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Pricing and Online Platform Design

Titing Cui, PhD

University of Pittsburgh, 2024

Revenue management and pricing is an evolving discipline that is rapidly expanding

with the rise of online marketplaces. For many online marketplaces, pricing strategy is a

central part of the platform’s design. In this thesis we employ methods from operations re-

search, stochastic optimization, and economics to model online platforms and optimize their

operations. Throughout we highlight the unique operational characteristics of these online

platforms, and how they require new and sophisticated models to study them. Specifically,

this dissertation focuses on the study of emerging pricing and online platform design prob-

lems in three contexts. First, we consider the problem of market segmentation and pricing

under the assumption that the seller has trained a regression model that maps customer fea-

tures to valuations. Second, we study the pricing strategy for online dating platforms, where

we analyze the profit and welfare trade-offs associated with different length subscriptions.

Third and finally, we consider the design and optimization of rating system for platforms,

focusing on how to extend rating systems to mitigate issues resulting from stale reviews.
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1.0 Introduction

The emergence of online platforms has redefined how markets function, created new

economic opportunities, and driven significant changes in consumer behavior and business

operations. One of the key challenges for online platforms is achieving a balance between at-

tracting a sufficient user base and monetizing services effectively. Many online marketplaces

must carefully design their pricing structures to ensure accessibility while also incentivizing

premium features or subscriptions. In this thesis, we study three emerging topics, inspired

by modern online marketplaces at the intersection of pricing and platform design.

1.0.1 Summaries and Contributions

In this section, we summarize the main contributions of Chapters 2, 3, and 4. Each of

the following Chapters will be a self-contained exposition on a single emerging topic in online

platform design and pricing.

In Chapter 1, we explore semi-personalized pricing strategies where a seller uses cus-

tomer features to segment the market and offer segment-specific prices. Typically, finding

optimal market segmentation and pricing policies is computationally challenging, leading

practitioners to rely on heuristic methods. We address this issue by studying the optimiza-

tion and analysis of feature-based market segmentation and pricing strategies, under the

assumption that the seller has trained a regression model that maps customer features to

valuations. In this framework, we present novel results on the hardness and approximation

of these strategies. When model noise is independent and log-concave, we demonstrate that

the joint segmentation and pricing problem can be solved efficiently. We also analyze struc-

tural properties of the optimal feature-based market segmentation and pricing. Finally, we

conduct a case study using home mortgage data and show that our approach can achieve

nearly all of the available revenue with only a few segments, significantly outperforming

heuristic methods. Additionally, we provide insights into the structural properties of pricing

from regression models that may be of independent interest. This chapter is based on joint

1



work with Professor Michael Hamilton.

In Chapter 2, we develop a novel model for the operation of an online dating platform.

Online dating is the most common way for new US couples to meet, with more than three-in-

ten Americans having used dating apps, and with revenues from dating apps surpassing five

billion dollars annually. Most of these dating apps generate revenue through subscription-

based pricing, where subscriptions for a fixed period of app access are sold at recurring

prices. Subscription-based pricing is a common monetization strategy for mobile apps, but

in the context of online dating, different subscription period lengths can lead to very differ-

ent outcomes for the platform and its users. In this study we analyze the profit and welfare

trade-offs associated with different length subscription pricing strategies for online dating

platforms. By analyzing our model we find that short period pricing always achieves at

least 1
1+e
≈ 26.9% of the profit of the optimal policy. However when the marginal cost is

low, longer period pricing yields optimal revenue and higher welfare. Longer period pricing

also provably coordinates incentives between users and platforms, allowing the platform to

incorporate user preference information in a way that leads to lower prices. This chapter is

based on joint work with Professor Michael Hamilton.

In Chapter 3, we model a two-sided ecosystem where an online platform facilitates inter-

actions between workers and customers. Specifically, we consider a worker who, when hired,

performs a service on a platform for which they receive a rating. We focus on how the rating

system should process the sequence of worker outcomes, including the null outcome where

the worker does not transact on the platform. To mitigate issues due to sequential staling,

we introduce a new class of α-moving average rating systems which systematically down-

weight older reviews. We show that a moving average approach generates ratings in a way

which optimally protects customers from changes in the underlying quality of service that

may otherwise go undetected due to staling. To address issues due to temporal staling, we

extend our rating system to include penalty reviews that are incurred by service providers

after long periods of inactivity. In a natural model of online platforms that facilitate in-

teractions between service providers and customers, we analyze how to set the parameters

2



and the penalty term for a rating system so as to maximize platform revenue. We give a

prior-free way of choosing these parameters which approximately maximizes revenue and

also mitigates temporal staling by encouraging service providers to continuously solicit new

reviews. This chapter is based on joint work with Professor Michael Hamilton.

3



2.0 Optimal Feature-Based Market Segmentation and Pricing

2.1 Introduction

Third-degree price discrimination concerns the now ubiquitous practice of selling a good

at different prices for different consumers [131]. For example, in the sale of proprietary

software licenses, prices may differ based on whether the customer is a student, professional,

or corporate user (see Section 2.1 for an example and [86] for an extended discussion). In

insurance markets, firms gather extremely rich and nuanced feature information about their

customers, ostensibly to estimate risk, but which is also leveraged to price discrimination on

the basis of demographic and/or geographic information [28, 130]. In commercial markets

facing walk-in customers, firms are comparatively limited in their information about their

customers but can still profitably leverage feature information to price discriminate, for

instance in movie theater ticket sales the customer’s age (child, adult, senior) and the time

of screening (weekend, matinee) can be used to issue semi-personalized prices via discounts

[45].

Each of these markets vary in both the quality and descriptive power of the informa-

tion they have about their customers, as well as in the operational difficulty of setting and

changing their prices, and thus implementing price discrimination. When the information

about customers in the market is of low quality or is largely censored, fully personalized price

discrimination where each customer is charged a personalized price may be futile, however

as mentioned above, that does not preclude the use of some modest price discrimination

via market segmentation. In fact, even when information is richly textured and pricing is

largely unconstrained by legal and/or operational considerations, a small static set of prices

based on customer features is still often preferred to fully personalized pricing. A small set

of market segments and prices is conceptually and operationally simple to implement, and a

surprisingly small number of options is often sufficient to achieve strong revenue [41]. In this

chapter, we propose a general framework for studying semi-personalized pricing strategies

which can capture these variations in predictive power and operational flexibility, which we

4



term feature-based market segmentation and pricing (FBMSP).

Figure 1: Example of feature-based market segmentation and pricing.

Note. An example of feature-based market segmentation and pricing for Adobe Creative

Cloud products (see https://www.adobe.com/creativecloud/plans.html). Here cus-

tomers are segmented based on their attributes (i.e. student versus professional) and prices

vary based on the segment customers are in, with the student rate being 60% of the profes-

sional rate (note discounts are enforced by requiring a valid .edu email). Further, note the

number of segments, k, is only four. It will be informative to think of k as ≈ 4 in this work.

Finding and optimizing generic market segmentation and pricing policies is a well-studied

problem in industry with academic roots in operations research/management, marketing,

economics, and computer science. However, archetypal formulations of the segmentation and

pricing problem are well known to be intractably hard [81, 82]. To deal with this hardness,

much of the literature has taken a heuristic approach to the problem [38, 12, 33, 89, 87],

separating the segmentation and pricing components. Segmentation-then-price procedures

use tools from unsupervised learning to first identify consumer segments/clusters with similar

features, and then identify revenue optimal prices for those chosen market segments. Using

our framework, we advance the study of segmentation and pricing by finding jointly optimal

segmentation and pricing under some realistic assumptions about how firms leverage feature

5
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information to predict customers’ valuations. Specifically, in practice, a firm’s valuation

model i.e. the model that maps features to valuation or a proxy for willingness-to-pay, is

built using regression. Regression models come with their own theory and standard set of

assumptions that we profitably utilize to study market segmentation and pricing as well. We

show that by leveraging the assumptions of independence and log-concavity of residuals in

the regression model, the resulting revenue-maximizing feature-based market segmentation

and pricing (FBMSP) enjoys a simple, intuitive structure, and can be computed efficiently.

Further, our structural results allow us to analyze optimal FBMSP and derive new managerial

insights about such policies, including guidance for choosing the number of segments, and

conditions for when segmentation and pricing are near-optimal.

2.1.1 Our Contributions

To summarize our contributions:

1. We first study the algorithmic problem of finding the optimal FBMSP. In general, the

problem is intractably hard, so we focus our attention on the case when valuations are

predicted according to a regression model with independent residuals. We show that with

no additional assumptions, while we can prove some promising structural properties (c.f.

Lemma 1) and provide a (1−1/e) approximation algorithm for the optimal segmentation

and pricing (c.f. Remark 1), unfortunately finding the optimal FBMSP is still NP-Hard

to compute (c.f. Theorem 1). However, when we further assume the residuals are log-

concave, as is often the case, we are able to evade our hardness result. Specifically,

when residuals are independent and log-concave, we prove the optimal policy has a

simple interval structure which allows us to compute in it quadratic time via dynamic

programming (c.f. Theorem 2).

2. We next turn our attention to analyzing the performance of optimal feature-based market

segmentation and pricing. Specifically, we consider the practical operational question of

how to choose the number of segments k so as to guarantee minimal loss against a fully

personalized pricing benchmark. We show three results that can help guide practitioners

in choosing k. First, we show that an upper bound on the loss against personalized pricing

6



can be achieved by simply examining the loss in the model, ignoring the noise term (c.f.

Theorem 3). Second, we tightly upper bound the optimal rate at which FBMSP tends

to personalized pricing as a function of the number of segments k and some valuation

parameters (c.f. Theorem 4). Finally, we show that the revenue of FBMSP is concave in

k (c.f. Theorem 5). Taken together, these three results allow a practitioner to use their

regression model (without reference to the complicating error!) to find k via a simple

elbow method, and feel confident that the results of such a heuristic are provably close

to optimal.

3. Finally in Section 2.5, we demonstrate our method on real housing loan data collected

in Pennsylvania in 2020, and compare its performance against standard segment-then-

price methodologies. We find our approach significantly outperforms heuristic methods,

especially when the number of segments is small and the variation in the valuations

comes primarily from variation in the regression model µ(·), as opposed to variation

from the prediction error ϵ. We also note that the segmentations found by our approach

are qualitatively different than those in segment-then-price, with our approach quickly

isolating key differences between groups, whereas heuristic approaches can get bogged

down in pointless price discrimination between groups until it discovers the important

differences for the revenue.

2.1.2 Literature Review

Our work is influenced by, and contributes to, several streams of literature across op-

erations management, marketing, and computer science. We now overview some of these

streams and connect them to our work.

2.1.2.1 Theory of Price Discrimination

There is extensive literature on the theory of pricing discrimination beginning in eco-

nomics, and spanning operations management, marketing, and computer science. Much of

the classic literature in this area ([113, 99, 80, 132, 119, 20, 42, 137]) focuses on the impact of

price discrimination on social welfare, or the effects of price discrimination on the resultant
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equilibrium prices. In this chapter, we investigate market segmentation and pricing from

the perspective of a revenue-maximizing monopolist, focusing on computational/practical

implementations of such policies.

Specifically, in the language of [132] we study third-degree price discrimination which

concerns when a company charges a different price to different consumer groups. In practice,

third-degree price discrimination is the most common form of price discrimination, with

companies leveraging additional information about consumer features to offer different prices

to different implicit/explicit segments in a variety of ways ([123, 75, 22, 36, 39, 53]). Several

papers have analyzed the value of such price discrimination tactics compared to uniform

pricing ([70, 52]). In contrast, we investigate the value of the optimal feature-based market

segmentation and pricing in this chapter, and compare this type of semi-personalized pricing

against a fully personalized benchmark.

2.1.2.2 Regression Based Price Discrimination

In recent years, data-driven pricing strategies have become increasingly common ([35,

56, 120, 8, 50, 102, 24, 51]). In these works, customers are offered a personalized price based

on features that are predictive of their valuation of the product, especially by tree-based

prescriptive approaches ([13, 77, 21, 24]). Unlike most data-driven pricing literature, in

our work, we ignore how the regression model is found and instead take the prediction of

customer’s valuation as input, and analyze how it may be profitable leveraged to compute

and analyze optimal FBMSP.

2.1.2.3 Algorithms for Market Segmentation and Pricing

This chapter contributes to a line of literature studying market segmentation and pricing

from an algorithmic/computational complexity perspective. Indeed many models of joint

market segmentation and pricing are known to be intractably hard to compute going back

at least to the pioneering work of [81, 82], restricting their applicability in practice. Often

in marketing, to evade these hardness results the segmentation and pricing decisions are

made sequentially instead of being evaluated together ([44]), and at first blush it seems
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that Theorem 1 implies our model, for all the structure gained through independence, is

ultimately no better. Fortunately, we will see for almost all regression models in practice

our model makes jointly optimal segmentation and pricing tractable and well structured.

If the regression error is log-concave, as we assume in Section 2.3.2, computing the optimal

feature-based segmentation is structurally similar to the 1D Clustering problem for which

dynamic programming approaches have been employed (see [62] for a modern overview), and

can be solved in polynomial time. Other algorithmic approaches for feature-based pricing

can be seen in [40, 105, 74], albeit in different models.

2.1.3 Chapter Outline

The remainder of this chapter is organized as follows. In Section 2.2 we introduce our

model for FBMSP and provide some preliminary structural results. In Section 2.3 we study

the problem of computing the revenue-optimal FMBSP. In Section 2.4 we analyze the struc-

ture of revenue-optimal FBMSP and provide some theory to guide practitioners in choosing

the number of segments, k. In Section 2.5 we demonstrate our approach on a well known

Home Mortgage Disclosure Act dataset. Finally, in Section 2.6 we provide concluding re-

marks and highlight future directions. All examples and proofs referenced in the main body

can be found in Appendices A.1 and A.2 in the Appendix.

2.2 Model and Preliminaries

We consider a revenue-maximizing seller offering a good in unlimited supply. For sim-

plicity of presentation, we will assume the good is produced costlessly and so revenue and

profit are equivalent (we note the model presented in this chapter and all results easily ex-

tend to the case when each good has a per unit cost c). We further assume each customer

in the market is described by some feature vector x of their observable characteristics, and

has some valuation for the good which depends on their feature vector, V |x. The market

characteristics as a whole can be described as a distribution over the feature vectors X ∼ FX,
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which is supported on some feature space X := supp(X). These features vectors can con-

sist of any information about the customers, including demographic information like gender,

household status, income etc.

In line with modern practice, we model the seller as having trained some regression

model µ : X → R+ to predict a customer’s valuation for a good from their feature vector.

We assume the regression model has residual error ϵ but is correct in expectation, so that

the predicted valuation for a customer with features x is µ(x) := E[V |x], and the valuation

model is V = µ(X) + ϵ. We will use F to be the distribution of the valuations V , FX to be

the distribution of the feature vectors, Fϵ to be the distribution of the error term ϵ, and fX,

fϵ, and f to be the densities, respectively. We will use F to denote the survival function,

i.e., F(x) := 1− F (x).

Figure 2: An example of FBMSP.

Note. Depicted is an example of feature-based market segmentation. For each customer

some numeric prediction of their valuation is given. The feature space X consists of all

combinations of the color and gender for the customer, and the depicted feature-based market

segmentation leverages color (not necessarily optimally) to sort them into three segments

Xi, i ∈ [3], each with a distinct segment level price, p(Xi).
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For a seller with a valuation model µ(·), we will study the revenue achievable by selling

strategies where the feature space of the market, X , is partitioned into k segments {Xi}ki=1,

∩Xi = ∅, ∪Xi = X , such that on each segment the seller offers a distinct price p(Xi). Now

we are ready to define feature-based market segmentation and pricing strategies, which is

the main object of this study.

Feature-Based Market Segmentation and Pricing: In feature-based market segmen-

tation and pricing the seller partitions the feature space into k segments {Xi}ki=1, and on

each segment offers a single price p(Xi) (see Section 2.2 for example). The expected profit

of such a segmentation is,

RkXP

(
{Xi}ki=1, {p(Xi)}ki=1

)
:=

k∑
i=1

p(Xi)

∫
x∈Xi

Pr (µ (x) + ϵ ≥ p(Xi)) fX(x)dx, (1)

where the sum is over the k market segments, and the revenue of each segment is the segment

price p(Xi) times the probability of sale at the price, integrated over the feature vectors in

the segment. Given a segmentation it will often be convenient to think of the prices as the

revenue optimal ones for that segment. To that end, we denote the optimal price on segment

Xi by pϵ(Xi) i.e.,

pϵ(Xi) := arg max
p
p

∫
x∈Xi

Pr (µ (x) + ϵ ≥ p) fX(x)dx.

We will use RkXP := maxX1,...,Xk

∑k
i=1RkXP ({Xi}ki=1, {pϵ(Xi)}ki=1) denote the optimal profit

for a feature-based (k) market segmentation and pricing strategy.

Note that our framework for feature-based market segmentation and pricing is very

flexible, and captures many well studied models as special cases. For instance when k = 1,

FBMSP is just the revenue generated by a single static price for the good (sometimes referred

to as the revenue of the monopoly price, or posted price, or single price). Similarly when

the number of segments is very large, i.e. k →∞, FBMSP becomes the revenue of feature-

based personalized pricing, where each customer receives an appropriately personalized price.

The revenue of feature-based personalized pricing is a useful upper bound to compare with

the revenue of optimal FBMSP for some fixed number of segments k. In Section 2.4 we

consider the question of how large does k need to be, in general, to approach the revenue of
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personalized pricing, with the hope that a reasonably small k should suffice (see [52] for a

detailed discussion of when feature-based personalized pricing is provably close or far from

the revenue of a single price).

Moreover, when the error distribution ϵ is 0 almost surely (a.s.), our model represents

the achievable revenue in the world of the prediction model µ without regard to the models

potential error. We term this optimistic case model market segmentation, and in Section 2.4

will show that reasoning about the profit in a world of perfect prediction can provide a useful

upper bound on the loss of FBMSP with error.

2.2.1 Key Assumptions and Preliminaries.

As mentioned in the introduction, the optimal feature-based market segmentation and

pricing is generally hard to compute. To ensure tractability, in our work we will carry

through the common regression assumption that the model error, ϵ, is independent across

features i.e. X |= ϵ. We consider this assumption to be quite mild, as it underlies many

predictive models used in practice, including for example, the well known logit model where

a customer’s valuation is a linear combination of that customer’s features, the offered price,

and an idiosyncratic error following a logistic distribution which is independent of X. Similar

remarks hold for other regression-based models with independent errors. The upshot will

be that this necessary assumption for regression is also quite harmonious with pricing, and

gives considerable structure and control for analyzing pricing models.

In the next section we will delve into the structure of optimal FBMSP, but first we

will illustrate how the independence assumption smooths our problem by considering some

related objectives. To this end, consider three auxiliary functions that will later be helpful

in analysis of FBMSP, and also are of independent interest.

Price: pϵ(x) := inf{arg max
p
pFϵ(p− x)}, Margin: θϵ(x) := pϵ(x)− x,

Revenue: Rϵ(x) := max
p
pPr(x+ ϵ ≥ p) = pϵ(x)Fϵ(θϵ(x)).

The price, margin, and revenue functions all serve to model a seller pricing a good for

a customer, after having predicted their valuation as x ∈ R, up to some stochastic error

12



ϵ. pϵ(x) is the optimal price to offer a customer with predicted valuation x, Rϵ(x) is the

revenue of the optimal monopoly price when the valuation distribution is x + ϵ, and θϵ(x)

is the difference or margin between the predicted valuation x and the offered price pϵ(x).

Note, pϵ(x) is uniquely defined to be the minimum price that achieves the maximum revenue,

such a minimum is necessary since for some distributions ϵ, there may be many prices that

maximize the revenue (see Example 1, for an extensive discussion on when the optimal price

is unique, or equivalently when the revenue function is strictly unimodal, see [141]).

In the following lemma we summarize some of the structure we observe in these functions.

Lemma 1 (General Properties of pϵ(·), θϵ(·),Rϵ(·)). For any distribution ϵ such that E[ϵ] = 0,

the following properties hold:

(a) θϵ(x) is a decreasing function.

(b) For any 0 < x1 < x2, we have

Fϵ (θϵ(x1)) (x2 − x1) ≤ Rϵ(x2)−Rϵ(x1) ≤ Fϵ (θϵ(x2)) (x2 − x1) .

Moreover, for all x such that pϵ(x) is continuous (i.e. pϵ(x
−) = pϵ(x

+)), the derivative

of Rϵ(x) exists and d
dx
Rϵ(x) = Fϵ(θϵ(x)).

(c) Rϵ(x) is increasing, continuous, and convex.

Lemma 1 implies that independence between the error and valuation model induces

prices that result in a monotone increasing sales probabilities via θϵ(x), and a convex revenue

function Rϵ(x) with interpretable, bounded derivatives. All three parts of the lemma are

proved by examining the induced optimal prices, pϵ(x), and noting that pϵ(x) cannot increase

very quickly (i.e. super linearly). Unfortunately, our control is not perfect as pϵ(x) can

otherwise be quite poorly behaved; there can be many optimal prices for a given valuation,

and worse pϵ(x) can be discontinuous at arbitrarily many points x (see Example 1 for an

example). The jump discontinuities in pϵ(x) translate directly to non-differentiable points in

the revenue function. As we will see in Section 2.3, the structure provided by independence

is not quite enough to enable the efficient computation of the optimal FBMSP, however it

will be critical in our analysis of such policies.
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2.3 Computing Optimal Feature-Based Market Segmentation and Pricing

In this section we study the problem of finding the jointly optimal FBMSP, culminating

with conditions and an algorithm under which the optimal policy can be computed efficiently.

We will first show that when valuations are drawn from a regression model with general

independent residuals, the optimal policy is NP-Hard to compute. We then identify that

the hardness stems from some pathological segmentation properties, and define a natural

property to characterize nice segmentations which we call interval. Our main positive result

of this section is to show that when the residuals are log-concave the optimal segmentations

are interval, and further, the optimal interval segmentations can be found in cubic time

via dynamic programming. Thus, for realistic valuation models under standard regression

assumptions, the jointly optimal segmentation and pricing can be directly computed instead

of having to resort to heuristic segment-then-price approaches.

2.3.1 Hardness of FBMSP

To understand the computational difficulty of FBMSP, in this subsection we will review

a folklore hardness result and show that even under our restricted model of regression based

valuations, the problem remains intractable. Our proof of this hardness result will yield

guiding intuition for how an additional condition of log-concavity on the residuals should be

computationally useful.

First, let us review how the hardness of general market segmentation and pricing prob-

lems are typically proved by describing a reduction from k-hitting set1. Now, consider the

decision version of the hitting set problem given a universe of elements U = {p1, p2, . . . , pm},

a collection of subsets S = {S1, S2, . . . , Sn}, Si ⊂ U , ∪Si = U , and some target k ∈ N. The

objective is to find a set H ⊂ U , |H| ≤ k, that intersects with every subset in the collection

i.e. H ∩ Si ̸= ∅ for all i ∈ [n], or else return that no such set of size k exists. To encode

hitting set using a general version of k-market segmentation and pricing, associate with each

element pj, a distinct positive number (for instance, encode each pi as the number i) and

1This correspondence is implicit in the work of [82].
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consider an instance with n customers. For each customer, let their valuation be described as

a draw from a personal, independent distribution Fi, i ∈ [n] so that the revenue gained from

customer i when they receive price p is pFi(p). Construct Fi so that the value associated

with pj maximizes pFi(p) if and only if pj ∈ Si. This is easily achieved by appropriately dis-

cretizing the equal revenue distribution, which is the distribution such that F (x) = 1− 1/x

for x ∈ [1,∞). For example, if Si = {1, 3, 4} then a distribution Fi such that Fi(x) = 1

for x ≤ 1, Fi(x) = 1/3 for x ∈ (1, 3], Fi(x) = 1
4

for x ∈ (3, 4], and Fi = 0 otherwise, is a

construction of the desired form, achieving a maximum revenue of 1 only at prices 1, 3 and

4.

To complete the reduction, note the market segmentation and pricing problem faced

by the seller is to find a partition of customers into k segments that maximizes revenue.

The absolute upper bound on this revenue is
∑

i maxp pFi(p) which would be the revenue

of personalized pricing. If the seller can achieve this bound with k segments, it must be by

using a price in each segment which is optimal for every customer in that segment. This

implies that on each segment the intersection of each customer’s optimal price set (which

are in correspondence with Si) is non-empty. Taking those optimal prices from each segment

thus exactly corresponds to a size k hitting set, and if the optimal revenue from k segments

is less than the revenue from personalized pricing then no size k hitting set can exist which

completes the argument.

Note, the above archetypal reduction assumed independent valuation distributions for

each customer, Fi. That is, to encode k-hitting set required n distinct, independent distri-

butions - one for each customer. This is different than in our model, where all valuations

are described by a common regression function with independent but identical noise. Thus

in our model all customer valuations are described by just two distributions, one over the

features and one over the error. As our model is simpler and less expressive, it is no longer

clear if a similar hardness result as above is possible. As we show in the following theorem,

the problem remains NP-hard in our model, although the proof requires a significantly more

intricate construction.

Theorem 1 (Hardness of FBMSP). Suppose that V = µ(X) + ϵ, X |= ϵ, and E[ϵ] = 0. Then

finding the optimal FBMSP policy is NP-hard.
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Sketch of Proof of Theorem 1. The proof of Theorem 1 follows by reduction to hitting

set, as in the general case. For every instance of the hitting set problem, we show that

there exist estimations of customers’ valuation, and prediction error’s, such that deciding if

there are k (or less) elements that hit all the subsets is equivalent to deciding whether there

are k segments and prices such that the total revenue is n(n+1)
2

, where n is the number of

subsets in the hitting set problem (equivalently, the number of customers in the market).

Our construction follows by designing a error distribution ϵ which results in a number claw

like functions for each customer, that are then spread by translation to encode a set of

optimal prices for each valuation level µ(xi). Section 2.3.1 gives an example of our hardness

reduction for a small instance.

Theorem 1 implies it is impossible to solve general FBMSP efficiently if P ̸= NP. This

leaves us two options, either to look for approximate solutions for general FBMSP, or to

enrich the structure of our model by imposing additional assumptions. We briefly explore

the former in Remark 1, but will focus mainly on the later.

Remark 1. While an optimal policy for general error distribution cannot be found in polyno-

mial time, we note that a constant factor approximation to the optimal feature-based market

segmentation and pricing is obtainable. Specifically, a (1 − 1/e) factor approximate policy

can be found in polynomial time since the objective function is positive valued, monotone,

and submodular. We formalize this observation in Appendix A.4 in the appendix.
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Figure 3: Example of hitting set and FBMSP.

Note. In the left panel is a graph representation of a small instance of a hitting set prob-

lem. To illustrate the translation of a hitting set problem to an FBMSP problem, assume

we have 3 customers with predicted valuation x1 = 3, x2 = 43
8

, x3 = 161
24

. Further, let

the estimation error ϵ be supported on
{
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}
. Finally, let p1 = 3 and p2 = 3.5. In the right panel we plot the revenue

curves for each valuation xi. We can see that the revenue for each customer is maximized

only at either p1 or p2 (red dashed lines) which represent the connections between price nodes

and valuation nodes in left panel, i.e., revenue from customer with valuation x3 is maximized

at price p2 = 3.5, revenues from customers with valuations x2 and x1 are both maximized at

p1 = 3 and p2 = 3.5.

2.3.2 Feature-Based Market Segmentation and Pricing with Log-Concave Resid-

uals

In the previous subsection we studied FBMSP in a setting where the underlying error in

the valuation model was arbitrary, and in the proof of Theorem 1 we leveraged this freedom

to construct a general error distribution such that it induced jagged, delicately overlapped

revenue functions that made the problem intractable. In this section we will consider as-
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sumptions that evade such pathological constructions. To that end, recall in Lemma 1 were

able to characterize many things about the revenue function Rϵ(x), but less about the struc-

ture of the pricing function which we noted could vary (drop) dramatically between similar

valuations. It is precisely these discontinuities in pϵ(x) that enable our construction in Sec-

tion 2.3.1, and give it it’s discrete quality that makes it difficult to optimize. A natural

question then to ask is, for suitably smooth error distributions/revenue functions, is it still

hard to compute the optimal FBMSP?

We will make one additional assumption about the error distribution that enforces such

a notion of smoothness. Namely, we will assume the distribution is log-concave, a canon-

ical assumption in the pricing and revenue management literature. Note, many standard

distributions are log-concave including normal, exponential, uniform distributions, etc.

Definition 1 (Log-Concave Error). A random variable ϵ with density fϵ is log-concave if

log(fϵ(x)) is a concave function.

To understand how log-concavity in the error function translates into tractability for

FBMSP, we will first show that it implies a continuous, increasing price function pϵ(x),

precluding behaviour like in Section 2.3.1. Leveraging this continuity in the prices, we

can then show the optimal segmentation must be well structured in the sense that the

segmentation groups together customers with similar predicted valuations for the good. Such

segmentations are natural, easy to interpret as low/medium/high/etc. type segments, and as

we will show, easy to optimize and analyze. We will call segmentations that group together

customers with similar valuations interval, and define them as follows.

Definition 2 (Interval Segmentation). We will call a segmentation, {Xi}k1, an interval

segmentation if there exists real numbers 0 < s0 ≤ s1 ≤ . . . ≤ sk = supx µ (x) such that each

segment Xi can be written as Xi = {x|µ(x) ∈ [si−1, si)}.

When describing interval segmentations, we will often denote the segmentation by just

the end points of the intervals in the valuation space that define them, {si}k0. We emphasize

that not all optimal market segmentations are interval, certainly the ones induced by the

construction in Theorem 1 are not, but also even simple error distributions can have more

complicated structure as we demonstrate in Example 2. Thankfully, it turns out the smooth
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notion of error captured by log-concavity, and the intuitive structure of interval segmenta-

tions are harmonious notions. In the following lemma we show that log-concavity in the

error removes any jump discontinuities from the price function, which in turn allows us to

prove that the revenue optimal FBMSP is interval.

Lemma 2 (Properties of Log-Concave Error). Suppose that V = µ(X) + ϵ where ϵ is log-

concave, X |= ϵ, and E[ϵ] = 0. Then,

(a) pϵ(x) is an increasing and continuous function.

(b) The optimal segmentation is interval.

(c) The price on each segment pϵ(Xi) equals pϵ(µ (x)) for some x such that minx∈Xi
µ(x) ≤

µ(x) ≤ maxx∈Xi
µ(x) .

Lemma 2 shows that, by assuming the error in the regression model is log-concave, all

the previously mentioned pathologies vanish. First, we show that pϵ(x) becomes a strictly

increasing function which, combined with Lemma 1, implies that the revenue function Rϵ(x)

is differentiable everywhere, and it’s derivative is simply the sale probability. We then show

in (b) that the upshot of this additional smoothness for FBMSP is that the segmentation

policy becomes interval. Moreover, the optimal price to offer on each segment is contained

in the segment, as the optimal price for some feature vector. This locality of the price and

segment then enables fast computation of the optimal policy via dynamic programming, as

we describe next in the main theorem for this section.

Theorem 2 (Computing Feature-Based Market Segmentation). Suppose that V = µ(X) + ϵ

where ϵ is log-concave, X |= ϵ, and E[ϵ] = 0. Let n = |supp(µ (X))|, and suppose pϵ(Xi) for

any fixed segment Xi can be computed in time mϵ. Then the optimal feature-based market

segmentation can be computed in O(n2(k +mϵ)).

Theorem 2 is our main result, and states that by leveraging the structural properties

in Lemma 2, the optimal policy can be computed quickly and efficiently in terms of the

size of the support of the regression model. Note, we assume µ(X) is finitely supported,

and believe this is natural and corresponds to simply running the regression model back

over the sample of customer outcomes which were used to generate the model. Further, we

assume the running time to compute pϵ(Xi) as a subroutine is bounded by some number
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that is related only to ϵ. Again, we believe this assumption is natural since when ϵ is log-

concave, the revenue function for some sample pPr(x + ϵ ≥ p) is unimodal in p, and the

price of the segment pϵ(Xi) can be computed simply running a binary search for the optimal

price on the range of prices [pϵ(minx∈Xi
µ (x)), pϵ(maxx∈Xi

µ (x))] by Lemma 2(c). Lastly, we

note that when the error distribution is discrete, there is a corresponding notion of discrete

log-concavity [112], under which our results continue hold without modification.

In this section, we have characterized when and how we can compute FBMSP optimally,

in the subsequent sections we turn our attention to tuning and implementing it as a revenue

management strategy.

2.4 Analyzing Feature-Based Market Segmentation and Pricing

In the previous section, we studied how to compute the optimal FBMSP under some

assumptions, for a given number of segments/prices k. We showed that while, in general, it

is hard to do so, in the important and realistic case when error is log-concave, the optimal

policy has an intuitive structure that allows for easy computation. In this section, we continue

to build on the structural insights of the last section, and show that beyond just computation,

optimal FBMSP inherits a number of attractive properties and performance guarantees that

may help guide practitioners in implementing such policies, and particularly in deciding how

many segments to use.

Throughout this section, when the underlying valuation model varies we will use a su-

perscript to explicitly identify the valuation distribution with which the revenue is computed

i.e., Rµ(X)+ϵ
kXP is the standard revenue of FBMSP, Rµ(X)

kXP is the revenue of FBMSP with no

error in valuation model, and so on.

2.4.1 FBMSP vs. Feature-Based Personalized Pricing

In this subsection, we study the relative gaps between the optimal FBMSP and the nat-

ural upper bound of feature-based personalized pricing, paying close attention to how this

20



gap informs a good choice of k. As mentioned in the introduction, FBMSP closely resembles

real-world data-driven semi-personalized pricing strategies where sellers are constrained in

the number of the segments/prices they can offer. Specifically, in FBMSP the number of

prices and segments is capped at k, whereas feature-based personalized pricing is equiva-

lent to FBMSP when k → ∞. In fact, for any market where valuations are distributed

according V = µ (X) + ϵ, and X |= ϵ, the revenue of a seller implementing feature-based per-

sonalized pricing can be succinctly described as an expectation over the revenue function

i.e., limk→∞Rµ(X)+ϵ
kXP := EX∼FX [Rϵ(µ (X))], since the seller offers the optimal price for each

context x which garners revenue Rϵ(µ (x)).

Intuitively then, a good choice of k should be one that is not too large, so as to be

implementable, but one that is still close to the maximum achieveable revenue of personalized

pricing, i.e., one that shrinks the gap,

EX∼FX [Rϵ(µ (X))]−Rµ(X)+ϵ
kXP . (2)

One difficulty that may be encountered when attempting to choose k to reduce Eq. (2)

is that it is sensitive to the error distribution ϵ, which may be hard to know precisely or

require extensive market research to obtain. It may be preferable for an analyst attempting

to choose k to work with an upper bound on this difference that is agnostic to the true error

distribution. Interestingly, by assuming there is no error an analyst can achieve precisely

such an upper bound. In the following theorem we show that one can bound the loss

between FBMSP and feature-based personalized pricing by examining the gap between the

two policies when ϵ is assumed to be 0 a.s. We will refer to this loss as model market loss,

since it depends only on µ (X) and not the underlying error distribution.

Theorem 3 (Model Loss vs. True Loss). Suppose V = µ(X) + ϵ, X |= ϵ, and E[ϵ] = 0. Then,

EX∼FX [Rϵ(µ (X))]−Rµ(X)+ϵ
kXP︸ ︷︷ ︸

Actual Market Loss

≤ EX∼FX [µ(X)]−Rµ(X)
kXP︸ ︷︷ ︸

Model Market Loss

.

Theorem 3 gives a theoretical foundation through which an analyst can analyze the

performance of FBMSP for various k directly in the model without worrying about the
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particular form of the error distribution. Whatever loss is perceived in the model market

bounds the true loss in practice automatically.

Further, we note that the proof of Theorem 3 is constructive, and implies a simple

heuristic for setting feature-based market segmentation and pricing strategies when ϵ is not

log-concave, or ϵ is unknown. In these instances, a seller can simply compute the optimal

k-FBMSP letting ϵ be 0 a.s. In this situation, the optimal policy is interval and can be

described by segmentation end points {si}ki=0 on the model market µ(X), which can be used

to generate the segments Xi. From those segments, since ϵ is either unknown or not tractable

to work with computationally, the firm can instead perform price experimentation to learn

the prices that maximize pϵ(Xi) Pr (si + ϵ ≥ pϵ(Xi)), and offer that price on each segment.

While both the partition into segments {Xi}ki=1, and the prices offered on each segment

{pϵ(Xi)}ki=1 may be sub-optimal under the true error, such a strategy is guaranteed to earn

more than Rµ(X)+ϵ
kXP + Rµ(X)

kxP − EX∼FX [µ(X)] by rearranging Theorem 3, and this guarantee

smoothly tends to the optimum as the error in the model diminishes.

Theorem 3 allows an analyst to search for a choice of k without referring to the error

distribution, a next natural question to ask is then, how long can this search take? That is,

at what rate does RkXP to converge to the revenue of feature-based personalized pricing?

In our next theorem we show this convergence is linear in k, and quite fast when the range

of valuations is not too wide.

Theorem 4 (Bounded Loss with k Segments). Suppose V = µ(X) + ϵ, X |= ϵ, and E[ϵ] = 0.

Let L = infx µ (x) and U = supx µ (x), then

EX∼FX [Rϵ(µ (X))]−Rµ(X)+ϵ
kXP ≤ U − L

k
.

The proof of Theorem 4 constructs a (suboptimal) segmentation strategy by equally

partitioning the quantile space. Interestingly, the dependence O
(
1
k

)
appears typical for many

valuation distributions, as we plot in Fig. 4. Intuitively, this behavior can be explained in

the following way. As we segment into smaller pieces, any distribution with a smooth density

appears locally uniform on each segment. Example 3 establishes that the convergence rate

for a uniform matches Theorem 4 up to constant factors, suggesting that, at least for large

k, the rate should also be approximately tight for many distributions.
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Figure 4: Difference between FBMSP and feature-based personalized pricing for standard

distributions.

Note. Depicted is the revenue loss versus the number of segments for three standard er-

ror distributions, and when predicted customer valuations are drawn uniformly from [1, 10]

i.e., µ (X) ∼ Uniform[1, 10]. For simplicity, in the plots we use RkXP and E[Rϵ(µ (X))] to

denote Rµ(X)+ϵ
kXP and EX∼FX [Rϵ(µ (X))], respectively. In the left panel, the prediction error

ϵ ∼ N (0, 1). In the middle panel, the prediction error ϵ ∼ Uniform[−1, 1]. In the right

panel, the prediction error follows a Weibull distribution where the shape parameter is 5

and scale parameter is 1. In each panel, we plot the revenue loss versus the bound U−L
k

in Theorem 4. We note the convergence rate for all three error distributions appears to be

Θ(1/k).

2.4.2 Revenue Concavity in the Number of Segments

Theorems 3 and 4 give an analyst insight into how to handle the error when searching

for k, and a bound on how large a k may be needed to achieve a desired level of revenue loss.

In the final result of this section, we show a nice structural property of the optimal revenue

that an analyst can use to further hone their search for k. Specifically, in Theorem 5 we

show that when the residual is log-concave, the revenue of FBMSP is concave in the number

of segments.

Theorem 5 (Segmentation Concavity). Suppose that V = µ(X) + ϵ where ϵ is log-concave,

X |= ϵ, and E[ϵ] = 0. Then {R(k+1)XP −RkXP}∞k=1 is a non-increasing sequence.

Concavity in terms of k has the operational interpretation that the revenue garnered by
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additional segments has diminishing marginal returns. Such a property is not guaranteed

in general, and especially not for heuristic segment-then-price approaches, as we will see

in Section 2.5. Moreover, combining Theorems 3 and 4 and Theorem 5 together allows an

analyst to search for the best choice of k via an elbow method [23] on the model market.

Such a method results in a k with a provable guarantee on the loss (Theorem 3), is likely

quite small (Theorem 4), and further the elbow will be unique (Theorem 5).

In the next section we implement our segmentation and pricing strategy on real data and

illustrate it’s advantages versus segment-then-price heuristics.

2.5 Case Study: Setting Mortgage Interest Rates

In Section 2.3, we showed how to find jointly optimal FBMSP when a seller has trained

a regression-based valuation model with independent, log-concave residuals. Then in Sec-

tion 2.4, we provided a set of results to aid in the analysis of FBMSP policies and guide

the choice of k, the number of segments/prices. In this section, we perform a case study

to highlight some features of our approach, which we compare and contrast with prominent

heuristic approaches for segment-then-price (STP). Specifically, using a real data set of home

mortgage offers and acceptances in Pennsylvania in 2020, we build a probit regression model

to predict the probability that an applicant will take a mortgage at an offered interest rate.

Next, we transform the probit regression model into a model of customer valuation measured

as the maximum interest rate they will accept. We then compare our optimal method for

FBMSP with STP via a number of different simulations on the data set. All data and code

for this section are publicly available at [Blinded for Review].

2.5.1 Description of Data Set

Our case study is based on a dataset collected in accordance with the Home Mortgage

Disclosure Act (HMDA) (the HMDA website where the data is hosted is https://ffiec.

cfpb.gov/). Specifically, we downloaded the data provided by all financial institutions
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Variable Type Description and Statistics

Action taken Binary The action taken on the covered loan or application

• 1 (accepted), Frequency = 11491, Percent = 77.0%

• 0 (rejected), Frequency = 3425, Percent = 23.0%

Interest rate Continuous The interest rate for the covered loan or application (%)

• Mean = 3.4%, Std = 0.9%

Income Continuous Applicant’s gross annual income (in thousands of dollars)

• Mean = 110.08, Std = 94.76

Marital status Binary Marital status derived from applicants’ marital status fields

• 1 (joint), Frequency = 5799, Percent = 38.9%

• 0 (male or female), Frequency = 9117, Percent = 61.1%

Table 1: Descriptions and summary statistics for explanatory variables in our home mortgage

dataset.

in Pennsylvania who had offered a loan for the purpose of enabling a home purchase in

2020. The dataset consists of information about the applications, including demographic

information about the applicant, their income level, the loan amount the bank offered, the

interest rate, and whether or not it was accepted. After removing unsuitable rows (rows

with data missing or extreme outliers), there were 14,916 approved applications in total, and

11,491 (77%) of the approved applications resulted in a loan that was accepted at the bank

offered interest rate. Table 1 summarizes the variables (features of customers) we use in our

case study.

As a preliminary, note we can think of the interest rate the bank offers on the loan as

a take-it-or-leave-it price, and the customers choice whether or not to accept the loan as

a decision to purchase or not purchase at a given price. Using the price variation in this

data, we will estimate a customer valuation model so that we can train and evaluate market

segmentation and pricing models. In the first step, we use a probit regression model to

predict the probability that a customer will take the offered interest rate. Table 2 shows the

coefficient estimates for the probit regression model, and Fig. 21 shows the prediction of the
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probability a customer will take the approved application for a given interest rate. We then

transform our probit model into a linear valuation model of the form V |x = µ (x) +N (0, σ),

where x is a feature vector including the interest rate, income level of the customer, and

demographic information, and µ(x) = xtβ. Our transformation from probit regression model

to linear valuation model follows [30], for a short primer describing such transformations,

see Appendix A.3 in the appendix. All subsequent feature-based segmentation and pricing

policies will be based on this derived linear valuation model, V |x = µ (x) +N (0, σ).

2.5.2 Comparison with Segment-then-Price

To assess the real impact of our optimal FBMSP policies, we will compare against heuris-

tic segment-then-price (STP) policies. For STP, we will segment customers using the popular

k-mediods algorithm [106, 114, 115] with Gower distance [60, 61]. The price optimization is

then done over the found segments, and can be computed in polynomial time for error with

finite support.
First, we examine the segments generated by STP compared with those from optimal

FBMSP. Fig. 5 shows that STP will group customers first based on differences in gender
and/or race. Gender and race are certainly heterogeneous across our data set, however,
these differences are not necessarily the distinctions that are revenue-maximizing to delin-
eate on. In comparison, optimal FBMSP will segment customers into different groups based
on their valuations, which is only weakly correlated with gender/race in our data. Therefore,
compared to STP, FBMSP will not only achieve better revenue but does so in an explain-
able way by grouping customers with similar predicted valuations, instead of merely similar

Variable Estimate Std. Error z value Pr(> |z|) Significance

(Intercept) 3.8869 0.1126 34.5314 < 2.2× 10−16 ***

Interest Rate -0.8704 0.0277 -31.4735 < 2.2× 10−16 ***

Income -0.0009 0.0002 -4.1142 3.885× 10−05 ***

Derived race 0.4709 0.0545 8.6374 < 2.2× 10−16 ***

Derived gender 0.1721 0.0441 3.9003 9.606× 10−5 ***

Table 2: Probit regression coefficients. Significance levels: ***: < 0.001, **: < 0.01, *:<

0.05.
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demographic features which may have negative social or legal ramifications.

Figure 5: Segments for STP and FBMSP.

Note. Here we plot segments for STP and FBMSP when the number of segments k = 4.

Since both derived gender and derived race are binary variables, we add some random noise

to each point for clarity of presentation (without noise, all points of the same color would

be on top of one another in the left panel). In the left panel, the segments are obtained

using k-medoids algorithm. In the right panel, we use dynamic programming to do optimal

FBMSP.

Figure 6: Average interest comparison between STP and FBMSP.

Note. Here we plot the average interest per customer (i.e. expected revenue) for STP and

FBMSP, for different levels of prediction error in our valuation model. In the left panel, the

standard deviation of prediction error is σ = 0, in the middle panel, the standard deviation

of prediction error is σ = 0.5, in the right panel, the standard deviation of prediction error

is σ = 1.

To compare the difference in revenue garnered by STP and FBMSP, we will examine

the difference in total interest a customer will pay on average over the lifetime of the loan
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(i.e. average revenue per customer), where the interest is calculated using the standard fixed

monthly payment formula ([31]). In Fig. 6, we plot the expected revenue the firm can get

from one customer on average (across all segments), against the number of segments. We

first note that the revenue per customer is increasing for both FBMSP and STP model.

However for FBMSP, the revenue the firm can get from each customer on average is concave

in the number of segments, whereas in the STP model this is clearly not the case. In our

case study, STP often gets “stuck” at small choices of k, and requires a 3+ of segments

before it can achieve strong revenue, whereas FBMSP is guaranteed to get the most revenue

out of a small number of segments. We see the differences between FBMSP and STP are

most pronounced when only a small number of segments are used, which is precisely the

case of interest in industry. We further note that for both models, while smaller error in the

prediction model will yield higher revenue, the gap between the two strategies is also more

pronounced when the error is small, suggesting that for sophisticated firms with high quality

feature data the benefits of FBMSP are even greater.

2.5.3 Finding the Optimal Number of Segments using Regression Model

One additional benefit of the concavity of optimal FBMSP is it enables us to easily

choose the number of segments via the elbow method heuristic. The elbow method is the

most commonly used heuristic for finding the optimal number of segments for unsupervised

learning. The intuition is that one should choose a number of segments so that adding

another segment doesn’t give a much better modeling of the data (see [23] for more discussion

about the elbow method and its applications). To use the elbow method, one prerequisite is

that the objective function is monotone in the number of segments. In general, the objective

function, revenue per customer, is not necessarily even increasing for the STP. Unlike STP,

in Theorem 5 we showed that the revenue is concave in the number of segments k. At some

value for k, the revenue increases dramatically, and after that, it reaches a plateau, and

increasing the number of segments does not dramatically increase revenue. In Fig. 6, for our

FBMSP model, 2 or 3 is the elbow of the revenue per customer vs. k plot, whereas for STP,

the possible elbow is 4+, and sometimes as large as 8 or 9 which is a prohibitively large
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number of segments in practice.

2.6 Conclusions

Our framework for computing and analyzing semi-personalized, feature-based market

segmentation and pricing allows sellers to personalize prices for customers at increasingly

fine levels. However, implementing such tools comes with a significant investment cost in

technology, data scientists, and marketing. Motivated by this trade-off and the desire to im-

prove on common heuristic approaches, we examined market segmentation and pricing under

some realistic assumptions about how the seller predicts customer valuations. Namely, we

define and study the feature-based market segmentation and pricing problem, where sellers

have access to a trained regression model. For the general case first prove that comput-

ing the optimal feature-based market segmentation and pricing is NP-hard and provide a

(1 − 1/e) approximation algorithm. We then show that with the additional assumption of

log-concavity of the prediction error, the optimal policy has a simple interval structure that

can be computed in quadratic-time via dynamic programming.

We then analyze the properties of optimal feature-based market segmentation and pric-

ing. We show that the loss of k-FBMSP versus a fully personalized pricing bench market

can be upper bounded by the (noiseless) model market loss, and decays at a tight rate of

Θ(1/k). We also showed the revenue of optimal FBMSP is concave in the number of seg-

ments k. Taken all together, this analysis enables practitioners to find the most suitable k

by a simple elbow method, and without loss of much revenue.

Overall, our work seeks to deepen our understanding of semi-personalized pricing strate-

gies, and demonstrate that they are computable, and effective when compared to complicated

fully personalized pricing strategies. There are many interesting and important directions

left to consider for future work, we highlight three of them here. First, this chapter as-

sumes the production cost of the good is uniform over all segments. Follow-up work may

consider heterogeneous production costs among different segments, and ask whether the op-

timal FBMSP in this case still uses interval segments when the residuals are log-concave.
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Second, it may also be interesting to consider the approximation ratio for interval segmenta-

tions facing general error distributions. Example 2 demonstrates that interval segmentation

are not optimal for general error distributions, but how far it is from the optimal segmenta-

tion in the worst case is unknown. We emphasize that the 1− 1/e approximation algorithm

presented in Remark 1 does not compute interval segmentations, and it may indeed be the

case that the optimal interval segmentation (which can always be computed in polynomial

time via Theorem 2) could achieve a stronger approximation guarantee. Finally, we assume

the firm can charge customers in different segments any segment level price. In practice, the

firm may only be able to offer a price menu for customers to choose from. Future work may

consider models similar to FBMSP, where customers react to and choose from a size k price

menu.
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3.0 Pricing Strategies for Online Dating Platforms

3.1 Introduction

More and more people, especially young people, are meeting and falling in love online.

Over the past two decades, online dating has displaced conventional mediums such as family,

school, or the workplace, to become the most common way for new couples to meet [117].

As of 2019, three-in-ten U.S. adults say they have used a dating site or app before, and

that percentage rises to 48% for 18-to-29 year-olds [128]. Moreover, dating apps have been

enormously successful in connecting people otherwise left out of traditional dating culture.

A full two-thirds of lesbian, gay, or bisexual Americans report using dating apps [127] and,

with the COVID-19 pandemic severely restricting the venues in which people can meet, many

leading dating apps are reporting record numbers of users and subscribers [96].

The companies that run these apps have in turn grown with the increased demand. The

dating services industry has swelled over the last five years, with an annualized growth rate

of 12.9% [72], and revenues projected to rise 9.3% in 2021 to $5.3 billion as mobile services

expand. In the United States, dating services are largely consolidated under one corporate

entity, the Match Group, which as of 2020 is estimated to have cornered more than 60% of

the dating app market with its suite of apps, including Tinder, Hinge, OkCupid, and Match

[96].

The majority of dating apps in the United States, including all apps owned by the Match

Group, share a number of structural similarities. First, they are swipe apps, where a user

on the dating platform is shown a curated queue of potential matches, and interacts with

the site by swiping left (to deny) or right (to accept) through the queue. Only after two

users mutually swipe right on each other can they then begin to communicate [27]. Second,

they follow a subscription-based profit model where users pay a subscription fee per period

(e.g. per week, per month, see Figs. 7 and 24 for examples) to use the full features of the

platform.

While subscription-based policies are an extremely common way to monetize digital apps,
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their use for online dating comes with some unique challenges. For one, the value a user

obtains from a dating app is inherently probabilistic, it stems from the opportunities to

meet someone the app provides. Consequently, at least in the case of a user looking for a

permanent partner, the longer a user is on the app, the longer that user is paying for a service

that has not resulted in the outcomes they desire. This is coupled with a requirement that,

to effectively use a dating app, the user has to actively search and filter potential candidates

which can be both time intensive and emotionally fatiguing. Indeed, emotional fatigue or

burnout is reportedly experienced by as many as four out of five online dating users, and

is a primary cause of subscription cancellations [104]. Thus, for online dating we expect

user valuation for the service to actually decay over time. This differs significantly from

more conventional subscription-based services like Netflix or Spotify, where satisfied users

are more likely to continue paying for the service in the future.

Moreover, in the subscription model, the online dating platform’s interest may be in

conflict with its users’. As [134] note, a profit-maximizing subscription-based dating app

will strive to retain all of its subscribers. However, upon finding a compatible partner, users

will terminate their dating app subscription and leave the platform. Thus, the platform has

an incentive not to always provide the best potential matches to its users so as to extend

their time using the app. The severity of this incentive incompatibility depends on the length

of the subscription period for the platform. For instance, if the period length is a lifetime

(i.e. a lifetime membership), such incentive issues vanish as the site can earn no further

profit from the user after the initial payment.

In the context of online dating some matchmaking sites such as selectivesearch.com

and bumble.com have already adopted lifetime memberships, what we refer to as a long

period pricing in this chapter, as an attempt to solve these incentive issues. In the pricing

section of the Selective Service site (https://www.selectivesearch.com/pricing) they

state: “While most dating apps and services are incentivized to keep members paying ongoing

fees, Selective Search works with clients through a defined contract. Each contract is for a

finite number of introductions over a defined period of time”. Ostensibly, sudden departure

from the platform, either from burn-out or from matching, is no issue at all if users buy a

lifetime pass. In Fig. 7, examples of both subscription priced (at various subscription period
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lengths) and lifetime long period priced dating apps are shown for reference.

Figure 7: Examples of subscription and long period pricing in online dating platforms.

Note. Depicted are pricing options for two popular online dating platforms. On the left is

an example of the subscription options at https://hinge.co/. On the right is an example

of long period pricing (denoted Lifetime) at https://bumble.com/, among other options.

In light of the above, in this work we study the monetization of a dating platform

(swipe app) run by a profit maximizing monopolist. We focus specifically on the length of

the subscription period, and attempt to understand the benefits and trade-offs of shorter or

longer periods. We will give special attention to the following two policies which represent the

extremes of subscription-based pricing: (i) short period pricing (SP), where the online dating

platform commits to a fixed price p, and users pay the price in a continuous fashion until

they leave the platform, and (ii) long period pricing (CP), where the online dating platform

Commits to a fixed, one time price p. SP is very flexible and requires no commitment

between the platform and user, making it easy to implement, understand, and deploy, even

if it leads to possibly confusing incentives. CP is less flexible but may lead to simpler and

more harmonious user-platform interaction.
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3.1.1 Our Contributions

Given the ostensible advantages and disadvantages of SP and CP for online dating plat-

forms, in this work, we investigate the profit and welfare trade-offs associated with each. A

summary of our key contributions and findings is as follows:

1. We give a novel, natural model to describe the operations of an online dating platform.

In our model, we study the optimal profit that a platform can obtain from a subscription

policy parameterized by a period length, L, and a subscription price, p. We examine

two important extremes of this parameterization, short period pricing (L→ 0) and long

period pricing (L → ∞). We show that short period pricing is robust in the sense that

it achieves a constant factor ( 1
1+e

= 26.8%) of the profit of the best-in-class policy for all

distributions and market parameters, and no other policy can achieve such a guarantee

(cf. Theorem 6).

2. Having identified the robust policy, we next take a fine-grained approach and incorporate

some additional information about online dating markets that enable us to pin down an

optimal policy. Specifically, when the marginal cost of operation is vanishingly small we

find that long period pricing achieves both higher profit, and simultaneously matches

a higher proportion of the user-base (cf. Theorems 7 and 8). Thus, in well-established

online settings with low marginal cost, the use of long period pricing exhibits a “win-win”

for both the platform and its users.

3. Finally, we consider the scenario where the platform can incorporate heterogeneous po-

tential match information to vary the match rate. We show that for short period pricing,

the platform is incentivized to offer its users the worst possible potential matches first

(cf. Theorem 9(a)). On the other hand, under long period pricing the incentive is for

the platform to match the user as quickly as possible, and these cost savings are passed

on to the user via a lower price (cf. Theorem 9(b,c).

Taken together, our work gives practical insights for market designers looking to improve

current swipe based online dating platforms. For new or up-and-coming dating platforms

we characterize the robust policy, short period pricing, which can be thought of as an en-

dorsement for new apps to roll out a freemium version where fees collected in the form of
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advertising, and paid in an approximately continuous fashion via user attention. However,

for more established apps where the marginal cost of operating with one more user is prac-

tically nil, we show a switch to longer period pricing can not only improve revenue, but also

increase user welfare via a higher match rate, as well as align the incentives of the user and

the platform for harmonious future operations.

3.1.2 Literature Review

Our work is related to several streams of literature in economics, computer science, and

operations management. Here, we overview some of these streams and connect them to our

work.

3.1.2.1 Analysis of Two-Sided Markets

Online dating is a traditional application area for the theory of two-sided markets. Re-

cently, [11] utilized a game-theoretic model to investigate how platform design can reduce

the effort required to find a suitable partner in a two-sided market. Similarly, [78] studied

the optimal design of matching platforms by introducing a stylized dynamic fluid model for

the two-sided matching with strategic agents. Related two-sided market design questions

have also been recently studied by [6, 73, 16, 76, 107] in models with strategic agents. In

contrast to these works, in this chapter we treat the market as essentially one sided. We

believe this modeling choice better reflects swipe apps as they are currently, since the im-

portant two-sided aspects of matching markets are suppressed in our context by the fact

that users in swipe apps cannot search over potential matches. Users are shown whoever the

platform chooses to show them (or no one at all). In this work, we fully abstract away the

mechanics of coordinating matches, and instead analyze directly the pricing strategies of a

profit maximizing matching platform.
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3.1.2.2 Platform Design in Operations Management and Marketing

Our work contributes to a deep literature dealing with aspects of platform design using

models from operations management. The most thematically relevant paper for our work

is [135], who study competing matchmakers in a two-period, two-user model with Hotelling

valuations. They model dating platforms as strategically investing in matching technologies,

investigating the interaction between competition, and providing the best service for their

users. [135] does not resolve the suitor-matchmaker incentive issue, but does argue that

competition and perfect information about match quality can induce matchmaking platforms

to act in the agents’ best interests. [48, 49, 46, 64, 17] also study online platform incentives

to provide less-than-perfect services. As the US dating market is largely non-competitive

[58], we instead focus on changing the pricing structure itself to understand profit, welfare,

and incentive trade-offs, and in a significantly more general model.

3.1.2.3 Pricing Strategy in Operations Management

The closest to this chapter, in terms of the framework and style of pricing strategy

analysis, is [85]. They consider two business models, pay-per-use selling and product selling,

which roughly correspond to our short period pricing and long period pricing, respectively.

They focus primarily on an equilibrium analysis of the business model choice under duopoly.

Their work explores the scenarios in which the pay-per-use model is more profitable than

product selling. Other analyses of pay-per-use selling and product selling can be seen in

[133, 124, 29, 4, 15]. Analysis of similar business models can be seen in [101]. In our work,

we analyze the pricing strategies of profit maximizing monopolists running an online dating

app and model the unique aspects of this emerging application.

3.1.2.4 Other Matchmaking Markets

Outside of dating/marriage, online matchmaking is also an increasingly well-studied

problem for labor markets [25, 19], which is the next closest application to our work. Online

matchmaking has also been studied in the video game industry. [34] study the problem
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of maximizing player engagement in video games through improved matchmaking. They

focus on a stylized model with different skill levels of players, and where winning or losing

influences the players’ willingness to stay on the platform. [37, 71, 43] also investigate how

to improve players’ engagement through matching.

3.1.3 Chapter Outline

In Section 3.2, we introduce our model and describe the profit achievable from a pricing

strategy parameterized by a period length L, and a subscription price, p. In Section 3.3,

we prove a best-in-class profit guarantee for SP. In Section 3.4, we consider the case when

marginal costs are vanishingly small and show CP is both optimal with respect to profit,

and yields higher match proportions. In Section 3.5, we extend our model to the case when

the match rate can vary. Finally, in Section 3.6, we discuss the implications of our work

for online dating platforms, their users, and potential regulators, as well as highlight some

interesting avenues for future research.

3.2 Model and Preliminaries

We consider a profit maximizing online dating platform serving a market of users seek-

ing permanent partnership, which we refer to as a match. While colloquially a “match”

may refer to someone who has only shown preliminary interest in the user, in this work

we will exclusively use match or matching to mean the successful formation of a long-term

partnership culminating in a departure from the platform. We model a random user’s val-

uation (willingness-to-pay) for matching as a non-negative random variable V drawn from

a known distribution F with density f . The user’s valuation for matching decays over time

at a constant rate δ ∈ (0, 1), so the user’s valuation/willingness-to-pay for matching after

t time on the platform is Vt := δtV . We use the notation F(x) := 1 − F (x) to denote the

complementary cumulative distribution function.

While a user is on the platform, they match at a time-independent exponential rate q, so
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that over any ∆ length time interval starting at any time t, the probability of a user matching

is Pr (Match ∈ [t, t+ ∆)) = 1 − e−q∆. If a user matches we assume they immediately leave

the platform.

On the platform’s side, we assume the platform commits to some fixed pricing strategy

parameterized by a period length, L, and a fixed subscription price, p. We assume users are

rational and will pay the subscription price if their expected utility from payment over the

subscription period is non-negative. The platform prepares potential matches for the user

at marginal operating cost c, paid continuously throughout the user’s time on the platform.

Finally, we assume the length of time the user can spend on the platform is upper bounded

by T , which can be thought of as the size of the pool of potential matches. If a user reaches

time T on the platform, they leave, and we say in this case the platform has been exhausted.

3.2.1 Model Motivation and Discussion

In this subsection, we delve into the motivation for our model and the key features of

online dating it captures. We emphasize that dating platforms are extremely complex and

multifaceted ecosystems, for which it would be impossible to succinctly capture all relevant

aspects. Instead, our modeling philosophy is to focus on a few salient features that are

important and unique to the RM/OM aspects of dating platform management. To organize

our discussion, note the model described above has three main components: a user valuation

model, a model for matching, and a model for platform strategy.

In our model of user’s valuation, we suppose the valuations decay over time at rate δ. This

reflects a fundamental aspect of dating platforms where the value of an online subscription

is inherently probabilistic but the ultimate outcomes for users are binary, either they match

or they do not. Thus, every additional moment a user spends on the platform is one in

which they are not obtaining the relationship they are paying to achieve. Moreover, online

dating is an arduous process [126] with an extremely high attrition rate. As many four of

five users experience emotional burnout or fatigue [104], and survey of 690 online daters

who had deleted dating apps [122] found that the number one reason was a need to “take a

break” from dating. The parameter δ captures this frustration/fatigue/burn-out as a decay

38



in the users’ willingness-to-pay.

In our model of the matching process, we suppose users match at a time-invariant expo-

nential rate q. To build intuition for our model of matching, consider an analogous discrete

matching process i.e., one where the user interacts with candidate match 1, then candidate

match 2, and so on (see Fig. 8 for a graphical depiction). If the probability of matching

with each candidate is q, then a user’s time until matching is geometrically distributed with

expectation 1/q. In this chapter we consider the continuous analog of this process indexed

by time t, with homogeneous match rate q, such that, over any period of time ∆ on the plat-

form, the probability of a user matching is an exponential random variable with rate q, i.e.,

Pr (Match ∈ [t, t+ ∆)) = 1 − e−q∆. This formulation is the natural continuous time model

for the operation of swipe apps like Tinder, Hinge, or Bumble, where users can continuously

swipe through platform-prepared candidate matches.

Figure 8: Graphical depiction of the matching process.

Note. Depicted is the matching process we consider in this chapter. A user interacts with a

(continuous) stream of candidate matches. The user forms a successful match with someone

in this stream at rate q. The candidate matches are grouped in bunches of size L. In practice,

there is a natural correspondence between the length of time L for a period, and the number

of candidates a user can see, stemming from hard caps on the number of users who can be

seen in a period imposed by the platform.

Finally, our model for the platform strategy supposes the space of policies is parame-

terized by a subscription price, p, and a subscription length, L. This is a simplification of

current app practice where menus of subscriptions are offered, but one we make so as to

highlight the differences between these policies. We suppose operating the platform for one
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additional user has marginal cost c, and note that for large, established platforms with mil-

lions of users, c should be vanishingly small. We capture the size of the potential user-base

with the parameter T , and note that intuitively when c is small, the platform must be large,

and thus T should also be large.

3.2.2 General Profit Derivations

In this subsection, we formally derive the expressions for the general period length pricing

strategies. We call a pricing strategy offering a period L of service at a fixed subscription

price p, a period L pricing (LP).

Suppose the platform commits to a subscription price p with period length L, then each

user pays the subscription price at the beginning of every subscription period until they

either: 1) match, 2) their expected utility for another period on the platform decays below

p, and they decide not to renew their subscription, or 3) the platform is exhausted. Let

R(p, L) be the expected profit for the platform using such a policy where the expectation is

taken over the user’s valuation, and the matching randomness, i.e.,

R(p, L) := pE [# Periods on platform]− cE [Time on platform] , (3)

where c is the unit time operating cost. We emphasize the distinction between the number

of periods, which is discrete, and the total time, which can include the intra-period time to

match. Let R(L) := maxpR(p, L) denote the maximum achievable profit of the platform

with payment period of length L.

To compute this profit explicitly, consider a user with fixed valuation v, and note that

such a user will pay the subscription price only if their time discounted expected valuation

for a match in the subscription period exceeds the price. If the user pays the subscription

price, they will stay on the platform until they either match and leave, which is distributed

as an exponential random variable with rate q, or until the period ends and they reevaluate

paying the period price. Let TExp(q, L) denote an exponential random variable with rate

q truncated at L, which represents the time the user spends on the platform in a period
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of length L, assuming they paid the period price. A user with valuation vδ(i−1)L at the

beginning of the ith period will pay only if

E

 Valuation for match︷ ︸︸ ︷
vδ(i−1)L+TExp(q,L) 1TExp(q,L)<L︸ ︷︷ ︸

Chance of matching

 ≥ p

where 1TExp(q,L)<L is the indicator function which is 1 when the user matches in the period,

and 0 when the user reaches the end of the period without matching. The expectation can

be evaluated as,

E[vδ(i−1)L+TExp(q,L)1TExp(q,L)<L] = vδ(i−1)L

∫ L

0

δtqe−qtdt = vδ(i−1)L

(
q
(
1− δLe−qL

)
q − log (δ)

)
.

Therefore, a user with valuation vδ(i−1)L at the beginning of the ith period will pay the

subscription price p only if

vδ(i−1)L

(
q
(
1− δLe−qL

)
q − log (δ)

)
≥ p. (4)

Now we want to express the number of periods the user will purchase, to do so we will need

some additional notation. First, let ω(i) be the minimum valuation necessary to induce

purchase in period i, divided by p, i.e.,

ω(i) := δ−(i−1)L q − log (δ)

q (1− δLe−qL)
. (5)

Next, define τ(v) as the maximum number of periods a user with initial valuation v could

possibly pay. When τ(v) ≤
⌊
T
L

⌋
, τ(v) satisfies:

v ≥ ω(τ(v))p, v < ω (τ(v) + 1) p.

Solving the condition for τ(v) we obtain,

τ(v) =

(⌊(
log
(p
v

)
+ log

(
q − log (δ)

q (1− δLe−qL)

))
/(L log(δ))

⌋
+ 1

)+

,

where we use the superscript “+” to denote the maximum with 0.

Now, the number of times a user with valuation v pays the period price p follows a

truncated geometric distribution, TGeo(1− e−qL, τ(v)), where 1− e−qL is the probability of
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a successful match in a period, and τ(v) is the maximum number of periods the user could

pay. Thus, the expected number of periods the user with initial valuation v will pay is,

E
[
TGeo(1− e−qL, τ(v))

]
=

τ(v)∑
j=1

j(1− e−qL)e−(j−1)qL + τ(v)e−τ(v)qL =
1− e−τ(v)qL

1− e−qL
.

Further, a user with valuation v will stay on the platform at most τ(v) periods. On the

platform, users get matched and leave with rate q. Thus, the time a user with valuation

v stays on the platform follows an exponential distribution with rate q truncated at τ(v)L.

The expected time the user spends on the platform will be

E[TExp(q, τ(v)L)] =

∫ τ(v)L

0

qte−qtdt+ τ(v)Le−τ(v)L =
1− e−qτ(v)L

q
. (6)

Finally, putting it all together the expected profit of the platform can be evaluated as,

R(p, L) =

∫ ∞

0

(
pE
[
TGeo(1− e−qL, τ(v))

]
− cE[TExp(q, τ(v)L)]

)
f(v)dv

=

∫ ∞

0

(
p

(
1− e−τ(v)qL

1− e−qL

)
− c

(
1− e−qτ(v)L

q

))
f(v)dv

=

∫ ∞

0

(
p−

c
(
1− e−qL

)
q

)(
1− e−τ(v)qL

1− e−qL

)
f(v)dv

=

(
p−

c
(
1− e−qL

)
q

) ⌊T/L⌋∑
i=1

(
1− e−iqL

1− e−qL

)(
F(ω(i)p)− F(ω(i+ 1)p)

)
+

(
p−

c
(
1− e−qL

)
q

)(
1− e−⌊T/L⌋qL

1− e−qL

)
F (ω (⌊T/L⌋+ 1) p)

=

(
p−

c
(
1− e−qL

)
q

) ⌊T/L⌋∑
i=1

e−(i−1)qLF(ω(i)p), (7)

where the first equality follows from the definition of period L pricing in Eq. (3). The second

equality follows from plugging in expressions for E
[
TGeo(1− e−qL, τ(v))

]
and E[TExp(q, τ(v)L)].

The fourth equality follows from the fact that users with valuation v ∈ [ω(i)p, ω(i+ 1)p) will

all act the same, paying for at most i periods, and F(ω(i)p)−F(ω(i+ 1)p) is the proportion

of users who can pay at most i periods, and where the last term F (ω (⌊T/L⌋+ 1) p) is the

proportion of users whose valuation is larger than ω (⌊T/L⌋+ 1) p. The final equality follows

from the fact that −
(
1− e−iqL

)
+
(
1− e−(i+1)qL

)
= e−iqL

(
1− e−qL

)
and simplifying. Note

that p− c(1−e−qL)
q

is the expected profit per period, and e−(i−1)qL the probability that paying

users do not match through the first i− 1 periods.
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3.2.3 Profit Derivations for SP and CP

In this subsection, we derive simplified profit expressions for short period pricing, and

long period pricing, as limits of the general period L pricing expression in Eq. (7). We will

also note some special properties of the profit function for these two cases which will aid in

subsequent analysis. Recall, in short period pricing the platform commits to a fixed price p

and each user pays the price in a continuous fashion until they either match, or their expected

utility from further time on the platform drops below 0, or the platform is exhausted. Let

RSP (p) be the expected profit the matchmaker earns using subscription price p, then,

RSP (p) := (p− c)E [Time on platform] .

We will use RSP := maxpRSP (p) to denote the maximum achievable profit under short

period pricing.

In long period pricing, we assume the user agrees to a fixed, one-time payment p, the

matchmaker commits to displaying potential matches until the user matches and leaves, or

exhausts the platform. Let RCP (p) be the expected profit the matchmaker earns using the

long period price p, then,

RCP (p) := (p− c× E [Time on platform]) Pr(User pays price p).

We will use RCP := maxpRCP (p) to denote the maximum achievable profit under long

period pricing. The following lemma gives simplified expressions for the profits of SP and

CP, respectively.

Lemma 3 (Profit Derivations for SP and CP). For all positive valued distributions F , and

parameters c, q, T > 0, and δ ∈ (0, 1), the expected profit for period L pricing when L = T

(CP) or L = 0 (SP) is,

RCP (p) =

(
p− c(1− e−qT )

q

)
F

(
p (q − log(δ))

q (1− δT e−qT )

)
(8)

=

∫ T

0

(
pδt (q − log(δ))

1− δT e−qT
− c
)
e−qtF

(
p (q − log(δ))

q (1− δT e−qT )

)
dt (9)
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RSP (p) =

(
p− c
q

)∫ ∞

p
q

min

{
1−

(
p

vq

) −q
log(δ)

, 1− e−qT

}
f(v)dv (10)

=

∫ T

0

(p− c)e−qtF(pq−1δ−t)dt (11)

Note, in Lemma 3 two representations are given for both CP and SP. We emphasize that

these representations are equivalent, and represent evaluating CP/SP as either an integral

over time, or as integral over valuations. Further note, when compared to Eq. (7), these

expressions are only in terms of model parameters; there is no complicating sum or function

ω(·). Both expressions for both CP and SP will be useful in our analysis of these policies,

hence the four equations above.

Lastly, in this work we will reason about the optimal achievable profit. In describing

and analyzing these profits it will be helpful to characterize the profit maximizing prices for

a given subscription period L. To ensure these prices are unique, we will often make the

ubiquitous assumption that the valuation distribution has a monotone hazard rate (MHR).

Definition 3 (Monotone Hazard Rate (MHR) Distributions). A random variable V ∼ F

with density f is MHR if F(x)
f(x)

is non-increasing.

MHR distributions are commonly used to model valuations, where they strike the ap-

propriate balance between structure (MHR distributions have sub-exponential tails) and

generality. MHR includes many common distributions, including Normal, Uniform, Expo-

nential, and more. In Lemma 4 we show that when valuations are MHR, both the optimal

short period and long period prices are unique, and as the cost c increases the prices also

increase.

Lemma 4 (Uniqueness of Optimal Prices for SP and CP). For all positive valued, MHR

distributions F , and parameters c, q, T > 0, and δ ∈ (0, 1), the both optimal short period

price and long period price are unique, and increasing in c.

We note that although MHR distributions make the optimal short period and long period

prices unique, the same unfortunately can not be said for general period L pricing which

can exhibit multiple optimal prices even when the valuations are fixed (see Example 4).

Much of the technical difficulty in analyzing general period length L pricing stems from this
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intractability. We will explore this problem in Section 3.3 when we prove profit guarantees

for these pricing policies.

3.3 Profit Analysis

In this section, we study the optimal profits achievable by an online platform in terms of

the subscription period length L. To motivate the study of the choice of period length L, let

us first emphasize that no fixed choice of L always yields more profit for all parameters and

valuation distributions in our setting. In fact, for every choice of L, there is an instance for

which that period length is uniquely profit maximizing (see the rightmost panel of Fig. 23

for a construction). With this in mind, in theory, if given parameters c, q, T , δ, and

a valuation distribution F , a platform could attempt to directly optimize their choice of

L from Eq. (7). However, such optimization is computationally difficult with potentially

many locally optimal solutions (see the left panel of Fig. 23). Moreover, the parameters in

our model may be difficult to estimate and may vary over time as market dynamics and

operational realities change.

Instead of focusing on this explicit optimization problem, we will direct our attention

towards proving robust guarantees for some particular choices of L, and on examining nat-

ural parameter regimes where the profit maximizing choice of L can be identified. Both

approaches will yield results which can directly inform operational decision making with

respect to the setting of subscription policies. As mentioned in the introduction, both SP

(L→ 0) and CP (L→ T ) will play a starring role as robust solutions, or optimal solutions

given some market conditions, respectively. In the next subsection we will show that SP is

uniquely robust in the sense that for all market parameters, and any MHR valuation distri-

butions, it achieves a constant factor of the optimal profit against the best-in-class pricing

policy. This implies that the potential lost sales from committing to short period pricing

versus some unknown optimal policy is never too large.
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3.3.1 SP is Always Approximately Optimal

In this subsection, we compare the maximal profit of period L pricing with short period

pricing (SP) and demonstrate that SP achieves a constant factor of the profit of the best-

in-class policies. This guarantee ensures that the profit of SP is robust to misestimations or

fluctuations in the underlying market parameters. Recall, we think of short period pricing

as closely resembling a freemium pricing model where the online platform earns revenue

from advertising. In advertising supported platforms the user can be thought of as paying

with their time/attention in a continuous fashion, and the price rate can be thought of as

the intensity/number of ads displayed as they browse the platform. Since almost all major

dating platforms in the United States offer a free version of their service (including all Match

group apps except Match.com), universal profit guarantees for this sort of pricing model are

of considerable interest in and of themselves.

Before stating our results, let us first note that SP has several unique properties which

make it a prime candidate as a robust pricing policy. For one, by varying the costs c we

can construct scenarios for which SP earns positive profit whereas any other period length

L > 0 pricing earns nothing when the costs are prohibitively high (see Example 6 for a

construction when valuations are fixed). This immediately precludes any other choice of L

from guaranteeing a constant fraction of the optimal profit for all market parameters. Of

course, this is just one way of varying the market parameters, in this subsection we will

prove that no matter the market conditions, short period pricing always earns at least 26.8%

of the profit of any period length L subscription pricing, and for almost all parameters, the

guarantee is much stronger.

To prove such a result we will require two lemmas. First, we will show that the optimal

profit of any period L pricing can be approximately decomposed into the profit of a short

period pricing policy, and the profit of a long period pricing policy where the maximal time

on the platform T is reduced to L. Second, we will show that SP approximates CP. Carefully

combining these two results will yield our promised robustness guarantee.

Lemma 5 (Profit Decomposition). For all positive valued distributions F , parameters c, q, T >

0, and δ ∈ (0, 1), then:
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R(L) ≤ RSP +RL
CP ,

where RL
CP denotes the optimal profit of long period pricing with T set to L.

Lemma 5 decomposes the profit from a period L pricing into the profit from a particular

instance of SP and CP. The main idea of the lemma is to note that the profit earned by the

end of each subscription period is exactly the same as an appropriately priced instance of

short period pricing, and the profit earned in the final subscription period is upper bounded

by the profit of a restricted instance of long period pricing. The upside of Lemma 5 is

that, while the profit of the optimal best in class period L pricing policy is difficult to write

down in closed form and reason about (due to the multiple potential optimal prices), SP and

LP are comparatively much easier to compute and analyze. By relating these quantities,

we obtain a useful handle on the maximal achievable profit by the best subscription policy

(parameterized by L), and demonstrate that reducing our strategy space to just CP and SP

maintains approximate optimality.

Armed with Lemma 5, our next task will be to show that SP approximates CP. The

following lemma shows that short period pricing always earns at least 1/e of the profit of

long period pricing for all parameters, and often substantially more.

Lemma 6 (RSP Approximates RCP ). For all positive valued, MHR distributions F , param-

eters c, q, T > 0, and δ ∈ (0, 1), then:

RSP

RCP

≥
(

1− q

log(δ)

) log(δ)
q

.

Taking the minimum over q
− log(δ)

yields a constant factor approximation,

RSP

RCP

≥ 1

e
.

Further, this bound is tight.
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Lemma 6 gives sharp bounds between SP and CP as a function of the market parameters

q and δ. One implication of this result is that for fixed q, and as δ tends to 1, the bound tends

to 1, and indeed when δ = 1 these two quantities are equal (see Example 7 for computation).

The proof of Lemma 6 is quite involved, proceeding by first reducing the problem to the

case of fixed valuations and then constructing a pair of feasible prices of SP that achieve the

guarantee over different ranges of the parameter space.

Intuitively, users interact with SP and CP in very different ways. SP gives the most

opportunity for users to try the platform since it requires no commitment, however the

average time those users spend on the platform is quite short. On the other hand under CP

many users are not able to pay the high one time payment and thus do not get access to the

platform, but the ones that do pay then stay for the maximal amount time giving them the

best chance to get matched. To approximate CP using SP, we consider either a high feasible

price for SP that gives a similar opportunity as CP, or a low feasible price that leads to a

similar proportion of users getting matched as CP. The best of these two prices achieves the

guarantee.

Finally, by taking Lemmas 5 and 6 together, we show that short period pricing can

achieve at least 1
1+e

of the optimal subscription profit of the optimal any period L pricing

over any set of market parameters.

Theorem 6 (RSP Approximates R(L)). For all positive valued MHR, distributions F , pa-

rameters c, q, T > 0, δ ∈ (0, 1), and for any period length L:

RSP

R(L)
≥ 1

1 + e
,

and no other fixed choice of pricing strategy can guarantee any constant factor.

Theorem 6 demonstrates that in all parameter regimes, short period pricing (SP) guar-

antees a substantial fraction of the profit garnered by period L pricing. We note that our

bound is implicitly parametric (via Lemma 6) and often guarantees substantially more than

1/(1 + e) of the optimal profit. Thus in practice, we expect SP to earn an even greater

fraction of the profit than the worst case guarantee in Theorem 6. Indeed numerically we
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see that SP is generally quite close to the optimal profit, especially when the costs c and the

decay rate δ are fairly high (see Fig. 9 for three examples).

Practically, we think of Theorem 6 as evidence that SP is a robust pricing strategy. This

is in-line with its use cases in practice. Often new dating apps are monetized in a short

period pricing fashion as they grow their user-base. Unlike long period pricing CP, short

period pricing requires no extraordinary market powers or commitments from the users and

thus may be the only available pricing mechanism for the emerging online dating platform.

These market realities, combined with our guarantee, provide a strong justification for the

prevalence of short period pricing for new online dating platforms.

3.3.2 CP is Profit Optimal when Marginal Costs are Low

In Theorem 6, we proved the profit of SP always approximates the profit of an optimally

calibrated LP policy. While policies with good guarantees for all markets are desirable,

online dating market parameters often are a certain way, and focusing and these more likely

parameter ranges may yield stronger guarantees. Specifically, for large and established dating

platforms the marginal operation cost c per user should be quite small. Moreover, returning

to Example 6 we note that a restriction on c is necessary to give conditions for optimality for

any policy besides SP. In Theorem 7 show that such a restriction on the marginal operating

cost c is also sufficient for strong profit relations.

Theorem 7 (CP Maximizes Profit when c = 0). For all positive valued, MHR distributions

F , and parameters q, T , δ, and any L, if c = 0 then,

RCP ≥ R(L).

In Theorem 7 we find that the profit from long period pricing always dominates the profit

of any other period L pricing when the marginal cost of operating the platform tends to

zero. We emphasize that reductions in c improve the profit of all policies regardless of L. To

build intuition for this result, recall from our discussion around Lemma 6, the period length

L controls a trade-off between opportunity, i.e. how many users get a chance to try the

platform, and match proportion, i.e. how many of the users who pay end up actually getting
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matched. Low L corresponds to higher opportunity, and thus more users on the platform

for less time, on average. High L corresponds to less users on the platform for more time. In

this context, Theorem 7 states the reduction of cost is more impactful for the smaller cohort

of long term users induced by CP, than for any larger cohort of shorter term users induced

by another choice of L. So much so that CP becomes profit dominating.

Figure 9: Relations between optimal profit and δ when valuations are uniform.

Note. Here we plot the optimal profit under SP, CP and period L pricing with L = T/15

for three different levels of marginal cost c. The valuations are drawn from an uniform(0, 1)

distribution, the other parameters are T = 50, q = 0.5, and δ varies. In the left panel, we

plot the optimal profits of SP, CP and period L pricing with L = T/15 when c = 0, and note

the profit of CP dominates profits of SP and LP. In the middle panel, we plot the optimal

profit of SP, CP and period L pricing with L = T/15 when c = 0.1, and note profit of SP

dominates CP and LP when δ is low, then the dominance switches from SP to LP then CP.

In the right panel, we plot the optimal profit of SP, CP and period L pricing with L = T/15

when c = 0.3, and note the profit of SP dominates CP and LP.

This is in contrast with our previous result which supports SP as the robust choice

of pricing strategy. We note that in established online markets one can often expect the

marginal cost of operating of the platform to be vanishingly small, and thus although SP

is more common for online dating, Theorem 7 suggests that CP may be more profitable

for most (established) online dating platforms. Taking Theorems 6 and 7 together, we find

the SP and CP have unique profit properties that make them particularly attractive among

all period L pricing policies. SP is robust and optimal for emerging platforms with very

high marginal costs, and CP is optimal in low cost scenarios which should describe most
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established online dating platforms.

In Fig. 9, we visualize the optimal profits earned by SP, CP, and an intermediate choice

of L, at three different levels of marginal cost c. At each level of cost we vary the user

patience parameter δ. We note, as stated in Theorem 7, the profit of CP dominates SP and

LP when the marginal cost is vanishingly small, whereas when the marginal cost is high, SP

earns more profit than CP and LP, in between the dominance of profit highly depends on δ.

3.4 Match Proportion Analysis

In the previous section we showed that SP and CP have unique properties with respect to

profit which make them important to study in comparison with each other. In the remainder

of this chapter, we look beyond profit and study the welfare and incentives induced by the

choice of SP or CP. In this section we study a specific measure of user welfare, the proportion

of the user base that ends up getting matched. In Section 3.5, we extend our study beyond

our assumption that the population of candidate matches are all equally likely to match with

the user.

3.4.1 Match Proportion and Profit

In this subsection, we will examine the relationship between the profit and the proportion

of the market that matches. The proportion of the market that matches is essentially a

measure of user welfare, it describes how well a profit maximizing subscription strategy can

serve the population that faces it.

First some notation. Let M(p, L) be the proportion of the market that ultimately gets

matched in expectation under period L pricing with price p, and letMSP (p) andMCP (p) be

the match proportion for SP and CP, respectively. Note, this is the proportion of users who

first pay the price, times the probability of them getting matched eventually. As with the

profit of different pricing policies, the match proportion can be expressed as a function of the

model parameters. For general period L pricing with subscription price p, the probability
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a user who can pay for at most i periods gets matched eventually is 1 − e−iqL. The overall

match proportion is,

M(p, L) =

⌊T/L⌋∑
i=1

(
1− e−iqL

)︸ ︷︷ ︸
Prob. of matching

(
F(ω(i)p)− F(ω(i+ 1)p)

)︸ ︷︷ ︸
Prob. of paying p for i periods

+
(
1− e−⌊T/L⌋qL)F (ω (⌊T/L⌋+ 1) p)︸ ︷︷ ︸
Users who can pay more than ⌊T/L⌋ periods

. (12)

By taking limits in the same fashion as in Lemma 3, we can derive simplified expressions for

the match proportion for SP and CP,

MSP (p) =

∫ ∞

p
q

min

{
1−

(
p

vq

) −q
log(δ)

, 1− e−qT

}
︸ ︷︷ ︸

Prob. of matching for valuation v

f(v)dv, (13)

MCP (p) =
(
1− e−qT

)︸ ︷︷ ︸
Prob. of matching

F

(
p (q − log(δ))

q (1− δT e−qT )

)
︸ ︷︷ ︸
Prob. of paying price p

, (14)

To begin our study of the resulting match proportion from different length pricing poli-

cies, we will first note an important relationship between the match proportion, the profit,

and the price. Namely, in Lemma 7 we show that the profit of period L pricing is always

equal to the match proportion times the difference between normalized price and expected

cost, where the normalized price is p/
(
1− e−qL

)
, i.e., the subscription price for a period over

the chance of the user getting matched in the period, and the expected cost is c/q, i.e., the

cost times the expected time to match (assuming payment in every period).

Lemma 7 (Profit and Match Proportion). For all positive valued distributions F , parameters

q, T > 0, and δ ∈ (0, 1), the profit of period L pricing equals the product of the difference

between normalized price and expected cost, and match proportion, i.e.,

R(p, L) =

(
p

1− e−qL
− c

q

)
M(p, L).

Lemma 7 is intuitive, and allows us to leverage some of the insight derived in Section 3.3

to study match proportion. Armed with this lemma, we will investigate whether a larger

proportion of the market is matched under SP or CP.
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3.4.2 Match Proportion Analysis for SP and CP

Unfortunately as with profit, there is no universal match proportion relationship between

SP and CP, or for general period L pricing. Recall when costs are sufficiently high, CP (and

any other policy with L > 0 by Example 6) is not necessarily economically viable and thus

matches none of the user-base, whereas SP may stay in the market and still match at least

some users. However, as noted in Section 3.3.2 for online dating one can expect the marginal

cost of operating a platform to be relatively small. To rule out these pathological instances

and make a fair and relevant comparison between SP and CP, we will assume the cost is

vanishingly small.

Theorem 8 (CP Matches More Users than SP). For all positive valued, MHR distributions

F , and parameters q, δ, if c = 0 and T =∞, then there exists price p for CP such that:

RCP (p) ≥ RSP andMCP (p) ≥
(

1− log(δ)

q

)
MSP .

Theorem 8 gives generic conditions for when CP can achieve both a higher profit and

match a higher proportion of the market than SP. Thus, in online dating markets with low

marginal costs, CP is a win-win: more users are matched, and more profit is made than

under SP. At a technical level, the proof is achieved by the serendipitous fact that profit

maximizing normalized price for SP also works provably well for CP. We emphasize that

such a result does not follow from Theorem 7 and Lemma 7 since the normalized prices can

be larger for either SP or CP in certain instances (see the middle panel of Fig. 10).

In Fig. 10, we contextualize Theorem 8 by plotting the relative profits, induced optimal

normalized prices, and match proportions as δ varies and c = 0. We note that the profit and

match proportion of CP dominates SP and LP (for intermediate choice of L) for any δ if the

cost is zero. Further, when δ is not too high the induced normalized optimal price of CP is

also lower than SP and LP. The numerical results imply CP is indeed a “win-win” pricing

policy when the marginal cost is low.
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Figure 10: Relations between optimal price, profit, and match proportion when δ changes.

Note. Here we plot the profit, optimal prices, and match proportions under SP, CP and

period L pricing with L = T/15, when valuations are drawn from an exponential(1) distri-

bution, and where T = 50, c = 0, q = 0.3, and δ varies. In the left panel, we plot the profits

of SP, CP and period L pricing with L = T/15, and the profit of CP dominates the profits

of SP and LP. In the middle panel, we plot the normalized optimal long period, short period

and period L prices. In the right panel, we plot the proportion of the market that gets

matched under SP, CP and period L pricing, the match proportion of CP always dominates

the match proportion of SP and LP.

In Fig. 11 we synthesize Theorems 6 to 8 and plot the relative profits, induced optimal

normalized prices, and match proportions as the cost varies. We note that, in these numerics,

CP matches significantly more of the market, even when c is not too large suggesting the

result in Theorem 8 is relatively conservative. Moreover, the optimal normalized price of CP

is often also lower than SP, which means users are paying less to get matched in expectation.

Here the results suppose valuations are Exponential, similar results for Uniform valuations

and Mixture of Log-normal distributions (which note are not MHR or even unimodal) are

shown in Figs. 25 and 26, and similar “win-win” behaviour is exhibited.
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Figure 11: Relations between optimal price, profit, and match proportion when valuations

are exponential.

Note. Here we plot the profit, optimal prices, and match proportions under SP, CP and

period L pricing with L = T/7, when valuations are drawn from an exponential(1) distribu-

tion, and where T = 50, δ = 0.8, q = 0.2, and c varies. In the left panel, we plot the profits

of SP, CP and period L pricing with L = T/7, and the note relative profit ordering switches

from RCP > RSP when c ≤ 0.04, to RCP < RSP for c > 0.04. In the middle panel, we plot

the normalized optimal long period, short period and period L prices. In the right panel,

we plot the proportion of the market that gets matched under SP, CP and period L pricing.

Note that MCP dominates MSP for c ≤ 0.17.

3.5 Incentive Considerations for Online Dating Platforms

In all previous sections, we have assumed q, the rate at which a user matches on the

platform, was fixed and constant. In this section, we will extend our framework to model

varying match rates. Many dating platforms, including some of the most popular apps

like Hinge, Tinder, Okcupid etc., implement features to segregate high probability and low

probability potential matches (e.g. Hinge roses, Tinder top picks, etc.), thus we can infer

that users have preferences over potential candidates that impact the match rate, and that

platforms are able to learn (to some degree) these match rates and use them to determine

the order in which potential matches are displayed.
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Formally, let there be k possible match rates {q1, ..., qk} representing k populations of

candidate matches, where q1 ≤ q2 ≤ ... ≤ qk, and suppose the online dating platform can

order the potential matches based on match rate. Suppose population size of each potential

match pool with rate qi for the user is ti, i = 1, ..., k, where t1 + ...+ tk = T . We assume the

user’s belief about the match rate on the platform is the average of the potential candidates,

q =
(∑k

i=1 qiti

)
/T , which is independent of the order in which candidates are displayed.

To denote the platform’s decision for the order, we use −→q to denote {q1, ..., qk}, ←−q to

denote {qk, ..., q1}, and σ(q) to denote any other order of match rates. Let RSP (p, σ(q))

and RCP (p, σ(q)) to denote the profit of SP and CP, respectively, when potential matches

are shown following match rate order σ(q) with fixed price p, and we use RSP (σ(q)) and

RCP (σ(q)) to denote the optimal profit of SP and CP under match rate order σ(q). For a

worked example of how profits change under different orders, see Example 8.

We emphasize that this model for platform controlled match rate order is not game

theoretic. In our model users cannot learn or respond to a platform’s choice of order, and

valuations and beliefs about the match rate do not vary as users gain experience. For this

reason, we certainly do not claim that the optimal ordering in this model necessarily trans-

lates to equilibrium behaviours for the platform. Instead, the purpose of our heterogeneous

match rate model is the understand the obvious incentives of the online dating platforms with

respect to match rate, around which much of the discussion about online dating platforms

is centered, and which is often referenced as a reason to innovate in the way dating apps are

monetized (cf. Fig. 24). The upshot of our analysis is that if the platform is incentivized to

show the best possible matches up front, then the platform and users are in harmony and

the space for strategic behaviour collapses.

In our main result of this section, we characterize how a profit maximizing platform

orders potential matches under SP and CP, respectively.

Theorem 9 (Incentives for CP and SP). For all positive valued, MHR distributions F ,

parameters c, T > 0, and δ ∈ (0, 1), set of match rates {q1, . . . , qk}, and for any ordering σ:

(a) RCP (p,←−q ) ≥ RCP (p, σ(q)),

(b) RSP (p,−→q ) ≥ RSP (p, σ(q)).
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(c) arg maxpRCP (p,←−q ) ≤ arg maxpRCP (p, σ(q))

Theorem 9 shows that a profit maximizing online dating platform has the incentive to

show low match rate candidates first under SP, whereas it has the incentive to show high

match rate candidates first under CP. This is intuitive, for SP the longer users stay on the

platform, the more profit an online dating platform can achieve. In contrast, for CP users

pay the long period price p once and thus the strategy to maximize profit is to reduce the

operating cost. Therefore online dating platforms using CP want to display high match rates

candidates first so that users can get matched and leave the platform as soon as possible.

Interestingly, Theorem 9(c) shows that strategic behavior under CP is not only beneficial

for online dating platforms, but also improves users’ surplus. The optimal long period price p

will be smallest under the mutually beneficial, optimal match rate ordering, and thus under

CP the online dating platform can serve even more users by offering a lower price.

More generally, on dating apps, as the user interacts with the platform, the platform

learns which potential matches the user would likely prefer. As mentioned in the intro-

duction, ostensibly SP incentivizes the platform to hold likely matches back from the user,

whereas CP incentivizes the platform to try and match the user as soon as possible. Taken

together, Theorem 9 formalizes this intuition and further shows that not only does CP in-

centivize the platform to use information about user preferences to help the user match, but

also that information induces a profit maximizing platform to lower the long period price.

This significantly simplifies the strategic considerations around revealing preference since the

user and the platform are, in this regard, perfectly aligned.

3.6 Conclusions

In this chapter we propose a novel and natural model to study the profit obtained by an

online dating platform committing to subscription based pricing policies of varying lengths.

In our model we gave a number of theoretical guarantees regarding the profit, welfare, and

incentive issues induced by the pricing policy which translate directly to managerial insights

for future dating platforms. In this final section we will elaborate on some of these managerial
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insights, and how they relate to current and future dating app operations. We will also touch

on some drawbacks of our work, and future directions for research on these critical platforms.

For dating app users and designers, our work sheds light on the consequences of the

pricing strategy a profit-maximizing dating apps commits to. As we emphasized in the in-

troduction, a savvy user may recognize that for short subscription period lengths, there is

an incentive for any online dating platform to act against their users’ best interests so as

to earn additional subscription payments. Noting this compatibility mismatch, the strate-

gic user may choose the cheaper option when it would be otherwise utility maximizing to

purchase more expensive options. The strategic user may also misrepresent their true pref-

erences, perhaps instead passing themselves off as a casual dater, further complicating the

difficult task of finding a match for the user.

This difficult incentive mismatch is referred to as the“strategy puzzle” of online dating by

[134]. One way of reading our work is as demonstrating that longer periods offer a way out

of this puzzle. Specifically, long period pricing flips this script and aligns the platform and

the user. When the costs are paid upfront, the platform and the users have the same goals

and the incentive to behave strategically vanishes. We further note that the disincentive to

strategize under long period pricing may have additional beneficial effects for the platform

that are not accounted for by our model. When all users truthfully report preferences, this

in turn may increase the accuracy of the platform’s matching algorithms, and thus may

generate more matches, which leads to better efficiency, better word of mouth advertising

from happy couples, higher return rates, less burn-out among users and so on.

More generally, our work provides theoretical justification for longer periods as a true

win-win in the online dating space. When marginal costs are low (as is often the case

online), we prove that long period pricing is simultaneously more profitable for the online

dating platform, and more effective at matching a significant portion of the user-base. Of

course, there are certain barriers not captured in our model that may make longer period

pricing strategies like CP more difficult to implement in an online environment. For instance,

requiring a large upfront sum from the customer may be difficult for budget constrained users,

and requires substantial commitment and trust on the part of the user that after payment

the site will be effective for them.
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While these implementation issues are potentially burdensome, we believe they are worth

the effort of surmounting. We note one emerging avenue for implementing CP is by working

in collaboration with government agencies that can track marriage records, and thus enforce

contracts where users pay after matching/marrying (or never charging them all). In fact,

given the strong social value of efficient matchmaking, nationalized dating apps are being

tested overseas in countries like Japan and Singapore [5, 2]. For such platforms, CP could

reasonably be implemented and may yield superior results.

Finally, we note that online dating in general is remarkably complicated and our model

required a number of simplifications to ensure tractability. For instance, our work describes

users solely looking for their life-long match, however on sites like Tinder or Grindr, many

users may only be looking for short relationships. In this case, the incentives for the site

are different, and even under FP the platform may still try to match users in the hopes of

soliciting their repeat business. This heterogeneous population of user interests may provide

some salve to the analysis presented in this chapter, and would be interesting to study in

future work. We also note that our paper studies platforms where a single subscription plan

is offered. As seen in Figs. 7 and 24 however, many apps offer a menu of varying length

subscriptions, where users can pay for a short, moderate, or long amount of time on the site.

In future work, it would be interesting to study how these menus of subscription options

effect the incentives and performance of dating apps.
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4.0 Fresh Rating Systems: Structure, Incentives, and Fees

4.1 Introduction

Rating systems are the backbone of online marketplaces, facilitating trust between cus-

tomers and service providers [125]. Customers depend on rating systems to form expectations

about service providers, and to avoid undesirable purchasing outcomes. The vast majority

of online shoppers consider provider ratings before making purchasing decisions, however

ratings alone are often insufficient signals of quality. Instead of relying just on the rating, as

many as 88% of online shoppers will take time to further investigate the individual reviews

that inform the ratings [129]. This is because not all reviews, and thus not all ratings which

are an aggregation of the reviews, are equally informative. When customers investigate re-

views they pay special attention to a number of factors that signal how accurate the reviews

may be [98].

One key factor customers consider when examining reviews is how long ago the review

was posted. In a [129] study they found that 38% of customers will not purchase a product

if all reviews for that product are older than 90 days, and 85% of customers report finding

reviews older than 90 days to be irrelevant [139]. Intuitively, older reviews are less relevant

than newer reviews for purchasing decisions that customers must make today. A review that

is sufficiently old so as to be irrelevant to a customer is referred as stale [26], and similarly a

rating is stale if it is substantially informed by stale reviews. In this work we study how to

modify rating systems to mitigate issues due to staling and keep the ratings fresh. We make

a distinction between two types of stale reviews/ratings which we refer to as sequentially

stale and temporally stale. A sequentially stale review is one for which there are many more

recent reviews. A temporally stale review is one which was written a long time ago. As an

example, the most recent review of a service provider would be not sequentially stale, but

if that review was written six months ago it would be temporally stale. Alternatively if a

flurry of reviews were written over a short period (perhaps due to a new product launch or

a recent renovation) then the reviews written before this large influx would be sequentially
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stale even if they written only a short time ago.

In practice, many rating systems treat both stale and fresh (i.e. not stale) reviews equally,

regardless of the type of staleness. For instance, consider the popular simple average rating

system which computes a rating equal to the average of all review scores. The simple average

is used by some of the most influential platforms including Google Reviews [59] and Yelp [142].

However, [26] find that more than half of the reviews on Yelp are stale (defined as older than

90 days). Consequently, Yelp ratings based on simple averages, which do not differentiate

between stale and fresh reviews, rely heavily on potentially outdated information. This

compromises the credibility of the ratings, a core aspect of Yelp’s functionality.

To illustrate this point, consider how staling could result in a rating that misrepresents

a service provider’s quality. For instance, a high but stale rating could be inflated by a past

period of high quality service. Due to the nature of a simple average, if the service provider

once performed well but recently experienced a drop in quality, it would require many reviews

from this new period of poor service before the rating would reflect the provider’s current

performance. The converse is also possible, a long flagging service provider that recently

changed management or business practices could begin to perform better than it had in the

past. However due to the nature of the simple average, the provider would need to acquire at

least as many new positive reviews as they had negative reviews when they under-preformed

to raise their rating to just the midpoint between the old and new true rating. For examples

of such cases in practice see Fig. 30 and Appendix C.3.1.

Another issue with simple average based rating systems is that, for service providers

whose rating is already high, there is no incentive to solicit new reviews. Since service

providers are often ranked and displayed on platforms based on their ratings, new service

providers will expend significant effort to attract positive reviews and build their rating [55].

However once the high rating is established, if there is no penalty associated with the age

of the reviews, a service provider may wish to protect their rating by discouraging future

reviews [121]. Such behavior is not necessarily malicious, but it inhibits future customers

from accessing up-to-date review information reducing trust on the platform.

Stale ratings pose a problem not only for customers but also for the business model of the

online platforms that host them. Consider the connection between temporally stale ratings
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and platform disintermediation, which occurs when a customer and service provider connect

over a platform, but transact off the platform to avoid platform fees. Disintermediation is

a significant concern for online platforms, contributing to the failure of several high profile

platforms [67]. Disintermediation occurs when service providers find the value of transacting

off-platform higher than the value of transacting on-platform. To connect this to temporally

stale ratings, note that many platforms require transaction to occur on platform in order for

customers to be able to write reviews. Thus, penalizing reviews for being temporally stale

increases the value of each new review to the provider, forcing the service providers to weigh

the platform fee against the reputational impact of lost reviews, and potentially encouraging

providers to continue transacting on the platform.

In this work we propose and analyze two modifications for rating systems to cope with

some of the challenges staling poses. First, we consider a new moving average inspired

rating system which systematically down-weights older reviews. We show that within a class

of natural rating systems, moving average rating systems optimality protect customers from

rating error due to sequentially stale reviews. Second, we study how our moving average

system impacts overall platform performance by embedding it into a two-sided ecosystem

where the platform facilitates interactions between customers and service providers, including

null interactions where service is transacted off-platform and no review is given. In this

setting we study the use of penalty reviews which are applied in each null period to shrink

high but temporally stale ratings, and incentivize service providers to continuously solicit new

reviews. Moreover, since reviews can be locked behind on-platform transactions, we connect

this incentive to solicit reviews with disincentives for disintermediating on the platform, and

study how the penalty impacts the monetization of the platform.

4.1.1 Our Contributions

The main contributions of our work are as follows:

1. We consider how to design ratings systems to mitigate error due to sequential staling. We

introduce and study a general class of oblivious rating systems which include common

rating schemes such as the simple average. Among all oblivious rating systems, we
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prove the asymptotic optimality of the α-moving average rating system in terms of mean

squared error over sequences where the quality of service changes (cf. Theorem 10).

2. We compare our proposed α-moving average rating system against popular simple av-

erage rating systems and their generalization as L-sliding window rating systems [10].

We theoretically demonstrate that α-moving average rating systems often obtain supe-

rior protection against sequential staling (cf. Theorem 11), and numerically demonstrate

that error for L-sliding windows is front-loaded whereas the error for α-moving average

ratings is smoothly metered out.

3. Finally, we study how α-moving average rating systems can be extended to prevent

temporal staling by including penalty reviews. We present a simple model of how mar-

ket dynamics evolve over time when service providers can choose to transact on or off

platform. We characterize the asymptotic behavior of this system (cf. Proposition 1),

and give theory to guide platform designers in setting the fee and penalty review term.

As a function of the minimum quality allowed on the platform, we give closed-form,

prior-free expressions for the fee and penalty that incentivize maximum participation on

the platform and guarantee at least 3/4th of the optimal revenue for the platform (cf.

Theorem 12).

Overall, our work provides tools for platform designers to use to cope with issues due

to stale reviews. For the problem of sequential staling, our work makes a case for the α-

moving average rating systems as a powerful alternative rating mechanism. In many ways

α-moving average systems can be seen as a smooth implementation of L-sliding window

policies, inheriting all of the virtues of L-sliding windows while avoiding the sharp cutoff

after L periods. For the problem of temporal staling, we advocate for the introduction of

penalty reviews that down-weight ratings for inactive service providers and give theory to

describe how to set the penalty parameter. One surprising upside of penalty reviews is

their connection with disincentivizing disintermediation which we hope will further motivate

practitioners to experiment with them in practice.
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4.1.2 Literature Review

Given the importance of rating systems for online marketplaces, the scope of academic

work that studies them is vast and multidisciplinary. Here we describe some of the most

relevant streams of literature, and explain how our work contributes to and/or differs from

each.

4.1.2.1 Reputation Systems in Online Marketplaces

Rating systems, sometimes referred to as reputation systems, are critical for facilitating

trust in online marketplaces [125, 93]. As such, rating systems have a central place in the

theory of two-sided online market places [110, 1]. A number of papers have looked at how

ratings impact how customers and service providers participate on the platform. Some re-

cent representative examples include [69] who study how to design rating systems to induce

maximum effort from participants, and [118] who highlight the information asymmetry be-

tween the platform and its users, and study how platforms should dispense ratings to market

participants. Relative to these works and works cited within, our focus is not on what kind

of rating information the platform releases, but instead on the mechanics of how a platform

should aggregate reviews into ratings so as to prevent staling.

More in line with our work, there is a influential stream of papers that look at how reviews

can be faked or altered so as to manipulate ratings. [94] study the massive proliferation of

fake reviews in major online platforms like Yelp. [90] looks at how sellers can buy fake

reviews, and how platforms should adjust to account for this behavior. Similarly, [97] look

at how sellers can bribe reviewers into giving credible but biased reviews for their products.

These papers all study ways in which the rating displayed on the platform can fail to reflect

the true quality of a service provider. We contribute to this literature by looking at another

way ratings can misrepresent service provider quality via staling, and combat it by modifying

the structure of the rating system.
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4.1.2.2 Design and Analysis Rating Systems

The our works contributes to a stream of literature that considers how exactly ratings

should aggregate reviews. There are many design aspects of ratings to consider, for instance

[68, 111] consider how ratings should aggregate reviews into discrete buckets corresponding

to the number of stars. Our work is closely literature related to the problem of how ratings

system should remember old reviews. [83] discuss the impact of deleting old reviews, which

is essentially the operational framework of L-sliding window rating systems introduced in

[9, 10] and developed in [57]. Our α-moving average rating systems take a similar perspective

on ratings, but instead of dropping all but the L most recent reviews, we smoothly degrade

the impact of the review on the rating as a function of the review’s age.

We emphasize that we are not the first to consider moving average inspired rating sys-

tems. [54] introduce a similar rating system, we they call the exponential smoothing mecha-

nism, and analyze how it can induce trustworthy behavior from the seller. [32] also describe

a model with ratings aggregated according to a moving average, however their focus is to

study the confounding effect of price and rating. Relative to these works, we are one of the

first to give serious attention to this rating system as a way of mitigating issues related to

staling.

More generally we note that our analysis of moving average inspired rating systems as

a way of detecting and responding to change in the underlying service quality distribution

is similar to some work on the problem of change point detection [109, 92, 91]. The focus

in these works is on identifying the moment when a change occurs, whereas in our work our

focus is on how much error is incurred by such change as the ratings adjust. As such, much

of the modern work on change point detection has used dynamic statistically tests to flag

changes in distribution [7], whereas in our work we preclude such approaches by focusing on

oblivious rating systems which are comparatively simpler to understand and implement.

4.1.2.3 Disintermediation on Online Platforms

In the latter half of this work we consider a novel connection between temporal staling and

market disintermediation. Market disintermediation has been a subject of intense interest,
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first studied in the context of supply chains [108, 3], but recently as major source of market

failure for online platforms [18]. Market disintermediation has been identified as a cause

of several high-profile online marketplace collapses [79, 88, 140]. In response, a stream of

papers in business strategy [63, 136] and operations management [66, 116] have looked at

models to capture the causes of such disintermediation and proposed a variety of structural

and price based remedies. Our work is, to the best of our knowledge, the first to explicitly

study how down-weighting old ratings can incentivize service providers to transact on the

platform, discouraging disintermediation.

4.1.3 Chapter Outline

The remainder of this chapter is organized as follows. In Section 4.2, we consider moving

average inspired rating systems and demonstrate that they offer excellent protection against

sequential staling. In Section 4.3, we situate the recommendation system in a general model

for transactions on two-sided platforms and characterize the equilibrium market outcomes

in the case where the platform can give penalty reviews to down-weight temporally stale

ratings. In Section 4.4, we study prior-free ways to set the penalty review term and the

platform’s fee to (approximately) maximize platform revenue. Finally, in Section 4.5 we

conclude and highlight avenues for future work.

All examples and proofs referenced in the main body can be found in Appendices C.1

and C.2 in the Appendix. Code for all numerics in the chapter is publicly available at

https://github.com/tcui-pitt/Ratings

4.2 Sequential Staling and Moving Average Rating Systems

In this section, we initiate our formal study of rating systems and consider the question

of choosing a rating system to mitigate issues due to sequential staling.
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4.2.1 Model and Preliminary Definitions

We consider reviews as being generated one at a time, where time is indexed by t.

Each review represents a customer’s experience with the service provider and is modeled

as a positive-valued noisy signal, st, which is drawn independently from some underlying

distribution of service provider quality in that time period, Ft. We assume Ft always admits a

density ft, and has mean quality µt and standard deviation σt. The rating system aggregates

these reviews into a numeric score. Formally,

Definition 4 (Rating System). A rating system is a sequence of functions {Rt}∞t=1 that

map from the sequence of reviews {st}∞t=1 into a numeric score between 0 and 1, i.e., where

Rt : {si}ti=1 → [0, 1].

This is a generic definition of rating systems and captures all common rating systems.

We highlight two systems of particular relevance that were mentioned in the introduction:

the simple average rating system is such that the rating at time t is the average of reviews,

i.e., RSA
t ({si}) :=

∑t
i=1 si
t

. The L-sliding window rating system parameterized by L, the

width of the window, is such that the rating at time t is the average of the L most recent

reviews, i.e., RSW
t ({si}) :=

∑t
i=(t−L)+

si

min{L,t}
1 where the notation (x)+ denotes max{x, 0}. Note

that without loss of generality we normalize ratings to fall between 0 and 1 as opposed to

common implementations such as the star ratings out of five.

Throughout this section we will give special attention to a lesser known system that we

term the α-moving average rating system 2. The α-moving average rating system is defined

recursively as,

RMA
t ({si}ti=1) = (1− α)Rt−1({si}t−1

i=1) + αst for t > 1, R1 = s1. (15)

In the α-moving average rating system, the rating at time t is a weighted average of the

previous rating (i.e. the rating at time t − 1) and the most recent review. As with the L-

sliding window rating system, the α-moving average rating system depends on a parameter,

1See [10] for more on this rating system.
2[54] refer to this system as the exponential smoothing rating mechanism. We prefer to refer to it as

a moving average in parallel with the simple average, and following the naming convention in time series
analysis which prominently feature aggregation mechanisms of a similar form.

67



α ∈ (0, 1), which determines the weight the system places on the most recent review. When

the rating system being discussed is clear from context we will omit the superscripts.

Note that our definition of rating systems as a sequence of functions is extremely broad,

and does not enforce many features commonly associated with rating systems. For instance,

in our definition there is no notion of correctness. To narrow down our search for a rating

system that can mitigate issues due to sequential staling, we will restrict our attention to the

natural class of rating systems that can be described by a fixed sequence of weights. Such

rating systems have a predetermined way of aggregating reviews over time and are always

correct in expectation when the underlying quality distribution Ft is not changing over time

(i.e. is stationary). Since the weights are predetermined, these systems are not adapted to

the exact values of the reviews that appear. As rating systems in this class are not adaptive,

we call these types of rating systems oblivious. Formally,

Definition 5 (Oblivious Rating Systems). We call a rating system oblivious if there exists

a predetermined sequence of weights {wi}∞i=1 such that at any time t, the rating is equal to

Rt({si}ti=1) :=

∑t
i=1wisi∑t
i=1wi

. (16)

Oblivious rating systems are a natural class of rating systems to study. As they are non-

adaptive, oblivious rating systems of this form are simple and easy to implement, making

them attractive to practitioners, while still being quite expressive. The simple average rating

system is oblivious with all weights being identical (i.e. wi = wj for all i, j). The α-

moving average rating system is also oblivious with the weights forming a geometric sequence

(w1 = 1, wi = α/(1−α)i−1 for i ≥ 2 ). However not all common rating systems are oblivious,

namely the L-sliding window rating system is not oblivious since it dynamically changes the

weight it gives to a review to zero when that review leaves the width L window.

In addition to being simple to describe, oblivious rating systems have many desirable

properties. They are always correct in expectation when signals are generated IID, i.e. when

Fi = Fj for all i, j the expected rating at every time t equals the mean review by linearity of

expectation. This property, commonly defined as consistency, is important since the purpose

of a rating system is that it gives a reliable estimate of a provider’s true quality of service.

We are now ready to begin our search for a rating system that is robust to issues caused by
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sequential staling. Namely, among the class of oblivious rating systems we wish to determine

which one offers the best customer protection against sequential staling.

4.2.2 Fresh Oblivious Rating Systems

Recall from our discussion in Section 4.1 that the key way sequential staling introduces

error into the ratings is by preventing the rating from detecting and adapting to changes in

a service providers quality. When abrupt change in the underlying service quality occurs,

previous reviews about a provider become stale, and ratings based on those reviews are no

longer an accurate predictor of service quality - often to the detriment of new customers (for

example recall Fig. 30). We are interested in finding rating systems that are malleable enough

that when change occurs, the rating can quickly adjust and become, again, informative.

Intuitively then, a rating system that is not vulnerable to sequential staling is one that gives

a rating which closely tracks with the most recent reviews. Of course the rating system can

not only give weight to the most recent review since such a rating will then be very noisy

and incur high expected error (measured as the squared difference between the rating and

the current expected service quality) when a change does not occur.

Mathematically, we can translate this notion as requiring that the rating system should

balance two types of rating error: the error which occurs when the underlying distribution

of service quality changes or switches, and the error which occurs when it does not. To

study this we will consider the problem of minimizing the maximum of these two sources of

rating error incurred over sequences of service quality distributions with the mechanics that,

at some a priori unknown time t, the distribution of service quality can switch. Formally,

we will fix distributions F1 and F2 with the mechanics that in period i for i < t, the review

si ∼ F1 and for i ≥ t, the review is now si ∼ F2. These sequences capture issues due to

sequential staling described above, with the switch from F1 to F2 representing a fundamental

change in provider service quality. We emphasize that, for the oblivious rating system, since

this switching time t is unknown, the weights {wi} that define the rating must be chosen in

such a way that the sequence is adaptable no matter when the switch occurs.

A natural question then is what oblivious rating system can best minimize the maximum
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of these two sources of error? In the main theorem of this section, we show that if a platform

chooses the weights of their rating system to minimize the maximum rating error incurred

either by a switch in the underlying provider quality, or by the variance in the ratings when

no switch occurs, this rating system will always be asymptotically equivalent to an α-moving

average rating system. As balancing these two forms of error at each time step effectively

inoculates the rating system against sequential staling, we conclude that the moving systems

are ideal for tackling issues due to staling.

Theorem 10 (Asymptotic Optimality of Moving Average Ratings). Consider any sequence

of distributions defined by F1 with mean µ1 and standard deviation σ1, and F2 with mean

µ2 ̸= µ1 and standard deviation σ2, where at any time a switch from F1 to F2 could occur.

If the weights wt of an oblivious rating system satisfy:

min
wt

max

E

(∑t
i=1wisi∑t
i=1wi

− µ1

)2 ∣∣∣∣{si}ti=1 ∼ F1


︸ ︷︷ ︸

No switch error

,E

(∑t
i=1wisi∑t
i=1wi

− µ2

)2 ∣∣∣∣{si}t−1
i=1 ∼ F1, st ∼ F2


︸ ︷︷ ︸

Switch error



 ,

for every t, then there exists some α ∈ [0, 1] such that

lim
t→∞

wt∑t
i=1wi

= α,

and thus {wi}∞i=1 is asymptotically equivalent to an α-moving average rating system.

Theorem 10 identifies the α-moving average system as the asymptotically optimal obliv-

ious rating system for protection against sequential staling. Let us take a moment to unpack

the result stated here: at each period t a switch in the distribution of service quality from

F1 to F2 could occur. If it does not occur, then the “no-switch” error is the MSE for the

rating system versus the true mean quality at t which is µ1. If a switch does occur, then

the “switch” error is the MSE of the rating system versus the new true mean quality at

t which is µ2. In Theorem 10, we suppose the sequence of weights are chosen so that at

time t, wt minimizes the maximum of these two sources of error which is a natural way to

choose the wt when the exact time of the switch is unknown. Note then that the sequence of

weights {wi}ti=1 is defined iteratively: w1 = 1 without loss of generality, then w2 minimizes
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the maximum error modulo the fixed value of w1, then w3 minimizes the maximum error

modulo the values of w1 and w2, and so on. The guarantee in Theorem 10 then is that for a

sequence of weights built in this way, in limit the value of wt is proportional to the sum of

all weights,
∑t

i=1wi, which is equivalent to becoming an an α-moving average system with

α = limt→∞
wt∑t
i=1 wi

since for large t,

Rt({si}ti=1) =

∑t
i=1wisi∑t
i=1wi

=

∑t−1
i=1 wisi∑t
i=1wi

+

(
wt∑t
i=1wi

)
st

=

∑t−1
i=1 wisi/

∑t−1
i=1 wi∑t

i=1wi/
∑t−1

i=1 wi

+

(
wt∑t
i=1wi

)
st

= Rt−1({si}t−1
i=1)

(
t−1∑
i=1

wi/
t∑

i=1

wi

)
+

(
wt∑t
i=1wi

)
st

=

(
1− wt∑t

i=1wi

)
Rt−1({si}t−1

i=1) +

(
wt∑t
i=1wi

)
st

≈ (1− α)Rt−1({si}t−1
i=1) + αst,

where the third equality follows from dividing
∑t−1

i=1 wi for both the numerator and denomina-

tor in the first term, and the final approximation follows from the guarantee in Theorem 10.

The proof of Theorem 10 is relatively involved, but the intuition for the result is simple.

There are two ways the rating system can make error, either from the noise in the rating

system when no switch occurs, or from miscalibration due to weight put on older reviews

when a switch does occur. Thus, to minimize the two types of error the system should put a

sufficient fraction of the weight on the most recent review, intuitively keeping the two forms of

error in balance. Since the switching time at which the change in underlying service quality is

unknown to the rating system, and as an oblivious rating system’s weights must be specified

at the beginning of the period, the rating system must act as if every at time t a change can

occur. As such, in limit it always puts a constant weight on the most recent observation and

thus automatically is a moving average rating system. There are two additional technical

difficulties that must be overcome to complete the proof. The first difficulty is that the error

before the switch is not constant but instead slowly decaying as more information is fed into
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the system. In practice this error is minimal (as we will demonstrate in Section 4.2.4) and

here is handled by the asymptotic nature of the result. The second difficulty is that, even

asymptotically, when the noise in the switching distribution is large (i.e. σ1 < σ2) these two

forms of rating error should not always be made equal. Instead it is sometimes optimal to

purely attempt to minimize the switching error, since the no-switch is always going to be

relatively small. The problem is further complicated by “pooling” effects where, when µ1 is

close to µ2 but σ2 is much larger than σ1, then keeping weight on previous stale reviews is

useful to the rating system since the stale reviews are approximately correct but less noisy.

These effects together influence the optimal choice of the parameter α so that it depends on

the moments of F1 and F2 in quite intricate ways which require an involved analysis.

In terms of the practical implementation of moving-average rating systems, it should be

noted that the guarantee in Theorem 10 requires the system to have upfront knowledge of

the moments of both distributions, µ1, µ2 and σ1, σ2, in order to appropriately set the weights

{wi}. In practice, the first set of moments can be implemented as the average review and its

variance among all providers on the platform and thought of as a sort of baseline. The second

distribution, F2, then acts as design lever for the rating platform. The assumed moments of

F2 represents a level of desired “safety” with respect to the type of outcomes the platform

thinks is possible and wants to protect their customers from. We emphasize that the exact

forms of F1 and F2 are irrelevant for the theorem, it depends only on the first two moments

of those distributions.

Finally, based on the set levels for F1 and F2, Theorem 10 shows the optimal weights

converge to an α-moving average rating system. One natural question is that, if these optimal

weights are computable, why not use them directly instead of reasoning about their limiting

properties? To this end, we emphasize that the weights are quite complicated whereas the

moving average is simpler to understand both for the platform and its users. We also note

that the convergence of the optimal weights to a moving average system is quite fast, see the

right panel of Fig. 28 for an example. Finally, the moving average is much easier to reason

about than the optimal weights, involving just a single parameter, α. While Theorem 10

implies the existence of an optimal α for a moving average system, it does not actually solve

for the best choice of the parameter. Indeed, the optimal specification for α can often be
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written down in closed-form, which we describe next.

Corollary 1 (Choice of α). Consider any sequence of distributions defined by F1 with mean

µ1 and standard deviation σ1, and F2 with mean µ2 and standard deviation σ2, where at

any time a switch from F1 to F2 could occur. Suppose |µ1 − µ2| ≥ σ1

2
and σ1 > σ2, and

let α∗ = |µ1 − µ2|/
(
|µ1 − µ2|+

√
σ2
1 − σ2

2

)
. Then the choice of α for an α-moving average

system that asymptotically minimizes the objective,

min
α

lim
t→∞

{
max

{
E
[(
Rα-MA

t − µ1

)2 ∣∣∣∣{si}ti=1 ∼ F1

]
,E
[(
(Rα-MA

t − µ2

)2 ∣∣∣∣{si}t−1
i=1 ∼ F1, st ∼ F2

]}}
,

is:

(a) If 2
(

σ2
1

(2−α∗)2
− (µ1 − µ2)

2(1− α∗) + (σ2
2 − σ2

1)α∗
)
≤ 0, the choice of α that minimizes the

maximum MSE in limit is:

α = α∗.

(b) If 2
(

σ2
1

(2−α∗)2
− (µ1 − µ2)

2(1− α∗) + (σ2
2 − σ2

1)α∗
)
> 0, the choice of α that minimizes the

maximum MSE in limit is the unique solution to,

2

(
σ2
1

(2− α)2
− (1− α)(µ1 − µ2)

2 + α(σ2
2 − σ2

1)

)
= 0,

such that α ∈ [0, 1].

Corollary 1 gives the optimal choice of α as a function of the starting distribution and the

switching distribution for minimizing the maximum error objective in Theorem 10. Corol-

lary 1 requires a few conditions in order to express the value of α in (implicit) closed form.

We emphasize that an optimal choice of α always exists by Theorem 10, however when µ1

and µ2 are not sufficiently different i.e., |µ1−µ2| < σ1

2
, then the optimal choice of α converges

to 0. Moreover, when σ1 ≤ σ2, the switch error E
[(

(Rα-MA
t − µ2

)2 ∣∣∣∣{si}t−1
i=1 ∼ F1, st ∼ F2

]
always dominates, and the choice of α is can be obtained by solving the first order condition

to minimize the switch error.

In more practical terms, when the concern about sequential staling is high, the value of

α should increase which in turn increases the weight placed on the most recent review. In

this way, α is tunable knob for the platform that determines the flexibility/malleability of
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the system. However, increasing α also increases the variance in the ratings which can lead

to error when the service distribution is stable. It will often be useful to speak directly about

the variance of the ratings in a system, which we capture in the following definition.

Definition 6 (c-Consistency). A rating system is c-consistent if for any distribution F

such that signals st ∼ F are drawn IID with finite mean µ and variance σ2, the asymptotic

rating is such that limt→∞ Var[Rt] ≤ cσ2.

We will refer to a rating system as exactly c-consistent if the consistency condition holds

with equality i.e. limt→∞ Var[Rt] = cσ2. Note by definition of c-consistency, we always

assume c ≤ 1. In the next subsection, we will compare the α-moving average rating and the

L-sliding window rating systems when both of them are exactly c-consistent.

4.2.3 Moving Average vs. Sliding Window Rating Systems

In the previous subsection we identified the α-moving-average rating system as the my-

opically optimal oblivious rating systems for protecting against change in the underlying

quality distribution. While oblivious rating systems capture many familiar implementa-

tions, L-sliding window rating systems are not oblivious since they dynamically change the

weight of ratings when they leave the window. In this subsection, we will directly compare

α-moving average and L-sliding window rating systems. At high level, both moving average

and sliding window systems extend simple average systems by systematically down-weighting

older reviews. Thus in a sense both system address the problem of sequential staling. The

difference is that while the L-sliding window system simply drops sufficiently old reviews, the

α-moving average rating system does this down-weighting in a smooth way. In this way, the

α-moving average system can be thought of as a smoothed version of an L-sliding window

rating system. In the main result of this subsection we formalize this correspondence.

First, to give a fair comparison the α-moving average and L-sliding window as systems

that can mitigate sequential staling by balancing error when a switch does/does not occur,

we need to set the parameters of the two systems (α and L) in an equivalent way. Since both

systems are always correct in the expectation in the case when no switch occurs, the most

natural way to put them in correspondence is to look at their second moment and enforce
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that both systems have the same asymptotic rating variance. Thus, for the remainder of

this subsection we will compare the two systems setting α and L so that both systems are

exactly c-consistent. In Lemma 8 we write down correspondence between c, α, and L in

closed-form.

Lemma 8 (Consistency of Rating Systems). Given some service quality distribution F with

mean µ and variance σ, such that review signals in each period are drawn IID from F .

(a) To be c-consistent, an α-moving average rating system must have α ≤ 2c
1+c

.

(b) To be c-consistent, an L-sliding window rating system must have L ≥ ⌈1
c
⌉.

Note, unlike α in the α-moving average rating system, the L for the L-sliding window

rating must be an integer since it represents the length of the window. For the sake of

comparison in this subsection we will always consider c such that 1/c is an integer. Now

we are ready to compare how c-consistent α-moving average systems and L-sliding window

systems process reviews. Specifically, for the objective of balancing switching versus no-

switching error as in Theorem 10, we consider which implementation is superior, and when.

Theorem 11 (Sliding Window vs. Moving Average). Consider any sequence of distributions

defined by F1 with mean µ1 and standard deviation σ1, and F2 with mean µ2 and standard

deviation σ2 where µ1 ̸= µ2, and some time t∗ such Ft = F1 if t ≤ t∗ and Ft = F2 if t > t∗.

If α and L are chosen so that, for some c > 0, both systems are exactly c-consistent, then:

(a) The MSE of the L-sliding window rating system immediately after service quality switches
is

lim
t∗→∞

E
[
(RSW

t∗+1 − µ2)
2

∣∣∣∣{si}t∗i=1 ∼ F1, st∗+1 ∼ F2

]
= cσ2

1 + (1− c)(µ1 − µ2)
2 + c2(σ2

2 − σ2
1).

(b) The MSE of the α-moving average rating system immediately after service quality switches
is

lim
t∗→∞

E
[
(RMA

t∗+1 − µ2)
2

∣∣∣∣{si}t∗i=1 ∼ F1, st∗+1 ∼ F2

]
= cσ2

1 +

(
1− c

1 + c

)2

(µ1 − µ2)
2 +

(
2c

1 + c

)2

(σ2
2 − σ2

1).

(c) When σ2
1 ≥ σ2

2, the maximum MSE of the α-moving average rating system over the time

horizon is always less than the maximum MSE of the L-sliding window rating system
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Theorem 11 compares the mean squared error of equivalently parameterized moving

average and sliding window rating systems. Note that when the systems are both exactly

c-consistent, the expected no-switching error for both systems is identical - a fact that

should be unsurprising given that the no-switching is directly related to the variance of the

rating system. What Theorem 11 shows is that the switching error for the moving average

rating system is often less than for an equivalent L-sliding window system. Thus, when

the switching error dominates the no-switching error, moving average systems offer superior

protection against sequential staling. This dominance requires a condition, σ2
1 ≥ σ2, which

means that the variance in the distribution of service quality is lower after the switch.

To prove the result we decompose the after switching MSE into three sources. First

is the error from the mismatch between the parts of the rating informed previous reviews

drawn from F1, the second stems from service quality difference between F1 and F2 when

the service quality switches, and the third is the error from the most current review which

depends on the variance of new reviews, σ2. For the L-sliding window and α-moving average

rating system, the error of this first kind from previous reviews are the same since both of

them are c-consistent. However, from Lemma 8, we note that the α-moving average rating

system puts more weight on the most recent review. Thus this second form of error from

the service quality difference for the α-moving average rating system is always less. Finally,

for the third source of error we use our condition that the variance of the most recent review

is smaller, i.e., σ2 ≤ σ1, to conclude that the overall MSE of the α-moving average rating

system will always be less than the L-sliding window.

Finally, to prove both Theorems 10 and 11 we our analysis required looking at error

in limit. In Section 4.2.4 we numerically explore the differences between rating systems to

observe how our theoretical results translate to finite settings.

4.2.4 Rating System Numerics

To conclude this section we will numerically explore the differences between simple av-

erage, α-moving average, and L-sliding window rating systems, in the setting where re-

views that are drawn from a (possibly time-varying) exponential service quality distribu-
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tion with rate λ truncated to [0, 1]. We denote the truncated exponential by TExp(λ) :=

min {Exp(λ), 1}. As the truncated exponential is a single parameter family, we can use it

to model changes in the underlying service quality distribution simply by varying the dis-

tribution parameter λ. In these numerics, we will consider what the rating error looks like

when there is a sudden change in the underlying service quality distribution, and how long

it takes the system to return to equilibrium.

First, in Fig. 12 we consider the mean squared error incurred by rating systems when

the underlying service changes between st ∼ TExp(2) and st ∼ TExp(4). This experiment

represents a finite version of the setting considered in Theorems 10 and 11 and models the

situation where the rating becomes stale due to a sudden change in the underlying quality

of the service provider. By studying the rating error we can observe how long it takes for

different rating systems to “learn” the new true rating.

Figure 12: MSE as for Various Rating Systems as Service Quality Changes.

Note. We plot the α-moving average, L-sliding window, and simple average rating system’s

MSE over time when the reviews for the service provider are drawn from a truncated ex-

ponential distribution, and where the service quality distribution changes over time. In the

left panel, we plot the simulated MSE over 1000 trials when the underlying service quality

distribution changes from λ = 2 to λ = 4 at time t = 200. In the middle panel, we plot

the simulated MSE over 1000 trials when the underlying service quality distribution changes

from λ = 4 to λ = 2 at time t = 200. In the right panel, we plot the simulated MSE over

1000 trials when the underlying service quality distribution changes from λ = 2 to λ = 4

and back, with a period length of 200.

From Fig. 12 we can see that both the α-moving average system and L-sliding window
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system can quickly adapt to changes in the service quality. We emphasize that although

Theorem 10 requires asymptotics to derive its optimality in situations where the quality

varies, from the numerics we can see that this assumption is not necessary for the system to

have strong performance in more realistic, non-asymptotic settings. We can also easily see

from the numerics that the simple average can not handle such changes in the underlying

quality. After the switch the simple average, denoted by the blue line, is perpetually weighed

down by the sequentially stale older reviews making its ability to learn the new true mean

rating tortuously slow. Further, in the right panel, we see that both the α-moving average

and L-sliding window systems can easily handle multiple changes, just as long as the time

between changes is not too short.

To study the precise differences between the three rating systems we isolate their per-

formances in Section 4.2.4. From Section 4.2.4 we can see that both the L-sliding window

and α-moving average rating systems quickly converge to the new true service quality after

a switch.

Figure 13: Average Rating When Service Quality Changes.

Note. Here we plot the average rating (solid line) v.s. the underlying quality (dashed line)

where the ratings for the service provider at each time follow a truncated exponential distri-

bution TExp(λ) and the service quality changes from λ = 4 to λ = 2 periodically with time

length 200. In the left panel, we plot the average rating of 1000 trials under the α-moving

average rating system with α = 2/21. In the middle panel, we plot the average rating of

1000 trials under the L-sliding window rating system with L = 20. In the right panel, we

plot the average rating of 1000 trials under the simple average rating system. The shaded

areas are the 90% confidence interval for the average rating.
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For Section 4.2.4 a few differences between the two systems become apparent. From the

left panel, we can observe that the α-moving average rating system error very quickly drops

immediately after the service quality switch occurs, suggesting that it more quickly learns

the new rating distribution. However its error comes with a long-tail effect compared to the

L-sliding window ratings, which exhibits a slower linear decrease in error at first, but after

this learning phase returns to its baseline. Thus, an interesting dichotomy emerges where

an α-moving average system may be preferred by platform designers interested in mitigating

the worst-case experiences incurred by sequential staling, whereas the L-sliding window may

provide a superior mode experience.

In this section we showed that moving-average ratings can effectively mitigate many of

the issues due to sequentially staling. However one inherent limitation is of moving average

systems, and indeed any rating system, is that they need to be continuously fed new reviews

in order to learn about changes in the underlying service quality distribution In the next

section we will turn our attention to the temporal staling that occurs when no reviews are

written, and describe how a rating system can be extended to prevent these types of gaps in

information and incentivize providers to continually solicit new reviews.

4.3 Temporal Staling and Penalty Reviews

In this section, we turn our attention to temporal staling and extending the rating system

to include penalty reviews for service providers with long periods of inactivity. Recall that

temporal staling is when no review has been given for a service provider for a significant

period of time. This can occur when a service provider is insufficiently motivated to solicit

new reviews, or if they are taking their transactions off platform in order to avoid the platform

fee, or if they are no longer offering service and have not notified the hosting platform (see

Appendix C.3.1). Temporally staling, much like sequential staling, can cause ratings to

not represent the service providers current quality and thus are undesirable. To capture the

phenomena of temporal staling we will slightly extend the model introduced in Section 4.2

to now allow for a no-review to be given in each period.
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If a no-review occurs in some period, say i, then to form the rating we suppose the

platform chooses some penalty parameter β ≥ 0 such that the review score in period i is

si = β. In this way, if a service provider has a rating that would not be improved by a review

score of β, their rating is down-weighted to account for the temporal staling which resulted

from the absence of a review in that period. As such we will refer to β as the penalty review.

We emphasize that any rating system previously studied (simple average, moving average,

sliding window, etc.) can all suffer temporal staling without some sort of temporally-based

penalization. In this subsection we study how the introduction of penalty reviews impacts

steady outcomes for service providers.

Specifically, to study the effects of penalty reviews, we consider a general model of two-

sided market dynamics. On one side of the market is a pool of customers who hire service

providers, taking into account the potential providers’ current rating. On the other side of

the market are the providers themselves, who are of heterogeneous quality, where quality

represents the probability they provide adequate (i.e. highly rated) service. The platform

coordinates interactions between the two sides, taking a percentage fee from each successful

transaction, as well as managing and updating the ratings for each provider. Additionally, in

our model we allow service providers to initiate disintermediation, allowing them to transact

off platform without incurring the platform’s fee. We assume a review can only be posted

after a transaction occurs on the platform otherwise the customer out of submitting a review

for the provider, as is common in practice for platforms like Uber and Airbnb. As no review

can be given, the disintermediating service provider always incurs the penalty review in the

period. For a depiction of disintermediation in our model see Fig. 14.

In this model, we will be interested in the asymptotic performance of the platform as a

function of the penalty review term and the percentage fee chosen by the platform. In the

next subsection, we formally describe the model and give some preliminary results about the

steady-state outcomes.
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Figure 14: Market Disintermediation on Online Platforms.

Note. Depicted is an example of market disintermediation with three entities, a customer, a

platform, and a service provider (here a restaurant). In the left figure, the customer uses the

platform which maintains ratings to discover restaurants. If the customer transacts through

the platform, the payment and reviews are handled by the platform for a fee. In the right

figure, disintermediation occurs. In this case, the customer discovers the restaurant through

the platform but then leaves and transacts directly with the service provider, avoiding the

platforms fee but also forgoing the ability to leave a review.

4.3.1 Platform Model and Preliminaries

We suppose each service provider on the platform is described by the pair (Fq, p). Fq is

the service providers inherent distribution of service quality, and where E[Fq] = q ∈ (0, 1). In

fact we will only be concerned with the providers expected quality, however it is notationally

useful to be able to refer to the distribution of service quality. The second part of the pair, p,

is the probability the provider decides to transact on the platform. That is, once hired, the

service provider initiates disintermediation with probability 1− p 3. The platform observes

whether or not a provider transacts on the platform, and if they do transact at some time

3We model disintermediation as occurring probabilistically. As we will see, an appropriate choice of
penalty β and fee f forces p to the extremes where it is deterministic.
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t, observes the subsequent customer review st ∼ Fq. For simplicity we will assume every

transaction on the platform results in a review, and the new review is independent of previous

ratings. If they do not transact on the platform in the period, the provider incurs a penalty

review st = β where β ∈ [0, 1] which is a priori fixed and chosen by the platform.

The platform maintains an α-moving-average rating system such that a time t the rating

for a service provider is Rt = (1 − α)Rt−1 + αst−1. In each period, and based on their

current rating, each service provider has some probability of being hired, h(Rt) ∈ (0, 1],

where h(·) is a link function that maps the providers current rating to the probability of

being hired in a period. In each period there are two ways a service provider could fail to

receive a review: 1) they could not be hired by any customer which occurs with probability

1− h(Rt), or 2) they are hired but choose to disintermediate which occurs with probability

h(Rt)(1 − p). Naturally we assume the platform can not distinguish between a provider

not being contracted and a provider being contracted but choosing not to transact on the

platform. Finally, the platform decides a fee percentage, f . If the service provider conducts

a transaction of value r on the platform, the platform earns fr and the provider receives

(1− f)r. If the provider disintermediates, they keep all of r and the platform gets nothing.

The objective of the model is for the platform to choose the penalty term β and fee

percentage f such that it maximizes their long run (i.e. asymptotic) per-period expected

revenue. To study this objective, fix the moving average rating system parameter α, the

transaction revenue r, the link function h, and suppose a service provider earns ratings

distributed according to Fq with mean q and, if hired, chooses to transact on the platform

with probability p. Given a rating of Rt at time t, the providers expected rating at time

t+ 1 is:

E[Rt+1] = (1− α)Rt + α ((1− ph(Rt)) β + pq) , (17)

since with probability ph(Rt) the service provider is hired and transacts on the platform

incurring an expected rating of E[Fq] = q, and with probability h(Rt)(1− p) + (1−h(Rt)) =

1− ph(Rt) they are absent in the period and receive the penalty review.

This set-up induces a Stackelberg game in which first the platform announces the penalty

β and fee f . Then the service providers, based on their own distributions of service quality

Fq, choose their probability of transacting on the platform, p. Asymptotically, this induces
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some equilibrium outcomes, which under the assumption that the link function h is linear,

we can characterize.

Proposition 1 (Market Equilibrium Under α-Moving Average Ratings). If h is a linear

function of the form h(x) = a + (b − a)x for constants 0 ≤ a < b ≤ 1, and the platform

commits to a penalty term β and fee f , then:

(a) A provider will not disintermediate (choose p = 1) on the platform if their expected

service quality q is such that q ≥ β + f/(b − a), else they will always disintermediate

(choose p = 0).

(b) For a provider with q ≥ β + f/(b − a), the platform earns an asymptotic expected per-

period profit of rf
(

a+β(b−a)
1−(q−β)(b−a)

)
.

(c) For a provider with q ≥ β + f/(b− a), the service provider earns an expected per-period

profit of r(1− f)
(

a+β(b−a)
1−(q−β)(b−a)

)
.

Proposition 1 characterizes the equilibrium behavior for each service provider in the

market given fixed β and f . For providers who can provide sufficiently high quality service,

the penalty review disincentives temporal staling by motivating the service provider to al-

ways transact on platform and acquire new reviews. For lower quality service providers the

opposite is true, and they have no incentive to transact on-platform. Thus one interesting

feature of our model revealed by Proposition 1 is that by setting the penalty term and fee,

the platform effectively decides a minimum acceptable level of service quality which is equal

to β + f/(b − a). For any service provider whose inherent expected service quality is less

than this floor, they (asymptotically) always have an incentive to transact off the platform

and their rating will shrink to a minimum rating of β. For providers with inherent quality in

excess of β+f/(b−a), the hit to their rating that they incur by transacting off the platform

hurts their long-term earning ability (since higher ratings lead to more business in our model)

more than it helps by avoiding the fee, motivating them never to disintermediate. Note that

a minimum rating for service providers is a common feature of modern two-sided platforms.

For instance example, Uber removes drivers with ratings below 4.6 [103]. Proposition 1 gives

motivation for these types of market rules, and usefully leverages it to stem profit loss due

to disintermediation.
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In Proposition 1 we assume h, the function that links a service provider’s rating to their

probability of being hired in a period, is a linear function. We believe this assumption is

relatively mild. Any platform can essentially assign a service provider some probability of

being hired simply by varying the providers’ placement in the platform display. That is, if

a provider is currently receiving a job 80% of the time, that proportion can be reduced in

expectation by any fraction γ ∈ (0, 1) simply by omitting the provider from γ proportion

of the searches. Similarly, a platform can increase a provider’s hiring rate by varying a

provider’s position in its recommendation algorithm, for instance placing them higher up in

the search results. In this way, h is essentially platform controlled, and so for simplicity we

will suppose it is implemented as linear in the rating. Note that in the linear implementation,

since the rating is always between 0 and 1, the parameters a and b determine the minimum

(a) and maximum (b) probability of being hired in a period.

In the remainder of this chapter, we will take this minimum rating implied by Proposi-

tion 1 as an exogenously determined parameter, τ := β + f/(b − a), and derive guidelines

for how to set the remaining parameters of this system.

4.4 Prior-Free Fresh Rating System Optimization

In this section, we consider how a platform should set the penalty term β and fee f to

prevent temporal staling and maximize platform revenue when given distributional informa-

tion about their service provider’s expected quality. Suppose q, the expected service quality

for a service provider, is drawn from a distribution G with density g which describes the

pool of service providers on the platform. In this stochastic set-up we search for choices of

β and f which (approximately) maximize the platform’s long-term revenue.

By Proposition 1 we know in limit that any provider with an incentive to disintermediate

will always disintermediate, dropping the revenue the platform earns from them to zero. Thus

the inequality q ≥ β + f/(b − a) where a and b are parameters of the linear link function

h is a necessary condition for profit; the platform can only extract fees from providers with

expected quality in excess of this bound. Since this bound acts as a minimum level quality
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allowed on the platform, we will treat the desired value of this bound, τ , as exogenously

set by the platform. That is we suppose the platform fixes some τ ∈ (0, 1), and then must

choose β and f such that they satisfy β + f/(b− a) = τ . We will return to the question of

how to choose this τ at the end of this section.

Now, when τ is fixed, q ∼ G, and h is linear, the platform must solve the following

optimization problem to maximize their asymptotic per-period profit:

(Platform Profit) max
β+f/(b−a)=c,

β,f∈[0,1]

r

∫ 1

c

f

(
a+ β(b− a)

1− (q − β)(b− a)

)
g(q)dq (18)

When the distribution of expected service quality G is known precisely, Eq. (18) can be

solved numerically. However G is typically not fully known to the platform. Moreover, even

if the platform could estimate G, there is no reason to believe this distribution will remain

constant over time as service providers come and go on the platform, and as market conditions

shift. Thus, instead of trying to tailor the penalty and fee specifically to the distribution of

expected service quality, we will aim to find robust specifications of the parameters (β, f)

that induce approximately optimal revenue for all possible service distributions. As such a

specification does not depend on the exact form of the service distribution (i.e. the prior)

such a guarantee is referred to as prior-free. Remarkably, such a specification of parameters

is indeed possible.

Theorem 12 (Approximate Rating Design). For any level of minimum quality τ , any linear

link function h, and any distribution q ∼ G supported on [τ, 1], the choice of parameters:

(β, f) =

h−1


(√

1− h(τ)
)
h(τ)

2
(

1 +
√

1− h(τ)
)
 ,

(
2 +

√
1− h(τ)

)
h(τ)

2
(

1 +
√

1− h(τ)
)


gives a
2+
√

1−h(τ)

2
(
1+
√

1−h(τ)
) ≥ 3/4 approximation of the optimal achievable expected platform rev-

enue.
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Theorem 12 yields approximately optimal choices for the penalty and fee parameters as

a function of τ , the minimum acceptable quality of service on the system, and h the link

function. It states for any choice of τ , the above parameters are such that τ = β+ f/(b− a)

ensuring no incentive to disintermediate, and they guarantee at least 3/4th of the maximum

achieveable revenue. This is relative to the optimal parameter choices which could depend on

the distribution of expected service quality among participants, G, in a detailed way. Further

note our approximation guarantee is often much stronger than 3/4th which is obtained only in

the case that h(τ) tends to 0. For intermediate choices of τ the guarantee quickly improves,

see the right panel Fig. 16 for a visualization of the bound. Moreover, for every choice of

τ the guarantee above is tight in the sense that, when h is the identity function, there is a

simple distribution such that the above prior-free choices of (β, f) give only 1−
√
1−τ+τ
2τ

of the

optimal achieveable revenue. For details of this construction, see Example 9. Finally note

the choice of β above has been written in terms of the inverse function of h. Since h is a

linear function, its inverse is h−1(x) = x−a
b−a

.

For platform designers, Theorem 12 gives easily implementable guidance for how to set

the penalty review parameter and the associated fee. Once the platform sets a minimum

service level τ , they can then plug in the heuristic parameter values to garner almost all

the achieveable revenue. However, to derive our prior-free approximately optimal choices

of β and f , we required τ to be exogenously set by the platform. A natural question then

how to set τ? In general, we believe the nature of online rating distributions often implies

a natural choice of τ . We explore this idea in the following remark, and numerically in the

next subsection.

Remark 2 (Choosing τ). Many platforms set a minimum rating threshold on their platform

and enforce this threshold by removing service providers who drop below it. In our model

we call this threshold τ , and here consider how a platform might choose it. In general, note

that the dependence between τ and platform profit expressed in Eq. (18) is quite complicated.

While we can find good prior-free choices for the penalty and fee given τ , jointly choosing

all three in a way which provably yields the majority of the revenue is more challenging.

Intuitively, a good of choice of τ is one that enforces a high level of minimum quality while also

removing only a small fraction of service providers. Thankfully, in practice the distribution
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of server ratings often takes a simple form which yields a natural choice of τ with these

intuitive properties.

[138] shows that distribution of ratings on Yelp.com are unimodal and left-skewed, and

this shape for the rating distribution on Yelp has remained consistent for as long as the

company has released data4 For an example of such distributions, see the left panels of Sec-

tion 4.4.1 and Fig. 16. By assuming the distribution of expected ratings is left-skewed and

unimodal, we can then reason that a good choice for τ should be one on the left tail since the

majority of ratings are relatively good and clustered around 4 stars. Thus we propose choos-

ing τ in accordance with the Pareto principle [47]. That is, to set it at the 20th percentile so

that τ = G−1(.2). This is in line with standard Pareto principle reasoning that 80% of an

effect stems from 20% of the causes. Here the effect is negative reviews and the cause are

the bottom 20% of service providers. Finally, we note that this choice of τ is not precisely

prior-free as it depends on G, however the general principle that τ should be set conserva-

tively to remove only the worst service providers is not distribution specific and should be

implementable for a platform. We numerically study the performance of choosing τ at the

20th percentile for a class of left-skewed unimodal distributions in Fig. 16.

4.4.1 Penalty Review Numerics

In this subsection, we will numerically explore the effectiveness of the heuristic policy

implied by Theorem 12 and Remark 2. All code for these numerics can be found at https:

//github.com/tcui-pitt/Ratings.

In our first set of numerics in Section 4.4.1, we consider the setting where the service

providers’ service quality follows the rating distribution from Yelp.com [138] , which is dis-

cretized into five buckets corresponds to 1-5 star ratings. See the left panel of Section 4.4.1

for the associated density function. For this distribution, we suppose different levels of τ

are exogenously chosen by the platform and examine how closely the heuristic choice of

parameters given by Theorem 12 approximates the optimal distribution-specific choices.

4See https://www.yelp.com/dataset for this data.
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Figure 15: Optimal Expected Revenue vs. Heuristic Revenue as τ Varies

Note. We visualize the difference between the revenue from the optimal distribution-specific

penalty and fee (β∗, f ∗) versus the revenue of heuristic choice of (β, f) as in Theorem 12 as

τ varies for an archetypal left-skewed unimodal distribution. In the left panel, we plot the

histogram of expected service quality as reported by [138] where each bucket corresponds to

the number of stars. In the middle panel, we plot the heuristic revenue versus the optimal

revenue as τ varies. In the right panel, we plot the ratio of revenue of the heuristic policy

vs the optimal revenue and the lower bounding ratio from Theorem 12.

In the middle panel of Section 4.4.1, we plot expected revenue when using the heuristic

fee f and penalty β in Theorem 12 for any given service level τ . We find that the heuristic

very closely approximates the true optimal policy when τ is specified exogenously. Indeed in

the right panel of Section 4.4.1 we see that these choices of parameters greatly out-perform

the worst case lower bound garner in excess of 90% of the optimal revenue for almost all τ .

Next, we consider the performance of the 20th percentile rule described in Remark 2.

Specifically, we consider a class of left-skewed unimodal distributions defined by q ∼ Beta(x, 2)

where x varies between 5 and 15. For each distribution in this class, we heuristically choose

τ , f and β and compare it against the revenue maximizing choices of these parameters

(computed via grid search).
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Figure 16: Optimal Service Level vs. Heuristic Service Level.

Note. We visualize the performance of the heuristic policy where τ is chosen as as 20%

quantile of the Beta(x, 2) distributions, and (β, f) are chosen as in Theorem 12, as x varies.

In the left panel, we plot three Beta(x, 2) distributions with parameters x = 5, 10, 15,

respectively. In the middle panel, we plot the optimal service level and the heuristic service

level (20% quantile of the Beta(x, 2) distribution) when the distribution parameter varies

from x = 5 to x = 20. In the right panel, we plot the optimal revenue and the revenue

generated by our heuristic service level with heuristic choices of for (β, f).

In the left panel of Fig. 16, we plot the density of the Beta(x, 2) distributions for

x = 5, 10, 15 respectively, from which we see that the Beta(10, 2) distribution approximates

the distribution of average business ratings in [138]. In the middle panel of Fig. 16, we plot

the heuristic choice of the service level τ where the τ is chosen as the 20th percentile of the

distributions, and the optimal service level which is found by grid search. From Fig. 16, we

see when x is large (for example x > 10), the distribution is concentrated around the highest

levels of service quality, and the heuristic choice of service level τ is close to the optimal

service level, suggesting the Pareto principle may lead to effective choices of τ in practice.

Finally, in the right panel we plot the expected revenue generated using the heuristic choice

of τ (also f and β as specified in Theorem 12) and the optimal service level (also optimal

f and β) found by grid search. We observe the expected revenue of the heuristic choice is

consistently close to the optimal expected revenue.

Thus, the numerical results in Fig. 16 imply the heuristic choices of τ, β and f describe

above should work well in practice.
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4.5 Conclusions and Future Directions

In this work, we considered the problem of staling in online rating systems. Staling

occurs when old, irrelevant reviews inform current ratings rendering the ratings unreliable for

customers. Many simple rating system implementations are plagued by issues due to staling,

chief among them being the simple average which, despite its wide use, can easily become

stale. We made a distinction between two types of staling, sequential staling and temporal

staling, each of which required different interventions to mitigate. For sequential staling we

introduced and studied the α-moving average rating system which places proportional weight

on the latest review. We showed that among all oblivious rating systems, the moving average

rating system provides the best protection against staling by exhibiting min-max mean

squared error when a change in the underlying quality could occur. For temporal staling, we

introduced the concept of penalty reviews which down-weight provider ratings when there

are no new reviews. In a general model for two-sided platforms, we connected the notion

of temporal staling with market disintermediation and derived new theory to guide how a

platform should choose the penalty review term and fee parameters. Specifically, we gave a

prior-free heuristic specification of the parameters that provably encourages service providers

to solicit new reviews (by transacting on the platform) and (approximately) maximizes profit.

Taken together, our work can be seen as advocating for a suite of tools that platforms can

turn to when issues regarding staling occur. Our theory gives support for the use of moving

average rating systems in practice. In many ways, moving average systems can be seen as

an evolution of L-sliding window policies. Moving average rating systems offer a smooth

version of L-sliding windows, inheriting the same virtues of L-sliding window systems while

also being more responsive to changes in service provider quality. α-moving average ratings

are also simple to implement and understand, they are always correct in expectation when

the distribution of service quality is stationary, and they can be set to any arbitrary level of

consistency (i.e. variance in the rating error) simply by tuning its one parameter, α.

We also propose the use of penalty reviews for service providers who have not received

recent reviews. There are many reasons why a service provider’s rating may become tempo-

rally stale, in our model we focused on the specific case of temporal staling due to market
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disintermediation. For this important use case, penalty reviews can completely disincentive

high quality providers from transacting off-platform while pruning lowquality and inactive

providers from the market. While we emphasized the lens of disintermediation, in general,

penalty reviews always provide incentives for service providers on the platform to continually

solicit new reviews. We believe this sustained pressure can improve overall rating consis-

tency in outcomes for users, and encourage service providers to always provide the highest

quality service possible. Note that these penalty reviews are simple to implement, intuitive,

and easy to optimize since they consist of just one tunable parameter (β, the penalty term)

which can be put into correspondence with a minimum rating for providers.

Finally, we emphasize the necessity of our proposed rating modifications. The world is in

constant flux and change is inevitable. No service level can be held constant forever. Thus

any rating system that does not down-weight older reviews will eventually be dominated by

those older reviews and made irrelevant. Any rating system that does not monitor how long

it has been since the last review will eventually find itself frozen in time. Our results study

simple, natural ways for rating systems to adapt to these eventualities.

We believe our work opens up many avenues for future work relating to issues of staling.

Note that even though ratings are a deeply ingrained part of the way a typical customer

conducts commerce, there is no standard way to build rating systems. Google and Yelp

use a simple average, Uber uses an L-sliding window system, and many other companies are

currently experimenting with the structure of their rating system. For instance, Amazon.com

uses a proprietary rating system that does not seem to follow any of the formats listed

above [95]. There is a noticeable dearth of empirical work regarding principled ways that

current platforms can deal with issues due to staling. In future work, we believe it would

be productive to understand the interplay between our theoretically motivated anti-staling

interventions, and some of the specific use cases and constraints encountered in practice.

On the theoretical side, in this work, we emphasize interventions that are static; they

are characterized by single fixed parameters. It would be interesting to look at dynamic

ways to set α and β. For instance, in the related problem of change point detection (see the

literature review for relevant papers), the dominant modern approach is to use statistical

testing to determine if a change in the underlying service distribution has occurred. It would
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be interesting if these ideas could be incorporated into a dynamic choice of α that grows

when the detected risk of a change is high. Similarly, for the penalty term β, this penalty

is applied regardless of the providers’ current rating. It would be interesting to study the

power of penalty terms that are specific to providers’ current rating, and perhaps also include

momentum-based terms to detect when providers have become inactive. We hope to study

some of these directions in future work.

92



Appendix A Feature-Based Pricing

A.1 Omitted Examples

Example 1 (pϵ(x) can be discontinuous). Suppose µ(X) ∼ Uniform[1, 2] (or any other

continuous distribution on [1,2]) and ϵ is either -.5 or .5 with probability 1
2
. Then for every

x ≤ 1.5, the optimal price is pϵ(x) = x+ .5, and pϵ(x) = x− .5 otherwise. Thus at 1.5 pϵ(x)

is discontinuous, and by Lemma 1 the revenue function Rϵ(x) is non-differentiable.

Example 2 (Optimal Segmentations Need Not be Interval). In this example we give µ(X)

and ϵ such that the optimal segmentation and pricing is non-interval. Specifically, for any

number k ≥ 2, assume µ(X) is uniformly distributed on the set {k, k + 2, k + 4, · · · , 3k}, and

ϵ is either k or −k with probability 1
2
, respectively. Note that if we consider fully personalized

pricing, the optimal price for {k} is 2k, and the optimal price for {3k} is either 2k or 4k.

Therefore, the unique optimal k-market segmentation and pricing uses segments,

µ(X1) = {k, 3k}, µ(X2) = {k + 2}, · · ·µ(Xk) = {k + 2(k − 1)},

with corresponding price for each segment,

p(X1) = 2k, p(X2) = 2k + 2, · · · , p(Xk) = 2k + 2(k − 1).

To see this segmentation achieves the optimal revenue note the revenue it achieves is the

same as from fully personalized pricing. Further since pϵ(k) = pϵ(3k), and this is not true

for any other predicted valuations, no other k-segmentation can achieve the same revenue.

As the first segment is not interval, the optimal segmentation thus needs not to be interval

for any k.
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Example 3 (Tightness of Theorem 4). Suppose the regression model has no error, i.e.

V |x = µ (x), and let µ(X) ∼ Uniform[0, t] for some t > 0. Then, E[Rϵ(µ (X))] = E[V ] = t
2
.

To compute RkXP for some k, note by Theorem 2 the optimal segmentation here is interval

and further each segment can be described by a left and right endpoint in the space of predicted

valuations. Let 0 < s0 < . . . < sk = t describe those segments (i.e. Xi = {x|µ(x) ∈

[si−1, si)}) with corresponding prices p1, . . . , pk. It is easy to see since ϵ = 0, the optimal

price and segmentations must satisfy si−1 = pi for i = 1, . . . , k since, if not, increasing the

segment interval si−1 up to pi only increases revenue.

Now, on segment Xi, the conditional distribution of V is still uniform, so the contribution

of that segment to E[V ] is si+si−1

2
· si−si−1

t
for all i, since only si−si−1

t
fraction of the market

is in this interval. By contrast, for i = 1, . . . , k, the k-market segmentation strategy on

segment i earns revenue p(Xi) Pr(µ(X) ≥ p(Xi)|X ∈ [si−1, si) Pr(X ∈ [si−1, si) = si−1
si−si−1

t

since pi = si−1, and thus all customers in the segment buy. The difference in revenue is then

E[Rϵ(µ (X))]−RkXP =
s20
2t

+
k∑

i=1

si + si−1

2
· si − si−1

t
− si−1

si − si−1

t

=
s20
2t

+
1

2t

k∑
i=1

(si − si−1)
2 =

1

2t

(
(s0 − 0)2 +

k∑
i=1

(si − si−1)
2

)
.

By inspection, for a fixed s0 = t
k+1

, the segmentation which minimizes this difference is

equispaced, i.e., si = si−1 + t
k+1

for i = 1, . . . , k. Plugging in gives E[Rϵ(µ (X))] −RkXP =

t
2(k+1)

= E[V ]
k+1

.

A.2 Omitted Proofs

A.2.1 Omitted Proofs from Section 2.2

Proof of Lemma 1. (a) Fix some ϵ and positive real numbers x1, x2 such that x1 < x2 and

recall θϵ(x) := pϵ(x)−x is the difference between the price and x. Further recall pϵ(x1), pϵ(x2)
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are prices that maximize pFϵ(p − x1) and pFϵ(p − x2) respectively. Thus, by optimality we

have the following two inequalities

(x1 + θϵ(x1)) Fϵ(θϵ(x1)) ≥ (x1 + θϵ(x2)) Fϵ(θϵ(x2)), (19)

(x2 + θϵ(x2)) Fϵ(θϵ(x2)) ≥ (x2 + θϵ(x1)) Fϵ(θϵ(x1)). (20)

Rearranging the two inequalities yields,

x1 + θϵ(x1)

x1 + θϵ(x2)
≥ Fϵ (θϵ(x2))

Fϵ (θϵ(x1))
≥ x2 + θϵ(x1)

x2 + θϵ(x2)
.

Consequently,

(x1 + θϵ(x1)) (x2 + θϵ(x2)) ≥ (x1 + θϵ(x2)) (x2 + θϵ(x1)) ,

Simplifying the expression, we get

(x2 − x1) θϵ(x1) ≥ (x2 − x1) θϵ(x2).

Finally, noting x2 − x1 > 0, the inequality is equivalent to θϵ(x1) ≥ θϵ(x2) and thus the

margin monotone decreasing.

(b) As in (a), fix some ϵ and positive real numbers x1, x2 such that x1 ≤ x2. Then

x1 + ϵ ≤st x2 + ϵ in the sense of first order stochastic dominance, and it is well known that

stochastic dominance of the valuations implies Rϵ(x1) ≤ Rϵ(x2) (see for instance [65] for an

extended discussion). Combining this observation with Eqs. (19) and (20) above yields,

Rϵ(x2)−Rϵ(x1) ≥ (x2 + θϵ(x1)) Fϵ(θϵ(x1))− (x1 + θϵ(x1)) Fϵ(θϵ(x1)) = (x2 − x1)Fϵ(θϵ(x1)),

Rϵ(x2)−Rϵ(x1) ≤ (x2 + θϵ(x2)) Fϵ(θϵ(x2))− (x1 + θϵ(x2)) Fϵ(θϵ(x2)) = (x2 − x1)Fϵ(θϵ(x2)).

Dividing both sides by x2 − x1 gives,

Fϵ(θϵ(x1)) ≤
Rϵ(x2)−Rϵ(x1)

x2 − x1
≤ Fϵ(θϵ(x2)). (21)

When pϵ is continuous then θϵ is also continuous, and taking x1 → x2 squeezes the derivative

to be Fϵ(pϵ(x)− x) as desired.
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(c) Rϵ(x) was noted to be increasing in the proof of (b). Now to prove continuity, fix ϵ

and positive real numbers x1, x2 such that x1 < x2. Then,

Rϵ(x1) ≤ Rϵ(x2) = (x2 + θϵ(x2) + (x2 − x1)− (x2 − x1)) Fϵ(θϵ(x2)) ≤ Rϵ(x1) + (x2 − x1),

where the last inequality follows from distributing and applying Eq. (20), and the fact that

Fϵ(·) ≤ 1. Taking x1 → x2 gives us the continuity of Rϵ(x).

For convexity, again fix positive real numbers x1, x2 and also λ ∈ (0, 1). Then,

Rϵ(x1) = pϵ(x1)Fϵ(pϵ(x1)− x1)

≥ (pϵ(λx1 + (1− λ)x2) + (1− λ)(x1 − x2)) Fϵ(pϵ(λx1 + (1− λ)x2)− (λx1 + (1− λ)x2)),

where the inequality follows from noting that pϵ(x1) is revenue optimal for x1 + ϵ and any

other price can earn no more. Similarly,

Rϵ(x2) = pϵ(x2)Fϵ(pϵ(x2)− x2)

≥ (pϵ(λx1 + (1− λ)x2)− λ(x1 − x2)) Fϵ(pϵ(λx1 + (1− λ)x2)− (λx1 + (1− λ)x2)).

Combine the two inequalities above, we get

λRϵ(x1) + (1− λ)Rϵ(x2) ≥ Rϵ(λx1 + (1− λ)x2)),

which means Rϵ(x) is convex in x.
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A.2.2 Omitted Proofs from Section 2.3

Proof of Theorem 1. We will prove hardness by showing the Hitting set problem can be

reduced to an instance of k feature-based market segmentation and pricing (kXP). Let X

be the ground set of elements of size, |X | = m, and let {Hi}ni=1 be a collection of subsets

of X . Consider the decision version of the hitting set problem, which asks whether there

exists a subset of X ∗ ⊂ X , |X ∗| ≤ k, such that X ∗ has non-empty intersection with each

Hi. To build a corresponding k-market segmentation and pricing problem, suppose we have

n customers such that each customer’s valuation is xi + ϵ (equivalently, µ (X) is uniformly

supported on these valuations), where i = 1, 2, ..., n. Let pj = n + j−1
m

, for j = 1, 2, ...,m,

and let x1 = p1, and xi = xi−1 + p1
2(i−1)

+ pm
2i

, for i = 2, ..., n. We will now construct an

ϵ ∼ Fϵ such that, for each xi, Rϵ(xi) is maximized at price pj if and only if in the hitting set

problem the subset Hi contains element xj.

Our construction of ϵ is supported on numbers of the form pi − xj. Before constructing

ϵ, note that pj is strictly increasing in j, and that pj−xi < pj′−xi as long as j′ > j. Further

note pm − xi+1 < p1 − xi since by the definition of xi and xi+1, xi+1 − xi > p1
2n

+ pm
2n
> 1 and

since pm − p1 = m−1
m

< 1. Let t1,1 = p1 − xn, ..., tj,i = pj − xn+1−i, ..., tm,n = pm − x1, and

let t0,n = −xn, and tm,n+1 = pm. Thus, we have

t0,n < t1,1 < t2,1 < . . . < tm,i < t1,i+1 < t2,i+1 < . . . tm−1,n < tm,n < tm,n+1. (22)

Now we are ready to define the complementary cumulative distribution function (cCDF)

of ϵ. We will let ϵ be such Fϵ(t0,n) = 1, Fϵ(tm,n+1) = 0, and working backwards recursively

from Fϵ(tm,n+1) as follows:

Fϵ(tj,i) =



i
pj
, if xj ∈ Hi

Fϵ(tj+1,i), if xj /∈ Hi and j < m

Fϵ(t1,i+1) if xj /∈ Hi and j = m, i < n

0 otherwise.

Note this construction is well defined and is quadratically supported, an example what

Fϵ looks like is provided in Fig. 22. Further, for any value t such that tj,i ≤ t < tj+1,i,
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F(t) = F(tj,i). Now we need to check that Fϵ is non-increasing and thus a properly defined

cCDF, and also that pjFϵ(pj−xi) is revenue-maximizing only when j, i are such that xj ∈ Hi.

To the first point, since pj ≥ n for all j = 1, 2, ...,m, and {pj} is increasing, therefore,

i
pj
< i

pj+1
. Then, to show Fϵ is non-increasing, we only need to show i

pm
< i−1

p1
. Note that

i

pm
− i− 1

p1
=
ip1 − (i− 1)pm

p1pm

=
i(p1 − pm) + pm

p1pm
> 0,

where the inequality follows from the fact that pm−p1 = m−1
m

< 1 for 1 ≤ i ≤ n, and pm > n.

Thus Fϵ is non-increasing, i.e., Fϵ is a proper cumulative distribution function.

Next, we show that pFϵ(p − xi) = i iff p = pj and xj ∈ Hi, and for all other prices

the revenue pFϵ(p − xi) is strictly less than i. By the definition of Fϵ(pj − xi), if xj ∈

Hi, Fϵ(pj − xi) = i
pj

, consequently, pjFϵ(pj − xi) = i. So now suppose price p satisfies

Fϵ(p− xi) = Fϵ(pj′ − xi′) = i′

pj′
. To simplify the discussion, we take the largest price p such

that Fϵ(p− xi) = Fϵ(pj′ − xi′), i.e., p− xi = pj′ − xi′ , and by rearranging p = pj′ − xi′ + xi.

All other prices less than pj′ − xi′ + xi and which satisfies Fϵ(p − xi) = Fϵ(pj′ − xi′) = i′

pj′

will give us less revenue. Now we want to show that pFϵ(p− xi) < i, i.e.,

(pj′ − xi′ + xi)
i′

pj′
< i.

If i′ < i, the inequality is the same as

xi − xi′ ≤
i− i′

i′
pj′ .

By the definition of pj and xi,

xi+1 − xi =
p1
2i

+
pm

2(i+ 1)
<
p1
i
,

where the inequality comes from pm
p1
< n+1

n
. Therefore,

xi − xi′ ≤
i∑

j=i′

p1
j
<
i− i′

i
p1 <

i− i′

i
pj.
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Similarly, if i′ > i, pFϵ(p− xi) < i is equivalent to

xi′ − xi >
i′ − i
i′

pj′ .

Now, by the definition of pj and xi,

xi+1 − xi =
p1
2i

+
pm

2(i+ 1)
>

pm
i+ 1

,

where the inequality comes from pm
p1
< n+1

n
. Therefore,

xi′ − xi ≥
i∑

j=i′

pm
j + 1

>
i− i′

i
pm >

i− i′

i
pj,

as desired.

Finally, to determine whether there exists a subset of X∗ ⊂ X, |X∗| ≤ k, such that

X∗ has non-empty intersection with each Hi, it is equivalent to determine whether there

is a k feature-based market segmentation and pricing that yields the maximum revenue

1 + 2 + 3 + . . . + n = n(n+1)
2

. Since the hitting set problem NP-hard, thus FBMSP is also

NP-hard.

Proof of Lemma 2. (a) First we will show pϵ(x) is increasing. Since fϵ is log-concave, Fϵ

is also log-concave (see [14] for an extensive overview of the transformations that preserve

log-concavity). Further, d
dx

log(Fϵ(x)) = −fϵ(x)

Fϵ
which by concavity implies the inverse hazard

rate, Fϵ(x)
fϵ(x)

, is decreasing in x. Thus pϵ(·) is unique, satisfies first order conditions for revenue

optimality, d
dp
pFϵ(p − x)|p=p(x) = 0, and can be written as pϵ(x) = Fϵ(pϵ(x)−x)

fϵ(pϵ(x)−x)
. Recalling by

Lemma 1(a) pϵ(x)−x is decreasing, it thus follows that pϵ(x) must be an increasing function

of x.

(b) As in (a) note, if f(x) is log-concave, Fϵ is a log-concave function, thus it has Pólya

frequency of order 2 (PF2), which is equivalent to that statement that, for any real numbers

x1, x2, and y1, y2, such that x1 < x2 and y1 < y2, then Fϵ(x1−y2)

Fϵ(x1−y1)
≤ Fϵ(x2−y2)

Fϵ(x2−y1)
(see [112], Section

11).

Now, let {Xi}k1, {pϵ(Xi)}k1 be the optimal segmentation and pricing and suppose WLOG

that the prices are distinct. Further suppose the optimal segmentation was not interval, then

there exists x1,x2,x3 such that µ(x1) < µ(x2) < µ(x3), but with x1,x3 ∈ Xi, and x2 ∈ Xj
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for some i ̸= j. Suppose pϵ(Xi) < pϵ(Xj) (the opposite case when pϵ(Xi) > pϵ(Xj) follows by

an identical argument, swapping x3 with x1) and note by optimality of the segmentation,

pϵ(Xi)Fϵ(pϵ(Xi)− µ(x3)) > pϵ(Xj)Fϵ(pϵ(Xj)− µ(x3)),

pϵ(Xj)Fϵ(pϵ(Xj)− µ(x2)) > pϵ(Xi)Fϵ(pϵ(Xi)− µ(x2)).

Combining these two inequalities gives

Fϵ(pϵ(Xi)− µ(x3))

Fϵ(pϵ(Xj)− µ(x3))
>
pϵ(Xj)

pϵ(Xi)
>

Fϵ(pϵ(Xi)− µ(x2))

Fϵ(pϵ(Xj)− µ(x2))
.

Which can be further rearranged to Fϵ(pϵ(Xi)−µ(x3))

Fϵ(pϵ(Xi)−µ(x2))
>

Fϵ(pϵ(Xj)−µ(x3))

Fϵ(pϵ(Xj)−µ(x2))
which contradicts the

PF2 property. Thus the optimal segmentation must be interval and Xi = {x|µ (x) ∈

[si−1, si)} for some real numbers si < si+1.

(c) To show pϵ(Xi) = pϵ(x) for some x ∈ Xi, let x′ = arg minx∈Xi
µ(x) and recall

pϵ(Xi) = arg max
∫
µ(x)∈[si−1,si)

pFϵ(p − s)f(µ−1(s))ds. Now suppose pϵ(Xi) < µ(x′). By log-

concavity, each function Rϵ(µ(x), p) := pFϵ(p− µ(x)) is unimodal, and thus increasing in p

for p ≤ pϵ(µ(x)),

pϵ(Xi)Fϵ(pϵ(Xi)− s) ≤ pϵ(µ(x′))Fϵ(pϵ(µ(x′))− s),

for any s ∈ [si, si+1], which implies∫
µ(x)∈[si−1,si)

pϵ(Xi)Fϵ(pϵ(Xi)−s)f(µ−1(s))ds ≤
∫
µ(x)∈[si−1,si)

pϵ(µ(x′))Fϵ(pϵ(µ(x′))−s)f(µ−1(s))ds,

thus pϵ(Xi) ≥ pϵ(x
′). A symmetric argument similarly shows pϵ(Xi) ≤ arg maxx∈Xi

pϵ(x) for

any Xi.
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Proof of Theorem 2. Suppose the firms prediction model µ(X) is supported on n values

{xi}ni=1, occurring with probabilities {qi}ni=1, where x1 ≤ x2 ≤ . . . ≤ xn. By Lemma 2,

the optimal segmentation can be indexed by the sequence {si}ki=0 which is contained in the

support of µ (X). Let the optimal price for segment [si−1, si) be pϵ ([si−1, si)) i.e.

pϵ ([si−1, si)) = arg max
pi

pi Pr (µ(x) + ϵ ≥ pi|µ(x) ∈ [si−1, si)) Pr(µ(x) ∈ [si−1, si)).

We wish to find {si}ki=0 ⊂ {xi}ni=1 that maximizes

k∑
i=1

pϵ ([si−1, si)) Pr (µ(x) + ϵ ≥ pϵ ([si−1, si)) |µ(x) ∈ [si−1, si)) Pr(µ(x) ∈ [si−1, si)).

We suppose the time to compute pϵ(si, si+1) for any segment [si, si+1) is upper bounded by

mϵ. Now note there are at most n(n+1)
2

intervals to consider, and we can create a table to

store the optimal prices for all possible intervals in O(n2mϵ) time.

We now give a dynamic programming solution that uses time O(kn2) and to populate

a table of size kn. Define D[n′, k′] as the optimal k′-market segmentation that considers

only the n′ lowest predicted valuations {(xi, qi)}n
′

i=1, our goal is to compute D[n, k] which

is the revenue of the optimal FBMSP (the optimal policy can further be reconstructed by

standard backward search). Our algorithm depends on the following observation: consider

the optimal k-market segmentation and suppose [sk−1, sk] = [xik , xn] defines the kth segment.

If one considers the market without the customers in the kth segment, the remaining k − 1

segments must be an optimal (k − 1)-market segmentation on {(xi, qi)}ik−1
i=1 . Formally, we

express this observation as the following recursion,

D[n′, k′] = max
l∈[n′−1]

D[l, k′−1]+pϵ ([si−1, si))
n′∑

i=l+1

Pr (µ(x) + ϵ ≥ pϵ ([si−1, si)) |µ(x) ∈ [si−1, si)) qi,

(23)

which states that the optimal k′-market segmentation on the lowest n′ valuations, is equal to

some optimal (k′ − 1)-segmentation on a smaller market, plus the value of the k′th segment.

Using Eq. (23) we may populate a table of size kn, starting at D[0, 0] = 0, and computing

column-wise. The maximization in Eq. (23) takes at most n′− 1 calculations. If the optimal

price and revenue for each segment are stored before the iteration, the dynamic programming
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can be finished in O(kn2) time. Thus, the optimal feature-based market segmentation can

be computed in O(n2(k +mϵ)) time.

A.2.3 Omitted Proofs from Section 2.4

Proof of Theorem 3. Let {si}ki=0 ∈ Rk+1 denote an optimal interval k-market segmentation

forRµ(X)
kXP . Consider the sub-optimal feature-based market segmentation which uses segments

Xi = {x |µ (x) ∈ [si−1, si)} and prices pi. Note for all x ∈ Xi, pi Pr (µ (x) + ϵ ≥ pi) ≥

Rϵ(si−1) and thus summing over all segments

Rµ(X)+ϵ
kXP ≥

k∑
i=1

∫
µ(x)∈[si−1,si)

pi Pr (µ(x) + ϵ ≥ pi) fX(x)dx ≥
k∑

i=1

Rϵ(si−1)

∫
µ(x)∈[si−1,si)

fX(x)dx

(24)

Now,

EX∼FX [Rϵ(µ (X))]−Rµ(X)+ϵ
kXP ≤

k∑
i=1

∫
µ(x)∈[si−1,si)

(Rϵ(µ(x))−Rϵ(si−1)) fX(x)dx Eq. (24)

≤
k∑

i=1

∫
µ(x)∈[si−1,si)

(µ(x)− si−1)Fϵ(θϵ(µ(x)))fX(x)dx Lemma 1(b)

≤
k∑

i=1

∫
µ(x)∈[si−1,si)

(µ(x)− si−1)fX(x)dx

= EX∼FX [µ(Xi)]−Rµ(Xi)
kXP

as desired.

Proof of Theorem 4. Let L = infx µ (x) and U = supx µ (x), and recalling the proof of

Theorem 3 we have,

EV∼F [Rϵ(V )]−RV
kXP ≤

k∑
i=1

∫
µ(x)∈[si−1,si)

(Rϵ(µ(x))−Rϵ(si−1)) Fϵ (θϵ(si−1)) fX(x)dx.
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Now instead we choose the sub-optimal interval segmentation such that it subdivides the

quantile space of FX into k equal regions i.e., {si}ki=0 such that F(si−1) − F(si) = 1
k

for

i = 1, ..., k. Then

Eµ(X)∼F [Rϵ(µ (X))]−Rµ(X)+ϵ
kXP ≤

k∑
i=1

∫
µ(x)∈[si−1,si)

(Rϵ(µ(x))−Rϵ(si−1)) fX(x)dx

≤
k∑

i=1

∫
µ(x)∈[si−1,si)

(µ(x)− si−1)Fϵ(θϵ(µ(x)))fX(x)dx Lemma 1(b)

≤
k∑

i=1

∫
µ(x)∈[si−1,si)

(µ(x)− si−1)fX(x)dx

=
k∑

i=0

(si − si−1)

∫
µ(x)∈[si−1,si)

fX(x)dx

=
k∑

i=1

(si − si−1)
(
F(si−1)− F(si)

)
=

∑k
i=1 (si − si−1)

k

=
U − L
k

,

where the third inequality follows Fϵ (θϵ(·)) ≤ 1, the third equality comes from the choice of

{si}ki=0. Finally, summing si − si−1 we get the final equality as desired.

Proof of Theorem 5. Fix some k ≥ 2, we will prove the rearranged inequality R(k−1)XP +

R(k+1)XP ≤ 2RkXP by explicitly constructing feasible (but not necessarily optimal) size k

segmentations. Note, since ϵ is log-concave, by Lemma 2 the optimal segmentation for any

k is interval, and can be described by the sequence of numbers {ski }ki=0 such that X k
i =

{x|µ (x) ∈ [si−1, si)}. Further, let Sk−1 := {sk−1
i }k−1

i=0 , Sk := {ski }ki=0 and Sk+1 := {sk+1
i }k+1

i=0

be the optimal segmentations of size k − 1, k, and k + 1, respectively, as described by

segmentation endpoints. Note by definition sk−1
k−1 = skk = sk+1

k+1 = supx µ (x). Our proof will

proceed in two cases.

In this case, the first segment of the optimal (k + 1) segmentation is before the first

segment of the (k − 1) segmentation, see Fig. 17 for an illustration. Consider two feasible

k segmentation S ′
k = sk+1

0 ∪ Sk−1 and S ′′
k = Sk+1 \ sk+1

0 , see Fig. 18 for another illustration.
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Now note the combined revenue from S ′
k and S ′′

k fully covers the revenue from Sk−1 (as a

subset of S ′
k) and Sk+1 except the revenue from the first segment (all other segments of the

optimal (k+ 1) segmentation are covered by S ′′
k ). Now, in the constructed segmentation S ′

k,

the unaccounted for first segment has end points [sk+1
0 , sk−1

0 ), which by assumption contains

the first segment of the (k + 1) segmentation [sk+1
0 , sk+1

1 ). Note if one segment subsumes

another, it provides more revenue, i.e., if Xi ⊂ Xj then

max
p
pPr (µ (x) + ϵ ≥ p|x ∈ Xi) Pr(Xi) ≤ max

p
pPr (µ (x) + ϵ ≥ p|x ∈ Xj) Pr(Xj). (25)

and thus Eq. (25) implies R(k−1)XP +R(k+1)XP ≤ RkXP (S ′
k) +RkXP (S ′′

k ) ≤ 2RkXP .

Figure 17: Case 1 of Theorem 5.

Note. Depicted are the first segment end points of an interval segmentation of size k+1 (solid

line) and k-1 (dashed line). The first segment
[
sk+1
0 , sk+1

1

)
in the (k + 1) segmentation is

before the first segment
[
sk−1
0 , sk−1

1

)
of the (k − 1) segmentation.

Figure 18: New feasible k-segmentations for case 1 of Theorem 5.

Note. Depicted are the constructed size k interval segmentations. In the left panel S ′
k is

shown which is equal to the optimal (k−1) segmentation plus a new first segment
[
sk+1
0 , sk−1

0

)
.

In the right panel S ′′
k is shown which is equal to the optimal (k + 1) segmentation with the

first segment
[
sk+1
0 , sk+1

1

)
removed.

In this case, there is an i such that segment i+1 of the optimal (k+1) segmentation that

is subsumed by segment i of the optimal (k−1) segmentation. As in Case 1, we will construct
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feasible k segmentations assuming the condition of Case 2 holds. Before constructing the

feasible segmentations, we will need two simple facts, both of which follow from Lemma 2.

Fact 1: If X1 = [s1, s2),X2 = [s1, s2 + ∆),where ∆ ≥ 0, then pϵ(X2) ≥ pϵ(X1), (26)

Fact 2: If X1 = [s1, s2),X2 = [s1 −∆, s2),where ∆ ≥ 0, then pϵ(X2) ≤ pϵ(X1). (27)

Fix the i such that sk−1
i−1 ≤ sk+1

i ≤ sk+1
i+1 ≤ sk−1

i . Such an arrangement of segmentation points

is shown in Fig. 19. Now define the feasible k-segmentations as

S ′
k =

{
sk−1
j

}i−1

j=1
∪
{
sk+1
j

}k+1

j=i+1
,

and

S ′′
k =

{
sk+1
j

}i
j=1
∪
{
sk−1
j

}k−1

j=i
.

Each new arrangement of segmentation points consists of splicing the beginning of the

(k−1) segmentation with the end of the (k+1) segmentation, or vice versa, with the middle

segment added or removed. An example of such a segmentation construction is shown in

Fig. 20. Note compared to the (k − 1) and (k + 1) segmentations, the new segment in S ′
k is[

sk−1
i−1 , s

k+1
i+1

)
, and the new segment in S ′′

k is
[
sk+1
i , sk−1

i

)
, and all the other segments are the

same as segments in the optimal k − 1 or (k + 1) segmentation. The only segments in the

optimal (k − 1) or (k + 1) segmentation unaccounted for (i.e. not contained in S ′
k or S ′′

k )

are [sk−1
i−1 , s

k−1
i ) and [sk+1

i , sk+1
i+1 ). Now let p1 := pϵ

(
[sk−1

i−1 , s
k−1
i )

)
, p2 := pϵ

(
[sk+1

i , sk+1
i+1 )

)
be the

optimal prices on the those unaccounted for segments, we will need to determine the prices

for each new segments in S ′
k and S ′′

k such that the combined revenue from them fully covers

the revenue from the unaccounted for segments.

Note that it is unclear which of p1 and p2 is larger, we will argue in two sub-cases based

on their ordering. Suppose we have p1 ≤ p2, and let the price for new segments in S ′
k and

S ′′
k be

pϵ
([
sk−1
i−1 , s

k+1
i+1

))
= p1, pϵ

([
sk+1
i , sk−1

i

))
= p2.
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Let Rϵ([sj−1, sj), p) be the revenue from segment [sj−1, sj) when the price on that segment

is p. The difference in revenue between the new and unaccounted for segments is then,

Rϵ

([
sk−1
i−1 , s

k+1
i+1

)
, p1
)

+Rϵ

([
sk+1
i , sk−1

i

)
, p2
)
−Rϵ

([
sk−1
i−1 , s

k−1
i

)
, p1
)
−Rϵ

([
sk+1
i , sk+1

i+1

)
, p2
)

=
(
Rϵ

([
sk−1
i−1 , s

k+1
i+1

)
, p1
)
−Rϵ

([
sk−1
i−1 , s

k−1
i

)
, p1
))

+
(
Rϵ

([
sk+1
i , sk−1

i

)
, p2
)
−Rϵ

([
sk+1
i , sk+1

i+1

)
, p2
))

= Rϵ([s
k+1
i+1 , s

k−1
i ), p2)−Rϵ([s

k+1
i+1 , s

k−1
i ), p1),

where the second equality follows from the fact that
[
sk−1
i−1 , s

k+1
i+1

)
⊂
[
sk−1
i−1 , s

k−1
i

)
, and

[
sk+1
i , sk+1

i+1

)
⊂[

sk+1
i , sk−1

i

)
. Since every element in

[
sk+1
i , sk+1

i+1

)
is less than any element in

[
sk+1
i+1 , s

k−1
i

)
, by

Eq. (26) and Eq. (27), we have the price dominance

p1 ≤ p2 ≤ pϵ([s
k+1
i+1 , s

k−1
i )),

which implies

Rϵ([s
k+1
i+1 , s

k−1
i ), p2) ≥ Rϵ([s

k+1
i+1 , s

k−1
i ), p1).

Thus, R(k−1)XP + R(k+1)XP ≤ RkXP (S ′
k) + RkXP (S ′′

k ) ≤ 2RkXP . In the second sub-case

when p2 ≤ p1, the proof follows symmetrically now using p2 for the price of the new segment

in S ′
k and p1 for the price in the new segment for S ′′

k , we omit it for brevity.

Figure 19: Case 2 of Theorem 5.

Note. Depicted are the i + 1 segment end points of the an interval segmentation of size

k+1 (solid line) and i segment of size k-1 segmentation (dashed line). The i + 1th segment[
sk+1
i , sk+1

i+1

)
of (k+1) segmentation is fully contained in the ith segment

[
sk−1
i−1 , s

k−1
i

)
of (k−1)

segmentation.

To complete the proof, we now must show that Case 1 and Case 2 are the only cases

i.e., if the condition for Case 1 does not hold, the condition for Case 2 must hold for some i.
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Figure 20: New feasible k-segmentations for case 2 of Theorem 5.

Note. Depicted are the constructed size k interval segmentations. The new k-segmentations

are constructed by crossing over (k − 1) segmentation and (k + 1) segmentation at sk−1
i−1 .

In the left panel, S ′
k is shown; before sk−1

i−1 , it contains the segments of Sk−1, after sk+1
i+1 , it

contains segments of Sk+1. In the right panel, S ′′
k is shown; before sk+1

i , it contains the

segments of Sk+1, after sk−1
i , it contains the segments of Sk−1.

To see this, imagine Case 1 does not hold, then sk+1
1 > sk−1

0 . If then sk+1
2 < sk−1

1 the proof

is complete, so assume sk+1
2 ≥ sk−1

1 . If then sk+1
3 < sk−1

2 the proof is complete and so on.

Iterating, since sk+1
k+1 = sk−1

k−1 the sequence of deductions must terminate at some i for which

Case 2 holds. Thus Case 1 and Case 2 cover all cases, which completes the proof.

A.3 Transforming a Probit Regression Model into a Valuation Model

In this section we overview how to transform a prediction model for the sales probability

into a linear valuation model. In practice we cannot observe a customer’s valuation for one

product directly. Instead, we observe whether the customer will buy the product or not,

at the offered price p (see [30] for more details). Assume that the unobserved continuous

dependent variable Y is the customer’s true valuation or willingness to pay (WTP) for the

product. Further, suppose the relation of Y and customer’s feature X is

Y = β0 +Xβ + ϵ, (28)
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where ϵ ∼ N(0, σ). Customer i’s decision Ii will be

Ii =

1, if Yi ≥ pi,

0, otherwise,

(29)

where pi is the price offered to customer i. Then, the probability that customer i with

features Xi will buy the product is

Pr(Ii = 1) = Pr(Yi ≥ p) = Pr(β0 +Xiβ + ϵi ≥ p)

= Pr

(
ϵi
σ
≥ p−Xiβ

σ

)
= 1− Φ

(
p− β0 −Xiβ

σ

)
,

where Φ is the cumulative distribution function for the standard normal distribution. Using

p and X as explanatory variables, the probit regression model is then

Pr(I = 1|X) = 1− Φ(β′
0 + pβp +Xβ′).

Therefore, we can use the maximum likelihood estimator (MLE) of the probit regression

model to recover the regression model of customer’s valuation, i.e.,

β̂0 =
β̂′
0

β̂p
, β̂ =

β̂′

β̂p
, σ̂ =

1

β̂p
,

where β̂′
0, β̂p, β̂

′ are the MLE of β′
0, βp, β

′. Further, the regression model of customer’s

valuation recovered from probit regression model is asymptotically unbiased if the price

variation is large enough.
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A.4 Constant Factor Approximation for General Error

In this section we will describe how to obtain a 1-1/e approximation of the optimal

FBMSP when the residuals are independent and follow an arbitrary distribution, as sketched

in Remark 1. Through the section we will use 2V to represent the power set of some set V .

(1− 1/e) Approximation Algorithm: Our polynomial time approximation algorithm

will follow from the submodularity of the objective function for FBMSP, defined as follows:

Definition 7 (Submodularity). A set function f : 2V → R is submodular if for every

A,B ⊆ V ,

f(A ∩B) + f(A ∪B) ≤ f(A) + f(B).

An important subclass of submodular functions are those which are monotone, i.e., func-

tions for which enlarging the choice set cannot cause the function value to decrease.

Definition 8 (Monotonicity). A set function f : 2V → R is monotone if for every A ⊆ B ⊆

V , f(A) ≤ f(B).

We will show that the objective function for FBMSP can be expressed as a set function

over prices which is monotone and submodular. Note that for n customers with predicted

valuations {µ(xi)}ni=1 and for error distribution ϵ supported on m points, there are at most

O(nm) distinct possible valuation realizations. Further, any optimal price for a segment

must correspond to one of these realizations (since if not, raising the price until it reaches a

valuation in the support is strictly revenue improving). Thus the set of potential prices is a

polynomially sized set equivalent to the set of potential realized valuations, and the revenue

objective of FBMSP can be viewed as a set function over a size k subset of that price set.

Specifically, if f is the revenue function of FBMSP on price set A, it takes the form,

f(A) =
n∑

i=1

max
p∈A

pF(p− µ(xi)).

Then expressed as a set function over the prices, optimal FBMSP is the solution to

max
|A|≤k

n∑
i=1

max
p∈A

pF(p− µ(xi)).
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The monotonicity of the revenue objective is easy to see since, by definition, enlarging

the set of possible prices that can be used for a segment will keep at least the same revenue

as for a smaller set of prices. The submodularity comes from the fact that any customer i

facing the prices in price set A∩B will result in less revenue than when facing the prices in

price set A or B, i.e.,

max
p∈A∩B

pF(p− µ(xi)) ≤ min

{
max
p∈A

pF(p− µ(xi)), max
p∈B

pF(p− µ(xi))

}
,

further,

max
p∈A∪B

pF(p− µ(xi)) = max

{
max
p∈A

pF(p− µ(xi)), max
p∈B

pF(p− µ(xi))

}
.

Note that

max
p∈A

pF(p− µ(xi)) + max
p∈B

pF(p− µ(xi)) = min

{
max
p∈A

pF(p− µ(xi)), max
p∈B

pF(p− µ(xi))

}
+

max

{
max
p∈A

pF(p− µ(xi)), max
p∈B

pF(p− µ(xi))

}
,

and thus combining these observations and summing over all customers proves submodularity

of the objective function.

Note that positive monotone submodular function maximization with cardinality con-

straints is NP-hard in general (see [84]). The cardinality constraint in FBMSP is the number

of segments (the same as the number of prices). [100] shows that a greedy algorithm can

obtain an approximation guarantee of (1− 1/e) for class of monotone submodular functions

with cardinality constraints. Since FBMSP problem is can be written as a problem of maxi-

mizing a monotone submodular function with cardinality constraints, it can be approximated

to at least within a factor of (1− 1/e) via the same greedy algorithm.
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A.5 Omitted Figures

Figure 21: Prediction of the probit regression model.

Note. Depicted is the output of a probit regression model to predict the probability of

mortgage acceptance, our proxy for purchase in the loan setting. The model is trained using

features in Table 2.
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Figure 22: An example of the error distribution Fϵ, constructed for the proof of Theorem 1.

Note. Depicted is an example of the cCDF Fϵ constructed to prove the hardness of FBMSP.

Note on the x-axis are the valuation support points, and that the resultant error distribution

is a step-function on these supports.
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Appendix B Pricing for Online Dating

B.1 Omitted Examples

Example 4 (Properties of Period L Pricing). In this example, we demonstrate three prop-

erties of period L pricing. First, we show that the optimal price for period L pricing may

not be unique, with potentially many locally/globally optimal prices, and thus we cannot rely

on first order conditions alone in our analysis for general period L pricing. Second, we show

that the profit of period L pricing may not be monotone over L, even for MHR valuation

distributions. Third, we show that for any given period length L, there exists model parame-

ters such that L is the optimal period length precluding the existence of a universally optimal

choice of L.

To demonstrate the non-uniqueness of the optimal prices for period L pricing, suppose a

user’s valuations are uniformly distributed on the range [0, 1], i.e., V ∼ U [0, 1], and suppose

the cost c = 0.1, the match rate q = 0.8, the valuation decays as δ = 0.25, the total time

users can stay on the platform T = 1, and the period length L = T/2 = 0.5. Then referring

to Fig. 23 left panel, we can see there are two locally optimal subscription prices, one is near

0.12, the other near 0.15. To understand this phenomenon, note in this example that users

can stay on the platform for at most two periods. Therefore, the online dating platform can

set the price to be high, which will force users to stay on the platform for at most one period,

or the online dating platform can set the price to be low, which will allow users stay for up

to two periods. Each instance corresponds to a different locally optimal price.

To demonstrate the non-monotonicity of R(L) as a function of L, consider a market

similar to the one described above where users’ valuations are distributed as U [0, 1], c = 0.05,

q = 0.2, and now valuations decay as δ = 0.8, and T = 50. In such a market, the optimal

choice of L can be numerically computed to be 4.55, and achieves profit 0.40. In the middle

panel of Fig. 23, we see the non-monotonicity of profits in L, and further note that there also

exists locally (but not globally) optimal choices of period L before the optimal period length

L.
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Finally, to demonstrate that every choice of L can be optimal given the right market

parameters, again consider a market where user’s valuations V ∼ U [0, 1], q = 0.2, δ = 0.8,

T = 50. In the right panel of Fig. 23 we vary the cost c and compute the optimal choice of

L via grid search. We note that L is decreasing in a smooth fashion as c increases.

Figure 23: Examples demonstrating properties of LP.

Note. In the left panel, depicted are an online dating platform’s profit vs. subscription

prices, where user’s valuations V ∼ U [0, 1], unit operating cost is c = 0.1, match rate is

q = 0.8, user’s patience factor is δ = 0.25, total market size is T = 1, and the period length

is L = T/2 = 0.5. In the middle panel, depicted are an online dating platform’s profit using

LP, SP and CP, as period length L varies, where user’s valuations V ∼ U [0, 1], unit operating

cost c = 0.05, match rate q = 0.2, user’s patience factor δ = 0.8, and total time T = 50. In

the right panel, depicted is the optimal period length L when cost c changes, where user’s

valuations are V ∼ U [0, 1], the match rate is q = 0.2, the user’s patience factor is δ = 0.8,

and the market size is T = 50.

Example 5 (Tightness of Lemma 6). In this example, we give an instance of our model such

that Lemma 6 is tight. Specifically, suppose valuations are fixed and drawn from a point-mass

distribution on v, let c = 0, T = ∞, and let q and δ be arbitrary. In this case the optimal

short period price is p∗ = vq
(

log(δ)−q
log(δ)

) log(δ)
q

, and the profit of optimal short period pricing is,

RSP =

(
vq

q − log(δ)

)(
log(δ)− q

log(δ)

) log(δ)
q

.

Similarly, the profit of optimal long period pricing is,

RCP =

(
vq

q − log(δ)

)
.
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The ratio between RSP and RCP is then,

RSP

RCP

=

(
1− q

log(δ)

) log(δ)
q

,

therefore, the approximation ratio is tight.

Example 6 (Only SP can Achieve Universal Constant Factor Approximation). In this ex-

ample, we show that no other fixed pricing strategy besides short period pricing can guar-

antee any constant factor approximation for all parameters. Suppose user’s valuations fol-

low a unit mass distribution of v , i.e., V = v with probability 1, and T = ∞. For any

fixed period L pricing, when c = vq2
(
1− δLe−qL

)
/
(
(q − log(δ))

(
1− e−qL

))
, by Eq. (7),

to achieve positive profit the price of period L pricing must satisfy p ≥ c
(
1− e−qL

)
/q =

vq
(
1− δLe−qL

)
/ (q − log(δ)). Note in Eq. (4), a user will pay the price for first period if

and only if
vq
(
1− δLe−qL

)
q − log(δ)

≥ p.

Thus period L pricing cannot earn any profit when c = vq2
(
1− δLe−qL

)
/
(
(q − log(δ))

(
1− e−qL

))
whereas short period pricing can still earn some profit by setting p ≥ c but p < vq, which is

always possible since 1−δLe−qL

1−e−qL is decreasing in L, and
q(1−δLe−qL)

q−log(δ)
< 1 for any L > 0.

Example 7 (Profit and Match Proportion when δ = 1). In this example, we give an instance

of our model such that the profit dominance in Theorem 7 is tight. Specifically, let δ = 1 and

let F , c, q, and T be arbitrary. In this case the profit of SP and CP can be written as,

RSP (p) =

∫ T

0

(p− c)F(pq−1)e−qtdt = (p− c)F(pq−1)

∫ T

0

e−qtdt,

RCP (p) =

∫ T

0

(
pq

1− e−qT
− c
)
F

(
p

1− e−qT

)
e−qtdt =

(
pq

1− e−qT
− c
)
F

(
p

1− e−qT

)∫ T

0

e−qtdt.

Let p∗S = arg maxpRSP (p), p∗C = arg maxpRCP (p), then, solving the optimization for SP

and CP, we obtain the optimal prices
(
1− e−qT

)
p∗S = qp∗C, and moreover RSP = RCP .
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Example 8 (Manipulation Gap). In this example, we consider SP and CP when the platform

has access to two types of potential matches it can display. Suppose valuations are fixed and

drawn from a point-mass distribution on v, let c = 0, T = 2, δ = 1, and suppose q1 = 0,

q2 = 1, and t1 = t2 = 1. Then the match rate perceived by users is q = q1+q2
2

= 0.5. The

profit of long period pricing that chooses to show type 2 potential matches first is,

RCP ({q2, q1}) = v
(
1− e−qT

)
= v

(
1− 1

e

)
,

The profit of short period pricing that chooses to show type 1 potential matches first is,

RSP ({q1, q2}) = vq

(
1− e−q1

q1
+ e−q1

(
1− e−t2q2

q2

))
= v

(
1− 1

2e

)
.

By Example 7, when the match rate was homogeneous the profit of SP and CP was the same.

Now, when the platform is allowed to choose the order, the difference is, RSP ({q1, q2}) −

RCP ({q2, q1}) = v
2e
.

B.2 Omitted Proofs

In each subsection we will give full proofs of all results from the main body.

B.2.1 Omitted Proofs from Section 3.2

Proof of Lemma 3. We will derive the desired expressions first for CP, then for SP. First

note, CP is equivalent to period L pricing when L goes to T . Therefore,

RCP (p) = lim
L→T
R(L, p) = lim

L→T

(
p−

c
(
1− e−qL

)
q

) ⌊T/L⌋∑
i=1

e−(i−1)qLF(ω(i)p)

=

(
p−

c
(
1− e−qT

)
q

)
F

(
p (q − log(δ))

q (1− δT e−qT )

)
,

where the third equality follows from the fact that when L goes to T , ω(1) = limL→T
q−log(δ)

q(1−δLe−qL)
=

q−log(δ)
q(1−δT e−qT )

. This yields Eq. (8), now we will derive Eq. (9). For simplicity of presentation,

let v = p(q−log(δ))
q(1−δT e−qT )

, which is the lowest valuation of a user who will still pay the long term
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price p. Thus by definition the price satisfies, p =
∫ T

0
vδtqe−qtdt. The expected profit earned

by CP with price p can be rewritten as,

RCP (p) =

(
p−

c
(
1− e−qT

)
q

)
F

(
p (q − log(δ))

q (1− δT e−qT )

)
=

(
p− c

(∫ T

0

tqe−qtdt+ Te−qT

))
F(v)

=

(∫ T

0

vδtqe−qtdt− c
(
−te−qt|T0 +

∫ T

0

e−qtdt+ Te−qT

))
F(v)

=

∫ T

0

(
vδtq − c

)
e−qtF(v)dt

=

∫ T

0

(
pδt (q − log(δ))

1− δT e−qT
− c
)
e−qtF

(
p (q − log(δ))

q (1− δT e−qT )

)
dt,

where the first equality is Eq. (8), the second equality follows from rewriting
c(1−e−qT )

q
in

integral form, the third equality comes from recalling p =
∫ T

0
vδtqe−qtdt by definition of v

and applying integration by parts, the fourth equality follows by simplifying, and the final

equality follows from plugging in via the definition of v. This yields Eq. (9).

Now we will derive the expressions for SP which is equivalent to period L pricing as L

goes to 0. To take this limit, assume the price rate, p = pL
L

, of period L pricing is fixed.

Then,

RSP (p) = lim
L→0
R(L, pL) = lim

L→0

(
pL−

c
(
1− e−qL

)
q

) ⌊T/L⌋∑
i=1

e−(i−1)qLF(ω(i)pL)

= lim
L→0

(p− c
(
1− e−qL

)
qL

) ⌊T/L⌋∑
i=1

e−(i−1)qLF(ω(i)pL)

L

= lim
L→0

(p− c
(
1− e−qL

)
qL

) ⌊T/L⌋∑
i=1

e−(i−1)qLF

(
δ−(i−1)L (q − log (δ))

q (1− δLe−qL)
pL

)L

= lim
L→0

(p− c
(
1− e−qL

)
qL

) ⌊T/L⌋∑
i=1

e−(i−1)qLF

(
q − log (δ)

q

L

(1− δLe−qL)
δ−(i−1)Lp

)L

=

∫ T

0
(p− cq

q
)e−qtF

(
q − log (δ)

q

1

q − log(δ)
δ−tp

)
dt,

=

∫ T

0
(p− c)e−qtF(pq−1δ−t)dt,
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where the first equality follows by definition of period L pricing, and the second equal-

ity follows from Eq. (7). The third equality follows from factoring out L. The fourth

equality follows by plugging in the definition of ω(i). The fifth equality follows from rear-

ranging. In the sixth equality we take the limit in L, noting that limL→0
L

1−δLe−qL = 1
q−log(δ)

,

limL→0
1−e−qL

L
= q, and δ−q(i−1)L and e−(i−1)L in the Riemann sum correspond to δ−t and

e−qt in the integration. The final equality follows from simplification. This yields Eq. (11),

which is an expression of SP as an integration over time t. Finally, we will use Eq. (11) to

derive Eq. (10). The profit of SP can be rewritten as,

RSP (p) =

∫ ∞

p
q

(p− c)

∫ min

{
log( p

vq )
log(δ)

,T

}

0

e−qtdt

 f(v)dv

=

∫ T

0

(∫ ∞

p

qδt

(p− c) f(v)dv

)
e−qtdt

=

∫ T

0

(p− c) e−qtF(pq−1δ−t)dt,

where the first equality is a rewriting of Eq. (10), the second equality follows from Fubini’s

theorem, where t ≤ log( p
vq )

log(δ)
can be rearranged as v ≥ p

qδt
. The final equality follows from

computing the integration over v, from which we obtain Eq. (11).

Proof of Lemma 4. We will show both the optimal short period price and long period price

are unique by studying the first order conditions of their corresponding profit functions.

To demonstrate the uniqueness of the optimal price for SP when F is MHR, first we will

show that the optimal price is finite. From Eq. (11), we can upper bound the profit obtained

by price p as,

RSP (p) =

∫ T

0

(p− c) F
(
pq−1δ−t

)
e−qtdt ≤

∫ T

0

(p− c) F (p) e−qtdt,

where the inequality follows since F is decreasing. When p tends to infinity, the upper bound

on the short period pricing profit goes to 0, which implies the optimal short period price is
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finite. Now, we show the optimal short period price is unique. To aid our proof, first we will

consider general equations of the form:

p− c = pψ(p), (30)

where ψ(p) is strictly decreasing and c ≥ 0. In the following, we first show that the solution

of Eq. (30) is unique, then we show the first order condition of RSP is exactly the form of

Eq. (30). To show the uniqueness of the solution to Eq. (30), we will proceed by contradiction.

Suppose Eq. (30) has two solutions, denoted by p∗1 and p∗2, where p∗2 > p∗1 ≥ 0. By the mean

value theorem, there must exists p ∈ (p∗1, p
∗
2), such that

ψ(p) + pψ′(p) = 1.

Thus,

ψ(p) = 1− pψ′(p) > 1,

where the inequality follows by the assumption that ψ(p) is strictly decreasing in p. Also

note, by Eq. (30),

ψ(p) =
p− c
p
≤ 1,

where the equality follows from rearranging Eq. (30), and the inequality follows from c ≥ 0,

which contradicts with the previous result ψ(p) > 1. Therefore, the solution to Eq. (30) is

unique. Further, by rearranging Eq. (30), we get

p (1− ψ(p)) = c,

where p (1− ψ(p)) is increasing in p since ψ(p) is decreasing in p. Therefore, the solution of

Eq. (30) is increasing in c.

Now we will show the first-order condition for the optimal short period price is exactly

of the form of Eq. (30) implying uniqueness. Consider the profit function of SP in Eq. (11),

its derivative is

∂RSP (p)

∂p
=

∫ T

0

F(pq−1δ−t)e−qtdt− (p− c)
∫ T

0

q−1δ−tf(pq−1δ−t)e−qtdt = 0. (31)
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There are two ways the above equation can be zero. The first is if p is such that F(pq−1) = 0.

In this case, both integrals are zero, and while p is a critical point, such a p cannot be the

profit optimal short period price as it earns no profit. Thus assume F(pq−1) > 0, then both

integrals are positive and we can rearrange the expression Eq. (31) to be

p− c =

∫ T

0
F(pq−1δ−t)e−qtdt∫ T

0
q−1δ−tf(pq−1δ−t)e−qtdt

=
p log(δ)

∫ T

0
F(pq−1δ−t)e−qtdt

e−qTF(pq−1δ−T )− F(pq−1) +
∫ T

0
qF(pq−1δ−t)e−qtdt

=
p log(δ)

q + e−qTF(pq−1δ−T )

(∫ T

0

F
(
pq−1δ−t

)
e−qtdt

)−1

︸ ︷︷ ︸
g(p)

−F(pq−1)

(∫ T

0

F
(
pq−1δ−t

)
e−qtdt

)−1

︸ ︷︷ ︸
h(p)

where the second equality follows by applying integration by parts to the denominator, and

the third equality follows by simplifying. Now to apply Eq. (30), we require that log(δ)
q+g(p)−h(p)

is decreasing in p (note log(δ) < 0). To show this, we only need to show g(p) is decreasing

in p and h(p) is increasing in p. To show h(p) is increasing in p, consider the derivative of

the h(p),

∂

∂p
h(p) =

∫ T

0

(
−F(pq−1δ−t)f(pq−1) + δ−tf(pq−1δ−t)F(pq−1)

)
e−qtdt

q
(∫ T

0
F (pq−1δ−t) e−qtdt

)2 .

To show that ∂
∂p
h(p) ≥ 0, note

δ−tf(pq−1δ−t)F(pq−1)− F(pq−1δ−t)f(pq−1) ≥ f(pq−1δ−t)F(pq−1)− F(pq−1δ−t)f(pq−1)

= f
(
pq−1

)
f
(
pq−1δ−t

)(F(pq−1)

f(pq−1)
− F(pq−1δ−t)

f(pq−1δ−t)

)
≥ 0,

where the first inequality follows from δ−t ≥ 1 for t ≥ 0, the equality follows by factoring out

f (pq−1) f (pq−1δ−t) and the second inequality from the fact that F is MHR. Thus, h(p) is

increasing in p. Next, we show that g(p) is decreasing in p. Consider the derivative of g(p),
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∂

∂p
g(p) =

∫ T

0

(
−δ−TF(pq−1δ−t)f(pq−1δ−T ) + δ−tf(pq−1δ−t)F(pq−1δ−T )

)
e−qtdt

q
(∫ T

0
F (pq−1δ−t) e−qtdt

)2 .

Like before, to show the derivative of g(p) is negative, consider

δ−tf(pq−1δ−t)F(pq−1δ−T )− δ−TF(pq−1δ−t)f(pq−1δ−T ) ≤ δ−T
(
f(pq−1δ−t)F(pq−1δ−T )− F(pq−1δ−t)f(pq−1δ−T )

)
= δ−T f

(
pq−1δ−T

)
f
(
pq−1δ−t

)(F(pq−1δ−T )

f(pq−1δ−T )
− F(pq−1δ−t)

f(pq−1δ−t)

)
≤ 0,

where the first inequality follows from δ−T ≥ δ−t for any t ≤ T , the equality follows by

factoring out f
(
pq−1δ−T

)
f (pq−1δ−t), and the final inequality from the fact that F is MHR.

Thus, g(p) is decreasing in p. Consequently, log(δ)
q+g(p)−h(p)

is decreasing in p, since log(δ) < 0.

Therefore, the first-order condition of the optimal short period price is exactly of the form

in Eq. (30). Combining with the existence of finite optimal short period price, we conclude

that the optimal short period price is unique and increasing in c.

The uniqueness of the optimal long period price comes from MHR directly. By taking

the derivative of Eq. (8) with respect to p, the first-order condition for the optimal long

period price is

F

(
p (q − log(δ))

q (1− δT e−qT )

)
−
(
p− c(1− e−qT )

q

)(
q − log(δ)

q (1− δT e−qT )

)
f

(
p (q − log(δ))

q (1− δT e−qT )

)
= 0.

(32)

As above, assuming p is such that F
(

p(q−log(δ))
q(1−δT e−qT )

)
> 0 (since otherwise p gives no profit and

cannot be optimal), we can rearrange Eq. (32) to be

p− c(1− e−qT )

q
=

(
q
(
1− δT e−qT

)
q − log(δ)

)
F
(

p(q−log(δ))
q(1−δT e−qT )

)
f
(

p(q−log(δ))
q(1−δT e−qT )

) .
Finally, note F

(
p(q−log(δ))
q(1−δT e−qT )

)
f
(

p(q−log(δ))
q(1−δT e−qT )

)−1

is non-increasing in p since F is MHR, while

p − c(1−e−qT )
q

increasing in p. Therefore, we can conclude the optimal long period price is

unique and increasing in c.
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B.2.2 Omitted Proofs from Section 3.3

Proof of Lemma 5. Let p∗L = arg maxpR(p, L) be any optimal price for period L pricing,

and consider a feasible short period price pS =
qp∗L

1−e−qL . For any user with valuation v, recall

τ(v) is the largest number of periods the user will pay under period L pricing with price p∗L.

Further, note that 1−e−x

x
is decreasing in x, therefore,

1− e−qL

qL
≥ 1− e−(q−log(δ))L

(q − log(δ))L

for all δ ∈ (0, 1). Thus after i periods, for any i less than τ(v), the user is willing to pay

the period L price, and further would also pay the short period price p =
qp∗L

1−e−qL at time iL

since the purchasing condition for one implies the other i.e.,

vδiL

(
q
(
1− δLe−qL

)
q − log (δ)

)
≥ p∗L =⇒ vδiLq ≥ qp∗L

1− e−qL
.

Further, in the ith period, SP with price p =
qp∗L

1−e−qL will yield the same expected profit as

subscription pricing of period length L. To show this, note for a user a time t in [(i− 1)L, iL)

(this corresponds to the ith for period L pricing i < τ(v)), a user will leave only if they match,

and the expected profit the user will bring to the platform under SP over the time interval

[(i− 1)L, iL) is, ∫ L

0

(
qp∗L

1− e−qL

)
e−qtdt = p∗L.

Thus short period pricing with price p =
qp∗L

1−e−qL will yield the same expected profit for all the

other periods as under period L pricing, with the exception of the last period the user would

pay for. At the moment before the last period starts, the willingness to pay of a user with

initial valuation v is vδ(τ(v)−1)L. To bound the profit earned in this final period, consider a

long period pricing with the same price p∗L but with horizon T = L. The profit of this long

period pricing with L is at least the profit for the last period of period L pricing, since if a

user is willing to pay the last period, they are also willing to pay the long period price p∗L.

Therefore, R(L) ≤ RSP +RL
CP .

Proof of Lemma 6. As a preliminary to this proof, we will first introduce one condition on

our market parameters that will be helpful.
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Condition B.2.1 ((C1) Slow Matching Condition). When the market parameters q, δ, and

T are such that, (
1− q

log(δ)

) log(δ)
q

≥
(

q

q − log(δ)

)(
1− δT e−qT

1− e−qT

)
,

we say the market satisfies a slow matching condition.

To build intuition for (C1), consider the case when the pool of potential matches is large,

i.e., T =∞. In this case, the condition reduces to q ≤ − log(δ).

Now our proof will follow in three steps. First, we reduce the problem to the case where

valuations are fixed and deterministic. Next, we bound the ratio for fixed valuations when

(C1) holds by analyzing a feasible price, which is the optimal short period price when c = 0.

Finally, we bound the ratio when (C1) does not hold by analyzing a second feasible price,

which is the normalized long-period price.

B.2.2.1 Step 1: Reduction to fixed valuations.

Define γ(v) := min

{
1−

(
p
vq

) −q
log(δ)

, 1− e−qT

}
, and note γ(v) is a non-decreasing function

of v. Now, by Eq. (10) the profit of SP for some fixed price p is,

RSP (p) =

(
p− c
q

)∫ ∞

p/q

min

{
1−

(
p

vq

) −q
log(δ)

, 1− e−qT

}
f(v)dv =

(
p− c
q

)∫ ∞

p/q

γ(v)f(v)dv

=

(
p− c
q

)
E[γ(V )1V≥p/q].

By the generalized Markov’s inequality, for any x ≥ 0, we have,

E[γ(V )1V≥p/q] ≥ F(x)γ(x),

since if x ≥ p/q, γ(x) ≥ 0, we can apply Markov’s inequality, and if x < p/q, γ(x) ≤ 0,

whereas E[γ(V )1V≥p/q] ≥ 0. Applying the inequality to our expression for RSP (p) we find,

RSP (p) ≥
(
p− c
q

)
min

{
1−

(
p

xq

) −q
log(δ)

, 1− e−qT

}
F(x), for any x ≥ 0. (33)
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Now, suppose the optimal price for RCP (p) is p∗, and let v∗ = p∗(q−log(δ))
q(1−δT e−qT )

. Taking x as v∗ in

Eq. (33) yields,

RSP (p) ≥
(
p− c
q

)
min

{
1−

(
p

v∗q

) −q
log(δ)

, 1− e−qT

}
F(v∗). (34)

Therefore,

RSP

RCP

≥ RSP (p)

RCP (p∗)
≥

maxp

(
p−c
q

)
min

{
1−

(
p

v∗q

) −q
log(δ)

, 1− e−qT

}
F(v∗)(

v∗

1− log(δ)
q

(1− δT e−qT )− c
q

(1− e−qT )

)
F(v∗)

=

maxp

(
p−c
q

)
min

{
1−

(
p

v∗q

) −q
log(δ)

, 1− e−qT

}
(

v∗

1− log(δ)
q

(1− δT e−qT )− c
q

(1− e−qT )

) (35)

where the first inequality follows from using the optimal price for CP, and the second in-

equality follows by applying Eq. (34) and plugging in the profit for CP from Eq. (8). Define

Fv to be the point mass distribution for a random variable that is equal to some constant v

with probability one. Note, then that the ratio in Eq. (35) is exactly the same as the ratio

for Fv∗ , i.e.:

maxp

(
p−c
q

)
min

{
1−

(
p

v∗q

) −q
log(δ)

, 1− e−qT

}
(

v∗

1− log(δ)
q

(1− δT e−qT )− c
q

(1− e−qT )

) ≥ inf
v

Rv
SP

Rv
CP

. (36)

where we use Rv
SP and Rv

CP to donote the profit of SP and CP with point mass valuations

v, respectively. For the remainder of our proof, we will lower bound Eq. (36) by finding the

worst case ratio over all point mass valuations v.
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B.2.2.2 Step 2: Bounds when (C1) holds.

Fix some point mass valuation v. First assume, that δT >
(

1− q
log(δ)

) log(δ)
q

, and consider the

feasible short period price be p̃ = vqδT . The corresponding short period profit is

Rv
SP (p̃) =

(
vδT − c

q

)(
1− e−qT

)
= Rv

CP

(
δT
(
1− e−qT

)
q

q−log(δ)
(1− δT e−qT )

)
+
c
(
1− e−qT

)
q

[
δT
(
1− e−qT

)
q

q−log(δ)
(1− δT e−qT )

− 1

]
.

Rearranging we have,

Rv
SP (p̃)

Rv
CP (p∗)

=
δT
(
1− e−qT

)
q

q−log(δ)
(1− δT e−qT )

+
c
(
1− e−qT

)
q

[
δT
(
1− e−qT

)
q

q−log(δ)
(1− δT e−qT )

− 1

]

≥
(

1− q

log(δ)

) log(δ)
q

( (
1− e−qT

)
q

q−log(δ)
(1− δT e−qT )

)

+
c
(
1− e−qT

)
q

[(
1− q

log(δ)

) log(δ)
q

( (
1− e−qT

)
q

q−log(δ)
(1− δT e−qT )

)
− 1

]

≥ 1 +
c
(
1− e−qT

)
q

[1− 1] = 1.

where the first inequality follows from our assumption, and the second inequality follows

from rearranging (C1).

Next consider the alternative assumption, δT ≤
(

1− q
log(δ)

) log(δ)
q

. For this case, consider

the feasible short period price p̃ = vq
(

log(δ)−q
log(δ)

) log(δ)
q

. By Eq. (10), the profit generated by p̃

is,

Rv
SP (p̃) =

vq

q − log (δ)

(
1− q

log(δ)

) log(δ)
q

− c

q − log(δ)

=
Rv

CP

1− δT e−qT

(
1− q

log(δ)

) log(δ)
q

+
c

q

[(
1− q

log(δ)

) log(δ)
q
(

1− e−qT

1− δT e−qT

)
− q

q − log(δ)

]
.

By (C1), we always have(
1− q

log(δ)

) log(δ)
q
(

1− e−qT

1− δT e−qT

)
− q

q − log(δ)
≥ 0.
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Therefore,

Rv
SP ≥ Rv

CP

(
1− q

log(δ)

) log(δ)
q (

1− δT e−qT
)−1

,

as desired. Finally, letting x = q
− log(δ)

, and minimizing the above expression for 0 < x < 1,

we have minx∈(0,1) (1 + x)
−1
x ≥ 1

e
with the minimum occurring as x tends to 0. Thus in this

case RSP

RCP
≥ 1

e
.

B.2.2.3 Step 3: Bounds when (C1) does not hold.

Again fix some point mass valuation v, and now consider the feasible short period price,

p̃ = vq2(1− δT e−qT )
(
(q − log(δ))

(
1− e−qT

))−1
. By Eq. (10), the profit generated by p̃ is,

Rv
SP (p̃) =

(
vq
(
1− δT e−qT

)
(q − log(δ)) (1− e−qT )

− c

q

)1−

((
1

1− log(δ)
q

)(
1− δT e−qT

1− e−qT

))− q
log(δ)


=
Rv

CP

1− e−qT

1−

((
1

1− log(δ)
q

)(
1− δT e−qT

1− e−qT

))− q
log(δ)


Rearranging we have,

Rv
SP (p̃)

Rv
CP

≥ 1

1− e−qT

1−

((
1

1− log(δ)
q

)(
1− δT e−qT

1− e−qT

))− q
log(δ)


︸ ︷︷ ︸

ϕ(T )

.

The derivative of ϕ(T ) with respect to T is,

∂ϕ(T )

∂T
=

(
qe−qT

(1− e−qT )2

)(1− q

log(δ)

)(
1− δT

1− δT e−qT

) 1− δT e−qT(
1− log(δ)

q

)
(1− e−qT )

− q
log(δ)

− 1

 .

If q
− log(δ)

≥ 1, then ∂ϕ(T )
∂T
≥ 0, and thus,

Rv
SP (p̃)

Rv
CP

≥ lim
T→0

ϕ(T ) =
1

2
.
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If q
− log(δ)

< 1, then ∂ϕ(T )
∂T

< 0. Define T ∗ such that,

(
1− q

log(δ)

) log(δ)
q

=

(
q

q − log(δ)

)(
1− δT ∗

e−qT ∗

1− e−qT ∗

)
,

in this case, (C1) does not hold only for T < T ∗. Thus to complete the proof we can consider

Rv
SP (p̃)

Rv
CP

≥ lim
T→T ∗

ϕ(T ) =

(
1− q

log(δ)

) log(δ)
q (

1− δT ∗
e−qT ∗)−1

.

Combining across all cases and taking the minimum yields the claimed bound.

Finally, for tightness, consider the case when c = 0, T = ∞, and valuations are a point

mass v. In this case the optimal price for SP can be computed as p∗ = vq
(

log(δ)−q
log(δ)

) log(δ)
q

yielding optimal profit

Rv
SP (0) =

vq

q − log (δ)

(
1− q

log(δ)

) log(δ)
q

.

Then the ratio between SP and CP is

Rv
SP (0)

Rv
CP (0)

=

(
1− q

log(δ)

) log(δ)
q

matching the guarantee. Taking q
− log(δ)

→ 0 gives the 1/e constant factor.

Proof of Theorem 6. The proof will follow by applying Lemmas 5 and 6. First, in Lemma 5

we show that the optimal profit of period L pricing can be upper bounded by the profit of

SP plus the profit of CP where the time to exhaustion T equals L. Further, note that by

looking at the integration formulation of SP in Eq. (11), the profit of SP is monotonically

increasing in T i.e., RT1
SP ≤ R

T2
SP for any T1 ≤ T2, where we use RT

SP to denote profit of SP

with T . Therefore, by applying Lemma 6 as follows,

R(L) ≤ RSP +RL
CP ≤ RSP + eRL

SP ≤ (1 + e)RSP ,

we obtain the desired result. Finally, we construct a family of examples in Example 6 to

show that no other fixed choice of pricing strategy besides short period pricing can guarantee

any constant factor of the optimal profit.
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Proof of Theorem 7. First note that when c = 0, the optimal long period pricing profit is

RCP = max
p
pF

(
q − log(δ)

q (1− δT e−qT )
p

)
=
q
(
1− δT e−qT

)
q − log(δ)

p∗F(p∗),

where p∗ is the solution of maxp pF(p). Now, using Eq. (7), we can upper bound R(L) as,

R(L) = max
p

⌊T/L⌋∑
i=1

pe−(i−1)qLF (ω(i)p)

≤
⌊T/L⌋∑
i=1

max
p
pe−(i−1)qLF (ω(i)p)

=

⌊T/L⌋∑
i=1

p∗

ω(i)
F (p∗) e−(i−1)qL

= p∗F (p∗)

⌊T/L⌋∑
i=1

e−(i−1)qL

ω(i)

= p∗F (p∗)

⌊T/L⌋∑
i=1

e−(i−1)qL

(
qδ(i−1)L

(
1− δLe−qL

)
q − log(δ)

)

= p∗F (p∗)

(
q
(
1− δLe−qL

)
q − log(δ)

) ⌊T/L⌋∑
i=1

e−(i−1)qLδ(i−1)L

= p∗F (p∗)

(
q
(
1− δLe−qL

)
q − log(δ)

)(
1− δL⌊T/L⌋e−qL⌊T/L⌋

1− δLe−qL

)

= p∗F (p∗)

(
q

q − log(δ)

)(
1− δL⌊T/L⌋e−qL⌊T/L⌋

)
≤ RCP ,

the first inequality follows by exchanging the max and sum, the second equality follows by

taking the maximum, the third and fourth equality comes from the definition of ω(i) in

Eq. (5), the final inequality follows 1− δL⌊T/L⌋e−qL⌊T/L⌋ ≤ 1− δT e−qT .
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B.2.3 Omitted Proofs of Section 3.4

Proof of Lemma 7. Recall the profit expression of period L pricing for price p in Eq. (7),

R(p, L) =

(
p−

c
(
1− e−qL

)
q

) ⌊T/L⌋∑
i=1

(
1− e−iqL

1− e−qL

)(
F(ω(i)p)− F(ω(i+ 1)p)

)
+

(
p−

c
(
1− e−qL

)
q

)(
1− e−⌊T/L⌋qL

1− e−qL

)
F (ω (⌊T/L⌋+ 1) p)

=

(
p

1− e−qL
−
c
(
1− e−qL

)
q

) ⌊T/L⌋∑
i=1

(
1− e−iqL

) (
F(ω(i)p)− F(ω(i+ 1)p)

)
+

(
p

1− e−qL
−
c
(
1− e−qL

)
q

)(
1− e−⌊T/L⌋qL)F (ω (⌊T/L⌋+ 1) p)

=

(
p

1− e−qL
− c

q

)
M(p, L),

where the final equality follows from the definition of match proportion M(p, L).

Proof of Theorem 8. Starting from Eq. (11), note that when c = 0 and T = ∞, the profit

of SP from any price p simplifies to,

RSP (p) =

∫ ∞

0

pF(pq−1δ−t)e−qtdt =
p

q
MSP (p).

where the final equality follows from Lemma 7. Therefore,

MSP (p) =

∫ ∞

0

qF(pq−1δ−t)e−qtdt. (37)

Now, by taking the derivative of the profit with respect to p, the first order condition for SP

in this case is,

∂RSP (p)

∂p
=

∫ ∞

0

F(pq−1δ−t)e−qtdt− p
∫ ∞

0

q−1δ−tf(pq−1δ−t)e−qtdt = 0. (38)
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Let p∗S denote the unique optimal price for SP. It satisfies the first order condition above,

and further

MSP (p∗S) =

∫ ∞

0

qF(p∗Sq
−1δ−t)e−qtdt Eq. (37)

=

∫ ∞

0

p∗Sδ
−tf(p∗Sq

−1δ−t)e−qtdt Rearranging Eq. (38)

=
q

− log(δ)
F(p∗Sq

−1) +

∫ ∞

0

q

log(δ)
qe−qtF(p∗Sq

−1δ−t)dt Integration by parts

=
q

− log(δ)
F(p∗Sq

−1) +
q

log(δ)
MSP (p∗S) Eq. (37) again,

=⇒ MSP (p∗S) =
q

q − log(δ)
F(p∗Sq

−1) Rearranging

Armed with this expression for the match proportion of SP under the profit maximizing

price, now consider the feasible long period price pC =
p∗S

q−log(δ)
. By Eq. (8) and Lemma 7,

the match proportion of CP under this price will be,

MCP (pC) = F

(
pC (q − log(δ))

q

)
= F(p∗Sq

−1) =

(
q − log(δ)

q

)
MSP .

This implies the desired match proportion guarantee, to show simultaneous profit dominance

of this feasible price note by Eq. (8),

RCP (pC) = pCF

(
pC (q − log(δ))

q

)
=

p∗S
q − log(δ)

F(p∗Sq
−1) =

p∗S
q
MSP = RSP .

Thus under the price pC , CP earns the same profit as RSP , while matching more users.
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B.2.4 Omitted Proofs from Section 3.5

Proof. Proof of Theorem 9. We will prove the three parts separately. First, we show the

result for two match rates {q1, q2} with population sizes {t1, t2}. Let q = q1t1+q2t2
t1+t2

be the

average match rate and recall the profit of CP with long period price p is,

RCP (p, σ(q)) = (p− cE[Time on platform]) F

((
q − log(δ)

q − qδT e−qT

)
p

)
.

For any price p, the proportion of users which will pay the price depends only on the user’s

supposed match rate q and is thus independent of the order in which candidate matches

are shown. Thus, to compare the profit of the two possible orderings, {q2, q1} and {q1, q2},

we only need to compare the expected matching cost to the platform from each user, or

equivalently, the expected time on the platform. Let XCP (σ(q)) be the expected time a user

who pays the long period price will spend on the platform under match rate order σ(q).

When the platform chooses matching order {q1, q2}, the expected time on the platform for

a user who paid the long period price is,

XCP ({q1, q2}) = E[Time on platform] =

∫ t1

0

tq1e
−tq1dt+ e−t1q1

∫ t2

0

(t+ t1) q2e
−tq2dt+ Te−(t1q1+t2q2)

=

∫ t1

0

tq1e
−tq1dt+ e−t1q1

(∫ t2

0

tq2e
−tq2dt+ t1

(
1− e−q2t2

))
+ Te−(t1q1+t2q2).

Similarly, when the matching order is {q2, q1}, the expected time on the platform for a user

who paid the long period price is

XCP ({q2, q1}) = E[Time on platform] =

∫ t2

0

tq2e
−tq2dt+ e−t2q2

∫ t1

0

(t+ t2) q1e
−tq1dt+ Te−(t1q1+t2q2)

=

∫ t2

0

tq2e
−tq2dt+ e−t2q2

(∫ t1

0

tq1e
−tq1dt+ t2

(
1− e−t2q2

))
+ Te−(t1q1+t1q1).

Then,

XCP ({q1, q2})−XCP ({q2, q1})

=
(
1− e−t2q2

)(∫ t1

0

tq1e
−tq1dt+ t1e

−t1q1

)
−
(
1− e−t1q1

)(∫ t2

0

tq2e
−tq2dt+ t2e

−t2q2

)
,

=
(1− e−t1q1) (1− e−t2q2)

q1
− (1− e−t1q1) (1− e−t2q2)

q2
≥ 0,
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where the final inequality follows from q2 ≥ q1. Therefore, we conclude for any distribution

F , RCP ({q2, q1}) ≥ RCP ({q1, q2}).

Now, for k match rates {q1, . . . , qk}, with associated populations {t1, . . . , tk}, let Ti =∑i
j=1 tj, for i = 1, . . . k, and T0 = 0. The expected time on the platform for a user who paid

the long period price is

XCP ({q1, . . . , qk}) =
k∑

i=1

(∫ ti

0

(t+ Ti−1) e
−qi(t+Ti−1)dt

)
+ Te−qT .

If we swap qj and qj+1 in {q1, . . . , qk} where 1 ≤ j ≤ k−1, the expected time on the platform

for a user who paid the long period price becomes

XCP ({q1, . . . qj+1, qj, . . . , qk})

= Te−qT +

j−1∑
i=1

(∫ ti

0

(t+ Ti−1) e
−qi(t+Ti−1)dt

)
+

∫ tj+1

0

(t+ Tj−1)e
−qj+(t+Tj−1)dt

+

∫ tj

0

(t+ Tj−1 + tj+1)e
−qj+1(t+Tj−1+tj+1)dt+

k∑
i=j+2

(∫ ti

0

(t+ Ti−1) e
−qi(t+Ti−1)dt

)
Note all the other parts for the integrations do not change if we only swap two match rates

next to each other. Therefore, we can generalize the proof for order {q1, . . . , qk} by switching

any two reverse orders that are next to each other.

As in part a), we first show the result for two match rates {q1, q2} with population sizes

{t1, t2}. Again, let q = q1t1+q2t2
t1+t2

be the average match rate and recall profit of SP with short

period price p is,

RSP (pσ(q)) =

∫ ∞

p
q

(p− c)× E [Time on platform|SP] f(v)dv.

The profit dominance RSP (p, {q1, ..., qK}) ≥ RSP (p, σ (q)) will follow if we can show that for

each user, the expected time on the platform is be longer under the match rate {q1, ..., qK}.

Let XSP (v, p, {q1, q2}) be the expected time a user with valuation v will stay on the platform

under price p, we only need to show that XSP (v, p, {q1, q2}) satisfies

XSP (v, p, {q1, q2}) ≥ XSP (v, p, {q2, q1}) .
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If T is binding, the expected time on platform will be the same as long period pricing model,

therefore the conclusion is the same. Otherwise, let µ(v) = log(p/vq)
log(δ)

, when µ(v) ≤ min{t1, t2},

XSP (v, p, {q1, q2}) =

∫ µ(v)

0

e−tq1dt, XSP (v, p, {q2, q1}) =

∫ µ(v)

0

e−tq2dt.

Note that e−tq1 ≥ e−tq2 , therefore,

XSP (v, p, {q1, q2}) ≥ XSP (v, p, {q2, q1}).

When t1 ≤ µ(v) ≤ t2

XSP (v, p, {q1, q2}) =

∫ t1

0

e−tq1dt+ e−qt1

∫ µ(v)−t1

0

e−tq2dt,

XSP (v, p, {q2, q1}) =

∫ t1

0

e−tq2dt+ e−qt2

∫ µ(v)−t1

0

e−tq2dt.

Similarly, we can show that

XSP (v, p, {q1, q2}) ≥ XSP (v, p, {q2, q1})

for t2 ≤ µ(v) ≤ t2 or max{t1, t2} ≤ µ(v) ≤ t1 + t2. Therefore, we can conclude that for any

distribution F , RSP (p, {q2, q1}) ≤ RSP (p, {q1, q2}).

For matching order {q1, . . . , qk}, let Ti =
∑i

j=1 tj, for i = 1, . . . k, and T0 = 0. If T is

binding, the expected time on the platform for a user whose valuation is v under the short

period price p is

XSP (v, p, {q1, . . . , qk}) =
k∑

i=1

(∫ ti

0

(t+ Ti−1) e
−qi(t+Ti−1)dt

)
+ Te−qT ,

and we can apply the proof in part a). Otherwise, let qk′ be the k′-th match rate such that

Tk′ ≤ µ(v) ≤ Tk′+1, the expected time on the platform for a user whose valuation is v under

the short period price p is

XSP (v, p, {q1, . . . , qk}) =
k′∑
i=1

(∫ ti

0

(t+ Ti−1) e
qi(t+Ti−1)dt

)
+

∫ µ(v)−Tk′

0

(t+ Tk′) e
qi(t+Tk′ )dt+ µ(v)e

−
(∑k′

i=1 qiti+qk′+1(µ(v)−Tk′ )
)
.
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If we swap match rates qj and qj+1 where j < k′, it will be the same as T is binding, if

we swap match rates qj and qj+1 where j ≥ k′ + 1, it will cause no difference for user’s the

expected time on the platform, if we swap qk′ and qk′+1, the expected before k′ will stay as∑k′−1
i=1

(∫ ti
0

(t+ Ti−1) e
qi(t+Ti−1)dt

)
, we only need to consider the difference in qk′ and qk′+1,

which is analyzed above. Therefore, we can generalize the proof for order {q1, ..., qk} by

switching any two reverse orders that next to each other.

As in Theorem 9(a), let XCP (σ(q)) be the expected time a user who pays the long period

price will spend on the platform under match rate order σ(q), and let XCP ({qk, . . . , q1}) be

the expected time a user who pays the long period price will spend on the platform when

the match rate order is {qk, . . . , q1}. First we will show XCP ({qk, . . . , q1}) ≤ XCP (σ(q)), i.e.,

compared with any other order σ(q), users will leave the platform sooner when match rates

are in descending order. To this end, the profit of long period pricing is

RCP (p, {qk, . . . , q1}) = (p− cXCP ({qk, . . . , q1})) F

(
q − log(δ)

q (1− δT e−qT )
p

)
.

Let p∗ be the optimal long period price when the match rate order is σ(q), i.e. p∗ such that,

∂RCP (p, σ(q))

∂p
|p∗ = F

(
q − log(δ)

q (1− δT e−qT )
p∗
)
−
(

q − log(δ)

q (1− δT e−qT )

)
(p∗ − cXCP (σ(q))) f

(
q − log(δ)

q (1− δT e−qT )
p∗
)

= 0.

Let v∗ = q−log(δ)
q(1−δT e−qT )

p∗, then, the first order derivative of RCP (p, {qk, . . . , q1}) at p∗ is

∂RCP (p, {qk, . . . , q1})
∂p

|p∗ = F (v∗)−
(

q − log(δ)

q (1− δT e−qT )

)
(p∗ − cXCP ({qk, . . . , q1})) f (v∗)

=
∂RCP (p, σ(q))

∂p
|p∗ + c

(
q − log(δ)

q (1− δT e−qT )

)
(XCP ({qk, . . . , q1} −XCP (σ(q))) f(v∗)

= c

(
q − log(δ)

q (1− δT e−qT )

)
(XCP ({qk, . . . , q1} −XCP (σ(q))) f(v∗) ≤ 0,

where the second equality follows from minus XCP (σ(q)), then add XCP (σ(q)) back, the third

equality follows from ∂RCP (p,c,F,{T},σ(q))
∂p

|p∗ = 0, the inequality follows fromXCP ({qk, . . . , q1}) ≤

XCP (σ(q)), which is shown in Theorem 9(a). Thus to maximize the profit, the optimal long

period price for RCP ({qk, . . . , q1}) should be lower than p∗.
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B.3 Additional Figures

Figure 24: Examples of subscription and long period pricing in online dating platforms.

Note. Depicted are price offerings for two online dating platforms. On the left is an example

of short period price at https://www.zoosk.com/. On the right is an example of long period

pricing at https://www.selectivesearch.com/pricing.
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Figure 25: Relations between optimal price, profit, and match proportion when valuations

are uniform.

Note. Here we plot the profit, optimal prices, and match proportions under SP, CP and

period L pricing with L = T/7, when valuations are drawn from an uniform(0, 1) distri-

bution, and where T = 50, δ = 0.8, q = 0.2, and c varies. In the left panel, we plot the

profits of SP, CP and period L pricing, and the note relative profit ordering switches from

RCP > RSP when c ≤ 0.03, to RCP > RSP for c > 0.03. In the middle panel, we plot the

normalized optimal long period, short period and period L prices. In the right panel, we

plot the proportion of the market that gets matched under SP, CP and period L pricing.

Note that MCP dominates MSP for c ≤ 0.07.
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Figure 26: Relations between optimal price, profit, and match proportion when valuations

are a mixture of log-normal.

Note. Here we plot the profit, optimal prices, and match proportions under SP, CP and

period L pricing with L = T/7, when valuations are drawn from mixed Log-normal distribu-

tion, where the two log-normal distributions Log-normal(0, 0.1) and Log-normal(0.2, 0.1),

and the mixed probability is 0.6, and T = 50, δ = 0.8, q = 0.2, and c varies. In the left

panel, we plot the profits of SP and CP, and the note relative profit ordering switches from

RCP > RSP when c ≤ 0.06, to RCP > RSP for c > 0.06. In the middle panel, we plot the

normalized optimal long period, short period and period L prices. In the right panel, we

plot the proportion of the market that gets matched under SP and CP and note that MCP

dominates MSP for c ≤ 0.105.
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Appendix C Rating System Design

C.1 Omitted Examples

In this section, we include examples omitted from the main body.

Example 9 (Theorem 12 is tight). Fix some r, a minimum level of service quality τ , and

suppose the link function is h(x) = x, i.e., a linear function where a = 0 and b = 1. When

the provider’s expected quality is q = 1 with probability 1 (i.e. G is a point mass distribution

at 1), we can plug G into Eq. (18) and see that the profit of any f is

max
β+f/(b−a)=τ,

β,f∈[0,1]

r

∫ 1

τ

f

(
a+ β(b− a)

1− (q − β)(b− a)

)
g(q)dq = max

β+f=τ,
β,f∈[0,1]

r

∫ 1

τ

f

(
a+ β

1− (q − β)

)
g(q)dq = max

β+f=τ,
β,f∈[0,1]

rf.

Then, it’s easy to see the optimal choice of the service fee for this G is f ∗ = τ yielding profit

rτ .

On the other hand, consider the profit generated by the choice of f and β prescribed by

Theorem 12. This choice of f is f =
(1+2

√
1−τ−τ)τ

2(1+
√
1−τ−τ)

and yields profit,

r

∫ 1

τ

f

(
a+ β(b− a)

1− (q − β)(b− a)

)
g(q)dq = rf =

r
(
1 + 2

√
1− τ − τ

)
τ

2
(
1 +
√

1− τ − τ
)

The corresponding ratio of the two profits is then

rf

rf ∗ =

(
1 + 2

√
1− τ − τ

)
2
(
1 +
√

1− τ − τ
) =

2 +
√

1− τ
2(
√

1− τ + 1)
,

which is the approximation ratio in Theorem 12, and converges to 3/4 as τ tends to 0.

C.2 Omitted Proofs

In this section, we include the proofs of all results omitted from the main body.
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C.2.1 Omitted Proofs from Section 4.2

Proof of Theorem 10. In this proof we will show that if wt is myopically chosen at every

time step to minimize the maximum of the no-switch and switch error, then the sequence

{wi}∞i=1 always converges to a moving average system. To prove this, first we will show

that the myopically optimal choice of wt always falls into one of three cases: in case 1 wt

minimizes the no-switch error, in case 2 wt minimizes the switch error, and in case 3 wt is

such that the no-switch and switch error are equal. Having established the three cases for

wt, we will then show that eventually wt will always stay in case 2 or case 3 i.e. there exists

some t∗ such that for all t > t∗, wt is in case 2 (or case 3). Finally to complete the proof, we

will compute the limit of wt∑t
i=1 wi

where the wi are eventually always in case 2 (or eventually

always in case 3) and show they converge to a moving average system as desired.

Expression of the MSE. To begin we derive the expression for the MSE when a switch

does not or does occur. For ease of exposition, we define the following functions:

et1(wt) := E

[(∑t
i=1wisi∑t
i=1wi

− µt

)2 ∣∣∣∣{si}ti=1 ∼ F1

]
,

et2(wt) := E

[(∑t
i=1wisi∑t
i=1wi

− µt

)2 ∣∣∣∣{si}t−1
i=1 ∼ F1, st ∼ F2

]
.

When no switch occurs at time t, all si ∼ F1 and the expected MSE of any oblivious rating

system with weights {wi}ti=1 is:

et1(wt) = E

[(∑t
i=1wisi∑t
i=1wi

− µ1

)2
]

= E

[(∑t
i=1wi(si − µ1)∑t

i=1wi

)2
]

= E

[∑t
i=1w

2
i (si − µ1)

2 +
∑t−1

i=1

∑t
j=i+1 2wiwj(si − µ1)(sj − µ1)(∑t

i=1wi

)2
]

=

∑t
i=1w

2
iE [(si − µ1)

2] +
∑t−1

i=1

∑t
j=i+1 2wiwjE [(si − µ1)(sj − µ1)](∑t

i=1wi

)2
=

∑t
i=1w

2
iE [(si − µ1)

2](∑t
i=1wi

)2
=

∑t
i=1w

2
i σ

2
1(∑t

i=1wi

)2 (39)
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where the second equality follows from
∑
wiµ1/

∑
wi = µ1, the third equality by squaring,

the fourth equality by grouping terms. The fifth equality follows from E[(si−µ1)(sj−µ1)] =

E[(si − µ1)]E[(sj − µ1)] = 0 since si and sj are independent and E[si] = µ1.

When the service quality does switch at t, si ∼ F1 for i < t, st ∼ F2, the expected MSE

of any oblivious rating system with weights {wi}ti=1 is:

et2(wt) = E

[(∑t
i=1wisi∑t
i=1wi

− µ2

)2
]

= E

[(∑t
i=1wi(si − µ2)∑t

i=1wi

)2
]

= E

(∑t−1
i=1 wi(si − µ1) +

∑t−1
i=1 wi(µ1 − µ2) + wt(st − µ2)∑t

i=1wi

)2
 , (40)

where the third equality follows by decomposing µ2 into µ2 = µ1 − (µ2 − µ1) and grouping

terms. Now, expanding Eq. (40) into three parts we obtain:

Eq. (40) = E

[(∑t−1
i=1 wi(si − µ1) +

∑t−1
i=1 wi(µ1 − µ2)

)2(∑t
i=1wi

)2
]

+ E

[
w2

t (st − µ2)
2(∑t

i=1wi

)2
]

+ E

[
2wt(st − µ2)

(∑t−1
i=1 wi(si − µ1) +

∑t−1
i=1 wi(µ1 − µ2)

)(∑t
i=1wi

)2
]
, (41)

Note in Eq. (41) the third term vanishes, i.e.,

E

[
2wt(st − µ2)

(∑t−1
i=1 wi(si − µ1) +

∑t−1
i=1 wi(µ1 − µ2)

)(∑t
i=1wi

)2
]

= 0,
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since E[st − µ2] = 0, and the si terms are independent with st. Now, for the two remaining
terms from Eq. (41):

= E


(∑t−1

i=1 wi(si − µ1) +
∑t−1

i=1 wi(µ1 − µ2)
)2

(∑t
i=1 wi

)2
+ E

w2
t (st − µ2)

2(∑t
i=1 wi

)2


= E


(∑t−1

i=1 wi(si − µ1)
)2

+
(∑t−1

i=1 wi(µ1 − µ2)
)2

+ 2
(∑t−1

i=1 wi(si − µ1)
)(∑t−1

i=1 wi(µ1 − µ2)
)

(∑t
i=1 wi

)2
+

w2
t σ

2
2(∑t

i=1 wi

)2
= E


(∑t−1

i=1 wi(si − µ1)
)2

+
(∑t−1

i=1 wi(µ1 − µ2)
)2

(∑t
i=1 wi

)2
+

w2
t σ

2
2(∑t

i=1 wi

)2
=

∑t−1
i=1 w

2
iE
[
(si − µ1)

2
]
+
(∑t−1

i=1 wi(µ1 − µ2)
)2

(∑t
i=1 wi

)2 +
w2

t σ
2
2(∑t

i=1 wi

)2
=

∑t−1
i=1 w

2
i σ

2
1 + w2

t σ
2
2 +

(∑t−1
i=1 wi(µ1 − µ2)

)2
(∑t

i=1 wi

)2 , (42)

where the second equality follows from squaring, and the third equality follows since E[si−

µ1] = 0 for i < t, and all the other equalities follow from simplifying. Now we are ready to

consider the cases for wt when it is chosen to minimize the max of the no switch and switch

error.

Possible cases for wt Taking the above expressions for the error when a switch does

not and does occur together, and fixing the previous weights {wi}t−1
i=1, we aim to minimize

the maximum error at each time t, i.e., find wt such

wt = arg min

{
max

{∑t
i=1w

2
i σ

2
1(∑t

i=1wi

)2 , ∑t−1
i=1 w

2
i σ

2
1 + w2

tσ
2
2 +

(∑t−1
i=1 wi(µ1 − µ2)

)2(∑t
i=1wi

)2
}}

,

where the first term is et1(wt), and the second term is et2(wt). However, where the maximum

error occurs depends on the interactions between et1(wt) and et2(wt). To understand where
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the min-max solution can occur, we first will study the first order derivatives of et1(wt) and

et2(wt) with respect to wt. Specifically, the first order derivative of et1(wt) is

∂et1(wt)

∂wt

=
2wtσ

2
1

(∑t
i=1wi

)2 − 2
(∑t

i=1wi

) (∑t
i=1w

2
i σ

2
1

)(∑t
i=1wi

)4
=

2wtσ
2
1

(∑t
i=1wi

)
− 2

(∑t
i=1w

2
i σ

2
1

)(∑t
i=1wi

)3
=

2wtσ
2
1

(∑t−1
i=1 wi

)
− 2

(∑t−1
i=1 w

2
i σ

2
1

)(∑t
i=1wi

)3 ,

where the second equality follows from canceling
∑t

i=1wi and the third equality follows from

canceling w2
tσ

2
1. Moreover, we observe the numerator of

∂et1(wt)

∂wt
is linear in wt. When wt = 0,

we have

∂et1(wt)

∂wt

= −
2
(∑t−1

i=1 w
2
i σ

2
1

)(∑t
i=1wi

)3 < 0,

when wt tends to infinity, we have

lim
t→∞

∂et1(wt)

∂wt

= lim
t→∞

2wtσ
2
1

(∑t−1
i=1 wi

)
− 2

(∑t−1
i=1 w

2
i σ

2
1

)(∑t
i=1wi

)3 > 0.

Therefore, the no switching error et1(wt) is first decreasing in wt and then increasing in wt,

there is a unique minimum of et1(wt).

Similarly, we consider the first order derivative of et2(wt) with respect to wt, which is

∂et2(wt)

∂wt

=
2wtσ

2
2

(∑t
i=1wi

)2 − 2
(∑t

i=1wi

) (∑t−1
i=1 w

2
i σ

2
1 +

(∑t−1
i=1 wi(µ1 − µ2)

)2
+ w2

tσ
2
2

)
(∑t

i=1wi

)4
=

2wtσ
2
2

(∑t
i=1wi

)
− 2

(∑t−1
i=1 w

2
i σ

2
1 +

(∑t−1
i=1 wi(µ1 − µ2)

)2
+ w2

tσ
2
2

)
(∑t

i=1wi

)3
=

2wtσ
2
2

(∑t−1
i=1 wi

)
+ 2w2

tσ
2
2 − 2

(∑t−1
i=1 w

2
i σ

2
1 +

(∑t−1
i=1 wi(µ1 − µ2)

)2
+ w2

tσ
2
2

)
(∑t

i=1wi

)3
=

2wtσ
2
2

(∑t−1
i=1 wi

)
− 2

(∑t−1
i=1 w

2
i σ

2
1 +

(∑t−1
i=1 wi(µ1 − µ2)

)2)(∑t
i=1wi

)3 ,

where the first equality follows from taking the derivative, the second equality follows from

canceling
∑t

i=1wi, and the last two equality follows from rearrangement and simplifying.
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Again, we see from
∂et2(wt)

∂wt
is linear wt, the switch error et1(wt) is also first decreasing in wt

and then increasing in wt, there is a unique minimum of et2(wt).

From the first order derivatives, we see both et1(wt) and et2(wt) are first decreasing and

then increasing in wt. Thus, there are three possible cases for where the choice wt such that

it minimizes the maximum MSE may occur (for a depiction of these cases see Fig. 27).

Case 1. The min-max MSE occurs when there is no quality switch (cf. the left panel of Fig. 27),

i.e.,

w
(1)
t := arg min

wt

∑t
i=1w

2
i σ

2
1(∑t

i=1wi

)2 =

 t−1∑
i=1

(
wi∑t−1
j=1wj

)2
 t−1∑

i=1

wi, (43)

where the second equality follows from solving the first order condition
∂et1(wt)

∂wt
= 0.

Case 2. The min-max MSE occurs when there is a service quality switch (cf. the middle panel

of Fig. 27), i.e.,

w
(2)
t := arg min

wt

∑t−1
i=1 w

2
i σ

2
1 + w2

tσ
2
2 +

(∑t−1
i=1 wi(µ1 − µ2)

)2(∑t
i=1wi

)2
=

(µ1 − µ2)
2

σ2
2

+
σ2
1

σ2
2

t−1∑
i=1

(
wi∑t−1
i=1 wi

)2
 t−1∑

i=1

wi, (44)

where the second equality follows from solving the first order condition
∂et2(wt)

∂wt
= 0.

Case 3. The min-max MSE occurs when the no-switching error equals to switching error (cf. the

right panel of Fig. 27), i.e., w
(3)
t is the solution of the following equation,∑t

i=1w
2
i σ

2
1(∑t

i=1wi

)2 =

∑t−1
i=1 w

2
i σ

2
1 + w2

tσ
2
2 +

(∑t−1
i=1 wi(µ1 − µ2)

)2(∑t
i=1wi

)2 .

Solving the equation above, we obtain

w
(3)
t :=

|µ1 − µ2|√
σ2
1 − σ2

2

t−1∑
i=1

wi, (45)

when σ1 > σ2, otherwise, there is no solution.
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Now we will argue that the min-max MSE can only occur either in case 2 or case 3 in the

long run. To see this, suppose the maximum MSE is incurred from no switching (i.e. in case

1). Then the weights of the myopically optimal oblivious rating system must be chosen to

always minimize
∑t

i=1 w
2
i σ

2
1

(
∑t

i=1 wi)
2 in this case. However, it is not hard to see that a simple moving

average rating system will not only minimize this term, but asymptotically make it vanish

since the no-switch MSE of the simple average rating system
∑t

i=1 w
2
i σ

2
1

(
∑t

i=1 wi)
2 converges to 0 when

t goes to infinity.

However, the assumption that µ1 ̸= µ2 ensures that the switching error can never be made

0. Namely, the switching error at any time t is always lower bounded by min
{

σ2
2

4
, (µ1−µ2)2

4

}
>

0 since∑t−1
i=1 w

2
i σ

2
1 + w2

tσ
2
2 +

(∑t−1
i=1 wi(µ1 − µ2)

)2(∑t
i=1wi

)2 ≥
w2

tσ
2
2 +

(∑t−1
i=1 wi(µ1 − µ2)

)2(∑t
i=1wi

)2
=

(
wt∑t
i=1wi

)2

σ2
2 +

(
1− wt∑t

i=1wi

)2

(µ1 − µ2)
2

≥ min

{
σ2
2

4
,
(µ1 − µ2)

2

4

}
,

where the first inequality follows from w2
i σ

2
1 ≥ 0 for i < t, and the second inequality follows

since when wt∑t
i=1 wi

≥ 1
2
, then

(
wt∑t
i=1 wi

)2
σ2
2 ≥

σ2
1

4
, when wt∑t

i=1 wi
≤ 1

2
, then

(
1− wt∑t

i=1 wi

)2
(µ1 − µ2)

2 ≥
(µ1−µ2)2

4
.

Thus, there are two cases for minimizing the maximum MSE in the long run, either wt

will minimize the switching error or wt will balance the MSE between when a service quality

switch does or does not occur. Now are ready to characterize the long run behavior of wt

when it is always chosen to minimize the maximum error. We will show that eventually wt

will always be in case 2 or always be in case 3 (and thus no oscillates between the cases). To

prove, we will need to analyze several sub-cases based on the specification of the parameters

σ1, σ2, µ1, and µ2.
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Figure 27: Cases for the min-max choice of wt.

Note. Here we plot the switching error and non-switching error for an instance where w1 = 1

and w2 ∈ [0, 2], µ1 = 0.7, µ2 = 0.1 and σ1 = 1, and where σ2 varies across panels such that

σ2 = 0.2, 1.2, 0.85 in the left, middle, and right panels, respectively. In all panels the choice

of w2 that achieves the min-max MSE is denoted by the red line. In the left panel, we note

the min-max error occurs at value that minimizes the no-switching error (case 1). In the

middle panel, we note the min-max error occurs at the value that minimizes the switching

error (case 2). In the right panel, we note the min-max error occurs at value that equates

the no-switching and switching error (case 3).

When σ1 ≤ σ2: Suppose σ1 ≤ σ2, when this holds the switching error always dominates

the no-switching error i.e.,∑t−1
i=1 w

2
i σ

2
1 + w2

tσ
2
2 +

(∑t−1
i=1 wi(µ1 − µ2)

)2(∑t
i=1wi

)2 ≥
∑t

i=1w
2
i σ

2
1(∑t

i=1wi

)2
where the inequality follows from σ2

2 ≥ σ2
1 and

(∑t−1
i=1 wi(µ1 − µ2)

)2 ≥ 0. Thus, when

σ2 ≥ σ1, the min-max MSE can only occur for wt in case 2. Now we want to show the

convergence of limt→∞
w

(2)
t∑t

i=1 w
(2)
i

.

Let ηt :=
∑t

i=1
w2

i

(
∑t

i=1 wi)
2 , and let η∗ be the solution of the following equation,

(µ1 − µ2)
2

σ2
2

+

(
σ2
1

σ2
2

)
η∗ − 2η∗

1− η∗
= 0 (46)

for η∗ ∈ (0, 1). It can be verified that (µ1−µ2)2

σ2
2

+
(

σ2
1

σ2
2

)
η− 2η

1−η
is concave in η for η ∈ (0, 1), and

when η = 0, (µ1−µ2)2

σ2
2

+
(

σ2
1

σ2
2

)
η− 2η

1−η
= (µ1−µ2)2

σ2
2

> 0, when η tends to 1, (µ1−µ2)2

σ2
2

+
(

σ2
1

σ2
2

)
η− 2η

1−η
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tends to negative infinity. Therefore, the solution of Eq. (46) is unique, and η∗ is well defined.

Further, when η ≤ η∗, (µ1−µ2)2

σ2
2

+
(

σ2
1

σ2
2

)
η− 2η

1−η
≥ 0; when η ≥ η∗, (µ1−µ2)2

σ2
2

+
(

σ2
1

σ2
2

)
η− 2η

1−η
≤ 0.

In the following, we will show that for wt defined in the recursion of Eq. (44), |ηt − η∗| is

decreasing.

Suppose at time t we have ηt > η∗. By the recursion in Eq. (44), the weight wt+1 at time

t+ 1 is

wt+1 =

(
(µ1 − µ2)

2

σ2
2

+

(
σ2
1

σ2
2

)
ηt

) t∑
i=1

wi.

Then, ηt+1 will be

ηt+1 =
t+1∑
i=1

w2
i(∑t+1

j=1wj

)2
=

∑t
i=1w

2
i +

((
(µ1−µ2)2

σ2
2

+
(

σ2
1

σ2
2

)
ηt

)∑t
i=1wi

)2
(∑t

j=1wj +
(

(µ1−µ2)2

σ2
2

+
(

σ2
1

σ2
2

)
ηt

)∑t
i=1wi

)2
=

∑t
i=1w

2
i /
(∑t

j=1wj

)2
+
(

(µ1−µ2)2

σ2
2

+
(

σ2
1

σ2
2

)
ηt

)2
(

1 + (µ1−µ2)2

σ2
2

+
(

σ2
1

σ2
2

)
ηt

)2
=
ηt +

(
(µ1−µ2)2

σ2
2

+
(

σ2
1

σ2
2

)
ηt

)2
(

1 + (µ1−µ2)2

σ2
2

+
(

σ2
1

σ2
2

)
ηt

)2 ,
where the first equality follows from the definition of ηt, the second equality follows plugging

in wt+1 =
(

(µ1−µ2)2

σ2
2

+
(

σ2
1

σ2
2

)
ηt

)∑t
i=1wi, the third equality follows from rearranging, and the

fourth equality follows from the definition of ηt. Next, we show if ηt ≥ η∗, then ηt ≥ ηt+1 ≥ η∗.

To show ηt ≥ ηt+1, we need to show

ηt ≥
ηt +

(
(µ1−µ2)2

σ2
2

+
(

σ2
1

σ2
2

)
ηt

)2
(

1 + (µ1−µ2)2

σ2
2

+
(

σ2
1

σ2
2

)
ηt

)2 ,
which is equivalent to

ηt +

(
(µ1 − µ2)

2

σ2
2

+

(
σ2
1

σ2
2

)
ηt

)2

≤ ηt

(
1 +

(µ1 − µ2)
2

σ2
2

+

(
σ2
1

σ2
2

)
ηt

)2

.
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Note that the difference between ηt +
(

(µ1−µ2)2

σ2
2

+
(

σ2
1

σ2
2

)
ηt

)2
and ηt

(
1 + (µ1−µ2)2

σ2
2

+
(

σ2
1

σ2
2

)
ηt

)2
is

ηt +

(
(µ1 − µ2)

2

σ2
2

+

(
σ2
1

σ2
2

)
ηt

)2

− ηt
(

1 +
(µ1 − µ2)

2

σ2
2

+

(
σ2
1

σ2
2

)
ηt

)2

=

(
(µ1 − µ2)

2

σ2
2

+

(
σ2
1

σ2
2

)
ηt

)2

(1− ηt)− 2ηt

(
(µ1 − µ2)

2

σ2
2

+

(
σ2
1

σ2
2

)
ηt

)
= (1− ηt)

(
(µ1 − µ2)

2

σ2
2

+

(
σ2
1

σ2
2

)
ηt

)(
(µ1 − µ2)

2

σ2
2

+

(
σ2
1

σ2
2

)
ηt −

2ηt
1− ηt

)
≤ 0,

where the first equality follows from canceling ηt, the second equality follows from taking

(1 − ηt)
(

(µ1−µ2)2

σ2
2

+
(

σ2
1

σ2
2

)
ηt

)
out, the inequality follows from when ηt ∈ [η∗, 1), we have

(µ1−µ2)2

σ2
2

+
(

σ2
1

σ2
2

)
ηt − 2ηt

1−ηt
≤ 0. Thus, when ηt ≥ η∗, then ηt+1 ≤ ηt.

Next, we show if ηt ≥ η∗, then ηt+1 ≥ η∗, which is equivalent to show

ηt +
(

(µ1−µ2)2

σ2
2

+
(

σ2
1

σ2
2

)
ηt

)2
(

1 + (µ1−µ2)2

σ2
2

+
(

σ2
1

σ2
2

)
ηt

)2 ≥ η∗.

Specifically, we only need to show

ηt +

(
(µ1 − µ2)

2

σ2
2

+

(
σ2
1

σ2
2

)
ηt

)2

≥ η∗
(

1 +
(µ1 − µ2)

2

σ2
2

+

(
σ2
1

σ2
2

)
ηt

)2

.

Note that the difference between ηt +
(

(µ1−µ2)2

σ2
2

+
(

σ2
1

σ2
2

)
ηt

)2
and η∗

(
1 + (µ1−µ2)2

σ2
2

+
(

σ2
1

σ2
2

)
ηt

)2
is

ηt +

(
(µ1 − µ2)

2

σ2
2

+

(
σ2
1

σ2
2

)
ηt

)2

− η∗
(

1 +
(µ1 − µ2)

2

σ2
2

+

(
σ2
1

σ2
2

)
ηt

)2

= (ηt − η∗) +

(
(µ1 − µ2)

2

σ2
2

+

(
σ2
1

σ2
2

)
ηt

)2

(1− η∗)− 2η∗
(

(µ1 − µ2)
2

σ2
2

+

(
σ2
1

σ2
2

)
ηt

)
= (ηt − η∗) + (1− η∗)

(
(µ1 − µ2)

2

σ2
2

+

(
σ2
1

σ2
2

)
ηt

)(
(µ1 − µ2)

2

σ2
2

+

(
σ2
1

σ2
2

)
ηt −

2η∗

1− η∗

)
≥ (1− η∗)

(
(µ1 − µ2)

2

σ2
2

+

(
σ2
1

σ2
2

)
ηt

)(
(µ1 − µ2)

2

σ2
2

+

(
σ2
1

σ2
2

)
η∗ − 2η∗

1− η∗

)
≥ 0,
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where the first equality follows from grouping terms, the second equality follows from taking

(1 − η∗)
(

(µ1−µ2)2

σ2
2

+
(

σ2
1

σ2
2

)
ηt

)
out, the first inequality follows from ηt ≥ η∗, and the second

inequality follows from definition of η∗, i.e., (µ1−µ2)2

σ2
2

+
(

σ2
1

σ2
2

)
η∗ − 2η∗

1−η∗
= 0.

Therefore, combining the analysis above, we conclude if ηt ≥ η∗, then 0 ≤ ηt+1−η∗ ≤ ηt−

η∗. Similarly, follow the same structure, it can be shown that if ηt ≤ η∗, then ηt ≤ ηt+1 ≤ η∗.

Thus |ηt − η∗| is decreasing in t, and the decreasing is strict if ηt ̸= η∗. By fixed point

theorem, ηt converges to a constant. Thus, there exists a constant α such that

lim
t→∞

w
(2)
t∑t

i=1w
(2)
i

= α,

as desired.

When σ1 > σ2: Now consider the situation when σ1 > σ2. This case is more involved

than the previous case. As we will see, both case 2 and case 3 solutions for wt are possible and

will break down into sub-cases wt is eventually always in case 2 (where the limit computed

above implies that the sequence converges to a moving average), or in case 3 where we will

need to check a new limit.

Now, recall the definition of et1(wt) and et2(wt). When σ1 > σ2, we can see that

et1(0) =

∑t−1
i=1 w

2
i(∑t−1

i=1 wi

)2 ,
et2(0) =

∑t−1
i=1 w

2
i(∑t−1

i=1 wi

)2 + (µ1 − µ2)
2 > et1(0),

where the inequality follows from the assumption that µ1 ̸= µ2. Since both et1(wt) and et2(wt)

are first decreasing and then increasing in wt, in this scenario where σ1 > σ2 the conditions

for the three cases can be simplified as:

1. The min-max occurs in case 1 if

w
(3)
t ≤ w

(1)
t ≤ w

(2)
t .

2. The min-max occurs in case 2 if

w
(1)
t ≤ w

(2)
t ≤ w

(3)
t .
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3. The min-max occurs in case 3 if

w
(1)
t ≤ w

(3)
t ≤ w

(2)
t .

based on the crossing of e1 and e2, and where recall the superscripts denote that choice of

wt specific to case 1, 2 and 3, respectively. Note w
(2)
t is always larger than w

(1)
t by definition.

By our previous argument, we know the case of wt it will not converge to case 1 in the

long run. Thus we only need to consider case 2 and case 3. For simplicity of notations, let

κ = |µ1 − µ2|/
√
σ2
1 − σ2

2, in the following we will show that when

κ ≤ (µ1 − µ2)
2

σ2
2

+

(
κ

2 + κ

)
σ2
1

σ2
2

the case of wt converges to case 3, and otherwise the case of wt converges to case 2, see

Fig. 28 for an depiction.

Figure 28: Convergence of Cases.

Note. Here we plot the convergence of cases over time for an example instance where µ1 =

0.7, µ2 = 0.1, σ1 = 1, and where σ2 varies across panels such that σ2 = 0.8, 0.9 in the left

and middle panels respectively. In the left panel, we plot the optimal cases of wt as t goes

from 1 to 20 when σ2 = 0.8. Here κ = 1 ≤ (µ1−µ2)2

σ2
2

+
(

κ
2+κ

) σ2
1

σ2
2
≈ 1.083, and we can see the

optimal case converges to case 3. In the middle panel, we plot the optimal cases of wt as t

goes from 1 to 20 when σ2 = 0.9. Here κ ≈ 1.376 ≥ (µ1−µ2)2

σ2
2

+
(

κ
2+κ

) σ2
1

σ2
2
≈ 0.948, and we can

see the optimal case converges to case 2. In the right panel, we plot the convergence of the

ratio of the most recent weight to the previous weights, wt∑t
i=1 wi

, as t goes from 1 to 20 for

the two panels.
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When σ1 > σ2 and κ ≤ (µ1−µ2)2

σ2
2

+
(

κ
2+κ

) σ2
1

σ2
2
: Here show that when σ1 > σ2 and

κ ≤ (µ1−µ2)2

σ2
2

+
(

κ
2+κ

) σ2
1

σ2
2
, the case of wt converges to case 3. Note that the condition for the

solution to be in case 3 is

w
(1)
t ≤ w

(3)
t ≤ w

(2)
t ,

which means at time t

κ =
|µ1 − µ2|√
σ2
1 − σ2

2

≤ (µ1 − µ2)
2

σ2
2

+
σ2
1

σ2
2

 t−1∑
i=1

(
wi∑t−1
j=1wj

)2
 , (47)

where the condition follows directly from plugging in the values for w
(2)
t , w

(3)
t , and canceling∑t−1

i=1 wi across. With the condition in Eq. (47), we will show that plugging in wt = w
(3)
t ,

then in next step w
(3)
t+1 ≤ w

(2)
t+1 which implies case 3 is absorbing. Specifically, since the

solution of wt is in case 3,

wt = w
(3)
t = κ

t−1∑
i=1

wi.

Thus, w
(3)
t+1 is

w
(3)
t+1 = κ

t∑
i=1

wi = κ(1 + κ)
t−1∑
i=1

wi.

Similarly, w
(2)
t+1 is

w
(2)
t+1 =

(µ1 − µ2)
2

σ2
2

+
σ2
1

σ2
2

 t∑
i=1

(
wi∑t
j=1wj

)2
 t∑

i=1

wi

=

(µ1 − µ2)
2

σ2
2

+
σ2
1

σ2
2

 t∑
i=1

(
wi

(1 + κ)
∑t−1

j=1wj

)2
 (1 + κ)

t−1∑
i=1

wi

=

(µ1 − µ2)
2

σ2
2

+
σ2
1

σ2
2

 t−1∑
i=1

(
wi

(1 + κ)
∑t−1

j=1wj

)2

+
κ2

(1 + κ)2

 (1 + κ)
t−1∑
i=1

wi

=

(µ1 − µ2)
2

σ2
2

+
σ2
1

σ2
2

 t−1∑
i=1

(
wi

(1 + κ)
∑t−1

j=1wj

)2

+
κ2

(1 + κ)2

 (1 + κ)
t−1∑
i=1

wi,
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where the second equality follows from plugging wt = κ
∑t

i=1wi, and all the other equalities

follow from rearranging and simplifying. Now to show w
(3)
t+1 ≤ w

(2)
t+1 it is equivalent to show

that

κ ≤ (µ1 − µ2)
2

σ2
2

+
σ2
1

σ2
2

 t−1∑
i=1

(
wi

(1 + κ)
∑t−1

j=1wj

)2

+
κ2

(1 + κ)2

 .

Note that the difference of the right hand side minus the left, when multiplied by (1 + κ)2,

is

(1 + κ)2
(

(µ1 − µ2)
2

σ2
2

)
+
σ2
1

σ2
2

 t−1∑
i=1

(
wi∑t−1
j=1wj

)2

+ κ2

− κ(1 + κ)2

=

(
(µ1 − µ2)

2

σ2
2

)
+
σ2
1

σ2
2

 t−1∑
i=1

(
wi∑t−1
j=1wj

)2

+ κ2

− κ+

(
(2κ+ κ2)

(
(µ1 − µ2)

2

σ2
2

− κ
))

=

(
(µ1 − µ2)

2

σ2
2

)
+
σ2
1

σ2
2

 t−1∑
i=1

(
wi∑t−1
j=1wj

)2
− κ+

(
(2κ+ κ2)

(
(µ1 − µ2)

2

σ2
2

+
σ2
1

σ2
2

(
κ2

2κ+ κ2

)
− κ
))

=

(
(µ1 − µ2)

2

σ2
2

)
+
σ2
1

σ2
2

 t−1∑
i=1

(
wi∑t−1
j=1wj

)2
− κ+

(
(2κ+ κ2)

(
(µ1 − µ2)

2

σ2
2

+
σ2
1

σ2
2

(
κ

2 + κ

)
− κ
))

≥ 0

where the first equality follows from (1+κ)2 = 1+2κ+κ2, all the other equalities follow from

rearranging, and the inequality follows from
(

(µ1−µ2)2

σ2
2

)
+

σ2
1

σ2
2

(∑t−1
i=1

(
wi∑t−1

j=1 wj

)2
)
− κ ≥ 0

since at time t the optimal solution is in case 3, and (µ1−µ2)2

σ2
2

+
σ2
1

σ2
2

(
κ

2+κ

)
−κ ≥ 0 by assumption.

Therefore, when κ ≤ (µ1−µ2)2

σ2
2

+
σ2
1

σ2
2

(
κ

2+κ

)
, case 3 will be an absorbing state: if the optimal

choice of wt is ever in case 3, it will never switch to another case. This leaves two options,

either eventually wt is always in case 2, in which case we know it converges to a moving

average by above, or it is eventually always in case 3. In case 3, the ratio between w
(3)
t and∑t−1

i=1 w
(3)
i is always a constant since w

(3)
t ∝

∑t−1
i=1 w

(3)
i . Therefore, there exists a constant α

such that

lim
t→∞

w
(3)
t∑t

i=1w
(3)
i

= α.
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When σ1 > σ2 and κ > (µ1−µ2)2

σ2
2

+
(

κ
2+κ

) σ2
1

σ2
2
: Finally consider when σ1 > σ2 and

κ > (µ1−µ2)2

σ2
2

+
(

κ
2+κ

) σ2
1

σ2
2
. In this scenario we will show that if the case of wt is ever case

2, then it will stay in case 2. To see this, suppose wt is in case 2, or equivalently that the

following holds

(µ1 − µ2)
2

σ2
2

+
σ2
1

σ2
2

 t−1∑
i=1

(
wi∑t−1
j=1wj

)2
 ≤ |µ1 − µ2|√

σ2
1 − σ2

2

,

then, we will show w
(2)
t+1 ≤ w

(3)
t+1, which implies case 2 is absorbing. Recall the definition of

η∗, and the contraction mapping nature of ηt+1 when wt is in case 2. Let κ∗ be the solution

of the following equation,

κ∗ =
(µ1 − µ2)

2

σ2
2

+

(
κ∗

2 + κ∗

)
σ2
1

σ2
2

.

Recall that η∗ is the solution of

2η∗

1− η∗
=

(µ1 − µ2)
2

σ2
2

+

(
σ2
1

σ2
2

)
η∗.

Therefore, the relation between η∗ and κ∗ is

κ∗ =
2η∗

1− η∗
,

κ∗

2 + κ∗
=

2η∗

1−η∗

2 + 2η∗

1−η∗

= η∗.

The two equations for κ∗ and η∗ are in the same form. By the concavity of (µ1−µ2)2

σ2
2

+
(

κ
2+κ

) σ2
1

σ2
2
,

if and only if κ ≥ κ∗, the inequality κ > (µ1−µ2)2

σ2
2

+
(

κ
2+κ

) σ2
1

σ2
2

holds. Then, we have (µ1−µ2)2

σ2
2

+(
σ2
1

σ2
2

)
η∗ < κ when κ > (µ1−µ2)2

σ2
2

+
(

κ
2+κ

) σ2
1

σ2
2
.

Now, if ηt−1 =
(

wi∑t
j=1 wj

)2
≤ η∗, from our previous analysis of ηt when wt is in case 2, we

know ηt will converge to η∗ from below, and will never cross η∗. Therefore, at time t+ 1, we

also have

(µ1 − µ2)
2

σ2
2

+
σ2
1

σ2
2

 t∑
i=1

(
wi∑t
j=1wj

)2
 ≤ |µ1 − µ2|√

σ2
1 − σ2

2

.
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Similarly, if ηt−1 ≥ η∗, and wt is in case 2 at time t, i.e., (µ1−µ2)2

σ2
2

+
(

σ2
1

σ2
2

)
ηt−1 < κ, then ηt

will converge to η∗ from above, i.e., ηt ≤ ηt−1. Thus, at time t+ 1, we have

(µ1 − µ2)
2

σ2
2

+
σ2
1

σ2
2

 t∑
i=1

(
wi∑t
j=1wj

)2
 ≤ |µ1 − µ2|√

σ2
1 − σ2

2

.

Therefore, we conclude that case 2 is absorbing. The convergence result is the same as in

the scenario when σ1 ≤ σ2.

Combining all the cases, we conclude that wt∑t
i=1 wi

converges to a constant in the long run.

This is implies that the myopically optimal oblivious rating system converges to a α-moving

average rating system, since

Rt({si}ti=1) =

∑t
i=1wisi∑t
i=1wi

=

∑t−1
i=1 wisi∑t
i=1wi

+

(
wt∑t
i=1wi

)
st

=

∑t−1
i=1 wisi/

∑t−1
i=1 wi∑t

i=1wi/
∑t−1

i=1 wi

+

(
wt∑t
i=1wi

)
st

= Rt−1({si}t−1
i=1)

(
t−1∑
i=1

wi/
t∑

i=1

wi

)
+

(
wt∑t
i=1wi

)
st

=

(
1− wt∑t

i=1wi

)
Rt−1({si}t−1

i=1) +

(
wt∑t
i=1wi

)
st

≈ (1− α)Rt−1({si}t−1
i=1) + αst,

where the first equality is the definition of a rating system, third equality follows from

dividing
∑t−1

i=1 wi for both the numerator and denominator in the first term, and the final

approximation follows by the limit.
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Proof of Corollary 1. Fix some α and note that under the α-moving average rating system,

the MSE in limit when no switch occurs is:

lim
t→∞

et1(wt) = E

( ∞∑
i=0

α(1− α)ist−i − µ1

)2


= E

( ∞∑
i=0

α(1− α)i(st−i − µ1)

)2


= E

[
∞∑
i=1

∞∑
j=1

(
α(1− α)i(st−i − µ1)

) (
α(1− α)j(st−j − µ1)

)]

=
∞∑
i=1

α2(1− α)2iE
[
(st−i − µ1)

2
]

=
∞∑
i=1

α2(1− α)2iσ2
1

=

(
α

2− α

)
σ2
1,

where the fourth equality follows from the independence of reviews si and sj for all i ̸= j.

When the service quality switch does occur in limit, the MSE for the α-moving average

rating system is:

lim
t→∞

et2(wt) = E

( ∞∑
i=0

α(1− α)ist−i − µ2

)2


= E

( ∞∑
i=1

α(1− α)i(st−i − µ1) + (1− α)(µ1 − µ2) + α(st − µ2)

)2


=
∞∑
i=1

α2(1− α)2iE[(st−i − µ1)
2] + (1− α)2(µ1 − µ2)

2 + α2E[(st − µ2)
2]

=

(
α

2− α

)
σ2
1 + (1− α)2(µ1 − µ2)

2 + α2(σ2
2 − σ2

1),

where the third equality follows the independence of st−i and st−j for all i ̸= j.

To optimize the α-moving average rating system, we aim to calculate α such that in limit

the maximum MSE when a no-switch or a switch occurs is minimized, i.e.,

min
α

max

{(
α

2− α

)
σ2
1,

(
α

2− α

)
σ2
1 + (1− α)2(µ1 − µ2)

2 + α2(σ2
2 − σ2

1)

}
. (48)
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Note that α
2−α

is always increasing in α for α ∈ [0, 1], and the derivative of the second term
is

∂

∂α

((
α

2− α

)
σ2
1 + (1− α)2(µ1 − µ2)

2 + α2(σ2
2 − σ2

1)

)
= 2

(
σ2
1

(2− α)2
− (µ1 − µ2)

2(1− α) + (σ2
1 − σ2

2)α

)
,

which is negative when |µ1−µ2| ≥ σ1

2
, then positive when α increases. Therefore, the second

term in Eq. (48) is first decreasing in α then increasing in α. Thus, there are two cases for

the minimization in Eq. (48), either the maximum of the MSE’s occurs when the two terms

in Eq. (48) are equal, or the MSE occurs at the minimum of the second term.

Case 1: Switch and no-switch error is equal. We first consider the case that we

need to balance
(

α
2−α

)
σ2
1 and

(
α

2−α

)
σ2
1+(1−α)2(µ1−µ2)

2+α2(σ2
2−σ2

1). Solving the equation(
α

2− α

)
σ2
1 =

(
α

2− α

)
σ2
1 + (1− α)2(µ1 − µ2)

2 + α2(σ2
2 − σ2

1),

we obtain that the unique optimal α is

α =
|µ1 − µ2|

|µ1 − µ2|+
√
σ2
1 − σ2

2

.

Case 2: Minimum of switch error Next, we consider the case where switch error is

minimized. Note that for α ∈ [0, 1], the term
σ2
1

(2−α)2
is increasing and convex in α, and the

term −(µ1 − µ2)
2(1− α) + (σ2

2 − σ2
1)α is increasing and linear in α. When α = 0, we have

2

(
σ2
1

(2− α)2
− (µ1 − µ2)

2(1− α) + (σ2
2 − σ2

1)α

)
= 2

(
σ2
1

4
− (µ1 − µ2)

2

)
≤ 0

since |µ1 − µ2| ≥ σ1

2
by assumption. Further, when α = 1,

2

(
σ2
1

(2− α)2
− (µ1 − µ2)

2(1− α) + (σ2
2 − σ2

1)α

)
= σ2

2 ≥ 0.

Therefore, there is a unique solution for

2

(
σ2
1

(2− α)2
− (µ1 − µ2)

2(1− α) + (σ2
2 − σ2

1)α

)
= 0,

when α ∈ [0, 1].

Finally, we need to identify the condition for when each these two cases is where the

maximum MSE occurs. Let α∗ = |µ1−µ2|
|µ1−µ2|+

√
σ2
1−σ2

2

. Since the derivative of the MSE after

the service quality switch is 2
(

σ2
1

(2−α)2
− (µ1 − µ2)

2(1− α) + (σ2
1 − σ2

2)α
)

, this error is first
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decreasing in α then increasing in α for α ∈ [0, 1] and it is straight-forward to show it has a

unique crossing point with the no-switch error,
ασ2

1

(2−α)
, at α∗. Thus, when 2(σ2

1/(2− α∗)2 −

(µ1 − µ2)
2(1− α∗) + (σ2

2 − σ2
1)α∗) ≤ 0, the optimal α will be at the crossing point

α = α∗,

since the no-switch error is increasing and dominates the switch error for α ∈ (α∗, 1]. Oth-

erwise, the optimal α will be the solution that minimizes the switching error,

2

(
σ2
1

(2− α)2
− (µ1 − µ2)

2(1− α) + (σ2
2 − σ2

1)α

)
= 0

for α ∈ [0, 1].

Proof of Lemma 8. Note that for an α-moving average system, the mean squared error at

steady state is

E[(Rt − µ)2] = E

( ∞∑
i=0

α(1− α)ist−i − µ

)2


= E

( ∞∑
i=0

α(1− α)i(st−i − µ)

)2


= E

[
∞∑
i=1

∞∑
j=1

(
α(1− α)i(st−i − µ)

) (
α(1− α)j(st−j − µ)

)]

=
∞∑
i=1

α2(1− α)2iE
[
(st−i − µ)2

]
=

∞∑
i=1

α2(1− α)2iσ2

=

(
α

2− α

)
σ2 (49)

where the first equality follows from the definition of α-moving average system, and the

second equality follows from the fact that
∑∞

i=0 α(1− α)i = 1. Further, the fourth equality

follows from the fact that st−i − µ and st−j − µ are independent when i ̸= j, i.e., E[(st−i −

µ)(st−j − µ)] = E[(st−i − µ)]E[(st−j − µ)] = 0. The final equality follows from the fact that
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the sum of the geometric sequence α2(1 − α)2i is α
2−α

. Therefore, for an α-moving average

system is be c-consistent, we need (
α

2− α

)
σ2 ≤ cσ2.

Solving the inequality above, we obtain that α is at most 2c
1+c

.

Similarly, the mean squared error of an L-sliding window rating system is

E[(Rt − µ)2] = E

(L−1∑
i=0

st−i

L
− µ

)2


= E

(L−1∑
i=0

st−i − µ
L

)2


=
L−1∑
i=0

E

[(
st−i − µ

L

)2
]

=
σ2

L
.

As before, the third equality follows from st∗+1−i−µ is independent of st−j −µ for all i ̸= j,

all the other equalities follow from simplification. For a L-sliding window system is to be

c-consistent, we need

σ2

L
≤ cσ2.

Since L needs to be an integer, the smallest L is L = ⌈1
c
⌉.

Proof of Theorem 11. First, since both the moving average and sliding window systems

are exactly c-consistent, by Lemma 8 we can write their parameters as a function of c i.e.

α = 2c
1+c

and L = 1
c
. Now for the first two parts of this proof we will write down the MSE for

two rating systems, then in part (c) we will compare them.
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(a) First we consider the L-sliding window rating system immediately after the service

quality switch occurs, i.e., when si ∼ F1 for i ≤ t∗ and si ∼ F2 for i > t∗. By definition, the

MSE of the L-sliding window rating system at t∗ + 1 is,

E[(Rt∗+1 − µ2)
2|st∗+1 ∼ F2] = E

(∑L−1
i=0 st∗+1−i

L
− µ2

)2


= E

(∑L−1
i=1 (st∗+1−i − µ1)

L
+

∑L−1
i=1 (µ1 − µ2)

L
+

(st∗+1 − µ2)

L

)2


=

∑L−1
i=1 E(st∗+1−i − µ1)

2

L2
+

(∑L−1
i=1 (µ1 − µ2)

L

)2

+
E(st∗+1 − µ2)

2

L2

=

∑L−1
i=1 σ

2
1

L2
+

(
1− 1

L

)2

(µ1 − µ2)
2 +

σ2
2

L2

=
σ2
1

L
+

(
1− 1

L

)2

(µ1 − µ2)
2 +

σ2
2 − σ2

1

L2

= cσ2
1 + (1− c)2(µ1 − µ2)

2 + c2(σ2
2 − σ2

1),

where the first equality follows from the definition of the L-sliding window rating system.

The second equality follows from decomposing µ2 =
∑L−1

i=0
µ2

L
in a way similar to the proof

of Theorem 10. The third equality follows from the fact that st∗+1−i − µ1 for i ≤ t∗ and

st∗+1 − µ2 are independent with each other for i ≥ 1 and in expectation each term is 0 i.e.,

E[(st∗+1−i−mu1)] = 0 and E[(st∗+1−µ2)] = 0. Finally, the remaining equations follow from

simplification and reorganization, as well as plugging in that L = 1
c

which gives the desired

expression.

(b) Next, we consider the α-moving average rating system immediately after the service
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quality switch occurs. In this case, the MSE is,

E[(Rt∗+1 − µ2)
2|st∗+1 ∼ F2]

= E

( ∞∑
i=0

α(1− α)ist−i − µ2

)2


= E

( ∞∑
i=1

α(1− α)i(st∗+1−i − µ1) +
∞∑
i=1

α(1− α)i(µ1 − µ2) + α(st∗+1 − µ2)

)2


=
∞∑
i=1

α2(1− α)2iE[(st∗+1−i − µ1)
2] +

(
∞∑
i=1

α(1− α)i(µ1 − µ2)

)2

+ α2E[(st∗+1 − µ2)
2]

=
∞∑
i=1

α2(1− α)2iσ2
1 + ((1− α)(µ1 − µ2))

2 + α2σ2
2

=
∞∑
i=0

α2(1− α)2iσ2
1 + (1− α)2(µ1 − µ2)

2 + α2
(
σ2
2 − σ2

1

)
= cσ2

1 +
(1− c)2

(1 + c)2
(µ1 − µ2)

2 +
c2(

1
2

+ c
2

)2 (σ2
2 − σ2

1),

where the first equality follows from the definition of the α-moving average rating system

that is operating in steady-state. The second equality follows from the decomposition of µ2

as above. The third equality follows from the independence of st∗+1−i − µ1 for i ≥ 1 and

st∗+1 − µ2 and that each terms expected value is 0. Finally, the remaining equalities follow

from simplification and plugging in α = 2c
1+c

and 1− α = 1−c
1+c

to give the desired expression.

(c) Now armed with parts (a) and (b) we are ready to make a comparison between the

two systems. Specifically, we will compare their maximum steady-state error. Recall from

Theorem 10, for rating systems in steady-state the maximum expected error occurs either

before the switch, where the error is due to variance in the system, or immediately after the

switch. Since both systems are exactly c-consistent, their expected errors before the switch

are identical. Thus to compare their maximum error, we need only look at which incurs

more error after the switch which we can do by comparing the expressions in (a) and (b).

Now note that when σ2
1 ≥ σ2

2, we always have σ2
2−σ2

1 ≤ 0. Further note (1−c)2

(1+c)2
≤ (1− c)2

and c2

( 1
2
+ c

2)
2 ≥ c2 for any c ∈ [0, 1] (recall c is always less than or equal to 1 by the definition
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of c-consistency). By applying these two inequalities to the MSE after the switch for the

L-sliding window system we obtain,

cσ2
1 +

(1− c)2

(1 + c)2
(µ1 − µ2)

2 +
c2(

1
2

+ c
2

)2 (σ2
2 − σ2

1) ≤ cσ2
1 + (1− c)2(µ1 − µ2)

2 + c2(σ2
2 − σ2

1),

which is the MSE after the service quality switch for the α-moving average system. Thus,

the maximum MSE of the α-moving average rating system is always less than the maximum

MSE of the L-sliding window rating system when σ2
1 ≥ σ2

2.

C.2.2 Omitted Proofs from Section 4.3

Proof of Proposition 1. In this proposition, we will solve the Stackelberg game described in

Section 4.3. To do so, fix penalty term β and fee f , and consider some service provider with

service distribution Fq such that E[Fq] = q. Suppose the service provider chooses to transact

on the platform with probability p. First, we will solve for the asymptotic expected rating:

lim
t→∞

E[Rt] = E[ lim
t→∞

Rt] := E[R∞]

= (1− α)E[R∞] + α ((1− ph (E[R∞]))β + ph (E[R∞]) q)

= (1− α)E[R∞] + α ((1− p (a+ (b− a)E[R∞]))β + p (a+ (b− a)E[R∞]) q)

=
β + p(q − β)a

1− p(q − β)(b− a)
,

where the interchange in the first equality follows by dominated convergence where R∞ is

the limiting distribution of ratings for the service provider, in the second line equality we

plugged in Eq. (17), in the third line we used the assumption that h is linear, and in the

fourth line we simplify.
Thus in limit the platform and provider earn average profit per time period of:

Platform Profit := rfpE[h(R∞)] = frp

(
a+ (b− a)

(
β + p(q − β)a

1− p(q − β)(b− a)

))
= rfp

(
a+ β(b− a)

1− p(q − β)(b− a)

)
,

Provider Profit := r(1− f)pE[h(R∞)] + r(1− p)E[h(R∞)]

= r(1− fp)E[h(R∞)]

= r(1− fp)

(
a+ β(b− a)

1− p(q − β)(b− a)

)
, (50)
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where recall that p E[h(R∞)] is the probability the service provider is solicited (E[h(R∞)])

and transacts on the platform (p) in steady state. Given these expressions, we can now solve

the Stackelberg game where first the platform (the leader) sets f and β, then the provider

(the follower) sets p. The derivative in p of the provider profit is,

d

dp
r(1− fp)

(
a+ β(b− a)

1− p(q − β)(b− a)

)
= r

(a(1− β) + bβ) ((q − β)(b− a)− f)

(1− p(q − β)(b− a))2
,

which is positive as long as q ≥ β + f/(b − a). If the derivative is positive, then note

the provider profit is increasing in p, and thus it is optimal for the provider to set p to its

maximum value of 1 and always faithfully transact on the platform. Otherwise, p should be

pushed to 0, so the provider eventually will always disintermediate, and the profit for the

platform from this provider goes to 0. This implies that for the platform the optimal fee, f ∗

is such that f ∗ = (q − β) (b− a).

C.2.3 Omitted Proofs from Section 4.4

Proof of Theorem 12. Fix some distribution of quality q ∼ G supported on [τ, 1], and some

linear link function h(x) = a + (b − a)x where 0 ≤ a < b ≤ 1. Suppose (f ∗, β∗) are the

distribution dependent profit-maximizing choice of parameters. By Proposition 1, for these

choices of fee and penalty to be profit-maximizing they must satisfy the constraint that

β∗ + f ∗/(b− a) = τ , or equivalently, f ∗ + h(β∗) = h(τ) by definition of h(·)1. We will refer

to choices of f and β such that f + h(β) = h(τ) as feasible, and in this proof derive feasible

choices of f and β which always approximate the optimal profit.

Reducing the formulation. Let γ(f, β, q) := fr
(

a+β(b−a)
1−(q−β)(b−a)

)
which, for feasible f

and β by Proposition 1, is the platform’s equilibrium profit from a provider as a function of

the fee (f), rating parameter (β), and providers expected quality (q). By definition of h(·)

we can rewrite γ as,

γ(f, β, q) = fr

(
h(β)

1− (h(q)− h(β))

)
.

1Note that Proposition 1 states this constraint as an inequality. However, if some choice of (f, β) satisfies
this constraint with strict inequality then the platform can strictly increase profit by increasing f to make
the constraint hold with equality.
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Note that for any fixed, feasible (β, f), and for any q ∈ [τ, 1], h(q) ≥ h(τ) and we have

∂qγ(β, f, q) ≥ 0 and ∂2qγ(β, f, q) ≥ 0. Thus for feasible choices of f and β, γ(f, β, q) is an

increasing and convex function in q. Now we consider lower bounding the following ratio:

min
G∈D

Eq∼G[γ(f, β, q)]

Eq∼G[γ(f ∗, β∗, q)]
, (51)

where D is the class of distributions of mean service quality supported on [τ, 1], and where

(f ∗, β∗) = arg maxf,β Eq∼G [γ(f, β, q)] such that f ∗ +h(β∗) = h(τ). We will show there exists

specifications of f and β, and a function dependent only on τ denoted η(τ), such that for

any optimal f ∗, β∗ and any q we have γ(f, β, q)/γ(f ∗, β∗, q) ≥ η(τ). This in turn implies

that,

min
G∈D

Eq∼G[γ(f, β, q)]

Eq∼G[γ(f ∗, β∗, q)]
≥ η(τ).

To that end, note that the ratio equals:

γ(f, β, q)

γ(f ∗, β∗, q)
=

fr
(

h(β)
1−(h(q)−h(β))

)
f ∗r

(
h(β∗)

1−(h(q)−h(β∗))

)
=

f

f ∗
h(β)

h(β∗)

1− h(q) + h(β∗)

1− h(q) + h(β)

=
f

f ∗
h(β)

h(β∗)

(
1 +

h(β∗)− h(β)

1 + h(β)− h(q)

)
,

which is always a monotone function in q that is minimized at either q = τ or q = 1,

depending on whether β − β∗ > 0 or not. Thus, to lower bound the ratio in Eq. (51), we

only need to bound the ratio γ(f, β, q)/γ(f ∗, β∗, q) at q = τ and q = 1.

Bounding the ratio. To bound the ratio we consider two cases, when q = τ and when

q = 1. When q = τ , the ratio can be simplified as

γ(f, β, τ)

γ(f ∗, β∗, τ)
=

fr
(

h(β)
1−(h(τ)−h(β))

)
f ∗r

(
h(β∗)

1−(h(τ)−h(β∗))

) =
f
(

h(τ)−f
1−f

)
f ∗
(

h(τ)−f∗

1−f∗

) (52)
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where the second equality follows from the constraint that h(β) = h(τ)−f . Similarly, when

q = 1, the ratio can be simplified as

γ(f, β, 1)

γ(f ∗, β∗, 1)
=

fr
(

h(β)
1−(h(1)−h(β))

)
f ∗r

(
h(β∗)

1−(h(1)−h(β∗))

) =
f
(

h(τ)−f
1−h(1)+h(τ)−f)

)
f ∗
(

h(τ)−f∗

1−h(1)+h(τ)−f∗

) (53)

where again the second equality follows since h(β) = h(τ)− f .

Now we aim to choose feasible f and h(β)2 to lower bound the ratio of γ(f,β,q)
γ(f∗,β∗,q)

at q = τ

and q = 1. Formally, we wish to solve:

max
f,h(β)

min
f̃ ,h(β̃)

{
γ(f, β, τ)

γ(f̃ , β̃, τ)
,
γ(f, β, 1)

γ(f̃ , β̃, 1)

}
, (54)

s.t. f + h(β) = f̃ + h(β̃) = h(τ)

where note the unknown optimal parameters f ∗, β∗ are replaced by adversarially chosen f̃ ,

β̃. Thus the solution to Eq. (54) lower bounds Eq. (51).

Now, for any feasible f, β the first term in the inner min of Eq. (54) is:

min
f̃τ ,h(β̃τ )

γ(f, β, τ)

γ(f̃τ , β̃τ , τ)
= min

f̃τ ,h(β̃τ )

f
(

h(τ)−f
1−f

)
f̃τ

(
h(τ)−f̃τ
1−f̃τ

) =
f
(

h(τ)−f
1−f

)
(1−

√
1− h(τ))

(
h(τ)−(1−

√
1−h(τ))

1−(1−
√

1−h(τ))

)

=
f
(

h(τ)−f
1−f

)
h2(τ)/

(
1 +

√
1− h(τ)

)2
where the first equality follows by Eq. (52) and the second by noting the expression is

minimized by f̃τ = 1 −
√

1− h(τ)), h(β̃τ ) = h(τ) − 1 +
√

1− h(τ)). Similarly, for any
feasible f, β, the second term in Eq. (54) is:

min
f̃1,h(β̃1)

γ(f, β, 1)

γ(f̃ , β̃, 1)
= min

f̃1,h(β̃1)

f
(

h(τ)−f
1−h(1)+h(τ)−f)

)
f̃1

(
h(τ)−f̃1

1−h(1)+h(τ)−f̃1

)
=

f
(

h(τ)−f
1−h(1)+h(τ)−f)

)
(
(1− h(1)) + h(τ)−

√
(1− h(1))(1− h(1) + h(τ))

)(
h(τ)−((1−h(1))+h(τ)−

√
(1−h(1))(1−h(1)+h(τ)))

1−h(1)+h(τ)−((1−h(1))+h(τ)−
√

(1−h(1))(1−h(1)+h(τ)))

)

=
f
(

h(τ)−f
1−h(1)+h(τ)−f)

)
h(τ)− 2

(√
(1− h(1))(1− h(1) + h(τ))− (1− h(1))

)
2As h is a linear and thus invertible function, the optimal choice of h(β) implies the optimal choice of β.

It will be more convenient to work h(β) for the remainder of the proof.
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where the first equality follows by Eq. (53) and the second by noting the expression is mini-

mized by f̃1 = (1−h(1))+h(τ)−
√
(1− h(1))(1− h(1) + h(τ)) and h(β̃1) =

√
(1− h(1))(1− h(1) + h(τ))−

(1− h(1)).

The inner minimization of Eq. (54) is achieved at one of these pairs, either (f̃τ , β̃τ ) or

(f̃1, β̃1). Now we wish to calculate feasible choices of (f, h(β)) which maximize the mini-

mum of these two options. However, directly solving this maximization problem is difficult.

Instead, consider the following heuristic choices of f and h(β),

f =

(
2 +

√
1− h(τ)

)
h(τ)

2
(

1 +
√

1− h(τ)
) , h(β) =

(√
1− h(τ)

)
h(τ)

2(1 +
√

1− h(τ))

Note this choice of f and h(β) are both positive and sum to h(τ), thus they are a feasible

choice of parameters. With this heuristic choice of the fee, the first term of Eq. (54) becomes

γ(f, β, τ)

γ(f̃τ , β̃τ , τ)
=

f(h(τ)− f)/(1− f)

h2(τ)/
(

1 +
√

1− h(τ)
)2

=
2 +

√
1− h(τ)

2
(

1 +
√

1− h(τ)
)

≥ 3

4

where the first equality follows from plugging in the values of (f̃τ , β̃τ ), the second equality

follows plugging the heuristic choice of f , and the inequality follows from minimizing over

possible values of
√

1− h(τ).

We also notice that with the heuristic choice of f , the first ratio in Eq. (54) satisfies

γ(f, β, τ)

γ(f̃τ , β̃τ , τ)
=

2 +
√

1− h(τ)

2
(

1 +
√

1− h(τ)
) =

f

h(τ)
.

Now, we aim to show that f
h(τ)

is a lower bound of the second ratio in Eq. (54), i.e.,

γ(f, β, 1)

γ(f̃1, β̃1, 1)
≥ f

h(τ)
.
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Specifically, we consider the following equation,

γ(f, β, 1)/f

γ(f̃1, β̃1, 1)/h(τ)
=

h(τ)
(
h(τ)− 1 +

√
1− h(τ)

)
(
1 +

√
1− h(τ) + h(τ)− 2h(1)

)(
h(τ) + 2(1− h(1)−

√
(1− h(1))(1− h(1) + h(τ)))

) ,
where the equality follows from plugging in f̃1, β̃1 and the heuristic choice f . Finally, by a

lengthy purely algebraic calculation we can verify that for any h(τ) ≤ h(1) ≤ 1, we always

have

h(τ)
(
h(τ)− 1 +

√
1− h(τ)

)
(

1 +
√

1− h(τ) + h(τ)− 2h(1)
)(

h(τ) + 2(1− h(1)−
√

(1− h(1))(1− h(1) + h(τ)))
) ≥ 1.

In the interest of brevity we refer readers to https://github.com/tcui-pitt/Ratings/

Thm3.nb for detailed computations using a computer algebra system.

Finally, combining the results above, we conclude that

Eq. (51) ≥ Eq. (54) ≥
2 +

√
1− h(τ)

2
(

1 +
√

1− h(τ)
) ≥ 3

4
.

Therefore, the choice of f =

(
2+
√

1−h(τ)
)
h(τ)

2
(
1+
√

1−h(τ)
) always earns at least 3

4

th
of the optimal profit.

Further, this ratio is also tight for a corresponding class of point mass distributions. For a

complete construction of the tight example see Example 9.
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C.3 Omitted Figures

In this section we include additional motivating figures that were omitted from main

body.

C.3.1 Stale Rating Systems in Practice

In this subsection we give some examples of ratings on the platforms Yelp and Google

Reviews. We include examples both sequentially and temporally stale ratings on both plat-

forms.

Figure 29: Examples of Popular Rating Systems.

(a) Yelp.com Rating (b) Google Rating

Note. Depicted are ratings for a local Thai restaurant on yelp.com (left) and google.com

(right). Note in each, both a numeric rating and the number of reviews that inform the

rating are clearly displayed. The individual reviews that form each rating are also available.
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Figure 30: Sequentially Stale Reviews in Practice.

Note. Depicted is the rating and a review summary for a local restaurant (left), juxtaposed

with some recent low quality reviews (right). Although the rating is currently high (4.5 out

of 5), it is sequentially stale, that is substantially informed by older reviews which evidently

may not represent the current service quality. The highlighted review on the bottom left

gives one possible explanation for the abrupt change in underlying quality: there was a recent

change in management.
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Figure 31: Temporally Stale Reviews in Practice.

Note. Depicted is the rating and review summary for a local Thai restaurant, captured

on May 19th, 2024. The rating is of moderate quality (enough to show up in the first page

of yelp recommendations for Thai food) however the most recent review is more than five

months old having been written in January, 2024. Indeed, this temporally stale rating is

quite inaccurate since this restaurant closed on March of 2024.
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