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In the past, the discovery process of new materials was done mainly through trial and

error, which was time-consuming and expensive. However, computational simulations and

models can quickly filter through a large number of potential candidates and narrow down

the search space efficiently and cost-effectively. For example, this process can help identify

new electronic materials that use less energy or have novel properties that open the door for

new applications and find life-saving drugs for hard-to-cure or rare diseases.

In this work, we present how the combination of several of these computational tech-

niques, namely quantum mechanical (QM) calculations with machine learning (ML) and

Genetic Algorithms (GA), can help accelerate the discovery of new materials. We have used

GFN2-xTB throughout this work because it has a good balance of accuracy and speed and

shows how it can be used as a surrogate for the more costly density functional theory (DFT)

and how it can be used to generate molecular features for ML applications.

Three different molecular properties were selected to show how the combination of QM

with ML and GAs is greater than the sum of its parts. First, we used GFN2-xTB to calculate

geometrical features for a random forest ML algorithm to identify new thiophene-based π-

conjugated polymers with low reorganization energies, achieving a RMSE of 0.036 eV and

a speed-up of ∼13× over DFT. Second, we used GFN2-xTB calculations in a GA to help

identify novel π-conjugated polymers with stable triplet ground states, finding more than

1,400 potential candidates. Finally, we present QupKake, a graph-neural-networks based

ML model that used GFN2-xTB calculated features to predict the micro-pKa of drug-like

molecules, achieving a 30% improvement over existing models.
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1.0 Introduction

The pursuit of novel materials with superior properties is a critical endeavor in chem-

istry and materials science. This thesis presents an integrated approach combining quantum

mechanical calculations, machine learning, and genetic algorithms to design and discover

new materials with desirable electronic and molecular properties. The main focus is on

π-conjugated polymers, which have widespread applications in organic electronics, such as

solar cells, transistors, and light-emitting devices.[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] These

polymers are particularly attractive due to their tunable electronic properties and flexibility.

Additionally, the investigation includes micro-pKa predictions for drug-like molecules, which

are crucial for understanding the behavior of pharmaceutical compounds in biological sys-

tems. Accurate prediction of micro-pKa values is essential for drug design, as it influences

the drug’s solubility, absorption, distribution, and excretion.[18, 19, 20, 18, 19]

Recent advances in computational chemistry and artificial intelligence have enabled

the development of sophisticated models that can predict material properties with high

accuracy.[21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 5, 6, 32, 33] These advancements allow for

the exploration of vast chemical spaces more efficiently, facilitating the discovery of materi-

als that were previously inaccessible through traditional experimental methods. This thesis

aims to demonstrate the potential of these computational techniques in accelerating the de-

sign and optimization of π-conjugated polymers and drug-like molecules. The integration

of these techniques not only speeds up the discovery process, but also reduces costs and

resource consumption, making it an attractive approach for both academia and industry.

1.1 π-Conjugated Polymers

Conjugated polymers are a class of organic materials characterized by alternating single

and double bonds along their backbone, allowing for extensive delocalization of π-electrons.

This delocalization imparts unique electronic and optical properties to these materials, mak-
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ing them highly attractive for a variety of applications in organic electronics. Their versatility

and tunability stem from the ability to modify their chemical structure, which can lead to

changes in properties such as bandgap, charge mobility, and photoluminescence. The ability

to fine-tune these properties makes π-conjugated polymers ideal candidates for use in devices

like organic photovoltaics (OPVs),[7, 8, 9] chemical sensors,[10, 11, 12, 13, 14] and organic

field-effect transistors (OFETs).[34, 35]

Reaction Coordinate

Energy

D + A D + + A

G
G0

Figure 1.1: Reorganization energy (λ) is the energy required to facilitate a charge transfer

reaction between a donor (D) and acceptor (A) molecules from their relaxed nuclear config-

uration (in blue) to the relaxed nuclear configuration of the products (in yellow.)

1.1.1 Reorganization Energy

Reorganization energy (λ) is an important parameter in the study of π-conjugated poly-

mers, particularly for applications in organic electronics. It refers to the energy required

to reorganize the molecular structure and its surroundings when a charge is added or re-

moved (Figure 1.1). This property significantly influences charge transport properties, such

as electron- and hole-mobility, which are essential for the performance of electronic de-

vices like organic solar cells and transistors. Lower reorganization energy typically cor-
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responds to higher charge mobility, leading to more efficient charge transport and better

device performance.[29, 28, 36, 37, 38]

In π-conjugated polymers, the reorganization energy is influenced by the molecular struc-

ture, including factors such as conjugation length, planarity, and the presence and identity

of substituents.[29, 28, 36, 37, 38] Computational techniques, including quantum mechanical

methods and machine learning models, can predict reorganization energy with high accu-

racy. These predictions help to design polymers with optimal electronic properties for specific

applications. For instance, polymers with low reorganization energy can be identified and

synthesized for use in high-performance organic photovoltaics, enhancing their efficiency and

stability.

1.1.2 Triplet Ground State

The ground state triplet is another important property of π-conjugated polymers, partic-

ularly relevant in the context of organic light-emitting diodes (OLEDs) and other optoelec-

tronic and spintronic devices.[16, 17] The triplet state refers to a molecular electronic state

with two unpaired electrons in two singly-occupied molecular orbitals (SOMOs), dubbed

T0, as opposed to a singlet ground state (S0) with a pair of electrons with opposite spins

occupying the same molecular orbital (HOMO).

Singlet

Triplet

Δ𝐸𝑇−𝑆 < 0

Figure 1.2: The triplet ground state is stable (∆ET−S < 0) when the energy of the triplet

species (ET ) is lower than the energy of the singlet species (ES).

Understanding the conditions that leads to a triplet ground state in π-conjugated poly-
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mers is crucial to designing materials with high triplet state stability. Quantum mechanical

methods, such as DFT, can be used to calculate the energy levels and properties of triplet

states. These calculations provide insights into the stability of the triplet states, which is

defined as follows:

∆ET−S = ET − ES (1)

Where ET is the energy of the triplet species, and ES is the energy of the singlet species.

When ∆ET−S < 0, the triplet ground state is more stable than the singlet ground state

(Figure 1.2).

1.2 Micro-pKa

The pKa of a molecule is a fundamental property that significantly impacts its behavior

in biological systems, including solubility, absorption, distribution, and excretion.[20, 18, 19]

Accurate prediction of pKa values is crucial for drug design and development, as it influ-

ences the drug’s ionization state at different pH levels, affecting its pharmacokinetics and

pharmacodynamics.[18, 19] Understanding the micro-pKa of drug-like molecules allows re-

searchers to design compounds with optimal properties for oral bioavailability and therapeu-

tic efficacy. pKa also affects the environmental impact of the materials, such as toxicity,

reactivity, polymer solubility, and more.[39, 40, 41, 42, 43, 44]

Various quantum mechanical methods and machine learning models have previously

been employed to predict micro-pKa values with a root mean square error (RSME) of ∼1

pKa unit.[45, 46, 47, 48, 49, 50] These computational techniques consider various factors,

including the molecular structure, electronic environment, and solvation effects, to provide

pKa prediction and calculations. By integrating these predictions into the drug design pro-

cess, researchers can systematically explore the chemical space of potential drug candidates

and identify compounds with favorable pKa values.
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1.3 Inverse Design

Inverse design is a paradigm shift in material discovery, in which the desired proper-

ties of a material are specified first, and then the structure that achieves these properties

is identified. This approach contrasts with the traditional trial-and-error method, in which

materials are synthesized and characterized to determine their properties. Inverse design

leverages computational techniques to predict the structures of materials that meet prede-

fined criteria, significantly reducing the time and cost associated with material discovery.

This method allows researchers to focus their efforts on the most promising candidates,

thereby enhancing the efficiency and success rate of the discovery process. [51, 52]

The concept of inverse design is particularly powerful in the context of π-conjugated

polymers and drug-like molecules. These materials exhibit a wide range of electronic and

chemical properties that can be tuned by modifying their molecular structures. By using

inverse design, researchers can target specific properties, such as HOMO-LUMO gap, reor-

ganization energy, or micro-pKa values, and design molecules that meet these targets. This

approach allows for a more focused and efficient exploration of the chemical space, leading

to the discovery of materials with optimal performance for specific applications.

One of the key challenges in inverse design is the accurate prediction of material properties

from their molecular structures. This requires sophisticated computational models that can

capture the complex relationships between structure and properties. Quantum mechanical

methods, such as density functional theory (DFT), play a crucial role in this process by

providing detailed insights into the electronic structure of materials. In addition, machine

learning models is being used to predict molecular properties with high accuracy and speed,

enabling rapid identification of potential candidates. This combination of computational

techniques represents a powerful toolkit for modern material and computational scientists.
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1.4 Quantum Mechanical Methods

QM methods are fundamental to the study of material properties at the molecular level.

These methods, based on the principles of quantum mechanics, allow for the accurate cal-

culation of electronic properties, such as energy levels, charge distribution, and molecular

orbitals. DFT is one of the most widely used QM methods in material science because of

its balance between accuracy and computational cost. DFT provides information on the

electronic structure, which is crucial for predicting the behavior of materials under various

conditions.

In the context of π-conjugated polymers and drug-like molecules, QM methods are essen-

tial to understand the relationship between molecular structure and properties. For example,

the energy difference between the highest occupied molecular orbital and the lowest unoccu-

pied molecular orbital (HOMO-LUMO gap), which determines the electronic properties of

a polymer, can be calculated using DFT. These calculations provide valuable insights into

the design rules for creating molecules with specific properties such as high charge mobility

and stability. Understanding these properties is vital for the development of materials that

perform well in real-world applications.

Due to the inverse relationship between accuracy and computational complexity, ac-

curate QM methods are computationally intensive, especially for large systems or extensive

chemical spaces.[53] This limitation requires the development of more efficient computational

techniques. Semi-empirical QM methods, like GFN2,[54] offer a viable alternative. These

methods are significantly faster than DFT, albeit with some loss in accuracy. GFN2, for ex-

ample, has been shown to provide reliable geometries and approximate electronic properties,

making it suitable for high-throughput screening of large molecular datasets. This trade-off

between speed and accuracy is often acceptable in the early stages of material discovery,

where rapid screening is essential to narrow down potential candidates.

The integration of QM methods, including both DFT and semi-empirical methods like

GFN2, with machine learning is a key aspect of the approach presented in this thesis. By

combining the detailed insights from QM methods with the predictive power of machine

learning models, researchers can achieve a more efficient and accurate prediction of material
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properties. This hybrid approach leverages the strengths of both techniques, facilitating the

discovery of new materials with optimal properties for specific applications.

1.5 Machine Learning for Molecular Design

Machine learning (ML) has emerged as a powerful tool in the field of material science,

offering the ability to predict material properties with high accuracy and efficiency. By

training on large datasets of known materials, ML models can learn the complex relation-

ships between molecular structures and their properties, enabling the rapid screening of vast

chemical spaces. This capability is particularly important for exploring the vast chemical

space of potential polymer structures and drug-like molecules, where traditional experimental

methods would be too time-consuming and costly.[21, 22, 23, 24, 25, 26, 27, 28, 29]

In the context of π-conjugated polymers and drug-like molecules, ML models can predict

properties such as reorganization energy, bandgap, stability, and micro-pKa values.[55, 45,

46, 47, 48, 49, 50] These predictions are based on features derived from molecular structures,

such as geometrical descriptors and electronic properties calculated using QM methods. The

combination of QM and ML allows for the accurate prediction of material properties with

significantly reduced computational cost compared to QM calculations alone. This integra-

tion enables researchers to quickly identify promising candidates for further investigation,

thereby accelerating the material discovery process.

One of the key advantages of ML in molecular design is its ability to handle large and

diverse datasets. ML models can be trained on a wide variety of data, including experimental

results as well as computational predictions. This capability allows them to generalize from

existing data to predict properties of new, unseen compounds. This generalization is crucial

for discovering materials with novel properties that are not present in the training datasets.

Moreover, advanced ML techniques such as neural networks, decision trees, and graph neural

networks can capture non-linear relationships between features, enhancing the predictive

accuracy of the models.

The integration of ML models with high-throughput experimental techniques could lead
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to a more seamless and efficient discovery process, where computational predictions are

rapidly validated and refined through experiments. Additionally, techniques such as transfer

learning, where models trained on one type of data are adapted to another, and active

learning, where models iteratively query new data points to improve performance, hold

great promise in this regard. These advances in ML algorithms will further enhance their

applicability in material science, making them indispensable tools for modern researchers.

1.6 Genetic Algorithms for Chemical Space Exploration

Genetic algorithms (GAs) are optimization techniques inspired by the process of natu-

ral selection.[56] They are particularly well-suited for exploring large and complex chemical

spaces, where the goal is to identify structures with optimal properties. GAs use a population

of candidate molecules that evolve over generations through selection, crossover, and muta-

tion (Figure 1.3) to converge to a population with optimized properties. This evolutionary

approach mimics natural selection, where only the fittest solutions survive and propagate,

leading to a gradual improvement of the population over generations.

In the context of π-conjugated polymers, GAs can be used to explore the chemical space of

different monomer combinations. By encoding the polymer structures as pairs of monomers,

GAs can efficiently search for polymers with desired electronic and chemical properties. The

fitness of each candidate molecule is evaluated based on its predicted properties, such as

the HOMO-LUMO gap, guiding the evolution toward optimal solutions. This process allows

researchers to systematically explore a vast number of potential structures and identify the

most promising candidates for further investigation.

The effectiveness of this approach was demonstrated through a case study on biradical π-

conjugated polymers.[57, 58] This case study illustrated how GAs could be used to navigate

the chemical space and identify high-performing materials that meet specific criteria. The

ability to combine multiple computational techniques into a cohesive workflow is one of the

strengths of this integrated approach, offering a powerful toolkit for computational and mate-

rial scientists. The success of these case studies underscores the potential for computational
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Initialization

Selection

Termination

Crossover

Mutation

Figure 1.3: The five steps of the genetic algorithm - initialization, selection, crossover, mu-

tation, and termination. The selection-crossover-mutation cycle is repeated a set number of

times before stopping at the termination step.

9



methods to revolutionize material discovery.

1.7 Dissertation Overview

The integration of quantum mechanical methods, machine learning, and genetic algo-

rithms represents a powerful approach to material discovery. Each of these techniques brings

unique strengths: QM methods provide accurate property calculations, ML models offer ef-

ficient predictions, and GAs enable the exploration of large chemical spaces. Together, they

form a comprehensive framework for the design and discovery of new materials. This inte-

grated approach not only enhances the efficiency of the discovery process, but also opens up

new possibilities for designing materials with tailored properties.

This thesis demonstrates the effectiveness of this integrated approach through several

case studies on π-conjugated polymers and drug-like molecules. By leveraging the strengths

of each technique, the proposed methodology can identify polymers with optimal electronic

properties and molecules with favorable micro-pKa values for specific applications. The case

studies illustrate the practical implementation of the approach, highlighting the potential for

accelerating the discovery of new materials. The successful application of these techniques

in real-world scenarios underscores their practicality and effectiveness.

In conclusion, the combination of QM calculations together with ML and GA offers

a promising pathway for material discovery. This integrated approach not only enhances

the efficiency of the discovery process, but also opens up new possibilities for designing

materials with tailored properties. As computational techniques continue to advance, the

potential for discovering novel materials will only increase, paving the way for innovations in

various fields of science and technology. The methodologies developed in this thesis provide

a robust framework for future research, offering a roadmap for the continued exploration and

optimization of materials with desirable properties.

Looking ahead, the integration of these computational techniques with experimental val-

idation will be crucial for translating theoretical discoveries into practical applications. By

creating a feedback loop between computational predictions and experimental results, re-
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searchers can continuously refine their models and improve the accuracy of their predictions.

This iterative process will accelerate the pace of material discovery and enable the develop-

ment of next-generation materials with unprecedented performance and functionality.

Overall, the work presented in this thesis highlights the transformative potential of in-

tegrating advanced computational techniques in material science. The methodologies and

case studies discussed provide valuable insights and practical guidance for researchers aim-

ing to explore and design new materials. As the field continues to evolve, the integration of

QM, ML, and GAs will play an increasingly important role in shaping the future of material

discovery and innovation.
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2.0 Machine Learning to Accelerate Screening for Marcus Reorganization

Energies

This chapter is adapted from:

Omri D. Abarbanel, Geoffrey R. Hutchison; Machine learning to accelerate screening for
Marcus reorganization energies. The Journal of Chemical Physics 7 August 2021; 155 (5):
054106. DOI: doi.org/10.1063/5.0059682.

It is a collaborative effort in which the author implemented the machine learning mod-

els, performed the calculations and data analysis, generated the figures, and wrote the

manuscript; G.R.H. conceived and directed the project.

2.1 Summary

Understanding and predicting the charge transport properties of π-conjugated materials

is an important challenge for designing new organic electronic devices, including solar cells,

plastic transistors, light-emitting devices, and chemical sensors. A key component of the

hopping mechanism of charge transfer in these materials is the Marcus reorganization energy,

which serves as an activation barrier to hole or electron transfer. While modern density

functional methods have proven to accurately predict trends in intramolecular reorganization

energy, such calculations are computationally expensive. In this work, we outline active

machine learning methods to predict computed intramolecular reorganization energies of

a wide range of polythiophenes and their use towards screening new compounds with low

internal reorganization energies. Our models have an overall root mean square error of

±0.113 eV but a much smaller RMSE of only ±0.036 eV on the new screening set. Since the

larger error derives from high-reorganization energy compounds, the new method is highly

effective to screen for compounds with potentially efficient charge transport parameters.
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2.2 Introduction

Polythiophenes are a class of π-conjugated conductive and semi-conductive organic ma-

terials which can be used in many electronic devices, such as field-effect transistors[34, 35],

organic solar cells[7, 8, 9], chemical sensors[10, 11, 12, 13, 14], and more[15]. The electronic

properties of polythiophenes can be tuned across a wide range by various synthetic substi-

tutions of the parent thiophene ring, which has enabled both fundamental studies and many

applications.

The vast majority of polythiophene derivatives are p-type, with the charge transfer me-

diated by a hole transfer process[36, 37, 38]. Marcus-Hush charge transfer theory shows that

the internal reorganization energy (λ), which describes the energy change required to distort

geometry upon a charge transfer, is one important factor in the charge transfer rate and

resulting charge mobility[29, 28, 36, 37, 38].

The internal reorganization energy λ of a molecule undergoing hole transfer to the same

species can be calculated from four energies - the energy of the neutral molecule in the

lowest energy geometry (E0, “Neutral”), the energy of the cation at its lowest energy geom-

etry (E+, “Cation”), the energy of the cation at the geometry of the neutral species (E∗
+,

“Cation@Neutral”), and the energy of the neutral molecule at the geometry of the cation (E∗
0 ,

“Neutral@Cation”)[36, 38] (Figure 2.1). The λ can then be calculated from those energies

according to the following formula 2.1:

λ = λ0 + λ+ = (E∗
0 − E0) + (E∗

+ − E+) (2)

Calculating the internal λ of polythiophenes using density functional theory (DFT) cal-

culations requires two geometry optimizations (of both the neutral and cationic species)

and can be computationally expensive, as the calculation time increases with the length the

polythiophene chain. Recent work on the approximate density functional GFN2 method[54]

has shown accurate geometries and excellent correlation with coupled-cluster methods for

conformers[53]. We attempted to correlate reorganization energies computed with GFN2

with those computed with the B3LYP DFT method[59, 60]. As discussed below, no signifi-

cant correlation was found.
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Figure 2.1: Internal reorganization energy for hole transfer.

In this work, we instead focus on predicting internal reorganization energies λ using ma-

chine learning (ML) methods, using a minimal amount of B3LYP-calculated λ as a training

set.

In recent years ML has been applied widely, with a goal of accelerating quantum chemical

calculations that would otherwise have large computational costs. Calculating electronic

properties with traditional methods can be computationally expensive and take between

hours to weeks to finish, depending on the size of the system and the type of calculation.

ML has shown a great potential in calculating electronic structure properties, drug discovery,

materials research, and more[21, 22, 23, 24, 25, 26, 27, 28, 29]. Training a ML model is also

time consuming as well, since it requires a large data set for training and finding an accurate

ML method and representation for that specific application can be exhaustive, but once a

model has been properly trained, evaluation for new calculations can be performed in seconds

or less.

In this work, we have developed a machine learning filter for predicting the internal
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reorganization energy of organic electronic materials. At present, we find the accuracy to

be greater for compounds with low reorganization energy - as such it proves more useful

for ignoring compounds expected to have high barriers for charge transport than as a fully

accurate surrogate across the entire range considered. Nevertheless, since key applications

require efficient charge transport, and thus low reorganization energies, we demonstrate

its use in efficiently screening a pool of possible co-polymers. Finally, we discuss frequent

chemical motifs among compounds with low predicted reorganization energies.

2.3 Methods

2.3.1 Computational Methods

Input files for each oligomer were created by combining the corresponding SMILES strings

of its monomers and using OpenBabel version 3.1.0[61] to generate a 3D geometry.[62] All

GFN2 calculations were performed using xTB version 6.0 [54]. All DFT calculations were

done using the B3LYP functional[59, 60] with the 6-31G* basis set,[63] calculated with Gaus-

sian 09,[64] for comparison with previously published internal reorganization energies.[29, 36]

Random forest, gradient boosted trees and kernel ridge regression models were imple-

mented using Scikit-Learn version 0.20.0[65]. Neural network model was implemented using

Keras version 2.3.1[66] with TensorFlow version 2.1.0[67] backend.

The data that support the findings of this study, including SMILES for all monomers, all

Python code and notebooks are openly available at https://github.com/hutchisonlab/

ReorganizationEnergy

2.3.2 Data Set

Our data set derives from 253 thiophene-based monomers. The monomers have different

functional groups at the 3 and 4 positions, while connected to other monomers at the 2 and 5

positions (Figure 2.2), yielding a total of 31,878 possible copolymers, plus 253 homopolymers,

to a total of 32,131 possible oligomer families. We used our available monomers to create a
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Figure 2.2: Thiophene based oligomers, length of 2, 4, and 6 monomers - named dimers,

tetramers, and hexamers, respectively.

list of possible oligomers made from two, four, and six monomers - dimers, tetramers, and

hexamers, respectively (Figure 2.2).

Calculating the λ of long oligomer chains using traditional DFT methods can be time-

consuming and computationally expensive. However, previous studies have claimed that

six-membered oligomer chains can closely estimate the λ of longer chains[36]. However,

quantum mechanical calculations, especially when optimizing molecular geometries, drasti-

cally increase with the length of the oligomer (Figure 2.3a). We therefore have explored

different ways to minimize the calculation time, such as using an approximate method,

GFN2, and using shorter oligomers.

At first, we calculated the λ of all the oligomers using GFN2-xTB, an approximate

density functional tight-binding method developed by the Grimme group[54], to see if it can

be used as an accurate surrogate for B3LYP-computed reorganization energies. This method

produces accurate geometries and is considerably faster than B3LYP calculations (Figures

S7 and 2.3a). However, the λ calculated using GFN2-xTB does not correlate well with the

λ calculated using B3LYP (Figure S2).

In contrast, while the energies have little correlation, we have found that the geometries

of both the neutral and cation species calculated using GFN2-xTB have a significant cor-

relation with those calculated using B3LYP — specifically, the average dihedral angle and

the average inter-ring bond length. Therefore, instead of using GFN2-xTB to calculate the
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Figure 2.3: (a) Mean CPU run time of the 4 different calculations using B3LYP, (b) Corre-

lation between tetramers λ and hexamers λ, trendline indicated robust linear regression fit,

(c) training set size effect on the RF model score.

λ, we considered using ML methods using the geometrical descriptors obtained from the

GFN2-xTB calculations. Likely, while the geometric minima correlate well between GFN2

and B3LYP, the shape of the potential energy surfaces differ substantially away from the

local minima.

In addition, we considered a correlation of λ between shorter and longer oligomers (Figure

S1), since shorter oligomers are faster to optimize. We did not find such a correlation between

the B3LYP-computed λ of the dimer and tetramers, or the dimers and hexamers. We did

find, however, a good correlation between the tetramers and hexamers (Figure 2.3b). Thus,
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to develop an adequate training set, more tetramers than hexamers can be used, considerably

reducing the calculation time. We therefore used a data set made up of mainly tetramers

plus a small number of hexamers. We increased the training set in batches until we saw no

significant improvement in the model score (Figure 2.3c) and decrease in RMSE. Our final

data set consisted of 7020 tetramers and 408 hexamers with B3LYP-calculated λ between 0

and 2 eV. We chose this range as we assumed that oligomers with λ larger than 2 eV are

irrelevant to our study.

2.3.3 Representation and Model Selection

For the representation of the oligomers in the ML model we began with the monomer

ID and the oligomer length. In addition, we added the average dihedral angle between the

monomers of each oligomer and the average inter-ring bond length of each oligomer, for both

the neutral and cation species of each oligomer, as calculated using GFN2. We saw correlation

(e.g., R2 between 0.57 and 0.74) between those geometric values calculated with GFN2 and

with B3LYP (Figure S3). Using those starting features gave us decent preliminary results.

Next, we added an extended circular finger print (ECFP4) 2048 bit representation[68] using

RDKit[69], which increased the R2 and decreased the RMSE of the model significantly, likely

by describing local functional group effects on reorganization energies.[29] The final step was

to add a new feature to represent the size of the π-system in the oligomers (Figure S10), as

we hypothesized that a highly-conjugated oligomer will contribute to a lower λ. Adding this

final feature moderately improved the model (Table 2.1).

Using our best representation, we trained five different ML models with our data set:

a random forest model, a gradient boosting trees model, a ridge regression model, a kernel

ridge regression model and a neural network model. The first two are ensemble methods

based on decision trees, which combine several weighted trees into one model. The random

forest model builds a large number of random sets of decision trees[70], hence the name,

while the gradient boosted trees model builds nested decision tree one at a time, improving

over the previous tree[71]. Ridge regression fits the given data into a function in a way that

minimizes the coefficients of the parameters by penalizing the cost function with the square
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Table 2.1: Cross-validated R2 and RMSE, averages and standard errors, to show model

development improvement as new features are added to the representation.

Geometrical Data
Geometrical Data

+ π-System Size
ECFP4

Geometrical Data

+ ECFP4

Geometrical Data

+ ECFP4

+ π-System Size

R2 RMSE (eV) R2 RMSE (eV) R2 RMSE (eV) R2 RMSE (eV) R2 RMSE (eV)

Run 1 0.533 0.138 0.536 0.138 0.692 0.112 0.706 0.109 0.719 0.107

Run 2 0.526 0.140 0.548 0.137 0.653 0.120 0.677 0.116 0.681 0.115

Run 3 0.521 0.140 0.559 0.134 0.654 0.120 0.661 0.118 0.663 0.118

Average
0.526 0.139 0.548 0.136 0.666 0.117 0.681 0.114 0.688 0.113

± 0.003 ± 0.001 ± 0.007 ± 0.001 ± 0.013 ± 0.003 ± 0.013 ± 0.003 ± 0.017 ± 0.003

sum of the coefficients times the regularization parameter alpha[72], and the Kernel Ridge

Regression which works similar to the Ridge Regression but with an addition of a kernel

trick which allows to fit a non-linear function[73]. The fourth ML model, a neural network,

has been widely used in many classification and regression applications. Neural networks

are built in layers, where each node in each layer is connected to all the nodes in the next

layer. A mathematical loss function is dictating how much each node is contributing to the

network, creating a complex structure that can predict values or classify objects[74].

In a random forest model, the key hyperparameter is only the number of trees in the

forest. The greater the number of trees is likely to yield better predictions but also increases

the time it takes to train. Moreover, the model eventually reaches a prediction ceiling where

adding more trees will not improve the model. We optimized the number of trees in the

random forest model, ranging from 10 to 1500, and recorded the training time, the Scikit-

Learn built-in score function value for random forest models, which is comparable to the

coefficient of determination, R2, and the root mean square error (RMSE) for to the test set.

As indicated in Figure S11, 50 trees are the optimal number for the random forest, as it gives

the optimal training time, of about 25 seconds, while having the highest score and lowest

RMSE.

For the gradient boosting trees model, there are several hyperparameters to optimize —

including the number of trees, maximum tree depth, minimum sample split, learning rate,
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Table 2.2: R2 and RMSE results for three runs for each machine learning method used. The

training and test sets in each run were the same for each method. Averages are presented

with standard error.

Random Forest Neural Network Gradient Boosting Trees Ridge Regression Kernel Ridge Regression

R2 RMSE (eV) R2 RMSE (eV) R2 RMSE (eV) R2 RMSE (eV) R2 RMSE (eV)

Run 1 0.716 0.108 0.631 0.122 0.645 0.121 0.655 0.118 0.683 0.113

Run 2 0.662 0.118 0.653 0.120 0.575 0.134 0.644 0.121 0.680 0.115

Run 3 0.685 0.114 0.623 0.125 0.612 0.129 0.666 0.117 0.686 0.114

Average
0.687 0.113 0.636 0.122 0.611 0.128 0.655 0.119 0.683 0.114

± 0.016 ± 0.003 ± 0.009 ± 0.001 ± 0.020 ± 0.004 ± 0.006 ± 0.001 ± 0.002 ± 0.001

and the loss function. Optimization started using the common starting parameters of 1000

trees, unlimited maximum tree depth, minimum sample split of 2, learning rate of 0.01, and

the least squares loss function. Parameters were manually sampled, comparing the mean

square error (MSE) score. This initial sampling did not noticeably affect the performance

relative to the random forest and the neural network model. Therefore a more exhaustive

grid search over these hyperparameters was not performed.

For the Ridge regression model there is only one hyperparameter to optimize, alpha,

which was set to 9 after scanning over a range of values and finding the one with the highest

score. Similarly, for the Kernel Ridge Regression model we tested linear and polynomial

kernels and found that a third-degree polynomial kernel gives the best result. The alpha

parameter was set to 60 after optimization by scanning over a range of values and finding

the one that gave the highest score.

As for the neural network model, we used Bayesian optimization using the HyperOpt

and Hyperas Python packages [75, 76], to find the optimal number of hidden layers, the

number of nodes in each layer, and the dropout amount. We searched over a space of 1

to 3 hidden layers, 20 to 200 nodes per layer, and dropout between 0 to 0.5. We found

that 2 hidden layers, size 127 and 109 nodes respectively, and the dropout amount of 0.005

for the first hidden layer and 0.448 for the second hidden layer, are the optimal values for

this neural network. We used the Continuously Differentiable Exponential Linear Units
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(CELU) activation function[77], as implemented in the EchoAI Python package[78], for the

input and both hidden layers, as it outperformed other functions — including the widely

used Rectified Linear Unit (ReLU) function. The output layer consists of a single node as

standard for regression, with a linear activation function. Training was performed using

the Adam optimizer[79] using the mean square error (MSE) loss function. In order to

reduce the number of hyperparameters needed to optimize, the ReduceLROnPlateau and the

EarlyStopping Keras functions[66] were used to tune the learning rate during the training

of the model and stop the training once there is no further improvement. This effectively

optimized the learning rate and the number of epochs for the neural network training.

For cross-validation, each model was trained on three different train-test split sets, using

the Scikit-learn train test split function[65] using random state values of 0, 42, and 420. We

saw that the random forest model outperformed all other models in both the R2 value and

the root mean square error (RMSE) (Table 2.2). We therefore used the random forest model

as our model of choice for the remaining work.

2.4 Results and Discussion

In order to see how well the final random forest model can predict the λ of unseen

oligomers we split the data set into 85%-15% train-test sets, respectively, comparing the

trained model prediction of λ of the test set to the B3LYP calculated λ. The correlation

graph between the predicted and calculated energies (Figure 2.4) shows good correlation

with unitless coefficient of determination, R2 = 0.717 and root mean square error, RMSE =

0.105eV for the tetramers, R2 = 0.737 and RMSE = 0.140eV for the hexamers, and R2 =

0.719 and RMSE = 0.107eV in total.

Moreover, as Figure 2.4 shows, the correlation also exhibits heteroscedasticity, where

there is better correlation for oligomers with lower λ and worse for compounds with greater

reorganization energies. This shows that predicting the λ for oligomers with geometric dif-

ferences between the neutral and cation species is a complex task. In all likelihood there

are many possible geometric changes between neutral and cation geometries, and as such
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the limited training set makes it challenging for the model to properly account for all re-

organization in compounds with large λ. Similar heteroscedastic behavior can be seen in

the correlation between the tetramers and hexamers (Figure 2.3b. In principle, some of the

heteroscedasticity in the predictions could be reduced by using more, or even only, hexamers

in the training of the model. However, calculating the B3LYP λ for hexamers is computa-

tionally expensive — which runs counter to the benefit of the ML model as a surrogate for

the calculations.

For screening, where the intent is to find candidates with low λ, the larger heteroscedas-

tic error for higher λ compounds has only a small effect — there is better correlation for

compounds with small internal reorganization energies. Therefore we can use the random

forest model as a first, rapid screening tool to find oligomers with low λ.
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Figure 2.4: Correlation plot between the random-forest predicted λ and the B3LYP calcu-

lated λ for the tetramers and hexamers in the test set.

The random forest regression model, as implemented in the scikit-learn package, has

a feature importance function[65], which enables exploration of the features in the repre-

sentation that contribute the most to the model (Figure S12). It is clear that the most

22



important feature is the average inter-ring bond length of the neutral oligomer, as calcu-

lated using xTB-GFN2. While the bond lengths are expected to change going from the

neutral to cation geometries, this is a surprising effect as the correlation between the neu-

tral inter-ring bond length and the B3LYP-calculated λ is weak (R2 = 0.233, Figure S14).

Much like the overall reorganization energies, the correlation between GFN2-computed and

B3LYP-computed inter-ring bond lengths shows the same heteroscedasticity, which may ex-

plain some of the feature importance. The second most important feature is the π-system

size descriptor, which agrees with the hypotheses that bigger π-conjugated systems promote

lower λ. The third most important feature is the ECFP bit number 1019, which indicates

the existence of an sp3 hybridized carbon in the oligomer (Figure S13). Two possible ex-

planations exist for this feature — that a sp3 hybridized carbon breaks conjugation and

as discussed below, the CH2 group may promote a less planar conformation. Interestingly,

the monomer numbers, although used as a categorical feature with a seemingly arbitrary

assignment meant for naming only, do appear to contribute to the model as the fourth and

sixth most important features. The rest of the features are the other geometrical information

we encoded into the representation, followed by the rest of the ECFP bits which minimally

contribute to the model.

After using 85% of the training set to train the model for testing purposes, the final

random forest model was trained using the full data set for screening a larger validation set

to predict the λ of 24,853 tetramers and 31,722 hexamers that were not part of the original

data set. From those new predicted λ, oligomers with λ < 0.3 eV were filtered to compute

the full B3LYP λ, including 660 tetramers and 1753 hexamers with low λ (Figure 2.5 a, b).

The increase in the number of oligomers with λ < 0.3ev from the tetramers to the hexamers

agrees with assessment of the inverse relationship between the length of the oligomer and its

reorganization energy[36].

We also looked to trends in the predictions in order to see if there are monomers that

repeatedly contribute to oligomers with low λ (Figure 2.5 c, d). For both tetramers and

hexamers, the monomers number 47, 110, 158, 213, 258, and 283 are found frequently (Figure

2.6). As it can be seen, all the best performing monomers have a fused aromatic system

on the thiophene backbone, supporting our hypothesis that a larger π-system contributes to
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low λ. Moreover, excluding monomer 253 which only has one, all of the monomers have two

aromatic nitrogen atoms in the 3- and 4- positions on the thiophene ring. We hypothesize

that steric considerations contribute, as CH2 groups in these positions increase the steric

repulsion between neighboring monomers forcing a non-planar, twisted chain conformation

and increasing λ [36]. In addition to that, monomers with similar motifs, such as nitrogen

atoms in the 3- and 4- positions, and especially a thiadiazol group, have been shown to be

pro-quinoidal monomers which has some quinoidal character instead of an aromatic one[80,

81, 82, 83]. This behavior contributes to a higher double bond character of the inter-ring

bond, decreasing its length and restricting the rotation of the dihedral angle. This restrains

the conformational change the oligomer undergoes upon a hole transfer, which contributes

to a low λ.

In order to validate the accuracy of the full random forest model the 300 tetramers and

150 hexamers with the lowest predicted λ were selected and the B3LYP λ was computed to

compare with the random forest model prediction (Figure 2.7). While the predicted values

are not perfect, the low RMSE (0.036 eV) of the prediction versus the calculated λ, indicates

that the model is robust and accurate at this new validation set and thus can be used as a first

step in finding conjugated materials with better charge transport properties. Interestingly,

of the 50 hexamers with the lowest B3LYP λ, 44 oligomers had monomer 47 as one of their

monomers, and the hexamer with the lowest B3LYP λ consists of the homo-oligomer of

monomer 47, with λ = 0.051 eV (Figure 2.7b). This fragment, and related monomers, is

frequently used in top organic photovoltaic materials.

Moreover, the dihedral angle between the best performing hexamers is close to 180(Table

S1), or in other words - flat, and is only minimally changing between the neutral and cation

species (Table 2.3). This further strengthens the hypothesis that in addition to a large

π-system, better conjugation and planar chain conformations contribute to the low λ. In

addition to the dihedral angle, the best performing hexamers exhibit a minimal change

between the neutral and the cation bond lengths.

For comparison, in a recently published paper the Atalay group have used deep neural

network and kernel ridge regression models and were able to predict the reorganization energy

with a high precision compared to the DFT calculated values[29]. In contrasts, while their
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Figure 2.5: λ predictions for new tetramers and hexamers. Histogram of predicted λ for the

new tetramers (a) and hexamers (b), with tetramers and hexamers with λ < 0.3 eV colored

in green. Histograms of the common monomers for the tetramers (c) and hexamers (d) with

λ < 0.3 eV.

data set consists of ring-fused conjugated molecules, which are mostly planer and rigid, out

data set is made out of long, flexible, oligomeric chains. While they used similar molecular

representation in their model, it does not capture any molecular deformation that happen

upon a hole transfer. However, unlike the data set we have used here, their molecules

present a minimal conformational difference between the neutral and cation species, which

can explain the high accuracy and precision of their model. While our model is unable

to predict the λ of all oligomers with low accuracy, we have shown that it can be used
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Figure 2.6: The top 6 common monomers in oligomers with predicted λ < 0.3 eV.

successfully as a screening tool to separate oligomers with low λ from the rest.

2.5 Conclusions

In this work we have shown that a random forest model can be used as a rapid screening

tool to find thiophene-based oligomers with low and high λ. Our goal was to train a model

by minimizing the calculation time required to generate the training set by calculating the λ

of shorter oligomers (i.e., tetramers), correlating with the λ of longer lengths. The resulting

random forest regression model can predict thousands of new oligomers in seconds, yielding a

list of potential oligomers with low λ for further screening. The model has an overall RMSE of

±0.113eV but a much smaller error of ±0.036eV on this validation set of low-reorganization

energy targets, highlighting the utility in computational screening. Comparing the time

required to generate the test and validation sets to the possible time required to calculate all

31,878 tetramers and 31,878 hexamers, the RF model yields a ∼13× speedup. If the model

were used across a larger search space, larger speedups would likely result. We intend to use

the model in future computational screening efforts.[84]

From the predictions of the model and the relative feature importance, it is clear that

oligomers with large, conjugated π-systems have lower internal reorganization energies. In

addition to a large π-system size, monomers with low steric bulk, which minimally change

conformation upon a hole transfer, that also yield a high degree of delocalization and π
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Figure 2.7: (a) Correlation plot for the tetramers and hexamers with low λ where the

trendline indicate robust linear regression fit, the tetramers are in blue, and the hexamers

are in red. (b) The top 5 hexamers with the lowest B3LYP calculated λ. The numbers

represent the two monomers in the chain.
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Table 2.3: The monomer numbers, the predicted and calculated B3LYP λ, The GFN2 and

B3LYP geometrical data of the average change in dihedral angles between the neutral and

cation species, and average change in the inter-ring bond length of both neutral and cation

species for the five hexamers with the lowest B3LYP λ.

Monomer 1 Monomer 2 Predicted λ B3LYP λ
GFN2

∆Angle (

B3LYP

∆Angle (

GFN2 ∆Bond

Length (Å)

B3LYP ∆Bond

Length (Å)

47 47 0.120 0.051 0.063 0.005 0.004 0.005

47 116 0.141 0.081 0.034 0.097 0.005 0.008

47 156 0.178 0.086 0.415 0.019 0.006 0.010

47 247 0.147 0.088 0.352 1.628 0.005 0.010

47 217 0.146 0.094 0.032 4.460 0.006 0.012

orbital overlap between the monomers, also contributes to low λ. One monomer in par-

ticular, with a thiadiazole group, is frequently observed in compounds with low internal

reorganization energy. Moreover, aromatic nitrogen substituents are frequently observed in

such compounds. All the top oligomers also share similar geometries, i.e., being almost

completely flat, and only exhibit minimal changes in geometry upon a hole transfer. Future

work can consider a similar method for internal reorganization energies of n-type electron

transfer or other calculated properties requiring multiple time-intensive computational steps.

Future models should also address the potential for conformational entropy, since multiple

low-energy conformers likely exist and can affect the reorganization energy.[85, 86]
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3.0 Strategies for Computer-Aided Discovery of Novel Open-Shell Polymers

This chapter is adapted from:

Omri D. Abarbanel, Julisa Rozon, Geoffrey R. Hutchison; Strategies for Computer-Aided
Discovery of Novel Open-Shell Polymers. Journal of Physical Chemistry Letters 2022, 13,
9, 2158–2164. DOI: doi.org/10.1021/acs.jpclett.2c00509.

It is a collaborative effort in which J.R. and the author performed the calculations; The

author performed the data analysis, generated the figures, and wrote the manuscript; G.R.H.

conceived and directed the project.

3.1 Summary

Organic π-conjugated polymers with a triplet ground state have been the focus of recent

research for their interesting and unique electronic properties, arising from the presence of

the two unpaired electrons. These compounds are usually built from alternating electron-

donating and electron-accepting monomer pairs which lower the HOMO-LUMO gap and

yield a triplet state instead of the typical singlet ground state. In this paper we use density

functional theory calculations to explore the design rules that govern the creation of a ground

state triplet conjugated polymer, and find that a small HOMO-LUMO gap in the singlet state

is the best predictor for the existence of a triplet ground state, compared to previous use of

pro-quinoidal bonding character. This work can accelerate the discovery of new stable triplet

materials by reducing the computational resources needed for electronic-state calculations

and the number of potential candidates for synthesis.
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3.2 Introduction

Organic π-conjugated polymers have been a focus of fundamental research for many

years thanks to their delocalized electronic properties, which can be used in a wide vari-

ety of applications[16, 17]. The ground state of the vast majority of those polymers is a

singlet state (S0), which can be excited to a triplet (T1) state via different pathways, such

as intersystem crossing or reverse-intersystem crossing (RISC)[87, 88, 89, 8, 90]. However,

in recent years organic π-conjugated polymers with a triplet ground state (dubbed “T0”)

have been discovered and studied for their unique electronic, optical, and magnetic proper-

ties arising from their unpaired electrons. Such ground-state triplet materials have found

applications as varied as batteries[91], supercapacitors[92], non-linear optics[93], and many

others[94, 95, 96, 83].

Understanding the design rules for the synthesis of such molecular diradicals can aid with

the discovery of new materials. Those structure/function correlations can help us determine

the type of monomers that will promote a triplet ground state, how the electronic structure

is affected, and how to design new materials. For example, previous studies have used “pro-

quinoidal” monomers in order to create high-spin polymers, suggesting that a quinoidal

bonding character helps to stabilize the diradical polymer[80, 81, 83, 82]. However, others

challenge this, by suggesting instead that instead, an aromatic bonding character stabilizes

the diradical ground state[95]. These two opposing hypotheses can lead to different design

rules, but by finding the best predictors of a stable ground-state triplet, we can assist in the

discovery process.

In this work, we have used dispersion-corrected ωB97X-D3 density functional theory

(DFT) method to calculate the ground state energies of both singlet and triplet states of

various π-conjugated oligomers. Our data set consists of 11 donor monomers and 12 acceptor

monomers (Figure 3.1), most previously studied by the Azoulay group[81, 97, 98, 99, 100,

101, 92], yielding a set of 132 oligomers. The geometry optimization steps for both singlet and

triplet states, the single-point electronic energy calculations, and the calculation of ∆ET−S

were performed as described in theComputational Methods section below. Thus, for each

oligomer, both singlet and triplet states were optimized to find the lowest energy geometry
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and corresponding ground-state energy.

To find key predictors of ground state triplets, we compared the a variety of electronic

and geometric properties as predictors of the energy difference between the triplet and singlet

energies. In addition, we considered different strategies to favor triplet stabilization, such as

changing the heteroatom in the polymer backbone, and forcing quinoidal bonding character.

This work can aid in the discovery of new and novel open shell materials by increasing the

search speed and decreasing the search space of potential candidates.

Acceptors Donors

A1 A2 A3 A4

A5 A6 A7 A8

A9 A10 A11 A12

D1 D2 D3 D4

D5 D6 D7 D8

D9 D10 D11

Figure 3.1: The acceptors and donors used to create the tetramers.

3.3 Results and discussion

3.3.1 Inter-Monomer Bond Length

As mentioned, one of the working hypotheses for the stability of a triplet ground-state is

through a bi-radical system, in which each unpaired electron is in different singly-occupied
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molecular orbitals (SUMO), and the formation of a semi-quinoidal bonding pattern in the

polymer backbone[81, 80, 96]. This suggests that the bond between the monomers should

have some double-bond character — and thus be shorter to stabilize the triplet ground-state.

We measured the inter-monomer bond length of the oligomers, i.e. the bond between each

donor and acceptor monomer (D-A-D-A-D-A-D-A), as a metric of quinoidal character, and

compared this geometric measure to the difference between the electronic energies of the

triplet and singlet species ∆ET−S (Figure 3.2).
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Figure 3.2: Correlation between ∆ET−S, in eV, and the inter-monomer bond length, in Å,

grouped by a acceptor number and b donor number.

Our calculations, however, show very little correlation between the inter-monomer bond

length and the stability of the triplet ground state across all 132 oligomers. While there is a

weak trend for some families of oligomers that share the same acceptor (Figure 3.2a), there

are a few exceptions. In some cases, such as for the oligomer of donor D3 and acceptor A7,

while it had a stable triple ground state - its calculated inter-monomer bond length was the

longest at 1.47 Å. In contrast, the oligomer of donor D3 and A12 does not yield a stable

triplet ground state, but has one of the shortest calculated inter-monomer bond lengths at
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1.40 Å.

Furthermore, oligomers with acceptor A5 yield a negative slope between the inter-

monomer bond length and ∆ET−S, while all other families have a positive slope (Table B1).

Thus, while looking at some specific acceptors we can see a trend, there is no overall corre-

lation between the stability of the triplet ground state and the inter-monomer bond length.

In addition, there is no correlation between the inter-monomer length and the donor number

(Figure 3.2b).

While the pro-quinoidal design rule might work for specific cases, the stability of the

triplet ground state instead comes from a broader property — narrowing of the singlet

HOMO-LUMO gap. While it has been shown that one strategy to lower the HOMO-LUMO

gap is by quinoidal bonding[102, 103], it is by far not the only design rule.

3.3.2 Triplet-Singlet Correlation

A small HOMO-LUMO gap has been shown to promote a lower triplet energy level,

increasing the likelihood of a high-spin ground state as the frontier molecular orbitals (MO)

become closer energetically [81, 104, 105]. We therefore compared the energy difference

between the singlet and triplet of each oligomer (∆ET−S) versus the HOMO-LUMO gap of

the corresponding singlet-state oligomer, both in eV (Figure 3.3). Figures 3.3a and 3.3b show

the same correlation and only differ by grouping of the acceptor number and donor number,

respectively. Out of 132 oligomers, 35 had ground-state triplet states, based on the optimized

geometries and ωB97X-D3/def2-SVP single-point energies. A significant correlation between

those energies can be seen, with a correlation of determination (R2) of 0.96 and a linear

relation with an x-axis intercept at 3.84 eV (Eq. S5).

As seen in Figure 3.3b, there is very little correlation between the donor identity and

∆ET−S. However, from Figure 3.3a it can be seen that oligomers that share the same

acceptor monomer are grouped in close proximity, indicating that a high-spin system is

strongly dependant on the identity of the acceptor.

While a spin-polarized singlet state may be lower in energy than the restricted singlet

considered here, the strong trend indicates that as the singlet HOMO-LUMO gap decreases,
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Figure 3.3: Correlation plots between the difference of the Triplet and Singlet energies of

each oligomer versus its the HOMO-LUMO gap of the singlet species, both in eV, grouped

by a the acceptor number and b the donor number. Linear best-fit line is shown as a dashed

gray line.

the triplet state becomes increasingly stabilized. In some systems, broken-symmetry DFT

calculations can predict the energetics of the spin-polarized singlet, although they require

specifying a particular atomic radical center.[106]. In contrast, these oligomers access the

triplet state specifically because of the delocalized π system. Furthermore, multi-reference

methods such as MR-MP2[107]) would not properly capture the small HOMO-LUMO gap

which stabilize the ground state triplet state. Consequently, we believe these systems will

be useful target compounds for continuing electronic structure method development.

For comparison, and to further strengthen our conclusions, we also ran single-point energy

calculations using the CAM-B3LYP functional[108] (Figure B1). While the scale of the axes

have slightly changed, as well as the crossing point between singlet and triplet stability, a

similar linear relationship between the HOMO-LUMO gap of the singlet species and ∆ET−S
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is observed.

From this correlation we can see that acceptor A5 appears to have the lowest singlet

HOMO-LUMO gap and the most stable triplet state, followed by acceptor A7. Acceptors

A4 and A6 both have several oligomers with stable triplet ground states; six oligomers for

acceptor A4 and eight oligomers for acceptor A6. Interestingly, acceptor A5, which is the

hydrogenated version of acceptor A4, was possibly made due to a human error. Nonetheless,

this unintentional discovery resulted in a monomer that promoted a stable ground state

triplet. However, we acknowledge that, realistically, the synthesis of acceptor A5 might

prove to be a difficult endeavor.

In addition, we have examined the correlation between the singlet HOMO-LUMO gap

calculated using the ωB97X-D DFT method and the GFN2-xTB semi-empirical method

(Figure B2). Oligomers that contain acceptor A5 are outliers, showing no correlation with

the rest of the set. Due to the low synthetic viability of acceptor A5, we removed those

oligomers from the comparison. We fit the data points to linear, logarithmic, and radical

functions, and found that the logarithmic function has the highest R2 at 0.96, compared

to 0.89 and 0.94 for the linear and square root functions, respectively. In short, while the

HOMO-LUMO eigenvalues from density functional theory are unphysical, and gaps from

ωB97X-D may be too large, and from GFN2-xTB may be too small compared to experiment,

there is still a strong correlation between the two computational methods. This correlation

can thus be used in the discovery of new ground state triplet oligomers, as only a single

semi-empirical calculation is needed, skipping multiple time-consuming DFT calculations.

3.3.3 Monomers HOMO-LUMO

To further consider why the stability of a triplet ground state is dependent on the acceptor

identity, the HOMO and LUMO eigenvalues of each acceptor and donor monomers were

calculated, following the same process as the oligomers, as described in the Methods section

(Figure B3). The HOMO eigenvalues on the donor monomers are, of course, generally less

negative (above -8 eV) than the HOMO energies of the acceptor monomers (below -8 eV,

with the exception of acceptors A5, A10, and A12.) Acceptors A4, A6, and A7, which
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yielded some oligomers with ground-state triplets, have similar HOMO energies at -8.30 eV,

-8.34 eV, and -8.34 eV respectively. Acceptor A11 has a similar HOMO eigenvalue, at -8.32

eV, but does not show triplet ground-state stability.

Acceptor A5 is the exception in this case, as it has a relatively high HOMO eigenvalue,

at -6.66 eV — higher than all the other acceptor and donor monomers. This suggests

that acceptor A5 might act as a very good donor. It would be interesting, to find other

synthetically-accessible monomers with similar HOMO and LUMO eigenvalues and compare

their performance to acceptor A5. However, this is beyond the scope of this work.

3.3.4 Strategies to Lower the HOMO-LUMO Gap

As we have shown, the most reliable predictor for the stability of the triplet ground state

is the HOMO-LUMO gap of the singlet species. We therefore considered different general

strategies to lower gap. Previous studies have shown that the identity of the heteroatom

in the backbone of an oligomer as well as the identity of the side group affect the HOMO-

LUMO energy gap[109, 110]. We chose sulfur (S), nitrogen (N) and selenium (Se) as the

representative heteroatom of a 5-membered aromatic heterocycle; since we expected the

HOMO-LUMO gap of the oligomer to decrease as the HOMO-LUMO gap of the heteroatom

decreases[111, 109]. The side group, always on the 3- and 4- position in the heteroycle,

representatives are a fused benzene ring for its potentially stabilizing effect on the quinoidal

form[112], an ethylenedioxy group for its electron-donating effects[113], and no side group

as a reference.

This set consists of 12 monomers — pyrrole, thiophene, selenophene, their 3-4-ethylenedioxy-

derivatives (EDOP, EDOT, and EDOS respectively) and their benzo- derivatives (BP, BT,

and BS respectively). In addition, we constructed a quinoidal version of the thiophene-based

oligomers by forcing inter-monomer double bonds by adding methylidene (H2C––) terminat-

ing groups (q-Thiophene, q-EDOT, and q-BT respectively), as can be seen in Figure 3.4a.

By forcing a quinoidal bonding structure we can have a straightforward comparison with the

aromatic bonding structure. We constructed the hexamer of each system, as previous studies

show a high correlation with the calculated electronic energies of longer oligomers[55, 114],
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and followed the same geometry optimizations and single-point calculations of both singlet

and triplet species as described in the Computational Methods section below.

Figure 3.4b, demonstrates that lower singlet HOMO-LUMO gap correlates with a lower

∆ET−S and a more stable triplet ground state. As expected, we also see correlation between

the singlet HOMO-LUMO gap energy of the heteroatom and the singlet HOMO-LUMO gap

energy of the hexamer, where nitrogen yields a higher gap, followed by sulfur, and lastly

selenium with the lowest gap, consistent with previous results.

However, the side group identity has a large effect on the HOMO-LUMO gap energy as

well. Figure 3.4b illustrates how the benzo- derivatives have a significantly lower HOMO-

LUMO gap energy than the ethylenedioxy- derivatives, which itself has only a moderate

reduction of the HOMO-LUMO gap energy over the parent oligomers with no side group.

In contrast to the findings above, the forced-quinoidal form of the thiophene-based

oligomers show an opposite trend compared to its aromatic counterpart. While the quinoidal

form of thiophene hexamer has a significantly lower HOMO-LUMO gap than the aromatic

thiophene hexamer and a more moderate reduction compared to the ethylenedioxy- deriva-

tives, this relationship reverses when it comes to the benzo- derivatives. While some promote

a quinoidal bonding scheme as a strategy to induce a triplet ground state[81, 80, 96], we

show here that this is not the case. This conclusion reinforces the discussion above, that a

pro-quinoidal molecular design is guaranteed to make a polymer with a stable tripled ground

state. The best overall strategy is to use monomers that promote a lower HOMO-LUMO

gap, either by conjugation or inductively.

3.4 Conclusions

In conclusion, polymers with a triplet ground state have unusual and interesting proper-

ties that can open the door to novel and exciting applications. In this study we considered

various strategies to produce such materials. We examined the correlation between the

calculated stability of oligomers with a triplet ground state versus various electronic and ge-

ometric properties. We have found a high correlation between the energy difference between
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Figure 3.4: a The 12 monomers used in finding a strategy to lower the HOMO-

LUMO gap — Pyrrol, 3-4-Ethyldioxypyrrole (EDOP), Benzopyrrole (BP), Thio-

phene, 3-4-Ethyldioxythiophene (EDOT), Benzothiophene (BT), Selenophene, 3-4-

Ethyldioxyselenophene (EDOS), Benzoselenophene (BS), and the quinoidal versions of the

thiophene-based monomers – denoted with ”q-”, b The singlet HOMO-LUMO gap of the hex-

amers (on the top), and their ∆ET−S (on the bottom), both in eV. The different monomers,

with ”X” denote the different heteroatom as shown in the legend, are on the x-axis.
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the triplet and singlet states of the oligomer (∆ET−S) and the HOMO-LUMO gap of the

singlet state. We can use this correlation in order to find new candidates with triplet charac-

ter by calculating just the HOMO-LUMO gap of the singlet. Moreover, general strategies to

produce low band gap π-conjugated polymers can be used to find novel ground-state triplet

materials.

Again, spin-polarized singlet states may complicate the correlation, a strong trend is

observed between the decreasing HOMO-LUMO gap with two functionals, and the increasing

stability of the triplet ground state. Additional development of electronic structure methods

to treat these delocalized compounds and particularly the spin-polarized singlet state would

be desirable.

While pro-quinoidal design strategies may yield ground-state triplet polymers, our ex-

amination over 132 oligomers suggests there is no overall correlation between quinoidal bond

character and the stability of the triplet state. In addition, we have found that the HOMO

and LUMO energies of the donors and acceptor monomers are also poor predictors for the

stability of the triplet ground state. Instead, heteroatom substitution (e.g., sulfur to sele-

nium) and side-group substitutions appear to yield increased stability of the triplet state

without necessarily inducing quinoidal character.

These design rules can, in turn, be used for both experimental and computational design

of new ground-state triplet conjugated materials. For example, use of a genetic algorithm or

other generative method can sample a large number of potential oligomers through compu-

tational design.[84, 61]

3.5 Computational Methods

As mentioned above, the data set consists of 11 donor monomers and 12 acceptor

monomers (Figure 3.1) studied by the Azoulay group[97, 98, 99, 100, 101, 92]. Long alkyl

chains were replaced with shorter methyl groups in order to reduce computational needs with

negligible effect on the electronic properties. A tetramer (octamer in Azoulay’s notation) of

every possible donor-acceptor pair (i.e. DADADADA, where D = donor monomer and A =
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acceptor monomer) was created from their respective Simplified molecular-input line-entry

system (SMILES) string[115, 116, 117], giving a set of 132 oligomers.

The geometry optimization of every oligomer was done in steps in order to reduce com-

putational costs, starting with a conformer search and optimization using MMFF94[118] or

UFF[119] with OpenBabel version 3.1.0[61], followed by GFN2-xTB[54], and ending with

the B97-3c DFT functional[120] using Orca version 4.2.0[121, 122].

The single-point energy of each oligomer was calculated on the final optimized B97-3c

geometry using the dispersion-corrected ωB97X-D3 DFT functional[123] with the def2-SVP

basis set[124] using Orca. This process was done for both singlet and triplet species of

each oligomer. Single-point energy calculations using the dispersion-corrected CAM-B3LYP

functional were done in the same way. The output files were processed using Python with

the cclib library[125] for the electronic, highest occupied molecular orbital (HOMO) and

lowest unoccupied molecular orbital (LUMO) eigenvalues, and the Open Babel library[61]

for the extraction of the inter-monomer bond lengths. The difference between the triplet

and singlet energies was calculated as

∆ET−S = ETriplet − ESinglet (3)
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4.0 Using Genetic Algorithms to Discover Novel Ground-State Triplet

Conjugated Polymers

This chapter is adapted from:

Omri D. Abarbanel, Geoffrey R. Hutchison; Using genetic algorithms to discover novel
ground-state triplet conjugated polymers. Physical Chemistry Chemical Physics 2023, 25,
11278-11285. DOI: doi.org/10.1039/D3CP00185G.

It is a collaborative effort in which the author implemented the algorithm, performed

the calculations and data analysis, generated the figures, and wrote the manuscript; G.R.H.

conceived and directed the project.

4.1 Summary

Stable ground-state triplet π-conjugated copolymers have many interesting electronic

and optoelectronic properties. However, the large number of potential monomer combina-

tions makes it impractical to synthesize or even just use density functional theory (DFT)

to calculate their triplet ground-state stability. Here, we present a genetic algorithm im-

plementation that uses the semi-empirical GFN2-xTB to find ground-state triplet polymer

candidates. We find more than 1400 polymer candidates with a triplet ground-state stability

of up to 4 eV versus the singlet. Additionally, we explore the properties of the monomers of

those candidates in order to understand the design rules which promote the formation of a

stable ground-state triplet in π-conjugated polymers.

4.2 Introduction

Although organic π-conjugated polymers have been researched for their unique electronic

properties and potential uses[17, 16], a new subclass of π-conjugated organic polymers with

41

https://doi.org/10.1039/D3CP00185G


a triplet ground-state has recently been introduced. Research into the discovery of these

ground state triplet organic π-conjugated polymers has increased in the last few years, with

works on molecular design and characterization. While many of these efforts are still ongoing,

they all follow similar design rules, copolymers composed of electron accepting and electron

donating monomer pairs[92, 95, 96, 80, 81].

By choosing the right combination of monomers a polymer with a small energy gap be-

tween the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular

orbital (LUMO), i.e. the HOMO-LUMO gap, can be achieved. This leads to degenerate

or near-degenerate frontier molecular orbitals and allows for the unpairing of the normally

paired HOMO atoms into two singly-occupied molecular orbital (SOMO) with a biradical

nature[81, 91].

Previous computational work has shown that the size of the HOMO-LUMO gap of singlet

species directly correlates with the stability of the triplet species. That is, polymers with

a small HOMO-LUMO gap also have a more stable triplet ground state. Additionally, the

identity of the acceptor monomer was found to have a high correlation with the stability of

the triplet ground state, where polymers that share the same acceptor monomer will have

similar electronic properties[126].

Experimentally, it is highly impractical to create and characterize every monomer com-

bination. Even computationally, this can require many resources in order to comb through

a large number of monomer pairings. This calls for a more efficient method that can sort

and eliminate unwanted monomers while preserving those that show promising results.

There are many approaches that can be used to accelerate the discovery of new mate-

rials. Machine learning (ML) is one method that is becoming increasingly popular in this

field[127, 128, 129]. However, it requires a large data set, which does not exist in this case.

Another method is the genetic algorithm[56] (GA) which is a non-deterministic optimization

algorithm. The GA is an iterative method, where each generation a new set of offspring are

created from the previous generation surviving parents, and those who survive the fit test go

on to be the parents in the following generation. The algorithm also includes the possibility

of a random mutation that can result in an increase or decrease in the survival rate.

In this work, we used a genetic algorithm to discover new ground-state triplet polymers.
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Our data set consists of 1226 monomers, which, if thoroughly combined with each other,

would create over 1.5 million (12262) potential polymers to work with. This comprehensive

method can be associated with high computational resources and time. The iterative GA

method can efficiently sift through the large number of combinations and produce stable

ground-state triplet candidates with high confidence. Moreover, multiple GAs can run in

parallel, increasing the verity of potential candidates.

Additionally, from the GA we can also produce a list of the most common monomers

that were used in each GA run. A highly common monomer means that it survived natural

selection and passed to the next generation. Also, by promoting a low HOMO-LUMO gap,

a monomer has a higher chance of creating offsprings. From these common monomers we

can gain insights into which monomer properties correlate with a stable triplet ground-state

in the full polymer.

4.3 Methods

4.3.1 Correlation Between the Singlet HOMO-LUMO Gap and Stability of the

Triplet State

In a previous study, we found a strong linear correlation between the HOMO-LUMO

gap of the oligomer singlet state and the stability of its triplet[126]. That is, oligomers

with a low HOMO-LUMO gap lead to a stable open-shell electronic structure due to the

frontier molecular orbitals being closer energetically. Oligomers with a triplet ground-state

tend to have a biradical electronic structure, in which each electron is found in a separate

singly-occupied molecular orbital (SOMO).

Using these findings halves the number of potential calculations that needs to be per-

formed to find if an oligomer has an open-shell electronic structure, as only the HOMO-

LUMO gap of the singlet species is needed. This completely negates the necessity of calcu-

lating the electronic energy of the triplet state, and drastically accelerates the discovery of

open-shell π-conjugated materials.
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Furthermore, the oligomers in the aforementioned study were constructed from pairs of

electron donor and electron acceptor monomers. However, we discovered that the stability

of the triplet ground-state is based primarly on the identity of the acceptor monomer. By

expanding the list of electron-accepting monomers, we can find better oligomers with a

biradical nature.

4.3.2 Correlation between GFN2-xTB HOMO-LUMO gap and ωB97X HOMO-

LUMO gap

In addition to the correlation between the singlet HOMO-LUMO gap and the stability of

the triplet state, we also previously found a correlation between the singlet HOMO-LUMO

gap calculated using density functional theory (DFT) and the HOMO-LUMO gap calculated

using the semi-empirical GFN2-xTB method. While the correlation is imperfect, there is a

clear trend. To strengthen the correlation, we calculated the HOMO-LUMO gap using both

GFN2-xTB and ωB97X-D3 of randomly generated list of new oligomers from the expanded

list of monomers used in this study (Figure C1). See Section 4.3.3.2 for how these calculations

were performed.

Although both the logarithmic and radical functions can describe the correlation, the

radical function slightly better (R2 = 0.83) than the logarithmic (R2 = 0.74), both show that

a small HOMO-LUMO gap calculated with GFN2-xTB would correlate with a small HOMO-

LUMO gap calculated using DFT. As GFN2-xTB is a semi-empirical method, it is much

faster than DFT and can greatly accelerate the GA. We therefore use GFN2-xTB–calculated

HOMO-LUMO gap in the GA, and find oligomers that minimize the HOMO-LUMO gap with

every generation.

4.3.3 Computational Methods

4.3.3.1 The Genetic Algorithm

Genetic algorithms follows Charles Darwin’s Survival of the Fittest idea, which describes

how evolution works[130]. Parents with certain traits create offspring that end up with some
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combination of those traits. Offsprings with combinations of traits that help them survive

in their environment can produce their own offsprings. This cycle can continue indefinitely

or terminate by some external force. At certain points during this process a new, never seen

before, trait has a chance to appear due to a random mutation. These mutations can either

have no effect, help, or hinder the survival and reproduction chances of a off-spring.

Initialization

Selection

Termination

Crossover

Mutation

Figure 4.1: The five steps of the genetic algorithm - initialization, selection, crossover, mu-

tation, and termination. The selection-crossover-mutation cycle is repeated a set number of

times before stopping at the termination step.

Our genetic algorithm follows several steps (Figure 4.1):

1. Initialization — which creates a starting population for the algorithm to work with.

These are the ”parents” in the GA.

2. Selection — which selects some of the population to survive and continue to reproduce,

while it eliminates the others, based on some fitness function. This is the survival rate

of the population.
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3. Crossover — which creates a new population from a random combination of two parents

from the population that survived the previous step. Here, successful parents create new

candidates with a combination of their traits.

4. Mutation — in which, given some mutation rate, some of the current population has its

traits changed to a randomly chosen one.

5. Termination — After repeating steps 2-4 for some number of cycles, the GA ends with

the last surviving population.

In this study, the GA was initialized with a population size of 32 oligomers. Each

oligomer was composed of a pair of monomers, repeated four times in an alternate fashion

(i.e. ABABABAB, where A and B are the first and second monomers in the oligomer,

respectively). During the Selection step, we use the GFN2-xTB–calculated HOMO-LUMO

gap as the fitness function and eliminate half of the population, that is, 16 oligomers, with the

largest HOMO-LUMO gap. In the Crossover step we create 16 new off-springs by randomly

choosing two monomers from the surviving population, which brings the total population

size back to 32. During the Mutation step, every oligomer has a 40% chance to have one of

its monomers replaced by a random monomer from the entire list of possible monomers. We

have used the same hyperparameters for the GA from a previous study done in our group as

they have shown to be effective for similar molecular systems[131, 58]. The GA terminates

the Selection–Crossover–Mutation cycle after 40 generations, which we have found to be

sufficient in finding the minimal calculated HOMO-LUMO gap (Figure 4.2). However, since

random chance is an integral part of the GA, a single run of the GA can miss many potential

oligomers with a low HOMO-LUMO gap—unless the GA is left to run indefinitely, which is

an impossible task. To save run time and increase the chance of finding oligomers with a

low HOMO-LUMO gap, we ran the GA ten times in parallel.

4.3.3.2 Geometry Optimization and Single Point Calculations

The GA was implemented using the Python programming language, version 3.8[132] us-

ing custom code which can be found on GitHub at https://github.com/hutchisonlab/oligomer-

ga. We ran the GA on a list of 1226 different organic monomers[131, 55, 133]. The full list
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of monomers can be found in Appendix C. Each monomer is numbered from 0 to 1225

in no particular order. The oligomers were 8 monomers long, that is, 4 monomer pairs

(that is, AB-AB-AB-AB, where A and B are the different monomers in the oligomer), in

order to match previous studies[126, 81]. Additionally, this length was chosen because of

the balance of a good approximation of the HOMO-LUMO gap of the long-chain poly-

mer and the computational costs and time of running DFT calculations, which can take

anywhere between a few days and a few weeks. Exploring the monomer sequence, i.e., in

an alternating form, is beyond the scope of this study and can be the subject of future

research. However, previous work in our group have studied the effect of the monomers se-

quence on the electronic properties of the oligomer, and can significantly tune HOMO-LUMO

energetics[134, 135, 136, 137, 131].

In every step of the GA the oligomers were constructed from the SMILES strings of

their respective monomers and followed by an initial force-field geometry optimization, and

conformer search step with UFF[119] or MMFF94[118] using OpenBabel[61] version 3.1.

A second geometry optimization step and the calculation of the HOMO-LUMO gap were

done using GFN2-xTB[54] version 6.4.1. The GFN2-xTB output was parsed using a custom

Python script.

The potential oligomers that were found by the GA were further analyzed underwent a

third geometry optimization using the Density Functional Theory (DFT) B97-3c functional[120]

followed by a single point calculation with the ωB97X-D3 functional[123, 138] and the def2-

SVP basis set[124] using ORCA version 4.2.0[121, 122]. This process was repeated separately

for both the singlet and triplet species of each oligomer. Single-point energy calculations us-

ing the dispersion-corrected CAM-B3LYP functional[139] were done in the same way. The

energies and HOMO-LUMO gaps calculated by Orca were parsed using the cclib Python

package[125].

The electronic energy difference between the singlet and triplet species of each oligomer

or monomer is defined as

∆ET−S = ETriplet − ESinglet (4)

with ESinglet and ETriplet are the electronic energies of the singlet and triplet species, respec-

tively. That is, when the ∆ET−S if a certain oligomer is negative, its triplet ground-state is
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more stable, and vice versa.

4.4 Results and Discussion

4.4.1 The Genetic Algorithm

As mentioned before, we ran the GA ten times in order to diversify the potential list

of monomers with a small HOMO-LUMO gap. The objective of our GA, that is, the value

it was aiming to optimize, was a small HOMO-LUMO gap. As seen in Figure 4.2 the GA

did do as intended and indeed minimized the GFN2-xTB–calculated HOMO-LUMO gap.

The average HOMO-LUMO gap (Figure 4.2 Top) shows a significant decrease from the first

few generations, while later it is subject to some randomness due to the nature of the GA.

However the lowest HOMO-LUMO gap (Figure 4.2 Bottom) shows a clear trend where the

GA does finds oligomers with a very small HOMO-LUMO gap.

From the bottom figure in Figure 4.2 it can be seen that after about 40 generations all

the runs converged on a very low HOMO-LUMO gap, within the limitations of the GA.

Although each run started with a random set of oligomers with different HOMO-LUMO

gaps, they all ended with a set of oligomers that, on average, have a lower HOMO-LUMO

gap and at least one oligomer with a GFN2-xTB–calculated HOMO-LUMO gap less than

0.01 eV. Based on our observed correlation between the GFN2-xTB and ωB97X-D3 gaps,

these are roughly equal to a gap of 1.5 eV. 1426 copolymer candidates have been found

to have a GFN2-xTB–calculated gap of less than 0.1 eV, which correspond roughly to a

ωB97X-D3 gap of 2.8 eV.

4.4.2 Top Oligomers

The top 20 oligomers, that is, the oligomers with the smallest GFN2-xTB–calculated

HOMO-LUMO gap found in any of the GA runs, were extracted for further analysis. The

HOMO-LUMO singlet gap and the electronic energies of the singlet and triplet states were

calculated using the ωB97X-D3 functional following the steps described in Section 4.3.3.2.
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Figure 4.2: Top: the mean GFN2-xTB–calculated HOMO-LUMO gap in each generation

for each GA run, with the mean gap and standard deviation for each generation over all

runs in dark blue. Bottom: the lowest GFN2-xTB–calculated HOMO-LUMO gap of every

generation in each GA run.
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Of the top 20, four oligomers encountered various problems during one or more of the DFT

calculation steps and, therefore, were removed from further analysis. All of the top 20

oligomers share one of these two monomers, 35 or 642 (Figure C2). Both monomers share a

similar molecular structure, as can be seen in Figure 4.3 Bottom, except that monomer 642

includes a vinyl bridge.

0 100 200 300 400 500 600 700 800 900
1000

1100
1200

Monomer Number

0

200

400

600

Co
un

t

35

77 115

187

221

642

686

778

1029 1212

O CH2

N+

N+

O-

O

-O

O

N+

N+

O-

O

-O

O

S

O
O

O

HS

S

N
H2N

ON

O

O

O

O

N

S

NN

S

N

35 77 115 187 221 642 686 778 1029 1212

Figure 4.3: Top: The number of times a monomer has been used in any of the ten GA runs.

The top 10 most common monomers are boldly emphasized in red and have their monomer

number above them. Bottom: The structures of the top 10 most common monomers.

In Figure C3 it can be seen that the ωB97X-D3–calculated HOMO-LUMO gap and elec-

tronic energies agree with the GA and the GFN2-xTB–calculated values, as those oligomers

indeed have a small singlet HOMO-LUMO gap and a stable triplet ground-state. This fur-

ther shows that GFN2-xTB can be a good surrogate for DFT in finding oligomers with small

HOMO-LUMO gaps with the GA. While most of the oligomers show similar electronic prop-

erties, two of them, one constructed from monomers 642 and 365 and another constructed

from monomers 642 and 128, look like outliers. However, we expected to see some vari-

ation between the singlet HOMO-LUMO gap and the ∆ET−S since the correlation is not

perfect. On the contrary, those two outliers are the two data points closest to the best-fit
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line calculated in the previous study[126].

Moreover, the outlier 128-642 can be attributed to its conformation, since its lowest

energy conformation found during the geometry optimization steps had the oligomer folded

on itself instead of the flat linear conformation the other oligomers showed (Figure C4a).

We modified the conformation by manipulating the bond angles to create a more linear

conformation using Avogadro2 version 1.95.1, followed by the same geometry optimization

and single point calculations as described in section 4.3.3.2, The resulting geometry remained

in the modified flat conformation (Figure C4b), and the HOMO-LUMO gap of the oligomer

decreased from 1.04 eV to 0.35 eV and its ∆ET−S also decreased from -2.82 eV to -3.23 eV,

and it got closer to the cluster of the other oligomers (Figure C3). The outlier 365-630 had

the same flat and linear conformation as the other oligomers; however, its backbone includes

a 7-membered ring, which breaks aromaticity and disrupts conjugation. We hypothesize that

this may be the cause of this oligomer’s properties. Nonetheless, we wish to reiterate that

those two outliers still exhibit a stable triplet ground-state.

We would like to add that while we expect the conformation of the oligomers to be

extended due to the rigidity that comes from the conjugated π-system , there is a possibility

that the lowest energy conformation of an oligomer would be a nonlinear one, as seen above

for oligomer 128-642. The conformation of the oligomer does affect the HOMO-LUMO

gap, and we see that the HOMO-LUMO gap decreased when the oligomer conformation

was intentionally extended. However, the HOMO-LUMO gap dispersion is relatively small

compared to the scale of the triplet ground state stabilization [140, 141, 142].

In principal, quantum calculations for HOMO-LUMO gap and singlet-triplet energies

should use a substantial conformational search, followed by a Boltzmann-weighted average

of properties. In practice, given the size of the conjugated systems included, proper conformer

sampling (e.g., with GFN2)[53] would significantly increase the run-time of the GA.

Additionally, the spin density plots of the top 20 oligomers (Figures 4.4 for an example

and C6 for the rest of the oligomers) show their biradical nature by the delocalization of

the two unpaired electrons. It can be seen, in some oligomers easier than others, that the

oligomers show higher spin density towards the edges of the triplet ground-state oligomer.

This matches with previous computational studies that showed a similar effect on a poly-
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mer that has been experimentally synthesized and characterized as having a triplet ground-

state[81]. This effect occurs because of the Coulomb repulsion forces as the two unpaired

electrons have the same spin in the triplet state.

Figure 4.4: Spin density plot of the oligomer constructed from monomers number 642 and

630. The purple and green orbital colors correspond to the α and β electrons, respectively.

Isosurface value is 0.002 a.u.

[143]

To see if there are design rules that can be used to find other polymers with a triplet

ground state, we have extracted the top oligomers with a GFN2-xTB–calculated HOMO-

LUMO gap of less than 0.2 eV that were generated in the 10 GA runs (2024 oligomers),

and compared them to all of the possible (∼ 1.5 million) oligomer in our dataset. To help

generalize the design rules we used RDKit to calculate various descriptors on the monomer

pairs, instead of the full length oligomer . The descriptors include the molecular weight

of the pair, the number of atoms, number of rotatable bonds, number of hydrogen-bond

acceptors and donors, number of rings and aromatic rings, the partition coefficient (Crippen

logP [144]), π-system size[55], and number of nitrogen, oxygen, sulfur, selenium, and halogen

atoms in the pair (Figures C11 and C12). Although there is some noise due to the relatively

small sample size in Figure C12, it is still possible to extract some potential design rules.

For example, there are more oxygen atoms in the top monomer pairs (2.7 ± 2.1) compared

to the full monomer combinations (1.7± 1.6), as well as a high proportion of monomer pairs

with a π-system size of 12 atoms, while other comparisons can be attributed to the small

sample size. However, this analysis shows that there are no generalized design rules, and

that a search algorithm, like this GA, is needed in order to traverse the vase chemical space
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and find potential polymers with a triplet ground state.

4.4.3 Top Monomers

From the analysis of the top oligomers from the GA, two monomers have been shown to

be ubiquitous, 35 and 642 (Figure C2). This further demonstrates that the stability of the

triplet ground-state is frequently controlled by one of the two monomers in the oligomer.

That is, some monomers induce a small HOMO-LUMO gap in many of the oligomers they

are found in when paired with many different monomers, and we expect these monomers to

be more common in the GA. To find which monomers in the set exhibit similar properties,

a histogram of the number of occurrences of each monomer in all GA runs was constructed

(Figure 4.3 Top). A higher number of instances in the GA would suggest a higher survivable

rate throughout the GA cycle, due to it contributing to a small HOMO-LUMO gap relative

to the rest of the population.

In fact, it appears that of the 1226 monomers in our data set, only a small subset has been

captured by the GA to promote a small HOMO-LUMO gap. In Figure 4.3 the top 10 most

common monomers are highlighted, along with their molecular structures at the bottom. At

a first glance some of those monomers show a common electron-accepting motifs, such as

monomers 115 and 187 with two highly electron withdrawing nitro groups, or monomer 1212

which is another common acceptor monomer used in various π-conjugated polymers[81, 126].

Another common motif in the top 10 monomers is the vinyl bridge, also called a vinylene

link. The inclusion of a vinyl bridge in the polymer backbone has been shown to lower the

HOMO-LUMO gap by extending the conjugation of the π-system, leading to greater delocal-

ization of πelectrons[145]. As a testament to this hypothesis, our GA found monomers with

a vinyl bridge (e.g., monomers number 642 and 187) at a higher frequency than their deriva-

tives without a vinyl bridge (monomers 35 and 115, respectively), as shown in Figure 4.3.

Moreover, Cordaro and Wong have also commented that in their experience, in addition to

drastically decreasing the HOMO-LUMO gap, a vinyl bridge also improves the solubility

of polymers due to the increase in the polymer flexibility[145]. Therefore, polymers with

a low HOMO-LUMO gap, and potentially a stable triplet ground-state, will benefit from
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including a vinyl bridge in their backbone—both by lowering the intrinsic HOMO-LUMO

gap compared to the non-bridged version and by potentially improving polymer solubility

for synthesis, characterization, and application.

4.4.4 Monomer Properties
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Figure 4.5: Monomers’ HOMO level (relative to thiophene’s), LUMO level (relative to thio-

phene’s), HOMO-LUMO gap, and their triplet ground-state stability (∆ET−S) versus the

stability of the oligomer’s triplet ground-state stability when paired with monomer 630. The

linear best-fit line and standard deviation are shown in black line in each plot, as well as the

R2 and the RMSE (in eV).

From looking at the list of the top 10 monomers, the first questions that should be asked

are what are the electronic properties of those monomers have in common and whether, by

discovering this property, we can find other monomers that share it and promote a stable

open-shell electronic structure since similar monomers should have similar properties.

As mentioned before, we previously showed that the identity of the acceptor monomer

has the highest correlation to a stable triplet ground-state[126]. However, the absolute

classification of monomers between acceptor and donor is vague because these are relative

terms. These are usually described by their HOMO levels, as a donor monomer will have a

high HOMO level, while an acceptor will have a small one. However, an absolute scale is

difficult to derive, as a monomer with a low HOMO level compared to its oligomer counterpart
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will behave as an acceptor (Figure C5). A higher difference between the HOMO levels would

entail a stronger donor-acceptor pair and vice versa. f To classify the monomer into strong

and weak acceptors and donors, we needed to set a relative scale because absolute HOMO

eigenvalues highly depend on the DFT functional and the basis set used. Some have used

thiophene as a ”spacer” monomer in various π-conjugated polymers, as it is claimed to not

affect the electronic properties significantly[146, 147, 148, 149]. For the same reason, some

have used thiophene as a reference monomer when comparing different donor and acceptor

monomers. Therefore, we examine the relative HOMO and LUMO eigenvalues, as well

as the HOMO-LUMO gap and the stability of their triplet state (∆ET−S) for all monomers

(Figure C7). The single-point calculations using the ωB97X-D3 functional followed the same

steps as the full oligomers, as described in Section 4.3.3.2.

For comparison and to reaffirm our results, we also performed single-point calculations

on all monomers using the dispersion-corrected CAM-B3LYP functional (Figure C8). The

results show similar distributions compared to the ωB97X-D3 single point calculations (Fig-

ure C7), showing that those results appear to be consistent across multiple functionals.

The top ten most common monomers in Figure 4.3 have small HOMO-LUMO gaps and

small ∆ET−S, as well as relatively low LUMO levels while their relative HOMO levels are

more spread out (Table C1). However, these monomers are not all in the extreme ends of

any category, and there are other monomers with small HOMO-LUMO gaps, for example,

that did not show up as common in the GA as those top ten monomers. We can attribute

this to several potential causes:

• Due to random chance in the GA. The GA is a stochastic optimization method, and by

chance some potentially good monomers were not selected.

• Due to the electronic structure of the monomer. Some monomers with a small HOMO-

LUMO gap, for example, have an antiaromatic electronic structure—like monomers with

fused alternating 5- and 6-membered rings, such as s-indacene. This, we hypothesize,

inhibits conjugation in the oligomer and does not promote a small HOMO-LUMO gap.

• Due to a human error with the SMILES string of the monomer. Some of the SMILES

strings might have the wrong polymerization site which can break aromaticity and con-

jugation when the monomer is part of an oligomer.
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• Due to inaccuracies in the GFN2-xTB calculations. While we have found a correlation

between GFN2-xTB and ωB97X-D3 HOMO-LUMO gaps (Figure C1), this correlation

is not as strong for small HOMO-LUMO gaps. It is possible that due to this some

potentially good monomers did not survive the Selection step in the GA. This is a trade-

off that we accept to greatly accelerate the GA.

Similarly to the full-length oligomers, a high correlation (R2 = 0.86) was found between

the monomers’ singlet HOMO-LUMO gap and the stability of the triplet ground-state (Fig-

ure C9). This agrees with previous studies that showed a biradical nature in molecules with

a small HOMO-LUMO gap[104, 93, 94, 150, 151].

4.4.5 Other Potential Monomers

To find which property contributes the most to the stability of an open-shell electronic

structure in the oligomer, as well as other monomers that the GA might have missed, we

looked at four different monomer properties: relative HOMO level, relative LUMO level,

HOMO-LUMO gap, and their triplet ground-state stability (∆ET−S). A representative se-

lection of monomers with a range of values for each property were selected, and an oligomer

was created for each monomer and monomer 630—which was paired with monomer number

642 in the oligomer with the second most stable triplet ground-state (Figure C10). We chose

to use monomer 630 over monomer 365, which was paired with monomer 642 and had the

most stable triplet ground state, since it contained a 7-membered ring in its backbone which

broke its aromaticity and interrupted its conjugation to the πsystem. Monomer 630 has a

highly conjugated and aromatic structure that includes a vinyl bridge, and we hypothesized

that it will create more consistent and explainable results. The DFT singlet HOMO-LUMO

gap and the singlet and triplet electronic energies for each oligomer were calculated as de-

scribed in Section 4.3.3.2.

Figure 4.5 show the correlation between the monomers’ property versus the oligomers’

triplet ground-state stability. There is no strong correlation between each of the monomer

properties and the stability of the whole oligomer, as they show heteroscedastic behavior.

That is, monomers with low relative HOMO levels and high relative LUMO levels, HOMO-
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LUMO gap, and ∆ET−S show low triplet state stability in the oligomer. On the other

end, monomers on the opposite side of those properties do not show a clear-cut correlation

between the property and the oligomers ∆ET−S, at least when paired with monomer 630.

Interestingly, while oligomers with monomer number 630 were not as ubiquitous in the

GA as other monomers were, Figure 4.5 show that many oligomers that include monomer

number 630 did show a stable triplet ground-state—including monomers that are not in

the top 10 most common monomers in the GA (Figure 4.3). For example, the oligomer

constructed from monomers 630 and 261 showed a very strong (∆ET−S = −2.96 eV) triplet

ground-state stability, while not being found in any of the GA runs. This very low ∆ET−S

would be comparable to the top 20 oligomers found in the GA (Figure C3). See Table C2

in the Supporting Information for the full data.

4.4.6 Some Remarks

The finding above highlights a weakness in genetic algorithms as a whole, due to their

non-deterministic nature and stochastic behavior. In other words, GAs can find a local

optima, while sometimes missing the global one. There are ways to mitigate this behavior

by tuning the GA’s hyperparameters, such as the population size, mutation rate, and elitism

rate [58]. However, even with well-tuned hyperparameters, there is still a chance that the

GA misses the global optima. While there are other, deterministic algorithms that can find

the global optima, they come with a greater computational cost[152]. In our case we tried

to avoid this problem by running the GA 10 times, but even so it is evident that the GA

did miss some potential candidates. The likelihood of this happening can be reduced by

running the GA for more generations and more times, but then the return-on-investment

(ROI) might not be favorable if this takes longer and has higher computational costs.

Another point we want to emphasize here, as Figure 4.5 shows, is that the identity of

one monomer does not correlate with the oligomer triplet ground state stability, and it is

the combination of the two monomers that overall dictates the oligomer’s properties. While

we presented here various monomers that were common in the GA (Figure 4.3), not every

oligomer with them had a small HOMO-LUMO gap. For example, monomer 642 was the
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most common monomer in the GA and in the top 20 oligomers, but when combined with

monomer 659 it had a GFN2-xTB HOMO-LUMO gap of 1.22 eV — which would correlate

to ∼5.5 eV DFT HOMO-LUMO gap, according to Figure C1, and a more stable singlet

ground state than a triplet one, according to Figure C3, by ∼2.0 eV.

4.5 Conclusions

Ground-state triplet polymers have a unique electronic structure and properties that

have many possible uses in electronic devices. In this study we demonstrated how a Genetic

Algorithm combined with GFN2-xTB, a fast semi-empirical method, can find unique and

novel π-conjugated organic co-polymer candidates with a stable triplet ground-state. Those

candidates exhibit a small HOMO-LUMO gap, which was previously shown to promote a

triplet ground-state electronic structure due to the frontier molecular orbitals getting closer

in energy. The spin densities show the biradical nature of those candidates, and the delocal-

ization of the two unpaired electrons over two different singly-occupied molecular orbitals.

DFT calculations show a triplet ground-state stabilization for up to 4 eV for the oligomer,

and we expect this value to be similar or greater for the full-length polymer.

In addition, we have found that a small number of monomers have been found by the GA

to promote a small HOMO-LUMO gap. All of those monomers exhibit small HOMO-LUMO

gaps on their own, which helped promote a small HOMO-LUMO gap in the full oligomer.

However, no other monomers with a small HOMO-LUMO gap were found by the GA, which

shows that the GA has flaws. While the stochatstic nature of the GA imply that it can

sometimes miss a potential candidate it is still a faster and more efficient method than an

exhaustive search over the vast chemical space, particularly for finding top candidates and

relevant motifs.
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5.0 QupKake: Integrating Machine Learning and Quantum Chemistry for

micro-pKa Predictions

This chapter is adapted from:

Omri D. Abarbanel, Geoffrey R. Hutchison; QupKake: Integrating Machine Learning and
Quantum Chemistry for Micro-pKa Predictions. The Journal of Chemical Theory and
Computation 2024. DOI: doi.org/10.1021/acs.jctc.4c00328.

It is a collaborative effort in which the author implemented the machine learning algo-

rithm, performed the calculations and data analysis, generated the figures, wrote the Python

package, and wrote the manuscript; G.R.H. conceived and directed the project.

5.1 Summary

Accurate prediction of micro-pKa values is crucial for understanding and modulating

the acidity and basicity of organic molecules, with applications in drug discovery, materi-

als science, and environmental chemistry. This work introduces QupKake, a novel method

that combines graph neural network (GNN) models with semiempirical quantum mechanical

(QM) features to achieve exceptional accuracy and generalization in micro-pKa prediction.

QupKake outperforms state-of-the-art models on a variety of benchmark datasets, with root

mean square errors (RMSEs) between 0.5-0.8 pKa units on five external test sets. Feature

importance analysis reveals the crucial role of QM features in both the reaction site enu-

meration and micro-pKa prediction models. QupKake represents a significant advancement

in micro-pKa prediction, offering a powerful tool for various applications in chemistry and

beyond.
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5.2 Introduction

The acid-base dissociation constant (pKa) is a fundamental physicochemical property of

molecules, with broad applications in organic synthesis, environmental chemistry, medicinal

chemistry, and drug design and discovery.[18, 19] The pKa value of a molecule reflects its

relative propensity to donate or accept a proton, and can have a significant impact on its

solubility, membrane permeability, protein binding affinity, stability, and other properties

critical to drug development.[20, 18, 19]

For polyprotic acids and bases, it is essential to consider the micro-pKa values, which

is the term of art for microscopic- or microstate- pKa, of individual protonation and de-

protonation sites. Micro-pKa values refer to the pKa values of specific sites on a molecule,

rather than the overall pKa value of the entire molecule. Knowing the micro-pKa values of

a polyprotic molecule can help us understand its behavior at different pH levels, and design

drugs or other molecules with optimal properties.

The chemical space of small, “drug-like” molecules is vast, estimated to be approximately

1060.[153] Experimental pKa evaluation of all potential molecules is impractical, as only a

modest number of reliable experimental pKa values are available. As a result, researchers

have developed various computational approaches to predict pKa values, broadly classified

into two categories: quantum mechanical (QM) and machine learning (ML) models.

QM models use different computational methods, such as density functional theory

(DFT), semiempirical methods, or quantum mechanics/molecular mechanics (QM/MM)

to compute the thermodynamics of protonation or deprotonation and thus the acid/base

equilibrium. These methods are based on the principles of quantum mechanics and can

provide accurate predictions of pKa values, with root mean square errors (RMSEs) ranging

from 0.6 to 1.6 pKa units, particularly for related species, but they are computationally

expensive.[45, 46, 47, 48, 49, 50]

ML models instead use machine learning algorithms, such as random forests (RF) and

graph neural networks (GNNs), to predict pKa values, based on training on either previously-

computed or experimental data. ML models are less computationally expensive to evaluate

than QM models, but they are generally not as accurate on novel compounds with RMSEs
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ranging from 0.7 to 1.5 pKa units. However, they are still useful for screening large numbers

of molecules to identify potential drug candidates.[30, 31, 5, 6, 32, 33]

There are several pitfalls in designing new micro-pKa models. The first one is to consider

the correct tautomer, most likely to be the abundant form of the molecule in question at

neutral pH in aqueous solution. This can lead to incorrect assignment of reaction sites in both

the training and prediction steps of ML model development. Second, is the need to consider

the molecule as a whole, including electronic and steric effects which may modulate the

reactivity of functional groups and individual sites. The third is the lack of publicly available

high-quality experimental pKa datasets with enough data points to ensure generalization

of the ML models and avoid overfitting. Although some models use private or commercial

datasets,[5, 33, 31] a different approach, such as transfer learning,[154] is needed to overcome

this challenge, until more experimental pKa measurements become available.

In this work, we introduce a new method, QupKake (Quantum pKa graph-neural-

networK Estimator), a model which combines graph neural networks with QM features from

the GFN2-xTB semiempirical method,[54] for the prediction of small-molecule micro-pKa.

By combining both QM and ML we are able to achieve state-of-the-art micro-pKa prediction

accuracies, with RMSE between 0.5-0.8 pKa units on experimental test sets, significantly

lower than previous models. Additionally, QupKake is open-source with the intention of

helping advance scientific research and discovery. The complete source code and all the

datsets used in the training and testing of QupKake can be found on GitHub at: https:

//github.com/hutchisonlab/QupKake.

To achieve these results, we applied several techniques and methodologies. A three-step

workflow includes a QM-based tautomer search step with an implicit water solvation model,

enumeration of reaction sites using QM knowledge and graph neural networks, and a graph

neural network based micro-pKa prediction model that was trained using transfer learning.

QupKake’s unique design shows that combining the best of both worlds, QM and ML, can

lead to better models and open up new possibilities for molecular design.
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5.3 Methods
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Figure 5.1: QupKake’s workflow. The input molecule goes through three steps: tautomer

search, reaction site enumeration, and micro-pKa prediction. The output is the micro-

pKa value of each reaction site.

The workflow of QupKake has three main parts: tautomer search, reaction site enumer-

ation, and micro-pKa prediction. These steps are designed to ensure the accuracy of the

predicted micro-pKa values.

• Tautomer search: QupKake identifies the most stable tautomer of the input molecule.

This is important because the micro-pKa value of a site can vary depending on the

tautomeric form.

• Reaction site enumeration: QupKake enumerates all of the possible protonation and

deprotonation sites on the molecule. This takes into account the chemical structure of

the molecule and the protonation states of its neighbors.

• Micro-pKa prediction: QupKake predicts the micro-pKa values of the enumerated

reaction sites.

5.3.1 Tautomer Search

Certain molecules undergo tautomeric transitions, where they can exist in different forms

due to the movement of protons within their structure. This proton shuffle is influenced by
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factors like the solvent and typically leads to the dominance of one tautomer in a solu-

tion. These distinct tautomeric forms exhibit varying bonding arrangements, resulting in

potentially different micro-pKa values. Therefore, to understand the chemical and physi-

cal properties, it is essential to determine the most stable and prevalent tautomeric species

within the solution.[155, 156, 157]

Although some machine learning models incorporate a tautomer search step, such as

Schrödinger’s Epik,[5] most do not.[32, 48, 33, 6, 31, 50] The identity of the most stable

tautomer is a key factor for pKa prediction, so incorporating a tautomer search step in an

ML model should hypothetically yield more accurate results. Therefore, we employ the

GFN2-xTB method to quickly identify the most stable tautomer.

The list of tautomers for each molecule was generated using the tautomer enumeration

function of version 2022.03.3 of the RDKit software package.[69] For simplicity of the work-

flow, the tautomer search focused on neutral compounds. The total electronic energy of

each tautomer was then calculated using version 4.6.1 of the GFN2-xTB method[54] with

the analytical linearized Poisson-Boltzmann (ALPB) implicit solvation model in water.[158]

The lowest energy tautomer, i.e., the most stable tautomer, was saved and used in the next

steps, while the less stable tautomers were discarded. Consideration of tautomeric forms for

acids, bases, and zwitterions is recognized as an area for future work, since the most stable

tautomer of the neutral species may not be the most stable for other states.

5.3.2 Reaction Sites Enumeration

In the next stage of the QupKake workflow, we focus on enumerating potential reaction

sites, specifically atoms with a higher probability of either gaining or losing a proton within

the most stable tautomeric form identified in the previous step. Many of the currently

available micro-pKa models rely on predefined SMARTS patterns[159] to identify common

acidic and basic groups. These patterns, however, can fail to consider other important

molecular characteristics, such as the impact of neighboring groups or electrostatics on the

reactivity of the reaction site. Furthermore, the use of different sets of SMARTS patterns

by various models can lead to inconsistencies in the identification of reaction sites.
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For this study, we used a tool called Conformer-Rotamer Ensemble Sampling Tool

(CREST),[160] which employs GFN2-xTB calculations and has a protonation and depro-

tonation site screening function.[161] For protonation site screening, CREST identifies lone

pairs and π orbitals as possible protonation sites, followed by geometry optimization and the

ranking of protomers by their total GFN2-xTB energies. For the deprotonation sites screen-

ing, CREST iteratively removes protons from the input molecules, followed by geometry

optimization and the ranking of protomers by their total GFN2-xTB energies.

We used the Protonation and Deprotonation Site Search option of CREST version

2.12[160] together with GFN2-xTB version 4.6.1. Because CREST tests all possible struc-

tures, it finds sites that are chemically unreasonable or rarely occurring, such as the proto-

nation of aromatic carbons. This behavior has been reported previously and is attributed to

a low activation barrier for proton transfer reactions predicted by GFN2-xTB, compared to

other methods.[162, 54] Therefore, we constrained CREST to only output structures up to

10 eV higher in energy than the lowest energy structure. This reduces the number of possible

protonation or deprotonation sites found by CREST to only the most stable reaction sites.

Our dataset consists of 1,475,879 molecules extracted from version 32 of the ChEMBL

online database.[163, 164] The molecules were filtered to include only organic molecules

(atoms H, C, N, O, S, P, F, Cl, Br, I) with ChemAxon[165] acidic or basic pKa values between

0 and 14. In this work, acidic pKa refers to the pKa of a removal of an acidic proton, while

basic pKa refers to the protonation of a base. To further augment the dataset and teach the

model about enantiomers, we converted each chiral molecule in the ChEMBL dataset to its

enantiomer by inverting all chiral centers in the SMILES representation, recognizing that

enantiomers intrinsically have the same pKa values and features. This yielded an additional

376,202 molecules, for a total of 1,852,081 molecules. Molecular descriptor distributions of

the dataset are shown in Figure D2 in Appendix D.

CREST protonation and deprotonation was then performed on each molecule in the

dataset. CREST output structures were compared with the input molecule using openbabel

version 3.1.1[166] in order to identify reaction sites. This was done separately for the proto-

nation and deprotonation processes to generate a separate dataset for each reaction. Since

CREST performs reactive molecular dynamics, molecular rearrangement or degradation can
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occur after protonation or deprotonation, such as ring closure or splitting. Therefore, any

molecule with a structural change other than an addition or removal of a proton was re-

moved from the dataset. In total, there are 1,331,870 protonated molecules with a total of

2,265,676 protonation sites, and 1,214,117 deprotonated molecules with a total of 1,799,457

deprotonation sites.

Comparison of the protonation and deprotonation sites found by CREST versus those

identified using SMARTS patterns is intended to provide insight into their agreement and

to explore whether CREST identifies reaction sites beyond those captured by SMARTS

patterns, and vice versa. For this purpose, we compared the reaction sites in our dataset with

the SMARTS patterns compiled by Pan et. al.,[33] encompass 54 acidic group patterns and

89 basic group patterns. This comparison with SMARTS patterns from previous literature

is not to consider them as a “gold standard,” but rather to evaluate how CREST’s findings

align with established patterns in the literature and to highlight any novel insights CREST

might provide.

Overall, CREST and the SMARTS patterns agreed on 53.08% of the protonation sites

and 72.32% of the deprotonation sites. This indicates that CREST results and the SMARTS

patterns generally agree on the location of protonation and deprotonation sites. However,

there are also some significant differences.

For protonation, 40.67% of the sites were found using the SMARTS patterns but not

with CREST, while 6.24% of the sites were found with CREST but not with the SMARTS

patterns. This discrepancy underlines that while CREST may identify some unique proto-

nation sites not captured by the SMARTS patterns, due to its QM calculations that consider

non-local and non-bonding interactions, the SMARTS patterns, on the other hand, tend to

identify a broader array of protonation sites without regard to the entire molecule or relative

energies. This results in a significant number of potential sites, including some higher in

energy and thus a decreased agreement between the two methods. For deprotonation, the

percentages are slightly closer, with 24.67% of the sites found with the SMARTS patterns

but not with CREST, and 3.31% found with CREST but not with the SMARTS patterns.

This suggests that CREST and the SMARTS patterns are more similar in their identification

of deprotonation sites, but the SMARTS patterns tend to find more possible deprotonation
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sites. This comparison does not expect a complete concurrence between SMARTS patterns

and CREST, particularly given the limitations of SMARTS in capturing complex QM inter-

actions. While deriving tautomerization rules from quantum chemical calculations has been

performed successfully,[156, 157] as of yet, we have not observed the same for protonation

or deprotonation rules. We hope that this work and data set can help to provide a basis for

similar efforts.

Overall, a comparison of the CREST results and the SMARTS patterns reveals that

they generally agree on the location of protonation and deprotonation sites, albeit with

differences. Several examples of the different predictions of protonation and deprotonation

sites are shown in Figure D8 and Figure D9 in Appendix D, respectively.

Again, while the SMARTS patterns may be useful, we focus on CREST reaction sites

because it uses GFN2-xTB calculations to rank the relative thermodynamics of protonated

and deprotonated molecules by total electronic energy, which will be useful later. However,

its exhaustive approach involving meta-dynamics and molecular dynamics (MD) simulations

contributes to its relatively slow performance, taking up to several hours for each molecule.

Therefore, an ML model trained on the CREST dataset can be used as a surrogate for

CREST reaction site determination to provide fast, high-accuracy predictions.

5.3.2.1 Graph Neural Networks Models

Machine learning methods have been successfully applied to predict molecular properties

in recent years,[167, 168, 169, 170, 171, 172, 173, 174, 175] including macro- and micro-

pKa.[32, 33, 5, 50, 31] Graph neural networks (GNNs) are a type of ML model that can be

used to learn representations of graphs, where nodes represent atoms and edges represent

bonds. GNNs have been shown to be effective for molecular property prediction tasks.[33,

30, 5, 176, 177, 178, 179, 180, 181] In this study, we constructed and trained two GNNs

on the CREST dataset to predict protonation and deprotonation sites. We found that our

GNN models outperformed CREST in terms of prediction accuracy and speed. Our results

suggest that GNNs can be used to accelerate QupKake’s workflow by identifying potential

reaction sites more efficiently.
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We generate a molecular graph representation of each molecule using version 2.3.0 of the

PyTorch Geometric[182] package. For each atom (node), bond (edge), and molecule (graph),

we generated a set of features using RDKit and GFN2-xTB. For a complete list of features,

see Table D1 in Appendix D. Our protonation and deprotonation site prediction models

are node-level prediction models. The input to each model is a graph representation of a

molecule in the shape of (61, N), where N is the number of atoms. The output of each model

is a one-dimensional binary vector in the shape of (1, N), where each element of the vector

indicates whether the corresponding atom is a predicted protonation or deprotonation site,

respectively.

We split the CREST dataset into train, validation, and test sets in an 80:10:10 ratio,

respectively. We trained the models using using Python version 3.9, PyTorch[183] version

2.0.0 and PyTorch Lightning [184] version 2.0.2. We tested three different GNN architectures:

Graph Convolution Network,[185] Graph Attention Network,[186] and Graph Transformer

Network.[187] We used Optuna[188] version 3.2.0 to find the best architecture and hyperpa-

rameters for the models, with the goal of maximizing accuracy. Early stopping of the model

training was used to prevent overfitting.

To confirm that the GFN2-xTB features contribute significantly to the models’ perfor-

mance, we used the Integrated Gradients algorithm,[189] as implemented in version 0.6.0

of the Captum Python package,[190] to quantify the importance of each feature in predict-

ing the reaction site. The Integrated Gradients algorithm is a model-agnostic attribution

method that can be used to explain the predictions of any machine learning model. It works

by computing the gradient of the model’s output with respect to its input features, and

then integrating the gradients over a path from a baseline input to the actual input. The

resulting values represent the importance of each feature in contributing to the prediction

of the model.

5.3.3 Micro-pKa Prediction Model

The final step in QupKake’s workflow is the prediction of the micro-pKa values for the

reaction sites previously predicted. The model architecture follows a similar schematic to
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Figure 5.2: The simplified micro-pKa model architecture. The model takes in two input
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is the pKa value of the protonation\deprotonation reaction between the two species. See

Figure D13 in Appendix D for the full model architecture.
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the one proposed by Mayr et. al.,[6] in which the input consists of a graph representation of

both the original input molecule and its protonated or deprotonated version, depending on

the reaction site. Each input molecule undergoes several GNN layers, followed by a global

mean graph pooling layer. The outputs are then concatenated, together with the molecular

features vector of each input molecule, into a one dimensional vector. This vector is passed

to several linear layers that outputs the pKa of that site (Figure 5.2). The implementation

of this model used the same tools and packages as described above.

A comprehensive and high-quality public micro-pKa datasets, that would provide enough

diverse experimental values to train a model are hard to come by. While the iBond database[191]

contains over 30,000 equilibrium pKa values in aqueous and non-aqueous solvents, it is not

readily accessible and encompasses pKa values across 46 different solvents, complicating

its direct application for model training due to solvent diversity. Some models, such as

Schrödinger’s Epik,[5] use proprietary data that are not accessible to others, inhibiting the

progress of scientific discovery. The Czodrowski group has curated a dataset of ∼ 6, 000

organic compounds with experimental pKa values[32] and used ChemAxon’s Marvin[165]

to find the reaction site. Molecular descriptors and the distribution of pKa valuesfor the

experimental dataset can be found in Figures D3 and D4 in Appendix D. However, 6,000

experimental data points are not enough to adequately train a GNN model.[192] Further-

more, during model development, we have found that the experimental dataset requires

augmentation and cleaning as some molecules had to be neutralized, had a chemically im-

probable assignment of the reaction site, or had calculation errors with GFN2-xTB. This

narrowed the experimental dataset to 5,637 compounds.

To mitigate this problem, the model was trained on the previously mentioned ChEMBL

dataset, consisting of ∼ 2.5 million predicted acidic and basic pKa values over ∼ 1.5 million

molecules. As the molecules in this dataset have been previously processed by CREST, the

lowest energy protomer or deprotomer was assigned to the predicted pKa value. That is,

Marvin’s most basic pKa prediction was assumed to describe the protonation reaction of the

molecule and the most stable protomer found by CREST. The same applies to the most

acidic pKa and the molecule’s most stable deprotomer. The assignment of predicted macro-

pKa value to a reaction center and treating it as a micro-pKa value is because in most cases
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CREST found only one acidic or basic reaction center that was energetically accessible per

molecule, which is in agreement with our assumption. In cases where there were multiple

reaction centers, this assumption can be flawed, but it is how we were able to achieve a

diverse training set. As before, the model was divided into training, validation, and testing

sets in an 80:10:10 ratio, respectively.

Transfer learning was then used to fine-tune the model with the 5,637 experimental

micro-pKa values, which was randomly split to 80:20 ratio of training and validation sets.

Transfer learning has been a widely used technique in the ML world for fine-tuning a pre-

trained model on new information with the purpose of increasing accuracy or improving

performance on another related task.[193, 194, 195]. In this case, the pre-trained model was

able to take advantage of its existing knowledge of molecular structure and properties to

learn to predict micro-pKa values more accurately.

To test the performance of the model and compare it to other available models, we used

two public datasets also curated by the Czodrowski group.[32] Those datasets consist of 279

molecules from the Novartis drug company, and the other dataset consist of 123 molecules

with experimental pKa values from different literature sources. Molecular descriptors and the

distribution of pKa valuesfor the experimental dataset can be found in Figures D5 and D6 in

Appendix D. The model’s performance was also compared with the datasets of Statistical

Assessment of Protein and Ligand Modeling (SAMPL) in public challenges of prediction

SAMPL6,[2] SAMPL7,[3] and SAMPL8[4] micro-pKa prediction public challenges.

5.4 Results and discussion

5.4.1 Reaction Sites Enumeration

5.4.1.1 Model Performance

The tuned and trained micro-pKa prediction models were evaluated on an out-of-sample

set of 133,188 molecules with protonation sites and 121,413 molecules with deprotonation

sites, randomly selected from the CREST datasets. The models achieved very high accu-
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racy, with 98.2% and 98.8% accuracy for protonation and deprotonation site enumeration,

respectively. These results are shown in Figure D10. The optimized hyperparameters are

listed in Table D2 in Appendix D.

5.4.1.2 Feature Importance

To better understand which features are the most important for the protonation sites

enumeration model, we performed atom and bond feature importance analysis as described

in section 5.3.2.1 (Figure D11). The most important atom feature is ”Atom Type: N”, which

indicates whether the atom is a nitrogen atom. This makes chemical sense, as nitrogens are

more likely to be protonated than other types of atoms in neutral molecules. Furthermore,

96% of the protonated atoms in the CREST dataset are nitrogens (Figure D7a), which

supports the importance of this feature.

The next two most important atom features are the covalent coordination number (”xTB

Coord Number”) and the susceptibility to radical attack Fukui(0) index (”xTB Fukui(0)”),

both of which are calculated using GFN2-xTB. This shows that QM features contribute

significantly to the model’s performance.

The most important bond feature is ”Bond Type: SINGLE”, followed by the ”Wiberg

Bond Order”, which is calculated from the GFN2-xTB results. The computed bond order is

a continuous real value based on electron density, and can thus indicate variations in bond

strength.[196] This corroborates the importance of QM features, as well as the importance

of single bonds in protonation reactions.

Overall, the feature importance analysis shows that the model is able to leverage both

topological and quantum mechanical features to accurately predict protonation sites. This is

an important finding as it demonstrates that the model can be used to predict protonation

sites for a wide range of molecules, even those for which experimental data is not available.

Similarly, to better understand which features are the most important for the deproto-

nation sites enumeration model, we performed atom and bond feature importance analysis

(Figures D12).

The most important atom feature is ”Is HBD”, which indicates whether the atom is

71



a hydrogen-bond donor. This makes chemical sense, as hydrogen bond donors are more

likely to be deprotonated than other types of atoms. The highest GFN2-xTB feature, the

atom’s partial charge (”xTB Partial Charge”), is only in seventh place, indicating that

quantum mechanical (QM) features are less important for deprotonation site prediction

than for protonation site prediction.

Similarly to the protonation site enumeration model, the most important bond feature

is ”Bond Type: SINGLE”. However, the GFN2-xTB calculation ”Wiberg Bond Order”

feature is only the fifth most important feature, again indicating that QM features are not

as important for deprotonation site prediction as for protonation site prediction.

Overall, the feature importance analysis shows that the deprotonation sites enumeration

model is less reliant on QM features than the protonation sites enumeration model.

Despite the lower importance of QM features for deprotonation site prediction, the model

is still able to achieve high accuracy. This is likely because the model is able to learn complex

relationships between the topological and chemical properties of the molecule.

5.4.2 Micro-pKa Prediction Model

5.4.2.1 Model Performance

The tuned and trained micro-pKa prediction model was validated on five external test

sets: the Novartis dataset (containing 280 molecules), the Literature dataset (containing 122

molecules), and the SAMPL6, SAMPL7, and SAMPL8 datasets (containing 24, 20, and 21

molecules, respectively). The results of this evaluation are shown in Figures 5.3a and 5.3c.

The optimized hyperparameters are listed in Table D3 in Appendix D.

On the Novartis and Literature test sets, the model achieved low prediction errors with

root mean square errors (RMSEs) of 0.79 and 0.54 pKa units, respectively, and mean absolute

errors (MAEs) of 0.55 and 0.39 pKa units, respectively. The model also achieved high

coefficients of determination (R2) for both test sets, with values of 0.88 and 0.95, respectively.

These results demonstrate that the model is able to accurately predict micro-pKa values for

a wide range of organic molecules.

To put QupKake’s high performance into context, Figure 5.3b shows a comparison of the
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Figure 5.3: Micro-pKa predictions versus the measured micro-pKa values of the a Novartis

dataset and Literature dataset, as well as the c SAMPL6, SAMPL7 and SAMPL8 datasets.

Data points are colored according to the highest Tanimoto similarity score of the molecule

in the test set versus the molecules in the experimental training set. The best-fit linear

regression line is shown in red. b RMSE comparison of the Novartis and Litareture datasets

between QupKake and five other models. The RMSE values for the five other models were

obtained from Mayr et al..[6]
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RMSE of QupKake versus five other models on the Novartis and Literature datasets. Those

models include MolGpKa,[33] Schrödinger’s Epik Classic,[197] ChemAxon’s Marvin,[165]

pkasolver, [6] and the Baltruschat model from the Czodrowski group.[32] The RMSE values

were obtained from Mayr et al..[6] It is clear to see that QupKake significantly outperforms

all other models, with RMSE differences of 0.34 and 0.25 pKa units on the Novartis and

Literature test sets between QupKake and the next-best models.

The Novartis and Literature test sets were both obtained from the Czodrowski group,[32]

which stated that the test sets and the experimental training set do not have the same

molecules, which could lead to the model “memorizing” values instead of learning. However,

we have found that this is not the case, since several molecules appear in both these test sets

and the experimental training set. To see if the model actually memorized the molecules and

their pKa values, or whether QupKake was able to generalize, we removed any molecules from

the test sets with high Tanimoto similarity scores (< 0.8) and compared the performance of

the model with the rest of the molecules (Figure D15). Tanimoto similarity scores are defined

as the ratio of the intersection of the two sets of fingerprints over the union of the two sets

and have been widely used to calculate molecular similarities in various applications.[198]

The R2, RMSE, and MAE of the Novartis dataset remained the same, while the RMSE and

MAE of the Literature dataset slightly increased to 0.59 and 0.43, respectively, while R2

was unchanged. These results show that the model did not simply memorize values and was

able to learn and generalize on a range of different species and pKa values. Furthermore,

we have not found any correlation between the Tanimoto similarity score and the pKa error

(Figure D14), again suggesting the QupKake model has strong generalization.

To illustrate the benefits of transfer learning in refining the model’s accuracy, we con-

ducted experiments with two distinct models without transfer learning. The first is the initial

model, trained solely on the ChEMBL dataset without fine-tuning using the experimental

data, exhibited an increase in the RMSE for the Novartis and Literature test sets to 1.09

and 0.86, respectively, compared to the fine-tuned model (Figure D17). The second model,

trained exclusively on the experimental data with identical hyperparameters to those of the

fine-tuned model, demonstrated a more pronounced increase in RMSE for the Novartis and

Literature test sets, reaching 1.79 and 1.31, respectively (Figure D18). These results affirm
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our hypothesis that transfer learning markedly improves the model’s performance.

Table 5.1: Comparison of QupKake’s accuracy versus the top ranked submissions[1] in the

SAMPL6,[1, 2] SAMPL7[3] and SAMPL8[4] pKa prediction challange. The table is sorted

from lowest to highest RMSE of the models in each SAMPL challenge. While the Epik

7 Ensemble model[5] was not submitted to the SAMPL6 challenge, we included it here as

it is the most recently published micro-pKa prediction model, as well as for providing its

performance on the SAMPL6 dataset.

SAMPL6 SAMPL7 SAMPL8

Model RMSE MAE R2 Model RMSE MAE R2 Model RMSE MAE R2

QupKake 0.44 0.32 0.96 EC RISM 0.72 0.53 0.93 QupKake 1.04 0.62 0.75

Epik 7 Ensemble 0.61 0.48 0.95 QupKake 0.85 0.67 0.91 DeeepGP 3.17 2.62 0.15

Grimme 0.68 0.58 0.94 IEFPCM/MST 1.82 1.30 0.56 3DS 3.44 2.49 0.27

S+pKa 0.73 0.59 0.93 DFT M05-2X SMD 2.90 2.28 0.03 ChemAxon 4.18 2.82 0.09

ACD/pKa Classic 0.79 0.56 0.92 TZVP-QM 2.90 2.75 0.23 ECRISM 4.56 3.05 0.18

COSMOtherm pKa 0.90 0.71 0.90 Gaussian Process 3.49 2.91 0.30 ZhiyiWu 4.73 3.37 0.05

MoKa 0.94 0.77 0.88 DFT M06-2X SMD 5.12 2.56 0.20 uESE extra 6.80 5.33 0.09

Epik Classic 0.95 0.78 0.91 Gaussian corrected 5.36 5.12 0.76 — — — —

Despite being trained on the ChemAxon dataset, QupKake outperforms the Marvin

program in identifying reaction sites that correlate more closely with experimental pKa values

in the Novartis and Literature datasets. This indicates that QupKake’s ability to identify

accurate reaction sites generalizes well beyond the training data. Even when evaluated using

the reaction sites identified by Marvin, QupKake still surpasses the performance of other

micro-pKa prediction models. On the Novartis and Literature test sets, QupKake achieves

RMSEs of 1.00 and 0.59 pKa units, respectively (Figure D16). These RMSEs are higher than

those obtained using QupKake’s own reaction sites, but they remain lower than those of the

other five models compared in Figure 5.3b. This demonstrates QupKake’s robustness and

ability to provide accurate micro-pKa predictions even when using reaction sites identified

by external tools.

The model was also tested on the SAMPL6, SAMPL7, and SAMPL8 pKa prediction chal-

lenges (Figure 5.3c). QupKake outperformed all of the submitted models for the SAMPL6[1,

2] and SAMPL8 models,[4] and would have been ranked first if the challenges were still open
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for submission. Table 5.1 shows the superior performance of QupKake on the SAMPL6 and

SAMPL8 datasets compared to the best performing submissions, as well as the latest Epik

7 Ensemble model from Schrödinger.[5] QupKake performs slightly worse on the SAMPL7

dataset and would be ranked second by RMSE compared to the other submissions.[3]

Beyond ranking the performance on test sets, the model should be evaluated for trends

in the most accurate and least accurate micro-pKa predictions to consider potential chemical

motifs and model bias on certain acidic or basic groups. Figures D19 and D20 in Appendix

D show the 20 most accurate and least accurate micro-pKa predictions on the Novartis

dataset. No clear pattern is observed, suggesting that there is no noticable bias of the

model. Although there are several examples of poor predictions on the acidic pKa of amides

in D20, it is not a significant trend across the entire testing set. The RMSE of only acidic

amides in the Novartis dataset is 0.94 pKa units, which, while slightly higher than the RMSE

of the entire set (0.79), does not indicate clear bias against these groups.

Additionally, Thapa & Raghavachari compiled a set of organic molecules categorized

by functional group. They calculated pKa values using high-level QM methods, employing

both implicit and explicit water solvation models. Their results were tabulated for each

group [199]. By applying the QupKake model to each functional group list, we can assess

whether QupKake exhibits differential pKa prediction accuracy across groups (Tables D4 –

D15). As anticipated, QupKake demonstrates higher performance on functional groups well-

represented within the training set. These include nitrogen-containing aromatic heterocycles,

primary and secondary amines, carboxylic acids, anilines, and benzoic acids. On the contrary,

groups less prevalent in the training data, such as aliphatic alcohols & thiols, phenols, and

thiophenols, yielded lower precision. Notably, “carbon acids” (i.e., deprotonation of aliphatic

carbon atoms) were absent from the training set, making the current model unable to predict

the reaction site for this group.

As with any ML model, the accuracy and precision of the model output is directly

related to the accuracy and precision of the training data. As mentioned before, high-quality

micro-pKa data is hard to obtain. Due that, QupKake is trained only on one pKa value per

compound of a relatively small section of the vast chemical space. Therefore, we acknowledge

that we can only have high confidence in the most acidic or basic micro-pKa values that
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QupKake predicts, while we have less confidence in the micro-pKa predictions of additional

reaction sites in compounds with multiple sites (e.g., polyprotic acids). Further experimental

pKa data, for example from automated characterization would greatly improve the accuracy

of future models.

Overall, the results of the external evaluation demonstrate that the tuned and trained

QupKake prediction model is a highly accurate and reliable tool for predicting micro-pKa val-

ues for organic molecules. The model outperforms all other state-of-the-art models on a va-

riety of benchmark datasets and is able to generalize to new data, including examples which

are more challenging than the training data. This suggests that the model could be used to

predict micro-pKa values for a wide range of organic molecules, including drug candidates

and other molecules of interest.

5.4.2.2 Feature Importance

As with the reaction site enumeration models, feature importance analysis can give use-

ful insights into which features contribute to the the micro-pKa prediction model, such as

whether including QM features improves the model performance. We performed a feature im-

portance analysis on the atomic, bond, and molecular features using the Integrated Gradients

algorithm as described earlier. However, as the micro-pKa prediction model’s architecture

(Figure D13) is more complex than the reaction site enumeration models, as well as being

a graph regression model, compared to a node classification model in the case of the site

enumeration models, feature importance analysis is less straightforward.

In the micro-pKa model architecture, the atomic and bond feature vectors of each atom

and bond in both the protonated and deprotonated molecules are first passed through several

GNN layers, which are then pooled into a one-dimensional vector. It is then concatenated

with the molecular feature vectors and passes through several linear layers, which output

the predicted micro-pKa. As the feature vectors, especially the atomic and bond features,

have gone through several transformations, it can be difficult to deduce how and why each

feature affected the model’s performance.

Figure D21a shows the importance of the atomic features, with ”Atom Type: N” having

77



the highest score. We hypothesized that this is due to the abundance of nitrogen reaction

sites found by CREST, and therefore by the reaction site GNNs. The next important atomic

feature is the ”xTB Alpha”, which is the atomic polarizability calculated by GFN2-xTB.

This indicates that QM features provide useful information to the model and improve its

performance. The next features by importance score include ”Is HBA”, ”Formal Charge:

0”, and ”Atom Type: O”, which, as before, might indicate their abundance in the dataset.

Similarly, the most important bond features shown in Figure D21b are ”Is In Ring”

and ”Is Conjugated”, indicating the high prevalence of aromatic rings in the dataset. The

”Wiberg Bond Order”, calculated by GFN2-xTB, is the third most important feature, again

proving that QM features contribute to the model performance.

The molecular features did not pass through the GNN layers, and thus should have

a more direct and interpretable impact on the model. Figure D21c shows that the five

RDKit features, ”RadiusOfGyration”, ”Eccentricity”, ”Spherocity”, ”FractionCSP3”, and

”Asphericity”, have almost identical importance scores, while the protonation energy (”xTB-

Energy”, the energy difference between the protonated and deprotonated molecules) have

a very low score. This could indicate that there is a negligible correlation between GFN2-

xTB energies and pKa s, while the RDKit features contribute similar information to the

model. Improved semiempirical methods with better treatment of solvation effects,[200] or

ML-based models[201] may improve the influence of these molecular features.

5.4.3 Model Speed

Although GFN2-xTB is a relatively fast semiempirical method, especially compared to

higher-level methods,[53] it is significantly slower than using RDKit alone to calculate graph-

level features. As with many things in life, however, there is an inverse relationship between

speed and accuracy and the QM features prove to be important in both tautomer selection

and the ML models.

To evaluate how fast it takes for a molecule to pass through QupKake’s workflow, we

performed a benchmark test using a server running a 3.85GHz AMD EPYC 9374F CPU

with 32 cores with a shared memory framework. Although ML tasks generally run faster
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Figure 5.4: Average compute time per molecule across the 280 molecules in the Novartis test

set as a function of the number of CPU cores, indicating time spent in the tautomer search

calculations, GFN2-xTB feature calculations, ML model inference, and Python overhead

from the QupKake model code, including RDKit descriptors. The error bars show the

standard deviation of the average compute time per molecule over 10 trials.
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on GPU, the rate-limiting steps in QupKake are the GFN2-xTB calculations, which do not

take advantage of GPU acceleration. However, GFN2-xTB can utilize parallel processing

on multiple cores to increase its calculation speed. Additionally, to achieve even better

better performance, we utilized Python’s multiprocessing module to parallelize the dataset’s

preprocessing.

Using the 280 molecules in the Novartis dataset as our benchmark, we measured Qup-

Kake’s average compute time per molecule from start to finish, as well as how long each

step took, as a function of the number of CPU cores (Figure 5.4). We repeated this 10

times to minimize random events that can skew the benchmark timings. The very small

standard deviations, around 0.02 seconds per molecule in the single CPU core case, show

that QupKake’s execution time is consistent. Of course, some variance is expected when

different molecular sets are used.

It is clear that the tautomer search step, which uses GFN2-xTB to find the most stable

tautomer, takes a significant time to compute, followed by the calculations of the GFN2-

xTB features for the reaction site search and the micro-pKa prediction steps. As mentioned

before, the actual model inference compute time is negligible, even when using a CPU.

As more CPU cores were used in parallel, the compute time for the tautomer search

and the GFN2-xTB calculations decreased inversely at an approximately linear rate. That

is, the average compute time for those steps using four CPU cores is approximately half

the compute time using two cores and about a quarter compared to using a single core

(Figure D22). These steps run well in parallel because multiple tautomers can be calculated

at once, and many components of a quantum calculation such as GFN-xTB also run well in

parallel.

In contrast, the compute time for the overhead Python code that could not be parallelized

remained approximately the same regardless of how many CPU cores were used. Therefore,

the overall speedup achievable by using more CPU cores is limited as it does not scale linearly

with the number of cores (Figure D23). Thus, using more than two to four cores per molecule

provides only a minor improvement in speedup.

In general, the use of multiple CPU cores can be a valuable tool to improve QupKake’s

performance. However, the benefits of using multiple cores are not linear, and the overhead of
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using multiple cores can also be a factor. Therefore, in common cases such as the evaluation

of multiple compounds in a set, it is more effective to run separate QupKake calculations in

parallel rather than dedicating many cores to each.

5.5 Future Directions

We have shown that combining semiempirical QM features with ML improves the micro-

pKa predictions for small ”drug-like” molecules. However, while GFN2-xTB is a relatively

fast method, especially compared to higher-level methods,[53] it is still slower than ”pure”

ML methods that use only RDKit features.[5, 33, 6] As described above, the greatest bottle-

necks in QupKake’s workflow are the GFN2-xTB calculations, and finding a faster replace-

ment that provides similar, or better accuracy can improve future versions of QupKake.

For example, the recently published MolTaut model[202] which uses a GNN to rank

tautomer stability in aqueous solutions, could replace the current tautomer search step, which

uses GFN2-xTB calculations to do so. Other models, such as Auto3D or AIMNet2,[203, 201]

which uses a message-passing approach, can also be used to calculate the relative energies

of the tautomers.

ML model can also be used to predict certain atomic and bond features, which can make

the use of GFN2-xTB calculations obsolete. Features such as atomic partial charges,[204, 205]

Fukui indices,[206] and bond orders[207] already exist and can be integrated with future

iterations of QupKake. Other GFN2-xTB features that prove important for micro-pKa pre-

dictions, such as atomic polarizabilities and coordination numbers, currently do not have

published models. However, it is possible to build surrogate models to predict these values,

in a manner similar to QupKake’s reaction site models, training on the calculated values

from GFN2-xTB or a higher-level method.

Caldeweyher et al. recently introduced an alternative method for calculating various QM

features, including coordination numbers, atomic polarizabilities, and partial charges [208].

Their work presents kallisto, a program that employs equations parameterized to GFN2-xTB

data to compute these features. While corrections to GFN2-xTB atomic polarizabilities
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have been noted [209], this approach offers the potential to significantly accelerate feature

calculation to the level of GFN2-xTB computational efficiency, without directly utilizing the

GFN2-xTB method.

5.6 Conclusions

In this work, we have presented QupKake, a novel and effective workflow for predicting

micro-pKa values of small organic molecules. QupKakeleverages the power of graph neu-

ral networks (GNNs) and semiempirical quantum mechanical (QM) features, namely the

GFN2-xTB method, to achieve exceptional accuracy and generalization. Our comprehensive

evaluation demonstrates that QupKake outperforms all other state-of-the-art models, yield-

ing low prediction errors on five external test sets, with RMSEs between 0.5-0.8 pKa units.

Further analysis of QupKake’s feature importance revealed the crucial role of QM fea-

tures, such as the coordination number and Wiberg bond order, in both reaction site enumer-

ation and micro-pKa prediction models. Additionally, topological features, including atom

and bond types, were also found to be essential for the model’s performance.

While QupKake exhibits remarkable accuracy and generalization, we also investigated

its speed and identified the tautomer search and GFN2-xTB calculations as the most time-

consuming steps in the workflow. To address this challenge, we have outlined several promis-

ing research directions, including developing a faster replacement for GFN2-xTB calculations

and utilizing ML models to predict certain atomic and bond features.

We believe that QupKake represents a significant contribution to the field of computa-

tional chemistry, offering a powerful tool for predicting micro-pKa values of organic molecules.

Its potential applications span a wide range of fields, including drug discovery and mate-

rials science. Moreover, the use of transfer learning, using abundant computed predictions

to train an initial model, followed by experimental refinement, offers a clear mechanism to

improve model accuracy in chemistry, when accurate experimental data may be scarce.
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6.0 Conclusions and Future Directions

This work has explored the combination of quantum mechanical calculations together

with machine learning and genetic algorithms to design and discover new materials with de-

sirable electronic and molecular properties. Using these advanced computational techniques,

the research has shown significant potential for accelerating material and drug discovery. One

focus was on π-conjugated polymers, which have applications in organic electronics, such as

solar cells, transistors, and light-emitting devices. Furthermore, this research included micro-

pKa predictions for drug-like molecules, which are crucial to understanding the behavior of

pharmaceutical compounds in biological systems.

QM methods, such as DFT, were used to provide information on the electronic struc-

ture of materials. Despite their accuracy, these methods are computationally intensive. To

mitigate this, semi-empirical methods, mainly GFN2-xTB, were introduced as a viable alter-

native, offering faster calculations with some trade-offs in accuracy. GFN2-xTB, for example,

has been shown to provide reliable geometries and approximate electronic properties, making

it suitable for high-throughput screening of large molecular datasets in the selection step of a

Genetic Algorithm (GA), as well as providing important features for ML applications. This

balance between speed and accuracy is essential for practical applications where large-scale

screening is necessary.

One of the key advantages of ML in molecular design is its ability to quickly predict

properties of new unseen compounds. This capability is expecially important for discovering

materials with novel properties that are not present in the training datasets. The combina-

tion of QM and ML allows for the accurate prediction of material properties with significantly

reduced computational cost compared to QM calculations alone. The ability to integrate

different types of data, such as structural features and quantum mechanical properties, into

predictive models further enhances the resilience and applicability of these techniques.

The integration of QM methods with ML further enhanced the efficiency of property

predictions. In Chapter 2, a random forest ML model was trained on a dataset of tetramers

and hexamers with calculated reorganization energies, using geometrical features calculated
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using GFN2-xTB. This method has been shown to accurately identify candidates with low

reorganization energies, achieving a ∼13× speedup. In Chapter 5 of this work, we introduced

QupKake, a graph neural network (GNN) based model that uses GFN2-xTB in multiple steps

of its workflow, including finding the lowest energy tautomer and calculating the atomic,

bond and molecular features for the micro-pKa prediction model.

In Chapter 3, we identified that a low HOMO-LOMO gap of an oligomer is a predictor

for a stable triplet ground state. This gave us the basis in which we built upon in Chapter

4, where a GA was used to optimize the exploration of a large chemical space. The GA

efficiently searched for molecules with a low HOMO-LUMO gap, using GFN2-xTB calcula-

tions in the selection step. It successfully found 1,400 possible candidates out of 1.5 million

potential monomer combinations. The GA also helped identify certain design rules that can

guide future searches, such as specific monomers and the use of a vinyl bridge.

The integration of GAs with QM and ML methods provided a robust approach to mate-

rial discovery, enabling the identification of new materials with exceptional properties. This

combination allows for an efficient exploration of the chemical space, where QM methods

ensure the accuracy of property evaluations or provide important features, ML models pro-

vide rapid predictions, and GAs optimize the search process. This integrated approach was

demonstrated through several case studies on the reorganization energies and the stabil-

ity of a triplet ground state of π-conjugated polymers, as well as the micro-pKa values of

drug-like molecules, which showcase the practical implementation and effectiveness of the

proposed methodology. The successful application of these methods highlights the potential

for computational techniques to transform material discovery.

6.1 Future Directions

The integration of quantum mechanical methods, machine learning, and genetic algo-

rithms presents numerous opportunities for future research. One promising direction is the

expansion of the chemical space explored in this thesis. While the current work focused

on π-conjugated polymers and drug-like molecules, the methodologies developed can be ex-
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tended to other classes of materials, including monomers that were not used in this work and

molecules and polymers with pKa values outside of the biological range. By broadening the

scope of materials studied, researchers can uncover new applications and functionalities that

were previously unexplored, such as understanding their degradation in water as a result of

protonation or deprotonation.

Another important future direction is the improvement of machine learning models to

handle more complex and diverse datasets. One hurdle encountered in Chapter 5 was the

lack of publicly available large enough datasets of experimental pKa values. As the avail-

ability of experimental and computational data continues to grow, there is a need for more

sophisticated ML algorithms that can learn from these vast datasets and make accurate

predictions. Techniques such as transfer learning, as it has been utilized in this work, and

active learning, where models iteratively query new data points to improve performance,

hold great promise in this regard. Automated data collection, such as the use of robotic labs

to perform measurements, can be an efficient way to greatly increase the number of data

points for ML applications.

Furthermore, while semi-empirical methods such as GFN2-xTB have shown their suc-

cessful implementation in ML and GA workflows, using ML models as surrogates for semi-

empirical features can accelerate the search for better materials and make it more efficient.

For example, a ML model can be trained to predict the HOMO-LOMO gap of oligomers

such as those used in Chapters 3 and 4. This model can then be used in a GA, instead of

the current implementation with GFN2-xTB, to potentially accelerate the search speed and

broaden the search space of new polymers with a stable triplet ground state. ML models

can also be trained on specific atomic or bond characteristics, such as partial charges and

bond orders, for integration into GNN models such as QupKake.

Finally, the development of more efficient and accurate semi-empirical methods remains

a critical area of research. While methods like GFN2-xTB provide a good balance between

speed and accuracy, there is still room for improvement. Advancements in this field could

lead to even faster and more reliable calculations, enabling the exploration of larger chemical

spaces and more complex systems. Combining these improved semi-empirical methods with

ML and GAs could further enhance the efficiency of material discovery and optimization,
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paving the way for the development of next-generation materials with tailored properties for

a wide range of applications.
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Appendix A Machine Learning to Accelerate Screening for Marcus

Reorganization Energies

A.1 Code and Data Availability

Full code, data files, and analysis notebooks are available at https://github.com/

Shualdon/ReorganizationEnergy

A.2 Supplementary Information
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Figure A1: Correlation of B3LYP calculated λ between (a) dimers and tetramers, and (b)

dimers and hexamers. Trendlines indicated robust linear regression fit.
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Figure A2: Correlation between λ calculated using B3LYP vs. λ calculated using GFN2 for

(a) tetramers and (b) hexamers. Trendlines indicated robust linear regression fit.
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Figure A3: Correlation between the dihedral angle (b, d) and the inter-ring bond length

(a, c) between the monomers calculated using B3LYP vs. GFN2 for the neutral (a, b) and

cation (c, d) species. Trendlines indicated robust linear regression fit.

89



Neu
tra

l
Cati

on

Cati
on

@Neu
tra

l

Neu
tra

l@
Cati

on

10 1

100

101

CP
U 

Ti
m

e 
(s

)

Figure A4: Calculation run time of the 4 different calculation for the dimers using GFN2.

Note the logarithmic y-axis.
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Figure A5: Calculation run time of the 4 different calculation for the tetramers using GFN2.

Note the logarithmic y-axis.
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Figure A6: Calculation run time of the 4 different calculation for the hexamers using GFN2.

Note the logarithmic y-axis.
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Figure A7: Mean run time for each of the 4 calculations for the dimers, tetramers, and

hexamers using GFN2.
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Figure A8: Calculation run time of the 4 different calculation for the tetramers using B3LYP.

Note the logarithmic y-axis.
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Figure A9: Calculation run time of the 4 different calculation for the hexamers using B3LYP.

Note the logarithmic y-axis.
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the longest continuous conjugated π-system. In this example of the hexamer of monomers

31 (cyclopentathiophene) and 47 (thiadiazolthiophene) - the 39 highlighted atoms in red are

counted.
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Figure A11: Random Forrest regression optimization: (a) score vs. number of trees, (b)

run time vs. number of trees, (c) RMSE vs. number of trees and (d) score/run time vs.

number of trees.
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Figure A12: Relative feature importance of the top 10 features in the random forest model

and the cumulative sum importance of all the ECFP4 bits.
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Figure A13: Example of the ECFP bit number 1019 which indicates the existence of an sp3

hybridized carbon in the oligomer.
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Figure A14: Correlation between the average neutral inter-ring bond length of the oligomers

versus the B3LYP calculated λ.
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Figure A15: Histogram of monomers, sorted by frequency, for (a) tetramers and (b) hexamers

with λ < 0.3 eV illustrating that only a small number of monomers are found frequently

(compare to sorting by arbitrary monomer number in (a) 2.5c, and (b) 2.5d).
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Table A1: The monomer numbers, the predicted and calculated B3LYP λ, the dihedral

angles of the neutral and cation species, and the inter-ring bond length of both neutral and

cation species for the 5 hexamers with the lowest B3LYP λ.

Monomer 1 Monomer 2

GFN2

Neutral

Dihedral

Angle (°)

GFN2

Cation

Dihedral

Angle (°)

B3LYP

Neutral

Dihedral

Angle (°)

B3LYP

Cation

Dihedral

Angle (°)

GFN2

Neutral

Bond

Length (Å)

GFN2

Cation

Bond

Length (Å)

B3LYP

Neutral

Bond

Length (Å)

B3LYP

Cation

Bond

Length (Å)

47 47 179.308 179.371 179.999 179.994 1.381 1.378 1.379 1.374

47 116 179.693 179.727 178.576 178.674 1.390 1.385 1.397 1.389

47 156 177.520 177.935 179.979 179.997 1.388 1.383 1.397 1.387

47 247 179.201 178.849 178.099 179.726 1.388 1.383 1.401 1.390

47 217 179.460 179.493 175.533 179.994 1.393 1.387 1.403 1.391
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Appendix B Strategies for Computer-Aided Discovery of Novel Open-Shell

Polymers

B.1 Code and Data Availability

Full code, data files, and analysis notebooks are available at https://github.com/

Shualdon/GST

B.2 Supplementary Information

∆ET−S = 1.27× (HOMO − LUMO Gapsinglet)− 4.88 (5)

EQ. S5: The best fit linear correlation equation between ∆ET−S and

HOMO − LUMO Gapsinglet. All values are in eV.
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Figure B1: Correlation plots between the difference of the Triplet and Singlet energies of

each oligomer versus its the HOMO-LUMO gap of the singlet species, both in eV, calculated

using the CAM-B3LYP functional, grouped by the acceptor number. Linear best-fit line is

shown as a dashed gray line.
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Figure B2: Correlation between the singlet HOMO-LUMO gap calculated using ωB97X-D

versus GFN2-xTB, (a) showing all tetramers, where tetramers that contain acceptors A5

are shown in purple triangles, (b) showing only tetramers that do not contain acceptor A5.

Linear, logarithmic, and radical functions were fit to the data in order to find the highest

correlated function.
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Figure B3: The HOMO and LUMO energies, in eV, of the (a) acceptor monomers and (b)

donor monomers, with the HOMO-LUMO gap energy, also in eV, in the center of each graph.
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Table B1: The slope of the linear best-fit function and its coefficient of determination (R2)

between the inter-monomer bond length and ∆ET−S for tetramers that share acceptors.

Acceptor Number Best-Fit Slope (eV/Å) R2

1 17.81 0.37

2 41.92 0.92

3 38.90 0.89

4 48.16 0.80

5 -41.93 0.33

6 3.14 0.02

7 2.9 0.02

8 -3.33 0.01

9 90.72 0.69

10 18.15 0.52

11 56.13 0.88

12 -2.43 0.20
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Appendix C Using Genetic Algorithms to Discover Novel Ground-State Triplet

Conjugated Polymers

C.1 Code and Data Availability

Full code, data files, and analysis notebooks are available at https://github.com/

Shualdon/GST_GA

C.2 Supplementary Information
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Figure C1: Correlation between HOMO-LUMO gaps calculated using GFN2-xTB versus

ωB97X-D3. The logarithmic, in red dash-dotted line, and the radical, in blue dashed line,

best-fit functions, with their respective equations and coefficient of determination (R2), are

shown.
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Figure C2: The number of times a monomer was part of the top 20 oligomers, i.e. with the

lowest xTB-GNF2 HOMO-LUMO gap, found in all 10 GA runs. Each of the oligomers had

either monomer 642 or monomer 35 as one of their monomers.
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Figure C3: Correlation between the singlet HOMO-LUMO gap and ∆ET−S of the 16 out of

the top 20 oligomers. The oligomers are grouped by the common monomers—35 (in yellow

triangles) and 624 (in pink circles). The outlier of monomer 128 and 642 is indicated with

light green star with the values of its optimized geometry (at the arrow’s tail) and with a

dark green star at its values in the modified geometry (at the arrow’s head). The outlier of

monomers 365 and 642 is indicated in a blue square. A zoomed-in inset of the relevant part

is shown. The red points are the data points from the previous study, with the best fit line

for those points shown in dashed gray line.
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(a)

(b)

Figure C4: a A side view of the optimized, folded conformation of oligomer 128 642, b A

top view of the modified, flat conformation of oligomer 128 642.
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Figure C5: Relative HOMO (in red) and LUMO (in blue) levels of hypothetical monomers

A, B, and C. If monomers A and B were to combine in an polymer monomer A will be the

donor while monomer B will be the acceptor, as the HOMO level of monomer A is relatively

higher in energy than monomer B. However, if monomers B and C were to combine to make a

polymer then monomer B will be the donor while monomer C will be the acceptor. Monomer

B can behave as either a donor or acceptor, depending on which monomer it is paired with.
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(e) 35-194 (f) 35-563

(g) 35-614 (h) 35-73

Figure C6: Spin density plots of the top 20 oligomers. Isosurface value is 0.002 a.u.
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(i) 35-906

(j) 642-128

(k) 642-128 modified

(l) 642-365

(m) 642-470 (n) 642-546

(o) 642-556 (p) 642-105

Figure C6: Cont. Spin density plots of the top 20 oligomers. Isosurface value is 0.002 a.u.
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(s) 642-767 (t) 642-820

(u) 642-862

Figure C6: Cont. Spin density plots of the top 20 oligomers. Isosurface value is 0.002 a.u.
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Figure C7: Top Left: a histogram of the monomers’ HOMO eigenvalue relative to thiophene’s

HOMO eigenvalue. Top Right: a histogram of the monomers’ LUMO eigenvalue relative to

thiophene’s LUMO eigenvalue. Bottom Left: A histogram of the monomers’ HOMO-LUMO

gap. Thiophene’s HOMO-LUMO gap is marked for reference. Bottom Right: A histogram of

the monomers’ electronic energy difference between the triplet and singlet ground states. A

Lower value correlates to a more stable triplet ground-state. Thiophene’s ∆ET−S is marked

for reference.
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Figure C8: CAM-B3LYP single point calculations on the monomers that show similar dis-

tributions to the ωB97X-D3 single point calculations in Figure C7. Top Left: a histogram

of the monomers’ HOMO eigenvalue relative to thiophene’s HOMO eigenvalue. Top Right:

a histogram of the monomers’ LUMO eigenvalue relative to thiophene’s LUMO eigenvalue.

Bottom Left: A histogram of the monomers’ HOMO-LUMO gap. Thiophene’s HOMO-

LUMO gap is marked for reference. Bottom Right: A histogram of the monomers’ electronic

energy difference between the triplet and singlet ground states. A Lower value correlates to

a more stable triplet ground-state. Thiophene’s ∆ ET−S is marked for reference.
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Table C1: The HOMO level (relative to thiophene’s), LUMO level (relative to thiophene’s),

the HOMO-LUMO gap and the ∆ET−S of the 10 most common monomers from all the GA

runs (Figure 4.3).

Monomer Relative HOMO Relative LUMO
HOMO-LUMO

Gap ∆ET−S

35 1.05 -3.35 6.31 0.71
77 1.71 -2.54 6.45 0.92
115 -0.87 -4.58 6.99 1.63
187 -0.19 -4.51 6.38 1.28
221 0.15 -3.35 7.20 1.13
642 1.56 -3.49 5.65 0.28
686 1.33 -2.51 6.86 1.60
778 2.65 -2.50 5.55 0.68
1029 -0.66 -3.62 7.74 3.41
1212 0.62 -3.69 6.38 1.17
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Figure C9: Correlation between the monomers’ singlet HOMO-LUMO gap and the stability

of their triplet ground state, ∆ET−S.
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Figure C10: Visualization of the oligomers constructed by some monomer, M, and monomer

number 630, for Figure 4.5.
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Figure C11: Various descriptors of all (∼1.5 million) possible monomer pairs.
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Figure C12: Various descriptors of the monomers pairs of the oligomers with GFN2-xTB–

calculated HOMO-LUMO gap smaller than 0.2 eV that were generated in any of the GA

runs.
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Table C2: Full data for Figure 4.5. Monomers number that were combined with 630 to create

an oligomer, each monomer’s relative HOMO, relative LUMO, its singlet HOMO-LUMO gap

and its ∆ET−S, and the ∆ET−S of the full oligomer. The table is sorted by the ascending

oligomer’s ∆ET−S.

Monomer
Number

Monomer
Relative HOMO

Monomer
Relative LUMO

Monomer
Singlet Gap

Monomer
∆ET−S

Oligomer
∆ET−S

261 0.73 -3.46 6.51 1.05 -2.96
224 0.06 -4.26 6.37 1.29 -2.75
1172 1.66 -3.14 5.89 0.80 -2.72
768 1.77 -2.75 6.17 1.08 -2.70
141 1.92 1.19 9.97 3.98 -2.69
1064 2.29 -2.28 6.13 1.56 -2.42
1181 2.18 -2.33 6.18 1.21 -2.10
200 2.34 -2.29 6.06 1.54 -2.03
775 1.91 -3.20 5.59 0.64 -1.88
710 1.21 -2.24 7.24 1.92 -1.79
663 0.63 -2.04 8.04 2.48 -1.51
40 0.93 -1.98 7.78 2.38 -1.43
1027 1.16 -3.00 6.54 0.96 -1.06
630 0.14 -4.13 6.43 1.32 -1.00
1128 -0.41 -4.33 6.78 1.68 -1.00
337 0.76 -1.47 8.46 3.44 -0.99
913 2.48 -2.32 5.90 1.01 -0.93
1002 0.18 -0.40 10.12 3.46 -0.71
105 -0.33 -4.11 6.92 1.56 -0.70
639 0.58 -2.75 7.37 2.16 -0.46
804 1.06 -0.81 8.82 2.99 -0.33
75 2.59 -2.00 6.10 1.04 -0.30
730 1.46 -3.22 6.02 1.15 -0.15
728 1.74 -1.78 7.17 1.81 -0.14
1204 2.83 0.68 8.54 3.21 -0.08
1067 1.55 -3.49 5.66 0.91 -0.04
722 1.52 -3.13 6.04 1.11 -0.03
203 2.49 -2.43 5.78 0.56 0.01
569 1.09 -3.18 6.43 1.43 0.02
395 1.73 -3.48 5.50 0.55 0.04
697 1.31 -3.32 6.06 1.41 0.05
225 2.22 0.23 8.70 3.15 0.07
526 1.62 0.83 9.91 3.89 0.16
466 2.41 -2.76 5.53 1.06 0.19
1054 0.26 -1.05 9.39 3.57 0.20
332 -0.52 -4.30 6.92 1.62 0.21
305 2.55 -2.35 5.81 0.58 0.23
210 2.37 -0.28 8.04 3.06 0.23
137 -0.08 -3.91 6.87 1.67 0.32
176 2.36 -2.76 5.58 1.07 0.35
588 1.29 -1.90 7.50 2.76 0.35
670 2.23 -1.06 7.41 2.36 0.39
418 2.24 -0.72 7.74 2.48 0.40
503 0.20 -3.99 6.51 1.67 0.41
34 1.93 -0.22 8.55 3.26 0.46
349 0.24 -3.97 6.49 1.57 0.47
954 2.25 1.01 9.45 3.85 0.50
343 2.18 -2.81 5.71 0.89 0.51
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Table C2 (continued).

Monomer
Number

Monomer
Relative HOMO

Monomer
Relative LUMO

Monomer
Singlet Gap

Monomer
∆ET−S

Oligomer
∆ET−S

534 -0.22 -1.91 9.01 3.13 0.53
100 0.48 -0.78 9.44 3.57 0.56
104 2.22 -2.77 5.71 0.88 0.58
618 0.04 -2.01 8.65 2.95 0.62
389 -0.97 -2.11 9.56 3.65 0.63
457 -1.14 -1.62 10.22 3.85 0.63
869 -1.34 -1.93 10.11 3.80 0.65
1 1.45 0.65 9.90 3.90 0.65

723 -1.28 -1.88 10.10 5.27 0.67
591 -1.19 -1.26 10.63 4.07 0.69
1203 -1.35 -2.08 9.96 3.82 0.71
764 0.72 -2.57 7.40 2.34 0.71
472 -1.59 -2.57 9.72 3.82 0.72
0 -1.23 -1.18 10.74 4.13 0.76

160 0.14 -3.80 6.76 1.50 0.76
976 -1.64 -2.61 9.72 4.24 0.79
5 0.04 -3.76 6.89 1.88 0.80
41 0.05 -1.51 9.14 1.95 0.82
1071 1.40 -1.29 8.00 3.28 0.87
242 0.85 -1.01 8.84 4.20 0.88
515 -1.37 -2.58 9.48 3.75 0.89
1030 -1.20 -2.47 9.42 3.58 0.90
826 1.34 -1.29 8.06 2.46 0.90
519 -1.27 -0.13 11.84 5.09 0.91
413 0.96 1.52 11.25 4.62 0.93
966 -1.10 -3.79 8.00 3.25 0.95
471 1.74 -1.79 7.16 1.82 0.96
1136 -1.71 -1.27 11.13 4.36 0.97
893 -0.99 -3.82 7.86 3.27 0.98
746 0.72 1.14 11.12 4.37 0.99
346 -0.77 -3.85 7.62 3.00 0.99
783 0.36 -0.51 9.83 3.59 1.03
1135 -1.21 -1.17 10.74 4.39 1.04
996 1.48 -2.22 6.99 1.81 1.06
1095 0.47 -2.04 8.18 2.80 1.06
943 0.64 -2.74 7.32 2.10 1.07
67 1.65 0.58 9.64 3.85 1.08
725 -2.39 -3.87 9.22 3.61 1.08
533 0.27 0.84 11.27 4.31 1.08
581 -1.55 -3.94 8.30 3.32 1.09
504 1.00 1.38 11.07 4.11 1.10
190 -1.75 -3.91 8.54 3.46 1.10
809 1.08 -2.09 7.52 2.06 1.10
673 -1.11 0.89 12.70 4.66 1.10
1000 -1.16 0.57 12.43 5.36 1.10
20 -1.19 -2.19 9.70 4.02 1.11
450 1.65 -1.05 8.00 2.51 1.11
156 0.60 0.07 10.17 4.40 1.13
1063 1.32 -1.43 7.95 2.89 1.13
672 0.87 1.70 11.53 4.68 1.14
345 1.10 -2.39 7.21 1.87 1.14
665 0.88 -1.14 8.68 2.70 1.16
435 0.49 -2.14 8.07 2.42 1.17
257 1.54 1.79 10.95 4.46 1.18
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Table C2 (continued).

Monomer
Number

Monomer
Relative HOMO

Monomer
Relative LUMO

Monomer
Singlet Gap

Monomer
∆ET−S

Oligomer
∆ET−S

1131 -1.95 -2.64 10.00 4.11 1.18
1216 1.50 -2.02 7.18 2.11 1.18
538 1.26 1.00 10.43 4.60 1.18
440 0.18 -2.36 8.15 3.53 1.19
805 0.93 -1.13 8.64 3.10 1.19
1072 0.66 1.75 11.79 6.98 1.19
694 -0.47 -1.15 10.01 3.69 1.19
3 1.79 -1.95 6.95 1.76 1.19

117 0.49 -1.09 9.12 3.28 1.20
1035 -1.16 0.57 12.43 5.36 1.21
1142 -0.02 -0.66 10.06 4.10 1.21
521 0.43 1.72 11.98 6.85 1.23
1126 -0.57 -2.07 9.19 3.50 1.26
416 1.29 1.61 11.02 5.50 1.28
206 0.59 -0.91 9.19 3.50 1.28
51 0.28 -0.16 10.26 3.79 1.29
360 1.07 -0.91 8.72 2.89 1.29
151 0.91 -0.41 9.37 3.36 1.29
507 0.00 0.00 10.70 4.91 1.29
322 -0.25 2.29 13.23 7.44 1.30
182 -0.35 0.23 11.27 4.57 1.30
1116 0.93 -0.14 9.63 3.69 1.31
819 -0.10 -0.49 10.31 4.72 1.31
947 1.59 -1.23 7.87 2.65 1.31
499 -0.50 -0.36 10.84 4.97 1.31
559 0.66 -1.16 8.88 3.03 1.32
288 0.97 -0.67 9.06 3.39 1.32
932 2.03 -1.35 7.32 2.67 1.32
78 0.47 1.11 11.33 4.61 1.32
587 1.51 -2.67 6.52 1.31 1.33
1094 2.12 1.14 9.72 3.59 1.33
766 -0.77 -0.95 10.52 5.43 1.34
874 0.97 -1.42 8.30 2.94 1.34
698 0.07 -1.53 9.10 3.23 1.35
900 -0.45 0.38 11.53 4.46 1.35
425 0.65 0.24 10.29 4.24 1.38
393 0.97 -1.12 8.61 3.00 1.38
542 -0.21 -0.53 10.38 4.74 1.40
28 1.07 -2.80 6.83 1.85 1.41
467 -0.34 0.44 11.48 4.39 1.41
981 1.27 1.53 10.95 4.29 1.42
987 0.09 -1.55 9.06 3.48 1.43
784 1.52 -1.06 8.11 3.02 1.43
555 1.12 1.38 10.95 4.22 1.43
1090 -0.86 -3.15 8.41 3.46 1.44
444 0.74 -1.78 8.17 2.89 1.46
79 0.96 -1.01 8.73 2.89 1.46
310 0.15 -1.04 9.51 3.57 1.47
350 0.90 -1.06 8.74 3.46 1.47
412 0.43 0.15 10.41 3.87 1.47
468 -0.35 -2.45 8.60 2.98 1.48
1118 1.67 0.01 9.04 3.44 1.48
249 0.74 1.55 11.51 5.29 1.48
292 0.17 -0.51 10.02 3.90 1.49
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Table C2 (continued).

Monomer
Number

Monomer
Relative HOMO

Monomer
Relative LUMO

Monomer
Singlet Gap

Monomer
∆ET−S

Oligomer
∆ET−S

979 0.50 1.02 11.22 5.43 1.51
552 1.67 0.44 9.46 3.58 1.53
439 -0.87 0.13 11.70 4.58 1.55
724 0.46 1.01 11.25 4.74 1.59
473 1.24 -0.34 9.11 3.70 1.61
898 -0.34 -2.37 8.67 2.92 1.62
687 1.56 -0.69 8.45 2.94 1.67
983 1.59 -1.99 7.12 1.93 1.94
226 1.51 -0.12 9.06 3.18 2.02
659 1.08 -1.59 8.03 2.43 2.03
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Appendix D QupKake: Integrating Machine Learning and Quantum Chemistry

for micro-pKa Predictions

D.1 Code and Data Availability

Full code, data files, and analysis notebooks are available at

https://github.com/Shualdon/QupKake

D.2 Supplementary Information

0 2 4 6 8 10 12 14
ChemAxon Most Acidic pKa

0

10000

20000

30000

40000

Co
un

t

Total: 1,126,913

0 2 4 6 8 10 12 14
ChemAxon Most Basic pKa

Total: 1,387,265

Figure D1: ChemAxon acidic and basic pKa distribution in the ChEMBL dataset.
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Figure D2: Molecular descriptors for the ChEMBL dataset.
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Figure D3: Molecular descriptors for the experimental dataset.
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Figure D4: Acidic and basic pKa distribution in the experimental dataset.
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Figure D5: Molecular descriptors for the Literature and Novartis test datasets.

130



0

5

10

15

20

25

Co
un

t

Total: 24 Total: 98

Literature

2 4 6 8 10 12
Acidic pKa

0

5

10

15

20

25

Co
un

t

Total: 103

2 4 6 8 10 12
Basic pKa

Total: 177

Novartis
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Figure D7: The number of each element that was a protonated or b deprotonated in the

CREST datasets.
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Figure D8: Examples of protonation site discrepancies between CREST and SMARTS pat-

terns. Each row shows the same molecules with the highlighted atoms on the left show the

CREST protonation sites while the right shows the SMARTS protonation sites. The Number

under each pair of molecules is the ChEMBL ID.
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Figure D9: Examples of deprotonation site discrepancies between CREST and SMARTS

patterns. Each row shows the same molecules with the highlighted atoms on the left show

the CREST deprotonation sites while the right shows the SMARTS deprotonation sites. The

Number under each pair of molecules is the ChEMBL ID.
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Table D1: The molecular graph features used in the model.

Source Feature Value Length
Atom Features

RDKit

Atom Type One-hot encoding 17
Heavy Atom Neighbors One-hot encoding 6
Formal Charge One-hot encoding 8
Hybridization One-hot encoding 7
Is In Ring Binary 1
Is Aromatic Binary 1
Atomic Mass Float 1
Van-Der Waals Radius Float 1
Covalent Radius Float 1
Chirality One-hot encoding 4
Number of Hydrogens One-hot encoding 6
Is H ydrogen-Bond Donor Binary 1
Is Hydrogen-Bond Acceptor Binary 1

GFN2

Partial Charge Float 1
Coordination Number Float 1
Polarizability Float 1
Fukui Indices Float 3

Total 61
Bond Features

RDKit

Bond Type One-hot encoding 4
Is Conjugated Binary 1
Is In Ring Binary 1
Stereochemistry One-hot encoding 4

GFN2 Wiberg Bond Order Float 1
Total 11

Molecule Features

RDKit

Radius of Gyration Float 1
Spherocity Float 1
Aspherocity Float 1
Eccentricity Float 1
Fraction sp3 Carbons Float 1

GFN2
∆Eionization Float 1
Charge Float 1

Total 7
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Table D2: Tuned hyperparameters for the reaction sites models, as found by Optuna. Both

protonation and deprotonation models use the same hyperparameters.

Hyperparameter Possible Values Selected Value

GNN Architecture GCNNet, GATNet, TransformetNet TransformetNet

Num. of Attention Heads † [1, 2, 3, 4] 2

Hidden Layer Size 64-512 94

Number of GNN Layers [1, 2, 3, 4] 2
† Num. of Attention Heads parameter is only used for the GATNet and TransformerNet architectures.
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Figure D11: The normalized, absolute relative importance of the a atomic features and b

bond features for the protonation sites enumeration model.
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Figure D12: The normalized, absolute relative importance of the a atomic features and b

bond features for the deprotonation sites enumeration model.
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Figure D13: Micro-pKa prediction model architecture. The parameters n and m correspond

to the Number of GNN Layers and Number of MLP Layers, respectively, in Table D3.
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Table D3: Tuned hyperparameters for the micro-pKa prediction model, as found by Optuna.

Hyperparameter Possible Values Selected Value

GNN Architecture GCNNet, GATNet, TransformetNet TransformetNet

Number of Attention Heads † [1, 2, 3, 4] 3

Hidden Layer Size 64-512 51

Number of GNN Layers [1, 2, 3, 4] 3

Number of MLP Layers [1, 2, 3, 4] 1
† Number of Attention Heads parameter is only used for the GATNet and TransformerNet

architectures.
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Figure D14: The highest Tanimoto similarity score of the a Novartis test set and the b

Experimental test set, compared to the transfer training set, versus the pKa error, i.e. the

absolut difference between the experimantal and predicts pKa values. As can be seen, there

is no obvious correlation, indicating that the existence of a similar molecule in the training

set has a negligible effect on the models’ pKa prediction.
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Figure D15: Micro-pKa predictions versus the measured micro-pKa values of the Novartis

and Literature datasets, filtered to include only molecules with low (< 0.8) Taminoto sim-

ilarity scores. Data points are colored according to the highest Tanimoto similarity score

of the molecule in the test set versus the molecules in the experimental training set. The

best-fit linear regression line is shown in red.

143



0 2 4 6 8 10 12
Measured pKa

0
2
4
6
8

10
12
14

Pr
ed

ict
ed

 p
K a

Novartis Dataset
R2 = 0.81
RMSE = 1.00
MAE = 0.77

0 2 4 6 8 10 12 14
Measured pKa

Literature Dataset
R2 = 0.94
RMSE = 0.59
MAE = 0.44

0.0

0.2

0.4

0.6

0.8

1.0

Ta
ni

m
ot

o 
Si

m
ila

rit
y

Figure D16: Micro-pKa predictions versus the measured micro-pKa values of the Novartis

and Literature datasets, using the ChemAxon Marvin predicted reaction centers. Data

points are colored according to the highest Tanimoto similarity score of the molecule in the

test set versus the molecules in the experimental training set. The best-fit linear regression

line is shown in red.
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Figure D17: Micro-pKa predictions versus the measured micro-pKa values of the Novartis

and Literature datasets, using a model trained only on the ChEMBL dataset without transfer

learning. Data points are colored according to the highest Tanimoto similarity score of the

molecule in the test set versus the molecules in the experimental training set. The best-fit

linear regression line is shown in red.
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Figure D18: Micro-pKa predictions versus the measured micro-pKa values of the Novartis

and Literature datasets, using a model trained only on the experimental dataset. Data points

are colored according to the highest Tanimoto similarity score of the molecule in the test set

versus the molecules in the experimental training set. The best-fit linear regression line is

shown in red.
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Table D4: Predictions on Nitrogen-containing aromatic heterocycles from the Thapa &

Raghavachari Set-I dataset[199].

SMD only SMD + 1 water QupKake

S.N. SMILES pKExp
a pKa ∆pKa pKa ∆pKa pKa ∆pKa

1 c1ccncn1 1.10 -0.596 -1.696 0.439 -0.661 2.161 1.061

2 c1cccnn1 2.10 0.909 -1.191 0.927 -1.173 3.185 1.085

3 c1c(cccn1)Cl 2.84 0.570 -2.270 1.828 -1.012 3.016 0.176

4 c1(ccccn1)OC 3.28 2.060 -1.220 2.627 -0.653 3.147 -0.133

5 c1cc2c(cc1)cnnc2 3.39 2.506 -0.884 2.426 -0.964 3.460 0.070

6 c1cc2c(cc1)cccn2 4.85 3.626 -1.224 4.126 -0.724 4.604 -0.246

7 c1c(cccn1)O 4.86 3.140 -1.720 3.926 -0.934 4.454 -0.406

8 c1ccc(cn1)OC 4.88 3.412 -1.468 4.192 -0.688 4.777 -0.103

9 c1cc2c(cc1)cc1c(c2)nccc1 5.05 3.525 -1.525 4.046 -1.004 4.268 -0.782

10 c1ccccn1 5.17 3.838 -1.332 4.323 -0.847 4.881 -0.289

11 c1cc2c(cc1)cc1c(cccc1)n2 5.60 4.425 -1.175 4.483 -1.117 4.801 -0.799

12 c1c(cccn1)CC 5.70 4.382 -1.318 5.106 -0.594 5.282 -0.418

13 c1c(cccn1)C(C)(C)C 5.82 4.499 -1.321 5.038 -0.782 5.433 -0.387

15 c1cccc(n1)CC 5.97 5.081 -0.889 5.247 -0.723 5.643 -0.327

16 c1cc(ccn1)C(C)(C)C 5.99 4.729 -1.261 5.339 -0.651 5.646 -0.344

17 c12c(cccc1)nc[nH]2 6.00 3.650 -2.350 4.942 -1.058 5.038 -0.962

18 c1cc(ccn1)CC 6.02 4.745 -1.275 5.328 -0.692 5.848 -0.172

19 c1[nH]cc(n1)CO 6.45 4.921 -1.529 5.613 -0.837 5.979 -0.471

20 c1cc(ccn1)OC 6.62 5.326 -1.294 5.558 -1.062 6.243 -0.377

21 c1(cnc[nH]1)C[C@@H](C(=O)[O])NC(=O)C 7.05 6.293 -0.757 7.053 0.003 6.100 -0.950

22 c1(ncc[nH]1)C 7.75 7.148 -0.602 8.010 0.260 7.482 -0.268

MAE 1.348 0.783 0.468

MSE 1.41 0.829 0.568

MaxAbsError 2.350 1.173 1.085
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Table D5: Predictions on Aliphatic alcohols from the Thapa & Raghavachari Set-I

dataset[199].

SMD only SMD + 1 water SMD + 2 waters SMD + 3 waters QupKake

S.N. SMILES pKExp
a pKa ∆pKa pKa ∆pKa pKa ∆pKa pKa ∆pKa pKa ∆pKa

1 C(C(O)(C)C)(F)(F)F 11.60 20.692 9.092 18.025 6.425 14.767 3.167 12.591 0.991 2.372 -9.228

2 C(CO)(Cl)(Cl)Cl 12.02 18.854 6.834 15.877 3.857 13.017 0.997 11.466 -0.554 0.592 -11.428

3 C(CO)(F)(F)F 12.43 19.877 7.447 16.966 4.536 14.217 1.787 12.047 -0.383 2.584 -9.846

4 C#CCO 13.55 22.443 8.893 18.858 5.308 16.579 3.029 13.663 0.113 2.663 -10.887

5 C(O)COC 14.80 24.311 9.511 20.673 5.873 17.643 2.843 15.187 0.387 5.995 -8.805

6 C(O)C[C@H](O)C 14.90 25.718 10.818 21.410 6.510 19.038 4.138 15.396 0.496 7.968 -6.932

7 C(O)CCO 15.10 25.600 10.500 21.491 6.391 18.603 3.503 15.528 0.428 5.012 -10.088

8 c1ccc(cc1)CO 15.40 24.674 9.274 20.769 5.369 18.112 2.712 14.968 -0.432 2.425 -12.975

9 C(O)/C=C/C 15.52 25.482 9.962 21.257 5.737 18.422 2.902 15.817 0.297 3.424 -12.096

10 CO 15.54 26.118 10.578 21.838 6.298 18.880 3.340 16.474 0.934 10.409 -5.131

11 C(O)C 15.90 25.961 10.061 21.797 5.897 18.407 2.507 16.095 0.195 9.918 -5.982

12 C(O)CC 16.10 26.072 9.972 21.758 5.658 18.971 2.871 15.961 -0.139 4.261 -11.839

13 C1CCC(CC1)O 16.84 26.543 9.703 22.169 5.329 19.438 2.598 17.280 0.440 3.964 -12.876

14 C(O)(C)(C)C 17.00 26.515 9.515 22.251 5.251 19.432 2.432 17.028 0.028 8.990 -8.010

15 C(O)(C)C 17.10 26.167 9.067 21.903 4.803 19.649 2.549 16.996 -0.104 8.596 -8.504

MAE 9.415 5.549 2.758 0.395 9.642

MSE 9.474 5.597 2.846 0.479 0.991

MaxAbsError 10.818 6.510 4.138 0.991 12.975

Table D6: Predictions on Aliphatic thiols from the Thapa & Raghavachari Set-I

dataset[199].

SMD only SMD + 1 water SMD + 2 waters SMD + 3 waters QupKake

S.N. SMILES pKExp
a pKa ∆pKa pKa ∆pKa pKa ∆pKa pKa ∆pKa pKa ∆pKa

1 C=CCS 7.86 18.450 10.590 14.685 6.825 12.525 4.665 8.698 0.838 4.004 -3.856

2 SCC(=O)OCC 7.95 14.675 6.725 12.120 4.170 9.128 1.178 7.377 -0.573 3.875 -4.075

3 SC[C@@H](CO)S 8.62 17.444 6.874 14.306 3.736 12.747 2.177 7.720 -0.900 4.788 -3.832

4 C(OCC)CS 9.38 17.947 8.567 14.398 5.018 11.887 2.507 8.553 -0.827 3.624 -5.756

5 OCCS 9.72 18.114 8.394 14.788 5.068 12.147 2.427 9.515 -0.205 4.354 -5.366

6 SC(C)(C)CO 9.85 17.777 7.927 13.492 3.642 11.539 1.689 8.971 -0.879 3.793 -6.057

7 C(=C)CS 9.96 17.945 7.985 14.643 4.683 11.992 2.032 9.263 -0.697 3.865 -6.095

8 C(C(=O)[O])CS 10.27 17.468 7.198 13.672 3.402 13.946 3.676 11.332 1.062 3.404 -6.866

9 SC 10.33 19.557 9.227 15.986 5.656 13.348 3.018 10.147 -0.183 7.192 -3.138

10 CCS 10.61 19.589 8.979 16.046 5.436 13.238 2.628 10.545 -0.065 6.536 -4.074

11 C(CC)CS 10.67 19.752 9.082 15.772 5.102 13.533 2.863 10.508 -0.162 4.402 -6.268

12 SC(C)C 10.86 19.516 8.656 16.403 5.543 13.397 2.537 10.695 -0.165 5.795 -5.065

13 SC(C)(C)C 11.05 19.882 8.832 15.999 4.949 13.729 2.679 11.005 -0.045 6.480 -4.570

14 SC(C)(C)CC 11.22 19.994 8.774 16.508 5.288 14.069 2.849 10.770 -0.450 5.037 -6.183

MAE 8.554 5.033 2.777 0.504 5.086

MSE 8.601 5.104 2.913 0.612 5.207

MaxAbsError 10.59 6.825 4.665 1.062 6.866
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Table D7: Predictions on primary amines from the Thapa & Raghavachari Set-I

dataset[199].

SMD only SMD + 1 water SMD + 2 waters SMD + 3 waters QupKake

S.N. SMILES pKExp
a pKa ∆pKa pKa ∆pKa pKa ∆pKa pKa ∆pKa pKa ∆pKa

1 NCC#N 5.30 3.245 -2.055 3.510 -1.790 4.896 -0.404 5.883 0.583 5.254 -0.046

2 c1cc(ccc1)CN 9.34 9.029 -0.311 8.914 -0.426 10.114 0.774 11.268 1.928 8.747 -0.593

3 c1cc(ccc1)CCN 9.68 9.138 -0.542 8.728 -0.952 9.656 -0.024 10.694 1.014 9.399 -0.281

4 C(N)(C)C 9.80 10.595 0.795 9.814 0.014 10.431 0.631 11.290 1.490 9.880 0.080

5 NCCCC 10.59 10.334 -0.256 9.463 -1.127 10.269 -0.321 11.268 0.678 10.014 -0.576

6 C(CN)C 10.60 10.481 -0.119 9.725 -0.875 10.466 -0.134 11.547 0.947 9.998 -0.602

7 CN 10.63 10.193 -0.437 9.585 -1.045 10.457 -0.173 10.782 0.152 11.484 0.854

8 C(N)(C)(C)C 10.68 10.833 0.153 9.911 -0.769 10.895 0.215 12.004 1.324 10.336 -0.344

9 C(N)C 10.70 10.258 -0.442 9.668 -1.032 10.622 -0.078 11.098 0.398 9.923 -0.777

10 [C@@H]1(CC[C@@H](CC1)N)C(C)(C)C 11.23 10.879 -0.351 10.165 -1.065 10.643 -0.587 12.900 1.670 10.693 -0.537

MAE 0.546 0.910 0.334 1.018 0.469

MSE 0.765 1.010 0.413 1.157 0.536

MaxAbsError 2.055 1.79 0.774 1.928 0.854

Table D8: Predictions on secondary amines I from the Thapa & Raghavachari Set-I

dataset[199].

SMD only SMD + 1 water SMD + 2 waters QupKake

S.N. SMILES pKExp
a pKa ∆pKa pKa ∆pKa pKa ∆pKa pKa ∆pKa

1 N(C[C@@H](c1ccc(c(c1)O)O)O)C 8.55 8.446 -0.104 8.925 0.375 10.520 1.970 8.912 0.362

2 C(NC)C 10.54 10.749 0.209 10.658 0.118 12.211 1.671 10.038 -0.502

3 CNC 10.78 10.288 -0.492 10.494 -0.286 11.870 1.090 10.206 -0.574

4 CCCNCCC 11.00 11.106 0.106 10.876 -0.124 12.148 1.148 10.560 -0.440

5 C(NCC)C 11.02 11.161 0.141 10.748 -0.272 12.189 1.169 10.000 -1.020

6 C1CCNCC1 11.22 10.864 -0.356 10.791 -0.429 11.696 0.476 10.489 -0.731

7 C(CNC1CCCCC1)C 11.23 11.286 0.056 11.362 0.132 11.903 0.673 11.897 0.667

8 C1CCCN1 11.27 10.447 -0.823 10.605 -0.665 11.766 0.496 10.943 -0.327

MAE 0.286 0.300 1.087 0.578

MSE 0.377 0.348 1.197 0.616

MaxAbsError 0.823 0.665 1.970 1.020
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Table D9: Predictions on secondary amines II from the Thapa & Raghavachari Set-I

dataset[199].

SMD only SMD + 1 water QupKake

S.N. SMILES pKExp
a pKa ∆pKa pKa ∆pKa pKa ∆pKa

S.N. SMILES pKExp
a pKa ∆pKa pKa ∆pKa pKa ∆pKa

1 C1CCN(CC1)CC=C 9.69 9.693 0.003 10.160 0.470 9.112 -0.578

2 C1CCN(CC1)CC=C 9.69 9.987 0.297 10.172 0.482 9.071 -0.619

3 CN(C)C 9.80 9.641 -0.159 10.802 1.002 9.126 -0.674

4 C(N(C)C)C 10.16 10.218 0.058 10.797 0.637 9.606 -0.554

5 CCN(CC)CC 10.75 11.490 0.740 11.173 0.423 10.097 -0.653

MAE 0.251 0.603 0.616

MSE 0.365 0.639 0.617

MaxAbsError 0.740 1.002 0.674
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Table D10: Predictions on carboxylic acids from the Thapa & Raghavachari Set-I

dataset[199].

SMD only SMD + 1 water SMD + 2 waters SMD + 3 waters QupKake

S.N. SMILES pKExp
a pKa ∆pKa pKa ∆pKa pKa ∆pKa pKa ∆pKa pKa ∆pKa

1 C(=O)(O)C(F)(F)F -0.26 -1.526 -1.266 -0.088 0.172 -0.267 -0.007 -0.668 -0.408 2.101 2.361

2 C(=O)(O)C(Cl)(Cl)Cl 0.65 -1.123 -1.772 -0.014 -0.664 -0.015 -0.665 -0.817 -1.467 1.445 0.795

3 C(=O)(O)C(F)F 1.24 0.914 -0.326 1.791 0.551 1.921 0.681 0.893 -0.347 2.129 0.889

4 C(=O)(O)C(Cl)Cl 1.30 1.126 -0.174 1.924 0.624 1.539 0.239 0.705 -0.595 0.655 -0.645

5 C(#N)CC(=O)O 2.44 2.893 0.453 3.227 0.787 3.138 0.698 2.202 -0.238 2.239 -0.201

6 C(=O)(O)CF 2.66 3.533 0.873 3.726 1.066 3.266 0.606 2.615 -0.045 1.933 -0.727

7 C(=O)(O)[C@@H](Cl)C 2.80 4.636 1.836 4.276 1.476 4.235 1.435 3.114 0.314 1.666 -1.134

8 C(=O)(O)CCl 2.81 4.434 1.624 4.625 1.815 4.395 1.585 2.968 0.158 2.036 -0.774

9 C#CCC(=O)O 2.86 4.748 1.888 4.786 1.926 4.325 1.465 3.654 0.794 2.300 -0.560

10 C(=O)(O)CBr 2.86 4.094 1.234 4.367 1.507 3.871 1.011 2.74 -0.12 2.306 -0.554

11 C(=O)(O)CC(F)(F)F 3.07 4.650 1.580 4.698 1.628 4.442 1.372 3.081 0.011 2.922 -0.148

12 C(=O)(O)CC(=O)C 3.53 5.244 1.714 5.022 1.492 4.702 1.172 3.391 -0.139 2.113 -1.417

13 COCC(=O)O 3.54 4.642 1.102 4.747 1.207 4.315 0.775 3.563 0.023 2.198 -1.342

14 C(=O)O 3.75 5.333 1.583 4.774 1.024 4.658 0.908 2.707 -1.043 0.144 -3.606

15 C(=O)(O)CO 3.83 4.835 1.005 5.149 1.319 4.395 0.565 3.567 -0.263 2.206 -1.624

16 C(=O)(O)[C@H](O)C 3.87 3.607 -0.263 3.540 -0.330 3.491 -0.379 NaN NaN 2.143 -1.727

17 C(CC(=O)O)Cl 4.10 6.168 2.068 5.697 1.597 4.843 0.743 4.361 0.261 2.083 -2.017

18 C(=O)(O)C=C 4.26 6.356 2.096 6.120 1.860 5.490 1.230 4.879 0.619 1.168 -3.092

19 c1ccccc1CC(=O)O 4.31 6.279 1.969 5.879 1.569 5.505 1.195 4.153 -0.157 1.802 -2.508

20 C=CCC(=O)O 4.35 6.376 2.026 6.035 1.685 5.337 0.987 4.777 0.427 3.397 -0.953

21 ClCCCC(=O)O 4.52 6.969 2.449 6.490 1.970 5.764 1.244 4.654 0.134 1.928 -2.592

22 C(=O)(O)C 4.76 7.718 2.958 7.173 2.413 6.896 2.136 5.378 0.618 2.254 -2.506

23 C(=O)(O)CCC 4.82 8.096 3.276 7.204 2.384 6.906 2.086 5.557 0.737 1.974 -2.846

24 C(=O)(O)CC 4.87 8.107 3.237 7.552 2.682 7.200 2.330 5.594 0.724 2.017 -2.853

25 C1CCC(CC1)C(=O)O 4.90 7.953 3.053 7.356 2.456 6.812 1.912 5.542 0.642 2.508 -2.392

26 C(=O)(O)C(C)(C)C 5.05 8.059 3.009 7.616 2.566 7.103 2.053 5.917 0.867 2.188 -2.862

MAE 1.724 1.491 1.134 0.446 1.659

MSE 1.943 1.642 1.285 0.569 1.931

MaxAbsError 3.276 2.682 2.330 1.467 3.606
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Table D11: Predictions on thiophenols from the Thapa & Raghavachari Set-I dataset[199].

SMD only SMD + 1 water SMD + 2 waters SMD + 3 waters QupKake

S.N. SMILES pKExp
a pKa ∆pKa pKa ∆pKa pKa ∆pKa pKa ∆pKa pKa ∆pKa

1 Sc1ccc(cc1)N(=O)=O 4.72 8.622 3.902 6.254 1.534 3.743 -0.977 2.276 -2.444 2.340 -2.380

2 Sc1cc(ccc1)N(=O)=O 5.24 9.979 4.739 7.252 2.012 5.204 -0.036 2.977 -2.263 2.477 -2.763

3 Sc1c[nH]c(=O)[nH]c1=O 5.30 10.010 4.710 7.428 2.128 5.220 -0.080 2.689 -2.611 4.437 -0.863

4 Sc1ccc(cc1)C(=O)C 5.33 10.345 5.015 7.826 2.496 5.302 -0.028 3.331 -1.999 2.315 -3.015

5 Sc1cc(ccc1)Cl 5.78 11.171 5.391 8.372 2.592 5.707 -0.073 3.632 -2.148 2.582 -3.198

6 Sc1ccc(cc1)Br 6.02 11.629 5.609 8.835 2.815 6.797 0.777 4.350 -1.670 2.697 -3.323

7 Sc1ccc(cc1)Cl 6.14 11.676 5.536 9.080 2.940 6.797 0.657 4.169 -1.971 2.645 -3.495

8 c1(cc(ccc1)OC)S 6.39 12.533 6.143 9.568 3.178 7.271 0.881 4.746 -1.644 2.839 -3.551

9 Sc1ccccc1 6.61 12.643 6.033 9.933 3.323 7.225 0.615 5.170 -1.440 2.931 -3.679

10 Sc1c(cccc1)C 6.64 13.467 6.827 10.465 3.825 8.328 1.688 5.832 -0.808 2.941 -3.699

11 Sc1cc(ccc1)C 6.66 12.976 6.316 10.115 3.455 7.603 0.943 5.278 -1.382 2.860 -3.800

12 Sc1cc(ccc1)OC 6.78 12.500 5.720 9.661 2.881 7.142 0.362 4.992 -1.788 2.837 -3.943

13 Sc1ccc(cc1)C 6.82 13.226 6.406 10.454 3.634 7.798 0.978 5.557 -1.263 3.142 -3.678

MAE 5.565 2.832 0.623 1.802 3.184

MSE 5.620 2.904 0.784 1.867 3.281

MaxAbsError 6.827 3.825 1.688 2.611 3.943
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Table D12: Predictions on phenols from the Thapa & Raghavachari Set-I dataset[199].

SMD only SMD + 1 water SMD + 2 waters SMD + 3 waters QupKake

S.N. SMILES pKExp
a pKa ∆pKa pKa ∆pKa pKa ∆pKa pKa ∆pKa pKa ∆pKa

1 c1cc(c(cc1)O)C=O 6.79 14.197 7.407 11.580 4.790 10.508 3.718 6.894 0.104 2.029 -4.761

2 c1(ccc(cc1)O)N(=O)=O 7.14 9.699 2.559 9.068 1.928 7.625 0.485 5.877 -1.263 2.321 -4.819

3 c1ccc(c(c1)N(=O)=O)O 7.23 8.498 1.268 9.411 2.181 7.253 0.023 6.013 -1.217 2.492 -4.738

4 c1c(ccc(c1)O)C=O 7.66 11.415 3.755 10.388 2.728 8.728 1.068 7.765 0.105 2.734 -4.926

5 c1c(ccc(c1)O)C#N 7.95 11.838 3.888 10.968 3.018 9.043 1.093 7.730 -0.220 1.598 -6.352

6 c1c(cc(cc1)O)C=O 8.00 14.010 6.010 12.135 4.135 10.374 2.374 8.302 0.302 1.781 -6.219

7 c1ccc(cc1N(=O)=O)O 8.35 12.447 4.097 11.516 3.166 8.966 0.616 7.285 -1.065 2.105 -6.245

8 c1cc(ccc1O)C(=O)OC/C=C/C 8.41 12.275 3.865 11.238 2.828 9.425 1.015 7.604 -0.806 1.989 -6.421

9 c1cc(ccc1O)C(=O)OC 8.47 12.299 3.829 11.295 2.825 9.270 0.800 7.870 -0.600 1.938 -6.532

10 c1cc(ccc1O)C(=O)OCCCC 8.47 12.378 3.908 11.255 2.785 9.372 0.902 8.192 -0.278 1.280 -7.190

11 Clc1ccccc1O 8.48 12.777 4.297 11.166 2.686 9.496 1.016 7.196 -1.284 1.760 -6.720

12 c1cc(ccc1O)C(=O)OCC 8.50 12.397 3.897 11.217 2.717 8.970 0.470 8.074 -0.426 1.739 -6.761

13 c1cc(cc(c1)O)C#N 8.61 13.095 4.485 11.859 3.249 9.884 1.274 8.245 -0.365 1.394 -7.216

14 c1ccc(c(c1)F)O 8.81 13.078 4.268 11.620 2.810 9.522 0.712 7.400 -1.410 1.510 -7.300

15 c1ccc(cc1Cl)O 9.02 13.634 4.614 11.814 2.794 9.753 0.733 8.063 -0.957 1.772 -7.248

16 c1ccc(cc1F)O 9.28 13.914 4.634 12.230 2.950 10.168 0.888 8.861 -0.419 1.854 -7.426

17 c1(ccc(cc1)O)Cl 9.38 14.332 4.952 13.005 3.625 10.720 1.340 9.147 -0.233 1.719 -7.661

18 c1(ccc(cc1)O)C(=O)[O] 9.39 14.885 5.495 13.626 4.236 11.218 1.828 9.553 0.163 2.642 -6.748

19 c1ccc(cc1O)O 9.44 14.985 5.545 13.233 3.793 10.986 1.546 9.373 -0.067 2.117 -7.323

20 c1ccc(c(c1)O)O 9.48 12.734 3.254 12.835 3.355 11.386 1.906 9.725 0.245 2.155 -7.325

21 c1c(ccc(c1)c1ccccc1)O 9.51 15.087 5.577 13.175 3.665 10.921 1.411 9.372 -0.138 0.033 -9.477

22 c1cc(cc(c1)c1ccccc1)O 9.59 15.351 5.761 13.279 3.689 10.889 1.299 9.509 -0.081 0.384 -9.206

23 c1ccc(cc1OC)O 9.65 15.103 5.453 13.169 3.519 10.977 1.327 9.242 -0.408 1.720 -7.930

24 c1cc(ccc1O)CO 9.82 15.006 5.186 13.407 3.587 11.382 1.562 9.496 -0.324 1.848 -7.972

25 c1cc(cc(c1)O)CO 9.83 15.149 5.319 13.400 3.570 10.939 1.109 9.277 -0.553 1.476 -8.354

26 c1cc(cc(c1)O)CC 9.90 15.668 5.768 13.909 4.009 11.730 1.830 9.848 -0.052 0.970 -8.930

27 c1cc(c(cc1)O)CO 9.92 13.256 3.336 13.192 3.272 10.876 0.956 9.231 -0.689 1.705 -8.215

28 c1ccc(c(c1)c1ccccc1)O 9.93 15.207 5.277 13.503 3.573 11.573 1.643 9.869 -0.061 0.485 -9.445

29 c1ccc(c(c1)OC)O 9.93 15.629 5.699 13.288 3.358 11.179 1.249 8.878 -1.052 2.149 -7.781

30 c1ccc(cc1C(=O)[O])O 9.94 15.985 6.045 14.187 4.247 11.909 1.969 9.747 -0.193 1.593 -8.347

31 c1(ccc(cc1)O)F 9.95 15.276 5.326 13.498 3.548 10.971 1.021 9.556 -0.394 1.213 -8.737

32 c1(ccc(cc1)O)O 9.96 16.398 6.438 14.705 4.745 12.747 2.787 10.610 0.650 2.391 -7.569

33 c1ccc(cc1)O 9.98 15.444 5.464 13.553 3.573 11.260 1.280 9.601 -0.379 1.210 -8.770

34 c1cc(ccc1O)CC 10.00 15.965 5.965 14.214 4.214 12.030 2.030 10.414 0.414 0.632 -9.368

35 c1ccc(cc1C)O 10.08 15.693 5.613 13.906 3.826 11.476 1.396 10.102 0.022 1.650 -8.430

36 c1(ccc(cc1)O)C 10.19 16.015 5.825 14.441 4.251 12.162 1.972 10.292 0.102 1.347 -8.843

37 c1(ccc(cc1)O)OC 10.20 16.298 6.098 14.752 4.552 12.361 2.161 10.453 0.253 1.804 -8.396

38 c1cc(c(cc1)O)CC 10.20 15.824 5.624 14.024 3.824 11.874 1.674 9.924 -0.276 1.775 -8.425

39 c1ccc(c(c1)C)O 10.28 15.613 5.333 13.875 3.595 11.566 1.286 9.809 -0.471 1.760 -8.520

MAE 4.901 3.467 1.379 0.463 7.504

MSE 5.036 3.529 1.534 0.602 7.614

MaxAbsError 7.407 4.790 3.718 1.410 9.477
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Table D13: Predictions on anilines from the Thapa & Raghavachari Set-I dataset[199].

SMD only SMD + 1 water SMD + 2 waters SMD + 3 waters QupKake

S.N. SMILES pKExp
a pKa ∆pKa pKa ∆pKa pKa ∆pKa pKa ∆pKa pKa ∆pKa

1 c1ccc(c(c1)N(=O)=O)N 0.28 -4.551 -4.831 -2.201 -2.481 -1.370 -1.650 -1.373 -1.653 1.242 0.962

2 c1(ccc(cc1)N)N(=O)=O 0.98 -2.883 -3.863 -1.253 -2.233 0.137 -0.843 1.220 0.240 2.499 1.519

3 c1ccc(c(c1)C(=O)O)N 2.04 -0.664 -2.704 0.480 -1.560 1.671 -0.369 1.671 -0.369 2.620 0.580

4 c1(ccccc1N)C(=O)OCC 2.10 -0.023 -2.123 0.660 -1.440 1.975 -0.125 1.975 -0.125 2.945 0.845

5 c1(ccccc1N)C(=O)OC 2.16 -0.150 -2.310 0.436 -1.724 1.770 -0.390 1.793 -0.367 3.015 0.855

6 c1(ccc(cc1)N)C(=O)OC 2.30 -0.602 -2.902 0.561 -1.739 1.582 -0.718 2.388 0.088 2.892 0.592

7 c1(ccc(cc1)N)C(=O)O 2.32 -1.164 -3.484 0.006 -2.314 1.540 -0.780 2.722 0.402 2.666 0.346

8 c1(ccc(cc1)N)C(=O)OCC 2.38 -0.747 -3.127 0.407 -1.973 1.394 -0.986 2.545 0.165 2.896 0.516

9 c1ccc(cc1N(=O)=O)N 2.45 -1.118 -3.568 -0.115 -2.565 0.851 -1.599 2.013 -0.437 2.383 -0.067

10 Clc1ccccc1N 2.62 -1.305 -3.925 -0.450 -3.070 1.090 -1.530 3.215 0.595 2.966 0.346

11 c1ccc(c(c1)F)N 2.96 -0.541 -3.501 0.011 -2.949 1.359 -1.601 2.957 -0.003 3.084 0.124

12 c1ccc(cc1C(=O)O)N 3.05 0.209 -2.841 1.032 -2.018 2.107 -0.943 3.294 0.244 3.621 0.571

13 c1ccc(cc1Cl)N 3.32 0.232 -3.088 1.210 -2.110 2.635 -0.685 3.640 0.320 3.726 0.406

14 c1ccc(cc1F)N 3.38 0.620 -2.760 1.485 -1.895 2.313 -1.067 3.257 -0.123 3.396 0.016

15 c1(cc(ccc1)N)C(=O)OC 3.56 0.566 -2.994 1.228 -2.332 2.132 -1.428 3.211 -0.349 3.914 0.354

16 c1ccc(c(c1)c1ccccc1)N 3.78 1.126 -2.654 1.557 -2.223 3.198 -0.582 5.029 1.249 3.746 -0.034

17 c1(ccc(cc1)N)Cl 3.81 0.796 -3.014 1.713 -2.097 3.144 -0.666 3.951 0.141 3.867 0.057

18 c1(cccc(c1)N)SC 4.05 1.487 -2.563 1.719 -2.331 3.328 -0.722 4.251 0.201 4.123 0.073

19 c1ccc(cc1O)N 4.17 1.592 -2.578 2.172 -1.998 3.502 -0.668 4.042 -0.128 3.697 -0.473

20 c1(cc(ccc1)N)OCC 4.17 1.722 -2.448 2.339 -1.831 3.187 -0.983 3.858 -0.312 4.056 -0.114

21 c1ccc(cc1OC)N 4.20 1.473 -2.727 2.344 -1.856 3.560 -0.640 4.271 0.071 4.062 -0.138

23 c1ccc(c(c1)C)N 4.38 2.168 -2.212 2.455 -1.925 4.150 -0.230 4.522 0.142 4.533 0.153

24 c1(ccc(cc1)N)SC 4.40 2.101 -2.299 2.820 -1.580 3.730 -0.670 5.081 0.681 4.434 0.034

25 c1(c(cccc1)N)OCC 4.47 1.762 -2.708 1.926 -2.544 2.829 -1.641 5.108 0.638 3.873 -0.597

26 c1ccc(c(c1)OC)N 4.49 1.747 -2.743 1.688 -2.802 2.746 -1.744 4.418 -0.072 3.635 -0.855

27 c1(ccc(cc1)N)F 4.52 1.542 -2.978 2.416 -2.104 3.413 -1.107 4.559 0.039 3.593 -0.927

29 c1ccc(cc1C)N 4.67 2.080 -2.590 2.736 -1.934 3.883 -0.787 4.700 0.030 4.643 -0.027

30 c1ccc(c(c1)O)N 4.72 0.075 -4.645 1.924 -2.796 3.276 -1.444 4.223 -0.497 3.600 -1.120

31 c1(ccc(cc1)N)C 5.07 2.459 -2.611 2.920 -2.150 4.198 -0.872 5.317 0.247 4.603 -0.467

32 c1(ccc(cc1)N)OCC 5.25 2.745 -2.505 3.138 -2.112 4.266 -0.984 5.557 0.307 5.304 0.054

33 c1(ccc(cc1)N)OC 5.29 2.824 -2.466 3.344 -1.946 4.430 -0.860 5.655 0.365 5.138 -0.152

34 c1(ccc(cc1)N)O 5.50 2.759 -2.741 3.311 -2.189 4.002 -1.498 5.176 -0.324 4.872 -0.628

MAE 2.953 2.151 0.963 0.341 0.438

MSE 3.021 2.186 1.058 0.481 0.577

MaxAbsError 4.831 3.070 1.744 1.653 1.519
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Table D14: Predictions on benzoic acids from the Thapa & Raghavachari Set-I dataset[199].

SMD only SMD + 1 water SMD + 2 waters SMD + 3 waters QupKake

S.N. SMILES pKExp
a pKa ∆pKa pKa ∆pKa pKa ∆pKa pKa ∆pKa pKa ∆pKa

1 c1ccc(c(c1)N(=O)=O)C(=O)O 2.17 2.475 0.305 3.435 1.265 3.242 1.072 2.374 0.204 2.104 -0.066

2 Clc1ccccc1C(=O)O 2.94 3.776 0.836 3.723 0.783 3.678 0.738 2.413 -0.527 2.199 -0.741

3 c1ccc(c(c1)C(=O)O)C(=O)O 2.95 4.576 1.626 4.360 1.410 4.411 1.461 3.399 0.449 3.842 0.892

4 c1ccc(c(c1)O)C(=O)O 2.98 5.421 2.441 2.454 -0.526 2.135 -0.845 3.954 0.974 2.799 -0.181

5 c1ccc(c(c1)F)C(=O)O 3.27 4.878 1.608 2.519 -0.751 4.528 1.258 3.488 0.218 1.932 -1.338

6 c1ccc(cc1N(=O)=O)C(=O)O 3.45 4.599 1.149 4.763 1.313 4.290 0.840 3.483 0.033 2.461 -0.989

7 c1(c(cccc1)C(=O)O)C(C)(C)C 3.46 5.732 2.272 5.289 1.829 4.743 1.283 3.468 0.008 2.490 -0.970

8 c1(ccc(cc1)C(=O)O)C(=O)O 3.51 5.364 1.854 5.034 1.524 5.390 1.880 3.779 0.269 3.704 0.194

9 c1c(cc(cc1)C(=O)O)C(=O)O 3.54 5.374 1.834 5.441 1.901 5.537 1.997 3.692 0.152 3.623 0.083

10 c1(ccccc1C(=O)O)CC 3.77 5.283 1.513 4.960 1.190 4.829 1.059 3.589 -0.181 2.661 -1.109

11 c1ccc(cc1Cl)C(=O)O 3.83 5.289 1.459 5.295 1.465 4.758 0.928 3.661 -0.169 1.913 -1.917

12 c1ccc(cc1F)C(=O)O 3.87 5.409 1.539 5.385 1.515 4.838 0.968 3.711 -0.159 1.537 -2.333

13 c1ccc(c(c1)C)C(=O)O 3.91 5.435 1.525 5.211 1.301 4.945 1.035 4.026 0.116 2.390 -1.520

14 c1(ccc(cc1)C(=O)O)Cl 3.99 5.609 1.619 5.602 1.612 5.077 1.087 4.239 0.249 1.820 -2.170

15 c1ccc(cc1O)C(=O)O 4.08 6.161 2.081 6.117 2.037 5.576 1.496 4.527 0.447 2.649 -1.431

16 c1ccc(c(c1)OC)C(=O)O 4.09 5.384 1.294 6.427 2.337 4.749 0.659 4.071 -0.019 2.139 -1.951

17 c1cc(cc(c1)OC)C(=O)O 4.09 6.224 2.134 6.155 2.065 5.518 1.428 4.365 0.275 2.419 -1.671

18 c1(ccc(cc1)C(=O)O)F 4.14 5.915 1.775 5.820 1.680 5.304 1.164 4.355 0.215 2.142 -1.998

19 c1(cccc(c1)C(=O)O)OCC 4.17 6.159 1.989 5.811 1.641 5.595 1.425 4.967 0.797 2.348 -1.822

20 c1(ccccc1C(=O)O)OCC 4.21 5.388 1.178 5.127 0.917 5.104 0.894 3.863 -0.347 2.123 -2.087

21 c1c(cc(cc1)C(=O)O)C 4.24 6.181 1.941 6.003 1.763 5.692 1.452 4.743 0.503 2.257 -1.983

22 c1(ccc(cc1)C(=O)O)C 4.34 6.406 2.066 5.786 1.446 5.569 1.229 4.816 0.476 2.299 -2.041

23 c1(ccc(cc1)C(=O)O)C(C)C 4.35 6.350 2.000 6.062 1.712 5.726 1.376 4.977 0.627 2.338 -2.012

24 c1(ccc(cc1)C(=O)O)CC 4.35 5.801 1.451 5.564 1.214 5.061 0.711 4.228 -0.122 2.350 -2.000

25 c1(ccc(cc1)C(=O)O)OCC 4.45 6.632 2.182 6.275 1.825 5.863 1.413 4.648 0.198 2.828 -1.622

26 c1c(ccc(c1)OC)C(=O)O 4.47 6.535 2.065 6.349 1.879 5.792 1.322 4.809 0.339 2.986 -1.484

27 c1cc(ccc1O)C(=O)O 4.58 6.534 1.954 6.093 1.513 5.719 1.139 4.931 0.351 3.104 -1.476

28 c1(ccc(cc1)C(=O)O)N(=O)=O 4.92 4.672 -0.248 4.885 -0.035 4.351 -0.569 3.548 -1.372 2.467 -2.453

MAE 1.941 1.445 1.169 0.350 1.448

MSE 1.723 1.526 1.217 0.459 1.603

MaxAbsError 2.441 2.337 1.997 1.372 2.453
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Table D15: Predictions on carbon acids from the Thapa & Raghavachari Set-I dataset[199].

QupKake was not trained on carbon acids, which resulted in no predictions.

SMD only SMD + 1 water SMD + 2 waters SMD + 3 waters QupKake

S.N. SMILES pKExp
a pKa ∆pKa pKa ∆pKa pKa ∆pKa pKa ∆pKa pKa ∆pKa

1 c1ccc2c(c1)c1c([C@H]2C(=O)C)cccc1 9.9 13.848 3.948 12.932 3.032 11.461 1.561 9.817 -0.083 – –

2 C(=O)[C@H](c1ccccc1)c1ccccc1 10.4 14.953 4.553 14.159 3.759 12.715 2.315 10.325 -0.074 – –

3 c1ccc2c(c1)c1c([C@H]2C(=O)SC)cccc1 10.5 13.372 2.872 12.973 2.473 11.621 1.121 10.164 -0.336 – –

4 c1ccc2c(c1)c1c([C@H]2C(=O)OC)cccc1 11.5 13.812 2.312 12.647 1.147 12.602 1.102 10.845 -0.665 – –

5 C(=O)Cc1ccccc1 13.1 18.727 5.627 18.632 5.532 14.54 1.44 13.204 0.104 – –

6 C(=O)(CNC(=O)C)c1ccc(cc1)C 14.8 20.645 5.845 18.196 3.396 – – 15.005 0.205 – –

7 C(=O)C 16.7 23.613 6.913 21.613 4.913 19.534 2.834 17.323 0.623 – –

8 C(=O)(C)c1ccccc1 18.3 24.955 6.655 22.903 4.603 20.931 2.631 18.821 0.521 – –

9 C(=O)(C)c1ccc(cc1)C 19.2 25.511 6.311 23.53 4.33 21.274 2.075 20.083 0.883 – –

10 C(=O)(C)C 19.3 26.728 7.428 24.793 5.493 22.933 3.633 21.023 1.723 – –

MAE 5.250 3.870 2.079 0.521 –

MSE 5.250 3.870 2.079 0.291 –

MaxAbsError 7.430 5.530 3.633 1.723 –
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Figure D19: The top 20 molecules from the Novartis test set with the most accurate micro-

pKa prediction. The acidic and basic micro-pKa values, as well as the atom they belongs to,

are shown in red and blue, respectively. The micro-pKa that is closest to the experimental

value is shown in bold. The name, as it appear in the dataset, and the experimental pKa value

of each molecule are shown under the molecule.
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Figure D20: The bottom 20 molecules from the Novartis test set with the least accurate

micro-pKa prediction. The acidic and basic micro-pKa values, as well as the atom they

belongs to, are shown in red and blue, respectively. The micro-pKa that is closest to the

experimental value is shown in bold. The name, as it appear in the dataset, and the exper-

imental pKa value of each molecule are shown under the molecule.
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Figure D21: The normalized absolute relative importance of the a) atomic features, b) bond

features and c) molecular features for the micro-pKa prediction model.
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Figure D22: Tautomer search and GFN2-xTB features calculations average compute time

per molecule across the 280 molecules in the Novartis test set as a function of the number

of CPU cores.
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and X. Gu, “The Critical Role of Electron-Donating Thiophene Groups on the Me-
chanical and Thermal Properties of Donor–Acceptor Semiconducting Polymers,” Ad-
vanced Electronic Materials, vol. 5, p. 1800899, may 2019.

[102] A. M. Asaduzzaman, K. Schmidt-D’Aloisio, Y. Dong, and M. Springborg, “Properties
of polythiophene and related conjugated polymers: a density-functional study,” Phys.
Chem. Chem. Phys., vol. 7, pp. 2714–2722, 2005.

[103] J. Huang, S. Lu, P.-A. Chen, K. Wang, Y. Hu, Y. Liang, M. Wang, and E. Reich-
manis, “Rational design of a narrow-bandgap conjugated polymer using the quinoidal
thieno[3,2-b]thiophene-based building block for organic field-effect transistor applica-
tions,” Macromolecules, vol. 52, no. 12, pp. 4749–4756, 2019.

[104] L. Salem and C. Rowland, “The Electronic Properties of Diradicals,” Angewandte
Chemie International Edition in English, vol. 11, pp. 92–111, feb 1972.

[105] T. Y. Gopalakrishna, W. Zeng, X. Lu, and J. Wu, “From open-shell singlet dirad-
icaloids to polyradicaloids,” Chemical Communications, vol. 54, pp. 2186–2199, feb
2018.

[106] D. Bokhan and R. J. Bartlett, “Ab initio density functional theory for spin-polarized
systems,” Chemical Physics Letters, vol. 427, pp. 466–471, aug 2006.

[107] K. Hirao, “Multireference Møller—Plesset method,” Chemical Physics Letters,
vol. 190, pp. 374–380, mar 1992.

[108] T. Yanai, D. P. Tew, and N. C. Handy, “A new hybrid exchange-correlation functional
using the Coulomb-attenuating method (CAM-B3LYP),”

[109] T. P. Kaloni, G. Schreckenbach, and M. S. Freund, “Band gap modulation in poly-
thiophene and polypyrrole-based systems,” Scientific Reports, vol. 6, no. 1, p. 36554,
2016.

[110] S. M. Bouzzine, G. Salgado-Morán, M. Hamidi, M. Bouachrine, A. G. Pacheco, and
D. Glossman-Mitnik, “DFT Study of Polythiophene Energy Band Gap and Substitu-
tion Effects,” 2015.

172



[111] JOHNSON III and D. RUSSELL, “NIST Computational Chemistry Comparison and
Benchmark Database,” 2020.

[112] K. Yamamoto, Y. Ie, M. Nitani, N. Tohnai, F. Kakiuchi, K. Zhang, W. Pisula,
K. Asadi, P. W. M. Blom, and Y. Aso, “Oligothiophene quinoids containing a
benzo[c]thiophene unit for the stabilization of the quinoidal electronic structure,”
J. Mater. Chem. C, vol. 6, no. 28, pp. 7493–7500, 2018.

[113] S. K. Singh, X. Crispin, and I. V. Zozoulenko, “Oxygen Reduction Reaction in Con-
ducting Polymer PEDOT: Density Functional Theory Study,” The Journal of Physical
Chemistry C, vol. 121, no. 22, pp. 12270–12277, 2017.

[114] S. S. Zade and M. Bendikov, “From oligomers to polymer: Convergence in the homo-
lumo gaps of conjugated oligomers,” Organic Letters, vol. 8, no. 23, pp. 5243–5246,
2006.

[115] D. Weininger, “SMILES, a Chemical Language and Information System: 1: Intro-
duction to Methodology and Encoding Rules,” Journal of Chemical Information and
Computer Sciences, vol. 28, pp. 31–36, feb 1988.

[116] D. Weininger, A. Weininger, and J. L. Weininger, “SMILES. 2. Algorithm for Gener-
ation of Unique SMILES Notation,” Journal of Chemical Information and Computer
Sciences, vol. 29, no. 2, pp. 97–101, 1989.

[117] D. Weininger, “Smiles. 3. Depict. Graphical Depiction of Chemical Structures,” Jour-
nal of Chemical Information and Computer Sciences, vol. 30, pp. 237–243, aug 1990.

[118] T. A. Halgren, “Merck molecular force field. I. Basis, form, scope, parameterization,
and performance of MMFF94,” Journal of Computational Chemistry, vol. 17, no. 5-6,
pp. 490–519, 1996.

[119] A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. G. III, and W. M. Skiff, “UFF, a
full periodic table force field for molecular mechanics and molecular dynamics simu-
lations,” Journal of the American Chemical Society, vol. 114, pp. 10024–10035, dec
2002.

[120] J. G. Brandenburg, C. Bannwarth, A. Hansen, and S. Grimme, “B97-3c: A revised
low-cost variant of the B97-D density functional method,” The Journal of Chemical
Physics, vol. 148, p. 064104, feb 2018.

173



[121] F. Neese, “The ORCA program system,” Wiley Interdisciplinary Reviews: Computa-
tional Molecular Science, vol. 2, pp. 73–78, jan 2012.

[122] F. Neese, “Software update: the ORCA program system, version 4.0,” Wiley Inter-
disciplinary Reviews: Computational Molecular Science, vol. 8, p. e1327, jan 2018.

[123] “Systematic optimization of long-range corrected hybrid density functionals,” The
Journal of Chemical Physics, vol. 128, p. 084106, feb 2008.

[124] F. Weigend, “Accurate Coulomb-fitting basis sets for H to Rn,” Physical Chemistry
Chemical Physics, vol. 8, pp. 1057–1065, feb 2006.

[125] N. M. O’boyle, A. L. Tenderholt, and K. M. Langner, “cclib: A library for package-
independent computational chemistry algorithms,” Journal of Computational Chem-
istry, vol. 29, pp. 839–845, apr 2008.

[126] O. D. Abarbanel, J. Rozon, and G. R. Hutchison, “Strategies for Computer-Aided
Discovery of Novel Open-Shell Polymers,” Journal of Physical Chemistry Letters,
vol. 13, pp. 2158–2164, mar 2022.

[127] Y. Liu, T. Zhao, W. Ju, S. Shi, S. Shi, and S. Shi, “Materials discovery and design
using machine learning,” Journal of Materiomics, vol. 3, pp. 159–177, sep 2017.

[128] K. Guo, Z. Yang, C. H. Yu, and M. J. Buehler, “Artificial intelligence and machine
learning in design of mechanical materials,” Materials Horizons, vol. 8, pp. 1153–1172,
apr 2021.

[129] R. Vasudevan, G. Pilania, and P. V. Balachandran, “Machine learning for materials
design and discovery,” Journal of Applied Physics, vol. 129, p. 070401, feb 2021.

[130] C. Darwin, On the Origin of Species by Means of Natural Selection. London: Murray,
1859. or the Preservation of Favored Races in the Struggle for Life.

[131] D. C. Hiener and G. R. Hutchison, “Pareto Optimization of Oligomer Polarizability
and Dipole Moment Using a Genetic Algorithm,” The Journal of Physical Chemistry
A, vol. 126, pp. 2750–2760, may 2022.

[132] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts Valley, CA:
CreateSpace, 2009.

174



[133] B. L. Greenstein and G. R. Hutchison, “Organic Photovoltaic Efficiency Predictor:
Data-Driven Models for Non-Fullerene Acceptor Organic Solar Cells,” The Journal of
Physical Chemistry Letters, vol. 13, pp. 4235–4243, may 2022.

[134] B. N. Norris, S. Zhang, C. M. Campbell, J. T. Auletta, P. Calvo-Marzal, G. R.
Hutchison, and T. Y. Meyer, “Sequence matters: Modulating electronic and optical
properties of conjugated oligomers via tailored sequence,” Macromolecules, vol. 46,
pp. 1384–1392, Feb. 2013.

[135] I. Y. Kanal, J. S. Bechtel, and G. R. Hutchison, “Sequence matters: Determining the
sequence effect of electronic structure properties in p-conjugated polymers,” in ACS
Symposium Series, pp. 379–393, American Chemical Society, Jan. 2014.

[136] S. Zhang, G. R. Hutchison, and T. Y. Meyer, “Sequence effects in conjugated donor-
acceptor trimers and polymers,” Macromolecular Rapid Communications, vol. 37,
pp. 882–887, Apr. 2016.

[137] S. Zhang, N. E. Bauer, I. Y. Kanal, W. You, G. R. Hutchison, and T. Y. Meyer,
“Sequence effects in donor–acceptor oligomeric semiconductors comprising benzoth-
iadiazole and phenylenevinylene monomers,” Macromolecules, vol. 50, pp. 151–161,
Dec. 2016.

[138] Y. S. Lin, G. D. Li, S. P. Mao, and J. D. Chai, “Long-range corrected hybrid density
functionals with improved dispersion corrections,” Journal of Chemical Theory and
Computation, vol. 9, pp. 263–272, jan 2013.

[139] T. Yanai, D. P. Tew, and N. C. Handy, “A new hybrid exchange–correlation functional
using the Coulomb-attenuating method (CAM-B3LYP),” Chemical Physics Letters,
vol. 393, pp. 51–57, jul 2004.

[140] N. E. Jackson, B. M. Savoie, K. L. Kohlstedt, T. J. Marks, L. X. Chen, and M. A.
Ratner, “Structural and Conformational Dispersion in the Rational Design of Conju-
gated Polymers,” Macromolecules, vol. 47, pp. 987–992, Feb. 2014.

[141] L. Wilbraham, E. Berardo, L. Turcani, K. E. Jelfs, and M. A. Zwijnenburg, “High-
Throughput Screening Approach for the Optoelectronic Properties of Conjugated
Polymers,” Journal of Chemical Information and Modeling, vol. 58, pp. 2450–2459,
Dec. 2018.

175



[142] B. M. Savoie, N. E. Jackson, L. X. Chen, T. J. Marks, and M. A. Ratner, “Mesoscopic
Features of Charge Generation in Organic Semiconductors,” Accounts of Chemical
Research, vol. 47, pp. 3385–3394, Nov. 2014.

[143] M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, and G. R.
Hutchison, “Avogadro: an advanced semantic chemical editor, visualization, and anal-
ysis platform,” Journal of Cheminformatics, vol. 4, p. 17, Aug. 2012.

[144] S. A. Wildman and G. M. Crippen, “Prediction of Physicochemical Parameters by
Atomic Contributions,” Journal of Chemical Information and Computer Sciences,
vol. 39, pp. 868–873, Sept. 1999.

[145] B. M. Wong and J. G. Cordaro, “Electronic properties of vinylene-linked heterocyclic
conducting polymers: Predictive design and rational guidance from DFT calcula-
tions,” Journal of Physical Chemistry C, vol. 115, pp. 18333–18341, sep 2011.

[146] K. Kobayashi, M. S. Mohamed Ahmed, and A. Mori, “Introduction of ethynylene
and thienylene spacers into 2,5-diarylthiazole and 2,5-diarylthiophene,” Tetrahedron,
vol. 62, pp. 9548–9553, oct 2006.

[147] W. I. Hung, Y. Y. Liao, C. Y. Hsu, H. H. Chou, T. H. Lee, W. S. Kao, and J. T. Lin,
“High-Performance Dye-Sensitized Solar Cells Based on Phenothiazine Dyes Contain-
ing Double Anchors and Thiophene Spacers,” Chemistry – An Asian Journal, vol. 9,
pp. 357–366, jan 2014.

[148] M. Paramasivam, A. Gupta, A. M. Raynor, S. V. Bhosale, K. Bhanuprakash,
and V. Jayathirtha Rao, “Small band gap D-π-A-π-D benzothiadiazole derivatives
with low-lying HOMO levels as potential donors for applications in organic pho-
tovoltaics: a combined experimental and theoretical investigation,” RSC Advances,
vol. 4, pp. 35318–35331, aug 2014.

[149] A. Shuto, T. Kushida, T. Fukushima, H. Kaji, and S. Yamaguchi, “π-Extended Pla-
narized Triphenylboranes with Thiophene Spacers,” Organic Letters, vol. 15, no. 24,
pp. 6234–6237, 2013.

[150] R. Rausch, D. Schmidt, D. Bialas, I. Krummenacher, H. Braunschweig, and
F. Würthner, “Stable Organic (Bi)Radicals by Delocalization of Spin Density into
the Electron-Poor Chromophore Core of Isoindigo,” Chemistry - A European Journal,
vol. 24, pp. 3420–3424, mar 2018.

176



[151] A. Rajca, “Organic Diradicals and Polyradicals: From Spin Coupling to Magnetism?,”
Chemical Reviews, vol. 94, pp. 871–893, jun 2002.

[152] M.-H. Lin, J.-F. Tsai, and C.-S. Yu, “A Review of Deterministic Optimization
Methods in Engineering and Management,” Mathematical Problems in Engineering,
vol. 2012, p. 756023, June 2012.

[153] R. S. Bohacek, C. McMartin, and W. C. Guida, “The art and practice of structure-
based drug design: A molecular modeling perspective,” Medicinal Research Reviews,
vol. 16, no. 1, pp. 3–50, 1996.

[154] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learning,” Journal
of Big Data, vol. 3, p. 9, May 2016.

[155] Y. C. Martin, “Let’s not forget tautomers,” Journal of Computer-Aided Molecular
Design, vol. 23, pp. 693–704, Oct. 2009.

[156] C. M. Baker, N. J. Kidley, K. Papachristos, M. Hotson, R. Carson, D. Gravestock,
M. Pouliot, J. Harrison, and A. Dowling, “Tautomer Standardization in Chemical
Databases: Deriving Business Rules from Quantum Chemistry,” Journal of Chemical
Information and Modeling, vol. 60, pp. 3781–3791, Aug. 2020.

[157] D. K. Dhaked, W.-D. Ihlenfeldt, H. Patel, V. Delannée, and M. C. Nicklaus, “Toward
a Comprehensive Treatment of Tautomerism in Chemoinformatics Including in InChI
V2,” Journal of Chemical Information and Modeling, vol. 60, pp. 1253–1275, Mar.
2020.

[158] S. Ehlert, M. Stahn, S. Spicher, and S. Grimme, “Robust and Efficient Implicit Solva-
tion Model for Fast Semiempirical Methods,” Journal of Chemical Theory and Com-
putation, vol. 17, pp. 4250–4261, July 2021.

[159] “Daylight Theory: SMARTS - A Language for Describing Molecular Patterns.”
https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html.

[160] P. Pracht, F. Bohle, and S. Grimme, “Automated exploration of the low-energy
chemical space with fast quantum chemical methods,” Physical Chemistry Chemi-
cal Physics, vol. 22, pp. 7169–7192, Apr. 2020.

177



[161] P. Pracht, C. A. Bauer, and S. Grimme, “Automated and efficient quantum chemi-
cal determination and energetic ranking of molecular protonation sites,” Journal of
Computational Chemistry, vol. 38, no. 30, pp. 2618–2631, 2017.

[162] K. Riedmiller, P. Reiser, E. Bobkova, K. Maltsev, G. Gryn’ova, P. Friederich, and
F. Gräter, “Substituting density functional theory in reaction barrier calculations for
hydrogen atom transfer in proteins,” Chemical Science, vol. 15, pp. 2518–2527, Feb.
2024.

[163] M. Davies, M. Nowotka, G. Papadatos, N. Dedman, A. Gaulton, F. Atkinson, L. Bellis,
and J. P. Overington, “ChEMBL web services: Streamlining access to drug discovery
data and utilities,” Nucleic Acids Research, vol. 43, pp. W612–W620, July 2015.

[164] D. Mendez, A. Gaulton, A. P. Bento, J. Chambers, M. De Veij, E. Félix, M. P.
Magariños, J. F. Mosquera, P. Mutowo, M. Nowotka, M. Gordillo-Marañón, F. Hunter,
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