This is probably due

to the fact that clusters act as separate polarities for the next layer, increasing the distance

between different patterns of different polarities when compared to different patterns from

the same polarity. This effect might push the next layer to associate a single cluster for each

polarity requiring more clusters to achieve a better feature extraction. A 2 Layer network

from HOTS with N [1] = 32 and N [2] = 64 achieves similar performance to the Memristor

model with N [1] = 32 (Suppl. Table 8).

A.1.5 Additional Methods

All the simulations were performed in Python. Clustering was achieved using a mini-

batch k-means algorithm as a faster and more efficient Python multithreaded implementation

[88].
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Table 9: N-MNIST classification accuracy with memristor dynamics using different pulse

parameters

Pulse settings (200µs,1V) (200µs,2V) (200µs,3V) (200ms,4V)(500µs,1V) (750µs,1V) (1ms,1V)

One Layer (Hist)
62.57%±
1.11%

63.45%±
2.29%

64.11%±
1.73%

63.68%±
1.16%

63.30%±
1.84%

61.30%±
0.84%

62.90%±
2.11%

Two Layers (Hist)
81.11%±
0.87%

82.01%±
0.64%

82.20%±
1.23%

81.91%±
0.38%

82.21%±
1.42%

80.36%±
1.60%

81.14%±
0.89%

One Layer (SVC)
90.86%±
0.51%

90.61%±
0.43%

90.86%±
0.34%

90.86%±
0.55%

90.94%±
0.46%

90.78%±
0.27%

90.79%±
0.39%

Two Layers (SVC)
90.90%±
0.22%

90.92%±
0.24%

91.15%±
0.37%

90.93%±
0.21%

90.09%±
0.16%

90.95%±
0.19%

91.27%±
0.29%

Results obtained with N [1] = 32 clusters for layer 1 and N [2] = 96 for layer 2 over 5 runs and with
pulse characteristics from Table. 1,2 [Main text]

Table 10: POKERDVS classification accuracy with memristor dynamics using different pulse

parameters

Pulse settings (200µs,1V) (200µs,2V) (200µs,3V) (200ms,4V)(500µs,1V) (750µs,1V) (1ms,1V)

One Layer (Hist)
76.00%±
11.58%

80.00%±
8.94%

84.50%±
10.36%

74.50%±
15.72%

83.00%±
8.12%

76.00%±
12.81%

77.00%±
10.53%

Two Layers (Hist)
95.50%±
4.15%

96.00%±
4.36%

95.00%±
3.88%

96.50%±
3.20%

95.50%±
4.15%

94.00%±
3.00%

95.50.14%±
3.50%

One Layer (SVC)
79.50%±
10.59%

81.50%±
8.38%

84.50%±
8.79%

78.50%±
8.38%

82.50%±
9.29%

78.50%±
7.43%

76.00%±
13.38%

Two Layers (SVC)
98.0% ±
3.31%

96.50%±
3.90%

97.50%±
4.03%

98.00%±
3.32%

97.00%±
3.32%

96.50%±
3.20%

97.50%±
4.03%

Results obtained with N [1] = 32 clusters for layer 1 and N [2] = 64 for layer 2 over 10 runs and
with pulse characteristics from Table. 1,2 [Main text]
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Figure 12: In this figure we show the results N-MNIST accuracy by number of clusters,

for a single layer (circles), and a second layer architecture (triangles). Layer 2 results were

obtained using 32 clusters in layer 1. As recognition rate quickly reaches an asymptote

around 90% recognition rate we decided that an architecture with 32 clusters for layer 1 and

64 clusters for layer 2 was a good compromise between performance and computation time.
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Figure 13: Mutual Information and recognition rates for hypothetical memristors stimulated

at 1v 200us but with 2x, 5x, 10x the standard deviations of the stochastic parameters. The

plots show that higher degrees of stochasticity can negatively impact Mutual Information of

the network (a-b) and Recognition rates (c) for both the tested classifiers (SVC and Hist).
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Table 11: Classification accuracy using memristors dynamics vs original exponential decay

kernel of HOTS

Avg. Accuracy ±Std.
Deviation

p-value (t-test vs Mem-
ristor)

p-value (t-test vs Mem-
ristor w/o STP)

Memristor 61.82%± 1.38% N.A. 9.26 ∗ 10−5

Memristor w/o STP 60.14%± 1.65% 9.26 ∗ 10−5 N.A.
HOTS Long Decay 58.93%± 1.48% 2.13 ∗ 10−10 0.0047
HOTS Short Decay 55.22%± 1.27% 1.78 ∗ 10−26 1.97 ∗ 10−18

Results obtained with N [1] = 32 clusters over 30 consecutive runs.
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Rauda, and R. Sevilla-Escoboza. Design and implementation of a jerk circuit using a
hybrid analog–digital system. Chaos, Solitons and Fractals, 119:255–262, 2019.

[17] Adam Coates and Andrew Y. Ng. Learning Feature Representations with K-Means,
pages 561–580. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[18] Jennifer L Collinger, Brian Wodlinger, John E Downey, Wei Wang, Elizabeth C Tyler-
Kabara, Douglas J Weber, Angus JC McMorland, Meel Velliste, Michael L Boninger,
and Andrew B Schwartz. High-performance neuroprosthetic control by an individual
with tetraplegia. The Lancet, 381(9866):557–564, 2013.

[19] Gabriella Csurka, Christopher Dance, Lixin Fan, Jutta Willamowski, and Cédric Bray.
Visual categorization with bags of keypoints. In Workshop on statistical learning in
computer vision, ECCV, volume 1, pages 1–2. Prague, 2004.

58



[20] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao,
Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al.
Loihi: A neuromorphic manycore processor with on-chip learning. Ieee Micro,
38(1):82–99, 2018.

[21] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao,
Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, Yuyun
Liao, Chit-Kwan Lin, Andrew Lines, Ruokun Liu, Deepak Mathaikutty, Steven Mc-
Coy, Arnab Paul, Jonathan Tse, Guruguhanathan Venkataramanan, Yi-Hsin Weng,
Andreas Wild, Yoonseok Yang, and Hong Wang. Loihi: A neuromorphic manycore
processor with on-chip learning. IEEE Micro, 38(1):82–99, 2018.

[22] Alan D Degenhart, William E Bishop, Emily R Oby, Elizabeth C Tyler-Kabara,
Steven M Chase, Aaron P Batista, and Byron M Yu. Stabilization of a brain–
computer interface via the alignment of low-dimensional spaces of neural activity.
Nature biomedical engineering, 4(7):672–685, 2020.
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Bertin, et al. Optogenetic therapy: high spatiotemporal resolution and pattern dis-
crimination compatible with vision restoration in non-human primates. Communica-
tions biology, 4(1):1–15, 2021.

[33] Daniel Gehrig, Antonio Loquercio, Konstantinos G Derpanis, and Davide Scaramuzza.
End-to-end learning of representations for asynchronous event-based data. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pages 5633–
5643, 2019.

[34] Antoine Grimaldi, Victor Boutin, Sio-Hoi Ieng, Ryad Benosman, and Laurent Per-
rinet. A robust event-driven approach to always-on object recognition. Authorea
Preprints, 2023.

[35] Antoine Grimaldi, Victor Boutin, Laurent Perrinet, Sio-Hoi Ieng, and Ryad Benos-
man. A homeostatic gain control mechanism to improve event-driven object recog-
nition. In 2021 International Conference on Content-Based Multimedia Indexing
(CBMI), pages 1–6, 2021.

[36] Marina Gul and M Abdul Rehman. Big data: an optimized approach for cluster
initialization. Journal of Big Data, 10(1):120, 2023.

60



[37] Muhammad Haris, Greg Shakhnarovich, and Norimichi Ukita. Space-time-aware
multi-resolution video enhancement. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2856–2865, 2020.

[38] Andreas V. M. Herz, Tim Gollisch, Christian K. Machens, and Dieter Jaeger. Mod-
eling single-neuron dynamics and computations: A balance of detail and abstraction.
Science, 314(5796):80–85, 2006.

[39] Leigh R Hochberg, Daniel Bacher, Beata Jarosiewicz, Nicolas Y Masse, John D
Simeral, Joern Vogel, Sami Haddadin, Jie Liu, Sydney S Cash, Patrick Van Der Smagt,
et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic
arm. Nature, 485(7398):372–375, 2012.

[40] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor
Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl,
Aidan Clark, et al. Training compute-optimal large language models. arXiv preprint
arXiv:2203.15556, 2022.

[41] Qilin Hua, Huaqiang Wu, Bin Gao, Qingtian Zhang, Wei Wu, Yujia Li, Xiaohu Wang,
Weiguo Hu, and He Qian. Low-voltage oscillatory neurons for memristor-based neu-
romorphic systems. Global Challenges, 3:1900015, 11 2019.

[42] Sio-Hoi Ieng, Joao Carneiro, Marc Osswald, and Ryad Benosman. Neuromorphic
Event-Based Generalized Time-Based Stereovision. Frontiers in Neuroscience, 12:442,
2018.

[43] IGN. Gabe newell talks half-life: Alyx and valve’s past and (unexpected) future – ign
first, 2020.

[44] Giacomo Indiveri. Modeling Selective Attention Using a Neuromorphic Analog VLSI
Device. Neural Computation, 12(12):2857–2880, 12 2000.

[45] Giacomo Indiveri, Federico Corradi, and Ning Qiao. Neuromorphic architectures for
spiking deep neural networks. In 2015 IEEE International Electron Devices Meeting
(IEDM), pages 4.2.1–4.2.4, 2015.

[46] Laxmi R. Iyer, Yansong Chua, and Haizhou Li. Is neuromorphic mnist neuromorphic?
analyzing the discriminative power of neuromorphic datasets in the time domain.
Frontiers in Neuroscience, 15, 2021.

61



[47] Adam Jaeger and David Banks. Cluster analysis: A modern statistical review. Wiley
Interdisciplinary Reviews: Computational Statistics, 15(3):e1597, 2023.

[48] YeonJoo Jeong, Jihang Lee, John Moon, Jong Hoon Shin, and Wei D. Lu. K-means
data clustering with memristor networks. Nano Letters, 18(7):4447–4453, 2018. PMID:
29879355.

[49] Bowen Ji, Zekai Liang, Xichen Yuan, Honglai Xu, Minghao Wang, Erwei Yin, Zhejun
Guo, Longchun Wang, Yuhao Zhou, Huicheng Feng, et al. Recent advances in wireless
epicortical and intracortical neuronal recording systems. Science China Information
Sciences, 65(4):1–18, 2022.

[50] D. Kuzum, R. G. D. Jeyasingh, and H. . P. Wong. Energy efficient programming
of nanoelectronic synaptic devices for large-scale implementation of associative and
temporal sequence learning. In 2011 International Electron Devices Meeting, pages
30.3.1–30.3.4, 2011.

[51] Xavier Lagorce, Garrick Orchard, Francesco Galluppi, Bertram E Shi, and Ryad B
Benosman. Hots: a hierarchy of event-based time-surfaces for pattern recognition.
IEEE transactions on pattern analysis and machine intelligence, 39(7):1346–1359,
2016.
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