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Hyungjin Kim, PhD

University of Pittsburgh, 2024

This dissertation explores two main themes: the development of static games

using machine learning, and the impact of firms’ behaviors on economic and health

outcomes. The first chapter focuses on the development of machine learning estima-

tors for static games. The second chapter examines the effects of chain pharmacy

entry on competition, market structure, and access to pharmacies in rural areas, uti-

lizing the estimators developed in the first chapter. The third chapter investigates

how mergers alter the post-merger market structure.
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1.0 Machine Learning Estimators for Static Games

1.1 Introduction

Game-theoretic models of strategic interactions are widely used, including en-

try/exit (Bresnahan and Reiss, 1991), (Berry, 1992), product quality (Mazzeo, 2002),

location (Seim, 2006), network (Jia, 2008), (Holmes, 2011), and promotional strate-

gies (Jia, 2008). When analyzing firms’ strategic interactions using data, it is crucial

to consider the characteristics of local markets that can affect firm profits. Re-

searchers face complex challenges when observing many covariates, ranging from

traditional sources like rich market covariates and firm-level characteristics to mod-

ern unstructured high-dimensional datasets such as consumer reviews and product

images. A key task for the researchers is to carefully select variables that are rele-

vant to underlying payoffs and to choose controls that avoid omitted variable bias or

multicollinearity. This process also requires prior knowledge of the correct functional

form of firm profits and involves deciding on the transformations and interactions

of the selected covariates. The variable selection and functional form specification,

often done ad-hoc, present substantial challenges in applied research.

To tackle these challenges, researchers often turn to a data-driven approach by

using machine learning (ML) methods with regularization, such as the Lasso es-

timator, which can handle high-dimensional market characteristics. However, ML

methods face a trade-off between bias and variance: while they excel in prediction

(reduce variance), they can suffer from regularization bias. For example, the Lasso

estimator is susceptible to regularization bias due to model selection errors such as se-

lecting irrelevant covariates or not selecting relevant covariates. Similar to the causal

1



inference framework, the model parameters of the discrete games of strategic inter-

actions can be categorized into two groups - low-dimensional parameters of interest

(e.g. strategic interaction effects) and high-dimensional nuisance parameters (the

effects of many market covariates). While ML methods allow for high-dimensional

nuisance parameters, regularization bias in the nuisance parameter estimates un-

avoidably will be transmitted into the primary parameter of interest. As a result,

the low-dimensional structural parameters of interest would be badly biased.

In this paper, I provide a methodology for valid inference of underlying struc-

tural parameters of interest in the presence of high-dimensional nuisance parameters

based on machine learning methods. I employ the framework in Chernozhukov et al.

(2018b) to allow for the use of high-dimensional covariates in the model of strategic

interaction with incomplete information. First, I use machine learning methods to

estimate the high-dimensional nuisance parameters including belief over competitors’

choices and the effect of market characteristics. To prevent transmitting regulariza-

tion bias in machine learning estimates of nuisance parameters to low-dimensional

structural parameters of interest, I use two components introduced in Chernozhukov

et al. (2018b). I construct a moment function that satisfies the orthogonality condi-

tion which implies that the moment condition is locally insensitive to regularization

bias in nuisance parameter estimates. In addition, I implement a cross-fitting al-

gorithm to avoid imposing strong restrictions on the growth of entropy and model

complexity. As long as convergence rates for ML estimators are faster thanN−1/4 and

regularity conditions are satisfied, the proposed estimator achieves
√
N -consistency

and asymptotic normality. Monte Carlo simulation evaluates the finite sample prop-

erties of developed estimators and it performs well even in the presence of many

irrelevant variables to the game model.

2



1.1.1 Related Literature

Extensive literature exists on the estimation of structural parameters in the con-

text of high-dimensional data. The literature focuses on the development of Neyman

orthogonal moment functions to achieve
√
N -consistency and asymptotic normal-

ity of the estimator ((Neyman, 1959), (Newey, 1994), (Belloni et al., 2016), (Cher-

nozhukov et al., 2018a), (Chernozhukov et al., 2022), (Ichimura and Newey, 2022)).

Orthogonal moment functions have the property that the second-stage estimations of

structural parameters are insensitive to first-stage local biases from machine learning

methods. Coupled with sampling splitting, low-dimensional structural parameters of

interests θ0 follow
√
N -consistent and asymptotically normal, in the presence of high-

dimensional data. My proposed orthogonal moment condition aligns with previous

literature and has desirable asymptotic properties.

This paper also relates to deriving Neyman/orthogonal moment function for dis-

crete choice game settings; two-stage methods ((Bajari et al., 2010b), (Chernozhukov

et al., 2016), (Nekipelov et al., 2022)), dynamic games with value function approxi-

mation approach ((Bajari et al., 2009), (Adusumilli and Eckardt, 2019)), and partial

identification ((Semenova, 2018)). The previous literature in Bajari et al. (2009) and

Bajari et al. (2010b) suggests that the influence function in discrete games corrects

the player’s own choice probabilities. In contrast, the orthogonal moments in this

paper remove biases from the rival’s choice probabilities because first-stage nuisance

parameters include beliefs over the rival’s choice probabilities. Semenova (2018) used

partial identification for the dynamic discrete choice model whereas I provide point

identification for the static game. My work differs from Adusumilli and Eckardt

(2019) in that Adusumilli and Eckardt (2019) used the value function approximation

for dynamic models based on Reinforcement Learning. Nekipelov et al. (2022) pro-

3



posed correction terms for the two-player static game with the incomplete formation.

My paper differs from theirs in several ways. First, as I allow firm-level shifters for

the identification, it requires new correction terms, which differ from Nekipelov et

al. (2022). 1 Second, this paper accommodates multiple players whereas Nekipelov

et al. (2022) ’s sketch includes two players’ cases. Finally, while Nekipelov et al.

(2022) requires the use of the loss function in the second stage, this paper uses the

generalized method of moment.

1.2 Model Framework

I focus on static games of incomplete information, closely following the framework

presented in Bajari et al. (2010b) and Bajari et al. (2013). For general purposes, I

describe standard static game structures and I specifically tailor the discussion to

pharmacies’ entry and exit games in section 5.

I define a set of players, represented as i ∈ {1, ..., n}. Each player has two distinct

choices, which I denote by J = 22.

ai =

1 if Player i chooses to being active.

0 if Player i chooses being inactive.

(1.2.1)

Let A = {0, 1}n represent the Cartesian product of the choices made by all

players in the same market with n player. I denoteN as the total sample size, where n

1Specifically, my correction terms includes conditional expectation of shifters xi, x−i and com-
mon controls x0 to satisfy identification assumption in Tamer (2003) and Bajari et al. (2010b). In
contrast, Nekipelov et al. (2022)’ sketch uses only common controls x for both players.

2Without loss of generality, this framework can be extended to encompass multiple choices,
represented by |J | > 2, corresponding to a multinomial choice.
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represents the number of players in each market. Without loss of generality, I assume

that the number of players, n, is the same across different markets. In this framework,

the objective of each player is to maximize their utility. I use a = (a1, . . . , an) as

a generic representation of A. Adhering to traditional game-theoretic conventions,

−i denotes the rivals of player i, and a−i = (a1, . . . , ai−1, ai+1, . . . , an) describes the

strategy choices of all players excluding player i.

For an active player i, the flow utility takes the u(s, ai, a−i, ϵ, θ) where s denotes

the relevant state variables and ϵ denotes the private information. The period utility

function can be expressed as:

ui(ai, a−i, s, ϵ; θ) = Πi(ai, a−i, s; θ) + ϵi(ai)

where the deterministic payoff function Πi(ai, a−i, s; θ) is additive separable with

respect to private information ϵi. I impose the standard assumptions on the model

primitives:

Assumption 1.2.1 (Private Information).

(a) Private information is independently and identically distributed across both choices

and players, drawn from a Type 1 Extreme Value Distribution g.

(b) Each player privately observes their own ϵ which are not observed by analysts.

(c) The state vector s is accessible to all players within the same market and is also

discernible by analysts.

Assumption 1.2.1 (a) highlights the conditional independence assumption, which

specifies that ϵi is independent of ϵ−i given s. This paper narrows its focus on settings

characterized by incomplete information, as described in Assumption 1.2.1 (b). This

suggests that the realized utility functions are private information to the respective
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players. While each player cannot observe the stochastic private information shock of

their rivals, ϵ−i(a−i), they are aware of the distribution g−i. This type of information

structure is prevalent in discrete choice scenarios.

Assumption 1.2.2 (Normalization of Outside Choice).

∀ a−i ∈ A−i, ∀ s, Πi(ai = 0, a−i, s) = 0. (1.2.2)

The assumption for normalization 1.2.2 is crucial for identifying payoffs when a

player decides to be active.

Given the utility function, I define the decision-choice rule as ai = δi(s, ϵi(ai)).

As neither econometricians nor rivals observe ϵi, the decision rule is characterized by

choice probabilities:

σi(ai = 1|x) =
∫

1{δi(s, ϵi(ai)) = ai}f(ϵi)dϵi,

where 1{δ(s, ϵi(ai)) = ai} stands as the indicator function that takes the value of

1 if player i chooses action 1, and 0 otherwise. f denotes the distribution of pri-

vate information. Due to the private information assumption, the decision rules of

δi(s, ϵi(ai)), remain independent of the private information of her rivals, ϵ−i.

Given private information assumptions 1.2.1, the choice-specific value function

Πi can be expressed as the expected payoffs linked to rivals’ choice probabilities,

denoted as σ−i.

Πi(ai = 1, s; θ) =
∑

a−i∈A−i

σ−i(a−i|s)πi(ai = 1, a−i, s; θ) for all i = 1, ...n. (1.2.3)

where σ−i(a−i|s) =
∏
s̸=i

σs(as|s)
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where π denotes the payoff which depends on the rival’s action, and common state

variable s. The choice-specific value function Πi describes the deterministic compo-

nents of the expected payoff for player i, contingent on their chosen action ai and

the distribution of choice probabilities of their rivals, denoted by σ−i. The extent of

interaction stemming from rivals becomes particularly pronounced here: the utility

that player i derives from opting to be active is intrinsically tied to the choices of

her adversaries, a−i.

Building upon this foundation, I expand the scope to encompass games with n

players. In this context, after fixing state variable s, σi(ai|s) will be the solution to

the system of n equations:

σ1(a1 = 1|s; θ) =
exp
(∑

a−1∈A−1
σ−1(a−1|s; θ)πi(a1 = 1, a−1, s; θ)

)
1 + exp

(∑
a−1∈A−1

σ−1(a−1|s; θ)πi(a1 = 1, a−1, s; θ)
) (1.2.4)

σ2(a2 = 1|s; θ) =
exp
(∑

a−2∈A−2
σ−2(a−2|s; θ)πi(a2 = 1, a−2, s; θ)

)
1 + exp

(∑
a−2∈A−2

σ−2(a−2|s; θ)πi(a2 = 1, a−2, s; θ)
)

...

σn(an = 1|s; θ) =
exp
(∑

a−n∈A−n
σ−n(a−n|s; θ)πi(an = 1, a−n, s; θ)

)
1 + exp

(∑
a−n∈A−n

σ−n(a−n|s; θ)πi(an = 1, a−n, s; θ)
)

I highlight the system of equations in 1.2.4, which represents the best response

function between players for several points. First, I presume the existence of a solu-

tion to equation (1.2.4), following McKelvey and Palfrey (1995)’s standard Brouwer’s

fixed-point argument. Secondly, the estimation of the equilibrium choice probabili-

ties σi is complicated by the dependence of the rivals’ choice probabilities σ−i on the

player i’s choice probabilities. Here, I use the standard equilibrium concept of the

Bayesian Nash Equilibrium. For the issue of multiple equilibria and identification

challenges, Appendix A.2 provides detailed discussions.

7



1.2.1 Two Step Estimation

The two-step method described here is an approach widely used for estimating

structural parameters in static games with discrete choices. This method involves

two key steps: in the first step, nuisance parameters like the choice probabilities

of rivals are estimated using non-parametric methods, machine learning methods,

or simple conditional logit models under parametric assumptions. In the second

step, the estimated nuisance parameters are leveraged to formulate a method of

moment conditions, upon which the Generalized Method of Moments (GMM) is

employed to estimate the parameters of interest. The benefit of this approach lies

in its flexibility and computational efficiency, facilitating the incorporation of high-

dimensional market characteristics and the utilization of contemporary machine-

learning techniques.

With the exclusion identification assumption in the Appendix section A.3, rele-

vant state variables are decomposed into s = (sx, si, s−i) where sx denote the common

market characteristics for players, si denotes the player i specific shifter, and s−i de-

notes rivals’ shifter. The conditional value function assumes the following form:

πi(ai = 1, sx, si, s−i; θγ, β) =
∑

a−i∈A−i

σ−i(a−i|sx, si, s−i)θγ + siβκ + s′xβs (1.2.5)

Here, θγ represents the interaction effects from rivals, βκ shows the effect of player-

specific productivity shock for player i, and βs encompasses the effect of common

market characteristics. I denote β = (βκ, βs).
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1.2.1.1 Step 1: Estimation of nuisance parameters

An analyst observes data on choices A = {0, 1}n for all n players and relevant

state variables d. In the first stage, one can construct and estimate the conditional

choice probability of being active for each player −i. Formally, the first stage reduced

form choice probability can be expressed as:

γ−i = E[a−i|sx, s−i, si] for all i = 1, ..., n.

Nonparametric methods such as kernel or series estimation, or conditional logit can

be employed to estimate the nuisance parameters in the first stage. It is important

to note that this requires a unique equilibrium in the data so that the first stage

estimates γ̂−i can be consistent estimates of σ−i.

1.2.1.2 Step 2: Recovering the Structural Parameters

Given the correctly specified first stage γ̂−i, the next step is to recover the under-

lying structural parameters of interest θγ and β from equation (1.2.5). To accomplish

this, I follow Bajari et al. (2010b)’s semi-parametric models. Coupled with the Type

1 Extreme Value Distribution, I assume that the moment condition, based on the

first-order condition of the logit likelihood satisfies the following condition

E[m(w; θγ0, β0)] = 0 (1.2.6)

where w denotes the data wi = (ai, si, sx) for i = 1, ..., n. Given the sample of

observations wi = (w1, w2, ..., wn), I define (θγ0, β0) as the solution to

1

N

N∑
i=1

m(wi; θγ, β) =
1

N

N∑
i=1

[zi(ai − Λ(sx, si, γ̂−i; θγ, β))] = 0 (1.2.7)
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where zi = (z1, ..., zN) denotes the correctly specified variables zi = (ai, si, sx) and Λ

denotes the logit-link function. With low-dimensional vector sx, the interaction effect

θγ and covariate effects β, can be recovered with
√
N -consistency and asymptotic

normality as established in Bajari et al. (2010b) and Newey and McFadden (1994).

Next, I consider the setting where common market characteristics sx include

high-dimensional covariates, that is, the dimension of sx being comparable to or

potentially larger than the sample size N . The goal is to develop an inference for

the parameter of interest θ in the presence of high-dimensional nuisance parameters

η. For illustration purposes, I set the interaction effect θγ as the main parameter

of interest and other parameters (γ−i, β) as nuisance parameters. Therefore, θ = θγ

and η = (γ−i, β) in the below and in section 4. However, I incorporate a subset of

β as the parameter of interest instead of the nuisance parameters, in the empirical

application in section 6. The developed methodology in section 4 can be trivially

extended to this case.

In this high-dimensional setting, the conventional Generalized Method of Mo-

ments (GMM) becomes infeasible due to ill-conditioned properties encountered when

calculating the Jacobian for a high-dimensional matrix. To avoid this bottleneck, I

allow for machine learning methods with regularization to enable estimation. For

example, I could employ a Logistic Lasso estimator to estimate first-stage choice

probability γ̂−i as well as covariates effects β̂ in the second stage. This imposes the

regularization in that it requires the sparsity assumption such as

p2log2(dim(sx) ∨N)

N
→ 0

to enable estimation with high-dimensional covariates, where p denotes the (true)

low-dimensional relevant market characteristics and dim(sx) refers to the dimension

of a pool of market covariates sx.
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However, when machine learning estimates are used to estimate nuisance param-

eter η = (γ−i, β), the parameters of interest θ fail to achieve
√
N -consistency, as

documented in Chernozhukov et al. (2022). To illustrate, estimating θ associated

with machine learning estimators of η̂ exhibits a slower convergence rate than
√
N .

Also, the regularization biases are transmitted into the second stage moment in the

equation (1.2.7), making moment functions sensitive to these regularization biases.

This effect can be shown that the directional (Gateaux) derivative with respect to

the nuisance parameters η is non-zero:

∂γ−i
E[m(wi; θ, η)][γ−i − γ−i0] = E

zi · Λ′ ·

−θγ
∑
a−i

∏
s̸=i,i

(1− γs)

 · (γ−i − γ−i0)


̸= 0 for − i = 1, . . . , i− 1, i+ 1, . . . , n.

∂βE[m(wi; θ, η)][β − β0] = E [(ziΛ
′ · θx) · (β − β0)] ̸= 0

where the directional derivative is defined in section 4. This implies that the moment

condition in 1.2.7 is not robust to the local misspecification of the first-stage nui-

sance parameters. Therefore, the first-order biases in the nuisance parameter could

affect the
√
N -consistency of the target parameter. Consequently, regularization and

overfitting biases resulting from the use of machine learning estimators may lead to

inconsistency in the parameters of interest θ.

To overcome these limitations, in the next section, I introduce so-called Neyman

orthogonal moment functions that are insensitive to local misspecification from first-

stage nuisance estimators η, based on the original moment function in equation

(1.2.7). These methods can provide robust estimations of parameters of interest

in the presence of high-dimensional nuisance parameters. Structural parameters of

interest based on the developed method also achieve
√
N -consistency and asymptotic

normality.
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1.3 The DML-Static Game Estimator

This section presents the DML-static game estimator, which is based on the works

of Bajari et al. (2010b), Belloni et al. (2016), and Chernozhukov et al. (2022). Section

4.1 formally introduces the definition of Neyman orthogonal moment condition, while

section 4.2 provides new moment conditions derived from the GMM equation (1.2.7).

In section 4.3, the estimation procedure combined with the cross-fitting algorithm

is outlined. The asymptotic properties of the proposed estimator are analyzed in

section 4.4, and the estimator is extended to cover games with multiple players in

section 4.5. Finally, section 4.6 evaluates the finite sample properties of developed

estimators through a series of Monte Carlo simulations.

1.3.1 The Definition of Neyman Orthogonal Moment Condition

This section presents the concept of Neyman orthogonal moment condition fol-

lowing the framework in Chernozhukov et al. (2018a). I introduce the definition in

my context for clarity. Let θ ⊂ Rdim(θ) be the structural parameters of interest and

η ∈ T be the infinite-dimensional nuisance parameter where T is a convex subset of

some normed vector space with norm denoted by || · ||T . Under true values θ0 and

η0, the following moment function is assumed to satisfy:

E[ψ(W ; θ0, η0)] = 0. (1.3.1)

Following Chernozhukov et al. (2018a) and Van der Vaart (2000) section 20.2, I define

the directional (Gateaux) derivative map Dτ : T̃ → Rdimθ as

Dτ [η − η0] := ∂τ{EP [ψ(W, θ0, η0 + τ(η − η0)]|}, η ∈ T
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for all τ ∈ [0, 1) and I assume its existence. The derivative at τ = 0 is denoted as

∂ηEP [ψ(W ; θ0, η0)][η − η0] := D0[η − η0], η ∈ T (1.3.2)

for convenience.

Definition 1. The moment function ψ(W, θ, η) obeys Neyman orthogonality condi-

tion at (θ0, η0) with respective to the nuisance parameter realization set TN ⊂ T if

equation (1.3.1) holds and the Gateaux derivative Dτ [η − η0] exists for all τ ∈ [0, 1)

and η ∈ T , and the orthogonality condition holds, that is

∂ηEP [ψ(W, θ0, η0)][η − η0] = 0 for all η ∈ TN . (1.3.3)

For the rest of the paper, I will refer to the moment function that satisfies the

Neyman orthogonality condition as the orthogonal moment function.

1.3.2 Orthogonal Moment Condition for Static Game: Two Players Ex-

ample

For illustrative purposes, I focus on two-player games, and multi-player settings

are given in the Appendix A.2. I construct the moment function that satisfies the

orthogonality condition defined in section 4.1 by adding the “bias correction terms”

to the original moment function (1.2.7). This makes the new moment function in-

sensitive to the first-stage bias from the nuisance parameter estimate γ̂. Specifically,

the bias correction term with respect to nuisance parameter β follows the optimal in-

strument approach in Belloni et al. (2016), and the bias correction term with respect

to γ−i follows the approach in Chernozhukov et al. (2022). Additionally, there is a

new nuisance parameter µz generated in the process of constructing the orthogonal

moment function.
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Let fi ≡
√

Λ(·)(1− Λ(·)) where Λ denotes the choice probabilities of being ac-

tive, induced by the original moment function. The construction of the Neyman

orthogonal moment function is based on the linear projection of zi on xi = (si, sx)

with weighting fi, similar to Belloni et al. (2016).

fizi = fis
′
iµ+ ui, E[fisiui] = 0 (1.3.4)

Then, the orthogonal moment function satisfies E[ψ(w; θ0, η0)] = 0 where

ψ(wi; θ, η) = m(wi; θ, η) + ϕ(wi; θ, α, η) (1.3.5)

m(wi; θ, η) = (zi − x′iµ) [ai − Λ(γ−i, θγ, β)] = µz [ai − Λ(γ−i, θγ, β)]

ϕ(wi; θ, α, η) = −E[µzΛ(·)(1− Λ(·))θγ|si, s−i, sx](a−i − γ−i) = α(a−i − γ−i)

where µz = (fizi − fix
′
iµ)/fi = zi − x′iµ and α = E[µzΛ(·)(1 − Λ(·))θγ|si, s−i, sx].

This moment function defined above satisfies the orthogonality condition.

Theorem 1.3.1. The moment function (1.3.5) obeys the Neyman orthogonality con-

dition.

Theorem 1.3.1 states that the moment condition E[ψ(wi; θ, η)] = 0 identifies the

true parameter and is insensitive to misspecification of η in the neighborhood of η0.

The proof of Theorem 1.3.1 can be found in the Appendix.
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1.3.3 Estimation Procedure

I present the estimation procedure utilizing the cross-fitting algorithm proposed

by Chernozhukov et al. (2018a) combined with the two-step estimation method in

Bajari et al. (2010b).

Let K denote a positive integer and take a K-fold random partition I1, ..., IK of

observation indices {1, . . . , N}. For simplicity, let each fold Ik have an equal size with

n = N/K. Define the auxiliary sample Ick = {1, ..., N}/Ik for each k ∈ {1, . . . , K}.

Step 1. Estimation of nuisance parameters η using ML

For each k ∈ {1, . . . , K}, estimate the set of nuisance parameters η̂ = (γ̂−i, β̂, µ̂z)

only using observations not in the group k, η̂k = η̂
(
(Wi)i∈Ick

)
.

For choice probabilities γ−i, econometricians can use modern machine learners

such as Logit Lasso, Random Forests Classifiers, or Neural Network Classifiers. For

β, I use Logistic Lasso following Belloni et al. (2016). To learn µ, I use Lasso based

on the equations D.2.3. Note that the estimators of nuisance parameters are re-

quired to have convergence rates that are faster than N−1/4.

Step 2. Recovering structural parameters θ

Using the estimated nuisance parameter estimates η̂k, I evaluate the moment condi-

tion in equation (1.3.5) on the sample Ik. I obtain the final estimator θ̂ by aggregating

the objective functions for each k ∈ {1, . . . , K}. The formal estimation algorithm is

summarized below.

Algorithm

1. Take a K-fold random partition (Ik)
K
k=1 with same size n = N/K. For each
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k ∈ {1, . . . , K}, define Ick as the complement of Ik.

2. For each k ∈ {1, . . . , K}, construct an ML estimator η̂k using Ick.

a. Obtain γ̂−ik using the ML Classifier of a−i on s−i, si and sx.

b. Obtain β̂k using the Logit Lasso estimator of ai on γ̂−i, si and sx.

c. Compute θ̂γk from original moment function 1.2.7.

d. Compute the conditional densities f̂k.

e. Estimate µ̂zk using the Lasso estimator of f̂kzi on f̂kxi.

f. Collect η̂k = (γ̂−ik, β̂k, µ̂zk).

3. Construct the estimator θ̂γ as the solution to

1

K

K∑
k=1

Ln,k(θγ, η̂k) = 0

where Ln,k(θγ) =
{En,k [ψ(θγ, η̂k)]}2

En,k [ψ(θγ, η̂k)2]
and En,k is the empirical expectation over

Ik, that is, En,k[ψ(w)] = n−1
∑

i∈Ik ψ(wi). The moment function used in the

objective function is ψ(wi; θ, η) = µz [ai − Λ(θγ, βd, βx)] − α[a−i − γ−i] where

α = E[µzΛ(·)(1− Λ(·))θγ|si, s−i, sx].

1.3.4 Asymptotic Analysis

In this section, I provide an asymptotic theory for DML static games with two

players. The analysis for multiple players can be provided by using the same argu-

ments. I closely follow the assumptions and proofs in Chernozhukov et al. (2022).

Assumption 1.3.1 (Convergence Rates).
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For each ℓ = 1, ..., L,

i) ||γ̂−ihℓ − γ−ih0|| = Op(n
−1/4)

ii) ||β̂ℓ − β0|| = Op(n
−1/4)

iii) ||µ̂ℓ − µ0|| = Op(n
−1/4)

Assumption 1.3.2 (Regularity Condition).

i) Wi = (Ai, s−i, si, sx) are bounded.

ii) M is twice differentiable with uniformly bounded derivatives bounded from zero.

where M ≡ ∂m(w, γ, β; θ)

∂θ

iii) E[{Y−i − γ̂(s−i, si, sx)}2|s−i, si, sx] and α̂ are bounded.

iv) E[m(W, γ0, θ0)
2] <∞ and

∫
||m(w, γ̂ℓ, θ0)−m(w, γ0, θ0)||2F0(dw)

p−−→ 0

Theorem 1.3.2. Suppose that assumptions B.1. and B.2. in Online Appendix B

hold. For V = M−1E[ψ0(W )ψ0(W )′]M−1, the DML static game estimators con-

structed in orthogonal moment conditions in 1.3.5 obeys

√
N(θ̂ − θ0) → N(0, V ).

Also, the variance estimator V̂ is consistent where

V̂ =
( 1

K

K∑
k

E[M ]
)−1 1

K

K∑
k

E[ψ2(w, θ̂, η̂k)]
( 1

K

K∑
k

E[M ]
)−1

.
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Theorem 1.3.2 establishes the asymptotic normality of the proposed DML es-

timator for static games. The theorem shows that the proposed DML method is
√
N -consistent and asymptotically normal. Additionally, even in the worst-case sce-

nario, as long as the nuisance parameters converge at a rate faster than N−1/4,

many machine learning methods satisfy the convergence rates of the nuisance pa-

rameters specified in Assumption B.2 Online Appendix. For instance, conditions for

Lasso/Logit Lasso are provided in Belloni et al. (2012), faster rates (shallow trees) for

Random Forest in Syrgkanis and Zampetakis (2020), and faster rates based on crit-

ical radius in neural networks in Chernozhukov et al. (2021). The proof of Theorem

1.3.2 can be found in the Online Appendix A.

1.3.5 Monte Carlo Simulation

I conduct a series of Monte Carlo experiments to evaluate the finite sample prop-

erties of the proposed method. I design the experiments to be analogous to the static

entry/exit model with incomplete information as in Bajari et al. (2010b). Then, I re-

port the results to compare the performance of the debiased estimator to the plug-in

estimator in the high-dimensional setting.

1.3.5.1 The static entry/exit model and equilibrium

I simplify the model described in section 3 into two players, normalizing the

payoff to be inactive to zero. The payoff of player i is a function of common market

characteristics sx for both players i and −i, rival’s choice probabilities σ−i, and a

player-specific variable di, expressed as follows:

πi(ai = 1|γ−i, si, sx; θγ, β) = σ−i(a−i = 1|si, s−i, sx)θγ + βκsi + s′xβx.
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Under Type 1 Extreme Value distribution assumptions, conditional choice proba-

bility can be expressed in terms of relevant state variables and choice probabilities

σ. I can solve equation (1.2.4) via a fixed-point algorithm as it contains two un-

knowns and two equations for two-players games. The algorithm converges when

the difference in the choice probabilities of being active between the (k + 1)th and

kth iterations is smaller than a predetermined tolerance level ϵ for both i and −i.

Throughout the convergence process, I did not encounter issues related to multiple

equilibria.

1.3.5.2 Data Generation

Using the best response function 1.2.4, I simulate market-firm level data for

a decision-maker who lives for ten periods and makes decisions on whether to be

active or inactive in each period. I set θγ = −1.5, βκ = 2.3 For common market

characteristics, I set s′xβs = xs1βs1+xs2βs2 where βs1 = 0.8 and βs2 = 1.4. To achieve

varied finite samples, I simulate datasets for a number of markets 50, 75, and 100

with two firms and allow ten periods of time, resulting in 1,000, 1,500, and 2,000

total observations, respectively. I denote the total observation size as N . I generate

data from the model following these steps:

1. I independently draw common market characteristics for players in the same mar-

ket sx = (sx1, sx2) and player-specific shifter si, s−i from a uniform distribution

with mean zero and variance one. 4

2. I draw probabilities from a uniform distribution on [0, 1] and player i chooses to

3I follow the specifications of the parameter from Arcidiacono and Miller (2011)’s game with
modifications to avoid multiple equilibria.

4For this task, I draw 20 grid points from standard normal distributions using Python
np.random.seed(0), and scaled by mean 0 and variance 1.
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be active (ai = 1) if the draw is less than or equal to the probability of being

active, σi(ai = 1|si, s−i, sx).

When implementing the Plug-in estimator and Orthogonal estimator, I addition-

ally include many covariates s0 with dim(s0) = 500 in common market characteris-

tics. s0 is drawn from a standard normal distribution, then further normalized to

mean zero and variance one.

1.3.5.3 Estimation of the static entry/exit model

The first stage of estimation requires the estimation of nuisance parameters η̂ =

(γ̂−i, β̂). In the second stage, the structural parameter θγ is recovered. I compare

the performance of three different estimators: Oracle estimator, Plug-in estimator,

and Orthogonal estimator.

Oracle estimator : Estimator of θ̂γ based on Bajari et al. (2010b) using only

sx as common market characteristic and shifter (si, s−i). This estimator assumes

the knowledge of the true identity of common market characteristics. I use a logit

estimator for first-stage conditional choice probabilities.

Plug-in estimator : Estimator of θ̂γ using (sx, s0) as common market character-

istic and shifter (si, s−i) and imposing regularization to Bajari et al. (2010b). I

estimate first-stage conditional choice probabilities using the Logit Lasso estimator5

and obtain θ̂γ adopting regularization to GMM estimation using equation (1.2.7).

Orthogonal estimator : Estimator of θ̂γ using (sx, s0) as common market char-

acteristic and shifter (si, s−i) and using orthogonal moment condition. I estimate

first-stage conditional choice probabilities using the Logit Lasso estimator and use

5I use the penalty term recommended by Belloni et al. (2016), λ = c
√
nΦ−1(1 − γ/{2pn}) and

hdm package in R.
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the orthogonal moment condition in the second stage, given in section 4.3. I also

employ a cross-fitting algorithm with K = 5 as described in section 4.3.

1.3.6 Simulation Results

Table 1 summarizes the Monte Carlo Simulation results. The histogram of the

simulation result with (N, p) = (2000, 500) is illustrated in Figure 1. The true

parameter value is -1.5. These true parameters are partially from the literature Ar-

cidiacono and Miller (2011) and I do not find multiple equilibria issues and corner

solution problems. The mean bias, percentage of bias relative to the true param-

eter value, 95% coverage probability, and RMSE of three estimators are reported

respectively in columns 2-5, 6-9, and 10-13.

When using the Oracle estimator, the estimates are well-centered around the

true value and show coverage probability close to 95%. This is as expected since the

true model is known to the econometrician. The results using the Oracle estimator

provide a benchmark when evaluating the performance of Plug-in and Orthogonal

estimators.

When the Plug-in estimator is used, rival effects are severely biased upward due

to regularization bias in machine learning estimators. Column 7 reports the biases in

percentage terms and shows that the magnitude of biases is not negligible. Similarly,

the coverage probability reported in column 8 is far below the nominal level of 95%,

indicating that the Plug-in estimator has invalid inferential properties. The RMSE

is also much larger compared to the Oracle estimator.

When using the orthogonal estimator, the estimates are centered around the true

values, comparable to the result using the Oracle estimator and having a smaller bias

compared to the Plug-in estimator. The coverage probability and RMSE show better
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performance than the Plug-in estimator but worse than the Oracle estimator.

1.4 Conclusion

This paper successfully addresses the challenge of combining static discrete games

with double machine learning (DML) in the context of high-dimensional data. By

introducing DML static game estimators, researchers can now obtain valid infer-

ences, even when dealing with high-dimensional nuisance parameters estimated us-

ing machine learning techniques. The results highlight the robustness of the pro-

posed DML static game estimator, which exhibits
√
N -consistency and asymptotic

normality. Simulation studies demonstrate the proposed estimators’ effectiveness

in the unbiased estimation of structural parameters and the validity of inferences.

There are several avenues for future research. One possibility is to extend DML

with dynamic games, utilizing zero-jabocian properties in efficient pseudo-likelihood

(E-NPL) methods Dearing and Blevins (2019).

1.5 Proofs

Proofs of Theorem 1.3.2.

For clarity, I re-state the Assumption made in Chernozhukov et al. (2022) and

verify that these assumptions are satisfied.

Assumption 1.5.1 (Mean-Square Consistency).
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E[||ψ(W, θ0, γ0, α0)||2] <∞ and

(i)

∫
||m(w, γ̂ℓ, θ0)−m(w, γ0, θ0)||2F0(dw)

p−−→ 0,

(ii)

∫
||ϕ(w, γ̂ℓ, α0, θ0)− ϕ(w, γ0, α0, θ0)||2F0(dw)

p−−→ 0,

(iii)

∫
||ϕ(w, γ0, α̂ℓ, θ̃ℓ)− ϕ(w, γ0, α0, θ0)||2F0(dw)

p−−→ 0.

To give mild mean-square consistency conditions for γ̂ℓ and (α̂ℓ, θ̃ℓ) separately. I

denote

∆̂ℓ(w) := ϕ(w, γ̂ℓ, α̂ℓ, θ̃ℓ)− ϕ(w, γ0, α̂ℓ, θ̃ℓ)− ϕ(w, γ̂ℓ, α0, θ0) + ϕ(w, γ0, α0, θ0).

Assumption 1.5.2 (Convergence Rate for Interaction Remainder).

For each ℓ = 1, ..., L,

√
n

∫
∆̂ℓ(w)F0(dw)

p−−→ 0.

and

∫
||∆̂ℓ(w)||2F0(dw)

p−−→ 0.

Assumption 1.5.3 (Convergence Rates for γ).

For each ℓ = 1, ..., L, ||γ̂ℓ − γ0|| = op(n
−1/4) and ||ψ̄(γ, α0, θ0)|| ≤ C||γ − γ0||2

for all γ with ||γ − γ0|| small enough.
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Assumption 1.5.4.

For each ℓ = 1, ...L,∫
||m(w, γ̂ℓ, θ̃ℓ)−m(w, γ̂ℓ, θ0)||2F0(dw)

p−−→ 0 and

∫
||∆̂ℓ||2F0(dw)

p−−→ 0

Assumption 1.5.5 (Convergence of the Jacobian). G exsits and there is a neighbor-

hood N of θ0 and || · || such that (i) for each ℓ, ||γ̂hℓ−γ0||
p−−→ 0; (ii) for all ||γ̂ℓ−γh0||

small enough, m(W, γ, θ) is differentiable in θ on N with probability approaching 1

and there are C > 0 and d(W, γ) such that, for θ ∈ N and ||γ̂ − γ0|| small enough,∣∣∣∣∣
∣∣∣∣∣∂m(W, γ̂, θ̂)

∂θ
− ∂m(W, γ̂, θ0)

∂θ

∣∣∣∣∣
∣∣∣∣∣ ≤ d(W, γ)||θ̂ − θ0||1/C ; E[d(W, γ̂)] < C

(iii) For each ℓ = 1, ...L, j and k,
∫
|∂gj(w, γ̂, θ0)/θk−∂gj(w, γ0, θ0)/∂k|F0(dw)

p−−→ 0

Proof of Assumption 1.5.1:

Assumption 1.5.1 part (i) is implied by Assumption 1.3.2. For k = 1, .., K, let

ϕk(w, γk, αk) = αk[y−ik − γk] and

ϕ(w, γ, α, θ) =
K∑
k=1

ϕk(w, γk, αk, θ).

For part (ii), by the assumption 1.3.2∫
||ϕ(w, γ̂ℓ, α, θ0)− ϕ(w, γ0, α0, θ0)||2F0(dw) =

∫
||α2

0[γ̂hℓ − γh0]
2||F0(dw)

≤ C||γ̂kℓ − γh0||2
p−−→ 0.

Assumptions 1.5.1 part (ii) holds by the triangle inequality.
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For part (iii), again, by the assumption 1.3.2∫
||ϕ(w, γ0, α̂, θ̃)− ϕ(w, γ0, α0, θ0)||2F0(dw) =

∫
||(α̂hℓ − αh0)

2[a−i − γh0]
2||F0(dw)

≤ C||αhℓ − αh0||2
p−−→ 0.

Assumptions 1.5.1 part (iii) holds by the triangle inequality.

The following lemma gives a convergence rate for the preliminary naive plug-in

estimator of α̂

Lemma 1. If Assumption 1.3.2 holds, then,

θ̂ℓ = θ0 +Op(n
−s1).

Proof of Lemma 1: Similar to Chernozhukov et al. (2022), the convergence rate

for quasi maximum likelihood would be slower by the convergence rate for nuisance

parameters γ.

Next, the following lemma gives a convergence rate for the unknown function α̂.

Lemma 2. If Assumption 1.3.2 holds, then

|α̂kℓ − αh0| = Op(n
−s1)

Proof of Lemma 2:

|α̂hℓ − αh0| ≤ C|θ̂γ − θ0|+ |γ̂hℓ − γh0|+ |µ̂ℓ − µ0| ≤ Op(n
−s1).(∵ triangle inequality).

Proof of Assumption 1.5.2: For part (i), I observe that

∆̂ℓ =
∑
h

(α̂hℓ − αh0)(γ̂hℓ − γh0)
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Then, by the conclusion of Lemma 2 and assumption 1.3.1,

√
n

∫
||∆̂ℓ||F0(dw) ≤

∑
h

√
n||α̂hℓ − αh0|| ||γ̂hℓ − γh0||

= Op(
√
nn−s1 n−s1) = op(1) (∵ −1

2
< −2s1 < −1) by the assumption 1.3.1 .

For part (ii),

∫
||∆̂||2F0(dw) ≤

∑
h

||α̂hℓ − αh0||2||γ̂hℓ − γh0||2 = Op(n
−2s1) = op(1)

It follows that triangle inequality.

Proof of Assumption 1.5.3: The first condition follows by assumption 1.3.1

for Lasso and other machine learning methods. For the second condition, taking

Taylor approximation for nuisance parameters γ̂ = (γ̂−ik, µ̂, β̂):

ψ̄(w, γ̂, α0, θ0) :=

∫
µ̂{ai − Λ(β̂, θ, γ̂−i)}+

∫
αk[a−i − γ̂−i]F0(dw),

=

∫
(µ̂− µ0)[y − Ĝ]F0(dw) +

∫
µ̂Ĝ′(β̂ − β0)F0(dw)

+

∫
µ̂Ĝ′(γ̂−i − γ−i0)F0(dw)

≤ Op(n
−2s1) +Op(n

−2s1) +Op(n
−2s1) = Op(n

−2s1) = C||γ̂ − γ0||2.

Proof of Assumption 1.5.4: Similar to Chernozhukov et al. (2022), the first

condition of Assumption 4 can be deduced from the convergence of the probabilities

towards 1 and the uniform boundedness of the γ̂hℓ. The second condition follows by

the proof of part ii) in Assumption 1.5.3.

Proof of Assumption 1.5.5: Following Chernozhukov et al. (2022), Assump-

tion 5 can be deduced from the previously given boundedness properties. Finally,

the conclusion follows by Theorem 9 in Chernozhukov et al. (2022). Q.E.D.
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1.6 Tables

Table 1: Simulation Results

Oracle estimator Plug-in estimator Orthogonal estimator

(2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

(N, dim(s0)) Mean bias Bias(%) CP RMSE Mean bias Bias(%) CP RMSE Mean bias Bias(%) CP RMSE

(1000,500) -1.595 -6.323 0.960 0.522 -1.013 32.5 0.736 1.025 -1.529 -1.901 0.880 0.936

(0.410) (0.600) (0.615)

(1500,500) -1.562 -4.151 0.956 0.388 -0.913 39.143 0.668 0.872 -1.456 2.947 0.872 0.627

(0.329) (0.464) (0.472)

(2000,500) -1.545 -3.007 0.958 0.307 -0.905 -39.691 0.608 0.775 -1.477 1.526 0.858 0.566

(0.289) (0.402) (0.407)

Notes: Mean and Standard Deviation for 500 simulations. Column (1) represents the simulation scenario specifying
the number of observations (N) and the dimension of market characteristics (p). Columns (2)-(5) used the Oracle
estimator and columns (6)-(9) used the Plug-in estimator, and Columns (10)-(13) used developed Orthogonal esti-
mator. For each estimator, the mean bias, the percentage of bias, 95% coverage probability, and root mean square
error (RMSE) are reported.
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1.7 Figures

Figure 1: The distribution of the estimated structural parameters from simulation

Sample Size: 2,000, Dim (s0)=500
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Notes: The estimated effect of rival coefficients is based on 500 simulations. The true value of
the rival effects is θγ = −1.5. The Oracle method employs low-dimensional (three-dimensional)
relevant covariates, which serve as infeasible estimators under the assumption that econometricians
possess knowledge of the true identity of controls. The naive plug-in method uses high-dimensional
covariates without correcting for biases. The orthogonal method also uses high-dimensional covari-
ates like the naive plug-in method, but it corrects for biases using the proposed Neyman orthogonal
method and cross-fitting algorithm.
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2.0 Rural Pharmacy Access and Competition

2.1 Introduction

Pharmacies have played pivotal roles in community healthcare, offering services

beyond medication dispensing, such as immunizations, chronic disease care, and

substance use treatment. Easy access to nearby pharmacies is essential for ongoing

medication availability and following prescriptions per doctor’s note. The litera-

ture documents that the absence of nearby pharmacies and travel difficulties can

greatly reduce how well individuals, especially older ones, adhere to their health-

care providers’ recommended behaviors. (Amstislavski et al. 2012; Qato et al. 2014;

Di Novi et al. 2020). Moreover, approximately 65.1% of the elderly population in the

U.S. takes multiple medications (Young et al., 2021). Therefore, understanding bar-

riers to pharmacy access and related health disparities is essential for comprehending

and improving health policies.

This paper provides the first empirical evidence that rural towns have experienced

an increase in limited pharmacy access1 over the past two decades in the Midwestern

United States, a trend closely linked with the exit of independent pharmacies. Often,

in these rural towns, independent pharmacies serve as the sole providers, and their

closure results in restricted access to local pharmacy services. I document that the

entries of chain pharmacies in urban towns induce the exit of independent pharmacies

in nearby rural towns. To understand the role of chain pharmacy entries in shaping

rural pharmacy market structure, I employ event studies using staggered two-way

1Limited pharmacy access, or “pharmacy desert” refers to when there is no pharmacy in the
town, following Qato et al. (2014). Section 2.3 describes detailed background and discussion.
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fixed effects (de Chaisemartin and D’Haultfoeuille 2023; Callaway and Sant’Anna

2021;Borusyak et al. 2021; Sun and Abraham 2021) with panel dataset spanning

2000-2019. I find that new entry of chain pharmacies within 15 miles has led to a

significant decrease in the number of independent pharmacies, limiting the acces-

sibility of pharmacies in rural towns. The magnitude of the impact of new chain

pharmacy entries is larger in towns with a higher proportion of elderly residents who

are particularly vulnerable to the issue.

I use the existing structural games of Bajari et al. (2010b) to decompose the

competition effects of chain pharmacies and another independent pharmacy on the

underlying profits of pharmacies in rural towns. I model binary entry/exit games

among independent pharmacies, capturing strategic interactions with rival indepen-

dent pharmacies and the competitive impact of chain pharmacies.2 In this context,

researchers face the challenge of selecting many market covariates to include in the

model, to avoid issues such as omitted variable bias and multicollinearity. This pro-

cess also requires knowledge of the correct functional form for pharmacy profits and

the appropriate transformation/interaction of selected market covariates. The selec-

tion of variables and specification of functional forms, often carried out on an ad-hoc

basis, present significant challenges in practical research.3 To address these chal-

lenges, researchers frequently adopt a data-driven approach, using machine learning

(ML) methods like the Lasso estimator, which selects relevant market covariates as-

sociated with a store’s profits. However, ML methods suffer from regularization bias;

for instance, the Lasso estimator may have model selection errors such as selecting ir-

relevant covariates or not selecting relevant covariates. This regularization bias from

2Appendix E.1 explains the rationale behind choosing entry and exit as forms of strategic inter-
actions.

3Appendix E.2 provides detailed discussion.
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ML methods can be transmitted into the low-dimensional parameters of competition

effects, resulting in our primary parameter of interest being biased.

I compare the results from using existing methods with those from the developed

methodology, which uses ML methods for estimating high-dimensional nuisance pa-

rameters including beliefs about competitors’ choices and market covariates effects.

My developed estimator offers two key benefits in recovering profits for indepen-

dent pharmacies. First, it allows for more systematic variable selection and flexible

functional form specification, avoiding ad-hoc choices. Second, in contrast to the

existing methods Bajari et al. (2010b), using ML methods significantly enhances the

prediction accuracy in estimating beliefs about rivals’ conditional choice probabilities

(CCPs). While I do not observe the true coefficient, the estimated structural param-

eter for the rival’s effects on the profits in the second stage is approximately 50%

larger than existing estimates. This change in estimates can be primarily attributed

to the ability of ML methods to more accurately capture beliefs about rivals’ actions

when compared to a simple conditional logit model.

Finally, I use the estimated model to simulate counterfactual scenarios aimed

at improving pharmacy accessibility in towns with a high elderly population ratio.

The absence of chain entries scenario quantifies the role of new chains’ entries on the

market structure. To do this, I simulate the equilibrium and how many independent

pharmacies would be active in the market if the number of chain pharmacies was

fixed in the year 2000. The absence of new chain entries scenario reveals that the

new entries of chain pharmacies since 2000 can account for 40% of the variation in

the closed independent pharmacies between 2000-2019.

Next, the subsidy counterfactual characterizes the equilibrium where the federal

government provides a 10% subsidy for pharmacy sales associated with Medicare

beneficiaries to pharmacies in towns with a high elderly population ratio. This hy-
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pothetical subsidy program is inspired by the existing federal government’s physician

bonus program initiated in 2006 to enhance healthcare accessibility, targeting areas

with limited medical access. The counterfactual analysis reveals that with this sub-

sidy program, 16% of towns previously categorized as having limited pharmacy access

would no longer fall into this category.

My results suggest that limited pharmacy access might have a heterogeneous

impact across demographic groups and socioeconomic statuses. The elderly pop-

ulation, especially those with limited mobility and relatively higher transportation

costs, may face challenges in correctly managing multiple medications. On the other

hand, groups with better transportation access and younger demographics may ben-

efit from the entry of chain pharmacies, which often offer competitive pricing and

higher-quality services. These findings shed light on the broader discussion of health

disparities and the need for targeted public policies to improve pharmacy access in

rural towns with a high portion of the aging population.

2.1.1 Literature Review

The primary contribution of this paper is to provide the first evidence of how

chain pharmacy entries impact the rural market structure and access to pharmacies.

Previous public health literature has focused on the effect of restricted pharmacy

access on negative health outcomes and examined related health equity issues (Am-

stislavski et al. 2012, Qato et al. 2014, Di Novi et al. 2020). Buchmueller et al. (2006)

examined the effect of restricted hospital access on deaths from heart attacks and

unintentional injuries. However, there is scarce literature focusing on the mechanism

leading to the rise in limited pharmacy access. I contribute to the literature by

providing empirical evidence of mechanisms: increased entries by chain pharmacies
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in urban towns are associated with the exit of independent pharmacies in nearby

rural towns, leading to limited pharmacy access in rural towns. I further document

that towns with a high elderly population experience more rapid growth in limited

accessibility - a concerning trend given their higher transportation costs and lim-

ited mobility - and the effect of new chain pharmacies on independent pharmacies is

larger in those towns. To the best of my knowledge, these empirical findings are the

first in the literature.

Secondly, this paper relates to the effects of firm entry on economic outcomes,

market structure, spatial competition, and associated policy questions (Jia 2008,

Ellickson and Grieco 2013, Grieco 2014, Caoui et al. 2022). While previous literature

has focused on the grocery industry and associated food deserts (Chenarides et al.

2021, Lopez et al. 2023), I contribute to the understanding of the market structure

of pharmacy industries and their role in shaping limited pharmacy access in rural

U.S.

2.2 Data and Background

In this section, I provide the background of the pharmacy industry, data sources,

limited pharmacy access in rural towns, and descriptive statistics

2.2.1 Industry Background

Pharmacies industry has begun with independently owned stores or single-owner

establishments. Independent pharmacies offer a wide range of services, functioning

as community hubs where individuals can get their prescriptions filled, seek advice
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on minor ailments, and purchase over-the-counter medications.

However, the industry landscape began to shift in 1970 when chain pharmacies

(e.g., Walgreens, CVS, Rite Aid) and mass merchandise pharmacies (e.g., Walmart,

Sam’s Club, Target) began to challenge the dominance of independent pharmacies.

Walgreens, founded in 1901 in Chicago; CVS Pharmacy, founded in 1963; and Rite

Aid, founded in 1962, all embarked on expansion by opening new stores or acquiring

smaller chains. In the mass-merchandised pharmacy market, Walmart launched

Walmart Pharmacy in 1978 in Rogers, Arkansas, and has since grown to over 5,000

stores nationwide, making it one of the largest pharmacy chains in the United States.

Target opened its first pharmacy in 1996, in Minneapolis, Minnesota, and has since

expanded to over 1,600 stores nationwide. In 2015, Target sold its pharmacy business

to CVS Health, the second-largest pharmacy chain in the United States. Chains,

mass merchandise, and supermarket pharmacies (e.g., Kroger, Publix) often offer

competitive prices and might offer differentiated products in terms of better health

insurance coverage, by leveraging their bulk purchasing power, substantial bargaining

power against health insurance companies, and vertical relation with health insurance

companies. For example, Walmart launched a $4 generic prescription program in

2006.

By 1999, the market share in prescription sales for chain pharmacies reached

40.3%. Independent pharmacies trailed at 25.6%, with mass merchandisers at 10.1%,

supermarket pharmacies at 11.00%, and mail orders at 13.0%. 4 Although the mail

order market share steadily rose to 15% in 2008, then their market share had reverted

to 13.7% in 2018. I abstract away mail-order in the analysis because it takes a

relatively smaller portion of the market share.

4Source: https://www.kff.org/wp-content/uploads/2000/06/3019-prescription-drug-trends-a-
chartbook.pdf
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In the 2000s, there was the continuing expansion of both merchandise-based

pharmacies and supermarket-based pharmacies, which made less room for indepen-

dent pharmacies. By 2019, there were 22,773 chain pharmacies, 21,683 independent

pharmacies, 8,427 supermarket-based pharmacies, and 8,597 mass merchant-based

pharmacies in the United States.5

2.2.2 Data

I combine data from multiple sources to construct the final dataset, in which

geographic units of county subdivisions (that I refer to as ‘towns’) defined by the

Census are markets.6

My primary dataset is sourced from the Data Axle Historical Business Database,

which chronicles the operations of business establishments, including pharmacies, in

the United States from 1997 to 2021, and is annually updated. Since Data Axle

includes the addresses of each pharmacy store, I can assign these addresses to town-

ships using Python’s Geopandas. Furthermore, the panel data structure enables me

to define entry and exit every year. This dataset has been used in recent studies

such as Dearing and Blevins (2019) and Koh (2023).

Additionally, I obtain market-level data on demographic characteristics from the

Census and the American Community Survey (ACS) at the township (county sub-

division) level. This data offers rich market characteristics as well as consumer

demographics. It allows me to study how market characteristics and consumer de-

mographics affect independent pharmacies’ decisions to enter or exit a market. I also

obtain health-related characteristics from the Current Population Survey (CPS) and

5Source: 2020 NATIONAL COMMUNITY PHARMACISTS ASSOCIATION DIGET
6I explain detailed reasons for defining the geographic market at the town level in the subsequent

section.
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ZIP Code Business Patterns dataset. Appendix D provides more detailed informa-

tion on data construction. Given that the nearest Census data is available from 2000

onward, my analysis covers the period 2000-2019.7

2.2.2.1 Market Definition of Geographic Level

I define a geographic market based on townships that had pharmacies at any point

between 1997 and 2021.8 I choose the township (county subdivisions) as the geo-

graphic unit for the following reasons: First, as reflected in the survey results shown

in Appendix 19 and Appendix 20, consumers consider the location of a pharmacy to

be one of the most important factors. Consumers generally prefer a pharmacy closer

to their neighborhood, which aligns with the current market definition. 9 Second,

my market definition follows earlier healthcare studies that used towns Schaumans

and Verboven (2008).10 Third, from an econometric analysis perspective, it is ad-

vantageous that the market-level characteristics (e.g., population) from the Census,

which I will describe in the next section, align with the township-level geographic

market. This means researchers can easily merge township-level market characteris-

tics into the township-level dataset. Fourth, the market definition of town level could

be suitable as I provide reduced-form evidence in section 5.2, which suggests that

7I have excluded data from early 2020 onwards from the analysis because of the onset of the
pandemic, as the market equilibrium might differ significantly from the pre-pandemic period.

8If any townships had no pharmacy at any point between 1997 and 2021, these were automatically
dropped from subsequent analysis in logit or other types of discrete choice models.

9While my focus is granular township level, one might be concerned about the possibility that
consumers visit pharmacies while commuting to work. However, OFT (2003) reported that only
6% of patients visit their pharmacy during their commute, further confirming the local nature of
competitive interactions.

10Admittedly, there are other ways to define a market, such as pre-specified regions like census
tracts or cluster analysis (k-means clustering) as used in Ellickson and Misra (2008). However, I
chose the township level because it is a pre-specified region that relatively follows the rectangular
styles shown in the subsequent figure 4.
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new entries of independent pharmacies outside of a township have a minimal effect

on pharmacies within that township. The widely used isolated market assumption

by Bresnahan and Reiss (1991) is likely valid in my settings.

2.2.2.2 Final Sample

For a township to be included in the dataset, it must: (i) not overlap with the

Census-defined urbanized areas, as described in Appendix D.1; (ii) have a population

of more than 100 people; (iii) have had at least one pharmacy in operation between

1997 and 2001; (iv) not have had more than two independent pharmacies operating

simultaneously between 2000 and 2019; (v) not have had more than seven chain

pharmacies within a 15-mile radius.11

The first two criteria ensure that the sample is limited to rural areas. Restric-

tions (iii) and (iv), which impose limits on the number of stores in a township, could

potentially introduce an endogenous sample selection issue. However, these restric-

tions are necessary to maintain computational feasibility and to exclude townships

that are close to urban clusters. Additionally, I control for outliers in (v) as 95.3%

of my final samples include at most seven chain stores. This is because townships

with more than seven chain pharmacies are likely to be fundamentally different from

typical rural townships.

2.2.3 Limited Pharmacy Access in Rural Towns

In this section, I document recent trends in the number of towns with limited

access to pharmacies. These areas are sometimes referred to as “limited access to

1199.30% of the rural townships in my sample have at most two pharmacies operating simulta-
neously.
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pharmacy areas” or “pharmacy deserts.” The term “pharmacy desert” is inspired

by the concept of a “food desert” in the literature, an area where residents struggle

to find healthy foods due to a lack of nearby supermarkets or affordable food stores.

Similarly, a “pharmacy desert” is an area without easy access to a pharmacy, making

it difficult for residents to obtain their medications. In such towns, consumers must

travel several miles to obtain prescriptions.

I describe areas with “limited access to pharmacy” as those townships without

any pharmacies, following the approach in Qato et al. (2014). Qato et al. (2014)

use census tracts as a geographical reference, which is similar to townships. Elderly

individuals are especially vulnerable to these challenges due to mobility issues and

high transportation costs. As a result, my focus is on the Midwest rural areas, where

the aging population is a growing concern, as highlighted by Mather et al. (2015).

Limited pharmacy access can cause adverse health outcomes, such as increased

emergency department visits and hospitalizations. The consequences of patients

not taking their medications as prescribed, known as “non-adherence,” have been

documented in Di Novi et al. (2020). For a comprehensive discussion on the impact

of limited pharmacy access on negative health outcomes and increased health care

costs, I refer to Di Novi et al. (2020). 12

Figure 2 illustrates the escalating trends in the number of towns with limited

access to pharmacy in the Midwest using my final sample of 802 townships. The

percentage of towns with limited access to pharmacy stores has surged from 20.44%

to 28% (a 37% increase). In Appendix 21, I present alternative definitions of lim-

12Non-adherence issues occur when patients don’t follow their medication instructions. It’s espe-
cially common among those taking many different drugs, like older adults who often have multiple
health conditions. Not taking medicine correctly can increase death risks and lead to more use
of other health services, like hospital stays or emergency room visits. This behavior can waste
resources and harm the patient’s health.
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ited pharmacy access, considering population weights and a 5-mile distance. These

alternative specifications show qualitatively similar trends.

I also find substantial heterogeneity in limited access to the pharmacy by the

elderly population share. Figure 3 illustrates that non-high elderly population town-

ships maintained relatively stable figures, while high elderly population townships -

those where more than 20% of the population is aged 65 or older - marked increase in

limited pharmacy access, rising from 14.29% in 2000 to 25.44% in 2019. Given that

high elderly population townships are particularly vulnerable to pharmacy access

challenges, it could arouse health/public policy concerns over prescription access in

high elderly population towns.

2.2.3.1 Summary Statistics

Appendix 13 and 14 provide descriptive summary statistics of my final sample,

which comprises 291 non-high elderly population townships and 511 high elderly

population towns for twenty years, with a total of 16,040 market-level observations

(802 towns * 20 years).13 High elderly population townships typically have a smaller

population than non-high elderly population townships, which typically results in

lower market demand. As chain pharmacies prefer to enter markets with higher

demand, high elderly population townships have more independent pharmacies on

average. This highlights that independent pharmacies play an important role in

providing prescriptions in rural towns.

While demographics remain relatively stable over time for both groups of town-

ships, the pharmacy industry has undergone significant changes. Over the past

two decades, the number of chain pharmacies within a 15-mile radius has doubled

13For a full list of variables, Appendix 13 and 14 provide descriptive statistics of my final sample.
I show key selected variables for brevity in main Table 21 and 22.
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for both groups of townships. In contrast, the number of independent pharmacies in

high elderly-population townships declined, a trend not observed in non-high elderly-

population townships.

In the subsequent section, I study the mechanisms driving the increasing trend

in pharmacy deserts through the lens of competition, with a particular emphasis on

the entry of chain pharmacies.

2.2.4 Market Structure

The entry of chain pharmacies has significantly transformed the landscape of the

retail pharmacy market, introducing a new competitive format and challenges for

independently owned pharmacies. Following the classification by Grieco (2014), in-

dependently owned pharmacies are defined as either single stores or those sharing a

parent company with fewer than three stores. Chain pharmacies include several for-

mats: standalone retail pharmacies (e.g., Walgreens), supermarket-based pharmacies

(e.g., Kroger Pharmacy), and merchandised-based pharmacies (e.g., Walmart Phar-

macy).

As an illustrative case, I present a snapshot of changes in the pharmacy market

environment due to the entry of new chain pharmacies over time. Figure 4 focuses

on the “Superior Township” in Kansas, which is shaded in gray. In this figure, each

red circle denotes independent pharmacies, and each blue star denotes chain phar-

macies. Each boundary delineates a township, averaging around 29 square miles in

size and 5.5 miles in width, in line with the typical dimensions of townships in the

current dataset. In 2000, there was one independent pharmacy in the town, accom-

panied by one chain pharmacy within a 15-mile radius from the centroid of town.

By 2009, the market experienced more chain pharmacy entry, with a total of three
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chain pharmacies actively operating. By 2019, more chain pharmacies had entered,

bringing the total to six within the 15-mile radius. Due to intensified competition

from these chain pharmacies, the independent pharmacies in Superior Township shut

down. After the independent pharmacy left markets in 2019, the town was classified

as a “limited access to pharmacy” area. Based on Figure 4, I summarize the follow-

ing observations:

1. Chain pharmacies are more abundantly and densely situated in high-demand

areas, such as shopping malls.

2. The new entry of chain pharmacies is associated with the exit of independent

pharmacies.

3. The decline of independent pharmacies is associated with the more prevalent

limited pharmacy accessibility at the town level.

Figure 5 demonstrates the overall negative correlation between independent and

chain pharmacies by showing the average number of stores within the same area

over the period from 2000 to 2019. Within towns, the average number of indepen-

dent pharmacies decreased by 0.18, while the average number of chain pharmacies

increased by 0.13 units, resulting in a net decrease of 0.05 units. In accordance with

the anecdotal evidence presented in Figure 4, the average number of chain pharma-

cies located up to 15 miles outside of towns increased by 0.38 units. This suggests

that new chain pharmacies tend to be established in relatively urbanized areas or

nearby shopping malls that are distant from rural towns.

In Appendix 22, I also examine changes in the number of independent/chain

pharmacies in high elderly population townships and non-high elderly population

townships. In non-elderly townships, independent pharmacies exited the market less
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frequently than in elderly townships, despite the more pronounced increase in chain

pharmacies outside of townships. This empirical finding suggests that the entry

of new chain pharmacies might heterogeneously impact independent pharmacies by

township demographics.

Finally, Appendix 23 shows changes in the market structure of independent phar-

macies by towns. Specifically, it examines the distribution of townships unserved,

monopolies, and duopolies among independent pharmacies. For both high elderly-

population townships and non-high elderly-population townships, monopolies are

decreasing, while unserved areas are increasing. The changes are greater in high

elderly population townships, which is aligned with findings in Appendix 22.

2.2.5 Reduced Form Evidence

In this section, I present evidence on the impact of chain pharmacies on local

independently-owned pharmacies. The goal is to evaluate whether or not the new

entry of chain pharmacies is associated with a decrease in the number of local inde-

pendent pharmacies. I use the final dataset between 2000 and 2019 for the analysis.

2.2.5.1 Specification of Distance to Chain Pharmacies

To inform whether the new entry of a chain pharmacy within a certain radius is

associated with competition in the independent pharmacy in the town, I regressed

the number of independent pharmacies on the new entry of chains with different mile

radius from the centroid of towns. Appendix 15 provides suggestive evidence that

considering the new entry of a chain within 15 miles may be suitable for modeling

independent pharmacy entry/exit. Outside of 15 miles, the effects are negligible as

they are not statistically significant.
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2.2.5.2 Effects on Market Structure

Next, I conduct an event study to present the effects of chain pharmacy entry

over the years before and after their introduction. In this regression, I estimate:

Ymt =
∑
τ

δτEntrym,t−τ + βXmt + λm + αt + γst + ϵmt (2.2.1)

where Entrym,t denotes a dummy variable for whether a chain store has entered

location m by period t. The outcome of interest variables Ymt denotes the number

of independent pharmacies at township m in period (year) t. I control for township-

level demographics Xmt, unobserved township-level fixed effects λm, and yearly time

fixed effects αt. To control time-varying unobserved heterogeneity, I incorporate

market-year fixed effects γst where s denotes the state level. I focus only on binary

specification, meaning that Entrymt takes the value 1 if chain stores enter and 0

otherwise, instead of the number of entries. 14

As the entry of chain pharmacy is heterogeneous across townships, this boils down

to staggered Difference-in-Difference with two-way fixed effects (TWFE) designs (e.g.

Goodman-Bacon (2021), Callaway and Sant’Anna (2021)). I address two potential

issues: (i) heterogeneous treatment effects in the presence of different timing of

treatment, which can induce bias in coefficients due to the use of different timing

groups (early versus late-treated) as controls, and (ii) pre-treatment effects. To

overcome these concerns, I adopt generalized event study frameworks that detect

possible pre-trends as well as are robust to heterogeneous treatment timing.

My preferred TWFE models are those by de Chaisemartin and D’Haultfoeuille

(2023) because de Chaisemartin and D’Haultfoeuille (2023)’s approach can accom-

modate one-shot treatment with heterogeneous treatment periods (e.g. Hurricane in

14In my final sample, when an entry event occurs, 88% of entries were the entry of one chain
pharmacy.
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different dates). Figure 6 shows that both the standard TWFE and the de Chaise-

martin and D’Haultfoeuille (2023) methods indicate an absence of statistically sig-

nificant effects in terms of pre-trends. In contrast, post-treatment shows that the

entry of chain pharmacies leads to a decreased number of independent pharmacies in

the township. In Appendix 24, I also provide the results using alternative weights on

heterogeneity-robust estimators by Borusyak et al. (2021), Callaway and Sant’Anna

(2021), and Sun and Abraham (2021). These results show that alternative ways of

constructing weights for event study are robust to my preferred TWFE design.15

Next, I examine the heterogeneity by market demographics of age distribution,

high elderly population townships in Figure 7a and non-high elderly population town-

ships in Figure 7b. Consistent with earlier findings, the effects of new chain entries

are quite large in high elderly population townships. The impact of new chain phar-

macies on the number of independent pharmacies is smaller in non-high elderly pop-

ulation townships and their dynamic effects are negligible after three years of event.

This suggests that the elderly population is more price-sensitive, as chain pharmacies

typically offer competitive prices.16 I interpret that these competition effects might

be significantly different between high elderly population towns and non-high elderly

population towns, so in the structural analysis in the section 5, I separately recover

parameters of interest in the two sets of different aged-population township types;

15This empirical illustration and the results should be interpreted cautiously, as the current
framework does not capture exit events of chain pharmacies. Unlike policy treatment effects, chain
pharmacies often enter and exit the market quickly if it is less profitable. To the best of my
knowledge, I have not found a methodology suitable for my setting, which allows for continuous
and multiple treatments, as well as (multiple time) switchers. I also caution that the entry effects
of chain pharmacy are immediate, unlike dynamic treatment effects like Caoui et al. (2022). One
potential channel is for chain pharmacies to enter the market by acquiring independent pharmacies.
However, data shows that only around 10% of closed independent pharmacies are transformed into
new chain pharmacies, which mitigates this concern.

16Given their bargaining power with insurance companies, national chains might offer lower prices,
and they can also obtain more discounts through bulk contracts.
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high elderly population towns and non-high elderly population towns.

2.2.6 Preliminary Analysis on Strategic Interaction between Indepen-

dent Pharmacies

To demonstrate how entry and exit patterns change with the endogenous compe-

tition with the rival’s independent store, I provide reduced form evidence of strategic

interactions using simple logit regressions. An independent firm in marketm makes a

binary decision of each firm aimt where aimt = 0 if firm i is active in market m period

t and aimt = 1 if i being inactive. As these regressions do not take into account the

simultaneous entry of rival firms, the results do not reveal causality, but correlation.

Appendix 16 presents the results of a logit model on entry, controlling for the

presence of chain pharmacies within a 15-mile radius, demographic variables, and

health-related characteristics. Additionally, I have included a binary variable indi-

cating whether states adopted the Medicaid expansion policy after 2014. Firstly, the

presence of rival stores in the same town is strongly and negatively correlated with

entry decisions.

This suggests that the presence of a rival may significantly decrease the latent

payoff of being active in the market. Since difference-in-differences estimators, as

discussed in Section 2.5, are unable to capture endogenous rival effects, this moti-

vates the use of a structural model in which I can separate the competition effects

stemming from other independent pharmacies and chain pharmacies.17 Secondly, the

number of chain pharmacies is negatively correlated with entry decisions, though this

correlation is weaker than the impact of rivals. This implies that chain pharmacies

might offer distinct types of services (e.g., higher quality, better in-network premi-

17More specifically, in the DID model, the dependent variable represents the number of indepen-
dent pharmacies so I cannot capture competition effects between independent pharmacies.
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ums), positioning them more as secondary competitors. Interestingly, my findings

align with those of Grieco (2014), which found that the effect of chain supermarkets

is less pronounced than that of independent groceries.

Games played between independent pharmacies are endogenous in that inde-

pendent pharmacies’ optimal choices are the best response to other beliefs over the

probability of rival’s choice probabilities. To correctly recover underlying payoffs

with strategic interactions, it requires pharmacies’ entry and exit game, detailed in

the next section.

2.3 Structural Analysis

In this section, motivated by reduced-form analysis in section 2.6, I present a

structural model of independent pharmacies and estimation strategies, and then

report the estimation results of the model.

2.3.1 Model Primitive

I model the entry decision of an independently owned pharmacy as a discrete-

time, simultaneous-move game. Each year, every store decides whether to be active

or inactive in the market. I focus on duopoly markets because, in my data, 99.30%

of towns contain at most two operating independent pharmacies.

I assume that the information structure of the games between independent phar-

macies is characterized by incomplete information, as detailed in Assumption 1.2.1.

Each player observes her own private information but cannot observe her rival’s.

Instead, she knows the distribution of her rival’s private information.
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I further assume that, from the perspective of independent pharmacies, the entry

of chain pharmacies is given. This assumption is reasonable for rural independent

pharmacy markets, as the decision for chain pharmacies to enter these areas is likely

driven by broader regional demographics, network structures, and the locations of

their distribution centers. The competition from small independent stores is less of a

concern for the national chain pharmacies. Therefore, the model is greatly simplified

by treating decisions made by national chains as given for local independent stores.

This approach aligns with methodologies used in other studies examining strategic

interactions between local stores (Ackerberg and Gowrisankaran 2006, Grieco 2014).

18 Based on the empirical evidence in Table 15, the analysis focuses on the number

of chain pharmacies within a 15-mile radius of town centers.

The store i’s choice-specific value function u when active in the market depends

on the beliefs over a rival’s conditional choice probabilities (CCP) of actions a−i in

market m at period t:

uimt(aimt = 1, smt, ϵimt(1); θ) = πi(aimt = 1, smt; θ) + ϵimt(1).

= σ−i(a−imt = 1|smt)πi(aimt = 1, a−imt, smt; θ)

+ (1− σ−i(a−imt = 1|smt))πi(aimt = 1, a−imt, smt; θ) + ϵimt(1).

(2.3.1)

where πi is the expected payoffs and σ−i(a−imt = 1|smt) is the probability of rival’s

being active, conditional on observable market characteristics smt. θ denotes the

set of structural parameters affecting the pharmacy’s per-period payoff, and ϵimt(1)

18An alternative approach involves a comprehensive model that accommodates the endogenous
entry of both independent and chain pharmacies. For merchandise-based pharmacies such as Wal-
mart, entry decisions are influenced by factors like existing merchandise department stores, dis-
tribution centers, and network effects with nearby stores. Incorporating these elements, however,
requires complex methodologies similar to those in Holmes (2011) or Jia (2008). Nonetheless, these
models have their constraints, particularly in ignoring the strategic interactions among chain phar-
macies. This paper, however, primarily investigates the impact of chain pharmacy entry on rural
markets rather than the expansion strategies of these chains. Thus, a detailed structural model
encompassing the endogenous entry of chain pharmacies is outside this paper’s scope.
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denotes being active-specific private information for pharmacy i. I further assume

that the value of being inactive is normalized to zero.

2.3.1.1 Equilibrium Concept

I focus on the Bayesian Nash equilibrium, where a store’s choices are the best

responses conditional on its belief about the rival. Under the rational expectation

assumption coupled with a Type 1 Extreme Value Distribution, each firm’s strat-

egy is a function of the probability of a rival’s entry, the observed state variable,

and its private, choice-specific shocks. As econometricians cannot observe private

information, the optimal strategy can be expressed as choice probabilities:

σ∗
i (aimt = 1|smt; θ) =

exp(πi(aimt = 1, smt; θ))

1 + exp(πi(aimt = 1, smt; θ)
(2.3.2)

2.3.2 Discussion

Before presenting the estimation procedure and the results, I detail the assump-

tions underlying the structural model.

2.3.2.1 Static versus Dynamic Framework

I model the discrete choice of an independent pharmacy as a static game for the

following reasons. First, a dynamic model might be more appropriate if the entry

costs, including fixed sunk costs, of entering the industry are substantial. A dynamic

model, capable of distinguishing sunk costs from fixed costs, accommodates forward-

looking behaviors observed in industries like cement (Ryan (2012)) and hardware

(Igami and Uetake (2020)). However, anecdotal evidence from pharmacy industry
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reports, as shown in Appendix 17, suggests that the sunk costs of opening indepen-

dent pharmacies are relatively small compared to their yearly gross profits, 19 which

implies that sunk costs may not be substantial. The static approach to studying

pharmacies has been utilized in other studies (Aradillas-López and Gandhi (2016)).

Second, Appendix 19 shows a regression analysis of past entries of chain pharmacies

on the number of independent pharmacies in township m during period t. The re-

sults indicate that controlling for the number of chain pharmacies in the same year,

the effect of chain pharmacies in the past year on current independent pharmacies’

payoff is negligible. Therefore, based on this observation, I model that a player’s

payoff depends on current state variables.

2.3.2.2 Profit Shifters for Identification

To achieve identification, following the approach discussed in Bajari et al. (2010b),

I adopt firm-specific variables previously utilized in the existing literature. 20 For

instance, Grieco (2014) employed the existence of a two-year-old firm as a shifter

variable for independent grocery stores. As the lagged variable of entry might be

endogenous to the current rival’s payoff, I use the employment size from three years

prior as an alternative variable. This exclusion restriction is considered valid if an

operating store’s revenue increases with its number of employees, yet remains unre-

lated to the profits of rival stores. The underlying assumption here is that a store’s

profit is influenced by its own employment levels, whereas the employment levels of

19Source: Elabed et al. (2016) The industry report indicates that the dollar metrics of entry’s
sunk costs constitute a relatively smaller portion of yearly profits. Specifically, the components of
sunk costs of entry are approximately $107,000, and yearly gross profits are around $748,000, thus
the ratio of entry’s sunk costs to gross profits is around 14.3%.

20Ideally, distances to headquarters or distribution centers are extensively used in IO literature
(e.g., Chen 2014, Xie (2022).
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rival stores affect a store’s profit solely through the rivals’ decisions to be an active

market. 21 In section 5.4, I will provide further discussion on the suggested shifter

for independent pharmacies.

2.3.2.3 Isolated Market Assumption

Following the approach pioneered by Bresnahan and Reiss (1991), the literature

on strategic interaction typically focuses on isolated markets with a relatively small

number of firms. The assumption might be invalid if independent pharmacies outside

the township significantly influence the entry or exit decisions of pharmacies within

the township. To address this concern, I observe that the average distance between

town boundaries is 14 miles, suggesting sufficient separation between markets. This

finding implies that most towns in my final sample approximate isolated markets.

Furthermore, Appendix 20 displays a regression analysis of new independent phar-

macy entries outside the township against the number within the town, factoring in

market characteristics, town-fixed effects, year-fixed effects, and market-year inter-

actions. Appendix 20 provides suggestive evidence that new entries of independent

pharmacies in nearby towns (outside the township) may have minimal impact on

those within the township.

2.3.3 Estimation Procedure: Two-Step Estimators

I use a two-step estimator to recover underlying structural parameters of inter-

est. Specifically, in the first stage, I obtain reduced-form estimates of beliefs over

the rival’s CCP(conditional choice probabilities) from the data. In the second stage,

21Following this shifter, I decompose notation smt = simt, s−imt, sxmt, where simt denotes store
i’s specific shifter, s−imt denotes store −i’s specific shifter, and sxmt denotes the common market
characteristics, which could be extended into many covariates.
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I use the rival’s CCP, observed market characteristics, chain pharmacy effects, and

firm-specific shifters to construct moment conditions. Finally, these moment condi-

tions are minimized over a set of candidate structural parameters. Additionally, I

separately estimate the model for samples of high elderly population and non-high

elderly population towns, acknowledging the substantial heterogeneity in market dy-

namics found in section 2.5.22 It relaxes the assumption that only one equilibrium

be played across all towns. Instead, I assume that a unique equilibrium be played in

each town with a high elderly population and towns with a low elderly population

ratio.

2.3.3.1 Time-Varying Unobserved Endogenous Variables

I attempt to address the issues discussed in Berry and Compiani (2023) for both

the estimators of Bajari et al. (2010b) and Orthogonal estimators. Berry and Com-

piani (2023) demonstrate that the first-stage estimation of choice probabilities should

not be affected by the presence of unobserved and time-varying endogenous state vari-

ables. To address this issue, I employ three strategies. First, I include county-fixed

effects to control for time-invariant, unobserved, market-specific shocks. 90 percent of

my final sample experienced a population change of less than 250 people between the

2000s and the 2010s, which means that demographics are quite stable over the years.

This implies that the county-fixed effects capture much of the unobserved hetero-

geneity. Second, if one is willing to assume that stores make optimal hiring decisions

spontaneously in response to changes in market characteristics, labor employment

might capture much of the time-varying, unobserved market characteristics. Third, I

include state Medicaid expansion, a policy-relevant variable, as suggested instrument

22This approach is widely used in the industrial organization literature. (e.g., Ellickson and Misra
(2008)).
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variables by Berry and Compiani (2023). In the logit regression result of the indepen-

dent pharmacy’s entry in Table 16, the expansion of Medicaid coverage has a positive

and significant effect on entry, while this effect becomes insignificant when including

year-fixed effects as in column (2). This suggests that both year-fixed effects and

county-fixed effects absorb much of the unobservable market characteristics.

Estimation Method: For comparison purposes, I employ two distinct estima-

tors: the existing estimators as described by (Bajari et al., 2010b) which utilize

pre-selected variables, and newly developed orthogonal estimators that leverage flex-

ible machine learning (ML) methods with rich covariates. The primary distinctions

between these two estimators lie in 1) the set of control variables used, 2) the applica-

tion of the machine learning approach, and 3) the implementation of a cross-fitting

algorithm. Detailed procedures for the existing estimator are provided in section

5.3.1, and for the orthogonal estimators in section 5.3.2.

2.3.3.2 Existing Two-Step Estimators

First-stage nuisance parameter γ−i estimation: The goal of the first stage

is to recover reduced-form beliefs over the rival’s equilibrium CCP from the data.

The reduced-form estimates of CCP take the form of conditional expectation:

γ̂−imt = E[a−imt|cmt, s−imt, simt, s
pre
xmt, yt, countyf ] (2.3.3)

where a−imt denotes the rival’s binary choice, cmt represents the number of chains

within 15 miles, s−imt indicates the rival’s shifter, which is the number of the rival’s

employees, simt denotes player i’s shifter, which is the number of employees, sprexmt de-

notes common market characteristics, yt denotes the year fixed effects, and countyf
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represents the county fixed effects. 23 For sprexmt, I assume that only a relatively small

number of pre-selected market characteristics are relevant for independent pharma-

cies’ payoffs, as in the previous empirical IO/health literature, and their summary

statistics can be found in Appendix 21 for towns with a low elderly population and

Appendix 22 for towns with a high elderly population, respectively. I employ a simple

logit model to estimate the conditional expectation of equation (2.3.3).

Second Stage Structural Parameter Estimation: After recovering the equi-

librium strategies from the data, the goal of the second stage is to estimate the struc-

tural parameters of interest. First, I model the profit functions in a reduced-form

manner, following the conventional approach in static entry literature (e.g., Berry

(1992), Seim (2006)), then describe the moment conditions to identify the relevant

structural parameters. The average period profit per store in market m in period t

is characterized as follows:

πimt(aimt = 1, γ̂−imt, cmt, simt, s
pre
xmt, yt, countyf ; θ) =

γ̂−imtθγ + cmtθc + simtβe + sprexmt · βx + αtyt + αcountycountyf (2.3.4)

where γ̂−imt represents beliefs about the rival’s CCP.

As developed by Bajari et al. (2010b) and Bajari et al. (2013), I construct the

logit-likelihood function, which depends on the profit function given in equation

(2.3.4) and equilibrium function (2.3.2), and estimates a set of parameters:

argmin
θγ ,θc,βe,βx,αt,αcounty

lnL =
∑
t

∑
m

∑
i

aimtln (Λ (πimt)) + (1− aimt)ln (1− Λ (πimt))

(2.3.5)

23I choose county-level fixed effects, as town-level fixed effects are too granular; some estimates
did not converge due to too many fixed effects in a simple conditional logit model
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Here, Λ represents the standard logit link function under Type 1 Extreme Value

Distribution and π denotes the expected profit per period from equation (2.3.4). The

consistency and asymptotic normality of the estimator are established by Bajari et

al. (2010b). I account for correlation in error terms by taking the clustered standard

error at the county level.

2.3.3.3 Neyman Orthogonal Estimators

Neyman Orthogonal estimators facilitate the use of flexible Machine Learning

(ML) methods, which allow data-driven selection for covariates and flexible functional

forms. Consequently, I do not pre-select socio-economic variables and instead utilize

the pool of variables spoolxmt, as shown in the summary statistics in Appendix 13 and

Appendix 14 and their flexible interactions terms sinteracitonxmt . Here, I provide an

overview of the estimation steps, and Appendix Section F describes additional details

of the algorithm steps, as well as the functional forms of standard errors in the

second-stage structural parameters.

Step 1. Estimation of nuisance parameters using ML: Let K denote a

positive integer and take a K-fold random partition I1, ..., IK of observation indices

{1, . . . , N}. I use random sample splitting withK=5 folds across the year cluster.24 I

also define the auxiliary sample Ick = {1, ..., N}/Ik for each k ∈ {1, . . . , K}. For each

k, I use machine learning methods to estimate the set of nuisance parameters η̂ =

(γ̂−i, β̂e, β̂x, µ̂γ, µ̂c) only using observations not in the group k as η̂k = η̂
(
(Wi)i∈Ick

)
.25

24I attempted to use the multi-way clustering method proposed by Chiang et al. (2022), but I
found that county fixed effects are crucial for capturing time-invariant market characteristics when
estimating β. Since county fixed effects learned in the training set cannot be applied to the test
set (due to cross-fitting), I have chosen to use the year as the clustering level for the cross-fitting
algorithm. The advantage of this approach is that it allows for the use of county-fixed effects to
predict nuisance parameters in the test set.

25(µγ , µc) are additional nuisance parameters not in the original method. They are generated in
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Step 2. Recovering structural parameters (θγ, θc): Using the nuisance

parameter estimates η̂k, I evaluate the original moment condition in equation (2.3.6)

on the sample Ik. Finally, I obtain the Neyman Orthogonal estimator θ̂ = (θ̂γ, θ̂c)

by aggregating the orthogonal moment functions for each k ∈ {1, . . . , K}. Figure 8

illustrates the estimation algorithm.

ψ(wimt; θ, η) = m(wimt; θ, η) + ϕ(wimt; θ, α, η) (2.3.6)

m(wimt; θ, η) = (µγ, µc) [aimt − Λ(γ−imt, θγ, θc, βe, βx)]

ϕ(wimt; θ, α, η) = −(αγ, αc)(a−imt − γ−imt)

αγ = E[µγΛ(·)(1− Λ(·))θγ|cmt, simt, s−imt, sxmt]

αc = E[µcΛ(·)(1− Λ(·))θγ|cmt−3, sxmt]

As a summary, Table 2 presents the specifications of the existing methods and

the orthogonal estimators developed in each estimation step. Additionally, Appendix

25 reviews the notation for parameters to be estimated and the data.

2.3.4 Estimation Results

First Stage Estimation Results: Appendix 26 reports the estimation re-

sults of reduced-form CCP γ−i based on existing estimators, Bajari et al. (2010b)’s

estimator. Estimates suggest that player-specific shifters, and employment size in

pharmacy show expected signs. The number of employees in a pharmacy is posi-

tively correlated to the probability of staying in the market, and the rival’s number

of employees is negatively associated, meaning that the number of employees might

represent a good proxy for sales and higher quality provision by the pharmacy. As

the process of constructing the moment function to satisfy the orthogonality property.
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expected, the impact of the total population appears to positively affect latent prof-

its, as the total population might capture well for the overall size of the market. The

share of the population over 65 also appears to positively affect latent profits because

the population over 65 may have higher demands for prescription drugs. Consistent

with reduced-form evidence, the effect of chain pharmacies on profits is larger in

high-elderly-population towns than in non-high elderly-population towns.

Next, I present the estimation results of predicting a rival’s CCP using various

ML methods. To shed light on the performance of different ML methods, Table

3 summarizes the findings of applying various procedures and reports the out-of-

sample (hold-out sample) accuracy level. XG Boosting outperforms ordinary logit

and other ML methods that are based on linear models.26 This suggests that the

flexible features of the tree-based model perform well in predicting the rival’s CCP.

Given this empirical pattern, I employ XG Boosting in my first-stage estimates of

CCP.27 Luo et al. (2016) provide and discuss the theoretical limits for ℓ2 boosting

models.

To shed light on the performance of XG Boosting, Appendix 18 presents the

primary factors driving outcomes, as identified by the XG Boost model, in both the

26For comparison, in Appendix 25, I report the prediction performance in terms of the area
under the curve (AUC). AUC denotes the area under the ROC (Receiver Operating Characteristic)
curve, where ROC represents the true positive rate against the false positive rate (FPR). The AUC
provides an aggregate measure of model performance across all possible classification thresholds.
An AUC of 1 indicates a perfect model, while an AUC of 0.5 signifies a model that is no better
than random guessing. An AUC below 0.5 indicates the model is performing worse than random
guessing. This is demonstrated in the first-stage reduced-form CCP estimates for towns with high
elderly populations, comparing Bajari et al. (2010b)’s simple logit method and the XG Boosting
method. Compared to logit methods, XG Boosting improves the AUC by more than 25%, effectively
predicting the rival’s stay-in decision. In Appendix 23, I also present confusion matrices for both
high-elderly-population towns and non-high-elderly-population towns. The accuracy in both cases
exceeds 0.95, an outstanding performance given the complex nature of the games.

27I use shallow trees (max depth: 3) to adhere to theoretical rates O(n−1/4) and use the “off-
the-shelf” xgboost package in R.
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high elderly population and the non-high elderly population townships. For both

town categories, employment numbers by store and rival stores stand out as top de-

terminants. In high elderly population townships, the presence of chain pharmacies

emerges as a notable contributor, while in non-high elderly population townships,

demographic attributes such as the female population and vehicle ownership gain

prominence. These differences underscore the heterogeneous socio-economic dynam-

ics at play in each town type.

Second Stage Estimation Results: Tables 4 and 5 present structural parame-

ters with standard errors from the observed sample for towns with high and non-high

elderly populations Standard errors account for correlations at the clustered county

level. Column (1) in each table follows a baseline specification assuming known and

linear market characteristics. Column (2), however, differs in both tables by in-

corporating: i) flexible functional forms for the rival’s CCP in nuisance parameter

estimation, ii) data-driven market characteristic selection, and iii) interaction effects

in richer market covariates.

First, I compare the estimates from the existing estimators in column (1) with

my orthogonal estimators in column (2) across towns with high elderly populations

and non-high elderly populations. The orthogonal estimators in column (2) of Ta-

ble 4 present that the rival effect from another independent pharmacy is 1.5 times

larger than the existing estimators (Bajari et al., 2010b) in column (1) and their

differences are statistically significant from Wald test28. This difference stems from

the first-stage accuracy, where the beliefs about the rival’s CCP in the first-stage

ML of column (2) are 30% more accurate than in the simple logit of column (1).

28The Wald test, using estimated standard errors and coefficients, indicates the coefficients are
statistically different at the 0.01 significance level for both high elderly population towns sample
and non-high elderly population towns sample.
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Furthermore, XG boosting effectively addresses non-linear complexities in the rival’s

entry and exit strategies and data-driven selection of market characteristics.

Second, I compare the strategic interactions from another independent pharmacy

and the competitive effects of chain pharmacies. In towns with both high and non-

high elderly populations, the effect of another local rival independent pharmacy on

profit is larger than that of a chain pharmacy, which aligns with the findings of Grieco

(2014). The difference between the two estimated parameters, derived from different

moment conditions, is statistically significant from the Wald test. This is expected,

as another rival independent pharmacy is more substitutable from the consumer’s

perspective than a chain pharmacy.

Third, I compare the estimates associated with competition between towns with

high elderly populations and those with non-high elderly populations. The effect

of another rival independent pharmacy on the value of running a store is more

pronounced in towns with high elderly populations, aligning with Grieco (2014)’s

findings. This is likely due to the smaller populations in these towns, where local

markets often cannot support two independent pharmacies, especially in rural areas.

Similarly, chain pharmacies have a smaller impact on latent profits in towns with

non-high elderly populations, reflecting a pattern consistent with Grieco (2014) and

previous empirical findings. Consequently, competition tends to be more intense in

towns with high elderly populations due to smaller market sizes.

2.3.5 Robustness Check

I have conducted a series of robustness checks that are not reported in the main

paper. Since the number of cross-fitting folds, K does not have a rule of thumb,

I experimented with an alternative K = 4, which is also widely utilized in the
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double/debiased machine learning literature. In Appendix 27, I demonstrate that

utilizing a different number of cross-fitting folds yields quite similar results.

To examine whether the hyper-tuning parameters in XG Boosting might fail to

adequately capture beliefs about the rival’s choices, I try alternative hyper-tuning

with cross-validation methods for the hyper-tuning parameters in XG Boosting. The

results are qualitatively similar.

2.4 Counterfactual

The structural parameters I have estimated, combined with the underlying struc-

tural model, enable me to perform counterfactual experiments. The counterfactual

analysis simulates the entry behavior of independent pharmacies to characterize new

equilibrium outcomes under different scenarios. As high elderly population towns

have experienced rapid increases in limited access to pharmacies, I focus on high

elderly population towns in my counterfactual scenarios.

2.4.1 Solution Method for the Static Game

To conduct counterfactuals in different scenarios, I first solve for the equilibrium

of the model based on Equation (2.3.2). I employ a nested fixed-point algorithm,
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which solves the following system of equations:

σi(aimt = 1|cmt, simt, sxmt) =
eσi(a−imt=1|cmt,simt,sxmt)θγ+cmtθc+siβκ+sxmt·βx

1 + eσi(a−imt=1|cmt,simt,sxmt)θγ+cmtθc+siβκ+sxmt·βx

(2.4.1)

σ−i(a−imt = 1|cmt, s−imt, sxmt) =
eσi(aimt=1|cmt,simt,sxmt)θγ+cmtθc+simtβκ+sxmt·βx

1 + eσi(aimt=1|cmt,simt,sxmt)θγ+cmtθc+simtβκ+sxmt·βx

(2.4.2)

Here, Equation (2.4.1) denotes the conditional choice probability (CCP) of player i,

and Equation (2.4.2) denotes the CCP of player −i. Given the two unknowns (σi

and σ−i) and the two equations (2.4.1) and (2.4.2), I use an iterative method. The

iteration continues until the difference between the kth iteration and the (k + 1)th

iteration is less than a tolerance level, ϵ = 0.00001.29

2.4.2 Goodness of Fit

Figure 9 shows the overall predicted and observed number of independent phar-

macies between 2000 and 2019. Overall, the simulated outcome captures the downward-

sloping trend in the observed number of stores in high elderly population towns, but

the simulated outcome slightly over-predicts after 2016. I also report the average

predicted number of stores and the observed number of stores for each town, con-

ditional on various socioeconomic characteristics, in Appendix 28. In line with the

overall trends, the predicted averages for stores closely resemble the observed counts.

29I initiate the process with the estimated values of γ−i. As long as I use observed choice
probabilities as input, I did not encounter multiple equilibria.
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2.4.3 Chain Pharmacy Counterfactual: Fixing Entry of Chain Pharmacy

afterward 2000

In the first counterfactual scenario, I use the counterfactual Bayesian Nash Equi-

librium to simulate a situation where chain pharmacies are restricted from expanding

starting afterwards 2000. The primary aim of this simulation is to quantify the ex-

tent to which independent pharmacies stay in the market in 2019 with the absence

of new entry of chain pharmacies after 2000. Table 7 reports the results of the coun-

terfactual which highlights two things: 1) The counterfactual predictions suggest

that, in the absence of chain pharmacy expansion, the average number of stores in

total markets would increase. Counterfactual experiments indicate that, without the

expansion of chain pharmacies, there would be a rise in the average number of total

market stores. Specifically, the expected store count would see an uptick by 10.40%.

Notably, between 2000 and 2019, the count of independent pharmacies dropped by

26.6%. The entry of new chain pharmacies accounted for 40% of this variation.

2.4.4 Policy Counterfactual: Providing Subsidy associated with Medi-

care in High Elderly Population Towns

The second scenario investigates the potential outcomes of providing subsidies to

independent pharmacies in high elderly population towns. For context, I reference

the Health Professional Shortage Area Physician Bonus Program (HPSAPB), which

provides a 10% subsidy on Medicare-covered services to physicians in a designated

HPSAPB region. Analogously, I explore the possibility of increasing access to phar-

macies within high elderly population towns by providing pharmacists with a 10%

subsidy for prescriptions associated with Medicare beneficiaries. To simulate this

policy, I factor the subsidies into my estimated latent profits by calibrating the rev-
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enue share from Medicare.30 Subsequently, I calculate the counterfactual CCP using

these adjusted profits for independently owned pharmacies. 31 I also examine the

variations in these changes across different market types. M I observe the following:

towns with larger populations, higher proportions of elderly residents, and a greater

percentage of households without a vehicle would have had more independent stores.

This suggests that in towns with an elderly population and limited transportation

options, pharmacy accessibility might have been enhanced if chain pharmacies hadn’t

entered the market after 2000.

Appendix 29 shows how the expected number of independent pharmacies in 2019

is predicted to change in the counterfactual (CF)- relative to predicted market equi-

librium by total market and socio-demographic characteristics respectively. I find

that, in the hypothetical world in which independent stores in highly elderly popula-

tion towns get a 10% subsidy associated with Medicare beneficiaries, markets would

have on average 20% more independent pharmacies than the observed number of

pharmacies.

To further illustrate how pharmacy accessibility within town would have been

improved, I compare the predicted pharmacy accessibility and pharmacy accessibility

under scenario 2 in Table 6. On average, high elderly population towns in 2019 with

limited pharmacy accessibility would decrease by 5.7% or change in rates by 16.71 %.

Interestingly, the effects are largest in locations where the share of minority groups

is above 10%, which implies that minority groups will get the most benefits from this

30Specifically, I reference the average gross markup for independent pharmacies, which stands at
22 percent according to the 2020 National Community Pharmacists Association (NCPA) Digest.
This margin typically fluctuates between 22 and 24 percent annually. Further, I discovered that 30
percent of sales come from Medicare Part D. Taking these factors into account, subsidies result in
a 13.5 percent increase in latent profits (0.135 = 1/0.22 (gross mark-up rate) * 0.3 (sales share of
Medicare) * 0.1 (subsidy rate).

31This framework operates within a partial equilibrium context. It does not consider potential
reactions from chain pharmacies or their eligibility for this subsidy program.
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suggested subsidy program.

2.5 Conclusion

This study finds that machine learning methods can be used to improve the

estimation of structural parameters in models of strategic interaction among inde-

pendent pharmacies. The absence of new entries by chain pharmacies’ counterfactual

simulations suggests that new chain pharmacy entries can account for 40% of the

variation in the closed independent pharmacies between 2000 and 2019. The policy

counterfactual also suggests that a 10% subsidy from pharmacy sales associated with

Medicare beneficiaries to independent pharmacies could improve limited pharmacy

access in 16% of towns.
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2.6 Tables

Table 2: Comparison of Estimator Specifications for Existing and Developed Or-

thogonal Estimators

Existing Estimators Orthogonal Estimators

First Stage
Data Pre-selected market covari-

ates
Many market covariates

Estimators Logit ML Methods (XG Boost-
ing)

Second Stage
Data Pre-selected market covari-

ates
Many market covariates +
their interactions

Estimators Logit Logit Lasso

Notes: Existing estimators are based on the approach described in Bajari et al. (2010b). I use
pre-selected market covariates, as described in Appendix 21 and Appendix 22. For my developed
orthogonal estimators, which employ a data-driven approach to variable selection, I utilize a pool of
market characteristics described in Appendix 13 and Appendix 14. For the first stage ML methods,
I use Ridge, Lasso, Elastic Net, XG Boosting, Random Forest, and Support Vector Machine. I
compare their out-of-sample performance in section 5.4.
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Table 3: Performance of Different Methods in First Stage CCP for Hold-Out Sample

Method County FE & Year FE Interaction Terms AUC Score

Ordinary Logit Yes Yes 0.7533

Ridge Yes Yes 0.7608

Lasso Yes Yes 0.7861

Elastic Net Yes Yes 0.7852

XG Boosting Yes No 0.9539

Random Forest Yes No 0.8320

Support Vector Machine Yes No 0.6730

Notes: AUC (Area under the curve) denotes the value of the true positive rate against the false
positive rate (FPR). The AUC gives an aggregate measure of the model’s performance across all
possible classification thresholds. If the AUC is less than 0.5, it means the model is performing
worse than random guessing. I use high elderly population towns samples for this analysis. Non-high
elderly population towns produce very similar results.
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Table 4: Results from the Structural Model: High Elderly Population Town

(1) (2)

Parameters Variables Existing Estimators Orthogonal Estimators

θγ Rival independent pharmacy -5.420∗∗∗ -8.055∗∗∗

(0.685) (0.495)

θc No. of chain pharmacies -1.065∗∗∗ -1.138∗∗∗

(within 15 miles) (0.085) (0.057)

Observations 20,400 20,400

Pre-selected market characteristics Yes No

Interaction between market characteristics No Yes

Dimension of Controls 13 563

Counties FE Yes Yes

Year FE Yes Yes

Notes: Samples include towns with a high elderly population in the years 2000-2019. In column (1), I
use existing estimators based on the approach described in Bajari et al. (2010b). I use pre-selected
market covariates, as described in Appendix 22. In column (2), I use my developed orthogonal
estimators, which employ a data-driven approach to variable selection, I utilize a pool of market
characteristics described in Appendix 13. I further use sample splitting and moment conditions
based on equation (2.3.6) to remove biases from ML in the first stage of nuisance parameters
estimation. Standard errors are clustered at the county level. Significance levels are denoted by +
p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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Table 5: Results from the Structural Model: Non-High Elderly Population Town

(1) (2)

Parameters Variables Existing Estimators Orthogonal Estimators

θγ Rival independent pharmacy -4.000∗∗∗ -6.648∗∗∗

(0.449) (0.470)

θc No. of chain pharmacies -0.269∗∗∗ -0.258∗∗∗

(within 15 miles) (0.085) (0.015)

Observations 11,640 11,640

Pre-selected market characteristics Yes No

Interaction between market characteristics No Yes

Dimension of Controls 13 563

Counties FE Yes Yes

Year FE Yes Yes

Notes: Samples include towns with a non-high elderly population in the years 2000-2019. In col-
umn (1), I use existing estimators based on the approach described in Bajari et al. (2010b). I use
pre-selected market covariates, as described in Appendix 22. In column (2), I use my developed
orthogonal estimators, which employ a data-driven approach to variable selection, I utilize a pool of
market characteristics described in Appendix 13. I further use sample splitting and moment condi-
tions based on equation (2.3.6) to remove biases from ML in the first stage of nuisance parameters
estimation. Standard errors are clustered at the county level. Significance levels are denoted by +
p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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Table 6: Pharmacy Accessibility under Subsidy Counterfactual Scenario (Year: 2019)

Limited Pharmacy Access in Towns (%)

Predicted CF S2 △ △%

Total Markets 34.1 28.4 -5.7 -16.71

Total Population

Below median (≤1,226) 40.0 35.3 -4.7 -11.76

Above median (>1,226) 28.2 21.6 -6 -23.61

Prop. Vehicle=0

Below median (≤0.055) 35.7 31 -4.7 -13.19

Above median (>0.055) 32.5 25.9 -6.6 -20.48

Prop. under Poverty Line

Below median (≤0.12) 38 31.7 -6.28 -13.45

Above median (>0.12) 30.2 25.1 -5.1 -16.88

Share of Age over 65

Below median (≤0.24) 33.7 29.0 -4.7 -13.95

Above median (>0.24) 34.5 27.8 -6.6 -19.32

Presence of Chain Pharmacy in 2000

No chain pharmacy within 15 miles 32.9 27.1 -5.8 -17.65

Chain pharmacy present within 15 miles 39.6 34.3 -5.2 -13.16

Minority Group

Below 10% 35.6 30 -5.6 -15.98

Above 10% 16.6 10 -6.6 -40.00

Notes: Sample includes towns with a high ratio of elderly populations in the year 2019. Based on
the structural parameters from Table 4, I re-solve the equilibrium by using a nested fixed point
algorithm in equations (2.4.1) and (2.4.2), by proving 10% subsidy to independent pharmacies.
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Table 7: Expected Number of Stores under Chain Pharmacy Counterfactual

(Year: 2019)

(Average) Independent Pharmacy Counts

Predicted CF S1 ( △ ) ( △ )

Total Markets 0.672 0.742 0.070 10.42

Total Population

Below median (≤1,226) 0.588 0.592 0.004 0.68

Above median (>1,226) 0.780 0.890 0.110 14.10

Prop. Vehicle=0

Below median (≤0.055) 0.668 0.702 0.034 5.09

Above median (>0.055) 0.690 0.780 0.090 13.04

Prop. under Poverty Line

Below median (≤0.12) 0.640 0.722 0.082 12.81

Above median (>0.12) 0.736 0.760 0.024 3.26

Share of Age over 65

Below median (≤0.24) 0.682 0.726 0.044 6.45

Above median (>0.24) 0.686 0.756 0.070 10.21

Presence of Chain Pharmacy in 2000

No chain pharmacy within 15 miles 0.700 0.740 0.040 5.71

Chain pharmacy present within 15 miles 0.614 0.750 0.136 22.15

Minority Group

Below 10% 0.682 0.738 0.056 8.21

Above 10% 0.732 0.800 0.068 9.29

Notes: Towns with high ratio of elderly populations are used. Based on the structural parameters
from Table 4, I re-solve the equilibrium by using a nested fixed point algorithm in equations (2.4.1)
and (2.4.2), fixing the number of chain pharmacies in 2000.
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2.7 Figures

Figure 2: Trends in Limited Pharmacy Accessibility

Notes: The data points represent a three-year moving average based on the limited pharmacy
access, taken from a final sample of 802 townships. A township is designated as a limited pharmacy
access (indicator value of 1) if there are no independent or chain pharmacies within its boundaries.
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Figure 3: Trends in Pharmacy Access by High-Elderly Population/Non-High Elderly

Population Towns

Notes: The data points are based on a three-year moving average, illustrating limited pharmacy
access from a sample of 802 townships. A township takes an indicator value of 1 for limited pharmacy
access if it has no independent or chain pharmacies within its town boundaries. Townships with
over 20% of their population aged 65 or older in the year 2000 are classified as “elderly”, while
those with less than 20% in the year 2000 are defined as “non-elderly.”
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Figure 4: An Example: Spatial Distribution in Independent/Chain Pharmacy

(a) Year: 2000
# of Chain within 15 miles: 1

(b) Year: 2010
# of Chain within 15 miles: 3

(c) Year: 2019
# of Chain within 15 miles: 5

Note: The samples in this study are drawn from Superior Township in Kansas and

their neighborhood, covering the years 2000 to 2019. In the visual representation,

Superior Township is highlighted in grey. Independent pharmacies are marked with

red circles, while chain pharmacies are indicated by blue stars. The vertical labels

represent latitude, and the horizontal labels denote longitude. This figure highlights

the following: 1. Chain pharmacies are more abundant and densely situated in high-

demand areas, such as shopping malls. 2. The decline of independent pharmacies

has contributed to the growth of pharmacy deserts in the US.
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Figure 5: (Average) Number of Independent/Chain Pharmacies between 2000-2019
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Figure 6: Event Study: The Effects of Chain Pharmacy Entry on Local Independent

Pharmacies

Note: Coefficient plots from event-study difference-in-differences analyses that

regress the number of independent pharmacies in a township on year fixed effects,

county fixed effects, control variables, and market× year fixed effects. The sample

consists of 802 townships between 2000 and 2019. The omitted baseline period is

t = −1, which is the last pre-treatment period. Standard errors are clustered at the

county level and error bars represent 95 confidence intervals.
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Figure 7: Heterogeneity by Ratio of Elderly Population Towns: the Effects of Chain

Pharmacy Entry on Local Independent Pharmacies

(a) High Elderly Population Townships (b) Non-High Elderly Population Township

Note: This figure presents coefficient plots from event-study difference-in-differences analyses,

which regress the number of independent pharmacies in a township on year-fixed effects, town fixed

effects, control variables, and market× year-fixed effects. Figure 7a includes data from 291 “high

elderly population towns”, defined as townships with an over-65 population ratio higher than 20%

in the year 2000. Figure 7b includes data from 511 “non-high elderly population towns”, defined as

townships with an over-65 population ratio lower than 20% in the year 2000. The baseline period,

omitted in this analysis, is t = −1, representing the last pre-treatment period. Standard errors are

clustered at the town level, and error bars represent 95% confidence intervals.
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Figure 8: Algorithm Steps

Take a K-fold random partition (Ik)
K
k=1 with the same size n = N/K. For each

k ∈ {1, . . . , K}, define Ick as the complement of Ik.

1. For each k ∈ {1, . . . , K}, construct an ML estimator η̂k using the subsample Ick.

a. Obtain γ̂−imtk using ML Classifiers of a−imt on s−imt, simt and sxmt.

b. Obtain β̂k = (β̂ek, β̂xk) using Logit Lasso estimator of aimt on γ̂−imtk, simt

and sxmt.

c. Compute θ̂k = (θ̂γk, θ̂ck) from the original moment function (2.3.5).

d. Compute the conditional densities f̂k.

e. Estimate µ̂k = (µ̂γk, µ̂ck) from the Lasso estimator of f̂kzimt on f̂kximt.

f. Collect η̂k = (γ̂−imtk, β̂k, µ̂zk).

2. Construct the estimator (θ̂γ, θ̂c) as the solution to

1

K

K∑
k=1

Ln,k(θ, η̂k) = 0

where Ln,k(θ) = {En,k [ψ(θ, η̂k)]}2 and En,k is the empirical expectation over Ik,

that is, En,k[ψ(w)] = n−1
∑

imt∈Ik ψ(wimt). The moment function used in the

objective function is defined in equation (2.3.6).
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Figure 9: Goodness of Fit: High elderly population towns
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Notes: Towns with a high ratio of elderly populations are used. Based on the structural parameters
from Table 4, I re-solve the equilibrium by using a nested fixed point algorithm in equations (2.4.1)
and (2.4.2). Then, I compare the observed number of independent pharmacies with the predicted
number of independent pharmacies from the equilibrium choice probabilities, σ∗.
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3.0 Horizontal Merger and Post-Entry Market Structure: Evidence

from Acquisition in the Retail Pharmacy Market

“Guideline 4. Mergers Should Not Eliminate a Potential Entrant in

a Concentrated Market: Mergers can substantially lessen competition by elimi-

nating a potential entrant. For instance, a merger can eliminate the possibility that

entry or expansion by one or both firms would have resulted in new or increased com-

petition in the market in the future. A merger can also eliminate current competitive

pressure exerted on other market participants by the mere perception that one of the

firms might enter.”

Source: 2023 Horizontal Guidelines by U.S. Department of Justice and the Fed-

eral Trade Commission

3.1 Introduction

Healthcare industries have undergone substantial consolidation, including hos-

pitals, physicians, health insurers, and pharmacies through horizontal mergers and

acquisitions. For example, there were more than 200 hospital mergers between 1998

and 2010 (Gaynor (2011)). In addition, vertical mergers between health insurance

companies and pharmacies have accelerated the consolidation in the overall health-

care industry.

With the increasing prevalence of market consolidation in the U.S., the effects

of horizontal mergers on competition and market dynamics remain heated debates
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for regulators and economists. While extensive research has been conducted on the

immediate price effects and welfare implications of such mergers, the subsequent

patterns of market entry behavior have been largely overlooked. This paper aims

to address this gap by providing the first causal evidence of how horizontal mergers

between dominant firms affect post-entry market behaviors, specifically analyzing

the pharmacy sector’s response to the Walgreens-Rite Aid merger in 2018.

Horizontal mergers, particularly among leading market players, raise both public

and antitrust concerns. A key question is whether the merger lessens competition,

ultimately harming consumer welfare. The Horizontal Merger Guidelines by the De-

partment of Justice and the Federal Trade Commission emphasize the importance of

assessing post-merger entry, which should ideally be timely, likely, and sufficient to

deter any negative impacts on competition. Guided by regulators, this study exam-

ines the ex-post analysis of a high-profile merger between two top-ranking pharmacies

- Walgreens and Rite Aid.

To understand the post-merger behaviors of pharmacies, I use a comprehensive

dataset from 2010 to 2021, which includes the partial acquisition between Walgreens

and Rite Aid in 2018. I examine the merger’s effect on the total number of operational

stores, a proxy for competition, and further investigate the possibility of market entry

by non-merging competitors, a key determinant of a healthy competitive market.

Using a difference-in-differences estimation framework, I find that merger approval

decreases the number of operational stores by an average of 0.4 units post-merger,

representing a 19% reduction in store count. This suggests that horizontal mergers

might decrease competition, with no new market entries by non-merging competitors

observed. I find no empirical evidence that the horizontal merger induces new market

entries by non-merging competitors. These findings challenge the argument presented

by merging firms that any reduction in competition resulting from a merger would
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be offset by new entries.

I also explore alternative methodologies for defining treatment. Specifically, in

towns that have either a Walgreens or Rite Aid one year prior to the merger’s ap-

proval, I designate those as ’treated towns’ if one of these pharmacies closes its

stores post-approval. This approach allows for a nuanced analysis of the merger’s im-

pact on local pharmacy availability. Employing a staggered Difference-in-Differences

approach, as outlined by Callaway and Sant’Anna (2021), the main findings are

consistent in that the merger decreases the number of pharmacies by 0.6 units or

equivalently 27%. The reported magnitude is somewhat larger than observed in

preferred specifications, as exit behaviors decrease the total number of pharmacies.

Additionally, these results are robust, whether the comparison involves defining the

untreated group as a never-treated group or a not-yet-treated group Further analysis

of heterogeneity across income groups reveals that towns with lower incomes expe-

rienced a higher rate of pharmacy closures. This suggests new policy implications:

mergers could be more carefully approved based on the income levels of the towns

affected. The results are further supported by findings that only the highest-income

towns experienced an increase in the number of non-merging pharmacies

This paper contributes to the growing body of literature on consolidation, par-

ticularly in healthcare, as exemplified by Gaynor et al. (2015), and examines the

impact of mergers on price changes in the healthcare industry, following Tenn (2011),

Haas-Wilson and Garmon (2011), and Thompson (2011). It also relates to empirical

studies on the price effects and welfare changes following horizontal mergers in other

retail industries, as seen in Weinberg (2008), Miller and Weinberg (2017), Miller et

al. (2017), and Mansley et al. (2023). Collard-Wexler (2014) and Igami and Uetake

(2020) use dynamic structural models to simulate entry behaviors before and after

mergers. As the dynamic structural models of Collard-Wexler (2014) and Igami and
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Uetake (2020) require numerous assumptions and substantial computational costs,

this paper’s approach to causal inference offers insights into the impact of mergers

on market structure and competition, akin to the principle of Occam’s Razor. To

my knowledge, this is the first paper to offer causal estimates of the effects of hor-

izontal mergers on post-entry behaviors. Considering that Walgreens and Rite Aid

may offer differentiated products, such as a wider range of generic drugs and supe-

rior in-network health insurance options, the entry behaviors following these mergers

could provide new insights into consumer welfare. For instance, approving a merger

might limit the choices available to consumers in certain geographic areas, potentially

leading to a decrease in consumer welfare.

This study also contributes to the theoretical literature on market entry and com-

petition. The literature indicates that the presence and degree of sunk costs and entry

barriers influence the timing of market entries following a horizontal merger (Wer-

den and Froeb (1998); Cabral (2003); Marino and Zábojńık (2006); and Davidson

and Mukherjee (2007)). My empirical investigation sheds light on these theoretical

predictions within the context of the pharmacy sector, which is hypothesized to have

relatively low sunk costs associated with opening stores Kim (2023). The findings

offer suggestive evidence regarding the duration and permanence of the impact of

horizontal mergers on market structure. This paper indicates that even in indus-

tries with relatively low barriers to entry, the effects on the number of stores can be

prolonged.
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3.2 The Retail Pharmacy Industry

Approximately 60,000 pharmacies are operating in the United States. Of those,

about 35-40% belong to one of the three leading pharmacy chains: Walgreens, CVS,

and Rite Aid. Walgreens was founded in 1901 in Chicago, CVS Pharmacy in 1963,

and Rite Aid in 1962. All three have expanded by opening new stores or acquiring

smaller chains.

These national chains have rapidly increased their market shares through ac-

quisitions. For example, in 2012, Walgreens acquired a Mid-South drugstore chain

operating under the banners of USA Drug, Super D Drug, May’s Drug, Med-X,

and Drug Warehouse. In 2006, CVS acquired Eckerd Drug Stores, which had over

2,500 stores, and in 2015, CVS purchased Target’s pharmacy and clinic businesses

for approximately $1.9 billion, adding over 1,600 pharmacies to its network. Rite

Aid began expanding rapidly in the 1980s and, in 1996, acquired Thrifty PayLess

with over 1,300 stores. In 2007, Rite Aid acquired Genovese Drug Stores with over

1,200 stores1.

The consolidation of small pharmacy chains in North Carolina exemplifies this

trend. In 2014, CVS acquired Navarro Discount Pharmacy, which had 17 stores in

the state, and Walgreens acquired Kerr’s 76 retail drugstores. In 2015, CVS acquired

Target’s pharmacy and clinic businesses, which included 13 stores in North Carolina,

and Walgreens bought Duane Reade with 10 stores in the state.

In the 2000s, there was continued expansion of both merchandise-based pharma-

cies (e.g., Walmart, Sam’s Club, Target) and supermarket-based pharmacies (e.g.,

Kroger, Publix), particularly after 2005, which reduced the market share of indepen-

1Source: https://www.usatoday.com/story/money/2015/10/27/walgreens-rite-aid/74684642/
and https://fortune.com/2017/06/29/walgreens-rite-aid-merger-ftc/
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dent pharmacies. By 2019, there were 22,773 chain pharmacies, 21,683 independent

pharmacies, 8,427 supermarket-based pharmacies, and 8,597 mass merchant-based

pharmacies in the United States.2

3.2.1 Background of Merger between Walgreens and Rite Aid

In October 2015, Walgreens announced its plan to acquire Rite Aid for $6.8

billion, a move that would have created the largest pharmacy chain in the United

States with over 14,000 stores. However, the merger faced immediate opposition

from antitrust regulators concerned about the potential for reduced competition and

increased consumer prices. Media coverage echoed these concerns, highlighting fears

of a monopolistic retail pharmacy market. Public opinion further emphasized worries

about diminished consumer choice, given that Walgreens and Rite Aid are among

the nation’s leading pharmacy chains.

The Federal Trade Commission (FTC) initiated investigations into the merger in

November 2015. In April 2016, the FTC filed a lawsuit to block the merger, arguing

that it would reduce competition in 1,900 local markets where Walgreens and Rite

Aid were two of the few pharmacy chains operating. The FTC also argued that the

merger would give Walgreens too much power over drug pricing.

The trial began in June 2016 and lasted for several weeks. The FTC presented

evidence from economists and industry experts who testified that the merger would

lead to higher prices and reduced choice for consumers. Walgreens presented evidence

from its experts who testified that the merger would benefit consumers by leading

to lower prices and more innovation.

In January 2017, Judges of the United States District Court for the District of

2Source: 2020 NATIONAL COMMUNITY PHARMACISTS ASSOCIATION DIGET
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Columbia agreed with the FTC and blocked the merger. The judges found that the

merger would significantly reduce competition in the retail pharmacy market. Wal-

greens and Rite Aid then negotiated a new agreement in June 2017, under which

Walgreens would partially acquire 2,186 Rite Aid stores for $5.2 billion, instead of

a full takeover. After further negotiation with the FTC, the Commission closed its

investigation of a revised transaction under which Walgreens would acquire some

Rite Aid stores, while Rite Aid would retain most of its network. Figure 10 pro-

vides a summary of the timeline of the partial acquisition. Despite the approval,

consumer groups and public opinion continued to express concerns about potential

anti-competitive effects.

3.3 Data

My data sources are fourfold: Data Axle, which tracks pharmacy openings and

closings; public records from the FTC’s investigation into the mergers of Walgreens

and Rite Aid; demographic information from the 2010 to 2021 American Community

Surveys at the census tract level; and the 2010 US Census Tract Shapefile.

Using Data Axle’s information on business establishments, I identify the location

and status (open or closed) of each pharmacy. After mapping each pharmacy’s

location using longitude and latitude, I group them into census tract markets. I then

count the pharmacies, separating those affiliated with Walgreens or Rite Aid from

those belonging to other competitors. I define a market based on the census tract,

similar to the sizes found in towns, as noted by Schaumans and Verboven (2008).

For this analysis, I only consider markets that had at least one pharmacy operating

at any time from 2010 to 2021 and had a census tract with a population of at least
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one thousand.

To check the quality of the data, I look at the number of stores reported in

North Carolina and compare it to the number in my final data set, as shown in the

Appendix Table 30. The reported number of stores from my data is very close to

the reported numbers in Rite Aid’s financial reports.

3.3.1 Geographic Illustration

In this section, I illustrate how the horizontal merger led to the consolidation of

the pharmacy industry in North Carolina. First, Figure 11 shows the locations of

pharmacies before and after the merger. To compare the geographic distribution of

stores, I captured snapshots of each store’s location in 2017 and 2021. I observed

the following: 1. Pharmacy stores are more prevalent in census tracts with higher

population densities. 2. Following the merger approval, Walgreens and Rite Aid

closed 187 stores, reducing the number from 510 in 2017 to 353 in 2021. This was

implemented by Walgreens administrative levels to avoid cannibalization and save

costs. As a result of the partial merger, a few Rite Aid stores remained under Rite

Aid ownership.

To further investigate the pattern of exits, Figure 14 displays the markets where

Walgreens and Rite Aid operated during my sample period from 2010 to 2021. In

cases where Walgreens and Rite Aid locations were nearby, the merged entity (Wal-

greens Boots Alliance) tended to close Rite Aid stores. Although both chains gen-

erally prefer locations in areas of higher population density due to greater demand,

the decisions to close stores appear to be geographically dispersed across the state.

This distribution mitigates concerns regarding endogenous treatment. Section 3.4.2

provides additional discussion on this alternative definition of treatment.
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Appendix Figure 26 illustrates the changes in the market structure before and

after the merger approval in 2018. I observe that there is no significant change in

the percentage of monopolies, duopolies, or oligopolies in markets not treated by the

merger. As Walgreens and/or Rite Aid reduced their store count by more than 30%,

the overall ratio of monopolies to oligopolies decreased, while the number of unserved

areas increased. This suggests that Walgreens may have been closing unprofitable

stores following a detailed evaluation of each store’s performance.

3.3.2 Descriptive Evidence

I examine the impact of horizontal mergers on market structure changes using

descriptive statistics. First, I assess the effectiveness of the horizontal merger between

Walgreens and Rite Aid on the number of pharmacies, as shown in Figure 12a.

There was a consistent upward trend due to increased entries from supermarket-

based pharmacies and big-box stores like Walmart. The store count for Walgreens

and Rite Aid remained relatively stable but experienced a notable decline following

the merger approval, which aligns with empirical evidence from Figure 11. Figure 12b

further outlines the average number of stores within treated and untreated groups. I

classify a census tract as ‘treated’ if one of the merging entities (either Walgreens or

Rite Aid) was active there in the year 2017-the year before the merger’s approval.3

Overall, Figure 12 indicates that the horizontal merger led to the closure of stores

by the merged entity in certain locations.

To further illustrate the changes in post-entry behaviors, Figure 13 examines

the behavior of non-merged competitors. Figure 13a presents the number of active

stores operated by non-merged firms, and I find no evidence to suggest that the

3I use the alternative definition of ‘treated’ group in Section 3.4.2 refers to instances where the
merging entity closed one of its stores.
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horizontal merger has facilitated new entries by these firms. Figure 13b shows the

number of new entries by non-merged firms, indicating a change in new entries in

the year 2020. To examine whether these trends are pronounced after controlling for

observable characteristics, I will introduce dynamic event studies in Section 4.

3.4 Empirical Strategy

In this section, I estimate the effects of horizontal mergers on market structures

(number of pharmacies, number of non-merging identities’ pharmacies), and whether

mergers induce new entries by non-merger identities. I also show that the findings

are robust to other potential concerns.

Table 8 presents the mean and standard deviations of market characteristics of

total markets, markets with the presence of Walgreens/Rite Aid in the year 2017,

and markets with the absence of Walgreens/Rite Aid in the year 2017. There are

differences in the average levels of some of the variables(e.g., total population, pop-

ulation density) across towns. Furthermore, given that closing decisions of stores

by Walgreens and Rite Aid are endogenous, I will closely illustrate the possibility of

pre-trends well as balance tests, in subsequent sections.

3.4.1 Estimating Dynamic Treatment Effects

To estimate changes in treatment effects over time, including potential pre-trends,

I conduct an event study to illustrate the effects of horizontal mergers in the years

leading up to and following the merger’s approval in 2017, which took effect in 2018.
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In this regression, I estimate the following equation:

Ymt =
∑
τ

δτEventm,t−τ + βXmt + λm + αt + γct + εmt (3.4.1)

Here, Eventm,t is a dummy variable indicating whether the merged entity was active

in 2018 at location m in period t. The dependent variable Ymt represents the total

number of retail pharmacies, including new entries by non-merged entities, in census

tract m during year t. I control for census tract-level demographics Xmt, unobserved

census tract-level fixed effects λm, and annual time fixed effects αt. To account for

time-varying unobserved heterogeneity, I include county-year fixed effects γct, where

c denotes the county and t the year. The analysis takes a binary specification, such

that Eventmt takes the value of 1 if the merged firms were active in 2018. 4

Figure 15 shows that the standard TWFE (two-way fixed effect) indicates an

absence of statistically significant effects in terms of pre-trends. However, the nega-

tive coefficients in the post-merger years suggest that the merger led to changes in

the market with Walgreens and Rite Aid closing stores, as stated anecdotally. The

event study supports the empirical findings that the horizontal merger had a nega-

tive impact on the number of pharmacies, which is consistent with the narrative that

Walgreens and Rite Aid closed many stores following the merger.

To evaluate how these industry changes have led to new entries by competitors,

I defined the dependent variables as ‘the number of competitors’ stores’ and ‘the

number of new competitors’ entries, respectively. For both event studies in Figure 16,

I found no pre-trends or post-merger effects, suggesting that the closure of Walgreens

and Rite Aid stores did not lead to new entrants.

4As I assumed a one-shot event for this analysis, it does not require a staggered two-way fixed
effects design.
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3.4.2 Difference-in-Differences Estimators

To study the connection between horizontal mergers between dominant firms and

post-market competition, I exploit variations in the timing and locations of pharmacy

store closures in North Carolina between 2010 and 2021. The market (census tract)

is considered to be treated if the number of stores by merged firms decreases after

the merger was approved in 2018.

As I did not find pretends between treated and control groups from the event

studies, I estimate the effect of horizontal mergers on the post-market structure using

the standard two-way fixed effects:

ymt = +βD(t > Tm) + βXmt + αm + γt + θct + ϵmt, (3.4.2)

where ymt is the outcome of interest; the total number of stores, the total number

of non-merged pharmacies, entries by non-merged pharmacies, Tm denotes the hor-

izontal merger being effective census tract with Walgreens and Rite Aid stores in

the previous year, D(·) denotes the indicator function, which takes one if Tm takes

the value one and otherwise zero. I also use two-way fixed effects by controlling

time-invariant market fixed effects αm, and time-fixed effects γt.

I begin by estimating the difference-in-differences (DD) framework outlined in

Equation 3.4.2. In my baseline specification, Column (1) of Table 9 indicates a

0.4 unit decrease in the total number of pharmacies, suggesting that the horizontal

merger is associated with a significant decrease in the number of pharmacies in the

treated census tracts. Next, I examine the reactions of competitors by analyzing

the total number of non-merging pharmacies and their entries, presented in Columns

(2) and (3) of Table 9, respectively. I interpret this as follows: 1) The pharmacy

market may already be saturated, indicating that there is insufficient demand for
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new pharmacies to enter the market even after the closures. 2) Alternatively, there

could be high barriers to entry, such as established brand loyalties and significant

product differentiation, which make it challenging for new competitors to penetrate

the market.

3.4.3 Alternative Approach: Staggered Difference-in-Differences Esti-

mators

As competitors are unlikely to have incentives to enter the market unless there

are store closures by the merged entity- either Walgreens or Rite Aid, I employ an

alternative definition of treatment. I designate a census tract as treated if the number

of stores from either Rite Aid or Walgreens decreases in that census tract following

the merger approval. Conversely, census tracts without such a decrease are defined

as untreated. The primary distinction from the previous definition of treatment is

that non-merged firms now have a clear incentive to enter the market when one of

the merged identities closes the store, providing incentives for potential entrants.

As the closure of pharmacy stores by the merged entity has been heterogeneous

across the years and market, I adopt staggered Difference-in-Difference with two-way

fixed effects (TWFE) designs (e.g. Goodman-Bacon (2021), Callaway and Sant’Anna

(2021)). I address two issues: (i) heterogeneous treatment effects in the presence of

different timing of treatment, which can induce bias in coefficients due to the use of

different timing groups (early versus late-treated) as controls, and (ii) pre-treatment

effects. To do this, I run event studies that detect possible pre-trends as well as

robust to heterogeneous treatment timing.

Given the possibility that markets untreated by horizontal mergers might funda-

mentally differ due to the presence of Rite Aid or Walgreens stores before the merger
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approval, I experiment with constructing sub-samples. These sub-samples are based

on census tracts where a Rite Aid or Walgreens store was present before the horizon-

tal merger approval. Furthermore, I conduct experiments with different untreated

groups. This involves distinguishing between groups that were never treated and

those not yet treated, to account for staggered treatment.

Admittedly, the decision to entry or exit decision by pharmacies could be endoge-

nous. In particular, it is possible that a firm’s plans to enter or exit a market are

determined, in part, by expectations about future market cost and demand factors

that also affect post-entry or post-exit prices.

Figure 17 shows that Callaway and Sant’Anna (2021)’ estimator indicates an

absence of statistically significant effects in terms of pre-trends and robust to different

untreated groups and never-treated/not-yet-treated groups. Post-treatment effects

show that the entry of chain pharmacies is associated with a decreased number of

independent pharmacies in the census tract. Compared to the preferred event study

framework shown in Figure 6, the magnitudes are somewhat larger. This increase is

attributed to the construction of treatment effects, which involve the exit of either

Walgreens or Rite Aid.

To further examine post-entry behaviors by non-merged competitors, I imple-

ment a similar staggered TWFE approach to detect pre-trends in the number of

non-merged firms and the number of entries by non-merged firms, as illustrated in

Appendix 27 and 29. Similarly, I find no evidence of pre-trends similar to the event

study as in Figure 13b.
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3.4.4 Estimation Results from Staggered Difference-in-Differences Esti-

mators

To investigate whether the horizontal merger leads to new entries from non-

merged firms, I employ a staggered DID specification. Here, ‘treated’ is defined as

those instances where either Walgreens or Rite Aid closed stores after the merger

took effect. Table 10 demonstrates that this alternative definition of treatment yields

effects qualitatively similar to those previous findings. However, the impact of the

horizontal merger on the total number of pharmacies is statistically different and

larger from that in Table 9, likely because the treatment now focuses on the exit

behaviors of Walgreens or Rite Aid, resulting in more pronounced effects. Column

(2) considers ‘not-yet-treated’ as the untreated group and shows results that are

quite similar. To address concerns that untreated groups could differ significantly

depending on whether Walgreens or Rite Aid were present before the merger ap-

proval, I use sub-samples with the presence of either Walgreens or Rite Aid prior

year to the merger approval. The findings in Columns (3) and (4) confirm that the

results remain robust.

Next, I document the reaction of the rivals’ pharmacies and whether the exit of

the incumbent merged identity changes the market structure. As a proxy, I look at

two outcomes: the total number of rival pharmacies to capture both entry and exit

behaviors of rival pharmacies, and new entries by non-merged pharmacies. Appendix

Table 11 and Appendix Table 12 show that results are again consistent with the

previous findings. For the full sample, regardless of the choices of constructing an

untreated group as never treated or not yet treated, the exit of merged firms does

not change the market environments. I caution that if non-merging firms perfectly

know when Walmart or Rite Aid closed associated with mergers, then the timing of
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treatment could be an issue. In Appendix Table 29, after adding market-level fixed

effects in sub-graphs (c), I fail to detect significant pre-trends and provide empirical

evidence for the exogeneity of closures by Walgreens/Rite Aids, using a balance test.

3.4.5 Identification

The identification assumption in the differences-in-differences analysis is that the

entry/exit decisions by non-merging pharmacies exposed to treatment would have

followed the same trend as the store choices not exposed to the merger between

Walgreens and Rite Aid. In Figure 12, I show that the number of non-merging

pharmacy stores that were and were not competing with Walgreens/Rite Aid did

not diverge from one another before the horizontal mergers. Additionally, I find

that treated and untreated markets followed the same trend before the horizontal

mergers, suggesting that untreated markets are a good control group for treated

markets, which provides empirical justification for the identification assumption (see

Figure 16 and Figure 17). While the sample selection is always a concern with

differences-in-differences research designs, this is less concerning for my setting since

the approval of the horizontal merger was unexpected by both the public media and

rival firms. Furthermore, anecdotal evidence reveals that the timing of the closure of

Walgreens or Rite Aid was nearly random and also unknown to rival firms, implying

that the store decisions of rival pharmacies were not affected by the expectation of

being “treated”.

3.4.6 Heterogeneity Analysis

Which market characteristics driving these changes in market structure? As

Walgreens or Rite Aid might want to keep their stores in urban areas, or higher-
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income markets, competitors might respond heterogeneously to these changes. To

investigate this, I quantify the closures of Walgreens or Rite Aid associated with

Mergers by different income quantiles. Following the Staggered TWFE framework,

Table 31 represents that lower per captia groups might experience a more intense

decrease in the total number of pharmacies. In Table 32, the effects of horizontal

mergers on the number of non-merged firms are only statistically significant in higher

per capita income groups, which implies that merger approval by low-income groups

might require more careful investigation by regulatory authorities.5

3.4.7 Robustness Check

In this section, I address additional potential concerns and confirm that previous

empirical findings remain valid under further robustness checks.

Alternative Treatment: Expand into Adjacent Markets: Since Walgreens

and Rite Aid’s store closures may affect adjacent markets, I redefine the treatment

area to encompass adjacent census tracts. This modification ensures that the analysis

considers the potential spillover effects of the mergers into neighboring areas. In

Appendix Tables 35, 36, and 34, I demonstrate that the impact of horizontal mergers

on the total number of pharmacies is somewhat moderated due to the dynamics of

spatial competition. Furthermore, I corroborate the previous findings with untreated

groups with never-treated or not-yet-treated, and subgroups analysis.

Alternative TWFE: I also use an alternative event-study estimator (de Chaise-

martin and D’Haultfoeuille, 2023), which is robust to heterogeneous treatment tim-

ing, and the outcome may be affected by treatment lags. Estimates from this ap-

proach can be found in Appendix Table 40. The post-treatment estimates are highly

5I could not find different entries effects by income groups in Table 33.
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similar to those from Callaway and Sant’Anna (2021)’s method, corroborating the

robustness of staggered TWFE estimators in my settings.

Alternative demographic variables: Building on the work of Igami and Yang

(2016), population density could serve as an alternative proxy for market demands-

prescription. I demonstrate the robustness of my findings to alternative demographic

controls, including population dentisites, in Appendix Tables 39, 37, and 38.

3.5 Conclusion

This study offers insights into the dynamics of competition and market entry fol-

lowing horizontal mergers, with a focus on the significant merger between Walgreens

and Rite Aid in 2018. The key findings suggest that such mergers, especially among

dominant firms, do not always encourage market entry by new entrants or non-

merging competitors, contradicting claims often made by the merging entities. Em-

ploying the preferred staggered TWFE method by Callaway and Sant’Anna (2021),

I observed a 24% decrease in the total number of stores post-merger, indicating a

potential reduction in competition.

Heterogeneity analysis reveals that the effects of the merger on pharmacy num-

bers are more pronounced in lower-income towns compared to higher-income towns.

This implies that regulatory agencies could consider the income levels of towns when

approving mergers. The findings are consistent with observations that only the

highest-income towns saw an increase in the number of non-merging pharmacies.

Given that the Federal Trade Commission approved a partial acquisition between

Walgreens and Rite Aid, more detailed scrutiny of spatial competition across differ-

ent market types could protect consumer surplus and ensure the availability of more
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pharmacies in nearby areas.
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3.6 Tables

Table 8: (Average) Summary Statistics by Market Type

Market Type
Market Characteristics Total Without Walgreens/Rite Aid

(2017)
With Walgreens/Rite Aid
(2017)

Total Population 4263.14 4181.94 4086.22
(1478.27) (1495.36) (1403.93)

Population Density 1500.49 1445.51 1725.41
(1399.55) (1436.22) (1212.91)

Mean Per Capita Income 28194.38 27773.2 29917.38
(13880.97) (13503.68) (15210.28)

Share of Population ≥ Age
over 65

0.153 0.151 0.159

(0.069) (0.071) (0.061)
Share of Population Minority 0.330 0.329 0.332

(0.235) (0.237) (0.224)
Share of Vacancy Housing
Units

0.131 0.134 0.116

(0.101) (0.106) (0.073)
Total Observations 11,424 9,180 2,244

Notes: The unit of observation for demographic variable is the census-tract-year. Standard devia-
tions are in parentheses.
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Table 9: Horizontal Merger and Pharmacy Stores

Outcome: Pharmacies Non-merging Pharmacies Non-merging Pharmacy Entries

(1) (2) (3)

Horizontal Merger -0.394∗∗∗ 0.0410 0.0170

(0.0292) (0.0282) (0.0192)

Census Tract FE Yes Yes Yes

Year FE Yes Yes Yes

Controls Yes Yes Yes

Observations 11413 11413 11413

Outcome mean 1.520 1.198 0.143

Adjusted R2 0.802 0.756 0.0448

Notes: Estimates are from difference-in-differences regressions of the number of stores in census
tract c in year t on an indicator called ”horizontal merger,” which equals one for a census tract
in the years following the activity of either Walgreens or Rite Aid and zero otherwise. Column
(1) includes the total number of pharmacies. Column (2) includes the total number of pharmacies
from non-merging firms. Column (3) includes the total number of new entries by non-merging
pharmacies. Standard errors are clustered at the census tract level. Significance levels are denoted
by + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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Table 10: Horizontal Merger and Number of Pharmacy Stores

Outcome: Total Pharmacies

(1) (2) (3) (4)

Closure of Merged Pharmacy -0.682∗∗∗ -0.680∗∗∗ -0.836∗∗∗ -0.800∗∗∗

(0.071) (0.071) (0.136) (0.121)

Census Tract FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Controls Yes Yes Yes Yes

Observations 11,408 11,413 2,244 2,244

Outcome mean 1.520 1.520 2.37 2.37

Sample Full sample Full sample Sub-sample Sub-sample

Untreated Group Never-treated Not-yet-treated Never-treated Not-yet-treated

Notes: Estimates are from staggered TWFE Callaway and Sant’Anna (2021) regressions of the
number of stores in census tract c in year t on an indicator called “closure of merged pharmacy,”
which equals one for a census tract in the years following the closure of either Walgreens or Rite
Aid after the merger approval and zero otherwise. The outcome of interest is the total number of
pharmacies. Column (1) includes a full sample with never treated as an untreated group. Column
(2) includes a full sample with not-yet-treated as an untreated group. Column (3) includes census
tract with the presence of either Walgreens or Rite Aid prior year to merger approval with never
treated as an untreated group. Column (4) census tract with the presence of either Walgreens or
Rite Aid prior year to merger approval with not-yet-treated as an untreated group. Standard errors
are clustered at the census tract level. Significance levels are denoted by + p<0.10, * p<0.05, **
p<0.01, *** p<0.001.
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Table 11: Horizontal Merger and Non-merged Pharmacy Stores

Outcome: Total Number of Non-merging Pharmacies

(1) (2) (3) (4)

Closure of Merged Pharmacy 0.076 0.078 -0.066 -0.045

(0.057) (0.057) (0.153) (0.133)

Census Tract FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Controls Yes Yes Yes Yes

Observations 11,408 11,413 2,244 2,244

Outcome mean 1.198 1.198 1.329 1.329

Sample Full sample Full sample Sub-sample Sub-sample

Untreated Group Never-treated Not-yet-treated Never-treated Not-yet-treated

Notes: Estimates are from staggered TWFE Callaway and Sant’Anna (2021) regressions of the
number of stores in census tract c in year t on an indicator called “closure of merged pharmacy,”
which equals one for a census tract in the years following the closure of either Walgreens or Rite
Aid after the merger approval and zero otherwise. The outcome of interest is the total number of
pharmacies. Column (1) includes a full sample with never treated as an untreated group. Column
(2) includes a full sample with not-yet-treated as an untreated group. Column (3) includes census
tract with the presence of either Walgreens or Rite Aid prior year to merger approval with never
treated as an untreated group. Column (4) census tract with the presence of either Walgreens or
Rite Aid prior year to merger approval with not-yet-treated as an untreated group. Standard errors
are clustered at the census tract level. Significance levels are denoted by + p<0.10, * p<0.05, **
p<0.01, *** p<0.001.
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Table 12: Horizontal Merger and Entries of Non-merged Pharmacy Stores

Outcome: Total Number of Entries of Non-merging Pharmacies

(1) (2) (3) (4)

Closure of Merged Pharmacy 0.021 0.022 -0.066 -0.030

(0.039) (0.0039) (0.058) (0.063)

Census Tract FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Controls Yes Yes Yes Yes

Observations 11,408 11,413 2,244 2,244

Outcome mean 0.143 0.143 0.171 0.171

Sample Full sample Full sample Sub-sample Sub-sample

Untreated Group Never-treated Not-yet-treated Never-treated Not-yet-treated

Notes: Estimates are from staggered TWFE Callaway and Sant’Anna (2021) regressions of the
number of stores in census tract c in year t on an indicator called “closure of merged pharmacy,”
which equals one for a census tract in the years following the closure of either Walgreens or Rite
Aid after the merger approval and zero otherwise. The outcome of interest is the total number of
pharmacies. Column (1) includes a full sample with never treated as an untreated group. Column
(2) includes a full sample with not-yet-treated as an untreated group. Column (3) includes census
tract with the presence of either Walgreens or Rite Aid prior year to merger approval with never
treated as an untreated group. Column (4) census tract with the presence of either Walgreens or
Rite Aid prior year to merger approval with not-yet-treated as an untreated group. Standard errors
are clustered at the census tract level. Significance levels are denoted by + p<0.10, * p<0.05, **
p<0.01, *** p<0.001.
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3.7 Figures

Figure 10: Walgreens and Rite Aid Merger Events Timeline
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Figure 11: Geographic Distribution of Stores Location Before/After the Horizontal

Merger

(a) Year: 2017 (Before the merger approval)

(b) Year: 2021 (After the merger approval)

Notes: The figure shows the geographic distribution of Walgreens, Rite Aid, and other pharmacies
in North Carolina before (2018) and after the horizontal merger between the two companies. The
map is color-coded by population density with four quartiles, with darker colors indicating higher
population density.
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Figure 12: Number of Stores Before/After the Horizontal Merger

(a) Average Number of Stores by Firm: Merged Firms and Non-merged
Firms

(b) (Average) Number of Stores by Treated/Untreated Towns

Notes: Figure 12a represents the average number of stores in 952 census tracts in North Carolina
for Merged Entity (Walgreens and Rite AId) and Non-merge Entity, which is all other competitors.
Figure 12b represents the average number of stores in the 952 census tract, conditional on the treated
census tract or untreated census tract. The treated census tract is defined as if either Walgreens
or Rite Aid was active in 2017. The untreated census tract is defined if neither Walgreens or Rite
Aid were active in 2017.
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Figure 13: Number of Stores Before/After the Horizontal Merger

(a) Average Number of Non-Merged Stores by Treatment

(b) (Average) Number of New Entries of Stores by Treated/Untreated Towns

Notes: Figure 13a represents the average number of non-merged stores in 952 census tracts in
North Carolina for Merged Entity (Walgreens and Rite Aid) and Non-merge Entity, which is all
other competitors. Figure 13b represents the average number of new entries by non-merged firms in
the 952 census tract, conditional on the treated census tract or untreated census tract. The treated
census tract is defined as if either Walgreens or Rite Aid were active in 2017.
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Figure 14: Geographic Distribution of Exit of Stores Before/After the Horizontal

Merger

Notes: The figure shows the geographic distribution of closing stores of Walgreens and Rite Aid in
North Carolina after the horizontal merger between the two companies. The map is color-coded by
population density with four quartiles, with darker colors indicating higher population density.
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Figure 15: Event Study: The effects of the horizontal merger on the total number of

pharmacies

Notes: Coefficient plots from event-study difference-in-differences analyses that regress the number
of independent pharmacies in a census tract on year fixed effects, census tract fixed effects, control
variables, and market× year fixed effects. The sample consists of census tracts between 2010 and
2021. The omitted baseline period is t = −1, which is the last pre-treatment period. Standard
errors are clustered at the census-tract level and error bars represent 95 confidence intervals.
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Figure 16: Event Study: The effects of the horizontal merger on the new entries by

non-merged firms

(a) (Average) Number of Non-Merged
Stores by Treatment/Untreated Groups

(b) (Average) Number of New Entires of
Stores by Treated/Untreated Towns

Notes: Coefficient plots from event-study difference-in-differences analyses that regress the number
of new entrants by non-merged firms in a census tract on year fixed effects, census tract fixed effects,
control variables, and market× year fixed effects. The sample consists of census tracts between 2010
and 2021. The omitted baseline period is t = −1, which is the last pre-treatment period. Standard
errors are clustered at the census-tract level and error bars represent 95 confidence intervals.
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Figure 17: Horizontal Mergers and Pharmacy: Event Study

(a) Full sample
Untreated: Never treated

(b) Full sample
Untreated: Not-yet-treated

(c) Sub-sample
Untreated: Never treated

(d) Sub-sample
Untreated: Not-yet-treated

Notes: Coefficient plots from event-study difference-in-differences analyses that regress the number
of new entrants by non-merged firms in a census tract on year fixed effects, census tract fixed effects,
control variables, and market× year fixed effects. The full sample consists of census tracts between
2010 and 2021. The sub-sample includes census tracks where a Rite Aid or Walgreens store was
present before the horizontal merger approval. The omitted baseline period is t = −1, which is the
last pre-treatment period. Standard errors are clustered at the census-tract level and error bars
represent 95 confidence intervals.
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Appendix A Review of Discrete Static Games

A.1 Discrete Games Details

Under strategic interaction settings1, I also assume a simultaneous game setup

wherein players make decisions simultaneously without observing the choices of their

counterparts. In line with the discrete game literature, I incorporate the notion of

belief information, ensuring that players hold correct beliefs about their rivals’ choice

probabilities. This view aligns with the Bayesian Nash equilibrium, where agents’

beliefs about their rivals correspond with the actual conditional choice probabilities.

However, this assumption might be strong in real-world scenarios. Xie (2022) pro-

posed a more flexible approach by including unrestricted unknown functions in their

model, suggesting an avenue for future research.

Building on this, the optimal decisions of player i are encapsulated by the fol-

lowing:

σ∗
i (ai = 1|s) = Pr

 Πi(ai = 1, s)︸ ︷︷ ︸
=
∑

a−i∈A−i
σ−i(a−i|s)πi(ai=1,a−i,s)

+ϵi(1) ≥ Πi(ai = 0, s)︸ ︷︷ ︸
=0

+ϵi(0)


σ∗
−i(a−i = 1|s) =

Pr

 Π−i(a−i = 1, s)︸ ︷︷ ︸
=
∑

a−i′ ̸=−i∈A−i′
σ−i′ (a−i′ |s)π−i(a−i=1,ai,s)

+ϵ−i(1) ≥ Π−i(a−i = 0, s)︸ ︷︷ ︸
=0

+ϵ−i(0)

 .
1If no strategic interaction exists, implying that the flow utility is independent of other players’

choices, the strategic model simplifies to a binary logit model. In this single-agent model, utility is
solely a function of the individual’s choice, relevant state variables, and private information.
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Agents choose to be active if and only if the sum of deterministic expected payoff and

stochastic error components associated with being active is greater than the outside

option and associated private information.

To provide a comprehensive overview, I mapped out the sequence of events in

the game, which is illustrated in Figure 18. At each time point t, in every market,

players initially receive their private insights, symbolized by ϵi(ai). Subsequently,

all participants become aware of the relevant state vectors, d. Based on knowledge

about their rivals’ private choices, represented by f−i(a−i), each player i anticipates

how their competitors might act, as signified by the choice probability σ−i(a−i|s).

Having gathered all this information, players then finalize their decisions, denoted

ai, and the game progresses to the succeeding period, t+ 1.

I now describe the mapping from choice-specific value functions to equilibrium

choice probabilities. Under assumptions about correct belief, Type 1 Extreme Value

distributions over private information, and normalized outside payoff, I can express

equilibrium choice probabilities of choosing to be active as a system of equations.

Taking a two-player game as an example, the choice probabilities, from both the

econometrician’s and the rival’s perspectives, are articulated as:

σi(ai = 1|s) = Ψi(Πi(ai, s)) :=
exp(πi(ai = 1, s))

1 + exp(πi(ai = 1, s))

σ−i(a−i = 1|s) = Ψ−i(Π−i(a−i, s)) :=
exp(π−i(a−i = 1, s))

1 + exp(πi(a−i = 1, s))
(A.1.1)

where equilibrium functions Ψ map the choice-specific value function into choice

probabilities. By the rational expectation assumption, the probability of being active

is the equilibrium probability in that she makes her best responses after observing

the state variable, which is consistent with Bayesian Nash equilibrium (BNE).
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A.2 Discussion on Multiple Equilibria and Estimation Approach

There are primarily two approaches to address the aforementioned challenge.

Building upon the nested fixed point (NXFP) method introduced by Rust (1987),

Aguirregabiria and Mira (2002) devised an iterative algorithm tailored for dynamic

games, which can be seamlessly adapted for static games. Specifically, within the in-

ner loop, the algorithm iterates to the fixed point in 1.2.4, delineating the relationship

between equilibrium choices, σi, and equilibrium beliefs for each player i = 1, . . . , n.

Subsequently, the outer loop employs each candidate parameter vector to compute a

pseudo-likelihood, echoing the conventional maximum likelihood approach inherent

to logistic regression. This iterative mechanism persists until convergence is attained.

The NXFP method, sometimes referred to as the nested pseudo-likelihood approach,

includes two primary limitations: the computational intensity arising from the dual-

layered iteration and the assumption of a unique equilibrium in the model, which

precludes the possibility of multiple equilibria2.

The second approach, pioneered by Hotz and Miller (1993), Bajari et al. (2010b),

and dynamic games (Berry and Reiss (2007)) employs a two-step method. This

method is computationally light and uses weaker assumptions about multiple equi-

libria compared to the NXFP algorithm. 3 In the first stage, I non-parametrically es-

2For every prospective parameter vector, the algorithm necessitates the determination of a fixed
point for equilibrium choices.

3For an in-depth discussion and comparison of these methodologies, I direct readers to Ellickson
and Misra (2011). It’s essential to note that I am not advocating for the superiority of the two-
step methods over NXFP. My perspective stems from the ease with which one can integrate the
findings of Newey (1994) and Chernozhukov et al. (2022). Given that the two-step approaches
align with the classical semi-parametric estimation framework, it’s feasible to apply the properties
detailed in Chernozhukov et al. (2022). The incorporation of high-dimensional covariates based on
NXFP methods is outside of the scope of this paper. For a relevant perspective, consider Dearing
and Blevins (2019) and their exposition on zero Jacobian properties within the context of Efficient
Pseudo-Likelihood.
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timate conditional expectation γ−i = E[a−i = 1|s] from observed choices and market

characteristics d.4 In the second stage, the econometrician estimates a single-agent

random utility model. This model incorporates both market characteristics, s, and

the equilibrium beliefs, γ−i, obtained from the first stage.

Given that multiple equilibria are prevalent in models with discrete games in the

literature, I introduce an assumption regarding the selection of an equilibrium from

the set of potential equilibria.

Assumption A.2.1 (Equilibrium Selection).

The data are generated by a single equilibrium from the set of possible multiple

equilibria and observed equilibrium does not switch over different markets.

This assumption is relatively weaker compared to the uniqueness assumption, as

it permits the existence of multiple equilibria in the model. As long as the equilibrium

played in the data remains consistent across different markets or time periods, the

initial stage of estimation accurately retrieves the choice probabilities of the under-

lying choice-specific value functions. Consequently, even if the obtained parameters

might suggest other equilibria not played in the data, the estimates in the second

stage remain consistent. Notably, this assumption is widely employed in two-stage

estimation approaches, encompassing both static games (Bajari et al. 2010b, Ellick-

son and Misra 2011), and dynamic games (Aguirregabiria and Mira 2007, Bajari et

al. 2007, Pesendorfer and Schmidt-Dengler 2008).

When coupled with the equilibrium selection assumption, the two-stage methods

obviate the need for iterative model solving, effectively addressing the challenge posed

by multiple equilibria in the estimation process. Additionally, researchers can derive

4A formal introduction to the econometric principles underpinning the two-step methods will be
presented in the subsequent section.
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a set of structural parameters without the need for repeated model solving, leading

to a substantial reduction in computation time.

A.3 Identification

This section focuses on reviewing the identification results established in the lit-

erature, specifically in the works of Bajari et al. (2010b) and Bajari et al. (2010a).

The purpose of revisiting Bajari et al. (2010b) is to highlight that the incorpora-

tion of high-dimensional state variables denoted as d does not alter the identification

outcomes. Thus, the arguments developed in Bajari et al. (2010b) remain appli-

cable even when dealing with high-dimensional covariates. To enhance readability

and comprehension of the recovery process for underlying structural parameters θ, I

present a restatement of the identification problems.

Definition 2 (Identification). Deterministic payoff components π(ai, a−i, s) are iden-

tified if different deterministic payoff components σi(ai = 1|s) ̸= σ̃i(ai = 1|s) yield

alternative equilibrium probabilities π(ai, a−i, s) ̸= π̃(ai, a−i, s).

The identification condition requires that different payoffs should generate dif-

ferent equilibrium choice probabilities. A necessary condition implies that without

further assumptions about exclusion restrictions, the identification of the underlying

model cannot be achieved. Manski (1993) called this issue a reflection problem asso-

ciated with social interaction. To further illustrate this issue, consider the following

illustrative examples featuring two players, denoted as (i = 1, 2), engaging in binary
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choices. Their respective choice-specific value functions can be expressed as:

Π1(a1 = 1|s)︸ ︷︷ ︸
unknown

= σ2(a2 = 1|s) π1(a1 = 1, a2 = 1|s)︸ ︷︷ ︸
unknown

+ (1− σ2(a2 = 1|s)) π1(a1 = 1, a2 = 0|s)︸ ︷︷ ︸
unknown

Π1(a1 = 0|s)︸ ︷︷ ︸
known

= 0

Π2(a2 = 1|s)︸ ︷︷ ︸
unknown

= σ1(a1 = 1|s) π2(a1 = 1, a2 = 1|s)︸ ︷︷ ︸
unknown

+ (1− σ1(a1 = 1|s)) π1(a1 = 0, a2 = 1|s)︸ ︷︷ ︸
unknown

Π2(a2 = 0|s)︸ ︷︷ ︸
known

= 0

(A.3.1)

After fixing d, the left-hand side of equation ( A.3.1) comprises two unknown com-

ponents: the deterministic utilities Π1(a1 = 1, s) and Π2(a2 = 1, s). In accordance

with the assumption 1.2.2, the expected payoff of remaining inactive, Π1(a1 = 0, s)

and Π2(a2 = 0, s), is known to the econometrician, which normalized to zero. Con-

versely, on the right-hand side of the equation, there exist four unknowns: π1(a1 =

1, a2 = 1, s), π1(a1 = 1, a2 = 0, s), π2(a1 = 1, a2 = 1, s), and π2(a1 = 0, a2 = 1, s).

This results in an under-identified scenario.5

The utilization of exclusion restrictions is a common strategy for disentangling

the system of equations in ( A.3.1) to satisfy identification condition.6 The exclusion

restriction requires that the relevant state variable d can be split into two compo-

nents: one that is universal across all players within the same market, referred to

5The recovery of choice probabilities σi relies on first-stage reduced form choice probabilities.
6For more comprehensive discussions, see Bajari et al. (2010b), Bajari et al. (2010b).
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as sx, and player-specific shocks denoted as si for each player i = 1, ..., n. Notably,

player-specific shocks do not directly impact the payoffs of player −i, but they do

influence the rival’s payoffs indirectly through their effects on the rival’s endogenous

choices.

Assumption A.3.1 (Exclusion Restriction ).

πi(ai, a−i, s) = π(ai, a−i, sx, si).

Given the imposition of exclusion restrictions, let d = (sx, s1, s2), where sx rep-

resents common state variables for players 1 and 2 in the same markets, s1 is player

1’s specific state variable, and s2 is player 2’s specific state variable. When sx is

held constant, it can be omitted for simpler notation. For the exposition, I further

assume that each shifter takes binary values: ‘H’ denotes High, and ‘L’ denotes Low.

To streamline the discussion, let Πi(ai = 1|s1 = H, s2 = H) := Πi(ai = 1|H,H) and

116



σi(ai = 1, a−i = 1|s1 = H, s2 = H) := σi(ai = 1, a−i = 1|H,H) for brevity.

Π1(a1 = 1|H,H) = σ2(a2 = 1|H,H) π1(a1 = 1, a2 = 1|s1 = H, s2 = H)︸ ︷︷ ︸
=π1(a1=1,a2=1|s1=H)

+ (1− σ2(a2 = 1|H,H)) π1(a1 = 1, a2 = 0|s1 = H, s2 = H)︸ ︷︷ ︸
=π1(a1=1,a2=0|s1=H)

Π1(a1 = 1|H,L) = σ2(a2 = 1|H,L) π1(a1 = 1, a2 = 1|H,L)︸ ︷︷ ︸
=π1(a1=1,a2=1|s1=H)

+ (1− σ2(a2 = 1|H,L)) π1(a1 = 1, a2 = 0|H,L)︸ ︷︷ ︸
=π1(a1=1,a2=0|s1=1)

Π1(a1 = 1|L,H) = σ2(a2 = 1|L,H) π1(a1 = 1, a2 = 1|L,H)︸ ︷︷ ︸
=π1(a1=1,a2=1|s1=L)

+ (1− σ2(a2 = 1|L,H)) π1(a1 = 1, a2 = 0|L,H)︸ ︷︷ ︸
=π1(a1=1,a2=0|s1=L)

Π1(a1 = 1|L,L) = σ2(a2 = 1|L,L)π1(a1 = 1, a2 = 1|L,L)

+ (1− σ2(a2 = 1|L,L))π1(a1 = 1, a2 = 0|L,L)︸ ︷︷ ︸
=π1(a1=1,a2=0|s1=L)

(A.3.2)

The exclusion restriction implies that π1(a1 = 1, a2 = 1|s1 = H, s2 = H) = π1(a1 =
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1, a2 = 1|s1 = H, s2 = L), which leads to the following equation:

Π1(a1 = 1|H,H) = σ2(a2 = 1|H,H)π1(a1 = 1, a2 = 1|s1 = H)

+ (1− σ2(a2 = 1|H,H))π1(a1 = 1, a2 = 0|s1 = H)

Π1(a1 = 1|H,L) = σ2(a2 = 1|H,L)π1(a1 = 1, a2 = 1|s1 = H)

+ (1− σ2(a2 = 1|H,L))π1(a1 = 1, a2 = 0|s1 = H)

Π1(a1 = 1|L,H) = σ2(a2 = 1|L,H)π1(a1 = 1, a2 = 1|s1 = L)

+ (1− σ2(a2 = 1|H,L))π1(a1 = 1, a2 = 0|s1 = L)

Π1(a1 = 1|L,L) = σ2(a2 = 1|L,L)π1(a1 = 1, a2 = 1|s1 = L)

+ (1− σ2(a2 = 1|L,L))π1(a1 = 1, a2 = 0|s1 = L) (A.3.3)

The left-hand side of the system of equations in A.3.3 involves dim(s1) ×

dim(s2) = 2 × 2 = 4 unknowns. In contrast, the right-hand side of the equation

encompasses four unknowns (π1(a1 = 1, a2 = 1|s1 = H), π1(a1 = 1, a2 = 0|s1 =

H), π1(a1 = 1, a2 = 1|s1 = L), π1(a1 = 1, a2 = 0|s1 = L)). This implies that the

equation A.3.3 is identified. A similar argument can be applied to demonstrate the

identification of payoffs for player 2 based on equation A.3.4.

Π2(a1 = 1|H,H) = σ1(a1 = 1|H,H)π2(a1 = 1, a2 = 1|s2 = H)

+ (1− σ1(a1 = 1|H,H))π2(a1 = 1, a2 = 0|s2 = H)

Π2(a1 = 1|H,L) = σ1(a1 = 1|H,L)π2(a1 = 1, a2 = 1|s2 = H)

+ (1− σ1(a1 = 1|H,L))π2(a1 = 1, a2 = 0|s2 = H)

Π2(a1 = 1|L,H) = σ1(a1 = 1|L,H)π2(a1 = 1, a2 = 1|s2 = L)

+ (1− σ1(a1 = 1|H,L))π2(a1 = 1, a2 = 0|s2 = L)

Π2(a1 = 1|L,L) = σ1(a1 = 1|L,L)π2(a1 = 1, a2 = 1|s2 = L)

+ (1− σ1(a2 = 1|L,L))π2(a1 = 1, a2 = 0|s2 = L) (A.3.4)
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More generally, the choice-specific value functions as expressed in equation (1.2.3)

could lead to the following expression:

Πi(ai = 1, s)︸ ︷︷ ︸
unknown

=
∑

a−i∈A−i

σ−i(a−i|s)︸ ︷︷ ︸
known

πi(ai = 1, a−i, s)︸ ︷︷ ︸
unknown

for all i = 1, ..., N. (A.3.5)

This equation implies that, once sx is fixed, the left-hand side of the equations

contains N unknowns (Π1, ..,Πn), whereas the right-hand side equations encompass

N × 2n−1 unknowns (πi(ai = 1, a−i, s)).
7 Consequently, without the introduction of

exclusion restrictions, the system of equations in ( A.3.5) cannot be identified. Next,

armed with the assumption of exclusion restrictions as given in Assumption A.3.1,

I can reformulate the choice-specific value function as follows:

Πi(ai = 1, si, s−i)︸ ︷︷ ︸
unknown

=
∑

a−i∈A−i

σ−i(a−i|si, s−i)︸ ︷︷ ︸
known

πi(ai = 1, a−i, si)︸ ︷︷ ︸
unknown

for all i = 1, ..., N.

(A.3.6)

Evidently, the number of unknowns (free parameters) on the left-hand side has

reduced from πi(ai = 1, a−i|si, s−i) to πi(ai = 1, a−i, si). This induces more varia-

tions on the right-hand side than the number of unknowns on the left-hand side flow

utilities Πi(ai = 1, si, s−i), which is the over-identified case.8 It follows the necessary

condition that the supports of beliefs σ−i(a−i = 1|si, s−i) need to be sufficiently rich

with 2n−1 points. It is evident that the incorporation of high-dimensional common

market characteristics sx does not impact the identification conditions, as long as the

rank conditions for s−i given si are satisfied. The crucial determinants of identifica-

tion are the number of players, choices, and variations s−i|si involved in the system,

rather than the dimensionality of the common market characteristics sx.

7The challenge posed by the curse of dimensions is evident, as players are required to formulate
beliefs about all possible choices for their rivals.

8In practice, testing for over-identification can be performed as suggested in Bajari et al. (2013).
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Remark 1 (Identification).

1. Suppose that Assumption 1.2.2 and Assumption A.3.1 are satisfied. As long as

there are 2n−1 points in the support of conditional distribution s−i|si related to

σ−i(a−i|si, s−i), then the necessary condition holds.

2. Allowing high dimensional market characteristics sx does not change necessary

conditions for identification.

A common example of exclusion restrictions is player-specific productivity shocks

(Ericson and Pakes (1995)). Other instances encompass factors like the distance of a

store to its distribution center, as explored in studies such as (Holmes, 2011) and (Jia,

2008). The underlying concept behind imposing exclusion restrictions is as follows:

by imposing a restriction on the distance to the distribution center, the distance

between player −i and the distribution center of player −i, denoted as s−i, will

directly impact player −i’s entry probability. Conversely, player i’s entry probability

is indirectly influenced by s−i through the choices made by the rival. The variation

in the distance between player −i and the distribution center of player −i provides

more equations in comparison to the number of unknowns on the left-hand side of

the equation ( A.3.6).
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Appendix B Tables

Table 13: Summary Statistics: High Elderly Population Township

Panel A. Year 2000-2009 Panel B. Year 2010-2019

Variable Frequency Mean S.D Median Min Max Mean S.D Median Min Max

Township-level variables

Pop.a Decennial 1434 725 1307 153 4859 1385 732 1227 117 4745

Income per Capita b Decennial 16808 2206 16721 10022 27227 21345 3417 21202 12156 37437

Prop. Age in 6-17c Decennial 0.176 0.02 0.18 0.09 0.24 0.160 0.03 0.16 0.08 0.25

Prop. Age 18-65c Decennial 0.509 0.04 0.51 0.37 0.65 0.535 0.04 0.54 0.39 0.76

Prop. Age over 65 Decennial 0.262 0.05 0.25 0.20 0.48 0.246 0.05 0.24 0.10 0.49

Prop. Female Decennial 0.528 0.02 0.53 0.37 0.59 0.518 0.02 0.52 0.29 0.62

Prop. White Decennial 0.972 0.04 0.98 0.55 1.00 0.959 0.06 0.97 0.41 1.00

Prop. Black Decennial 0.002 0.01 0.00 0.00 0.08 0.004 0.01 0.00 0.00 0.17

Prop. Native Decennial 0.010 0.03 0.00 0.00 0.43 0.013 0.04 0.00 0.00 0.53

Prop. Asian Decennial 0.008 0.02 0.00 0.00 0.16 0.012 0.02 0.01 0.00 0.25

Avg. Household Size Decennial 605 302 560 74 2189 597 306 544 49 2079

Prop. Education 9-12 years Decennial 0.101 0.03 0.10 0.04 0.22 0.076 0.04 0.07 0.00 0.23

Prop. High School Graduates Decennial 0.379 0.06 0.38 0.17 0.57 0.389 0.07 0.39 0.13 0.59

Prop. Some college Decennial 0.211 0.04 0.21 0.12 0.35 0.220 0.05 0.22 0.10 0.53

Prop. Bachelor Decennial 0.163 0.04 0.16 0.04 0.31 0.204 0.06 0.20 0.03 0.37

Prop. Graduates Decennial 0.040 0.02 0.04 0.00 0.13 0.044 0.02 0.04 0.00 0.17

Prop. Unemployment Decennial 0.045 0.03 0.04 0.00 0.23 0.060 0.04 0.05 0.00 0.37

Prop. Commuting to Work - Vehicle Decennial 0.867 0.05 0.88 0.60 0.97 0.868 0.07 0.88 0.47 1.00

Prop. Commuting to Work - Public transportation Decennial 0.002 0.00 0.00 0.00 0.04 0.004 0.02 0.00 0.00 0.24

Prop. Commuting to Work - Taxi Decennial 0.000 0.00 0.00 0.00 0.01 0.000 0.00 0.00 0.00 0.03

Prop. Commuting to Work - Walk Decennial 0.074 0.04 0.07 0.00 0.35 0.067 0.05 0.06 0.00 0.32

Prop. Commuting to Work - Motobicycle Decennial 0.010 0.01 0.01 0.00 0.12 0.015 0.02 0.01 0.00 0.10

Prop. Poverty Decennial 0.101 0.04 0.09 0.03 0.32 0.131 0.07 0.12 0.00 0.47

Prop. Housing Vacancy Decennial 0.133 0.11 0.10 0.02 0.73 0.162 0.12 0.13 0.03 0.76

Prop. in Rent Decennial 0.249 0.07 0.24 0.04 0.47 0.271 0.07 0.26 0.06 0.53

Prop. Vehicle = 0 Decennial 0.076 0.03 0.07 0.00 0.22 0.062 0.04 0.06 0.00 0.25

Prop. Vehicle = 1 Decennial 0.349 0.05 0.35 0.10 0.53 0.325 0.07 0.33 0.00 0.57

Prop. Vehicle = 2 Decennial 0.382 0.05 0.38 0.22 0.50 0.380 0.06 0.38 0.19 0.67

Prop. Vehicle = 3 Decennial 0.138 0.04 0.14 0.02 0.29 0.161 0.06 0.15 0.02 0.42

Prop. Vehicle = 4 Decennial 0.040 0.02 0.04 0.00 0.26 0.049 0.03 0.04 0.00 0.18

Pharmacy Desertd Annual 0.178 0.38 0.00 0.00 1.00 0.224 0.42 0.00 0.00 1.00

Ind. Pharmacies (Town)e Annual 0.841 0.52 1.00 0.00 2.00 0.715 0.58 1.00 0.00 2.00

Chain Pharmacies (15 miles)f Annual 0.357 0.78 0.00 0.00 6.00 0.676 1.16 0.00 0.00 7.00

County-level characteristics

Physician Offices Annual 5.699 8.90 3.00 1.00 80.00 6.622 10.07 3.00 1.00 80.00

State-level characteristics

Prop. Insurance Age 18-64g Annual 0.878 0.02 0.88 0.83 0.93 0.879 0.04 0.88 0.79 0.97

Prop. Insurance Age over 65g Annual 0.993 0.01 0.99 0.97 1.00 0.991 0.01 0.99 0.96 1.00

N 5110 5110

Notes: “High elderly population town” is defined as townships with an age over 65 population ratio higher than 20% in the year 2000. “Decennial” implies that the census is conducted
every ten years. “Annual” indicates that updates are made on a yearly basis. a “Pop.” refers to the total population of each township. b “Income per Capita” represents the median
income of each township. c “Prop.” stands for the proportion of a specific demographic group within the population. d “Pharmacy deserts” is a binary variable taking the value 1 if
there are no available pharmacies within the township. e “Ind. Pharmacy” denotes the average number of independent pharmacies within the township. f “Chain Pharmacy” denotes
the average number of chain pharmacies within a 15-mile radius of the centroid of the township. g “Prop. Insurance” refers to the ratio of the population within each age group
enrolled in health insurance.
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Table 14: Summary Statistics: Non-High Elderly Population Township

Panel A. Year 2000-2009 Panel B. Year 2010-2019

Variable Frequency Mean S.D Median Min Max Mean S.D Median Min Max

Township-level variables

Pop.a Decennial 2079 1578 1775 114 14388 2087 1592 1826 123 14738

Income per Capitab Decennial 16410 3012 16455 8360 35705 20912 4450 20807 10306 42282

Prop. Age in 6-17c Decennial 0.205 0.03 0.20 0.11 0.32 0.182 0.03 0.18 0.08 0.30

Prop. Age 18-65c Decennial 0.570 0.03 0.57 0.47 0.70 0.583 0.03 0.58 0.48 0.74

Prop. Age over 65 Decennial 0.159 0.03 0.17 0.05 0.20 0.168 0.04 0.17 0.05 0.37

Prop. Female Decennial 0.507 0.02 0.51 0.39 0.62 0.502 0.02 0.50 0.31 0.55

Prop. White Decennial 0.920 0.16 0.98 0.03 1.00 0.907 0.17 0.97 0.03 1.00

Prop. Black Decennial 0.011 0.05 0.00 0.00 0.50 0.011 0.05 0.00 0.00 0.52

Prop. Native Decennial 0.044 0.15 0.00 0.00 0.96 0.047 0.16 0.00 0.00 0.96

Prop. Asian Decennial 0.014 0.03 0.00 0.00 0.23 0.019 0.04 0.01 0.00 0.31

Avg. Household Size Decennial 799 606 687 49 6062 820 619 707 58 6193

Prop. Education 9-12 years Decennial 0.121 0.05 0.11 0.03 0.30 0.091 0.05 0.09 0.00 0.29

Prop. - High School Graduates Decennial 0.399 0.07 0.40 0.19 0.66 0.403 0.08 0.40 0.19 0.59

Prop. Education - Some college Decennial 0.204 0.05 0.20 0.03 0.40 0.211 0.06 0.21 0.00 0.44

Prop. Bachelor Decennial 0.151 0.05 0.15 0.04 0.32 0.189 0.07 0.18 0.04 0.71

Prop. Graduate Decennial 0.040 0.02 0.04 0.00 0.16 0.046 0.03 0.04 0.00 0.27

Prop. Unemployment Decennial 0.055 0.04 0.04 0.00 0.36 0.083 0.06 0.07 0.00 0.46

Prop. Commuting to Work - Vehicle Decennial 0.887 0.07 0.90 0.15 0.97 0.883 0.09 0.90 0.00 1.00

Prop. Commuting to Work - Public transportation Decennial 0.003 0.01 0.00 0.00 0.06 0.004 0.01 0.00 0.00 0.08

Prop. Commuting to Work - Taxi Decennial 0.000 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.03

Prop. Commuting to Work - Walk Decennial 0.045 0.04 0.04 0.00 0.30 0.045 0.05 0.03 0.00 0.37

Prop. in Commuting to Work - Motorcycle/Bicycle Decennial 0.013 0.04 0.01 0.00 0.62 0.016 0.04 0.01 0.00 0.61

Prop. Poverty Decennial 0.121 0.07 0.10 0.01 0.40 0.140 0.08 0.13 0.00 0.39

Prop. Housing Vacancy Decennial 0.129 0.11 0.09 0.02 0.62 0.158 0.12 0.12 0.03 0.76

Prop. in Rent Decennial 0.250 0.09 0.24 0.03 0.57 0.260 0.10 0.25 0.06 0.59

Prop. Vehicle = 0 Decennial 0.071 0.06 0.06 0.00 0.54 0.065 0.07 0.05 0.00 0.72

Prop. Vehicle = 1 Decennial 0.309 0.08 0.31 0.04 0.50 0.290 0.09 0.30 0.00 0.51

Prop. Vehicle = 2 Decennial 0.391 0.06 0.39 0.07 0.65 0.381 0.08 0.39 0.06 0.69

Prop. Vehicle = 3 Decennial 0.159 0.05 0.15 0.02 0.34 0.174 0.07 0.17 0.03 0.56

Prop. Vehicle = 4 Decennial 0.048 0.03 0.04 0.00 0.30 0.061 0.04 0.05 0.00 0.31

Pharmacy Desertd Annual 0.342 0.47 0.00 0.00 1.00 0.341 0.47 0.00 0.00 1.00

Ind. Pharmacies (Town)e Annual 0.671 0.55 1.00 0.00 2.00 0.646 0.58 1.00 0.00 2.00

Chain Pharmacies (15 miles)f Annual 0.746 1.12 0.00 0.00 7.00 1.382 1.73 1.00 0.00 7.00

County-level characteristics

Physician Offices Annual 9.425 11.46 5.00 1.00 96.00 9.155 10.66 5.00 1.00 83.00

State-level characteristics

Prop. Insurance Age 18-64g Annual 0.871 0.02 0.87 0.83 0.93 0.873 0.04 0.87 0.79 0.97

Prop. Insurance Age over 65g Annual 0.992 0.01 0.99 0.97 1.00 0.991 0.01 0.99 0.96 1.00

N 2910 2910

Notes: “Non-high elderly population township” is defined as townships with an age over 65 population ratio lower than 20% in the year 2000. “Decennial”

implies that the census is conducted every ten years. “Annual” indicates that updates are made on a yearly basis. a “Pop.” refers to the total population

of each township. b “Income per Capita” represents the median income of each township. c “Prop.” stands for the proportion of a specific demographic

group within the population. d “Pharmacy deserts” is a binary variable taking the value 1 if there are no available pharmacies within the township. e

“Ind. Pharmacy” denotes the average number of independent pharmacies within the township. f “Chain Pharmacy” denotes the average number of chain

pharmacies within a 15-mile radius of the centroid of the township. g “Prop. Insurance” refers to the ratio of the population within each age group enrolled

in health insurance.
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Table 15: The New Entries in Chain Pharmacies with Different Distances and the

Number of Independent Pharmacies.

(1) (2) (3) (4)

Independent Stores Independent Stores Independent Stores Independent Stores

I(Chain Entry=1, 0-5 miles) -0.446∗∗∗

(0.0402)

I(Chain Entry=1, 5-10 miles) -0.0569∗

(0.0255)

I(Chain Entry=1, 10-15 miles) -0.0274+

(0.0159)

I(Chain Entry=1, 15-20 miles) -0.00700

(0.00977)

Township FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Market × Year FE Yes Yes Yes Yes

Controls Yes Yes Yes Yes

Observations 16040 16040 16040 16040

Mean of Dep. Variable 0.735 0.735 0.735 0.735

Adjusted R2 0.573 0.537 0.537 0.537

Note: Estimates are from fixed effects regressions of the new entry of chain pharmacies within
different distances on the number of independent pharmacies in township m and year t. Column
(1) denotes the entry of chain pharmacies within 5 miles, Column (2) denotes the entry of chain
pharmacies between 5 and 10 miles, Column (3) denotes the entry of chain pharmacies between
10 and 15 miles, and Column (4) denotes the entry of chain pharmacies between 15 and 20 miles.
Standard errors are clustered at the town level. Significance levels are denoted by + p < 0.10, * p
< 0.05, ** p <0.01, and *** p < 0.001.
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Table 16: Logit Regression on Independent Pharmacy’s Entry.

(1) (2)

I(Rival Store=1) -3.273∗∗∗ -3.293∗∗∗

(0.176) (0.178)

Chain Pharmacies within 15 mi -0.543∗∗∗ -0.526∗∗∗

(0.0713) (0.0727)

Pharmacy’s Employee Size 1.951∗∗∗ 1.965∗∗∗

(0.222) (0.224)

Rival’s Employee Size -1.222∗∗∗ -1.210∗∗∗

(0.259) (0.259)

Total Pop. 0.972∗∗∗ 0.966∗∗∗

(0.221) (0.221)

Income Per Capita 0.0418 0.262

(0.290) (0.464)

Physician Offices -0.00292 0.0295

(0.133) (0.134)

Prop. Age over 65 5.772∗∗ 5.734∗∗

(1.930) (1.926)

Prop. Female 4.086 4.056

(4.021) (4.052)

Prop. Black -7.822 -7.379

(6.323) (6.414)

Prop. - High School Graduates -0.975 -0.859

(1.358) (1.367)

Prop. Unemployment -1.586 -1.220

(1.961) (2.064)

Prop. Vehicle = 0 5.855∗∗ 5.869∗∗

(1.798) (1.837)

Medicaid Expansion 0.218∗∗ 0.0781

(0.0822) (0.112)

Prop. Insurance Age over 65 -1.483 -5.553

(3.096) (3.439)

County FE Yes Yes

Year FE No Yes

Observations 32,040 32,040

Mean of Dep. Variable 0.367 0.367

Adjusted R2 0.348 0.350

Notes: Binary Logit estimates of stay-in/out in township m and year t. These results do not
control for the endogeneity of decisions between small independent pharmacy stores. Column (1)
includes observable demographic variables and county-fixed effects. Column (2) includes observable
demographic variables, county-fixed effects, and year-fixed effects. Standard errors are clustered at
the town level. Significance levels are denoted by + p<0.10, * p<0.05, ** p<0.01.*** p<0.001.
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Table 17: Pharmacy Store Opening Costs (Example)

Item Description Expected Cost($)

Building

Permits Construction, including electri-

cal, plumbing, architect draw-

ing/building, plumbing & electri-

cal permits, cost of building mate-

rial and supplies

2,000

Construction Bathroom refresh, drywall, elec-

trical, plumbing, pharmacy and

clinic sink, paint

25,000

Pharmacy/clinic outfit Cabinetry, countertops, shelving,

storage, medication fridge

20,000

Controlled medsafe Purchase and bolted to floor 5,000

Shelving Store perimeter wall 10,000-15,000

Signage For exterior (marketing) and inte-

rior (location of products) phar-

macy drop off/pick up, outside

boxed sign, in-store signage

5,000

Inventory

Furniture Waiting area 2,000

Pharmacy supplies Vials, labeling, stationery, com-

pounding supplies, paper

2,000

Electronic

Electronic items Computers, cash register,

phone system, TV, fax ma-

chine dispensing system,

phones/fax/printer/cash reg-

ister, ATM machines

15,000

Cable services Comcast internet, phone (3 lines),

TV services connection

500

Other

Insurance Building, workers comp, Profes-

sional Liability

250

Security Gates for pharmacy, blinds for

clinic, remote alarm, camera sys-

tem

15,000

Advertising/Printing Multi-language promo mate-

rial, business cards, leaflets,

patient education, newspa-

per advertisements (American,

Chinese/Vietnamese papers),

calendars/mugs/etc

Total Costs 107,750-112,750

Source: Elabed et al. (2016)
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Table 18: Top 10 Importance Features from Xg boosting

(a) High Elderly Population Township

Feature Gain

1 #. Employment 0.764

2 #. Rival’s Employment 0.138

3 #. Chain Pharmacy 0.019

4 Log(Total Household) 0.010

5 Log(Total Pop.) 0.005

6 Unemployment Rates (%) 0.005

7 Rental Ratio (%) 0.005

8 Female (%) 0.004

9 Age over 65 (%) 0.003

10 Commuting: Walk (%) 0.003

(b) Non-High Elderly Population Township

Feature Gain

1 #. Employment 0.738

2 #. Rival’s Employment 0.106

3 Female (%) 0.016

4 Vehicle=1 (%) 0.013

5 Rental Ratio (%) 0.010

6 Log(Total Pop.) 0.008

7 Log(Total Household) (%) 0.007

8 Black (%) 0.006

9 Log(Income Per Capita) 0.005

10 High School Graduate (%) 0.005

Notes: Results from Xg Boosting over within sample. I separately estimate the high elderly popu-
lation township/non-high elderly population township. #. denote the number and % denotes the
share of demographic groups out of the total population in the towns.
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Table 19: Past/Current Chain Pharmacies and the Number of Independent Phar-

macies

(1)

#. Independent Pharmacy Within Town

I(Entry of Chain =1) at t -0.103∗∗∗

(0.0118)

I(Entry of Chain =1) at t− 1 -0.0134

(0.00942)

Township FE Yes

Year FE Yes

Market × Year FE Yes

Controls Yes

Observations 16,040

Mean of Dep. Variable 0.735

Adjusted R2 0.547

Note Estimates are from fixed effects regression of the new entry of independent

pharmacies outside of township but within 10 miles on the number of independent

pharmacies in township m and year t. Significance levels are denoted by + p<0.10,

* p<0.05, ** p<0.05.*** p<0.01.
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Table 20: Entries in Neighborhood (outside of township) and the Number of Inde-

pendent Pharmacies.

(1)

Independent Pharmacies

(Independent Pharmacy Entry Outside of Town Boundary=1) -0.0131

(0.0198)

Township FE Yes

Year FE Yes

Market × Year FE Yes

Controls Yes

Observations 16,040

Mean of Dep. Variable 0.735

Adjusted R2 0.534

Note: Estimates are from fixed effects regressions of the new entry of independent pharmacies
outside of township (within 10 miles) on the number of independent pharmacies in township m
and year t. Standard errors are clustered at the town level. Significance levels are denoted by +
p<0.10, * p<0.05, ** p<0.01.*** p<0.001.
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Table 21: (Selected) Descriptive Statistics: Non-High Elderly Population Township

Panel A. Year 2000-2009 Panel B. Year 2010-2019

Variable Frequency Mean S.D Median Min Max Mean S.D Median Min Max

Township-level variables

Pop.a Decennial 2077 1578 1775 114 14388 2087 1592 1826 123 14738

Income per Capitab Decennial 16410 3012 16455 8360 35705 20912 4450 20807 10306 42282

Prop. Age over 65c Decennial 0.159 0.03 0.17 0.05 0.20 0.168 0.04 0.17 0.05 0.37

Prop. Female Decennial 0.507 0.02 0.51 0.39 0.62 0.502 0.02 0.50 0.31 0.55

Prop. Black Decennial 0.011 0.05 0.00 0.00 0.50 0.011 0.05 0.00 0.00 0.52

Prop. Vehicle = 0 Decennial 0.071 0.06 0.06 0.00 0.54 0.065 0.07 0.05 0.00 0.72

Pharmacy Desertd Annual 0.342 0.47 0.00 0.00 1.00 0.341 0.47 0.00 0.00 1.00

Ind. Pharmacies (Town)e Annual 0.671 0.55 1.00 0.00 2.00 0.646 0.58 1.00 0.00 2.00

Chain Pharmacies (15 miles)f Annual 0.746 1.12 0.00 0.00 7.00 1.382 1.73 1.00 0.00 7.00

County-level characteristics

Physician Offices Annual 9.425 11.46 5.00 1.00 96.00 9.155 10.66 5.00 1.00 83.00

State-level characteristics

Prop. Insurance Age 18-64g Annual 0.871 0.02 0.87 0.83 0.93 0.873 0.04 0.87 0.79 0.97

Prop. Insurance Age over 65g Annual 0.992 0.01 0.99 0.97 1.00 0.991 0.01 0.99 0.96 1.00

Ind. Pharmacies characteristics Annual

Employee Annual 6.693 9.938 6 0 400 6.591 4.166 6 0 50

Years in business Annual 5.787 3.364 6 0 12 10.201 6.971 11 0 22

N 2,910 2,910

Notes: “Non-high elderly population township” is defined as townships with an age over 65 population ratio lower than 20% in the

year 2000. A comprehensive list of descriptive statistics for the final dataset can be found in Appendix A. “Decennial” implies that the

census is conducted every ten years. “Annual” indicates that updates are made on a yearly basis. a “Pop.” refers to the total population

of each township. b “Income per Capita” represents the median income of each township. c “Prop.” stands for the proportion of a

specific demographic group within the population. d “Pharmacy deserts” is a binary variable taking the value 1 if there are no available

pharmacies within the township. e “Ind. Pharmacy” denotes the average number of independent pharmacies within the township. f

“Chain Pharmacy” denotes the average number of chain pharmacies within a 15-mile radius of the centroid of the township. g “Prop.

Insurance” refers to the ratio of the population within each age group enrolled in health insurance.
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Table 22: (Selected) Descriptive Statistics: High Elderly Population Township

Panel A. Year 2000-2009 Panel B. Year 2010-2019

Variable Frequency Mean S.D Median Min Max Mean S.D Median Min Max

Township-level variables

Pop.a Decennial 1434 725 1307 153 4859 1385 732 1227 117 4745

Avg. Incomeb Decennial 16807 2206 16721 10022 27227 21345 3417 21202 12156 37437

Prop. Age over 65c Decennial 0.262 0.05 0.25 0.20 0.48 0.246 0.05 0.24 0.10 0.49

Prop. Female Decennial 0.528 0.02 0.53 0.37 0.59 0.518 0.02 0.52 0.29 0.62

Prop. Black Decennial 0.002 0.01 0.00 0.00 0.08 0.004 0.01 0.00 0.00 0.17

Prop. Vehicle = 0 Decennial 0.076 0.03 0.07 0.00 0.22 0.062 0.04 0.06 0.00 0.25

Pharmacy Desertd Annual 0.178 0.38 0.00 0.00 1.00 0.224 0.42 0.00 0.00 1.00

Ind. Pharmacies (Town)e Annual 0.841 0.52 1.00 0.00 2.00 0.715 0.58 1.00 0.00 2.00

Chain Pharmacies (15 miles)f Annual 0.357 0.78 0.00 0.00 6.00 0.676 1.16 0.00 0.00 7.00

County-level characteristics

Physician Offices Annual 5.699 8.90 3.00 1.00 80.00 6.622 10.07 3.00 1.00 80.00

State-level variables

Prop. Insurance Age 18-64g Annual 0.878 0.02 0.88 0.83 0.93 0.879 0.04 0.88 0.79 0.97

Prop. Insurance Age over 65g Annual 0.993 0.01 0.99 0.97 1.00 0.991 0.01 0.99 0.96 1.00

Ind. Pharmacies characteristics

Employee Annual 5.904 4.074 5 0 71 6.170 3.958 5 0 71

Years in business Annual 6.081 3.324 6 0 12 12.390 6.711 14 0 22

N 5,110 5,110

Notes: “High elderly population township” is defined as townships with an age over 65 population ratio higher than 20% in the year

2000. A comprehensive list of descriptive statistics for the final dataset can be found in Appendix A. “Decennial” implies that the census

is conducted every ten years. “Annual” indicates that updates are made yearly. a “Pop.” refers to the total population of each township.

b “Income per Capita” represents the median income of each township. c “Prop.” stands for the proportion of a specific demographic

group within the population. d “Pharmacy deserts” is a binary variable taking the value 1 if there are no available pharmacies within

the township. e “Ind. Pharmacy” denotes the average number of independent pharmacies within the township. f “Chain Pharmacy”

denotes the average number of chain pharmacies within a 15-mile radius of the centroid of a township. g “Prop. Insurance” refers to

the ratio of the population within each age group enrolled in health insurance.
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Table 23: Confusion Matrix

(a) High Elderly Population
Town

Actual

Predicted Stay Out Stay In

Stay Out 12,412 (0.608) 1,130 (0.055)

Stay In 78 (0.004) 6,780 (0.332)

Total N: 20,440 12,490 (0.6111) 7,950 (0.389)

(b) Non-High Elderly Popula-
tion Town

Actual

Predicted Stay Out Stay In

Stay Out 7,773 (0.668) 741 (0.064)

Stay In 34 (0.003) 3,092 (0.266)

Total N: 11,640 7,807 (0.671) 3,833 (0.329)
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Table 24: Full Results for Bajari et al. (2010b)

(1) (2)

Elderly Town Non-Elderly Town

Rival independent pharmacies -5.420∗∗∗ -4.000∗∗∗

(0.499) (0.685)

Chain Pharmacies within 15 mi -0.882∗∗∗ -0.269∗∗∗

(0.0848) (0.0604)

Store’s Employment 0.592∗∗∗ 1.865∗∗∗

(0.165) (0.318)

Total Pop. 1.229∗∗∗ -0.0878

(0.180) (0.194)

Income Per Capita 0.384 -0.941∗

(0.316) (0.477)

Physician Offices 0.205∗ 0.0160

(0.0875) (0.139)

Prop. Age over 65 -0.262 9.843∗∗∗

(1.348) (2.725)

Prop. Female -1.125 15.96∗∗

(3.011) (5.802)

Prop. Black -8.333 -2.918

(5.695) (6.875)

Prop. - High School Graduates -0.180 -1.664

(0.831) (1.487)

Prop. Unemployment -3.004∗ -0.236

(1.354) (1.570)

Prop. Vehicle = 0 9.540∗∗∗ 3.520∗∗

(1.486) (1.243)

Medicaid Expansion 0.0324 0.0804

(0.0775) (0.0989)

Prop. Insurance Age over 65 -0.519 -15.24∗∗∗

(2.170) (3.711)

County FE Yes Yes

Year FE Yes Yes

Observations 20400 11640

Mean of Dep. Variable 0.388 0.329

Adjusted R2 0.179 0.180
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Table 25: Notation for Parameters and Data

Parameters Description

γ−i Beliefs over rival CCP

θγ The effect of rival independent pharmacy

θc The effect of the number of chain pharmacies within 15 miles

βe The effect of store-specific shifter: Employees Size

βx The effect of common market characteristics

Data Description

aimt Binary action of being active (aimt = 1) or being inactive (aimt = 0)

cmt The number of chain pharmacy within 15 miles

simt Player i specific shifter: Employees Size

s−imt Player −i specific shifter: Employees Size

sxmt Common market characteristics

sprexmt Pre-selected common market characteristics

spoolxmt Pool of richer common market characteristics

sinteractionxmt Interaction terms of spoolxmt
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Table 26: First Stage Reduced Form CCP: Existing Method Bajari et al. (2010b)

(1) (2)

High Elderly Population Towns Non-High Elderly Population Towns

Chain Pharmacies within 15 mi -0.421∗∗∗ -0.145∗∗

(0.0702) (0.0537)

Pharmacy’s Employee Size 3.396∗∗∗ 3.172∗∗∗

(0.390) (0.509)

Rival’s Employee Size -3.080∗∗∗ -2.028∗∗∗

(0.392) (0.488)

Total Pop. 0.568∗∗∗ -0.0480

(0.155) (0.188)

Income Per Capita 0.208 -0.527

(0.304) (0.475)

Physician Offices 0.0921 0.0101

(0.0863) (0.139)

Prop. Age over 65 -0.0954 5.279∗

(1.311) (2.587)

Prop. Female -0.382 8.551

(2.920) (5.324)

Prop. Black -4.145 -1.491

(5.639) (6.552)

Prop. - High School Graduates -0.107 -0.943

(0.812) (1.424)

Prop. Unemployement -1.429 -0.109

(1.309) (1.545)

Prop. Vehicle = 0 4.491∗∗ 1.962+

(1.389) (1.145)

Medicaid Expansion 0.0164 0.0462

(0.0771) (0.0984)

Prop. Insurance Age over 65 -0.141 -8.509∗

(2.117) (3.384)

County FE Yes Yes

Year FE Yes Yes

Observations 20,400 11,640

Mean of Dep. Variable 0.388 0.329

Adjusted R2 0.165 0.172

Notes: Binary Logit estimates of Entry and Exit in township m and year t. Column (1) includes
towns with a high elderly population. Column (2) includes towns with a non-high elderly population.
Towns are defined as high elderly population towns when the percentage of residents aged over 65
is higher than 20 percent in the year 2000. Towns are defined as non-high elderly population towns
if the percentage of residents aged over 65 is lower than 20 percent in the year 2000. Standard
errors are clustered at the county level. Significance levels are denoted by + p<0.10, * p<0.05, **
p<0.01, *** p<0.001.
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Table 27: Results from the Structural Model

Robustness Check (L = 4)

Parameters Variables Orthogonal Moments Orthogonal Moments

θγ Rival independent pharmacies -8.830 -6.794

(0.355) (0.563)

θc No. of chain pharmacies -1.477 -0.226

(within 15 miles) (0.035) (0.018)

Observations 20,400 11,640

Socio-Economic Interaction Yes Yes

Dimension of Controls 563 563

Counties FE Yes Yes

Year FE Yes Yes

Notes: Samples include towns with a non-high elderly population in the years 2000-2019. In col-
umn (1), I use existing estimators based on the approach described in Bajari et al. (2010b). I use
pre-selected market covariates, as described in Appendix 22. In column (2), I use my developed
orthogonal estimators, which employ a data-driven approach to variable selection, I utilize a pool of
market characteristics described in Appendix 13. I further use sample splitting and moment condi-
tions based on equation (2.3.6) to remove biases from ML in the first stage of nuisance parameters
estimation. Standard errors are clustered at the county level. Significance levels are denoted by +
p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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Table 28: Goodness of Fit: By Socio-Economic Characteristics

(Average) Independent Pharmacy Counts

Observed Predicted

Total Markets 0.684 0.672

Total Population

Below median (1,226) 0.612 0.588

Above median (1,226) 0.732 0.780

Prop. Vehicle=0

Below median (0.055) 0.632 0.678

Above median (0.055) 0.714 0.690

Prop. under Poverty Line

Below median (0.12) 0.620 0.632

Above median (0.12) 0.726 0.738

Share of Age over 65

Below median (0.24) 0.654 0.682

Above median (0.24) 0.690 0.686

Presence of Chain Pharmacy in 2000

No chain pharmacy within 15 miles 0.814 0.788

Chain pharmacy present within 15 miles 0.440 0.512

Minority Group

Below 10% 0.670 0.682

Above 10% 0.700 0.732
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Table 29: Expected Number of Stores under Counterfactual Scenario 2 (Year: 2019)

(Average) Independent Pharmacy Counts

Predicted CF S2 △ △%

Total Markets 0.672 0.820 0.148 22.02

Total Population

Below median (1,226) 0.588 0.686 0.098 16.67

Above median (1,226) 0.780 0.952 0.172 22.05

Prop. Vehicle=0

Below median (0.055) 0.668 0.812 0.144 21.56

Above median (0.055) 0.690 0.828 0.138 20.00

Prop. under Poverty Line

Below median (0.12) 0.640 0.796 0.156 24.38

Above median (0.12) 0.736 0.844 0.108 14.67

Share of Age over 65

Below median (0.24) 0.682 0.796 0.114 16.72

Above median (0.24) 0.686 0.844 0.158 23.03

Presence of Chain Pharmacy in 2000

No chain pharmacy within 15 miles 0.700 0.842 0.142 20.29

Chain pharmacy present within 15 miles 0.614 0.718 0.104 16.93

Minority Group

Below 10% 0.682 0.82 0.138 20.23

Above 10% 0.732 0.834 0.102 13.93
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Table 30: Comparison of Rite Aid Stores

Year Financial Reports (10-k) Raw Data Sample

2012 228 231

2013 226 231

2014 224 231

2015 224 218

2016 225 218

2017 (Year before the merger approval) 224 222

Notes: I report the number of Rite Aid stores as disclosed by Rite Aid in their 10-K annual financial
reports, and compare these figures with my samples. The results show that the numbers are quite
close.
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Table 31: Heterogeneity by Income Group: Horizontal Merger and Number of Phar-

macy Stores

Outcome: Total Pharmacies

(1) (2) (3) (4)

Closure of Merged Pharmacy -0.861∗∗∗ -0.861∗∗∗ -0.672∗∗∗ -0.456∗∗∗

(0.149) (0.149) (0.162) (0.112)

Census Tract FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Controls Yes Yes Yes Yes

Observations 2,856 2,856 2,856 2,856

Outcome mean 1.409 1.719 1.549 1.405

Income Group Quartile 0-0.25 Quartile 0.25-0.5 Quartile 0.5-0.75 Quartile 0.75-1

Notes: Estimates are from staggered TWFE Callaway and Sant’Anna (2021) regressions of the
number of stores in census tract c in year t on an indicator called “closure of merged pharmacy,”
which equals one for a census tract in the years following the closure of either Walgreens or Rite
Aid after the merger approval and zero otherwise. The outcome of interest is the total number of
pharmacies. Column (1) includes the lowest income group. Column (2) includes the second quantile
income group. Column (3) includes the third quantile income group. Column (4) includes the fourth
quantile income group. Standard errors are clustered at the census tract level. Significance levels
are denoted by + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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Table 32: Heterogeneity by Income Group: Horizontal Merger and Number of Non-

merged Pharmacy Stores

Outcome: Total Pharmacies

(1) (2) (3) (4)

Closure of Merged Pharmacy 0.028 -0.113 0.053 0.239∗∗∗

(0.149) (0.149) (0.162) (0.097)

Census Tract FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Controls Yes Yes Yes Yes

Observations 2,856 2,856 2,856 2,856

Outcome mean 1.133 1.438 1.200 1.021

Income Group Quartile 0-0.25 Quartile 0.25-0.5 Quartile 0.5-0.75 Quartile 0.75-1

Notes: Estimates are from staggered TWFE Callaway and Sant’Anna (2021) regressions of the
number of non-merged stores in census tract c in year t on an indicator called “closure of merged
pharmacy,” which equals one for a census tract in the years following the closure of either Walgreens
or Rite Aid after the merger approval and zero otherwise. The outcome of interest is the total
number of pharmacies. Column (1) includes the lowest income group. Column (2) includes the
second quantile income group. Column (3) includes the third quantile income group. Column (4)
includes the fourth quantile income group. Standard errors are clustered at the census tract level.
Significance levels are denoted by + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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Table 33: Heterogeneity by Income Group: Horizontal Merger and New Entries of

Non-merged Pharmacy Stores

Outcome: Total Pharmacies

(1) (2) (3) (4)

Closure of Merged Pharmacy -0.021 -0.113 0.098 0.085

(0.080) (0.097) (0.063) (0.069)

Census Tract FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Controls Yes Yes Yes Yes

Observations 2,856 2,856 2,856 2,856

Outcome mean 0.121 0.163 0.145 0.143

Income Group Quartile 0-0.25 Quartile 0.25-0.5 Quartile 0.5-0.75 Quartile 0.75-1

Notes: Estimates are from staggered TWFE Callaway and Sant’Anna (2021) regressions of the
number of entries of non-merged stores in census tract c in year t on an indicator called “closure of
merged pharmacy,” which equals one for a census tract in the years following the closure of either
Walgreens or Rite Aid after the merger approval and zero otherwise. The outcome of interest is the
total number of pharmacies. Column (1) includes the lowest income group. Column (2) includes
the second quantile income group. Column (3) includes the third quantile income group. Column
(4) includes the fourth quantile income group. Standard errors are clustered at the census tract
level. Significance levels are denoted by + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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Table 34: Robustness Check: Adding Adjacent Markets: Horizontal Merger and

Number of Pharmacy Stores

Outcome: Total Pharmacies

(1) (2) (3) (4)

Closure of Merged Pharmacy -0.289∗∗∗ -0.287∗∗∗ -0.385∗∗∗ -0.383∗∗∗

(0.049) (0.049) (0.142) (0.114)

Census Tract FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Controls Yes Yes Yes Yes

Observations 11,413 11,413 2,244 2,244

Outcome mean 1.520 1.520 1.682 1.682

Sample Full sample Full sample Sub-sample Sub-sample

Untreated Group Never-treated Not-yet-treated Never-treated Not-yet-treated

Notes: Estimates are from staggered TWFE Callaway and Sant’Anna (2021) regressions of the
number of stores in census tract c in year t on an indicator called “closure of merged pharmacy,”
which equals one for a census tract in the years following the closure of either Walgreens or Rite
Aid after the merger approval and zero otherwise. I extend the treatment of markets to adjacent
markets where Walgreens or Rite Aid were present in 2017. The outcome of interest is the total
number of pharmacies. Column (1) includes a full sample with never treated as an untreated group.
Column (2) includes a full sample with not-yet-treated as an untreated group. Column (3) includes
census tract with the presence of either Walgreens or Rite Aid prior year to merger approval with
never treated as an untreated group. Column (4) census tract with the presence of either Walgreens
or Rite Aid prior year to merger approval with not-yet-treated as an untreated group. Standard
errors are clustered at the census tract level. Significance levels are denoted by + p<0.10, * p<0.05,
** p<0.01, *** p<0.001.
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Table 35: Robustness Check of Adding Adjacent Markets: Horizontal Merger and

Non-merged Pharmacy Stores

Outcome: Total Number of Non-merging Pharmacies

(1) (2) (3) (4)

Closure of Merged Pharmacy 0.045 0.047 -0.087 -0.073

(0.041) (0.041) (0.144) (0.115)

Census Tract FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Controls Yes Yes Yes Yes

Observations 11,408 11,413 2,244 2,244

Outcome mean 1.198 1.198 1.210 1.21

Sample Full sample Full sample Sub-sample Sub-sample

Untreated Group Never-treated Not-yet-treated Never-treated Not-yet-treated

Notes: Estimates are from staggered TWFE Callaway and Sant’Anna (2021) regressions of the
number of stores in census tract c in year t on an indicator called “closure of merged pharmacy,”
which equals one for a census tract in the years following the closure of either Walgreens or Rite
Aid after the merger approval and zero otherwise. I extend the treatment of markets to adjacent
markets where Walgreens or Rite Aid were present in 2017. The outcome of interest is the total
number of non-merging pharmacies. Column (1) includes a full sample with never treated as an
untreated group. Column (2) includes a full sample with not-yet-treated as an untreated group.
Column (3) includes census tract with the presence of either Walgreens or Rite Aid prior year
to merger approval with never treated as an untreated group. Column (4) census tract with the
presence of either Walgreens or Rite Aid prior year to merger approval with not-yet-treated as an
untreated group. Standard errors are clustered at the census tract level. Significance levels are
denoted by + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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Table 36: Robustness Check: Adding Adjacent Markets: Horizontal Merger and

Entries of Non-merged Pharmacy Stores

Outcome: Total Number of Entries of Non-merging Pharmacies

(1) (2) (3) (4)

Closure of Merged Pharmacy -0.010 -0.010 -0.0010 0.011

(0.029) (0.029) (0.061) (0.044)

Census Tract FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Controls Yes Yes Yes Yes

Observations 11,408 11,413 2,244 2,244

Outcome mean 0.143 0.143 0.152 0.152

Sample Full sample Full sample Sub-sample Sub-sample

Untreated Group Never-treated Not-yet-treated Never-treated Not-yet-treated

Notes: Estimates are from staggered TWFE Callaway and Sant’Anna (2021) regressions of the
number of stores in census tract c in year t on an indicator called “closure of merged pharmacy,”
which equals one for a census tract in the years following the closure of either Walgreens or Rite
Aid after the merger approval and zero otherwise. I extend the treatment of markets to adjacent
markets where Walgreens or Rite Aid were present in 2017. The outcome of interest is the total
entries of non-merging pharmacies. Column (1) includes a full sample with never treated as an
untreated group. Column (2) includes a full sample with not-yet-treated as an untreated group.
Column (3) includes census tract with the presence of either Walgreens or Rite Aid prior year
to merger approval with never treated as an untreated group. Column (4) census tract with the
presence of either Walgreens or Rite Aid prior year to merger approval with not-yet-treated as an
untreated group. Standard errors are clustered at the census tract level. Significance levels are
denoted by + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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Table 37: Robustness Check: Alternative Demographic Controls: Horizontal Merger

and Number of Pharmacy Stores

Outcome: Total Pharmacies

(1) (2) (3) (4)

Closure of Merged Pharmacy -0.685∗∗∗ -0.682∗∗∗ -0.833∗∗∗ -0.795∗∗∗

(0.071) (0.071) (0.143) (0.125)

Census Tract FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Controls Yes Yes Yes Yes

Observations 11,408 11,413 2,244 2,244

Outcome mean 1.520 1.520 2.367 2.367

Sample Full sample Full sample Sub-sample Sub-sample

Untreated Group Never-treated Not-yet-treated Never-treated Not-yet-treated

Notes: Estimates are from difference-in-differences regressions of the number of stores in census
tract c in year t on an indicator called “horizontal merger,” which equals one for a census tract in
the years following the closure of either Walgreens or Rite Aid after the merger approval and zero
otherwise. I use population density instead of total population as a robustness check. The outcome
of interest is the total number of pharmacies. Column (1) includes a full sample with never treated
as an untreated group. Column (2) includes a full sample with not-yet-treated as an untreated
group. Column (3) includes census tract with the presence of either Walgreens or Rite Aid prior
year to merger approval with never treated as an untreated group. Column (4) census tract with
the presence of either Walgreens or Rite Aid prior year to merger approval with not-yet-treated as
an untreated group. Standard errors are clustered at the census tract level. Significance levels are
denoted by + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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Table 38: Robustness Check: Alternative Demographic Controls: Horizontal Merger

and Non-merged Pharmacy Stores

Outcome: Total Number of Non-merging Pharmacies

(1) (2) (3) (4)

Closure of Merged Pharmacy 0.070 0.072 0.041 0.049

(0.057) (0.057) (0.062) (0.063)

Census Tract FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Controls Yes Yes Yes Yes

Observations 11,408 11,413 2,244 2,244

Outcome mean 1.198 1.198 1.329 1.329

Sample Full sample Full sample Sub-sample Sub-sample

Untreated Group Never-treated Not-yet-treated Never-treated Not-yet-treated

Notes: Estimates are from staggered TWFE Callaway and Sant’Anna (2021) regressions of the
number of stores in census tract c in year t on an indicator called “closure of merged pharmacy,”
which equals one for a census tract in the years following the closure of either Walgreens or Rite Aid
after the merger approval and zero otherwise. I use population density instead of total population
as a robustness check. The outcome of interest is the total number of non-merging pharmacies.
Column (1) includes a full sample with never treated as an untreated group. Column (2) includes
a full sample with not-yet-treated as an untreated group. Column (3) includes census tract with
the presence of either Walgreens or Rite Aid prior year to merger approval with never treated as an
untreated group. Column (4) census tract with the presence of either Walgreens or Rite Aid prior
year to merger approval with not-yet-treated as an untreated group. Standard errors are clustered
at the census tract level. Significance levels are denoted by + p<0.10, * p<0.05, ** p<0.01, ***
p<0.001.
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Table 39: Robustness Check: Alternative Demographic Controls: Horizontal Merger

and Entries of Non-merged Pharmacy Stores

Outcome: Total Number of Entries by Non-merging Pharmacies

(1) (2) (3) (4)

Closure of Merged Pharmacy 0.022 0.024 0.034 0.036

(0.039) (0.039) (0.043) (0.043)

Census Tract FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Controls Yes Yes Yes Yes

Observations 11,408 11,413 2,244 2,244

Outcome mean 0.143 0.143 0.152 0.152

Sample Full sample Full sample Sub-sample Sub-sample

Untreated Group Never-treated Not-yet-treated Never-treated Not-yet-treated

Notes: Estimates are from staggered TWFE Callaway and Sant’Anna (2021) regressions of the
number of stores in census tract c in year t on an indicator called “closure of merged pharmacy,”
which equals one for a census tract in the years following the closure of either Walgreens or Rite Aid
after the merger approval and zero otherwise. I use population density instead of total population
as a robustness check. The outcome of interest is the total entries of non-merging pharmacies.
Column (1) includes a full sample with never treated as an untreated group. Column (2) includes
a full sample with not-yet-treated as an untreated group. Column (3) includes census tract with
the presence of either Walgreens or Rite Aid prior year to merger approval with never treated as an
untreated group. Column (4) census tract with the presence of either Walgreens or Rite Aid prior
year to merger approval with not-yet-treated as an untreated group. Standard errors are clustered
at the census tract level. Significance levels are denoted by + p<0.10, * p<0.05, ** p<0.01, ***
p<0.001.
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Table 40: de Chaisemartin and Xavier D’Haultfoeuille’s Staggered TWFE: Horizon-

tal Merger and Pharmacy Stores

Outcome: Pharmacies Non-merging Pharmacies Non-merging Pharmacy Entries

(1) (2) (3)

Horizontal Merger -0.657∗∗∗ 0.0556 0.003

(0.0504) (0.0426) (0.0459)

Census Tract FE Yes Yes Yes

Year FE Yes Yes Yes

Controls Yes Yes Yes

Observations 11,413 11,413 11,413

Outcome mean 1.520 1.198 0.143

Notes: Estimates are from staggered TWFE Callaway and Sant’Anna (2021) regressions of the
number of stores in census tract c in year t on an indicator called “closure of merged pharmacy,”
which equals one for a census tract in the years following the closure of either Walgreens or Rite Aid
after the merger approval and zero otherwise. Column (1) includes the total number of pharmacies.
Column (2) includes the total number of pharmacies from non-merging firms. Column (3) includes
the total number of new entries by non-merging pharmacies. Standard errors are clustered at the
census tract level. Significance levels are denoted by + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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Table 41: Description of Datasets

Dataset Source Description
Pharmacy Entry/Exit Data
Data Axle Historical Business

Database
This proprietary dataset, accessible via https://www.

dataaxleusa.com/lp/data-axle/ and the Carnegie Library
of Pittsburgh, is provided by Data Axle - data analytics mar-
keting firm. The dataset encompasses 361 million digitized
records of historical and contemporary business establish-
ments from 1997-2021. I collected panel histories of phar-
macies and mapped their addresses to township IDs using
the census shapefiles below.

Geographic Information System
2000/ 2010 US Township

(county subdivision) Shapefiles
These shapefiles, available at https://www.census.gov/

cgi-bin/geo/shapefiles/index.php1, outline each town-
ship’s boundaries. It allows me to geocode the addresses of
pharmacies and assign township IDs from the Census data.2

2010 Rural-Urban Commuting
Area (RUCA) Codes

Sourced from https://www.ers.usda.gov/

data-products/rural-urban-commuting-area-codes/

documentation/, these codes define the census classifications
for rural areas. I keep pertaining to rural townships.

2000-2010 Township Crosswalk Available at https://www.census.gov/

geographies/reference-files/time-series/geo/

relationship-files.2010.html#list-tab-1709067297,
this file provides the relationships between 2010 Census
county subdivisions and their 2000 Census counterparts.

Health-related variables
CBP (County Business Pat-

terns)
Sourced from https://www.census.gov/data/

developers/data-sets/cbp-nonemp-zbp/cbp-api.html,
CBP presents data on county-level business establishments,
categorized by North American Industry Classification
System (NAICS) codes. For this research, I extracted data
on physician offices in each county using the physician’s code
(NAICS code: 621111).

Health Insurance Coverage Available at https://cps.ipums.org/cps/index.shtml,
the Annual Social & Economic Supplement of the Current
Population Survey provides data on health insurance enroll-
ment rates at the year-state level, grouped by age groups
6-17, 18-64, and above 65.

1 On the website, I selected “Year 2010” followed by the “County Subdivisions (township)” layer
type, enabling the download of shapefiles for both 2000 and 2010.

2 In this study, the 2010 shapefiles were utilized for township IDs.
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Appendix C Figures

Figure 18: Timing of the Game
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Figure 19: Industry Survey: Main Reason for Choosing Primary Pharmacy

(a) Independent Pharmacy (b) Supermarket Pharmacy

(c) Chain Pharmacy

Sources: Pharmacy Satisfaction Data Summary Report, 2018 Boehringer Ingelheim Pharmaceuti-
cals, Inc
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Figure 20: Industry Survey: Main Reason for Switching Primary Pharmacy

Sources: Pharmacy Satisfaction Data Summary Report, 2018 Boehringer Ingelheim Pharmaceuti-
cals, Inc

152



Figure 21: Trends in Pharmacy Deserts: Alternative Definition

(a) Population Weight-Average

(b) Within 5 miles

Notes: The figures depict trends in pharmacy deserts using alternative definitions. The units of
observation are based on a three-year moving average of the pharmacy desert indicator for a final
sample of 802 townships. In the left panel (a), the pharmacy desert indicator takes a value of 1 if
townships have at least one independent or chain pharmacy, and it’s weighted by the township’s
population. In the right panel (b), the pharmacy desert indicator takes a value of 1 if there are no
both independent and chain pharmacies within a 5-mile radius.
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Figure 22: (Average) Number of Independent/Chain Pharmacies between 2000-2019

by Age Group

(a) Non-High Elderly Population Town

(b) High Elderly Population Town
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Figure 23: Distribution of Market Structure of Independently-Owned Pharmacy by

Age Group

(a) Non-High Elderly Population Township

(b) High Elderly Population Township
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Figure 24: More Event Study: The effects of chain pharmacy entry on local inde-

pendent pharmacy (Robustness Check)

Note: This figure presents coefficient plots from event-study difference-in-differences analyses,

which regress the number of independent pharmacies in a township on year-fixed effects, town

fixed effects, control variables, and market× year-fixed effects. For robustness check purposes, I

experiment with the staggered treatment frameworks proposed by Callaway and Sant’Anna (2021),

Borusyak et al. (2021), and Sun and Abraham (2021). The sample consists of 802 townships

between 2000 and 2019. The baseline period, omitted in this analysis, is t = −1, representing the

last pre-treatment period. Standard errors are clustered at the town level, and error bars represent

95% confidence intervals.
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Figure 25: ROC in First Stage Estimation of CCP: High Elderly Population Town
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Notes : ROC denotes receiver operating characteristic curve. AUC denotes the Area

under the ROC Curve.
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Figure 26: Change in Market Structures with Before/After the Merger Approval

(a) Towns without Walgreens or Rite Aid in 2017

(b) Towns with Walgreens or Rite Aid in 2017

Note: This figure illustrates the market structure changes following the approval of a horizontal
merger. Figure 26a represents towns without Walgreens or Rite Aid in 2017 (prior year to merger
approval) and Figure 26b represents towns with Walgreens or Rite Aid in 2017. The market
structures are categorized by the level of competition, ranging from unserved markets (no providers)
to oligopoly (≥ 4). The vertical dashed line labeled “Merger Approval” denotes the year 2018 when
the merger was approved, providing a clear before-and-after comparison.
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Figure 27: Dynamic Effects of Horizontal Merger on Non-merging Pharmacies

(a) Full sample
Untreated group: Never treated

(b) Full sample
Untreated group: Not-yet-treated

(c) Sub-sample
Untreated group: Never treated

(d) Sub-sample
Untreated group: Not-yet-treated

Notes: Coefficient plots from event-study difference-in-differences analyses that regress the number
of new entrants by non-merged firms in a census tract on year fixed effects, census tract fixed effects,
control variables, and market× year fixed effects. The full sample consists of census tracts between
2010 and 2021. The sub-sample includes census tracks where a Rite Aid or Walgreens store was
present before the horizontal merger approval. The omitted baseline period is t = −1, which is the
last pre-treatment period. Standard errors are clustered at the census-tract level and error bars
represent 95 confidence intervals.
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Figure 28: Dynamic Effects of Horizontal Merger on Entries of Non-merging Phar-

macies

(a) Full sample
Untreated group: Never
treated

(b) Full sample
Untreated group: Not-yet-
treated

(c) Sample from Walgreens
and Rite Aid Stores in 2017
Untreated group: Never
treated

(d) Sample from Walgreens
and Rite Aid Stores in 2017
Untreated group: Not-yet-
treated

Notes: Coefficient plots from event-study difference-in-differences analyses that regress the number
of new entrants by non-merged firms in a census tract on year fixed effects, census tract fixed
effects, control variables, and market× year fixed effects. The full sample consists of census tracts
between 2010 and 2021. The sub-sample includes census tracks where a Rite Aid or Walgreens
store was present before the horizontal merger approval. The baseline period is t = −1, which is
the last pre-treatment period. Standard errors are clustered at the census-tract level and error bars
represent 95 confidence intervals.
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Figure 29: Balancing Test of the Exit of Merged Firms’ Treatment on Pre-Market

Characteristics

(a) Census Tract Cluster-Standard Error (b) Adding County FE

(c) Census Tract FE

Notes: Regression of the treatment indicator (exit of Walgreens/Rite Aid) on observable pre-market
characteristics in the year prior to the exit of merged firms. The coefficients of these regressions
with their 95% confidence interval are plotted in each sug figure which uses census tract level cluster
standard error (a), add county fixed effects (b), and use census tract fixed effects (c) with census
tract clustered standard errors.
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Appendix D Data Description

D.0.1 Construction of Data

To construct my final dataset, I leverage data from various sources, including

pharmacy establishment datasets, market-level characteristics, and health-related

variables.

To begin with, I created a panel dataset of pharmacies in the Midwest U.S.,

organized by township and year. This allowed me to track the openings and closings

of both independent and chain pharmacies over time. The Data Axle database

provides data on pharmacies from 1997 to 2021.

Next, I defined the market boundaries for each pharmacy using the 2010 U.S.

Census townships. I used the 2010 census boundaries for consistency, even though

they have changed slightly over time.

To focus on rural areas, I used the census’s definition of rural territories based

on the RUCA. I used Python’s Geopandas tool to identify rural townships that

don’t overlap with urban census tracts derived from RUCA. I then used the 2000-

2010 township crosswalk dataset to maintain the townships in line with the 2010

shapefiles.

Once I had a definitive list of rural townships, I used geopandas for geocoding.

I used Yahoo Bing’s reverse geocoding feature to translate pharmacy addresses into

their corresponding longitude and latitude coordinates. I then aligned each indepen-

dent pharmacy with its corresponding township ID.

To find out how many chain pharmacies are within a certain distance of each

township, I first found the center of each township. Then, I drew circles around each
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township with a radius of 5 to 30 miles. I counted the number of different types of

chain pharmacies in each circle to get an exact count of the chain pharmacies within

the specified distances. After the data-cleaning process, for each township, I have

independent pharmacies with a number of chains within 5-30 miles.

D.0.2 Market level characteristics

I also collect market-level data on a pool of demographic characteristics from the

Census and ACS at the township level. This data allows me to estimate the latent

profits of independent stores, as it proxies for both the demand for prescriptions and

the costs of operating stores. Note that the decennial census was released in 2000 and

2010 during my sample periods, so most market-level characteristics are decennial.

I list a full list of the demographic variables’ geographic units and their frequencies

in Table 14 and Table 13.

D.0.3 Health related variables

To account for potential time-varying prescription demands, I incorporate the

number of physicians per county per year and health insurance enrollment rates

per state per year, drawing data from the Annual Social & Economic Supplement

of the Current Population Survey program. In addition, I include the “Medicaid

Expansion” dummy variable.1 This variable is assigned a value of 1 in a given year if

the state expanded Medicaid coverage to nearly all adults with incomes up to 138%

of the Federal Poverty Level ($20,120 for an individual in 2023).

1Source: available at https://www.kff.org/medicaid/issue-brief/

status-of-state-medicaid-expansion-decisions-interactive-map/
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D.1 Additional Discussions

D.1.1 Strategic Decision of Pharmacies

Entry and Exit as a strategic decision by pharmacy : Qualitative evidence sug-

gests that entry and exit (i.e., opening and closing of outlets) are the most impor-

tant strategic decisions for pharmacies, which I capture in my models. Pharmacies

compete in granular geographical markets as consumers consider the location when

deciding where to shop. Industry reports 2 highlight that the most important factor

for consumers is the location proximity, followed by their health insurance accep-

tance, and then the quality of service received. In Appendix 19, I show that across

various types of pharmacies (independent, chain, and, mass merchants), location

consistently emerges as the most important factor determining consumers’ phar-

macy preferences.3 These qualitative anecdotes suggest that entry/exit is the main

consideration along with the demographic characteristics of the market, which aligns

with my empirical application.

I also address concerns regarding the extent to which pharmacy sales contribute

to prescription drug revenues. Industry reports indicate that 94% of sales from

independent pharmacies are derived from prescription medications, while 70-75% of

sales from major chain pharmacies originate from prescription drugs. 4

2Source: 2018 Pharmacy Satisfaction Pulse, Pharmacy Satisfaction Data from surveys
3Admittedly, while health insurance and pricing do play roles, location remains the predomi-

nant factor of consideration. Based on the anecdotal evidence, I abstract away from decisions on
other dimensions - prices, product variety, health insurance in-network/out-of-cost, and qualities.
Appendix 20 supports the qualitative evidence, underscoring location as the most important factor
when consumers switch pharmacies.

4Source: Industry Report and 10-K issued by Rite Aid, Walgreens, and CVS.
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D.1.2 Pharmacy Profits and Machine Learning Approach

I provide the discussions for the motivation of the machine learning approach in

pharmacy entry/exit games.

1. Limited Understanding of Market Characteristics : There is little knowledge of

which market characteristics are relevant to the opening of pharmacies for econo-

metricians. Instead of relying on an ad-hoc selection process for market covariates,

I adopt a data-driven approach, incorporating a rich set of covariates from socioe-

conomic and health-related characteristics. This allows the model to identify which

characteristics are pertinent to the underlying payoffs of pharmacies. Given the high

multicollinearity of market covariates, machine learning methods with regularization

are well-suited for my application.

2. Unknown functional form: The true functional form of payoffs of independent

pharmacies is also unknown to empirical researchers. I relax the commonly used

assumption that the profit function of a pharmacy is a linear function of observ-

able covariates. In the first stage, I employ fully non-parametric machine learning

methods to enhance prediction power over beliefs about rivals’ conditional choice

probabilities. In the second stage, I utilize flexible functional forms, like interaction

terms, to better capture the underlying payoffs.

D.2 Estimation Details for Neyman Orthogonal Estimators

Estimation of γ−imtk: I implement various ML classifiers to obtain conditional

expectations using a richer pool of demographics:

γ̂−imtk = E[a−imt|cmt, s−imt, simt, s
pool
xmt, yt, countyf ] (D.2.1)
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where I use various modern machine learners such as linear-based Machine learn-

ing (Lasso, Ridge, and Elastic net), Random Forests Classifiers, and Xg Boosting

Classifiers. For β, I use Logistic Lasso following Belloni et al. (2016). To learn µ,

I use Lasso based on the equations D.2.3. Note that the estimators of nuisance

parameters are required to have convergence rates that are faster than N−1/4.

Estimation of (βek, βxk): Given γ̂−imtk in hand, I estimate the nuisance param-

eters βek and βxk. I accommodate flexible interactions between these richer indepen-

dent variables sinteractionxmtk . Due to the nature of high-dimensional settings, I construct

the following Logit Lasso specification and minimize the function by searching a set

of parameters, then keep βek, βxk.

(θ̂γk, θ̂ck, β̂ek, β̂xk, α̂tk, α̂countyk) ∈

argmin
θγ ,θc,βe,β,αt,αcounty

[
En[Λi(θγ , θc, βe, βx, αt, αcounty)] +

λ1

n
||(θγ , θc, βe, βx)||1

]
(D.2.2)

where λ1 denotes the ℓ1 penalty terms, trained by the 5-fold cross-fitting algorithm

in the R package ‘cv.glmnet’.5

Estimation of µγk, µck: The parameters (µγk, µck) are additional nuisance pa-

rameters, not present in the original method. They are introduced in the process

of constructing the moment function to ensure the orthogonality property. Define

fi ≡
√

Λ(x)(1− Λ(x)), where Λ(x) denotes the choice probabilities of being active,

as induced by the original moment function. The bias correction term is derived

from the linear projection of zimt = (cmt, s−imt) on ximt = (simt, sxmt), applying

Lasso regression with ℓ1 penalties determined through cross-validation:

fizimt = fix
′
imtµ+ uimt, E[fiximtuimt] = 0 (D.2.3)

5As I want to keep the year fixed effects and county fixed effects, I do not allow penalty terms
for these two fixed effects
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Second Stage Cluster Standard Error of Structural Parameters I further

define M ≡ ∂m(w,γ,β,η)
∂θ

. The variance-covariance matrix has the following form:

V̂ =

(
1

K

K∑
k

E[M ]

)−1

1

K

K∑
k

E[ψ2(w, θ̂, η̂k]

(
1

K

K∑
k

E[M ]

)−1

I also employ county-level clusters to allow the correlation of error terms within

the county level.
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