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Abstract

Enhancing Alzheimer’s Prognostic Models with Cross-Domain Self-Supervised

Learning and MRI Data Harmonization

Saba Dadsetan, PhD

University of Pittsburgh, 2024

In the rapidly evolving field of medical imaging, the development of effective artificial

intelligence systems requires both advanced deep learning algorithms and substantial, high-

quality datasets. However, the acquisition and annotation of such data, particularly in

specialized domains like clinical disease prognostics, is often prohibitively expensive and

time-consuming. This research explores the potential of cross-domain self-supervised learning

(CDSSL) as an innovative solution to these challenges, with a specific focus on enhancing

Alzheimer’s disease progression models using brain Magnetic Resonance Imaging (MRI)

data.

Our study introduces a novel CDSSL approach tailored for disease prognostic model-

ing, emphasizing regression tasks in medical imaging. Using Alzheimer’s disease progression

prediction from brain MRI as a case study, we demonstrate that self-supervised pretrain-

ing significantly improves prognostic accuracy. Notably, models pretrained on extended,

unlabeled brain MRI datasets consistently outperform those using natural images, with an

optimal combination of both data sources yielding the best results.

Furthermore, we address the critical issue of data harmonization in medical imaging,

investigating the impact of scanner-specific variations arising from diverse manufacturers

and models. Our findings highlight CDSSL’s potential in ensuring data consistency across

different scanner environments, thereby enhancing data comparability and reproducibility.

Specifically, we propose two methods Augmentation CDSSL and Auxiliary CDSSL, and show

improved prognostic model and scanner variability reduction.

Additionally, we compare our methods with an unsupervised harmonization model,

demonstrating that our approach achieves better results in most of the datasets. This

research underscores the significance of scanner-aware self-supervised learning in refining
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medical imaging methodologies, particularly in the context of Alzheimer’s disease (AD) pro-

gression modeling. The proposed approach not only improves model accuracy and robustness

in limited data scenarios but also offers a promising solution for mitigating scanner variability.

These advancements have profound implications for the application of Artificial Intelligence

(AI) in clinical settings, potentially leading to more accurate and reliable prognostic tools

for AD.
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1.0 Introduction

The scanner effect, often referred to as the ”batch effect” in medical imaging, describes

variability introduced in medical images due to differences in scanning devices, protocols,

and settings. Such variability can hide real biological differences or clinical findings and

introduce artificial discrepancies that may hinder accurate analysis (O’Brien et al., 2016).

The scanner effect poses several challenges. One of the most significant challenges is in multi-

center studies, where imaging data is collected from different devices with varying protocols.

Inconsistent data can lead to reduced statistical power or inaccurate findings. Such variations

can be especially problematic when machine learning models are used, as they may become

adept at identifying scanner-specific patterns rather than true clinical indicators (Zhang et

al., 2018). The sources of scanner variability can be multifaceted. They can arise from (a)

Different manufacturers or models of scanners (Smith et al., 2017). (b) Variations in imaging

protocols, such as different MRI pulse sequences or CT radiation doses. (c) Calibration and

maintenance differences over time. Patient positioning and physiological conditions (e.g.,

heart rate) during scanning (Nyúl et al., 2000).

Several techniques also called ”harmonization”, have been developed to reduce or ac-

count for the scanner effect. Harmonization techniques aim to make images from different

scanners or protocols more comparable. These techniques include: 1- Image normalization

and standardization (Fortin et al., 2016; Shinohara et al., 2014). 2- ComBat, a method

adapted from genomics to adjust for batch effects in imaging (Fortin et al., 2017). 3- Super-

vised and unsupervised machine learning-based approaches, designed to identify and mitigate

scanner-specific patterns (Tustison et al., 2018).

While harmonization techniques have shown promise, they are not without challenges.

In some cases, harmonization can overcorrect or introduce new artificial patterns into the

data. Furthermore, there’s the risk of potentially removing clinically relevant information

embedded in the images (Pomponio et al., 2020).

Given the limitations of existing methods, there’s a growing interest in exploring innova-

tive approaches such as self-supervised learning. Self-supervised learning models are trained
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using data as their supervision and are emerging as a potential solution. This offers the

advantage of learning meaningful representations without extensive labeled data, potentially

capturing and addressing scanner variability (Zhou et al., 2020).

1.1 Motivation

The field of medical image analysis has recently been confronted with the challenge of

the ”scanner effect.” By advancing imaging acquisition technologies, this phenomenon, in

which different scanning devices or protocols produce varied results, can significantly hinder

the consistency and reliability of medical image analysis. The implications are profound:

errors or inconsistencies could lead to misdiagnoses or ineffective treatment planning. The

issue is further accentuated when we consider diseases like Alzheimer’s disease, where early

and accurate detection can pave the way for better patient outcomes.

Yet, the scanner effect is not merely a challenge—it’s an opportunity. In this thesis, we

proposed solutions to this problem, which can potentially revolutionize how medical imaging

data is interpreted using better consistency, reliability, and generalizability across devices

and protocols.

1.2 Thesis Statement

This thesis delved into the potential of Self-Supervised Learning (SSL) techniques, specif-

ically when applied cross-domain (spanning both natural and medical images), as a means

to address and mitigate the scanner effect. Within this exploration, the following hypotheses

are proposed:

• H1. Cross-Domain Enhancement: Leveraging cross-domain SSL techniques (i.e.

utilizing both natural and medical images) will significantly outperform domain-specific

self-supervised techniques in mitigating the scanner effect when applied to supervised

tasks.
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• H2. Scanner-Aware SSL Optimization: Incorporating scanner-specific information

during the SSL process will not only reduce the scanner effect more effectively but will

also preserve and potentially enhance clinically relevant information within the images.

• H3. SSL Efficacy Over Traditional Harmonization: SSL techniques, when appro-

priately employed, can achieve a more substantial reduction in scanner effects in medical

imaging when compared to traditional unsupervised harmonization techniques.

Within the scope of this thesis, we investigate the merits and drawbacks of existing

harmonization techniques and explore innovative ways to incorporate scanner-specific infor-

mation during SSL, aiming to validate these hypotheses and further understand the potential

and limitations of SSL in addressing the scanner effect.

1.3 Contribution

Comprehensive Literature Review: In An in-depth examination of the scanner

effect, detailing its implications and significance in medical image analysis. This review

also encompasses existing scanner-invariant techniques, their advantages, and limitations.

Cross-Domain SSL Experiments: A pioneering study showcasing the performance

benefits of using cross-domain self-supervised techniques over domain-specific (natural or

medical) techniques, especially when applied to supervised tasks (Dadsetan et al., 2022).

Evaluating Scanner Effect Reduction using different transfer learning: Em-

pirical evidence demonstrating the ability of Cross-Domain SSL techniques to significantly

reduce batch effects, establishing its potential as a robust alternative to traditional harmo-

nization methods.

Scanner-Aware SSL Enhancement: A novel methodology that incorporates scanner-

specific information during SSL, further enhancing its potential to address the scanner effect.

Comparative Analysis with Unsupervised Harmonization: A detailed compar-

ison between SSL and unsupervised harmonization techniques, highlighting the relative

strengths and weaknesses of each approach.
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2.0 Background

2.1 Literature Review on Scanner Effect

2.1.1 Definition and understanding of the scanner effect

The ”scanner effect”, also referred to as the ”batch effect” or ”site effect” in some lit-

erature, pertains to the variability and discrepancies introduced in medical images due to

differences in scanning equipment, protocols, and settings (Stonnington et al., 2008; Svanera

et al., 2024). This variability arises from multiple factors, including differing manufacturers,

models of scanners, imaging parameters, and even software versions used for reconstruction.

Besides equipment-related variabilities, patient positioning, and physiological conditions (like

blood flow or breathing patterns) during scanning can further exacerbate this effect.

The scanner effect has significant implications for medical image analysis. From a re-

search standpoint, when images from multiple sites or scanners are combined for a study, the

inherent discrepancies due to the scanner effect can confound the results. It may overshadow

genuine biological or pathological differences, leading to biased conclusions and inferences.

Additionally, machine learning models, particularly deep learning models trained on data

from a specific scanner, might exhibit degraded performance when applied to data from a

different scanner or site. This compromises the generalizability and transferability of algo-

rithms and models, which is crucial for real-world clinical applications.

Consistency in medical images is pivotal. It ensures that the images, regardless of their

source or acquisition protocol, reflect accurate and comparable pathological or physiological

information. The scanner effect significantly undermines this consistency. For instance, the

same tissue might appear differently on images acquired from two different MRI machines

due to differences in magnetic field strengths or imaging sequences (Islam et al., 2023; Safari

et al., 2024). Such inconsistencies can lead to misinterpretations, especially in longitudinal

studies where patient scans are taken at different time points or locations. This lack of

consistency necessitates the development of harmonization methods to make multi-site or
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multi-scanner data homogenous.

2.1.2 Effects on clinical data interpretation

From a clinical standpoint, the scanner effect has far-reaching ramifications. Different

appearances of the same pathology across different scanners can result in diagnostic incon-

sistencies. A lesion that’s clearly visible in a scan from one machine might appear subdued

or different in another, leading to potential diagnostic oversight. Such variations also affect

quantitative imaging, where precise measurements (like tumor volume or tissue density) are

crucial for treatment planning or response evaluation. Inconsistent measurements due to

scanner effects can lead to inappropriate clinical decisions. Moreover, for diseases where

early detection is crucial, such as in certain cancers, variations introduced by the scanner

effect might delay diagnosis and consequently, timely intervention.

2.1.3 Methods to mitigate the effect of scanner-specific variations

MRI scanner invariance aims to correct or mitigate the effects of scanner-specific varia-

tions in the acquired MRI data. This is a crucial objective in neuroimaging, ensuring consis-

tent and reproducible findings irrespective of scanner-specific variations. As researchers dig

deeper into this challenge, a diverse spectrum of methodologies has emerged to address it.

Starting at the foundational level, pre-processing techniques have long been the bedrock

of ensuring consistency (Tudorascu et al., 2016). Methods such as bias field correction (Tusti-

son et al., 2010) rectify intensity inhomogeneities attributable to magnetic field variations.

Complementing this, intensity normalization (Bansal et al., 2017; Reinhold et al., 2019)

works to equate the intensity scale across MRI outputs from different scanners. Spatial nor-

malization ensures anatomical alignment across datasets by warping images to a universally

recognized standard space.

While pre-processing provides a significant rectification level, harmonization techniques

have emerged as specialized tools to adjust for scanner effects. Notably, techniques like

ComBat (Johnson et al., 2007; Fortin et al., 2018; Beer et al., 2020; Torbati et al., 2021),

which originally found applications in genomics, are now adeptly harmonizing MRI data. On
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the other hand, MIDAS (Saykin et al., 2010) employs statistical methodologies tailored for

multi-site imaging data, and patch-based methods (Tournier et al., 2004; Garyfallidis et al.,

2014; Blumberg et al., 2018, 2019) leverage local MRI image patches to correct site-specific

discrepancies.

Diving deeper into the realm of data handling, data augmentation techniques such as

domain adaptation (Guan and Liu, 2021; Guan et al., 2021) mitigate the domain shift by

transferring knowledge from one scanner domain to another. Furthermore, the advent of

generative models, especially GANs (Gatys et al., 2015; Isola et al., 2017; Zhu et al., 2017;

Sun et al., 2020; Shin et al., 2018; Tomar et al., 2022; Liu et al., 2021), enables the creation

of synthetic images that emulate various scanner characteristics, enriching the data pool and

enhancing model generalization.

Taking a more model-centric perspective, model-based approaches like multi-task learn-

ing (Wang et al., 2020; Ma et al., 2018; Hu et al., 2019) not only predict the clinical outcome

but also identify the scanner type, inherently accounting for scanner variations. Another

fascinating frontier is feature disentanglement (Zhao et al., 2023; Bayer et al., 2022; Gu

et al., 2023; Zuo et al., 2021b) within neural networks, wherein architectures are molded

to separate scanner-specific features from the more pertinent anatomical or disease-specific

ones.

Even after model deployment, post-processing techniques come into play. Statistical

corrections (Singh et al., 2017; Vovk et al., 2007), for instance, recalibrate derived measures

post-analysis, while residual analysis (Zhang et al., 2022; Chen et al., 2023) identifies and

rectifies scanner-specific patterns lurking within the data.

Broadening the scope to joint analysis techniques (Kurokawa et al., 2021; Tong et al.,

2020; Siqueira Pinto et al., 2023), jSBM (Xu et al., 2009) stands out, linking voxelwise and

independent component patterns from the same subjects. Meanwhile, multimodal integra-

tion (Zhang et al., 2020), which merges data from disparate imaging modalities, has shown

promise in accentuating scanner invariance.

In the domain of embedding and representation learning, deep embeddings (Zhu et al.,

2018) have surfaced as potential game-changers, learning representations intrinsically re-

silient to scanner differences. Concurrently, manifold learning (Qiu et al., 2015; Zhu et al.,
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2018) techniques like t-SNE offer a different lens, identifying intrinsic data structures and

possibly scanner-specific clusters.

Figure 1 illustrates the taxonomy of methods commonly employed to ensure MRI data

is scanner invariant.

2.2 Harmonization Techniques: An Overview

2.2.1 Definition and objectives of harmonization

Harmonization in medical imaging refers to the process of adjusting and refining images

from diverse sources to ensure that they are consistent, comparable, and standardized. This

adjustment transcends varied imaging devices, protocols, and patient populations to produce

images that resonate on a universal scale, regardless of where or how they were acquired.

Objectives of harmonization include:

Ensuring data comparability. At its core, harmonization seeks to make sure that

images from different sources can be analyzed collectively and consistently, eliminating dis-

crepancies caused by differing acquisition parameters.

Boosting research reproducibility. By standardizing images, harmonization aims to

bolster the reproducibility of research findings, ensuring that results are consistent across

different studies and datasets.

Facilitating cross-modality analysis. Harmonization is pivotal in enabling compara-

bility between different imaging modalities, ensuring that insights drawn from one modality

can be coherently mapped to another.

Improving clinical decision-making. For clinicians, harmonized images mean more

accurate and reliable data, which may lead to better-informed treatment decisions and pa-

tient outcomes.

Optimizing resources. By using harmonization techniques, researchers can efficiently

utilize existing datasets without the need for re-acquisition, saving both time and resources.

Upholding data integrity. One of the prime objectives of harmonization is to ensure
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Scanner Invariance Methods

Pre-processing

Bias Field Correction

Intensity Normalization

Spatial Normalization

Harmonization

ComBat

MIDAS

Patch-based methods

Data Augmentation

Domain Adaptation

Synthetic Image Generation

Model-based

Multi-task Learning

Feature disentanglement

Embedding and Representation Learning

Deep Embeddings

Manifold Learning

Post-processing

Statistical Correction

Residual Analysis

Joint Analysis

jSBM

Multimodal integration

Figure 1: Taxonomy of methods employed to achieve MRI data scanner invariance.

that while making images consistent, the inherent information and details within the images

remain undistorted and intact.
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As with any evolving technique in diagnostics and research, harmonization in medical

imaging brings both numerous advantages and challenges. Understanding them can help re-

searchers and clinicians make informed decisions regarding the adoption and implementation

of harmonization protocols. Some challenges that may be introduced by using harmoniza-

tion techniques are: 1) Risk of Data Over-Manipulation: While harmonization aims to make

images comparable, there’s a risk of over-manipulating the data, potentially introducing ar-

tifacts or losing vital information. 2) Complexity and Technical Challenges: Implementing

some harmonization techniques, especially those based on deep learning, requires advanced

computational resources and expertise. This might be challenging for smaller institutions

or clinics to adopt. 3) Not Always Perfect: While harmonization can considerably reduce

variability, it’s not always perfect. Some intrinsic scanner-specific characteristics or patient-

specific variations might remain unaddressed. 4) Dependence on Reference Standards: Many

harmonization techniques require reference standards or phantoms. If these standards are

not universally accepted or if they deviate over time, it might lead to inconsistencies. 5) Po-

tential Bias Introduction: Techniques like ComBat, when randomly applied, can potentially

introduce biases, especially when the number of images from different sources is imbalanced.

In light of the above, while harmonization in medical imaging undeniably advances the

field, offering consistency and improved interpretability, it is not without challenges. These

techniques often involve normalization, registration, and other preprocessing steps that seek

to bring the data into alignment. However, this pursuit of uniformity can subtly alter

the anatomical structures within the images. For example intensity normalization, a vital

technique, reduces variations in contrast and brightness across images. But its gentle touch

can reshape tissue contrast, potentially affecting the depiction of anatomical features. In

another example, geometric distortion correction enhances spatial accuracy by rectifying

distortions. Yet, it may inadvertently tweak the shape and size of anatomical structures,

introducing variations in measurements and interpretations. Likewise, image registration

aligns images spatially but often involves nonlinear transformations that can subtly deform

anatomical structures. This quest for alignment can reshape structures, challenging the

preservation of anatomical fidelity
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2.2.2 Related works

Given the diversity in imaging devices, protocols, and patient cohorts, the presence of in-

herent variability in acquired images is almost inevitable. To foster a universal interpretation

and comprehensive analysis of these images, harmonization techniques emerge as the lynch-

pin. This chapter presents an exploration of the taxonomy of these techniques, highlighting

their significance and potential applications.

Statistical techniques. At the heart of harmonization lie statistical methods, which

ensure that images from varied sources resonate on a similar frequency. The method of

Histogram Matching stands out, offering an adjustment of the intensity distribution of a

source image to echo that of a reference image. Such alignment guarantees that the images

possess analogous intensity distributions, paving the way for more accurate comparative

analyses (Pizer et al., 1987; Fortin et al., 2016; Shinohara et al., 2014). Another noteworthy

technique is ComBat, a method traditionally associated with genomics. By zeroing in on

scanner-specific biases, ComBat showcases its efficacy in curtailing unwanted variability,

especially those birthed by different scanning sites or devices (Johnson et al., 2007). Z-score

Normalization simplifies this endeavor, transforming images to maintain a standard scale

and distribution (Nyúl et al., 2000).

Correcting retrospectively. Often, images acquired in the past need retrospective

adjustments for contemporary applications. Techniques like Bias Field Correction come to

the fore in such scenarios, especially when dealing with MRI images riddled with spatial

intensity variations (Ashburner and Friston, 2005). The N4ITK method takes this a notch

higher, focusing on refining intensity non-uniformities in MR images, making it especially

effective for brain imaging (Sled et al., 1998).

Deep learning. The advent of deep learning has ushered in a revolutionary phase

in image harmonization. Convolutional Neural Networks (CNNs), with their multilayered

architecture, adeptly extract and harmonize image features, adjusting for variations across

large datasets. The ingenuity of Generative Adversarial Networks (GANs) (Zhu et al., 2017)

in synthesizing harmonized images, thanks to its dual neural networks, further cement deep

learning’s pivotal role in this domain (Dar et al., 2019; Kieselmann et al., 2021; Zhong et al.,
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2020). Autoencoders, particularly their variant - variational autoencoders, offer another

layer of sophistication, encoding and decoding images to ensure harmonization (Zuo et al.,

2021b; Fatania et al., 2022).

Domain adaptation and multivariate techniques. Harmonizing images across dif-

ferent domains necessitates specialized techniques. Joint Distribution Adaptation (JDA)

(Zuo et al., 2021a) and Transfer Component Analysis (TCA) (Guan et al., 2021) shine

in this respect, minimizing distribution divergences and finding domain-invariant spaces,

respectively. Beyond these, multivariate techniques like Canonical Correlation Analysis

(CCA) (Bashyam et al., 2020) and Partial Least Squares (PLS) Lebedev et al. (2013) work

diligently to align datasets into a shared, harmonized space.

The prospective angle. While most techniques address discrepancies post-acquisition,

prospective harmonization adopts a proactive approach. Implementing Standardized Imag-

ing Protocols ensures that every image, regardless of its origin, conforms to a predefined

standard. Phantom-based Calibration (Timmermans et al., 2019; Karayumak et al., 2019;

Keenan et al., 2018), which involves calibrating scanners using physical models, further so-

lidifies the quest for uniformity across different machines.

Distinguishing harmonization as supervised or unsupervised technique. Dis-

tinguishing between the supervision requirements of these techniques, methods like His-

togram Matching, Affine Registration, and Z-score Normalization operate in an unsuper-

vised manner. Deep learning techniques, including certain CNN and GAN models, often

require supervised training, leveraging labeled datasets. However, autoencoders and some

GAN variants (like CycleGAN) can be trained in an unsupervised manner.

2.3 Self-Supervised Learning: A New Approach

Self-supervised learning (SSL) represents a growing domain in the landscape of machine

learning, especially with its applications in the realm of deep learning. While supervised

learning has been the dominant paradigm, requiring labeled datasets for training, SSL in-

troduces a paradigm shift by exploiting the inherent structure of the data itself. In this
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methodology, the system is trained to predict parts of the data from other parts, thereby

generating its own supervisory signal. This enables a vast exploitation of the available un-

labeled data, setting SSL apart and providing it with a potent edge in diverse applications,

notably in medical imaging where labeled data is often scarce and expensive to acquire.

2.3.1 Benefits over traditional harmonization

Traditional harmonization methods in medical imaging, whether statistical or deep learning-

based, have primarily depended on curated and labeled datasets. However, the generation of

such datasets is labor-intensive, often requiring expert annotations which may be susceptible

to subjective errors. SSL offers a compelling alternative by leveraging the vast amounts of

available unlabeled medical images.

One notable advantage is the potential for improved model generalization. By training

on a broader spectrum of data, models can learn more representative features that ensure

robust performance across varied datasets. Additionally, SSL can be more scalable. As

medical imaging continues to generate massive volumes of data, the ability to utilize this

data without the need for labeling translates to more agile and timely model training and

deployment.

Moreover, SSL dovetails with transfer learning, wherein a pre-trained model on a large

dataset can be fine-tuned for specific tasks using smaller labeled datasets. This synergy

ensures that even in scenarios where labeled data is available, but in limited quantities, SSL

can bridge the gap, enhancing performance and reducing the need for extensive labeled data.

2.3.2 Self-supervised learning and scanner effect

A recurrent challenge in medical imaging is the batch or scanner effect, where discrepan-

cies arise due to variations in scanner models, protocols, or even site-specific idiosyncrasies.

Traditional methods often required explicit modeling of these effects, leading to intricate

pipelines that might not fully encapsulate the nuanced batch variations.

SSL offers a nuanced understanding of these effects. As SSL models are trained on the

inherent structure of the data, they can potentially detect and account for scanner-specific
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patterns, ensuring consistent feature extraction across scanners. Studies have shown (Jiang

et al., 2021; Chang et al., 2022; Dhinagar et al., 2023; Kan et al., 2022) that representations

learned through SSL are often more invariant to such effects, ensuring that the subsequent

tasks, whether classification or regression, are less affected and more focused on anatomical

information.

Furthermore, the SSL paradigm facilitates the creation of domain-adaptive models (Kan

et al., 2022). When deployed in multi-center studies or large-scale clinical deployments where

data from diverse scanners is aggregated, the robustness imparted by SSL can be invaluable,

ensuring consistent and reliable outcomes irrespective of the source of the data.

2.3.3 Importance of cross-domain learning: Natural vs. Medical Images

Artificial intelligence requires efficient deep learning techniques and large amounts of

training data to develop reliable and robust systems. As a result of the complexity of

annotation tasks and the high level of expertise needed for manual interpretation, the con-

struction of labeled datasets is often time-consuming and expensive, such as in the medical

imaging domain. Transfer learning from natural images is becoming increasingly popular in

medical imaging to overcome the lack of annotations. (Liu et al., 2020b; McKinney et al.,

2020; Menegola et al., 2017; Xie et al., 2019). Although numerous experimental studies

indicate the effectiveness of fine-tuning from either supervised or self-supervised ImageNet

models( (Alzubaidi et al., 2020; Graziani et al., 2019; Heker and Greenspan, 2020; Zhou

et al., 2021; Hosseinzadeh Taher et al., 2021; Azizi et al., 2021)), it does not always improve

the performance due to domain mismatch problem (Raghu et al., 2019).

Furthermore, SSL has demonstrated great success in many downstream computer vision

applications, where labeling is time-consuming and expensive (Doersch et al., 2015; Gidaris

et al., 2018; Noroozi and Favaro, 2016; Zhang et al., 2016; Ye et al., 2019; Bachman et al.,

2019; Tian et al., 2020a; Henaff, 2020; Oord et al., 2018). Due to the enormous volume

of medical images generated by clinical and research settings, SSL learning approaches are

particularly well suited to medical research and healthcare. However, SSL approaches have

received limited attention in the medical image domain despite this demand. A few studies
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have examined the role of SSL for medical image analysis for only a limited number of

applications, including classification (Liu et al., 2019; Sowrirajan et al., 2021; He et al.,

2020b; Azizi et al., 2022; Zhu et al., 2020; Liu et al., 2020a) and segmentation (Ronneberger

et al., 2015; Bai et al., 2019; Chaitanya et al., 2020; Spitzer et al., 2018).

Our research focuses on developing a self-supervised deep learning algorithm for pre-

dicting the progression of Alzheimer’s disease (AD) through the use of high-dimensional

magnetic resonance imaging (MRI). Patients with AD show clinical symptoms years after

onset of the disease, due to the slow degeneration of brain cells. Consequently, preventing

irreversible and fatal brain damage requires an accurate diagnosis and treatment of AD in

its early stages. With accurate prediction of AD progression, clinicians can start treatment

earlier and provide more personalized treatment.

In order to predict AD progression, many existing methods have categorized patients into

coarse categories, such as Mild Cognitive Impairment (MCI) or dementia. These methods

have also been used to predict progression from one category to another (e.g. MCI to demen-

tia) (Risacher et al., 2009; Venugopalan et al., 2021; Oh et al., 2019). Clinical trials, however,

require finer-grained measurement scales since trial populations tend to be narrowly defined

(e.g. only MCI patients). Alternatively, continuous numerical values can be used to predict

the outcome of cognitive and functional tests. By framing the prediction task as a regres-

sion rather than a classification, prognostic models offer more granular estimates of disease

progression. Recently, a few deep learning-based approaches, including the recurrent neural

network (RNN) and convolutional neural networks (CNN) have been proposed for predicting

disease progression of AD patients based on MRIs. (Nguyen et al., 2020) adapted Mini-

malRNN to integrate longitudinal clinical information and cross-sectional tabular imaging

features for regressing endpoints. (El-Sappagh et al., 2020) utilized an ensemble model based

on stacked CNN and a bidirectional long short-term memory (BiLSTM) to predict the end-

points on the fusion of time series clinical features and derived imaging features. Recently,

several methods have started to employ CNN-based models to extract features from raw

medical imaging. (Tian et al., 2022) applied CNN with multi-task interaction layers com-

posed of feature decoupling modules and feature interaction module to predict the disease

progression.
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Despite demand, little progress has been made because of the difficult design require-

ments, lack of large-scale, homogeneous datasets that contain early-stage AD patients, and

noisy endpoints that are potentially hard to predict. Much of the prior work has focused on

using image-derived features to overcome the complexity and high variability in raw MRIs

and small datasets. Most current prognosis models are trained on a single dataset (i.e. co-

hort), which limits their generalizability to other cohorts. They also use a limited number

of annotated images, which can lead to problems such as domain shift and heterogeneity.

We establish a cross-domain self-supervised transfer learning approach that learns trans-

ferable and generalizable representations for medical images. Our approach leverages SSL

on both unlabeled large-scale natural images and an in-domain medical image dataset com-

prised from 5 different studies. These representations can be further fine-tuned for down-

stream tasks such as disease progression prediction, using limited labeled data from the

clinical setting. We evaluate the performance of different supervised and self-supervised

models pretrained on either natural images or medical images, or both. Our extensive

experiments reveal that (1) Self-supervised pretraining on natural images followed by self-

supervised learning on unlabeled medical images outperforms alternative transfer learning

methods, indicating the potential of SSL in reducing the reliance on data annotation com-

pared to supervised approaches (2) Self-supervised models pretrained on medical images

outperform those pretrained on natural images, denoting that SSL on medical images yields

discriminative feature representations for regression task.

2.3.3.1 Related Works

The recent advancements and achievements in self-supervised learning techniques, such

as contrastive learning (Wu et al., 2018; He et al., 2020a; Chen et al., 2020c,b,a; Grill et al.,

2020; Misra and Maaten, 2020), mutual information reduction (Tian et al., 2020b), clus-

tering (Caron et al., 2020; Li et al., 2020), and redundancy-reduction methods (Zbontar

et al., 2021; Bardes et al., 2021) in the field of computer vision highlight their effectiveness

in enhancing the performance of Artificial Intelligence (AI) systems. These techniques in-

volve training models on various pretext tasks to enable the network to acquire high-quality
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representations without relying on label information. One example is SimCLR (Chen et al.,

2020c) which aims to maximize agreement between representations of different augmenta-

tions of the same image by using a contrastive loss in the latent space. Another method,

Barlow Twins (Zbontar et al., 2021), measures the cross-correlation matrix between the em-

bedding of two identical networks, with the goal of making this cross-correlation close to the

identity matrix. Meanwhile, SwAV (Caron et al., 2020) simultaneously clusters the images

while enforcing consistency between cluster assignments produced for differently augmented

views of the same image, rather than comparing features directly as in contrastive learning.

Subsequently, SSL has been employed for medical imaging applications including classi-

fication and segmentation to learn visual representations of medical images by incorporating

unlabeled medical images. While some approaches have designed domain-specific pretext

tasks (Bai et al., 2019; Spitzer et al., 2018; Zhuang et al., 2019; Zhu et al., 2020), others have

adjusted well-known self-supervised learning methods to medical data (He et al., 2020b; Li

et al., 2021; Zhou et al., 2020; Sowrirajan et al., 2021). Very recently (Azizi et al., 2022) has

applied SimCLR on a combination of unlabeled ImageNet dataset and task-specific medical

images for medical image classification; their experiments and improved performance suggest

that pretraining on ImageNet is complementary to pretraining on unlabeled medical images.

Although aforementioned approaches demonstrate improvement of the performance on

challenging medical datasets, all of them are limited to classification and segmentation tasks

and their benefits and potential effects for the prognosis prediction tasks, as regression

tasks, have not been studied. Formulating progress prediction as a regression rather than

a traditional classification problem leads to a more fine-grained measurement scale which is

crucial for real-world applications. Therefore, the development of self-supervised networks

is in great demand for efficient data utilization in medical imaging for disease prognosis.

To the best of our knowledge, this is the first study of developing a self-supervised deep

convolution neural network on medical data images from various cross-domain datasets to

predict a granular understanding of disease progression.
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3.0 Materials and Methods

3.1 Task and Data

In Alzheimer’s Disease clinical trials, one of the most important cognitive tests used to

assess current patient function and the likelihood of AD progression is Clinical Dementia

Rating Scale Sum of Boxes (CDR-SB). CDR-SB is a score provided by clinicians based on

clinical evaluations and its ranges from 0 to 18, with higher scores indicating greater severity

of symptoms. CDR-SB score is then used to assign Alzheimer’s status of a patient.

Our goal is to use a regression approach to predict the future status of patients with AD

based on their initial visit. Specifically, our model takes as input 2D slice stacks of an MRI

volume that are collected at the first visit and predicts the CDR-SB value at month 12 (i.e.

after one year). By accurately predicting the progression of AD in patients, clinicians can

initiate treatment at an earlier stage and tailor the most suitable and effective treatment for

each individual patient.

All individuals included in our analysis are around 5k from five studies, including ADNI

(Petersen et al., 2010), AIBL (Ellis et al., 2009), HABS (Dagley et al., 2017), OASIS-3 (La-

Montagne et al., 2019), and WRAP (Langhough Koscik et al., 2021).

The following steps are used to standardize MR volumes. The first step is to infer a

brain mask using SynthSeg (Billot et al., 2021), a deep learning segmentation package. We

resample the volumes and segmentations isotropically to 1 mm voxel size, standardize the

orientation to canonical (RAS+), rescale the intensity to 0.1, and normalize the Z-score

during training. As a final step, volumes are cropped or padded to (224,224).

We prepare 5-slice dataset medical images for training self-supervised models. 5-slice

dataset means that from each 3D MRI volumes, five slices are extracted to create the 5-slice.

This stack consists of the middle slice of the brain sub-volumes and four adjacent slices,

with intervals of 5 (two to the right, two to the left). SSL training sets include subjects from

all datasets except OASIS-3, which are reserved as out-of-study test sets (refer to Table 1).

The 5-slice dataset contains a total of 122,245 unlabeled images. Approximately 90% of the
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Table 1: Summary of datasets. The ✓ indicates whether a study is utilized for a split.

OASIS-3 is designated as out-study test sets, meaning they have not been utilized for either

SSL pretraining or fine-tuning. The in-study test set includes patients from ADNI; but

there is no overlap between the splits. We are unable to find any labels for the first 3 rows

of datasets.

Study Number of patients SSL Fine-tuning in-study test out-study test

HABS 289 ✓ - - -

AIBL 1112 ✓ - - -

WRAP 578 ✓ - - -

ADNI 2332 ✓ ✓ ✓ -

OASIS-3 46 - - - ✓

development set is used for training, while the remaining 10% is reserved for validation. We

choose the best model based on the minimum self-supervised validation loss and transfer its

backbone weights to the supervised model.

To create labeled datasets for fine-tuning, we selected participants from ADNI. The fine-

tuning dataset comprises about 1000 images, none of which are utilized for self-supervised

learning training. Approximately 30% of the fine-tuning dataset is set aside as an in-study

test set, while the rest of the data is divided into training and validation sets (see Table 1).

To study the effects of different scanners, we extract three specific details from each

DICOM file: the manufacturer, model, and institution associated with the scan. Notably,

the institution attribute is anonymized for most of the studies incorporated in our research.

Given this limitation, and to consistently use all 4 studies in our self-supervised learning

approach and the 2 datasets for supervised tasks (1 for training and validation, 2 for testing),

our analysis primarily revolves around the manufacturer and model details.

Figure 3 showcases the distribution of MRI scans across four manufacturers: GE, Philips,

Siemens, and Toshiba. A significant portion of our self-supervised learning dataset originates
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from Siemens, accounting for approximately 43K MRIs. This is followed by GE with around

24K MRIs, Philips with about 17K MRIs, and Toshiba contributing fewer than 1K MRIs.

The breakdown of different scanner models under each manufacturer is depicted in Figure

2.

Figure 2: Bar plot showing the distribution of 4 different manufacturers across all self-

supervised learning studies including Siemens, GE, Philips and Toshiba.

For the fourth and fifth contributions of this thesis, we increase the number of data points

for the fine-tuning part of our model. This section presents an analysis of the new training

and validation datasets, highlighting the distribution and characteristics of the data. The

training data has been significantly expanded to improve the model’s performance. Figure

4 illustrates the distribution of the CDR-SB variable for baseline and 12-month follow-up.

Histogram of CDR-SB at baseline. Based on Figure 4 the distribution is heavily

skewed towards lower values, with a peak frequency at CDR-SB of 0 and a gradual decline

as CDR-SB increases but at 12-month visit, this distribution is more spread out than the

baseline, with a noticeable peak around CDR-SB equal to 2 and a long tail extending to
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Figure 3: Distribution of scanner models within each manufacturer.

higher values.

The validation data, used to provide an unbiased evaluation of the model during fine-

tuning, shows similar characteristics to the training data, ensuring consistency and reliability

in model evaluation.

Figure 5 shows the validation data histograms at both baseline and 12-month follow-up.

The distribution of CDR-SB at baseline is similar to the training data, with a peak at lower

CDR-SB values. Also, the distribution of CDR-SB at follow-up mirrors the training data,

with a peak around CDR-SB of 2 and a long tail.

The expanded training and validation datasets provide a robust foundation for fine-tuning

the model. The consistency in distributions between the training and validation sets ensures

that the model can be evaluated accurately and adjusted effectively, leading to improved

performance and generalization.

By studying Figure 6 and Figure 7, the training and validation datasets exhibit similar
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Figure 4: This figure illustrates the distribution of the CDR-SB variable for baseline and

12-month follow-up for the training dataset.

Figure 5: This figure illustrates the distribution of the CDR-SB variable for baseline and

12-month follow-up for the validation dataset.

patterns across various categorical distributions, indicating consistency between the two

sets. In both datasets, the model distribution shows GE SIGNA as the most frequent

model, followed by a range of other models with decreasing frequencies. This diversity in
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Figure 6: Distribution of models, manufacturers, and their composition at the baseline for

the training dataset.

Figure 7: Distribution of models, manufacturers, and their composition at the baseline for

the validation dataset.

models suggests a broad representation that could contribute to a robust training process.

The manufacturer distribution in both sets is dominated by Siemens, GE, and Philips, with

Siemens having the highest frequency. This consistency across training and validation data

ensures reliable model evaluation on different equipment manufacturers. The composite

distribution also mirrors this pattern, with SIGNA being the most common in both sets.
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Also by running Chi Square experiments, we find that the p-value of the difference between

manufacturer distribution of training and validation dataset is 0.53. This cannot reject the

null hypothesis suggesting no difference in manufacturer distribution between the training

and validation dataset.

Table 2 presents the results of an ANOVA test comparing the mean of CDR-SB between

different manufacturers for both training and validation datasets.

Table 2: ANOVA test results comparing mean of CDR-SB between different manufacturers.

Metric Train Validation

df 3.0 3.0

F 7.15 1.17

P-value > 0.0001 (0.00008) 0.318

Table 3: ANOVA test results comparing the mean of CDR-SB of training and validation for

each dataset between different manufacturers.

P-value Train Validation

ADNI 0.0523 (df = 2) 0.942 (df = 2)

For the training dataset, the F-value of 7.15 indicates that there is a significant difference

in the means of CDR-SB between the different manufacturers in the training dataset. The

very low P-value (< 0.0001, (0.00008)) confirms that this difference is statistically significant.

For the validation dataset, the F-value of 1.17 suggests much weaker evidence of a dif-

ference in the means of CDR-SB between the manufacturers. The P-value of 0.318 indicates

that this difference is not statistically significant.

In summary, the ANOVA test results suggest that there is a statistically significant

difference in the means of CDR-SB between different manufacturers in the training dataset

but not in the validation dataset. This may imply that the observed differences in the training
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dataset do not generalize well to the validation dataset, suggesting potential overfitting or

differences in data distribution between the training and validation sets. If we limit the

training and validation dataset to looking at the ADNI dataset separately the p-value for

the training dataset is 0.052 and for the validation dataset is 0.94 suggesting that there is

no statistically significant difference in the means of CDR-SB in the ADNI dataset.

3.2 Experimental Study: Cross-Domain Self-Supervised Learning

3.2.1 Self-supervised learning platform for progression prediction task

We evaluate the performance of three SSL pretraining approaches in predicting disease

progression. The first approach is to explore the pretrained models on unlabeled natural

images to see if they can be transferred to medical images. The second approach is to

use pretrained models on unlabeled in-domain medical images to assess their performance

on disease progression. The third approach is to apply cross-domain SSL (referred to as

CDSSL) to leverage unlabeled data from multiple domains, including natural images and

medical images. To establish a reference point, the target model is trained using random

initialization, serving as a baseline for comparison.

Exploring pretrained models on unlabeled natural images. SSL models are

trained on large datasets of natural images, such as ImageNet, and have been shown to

outperform supervised ImageNet models on several computer vision tasks. In this experi-

ment, we hypothesize that these models could be transferred to medical images and used

to predict disease progression. We initialize the backbone encoder with weights from SSL

models trained on ImageNet to exploit these benefits. In our study, we specifically concen-

trate on three prominent SSL methods: SimCLR, a contrastive approach; BarLow Twins

(BLT), a redundancy reduction approach; and SwAV, a clustering-based contrastive learn-

ing approach. These methods have demonstrated remarkable performance on benchmarks

designed for natural images. Although there are other SSL strategies available, their perfor-

mance on ImageNet is comparable to the ones we have selected.
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Exploring pretrained models on unlabeled in-domain medical images. As

shown in Figure 8(a), we use SimCLR, Barlow Twins, and SwAV to learn distinctive repre-

sentations of unlabeled medical images. These methods have all been shown to be effective

in the classification and segmentation of medical images. We hypothesize that these models

would be able to learn the features that are specific to medical images and be more effective

at predicting disease progression than the models trained on unlabeled natural images.

Exploring CDSSL pretrained models on both domains. Representations learned

from natural images may not be optimal for the medical imaging domain because of the

large distribution shift between natural and medical images. Medical images are typically

monochromatic and have similar anatomical structures, while natural images are typically

colorful and have a wider variety of objects and scenes. We hypothesize that this discrepancy

could be minimized by further pretraining on medical data. As shown in Figure 8(b-c), we

use SimCLR, Barlow Twins, and SwAV to learn distinctive representations of unlabeled

medical images on top of pretraining on ImageNet.

Fine Tuning. The progression prediction task utilizes a ResNet50 backbone (He et al.,

2016) followed by a linear layer, with the backbone being initialized randomly or with pre-

trained models. The model loss is calculated using the mean square error (MSE) criterion

(see Figure 8(d)).

3.3 Using SSL to Address Scanner Effect

3.3.1 Evaluating the efficacy of CDSSL in reducing scanner effect

In order to find whether or not transfer learning from cross-domain SSL helps to reduce

the batch effect or not, we design a model that fuse the scanner manufacturer and scanner

model to the supervised framework embedding to find whether the prediction of our outcome

is scanner invariant or not. In order to do that, we perform a log-likelihood ratio on the

prediction of two models. As illustrated in Figure 9 Model 1 is a null model that only receives

the MRIs whereas Model 2 as a hypothesis receives both MRIs and scanner information with
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Figure 8: Different approaches for self-supervised pretraining on in-domain medical imag-

ing, including (a) random initialization, (b) supervised ImageNet initialization, and (c) self-

supervised ImageNet initialization. (d) Performing fine-tuning by transferring the backbone

from one of the scenarios a-c. (e) utilization of the trained model on unseen test sets.

the process of output-fusion. Model 1 represents the simpler model with the assumption

that there is no significant effect of MRI scanner variations. Model 2 represents the more

complex model that explicitly accounts for MRI scanner effects. We perform a statistical

analysis using p<0.05 as a statistical significance difference. Noted, in Figure 9-b the process

of output-fusion is as follows, first scanner manufacturer and scanner models are processed

into one hot vector and then concatenate with the last fully connected layer of ResNet50

(the backbone of our supervised model). Then the combined vector followed by the linear
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layer outputs the final prediction.
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Figure 9: This figure illustrates two models including (a) Model 1 (null model) and (b)

Model 2 (hypothesis) with the difference of including scanner information (manufacturer

and model) in Model 2.

3.3.2 Enhancing CDSSL with scanner information incorporation

In this section, we are proposing some techniques to introduce scanner-aware self-supervised

learning. In the following paragraph, we will describe the details of these proposed methods:
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Augmentation strategy. In this strategy, we design data augmentation techniques

that mimic potential variations introduced by different MRI scanners. These augmentations

include variations in intensity, noise, resolution, and other factors. This approach is partially

applied in the previous section on CDSSL, where we used random Gaussian blurring and ran-

dom rotation. In this section, we extend this strategy by incorporating additional noise and

intensity variations and evaluate their impact on the final outcome. We refer to this strat-

egy as “Augmentation CDSSL” throughout this thesis. Key Components of Augmentation

CDSSL are:

Mimicking scanner variations

• Intensity Variations: Adjusting the brightness and contrast of the images.

• Noise Variations: Introducing random noise to simulate scanner-specific artifacts.

• Resolution Variations: Modifying the resolution to reflect differences in scanner quality.

Randomized augmentation application

• During each training epoch, images are randomly augmented to introduce variability.

• For example, an image during epoch j might be augmented with random contrast, while

in epoch j + 1, the same image might be used with no augmentation.

Integration with CDSSL

• These augmentations are applied before the default SSL augmentations to create diverse

views of the data.

• This strategy enhances the model’s ability to generalize across different scanner environ-

ments.

Because we have prior knowledge about the number of manufacturers and models, this

could guide the choice of clusters and then incorporate that cluster information in the loss

function depicted in Equation 1. Then To include the cluster information we define two

terms, Within-cluster Similarity which increases the similarity of embeddings that belong to

the same cluster, and Across-cluster Dissimilarity which penalizes high similarity between

embeddings from different clusters. Therefore the modified loss becomes:

L
′ = L + λ1 ∑

m,n∈ same cluster
sim(zm, zn) − λ2 ∑

m,n∈ different clusters
sim(zm, zn) (1)
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Where L is the SimCLR’s original Loss and λ1 and λ2 are hyperparameters that determine

the weight of the within-cluster and across-cluster terms, respectively. During training the

model using this modified loss. The standard term pushes the embeddings of the anchor and

its positive pair to be similar, while the additional terms make the embeddings of images

from the same cluster closer and those from different clusters more distinct. We choose λ1

as 0.4 and λ2 as 0.6.

Scanner label prediction as an additional auxiliary task strategy. During train-

ing, along with minimizing the contrastive loss for augmented views of the same sample, we

introduced an auxiliary task where the network also predicts the scanner (or protocol) that

produced the MRI image. This will make the network aware of the scanner variations and

could potentially increase its robustness to these variations. We will use “Auxiliary CDSSL”

to address this strategy.

Figure 10: Diagram of the Auxiliary CDSSL method: The original MRI image undergoes

data augmentation to create transformed images, which are then processed by the base

encoder to generate representations. These representations are fed into the prediction head

to maximize similarity. An auxiliary task of scanner classification is incorporated to mitigate

scanner variability.
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3.3.3 Comparative analysis with unsupervised harmonization technique

To determine if using self-supervised learning (SSL) is superior to harmonization tech-

niques, we performed an analysis where we harmonized all the scanners into one using an

unsupervised harmonization technique (Liu et al., 2021). The reason for using an unsuper-

vised technique is that none of our datasets provide the ground truth of the same MRI with

different scanners. This model leverages Generative Adversarial Networks (GANs) for MRI

harmonization. Adapting the style of MRI images from one site to match the style of an-

other, reduces inter-site variability and improves the generalizability of MRI-based models.

Using this unsupervised harmonization technique, we harmonized all of our data. We then

incorporated these harmonized data into both the CDSSL framework, which we refer to as

“Harmonized-Data CDSSL”, and into the fine-tuning process, where we use the labels to

predict the Clinical Dementia Rating Sum of Boxes (CDR-SB) score using baseline MRIs.

Figure 11 illustrates a workflow for integrating harmonization models with self-supervised

learning techniques to enhance medical imaging tasks. The process begins with both un-

labeled and labeled medical images being input into a harmonization model to standardize

the images. Harmonized unlabeled images are then fed into a self-supervised model with a

CNN backbone architecture, which is trained using contrastive loss to learn meaningful rep-

resentations. Simultaneously, harmonized labeled images undergo knowledge transfer from

the self-supervised model’s CNN backbone. This pretrained backbone is then fine-tuned

on labeled data for specific downstream tasks, leveraging the learned representations to im-

prove performance on these tasks. This approach combines the benefits of harmonization

for image standardization and self-supervised learning for representation learning, ultimately

enhancing the effectiveness of medical image analysis.

3.4 Experimental Study: Cross-Domain Self-Supervised Learning

To evaluate the effectiveness of different pretraining models for disease progression pre-

diction, we proposed the first benchmarking study. This study explores the transferability
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Figure 11: This figure illustrates Harmonized-Data CDSSL which integrates harmonization

and SSL for enhancing prognosis models.

of features learned by pretraining on natural or medical images, or both, to the medical

task of predicting disease progression. To evaluate our model’s performance, we used the

Pearson correlation coefficient (r) and the coefficient of determination (R2). R2 is calculated

as equation 2:

R2 = 1 − ∑(yi − ŷ)
2

∑(yi − ȳ)2
(2)

Where ∑(yi − ŷ)2 and ∑(yi − ȳ)2 respectively indicate the sum of squared residuals and

total sum squared. In clinical studies, R2 is widely employed to evaluate the ability of a

model to predict future outcomes (Franzmeier et al., 2020).
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3.4.1 Self-supervised pretraining

Experiments on natural images. Three widely known SSL methods were used to

test the transferability of standard ImageNet models: SimCLR, Barlow Twins, and SwAV.

An ImageNet dataset is used for pretraining, and a ResNet-50 backbone is used in all SSL

models.

Results. The results in Table 4a show that transfer learning from the supervised Im-

ageNet model does not improve over random initialization. The reasons for this may be

due to the significant difference between pretraining tasks and regression targets. A super-

vised ImageNet model, for example, may capture semantic features that are specific to a

particular domain. Therefore, it is inefficient to use supervised imagenet models if the data

distributions in the target and pretraining datasets are different. The results of this study

are consistent with studies on other medical tasks that found transfer learning from super-

vised ImageNet pretraining did not always correlate with performance on classification or

segmentation (Dippel et al., 2021; Vendrow and Schonfeld, 2022; Hosseinzadeh Taher et al.,

2021).

In contrast, transfer learning from self-supervised ImageNet models provides superior

performance compared with both random initialization and transfer learning from the su-

pervised ImageNet model. The best self-supervised model (i.e., Barlow Twins) achieves a

performance improvement of 7% and 8% over random initialization and the supervised Ima-

geNet model, respectively. This is likely due to the fact that self-supervised ImageNet models

are trained to learn general-purpose features that are not biased toward any particular task.

As a result, they are better able to generalize to new domains.

Experiments on medical images. To investigate the effect of using in-domain med-

ical images for self-supervised pretraining, we trained three SSL methods, SimCLR, Bar-

low Twins, and SwAV, on 5 unlabeled medical imaging datasets, which we call in-domain

datasets. All SSL models were randomly initialized and then fine-tuned on our labeled

dataset.

Results. Table 4b shows the performance of SSL models pretrained on the 5-slice

dataset, measured by the R2 score. We observe that SimCLR pretraining on the in-domain
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Table 4: The effects of different pretraining schemes on downstream tasks.

(a) Pretraining on natural images.

Pretraining Initialization R2

- Random 0.07

Supervised ImageNet 0.06

Self-Supervised

SimCLR 0.10

SwAV 0.08

Barlow Twins 0.14

(b) Pretraining on medical images.

Pretraining Initialization R2

- Random 0.07

Self-Supervised

SimCLR 0.19

SwAV 0.12

Barlow Twins 0.14

dataset achieves the highest performance, providing a 7% and 5% boost over SwAV and

Barlow Twins, respectively. This may be due to the superiority of contrastive learning for

identifying significant MRI features for predicting the progression of Alzheimer’s disease

in terms of CDR-SB. Moreover, the performance of SimCLR pretraining on the in-domain

dataset exceeds that of both supervised and self-supervised pretraining on the ImageNet

dataset (as seen in Table 4a). This suggests that pretraining on the in-domain dataset

encodes domain-specific features that reflect the distinctive characteristics of medical images.

In contrast, pretraining Barlow Twins on in-domain data does not yield performance

improvement compared to Barlow Twins pretrained on ImageNet. This result indicates

that the features learned by Barlow Twins through pretraining on ImageNet demonstrate

sufficient generalizability to medical images. Thus, the limited number of unlabeled medical

images in the in-domain dataset (40k compared to 1.3M in ImageNet) may only provide

marginal performance gains for the redundancy reductions-based Barlow Twins method.

Cross-domain experiments. In this experiment, we examine the effects of self-

supervised pretraining on both natural images and medical images. We achieved this by

pretraining SimCLR on the five-slice dataset using two distinct initialization schemes: Su-

pervised ImageNet (referred to as ImageNet(Labeled)→In-domain), and Barlow Twins on

ImageNet (referred to as ImageNet(Unlabeled)→In-domain). In our experiments, SimCLR
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and Barlow Twins were selected because their performance was the highest when pretrained

on natural or medical images, respectively, as shown in Tables 4a and 4b. Figure 8(b,c)

shows both cross-domain self-supervised pretraining schemes. As part of this section, we

also include Pearson correlation coefficients to illustrate the strength and direction of the

relationship between CDR-SB predicted values and target values.

Results. The results are displayed in Table 5a. When both unlabeled ImageNet and in-

domain datasets are used to pretrain, the best results are achieved. Specifically, the predictive

power of the ImageNet(Unlabeled)→In-domain model outperforms that of the model trained

only on the ImageNet or the in-domain dataset. The performance improvements are 14%, 7%,

and 2% when compared to random initialization, ImageNet pretraining alone, and in-domain

dataset pretraining alone. These results indicate that pretraining on ImageNet combined

with pretraining on in-domain datasets leads to more robust representations for medical ap-

plications, as suggested by earlier research (Hosseinzadeh Taher et al., 2021; Azizi et al.,

2021). A further point worth emphasizing is that the ImageNet(Labeled)→In-domain pre-

training method shows inferior performance compared to ImagesNet(Unlabeled)→In-domain

methods. In these observations, self-supervised models demonstrate their effectiveness at

generating more generic representations that can be applied to target tasks with limited

data, reducing the need for extensive annotations.

To compare the Pearson correlation coefficients of the models in Table 5a, we used

Steiger’s Z1 method (Steiger, 1980). This method is utilized to compute the two-tailed

p-value at a 95% confidence interval, and it’s a statistical approach uniquely suited for

assessing the significance of variances between dependent correlation coefficients. The results

are displayed in Table 6. Notably, the ImageNet(Unlabeled)→In-domain pretraining model

demonstrates a statistically significant difference compared to other models.

3.4.2 In- and out-of-domain generalization

To assess the robustness of our top-performing model, Barlow Twins→SimCLR, on the

5-slice dataset, we evaluated its performance using three distinct test sets: an in-study test

set and two out-study test sets. Furthermore, we compare this model’s performance with
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Table 5: Results of different pretraining schemes on both (a) validation and (b) test sets in

terms of R2 and r. OASIS-3 is an out-study test set, meaning it has not been utilized for

either SSL pretraining or fine-tuning.

(a) Results of the top-performing models in each domain and their combination in a
cross-domain SSL setting on the validation set.

Pretraining Method Pretraining Dataset R2 r MSE

Random - 0.07 0.33 5.31

Barlow Twins ImageNet 0.16 0.42 4.81

SimCLR In-domain 0.19 0.44 4.61

Supervised ImageNet → SimCLR ImageNet(Labeled) → In-domain 0.17 0.43 4.74

Barlow Twins → SimCLR ImageNet(Unlabeled) → In-domain 0.21 0.46 4.52

(b) Results on independent dataset.

Pretraining Method Pretraining Dataset R2/r on in-study test R2/r on OASIS-3

Random - 0.04/0.30 -0.04/0.10

Barlow Twins ImageNet 0.12/0.35 -0.06/0.15

SimCLR In-domain 0.14/0.38 0.11/0.36

Supervised ImageNet → SimCLR ImageNet(Labeled) → In-domain 0.11/0.33 0.10/0.35

Barlow Twins → SimCLR ImageNet(Unlabeled) → In-domain 0.18/0.42 0.17/0.42

the best-performing models initialized either by ImageNet or an in-domain dataset.

According to the results presented in Table 5b, the highest performance is achieved when

both the unlabeled ImageNet and in-domain dataset are utilized for pretraining. Specifically,

the ImageNet(Unlabeled)→In-domain pretraining approach exhibits a significant improve-

ment of 10% and 6% over the in-domain and ImageNet pretrained models, respectively, for

the in-study test set. Similarly, on the out-study test set OASIS-3, the same model demon-

strates an improvement up to 6% compared to other models. These results indicate that

35



Table 6: The p-values in Table 5a show the statistical significance of the difference between

the Pearson Correlation (r) of different models. Significance levels are denoted by *, **, and

*** for p-values < 0.05, < 0.01, and < 0.001, respectively.

Pretraining Method Random Barlow Twins SimCLR Supervised ImageNet → SimCLR Barlow Twins → SimCLR

Random - 0.003** 0.0001*** 0.0001*** 0.0001***

Barlow Twins 0.003** - 0.04* 0.27 0.0004***

SimCLR 0.0001*** 0.04* - 0.35 0.012*

Supervised ImageNet → SimCLR 0.0001*** 0.27 0.35 - 0.004**

Barlow Twins → SimCLR 0.0001*** 0.0004*** 0.012* 0.004* -

ImageNet(Unlabeled)→In-domain pretraining effectively encodes semantic features that are

generalizable to other studies. Furthermore, the performance of ImageNet(Labeled)→In-
domain pretraining is inferior to that of ImageNet(Unlabeled)→In-domain pretraining. This

indicates that supervised ImageNet models encode domain-specific semantic features, which

may not be efficient when the pretraining and target data distributions significantly differ.

3.4.3 Visualizing model saliency maps

Attribution methods are a tool for investigating and validating machine learning models.

Using the interpretability of the ML models can significantly help obtaining a bigger picture

about risk factors influences on short-term prognosis. We used the GradCAM (Selvaraju

et al., 2017) method to extract and evaluate the varying importance of each part of brain

MRIs using a gradient of the final score. In this method, regions of an image are marked

with different colors ranging from red to blue. Generally, areas that are closer to the red

color contribute more significantly to the final result, based on the input data (i.e., MRI

slice).

Figure 12 presents various examples of saliency maps, which depict the significance of

different regions in the MRIs at a pixel level. Notably, our top-performing model, Barlow

Twins→SimCLR, consistently highlights the subcortical areas of the brain. This observation
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aligns with prior research indicating that the initial stages of AD exhibit abnormal tau accu-

mulation in the entorhinal cortex and subcortical brain regions (Rueb et al., 2017; Liu et al.,

2012). Therefore, it is reasonable that our model, i.e. Barlow Twins→SimCLR, exhibits

higher attention to those specific brain regions in a population of individuals with prodro-

mal to mild Alzheimer’s disease at baseline. As expected, the randomly initialized model

highlights random features all around MRIs, including background areas. In contrast, the

model initialized with unsupervised ImageNet is more focused on brain regions, rather than

irrelevant areas such as the background. Table 7 illustrates the results of the Cross-Domain

Figure 12: This figure illustrates the interpretation of three pretraining models using the

GradCam technique. The top row shows the original MRI slices, while the subsequent rows

depict the saliency maps generated by the following models: a randomly initialized pretrained

model, a pretrained model on natural images, and our best model, Barlow Twins→SimCLR.

Self-Supervised Learning (CDSSL) framework, focusing on the percentage of coverage in
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clinically relevant brain areas—ventricles, hippocampus, and amygdala—by heatmaps us-

ing three pre-training strategies. These areas are critical in the early stages of Alzheimer’s

disease. Numeric calculations show the percentage of coverage, revealing significant differ-

ences across the pre-training models. In the random pre-training model, the heatmap areas

are scattered randomly, resulting in a low average percentage of coverage for each clinically

related area: 22% for ventricles, 30% for the hippocampus, and 20% for the amygdala.

The mean and standard deviation (Std) values reflect this inconsistency. With one-domain

self-supervised learning (SSL) as a pre-training strategy, there is an improvement in these

coverage percentages: 50% for ventricles, 60% for the hippocampus, and 61% for the amyg-

dala, showing more focused heatmaps. The cross-domain SSL model further enhances these

results, with mean coverage percentages of 95% for ventricles, 89% for the hippocampus, and

97% for the amygdala. The heatmaps are more consistent across subjects, indicated by lower

standard deviations. The high mean coverage and low standard deviation for the amygdala

are due to its small size in some 2D slices, where it might not be present, leading to 0%

coverage for those slices. This absence contributes to the low standard deviation compared

to the mean.

Table 7: Heatmap coverage of clinically relevant brain areas using different pretraining

strategies.

Pretraining Methods Pretraining Dataset
Ventricles

mean%(std)

Hippocampus

mean%(std)

Amygdala

mean%(std)

Random - 22% (21) 50%(18) 95%(3)

Barlow Twins ImageNet(Unlabeled) 30%(31) 60%(13) 89%(2)

Barlow Twins → SimCLR ImageNet(Unlabeled) → In-domain 20%(18) 61%(10) 97%(10)

3.4.4 Evaluating the addition of CDR-SB at baseline with the baseline MRI

The hypothesis of this study is that adding clinical baseline information, specifically

CDR-SB score, to our supervised model will improve prediction results. The rationale be-

hind this hypothesis is that using baseline MRI images in conjunction with the CDR-SB
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score allows the model to better learn the correlation between the baseline image and the

progression prediction of the patient. This enhanced learning is expected to improve the

model’s ability to predict future clinical outcomes. To test this hypothesis, we incorporated

the CDR-SB score at the baseline into our model. This approach involves using the CDR-

SB score as an additional input feature alongside the baseline MRI images. The goal is to

determine how much the inclusion of this clinical baseline information improves the model’s

predictive performance.

Results. The results of this strategy are illustrated in the following Figure 13. The left

graph shows the Pearson correlation coefficient between the predicted and actual CDR-SB

scores, while the right graph shows the coefficient of determination for the same predictions.

Figure 13: Plots of adding CDR-SB baseline information to the pipeline.

In both graphs, the purple line represents the model that includes the baseline CDR-SB

score (MRI + baseline CDR-SB), and the orange line represents the model that uses only the

baseline MRI images. The results clearly indicate that the model incorporating the baseline

CDR-SB score outperforms the model using only MRI images. Specifically, the Pearson

correlation coefficient for the MRI+ baseline CDR-SB model reaches 0.7549, compared to

0.5037 for the MRI model. Similarly, the coefficient of determination (R2) for the MRI +

baseline CDR-SB model is 0.5688, compared to 0.226 for the MRI model. These findings

suggest that adding the CDR-SB score at the baseline significantly enhances the model’s

ability to predict Alzheimer’s disease progression, demonstrating the value of incorporating

clinical baseline information into predictive models.
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3.5 Using SSL to Address Scanner Effect

3.5.1 Evaluating the efficacy of CDSSL in reducing scanner effect

In this section, we use a supervised setting to find the efficacy of our CDSSL using

R2, Pearson correlation (r), mean squared error, and other relevant metrics against other

baseline models such as only supervised ImageNet, only unsupervised ImageNet, Random

initialization, and the model that we incorporate scanner information including manufacturer

and model. Furthermore, when predicting imaging-derived scores like brain volume, metrics

such as the correlation coefficient between predicted and actual values, or the mean absolute

error, can offer additional evaluation dimensions.

In order to find whether or not transfer learning using different methods such as CDSSL or

only ImageNet, or random initialization affected by scanner variation in predicting clinical

and imaging score, we compare two nested models represented in Figure9 that fuse the

scanner manufacturer and scanner model to the supervised framework embedding. To discern

the performance difference between two nested deep learning models, a Likelihood Ratio

Test (LRT) was employed. Initially, the log-likelihood of both models was computed on the

validation set. The LRT statistic was then determined by doubling the difference between

the log-likelihoods of the two models. Subsequently, the degrees of freedom, essential for

the chi-squared distribution, were derived from the discrepancy in the number of parameters

between the models. With the LRT statistic and the degrees of freedom, the associated

p-value was calculated. This p-value offers critical insight: if significantly low, it suggests

that Model 2 fits the data more effectively than Model 1.

Results. As an initial step, we only choose labeled data from ADNI datasets. This

resulted in 142 MRIs for training and 68 MRIs for validation. As can be seen in Table 8

distinct observations were discerned. Under the Barlow Twins → SimCLR pretraining with

only MRI data, a Pearson correlation of 0.39 was observed. Incorporating manufacturer data

resulted in a slight decrease in correlation to 0.34. Adding further, with model information,

led to a correlation value of 0.40. In the ImageNet pretraining scenario, using only MRI data

yielded a correlation of 0.25. Remarkably, the inclusion of both manufacturer and model
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data did not change this correlation, maintaining it at 0.25. For the Random pretraining

environment, the MRI model showed a correlation of 0.19. However, when both manufacturer

and model data were added, there was a notable increase in the correlation, reaching 0.33.

Turning to the LR test results, which are crucial for assessing model fit differences, several

insights emerged. As can be seen in Table 9 within the Barlow Twins→ SimCLR context, the

comparison of various models, ranging from MRI to those incorporating manufacturer and

model information, consistently yielded p-values of 1, suggesting no significant differences in

model fit. A congruent trend was found in the ImageNet pretraining, with a stable p-value

of 1. The narrative shifted dramatically in the Random pretraining. Here, contrasting the

MRI model with the combined manufacturer and model data led to a significant LR statistic

of -164, indicating a profound difference in model fit with a p-value of less than 0.001.

In conclusion, while the Barlow Twins → SimCLR and ImageNet pretraining datasets

indicated stable model fits irrespective of the incorporated data, the Random pretraining

setting demonstrated substantial variability. Within this latter regime, the integration of

both manufacturer and model details alongside MRI data showed a pronounced enhancement

in model fit.

Table 8: Comparison of r and log-likelihood values across different pretraining techniques

(Barlow Twins → SimCLR, Supervised ImageNet, and Random) for MRI and combined data

settings (MRI with manufacturer and MRI with manufacturer and model).

Pretraining Dataset Pearson Correlation (r) Log-likelihood

Random
MRI 0.19 -445

MRI + Manufacturer +Model 0.33 -363

Supervised ImageNet
MRI 0.25 -430

MRI + Manufacturer +Model 0.25 -463

Barlow Twins → SimCLR

MRI 0.39 -384

MRI + Manufacturer 0.34 -395

MRI + Manufacturer +Model 0.40 -397
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Table 9: Statistical significance of the resulting likelihood ratio. The p-values indicate the

statistical significance of the difference between the log-likelihood of different inputs for each

pre-training using a degree of freedom (df). Significance levels indicated by *, **, and ***

for p-values < 0.05, < 0.01, and < 0.001, respectively.

Likelihood Ratio

Pretraining Datasets MRI + Manufacturer MRI + Manufacturer+Model

Barlow Twins → SimCLR
MRI -26(df=4) p-value =1

-21(df=38)

p-value =1

MRI + Manufacturer -
5(df=34)

p-value =1

Supervised ImageNet MRI -
-64(df=38)

p-value =1

Random MRI -
164(df=38)

p-value <0.001 ***

3.5.2 Enhancing CDSSL with Scanner Information Incorporation

All the evaluations in this section will be done on both self-supervised and supervised

frameworks. Within the self-supervised context, the quality of the embeddings can be gauged

by analyzing the distribution within the learned feature space. Visualization techniques like

t-SNE or UMAP can offer insights into the compactness and separability of these embeddings,

spotlighting the model’s adeptness in capturing both scanner-specific nuances and underlying

biological variations.

Transitioning to the supervised setting, the utility of the model becomes more pronounced

when evaluating its performance in predicting specific clinical and imaging scores. By fine-

tuning the pre-trained model on tasks related to predicting clinical scores, such as CDR-SB

one can benchmark its predictive performance.

Results. According to Table 10, Auxiliary CDSSL shows a performance improvement

when scanner information is included. The R2 value increases from 0.62 to 0.64, and the cor-
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relation coefficient (r) increases slightly from 0.8414 to 0.8454. This indicates that including

scanner information helps in better capturing the variance and improving the correlation

with the target variables. Similar to Auxiliary CDSSL, Augmentation CDSSL also bene-

fits from the inclusion of scanner information. The R2 value improves from 0.63 to 0.645,

and the correlation coefficient (r) remains relatively stable at around 0.8445. This suggests

that augmenting the dataset with scanner information provides a small but noticeable im-

provement in model performance. The Original CDSSL method sees a modest increase in

performance with the addition of scanner information. The R2 value increases from 0.55 to

0.57, while the correlation coefficient (r) remains constant at 0.83. This indicates that while

there is some benefit to adding scanner information, it is less pronounced compared to the

other CDSSL methods. For the ImageNet method, the performance slightly decreases when

scanner information is included. The R2 value drops from 0.20 to 0.19, and the correlation

coefficient (r) decreases from 0.82 to 0.81. This suggests that for this particular method,

scanner information may introduce noise or irrelevant information that negatively impacts

performance. The Random method serves as a baseline, and as expected, it has the lowest

performance metrics. The R2 value slightly increases from 0.14 to 0.16, and the correlation

coefficient (r) improves from 0.71 to 0.74 when scanner information is included. Despite

these improvements, the overall performance remains low, highlighting the effectiveness of

the other methods.

Table 10: Comparison of different methods on the ADNI dataset with performance metrics

R2 and r for MRI and MRI with Scanner information conditions.

Pretraining Method MRI MRI + Scanner Info p-value (LR)

Auxiliary CDSSL R2 = 0.62, r = 0.84 R2 = 0.64, r = 0.84 0.91

Augmentation CDSSL R2 = 0.63, r = 0.84 R2 = 0.645, r = 0.84 1

Original CDSSL R2 = 0.55, r = 0.83 R2 = 0.57, r = 0.83 0.95

ImageNet R2 = 0.20, r = 0.82 R2 = 0.19, r = 0.81 1

Random R2 = 0.14, r = 0.71 R2 = 0.16, r = 0.74 0.85
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3.5.2.1 Performance comparison of pretraining methods across scanner manu-

facturers in the ADNI dataset

Table 11 presents the average Mean Squared Error (MSE) for different pretraining meth-

ods across three major scanner manufacturers in the ADNI dataset: Siemens, GE, and

Philips.

Table 11: Average MSE using different pretraining methods for each scanner manufacturer

in the ADNI dataset.

Pretraining Method Siemens GE Philips

Augmentation CDSSL 1.66 1.15 1.72

Auxiliary CDSSL 1.67 1.17 1.79

Original CDSSL 1.72 1.25 1.86

ImageNet 2.22 1.85 2.58

Random 2.38 1.83 2.45

Augmentation CDSSL and Auxiliary CDSSL methods show comparable performance

across all manufacturers, with slightly lower MSEs for Siemens and GE compared to Philips.

Specifically, Augmentation has MSE values of 1.66 for Siemens, 1.15 for GE, and 1.72 for

Philips, while Auxiliary has MSEs of 1.67, 1.17, and 1.79 respectively.

The Original CDSSL method has slightly higher MSE values than both Augmentation

and Auxiliary, with Siemens at 1.72, GE at 1.25, and Philips at 1.86, indicating that aug-

mentation and auxiliary techniques may provide a slight advantage in reducing errors.

ImageNet pretraining results in higher MSEs across all manufacturers compared to the

previously mentioned methods, with values of 2.22 for Siemens, 1.85 for GE, and 2.58 for

Philips, suggesting that it may be less effective for this specific dataset and task.

The Random initialization method has the highest MSE values for Siemens and Philips,

at 2.38 and 2.45 respectively, while it performs similarly to ImageNet for GE with an MSE of

1.83. This highlights the importance of using more sophisticated pretraining methods over
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random initialization for improving model performance.

Overall, Augmentation and Auxiliary methods appear to be the most effective in reduc-

ing MSE for the ADNI dataset across different scanner manufacturers, with Original also

performing relatively well. ImageNet and Random methods are less effective, particularly

for Siemens and Philips scanners.

3.5.2.2 Clustering performance for ADNI dataset

In a well-executed feature harmonization process, the objective is to reduce the variabil-

ity introduced by different scanners, ensuring that the features from each scanner are less

clustered and more homogeneous. This means that after harmonization, data points from

different scanners should be indistinguishable from one another in the feature space, reflect-

ing true biological or experimental variations rather than technical artifacts. To evaluate

the effectiveness of this harmonization, metrics such as the Silhouette Score, Davies-Bouldin

Index, and Calinski-Harabasz Index can be employed. A successful harmonization will re-

sult in a lower Silhouette Score, indicating that the data points are less tightly clustered by

scanner, and a lower DBI, suggesting reduced intra-scanner similarity. Additionally, a higher

CHI will indicate that the clusters formed are more defined by biological differences rather

than scanner differences. These metrics collectively help in quantifying and demonstrating

the reduction of scanner-induced clustering, affirming the effectiveness of the harmonization

process.

The Silhouette Score measures how similar an object is to its own cluster compared

to other clusters. It ranges from -1 to 1, where a higher score indicates that the object is

well-matched to its own cluster and poorly matched to neighboring clusters. The Silhouette

Score is useful for understanding the cohesion and separation of clusters.

The Silhouette Score for sample i is:

Silhouette(i) = b(i) − a(i)
max(a(i), b(i)) (3)

Equation 3 shows this score for a sample i: a(i) is the average distance between i and all

other points in the same cluster. b(i) is the average distance between i and all points in the

nearest cluster. The overall Silhouette Score is the mean of Silhouette(i) for all samples.
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TheDavies-Bouldin Index (DBI) evaluates the average similarity ratio of each cluster

with the cluster that is most similar to it. A lower DBI indicates better clustering, with

well-separated clusters that are internally compact. DBI is useful for comparing different

clustering algorithms or configurations on the same dataset.

The DBI is:

DBI = 1

n

n

∑
i=1

max
j≠i
(Si + Sj

Mij

) (4)

Equation 4 shows this index for n clusters, Ci and Cj. Si is the average distance between

each point in cluster i and the centroid of cluster i. Mij is the distance between the centroids

of clusters i and j.

The Calinski-Harabasz Index (CHI), also known as the Variance Ratio Criterion,

measures the ratio of the sum of between-cluster dispersion and within-cluster dispersion

for all clusters. A higher CHI indicates better-defined clusters. This metric is effective for

evaluating the overall goodness of fit of clustering results.

The CHI is:

CHI = trace(Bk)
trace(Wk)

⋅ (n − k)(k − 1) (5)

Equation 5 demonstrates this index for n samples, k clusters. Bk is the between-cluster

dispersion matrix, calculated as the sum of squared differences between the cluster centroids

and the overall centroid, weighted by the number of points in each cluster. Wk is the within-

cluster dispersion matrix, calculated as the sum of squared differences between each point

and its respective cluster centroid.

All these metrics provide different perspectives on the quality of clustering results, making

them useful for comprehensive cluster analysis.

Results. Tables 12 and 13 present the clustering performance metrics before and after

fine-tuning a supervised model for CDR-SB prediction for each pertaining method. Table

12 shows the metrics derived from features obtained through Augmentation CDSSL, while

Table 13 shows the metrics after fine-tuning the model for CDR-SB prediction.

The low Silhouette Score (0.03) in Table 12 suggests that the clustering structure is

weak, indicating that the features are scattered more across different manufacturers. The
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Table 12: Clustering performance metrics -

before fine-tuning (Augmentation CDSSL).

Metric Value

Silhouette Score 0.03

DBI 2.51

CHI 7.42

Table 13: Clustering performance metrics -

after fine-tuning (CDR-SB prediction model).

Metric Value

Silhouette Score 0.07

DBI 2.14

CHI 10.02

DBI (2.51) is relatively high, which further confirms that the clusters are not compact

and well-separated. The CHI (7.42) is also low, reflecting poor clustering performance.

After fine-tuning the model for CDR-SB prediction, there are noticeable improvements in

the clustering performance metrics. In Table 13, the Silhouette Score increases to 0.07,

suggesting a slight improvement in the clustering structure. The DBI decreases to 2.14,

indicating better compactness and separation of clusters. The CHI significantly increases to

10.02, highlighting a more favorable clustering structure. The comparison between the two

tables highlights the impact of fine-tuning the model for CDR-SB prediction. The clustering

performance metrics improve across all three indices:

Table 14 shows the metrics derived from features obtained through Auxiliary CDSSL,

while Table 15 shows the metrics after fine-tuning the model for CDR-SB prediction.

The Silhouette Score of 0.13 indicates that the clustering structure is weak, but not
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Table 14: Clustering performance metrics -

before fine-tuning (Auxiliary CDSSL).

Metric Value

Silhouette Score 0.13

DBI 6.48

CHI 17.67

Table 15: Clustering performance metrics -

after fine-tuning (CDR-SB prediction model).

Metric Value

Silhouette Score 0.13

DBI 2.25

CHI 10.94

as poor as some other methods. The DBI of 6.48 is relatively high, suggesting that the

clusters are not very compact or well-separated. The CHI of 17.67 is higher than some

other initial metrics, indicating a somewhat better clustering structure before fine-tuning.

After fine-tuning the model for CDR-SB prediction, the Silhouette Score remains the same

at 0.13, indicating that the overall cohesion and separation of clusters have not significantly

changed. However, the DBI decreases significantly to 2.25, indicating improved compactness

and separation of clusters. The CHI decreases to 10.94, which, while lower than before, still

suggests a reasonable clustering structure. Overall, the fine-tuning process for the Auxiliary

CDSSL method has led to more compact and better-separated clusters, as evidenced by the

significant improvement in the DBI, even though the Silhouette Score and CHI present a

more nuanced view. This suggests that fine-tuning helps achieve more well-defined clusters

that are easier to interpret and use for subsequent predictive tasks.

48



Table 16 shows the metrics derived from features obtained through Original CDSSL,

while Table 17 shows the metrics after fine-tuning the model for CDR-SB prediction.

Table 16: Clustering performance metrics -

before fine-tuning (Original CDSSL).

Metric Value

Silhouette Score 0.06

DBI 4.19

CHI 8.16

Table 17: Clustering performance metrics -

after fine-tuning (CDR-SB prediction model).

Metric Value

Silhouette Score 0.01

DBI 4.25

CHI 3.28

The Silhouette Score of 0.06 indicates a weak clustering structure, suggesting that the

clusters are not well-separated. The DBI of 4.19 is relatively high, which indicates that the

clusters are not very compact or well-separated. The CHI of 8.16 reflects moderate clustering

performance before fine-tuning. After fine-tuning the model for CDR-SB prediction, the

Silhouette Score decreases to 0.01, indicating a further weakening of the clustering structure.

The DBI increases slightly to 4.25, suggesting that the clusters have become less compact

and less well-separated. The CHI decreases significantly to 3.28, indicating a deterioration

in the clustering performance. Overall, the fine-tuning process for the Original CDSSL

method has not led to improvements in the clustering structure. In fact, the metrics suggest

that the clusters have become less distinct and more poorly defined after fine-tuning. This

highlights the potential challenges of using the Original CDSSL method for this specific task
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and dataset, suggesting that alternative pretraining methods or further optimization may

be needed to achieve better clustering performance and subsequent predictive accuracy.

The provided Table 18 presents the clustering and prediction metrics for various pre-

training methods before and after fine-tuning. The goal is to evaluate these methods based

on their ability to achieve higher R2 prediction power and lower clustering metrics, which in-

dicate better harmonization across different scanners. The harmonic mean composite scores

for each method after fine-tuning are also provided, offering an integrated measure of overall

performance.

Auxiliary CDSSL (After Fine Tuning) has the highest harmonic mean composite score

of 0.41, suggesting that it achieves the best balance of prediction power and clustering

performance. The high R2 value of 0.62 indicates strong predictive power, and the low DBI

of 2.25 shows improved cluster compactness and separation. Augmentation CDSSL (After

Fine Tuning) also shows good performance with a harmonic mean composite score of 0.24.

It has the highest R2 of 0.63 but slightly higher clustering metrics compared to Auxiliary

CDSSL, indicating somewhat less optimal clustering despite strong prediction power.

Table 18: Clustering and prediction metrics before and after fine-tuning.

Method Silhouette Score DBI CHI R2 (Prediction Power)

Auxiliary CDSSL (Before Fine-Tuning) 0.13 6.48 17.67 -

Auxiliary CDSSL (After Fine-Tuning) 0.13 2.25 10.94 0.62

Augmentation CDSSL (Before Fine-Tuning) 0.03 2.51 7.42 -

Augmentation CDSSL (After Fine-Tuning) 0.07 2.14 10.02 0.63

Original CDSSL (Before Fine-Tuning) 0.06 4.19 8.16 -

Original CDSSL (After Fine-Tuning) 0.01 4.25 3.28 0.57

ImageNet (After Fine-Tuning) 0.02 3.26 5.23 0.19

Random (After Fine-Tuning) 0.05 2.74 10.21 0.16

Original CDSSL (after fine-tuning) has a low harmonic mean composite score of 0.04.

Despite a decent R2 of 0.57, the high DBI of 4.25 and low CHI of 3.28 indicate poor clustering
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performance. ImageNet (after fine-tuning) has a lower harmonic mean composite score of

0.07. The low R2 of 0.19 indicates poor predictive power, and the clustering metrics suggest

suboptimal cluster quality. Random (after fine-tuning) yields a moderate harmonic mean

composite score of 0.15. The clustering metrics are reasonable, but the low R² of 0.16

indicates weak predictive power.

In conclusion, the harmonic mean composite scores suggest that Auxiliary CDSSL (after

fine-tuning) is the best pretraining method, achieving the highest overall performance by

balancing prediction power and clustering quality. Augmentation CDSSL (after fine-tuning)

also performs well, particularly in terms of prediction power, but with slightly less optimal

clustering metrics. Other methods, including Original CDSSL, ImageNet, and Random,

show lower overall performance, indicating less effective pretraining for the given tasks.

3.5.3 Comparative Analysis with Unsupervised Harmonization Techniques

In this section, we want to compare the efficacy of CDSSL and unsupervised harmoniza-

tion techniques. Therefore, using the method proposed by (Liu et al., 2021), we choose one

scanner/style and harmonized all the images into that same scanner/style. Then, similar

to the previous section, we apply the images in a supervised setting and compute scores

including R2 and Pearson correlation (r) and also the log-likelihood ratio of how statistically

significant these methods predict the clinical scores.

Table 19: Performance of different pretraining methods on various harmonized datasets.

Pretraining Random Initializer Original CDSSL Harmonized-Data CDSSL

Harmonized-ADNI 0.05 0.40 0.63
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Table 20: Performance of different pretraining methods on various datasets.

Pretraining Random Initializer Original CDSSL Augmentation CDSSL Auxiliary CDSSL

ADNI 0.14 0.20 0.63 0.62

Figure 14: Comparison of pretraining methods across original ADNI dataset and

Harmonized-ADNI.

The tables and combined plots illustrate the performance of various pretraining meth-
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ods across different datasets. Table 19 focuses on harmonized datasets, while Table 20

includes additional methods and non-harmonized datasets. Table 19 demonstrates that

the Harmonized-Data CDSSL method consistently outperforms both the Original CDSSL

and the Random Initializer methods. In the Harmonized-ADNI dataset, Harmonized-Data

CDSSL achieves an R2 value of 0.63, compared to 0.40 for Original CDSSL and 0.05 for

the Random Initializer. Table 20 introduces two additional methods: Augmentation CDSSL

and Auxiliary CDSSL. These methods show strong performance, particularly on the ADNI

dataset, where Augmentation CDSSL achieves an R2 of 0.63 and Auxiliary CDSSL 0.62,

both significantly outperforming Original CDSSL and Random Initializer.

The combined plot in Figure 14, visually compares these pretraining methods across origi-

nal ADNI and Harmonized-ADNI. It highlights the consistent superiority of the Harmonized-

Data CDSSL and Augmentation CDSSL methods, particularly on the ADNI and dataset A.

This visual representation confirms that incorporating data harmonization and augmentation

techniques significantly enhances model performance.
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4.0 Discussion & Conclusion

This thesis presents a cross-domain self-supervised learning (CDSSL) framework for pre-

dicting the progression of Alzheimer’s disease (AD) from MRIs, formulated as a regression

task. Our pioneering effort aggregates a comprehensive set of internal and external cohorts

to create a substantial dataset for model training. By using SimCLR pretraining on nat-

ural images followed by pretraining on medical images, we achieved the highest accuracy,

effectively alleviating the domain shift challenge and greatly improving the generalization

of the pretrained features. Our extensive experiments demonstrate the effectiveness of our

approach in combating the lack of large-scale annotated data for training deep models for

progression prediction. The best-performing model exhibits a substantial improvement over

fully supervised models, demonstrating that the appropriate utilization of unlabeled images,

including both natural and medical images, provides additional useful information that the

model successfully learns from. Moreover, the proposed CDSSL approach can learn domain-

invariant features, enhancing model generalization ability and robustness. This has the

potential to identify patients at higher risk of progressing to AD and help develop better

therapies at a lower cost to society. In our exploration of solutions for the effect of scan-

ner variance, the significance of data harmonization in multi-center studies became evident.

Properly harmonized data enhances the quality and reliability of research outcomes by en-

suring consistency across varied equipment and protocols. We noted the benefits of data

harmonization, from improving reproducibility to enhancing the statistical power of studies.

However, challenges such as the potential of over-adjusting data or introducing biases un-

derscore the importance of careful and validated approaches. Our study also delved into the

potential of using scanner-specific attributes like the manufacturer and model in modeling.

The performance of methods such as CDSSL, when compared against traditional models,

showcased their capability in environments with diverse scanners. Using the Likelihood Ra-

tio Test (LRT) provided deeper insights into model performance, facilitating better-informed

decisions. Limitations

The datasets used in this study come from various sources with different criteria for
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amyloid positivity and other clinical measures. This heterogeneity may introduce biases and

affect the generalizability of the model across different populations and clinical settings.

Due to resource constraints, the analysis was limited to a subset of five slices per MRI

scan. This limitation may hinder the model’s ability to learn from the complete set of brain

regions, potentially affecting its predictive performance and clinical relevance.

While the inclusion of scanner-specific information improved model performance, the

study did not fully explore the impact of other scanner-related variables, such as imaging

protocols, patient positioning, and software versions. These factors could further influence

the results and model generalizability.

The study focuses on predicting AD progression over a 12-month period. This relatively

short timeframe may not capture the full spectrum of disease progression, particularly for

slower-progressing cases.

While the model shows promising results on various datasets, extensive clinical valida-

tion in real-world settings is still needed to ensure its practical applicability and reliability.

Despite efforts to visualize model attention using GradCAM, the interpretability of deep

learning models remains a challenge, potentially limiting their acceptance in clinical prac-

tice. Future Works

Future research should aim to include a more comprehensive set of MRI slices and ad-

ditional imaging modalities (e.g., PET, DTI) to capture a broader range of brain regions

and pathological features. This could potentially improve the model’s predictive power and

clinical relevance.

Further exploration of advanced harmonization techniques, including those that account

for more scanner-related variables and imaging protocols, could improve the robustness and

accuracy of the models across diverse clinical settings.

Incorporating longitudinal data over extended periods (e.g., 3-5 years) could provide

deeper insights into the progression of AD and improve the model’s ability to predict long-

term outcomes, capturing both fast and slow-progressing cases.

Combining MRI data with other biomarkers, such as genetic information, cerebrospinal

fluid analysis, and cognitive test scores, could enhance the predictive power and clinical

relevance of the models. This multi-modal approach may provide a more comprehensive
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view of AD progression.

Conducting prospective studies in diverse clinical settings will be crucial to validate

the model’s performance, assess its practical utility, and ensure its generalizability across

different patient populations and healthcare systems.

Developing more advanced techniques for model interpretation and visualization could

enhance the transparency and trustworthiness of the AI models, potentially increasing their

adoption in clinical practice.

Exploring the applicability of the developed CDSSL techniques to other neurodegener-

ative diseases, such as Parkinson’s disease or frontotemporal dementia, could expand the

impact of this research. Automated Preprocessing Pipeline: Developing an end-to-end au-

tomated preprocessing pipeline that includes robust skull stripping, registration, and har-

monization could streamline the clinical application of these models and reduce potential

sources of variability.

Investigating federated learning approaches could allow for model training across multiple

institutions without the need for data sharing, addressing privacy concerns and potentially

increasing the diversity and size of the training dataset.

Developing models that can dynamically update predictions as new patient data becomes

available could provide more personalized and timely prognostic information, enhancing clin-

ical decision-making. By addressing these limitations and exploring these future directions,

the potential of CDSSL and data harmonization in medical imaging can be further realized,

leading to more accurate, reliable, and clinically relevant prognostic tools for Alzheimer’s

disease and potentially other neurological conditions.
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