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Identification of Differentially Expressed Genes via Knockoff Statistics in Single-cell

RNA Sequencing Data Analysis

Lixia Yi, PhD

University of Pittsburgh, 2024

Model-X knockoffs [Candès et al., 2018] is a recent statistical framework that allows scientists to

discover true effects while controlling the false discovery rate (FDR) with finite sample guarantee

by creating a synthetic copy of the original variables—knockoffs—as control. The framework works

under arbitrary dimensional settings, but with the increase of dimensions, it becomes increasingly

difficult to create knockoffs due to the computational cost. The missingness of data, which is com-

mon in many high-dimensional datasets, adds another layer of difficulty for knockoff construction.

We propose knockoff constructions based on a latent factor model that are able to handle the miss-

ing data, and are faster than the out-of-box method in Candès et al. [2018]. We apply our approach

to differentially expressed gene analysis with single-cell RNA sequencing data to verify the FDR

control and cross-reference the discovered genes with findings from other studies.

Keywords Model-X knockoffs; variable selection; false discovery rate; single-cell RNA sequencing;

high-dimensionality.
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1.0 Background

Variable selection is an important topic in statistical research. Traditionally, it is done by, for

example, inspecting the magnitude of the fitted coefficients in a linear regression model or cross

validated Lasso [Tibshirani, 1996], or utilizing importance scores from a random forest [Breiman,

2001]. Model-X knockoffs [Candès et al., 2018] is a recent statistical framework that allows scientists

to discover true effects while controlling the expected proportion of false discoveries. This framework

does not require any knowledge of Y |X—how the response depends on the explanatory variables.

Instead, the false discovery rate (FDR) control entirely relies on the accurate knowledge of the

feature distribution. Furthermore, it does not impose any additional requirements onto the model

used and can leverage almost any feature importance measures to select variables. Due to this

flexibility, the model-X knockoffs procedure is applied in a wide variety of fields including but not

limited to neural networks [Lu et al., 2018], time series modeling [Fan et al., 2020], biology [Gao

et al., 2018] and genetics [Sesia et al., 2019, 2021]. Additionally, scientists have applied knockoffs

to select variables with different controls such as per family error rate and k family-wise error

rate [Ren et al., 2023], and directional FDR [Barber and Candès, 2019]. There are also multiple

papers that have discussed the usage of feature importance measures that are different from Lasso

coefficient-difference [Barber and Candès, 2019; Gimenez et al., 2019; Janson and Su, 2016], which

was first introduced in Candès et al. [2018] and is the most commonly applied statistics in the

model-X knockoff literature.

The robustness of the framework for FDR control under approximate knowledge of the feature

distribution was also discussed in Barber et al. [2020], while multiple authors discussed the power of

the framework under various settings [Ke et al., 2020; Liu and Rigollet, 2019; Spector and Janson,

2022; Weinstein et al., 2017].

However, aside from the benefits of the model-X knockoff framework, it also involves several

challenges that need to be addressed. For example, unlike in the earlier work by Barber and

Candès [2015], the algorithm controls the FDR by creating a random copy of the feature variables.

Therefore, the variables that are selected are inherently random and will create difficulties for

scientists to draw consistent conclusions on the results. There are various works to derandomize

the variable selection results by Emery and Keich [2019]; Nguyen et al. [2020]; Ren et al. [2023];
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Su et al. [2015] and Gimenez and Zou [2019]. Another challenge that is often mentioned is how

to accurately model the feature distribution in order to create those synthetic copies. While the

identical copy of the features could be trivially used, it will have no power. Therefore, other than the

default Gaussian knockoff, scientists have approached alternative knockoff constructions via hidden

markov models [Sesia et al., 2019], Bayesian networks [Gimenez et al., 2019], Metropolis–Hastings-

like algorithms [Bates et al., 2021], and also via neural networks such as auto-encoders [Liu and

Zheng, 2018], generative adversarial networks [Jordon et al., 2018], and moment-matching networks

[Romano et al., 2020], which demonstrated promising empirical results.

Single-cell RNA sequencing (scRNA-seq), the data that we want to analyse, is a high-throughput

RNA sequencing technology at the single-cell level that provides high resolution gene expression

data. It allows scientists to develop a better understanding into a wide range of research topics.

There exists an abundant literature on the various applications, and both technical and analytical

challenges in regard of scRNA-seq data research. It is difficult to provide a comprehensive summary

of the literature on these subjects, and it is also out of the scope of this thesis. Excellent reviews

could be found in the works of such as Jovic et al. [2022]; Kolodziejczyk et al. [2015]; Lähnemann

et al. [2020] and Stegle et al. [2015].

Instead, in this chapter, I will only focus on the advances and challenges of gene expression stud-

ies from the differential expressed genes (DEG) analysis perspective, serving as a motivation for

the thesis. Gene expression technology is commonly used in molecular biology research to answer

diverse biological questions and it is often through comparing the gene expression changes under

different treatment conditions, in other words, by identifying DEGs. Gene expression studies, de-

pending on how the data is collected, could be categorized into randomized designed experiments as

well as observational studies. The emergence of (bulk) RNA-seq technologies, which reads the ex-

pression levels accross a large population of input cells, combined with new statistical tools [Anders

and Huber, 2010; Ritchie et al., 2015; Robinson et al., 2009] have provided researchers with more

detailed insights into certain problems, such as studying the selection pressure that applies to gene

expression levels between the same tissue taken from different species. Subsequent technological

advancements have introduced scRNA-seq [Tang et al., 2009], offering an even more granular view

of gene expressions on a single-cell level, and providing possible solutions to questions that bulk

RNA-seq is unable to answer. For example, with scRNA-seq, scientists now may probe into more

complex tissues such as brain tissues which comprises many different cell types. This granularity
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makes it possible to determine whether differences in gene expression are due to the prevalence

of certain cell types, a determination that was not feasible with bulk RNA-seq. Furthermore,

scRNA-seq may provide insights into the stochastic nature of gene expression, further enhancing

our understanding of cellular processes. While from a computational perspective, statistical tools

for bulk RNA-seq can be used for scRNA-seq DEG analysis, there are unique challenges that need

to be addressed. First, the scRNA-seq data is typically a high-dimensional dataset. In many

previous works, inference on high-dimensional data would involve at least one of the following:

Assuming a linear model with homoscedastic error terms, assuming sparse signal, or only provide

asymptotic guarantees [Fan and Lv, 2010; Javanmard and Montanari, 2014a,b; Lockhart et al.,

2014; Meinshausen and Bühlmann, 2010; van de Geer et al., 2014; Zhang and Zhang, 2014]. In

comparison, the model-X framework can possibly accomodate for any model for both the response

and covariates, does not impose any sparsity assumptions, and provides finite sample guarantees.

Hence its attractiveness in practice. However, while the model-X knockoff procedure is designed

with high-dimensional applications in mind, it cannot avoid the increase in computational complex-

ity that comes along with the increase in observations and variables, thus urging a way to simplify

the procedure. Second, a large fraction of the data is of zero or low read counts. Jiang et al. [2022]

provided an in depth discussion on the mechanisms that lead to the zero-inflation ,which is also

referred as dropout in the literature, in scRNA-seq data. From a DEG analysis perspective, there

are test designed with zero-inflation in mind, such as SCDE [Kharchenko et al., 2014] and MAST

[Finak et al., 2015]. But this large fraction of zeros will also cause difficulties when constructing

the knockoff variables since in practice, they are often considered as missing values. A reasonable

approach would be to recover the missing values before constructing the knockoffs. There are in

general two different school of thoughts that are developed independently by the biology community

and statistics community respectively. On one hand, there are heuristic imputation methods that

are developed tailored for scRNA-seq data, which include, but is not limited to, model-based impu-

tation methods [Huang et al., 2018; Li and Li, 2018], data smoothing methods [Gong et al., 2018;

Van Dijk et al., 2018], and deep learning methods [Eraslan et al., 2019]. On the other hand, there

are low-rank matrix completion methods [Candès and Recht, 2012; Candès and Plan, 2010; Candès

and Tao, 2010; Hastie et al., 1999, 2015; Mazumder et al., 2010] whose statistical inference and

uncertainty quantification under sub-Gaussian or sub-exponential noise are studied in depth [Chen

et al., 2019, 2020; Farias et al., 2022]. In this thesis, we choose the latter approach for imputation
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for the following reasons: Despite the scRNA-seq data specific imputation methods are dominated

by negative binomial models, the log transformed count data can be realistically modelled with

a Gaussian model [Finak et al., 2015] or as Grün et al. [2014] mentioned, the noise in single-cell

transcriptomics could be considered as log-normal. Furthermore, we found out that the scRNA-seq

specific imputation methods do not translate into powerful knockoffs in our simulations. Finally,

low-rank imputation methods are more suitable under the context of knockoff construction as is

provides opportunities for faster knockoff constructions, especially Gaussian knockoffs, and they

are able to better capture the joint correlation structure of the data.
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2.0 Identification of Differentially Expressed Genes via Knockoff Statistics in

Single-cell RNA Sequencing Data Analysis

2.1 Introduction

The recent development of single-cell RNA-sequencing (scRNA-seq) technologies has taken tran-

scriptomic studies to a new frontier. It allows genome-wide profiling of gene expression levels at the

single-cell resolution. With scRNA-seq data, an important statistical task is to identify differen-

tially expressed genes (DEGs) in case-control studies, as results from DEG analysis can contribute

to a more comprehensive understanding of the disease mechanism and new discovery of potential

risk factors. Given the high variety and the large amount of cells being analyzed in the single-cell

experiment, the new technology may also lead to more powerful DEG identification within the same

cell type or tissue, or within the same developmental state.

From DEG analysis, one may expect to discover a short-list of genes as candidates for the

follow-up investigations. Methodologically, most existing methods for DEG identification, such as

MAST [Finak et al., 2015] and edgeR [Robinson et al., 2009], test for marginal independence. More

specifically, they test whether the expression level of a gene varies across the case and the control

group, only conditional on a set of covariates representing potential confounding effects, such as

gender, age, and batch effect. When a number of genes are under consideration simultaneously,

to ensure reproducibility, the Benjamini-Hochberg procedure [Benjamini and Hochberg, 1995] is

usually applied to control the false discovery rate (FDR). However, without appropriately adjusting

for the correlation among gene expressions, this type of approach may lead to a number of suspicious

findings due to co-expression or unmeasured confounders, and consequently an inflated FDR. In

this work, we will study a novel method that performs the DEG analysis that carefully accounts

for the correlation structure. This way, we may eliminate the questionable findings, and further

shorten the list of genes for downstream analysis.

Our proposed method is under the knockoff framework [Barber and Candès, 2015; Candès

et al., 2018]. The knockoff filter is a recently introduced statistical method for multiple testing with

guaranteed FDR control, and is particularly powerful for high-dimensional conditional inference.

When applying the method, a group of synthetic expressions, called knockoff variables, will be
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constructed to serve as “negative controls”. The inference is made by contrasting the original

variables to their knockoffs. Under the knockoff framework, the adjustment for correlation structure

is mainly achieved by constructing knockoffs satisfying the exchangeability condition. This implies

that the choice of test statistics can be very flexible—it allows us to either implement a new test

specifically designed for single-cell data, or incorporate the existing tests, such as the commonly

used likelihood-ratio test and Wilcoxon signed-rank test [Ge et al., 2021].

For scRNA-seq data, a noticeable feature is a large fraction of genes—usually more than 90%—

with zero or low read counts. This is mainly due to the low transcript capture and limit of sequencing

efficiency of current technologies. Statistically, the uncaptured expressions can be viewed as missing

values. In this work, we view the uncaptured expressions as data missing completely at random

(MCAR).

Specifically, we use G∗ ∈ Rn×p to denote the underlying true expression without any missigness

for n individuals across p genes, and

G = G∗ +E, (2.1)

the realization corrupted by measurment errors E. The observed log-normalized gene expressions in

a scRNA-seq experiment with uncaptureness is denoted by Gobs ∈ Rn×p. Let Ω be the collection of

indices (i, j) for which the expression level is strictly positive, i.e., Ω = {(i, j) : Gobs
ij > 0}. It can be

alternatively viewed as the set corresponding to non-missing expressions. The observed data Gobs

and the complete dataG are connected by a “projection” operation PΩ, which projects the complete

matrix onto the expressed set with missing entries replaced by 0 such that Gobs = PΩ(G). The

MCAR assumption implies that (i, j) ∈ Ω in the scRNA-seq experiment with probability θ ∈ (0, 1]

independently. The measurement error is modeled by a normal distribution, and for all expressed

genes with (i, j) ∈ Ω

Gobs
ij = G∗

ij + eij , eij ∼ N (0, σ2
j ) independently,

where eij are the entries in E. In order to reasonably describe correlations among gene expression

and efficiently generate knockoffs, we introduce the following latent factor model,

G∗ = AB⊤ and G = AB⊤ +E, (2.2)

where A ∈ Rn×r is a random matrix of latent factors and B ∈ Rp×r is a matrix of deterministic

factor loadings. Usually, r is assumed to be much smaller than p and n. For the rest of the chapter,
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we will use G⊤
i = (Gi1, . . . , Gip)

⊤
to denote the ith rows of G. We also assume rows of A and

consequentely G are identically distributed. In this case, we use G⊤ = (G1, . . . , Gp)
⊤ to denote the

population level gene expressions.

The intuition behind such a model is that we assume a large proportion of covariance among

gene expressions (columns) can be captured by a low-rank structure. The low-dimensional factors

A may contain several observed covariates, such as gender, age, ethnic group, sample ID, and

batch effect. We will introduce an algorithm to recover the remaining latent factors given the

observed ones. Conditional on the low-rank structure, we assume the randomness only comes from

the measurement error and is independent. The model has been widely used under the context of

missing value imputations [Cai et al., 2010; Candès and Tao, 2010; Hastie et al., 2015; Kapur et al.,

2016; Mazumder et al., 2010; Mongia et al., 2019]. Under the knockoff framework, we can also

take advantage the of the low-rank structure to efficiently generate knockoff variables and make

conditional inference for a large set of genes simultaneously.

We would like to point out, the new multiple testing method is not only applicable to scRNA-seq

data, it can also be applied to any missing value problems as long as model (2.2) is sufficient to

characterize the correlation and the data is MCAR.

The rest of chapter is organized as the following. In Section 2.2, we first provide a brief overview

of the knockoff framework. Then we introduce a new algorithm for missing data imputation and

latent factors recovery in Section 2.3, and several different ways to generate knockoff variables

based on the imputation results in Section 2.4. For scRNA-seq data, we will introduce two variable

selection procedures based on a specific types of test statistics in Section 2.5. In Section 2.6 and

Section 2.7, we illustrate the FDR control and power of the proposed method on both synthetic

and real signals on real data sets.

2.2 Review of the knockoff framework

The knockoff filter was first introduced by Barber and Candès [2015] for linear models to se-

lect outcome associated variables while controlling for the false discovery rate (FDR). It was later

extended to a wider range of models including nonlinear models, and to high-dimensional settings

by Candès et al. [2018]. The knockoff procedure imposes a distributional assumption on the ex-
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planatory variables, instead of the conditional distribution of the outcome. In this way, exact FDR

control can be achieved. Since explanatory variables are viewed as random, the method is called

model-X knockoffs.

Under the knockoff framework, we simultaneously test for the null hypotheses corresponding to

conditional independence,

Hj : Gj ⊥⊥ Y | G−j

for each j ∈ [p] := {1, . . . , p}, where G−j denotes expressions for all genes except for gene j. For

single-cell data, the null hypothesis implies that the expression level for gene j is not associated

with the treatment given expressions for all the other genes. The knockoff filter provides theoret-

ical guarantees that the selection of a subset of genes Ŝ has an FDR controlled at a prespecified

significance level q,

FDR := E

(
|Ŝ ∩H0|
|Ŝ| ∨ 1

)
≤ q,

where H0 ⊂ [p] is the set of null hypotheses. To achieve this, the critical step is to construct a

group of knockoff variables G̃, such that they are exchangeable to the originals. In specific, the

following exchangeability needs to be satisfied for any subset S ⊂ [p]:(
G, G̃

)
swap(S)

d
=
(
G, G̃

)
, (2.3)

where (G, G̃)swap(S) means for each j ∈ S, swapGj with G̃j , and
d
= indicates equality in distribution.

More specifically, for any S ⊂ H0,(
G, G̃

)
swap(S)

| y d
=
(
G, G̃

)
| y.

In addition, the knockoff variables need to be independent from the response given the original

data: G̃ ⊥⊥ Y | G. With appropriately constructed knockoff variables, knockoff statistics W could

be computed for each variable where a large positive Wj would provide evidence against the null

hypothesis. The choice of knockoff statistics can be very flexible as long as they only depend on

original and knockoff variables and the response via some function wj ,

Wj = wj([G, G̃], y),

and satisfy a flip-sign property, meaning that the sign of Wj should change whenever we swap

variables,

wj([G, G̃]swap(j), y) = −wj([G, G̃], y), for j ∈ S.

8



Note that by construction, the knockoff statistics for null variables should follow a symmetric

distribution around 0 whereas for non-null variables they are supposed to be positive with larger

probability. Taking advantage of this property, the false discovery proportion (FDP) could be

estimated via

F̂DP(t) =
#{j : Wj ≤ −t}
#{j : Wj ≥ t}

.

And for any target FDR level q, we could select a set of variables Ŝ = {j : Wj ≥ τ} where

τ = min

{
t > 0 :

1 + #{j : Wj ≤ −t}
#{j : Wj ≥ t}

≤ q

}
,

such that F̂DP(τ) ≤ q. Note that in the case the above set is empty, τ = +∞ such that Ŝ = ∅ and

F̂DP(+∞) = 0.

To apply the model-X knockoff filter to single-cell RNA sequencing (scRNA-seq) data, we mainly

face the following two difficulties. First, it is challenging to construct a group of knockoff variables

satisfying the exchangeability condition (2.3), due to the high-dimensionality and large proportion

of missing values in scRNA-seq data. Second, it is unclear what is an appropriate choice of knockoff

statistics. In the following sections, we will provide solutions to overcome these two difficulties.

In particular, in order to deal with large number of missingness in scRNA-seq data, we introduce

a modification of the softImpute algorithm that takes advantage of a low-rank approximation to

impute missing values, and estimate the distribution of gene expressions after the imputation.

2.3 Imputation

The large number of missingness raises several issues for the downstream data analysis. First,

if the missing values are directly dropped, only a very limited amount of data will be available

afterwards given the high missing rate, and consequently one may expect a significant power loss.

Second, the missing values may affect the estimation of the distribution G. In particular, the

correlation among gene expressions can be underestimated when missingness is present. Therefore,

we suggest to impute the missing values.
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2.3.1 Imputation for scRNA-seq data

Fortunately, there is already a large collection of existing literature on missing value imputation,

some of them being referred as matrix completion. A commonly used strategy is to take advantage

of a low-rank approximation. Along this direction there are a number of important works posing

missing value imputation under the context of convex optimization, and introduced efficient algo-

rithms for solving the convex problems [Candès and Tao, 2010; Hastie et al., 1999, 2015; Mazumder

et al., 2010]. For scRNA-seq data, we will adapt the algorithm proposed in Hastie et al. [2015].

First, we provide a brief overview of the original algorithm, softImpute.

Assume that Gobs is centered in the sense that the column means m = (mj)1≤j≤p of the

expressed part are subtracted from the observed expressions. More explicitly, mj is calculated as

mj =

∑n
i=1 G

obs
ij 1{Gobs

ij is expressed}∑n
i=1 1{Gobs

ij is expressed}
.

In the same fashion, G is assumed to be centered and G can then be recovered by solving the

following optimization problem

minimizeA,B
1

2

∥∥PΩ(G−AB⊤)
∥∥2
F
+

λ

2

(
∥A∥2F + ∥B∥2F

)
, (2.4)

where ∥·∥F is the Frobenius norm. A and B are two matrices with of dimension n × r and p × r

respectively. And the missing values are imputed by setting Gimp ← PΩ(G
obs)+P⊥

Ω (AB⊤), where

P⊥
Ω is the projection onto the unexpressed set.

In scRNA-seq data, we usually have some additional information collected in the experiment,

such as gender, age, batch label, and cellular detection rate (CDR), which is the proportion of genes

detected in each cell. These variables can usually explain a proportion of variance. Moreover, relying

solely on information internal to the imputed data may introduce inflated correlation between the

genes and cells [Andrews and Hemberg, 2019]. When some of the additional variables are identified

as confounders, conditioning on them can help alleviate confounding effects. Therefore, we hope to

introduce an imputation algorithm by considering this set of covariates. The new algorithm will be

a modification of softImpute.

Let’s define A = [X,A′], where X ∈ Rn×k corresponds to a group of k centered covariates

observed in the single-cell sequencing experiment, which are also viewed as known factors, and

A′ ∈ Rn×(r−k) (r ≥ k) is the matrix of unknown factors. The optimization problem for missing
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value imputation then becomes

minimizeA′,B
1

2

∥∥PΩ(G−AB⊤)
∥∥2
F
+

λ

2

(
∥A′∥2F + ∥B∥2F

)
. (2.5)

We will apply Algorithm 1, which is a modification of the Algorithm 5.1 in Hastie et al. [2015], to

update A′ and B iteratively.

Algorithm 1: sc-softImpute

1. Initialize ℓ = 0, A′
0 = UD, A0 = [X,A′

0] and B0 = Gobs⊤A0(A
⊤
0 A0)

−1, where UD

is obtained by performing singular value decomposition (SVD) of Gobs and taking the

leading r − k factors.

2. Fix Bℓ and update Aℓ+1 by

A′
ℓ+1 ← GimpBA′,ℓ(B

⊤
A′,ℓBA′,ℓ + λI)−1 (2.6)

where Gimp ← PΩ(G
obs) + P⊥

Ω ([X,A′
ℓ]B

⊤
ℓ ) −XB⊤

X,ℓ and Bℓ = [BX,ℓ,BA′,ℓ]. Then

let Aℓ+1 ← [X,A′
ℓ+1].

3. Fix Aℓ+1 and update Bℓ+1 by

Bℓ+1 ← Gimp⊤Aℓ+1(A
⊤
ℓ+1Aℓ+1 + λI)−1 (2.7)

where Gimp ← PΩ(G
obs) + P⊥

Ω (Aℓ+1B
⊤
ℓ ).

4. ℓ← ℓ+ 1.

5. Repeat step 2 to 4 until convergence.

It can be shown that Algorithm 1 will converge and the proof closely follows that of Theorem 3

in Hastie et al. [2015]. For simplicity, let’s denote the objective function as

F (A′,B) :=
1

2

∥∥PΩ(G− [X,A′]B⊤)
∥∥2
F
+

λ

2

(
∥A′∥2F + ∥B∥2F

)
,

such that (2.5) can be rewritten as

minimizeA′,BF (A′,B).

For the objective function F (A′,B), we can show its value decreases in each iteration, as summa-

rized in the following Theorem 1. In combination with the fact that F (A′,B) has a lower bound,

we know the algorithm will converge.

11



Theorem 1. Let {(A′
ℓ,Bℓ)} be the iterates generated by Algorithm 1. Then the function values

are monotonically decreasing,

F (A′
ℓ,Bℓ) ≥ F (A′

ℓ+1,Bℓ) ≥ F (A′
ℓ+1,Bℓ+1), ℓ ≥ 1.

In the final step of the imputation, we will add noise to the imputed values by sampling

eij
i.i.d∼ N (0, σ2

j ). We estimate σ2
j by

σ̂2
j =

∥∥PΩj
(Gobs −AℓB

⊤
ℓ )
∥∥2
2

/( n∑
i=1

1{Gobs
ij is expressed} − r − 1

)
, (2.8)

where PΩj is the projection of the matrix onto the expressed set for variable j and ∥·∥2 is the ℓ2

norm. The idea of adding noise to the recovered values in Ω∁ stems from the model (2.1). Since

AℓB
⊤
ℓ is an estimator for G∗, to keep consistency between the unobserved values as well as the

observed ones, the final output therefore should be

G← PΩ(G
obs) + P⊥

Ω (AℓB
⊤
ℓ ) + P⊥

Ω (E),

where the entries of E are randomly sampled eij ’s.

2.3.2 Theoretical intuition for imputation

Farias et al. [2022] developed theoretical support for noisy matrix completion of low-rank ma-

trices given only partial and corrupted entries as described in (2.1) that provide some intuition for

the algorithm in this section. Assume that

� G∗ ∈ Rn×p is a rank r matrix where n ≤ p and G∗ = U∗D∗V ∗⊤ is the SVD of G∗.

� Each index (i, j) belongs to the observed set Ω independently with a probability θ.

� ∥U∗∥2,∞ ≤
√

µr/n and ∥V ∗∥2,∞ ≤
√
µr/p where ∥·∥2,∞ indicates the largest ℓ2 norm of all

rows of a matrix.

� The entries of E are independent, mean-zero, sub-exponential random variables with variances

σ2
ij such that inf{t > 0 : E(exp(|eij |/t)) ≤ 2} ≤ L, and are independent from Ω.

� nθ ≫ κ4µ2r2 log3 p and L log(p)
√

p/θ ≪ σmin/
√
κ4µr log p where σmin and σmax are smallest

and largest singular values in D∗ respectively and κ = σmax/σmin.

12



Let Gd = AdBd⊤ where Ad = Aℓ

(
Ir +

λ
θ (A

⊤
ℓ Aℓ)

−1
)1/2

and

Bd = Bℓ

(
Ir +

λ
θ (B

⊤
ℓ Bℓ)

−1
)1/2

. The Aℓ and Bℓ here are the iterates from the original softImpute

algorithm and Gd is the de-biased estimator for G∗. Then for every (i, j), we have

sup
t∈R

∣∣∣∣∣P
{
Gd

ij −G∗
ij

sij
≤ t

}
− Φ(t)

∣∣∣∣∣ ≲s−3
ij

L2µ3r3

n2θ
+

s−1
ij

(
L2 log3(p)µrκ5

θσmin
+

L log2(p)µ2r2κ4

θn

)
+

1

n10
,

where Φ(·) is the CDF of the standard Gaussian, and sij > 0 is defined as

s2ij :=

∑n
l=1 σ

2
lj (
∑r

k=1 U
∗
ikU

∗
lk)

2
+
∑p

l=1 σ
2
il

(∑r
k=1 V

∗
lkV

∗
jk

)2
θ

.

The results in Farias et al. [2022] is a direct improvement over Chen et al. [2019]. In fact, if

we assume homogeneous Gaussian noise and a square matrix, the results in the first remark will

reduce to Theorem 2 in Chen et al. [2019]. Similar discussions not involving de-biasing could be

found in Chen et al. [2020] under the homogeneous Gaussian noise and square matrix assumption.

The results described above can not be directly applied to sc-softImpute but we can achieve

theoretical results that are close. Adjust Algorithm 1 where it will instead optimize

minimizeA′,B
1

2

∥∥PΩ(G−AB⊤)
∥∥2
F
+

λ

2

(
∥A′∥2F + ∥BA∥2F

)
.
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Algorithm 2: sc-softImpute-debias

1. Initialize ℓ = 0, A′
0 = UD, A0 = [X,A′

0] and B0 = Gobs⊤A0(A
⊤
0 A0)

−1, where UD

is obtained by performing singular value decomposition (SVD) of Gobs and taking the

leading r − k factors.

2. Fix Bℓ and update Aℓ+1 by

A′
ℓ+1 ← GimpBA′,ℓ(B

⊤
A′,ℓBA′,ℓ + λI)−1 (2.9)

where Gimp ← PΩ(G
obs) + P⊥

Ω ([X,A′
ℓ]B

⊤
ℓ ) −XB⊤

X,ℓ and Bℓ = [BX,ℓ,BA′,ℓ]. Then

let Aℓ+1 ← [X,A′
ℓ+1].

3. Fix Aℓ+1 and update Bℓ+1 by

Bℓ+1 ← Gimp⊤Aℓ+1(A
⊤
ℓ+1Aℓ+1 + λIA)

−1

where Gimp ← PΩ(G
obs) +P⊥

Ω (Aℓ+1B
⊤
ℓ ), and IA is an identity matrix where the first

k diagonal elements are set to 0.

4. ℓ← ℓ+ 1.

5. Repeat step 2 to 4 until convergence.

6. Let Gd =
[
X,Ad

] [
BX,ℓ,B

d
]⊤

where Ad = A′
ℓ

(
Ir−k + λ

θ (A
′⊤
ℓ A′

ℓ)
−1
)1/2

and Bd =

BA′,ℓ

(
Ir−k + λ

θ (B
⊤
A′,ℓBA′,ℓ)

−1
)1/2

.

It could be shown with slight modifications to Theorem 1 that Algorithm 2 converges, as detailed

in Appendix A.2. While a full proof for debiasing is outside the scope of this work, an intuitive

explanation is that BX,ℓ is an unbiased estimation, since it is not penalized. On the other hand,

A′
ℓ and BA′,ℓ are biased estimations, hence undergo a debiasing process following the methodology

outlined by Farias et al. [2022]. However, since the debiasing process increases the variance of the

recovered matrix, it reduces the power of the constructed knockoffs. For further details on the

impact of this trade-off, simulation results are included in Appendix A.3.
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2.4 Knockoff construction

In this section, we will discuss several methods for constructing knockoff variables based on

the imputation result. This includes a construction based on the spiked covariance model in Sec-

tion 2.4.2, and another one based on the low-rank approximation in Section 2.4.3. By taking

advantage of the latent factor model (2.2), these two constructions provide a more computationally

efficient way for handling high-dimensional single-cell data, in comparison to the standard Gaussian

knockoff method discussed in Section 2.4.1. Additionally, we will introduce a method for efficiently

constructing multiple groups of knockoff variables in Section 2.4.4.

2.4.1 Review of Gaussian knockoffs

As discussed in Candès et al. [2018], when G is assumed to be Gaussian, to construct knockoff

variables for G that satisfy the exchangeability condition (2.3), it would suffice to match the first two

moments of (G, G̃)swap(S) and (G, G̃) for any subset S ⊂ [p] and then sample G̃ from the conditional

multivariate Gaussian distribution G̃ | G. Matching the first moment is easy to achieve. Matching

the second moment is equivalent to finding a diagonal matrix diag{s} such that Cov
(
(G, G̃)

)
is

positive semidefinite, where

Cov
(
(G, G̃)

)
=

 ΣG ΣG − diag{s}

ΣG − diag{s} ΣG

 .

This indicates that s ∈ Rp should satisfy

sj ≥ 0 and diag{s} ⪯ 2ΣG. (2.10)

Without loss of generality, we may assume the diagonal entries of ΣG equal to 1 for the remainder

of this subsection. In Candès et al. [2018], the authors introduced the following two methods for

finding s: The semidefinite program (SDP) construction that solves the convex program

minimize
∑

j |1− sSDP
j |

subject to sSDP
j ≥ 0

diag{sSDP} ⪯ 2ΣG.

And the approximate semidefinite program (ASDP) construction whose purpose is to accelerate

the SDP construction for high-dimensional problems. It is a two-step procedure: First, choose an
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approximation Σapprox for ΣG and solve

minimize
∑

j |1− sj |

subject to sj ≥ 0

diag{s} ⪯ 2Σapprox.

Then solve

maximize γ

subject to diag{γs} ⪯ 2ΣG.

Finally, set sASDP = γs.

However, both approaches are difficult to implement for scRNA-seq data without further ad-

justments, primarily due to the high-dimensionality. Even though the low expression rate has been

addressed in Section 2.3 by recovering the incomplete data, the large n and p remains to be an

obstacle as it will take a lot of computational resources to estimate ΣG and solve the optimization

problem in order to obtain s. Even with the application of ASDP, where Σapprox could be con-

structed as a block diagonal matrix by splitting ΣG into multiple more computationally feasible

blocks and running multiple SDPs in parallel, the second step of ASDP could still be slow.

2.4.2 Knockoff construction based on the spiked covariance model

In model (2.2), if we further impose another normality assumption for the random latent factors

A, it then implies a spiked covariance model [Johnstone, 2001] for the data G. Efficient algorithms

are available for knockoff generation based on such a model. To be more specific, we would like to

assume rows of the matrix A are independent and identically distributed according to the following

multivariate normal model

A ∼ N (µA,ΣA). (2.11)

Then model (2.2) can be equivalently written as

G | A = ai ∼ N (Bai,D), (2.12)

where G and A are p × 1 and r × 1 random vectors respectively, a⊤
i = (ail)

⊤
1≤l≤r are the i-th row

of A, and D = diag((σ2
j )1≤j≤p). Without loss of generality, we may assume µA = 0. After some
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calculations, we are able to demonstrate that (2.11) and (2.12) together imply the covariance of G

is

ΣG = D +BΣAB
⊤. (2.13)

The decomposition (2.13) is also called the spiked covariance model in the literature. It assumes

the covariance can be captured by a low-rank component BΣAB
⊤ and a diagonal component D,

therefore achieving a faster estimation of the covariance. Such a model is frequently imposed for

high-dimensional data.

In practice, A and B can be recovered by applying Algorithm 1, ΣA can be estimated using

the empirical covariance of A, and σ2
j can be estimated by (2.8) as in Section 2.3. We will denote

our estimate for ΣG based on the model (2.13) as Σ̂G.

To construct knockoff variables, the spiked covariance model also allows us to skip the step of

solving SDP or ASDP, which is usually the most time consuming part for high-dimensional data.

Under model (2.13), it is easy to show that

sdecomp = (2Djj)1≤j≤p

satisfies (2.10) and will lead to valid construction of knockoffs. Alternatively, for low-dimensional

data, after estimating ΣG, we can still solve the ASDP to find s. In the rest of the chapter, we will

denote the knockoff variables constructed by solving the ASDP with ΣG as asdp knockoffs, and, on

top of that, knockoffs constructed by directly providing sdecomp as decomp knockoffs.

Could there be a more optimal s? In terms of solving an optimization problem, possibly yes,

since there might be some more room to stretch into in 2BΣAB
⊤. But the search for the optimal

s would defeat the purpose of saving computational resources as this would again require solving

an SDP or ASDP program for a p × p matrix. It must also be emphasized that while sdecomp

is not “optimal” in terms of optimization, it does not necessarily mean that it leads to a less

powerful knockoff construction. For example, Gimenez and Zou [2019] have pointed out that there

exist alternate convex optimization problems to construct knockoffs and have also pointed out that

SDP knockoff constructions will maximize some diagonal terms at the cost of others. In fact, this

newly proposed knockoff construction could non-trivially become one of the most effective ways to

generate knockoff variables for scRNA-seq data, and high-dimensional data in general, due to its

relative simplicity. We will discuss more on this topic in Section 2.4.6 and Section 2.6.
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2.4.3 Knockoff construction based on the low-rank decomposition

A novel approach introduced and discussed in works like Fan et al. [2020] and Zhu et al. [2021]

is the other direction that we wish to focus on. Given the model (2.2), knockoff variables could be

constructed as

G̃ = AB⊤ + Ẽ, (2.14)

where entries of Ẽ are independently sampled from N (0, σ2
j ), 1 ≤ j ≤ p. Such a construction

(2.14) satisfies the exchangeability condition (2.3), but it requires the knowledge of G∗ and the

distribution of E—both of which are only available in an oracle scenario. In practice, both parts

need to be estimated such that the knockoff variables are constructed as

G̃ = ÂB̂⊤ + Ẽest,

where each ẽestij is independently sampled from N (0, σ̂2
j ), and Â and B̂ are estimated low-rank

structures. Note that this low-rank construction can be directly constructed based on the results

from Algorithm 1.

The advantage of the low-rank (LR) knockoff construction lies in its convenience and speed.

It is immediately available after recovering the missing gene expressions and avoids the hurdles of

covariance estimation and solving SDPs. However, it should be emphasized that the exchangeabil-

ity (2.3) is no longer strictly satisfied in practice as the estimation of Â, B̂ and Ẽest now depends

on the data Gobs. In Fan et al. [2020], the authors provided proofs for asymptotic FDR control

and power analysis under the homoscedastic sub-Gaussian error assumption and Lasso coefficient-

difference knockoff statistics. Though the asymptotic properties of the knockoff variables under the

heteroscedastic case and more general knockoff statistics remains to be explored, this construction

provides compelling empirical FDR control and power for variable selection.

2.4.4 Multiple knockoffs and e-BH procedure

Variables selected by the knockoff framework are inherently random due to the stochastic nature

of knockoff variables. Previous studies, such as those by Gimenez and Zou [2019], He et al. [2021]

and Ren and Barber [2022], have shown that by constructing multiple groups of knockoff variables,

one can stabilize the selection. The construction of multiple Gaussian knockoffs has been studied by
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Gimenez and Zou [2019] in detail. Recently, Ren and Barber [2022] have shown that one can trans-

late the knockoff procedure to an e-BH procedure [Wang and Ramdas, 2022] for derandomization

by combining multiple single knockoffs.

For scRNA-seq data, we will generalize constructions introduced in Section 2.4.2 and Section

2.4.3 to the multiple knockoffs case. To do so, we need to first generalize the exchangeability

condition (2.3): Let G0 = G denote the original variables and
(
G1, . . . , GM

)
denote M group of

knockoff variables. To simplify the notation, we assume that the random variables are organized as

row vectors. The exchangeability is defined as

(
G0, G1, . . . , GM

)
swap(π)

d
=
(
G0, G1, . . . , GM

)
for any π, (2.15)

where π = (πj)1≤j≤p is a collection of p permutations over the set of integers {0, . . . ,M} and(
G0, G1, . . . , GM

)
swap(π)

is understood as the j-th variable from group m is G
πj(m)
j . For example,

with p = 2, M = 2, and only the first variable being permuted,

(
G0

1, G
0
2, G

1
1, G

1
2, G

2
1, G

2
2

)
swap(π1)

d
=
(
G

π1(0)
1 , G0

2, G
π1(1)
1 , G1

2, G
π1(2)
1 , G2

2

)
.

Note that when M = 1, the exchangeability condition (2.15) boils down to (2.3). Similar to the

single knockoff case, the knockoff variables should also be conditionally independent of Y :(
G1, . . . , GM

)
⊥⊥Y | G0. When G is Gaussian, a sufficient condition is to let the joint distribution(

G0, G1, . . . , GM
)
follow a multivariate Gaussian distribution with matching mean for each Gm and

covariance

ΣM =


ΣG ΣG − diag{s} · · · ΣG − diag{s}

ΣG − diag{s} ΣG · · · ΣG − diag{s}
...

...
. . .

...

ΣG − diag{s} ΣG − diag{s} · · · ΣG

 ,

where ΣM has M + 1 blocks column and row-wise and s is chosen such that ΣM is positive

semidefinite. When diagonal elements of ΣG have been scaled to 1, a proper s could be obtained

by solving an SDP

minimize
∑
j

|1− sSDP
j |

subject to sSDP
j ≥ 0

diag{sSDP} ⪯ M + 1

M
ΣG,
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or an ASDP as described in Section 2.4.1 with only slight modifications.

For the construction based on the spiked covariance model, while we can still avoid solving the

SDP by directly providing

smulti-decomp =
M + 1

M
(Djj)1≤j≤p, (2.16)

generating multiple decomp (multi-decomp) knockoffs requires sampling from an M×p dimensional

multivariate normal distribution
(
G1, . . . , GM

)
| G0, which is computationally prohibitive. This,

however, can be mitigated by a clever technique proposed in He et al. [2024]. Notice that the

Gaussian knockoff variables in a single knockoff setting can be written as

G̃⊤ =
(
I − diag{s}Σ−1

G

)
G⊤ + V ⊤,

where V ∼ N (0,C) and C = 2diag{s} − diag{s}Σ−1
G diag{s}. In a similar fashion, the multiple

knockoff variables can be written as

(
G1, . . . , GM

)⊤
=


I − diag{s}Σ−1

G

...

I − diag{s}Σ−1
G

G⊤ + V ⊤
M ,

where VM ∼ N (0,CM ) and

CM =


C C − diag{s} · · · C − diag{s}

C − diag{s} C · · · C − diag{s}
...

...
. . .

...

C − diag{s} C − diag{s} · · · C

 .

Instead of sampling from N (0,CM ), an M × p dimensional multivariate normal distribution, we

can take advantage of the structure of CM and use the following sampling method:

1. Sample V1 from N
(
0,C − M−1

M diag{s}
)
.

2. Sample V2,m i.i.d. from N (0,diag{s}), for m = 1, . . . ,M .

3. Calculate V m
2 = V2,m − V̄2, where V̄2 = 1

M

∑M
m=1 V2,m.

4. Calculate V m = V1 + V m
2 and let Gm⊤ =

(
I − diag{s}Σ−1

G

)
G⊤ + V m⊤.

The computational complexity is reduced from O(M3p3) to O(p3).
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For the low-rank approximation based method, to construct multiple knockoffs, it suffices to

sample from independent normal distributions repeatedly. Specifically, the m-th group of knockoffs

can be obtained as

Gm = ÂB̂⊤ + Ẽest,m, ẽest,mij ∼ N (0, σ̂2
j ) independently.

This way, the low-rank construction skips the step of sampling from an ultra-high-dimensional

normal distribution, and is more efficient in practice.

We will defer the description of the e-BH procedure to Section 2.5.1 since it is in fact a variable

selection method. For the e-BH procedure according to Ren and Barber [2022], it derandomizes

knockoffs with e-values [Vovk and Wang, 2021], and there is no assumption on the dependence

structure of those e-values [Wang and Ramdas, 2022]. Therefore, no simultaneous multiple knockoff

generation as described in Gimenez and Zou [2019] is required, but multiple single-knockoff results

are combined. This allows us to derandomize the variable selection of not only decomp and LR

knockoffs, but any knockoff construction. However, multiple knockoffs are still favored in the case

of sparse signals or stricter FDR targets due to lower detection thresholds ⌈ 1
qM ⌉.

2.4.5 Knockoff variable rescaling

Recall that we assume both G and Gobs are centered in the previous sections. While the

exchangeability between G and G̃ is clear, the same exchangeability will not hold for the orig-

inal log-normalized gene expression data Gobs. As suggested in Andrews and Hemberg [2019],

the un-imputed data should be used to calculate DEG tests, and therefore the knockoff statistics

W = (W1, . . . ,Wp) should as well. This requires us to rescale the knockoff variables or there will

inevitably be a mismatch between the first and second moments that will violate the exchange-

ability property (2.3). To address this issue and to mimic the observed gene expression data, the

knockoffs are handled in two parts:

� For the observed expressions, we add column means of the expressed parts m back to G̃.

� For the unexpressed part, the corresponding values of knockoff variables are set to be 0.

The idea is that each entry of the observed data Gobs can be characterized by a conditional distri-

bution Gij |Zij , where Zij is a random variable indicating whether Gij is expressed. When Zij = 0,

Gij = 0; when Zij = 1, Gij follows a continuous distribution. To ensure exchangeability, for the
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knockoff part, we can find a trivial construction for Zij by setting Z̃ij = Zij . Due to the MCAR

assumption, if we mask knockoff variables according to Z̃ij , the exchangeability still holds. In

summary, we have the following lemma:

Lemma 1. Let G̃obs = PΩ(G̃) be the adjusted knockoff variables, then(
Gobs, G̃obs

)
swap(S)

d
=
(
Gobs, G̃obs

)
for any j ∈ S.

Certainly, there may be more sensible ways to preserve the exchangeability property that draw

inspiration from a deeper understanding on the dependencies of genes within scRNA-seq data sets.

However, since MCAR is assumed in this work, these kind of considerations are not necessary.

2.4.6 Computational complexity

For different knockoff construction approaches discussed so far, their computation mainly falls

into the following four steps or part of them: imputation, covariance estimation, solving SDP or

ASDP, and sampling. We will discuss the cost of each step in the following:

1. Imputation. The computational complexity for sc-softImpute, citing the results in Hastie et al.

[2015], is O(2|Ω|r2 + nr3 + pr3) for each iteration, where |Ω| is the total number of expressed

genes in our data. The number of iterations required for convergence has not been discussed but

in practice, the algorithm would provide marginal improvements after limited iterations and it

would be acceptable to stop early.

2. Covariance estimation. The covariance reconstruction is O(p2r) and r ≪ n. In contrast to

directly calculating the correlation, which is O(np2), our proposed method is much faster.

3. Solving SDP or ASDP. The complexity of solving an SDP would be O(4p3×√p log(1/ϵ)) where

O(
√
plog(1/ϵ1)) is the number of iterations required for convergence under a desired tolerance

ϵ1 > 0 [Benson et al., 2000]. Solving an ASDP would be faster, as ΣG could be split into

multiple p′×p′ block matrices such that the estimated complexity would be O(4p′2.5p log(1/ϵ1)+

p3 log(1/ϵ2)) where O(p3 log(1/ϵ2)) is for searching for a maximum γ via binary search under

the tolerance ϵ2 > 0.

4. Sampling. The complexity of sampling knockoff variables from a conditional multivariate Gaus-

sian distribution is estimated to be of O(p3)—mainly to calculate the inverse of the covariance
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Table 2.1: A breakdown of the computational complexity of each knockoff construction.

asdp decomp LR multi-decomp multi-LR

Imputation ✓ ✓ ✓ ✓ ✓

Covariance

estimation
✓ ✓ ✓

Solving SDP or ASDP ✓

Sampling from

multivariate normal
✓ ✓ ✓

matrix. If we take advantage of the low-rank approximation in (2.13) and apply the Sherman-

Morrison-Woodbury formula, the complexity would be estimated at O(r3+pr2+p2r) = O(p2r).

As summarized in Table 2.1, the decomp-knockoff construction avoids solving an SDP or an

ASDP as a whole since we are directly providing sdecomp, and this will considerably speed up

the whole process. Whereas multi-decomp knockoffs are not substantially slower to construction

compared to decomp-knockoff. The LR-knockoff construction is the fastest as it is able to completely

avoid the covariance reconstruction process and it samples knockoff variables from independent

Gaussian distributions. Multi-LR knockoffs are only slightly slower than LR knockoffs to construct,

as it repeats the sampling process M times but does not sample from a conditional multivariate

Gaussian distribution. When it comes to variable selection, multi-LR knockoffs might lose the edge

in terms of the cost for calculating knockoff statistics. In conclusion, when p is large, the proposed

methods in this section might become the only feasible knockoff constructions in comparison to the

ones introduced in Candès et al. [2018].

2.5 Variable Selection

Under the knockoff framework, the validity of conditional inference is mainly guaranteed by

the exchangeability condition. When it holds, we do have some flexibility in terms of the choice of

knockoff statistics. Conventionally, Lasso coefficients are used to construct knockoff statistics under
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different settings, but under the context of differential analysis for scRNA-seq data, it would be

preferred to use models that are specifically designed for this purpose. While FDR control would

have theoretical guarantee, good knockoff statistics matter when a high power is desired as well.

A wide variety of models could be used to analyze scRNA-seq data, including but not limited to

methods that are initially developed for differential analysis of bulk RNA-seq data [Love et al.,

2014; Robinson et al., 2009], zero-inflated models specifically for scRNA-seq data [Finak et al.,

2015; Kharchenko et al., 2014; Risso et al., 2018], and nonparametric methods [Hollander et al.,

2013; Li and Tibshirani, 2013]. In this chapter, we want to focus on the knockoff statistics W that

is defined based on p-values obtained by applying three types of widely used tests for scRNA-seq

data: the Wilcoxon rank sum test (WRT) [Hollander et al., 2013], the Model-based Analysis of

Single-cell Transcriptomics (MAST) model [Finak et al., 2015], and logistic regression test (LRT).

We would like to first briefly describe the three methods.

The WRT is a non-parametric two-sample test. For each variable, the observations are separated

into two groups with n1 and n2 samples each, where n1 + n2 = n, and then ranked jointly. The

test statistics equals to the sum of the ranks in the first group, which is then standardized and

approximately calibrated by a standard Gaussian distribution,

ZWRT =

∑
ranksgroup 1 − n1(n1 + n2 + 1)/2

(n1n2(n1 + n2 + 1)/12)1/2
.

The null hypothesis is rejected when |ZWRT| > z1−α/2.

MAST is a hurdle model designed by Finak et al. [2015] to address the bimodal expression

distribution and zero-inflation of gene expression. The expression rate P(Zij = 1) and the level

of expression, conditioning on the gene being expressed, Gij |Zij = 1, are modeled with a logistic

regression and Gaussian linear model, respectively,

logit(P(Zij = 1|X = xi)) = x⊤
i β

D
j ,

Gij = x⊤
i β

C
j + ϵij , ϵij

i.i.d∼ N (0, σ2
j ) and Zij = 1.

Here, X are covariates, which can but do not necessarily need to be the group of k covariates in

Section 2.3, and x⊤
i is the i-th row of X. The coefficients of the logistic model are regularized using

a Bayesian approach and the heterogeneous gene-specific variances of the linear model are shrinked

to a global estimate of the variance using an empirical Bayes method. Testing for differential

expression is carried out using the likelihood ratio test for each gene.
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LRT was initially considered when microarray gene expression assays were developed [Shevade

and Keerthi, 2003; Xing et al., 2001], and attracted further attention after larger sample sizes

become available due to scRNA-seq techniques [Ntranos et al., 2019]. In this work, we will consider

a multivariate logistic regression, where the p-values are calculated via likelihood ratio tests. We

use the the R package Seurat (version 4.0.4) [Satija et al., 2015] developed and maintained by

the Satija lab to implement all tests.

The knockoff statistics for our variable selection is defined as Wj = p′j− p̃′j where p
′
j = − log(pj)

and p̃′j = − log(p̃j). pj and p̃j are p-values calculated on the log-normalized data Gobs and the

rescaled knockoffs G̃obs respectively. Note that if a variable is independent from the model, its

corresponding p-values for original and knockoff counterpart follow the same distribution such

that the knockoff statistic can be either positive or negative with equal probability. Furthermore,

Bonferroni corrected p-values will also be considered. In fact, to ensure simpler presentation, only

corrected p-values are included in the main text. Results related to non-corrected p-values are

presented in Appendix A.5.

For single knockoff, all genes whose knockoff statistics Wj ≥ τ are selected, where

τ = min

{
t > 0 :

1 + #{j : Wj ≤ −t}
#{j : Wj ≥ t}

≤ q

}
,

such that the FDP is expected to be controlled below q.

For multiple knockoffs, we apply the modified version described by He et al. [2021]. The cor-

responding p-values for each of G0,G1, . . . , and GM are now denoted as pmj and p′mj = − log(pmj )

for j = 1, . . . , p and m = 0, 1, . . . ,M , where G0 = Gobs, and Gm denote the rescaled multi-LR or

multi-decomp knockoffs. The knockoff statistic for each feature 1 ≤ j ≤ p now is redefined as

Wj = τj1{κj=0},

where τj = p
′(0)
j − median

1≤m≤M
p
′(m)
j is the difference between the largest transformed p-value and the

median of the remaining ones and κj = argmax
0≤m≤M

p′mj . The threshold for deciding whether the null

hypothesis should be rejected is then defined as

τ = min

{
t > 0 :

1
M + 1

M#{j : κj ≥ 1, τj ≥ t}
#{j : κj = 0, τj ≥ t}

}
such that Ŝ = {j : Wj ≥ τ}.
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2.5.1 e-BH procedure

For the e-BH procedure, we generate M copies of knockoffs G̃obs,1, . . . , G̃obs,M and calculate

their respective importance statistics
{
Wm

j

}
1≤j≤p

. Here, M does not necessarily need to be the

same as in Section 2.4.4 and it should be clear depending on the context. Then, we can calculate

their e-values via

emj = p×
1{Wm

j ≥τm}

1 + #{j : Wj ≤ −τm}
,

where

τm = min

{
t > 0 :

1 + #{j : Wm
j ≤ −t}

#{j : Wm
j ≥ t}

≤ qkn

}
.

For derandomization, take the average of the M set of e-values eavgj =
∑M

m=1 e
m
j /M . Finally, select

all variables with an average e-value greater than or equal to eavg
[k̂]

, where k̂ = max1≤j≤p{j : eavg[j] ≥

p/(qebhj)} and eavg[j] is the j-th ordered average e-value, from the largest to the smallest, such that

Ŝ = {j : eavgj ≥ eavg
[k̂]
}.

It should be noted that the knockoffs mentioned at the beginning of the subsection can be any

valid knockoffs. In this chapter, we only consider decomp and LR knockoffs and we denote the e-BH

procedures using the respective knockoffs as e-decomp and e-LR. Furthermore, notice that there

are two different qs: qkn and qebh. Here, qebh is used to control the false discovery rate, whereas qkn

is in fact a parameter that need to be tuned. As discussed in Ren and Barber [2022], it is preferred

to choose qkn < qebh when M > 1, and we will use the suggested setting qkn = qebh/2.

Why do we introduce both multiple knockffs and e-BH for derandomization? After all, the e-BH

procedure does not require us to simultaneously generate multiple knockoff and it is more flexible

to work with. There is, however, one issue: The e-values we calculate are based on single knockoffs,

and at least ⌈ 1
qkn
⌉ signal variables are required in order to select any variables. Compared to the

multiple knockoff procedure, the fact that qkn < qebh = q will only exacerbate this shortcoming.

Hence there is a tradeoff between the low detection threshold of multiple knockffs and the flexibilty

of e-BH.

2.5.2 Q-values for knockoffs and e-BH

Another important measure of statistical significance regarding FDR would be q-values [Storey

and Tibshirani, 2003]. In this section, we will define the q-values under the context of model-X
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knockoff framework and e-BH procedure, beginning with the definition of the q-value for usual FDR

control based on ordered p-values:

q-value = min
t≥p-val

F̂DR(t),

where p-val is the p-value of the hypothesis under consideration and F̂DR(t) is the estimated FDR

if we are to reject all tests with p-value less than t. According to He et al. [2021], the q-value for a

knockoff statistics Wj > 0 is defined as

knockoff-qj = min
t≤Wj

1 + #{ℓ : Wℓ ≤ −t}
#{ℓ : Wℓ ≥ t}

,

where 1+#{ℓ:Wℓ≤−t}
#{ℓ:Wℓ≥t} is an estimate of the proportion of false discoveries if we are to select all genes

with knockoff statistics greater than t > 0. The q-value for a gene with knockoff statistics Wj ≤ 0

is defined as knockoff-qj = 1 as the gene will never be selected.

Similarly, the q-values for multiple knockoffs can be defined as

multi-knockoff-qj = min
t≤τj

1
M + 1

M#{ℓ : κℓ ≥ 1, τℓ ≥ t}
#{ℓ : κℓ = 0, τℓ ≥ t}

.

The q-value for a gene where κj ̸= 0 is defined as multi-knockoff-qj = 1.

Calculating q-values for the e-BH procedure is more difficult compared to the ones for (multiple)

knockoffs, which have a straightforward equation, since the knockoff e-values depend on the target

FDR q. Of course, we can still estimate these q-values by adhering to the definition and calculate

them in intervals
(
k−1
N , k

N

]
, where k = 1, . . . , N . At any given q = k

N , the variable is then assigned

with the smallest possible value of k
N it remains to be selected.

2.6 Simulations

In this section, we compare the performance of the various knockoff constructions under dif-

ferent scenarios. We begin with a brief discussion on the choice for λ. Then, in Section 2.6.1

we discuss the necessity of imputation. In Section 2.6.2, we compare the performance of different

knockoff constructions against the construction introduced in Candès et al. [2018] based on syn-

thetic signals. Furthermore, as a baseline, we also compare knockoff variable selection with the
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Benjamini-Hochberg (BH) procedure [Benjamini and Hochberg, 1995], which is a canonical ap-

proach to FDR control. Assume there are l hypotheses under consideration. The procedure is a

step-up one with ordered p-values p(1), . . . , p(l) as input. To control FDR at level q, let

k̂ = max
1≤j≤l

{j : p(j) ≤ qj/l},

then all hypotheses with p-values no larger than p(k̂) are rejected.

In the imputation step, there is an important tuning parameter λ (see Algorithm 1 in Sec-

tion 2.3), which can be viewed as the tuning parameter for a ridge regression when we iteratively

update A and B. In ridge regression, increasing the value of λ would lead to a stronger shrinkage

effect in the coefficients estimated. Likewise, increasing the value of λ would decrease the rank of

the solution obtained by applying Algorithm 1. However, unlike cross-validation in ridge regres-

sion, there is no sound way to pick a good λ. As described in Hastie et al. [2015], one could begin

with λmax, corresponding to the largest singular value of Gobs, and select any value in [0, λmax).

Intuitively the choice of λ reflects a bias-variance tradeoff: by decreasing λ, the accuracy of the

matrix recovery would increase as more information is used, until at some point, the algorithm will

“over-recover”. Therefore, it is suggested to use a non-zero but small λ to reach the full potential

of the variable selection process.

2.6.1 Benefits of imputation

We benefit from the imputation mainly from the following two perspectives. First, due to the

nature of scRNA-seq data, there are a lot of missing values, which would lead to an unstable

estimation of the covariance structure and consequently knockoff variables of low quality. We

compare the difference of covariance estimation with and without imputation based on the dataset

from scREAD, a scRNA-seq database [Jiang et al., 2020]. Specifically, we use the dataset sampled

from the superior parietal lobe region [Alsema et al., 2020]. The full dataset includes 15,141

microglia transcriptomes and 16,767 genes, though we focus on the first 2000 genes for simplicity.

In sc-softImpute, centered CDR and gender, and 20 leading principal components of the centered

Gobs are used to initialize X and A′
0 respectively, and λ = 25.2 is used in the imputation algorithm.

Genes with less than or equal to 23 expressions as well as genes with no variation in gender are

excluded since they will fail to provide estimations for the covariance in the case where no imputation

is involved. Therefore, a subset of 1949 genes out of the first 2000 genes, and 15,141 observations
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Figure 2.1: Comparison of knockoff covariance and original covariance. In the left panel (A) are

the estimated variances of the rescaled decomp-knockoff variables against the estimated variances

of the original variables. In the right panel (B) are 5000 randomly sampled values from each of

the upper triangles of the estimated covariance matrices. The randomly sampled indices are shared

between comparison.

are used for the estimation, and the same subset is used for the estimation without imputation.

As shown in Figure 2.1, we first estimated the covariance with imputation (denoted as Σ̂G) and

without imputation (denoted as Σ̂Gobs), then generated decomp-knockoff variables by using the two

estimated covariance matrices respectively. Since no imputation was involved in the latter case,

there are no estimators for the A and B as in equation (2.13) readily available. Therefore, A is

constructed using CDR, gender, and 20 leading principal components of Gobs, then it is centered

and scaled, and rows of B are estimated by using the coefficients of linear regression with the

expressed parts of each gene as response according to equation (2.12). Both sets of knockoffs are

rescaled accordingly and denoted as ‘Imputation’ (colored in orange) and ‘No Imputation’ (colored
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in cyan) in the figure, respectively. In the left panel, we plot the estimated variances of the rescaled

knockoff variables against the estimated variances of the original variables. On the right, we plot

5000 randomly sampled off-diagonal elements of the covariance matrix of the rescaled knockoff

variables against the corresponding covariance of the original variables. From the figure, we can see

that the covariance of the knockoffs generated using the Σ̂Gobs tend to be further away from the

diagonal line than its counterpart, which suggests that imputing the missing data would enable us to

generate knockoff variables better preserving the exchangeability condition. Moreover, carrying out

the imputation process allows us for different knockoff constructions such as the LR construction

and the multi-LR construction, both of which come with relatively no additional computational

cost, and could serve as alternatives from decomp knockoffs when computing budgets are tight. Of

course, in the case of multi-LR knockoffs, since M + 1 sets of p-values will be computed, the cost

of calculating knockoff statistics will be higher.

2.6.2 Comparison of knockoff constructions under synthetic signals

In this subsection, we conduct a range of simulations to test the power and FDR control of

the proposed knockoff constructions (asdp, decomp, LR, multi-decomp and multi-LR) and e-BH

procedures (e-decomp and e-LR) based on the same dataset described in Section 2.6.1. First, we

will lay out the details of the simulation setting.

Imputation. In practice, the choice of covariates X used in imputation would largely depend on

domain knowledge and the availability of data. Given our data set, centered CDR and gender, and

20 leading principal components of the centered Gobs are used to initialize X and A′
0 respectively.

Genes with less than or equal to r + 1 (r = 22) expressions are excluded since they will fail to

provide estimations for σ2
j . This will leave us with a subset of 1951 genes out of the set of the first

2000 genes, and 15,141 observations.

Knockoff construction. Based on the imputation results, construction of decomp knockoffs and

asdp knockoffs are implemented using the R package knockoff (version 0.3.3) under R version

4.1.0 with the reconstructed covariance as described in Section 2.4.2. We will set sdecomp =

(1.95Djj)1≤j≤p instead of (2Djj)1≤j≤p to generate decomp knockoffs. Because in practice, keeping

2ΣG − diag{sdecomp} in equation (2.10) strictly positive definite would allow us to avoid possible

numerical errors without compromising the power. Similarly, smulti-decomp = (1.15Djj)1≤j≤p in-
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stead of (1.2Djj)1≤j≤p when M = 5 sets of knockoffs are generated for multi-decomp knockoffs.

Both LR knockoffs and multi-LR knockoffs are sampled as described in Section 2.4.3 and 2.4.4.

M = 5 sets of knockoffs are generated for multi-LR knockoffs. Each of the constructions is only

sampled once.

Signal generation. After centering and scaling Gobs, we randomly generate 50 signals in each

repetition by repeatedly sampling from a Gaussian distributionN (0, sgn2× 2 log(p)
n ) and only keeping

those with absolute values greater than sgn×
√

2 log(p)
n . sgn is used to indicate the signal strength

and is set to be sgn = 3. Signal locations are randomly chosen. We use a logit link g(x) = log( x
1−x )

and

g(µi) = β1G1 + . . . βpGp, where µi = P(Y = 1|G),

to generate the response.

Variable selection. WRT, MAST, and LRT are used to calculate the Bonferroni corrected

knockoff statistics. We incorporate CDR and gender as covariates in MAST and LRT. We consider

target FDRs q = 0.1, 0.05 and 0.01 for comparison. M = 5 copies of knockoffs are generated for

both e-decomp and e-LR.

In Figure 2.2, the results of 20 repetitions of different knockoff constructions under two FDR

targets q = 0.1 and q = 0.01 are presented. The first thing one might notice in the figure is

how knockoff statistics that are constructed with LRT p-values yield clearly superior results than

knockoff statistics constructed using MAST or WRT p-values, achieving more powerful variable

selection under controlled FDR. This is unsurprising since the signals are generated via the logistic

model in the simulations, naturally making LRT the most effective at identifying these signals.

Following LRT, it could be observed that knockoff statistics constructed using MAST yield more

powerful results than the non-parametric counterpart. Overall, while we do have some flexibility in

terms of the choice of knockoff statistics under the knockoff framework, the way it is constructed

matters a lot for powerful variable selection.

Aside from the difference between knockoff statistics, it could be observed that decomp knockoffs

largely perform the best among all proposed knockoff constructions when q = 0.1. As we have

mentioned in Section 2.4.2, asdp knockoffs are not necessarily more powerful than decomp knockoffs.

Based on our simulations, it might even be preferable to opt for decomp knockoffs over asdp

knockoffs in practice for their ease in construction and likely higher power. LR knockoffs have

a slightly worse power under LRT and WRT compared to decomp knockoffs, but they perform
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Figure 2.2: Comparison of knockoff constructions and BH procedure under q = 0.1. Panel A and

B are box-plots of the FDP and power over 20 repetitions respectively. Simulations are carried

out according to the details described in Section 2.6.2 using 1951 genes and 15,141 observations,

sgn = 3 and λmax = 252.07.

similarly to asdp knockoffs and the FDR is well controlled. The loss in power for LR knockoffs is

compensated by the fact that they are the fastest to construct. For multi-decomp and multi-LR

knockoffs, the worse power in comparison is expected as Gimenez and Zou [2019] have pointed

out that “sampling multi-knockoffs impose a more stringent constraint to construct the knockoff
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Table 2.2: Comparison of knockoff constructions and BH procedure under q = 0.05. This table shows

the FDR and power of simulations where sgn = 3, target FDR q = 0.05 and Bonferroni corrected

p-values are used to calculate knockoff statistics. The average FDP and power over 20 simulations

for each setting are shown in each column with the standard deviation in the parentheses. The BH

procedure uses uncorrected p-values.

LRT MAST WRT

Knockoff

Construction
λ FDR Power FDR Power FDR Power

asdp 0.0 0.03 (0.04) 0.89 (0.08) 0.01 (0.03) 0.59 (0.32) 0.05 (0.11) 0.33 (0.28)

asdp 25.2 0.03 (0.03) 0.87 (0.14) 0.02 (0.04) 0.72 (0.22) 0.01 (0.02) 0.16 (0.27)

asdp 50.4 0.06 (0.04) 0.93 (0.05) 0.03 (0.05) 0.73 (0.15) 0.08 (0.11) 0.54 (0.19)

asdp 75.6 0.04 (0.04) 0.94 (0.05) 0.05 (0.07) 0.81 (0.12) 0.05 (0.08) 0.38 (0.28)

decomp 0.0 0.04 (0.03) 0.96 (0.03) 0.03 (0.04) 0.71 (0.22) 0.09 (0.14) 0.74 (0.27)

decomp 25.2 0.05 (0.03) 0.95 (0.04) 0.02 (0.05) 0.65 (0.20) 0.05 (0.09) 0.62 (0.34)

decomp 50.4 0.05 (0.05) 0.96 (0.03) 0.02 (0.04) 0.57 (0.29) 0.12 (0.13) 0.69 (0.23)

decomp 75.6 0.05 (0.06) 0.95 (0.03) 0.02 (0.04) 0.55 (0.17) 0.07 (0.10) 0.68 (0.26)

LR 0.0 0.03 (0.02) 0.87 (0.08) 0.02 (0.03) 0.76 (0.12) 0.00 (0.01) 0.11 (0.20)

LR 25.2 0.03 (0.02) 0.90 (0.07) 0.02 (0.02) 0.78 (0.20) 0.01 (0.03) 0.38 (0.28)

LR 50.4 0.03 (0.03) 0.94 (0.08) 0.05 (0.05) 0.72 (0.21) 0.01 (0.03) 0.29 (0.29)

LR 75.6 0.03 (0.03) 0.91 (0.07) 0.04 (0.05) 0.78 (0.14) 0.02 (0.02) 0.45 (0.34)

multi-decomp 0.0 0.03 (0.03) 0.88 (0.05) 0.02 (0.02) 0.74 (0.07) 0.00 (0.02) 0.06 (0.09)

multi-decomp 25.2 0.04 (0.03) 0.92 (0.04) 0.02 (0.02) 0.76 (0.07) 0.01 (0.03) 0.20 (0.17)

multi-decomp 50.4 0.02 (0.02) 0.92 (0.05) 0.03 (0.04) 0.74 (0.09) 0.02 (0.04) 0.32 (0.16)

multi-decomp 75.6 0.03 (0.02) 0.92 (0.03) 0.01 (0.02) 0.76 (0.09) 0.07 (0.10) 0.35 (0.20)

multi-LR 0.0 0.02 (0.02) 0.83 (0.06) 0.02 (0.02) 0.69 (0.09) 0.02 (0.07) 0.04 (0.09)

multi-LR 25.2 0.03 (0.02) 0.86 (0.07) 0.02 (0.03) 0.71 (0.11) 0.01 (0.06) 0.07 (0.09)

multi-LR 50.4 0.04 (0.02) 0.90 (0.06) 0.01 (0.02) 0.76 (0.11) 0.00 (0.02) 0.12 (0.13)

multi-LR 75.6 0.03 (0.03) 0.91 (0.05) 0.05 (0.06) 0.74 (0.06) 0.01 (0.02) 0.17 (0.13)

e-decomp 0.0 0.03 (0.03) 0.89 (0.21) 0.00 (0.01) 0.12 (0.30) 0.02 (0.07) 0.16 (0.33)

e-decomp 25.2 0.04 (0.05) 0.88 (0.21) 0.00 (0.00) 0.04 (0.17) 0.02 (0.05) 0.36 (0.41)

e-decomp 50.4 0.03 (0.02) 0.94 (0.05) 0.00 (0.02) 0.03 (0.14) 0.04 (0.07) 0.44 (0.41)

e-decomp 75.6 0.03 (0.02) 0.94 (0.05) 0.00 (0.00) 0.04 (0.17) 0.06 (0.08) 0.48 (0.41)

e-LR 0.0 0.01 (0.02) 0.39 (0.44) 0.00 (0.01) 0.04 (0.17) 0.00 (0.00) 0.00 (0.00)

e-LR 25.2 0.01 (0.02) 0.59 (0.45) 0.01 (0.02) 0.19 (0.33) 0.00 (0.00) 0.00 (0.00)

e-LR 50.4 0.02 (0.02) 0.84 (0.29) 0.00 (0.01) 0.29 (0.40) 0.00 (0.00) 0.00 (0.00)

e-LR 75.6 0.02 (0.02) 0.92 (0.06) 0.01 (0.02) 0.15 (0.31) 0.00 (0.00) 0.00 (0.00)

asdp cov 0.02 (0.03) 0.77 (0.22) 0.02 (0.03) 0.57 (0.27) 0.01 (0.02) 0.25 (0.38)

BH 0.13 (0.12) 0.99 (0.01) 0.12 (0.11) 0.96 (0.03) 0.29 (0.21) 0.94 (0.03)
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conditional distribution”, and multiple knockoffs do not guarantee higher power. However, it is an

acceptable tradeoff for the low detection threshold ⌈ 1
qM ⌉ of multi-knockoffs. Notice that only when

using multi-decomp and multi-LR knockoffs, it is possible to select meaningful variables under

stringent target FDR since other single knockoffs methods require at least 100 signal variables

to reach the expected detection threshold whereas multi-knockoffs require only 20 signals. This

property will be useful if it is expected that the signal in the data of interest is sparse. The

improvement in stability of multi-knockoffs, in the sense that the same signals are consistently

identified by different multi-knockoffs, cannot be analyzed under our current setting, but it is

discussed in detail by Gimenez and Zou [2019]. For the e-BH results, we can see that both e-decomp

and e-LR perform similarly compared to their respective single knockoff counterparts both in terms

of FDR control and power, if λ and the knockoff statistics are chosen properly. However, when we

use WRT to calculate knockoff statistics, variable selection results using e-LR have a large variance.

This is because derandomized knockoffs tend to either almost always select or almost never select

signal variables. In this specific case, many of the individual simulations simply did not select any

of the signal variables. The same tendency will also occur in multi-knockoffs and e-decomp results,

though it is not reflected in the figure.

In Table 2.2, the knockoff statistics and constructions remain the same as the ones used in

Figure 2.2 but variables are selected under a different target FDR level q = 0.05. The observations

are more or less parallel to the ones made in Figure 2.2. To add value to the table, we include sim-

ulation results of the BH procedure and compare our proposed methods with the standard knockoff

generator by Candès et al. [2018]. A set of knockoffs is constructed using the observed and centered

log-normalized gene expression Gobs, meaning that instead of using the decomposed covariance as

in equation (2.13), the empirical covariance is estimated using all data. Knockoffs are generated by

solving an ASDP and sampling from a conditional multivariate Gaussian distribution, which are

then rescaled accordingly. The results are labeled as asdp cov knockoffs. It should be noted that the

empirical covariance is estimated using a shrinkage covariance estimator introduced in Schäfer and

Strimmer [2005] due to the sparsity of scRNA-seq data, which is arguably an improved but more

complex covariance estimator. Compared to the results for asdp cov knockoffs and BH procedure,

the proposed variable selection methods are clearly superior: asdp cov knockoffs demonstrate a far

lower power with larger standard deviation, mostly because it occurs that no variables are selected

over many of the repetitions, whereas the BH procedure, while being more powerful, fails at con-
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trolling the FDR below the target q = 0.05, not even with LRT p-values. Furthermore, in e-decomp

and e-LR, high variances in terms of power that are similar to the case observed in Figure 2.2 are no

longer limited to WRT-based knockoffs statistics. This is because now qkn = 0.025 when calculating

the e-values with each of the single knockoff copies, and it becomes harder to consistently detect the

signal variables. Combine the small target FDR with less powerful knockoffs and knockoff statistics,

many of the repetitions will suffer from low power. The only cases that perform well are those in

which knockoffs statistics are calculated based on LRT.

2.6.3 The knockoff filter is robust to confounding effects

In this subsection, we will use simulation studies to illustrate how our approach can make

adjustments to potential confounders, especially the batch effect. Since scRNA-seq data is collected

in different batches, batch effects can be a potential source of variation and experimental noise that

scientists are widely aware of [Leek et al., 2010; Stegle et al., 2015; Tung et al., 2017]. For reference,

we also compare our method with the BH procedure. Our simulation is based on a real dataset

from Yang et al. [2022]. The full dataset includes 143,793 single-nucleus transcriptomes and 23,537

genes. We will work on a subset with 12,193 samples that are collected from hippocampus tissues

and astrocyte cell type. In the following, we will first lay out the details for the simulation setting

that is different from the setting in Section 2.6.2.

Imputation. Centered gender, and 20 leading principal components of the centered Gobs are

used to initialize X and A′
0 respectively. On top of gender and principal components, one of the

variations of batch and CDR, respectively, are included as covariates X:

� batch, permuted batch or no batch, and

� CDR or no CDR.

After excluding genes with less than or equal to 26 expressions, which is the maximum value of

r + 1 (r = 25) out of all possible combinations, the same subset of 2275 genes out of the set of the

first 3000 genes and 12,193 observations is used for all simulation variations.

Knockoff construction. Only decomp knockoffs are presented in this subsection since it is still

the best performing knockoff construction. Including other knockoff constructions does not provide

additional insight on top of what we have already learned in Section 2.6.2.
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Signal generation. As in Section 2.6.2, 50 signals are generated via the logistic model and

sgn = 3. Except that the signal variables are controlled, meaning that for each repetition, the

signal locations are the same across all variations, and batch is included in the signal generation.

Namely,

g(µi) = β1G1 + . . . βpGp + 2× sgn×
√

2 log(p)

n
× batch,

where batch are the batch labels in numeric values.

Variable selection. LRT and MAST results are considered for BH procedure and only LRT

p-values, which are Bonferroni corrected, are considered for the knockoff filter. To calculate LRT

p-values, gender, age, and the same variation of batch and CDR are incorporated as covariates of

the logistic regression model. For the knockoff filter, we also consider the comparison for whether

or not CDR was incorporated in the imputation step. The target FDR is set as q = 0.1.

In Table 2.3, we provide simulation results for the BH procedure. It can be clearly seen that

the FDR control largely depends on which set of covariates is explicitly included in the model. In

the absence of CDR, the FDR can be out of control even when we make adjustments with respect

to the batch effect. When batch labels are permuted or removed from the test, we observe either a

small further inflation in FDR when LRT is used, or a larger inflation in the case of MAST. When

CDR is included as a covariate in the test, however, such inflations can not be observed. This

suggests that CDR might be another confounding variable, and can partly explain the variation of

batch effect. In practice, batch effect can usually be easily identified as a potential confounder in

scRNA-seq experiments, while it is more tricky to identify CDR. In summary, the FDR control by

BH procedure is very sensitive to the choice of covariates (potential confounders). If a confounder

is unobserved or is not appropriately incorporated, the FDR can be uncontrolled.

In Table 2.4, we summarize the simulation results for the proposed method. Based on the

results, our method is quite robust to potential confounders: no matter whether batch effect or

CDR is included in the imputation and calculation of LRT p-values, the FDR is under control in all

cases. We also observe that when batch labels are permuted or removed, their effect on the variable

selection is rather minimal when λ is chosen properly. It is still beneficial to include CDR when

calculating p-values, as we can see it generally leads to a higher power.

A possible explanation for these observations is that the latent factors A can explain the varia-

tions of both batch effect and CDR. For our approach, by recovering latent factors and generating

knockoff variables preserving the exchangeability condition, we can implicitly make adjustments
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Table 2.3: BH procedure and confounding effects. This table shows the FDR and power of simula-

tions where sgn = 3, target FDR q = 0.1 and non-corrected p-values based on LRT and MAST are

used to for BH procedure. The average FDP and Power over 20 simulations for each setting are

shown in each column with the standard deviation in the parentheses.

no CDR with CDR

Test

statistics
batch FDR Power FDR Power

LRT

original 0.14 (0.07) 0.99 (0.01) 0.08 (0.03) 0.99 (0.01)

permute 0.17 (0.10) 0.99 (0.01) 0.09 (0.04) 0.99 (0.01)

remove 0.18 (0.12) 0.99 (0.01) 0.10 (0.03) 0.99 (0.01)

MAST

original 0.22 (0.27) 0.97 (0.03) 0.03 (0.02) 0.96 (0.03)

permute 0.31 (0.32) 0.97 (0.02) 0.02 (0.02) 0.96 (0.03)

remove 0.27 (0.29) 0.98 (0.02) 0.03 (0.02) 0.96 (0.03)

with respect to batch effect and CDR. This also suggests that, if a confounder is unobserved (such

as when CDR is not successfully identified), but the variation of which can be explained by the

latent factors, our method can still adjust for such a confounder without explicitly including it

in the model. However, when latent factors cannot fully explain the variation of an unobserved

confounder, we would still fail to make the adjustment.

2.7 Application to scRNA-seq data

In this section, we apply the proposed methods to the scRNA-seq data set previously studied in

Section 2.6.3, but we are now focusing on observed outcomes (Alzheimer’s disease and no cognitive

impairment) instead of synthetical ones. We will identify DEGs based on date combined from

hippocampus and superior frontal cortex, cell-type by cell-type. Specifically, we will carry out our

analysis separately for astrocytes (n = 22695, p = 11933), oligodendrocytes (n = 34774, p =

11769), pericytes (n = 27195, p = 11250), microglias (n = 3373, p = 6565) and neurons (n =

2941, p = 8377), under the knockoff framework. We begin with a description of the details of our

approach:
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Table 2.4: Knockoff procedure and confounding effects. This table shows the FDR and power

of simulations where sgn = 3, target FDR q = 0.1 and Bonferroni corrected p-values are used to

calculate knockoff statistics. Only decomp knockoffs and LRT based knockoff statistics are included.

The average FDP and power over 20 simulations for each setting are shown in each column with

the standard deviation in the parentheses.

Imputation no CDR no CDR with CDR

LRT no CDR with CDR with CDR

batch λ FDR Power FDR Power FDR Power

original

0.00 0.00 (0.00) 0.18 (0.21) 0.00 (0.00) 0.19 (0.22) 0.00 (0.00) 0.17 (0.22)

22.2 0.00 (0.01) 0.47 (0.29) 0.00 (0.01) 0.57 (0.22) 0.00 (0.01) 0.57 (0.23)

44.4 0.00 (0.01) 0.57 (0.30) 0.01 (0.01) 0.67 (0.19) 0.01 (0.01) 0.67 (0.19)

66.6 0.01 (0.01) 0.62 (0.28) 0.01 (0.01) 0.74 (0.15) 0.01 (0.01) 0.74 (0.15)

permute

0.00 0.00 (0.02) 0.20 (0.25) 0.00 (0.00) 0.23 (0.24) 0.00 (0.00) 0.23 (0.26)

22.2 0.01 (0.02) 0.48 (0.26) 0.00 (0.01) 0.59 (0.21) 0.00 (0.01) 0.59 (0.23)

44.4 0.00 (0.01) 0.61 (0.27) 0.00 (0.00) 0.71 (0.17) 0.00 (0.00) 0.71 (0.17)

66.6 0.00 (0.01) 0.65 (0.24) 0.00 (0.01) 0.79 (0.12) 0.00 (0.01) 0.79 (0.12)

remove

0.00 0.00 (0.00) 0.17 (0.20) 0.00 (0.00) 0.19 (0.21) 0.00 (0.00) 0.19 (0.23)

22.2 0.00 (0.01) 0.46 (0.30) 0.00 (0.01) 0.53 (0.27) 0.00 (0.01) 0.53 (0.27)

44.4 0.00 (0.01) 0.56 (0.28) 0.00 (0.01) 0.66 (0.21) 0.00 (0.01) 0.66 (0.21)

66.6 0.00 (0.01) 0.62 (0.26) 0.01 (0.01) 0.74 (0.17) 0.01 (0.01) 0.74 (0.17)

Imputation. Gender, batch, and CDR are used as covariates for imputation. Additionally, 115

leading principal components are used as an initialization for astrocytes, oligodendrocytes, and

pericytes, while 50 leading principal components are used for microglias and neurons. The number

of principal components is chosen to be approximately equal to 10% of the dimension, which is

understood as the number of genes after excluding those ones with too few number of observed

expressions (less than number of covariates + 1).

Knockoff construction. For derandomization purposes, we consider constructing multiple knock-
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Table 2.5: Number of DEGs selected under the knockoff framework. This table shows the number

of DEGs selected under the knockoff framework, using multiple knockoffs or e-BH procedure. Re-

spectively, λ’s are set to be 77.4, 19.4, 34.0, 90.5 and 58.5 for each of the cell types, from the left

to the right, which equal to 0.1λmax. The target FDR is set at q = 0.1.

Method Test Astrocyte Microglia Neuron
Oligo-

dendrocyte
Pericyte

multi-

decomp

LRT 502 38 22 1 3

MAST 531 37 15 2 2

WRT 398 16 12 0 3

multi-LR

LRT 518 28 19 1 3

MAST 555 25 23 2 2

WRT 333 19 26 0 2

e-decomp

LRT 135 92 0 0 0

MAST 92 0 0 0 0

WRT 0 0 21 0 0

e-LR

LRT 63 0 0 0 0

MAST 449 26 0 0 0

WRT 0 0 0 0 0

offs. Namely, we construct both multi-decomp and multi-LR knockoffs with M = 10. smulti-decomp

in (2.16) is set to be (Djj)1≤j≤p to avoid potential numerical errors.

Variable selection. We calculate Bonferroni corrected p-values for WRT, MAST, and LRT, and

calculate knockoff statistics based on them. In MAST and LRT, we include gender, age, batch,

and CDR as covariates. The target FDR is q = 0.1. We consider all three tests as it is unknown

which one can better capture the association in real data. For e-BH procedure, we generate M =

10 groups of single knockoffs for both decomp and LR constructions. We will compare our methods

to the BH procedure. For the latter one, in order to reduce the number of selections, it is standard

in practice to filter genes by log fold change (logFC) before applying the BH procedure, which is

calculated as the logarithm of the average non-normalized expression between the two groups.

In Table 2.5, we present the number of genes selected by using different knockoff constructions in

combination with different knockoff statistics. Table 2.6 shows the number of genes selected using
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Table 2.6: Number of DEGs selected using BH procedure. This table shows the number of

DEGs selected using BH procedure, after screening for genes with logFC > lfc where lfc =

0, 0.05, 0.1, 0.25, 0.5. The target FDR is set at 0.1 and 0.05.

CellID
Sample

Size
logFC

Number

of genes

LRT MAST WRT

0.1 0.05 0.1 0.05 0.1 0.05

Astrocyte 22695

0 11933 5006 4284 4642 4009 5685 4941

0.05 3837 3682 3576 3529 3356 3683 3586

0.1 1609 1597 1594 1599 1594 1604 1601

0.25 227 226 226 227 227 227 227

0.5 29 29 29 29 29 29 29

Microglia 3373

0 6565 881 644 569 474 1395 1029

0.05 4236 1062 770 677 516 1672 1223

0.1 2498 1204 924 795 591 1630 1331

0.25 445 430 418 397 371 435 425

0.5 49 49 49 49 49 49 49

Neuron 2941

0 8377 653 467 402 320 1468 1098

0.05 4942 833 590 481 364 1794 1335

0.1 2698 1037 706 573 436 1883 1514

0.25 380 332 320 308 282 377 375

0.5 29 27 27 27 27 29 29

Oligo-

dendro-

cyte

34773

0 11769 4138 3432 4161 3445 8834 8168

0.05 3313 2989 2801 2974 2779 2704 2611

0.1 1159 1146 1146 1141 1136 904 868

0.25 129 129 129 129 129 128 127

0.5 11 11 11 11 11 11 11

Pericyte 27196

0 11250 5335 4660 6766 5974 5371 4683

0.05 3737 3580 3502 3651 3586 3561 3460

0.1 1624 1607 1606 1616 1614 1622 1622

0.25 344 344 343 344 344 344 344

0.5 61 61 61 61 61 61 61

BH procedure after filtering genes with different thresholds for logFC. Notice that when filtering

by logFC > 0, all genes are included, implying that we directly apply the BH procedure for FDR

control.
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Based on results summarized in Table 2.5 and Table 2.6, we can clearly see that the BH procedure

without logFC screening identifies far more number of genes compared to that by using the knockoff

procedure, regardless of cell type. Even in the absence of the AD DEGs ground truth, this disparity

raises concerns about the potential inflation of FDR for the BH procedure. For the proposed

knockoff procedure, the less number of identified DEGs might be due to the fact that we perform

conditional inference under the knockoff framework instead of marginal one. Conceptually, when

there are co-expressed genes, or genes from the same pathway, only the one that has an indepedent

effect on the disease will be selected.

We will focus on astrocytes for the remainder of the section for illustration purpose, as for this

cell type both methods have a relatively large number of discoveries. And we will compare the

knockoff-selected genes with the BH-selected genes.

Figure 2.3 is a scatterplot comparing the multi-decomp, e-decomp, multi-LR, and e-LR q-values

against the BH q-values (logFC > 0.17). The logFC is chosen such that the number of genes

selected using the BH procedure (545) is close to the number of genes selected using knockoffs.

It is important to note that the two-step procedure involving logFC screening and BH procedure

is not statistically rigorous, as it may suffer from selection bias. However, we admit that this

is a practical compromise, given that without logFC screening, as demonstrated in Table 2.6, the

number of selected genes would be impractically large for follow-up studies. We compare our results

with a genome-wide association studies (GWAS) of AD [Yang et al., 2022] and use the top 45 risk

genes to annotate our discoveries. DEG identification based on scRNA-seq data is usually affected

by the large variance of the data, and may vary significantly due to differences in the cell types,

unobserved confounders, and the type of tests applied. In contrast, top risk genes from GWAS are

generally replicable, and is highly likely to be differently expressed. This is the reason why we use

GWAS results as a benchmark. As shown in the figure, we can see that our proposed methods are

able to identify some of the risk genes alongside the BH procedure, including WWOX, CLU, and

SLC24A4, while also exclusively identifying APOE, one of the most discussed genes related to AD.

The observations in this section highlight several benefits of using our proposed methods. First,

conditional independence test by using knockoffs can help reduce the number of discoveries. Our

proposed knockoff construction also has a potential to protect us from FDR inflation due to un-

observed confounders, while the BH procedure can be more vulnerable in that case. Second, we

are able to avoid the ad-hoc nature of logFC screening before applying the BH procedure. As
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shown in this section, the choice of the threshold significantly changes the number of DEGs iden-

tified. Finally, despite the inherent randomness of the knockoff framework, it allows us to apply

stabilizing procedures such as multiple knockoffs or e-BH to improve replicability of the discoveries.

The BH procedure on the other hand, can have a FDP with high variance when being applied to

dependent p-values. And it is known that the BH procedure could produce highly skewed FDP dis-

tributions [Efron, 2012] that may lead to misleading conclusions. These advantages overall suggest

that our knockoff-based methods are more effective and reliable alternatives for variable selection

with guaranteed FDR control.

2.8 Discussion

In this chapter, we introduced a knockoff construction based on the spiked covariance model

to address the high-dimensionality and high-missingness in scRNA-seq data. Building upon the

model-X knockoff framework introduced by Candès et al. [2018], we assume that the correlation

among variables can be mainly captured by a low-rank structure, and make additional assumptions

on the distribution of the latent random factors. This approach leads to the construction of more

efficient and more powerful knockoffs. Additionally, we explored recent advancements in the knock-

off literature, including the low-rank knockoff construction [Fan et al., 2020; Zhu et al., 2021], and

two stabilizing methods: multiple knockoffs [Gimenez and Zou, 2019] and e-BH procedure [Ren and

Barber, 2022; Wang and Ramdas, 2022]. Importantly, while our focus is on scRNA-seq data, the

methodology described in this chapter can be applied to any high-dimensional dataset with missing

values, provided that the model in equation (2.2) is true and the missingness pattern is MCAR.

When applied to scRNA-seq data, we demonstrated that our knockoff approach can provide a

shorter list of discoveries that tend to have independent effects on the disease. It does not require

an ad-hoc logFC screening step either. The method can be more robust compared to the BH

procedure, especially in the presence of unaddressed confounding factors.

We recognize the recent work on Clipper by Ge et al. [2021], which is a statistical framework

for variable selection with FDR control in high-throughput data analysis. Motivated by the work

by Candès et al. [2018] and Gimenez and Zou [2019], Clipper shares a lot of similarities with the

knockoff framework, among which a noticable feature is that the method does not rely on p-values.

42



The type-I error control is achieved by running permutations instead of constructing knockoffs

hence the method is easier to implement. However, by using permutations, Clipper still performs

marginal inference and is not able to account for dependencies among genes. Furthermore, it

does not consider any potential confounding factors. We believe that our method provides more

flexibility and is likely to be more powerful than Clipper. Additionally, although we are using p-

values to calculate the knockoff statistics, the validity of the FDR control depends on the flip-sign

property and is not affected by model misspecifications.

For future work, it would be interesting to explore knockoff construction that can capture both

column and row dependencies in scRNA-seq data. The individual cell donor is another major source

of variation, as multiple cells may come from the same donor. In fact, the (biological) variation

explained by the individual can be far greater than the (technical) variation due to batch [Tung

et al., 2017]. In this work, we used knockoffs to capture the column-wise covariance among gene

expressions, but an interesting but more difficult question is: Using knockoffs, can we capture the

row-wise covariance among the cells, and will such a construction achieve better FDR control?

It remains unclear whether the conditional inference under the knockoff framework is still valid

after we impute the missing values. In this work, we rely on imputation to recover the low-rank

component, estimate the covariance matrix, and generate knockoffs, but the imputed values are

not used when calculating test statistics. In future, we would like to investigate whether imputing

missing values can help us recover the true covariance matrix when the model described by (2.11)

and (2.12) holds, and whether the exchangeability holds for decomp- or LR- knockoffs introduced

in Section 2.4.
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Figure 2.3: Comparison of q-values between proposed knockoff methods and BH procedure (logFC

> 0.17). Comparison of the q-values (FDR) between multi-decomp knockoffs (panel A), e-decomp

procedure(panel B), multi-LR knockoffs (panel C) and e-LR procedure (panel D), and BH proce-

dure. MAST is used to calculate the knockoff statistics and p-values, and logFC > 0.17 in the BH

procedure. The target FDR is set at q = 0.1 for coloring purposes.
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3.0 Appendix

A.1 Proof for Theorem 1

Theorem 1. Let {(A′
ℓ,Bℓ)} be the iterates generated by Algorithm 1. Then the function values of

F (A′,B) :=
1

2

∥∥PΩ(G− [X,A′]B⊤)
∥∥2
F
+

λ

2

(
∥A′∥2F + ∥B∥2F

)
,

are monotonically decreasing,

F (A′
ℓ,Bℓ) ≥ F (A′

ℓ+1,Bℓ) ≥ F (A′
ℓ+1,Bℓ+1), ℓ ≥ 1.

Proof. To begin with, we need to define two surrogate functions

QA(Z1|A′,B) :=
1

2

∥∥PΩ(G− [X,Z1]B
⊤) + P⊥

Ω ([X,A′]B⊤ − [X,Z1]B
⊤)
∥∥2
F

+
λ

2

(
∥Z1∥2F + ∥B∥2F

)
,

(A.1)

and

QB(Z2|A′,B) :=
1

2

∥∥PΩ(G− [X,A′]Z⊤
2 ) + P⊥

Ω ([X,A′]B⊤ − [X,A′]Z⊤
2 )
∥∥2
F

+
λ

2

(
∥A′∥2F + ∥Z2∥2F

)
.

(A.2)

It should be noted that QA(Z1|A′,B) ≥ F (Z1,B) and QB(Z2|A′,B) ≥ F (A′,Z2) where the

equality holds at Z1 = A′ and Z2 = B respectively. In step 3, by fixing Aℓ+1, (2.7) is the solution

of the ridge regression problem

Bℓ+1 = argminQB(Z2|A′
ℓ+1,Bℓ),

as we can see that the first part of equation (A.2) can be transformed into

1

2

∥∥PΩ(G) + P⊥
Ω ([X,A′

ℓ+1]B
⊤
ℓ )− [X,A′

ℓ+1]Z
⊤
2

∥∥2
F
.

Thus we can establish the inequality F (A′
ℓ+1,Bℓ) ≥ F (A′

ℓ+1,Bℓ+1) via

F (A′
ℓ+1,Bℓ) = QB(Bℓ|A′

ℓ+1,Bℓ) ≥ QB(Bℓ+1|A′
ℓ+1,Bℓ) ≥ F (A′

ℓ+1,Bℓ+1).

Similarly, in step 2, we could conclude that F (A′
ℓ,Bℓ) ≥ F (A′

ℓ+1,Bℓ). Notice that compared to

step 3, we have an additional correction term ‘−QB⊤
X,ℓ’. That is because the columns X in Aℓ are
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fixed and should not be updated in this step of the iteration. Since the first part of equation (A.1)

could be transformed to

1

2

∥∥PΩ(G) + P⊥
Ω ([X,A′

ℓ]B
⊤
ℓ )−XB⊤

X,ℓ −Z1B
⊤
A′,ℓ

∥∥2
F
,

such that the solution (2.6) solves

A′
ℓ+1 = argminQA(Z1|A′

ℓ,Bℓ).

In conclusion,

F (A′
ℓ,Bℓ) = QA(A

′
ℓ|A′

ℓ,Bℓ) ≥ QA(A
′
ℓ+1|A′

ℓ,Bℓ) ≥ F (A′
ℓ+1,Bℓ),

and the proof is completed.

A.2 Proof of convergence for Algorithm 2

Similar to Algorithm 1, it can be shown that Algorithm 2 will converge. For simplicity, let’s

denote the objective function as

F (A′,B) :=
1

2

∥∥PΩ(G− [X,A′]B⊤)
∥∥2
F
+

λ

2

(
∥A′∥2F + ∥BA∥2F

)
,

such that the objective function

minimizeA′,B
1

2

∥∥PΩ(G−AB⊤)
∥∥2
F
+

λ

2

(
∥A′∥2F + ∥BA∥2F

)
can be rewritten as

minimizeA′,BF (A′,B).

For the objective function F (A′,B), we can show its value decreases in each iteration, as summa-

rized in the following Theorem 2. In combination with the fact that F (A′,B) has a lower bound,

we know the algorithm will converge.

Theorem 2. Let {(A′
ℓ,Bℓ)} be the iterates generated by Algorithm 1. Then the function values

are monotonically decreasing,

F (A′
ℓ,Bℓ) ≥ F (A′

ℓ+1,Bℓ) ≥ F (A′
ℓ+1,Bℓ+1), ℓ ≥ 1.
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Proof. To begin with, we need to define two surrogate functions

QA(Z1|A′,B) :=
1

2

∥∥PΩ(G− [X,Z1]B
⊤) + P⊥

Ω ([X,A′]B⊤ − [X,Z1]B
⊤)
∥∥2
F

+
λ

2

(
∥Z1∥2F + ∥B∥2F

)
,

(A.3)

and

QB(Z2|A′,B) :=
1

2

∥∥PΩ(G− [X,A′]Z⊤
2 ) + P⊥

Ω ([X,A′]B⊤ − [X,A′]Z⊤
2 )
∥∥2
F

+
λ

2

(
∥A′∥2F + ∥Z2,A∥2F

)
,

(A.4)

where Z2 = [ZX,2,ZA,2]. It should be noted that QA(Z1|A′,B) ≥ F (Z1,B) and QB(Z2|A′,B) ≥

F (A′,Z2) where the equality holds at Z1 = A′ and Z2 = B respectively. In step 3, by fixing Aℓ+1,

(2.7) is the solution of the ridge regression problem

Bℓ+1 = argminQB(Z2|A′
ℓ+1,Bℓ),

as we can see that the first part of equation (A.4) can be transformed into

1

2

∥∥PΩ(G) + P⊥
Ω ([X,A′

ℓ+1]B
⊤
ℓ )− [X,A′

ℓ+1]Z
⊤
2

∥∥2
F
.

Thus we can establish the inequality F (A′
ℓ+1,Bℓ) ≥ F (A′

ℓ+1,Bℓ+1) via

F (A′
ℓ+1,Bℓ) = QB(Bℓ|A′

ℓ+1,Bℓ) ≥ QB(Bℓ+1|A′
ℓ+1,Bℓ) ≥ F (A′

ℓ+1,Bℓ+1).

Similarly, in step 2, we could conclude that F (A′
ℓ,Bℓ) ≥ F (A′

ℓ+1,Bℓ). Notice that compared to

step 3, we have an additional correction term ‘−QB⊤
X,ℓ’. That is because the columns X in Aℓ are

fixed and should not be updated in this step of the iteration. Since the first part of equation (A.3)

could be transformed to

1

2

∥∥PΩ(G) + P⊥
Ω ([X,A′

ℓ]B
⊤
ℓ )−XB⊤

X,ℓ −Z1B
⊤
A′,ℓ

∥∥2
F
,

such that the solution (2.9) solves

A′
ℓ+1 = argminQA(Z1|A′

ℓ,Bℓ).

In conclusion,

F (A′
ℓ,Bℓ) = QA(A

′
ℓ|A′

ℓ,Bℓ) ≥ QA(A
′
ℓ+1|A′

ℓ,Bℓ) ≥ F (A′
ℓ+1,Bℓ),

and the proof is completed.
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A.3 Simulations with debiased knockoffs

In this section, we replicate the simulations previously conducted in Section 2.6.2 and Sec-

tion 2.6.3. The only difference is that we use Algorithm 2 instead of Algorithm 1 to recover the

missing values and estimate A and B. As shown in Figure A.1 and Table A.1, the simulation results

corresponding to the ones in Section 2.6.2 demonstrate similar power with proper FDR control. In

other words, there is no obvious performance advantage of biased knockoffs over debiased knockoffs

for this specific simulation setting, and vice versa. However, as shown in Table A.2, which corre-

sponds to Table 2.4 from Section 2.6.3, while debiased knockoffs demonstrate similar robustness

against potential confounders, their power significantly lags behind that of biased knockoffs. To

avoid numerical errors, we added a small penalty—a diagonal matrix of 0.05 times the average of

the diagonal values of A
′⊤
ℓ A′

ℓ or B
⊤
A′,ℓBA′,ℓ—to A

′⊤
ℓ A′

ℓ and B⊤
A′,ℓBA′,ℓ respectively when calculat-

ing their inverse. Notice that when λ = 0, the knockoffs are unbiased, hence both algorithms will

produce identical outcomes. The power increases with larger a λ, but even the best case scenarios

when λ > 0 is smaller than the power shown in Table 2.4. Therefore, we find the debiased knockoffs

less appealing in practice and leave it here in the appendix as an interesting finding.
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Figure A.1: Comparison of debiased knockoff constructions and BH procedure under q = 0.1.

Panel A and B are box-plots of the FDP and power over 20 repetitions respectively. Simulations

are carried out according to the details described in Section 2.6.2 using 1951 genes and 15,141

observations, sgn = 3 and λmax = 252.07, except that knockoffs are generated using the recovered

matrix from Algorithm 2.
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Table A.1: Comparison of debiased knockoff constructions and BH procedure under q = 0.05. Table

of the results where knockoffs are generated using the recovered matrix from Algorithm 2. sgn = 3,

target FDR q = 0.05 and Bonferroni corrected p-values are used to calculate knockoff statistics.

LRT MAST WRT

Knockoff

Construction
λ FDR Power FDR Power FDR Power

asdp 0.0 0.03 (0.02) 0.88 (0.08) 0.03 (0.03) 0.74 (0.23) 0.01 (0.03) 0.19 (0.24)

asdp 25.2 0.03 (0.04) 0.87 (0.12) 0.03 (0.03) 0.66 (0.17) 0.02 (0.06) 0.15 (0.21)

asdp 50.4 0.05 (0.06) 0.93 (0.05) 0.02 (0.04) 0.74 (0.22) 0.06 (0.12) 0.38 (0.25)

asdp 75.6 0.04 (0.03) 0.92 (0.06) 0.03 (0.04) 0.72 (0.22) 0.07 (0.10) 0.38 (0.27)

decomp 0.0 0.04 (0.03) 0.94 (0.04) 0.01 (0.02) 0.70 (0.27) 0.05 (0.09) 0.66 (0.28)

decomp 25.2 0.04 (0.04) 0.94 (0.08) 0.01 (0.03) 0.62 (0.20) 0.07 (0.08) 0.75 (0.24)

decomp 50.4 0.03 (0.03) 0.95 (0.03) 0.02 (0.04) 0.58 (0.25) 0.15 (0.16) 0.79 (0.14)

decomp 75.6 0.04 (0.06) 0.95 (0.04) 0.01 (0.02) 0.56 (0.25) 0.14 (0.15) 0.81 (0.17)

LR 0.0 0.03 (0.03) 0.89 (0.08) 0.03 (0.04) 0.74 (0.16) 0.01 (0.02) 0.08 (0.19)

LR 25.2 0.04 (0.04) 0.92 (0.05) 0.02 (0.03) 0.74 (0.16) 0.06 (0.14) 0.24 (0.27)

LR 50.4 0.03 (0.03) 0.89 (0.13) 0.03 (0.04) 0.76 (0.22) 0.07 (0.16) 0.37 (0.33)

LR 75.6 0.06 (0.06) 0.91 (0.10) 0.03 (0.03) 0.63 (0.30) 0.09 (0.17) 0.33 (0.23)

multi-decomp 0.0 0.03 (0.02) 0.87 (0.06) 0.02 (0.03) 0.75 (0.09) 0.00 (0.00) 0.06 (0.08)

multi-decomp 25.2 0.04 (0.03) 0.92 (0.04) 0.03 (0.04) 0.69 (0.11) 0.06 (0.13) 0.18 (0.16)

multi-decomp 50.4 0.07 (0.06) 0.90 (0.05) 0.03 (0.03) 0.72 (0.10) 0.05 (0.13) 0.19 (0.14)

multi-decomp 75.6 0.06 (0.05) 0.88 (0.05) 0.04 (0.06) 0.72 (0.09) 0.08 (0.1) 0.25 (0.21)

multi-LR 0.0 0.02 (0.02) 0.84 (0.08) 0.02 (0.03) 0.68 (0.16) 0.00 (0.00) 0.01 (0.04)

multi-LR 25.2 0.04 (0.04) 0.85 (0.06) 0.03 (0.02) 0.66 (0.12) 0.10 (0.17) 0.13 (0.09)

multi-LR 50.4 0.04 (0.03) 0.89 (0.04) 0.02 (0.02) 0.71 (0.1) 0.13 (0.15) 0.14 (0.11)

multi-LR 75.6 0.03 (0.03) 0.88 (0.06) 0.03 (0.03) 0.68 (0.09) 0.13 (0.19) 0.15 (0.08)

e-decomp 0.0 0.02 (0.02) 0.91 (0.05) 0.00 (0.01) 0.16 (0.33) 0.01 (0.02) 0.30 (0.41)

e-decomp 25.2 0.02 (0.03) 0.92 (0.05) 0.00 (0.01) 0.04 (0.17) 0.02 (0.03) 0.38 (0.43)

e-decomp 50.4 0.02 (0.03) 0.92 (0.22) 0.00 (0.01) 0.04 (0.17) 0.05 (0.14) 0.38 (0.43)

e-decomp 75.6 0.02 (0.02) 0.95 (0.04) 0.00 (0.00) 0.00 (0.00) 0.03 (0.05) 0.42 (0.43)

e-LR 0.0 0.01 (0.01) 0.59 (0.44) 0.01 (0.03) 0.22 (0.38) 0.00 (0.00) 0.00 (0.00)

e-LR 25.2 0.02 (0.03) 0.68 (0.36) 0.00 (0.00) 0.05 (0.21) 0.00 (0.00) 0.00 (0.00)

e-LR 50.4 0.03 (0.03) 0.88 (0.22) 0.00 (0.01) 0.28 (0.39) 0.00 (0.00) 0.00 (0.00)

e-LR 75.6 0.02 (0.02) 0.83 (0.29) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

asdp cov 0.02 (0.03) 0.77 (0.22) 0.02 (0.03) 0.57 (0.27) 0.01 (0.02) 0.25 (0.38)

BH 0.13 (0.12) 0.99 (0.01) 0.12 (0.11) 0.96 (0.03) 0.29 (0.21) 0.94 (0.03)

50



Table A.2: Debiased knockoff procedure and confounding effects. Table of the results where knock-

offs are generated using the recovered matrix from Algorithm 2. sgn = 3, target FDR q = 0.1 and

Bonferroni corrected p-values are used to calculate knockoff statistics. Only decomp knockoffs and

LRT based knockoff statistics are included. The average FDP and power over 20 simulations for

each setting are shown in each column with the standard deviation in the parentheses.

Imputation no CDR no CDR with CDR

LRT no CDR with CDR with CDR

batch λ FDR Power FDR Power FDR Power

original

0.00 0.00 (0.00) 0.18 (0.21) 0.00 (0.00) 0.19 (0.22) 0.00 (0.00) 0.17 (0.22)

22.2 0.00 (0.01) 0.31 (0.27) 0.00 (0.01) 0.33 (0.26) 0.00 (0.01) 0.40 (0.25)

44.4 0.01 (0.01) 0.41 (0.26) 0.00 (0.01) 0.42 (0.24) 0.00 (0.01) 0.47 (0.24)

66.6 0.01 (0.02) 0.43 (0.29) 0.00 (0.01) 0.48 (0.23) 0.00 (0.01) 0.56 (0.22)

permute

0.00 0.00 (0.02) 0.20 (0.25) 0.00 (0.00) 0.23 (0.24) 0.00 (0.00) 0.23 (0.26)

22.2 0.00 (0.02) 0.39 (0.24) 0.00 (0.00) 0.42 (0.24) 0.00 (0.01) 0.42 (0.26)

44.4 0.00 (0.01) 0.44 (0.24) 0.00 (0.01) 0.48 (0.22) 0.00 (0.00) 0.52 (0.22)

66.6 0.01 (0.02) 0.49 (0.26) 0.00 (0.01) 0.52 (0.23) 0.00 (0.01) 0.58 (0.22)

remove

0.00 0.00 (0.00) 0.17 (0.20) 0.00 (0.00) 0.19 (0.21) 0.00 (0.00) 0.19 (0.23)

22.2 0.00 (0.01) 0.30 (0.27) 0.00 (0.01) 0.35 (0.27) 0.00 (0.01) 0.38 (0.26)

44.4 0.01 (0.01) 0.39 (0.25) 0.01 (0.01) 0.41 (0.25) 0.00 (0.01) 0.46 (0.25)

66.6 0.01 (0.03) 0.40 (0.27) 0.01 (0.01) 0.47 (0.27) 0.00 (0.01) 0.52 (0.27)
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A.4 A closer look on the e-BH results from Section 2.6.2

As shown in Section 2.6.2, while multiple knockoffs and e-BH both address the randomness

of the knockoff procedure, under certain scenarios, the results of e-BH will dramatically degrade.

Especially when the target FDR q is set to be small. In this section, we want to take a closer look

on the e-BH procedure and explain why it happens.

Under the e-BH procedure, variables with large e-values are more likely to be selected. Consid-

ering that the e-values is calculated according to

emj = p×
1{Wm

j ≥τm}

1 + #{j : Wj ≤ −τm}
,

where

τm = min

{
t > 0 :

1 + #{j : Wm
j ≤ −t}

#{j : Wm
j ≥ t}

≤ qkn

}
,

it is clear that the e-value is large if and only if the variable is selected, and since we take the average

of e-values eavgj =
∑M

m=1 e
m
j /M for the sake of derandomization, it means that only variables which

are consistently being selected during the individual knockoff precedures will have a large e-value. To

illustrate our point, Figure A.3 shows one of the simulations out of the 20 repetitions for e-decomp.

There are multiple factors that affect the e-values and whether the variable is selected: The test

statistics, the qkn chosen for individual knockoff precedures, and, consequently, the number of times

a variable is being selected during each of the knockoff precedure. Therefore, we should consider the

e-BH procedure as an aggregate of independent knockoff procedures. This leads to the question:

How can we have a more powerful e-BH procedure? While we know that variables with larger

e-values are more likely to be selected, and variables that are being consistently selected will have a

larger e-value, it does not necessarily mean that optimizing the individual knockoff procedures such

that as many variables allowed under the target FDR as possible will lead to the best results. Aside

from the LRT test statistic results where we are taking advantage of our knowledge of the signal

generation, Figure A.2 demonstrates that the choice of qkn is an important parameter that needs to

be chosen carefully. When qkn is too small, the individual knockoff procedures are unable to detect

the signals, and when qkn is too large, the stability of the e-BH selection deteriorates because the e-

BH procedure is not able to differentiate between the many signals (see also Figure A.3). Therefore,

while based on the results in Section 2.6.2, choosing qkn = q/2 does not work well, Ren and Barber

[2022] correctly pointed out that the choice of qkn greatly affects the power. And like the authors,
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Figure A.2: Comparison of different qkn under q = 0.1. Panel in the first row (A and B) and second

row (C and D) are box-plots of the FDP and power over 20 repetitions respectively. Panel A and

C are results based on LRT, panel B and D are results based on MAST. Simulations are carried

out according to the e-decomp procedure described in Section 2.6.2 using 1951 genes and 15,141

observations, sgn = 3 and λ = 50.4.

we do not have a concrete answer for how we can choose qkn such that the e-BH procedure is more

powerful.
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Figure A.3: Relation of e-values and independent knockoff variable selections under q = 0.1 and

different qkn. Panel A and B show the e-values calculated with five sets of knockoff against the

p-values of the original variables. The columns indicate the number of times a variable is selected

by the individual knockoffs and the rows indicate the qkn used for variable selection. Panel A

is the result based on LRT, and panel B is the result based on MAST. Simulations are carried

out according to the e-decomp procedure described in Section 2.6.2 using 1951 genes and 15,141

observations, sgn = 3 and λ = 50.4.
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A.5 Comparison of knockoff statistics calculated using corrected and non-corrected

p-values

Instead of non-corrected p-values, using Bonferroni corrected p-values provide us with better

controlled FDR and higher power. While the FDR is guaranteed to be controlled for any knockoff

statistics as long as it satisfies the flip-sign property, different knockoff statistics will select variables

with vastly different power. As shown in Table A.3, variable selection is much more powerful if

Bonferroni corrected p-values are used to calculate the knockoff statistics regardless of the test used

to calculate p-values.

Furthermore, on top of asdp cov-knockoff results, the results where the covariances were esti-

mated using the recovered data G instead of Gobs are also included in the tables and denoted as

asdp impcov knockoffs. It could be observed that asdp cov knockoffs perform better regardless of

knockoff statistics or rescaling method.
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A.6 Comparison of rescaling methods

Three rescaling methods were initially considered:

1. Add the mean m to all generated knockoffs G̃ (colored in orange).

2. Add the mean m to the observed expression in G̃ and keep the value of the unexpressed parts

as generated (colored in green).

3. Add the mean m to the observed expression in G̃ and set the values of the unexpressed parts

to 0 (colored in blue).

While it is clear through Section 2.4.5 that the last method is the correct one, it might be

interesting to discuss the two other methods. The idea behind rescaling the knockoffs has always

been to match the distribution of the original log-normalized data Gobs, that will be used in

generating the knockoff statistics, and to satisfy the exchangeability property. Therefore, since the

data was centered when generating the knockoff variables, the knockoffs need to be de-centered

afterwards. However, simply de-centering them by adding the column mean m back is incorrect

and leads us with three different methods. We use the same data as described in Section 2.6.1 to

illustrate the difference between the three rescaling methods. As shown in Figure A.4, in panel A,

we plot the estimated variances of the rescaled knockoff variables against the estimated variance of

the original variables while comparing between asdp, decomp and asdp cov-knockoff constructions.

In panel B, we plot 5000 randomly sampled off-diagonal elements from the upper triangle of the

covariance matrix of the rescaled knockoff variables against their corresponding covariances of the

orignal variables. As shown in panel A and B, the covariance of knockoffs is largely overestimated

for asdp and decomp-knockoff constructions, with some exception of the orange colored results.

In general, we can conclude that the exchangeability is clearly violated for the first and second

rescaling method. If we focus on asdp cov knockoffs, we may also notice that the covariance of the

knockoffs and original variables align with each other approximately in the case where the second

and third rescaling method is applied. And this is due to the fact that asdp cov knockoffs are

constructed based off the un-imputed data, hence the knockoff values for the unexpressed parts

where close to 0 to begin with.

As shown in Table A.4, the second rescaling method (expresc) is more powerful than the thrid

and correct one (expresc0) regardless of the knockoff construction. However, since we know that it
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is wrong, the results are not included in the main result.
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Figure A.4: Additional comparison of knockoff covariance and original covariance. In panel A are

the estimated variances of the rescaled knockoff variables against the estimated variance of the

original variables. In panel B are 5000 randomly sampled values from each of the upper triangles

of the estimated covariance matrices. Rescaling results for asdp, decomp and asdp cov knockoffs

are shown and the randomly sampled indices are fixed for comparison.
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