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On the Differentiability Properties of Convex Functions and Convex Bodies

Anthony R. Cappello, PhD

University of Pittsburgh, 2024

There are three main results in this thesis. We first present a new proof of Theorem 40

that says a convex body K has boundary of class C1,1 if and only if there is R > 0 such that

K is the union of closed balls with radius R contained in K. The first main result, Theorem

51 extends the above result to a similar characterization of C1,α convex bodies. Using this

characterization, we find new proofs of the Kirchheim-Kristensen theorem (Theorem 70)

about the differentiability of the convex envelope and the Krantz-Parks theorem (Theorem

77) about the regularity of the Minkowski sum of convex bodies. Namely we show that if

a convex function f : Rn → R satisfies f ∈ C1,α
loc (Rn) and f(x) → ∞ as |x| → ∞, then the

convex envelope of f , denoted conv(f), satisfies conv(f) ∈ C1,α
loc (Rn). We also prove that

the Minkowski sum of a convex body and a convex body of class C1,α is a convex body of

class C1,α. The tools from the characterization of C1,1 convex bodies are used to prove the

second main result, which is a new geometrically inspired proof of the Alexandrov theorem,

Theorem 84, about the second order differentiability of convex functions. Moreover, we give

a new proof of a result by Azagra-Hajlasz (Theorem 90) concerning the Lusin Approximation

by C1,1 convex functions. In the third main result, Theorem 108, we prove the set of normal

directions to the k-dimensional faces on the boundary of an n-dimensional convex body is

countable (n−k− 1)-rectifiable. Finally we conclude by presenting characterizations of C1,1

and C1,α functions.

keywords convex body, convex function, Lipschitz gradient, Hölder gradient, convex en-

velope, Minkowski sum, Alexandrov’s theorem, support function.
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1.0 Introduction

The study of convex sets began with the ancient Greeks, with Archimedes considered

the first to provide a rigorous definition of convexity. Moreover, in the Elements of Euclid,

polygons and polytopes are extensively studied; the building blocks of convex geometry. Up

until the early 20th century, the study of convexity was centered around geometrical ideas

such as Kepler’s study of polytopes and packing of balls, Euler’s famous relation between

the vertices, edges, and faces of convex polytopes in three dimensions, and Cauchy’s surface

area formula connecting the surface area of a three dimensional convex body with the area

of its projections onto two dimensional subspaces.

By the end of the 19th century convex functions entered the scene. As stated by Pach-

patte in [25], mathematicians such as Hölder, Hadamard, and Stolz are attributed with being

the first to work with convex functions. It wasn’t until Jensen published his famous inequal-

ity in 1905 and 1906 that convex functions became a relevant field of study in mathematics.

Throughout the 20th century the study of convex functions found its way into numerous

areas of mathematics including functional analysis, complex analysis, and PDE’s. Moreover,

the application of convex functions to the field of convex optimization has led to many useful

results in many fields including statistics, data analysis, and risk analysis (see [10]).

In this thesis the goal is to find connections between convex sets, functions, and their

differentiability properties. Namely, if we consider compact convex sets with non empty

interior, called convex bodies, we have that locally the boundary of a convex body is the

graph of a convex function. Thus we are able to combine the geometry of a convex body

with the differentiablity of convex functions to prove some truly wonderful results. There are

many surprising and beautiful results that appear in convex analysis, especially given that

at its core convex analysis is founded upon purely geometric definitions. With nothing more

than the notion of line segments, balls, and hyperplanes we are able to extract numerous

differentiability properties of convex functions and convex bodies.
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1.1 Summary of Main Chapters

In Chapter 2 we collect known results about convex sets and convex functions that will

be used throughout the thesis. We include proofs of most of the results so that the thesis

will be self-contained. We also include the standard proof of the Rademacher theorem about

the a.e. differentiability of Lipschitz functions, as the Rademacher theorem plays a central

role in Chapter 4.

Chapter 3 is concerned with the differentiability properties of the boundary of a convex

body, defined as a compact convex set with nonempty interior. Since the boundary of a

convex body is locally the graph of a convex function, we can investigate the differentiability

properties of convex functions through the study of the regularity of boundaries of convex

bodies. This approach will be used later in Chapter 4.

We denote the class of functions with α-Hölder continuous gradients as C1,α and in

particular when α = 1, a C1,1 function has Lipschitz gradient. Moreover we say that a

convex body is of class C1,α if locally its boundary is the graph of C1,α convex function.

When K is the union of closed balls of fixed radius, we say that K satisfies the uniform

inner ball condition. Lucas [21] proved that a convex body is of class C1,1, if and only if K

satisfies the uniform inner ball condition (Theorem 40). Despite Lucas proving this result

in his thesis [21], the result was never published in a paper. As a result, the theorem is not

widely known to be Lucas’ and it is difficult to find this result in published literature. The

characterization of C1,1 convex bodies does appear in Hormander [17, Proposition 2.4.3],

though no references are made to the origin of the result. Moreover the proof in [17] is

different than that of Lucas. We provide two new proofs of Lucas’ theorem. The first is

similar to that of Hormander’s but is more geometric, while the second proof is completely

new and is based on an application of the implicit function theorem for C1,1 functions. Both

proofs have been published in [3].

The main focus of Chapter 3 is an extension of Lucas’ theorem that provides a geometric

characterization of C1,α convex bodies. We say K ⊂ Rn satisfies the (R, ε)-approximate inner

ball condition, if for each x ∈ ∂K, there exists h(x) ∈ K such that B(h(x), R) ⊂ K and

dist(x,B(h(x), R)) ≤ ε. We prove that a convex body K is of class C1,α if and only if there

2



exist constants ε0 > 0 and C > 0, such that for all 0 < ε < ε0, K satisfies the (Cε
1−α
1+α , ε)-

approximate inner ball condition (Theorem 51). The proof of the necessary condition is

an extension of the first proof given of Lucas’ theorem in this thesis, but the proof of the

sufficient condition relies on making geometric estimates with the inner unit normal vectors.

When α = 1, we see that for all 0 < ε < ε0, K satisfies the (C, ε)-approximate inner ball

condition. But by compactness we have there exists some h(x) such that x ∈ B(h(x), C) ⊂ K

showing that K is the union of closed balls of radius C. Therefore the characterization of

C1,α convex bodies is an extension of Lucas’ result.

Using the characterization of C1,α convex bodies we are able to find new geometric proofs

of theorems related to the convex envelope and the sum of two convex bodies.

We define the convex envelope of a function f as

conv(f)(x) := sup{g(x) : g ≤ f and g is convex}.

In [18], Kirchheim and Kristensen proved that if f ∈ C1,α
loc and f → ∞ as |x| → ∞, then

conv(f) ∈ C1,α
loc (Theorem 70). The proof presented in [18] follows from inequalities derived

from an analytic view of the problem. The new proof presented in this thesis is based on

geometrical principles and is elementary. The proof presented in this thesis uses an equivalent

definition of the convex envelope which follows from the Carathéodory theorem, namely,

conv(f)(x) = inf

{
n+1∑
i=1

λif(xi) : λi ≥ 0,
n+1∑
i=1

λi = 1,
n+1∑
i=1

λixi = x

}
.

Using this we are able to first apply the characterization of C1,α convex bodies locally to

the epigraph of f , and then taking convex combinations show that conv(f) also satisfies an

approximate inner ball condition locally.

The other main application in Chapter 3 concerns the Minkowski sum of convex bodies.

We define the Minkowski sum of sets A,B ⊂ Rn as,

A+B := {a+ b : a ∈ A and b ∈ B}.

If A,B are convex bodies, then so too is A + B. Moreover applying the characterization of

C1,α convex bodies, we can show that for convex body A of class C1,α, and a general convex

body B, that A + B is a convex body of class C1,α (Theorem 77). The result is originally

3



proved by Krantz and Parks in [20] through the use of coordinate systems but it is difficult.

An alternate proof is given in [19], making use of the infimal convolution, though again

relying on coordinate systems. Thus the arguments given in this thesis greatly simplify the

proofs of their results.

In Chapter 4 we focus on one of the most fascinating differentiability properties of convex

functions, specifically with regards to its second differentiability. In 1939 Alexandrov in [1]

proved that for U open and convex and f : U → R convex, f is twice differentiable almost

everywhere and the gradient is differentiable almost everywhere in U . Numerous proofs have

been given since by Rešetnjak; Krylov; Bangert; Rockafellar; Bianchi, Colesanti, and Pucci

and a complete history of the theorem can be found in [8]. We present in this chapter a new

geometrically inspired proof of Alexandrov’s theorem given in [3] that is considered to be

the most elementary proof of the theorem.

The theorem of Alexandrov can be stated in two parts (Theorem 84, Theorem 89). The

first part states, for f : Rn → R, convex, at almost every point where f is differentiable,

there is a symmetric matrix denoted by D2f(x) such that

lim
y→x

f(y) − f(x) −Df(x)(y − x) − 1
2
(y − x)TD2f(x)(y − x)

|y − x|2
= 0. (1)

The second part then states, if f : Rn → R is convex, then for all x ∈ Rn where f is twice

differentiable as in (1), we have

lim
y→x

sup
σy∈∂f(y)

|σy −Df(x) −D2f(x)(y − x)|
|y − x|

= 0 (2)

where ∂f denotes the subdifferential of f . When proving the Alexandrov theorem, it has

been standard to prove the second part first and use that to prove the first part. In this thesis

we provide a proof of the first part and then use that to prove the second part. The proof

of the first part is surprisingly simple. First we present a new proof of a result by McMullen

[22], that for a convex body K, at almost every x ∈ ∂K, we can find a closed ball containing

x contained in K (Theorem 79). Thus choosing some radius R > 0, sufficiently small, we

can find a convex body K(R) ⊂ K, where K(R) is the union of closed balls of radius R

contained in K, and the surface area of K \ K(R) is arbitrarily small. Moreover Lucas’

theorem tells us that K(R) is a C1,1 convex body. Thus given a convex function f : Rn → R

4



we can approximate the graph of f , locally with a C1,1 convex body, and parameterizing the

bottom part of the convex body yields a convex function g ∈ C1,1
loc that agrees with f on a

set of small measure. Given that ∇g is Lipschitz, we then apply the Rademacher theorem to

show that ∇g is differentiable almost everywhere, and this is precisely the second derivative

we were seeking for f .

We conclude Chapter 4 by using a corollary needed for the proof of the Alexandrov

theorem to find a new proof for a recent result by Azagra and Haj lasz in [4] concerning the

Lusin-type property of C1,1 convex functions (Theorem 90). The result can be stated as: for

a convex f : Rn → R, for every R > 0, and for every ε > 0, there exists a convex function

g ∈ C1,1(Rn), g ≥ f , such that

|{x ∈ Bn(0, R) : f(x) ̸= g(x)}| < ε.

The original proof for this is technical but the proof is simplified by the use of Lucas’ theorem.

The goal of Chapter 5 is the study of the support function and its differentiability prop-

erties. The support function is defined as,

σK(x) = sup
k∈K

⟨x, k⟩

and is a useful tool to describe the structure of the boundary of a convex body. We define

the supporting hyperplane of K in the direction of u as,

H(u,K) = {x ∈ Rn : ⟨x, u⟩ = σK(u)}.

It is easy to see that σK is convex but moreover we have that σK is differentiable at u ∈

Rn \{0} if and only if H(u,K) intersects the boundary of K at exactly one point. The main

result of this chapter is using this geometric understanding of the differentiability of the

support function to show that the set of normal vectors u ∈ Sn−1, such that the intersection

of H(u,K) with K is a d-dimensional face, is countably (n − d − 1) rectifiable (Theorem

110). For convex f , we define

Σd(∂f) := {x ∈ Rn : dim((∂f)(x)) ≥ d},

5



where ∂f is the subdifferential of f . To prove Theorem 110, we rely on a theorem originally

proven by Zaj́ıček [29] which shows we can cover Σd(∂f) by the graphs of locally Lipschitz

functions of dimension n− d.

Finally in Chapter 6 we establish a list of equivalent statements for C1,1 and C1,α convex

functions (Theorem 111, Theorem 114). These lists appear to be nonexistent as a whole in

the published literature and thus the hope is this will be a useful resource for those interested

in the differentiability of convex functions.
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2.0 Preliminaries

2.1 Notation

An open ball in Rn will be denoted as B(x, r) (or Bn(x, r) if the dimension is not clear)

and the closed ball will be denoted by B(x, r) (Bn(x, r)). Often we will consider balls that

are associated with a point, usually not the center. Thus we will use h(x) or similarly hε(x)

to denote the center of the ball that has some relation to x e.g. for every x ∈ K there exists

some closed ball B(h(x), R) ⊂ K such that x ∈ B(h(x), R) ⊂ K.

We denote the line segment from x ∈ Rn to y ∈ Rn as [x, y], that is,

[x, y] = {(1 − t)x+ ty : t ∈ [0, 1]}.

We will only be working within the Euclidean space Rn, where ⟨·, ·⟩ is the standard inner

product given by ⟨x, y⟩ =
∑n

i=1 xiyi. Moreover |x| =
√

⟨x, x⟩ represents the Euclidean norm

on Rn. We define the unit-sphere in Rn as, Sn−1 = {x ∈ Rn : |x| = 1}. We denote the

hyperplane as

Hb(u) = {x : ⟨x, u⟩ = b} (3)

and the closed half space with outer normal u, as

H−
b (u) = {x : ⟨x, u⟩ ≤ b} (4)

For a function f : U → R, we define Γf : U → U × R to be the graph of f defined by

Γf (x) := (x, f(x)). For any set E ⊂ Rn, we denote the distance to E as,

dist(x,E) = inf
y∈E

|x− y|

and it is easy to prove that for every closed set E ⊂ Rn, and any x /∈ E, there exists y ∈ E,

not necessarily unique, such that dist(x,E) = |x− y|. The diameter of E is given by,

diam(E) = sup
x,y∈E

|x− y|.

7



The Lipschitz constant of f : E → R, when it exists, is denoted by

Lip(f, E) = sup
x,y∈E
x ̸=y

|f(x) − f(y)|
|x− y|

,

and if f is Lipschitz on all of Rn, we then denote the Lipschitz constant by Lip(f).

For a measurable set A ⊂ Rn we denote the n-dimensional Lebesgue measure of A as

Ln(A). We define the constant ωs, for s ≥ 0, as

ωs =
πs/2

Γ
(
1 + s

2

) ,
where Γ(s) :=

∫∞
0
e−xxs−1 dx is the gamma function and we note that when s = n ∈ N, ωn

is the volume of the unit ball in Rn. Let X be a metric space. For ε > 0 and E ⊂ X, we

define,

Hs
ε(E) = inf

{
ωs

2s

∞∑
i=1

(diamAi)
s : E ⊂

∞⋃
i=1

Ai with diamAi < ε

}
.

We call Hs(E) the s dimensional Hausdorff measure of E which is given by,

Hs(E) = lim
ε→0+

Hs
ε(E)

and as the function ε 7→ Hs
ε(E) is nonincreasing, this limit will always exist in the extended

reals.

It is well known that for any measurable A ⊂ Rn, we have Ln(A) = Hn(A) (see [13,

Theorem 2.5]), and we generally refer to Ln(A) as the volume of A. Similarly, we will refer

to Hn−1(∂A) as the surface area of A. By the definition of Hn, if f : Rn → Rn is Lipschitz

continuous with Lip(f) = L, then Hn(f(A)) ≤ LnHn(A) [13, Theorem 2.8].

For A ⊂ Rn, x is a density point of A if,

lim
r→0

Ln(A ∩Bn(x, r))

Ln(Bn(x, r))
= 1

and by the Lebesgue differentiation theorem, for a measurable set A, a.e. point in A is a

density point.

We say a function f : Rn → R is positively 1-homogeneous if for all t > 0 and for all

x ∈ Rn we have, f(tx) = tf(x), and subadditive if for all x, y ∈ Rn,

f(x+ y) ≤ f(x) + f(y).

8



2.2 Rademacher’s Theorem

Before discussing the differentiability properties of convex functions we first will provide

details for the well known Rademacher’s theorem. We include the details here for com-

pleteness sake but this section stands alone and the material contained in it is not needed

elsewhere, aside from the statement of Rademacher’s theorem. The proof of the Rademacher

theorem is included, as well as theorem statements for well known results in measure theory

and the details for many of the theorems can easily be found in standard textbooks on real

analysis. The results below may work with more general measures but have been stated

using only the Lebesgue measure as that is the only measure needed for this section.

Let U ⊂ Rn be open. The support of a function f : U → R is denoted supp (f) and is

defined as

supp (f) = {x ∈ U : f(x) ̸= 0}.

We define C∞
c (U) to be the space of smooth functions defined on U with compact support.

Theorem 1. C∞
c (U) is dense in L1(U).

Lemma 2. (Fundamental lemma of Calculus of Variations) If g ∈ L1
loc(U) and for every

ϕ ∈ C∞
c (U) we have ∫

U

g(x)ϕ(x) dx = 0

then g = 0 a.e.

The proof presented here for Rademacher’s theorem can be found in [14, Theorem 113].

Theorem 3 (Rademacher’s theorem). If f : U → R is Lipschitz continuous, where U ⊂ Rn

is open, then

∇f(x) =

〈
∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

〉
exists almost everywhere. Moreover for all x ∈ U where ∇f(x) exists we have,

lim
y→x

f(y) − f(x) −∇f(x) · (y − x)

|y − x|
= 0.

Proof. Let ν ∈ Sn−1 and let

Dνf(x) =
d

dt
f(x+ tv)

∣∣
t=0

9



be the directional derivative of f in the direction ν wherever it exists. Let Aν denote the set

of x ∈ U such that Dνf(x) does not exist. As both

lim inf
t→0

f(x+ tν) − f(x)

t
and lim sup

t→0

f(x+ tν) − f(x)

t

are Borel measurable functions and Dνf(x) exists when

lim inf
t→0

f(x+ tν) − f(x)

t
= lim sup

t→0

f(x+ tν) − f(x)

t

we have that Aν is Borel measurable. We also know that as f is Lipschitz, the function

t 7→ f(x + tν) is absolutely continuous and hence differentiable almost everywhere. Hence

the intersection of the set Aν with any line parallel to ν has one dimensional measure zero

and we can apply Fubini’s theorem to see that Aν has measure zero. Therefore for every

ν ∈ Sn−1, Dνf(x) exists for almost every x ∈ U . Fix ν ∈ Sn−1 and ϕ ∈ C∞
c (U) and choose

h > 0 small enough so that x+hν ∈ U for all x ∈ supp (ϕ). By the invariance of the integral

with respect to translations, we have∫
U

f(x+ hν)ϕ(x) dx =

∫
U

f(x)ϕ(x− hν) dx

so that for h sufficiently small∫
U

f(x+ hν) − f(x)

h
ϕ(x) dx = −

∫
U

ϕ(x− hν) − ϕ(x)

−h
f(x) dx.

By the Dominated convergence theorem we have, letting h→ 0,∫
U

Dνf(x)ϕ(x) dx = −
∫
U

f(x)Dνϕ(x) dx.

As this is true for any ν ∈ Sn−1, in particular it is true for v = ei so that∫
U

∂f

∂xi
(x)ϕ(x) dx = −

∫
U

f(x)
∂ϕ

∂xi
(x) dx for i = 1, 2, . . . , n.

10



Hence, ∫
U

Dνf(x)ϕ(x) dx = −
∫
U

f(x)Dνϕ(x) dx = −
∫
U

f(x)(∇ϕ(x) · ν) dx

= −
n∑

i=1

∫
U

f(x)
∂ϕ

∂xi
(x)νi dx =

n∑
i=1

∫
U

∂f

∂xi
(x)ϕ(x)νi dx

=

∫
U

ϕ(x)(∇f(x) · ν) dx. (5)

Applying Lemma 2 we have that Dνf(x) = ∇f(x) ·ν a.e. Let ν1, ν2, . . . be a countable dense

subset of Sn−1 and define the sets

Ak = {x ∈ U : ∇f(x), Dνkf(x) exist and Dνkf(x) = ∇f(x) · νk},

and A =
⋂∞

k=1Ak. Given that |U \ Ak| = 0 for each k this implies that |U \ A| = 0 and by

the definition of A,

Dνkf(x) = ∇f(x) · νk for al x ∈ A and all k = 1, 2, . . .

The claim is that f is differentiable on A. Consider the function

Q(x, ν, h) =
f(x+ hν) − f(x)

h
−∇f(x) · ν,

where x ∈ A, ν ∈ Sn−1, and h > 0. To show f is differentiable on A we need only show

that for every ε > 0 there exists a δ > 0 such that 0 < h < δ implies |Q(x, ν, h)| < ε.

Given that f is L-Lipschitz and ∂f
∂xi

(x) exists a.e. we have that |∂f/∂xi(x)| ≤ L a.e. and by

Cauchy-Schwarz, |∇f(x)| ≤
√
nL a.e. Thus for any ν, ν ′ ∈ Sn−1 we have,

|Q(x, ν, h) −Q(x, ν ′, h)|

=

∣∣∣∣f(x+ hν) − f(x)

h
−∇f(x) · ν −

(
f(x+ hν ′) − f(x)

h
−∇f(x) · ν ′

)∣∣∣∣
=

∣∣∣∣f(x+ hν) − f(x+ hν ′)

h
+ ∇f(x) · ν ′ − ν

∣∣∣∣
≤ L|ν − ν ′| + |∇f(x)||ν − ν ′| = (

√
n+ 1)L|ν − ν ′|.

11



By the density of {νk} and the compactness of Sn−1 for every ε > 0 there exists N large

enough so that

Sn−1 ⊂
N⋃
i=1

B

(
νi,

ε

2(
√
n+ 1)L

)
,

i.e. for each ν ∈ Sn−1 there exists some k = 1, 2, . . . , N such that

|ν − νk| ≤
ε

2(
√
n+ 1)L

.

By the construction of A we have for all x ∈ A and {νi}∞i=1,

lim
h→0+

Q(x, νi, h) = 0

and thus for each x ∈ A and νi there exists δi > 0 such that 0 < h < δi implies

|Q(x, νi, h)| < ε/2. Choosing δ := min{δ1, . . . , δN} yields for all 0 < h < δ and for all

i = 1, . . . , N ,

|Q(x, νi, h)| < ε/2.

Therefore, combining the aforementioned inequalities we have, for x ∈ A, ν ∈ Sn−1, and

0 < h < δ,

|Q(x, ν, h)| ≤ |Q(x, νk, h)| + |Q(x, νk, h) −Q(x, ν, h)| < ε

2
+ (

√
n+ 1)L|ν − νK | < ε

completing the proof. QED

In this chapter we will cover much of the preliminary facts of convex geometry and

convex analysis needed throughout the thesis. There are many texts used in the compilation

of these topics in convex analysis including, [11], [16], [23], [26], and [27]. While most of the

stated definitions and theorems are elementary and standard in convex analysis we provide

all necessary details to ensure all readers are able to understand the entirety of the thesis

without needing to look up results.
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2.3 Convex Sets

We say a set C ⊂ Rn is convex if for every x, y ∈ C, [x, y] ⊂ C. Moreover given a set

A ⊂ Rn we define its convex hull as

co(A) :=

{
m∑
i=1

λixi : λi ≥ 0,
m∑
i=1

λi = 1, and xi ∈ A,m ∈ N

}
,

where we call
∑m

i=1 λixi a convex combination of x1, . . . , xm ∈ A when the λi’s satisfy λi ≥ 0

and
∑m

i=1 λi = 1. Thus, in words, we can say the convex hull of A is the set of convex

combinations of A. Equivalently we can define the convex hull of A to be the intersection

of all convex sets containing A. Similarly we can define the affine hull of A to be the set of

affine combinations of A where we define an affine combination of A to be of the form

m∑
i=1

λixi with
m∑
i=1

λ = 1 and xi ∈ A,

or equivalently the intersection of all affine sets containing A. The main difference is that

a convex combination has only non-negative coefficients and affine combinations can have

negative coefficients. From these definitions we can see that every convex set is contained in

an affine set and using this we define the dimension of a convex set C to be the dimension

of its affine hull.

When discussing affine sets, we say that the vectors x0, . . . , xk are affinely independent

if x1 − x0, . . . , xk − x0 are linearly independent. It is equivalent to say that the vectors are

affinely independent if
k∑

i=0

λixi = 0 and
k∑

i=0

λi = 0 (6)

implies λ0 = · · · = λk = 0.

In the above characterization of the convex hull of a set we are considering the con-

vex combinations of m points in A, where m is an arbitrary natural number. In 1911

Carathéodory strengthened this representation by showing that for a compact set A ⊂ Rn,

its convex hull can be represented by the convex combination of only n + 1 elements of A

and in 1914 Steinitz extended the result for general sets. A proof of Carathéodory’s theorem

can be found in [27, Theorem 17.1] but we present here the proof in [28, Theorem 1.1.4].
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Theorem 4 (Carathéodory’s Theorem). For any subset A ⊂ Rn, its convex hull admits the

representation

co(A) =

{
n+1∑
i=1

λixi :
n+1∑
i=1

λi = 1, λi ≥ 0, xi ∈ A

}
.

Proof. By definition, for x ∈ co(A), we have

x =
m∑
i=1

λixi,

m∑
i=1

λi = 1, λi ≥ 0, xi ∈ A for i = 1, . . . ,m, (7)

for some m ∈ N, where we assume that m is the smallest possible value. Thus x cannot be

written as the convex combination of k elements of A if k < m. This means we can assume

λi > 0 for each i = 1, . . . ,m. If m > n + 1, then the points x1, . . . , xm must be affinely

dependent. Hence, by (6), there exists constants µ1, . . . , µm, at least one non-zero, such that

m∑
i=1

µixi = 0 and
m∑
i=1

µi = 0. (8)

Moreover we know there exists i = 1, . . . ,m such that µi > 0. Thus we can reorder the λi

and µi such that µm > 0 and

λm
µm

= min

{
λi
µj

: i = 1, . . . ,m and µj > 0

}
> 0. (9)

Hence we have, by (8)

0 =
λm
µm

m∑
i=1

µixi =
m−1∑
i=1

λmµi

µm

xi + λmxm

and subtracting this from (7) yields

x =
m−1∑
i=1

(
λi −

λmµi

µm

)
xi (10)

where obviously the coefficients are positive if µi ≤ 0 and by (9), λi − λmµi

µm
≥ 0 if µi > 0.

Finally, we see by (8)

m−1∑
i=1

(
λi −

λmµi

µm

)
=

m−1∑
i=1

λi + λm

m−1∑
i=1

−µi

µm

=
m−1∑
i=1

λi + λm = 1

so that by (10), x is the convex combination of m − 1 elements of A, contradicting the

minimality of m. QED
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If C ⊂ Rn is a closed convex set, then for every x ∈ Rn, there is a unique point denoted

by πC(x) such that

πC(x) ∈ C and |x− πC(x)| = dist(x,C). (11)

Indeed, if there exist c1, c2 ∈ C such that c1 ̸= c2 and

|x− c1| = |x− c2| = dist(x,C),

then by convexity c1+c2
2

∈ B(x, dist(x,C)), which implies∣∣∣x− (c1
2

+
c2
2

)∣∣∣ < dist(x,C).

But by convexity c1
2

+ c2
2
∈ C, a contradiction. We call the mapping πC : Rn → C the metric

projection onto C. Clearly, if x ̸∈ C, then πC(x) ∈ ∂C.

Lemma 5. If C ⊂ Rn is closed and convex, then πC : Rn → C is 1-Lipschitz.

Proof. Let x, y ∈ Rn. By convexity of C, tπC(x) + (1 − t)πC(y) ∈ C for all t ∈ (0, 1) and

hence

|y − πC(y)|2 = dist(y, C)2 ≤ |y − (tπC(x) + (1 − t)πC(y))|2

= |(y − πC(y)) − t(πC(x) − πC(y))|2

= |y − πC(y)|2 − 2t⟨y − πC(y), πC(x) − πC(y)⟩ + t2|πC(x) − πC(y)|2

which can be simplified to

2⟨y − πC(y), πC(x) − πC(y)⟩ ≤ t|πC(x) − πC(y)|2.

Letting t→ 0+ yields

⟨y − πC(y), πC(x) − πC(y)⟩ ≤ 0. (12)

By switching the role of x and y we also have

⟨x− πC(x), πC(y) − πC(x)⟩ ≤ 0. (13)

Adding inequalities (12) and (13) yields

|πC(x) − πC(y)|2 ≤ ⟨x− y, πC(x) − πC(y)⟩ ≤ |x− y| |πC(x) − πC(y)|

and hence |πC(x) − πC(y)| ≤ |x− y|. QED
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Given x ∈ Rn \ C the vector x − πC(x) is of particular import, so we define the unit

vector

uC(x) =
x− πC(x)

|x− πC(x)|
. (14)

Using the proof of Lemma 5 we can obtain the following result:

Corollary 6. Let C ⊂ Rn be a closed convex set and x ∈ Rn \ C. Then there exists b ∈ R

such that C ⊂ H−
b (uC(x)) and πC(x) ∈ Hb(uC(x)), where Hb and H

−
b are defined in (3) and

(4)

Proof. Note that the hyperplane through πC(x) with outer unit normal uC(x), is given by,

{z ∈ Rn : ⟨uC(x), z − πC(x)⟩ = 0}.

Hence for y ∈ C, i.e. y = πC(y), the proof in Lemma 5 showed that

⟨uC(x), y − πC(x)⟩ ≤ 0,

implying C is contained in the half space H−
b (uC(x)) where b = ⟨uC(x), πC(x)⟩ and obviously

πC(x) ∈ Hb(uC(x)). QED

This corollary leads to a foundational aspect of convex geometry: given a closed convex

set C, for every x ∈ ∂C, there exists a hyperplane Hb(u) containing x, such that C ⊂ H−
b (u).

We call such a hyperplane, Hb(u), a supporting hyperplane of C at x. Thus Corollary 6 can

be restated as, for every x ∈ πC(Rn \ C) ⊂ ∂C there exists a supporting hyperplane of C

at x. Therefore, to show this is true for every point in ∂C we need only show the following

lemma:

Lemma 7. For a closed convex set C, πC(Rn \ C) = ∂C.

Proof. It is clear that πC(Rn \ C) ⊂ ∂C. Thus consider x ∈ ∂C. Define a sequence

xk ∈ Rn \ C such that |x − xk| < 1
k
. Then considering the unit vector, uC(xk), and by the

compactness of Sn−1, there will exist a subsequence, uC(xki) converging to some y ∈ Sn−1.

Moreover by Corollary 6 it is clear that πC
(
πC(xki) + uC(xki)

)
= πC(xki). Hence as x ∈ ∂C

implies πC(x) = x and the 1-Lipschitzness of πC we have,

|x− πC
(
πC(xki) + uC(xki)

)
| = |πC(x) − πC(xki)| ≤ |x− xki | <

1

ki
.

16



Therefore by the continuity of the metric projection, letting i → ∞ yields x = πC(x + y).

Given that

dist
(
πC(xk) + uC(xk), C

)
= |πC(xk) + uC(xk) − πC(xk)| = |uC(xk)| = 1

this implies dist(x+ y, C) = 1 and hence x+ y ∈ Rn \ C concluding the proof. QED

Combining Corollary 6 and Lemma 7 yields the fundamental result,

Theorem 8. Given a closed convex set C ⊂ Rn, for every x ∈ ∂C there exists a supporting

hyperplane.

A simple consequence of this theorem is that a closed convex set is uniquely defined by

its supporting hyperplanes.

Corollary 9. Given a closed convex set C ⊂ Rn, we have

C =
⋂

{H−
b (u) ⊂ Rn : Hb(u) is a supporting hyperplane of C}.

In general it is not guaranteed that a supporting hyperplane at x is unique. In fact

uniqueness of a supporting hyperplane at a point of a convex set will play a crucial role later

on as we discuss differentiability of convex functions.

Consider a closed convex set C ⊂ Rn. Then it is a well known result (see for example

[16, Theorem 4.1.1]) that for any x0 /∈ C, there exists u ∈ Rn and b ∈ R such that the

hyperplane Hb(u) separates x0 and C, where we say the hyperplane Hb(u) separates C and

x0 if

C ⊂ {x ∈ Rn : ⟨x, u⟩ < b} and ⟨x0, u⟩ > b.

Corollary 10. Let C ⊂ Rn be a closed convex set and x0 /∈ C. Then there exists a hyper-

plane, Hb(u), separating C and x0.

Proof. By Theorem 8, as πC(x0) ∈ C, there exists u ∈ Rn \ {0} and b ∈ R such that Hb(u)

is a supporting hyperplane of C at πC(x0). Moreover as x0 ̸= πC(x0),

dist(x0, Hb(u)) ≥ |x0 − πC(x0)| > 0

so that the hyperplane with outer normal u through the midpoint of the line segment

[πC(x0), x0] will separate C and x0. QED
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2.4 Convex Functions

Now that we have established the fundamental properties of convex sets we turn to the

study of convex functions. Let U ⊂ Rn be a convex set. We say f : U → R is a convex

function if for every x, y ∈ U and t ∈ [0, 1]

f((1 − t)x+ ty) ≤ (1 − t)f(x) + tf(y).

In other words, a function is convex if every line segment connecting two points on the

graph of f lies above the graph of f . It is then clear that there is a connection between

convex functions and convex sets, given both are founded upon the use of line segments. To

accomplish this connection, for f : U → R, with U ⊂ Rn convex, we define the epigraph of

a function, denoted by epi(f), as

epi(f) := {(x, t) ∈ U × R : f(x) ≤ t}.

Note, the graph of f is contained in the boundary of its epigraph and if U is closed then

epi(f) is closed. Therefore an equivalent definition for a convex function can be found by

converting the function to a set and showing the set is convex. So we can say for U ⊂ Rn

convex, a function f : U → R is convex if and only if its epigraph, epi(f), is a convex subset

of U × R.

We observe that the definition of a convex function requires only the convex combination

of two points on the graph of f , but viewing a convex function as a function with a convex

epigraph we see that there is no reason to restrict ourselves to two points. The next result

says that in fact a function is convex if any convex combination of points on the graph of f

is in the epigraph of f .

Theorem 11 (Jensen’s Inequality). A function f : Rn → R is convex if and only if for any

λi ≥ 0, i = 1, ...,m which satisfy
∑m

i=1 λi = 1 and for any elements xi ∈ Rn, i = 1, ...,m, it

holds that

f

(
m∑
i=1

λixi

)
≤

m∑
i=1

λif(xi)

18



Proof. This follows by noting that

f(λ1x1+· · ·+λmxm) = f

(
λ1x1 + (λ2 + · · · + λm)

(
λ2x2

λ2 + · · · + λm
+ · · · +

λmxm
λ2 + · · · + λm

))
,

applying the definition of convexity, and then an induction argument. QED

A similar characterization of convex functions can be given if we know that a function

is continuous and midpoint convex.

Theorem 12. Let g : Rn → R be continuous. Then g is convex if and only if for all

x, y ∈ Rn,

g

(
x+ y

2

)
≤ g(x)

2
+
g(y)

2
. (15)

Proof. If g is convex, then (15) follows from the definition. Suppose that g satisfies (15)

and fix x, y ∈ Rn. Then for any t ∈ (0, 1) we can approximate (1 − t)x + ty with elements

of the form
kn
2n
x+

mn

2n
y kn,mn ∈ N

such that kn
2n

+ mn

2n
= 1, kn

2n
→ (1 − t) and mn

2n
→ t. We then apply an induction argument

using (15) to show that

g

(
kn
2n
x+

mn

2n
y

)
≤ kn

2n
g(x) +

mn

2n
g(y)

and by the continuity of g, letting n→ ∞ proves g is convex. QED

We now establish that the slopes of secant lines for any convex function f : Rn → R are

non-decreasing.

Proposition 13. Let U ⊂ Rn be convex and f : U → R, a convex function. Then for any

x, z ∈ U and any y ∈ [x, z],

f(y) − f(x)

|y − x|
≤ f(z) − f(x)

|z − x|
. (16)
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Proof. Let t ∈ (0, 1) such that y = (1 − t)x+ tz. Then by definition of convexity of f ,

f(y) ≤ tf(z) + (1 − t)f(x) ⇐⇒ f(y) − f(x) ≤ tf(z) − tf(x).

Then dividing both sides of the inequality by t|z − x| yields,

f(y) − f(x)

t|z − x|
≤ f(z) − f(x)

|z − x|
.

The result follows by noting that y − x = t(z − x). QED

Using this fact we can show that a convex function f : U → R is continuous and in fact

locally Lipschitz continuous.

Theorem 14. Let U ⊂ Rn be convex and f : U → R convex. Then f is locally Lipschitz

continuous on intU with,

Lip(f, B̄(x, r)) ≤ osc(f, B̄(x, 2r))

r
for every B(x, 2r) ⊂ U

where we define the oscillation of f on the set E by,

osc(f, E) = sup
x,y∈E

|f(x) − f(y)|.

Proof. First note that a convex function is locally bounded in intU . Indeed, for any x ∈

intU there exists a neighborhood Vx contained in the interior of a simplex with vertices in

U and hence the function is bounded on Vx by values on the vertices since any point in the

simplices is their convex combination. Let y, z ∈ B̄(x, r). Without loss of generality, we may

assume that f(z) ≥ f(y). Let u be the intersection of ∂B(x, 2r) with the ray from y to z.

Then |u − y| ≥ r and as the difference quotients of a convex function of one variable are

increasing, by Proposition 13, we have the following inequality,

f(z) − f(y)

|z − y|
≤ f(u) − f(y)

|u− y|
≤ osc(f,B(x, 2r))

r
.

Taking the supremum over y, z ∈ B(x, r) yields the result. QED
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Now that we can see a convex function through the lens of a convex set we return to our

previous study of hyperplanes and convex sets. Consider f : Rn → R convex, and recall that

epi(f) is a closed convex set. Then by Theorem 8 we know that for every (x, y) ∈ ∂(epi(f))

there will exist a supporting hyperplane. Moreover, as f is defined on all of Rn, we see that

∂(epi(f)) = {(x, y) ∈ Rn × R : f(x) = y}, the graph of f . Therefore for each x ∈ Rn there

will exist a hyperplane passing through Γf (x) such that epi(f) will be contained above this

hyperplane. This leads to the following characterization of convex functions.

Theorem 15. If f : Rn → R is convex and x ∈ Rn, then there is v ∈ Rn such that

f(y) ≥ f(x) + ⟨v, y − x⟩ for all y ∈ Rn. (17)

We define the subdifferential of f to be the set,

∂f(x) := {v ∈ Rn : f(y) ≥ f(x) + ⟨v, y − x⟩ for all y ∈ Rn}

so we see that Theorem 15 shows, for a convex function f : Rn → R, ∂f(x) ̸= ∅ for all

x ∈ Rn. Later we will see that the subdifferential of a convex function is intimately linked

with differentiability properties of a convex function. It is easy to verify, by the definition

that ∂f(x) is convex, but moreover we have:

Theorem 16. If K ⊂ Rn is compact and f : Rn → R is convex, then

∂f(K) :=
⋃
x∈K

∂f(x)

is compact.

Proof. As ∂f(K) ⊂ Rn we need only show it is closed and bounded. To show ∂f(x) is

bounded suppose to the contrary that there is a sequence xk ∈ K and σk ∈ ∂f(xk) such that

|σk| → ∞ as k → ∞. As K and Sn−1 are both compact by taking subsequences we may

assume that there exist x ∈ K and σ ∈ Sn−1 such that

xk → x and
σk
|σk|

→ σ as k → ∞.
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Thus by the convexity of f and (17) we have,

f

(
xk +

σk
|σk|

)
≥ f(xk) +

〈
σk,

(
xk +

σk
|σk|

)
− xk

〉
= f(xk) + |σk|.

By the assumption we know that f(xk)+ |σk| → ∞ as k → ∞ but we also have by continuity

f(xk + σk

|σk|
) → f(x+ σ) implying that f(x+σ) = ∞ a clear contradiction. Therefore, ∂f(K)

is bounded. To show ∂f(K) is closed let σk ∈ ∂f(K) be such that for each k, σk ∈ ∂f(xk),

with xk ∈ K and σk → σ as k → ∞. Again, by compactness of K, taking a subsequence,

we can assume that xk → x ∈ K. Thus for all z ∈ Rn we have,

f(z) ≥ f(xk) + ⟨σk, z − xk⟩

and letting k → ∞ implies

f(z) ≥ f(x) + ⟨σ, z − x⟩

which shows that σ ∈ ∂f(x) ⊂ ∂f(K) and hence ∂f(K) is closed. QED

2.5 Differentiability Properties of Convex Functions

As we have discussed in the previous sections, convex sets and functions are defined

using purely geometric tools. Despite their geometric nature, convex functions have many

astounding properties related to differentiability. The next corollary follows from applying

the Rademacher theorem to Theorem 14.

Corollary 17. Convex functions are differentiable almost everywhere.

This result can be strengthened even further as restricting a convex function to the set

of points where it is differentiable shows that it is in fact continuously differentiable, in the

sense of sequential continuity.

Theorem 18. Let D be the set of points where a convex function f : Rn → R is differentiable.

Then ∇f
∣∣
D
is continuous.
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Proof. Assume that f is differentiable at x. We will prove that if f is differentiable at yk

and yk → x as k → ∞, then ∇f(yk) → ∇f(x) as k → ∞. Let

h(y) = f(y) − f(x) −∇f(x) · (y − x)

and note that

∇h(yk) = ∇f(yk) −∇f(x).

Thus we need only show that ∇h(yk) → 0 as k → ∞. As h is the sum of a convex function

and a linear function, it is convex. If yk ∈ B(x, rk) where rk → 0 as k → ∞, then Theorem

14 and the convexity of h yields,

|∇h(yk)| ≤ Lip(h,B(x, rk)) ≤ osc(h,B(x, 2rk))

rk
≤ 2 sup(|h|, B(x, 2rk))

rk

As the supremum is taken over a compact set we can find zk ∈ B(x, 2rk) such that,

|h(zk)| = sup(|h|, B(x, 2rk))

where rk → 0 implies zk → x as k → ∞. Hence we have,

|∇h(yk)| ≤ 2|h(zk)|
rk

=
4|f(zk) − f(x) −∇f(x) · (zk − x)|

2rk

≤ 4|f(zk) − f(x) −∇f(x) · (zk − x)|
|zk − x|

→ 0 as k → ∞

where the limit follows from the differentiablity of f at x. QED

Corollary 19. If a convex function f : Rn → R is differentiable everywhere, then f is of

class C1.

A standard result in advanced calculus says that the continuity of the partial derivatives

f at x implies the differentiability of f at x. For a convex function the existence of partials

is all that is needed.

Lemma 20. Let f : Rn → R be convex. If partial derivatives ∂f
∂xi

(x) exist for all i = 1, ..., n,

then f is differentiable at x.
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Proof. Let,

A =

[
∂f

∂x1
(x), ...,

∂f

∂xn
(x)

]
and define ϕ : Rn → R by,

ϕ(h) = f(x+ h) − f(x) − Ah.

We need to show that
ϕ(h)

|h|
→ 0 as h→ 0

proving that f is differentiable at x with ∇f(x) = A. Note that ϕ is convex being the sum

of a convex function and linear function. Also, the following inequality follows from the

Cauchy-Schwarz inequality,

n∑
i=1

uivi = u · v ≤ |u||v| ≤ |u|
∑
i=1

|vi|. (18)

Let {e1, . . . , en} be the standard basis in Rn so that,

h = (h1, ..., hn) = h1e1 + · · · + hnen

and thus by Jensen’s inequality and (18),

ϕ(h) = ϕ

(
1

n

n∑
i=1

nhiei

)
≤ 1

n

n∑
i=1

ϕ(nhiei) =
∑
i:hi ̸=0

hi

(
ϕ(nhiei)

nhi

)
≤ |h|

∑
i:hi ̸=0

∣∣∣∣ϕ(nhiei)

nhi

∣∣∣∣ .
In a similar fashion we have,

ϕ(−h) = ϕ

(
1

n

n∑
i=1

−nhiei

)
≤ 1

n

n∑
i=1

ϕ(−nhiei) =
∑
i:hi ̸=0

−hi
(
ϕ(−nhiei)

−nhi

)
≤ |h|

∑
i:hi ̸=0

∣∣∣∣ϕ(−nhiei)
−nhi

∣∣∣∣ .
The convexity of ϕ and the fact that ϕ(0) = 0 yields,

0 = ϕ

(
h+ (−h)

2

)
≤ 1

2
(ϕ(h) + ϕ(−h))

and thus,

−|h|
∑
i:hi ̸=0

∣∣∣∣ϕ(−nhiei)
−nhi

∣∣∣∣ ≤ −ϕ(−h) ≤ ϕ(h) ≤ |h|
∑
i:hi ̸=0

∣∣∣∣ϕ(nhiei)

nhi

∣∣∣∣ .
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This in turn implies that,

−
∑
i:hi ̸=0

∣∣∣∣ϕ(−nhiei)
−nhi

∣∣∣∣ ≤ ϕ(h)

|h|
≤
∑
i:hi ̸=0

∣∣∣∣ϕ(nhiei)

nhi

∣∣∣∣ . (19)

Now as,

lim
t→0

ϕ(tei)

t
= lim

t→0

f(x+ tei) − f(x) − A(tei)

t
= lim

t→0

f(x+ tei) − f(x)

t
− ∂f

∂xi
(x)

=
∂f

∂xi
(x) − ∂f

∂xi
(x) = 0

we have, by letting |h| → 0 (and thus hi → 0) that,

−
∑
i:hi ̸=0

∣∣∣∣ϕ(−nhiei)
−nhi

∣∣∣∣→ 0 and
∑
i:hi ̸=0

∣∣∣∣ϕ(nhiei)

nhi

∣∣∣∣→ 0

and thus, by (19) we have shown that,

lim
|h|→0

ϕ(h)

|h|
= 0

as desired. QED

Theorem 21. If f : Rn → R is convex, then one-sided partial derivatives exist at every

point x ∈ Rn and
∂−f

∂xi
(x) ≤ ∂+f

∂xi
(x).

Moreover, for any x ∈ Rn and 1 ≤ i ≤ n, if s ∈ R satisfies,

∂−f

∂xi
(x) ≤ s ≤ ∂+f

∂xi
(x)

then f(x+ tei) ≥ f(x) + st for all t ∈ R.

25



Proof. The existence of the one sided derivatives at every x ∈ Rn follows from the fact that

the secant slopes are non-decreasing for a convex function (Proposition 13) and are clearly

bounded, by Theorem 16. If s ∈ R satisfies ∂−f
∂xi

(x) ≤ s ≤ ∂+f
∂xi

(x), then for all t < 0, we have

f(x+ tei) − f(x)

t
≤ ∂−f

∂xi
(x) ≤ s

and similarly for all t > 0,

f(x+ tei) − f(x)

t
≥ ∂+f

∂xi
(x) ≥ s

completing the proof. QED

Theorem 22. Let f : Rn → R be differentiable. Then the following conditions are equivalent:

(a) f is convex

(b) f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ for all x, y ∈ Rn

(c) ⟨∇f(y) −∇f(x), y − x⟩ ≥ 0 for all x, y ∈ Rn

Remark 23. Condition (b) means that f is bounded below by its tangent spaces and if f

is differentiable at x, then ∇f(x) ∈ ∂f(x). Condition (c) is called monotonicity of ∇f .

Proof. We first assume (a). Convexity of f implies that

f(x+ t(y − x)) − f(x)

t
≤ f(y) − f(x)

for any t ∈ (0, 1). Passing to the limit as t→ 0+ proves (b).

Now assume (b). It follows that

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ =⇒ f(y) − f(x) ≥ ⟨∇f(x), y − x⟩

and similarly,

f(x) ≥ f(y) + ⟨∇f(y), x− y⟩ =⇒ f(x) − f(y) ≥ ⟨∇f(y), x− y⟩.

Adding these two inequalities yields (c).

Finally assume (c). To prove f is convex we will show for any x, y ∈ Rn the function

ϕ(t) = f(x+ t(y − x))
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is convex. To this end it suffices to prove that ϕ′(t) is increasing. We have,

ϕ′(t) = ⟨∇f(x+ t(y − x)), y − x⟩

If t1 < t2, then denoting x1 = x+ t1(y − x) and x2 = x+ t2(y − x) yields

ϕ′(t2) − ϕ′(t1) = ⟨∇f(x2) −∇f(x1), y − x⟩ =
1

t2 − t1
⟨∇f(x2) −∇f(x1), x2 − x1⟩ ≥ 0

as desired. QED

There is a strong connection between the subdifferential of a convex function, ∂f(x), and

its differentiability. We will explore this more in Theorem 27 but before stating and proving

the theorem we will need a convex version of the Hahn Banach theorem. The proof of the

Hahn Banach theorem requires Zorn’s lemma, so we first establish the necessary definitions

for stating Zorn’s lemma.

Definition 24. We define a partially ordered set X as a set equipped with a binary relation

≤ that satisfies the properties:

(1) x ≤ x for all x ∈ X;

(2) x ≤ y and y ≤ x implies x = y;

(3) x ≤ y and y ≤ z implies x ≤ z.

We say a subset C ⊂ X is a totally ordered set if for every x, y ∈ C, either x ≤ y or y ≤ x.

An upper bound of Y ⊂ X, where X is a partially ordered set, is an element m ∈ X such

that y ≤ m for all y ∈ Y . We say m ∈ X is a maximal element of X if m ≤ x for some

x ∈ X implies m = x.

Theorem 25 (Zorn’s Lemma). Let X be a non empty partially ordered set. If every totally

ordered subset of X has an upper bound, then X has at least one maximal element.

The classic Hahn-Banach theorem states that a linear functional can be extended if

bounded above by a 1-homogeneous and subadditive function, but we can weaken this to a

convex function. Proofs of Hahn Banach using a convex majorant can be hard to find but

we present here one given in [26, Theorem A, pg. 105].
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Theorem 26 (Hahn-Banach Theorem). Let X be a real linear space and p : X → R a convex

function. Let λ : Y → R be a linear functional defined on a linear subspace Y ⊂ X such that

λ(v) ≤ p(v) for all v ∈ Y . Then there is a linear functional Λ : X → R such that

Λ(v) ≤ p(v) for all v ∈ X and Λ(v) = λ(v) for all v ∈ Y.

Proof. Let z /∈ Y and define Y := span{Y, z}. We will first show we can extend λ to Y . Let

λ be the linear extension of λ to Y . To do this we need only define λ(z) as by the linearity

of λ we have for a ∈ R and y ∈ Y (and thus az + y ∈ Y ),

λ(az + y) = aλ(z) + λ(y) = aλ(z) + λ(y).

Suppose that y1, y2 ∈ Y and α, β > 0. Then,

βλ(y1) + αλ(y2) = λ(βy1 + αy2) = (α + β)λ

(
β

α + β
y1 +

α

α + β
y2

)
≤ (α + β)ρ

(
β

α + β
y1 +

α

α + β
y2

)
= (α + β)ρ

(
β

α + β
(y1 − αz) +

α

α + β
(y2 + βz)

)
≤ βρ(y1 − αz) + αρ(y2 + βz)

which in turn implies that,

β(λ(y1) − ρ(y1 − αz)) ≤ α(ρ(y2 + βz) − λ(y2)).

As α, β > 0, we have

1

α
(λ(y1) − ρ(y1 − αz)) ≤ 1

β
(ρ(y2 + βz) − λ(y2)).

Then we can find a ∈ R such that,

sup
y∈Y
α>0

1

α
(λ(y) − ρ(y − αz)) ≤ a ≤ inf

y∈Y
α>0

1

α
(ρ(y + αz) − λ(y)). (20)

We now define λ(z) = a and we need to show that the given extension satisfies the property

λ(x) ≤ ρ(x) for all x ∈ Y . By (20) we know for all α > 0 and y ∈ Y that,

λ(z) ≤ 1

α
(ρ(y + αz) − λ(y))
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which, by the linearity of λ and the fact that λ = λ on Y , implies that

λ(y + αz) ≤ ρ(y + αz).

Similarly using (20) again, for all α > 0 and y ∈ Y , we have

λ(z) ≥ 1

α
(λ(y) − ρ(y − αz))

which again implies that,

λ(y − αz) ≤ ρ(y − αz)

and as every element of Y is of the form y ± αz we have shown the extension λ satisfies

the required property λ(x) ≤ ρ(x) for all x ∈ Y . This shows that we can extend λ by one

dimension. The remainder of the proof follows from Zorn’s lemma (Theorem 25). Let E

be the set of extensions, e, of λ which satisfy e(x) ≤ ρ(x) for all x where e is defined. We

assign a partial ordering of E by letting e1 ⪯ e2 if e2 is defined on a larger set than e1 and

e1(x) = e2(x) for all x where they are both defined. Thus we can let {eα}α∈A be a totally

ordered subset of E where each eα is defined on a set Xα. Hence we can define e on the set

X =
⋃
α∈A

Xα

by letting e(x) = eα(x) whenever x ∈ Xα. It is obvious that for all α ∈ A, eα ⪯ e so

every totally ordered subset of E has an upper bound. Therefore by Zorn’s lemma, E has

a maximal element Λ defined on some set X ′ with the property that Λ(x) ≤ ρ(x) for all

x ∈ X ′. If X ′ ̸= X then by the first part of the proof we can extend Λ to Λ defined on a

space whose dimension is dim(X ′)+1, contradicting the maximality of Λ. Thus X ′ = X and

Λ is defined on all of X with the properties that Λ(x) = λ(x) for x ∈ Y and Λ(x) ≤ ρ(x) for

all x ∈ X. QED

We recall by Theorem 15 that a convex function has a nonempty subdifferential at every

point in its domain, and that by Corollary 17 it is differentiable almost everywhere. The

following theorem shows us that the subdifferential of a convex function is an extension of

the derivative of a convex function.

Theorem 27. Let f : Rn → R be convex.
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(1) If f is differentiable at x, then ∂f(x) = {∇f(x)};

(2) f is differentiable at x if and only if ∂f(x) is a singleton

Proof. By Theorem 22, we know that ∇f(x) ∈ ∂f(x). We now wish to show that this is the

only point. Suppose to the contrary that there exists v ∈ ∂f(x) such that v ̸= ∇f(x). Then

there exists some vi ̸= ∂f
∂xi

(x), and without loss of generality we may assume that vi <
∂f
∂xi

(x).

Then we consider the function,

g(t) := f(x+ tei)

and note that ∂f
∂xi

(x), vi ∈ ∂g(0). Moreover, g′(0) = ∂f
∂xi

(x). As vi < g′(0) we have, by

Proposition 13, that in fact,

g′−(0) ≤ vi < g′(0)

where g′−(0) is the left sided derivative of g at 0. But this contradicts the differentiability of

g as g′−(0) = g′+(0) = g′(0).

To prove (2), we note that (1) shows if f is differentiable at x, then ∂f(x) is a singleton.

It suffices to show that if ∂f(x) = {v}, then

∂f

∂xi
(x) = vi

proving that all the partials exist and thus by Lemma 20, f is differentiable at x. Let

g(t) := f(x+ tei) and by the previous comment we need to show that g′(0) = vi. Clearly as

∂f(x) = {v}, we have vi ∈ ∂g(0) and thus,

g(t) ≥ g(0) + vit for all t ∈ R.

By the convexity of g and Theorem 21 we know the one sided derivatives exist, i.e.

g′+(0) = lim
t→0+

g(t) − g(0)

t
and g′−(0) = lim

t→0−

g(t) − g(0)

t
.

Thus to show the differentiability of g at 0 it suffices to prove that g′−(0) = g′+(0) which, by

the first part, will imply g′(0) = vi as desired. Suppose to the contrary that,

g′−(0) ≤ a < b ≤ g′+(0).
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Then by the second part of Theorem 21, we have that for all t ∈ R,

g(t) ≥ g(0) + at.

Let Y = span {ei} and thus for w = tei ∈ Y we can rewrite the above inequality as,

at ≤ f(x+ tei) − f(x).

Equivalently we have,

(aei) · w ≤ f(x+ w) − f(x).

Setting λ(w) = (aei) ·w and p(w) = f(x+w) − f(x) we can see that λ(w) is linear, p(w) is

convex, and λ(w) ≤ p(w). Thus by the Hahn Banach theorem there exists A ∈ Rn such that

A · u ≤ f(x+ u) − f(x)

for all u ∈ R, where A · ei = a. In a similar fashion we have,

g(t) ≥ g(0) + bt

and thus by the Hahn Banach theorem there exists B ∈ Rn such that

B · u ≤ f(x+ u) − f(x)

for u ∈ Rn and B · ei = b. As A · ei ̸= B · ei we know that A ̸= B but as

f(x+ u) ≥ f(x) + A · u

and

f(x+ u) ≥ f(x) +B · u

this implies A,B ∈ ∂f(x) a contradiction of the assumption that ∂f(x) = {v}. QED

Theorem 28. If f, g : Rn → R are convex functions and g is differentiable at x, then

∂(f + g)(x) = ∂f(x) + ∇g(x).
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Proof. It suffices to show that ∂(f+g)(x) ⊂ ∂f(x)+∇g(x) as the opposite inclusion follows

immediately from the definition. Let v ∈ ∂(f + g)(x), that is, for any z ∈ Rn

f(z) + g(z) ≥ f(x) + g(x) + ⟨v, z − x⟩. (21)

As g is differentiable at x, we have

g(z) = g(x) + ⟨∇g(x), z − x⟩ + o(|z − x|)

and combining this with (21) yields

f(z) + g(x) + ⟨∇g(x), z − x⟩ + o(|z − x|) ≥ f(x) + g(x) + ⟨v, z − x⟩.

This in turn implies

f(z) ≥ f(x) + ⟨v −∇g(x), z − x⟩ + o(|z − x|). (22)

Let h(z) = f(z) − ⟨v − ∇g(x), z − x⟩ and note that h is convex, being the sum of convex

functions, and h(x) = f(x). Thus rewriting (22) gives us,

h(z) ≥ h(x) + o(|z − x|).

It then follows from the convexity of h that h(z) ≥ h(x) for all z ∈ Rn. Thus,

f(z) ≥ f(x) + ⟨v −∇g(x), z − x⟩

proving that v −∇g(x) ∈ ∂f(x). Therefore

v = (v −∇g(x)) + ∇g(x) ∈ ∂f(x) + ∇g(x)

and the proof is complete. QED

We conclude the section concerning the differentiability properties of convex functions

with a generalization of Theorem 18, namely that the subdifferential of a convex function is

sequentially continuous at every point where ∇f exists.

Theorem 29. Let f : Rn → R be convex and differentiable at x. If yk → x and σk ∈ ∂f(yk),

then σk → ∇f(x).
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Remark 30. We can see this is a generalization of Theorem 21 as if f is differentiable, by

Theorem 27, then σk = ∇f(yk).

Proof. Define h : Rn → R as,

h(z) = f(z) − f(x) −∇f(x) · (z − x).

Then, f(z) ≥ f(yk) + σk · (z − yk) implies that

h(z) = f(z) − f(x) −∇f(x)(z − x)

≥ f(yk) + σk · (z − yk) − f(x) −∇f(x) · (z − x)

= f(yk) − f(x) −∇f(x) · (yk − x) + (σk −∇f(x)) · (z − yk)

= h(yk) + (σk −∇f(x)) · (z − yk)

which shows that σk−∇f(x) ∈ ∂h(yk). Thus if we can show that ξk ∈ ∂h(yk) implies ξk → 0

as k → ∞, then we will have shown that σk → ∇f(x). Note that h(z) is convex being the

sum of a convex and linear function. As yk → x, choose rk → 0 such that yk ∈ B(x, rk).

Then we know that

|ξk| ≤ Lip(h,B(x, rk)). (23)

Indeed, as

h(z) ≥ h(yk) + ξk · (z − yk)

and letting z = yk + εu for |u| = 1 and ε > 0, we have

ε(ξk · u) ≤ h(yk + εu) − h(yk) ≤ Lip(h,B(x, rk))ε

provided ε is small enough so that yk + εu ∈ B(x, rk). Thus

ξk · u ≤ Lip(h,B(x, rk))

and taking the supremum over all |u| = 1 yields (23). The remainder of the proof follows the

proof of Theorem 18 though we include the details here for completeness sake. By Theorem

14,

|ξk| ≤ Lip(h,B(x, rk)) ≤ osc(h,B(x, 2rk))

rk
≤ 2 sup(|h|, B(x, 2rk))

rk
.
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As the supremum is taken over a compact set we can find zk ∈ Rn such that,

|h(zk)| = sup(|h|, B(x, 2rk))

where rk → 0 implies zk → x as k → ∞. Hence we have,

|∇h(yk)| ≤ 2|h(zk)|
rk

=
4|f(zk) − f(x) −∇f(x) · (zk − x)|

2rk

≤ 4|f(zk) − f(x) −∇f(x) · (zk − x)|
|zk − x|

→ 0 as k → ∞

where the limit follows from the differentiablity of f at x. QED
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3.0 Differentiability Properties of the Boundaries of Convex Bodies

While convex functions naturally have many nice differentiability properties, convex sets

on their own are generally too simple to conduct any sort of analysis with them. To overcome

this we consider the subset of convex sets called convex bodies. Locally the boundaries

of convex bodies are graphs of convex functions and hence we can identify differentiability

properties of convex bodies by studying the differentiability of these locally defined functions.

Specifically in this chapter we will explore how the differentiability of convex bodies is related

to the relationship of closed balls in the interior of the convex body and the boundary.

3.1 Convex Bodies and Convex Domains

We say a convex domain is a convex set with non-empty interior and a convex body is

a compact convex set with non-empty interior. Throughout this thesis a convex domain or

body in Rn will generally be denoted by K. As previously stated, locally the boundary of a

convex domain is the graph of a convex function. To see this we consider the lower-bound

function of K, which is defined by,

x′ ∈ Rn−1 7→ ℓK(x′) := inf{t ∈ R : (x′, t) ∈ K} (24)

and we can show that if K is convex, then ℓK is convex. The lower bound function, as

defined, can be found in [16, Theorem 1.3.1].

Proposition 31. If K is a convex domain, then for any x ∈ ∂K there exists a convex, open

U such that, by rotating, ∂K ∩ U is the graph of a convex function.

Proof. By the definition of ℓK , for fixed ε > 0, let (x′1, t1), (x
′
2, t2) ∈ K, where x′1, x

′
2 ∈ Rn−1

and t1, t2 ∈ R, such that

t1 ≤ ℓK(x′1) + ε and t2 ≤ ℓK(x′2) + ε. (25)
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By the convexity of K,

(λx′1 + (1 − λ)x′2, λt1 + (1 − λ)t2) = λ(x′1, t1) + (1 − λ)(x′2, t2) ∈ K

and thus, by (25)

ℓK(λx′1 + (1 − λ)x′2) ≤ λt1 + (1 − λ)t2 ≤ λℓK(x′1) + (1 − λ)ℓK(x′2) + 2ε.

Letting ε → 0+ shows that ℓK is convex. We define π : Rn → Rn−1 as the orthogonal

projection given by π(x1, . . . , xn) = (x1, . . . , xn−1). If we fix x ∈ ∂K, by rotating K, we can

ensure that π(x) ∈ int(π(K)) and x = (π(x), ℓK(π(x))). We then note π(x) ∈ int(π(K))

implies there exists some δ > 0 such that Bn−1(π(x), δ) ⊂ π(K). By decreasing δ, there exists

M > 0 such that Bn−1(π(x), δ) ×M ⊂ K. Thus we can let U = Bn−1(π(x), δ) × (−∞,M)

and ∂K ∩ U is the graph of ℓK defined on Bn−1(π(x), δ). QED

Definition 32. For a convex domain K, we say that the boundary of K is of class C1 if

by rotating the set K, the boundary of K can be locally represented as the graph of a C1

convex function.

Proposition 33. A convex domain K ⊂ Rn has a unique supporting hyperplane at each

x ∈ ∂K if and only if K is a C1 hypersurface.

Proof. By Proposition 31 we know locally ∂K is the graph of a convex function. We then

apply Theorem 27 and Corollary 19 to each of these locally defined functions to show that

they are C1 convex functions. QED

Given a convex body K, there are useful convex bodies we can identify in the interior of

K. An important one is the inner parallel body of K, defined to be,

Kr := {x ∈ K : dist(x, ∂K) ≥ r}. (26)

Lemma 34. Let K ⊂ Rn be a convex body. Then Kr is convex for any r > 0 and if K

contains a ball of radius r0 then for all r ∈ (0, r0), Kr is a convex body.
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Proof. Let x, y ∈ Kr. We need to show that [x, y] ⊂ Kr. Clearly, B(x, r), B(y, r) ⊂ K

and for any z ∈ [x, y], B(z, r) ⊂ co(B(x, r) ∪ B(y, r)) ⊂ K, so dist(z, ∂K) ≥ r. Thus,

z ∈ Kr, showing [x, y] ⊂ Kr and proving the convexity of Kr. Moreover if B(x, r0) ⊂ K,

then for any r ∈ (0, r0) there exists δ > 0 such that B(x, r + δ) ⊂ K. Fix y ∈ B(x, δ) and

let z ∈ ∂K be such that dist(y, ∂K) = |y − z|. Then there exist yδ ∈ ∂B(x, δ) ∩ [y, z] and

yr ∈ ∂B(x, r) ∩ [y, z], where yδ and yr clearly satisfy

|yδ − yr| = r − δ and |yr − z| > δ.

Then we can see, as yδ, yr ∈ [y, z], that,

dist(y, ∂K) = |y − z| ≥ |yδ − z| = |yδ − yr| + |yr − z| > r − δ + δ = r

showing that y ∈ Kr. Therefore B(x, δ) ⊂ Kr, showing that Kr has non empty interior.

QED

The other important set inside of a convex body is the union of closed balls of fixed

radius defined by,

K(R) :=
⋃

{B(x,R) : B(x,R) ⊂ K}. (27)

It is clear that if there exists B(a,R) ⊂ K(R), then K(R) has non empty interior and

K(R) is compact. Moreover K(R) is convex, as for any B(x0, R), B(y), R) ⊂ K, we have

co(B(x0, R) ∪ B(y0, R)) ⊂ K, so that if x ∈ B(x0, R) and y ∈ B(y0, R), i.e. x, y ∈ K(R),

then [x, y] ⊂ co(B(x0, R) ∪ B(y0, R) ⊂ K. Therefore K(R), for R small enough is a convex

body. In fact there is a special relationship between the sets Kr and K(R).

Proposition 35. Let K ⊂ Rn be a convex body. Then,

∂Kr = {x ∈ K : B(x, r) ⊂ K and B(x, r) ∩ ∂K(r) ̸= ∅}.

Moreover, if x ∈ ∂K(r), then x ∈ B(πKr(x), r) ⊂ K.

Remark 36. This statement shows that the centers of the balls of radius r tangent to the

boundary of K precisely define the boundary of Kr.
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Proof. If z ∈ ∂Kr = {x ∈ K : dist(x, ∂K) = r}, then B(z, r) ⊂ K and moreover, by

compactness, there exists some y ∈ ∂K such that |z − y| = r. Thus B(z, r) ⊂ K and

∂K ∩ B(z, r) ̸= ∅, so that ∂Kr ⊂ {x ∈ K : B(x, r) ⊂ K and B(x, r) ∩ ∂K ̸= ∅}. If

z{x ∈ K : B(x, r) ⊂ K and B(x, r) ∩ ∂K ̸= ∅}, then B(z, r) ⊂ K implies z ∈ Kr. Also as

∂K ∩B(z, r) ̸= ∅, dist(z, ∂K) = r, so that z ∈ ∂Kr.

Finally if x ∈ ∂K(r), then we know there exists h(x) such that x ∈ B(h(x), r) ⊂ K.

Thus h(x) ∈ Kr. As |x − h(x)| = r, this shows that in fact dist(x, ∂Kr) = r and thus

h(x) = πKr(x). QED

Definition 37. Let U ⊂ Rn be open. We say a function f : U → R is of class C1,α, for

α ∈ (0, 1], if f ∈ C1(U) and ∇f is α-Hölder continuous, i.e. there exists L > 0 such that for

every x, y ∈ U ,

|∇f(x) −∇f(y)| ≤ L|x− y|α.

Note that if α = 1, we have f ∈ C1,1 when ∇f is Lipschitz continuous. We now extend

the definition of a C1 convex body to the more general C1,α convex body.

Definition 38. For a convex body K, we say that the boundary of K is of class C1,α for

α ∈ (0, 1] if by rotating the set K, the boundary of K can be locally represented as the

graph of a C1 convex function whose gradient is α-Hölder continuous (Lipschitz continuous

when α = 1).

An equivalent definition for a C1,α convex body can be stated by the following proposi-

tion:

Proposition 39. If the outer unit normal vector of a C1 convex body K is α-Hölder con-

tinuous, then K is of class C1,α

Proof. The boundary of a C1 convex body is locally the graph of a C1 convex function.

Thus by a rotation and translation we can assume that 0 ∈ ∂K ⊂ {x ∈ Rn : xn ≥ 0}, and

there exist some L,R > 0 such that ∂K ∩ (Bn−1(0, 2R)× [0, L]) is the graph of a C1 convex

function f : Bn−1(0, 2R) → R. We denote x′ = (x1, . . . , xn−1). Note on Bn−1(0, R) there

exists M > 0 such that |∇f | ≤ M as ∇f is assumed to be continuous on Bn(0, 2R). Thus
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the inner unit normal vector at Γf (x′), in terms of ∇f , is given by

ν(Γf (x′)) =
(−∇f(x′), 1)√
1 + |∇f(x′)|2

, so, π(ν(Γf (x′)) =
−∇f(x′)√

1 + |∇f(x′)|2
,

where π : Rn → Rn−1, π(x′, xn) = x′ is the orthogonal projection. Defining

Ψ(z) :=
−z√

1 − |z|2
and Φ(z) :=

−z√
1 + |z|2

,

we see that Ψ(Φ(z)) = z for all z ∈ Rn−1, and it follows that

∇f(x′) = Ψ

(
−∇f(x′)√

1 + |∇f(x′)|2

)
= Ψ(π(ν(Γf (x′)))) for x′ ∈ U .

This proves that ∇f is α-Hölder continuous on Bn−1(0, R), as it is the composition of

Lipschitz functions, Ψ and π, with an α-Hölder continuous function, ν. The only issue

could be the Lipschitz continuity of Ψ: it is a smooth function defined for |z| < 1, but it is

unbounded. However, this does not cause any problems here, because∣∣∣∣∣ −∇f(x′)√
1 + |∇f(x′)|2

∣∣∣∣∣ ≤ M√
1 +M2

< 1.

QED
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3.2 Convex Bodies Satisfying the Uniform Inner Ball Condition

We say that a convex body K satisfies the r-uniform inner ball condition if for every

x ∈ K there exists B(h(x), r) ⊂ K such that x ∈ B(h(x), r). In other words K satisfies

the r−uniform inner ball condition if K = K(r) as defined in 27. Note the uniformity here

follows from the radius being independent of any of the individual points in K, and depends

only on the convex body itself. The important aspect of the r-uniform inner ball condition

is how these closed balls interact with the boundary of K. In this case we have that at every

point on the boundary there is a closed ball tangent to the boundary completely contained

in K. Thus the curvature of the convex body is controlled by the uniform radius of these

closed balls.

The following result is a beautiful characterization of C1,1 convex bodies originally proved

by Lucas in [21, Theorem 1, pg. 32], in his unpublished thesis. Another proof can be found

in [17, Proposition 2.4.3] and both proofs presented in this thesis are the ones given in [3].

Theorem 40. A convex body K is of class C1,1 if and only if there exists r > 0 such that

K satisfies the r-uniform inner ball condition.

Later we will show, in Theorem 51, that we can find a similar geometric characterization

of C1,α convex bodies. For both Theorem 40 and Theorem 51 we will need the following two

lemmas.

Lemma 41. Let f ∈ C1,α(B(z, r)) with |∇f(x) −∇f(y)| ≤ L|x− y|α for all x, y ∈ B(z, r).

Then for all x, y ∈ B(z, r), we have, f(x) ≤ L
1+α

|x− y|1+α + ∇f(y) · (x− y) + f(y).

Proof. The mean value theorem implies

f(x) − f(y) =

∫ 1

0

∇f((1 − t)y + tx) · (x− y) dt

and using the Hölder continuity of the derivative we have for all x, y ∈ B(z, r),

f(x) − f(y) −∇f(y) · (x− y) =

∫ 1

0

(∇f((1 − t)y + tx) −∇f(y)) · (x− y) dt

≤
∫ 1

0

|∇f((1 − t)y + tx) −∇f(y)||x− y| dt

≤ L|x− y|
∫ 1

0

|(1 − t)y + tx− y|α dt =
L

1 + α
|x− y|1+α.
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QED

Remark 42. Lemma 41 implies that if f ∈ C1,α
loc (U), where U ⊂ Rn is open, then

f(y) = f(x) + ⟨∇f(x), y − x⟩ +O(|y − x|1+α) for all x, y ∈ U. (28)

The next lemma shows that the epigraph of a paraboloid satisfies the uniform inner ball

condition, and gives an explicit constant for R > 0.

Lemma 43. Let a ̸= 0, b ∈ Rn, c ∈ R, and define the paraboloid p : Rn → R by p(x) =

a|x|2 + b · x+ c. Then epi(p) satisfies the uniform inner ball condition with R = 1
2a
.

Proof. We first assume that p is of the form p(x) = a|x|2. By examining the behavior of the

normal line at every point on the graph of p we can see that the set of points which do not

have a unique metric projection onto the graph of p, defined as the medial axis, is equal to

the set
{
x ∈ Rn : x1 = · · · = xn−1 = 0 and xn ≥ 1

2a

}
. Moreover the distance from any point

on the medial axis to the graph of p has distance at least 1
2a

. The result follows by noting

that p(x) = a|x|2 + b · x+ c is a translated paraboloid of the form a|x|2. QED

Recall, by Theorem 27, that a differentiable convex function has a unique supporting

hyperplane at each point on its graph. Next we want to consider the properties of a convex

function that is squeezed by a C1,1 convex function and its unique supporting hyperplane.

Lemma 44. Let f, g : Bn(0, R) → R be convex functions. If g ∈ C1,1, f ≤ g and f(x) = g(x)

for some x ∈ Bn(0, R), then f is differentiable at x, ∇f(x) = ∇g(x) and

f(y) = f(x)⟨∇f(x), y − x⟩ +O(|y − x|2). (29)

Proof. If v ∈ ∂f(x), then clearly, v ∈ ∂g(x) and hence v = ∇g(x). Therefore, the result

follows from the estimate

f(x) + ⟨∇g(x), y − x⟩ ≤ f(y) ≤ g(y) = f(x) + ⟨∇g(x), y − x⟩ +O(|y − x|2),

where in the last equality we used (28) and the fact that g(x) = f(x). QED
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The proof of Theorem 40 relies on covering the boundary of K with a finite number

of graphs of C1,1 functions. Thus the following lemma shows that each of these functions

satisfies a sort of inner ball condition.

Lemma 45. Let f ∈ C1,1(Bn−1(0, 2N)). Then there exists R > 0 such that for every

x ∈ Bn−1(0, N) there exists Bn(h(x), R) ⊂ epi(f) satisfying Γf (x) ∈ Bn(h(x), R).

Proof. As f ∈ C1,1(Bn−1(0, 2N)), there exists L > 0 such that for all x, y ∈ Bn−1(0, 2N),

|∇f(x) −∇f(y)| ≤ L|x− y|.

Applying Lemma 41 we then have,

f(x) ≤ L

2
|x− y|2 + ∇f(y) · (x− y) + f(y). (30)

Fix y ∈ Bn−1(0, N) and let gy : Rn−1 → R be defined by,

gy(x) =
L

2
|x− y|2 + ∇f(y) · (x− y) + f(y).

Thus gy(y) = f(y) and by (30), for all x ∈ Bn−1(0, N), f(x) ≤ gy(x). As y ∈ Bn−1(0, N)

varies we see that gy is a translated paraboloid and thus, by Lemma 43, there exists R > 0,

depending only on L, such that for every y ∈ Bn−1(0, N) there exists some h(y) ∈ epi(gy)

with the property,

Γf (y) = Γgy(y) ∈ B(h(y), R) ⊂ epi(gy). (31)

Note epi(f) ⊂ Bn−1(0, 2N) × (−∞,∞). As, for all x ∈ Bn−1(0, 2N), f(x) ≤ gy(x), we have

epi(gy) ∩ (Bn−1(0, 2N) × (−∞,∞)) ⊂ epi(f).

If we restrict 2R < N , then for all y ∈ Bn−1(0, N), we can see that

B(h(y), R) ⊂ Bn−1(0, 2N) × (−∞,∞). (32)

Thus by (31) and (32), for all y ∈ Bn−1(0, N),

Γf (y) ∈ B(h(y), R) ⊂ epi(f)

as desired. QED
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Proof of Theorem 40. Let K be of class C1,1. As K is compact, by Lemma 45, ∂K can be

covered by open sets U1, . . . , UN such that for each Ui, there exists Ri > 0, where closed

balls of radius Ri cover Ui ∩ ∂K and are contained in K. Setting R = min{R1, . . . , RN} we

have for every x ∈ ∂K there exists h(x) ∈ K such that x ∈ B(h(x), R) ⊂ K.

Finally consider the set

BR :=
⋃

{B(x,R) : y ∈ B(x,R) ⊂ K and y ∈ ∂K}.

The above argument shows BR is covered by closed balls of radius in R contained in K. For

any x ∈ K \ BR we have that dist(x, ∂K) ≥ 2R. Hence B(x,R) ⊂ K. Therefore K is the

union of balls of radius R.

To prove the converse, by translating and rotating, we can assume 0 ∈ K ⊂ {x ∈

Rn : xn ≥ 0} and that there exists some open ball Bn−1(0, N) and M > 0, such that by

Proposition 31, ∂K ∩ (Bn−1(0, N)× (−∞,M ]) is the graph of f : Bn−1(0, N) → R, where f

is convex. By the hypothesis, there exists a radius R > 0 such that for all y ∈ Bn−1(0, N),

there exists h(y) ∈ K satisfying Γf (y) ∈ B(h(y), R) ⊂ K. Let gy be the function, such

that the graph of gy is the boundary of the bottom hemisphere of B(h(y), R). Then gy and

f are convex, gy ≥ f , as the ball is contained in K, gy(y) = f(y), and gy ∈ C1,1. Thus

by Lemma 44, f is differentiable at y. As this is true for any y ∈ Bn−1(0, N), we have

that f is differentiable on Bn−1(0, N). Moreover as f is convex and differentiable, then f is

C1(Bn−1(0, N)) showing that K is a hypersurface of class C1.

To prove K is of class C1,1 we need only show that its outer normal vector satisfies a

Lipschitz property and the result will follow from Proposition 39. Given the uniform inner

ball condition, for each x ∈ ∂K there exists h(x) ∈ K such that x ∈ B(h(x), R) ⊂ K and

Proposition 35 implies that h(x) = πKR
(x). It is clear the outer unit normal ν(x) of ∂K

will be the same as the outer unit normal for ∂B(h(x), R) at x ∈ ∂K. Thus the outer unit

normal vector at x ∈ ∂K is given by, ν(x) = 1
R

(x − πKR
(x)). Applying Lemma 5 we have,

|πKR
(x) − πKR

(y)| ≤ |x− y| so that for any x, y ∈ ∂K we have,

|ν(x) − ν(y)| =

∣∣∣∣x− πKR
(x)

R
− y − πKR

(y)

R

∣∣∣∣ ≤ |x− y|
R

+
|πKR

(x) − πKR
(y)|

R
≤ 2|x− y|

R

proving that K is of class C1,1(Rn) as desired. QED
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The above proof is geometrically motivated and follows from elementary arguments.

Another proof of the sufficient condition of Theorem 40 can be found using the Implicit

function theorem. In the following section, when extending the result on C1,1 convex bodies

to C1,α convex bodies, the argument will be similar to the first proof of Theorem 40 as it is

not clear how to apply the Implicit Function theorem to the C1,α case. First let’s state the

version of the Implicit Function theorem we will need.

Theorem 46 (Implicit Function Theorem). Let F : Rn−1 × R → R be of class C1,1(Rn).

If F (x1, . . . , xn) = 0 and ∂F
∂xn

(x1, . . . , xn) ̸= 0, then there are a neighborhood U ⊂ Rn−1, of

(x1, . . . , xn−1), a neighborhood V ⊂ R, of xn, and a C1,1 function f : U → V such that,

F (x1, . . . , xn−1, f(x1, . . . , xn−1)) = 0 for all (x1, . . . , xn−1) ∈ U.

Moreover if F (x) = t and ∇F (x) ̸= 0, then F−1(t) defines a surface in Rn that is locally the

graph of a C1,1 function.

For a proof of this version of the Implicit Function theorem, note that in the appendix of

[24] there is an analogous version of the Inverse Function theorem for C1,1 functions (see also

[9, Theorem 2.1]). As the Inverse Function theorem implies the Implicit Function theorem,

applying the result in [24] to the proof produces this C1,1 version.

Definition 47. Let K ⊂ Rn be a convex body. Then δK : Rn → [0,∞) is defined as

δK(x) = dist(x,K) = inf{|x− a| : a ∈ K}.

Note that by the definition of the metric projection πK , we have δK(x) = |x− πK(x)|.

The following is an easy consequence of the triangle inequality.

Proposition 48. The function δK : Rn → [0,∞) is 1-Lipschitz.

In fact if K is a convex body we can apply the Lipschitz property of the metric projection

πK to show that the distance function squared is differentiable everywhere.

Theorem 49. For a convex body K ⊂ Rn, the function δ2K is differentiable on Rn and

∇δ2K(x) = 2(x− πK(x)).
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Proof. For x, y ∈ Rn, δ2K(x) ≤ |x− πK(y)|2 implies,

δ2K(y) − δ2K(x) ≥ |y − πK(y)|2 − |x− πK(y)|2 = 2⟨y − x, x− πK(y)⟩ + |y − x|2

and by the 1-Lipshitz of πK ,

⟨y − x, x− πK(y)⟩ = ⟨y − x, x− πK(x)⟩ − ⟨y − x, πK(y) − πK(x)⟩

≥ ⟨y − x, x− πK(x)⟩ − |y − x|2.

Thus,

δ2K(y) − δ2K(x) − 2⟨y − x, x− πK(x)⟩ ≥ −|y − x|2.

Similarly,

δ2K(y) − δ2K(x) ≤ |y − πK(x)|2 − |x− πK(x)|2 = |y − x|2 + 2⟨y − x, x− πK(x)⟩

implying that

δ2K(y) − δ2K(x) − 2⟨y − x, x− πK(x)⟩ ≤ |y − x|2.

Therefore,

δ2K(y) − δ2K(x) − 2⟨y − x, x− πK(x)⟩ = o(|y − x|)

proving δ2K is differentiable with ∇δ2K(x) = 2(x− πK(x)). QED

Second Proof of Theorem 40. By Lemma 34, we may decrease R > 0 if necessary so that

KR is a convex body. By Theorem 49 the function δ2KR
(x) = dist(x,KR)2 is differentiable

and ∇δ2KR
(x) = 2(x − πKR

(x)). Since the function πKR
is Lipschitz by Lemma 5, we have

that δ2KR
∈ C1,1 and for all x ∈ Rn \KR, ∇δ2KR

(x) ̸= 0. Therefore the set

{x : dist(x,KR) = R > 0} = (δ2KR
)−1(R2)

is locally the graph of a C1,1 function by the Implicit function theorem. It remains to show

that ∂K = (δ2KR
)−1(R2)

Given the uniform inner ball condition, for each x ∈ ∂K there exists h(x) ∈ K such

that x ∈ B(h(x), R) ⊂ K. Moreover, dist(h(x), ∂K) = R implies that h(x) ∈ KR. As

dist(x,KR) ≥ R and |x − h(x)| = R we have dist(x,KR) = R. Hence ∂K ⊂ {y ∈ Rn :
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dist(y,KR) = R}. Now if we let x ∈ {y ∈ Rn : dist(y,KR) = R}, then B(πKR
(x), R) ⊂ K,

i.e. x ∈ K. If x ∈ intK, then extend the ray through πKR
(x) in the direction of uKR

(x),

defined in (14), and denote its intersection with ∂K as y. By Proposition 35, we have

y ∈ B(πKR
(y), R). Obviously πKR

(y) = πKR
(x) but

|y − πKR
(y)| = |y − πKR

(x)| > |x− πKR
(x)| = R

a contradiction. Hence x ∈ ∂K. Therefore,

∂K = {x ∈ Rn : dist(x,KR) = R} = (δ2KR
)−1(R2)

and K has boundary of class C1,1. QED

3.3 Convex Bodies Satisfying the Approximate Inner Ball Condition

The goal of this section is to provide a generalization of Theorem 40 for convex bodies

of class C1,α by approximating the boundary of K with closed balls contained in K. As we

characterized C1,1 convex bodies with the uniform inner ball condition, we now establish a

similar definition for an approximate inner ball condition.

Definition 50. We say a set K satisfies the (R, ε)-approximate inner ball condition if for

each x ∈ ∂K there exists B(h(x), R) ⊂ K such that dist(x,B(h(x), R)) ≤ ε.

Thus if K satisfies the (R, ε)-approximate inner ball condition, then we can approximate

∂K with closed balls of radius R at a distance of at most ε. It is important to note that in

this definition R may depend upon ε, but is independent of the choice of x ∈ ∂K. Using the

definition in (27), an equivalent definition of K satisfying the (R, ε)-approximate inner ball

condition is that for all x ∈ ∂K,

dist(x,K(R)) ≤ ε. (33)

The main result of this chapter is:
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Theorem 51. Let K ⊂ Rn be a convex body. Then K is of class C1,α, for α ∈ (0, 1], if

and only if there exist ε0 > 0 and C > 0 such that for each 0 < ε < ε0, K satisfies the

(Cε
1−α
1+α , ε)-approximate inner ball condition.

Remark 52. If we let α = 1 in Theorem 51, then we have K satisfies the (C, ε)-approximate

inner ball condition for all ε < ε0, i.e. for every x ∈ ∂K and for all ε < ε0 there exists

B(hε(x), C) ⊂ K, such that dist(x,B(hε(x), C)) ≤ ε. But it follows by compactness that

there exists h(x) such that x ∈ B(h(x), C) ⊂ K, so that K is the union of closed balls of

radius C and K satisfies the C-uniform inner ball condition. Therefore Theorem 51 is a

generalization of Theorem 40.

Remark 53. It is important for the radius to be O(ε
1−α
1+α ). If 1−α

1+α
< 1 the radius of the

closed balls decrease at a rate slower than their distance from the boundary as ε → 0+. In

fact if the radius of the closed balls was O(ε), then it is possible for the boundary of K to

not even be C1. For example the cone f(x) = |x| satisfies the ((
√

2 − 1)ε, ε)-approximate

inner ball condition.

To prove the forward direction of Theorem 51 we will need a lemma analogous to Lemma

45 for the C1,1 case. In this case we need a definition for the (R, ε)-approximate inner ball

condition for functions.

Definition 54. f : U → R, the epi(f) satisfies the (R, ε)-approximate inner ball con-

dition on V ⊂ U , if for every x ∈ V there exists Bn+1(h(x), R) ⊂ epi(f) such that

dist(Γf (x), Bn+1(h(x), R)) ≤ ε.

The motivation for this definition follows from the desire to apply results of convex bodies

to convex functions, but it is more common for functions to satisfy a local approximate inner

ball condition.

Lemma 55. Let f ∈ C1,α(Bn−1(0, 2r)). Then there exist constants C, ε0 > 0 such that for

all 0 < ε < ε0, epi(f) satisfies the (R, ε)-approximate inner ball condition on Bn−1(0, r).

Remark 56. Since f ∈ C1,α(Bn−1(0, 2r)), there exists L > 0 such that for all x, y ∈

Bn−1(0, 2r), we have |∇f(x) − ∇f(y)| ≤ L|x − y|α. With this we can then find an explicit

formula for the constant C; namely we will show C = 1+α
2
L

−2
1+α .
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Proof. As f ∈ C1,α(Bn−1(0, 2r)), let L > 0 be such that for all x, y ∈ Bn−1(0, 2r) we have

|∇f(x) −∇f(y)| ≤ L|x− y|α.

By Lemma 41 we know that for all x, y ∈ Bn−1(0, 2r),

f(x) ≤ L

1 + α
|x− y|1+α + ∇f(y) · (x− y) + f(y). (34)

Hence, for fixed y ∈ Bn−1(0, 2r) and any ε > 0, we can define two functions, gy : Rn → R

and pεy : Rn → R by,

gy(x) =
L

1 + α
|x− y|1+α + ∇f(y) · (x− y) + f(y)

pεy(x) =
L

2
1+α

(1 + α)ε
1−α
1+α

|x− y|2 + ∇f(y) · (x− y) + f(y).

We note that f(y) = gy(y) = pεy(y) and by (34) for all x ∈ Bn−1(0, 2r), we have f(x) ≤ gy(x).

We now claim that for all x, y ∈ Rn−1 and for all ε > 0, we have gy(x) ≤ pεy(x) + ε. To this

end it suffices to show that

w(t) :=
L

2
1+α

(1 + α)ε
1−α
1+α

t2 − L

1 + α
t1+α + ε ≥ 0 for all t > 0

as w(|x − y|) = L
2

1+α

(1+α)ε
1−α
1+α

|x − y|2 − L
1+α

|x − y|1+α + ε = pεy(x) − gy(x) + ε. If α = 1, then

w(t) = ε > 0, so suppose α ∈ (0, 1). Note as t → ∞, w(t) → ∞, thus by continuity, w(t)

will achieve its absolute minimum on [0,∞). For t > 0, we have,

w′(t) =
2L

2
1+α

(1 + α)ε
1−α
1+α

t− Ltα

and solving w′(t) = 0, t > 0, we find the minimum will either be achieved at t = 0 or

t0 =
( ε
L

) 1
1+α

(
1 + α

2

) 1
1−α

.

Obviously w(0) = ε > 0 and for 0 < α < 1 we have,

w(t0) =
ε(1 + α)

2α
1−α

2
1+α
1−α

(
1 + α

2
− 1 +

2
1+α
1−α

(1 + α)
2α
1−α

)
.
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Thus we must show, 1+α
2

− 1 + 2
1+α
1−α (1 + α)

−2α
1−α ≥ 0, which is equivalent to

2(1 + α)
2α
1−α ≤ (1 + α)

1+α
1−α + 2

2
1−α . (35)

We then see that (35) follows from the fact that 0 < α < 1 implies,

2(1 + α)
2α
1−α < 2(2)

2α
1−α = 2

1+α
1−α ≤ 1 + 2

2
1−α < (1 + α)

1+α
1−α + 2

2
1−α .

Thus we have proved that for all x, y ∈ Rn−1, gy(x) ≤ pεy(x) + ε as desired.

We note that pεy + ε is a paraboloid and hence by Lemma 43, for every y ∈ Rn−1, pεy + ε

satisfies the R-uniform inner ball condition with R = Cε
1−α
1+α , where C := (1+α)

2
L

−2
1+α . Thus

for every x, y ∈ Rn−1, there exists hεy(x) ∈ epi(pεy + ε) such that,

(x, pεy(x) + ε) ∈ Bn(hεy(x), Cε
1−α
1+α ) ⊂ epi(pεy + ε). (36)

For any y ∈ Bn−1(0, 2r), as f(y) = pεy(y), we then have by (36),

dist(Γf (y), Bn(hε(y), Cε
1−α
1+α ) ≤ ε, (37)

where for simplicity the center of the ball denoted by hεy(y) is changed to hε(y). It remains to

show that there exists some ε0 > 0 such that for all 0 < ε < ε0 and for all y ∈ Bn−1(0, r), we

have Bn(hε(y), Cε
1−α
1+α ) ⊂ epi(f). To accomplish this we fix ε0 > 0 so that ε0 + 2Cε

1−α
1+α

0 < r.

Let 0 < ε < ε0. Then, the fact that 2Cε
1−α
1+α + ε < r, y ∈ Bn(0, r), and (37) yield,

Bn(hε(y), Cε
1−α
1+α ) ⊂ Bn(Γf (y), r) ⊂ Bn−1(0, 2r) × (−∞,∞).

As, pεy(x) + ε ≥ f(x) for all x ∈ Bn−1(0, 2r) we then have by (36)

Bn(hε(y), Cε
1−α
1+α ) ⊂

(
B(0, 2r) × (−∞,∞)

)
∩ epi(pεy + ε) ⊂ epi(f)

as desired. QED
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Proof of Necessary Condition of Theorem 51. Let K ⊂ Rn be of class C1,α. By compact-

ness and Proposition 31, we can cover ∂K by finitely many open sets U1, . . . , UN such that,

for each i = 1, . . . , N we have ∂K ∩ Ui is the graph of fi ∈ C1,α and

|∇fi(x) −∇fi(y)| ≤ Li|x− y|α

for all x, y ∈ dom(fi). Let L := max{L1, . . . , LN} and define Ci := (1+α)
2
L

−2
1+α

i . Recall

by Remark 56 that we can define C = (1+α)
2
L

−2
1+α . We note that for all i = 1, . . . , N , we

have Cε
1−α
1+α ≤ Ciε

1−α
1+α . Thus for each x ∈ ∂K, there exists some i ∈ {1, . . . , N} such that

x ∈ ∂K ∩Ui and thus by Lemma 55, there exists εi0 > 0 such that for all 0 < ε < εi0 we have

B(hε(x), Cε
1−α
1+α ) ⊂ epi(fi) and

dist(x,B(hε(x), Cε
1−α
1+α )) ≤ ε.

We can let ε0 = min{ε10, . . . , εN0 }, and by the compactness and convexity of K, decreasing

ε0 if necessary, we can guarantee that B(hε(x), Cε
1−α
1+α ) ⊂ K for all ε < ε0. Therefore K

satisfies the (Cε
1−α
1+α , ε)-approximate inner ball condition. QED

For the proof of the opposite direction of Theorem 51 the goal will be to use the approx-

imate inner ball condition to first establish that at each point on the boundary of K, there

is a unique supporting hyperplane. This ensures that K is of class C1 by Proposition 33.

Then applying geometric arguments we can choose closed balls in K that allow us to make

estimates on the inner unit normal vectors of K, and helping us to show these inner unit

normal vectors are α-Hölder continuous. Applying Proposition 39 will complete the result.

We first establish notation used throughout the proof of the sufficient condition of The-

orem 51. Suppose that K satisfies the (R, ε)-approximate inner ball condition. For x ∈ ∂K,

we define the collection of closed balls,

B(R,ε)(x) := {B(y,R) ⊂ K : dist(x,B(y,R)) ≤ ε}.

For each B ∈ B(R,ε)(x) we define hB to be the center of B, so that B := B(hB, R). Moreover,

for each x ∈ ∂K and each B ∈ B(R,ε)(x), the inner unit normal of B at πB(x) ∈ B, is denoted

νB and given by,

νB =
hB − πB(x)

R
. (38)
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If K satisfies the uniform inner ball condition with closed balls of radius R > 0, then

for each x ∈ ∂K there is a unique closed ball of radius R such that x ∈ B(h(x), R) ⊂ K.

With the definition of the (R, ε)-approximate inner ball condition, for x ∈ ∂K, there may be

an infinite number of closed balls satisfying B(y,R) ⊂ K and dist(x,B) ≤ ε. Moreover we

know little about the location of these balls, so the challenge we must overcome in proving

the opposite direction of Theorem 51 is to either ensure the results hold for any closed balls

in the collection B(R,ε)(x) or show that we can always find closed balls in B(R,ε)(x) satisfying

desired properties. Lemma 58 is an example of the former, while Lemma 60 is an example

of the latter.

Remark 57. Under specific restrictions on R and ε, we may assume that if K satisfies

the (R, ε)-approximate inner ball condition, then there exists B ∈ B(R,ε)(x), such that

dist(x,B) = ε. To see this, we restrict ε so that Kε is a convex body, by Lemma 34, and

restrict R > 0 so that there exists B(y,R) ⊂ Kε. Then for any x ∈ ∂K, dist(x,B(y,R)) ≥ ε.

Given that K satisfies the (R, ε)-approximate inner ball condition we also know for any

x ∈ ∂K there exists B(z, R) ∈ B(R,ε)(x) such that dist(x,B(z, R)) ≤ ε. Then we can

find B(z′, R) ⊂ co(B(z,R) ∪ B(y,R)) such that dist(x,B(z′, R)) = ε and by convexity

B(z′, R) ⊂ K, so that B(z′, R) ∈ B(R,ε)(x).

Figure 1: Illustration of Notation for Theorem 51

B ∈ B(R,ε)(x)

hB

x

ε

R

∂K

We first show that if K satisfies the (Cε
1−α
1+α , ε)-approximate inner ball condition for

all ε < ε0 then each point of the boundary has a unique supporting hyperplane. For the
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C1,1 case, as each point on the boundary is tangent to a closed ball, the uniqueness of the

supporting hyperplane followed immediately by the convexity of K. For the C1,α case, we

show that the inner unit normal of any supporting hyperplane of x ∈ ∂K must be sufficiently

close to the inner unit normal νB for every B ∈ B(Cε
1−α
1+α ,ε)(x), with ε sufficiently small.

Lemma 58. Let K satisfy the (Cε
1−α
1+α , ε)-approximate inner ball condition for all 0 < ε < ε0.

Let Hb(ν(x)) be a supporting hyperplane of K at x ∈ ∂K with inner unit normal vector

ν(x) of K. Then for every δ > 0 there exists η(δ) > 0 such that for every ε < η(δ) and

B ∈ B(Cε
1−α
1+α ,ε)(x), we have |ν(x)−νB| ≤ δ, where νB is defined in (38). Moreover Hb(ν(x))

is the unique supporting hyperplane of K at x.

Remark 59. If δ <
√

2, we can find an explicit formula for η. Namely,

η(δ) =

(
δ2

2 − δ2

) 1+α
2α

satisfies the claim.

Proof. Without loss of generality we can assume C = 1. Also we can assume x = 0, such

that H0(en) := {y ∈ Rn : yn = 0} is a supporting hyperplane, and K ⊂ {y ∈ Rn : yn ≥ 0}, as

by a rotation and translation we get the same result for any x ∈ ∂K. Thus we may take the

inner unit normal to be ν(0) = en, where en = (0, . . . , 0, 1). Then, for fixed B ∈ B(ε
1−α
1+α ,ε)(0),

we have dist(x,B) = β ≤ ε. Thus we have πB(0) = βνB, as B is tangent to B(0, β), i.e.

{πB(0)} = B ∩B(0, β). Hence by (38),

ε
1−α
1+α νB = hB − πB(0) = hB − βνB

and solving for hB yields,

hB = βνB + ε
1−α
1+α νB. (39)

Given that (hB1 , . . . , h
B
n−1, h

B
n − ε

1−α
1+α ) ∈ ∂B ⊂ K ⊂ {x ∈ Rn : xn ≥ 0}, we have

0 ≤ hBn − ε
1−α
1+α . (40)

Combining (39) and (40) gives us, 0 ≤ βνB + ε
1−α
1+α νBn − ε

1−α
1+α and as β ≤ ε this gives us,

0 ≤ βνBn − (1 − νBn )ε
1−α
1+α ≤ ενBn − (1 − νBn )ε

1−α
1+α . (41)
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If νBn = 1, as |νB| = 1, then νB = en, and we are done. So consider νBn < 1. It is clear that

πB(0) ∈ {x ∈ B : hBn > xn} so that by (38), νBn > 0. Thus 0 < νBn < 1 implies 0 < 1−νBn < 1

and solving (41) for ε yields,

ε ≥
(

(1 − νBn )

νBn

) 1+α
2α

. (42)

Note that as, ⟨e⃗n, νB⟩ = νBn > 0 we have,

|e⃗n − νB|2 = ⟨e⃗n, e⃗n⟩ − 2⟨e⃗n, νB⟩ + ⟨νB, νB⟩ ≤ |e⃗n|2 + |νB|2 = 2

and thus, |en − νB| ≤
√

2. Therefore the result is trivial for δ ≥
√

2. Let 0 < δ <
√

2 and

fix u ∈ Rn such that |en − u| = δ, with |u| = 1, un ≥ 0. As |en − u|2 = δ2 we have,

δ2 = u21 + · · · + u2n−1 + (1 − un)2 (43)

and as u is a unit vector, 1 − u2n = u21 + · · · + u2n−1. Combining this with (43) we can write,

δ2 = 1 − u2n + (1 − un)2 = 2(1 − un)

and solving this equation for un yields,

un = 1 − δ2

2
=

2 − δ2

2
. (44)

Using (44) we define η to be

η :=

(
(1 − un)

un

) 1+α
2α

=

(
δ2

2 − δ2

) 1+α
2α

.

Thus for every ε < η and B ∈ Bε(0), we must necessarily have 0 ≤ un < νBn < 1 as otherwise

if νBn ≤ un, then we have 1 − un ≤ 1 − νBn and 1
un

≤ 1
νBn

which implies,

ε < η =

(
(1 − un)

un

) 1+α
2α

≤
(

(1 − νBn )

νBn

) 1+α
2α

contradicting (42). As |νB| = |u| = 1 and 0 ≤ un < νBn < 1,

|(νB1 , . . . , νBn−1)|2 ≤ |(u1, . . . , un−1)|2
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and therefore,

|en − νB|2 = |(νB1 , . . . , νBn−1)|2 + (1 − νBn )2 ≤ |(u1, . . . , un−1)|2 + (1 − un)2

= |en − u|2 = δ2.

If there exists another inner normal vector ofK at 0, ν ′(0), such thatH0(ν
′(0)) is a supporting

hyperplane at 0, and ν ′(0) ̸= ν(0), then there exists δ0 > 0 such that |ν ′(0)− ν(0)| = δ0. By

the first part of the lemma there exists η > 0 such that for 0 < ε < η and B ∈ Bε(0) we

have

|ν(0) − νB| ≤ δ0
4
. (45)

Likewise for 0 < ε < η and B ∈ Bε(0) we have

|ν ′(0) − νB| ≤ δ0
4
. (46)

Hence for 0 < ε < η and B ∈ Bε(0) by (45) and (46)

δ0 = |ν(0) − ν ′(0)| ≤ |ν(0) − νB| + |ν ′(0) − νB| ≤ δ0
2

a contradiction, proving the uniqueness of H0(ν(0)). QED

Lemma 60. Let K be a convex body such that K satisfies the (R, ε)-approximate inner ball

condition. Then for every x, y ∈ ∂K there exist B1 ∈ B(R,ε)(x) and B2 ∈ B(R,ε)(y) such that

|νB1 − νB2| ≤ 2|x− y|
R

where νB1 , νB2 are defined in (38).
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Proof. Fix x, y ∈ ∂K. Then we have, by the (R, ε)-approximate inner ball condition, that

|x− πK(R)(x)| ≤ ε and |y − πK(R)(y)| ≤ ε. (47)

As πK(R)(x), πK(R)(y) ∈ K(R) there exist closed balls B1, B2 ⊂ K(R) ⊂ K such that, by

(47),

dist(x,B1) ≤ ε and dist(y,B2) ≤ ε.

Therefore B1 ∈ B(R,ε)(x) and B2 ∈ B(R,ε)(y). Moreover the centers, hB1 and hB2 , of B1, B2

respectively, by Proposition 35, are in fact the metric projection of πK(R)(x) and πK(R)(y)

onto the inner parallel body (K(R))R, given by

(K(R))R = {z ∈ K(R) : dist(z, ∂K(R)) ≥ R}.

Hence, by Lemma 5,

|hB1 − hB2| ≤ |x− y|. (48)

Also note that the inner unit normals of B1 and B2, given in (38), can be written as,

νB1 =
hB1 − πK(R)(x)

R
and νB2 =

hB2 − πK(R)(y)

R

so that again by Lemma 5 and (48), we have,

|νB1 − νB2| =

∣∣∣∣hB1 − πK(R)(x)

R
−
hB2 − πK(R)(y)

R

∣∣∣∣ ≤ |πK(R)(x) − πK(R)(y)|
R

+
|hB1 − hB2|

R

≤ 2|x− y|
R

completing the proof of the lemma. QED

We are now ready to complete the proof of Theorem 51.
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Proof of Sufficient Condition of Theorem 51. Assume that there exists some ε0 > 0 and

without loss of generality let C = 1, such that for all 0 < ε < ε0, we have K satisfies the

(ε
1−α
1+α , ε)-approximate inner ball condition. Lemma 58 and Proposition 33 show that K is

of class C1, as at each point on the boundary there is a unique supporting hyperplane. To

prove K is of class C1,α we will show the inner unit normal vectors are α-Hölder continuous

and apply Proposition 39. We first consider the case x, y ∈ ∂K such that |x − y|α <
√

2,

with inner normal vectors ν(x), ν(y) of K. Let δ = |x− y|α so that δ <
√

2 and define

η := min

{(
δ2

2 − δ2

) 1+α
2α

, ε0

}
.

Choose M > 2 such that ( 2
M

)
1+α
2α < ε0. Thus if we fix ε > 0 to be,

ε :=
|x− y|1+α

M
1+α
2α

(49)

we can then see, as |x− y|1+α < 2
1+α
2α , that ε ≤ ε0 and

ε =
|x− y|1+α

M
1+α
2α

=

(
|x− y|2α

M

) 1+α
2α

=

(
δ2

M

) 1+α
2α

≤
(

δ2

M − δ2

) 1+α
2α

≤
(

δ2

2 − δ2

) 1+α
2α

so that ε < η. By Lemma 58 we know for every ε < η and any B1 ∈ B(ε
1−α
1+α ,ε)(x), B2 ∈

B(ε
1−α
1+α ,ε)(y) we have

|ν(x) − νB1| ≤ δ = |x− y|α and |ν(y) − νB2| ≤ δ = |x− y|α. (50)

Thus by Lemma 60 we can choose B1 ∈ B(ε
1−α
1+α ,ε)(x) and B2 ∈ B(ε

1−α
1+α ,ε)(y) such that

|νB1 − νB2| ≤ 2|x− y|
ε

1−α
1+α

.

Substituting (49) yields,

|νB1 − νB2| ≤ 2|x− y|(
|x−y|1+α

M
1+α
2α

) 1−α
1+α

= 2M
1−α
2α |x− y|α (51)
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and combining (50) and (51) gives us,

|ν(x) − ν(y)| ≤ |ν(x) − νB1| + |νB1 − νB2 | + |νB2 − ν(y)|

≤ |x− y|α + 2M
1−α
2α |x− y|α + |x− y|α

=
(

2 + 2M
1−α
2α

)
|x− y|α

showing the inner unit normals are α-Hölder continuous for |x− y|α <
√

2. If |x− y|α ≥
√

2,

then as |ν(x)| = |ν(y)| = 1 we have,

|ν(x) − ν(y)| ≤ 2 =
√

2
√

2 ≤
√

2|x− y|α.

Therefore ν(x) is α-Hölder continuous for all x, y ∈ ∂K and hence K is of class C1,α. QED

In Section 3.2, for a general convex body K we used Theorem 40 to show that there

existed a C1,1 convex body K(R) contained in K. Similarly, we can now use Theorem 51 to

find a C1,α convex body Kα(C, ε0) contained in K. Recall by (27), that

K(Cε
1−α
1+α ) =

⋃
{Bn+1(y, Cε

1−α
1+α ) : Bn+1(y, Cε

1−α
1+α ) ⊂ K}. (52)

We now further define,

Kα(C, ε0) := {x ∈ K : dist(x,K(Cε
1−α
1+α )) ≤ ε for all ε ≤ ε0}. (53)

and if K contains a ball of radius Cε
1−α
1+α

0 , then Kα(C, ε0) is a C1,α convex body by (33) and

Theorem 51.

Given Theorem 51 we can now establish a more general version of Lemma 55, with

the added assumption that f is convex, though convexity is only needed for the sufficient

condition. The following corollary is a version of Theorem 51 for functions.

Corollary 61. Let f : Rn → R be convex. Then f ∈ C1,α
loc (Rn) if and only if for every

x ∈ Rn and δ > 0 there exist constants ε0, C > 0 such that for all 0 < ε < ε0, epi(f) satisfies

the (Cε
1−α
1+α , ε)-approximate inner ball condition on Bn(x, δ).

The idea of the proof of Corollary 61 is to first construct a convex body using the epigraph

of f and then we can find a C1,α convex body, contained in the epigraph of f , that intersects

the graph of f in a neighborhood.
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Proof of Corollary 61. The forward direction follows from Lemma 55, where convexity is

not needed. For the opposite direction, fix x ∈ Rn and δ > 0 and define

K =
(
Bn(x, 2R) × (−∞,M ]

)
∩ epi(f)

where R,M ∈ R are chosen to be,

R = max{δ , 2Cε
1−α
1+α

0 + ε0} and M = sup
y∈B(x,2R)

f(y) +R.

Note K is obviously a convex body. We then consider the C1,α convex body given in (53)

Kα(C, ε0) and it remains to show that for all y ∈ Bn(x, δ), Γf (y) ∈ ∂Kα(C, ε0).

By the assumption, for each y ∈ Bn(x, δ), there exists Bn+1(hε(y), Cε
1−α
1+α ) ⊂ epi(f) such

that

dist(Γf (y), Bn+1(hε(y), Cε
1−α
1+α )) ≤ ε. (54)

Then by our choice of R and M , for all y ∈ Bn(x, δ),

Bn+1(hε(y), Cε
1−α
1+α ) ⊂ Bn+1(Γf (y), R) ⊂ Bn(y,R)× (−∞, f(y)+R] ⊂ Bn(x, 2R)× (−∞,M ]

and hence Bn+1(hε(y), Cε
1−α
1+α ) ⊂ K. By definition of K(Cε

1−α
1+α ) this shows that

Bn+1(hε(y), Cε
1−α
1+α ) ⊂ K(Cε

1−α
1+α ).

Hence, by (54), for all y ∈ Bn(x, δ),

dist(Γf (y), K(Cε
1−α
1+α )) ≤ ε

showing that, by (53), Γf (y) ∈ ∂Kα(C, ε0). Therefore the graph of f restricted to Bn(x, δ)

coincides with Kα(C, ε0) showing f ∈ C1,α(Bn(x, δ). As this is true for any x ∈ Rn and

δ > 0, this implies f ∈ C1,α
loc (Rn). QED
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3.4 Regularity of the Convex Envelope

Let f : Rn → R be bounded below by an affine function. We define the convex envelope

of f to be

conv(f)(x) := sup{g(x) : g ≤ f, g is convex}.

This is well defined and finite as f is bounded below by an affine function. Another way

of defining the convex envelope of f is by making use of the convex hull of epi(f). Recall

co(epi(f)) is the intersection of all convex sets containing epi(f). Thus we have the following

equivalence of definitions for the convex envelope of f :

Lemma 62. Let f : Rn → R be bounded below by an affine function. Then,

conv(f)(x) = inf{y ∈ R : (x, y) ∈ co(epi(f))}

Proof. Let g : Rn → R be defined by,

g(x) = inf{y ∈ R : (x, y) ∈ co(epi(f))},

and let ℓ(x) be an affine function satisfying f(x) ≥ ℓ(x) for all x ∈ Rn. Then co(epi(f)) ⊂

epi(ℓ) implies that g(x) is well defined and finite for each x ∈ Rn. Moreover, by definition

of g, Γg(x) ∈ ∂ co(epi(f)). Given that co(epi(f)) is a convex set of dimension n + 1 it is

clear that g(x) defines a convex function (see 31) and g(x) ≤ f(x) for all x ∈ Rn. Thus we

have by definition, conv(f)(x) ≥ g(x). Also, by definition, epi(f) ⊂ epi(conv(f)), and as

epi(conv(f)) is a closed convex set, co(epi(f)) ⊂ epi(conv(f)), so that g(x) ≥ conv(f)(x)

showing that g(x) = conv(f)(x). QED

A useful characterization of the convex envelope follows from the Carathéodory theorem

(Theorem 4). The proof given here is a more detailed version of the one presented in [27,

Corollary 17.1.5].

Theorem 63. Let f : Rn → R and ℓ(x) an affine function satisfying f(x) ≥ ℓ(x). Then,

conv(f)(x) = inf

{
n+1∑
i=1

λif(xi) : λi ≥ 0,
n+1∑
i=1

λi = 1,
n+1∑
i=1

λixi = x

}
(55)
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Remark 64. We note that co(epi(f)) is an n+1 dimensional convex set so the Carathéodory

theorem and Lemma 62 easily imply that conv(f)(x) can be written as the convex combi-

nation of n + 2 elements of epi(f), yet Theorem 63 states we can write conv(f)(x) as the

convex combination of n+ 1 elements of epi(f).

Proof. Fix x ∈ Rn and let λ1, . . . , λn+1 ≥ 0 and x1, . . . , xn+1 ∈ Rn be such that

x =
n+1∑
i=1

λixi, and
n+1∑
i=1

λi = 1.

Then it is clear that,

(x, y) :=
n+1∑
i=1

λi(xi, f(xi)) ∈ co(epi(f))

and thus by Lemma 62, conv(f)(x) ≤ y. As this is true for any y of this form, we have

conv(f)(x) ≤ inf

{
n+1∑
i=1

λif(xi) : λi ≥ 0,
n+1∑
i=1

λi = 1,
n+1∑
i=1

λixi = x

}

Thus, we need only show that for every ε > 0, there exists some z ∈ R satisfying,

z =
n+1∑
i=1

λif(xi), λi ≥ 0,
n+1∑
i=1

λi = 1,
n+1∑
i=1

λixi = x (56)

such that z < conv(f)(x) + ε. By Lemma 62, let (x, y) ∈ co(epi(f)) be such that y <

conv(f)(x) + ε. By applying the Carathéodory theorem to epi(f) there exists {(xi, yi)}n+2
i=1 ∈

epi(f) such that

(x, y) ∈ Λ := co
(
{(xi, yi)}n+2

i=1

)
.

Then we choose z∗ := inf{t ∈ R : (x, t) ∈ Λ} which shows that z∗ satisfies z∗ ≤ y <

conv(f)(x) + ε. Note, Λ is a closed convex polyhedra whose vertices are contained in the set

{(xi, yi)}n+2
i=1 }. Thus the point (x, z∗) is contained on the boundary of Λ, and in particular

(x, z∗) ∈ Λ′ where Λ′ is a face of Λ. Moreover Λ′ is a closed convex polyhedra of dimension

less than or equal to n, with at most n+ 1 vertices contained in {(xi, yi)}n+2
i=1 . By relabeling,

we may assume that Λ′ ⊂ co({(xi, yi)}n+1
i=1 } and thus,

(x, z∗) =
n+1∑
i=1

λi(xi, yi),
n+1∑
i=1

λi = 1, λi ≥ 0
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which shows that z∗ is of the form,

z∗ =
n+1∑
i=1

λiyi, λi ≥ 0,
n+1∑
i=1

λi = 1,
n+1∑
i=1

λixi = x.

As {(xi, yi)}n+1
i=1 ∈ epi(f), this implies f(xi) ≤ yi so that we can choose z :=

∑n+1
i=1 λif(xi),

and thus

z ≤ z∗ < conv(f)(x) + ε

as desired. QED

It is convenient to place certain restrictions on the coefficients used when writing x as

the convex combination of points in Rn. We define the set of convex combinations of x ∈ Rn,

with decreasing coefficients, as

C(x) =

{
{(λi, xi)}n+1

i=1 : 1 ≥ λ1 ≥ λ2 ≥ · · · ≥ λn+1 ≥ 0,
n+1∑
i=1

λi = 1, and
n+1∑
i=1

λixi = x

}
so that we can rewrite Theorem 63 as,

conv(f)(x) = inf

{
n+1∑
i=1

λif(xi) : {(λi, xi)}n+1
i=1 ∈ C(x)

}
.

By properties of the infimum, for all x ∈ Rn, there is a sequence {(λ
(k)
i , x

(k)
i )}n+1

i=1 ∈ C(x)

such that,
n+1∑
i=1

λ
(k)
i f(x

(k)
i ) → conv(f)(x) as k → ∞. (57)

In 2001 Kirchheim and Kristensen showed in [18] that a C1,α
loc (Rn) function satisfying

f → ∞ as |x| → ∞ has convex envelope of class C1,α
loc (Rn). Furthermore in [19] a weaker

version of this result is proved using the infimal convolution, assuming that f grows faster

than any linear function. Here we provide a novel proof for this theorem applying the

geometric characterization of C1,α convex bodies given in Theorem 51.

We say a function f : Rn → R is coercive if f(x) → ∞ as |x| → ∞. Namely, continuous

coercive functions achieve a minimum in Rn. The proof of Theorem 70 uses the sequences

as in (57). The following lemma tells us that for y ∈ B(x, δ) we can select such a sequence

in C(y) so that both µ
(k)
1 and y

(k)
1 converge. The importance of this lemma is that µ

(k)
1

converges to something positive and that the y
(k)
1 remains bounded.
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Lemma 65. Let f : Rn → R be continuous and coercive, x ∈ Rn, and δ > 0. Then for

every y ∈ B(x, δ) there exists a sequence {(µ
(k)
i , y

(k)
i )}n+1

i=1 ∈ C(y) for all k ∈ N such that

µ
(k)
1 → µ1 ∈

[
1

n+1
, 1
]
, y

(k)
1 → y1 and {(µ

(k)
i , y

(k)
i )}n+1

i=1 satisfies (57). Moreover there exists

M > 0 and N > 0 such that,

B(x, δ) ⊂ B(0,M) and y
(k)
1 ⊂ B(0,M) for all k ≥ N.

Remark 66. In Lemma 65, M depends only on the choice of x ∈ Rn and δ > 0.

Proof. As f is continuous and coercive, we can assume f ≥ 0 and we fix y ∈ B(x, δ).

Applying Theorem 63 there exists {(µ
(k)
i , y

(k)
i )}n+1

i=1 ∈ C(y) satisfying (57). If µ
(k)
1 < 1

n+1
, we

would have µ
(k)
i < 1

n+1
for all i = 1, . . . , n+1, which contradicts

∑n+1
i=1 µ

(k)
i = 1. Therefore for

all k ∈ N, we have µ
(k)
1 ∈

[
1

n+1
, 1
]
. Moreover by the coercivity of f , we know y

(k)
1 is bounded.

Indeed, if not, then there exists a subsequence |y(kj)1 | → ∞ and by coercivity, f(y
(kj)
1 ) → ∞.

As µ
(k)
1 ≥ 1

n+1
, µ

(k)
i ≥ 0 for all i = 2, . . . , n+ 1, and f ≥ 0, we have for each j ∈ N,

n+1∑
i=1

µ
(kj)
i f

(kj)
i ≥ µ

(kj)
1 f(y

(kj)
1 ) ≥ f(y

(kj)
1 )

n+ 1
.

Letting j → ∞ the left side approaches conv(f)(y) and the right side approaches ∞, a

contradiction as f is finite everywhere. Therefore, up to subsequences, we may assume that

µ
(k)
1 → µ1 ∈

[
1

n+1
, 1
]

and y
(k)
1 → y1.

Also by coercivity, there exists M > 0 such that B(x, δ) ⊂ B(0,M) and,

f(z) ≥ (n+ 1)

(
sup

y∈B(x,δ)

f(y) + 1

)
for all |z| > M. (58)

We must have for k large enough, y
(k)
1 ∈ B(0,M) as if not there exists a subseqeunce such

that, |y(kj)1 | > M for all j ∈ N. Then (58) implies,

n+1∑
i=1

µ
(kj)
i f(y

(kj)
i ) ≥ µ

(kj)
1 f(y

(kj)
1 ) ≥ µ

(kj)
1 (n+ 1)(f(y) + 1) ≥ f(y) + 1

and letting j → ∞ we have conv(f)(y) ≥ f(y) + 1, a contradiction. Moreover this implies

y1 ∈ B(0,M). Thus for k large enough, we have y
(k)
1 ⊂ B(0,M). QED
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Remark 67. In the proof of the following lemma, we will need to consider the translations

and dilations of balls. Let a, r > 0 and x, h ∈ Rn. Then,

aB(h, r) + {x} = {ay + x : y ∈ B(h, r)} = B(ah+ x, ar).

Lemma 68. Let f : Rn → R be coercive and continuous. If for every x ∈ Rn and δ > 0

there exists R, ε > 0 such that epi(f) satisfies the (R, ε)-approximate inner ball condition

on Bn(x, δ), then for any x ∈ Rn and δ > 0 there exists R0, δ0 > 0 such that epi(conv(f))

satisfies the (R0, ε0)-approximate inner ball condition on Bn(x, δ).

Remark 69. In the proof we specifically show that for fixed x ∈ Rn and δ > 0, if f satisfies

the (R, ε)-approximate inner ball condition on Bn(0,M) for M large enough, then conv(f)

satisfies the ( R
n+1

, ε)-approximate inner ball condition on Bn(x, δ).

Proof. Fix x ∈ Rn and δ > 0. By Lemma 65, for any y ∈ Bn(x, δ) we can find a sequence

{µ(k)
i , y

(k)
i }n+1

i=1 ∈ C(y) for all k ∈ N, such that µ
(k)
1 → µ1 ≥ 1

n+1
, y

(k)
1 → y1 and

n+1∑
i=1

µ
(k)
i Γf (y

(k)
i ) → Γconv(f)(y) as k → ∞. (59)

Lemma 65 also implies there exists M > 0, depending only on the choice of x and δ, such

that Bn(x, δ) ∪ {y(k)1 }∞k=1 ⊂ Bn(0,M). By assumption, there exist R, ε > 0 such that epi(f)

satisfies the (R, ε)-approximate inner ball condition on Bn(0,M). Thus for each y
(k)
1 , there

exists h(k) such that

Bn+1(h(k), R) ⊂ epi(f) and dist(Γf (y
(k)
1 ), B(h(k), R)) ≤ ε. (60)

We now consider the closed ball B(k) given by,

B(k) := µ
(k)
1 Bn+1(h(k), R) +

{
n+1∑
i=2

µ
(k)
i Γf (y

(k)
i )

}
.

As Bn+1(h(k), R) ⊂ epi(f) and Γf (y
(k)
i ) ∈ epi(f) for all k ∈ N, we have B(k) ⊂ epi(conv(f))

for all k ∈ N, being the convex combination of elements in epi(f). By (59), as
∑n+1

i=1 µ
(k)
i Γf (y

(k)
i )

converges, there exists L > 0 such that |
∑n+1

i=1 µ
(k)
i Γf (y

(k)
i )| ≤ L for all k ∈ N and (60) implies

|Γf (y
(k)
1 ) − h(k)| ≤ R + ε.

63



Figure 2: Proof of Lemma 68
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Thus the centers of B(k), given by µ
(k)
1 h(k) +

∑n+1
i=2 µ

(k)
i Γf (y

(k)
i ), are bounded. Indeed,∣∣∣∣∣µ(k)

1 h(k) +
n+1∑
i=2

µ
(k)
i Γf (y

(k)
i )

∣∣∣∣∣ ≤ ∣∣∣µ(k)
1 h(k) − µ

(k)
1 Γf (y

(k)
1 )
∣∣∣+

∣∣∣∣∣
n+1∑
i=1

µ
(k)
i Γf (y

(k)
i )

∣∣∣∣∣
≤ µ

(k)
1 (R + ε) + L ≤ R + ε+ L.

Therefore up to a subsequence, we may assume that µ
(k)
1 h(k) +

∑n+1
i=2 µ

(k)
i Γf (y

(k)
i ) → h.

We now claim that the closed ball Bn+1(h, µ1R) satisfies,

Bn+1(h, µ1R) ⊂ epi(conv(f)) and dist(Γconv(f)(y), Bn+1(h, µ1R)) ≤ µ1ε. (61)

As the centers of B(k) converge to h and clearly the radius of B(k), given by µ
(k)
1 R, converges

to µ1R, we can see that B(k) → Bn+1(h, µ1R) as k → ∞, in the sense that for every

x ∈ Bn+1(h, µ1R) there exists x(k) ∈ B(k) such that x(k) → x. Thus, as epi(conv(f)) is closed

and B(k) ⊂ epi(conv(f)) we have Bn+1(h, µ1R) ⊂ epi(conv(f)). Also by (60), there exists

some a(k) ∈ Bn+1(h(k), R) such that

|Γf (y
(k)
1 ) − a(k)| ≤ ε. (62)
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By the same argument used to show the centers of B(k) are bounded, we see that µ
(k)
1 a(k) +∑n+1

i=2 µ
(k)
i Γf (y

(k)
i ) are bounded and up to a subsequence we have,

B(k) ∋ µ
(k)
1 a(k) +

n+1∑
i=2

µ
(k)
i Γf (y

(k)
i ) → a ∈ B(h, µ1R).

Therefore (62) shows,∣∣∣∣∣
n+1∑
i=1

µ
(k)
i Γf (y

(k)
i ) −

(
µ
(k)
1 a(k) +

n+1∑
i=2

µ
(k)
i Γf (y

(k)
i )

)∣∣∣∣∣ ≤ µ
(k)
1 ε

and letting k → ∞ yields,

|Γconv(f)(y) − a| ≤ µ1ε.

As a ∈ Bn+1(h, µ1R) this proves (61). Given that µ1 ≥ 1
n+1

we can find a smaller ball and

h′ ∈ epi(conv(f)) such that

Bn+1

(
h′,

R

n+ 1

)
⊂ epi(conv(f)) and dist

(
Γconv(f)(y), Bn+1

(
h′,

R

n+ 1

))
≤ ε

showing that epi(conv(f)) satisfies the ( R
n+1

, ε)-approximate inner ball condition on Bn(x, δ).

QED

Theorem 70. Let f : Rn → R satisfy f ∈ C1,α
loc (Rn) and be coercive. Then conv(f) ∈

C1,α
loc (Rn).

Proof. By Corollary 61, for any x ∈ Rn and δ > 0 there exists ε0, C > 0 such that for

all 0 < ε < ε0, epi(f) satisfies the (Cε
1−α
1+α , ε)-approximate inner ball condition on B(x, δ).

Specifically, choosing M > 0 as in the proof of Lemma 68, we have that there exists ε0, C > 0

such that for all 0 < ε < ε0, epi(f) satisfies the (Cε
1−α
1+α , ε)-approximate inner ball condition

on B(0,M). As f is coercive, the proof of Lemma 68 implies that for all 0 < ε < ε0,

epi(conv(f)) satisfies the
(

C
n+1

ε
1−α
1+α , ε

)
-approximate inner ball condition on B(x, δ). The

result follows by again applying Corollary 61. QED
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Remark 71. In [7, Example 4.1] is given a counterexample to Theorem 70 if we remove the

coercivity of f . The function f : R2 → R, defined as,

f(x, y) =
√
x2 + e−y2

is clearly smooth, and it can be seen that conv(f)(x, y) = |x|. The value conv(f)(0, y), for

any y ∈ R, can be approximated by a sequence of convex combinations of points of the

form f(0, y
(k)
i ), such that y

(k)
i → ∞ as k → ∞. Moreover, as epi(f) satisfies the (R, ε)-

approximate inner ball condition, the graph of f can be approximated by balls of radius R.

But as k → ∞ we have R → 0.

3.5 Sum of Convex Bodies

We define the Minkowski sum of two sets as,

A+B = {x+ y : x ∈ A and y ∈ B}.

We also define a convex domain as a convex set with nonempty interior. It is easy to verify

that the sum of two convex domain is itself a convex domain. To apply the results from the

previous sections to the sum of two sets we will need to work with the boundary of A+B and

see how this connects to the boundaries of A and B individually. While ∂(A+B) ̸= ∂A+∂B,

we do have the following inclusion,

Lemma 72. For convex body A ⊂ Rn and convex domain B ⊂ Rn, ∂(A+B) ⊂ ∂A+ ∂B.

We first prove this simple lemma,

Lemma 73. For A ⊂ Rn compact and B ⊂ Rn we have A+B ⊂ A+B.

Proof. Let z ∈ A+B. This implies that there exists a sequence zn ∈ A + B such that

zn → z. As zn ∈ A + B, there exist an ∈ A and bn ∈ B such that zn = an + bn. By

compactness of A, there exists ank
→ a ∈ A. Thus, if we define b := z − a, we have,

bnk
= znk

− ank
→ z − a = b

so that z = a+ b where a ∈ A and b ∈ B. QED
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Proof of Lemma 72. Let z ∈ ∂(A + B) and by Lemma 73 we have ∂(A + B) ⊂ A+B ⊂

A + B so that there exists a ∈ A and b ∈ B such that z = a + b. The claim is that

a ∈ ∂A and b ∈ ∂B. If a ∈ intA, there exists δ > 0 such that B(a, δ) ⊂ A. Thus

B(a, δ) + {b} ⊂ B(a, δ) + B ⊂ A + B. This implies that B(a + b, δ) = B(z, δ) ⊂ A + B,

and thus z ∈ int(A + B), a contradiction, proving a ∈ ∂A. A similar argument shows that

b ∈ ∂B QED

Remark 74. In general ∂(A + B) ̸= ∂A + ∂B. Consider the sets A = [0, 2] × [0, 2] and

B = B2((0, 0), 1). Then (0, 0) ∈ ∂A and (1, 0) ∈ ∂B, but

(1, 0) + (0, 0) = (1, 0) ∈ B2((1, 0), 1/2) ⊂ (1, 0) +B2((0, 0), 1/2) ⊂ A+B

so that (1, 0) + (0, 0) /∈ ∂(A+B).

Theorem 75. If A ⊂ Rn is a convex body of class C1 and B is any convex domain, then

A+B is of class C1.

Proof. We will be making use of the characterization of C1 convex domains given in Propo-

sition 33, that is, the goal is to show at each z ∈ ∂(A+B) there exists a unique supporting

hyperplane. We first note that for each b ∈ B, the set A + {b} is a C1 convex body. Thus

for each a ∈ ∂A, there exists a unique supporting hyperplane of A + {b} at a + b. Fix

z0 ∈ ∂(A + B). By Lemma 72, there exists a0 ∈ ∂A and b0 ∈ ∂B such that z0 = a0 + b0.

Moreover by the convexity of A + B there exists a supporting hyperplane of A + B at z0.

It is clear that any supporting hyperplane of A+B at z0 is also a supporting hyperplane of

A + {b0} at z0 = a0 + b0. If there exists more than one supporting hyperplane of A + B at

z0, then there exists more than one supporting hyperplane of A+ {b} at z0, a contradiction.

Therefore at each point z ∈ ∂(A+B) there is a unique supporting hyperplane, showing that

A+B is of class C1. QED

In 1991, Krantz and Parks proved in [20] that the sum of a C1,α convex body and a

general convex domain is a C1,α convex body. Their proof relies on writing the boundaries

of the convex bodies using coordinate systems and is difficult. Another proof is given by

Kiselman in [19], which relies on the use of the infimal convolution. Here we will present a

simple and new proof of this result that follows from Theorem 51.
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Remark 76. The proof for the opposite direction of both Theorem 40 and Theorem 51

does not require the set K to be bounded. The ε0 > 0 included in the theorem is a global

condition to ensure the closed balls remain in K. Thus, if there exists ε0 > 0 and C > 0

such that the convex domain K satisfies the (Cε
1−α
1+α , ε)-approximate inner ball condition for

all 0 < ε < ε0, then K is of class C1,α.

Theorem 77. If A ⊂ Rn is a convex body of class C1,α, α ∈ (0, 1], and B ⊂ Rn is any

convex domain, then A+B is of class C1,α.

Proof. We first present the proof for the case α = 1, since it is an easy application of

Theorem 40. Consider any z ∈ ∂(A + B) and by Lemma 72 let a ∈ ∂A and b ∈ ∂B satisfy

z = a + b. By Theorem 40, A satisfies the uniform inner ball condition, so there exists

h(a) ∈ A and r > 0 such that a ∈ B(h(a), r) ⊂ A. This implies

a+ b ∈ B(h(a), r) + {b} ⊂ A+B

where B(h(a), r) + {b} is a closed ball of radius r. Therefore A + B satisfies the uniform

inner ball condition and hence is of class C1,1.

In general, for α ∈ (0, 1], we know by Theorem 51 there exists constants ε0, C > 0 such

that for each 0 < ε < ε0, A satisfies the (Cε
1−α
1+α , ε)-approximate inner ball condition. Hence

for each a ∈ ∂A and for each 0 < ε < ε0 there exists hε(a) ∈ A such thatB(hε(a), Cε
1−α
1+α ) ⊂ A

and

dist(a,B(hε(a), Cε
1−α
1+α )) ≤ ε.

Let z ∈ ∂(A + B) and by Lemma 72, let a ∈ ∂A and b ∈ ∂B such that z = a + b. Then

consider the ball B(hε(a), Cε
1−α
1+α ) + {b} ⊂ A+B, and note, for all 0 < ε < ε0,

dist(a+ b, B(hε(a), Cε
1−α
1+α ) + {b}) = dist(a,B(hε(a), Cε

1−α
1+α )) ≤ ε

so that A + B satisfies the (Cε
1−α
1+α , ε)-approximate inner ball condition for all 0 < ε < ε0.

Therefore, by Theorem 51, A+B is of class C1,α. QED
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4.0 Second Differentiability of Convex Functions

We established in Chapter 2 that a convex function is differentiable almost everywhere,

by showing it is locally Lipschitz and applying the Rademacher theorem. But in fact a

much more impressive result is true for convex functions. In this chapter we will prove

the Alexandrov theorem which states that a convex function is in fact second differentiable

almost everywhere.

4.1 Approximating Convex Bodies with Lipschitz Outer Normal Vectors

Recall for a convex body K, the inner parallel body Kr, defined in (26), is given by

Kr = {x ∈ K : dist(x, ∂K) ≥ r}.

and K(r), defined in (27), is given by

K(r) =
⋃

{B(x, r) : B(x, r) ⊂ K}.

Moreover, choosing r small enough, both Kr and K(r) are convex bodies.

Lemma 78. If a convex body K contains a ball of radius r0, then

Hn−1(∂Kr) ≤ Hn−1(∂K ∩ ∂K(r)). (63)

Proof. By Lemma 34, Kr is a convex body. Observe that

πKr(∂K ∩ ∂K(r)) = ∂Kr. (64)

Indeed, if z ∈ ∂Kr, then there is x ∈ ∂K, such that |x− z| = r. Therefore, x ∈ B(z, r) ⊂ K,

and hence x ∈ K(r). Thus, x ∈ ∂K∩∂K(r), |x−z| = r ≥ dist(x,Kr), and hence z = πKr(x).

Now (63) follows from (64) and the fact that πKr is 1-Lipschitz (Lemma 5). QED
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The next beautiful result is due to McMullen [22]. While it can be concluded from

Alexandrov’s theorem, we present here a direct and surprisingly elementary proof which is a

small modification of McMullen’s argument. In fact, Lemma 79 will play an important role

in our proof of Alexandrov’s theorem.

Lemma 79. If K ⊂ Rn is a convex body, then limr→0+ Hn−1(∂K \ ∂K(r)) = 0.

Remark 80. Lemma 79 has the following geometric interpretation: for almost all x ∈ ∂K,

there is a closed ball B ⊂ K touching the boundary of K at x, i.e., x ∈ B.

Remark 81. The proof presented here of Lemma 79 will follow from the use of dilating

the inner parallel bodies of K, but a famous result in convex geometry can also be used.

Steiner’s formula shows that for a convex body K, the surface area can be found using this

derivative style limit:

Hn−1(∂K) = lim
δ→0+

Hn(K + δB(0, 1)) −Hn(K)

δ
.

where we have K + δB(0, 1) = {x ∈ Rn : dist(x,K) ≤ δ}, the outer parallel body of K.

Proof. Without loss of generality we may assume that B(0, r0) ⊂ K. If r ∈ (0, r0), then 0

belongs to the interior of Kr. For λ > 0 we define

λKr := {λz : z ∈ Kr},

that is, λKr is a dilation of Kr. For r ∈ (0, r0), let

λ(r) := inf{λ > 0 : K ⊂ λKr}.

Clearly, K ⊂ λ(r)Kr. It is easy to see that the function r 7→ λ(r) is non-decreasing and

λ(r) → 1 as r → 0+. Indeed, for any ε > 0, (1 + ε)−1K ⊂ intK, and hence δ := dist((1 +

ε)−1K, ∂K) > 0, so for all r ∈ (0, δ]

(1 + ε)−1K ⊂ Kr, i.e., K ⊂ (1 + ε)Kr.

In other words 1 ≤ λ(r) ≤ 1 + ε for all 0 < r ≤ δ proving that λ(r) → 1 as r → 0+.

It is easy to see that πK(∂(λ(r)Kr)) = ∂K. Indeed, if x ∈ ∂K and ν(x) is the outer

unit normal vector to a supporting hyperplane of K at x, then there is t ≥ 0 such that

70



z := x+ tν(x) ∈ ∂(λ(r)Kr) and it easily follows that πK(z) = x. Since πK is 1-Lipschitz and

it maps ∂(λ(r)Kr) onto ∂K, we have by Lemma 78, that

Hn−1(∂K) ≤ Hn−1(∂(λ(r)Kr)) = λ(r)n−1Hn−1(∂Kr) ≤ λ(r)n−1Hn−1(∂K ∩ ∂K(r))

≤ λ(r)n−1Hn−1(∂K) → Hn−1(∂K) as r → 0+.

Therefore, Hn−1(∂K ∩ ∂K(r)) → Hn−1(∂K), as r → 0+. This completes the proof of

Lemma 79. QED

Corollary 82. If f : Rn → R is convex, then it is differentiable a.e. Moreover

f(y) = f(x) +Df(x)(y − x) +O(|y − x|2) for almost all x ∈ Rn. (65)

Proof. Since the boundary of a ball is parameterized by a smooth convex function, Lemma 44

implies (65) whenever there is a ball in the epigraph of f that touches the graph of f at

(x, f(x)) and it follows from Lemma 79 that it is true for almost all x. QED

Remark 83. Note that the proof of Corollary 82 does not use Rademacher’s theorem.

Moreover, the estimate (65), is stronger than the a.e. differentiability of f that would follow

from an application of Rademacher’s theorem.

4.2 Alexandrov’s Theorem

The first part of Alexandrov’s theorem states that a convex function is twice differentiable

a.e. in the sense of Taylor’s theorem with the Peano remainder.

Theorem 84. If f : Rn → R is convex, then it is differentiable a.e. and at almost every

point where f is differentiable, there is a symmetric matrix denoted by D2f(x) such that

lim
y→x

f(y) − f(x) −Df(x)(y − x) − 1
2
(y − x)TD2f(x)(y − x)

|y − x|2
= 0. (66)
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To prove this result we will build upon the previous section, where we showed that we

can approximate a convex body K with a C1,1 convex body K(R) ⊂ K such that surface

area of ∂K \∂K(R) can be made arbitrarily small for R small. The idea of the proof goes as

follows: take a convex function f and intersect the epigraph with a cylinder bounded from

above, making a convex body. Then this convex body can be approximated by a C1,1 convex

body which intersects the boundary outside a set of small measure, and locally this convex

body is the graph of a C1,1 convex function, let’s call it g. Note that on the set of points

where f = g, ∇f exists and ∇f = ∇g. Applying the Rademacher theorem to ∇g at almost

every point will give us the desired symmetric matrix.

The next result is a direct consequence of Lemma 79 and will be used to prove both

Alexandrov’s theorem and Theorem 90.

Corollary 85. Let f : Rn → R be a convex function. Then for every R > 0 and ε > 0,

there is a convex function g ∈ C1,1(Bn(0, R)) such that g ≥ f and

Ln({x ∈ Bn(0, R) : f(x) ̸= g(x)}) < ε. (67)

Proof. Let M := supBn(0,2R) f(x) and define

K := {(x, y) ∈ Bn(0, 2R) × R : f(x) ≤ y ≤M + 2R}.

That is, K is an (n + 1)-dimensional convex body bounded by the graph of f , the cylinder

∂Bn(0, 2R) × R and the hyperplane y = M + 2R. According to Lemma 79, there is δ < R

such that

Hn(∂K \ ∂K(δ)) < ε.

Since K(δ) is the union of closed balls of radius δ < R that are contained in K, it follows

that

Bn(0, 2R) × {M +R} ⊂ K(δ),

i.e., the intersection of K(δ) with the hyperplane y = M +R is an n-dimensional closed ball

of radius 2R. Thus, if π : Rn+1 → Rn is the orthogonal projection, π(K(δ)) = Bn(0, 2R),

and hence for x ∈ Bn(0, 2R), we can define, as in (24)

g(x) := inf{y : (x, y) ∈ K(δ)}.
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That is, the function g : Bn(0, 2R) → R parametrizes the bottom part of the boundary of

K(δ). According to Theorem 40, the boundary of K(δ) is of class C1,1 so g ∈ C1,1
loc (Bn(0, 2R))

and hence g is a convex function in C1,1(Bn(0, R)). Since K(δ) is contained in K and hence

in the epigraph of f , it follows that g ≥ f .

Observe that

{x ∈ Bn(0, R) : f(x) ̸= g(x)} ⊂ π(∂K \ ∂K(δ))

and hence

Ln({x ∈ Bn(0, R) : f(x) ̸= g(x)}) ≤ Ln(π(∂K \ ∂K(δ))) ≤ Hn(∂K \ ∂K(δ)) < ε,

because the orthogonal projection does not increase the Hausdorff measure and Hn coincides

with the Lebesgue measure in Rn. QED

Lemma 86. Suppose that f, g : Bn(0, R) → R are convex, f ≤ g, and g ∈ C1,1(Bn(0, R)).

Then for almost all x0 ∈ {x ∈ Bn(0, R) : f(x) = g(x)} we have

f(x) = f(x0) +Df(x0)(x− x0) +
1

2
(x− x0)

TD2g(x0)(x− x0) + o(|x− x0|2). (68)

While the main tool of the proof of this theorem is the Rademacher theorem, the sim-

plicity of it follows from the use of density points in the set {f = g}. We will need the

following property of density points for the proof of Lemma 86.

Lemma 87. Let A ⊂ Rn be a closed set and 0 a density point of A. Then for any x ∈ Rn,

there exists y ∈ A such that |x− y| = o(|x|).

Proof. We first want to show

lim
|x|→0

dist(x,A)

|x|
= 0.

Suppose to the contrary that the limit does not equal 0, that is, there exist ε0 > 0 and

|xk| → 0 such that for all k ∈ N,
dist(xk, A)

|xk|
≥ ε0.

Let δk := dist(xk, A), so that we have for all k, δk
|xk|

≥ ε0. Also note that δk > 0 implies

B(xk, δk/2) ∩ A = ∅. Now consider the balls B(0, |xk|), and note by the density of 0,
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lim
k→∞

Ln(A ∩B(0, |xk|))
Ln(B(0, |xk|))

= 1. (69)

We can also note that there exists yk ∈ B(0, |xk|) ∩B(xk, δk/2) such that

B(yk, δk/4) ⊂ B(0, |xk|) ∩B(xk, δk/2).

As B(yk, δk/4) ∩ A = ∅ implies A ∩B(0, |xk|) ⊂ B(0, |xk|) \B(yk, δk/4) we have,

Ln(A ∩B(0, |xk|)) ≤ Ln(B(0, |xk|) \B(yk, δk/4)) = Ln(B(0, |xk|)) − Ln(B(yk, δk/4))

and hence,

Ln(A ∩B(0, |xk|))
Ln(B(0, |xk|)

≤ 1 − Ln(B(yk, δk/4))

Ln(B(0, |xk|))
= 1 − δnk

4n|xk|n
≤ 1 − εn0

4n

contradicting the definition of density point. The result then follows by noting, as A is

closed, for each x ∈ Rn there exists a y ∈ A such that

dist(x,A) = |x− y|

QED

Remark 88. To find the yk explicitly, draw a line segment from 0 to xk and call zk the

point where this line segment intersects the boundary of B(xk, δk/2). Then choose yk to be

the midpoint on the line segment between xk and zk.

Proof of Lemma 86. It follows from Lemma 44 that f is differentiable at every point of

the set {f = g} and that Df = Dg in {f = g}. Since Dg is Lipschitz continuous, Dg

is differentiable a.e. by Rademacher’s theorem. Therefore, it suffices to prove the result

whenever x0 ∈ {f = g} is a density point and Dg is differentiable at x0.

To simplify notation, without loss of generality, we may assume that x0 = 0, and we

need to prove that

f(x) − f(0) −Df(0)x− 1

2
xTD2g(0)x = o(|x|2).
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Since f(0) = g(0) and Df(0) = Dg(0), the left hand side equals

(f(x) − g(x)) +

(
g(x) − g(0) −Dg(0)x− 1

2
xTD2g(0)x

)
= (f(x) − g(x)) + o(|x|2).

We used here the fact that g is twice differentiable at 0 (Taylor’s theorem with the Peano

remainder). Thus it remains to show that g(x) − f(x) = o(|x|2).

Since 0 is a density point of the set {f = g}, by Lemma 87 for any x ∈ Bn(0, r) we can

find y ∈ {f = g} such that |x− y| = o(|x|).

Clearly, f(y) = g(y) and Df(y) = Dg(y) by Lemma 44. Therefore,

f(x) ≥ f(y) +Df(y)(x− y) = g(y) +Dg(y)(x− y),

where the inequality is a consequence of Theorem 22. Since f ≤ g, the above inequality and

Lemma 41 yield

0 ≤ g(x) − f(x) ≤ g(x) − g(y) −Dg(y)(x− y) ≤M |x− y|2 = o(|x|2).

completing the proof. QED

We are now ready to prove the first version of the Alexandrov theorem:

Proof of Theorem 84. Let f : Rn → R be convex. Let R > 0 and ε > 0 and let g be as in

Corollary 85. It follows from Lemma 86 that for almost all x ∈ {f = g}, (66) is satisfied

with D2f(x) := D2g(x). Hence (66) holds true in B(0, R) outside a set of measure less

than ε. Since it is true for any R > 0 and ε > 0, it follows that (66) is satisfied almost

everywhere. QED
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4.3 The Differentiability of the Subdifferential of a Convex Function

There is also a second version of the Alexandrov theorem which says that the subdiffer-

ential ∂f is differentiable a.e.

Theorem 89. If f : Rn → R is convex, then for all x ∈ Rn where f is twice differentiable

as in (66), we have

lim
y→x

sup
σy∈∂f(y)

|σy −Df(x) −D2f(x)(y − x)|
|y − x|

= 0. (70)

The usual way to prove the first version of Alexandrov’s theorem (Theorem 84) is to show

Theorem 89 first and conclude Theorem 84 from it. In this thesis we will prove Theorem 89

directly from Theorem 84. If f is twice differentiable at 0 as in (66), then we have

f(x) = f(0) +Df(0)x+
1

2
xTD2f(0)x+R(x) = f(0) +Df(0)x+ ⟨Ax, x⟩ +R(x),

where A = 1
2
D2f(0) and R(x) = o(|x|2). Note that

a(r) := sup
0<|x|≤2r

|R(x)|
|x|2

→ 0 as r → 0+.

Moreover,

|R(x)| ≤ a
( |x|

2

)
|x|2 ≤ a(|x|)|x|2.

Proof of Theorem 89. Let f be twice differentiable at x as in (66). We need to prove (70).

Without loss of generality we may assume that x = 0, and hence we need to prove that

lim
x→0

σx −Df(0) −D2f(0)x

|x|
= 0 for any σx ∈ ∂f(x).

For x, y ̸= 0, we have

f(x) = f(0) +Df(0)x+ ⟨Ax, x⟩ +R(x), f(y) = f(0) +Df(0)y + ⟨Ay, y⟩ +R(y).

Since f(x) + ⟨σx, y − x⟩ ≤ f(y), we have

⟨σx, y − x⟩ ≤ f(y) − f(x) = Df(0)(y − x) + ⟨A(x+ y), y − x⟩ +R(y) −R(x).
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We used here the fact that A is symmetric and hence ⟨Ax, y⟩ = ⟨Ay, x⟩. Let

y = x+ w, where w =
√
a(|x|) |x|z, |z| = 1.

Then

⟨σx, w⟩ ≤ Df(0)w + ⟨A(2x+ w), w⟩ +R(y) −R(x),

⟨σx −Df(0) − 2Ax,w⟩ ≤ ⟨Aw,w⟩ +R(y) −R(x).

If |x| is sufficiently small, then a(|x|) ≤ 1 and hence |w| ≤ |x|, so |y| ≤ 2|x|. Therefore,

|R(y)| ≤ a
( |y|

2

)
|y|2 ≤ 4a(|x|)|x|2, |R(y) −R(x)| ≤ 5a(|x|)|x|2.

Taking the supremum over all z with |z| = 1 we get

|σx −Df(0) − 2Ax|
√
a(|x|)|x| ≤ |A|a(|x|)|x|2 + 5a(|x|)|x|2,

and hence
|σx −Df(0) − 2Ax|

|x|
≤ (|A| + 5)

√
a(|x|) → 0 as x→ 0.

Since 2A = D2f(0), the result follows. QED

4.4 Approximating Convex Functions Globally with Continuously

Differentiable Convex Functions with Lipschitz Gradient

The following result was originally proved by Haj lasz and Azagra in [4], but the proof is

technical. The previous results regarding C1,1 convex bodies and functions allows us to find

a simpler and more intuitive proof.

Theorem 90. Let f : Rn → R be a convex function. Then, for every R > 0 and for every

ε > 0, there exists a convex function g ∈ C1,1(Rn), g ≥ f , such that

Ln({x ∈ Bn(0, R) : f(x) ̸= g(x)}) < ε.
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The only difference between Corollary 85 and Theorem 90 is that the function g in

Corollary 85 is only defined on the ball Bn(0, R). The main step in the proof of Theorem 90

will be to show that the function g can be extended from a ball Bn(0, R − δ) to a convex

function of class C1,1(Rn). We will do it by gluing the function g with a quadratic function

of the form a|x|2 − b and we need to know how to glue convex functions while maintaining

their smoothness.

The maximum of two convex functions

max{u, v} =
u+ v + |u− v|

2

is convex, but even if u, v ∈ C∞, the maximum max{u, v} need not be C1. To overcome this

difficulty, we will use the so called smooth maximum that was introduced in [2].

Let θ ∈ C∞(R) be such that θ(t) = |t| if and only if |t| ≥ 1, θ is convex, θ(t) = θ(−t) for

all t, and 1-Lipschitz.

It easily follows that θ(t) > 0 for all t and |θ′(t)| < 1 if and only if |t| < 1. Then, we

define the smooth maximum function M : R2 → R as,

M(x, y) :=
x+ y + θ(x− y)

2
.

It is easy to see that M is smooth, convex and

M(x, y) = max{x, y} whenever |x− y| ≥ 1. (71)

It is also not difficult to prove that M(x, y) is non-decreasing in x and y, because partial

derivatives of M are non-negative, see [2, Lemma 2.1(viii)]. This observation and convexity

of M yield (see [2, Proposition 2.2(i)])

Lemma 91. If u, v : U → R are convex functions defined in an open convex set U ⊂ Rn,

then M(u, v) : U → R is convex.

It is also obvious that if u, v ∈ C1,1
loc (U), then M(u, v) ∈ C1,1

loc (U).

We will use the smooth maximum to prove the following extension result and Theorem

90 follows immediately from Proposition 92.
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Proposition 92. Let h ∈ C1,1
loc (Bn(0, R)) be a convex function. Then, for every r ∈ (0, R),

there is a convex function H ∈ C1,1(Rn), such that

H(x) = h(x) whenever |x| ≤ r. (72)

Remark 93. If h ∈ Ck, k ∈ N ∪ {∞}, then H ∈ Ck(Rn). The proof remains the same.

Proof. Choose ρ ∈ (r, R) and let

m := inf
|x|≤r

h, M := sup
|x|=ρ

h.

Then, we can find a, b > 0 such that the function q(x) := a|x|2 − b satisfies

q(x) < m− 1 if |x| ≤ r (73)

q(x) > M + 1 if |x| = ρ, (74)

and we define

H(x) :=

M(h(x), q(x)) if |x| ≤ ρ,

q(x) if |x| > ρ.

It follows from (73) if |x| ≤ r, then h(x) > q(x) + 1 so by (71), we have

H(x) = M(h(x), q(x)) = h(x) if |x| ≤ r

and the condition (72) is satisfied. It follows from (74) that there is ε > 0 such that

q(x) > h(x) + 1 if ρ ≤ |x| ≤ ρ+ ε and hence by (71),

M(h(x), q(x)) = q(x) when ρ ≤ |x| ≤ ρ+ ε.

Therefore, the convex functions q(x) ∈ C1,1(Rn) and M(h(x), q(x)) ∈ C1,1
loc (Bn(0, R)) coin-

cide in the annulus ρ ≤ |x| ≤ ρ + ε and hence H is convex in Rn with H ∈ C1,1
loc (Rn). Since

H = q ∈ C1,1 outside the compact ball Bn(0, ρ), it follows that H ∈ C1,1(Rn). QED
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5.0 Support Functions and Boundary Properties of Convex Bodies

5.1 The Support Function

Previously when discussing convex bodies we noted that at each point on the boundary

of the body there is a supporting hyperplane (Theorem 8). While this description can be

thought of as an intrinsic view of the boundary structure of K we now want to consider

an extrinsic view of the boundary of K. We recall the hyperplane with normal vector u is

denoted

Hb(u) := {x ∈ Rn : ⟨x, u⟩ = b}

and the half space with boundary Hb(u) and u outer normal vector as

H−
b (u) := {x ∈ Rn : ⟨x, u⟩ ≤ b}.

Geometrically, for a fixed u, increasing b translates the hyperplane Hb(u) in the direction of

u and decreasing b translates Hb(u) in the direction of −u.

Let K be a convex body. We say that H(u,K) is the supporting hyperplane of K in the

direction of u if there exists b ∈ R that satisfies

K ⊂ H−
b (u) and Hb(u) ∩ ∂K ̸= ∅.

It is clear, by the convexity of K, for a fixed u, the choice of b ∈ R is unique. Thus we

can define a mapping that sends the outer normal vector u to the corresponding b such that

Hb(u) = H(u,K). If Hb(u) is the supporting hyperplane of K in the direction of u, then we

define the function σK : Rn → R by σK(u) = b and we call σK the support function of K.

Hence we can write the supporting hyperplane in the direction of u as,

H(u,K) := {x ∈ Rn : ⟨x, u⟩ = σK(u)} = HσK(u)(u).

We now seek to provide an explicit definition for the support function of a convex body

K. The standard construction goes as follows: pick any u ∈ Rn and choose b0 so that,
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K ⊂ H−
b0

(u). This is possible by the compactness of K. Note that u is pointing outwards of

H−
b0

(u) and thus also pointing outwards of K. If we define the set

SK(u) := {⟨x, u⟩ : x ∈ K} (75)

then we see that b0 is an upper bound of SK(u) implying the supremum of SK(u) exists and

is finite. Moreover, by continuity of the mapping x 7→ ⟨x, u⟩ and the compactness of K we

see that the supremum is achieved at some point in K, and specifically some point on ∂K.

Let xu ∈ ∂K be a point satisfying ⟨xu, u⟩ = supSK(u). So if we consider the hyperplane,

HsupSK(u)(u) = {x ∈ Rn : ⟨x, u⟩ = supSK(u)}

then we see that K ⊂ H−
supSK(u)(u) and xu ∈ K ∩ HsupSK(u)(u) so that HsupSK(u)(u) is

the supporting hyperplane of K in the direction of u. Therefore it is clear that σK(u) =

supSK(u), i.e. the support function of K can be explicitly defined as,

σK(u) = sup
x∈K

⟨x, u⟩.

While this construction provides a clear motivation for an explicit equation of the support

function we present an alternative construction that shows the reader the geometric uses of

the support function. Consider, as before, the half space H−
b0

(u), where K ⊂ H−
b0

(u) and

suppose K does not intersect Hb0(u). Then we can consider b < b0 so that K ⊂ H−
b (u) and

decrease the value of b, translating the hyperplane Hb(u) in the direction of −u, until we find

some value bu such that Hbu(u) is the supporting hyperplane of K for some point x ∈ K.

This value bu is precisely the support function of K defined at u, i.e. bu = σK(u).

With this in mind we can establish some new notation to make the uses of the support

function clearer. We define the face of K in the direction of u as,

F (u,K) := {x ∈ K : ⟨x, u⟩ = σK(u)} = H(u,K) ∩K.

81



Remark 94. It is interesting to note the faces of convex bodies are preserved under addition

and dilation, that is, if K,L ⊂ Rn are convex bodies and c > 0 we have,

F (u,K + L) = F (u,K) + F (u, L) and F (u, cK) = cF (u,K).

This shows that there is in fact some additional structure to the boundaries of convex bodies.

See [28] for more about the structure of convex bodies and their faces.

As before we can also consider the half space bounded by H(u,K), with outer unit

normal u, and denote this by

H−(u,K) := {x ∈ Rn : ⟨x, u⟩ ≤ σK(u)}.

As K ⊂ H−(u,K) for all u ∈ Rn \ {0}, it is then easy to see that these half spaces define K.

Proposition 95. For a convex body K,

K =
⋂

u∈Rn\{0}

H−(u,K) =
⋂

u∈Rn\{0}

{x : ⟨x, v⟩ ≤ σK(u)}.

Proof. K ⊂
⋂

u∈Rn\{0}H
−(u,K), follows immediately from the previous statement of K ⊂

H−(u,K) for all u ∈ Rn\{0}. If x ∈
⋂

u∈Rn\{0}H
−(u,K) but x /∈ K, then by the compactness

and convexity of K, and Corollary 10, there would exist a separating hyperplane between

x and K. Namely there exists an α ∈ R and v0 ∈ Rn \ {0} such that ⟨k, v0⟩ < α < ⟨x, v0⟩

for all k ∈ K. As α is an upper bound for the set SK(v0), defined in (75), we have that

σK(v0) ≤ α so that,

σK(v0) ≤ α < ⟨x, v0⟩

which contradicts x ∈ H−(v0, K). QED

Remark 96. Proposition 95 is an analogous result to Corollary 9, where both seek to

describe the convex body K in terms of supporting hyperplanes.

By construction, the support function is useful to identify and characterize the boundary

structure of convex bodies. Specifically the faces of a convex body can now be identified

with a unique outer unit normal vector allowing us to move between the geometry of the

convex body and analysis on the support function seamlessly.
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5.2 Properties of the Support Function

As the support function σK is defined using the supremum and inner product, much of

the basic properties of σK are easy to establish. Recall the explicit equation for the support

function is given as

σK(u) = sup
k∈K

⟨k, u⟩.

Theorem 97 (Properties of the Support Function). For a convex body K, we have

(1) σK is subadditive i.e. σK(u+ v) ≤ σK(u) + σK(v);

(2) σK is 1-homogeneous i.e. for t > 0, σK(tu) = tσK(u);

(3) σK is convex;

(4) −σK(−u) = infk∈K⟨k, u⟩.

Proof. Recall that the supremum satisfies the following properties for sets A,B ⊂ R which

are bounded;

(i) sup(A+B) ≤ supA+ supB;

(ii) sup(tA) = t sup(A) for t ≥ 0;

(iii) sup(−A) = − inf(A).

Thus (1) and (2) follow from (i) and (ii), respectively, and the bilinearity of ⟨·, ·⟩, (3) is an

obvious consequence of (1) and (2), and (4) follows from (iii). QED

Recall the subdifferential of a function at x is given by,

∂f(x) = {v ∈ Rn : f(y) ≥ f(x) + ⟨v, y − x⟩ for all y ∈ Rn}.

Moreover recall, by Theorem 15, if f is convex, then for all x ∈ Rn, ∂f(x) ̸= ∅. The support

function, being a geometrically inspired function, has a geometrically beautiful subdifferen-

tial.

Theorem 98. For a convex body K, and u ∈ Rn \ {0},

∂σK(u) = F (u,K).
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Proof. Let x ∈ F (u,K). Then by definition, x ∈ K and ⟨x, u⟩ = σK(u). Also by the

definition of the support function we have for any v ∈ Rn\{0} and all k ∈ K, σK(v) ≥ ⟨k, v⟩,

and namely, as x ∈ K,

σK(v) ≥ ⟨x, v⟩ = ⟨x, v⟩ + σK(u) − ⟨x, u⟩ = σK(u) + ⟨x, v − u⟩.

This is precisely the definition of the subdifferential and hence x ∈ ∂σK(u).

Now suppose that x ∈ ∂σK(u). This implies for any v ∈ Rn,

σK(v) ≥ σK(u) + ⟨x, v − u⟩.

Specifically choosing v = 2u and noting σK(2u) = 2σK(u) yields,

2σK(u) = σK(2u) ≥ σK(u) + ⟨x, 2u− u⟩ =⇒ σK(u) ≥ ⟨x, u⟩.

Similarly, choosing v = 0, and noting that σK(0) = 0, yields,

0 = σK(0) ≥ σK(u) + ⟨x, 0 − u⟩ =⇒ ⟨x, u⟩ ≥ σK(u).

Therefore we have that σK(u) = ⟨x, u⟩. This implies that x ∈ H(u,K). We need only show

that x ∈ K. As we have for all v ∈ Rn,

σK(v) ≥ σK(u) + ⟨x, v − u⟩ = ⟨x, v⟩

This shows for all v ∈ Rn \ {0}, that x ∈ H−(v,K), so that by Proposition 95 we have

x ∈ K. Therefore x ∈ H(u,K) ∩K = F (u,K). QED

Recall by Theorem 27 a convex function f is differentiable at x if and only if ∂f(x) is a

singleton, which implies ∂f(x) = {∇f(x)}. Given Theorem 98, this implies,

Theorem 99. For a convex body K, σK is differentiable at u if and only if F (u,K) = {x}

for some x ∈ ∂K. That is, σK is only differentiable at the outer normals of supporting

hyperplanes that intersect K at a single point.
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5.3 Rectifiability of the Normal Directions

We define the set

Σd(∂f) := {x ∈ Rn : dim ∂f(x) ≥ d}

where we recall, by Theorem 16, ∂f(x) is a compact convex set so the dimension is well

defined to be the dimension of the affine hull of ∂f(x). The main tool we will need for this

section comes from a theorem of Zaj́ıček [29] regarding coverings of the set Σk(∂f) for convex

f . Before we state the result we define some new objects.

We say that a set G ⊂ Rn is a (c−c)-graph in the direction of xi, if there exists a function

f : Rn−1 → R, convex functions g, h : Rn−1 → R such that f = g − h, and

G = {x ∈ Rn : xi = f(x1, . . . , xi−1, xi+1, . . . xn)}.

Moreover, we call f a (c− c)-function.

Similarly we can define a (c − c)k-graph. Let π be a permutation of {1, . . . , n}. If

there exist functions fπ(j) : Rn−k → R, convex functions gπ(j), hπ(j) : Rn−k → R such that

fπ(j) = gπ(j) − hπ(j), for j = 1, . . . , k, and F : Rn−k → Rk defined by

F (xπ(k+1), . . . , xπ(n)) = (fπ(1)(xπ(k+1), . . . , xπ(n)), . . . , fπ(k)(xπ(k+1), . . . , xπ(n)))

then we call F a (c− c)k-function and if we define

G := {x ∈ Rn : (xπ(1), . . . , xπ(k)) = F (xπ(k+1), . . . , xπ(n))}

then we call G a (c− c)k-graph in the directions of xπ(1), xπ(2), . . . , xπ(k).

Remark 100. We call F a (c − c)k-function because F has k component functions all of

which are (c− c). Also we note that a (c− c)k-graph is a surface of dimension n− k.

The theorem of Zaj́ıček can be stated as follows,

Theorem 101. Let f : Rn → R be a convex function. Then Σk(∂f) can be covered by a

countable number of (c− c)k-graphs.
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The proof presented in this thesis is a direct extension of the one given in [15]. A function

is strongly convex if there exists some µ > 0 such that f(x) − µ|x|2 is convex. It is obvious

that a strongly convex function is convex by adding µ|x|2 and noting the sum of convex

functions is convex. Recall a function is coercive if |x| → ∞ implies f(x) → ∞. Thus the

following lemma says that the difference of a strongly convex and linear function is coercive.

Proposition 102. Given a strongly convex function, f : Rn → R, and any ℓ : Rn → R

linear,

lim
|x|→∞

(f(x) − ℓ(x)) = ∞. (76)

Proof. As f is strongly convex, there exists µ > 0 such that f(x) = µ|x|2 is convex. By

(17) every convex function is bounded below by an affine function and thus f(x) − µ|x|2 is

bounded below by some affine function α(x). The result follows by noting that f is bounded

below by the paraboloid µ|x|2 + α(x) − ℓ(x) which is coercive. QED

The next result is a generalization of Proposition 31 for convex functions.

Lemma 103. If f : Rk×Rℓ → R is convex and coercive, then F (x) := infy∈Rℓ f(x, y) defines

a convex function F : Rk → R.

Proof. This follows by noting that for any y1, y2 ∈ Rℓ,

F (λx1 + (1 − λ)x2) ≤ f(λx1 + (1 − λ)x2, λy1 + (1 − λ)y2)

= f(λ(x1, y1) + (1 − λ)(x2, y2)) ≤ λf(x1, y1) + (1 − λ)f(x2, y2)

and taking the infima over y1 ∈ Rℓ and y2 ∈ Rℓ. QED

Denote by Mk the set of increasing k-multi-indices. Thus, we can write the set

Mk := {I = (i1, . . . , ik) ∈ Nk : i1 < i2 < · · · < ik}.

Then for I = (i1, . . . , ik) ∈Mk, we define the projection map πI : Rn → Rk by

πI(x) = (xi1 , xi2 , . . . , xik).
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For I = (i1, . . . , ik) ∈ Mk, α = (αi1 , . . . , αik) ∈ Rk and β = (βi1 , . . . , βik) ∈ Rk we consider

the sets,

AI
α,β = {x ∈ Rn : [αi1 , βi1 ] × . . .× [αik , βik ] ⊂ πI(∂f(x))} .

We then define the set

A :=
⋃

I∈Mk

⋃
α,β∈Qk

α<β

AI
α,β. (77)

where we say α < β if αij < βij for all j ∈ {1, . . . , k}. Moreover, for I ∈Mk, we can denote

[α, β]I = [αi1 , βi1 ] × . . .× [αik , βik ] and RI = span(ei1 , . . . , eik).

Lemma 104. If f : Rn → R is convex, then A = Σk(∂f).

Proof. If x ∈ A, then for some multi index I ∈MK and some α < β ∈ Qk we have x ∈ AI
α,β.

Hence [α, β]I ⊂ πI(∂f(x)), which implies that ∂f(x), being a convex set, must be contained

in the affine hull of dimension at least k, proving that dim ∂f(x) ≥ k, i.e. x ∈ Σk(∂f).

Now similarly if x ∈ Σk(∂f), then ∂f(x) has affine hull of dimension at least k, denoted

by aff(∂f(x)). Hence there exists some multi index I ∈ Mk such that πI(aff(∂f(x))) = RI

meaning that πI(∂f(x)) has dimension of k in RI so that there exists some k-dimensional

box, [α, β]I ⊂ πI(∂f(x)). Therefore x ∈ A. QED

To prove Theorem 101, the idea is to cover each AI
α,β by a (c − c)k-graph. Note by

Theorem 28

Σk(∂f) = Σk(∂(f + | · |2)),

where f(x) + |x|2 is strongly convex, and the result will follow from Lemma 105.

Lemma 105. Let f : Rn → R be a strongly convex function. Then each AI
α,β is contained

in a (c− c)k-graph.

Proof of Lemma 105. Without loss of generality we will show A
(1,...,k)
α,β is contained in a

(c − c)k graph. For s := (s1, . . . , sk, 0, . . . 0) ∈ Rn, let fs(x) = f(x) − s · x, which is convex

being the sum of two convex functions, and note that by Proposition 102, fs(x) is coercive.

Thus gs : Rn−k → R defined by:

gs(xk+1, . . . , xn) = inf
(x1,...,xk)∈Rk

fs(x1, . . . , xn)
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is well defined and convex by Lemma 103. Consider a ∈ A
(1,...,k)
α,β , implying [α, β](1,...,k) ⊂

π(1,...,k)(∂f(a)). In particular α = (α1, . . . , αk) ∈ π(1,...,k)(∂f(a)) and hence there exists some

γk+1, . . . , γn ∈ R such that α′ := (α1, . . . , αk, γk+1, . . . , γn) ∈ ∂f(a). Thus,

f(a+ s) ≥ f(a) + ⟨(α1, . . . , αk, γk+1, . . . , γn), (s1, . . . , sk, 0 . . . , 0)⟩

= f(a) + ⟨(α1, . . . , αk), (s1, . . . , sk)⟩

which can be rewritten as,

f(a+ s1e1 + · · · + skek) ≥ f(a) + α1s1 + · · · + αksk. (78)

As the values γk+1, . . . , γn have no impact on the above inequalities, we define a new vector

α̃ = (α1, . . . , αk, 0 . . . , 0). Thus (78) is equivalent to,

fα̃(a+ s1e1 + . . .+ skek) ≥ fα̃(a).

As this is true for arbitrary (s1, . . . , sk, 0, . . . 0) ∈ Rn we have the function

(x1, . . . , xk) 7→ fα(x1, . . . , xk, ak+1, . . . , an)

achieves its minimum at (a1, . . . , ak). Therefore,

gα̃(ak+1, . . . , an) = fα̃(a1, . . . , an) = f(a) − α1a1 − · · · − αkak (79)

By a similar argument we can also produce the same result for the vector

β̃ := (β1, α2, . . . , αk, 0, . . . , 0),

i.e. (β1, α2, . . . , αk) ∈ πI(∂(f(a)), and thus,

gβ̃(ak+1, . . . , αn) = fβ̃(a1, . . . , an) = f(a) − β1a1 − α2a2 − · · · − αkak. (80)

Subtracting (79) and (80) and noting α1 < β1 we have,

a1 =
1

α1 − β1
(gα̃(ak+1, . . . , an) − gβ̃(ak+1, . . . , an)).

Therefore we can define h1 : Rn−k → R by h1(xk+1, . . . , xn) = 1
α1−β1

(gα̃(xk+1, . . . , xn) −

gβ̃(xk+1, . . . , xn) and we see h1 is a (c−c)-function satisfying h1(ak+1, . . . , an) = a1. Repeating
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this process yields, h2, . . . , hk : Rn−k → R such that each hi is a (c − c)-function and

hi(ak+1, . . . , an) = ai. Defining h : Rn−k → Rk by

h(xk+1, . . . , xn) = (h1(xk+1, . . . , xn), . . . , hk(xk+1, . . . , xn))

we have that h is a (c − c)k-function and a ∈ {x ∈ Rn : (h(x1, . . . , xk), xk+1, . . . , xn)}. This

shows

A
(1,...,k)
α,β ⊂ {x ∈ Rn : (h(x1, . . . , xk), xk+1, . . . , xn)}

where {x ∈ Rn : (h(xk+1, . . . , xn), xk+1, . . . , xn)} is a (c− c)k-graph. QED

Remark 106. The (c− c)k-graph we constructed in the proof of Lemma 105 can be written

in the form

{x ∈ Rn : x = (h(xk+1, . . . , xn), xk+1, . . . , xn)} = H(Rn−k)

where H : Rn−k → Rn is defined as

H(xk+1, . . . , xn) = (h1(xk+1, . . . , xn), . . . , hk(xk+1, . . . , xn), xk+1, . . . , xn).

By the convexity of σK we can apply Theorem 101 directly to σK to show that Σd(∂σK)

can be covered by countably many (c − c)d-graphs. But given σK is 1-homogeneous and

convex we can in fact restrict Σd(∂σK) to Sn−1 and show that Σd(∂σK)∩Sn−1 can be covered

by countably many (c − c)d+1-graphs. By Theorem 98, this has a remarkable geometrical

implication. If we define the set,

Nd(K) := Sn−1 ∩ Σd(∂σK) = {u ∈ Sn−1 : dim(∂σK(u)) ≥ d}

then Theorem 98 allows us to write this as,

Nd(K) = {u ∈ Sn−1 : dimF (u,K) ≥ d}.

This means we will show that the normal directions associated with d-dimensional faces on

a convex body can be covered by countably many surfaces of dimension n− d− 1.

We first establish that the subdifferential of a 1-homogeneous convex function is invariant

under dilations.
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Lemma 107. Let f : Rn → R be a 1-homogeneous convex function and c > 0. Then for

every x ∈ Rn, ∂f(x) = ∂f(cx).

Proof. By the 1-homogeneity of f we have for v ∈ ∂f(cx), and for any y ∈ Rn,

cf(y) = f(cy) ≥ f(cx) + ⟨v, cy − cx⟩ = cf(x) + c⟨v, y − x⟩ = c(f(x) + ⟨v, y − x⟩)

implying that v ∈ ∂f(x) and hence ∂f(cx) ⊂ ∂f(x). Similarly for v ∈ ∂f(x), and for any

y ∈ Rn,

f(cy) = cf(y) ≥ cf(x) + c⟨v, y − x⟩ = f(cx) + ⟨v, cy − cx⟩.

As this is true for any y ∈ Rn, we have for any z, there exists y ∈ Rn such that z = cy and

f(z) ≥ f(cx) + ⟨v, z − cx⟩.

Therefore v ∈ ∂f(cx). QED

Theorem 108. Let K ⊂ Rn be a convex body. Then there exists countably many functions

hi : Rn−d−1 → Rn such that

Nd(K) ⊂
∞⋃
i=1

(hi)(Rn−d−1),

where each hi is the composition of a Lipschitz function and a (c− c)d+1-function.

Remark 109. The idea of the proof is to project hemispheres of Sn−1 onto hyperplanes

and apply Theorem 101. In the following proof we consider only the case of projecting

{x ∈ Sn−1 : xn < 0} onto the hyperplane {x ∈ Rn : xn = −1}. Using the notation of this

thesis we have

H−1(en) = {x ∈ Rn : xn = −1}.

Proof. Let y ∈ Nd(K). Define the bottom hemisphere of Sn−1 as Sn−1
− = {x ∈ Sn−1 : xn <

0}. Then assume that y ∈ Sn−1
− and define the map, p : Sn−1

− → H−1(en) by

p(x1, . . . , xn) =

(
x1
−xn

, . . . ,
xn−1

−xn
,−1

)
=

−1

xn
(x1, . . . , xn).

Note that p is a bijection, as for y′ = (y1, . . . , yn−1), we have

p−1(y1, . . . , yn−1,−1) =
−1√

1 + |y′|2
(y1, . . . , yn−1,−1)
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(i.e. p−1(z) = −z/|z| restricted to H−1(en)). We now show that p−1 is Lipschitz. For

x, y ∈ H−1(en),

|p−1(x) − p−1(y)| =

∣∣∣∣ x|x| − y

|y|

∣∣∣∣ =

∣∣∣∣ |y|x− |x|y
|x||y|

∣∣∣∣ =

∣∣∣∣ |y|x− |x|x+ |x|x− |x|y
|x||y|

∣∣∣∣
As x, y ∈ H−1(en), this implies that |x|, |y| ≥ 1 and by the triangle inequality we have,

|p−1(x) − p−1(y)| ≤
|x|
∣∣|y| − |x|

∣∣+ |x||x− y|
|x||y|

≤
∣∣|y| − |x|

∣∣
|y|

+
|x− y|
|y|

≤
∣∣|y| − |x|

∣∣+ |x− y| ≤ 2|x− y|.

As y ∈ Nd(K), and given that yn < 0 implies that −1
yn

> 0, we have by Theorem 97

and Lemma 107, that ∂σK(y) = ∂σK(p(y)). Thus for any z ∈ p(Nd(K) ∩ Sn−1) there exists

z0 ∈ Nd(K) ∩ Sn−1 such that p(z0) = z and ∂σK(p(z0)) = ∂σK(z0). Since z0 ∈ Nd(K),

dim(∂σK(z)) = dim(∂σK(z0)) ≥ d we have,

z ∈ Σd
(
∂σK

∣∣
H−1(en)

)
:= {x ∈ H−1(en) : dim(∂σK(x)) ≥ d}.

This shows that,

p(Nd(K) ∩ Sn−1
− ) ⊂ Σd

(
∂σK

∣∣
H−1(en)

)
.

Given that σ
∣∣
H−1(en)

is convex, Theorem 101 implies there exists countably many gi :

Rn−d−1 → H−1(en) such that gi(Rn−d−1) is a (c− c)d+1-graph, and

p(Nd(K) ∩ Sn−1
− ) ⊂

∞⋃
i=1

gi(Rn−d−1).

Therefore, we have

Nd(K) ∩ Sn−1
− ⊂

∞⋃
i=1

(p−1 ◦ gi)(Rn−d−1).

The result follows by repeating the above argument for the other 2n − 1 hemispheres of

Sn−1. QED

We say that a set X ⊂ Rn is countably k-rectifiable if there is a family of measurable sets

Ei ⊂ Rk and Lipschitz functions fi : Ei → Rn such that

Hk

(
X \

∞⋃
i=1

fi(Ei)

)
= 0.
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Corollary 110. The set Nd(K) is countably (n− d− 1)-rectifiable.

Proof. We note that by Theorem 14, restricting any convex function f : Rn → R to a

bounded subset is Lipschitz, and hence if F : Rn−d → Rd is a (c − c)d-function, then F

is Lipschitz when restricted to any bounded set. Therefore by Theorem 108, restricted to

bounded sets, each hi is Lipschitz and the result follows by noting

Nd(K) ⊂
∞⋃
i=1

(
∞⋃
k=1

hi(B
n−d−1(0, k))

)
.

QED
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6.0 Equivalence of Continuously Differentiable Convex Functions with Hölder

Continuous Gradient

6.1 Convex Functions with Lipschitz Continuous Gradient

There is a fascinating set of equivalent statements for C1,1 convex functions that is

difficult to find compiled together. We give here the statements and proofs so that they can

be a resource to anyone in the future looking for a characterization of C1,1 convex functions.

Theorem 111. Let f ∈ C1(Rn) be convex and let L > 0. Then for all x, y ∈ Rn the

following are equivalent:

(1) |∇f(x) −∇f(y)| ≤ L|x− y|;

(2) g(x) = L
2
|x|2 − f(x) is convex;

(3) f(y) ≤ f(x) + ⟨∇f(x), y − x⟩ + L
2
|y − x|2;

(4) ⟨∇f(x) −∇f(y), x− y⟩ ≤ L|x− y|2;

(5) f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ + 1
2L
|∇f(x) −∇f(y)|2;

(6) ⟨∇f(x) −∇f(y), x− y⟩ ≥ 1
L
|∇f(x) −∇f(y)|2;

(7) |⟨∇f(x) −∇f(y), x− y⟩ ≤ L|x− y|2.

Remark 112. We will prove the following implications

(1) ⇒ (4) ⇔ (2) ⇔ (3) ⇒ (5) ⇒ (6) ⇒ (1) ⇔ (7).

The only implication that requires convexity of f is (3) ⇒ (5). All other implications are

true for any f ∈ C1(Rn).

Proof. (1) =⇒ (4)

Let |∇f(x) −∇f(y)| ≤ L|x− y|. Then by Cauchy-Schwarz,

⟨∇f(x) −∇f(y), x− y⟩ ≤ |∇f(x) −∇f(y)||x− y| ≤ L|x− y|2

(2) ⇔ (4)
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Note g(x) = L
2
|x|2− f(x) implies ∇g(x) = Lx−∇f(x) and thus by Theorem 22 we have

the following equivalence:

g is convex ⇔ ⟨∇g(x) −∇g(y), x− y⟩ ≥ 0

⇔ ⟨(Lx−∇f(x)) − (Ly −∇f(y)), x− y⟩ ≥ 0

⇔ ⟨L(x− y) − (∇f(x) −∇f(y)), x− y⟩ ≥ 0

⇔ ⟨L(x− y), x− y⟩ − ⟨∇f(x) −∇f(y), x− y⟩ ≥ 0

⇔ L|x− y|2 ≥ ⟨∇f(x) −∇f(y), x− y⟩

(2) ⇔ (3)

Similarly, we consider by Theorem 22

g is convex ⇔ g(x) + ⟨∇g(x), y − x⟩ ≤ g(y)

⇔ L

2
|x|2 − f(x) + ⟨Lx−∇f(x), y − x⟩ ≤ L

2
|y|2 − f(y)

⇔ f(y) ≤ f(x) +
L

2
(|y|2 − |x|2) − ⟨Lx−∇f(x), y − x⟩

⇔ f(y) ≤ f(x) + ⟨∇f(x), y − x⟩ +
L

2
(|y|2 − |x|2) − ⟨Lx, y − x⟩

⇔ f(y) ≤ f(x) + ⟨∇f(x), y − x⟩ +
L

2
(|y|2 − 2⟨x, y⟩ + |x|2)

⇔ f(y) ≤ f(x) + ⟨∇f(x), y − x⟩ +
L

2
|y − x|2

(3) =⇒ (5)

As mentioned earlier to prove (3) ⇒ (5) we will need the convexity of f . By (3) we have

for any y and z,

f(z) ≤ f(y) + ⟨∇f(y), z − y⟩ +
L

2
|z − y|2 (81)

Fix x ∈ Rn. By convexity of f and Corollary 22 we know for all z,

f(x) + ⟨∇f(x), z − x⟩ ≤ f(z)

which implies,

f(x) − ⟨∇f(x), x⟩ ≤ f(z) − ⟨∇f(x), z⟩.
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Combining this inequality with (81) yields,

f(x) − ⟨∇f(x), x⟩ ≤ f(y) + ⟨∇f(y), z − y⟩ +
L

2
|z − y|2 − ⟨∇f(x), z⟩

and thus,

f(x) − ⟨∇f(x), x− y⟩ ≤ f(y) + ⟨∇f(y), z − y⟩ +
L

2
|z − y|2 − ⟨∇f(x), z⟩ + ⟨∇f(x), y⟩.

This gives us,

f(x) − f(y) − ⟨∇f(x), x− y⟩ ≤ ⟨∇f(y) −∇f(x), z − y⟩ +
L

2
|z − y|2.

Let ψ : Rn → R be defined by ψ(z) = ⟨∇f(y) − ∇f(x), z − y⟩ + L
2
|z − y|2. Thus we can

rewrite the above equation as,

f(x) − f(y) − ⟨∇f(x), x− y⟩ ≤ ψ(z) (82)

and note that as |z| → ∞, ψ(z) → ∞. Thus the function ψ attains a minimum at some

point z0, where ∇ψ(z0) = 0, i.e.

∇f(y) −∇(x) + L(z0 − y) = 0 (83)

implying that z0 = y − 1
L

(∇f(y) −∇(x)). Substituting z0 into (83), yields

ψ(z0) = − 1

2L
|∇f(y) −∇(x)|2 (84)

and substituting (84) into (82) gives the desired result as,

f(x) − f(y) − ⟨∇f(x), x− y⟩ ≤ − 1

2L
|∇f(y) −∇(x)|2

which implies,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ +
1

2L
|∇f(y) −∇(x)|2.

(5) =⇒ (6)

By (5),

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ +
1

2L
|∇f(y) −∇(x)|2
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and by switching x and y we also have,

f(x) ≥ f(y) + ⟨∇f(y), x− y⟩ +
1

2L
|∇f(x) −∇f(y)|2.

Thus adding these two inequalities together yields,

f(x) + f(y) ≥ f(y) + f(x) + ⟨∇f(y), x− y⟩ − ⟨∇f(x), x− y⟩ +
1

L
|∇f(x) −∇f(y)|2

which can be simplified to,

⟨∇f(x) −∇f(y), x− y⟩ ≥ 1

L
|∇f(x) −∇f(y)|2.

(6) =⇒ (1)

Consider,

1

L
|∇f(x) −∇f(y)|2 ≤ ⟨∇f(x) −∇f(y), x− y⟩

≤ |∇f(x) −∇f(y)||x− y| (85)

which implies, |∇f(x) −∇f(y)| ≤ L|x− y| as desired.

(1) ⇔ (7)

We first recall the definitions of convolution and mollifiers. Given f, g ∈ L1(Rn), we

define the convolution f ∗ g : Rn → R as,

(f ∗ g)(x) =

∫
Rn

f(y)g(x− y) dy.

Consider, a smooth function ϕ : Rn → R with compact support such that∫
Rn

ϕ(x) dx = 1.

Moreover for every ε > 0 we define ϕε(x) = ε−nϕ(x/ε). We call ϕε the standard mollifier.

For a full description of the properties of the standard mollifier see [13, Theorem 4.1].

The implication (1) ⇒ (7) follows immediately from the Cauchy-Schwarz inequality so

we will prove (7) ⇒ (1). We first assume that f ∈ C∞(Rn). Thus for |u| = 1 condition (1)

yields, ∣∣∣∣〈∇f(x+ tu) −∇f(x)

t
, u

〉∣∣∣∣ ≤ |∇f(x+ tu) −∇f(x)|
|tu|

≤ L
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for any t ∈ R. Letting t → 0 gives us, |⟨D2f(x)u, u⟩| ≤ L. Since D2f(x) is a symmetric

matrix the spectral theorem implies that the operator norm of the matrix D2f(x) satisfies,

∥D2f(x)∥ = sup
|u|=1

|⟨D2f(x)u, u⟩| ≤ L. (86)

Using (86) allows us to prove the result for f ∈ C∞(Rn) as, by the Mean value theorem,

|∇f(x) −∇f(y)| =

∣∣∣∣∫ 1

0

d

dt
∇f(y + t(x− y)) dt

∣∣∣∣
≤ |x− y|

∫ 1

0

∥D2f(y + t(x− y))∥ dt ≤ L|x− y|.

Now let us assume that f ∈ C1(Rn) and let fε = f ∗ ϕε be a standard approximation by

convolution. Recall that fε ∈ C∞(Rn) and ∇fε = (∇f) ∗ ϕε. Thus using condition (1) and

the fact that
∫
Rn ϕε(z) dz = 1 we have,

|⟨∇fε(x) −∇fε(y), x− y⟩| =

∣∣∣∣〈∫
Rn

(∇f(x− z) −∇f(y − z))ϕε(z) dz, x− y

〉∣∣∣∣
≤
∫
Rn

|⟨∇f(x− z) −∇f(y − z), (x− z) − (y − z)⟩|ϕε(z) dz

≤ L|x− y|2

Since fε ∈ C∞(Rn) and satisfies (1), by our previous result,

|∇fε(x) −∇fε(y)| ≤ L|x− y|

and the equivalence (1) ⇔ (7) follows by letting ε→ 0+. QED

In the above proof the convexity of f was not required for the proof of (1) ⇒ (4) but was

required for the converse, (4) ⇒ (1). The next result given in [5, Proposition 2.2] provides

one more characterization of convex functions with a Lipschitz continuous gradient.

Theorem 113. For a convex function f : Rn → R the following conditions are equivalent

(a) There is L > 0 such that for all x, h ∈ Rn

f(x+ h) + f(x− h) − 2f(x) ≤ L|h|2 (87)

(b) f ∈ C1 and |∇f(x) −∇f(y)| ≤ L|x− y| for all x, y ∈ Rn
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Proof. First we will prove the implication (b) ⇒ (a) which is true for all C1 functions and

does not require convexity. Lemma 41 implies that

f(x+ h) − f(x) − ⟨∇f(x), h⟩ ≤ L

2
|h|2

By replacing h with −h we then have the inequality

f(x− h) − f(x) + ⟨∇f(x), h⟩ ≤ L

2
|h|2.

Adding these two inequalities together yields the desired inequality

f(x+ h) + f(x− h) − 2f(x) ≤ L|h|.

The proof of (a) ⇒ (b) requires convexity of f . Recall, by Theorem 21 that convex

functions have one sided partial derivatives at every point, denoted by

∂±f

∂xi
(x) = lim

t→0±

f(x+ tei) − f(x)

t
.

Using (a) we can see that

lim
h→0

f(x+ h) + f(x− h) − 2f(x)

|h|
= 0

and thus letting h = tei yields,

0 = lim
t→0+

(
f(x+ tei) − f(x)

t
− f(x− tei) − f(x)

−t

)
= lim

t→0+

f(x+ tei) − f(x)

t
− lim

t→0−

f(x+ tei) − f(x)

t
=
∂+f

∂xi
(x) − ∂−f

∂xi
(x)

implying that ∂+f
∂xi

(x) = ∂−f
∂xi

(x), which proves that each partial derivative exists for all

x ∈ Rn. As f is convex, we have f ∈ C1. Lastly we will show

g(x) =
L

2
|x|2 − f(x)

is convex and by Theorem 111 this will complete the proof. As g is continuous, by Theorem

12, convexity of g is equivalent to

g

(
x+ y

2

)
≤ g(x) + g(y)

2
(88)
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for all x, y ∈ Rn. Thus we have,

g

(
x+ y

2

)
=
g(x) + g(y)

2
+

1

2

(
f(x) + f(y) − 2f

(
x+ y

2

)
− L

∣∣∣∣x− y

2

∣∣∣∣2
)

and we can see (88) follows by replacing x with x+y
2

and h with x−y
2

in (87), which implies

f(x) + f(y) − 2f

(
x+ y

2

)
− L

∣∣∣∣x− y

2

∣∣∣∣2 ≤ 0.

Therefore g is convex, completing the proof. QED

6.2 Convex Functions with Hölder Continuous Gradient

There is a similar set of equivalent statements for C1,α convex functions which have been

collected and adapted from sources such as [12], [6], and [5]. Moreover more statements are

likely able to be added to this list, though proofs are needed.

Theorem 114. Let f ∈ C1(Rn) and x, y ∈ Rn, then the following are equivalent:

(1) f ∈ C1,α(Rn);

(2) f(y) ≤ f(x) + ⟨∇f(x), y − x⟩ + L
1+α

|y − x|1+α for some L > 0;

(3) f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ + α

L
1
α (1+α)

|∇f(x) −∇f(y)| 1+α
α for some L > 0;

(4) ⟨∇f(x) −∇f(y), x− y⟩ ≥ 2α

L
1
α (1+α)

|∇f(x) −∇f(y)| 1+α
α for some L > 0.

Proof. (1) =⇒ (2)

This follows from Lemma 41.

(2) =⇒ (3)

Suppose to the contrary that there exists x0, y0 such that,

f(y0) − f(x0) − ⟨∇f(x0), y0 − x0⟩ <
α

L
1
α (1 + α)

|∇f(y0) −∇f(x0)|
1+α
α . (89)

Define the function g : Rn → R by,

g(x) =
1

L
(f(x) − f(x0) − ⟨∇f(x0), x− x0⟩)
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and note that g(x0) = 0 and ∇g(x) = 1
L

(∇f(x) −∇f(x0)). Thus we can rewrite (89) as,

Lg(y0) <
Lα

1 + α
|L∇g(y0)|

1+α
α .

This then yields the following inequality,

g(y0) <
α

1 + α
|∇g(y0)|

1+α
α . (90)

Lemma 115. g : Rn → R, as defined above, also satisfies (2) with L = 1, that is,

g(y) ≤ g(z) + ⟨∇g(z), y − z⟩ +
1

1 + α
|y − z|1+α (91)

Proof of Lemma 115. By (2) we have,

f(y) ≤ f(z) + ⟨f(z), y − z⟩ +
L

1 + α
|y − z|1+α

which is equivalent to,

Lg(y) ≤ f(z) − f(x0) − ⟨∇f(x0), y − x0⟩ + ⟨∇f(z), y − z⟩ +
L

1 + α
|y − z|1+α.

As,

−⟨∇f(x0), y − x0⟩ + ⟨∇f(z), y − z⟩

= −⟨∇f(x0), y⟩ + ⟨∇f(x0), x0⟩ + ⟨∇f(z), y⟩ − ⟨∇f(z), z⟩

= ⟨L∇g(z), y⟩ + ⟨∇f(x0), x0⟩ − ⟨∇f(z), z⟩

and

⟨∇f(x0), x0⟩ − ⟨∇f(z), z⟩ = ⟨∇f(x0), x0⟩ − ⟨∇f(x0), z⟩ + ⟨∇f(x0), z⟩ − ⟨∇f(z), z⟩

= ⟨∇f(x0) −∇f(z), z⟩ + ⟨∇f(x0), x0 − z⟩.

= ⟨∇f(x0), x0 − z⟩ − ⟨L∇g(z), z⟩

we now have,

Lg(y) ≤ f(z) − f(x0) + ⟨∇g(z), y⟩ + ⟨∇f(x0), x0 − z⟩ − ⟨∇g(z), z⟩ +
L

1 + α
|y − z|1+α

= Lg(z) + ⟨∇Lg(z), y − z⟩ +
L

1 + α
|y − z|1+α

proving the lemma. QED
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Thus for every t > 0 and |v| = 1, we have by (91)

g(y0 − tv) ≤ 1

1 + α
|tv|1+α + g(y0) − ⟨∇g(y0), tv⟩ =

t1+α

1 + α
+ g(y0) − ⟨∇g(y0), tv⟩.

Choosing t = |∇g(y0)|
1
α and v = −∇g(y0)

|∇g(y0)| , yields,

g
(
y0 + |∇g(y0)|

1−α
α ∇g(y0)

)
≤ g(y0) − |∇g(y0)|

1+α
α +

|∇g(y0)|
1+α
α

1 + α

= g(y0) −
α

1 + α
|∇g(y0)|

1+α
α

< 0 by (90)

But as g is convex, g(x0) = 0 and ∇g(x0) = 0, we have for all y ∈ Rn,

g(y) ≥ g(x0) + ⟨∇g(x0), y − x0⟩ = 0

a contradiction. Thus for all x, y ∈ Rn,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ +
α

L
1
α (1 + α)

|∇f(y) −∇f(x)|
1+α
α

(3) =⇒ (4)

We have by (3),

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ +
α

L
1
α (1 + α)

|∇f(x) −∇f(y)|
1+α
α

and switching the roles of x and y, yields,

f(x) ≥ f(y) + ⟨∇f(y), x− y⟩ +
α

L
1
α (1 + α)

|∇f(x) −∇f(y)|
1+α
α .

Adding these two inequalities gives us,

f(y)+f(x) ≥ f(y)+f(x)+ ⟨∇f(x), y−x⟩−⟨∇f(y), y−x⟩+
2α

L
1
α (1 + α)

|∇f(x)−∇f(y)|
1+α
α

which is equivalent to,

0 ≥ ⟨∇f(x) −∇f(y), y − x⟩ +
2α

L
1
α (1 + α)

|∇f(x) −∇f(y)|
1+α
α

and the result easily follows.

(4) =⇒ (1)
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Assuming (4),

2α

L
1
α (1 + α)

|∇f(x) −∇f(y)|
1+α
α ≤ ⟨∇f(x) −∇f(y), x− y⟩ < |∇f(x) −∇f(y)||x− y|

which implies,
2α

L
1
α (1 + α)

|∇f(x) −∇f(y)|
1
α ≤ |x− y|

or equivalently,

|∇f(x) −∇f(y)|
1
α ≤ L

1
α (1 + α)

2α
|x− y|.

Thus,

|∇f(x) −∇f(y)| ≤ L(1 + α)
1
α

(2α)
1
α

|x− y|α.

QED

We also now present a proof that in fact (1) and (2) are equivalent. The proof is a

simplification of the one given in [12, Lemma 3.1].

(2) =⇒ (1)

Proof. Assuming that,

f(y) ≤ f(x) + ∇f(x) · (y − x) +
L

1 + α
|y − x|1+α

implies,

0 ≤ f(y) − f(x) −∇f(x) · (y − x) ≤ L

1 + α
|y − x|1+α

where the left inequality follows from the convexity of f . Therefore,

|f(y) − f(x) −∇f(x) · (y − x)| ≤ L

1 + α
|y − x|1+α

First we choose z ∈ Rn such that,

|z − y| = |y − x| and |(∇f(x) −∇f(y)) · (z − y)| = |z − y||∇f(y) −∇f(x)|.

In this case choosing

z = y +
∇f(y) −∇f(x)

|y − x|
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will suffice, though we will continue to write z. Thus,

|y − x||∇f(y) −∇f(x)| = |z − y||∇f(y) −∇f(x)|

= |(∇f(x) −∇f(y)) · (z − y)|

= |∇f(x) · (z − y) −∇f(y) · (z − y)|

= |f(z) − f(y) −∇f(y) · (z − y) − f(z) + f(x) + ∇f(x) · z

−∇f(x) · x+ f(y) − f(x) −∇f(x) · y + ∇f(x) · x|

≤ |f(z) − f(y) −∇f(y) · (z − y)| + |f(z) − f(x) −∇f(x) · (z − x)|

+ |f(y) − f(x) −∇f(x) · (y − x)|

≤ L

1 + α
|z − y|1+α +

L

1 + α
|z − x|1+α +

L

1 + α
|y − x|1+α

=
L

1 + α
|y − x|1+α +

L

1 + α
|z − x|1+α +

L

1 + α
|y − x|1+α

=
2L

1 + α
|y − x|1+α +

L

1 + α
|z − x|1+α

And we note that,

|z − x| ≤ |z − y| + |y − x| = 2|y − x| =⇒ |z − x|1+α ≤ 21+α|y − x|1+α

so that we have,

|y − x||∇f(y) −∇f(x)| ≤ 2L

1 + α
|y − x|1+α +

L

1 + α
|z − x|1+α ≤ 2L+ 21+αL

1 + α
|y − x|1+α

which implies,

|∇f(y) −∇f(x)| ≤ 2L+ 21+αL

1 + α
|y − x|α.

QED

The following statement is conjectured to fit into the above equivalence but at this time

only one direction is known. We include it here regardless.

Theorem 116. If f ∈ C1(Rn) satisfies f(y) ≤ f(x) + ⟨∇f(x), y − x⟩ + L
1+α

|y − x|1+α, then

f(tx+ (1 − t)y) ≥ tf(x) + (1 − t)f(y) − 2t(1 − t)L

1 + α
|y − x|1+α.
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Proof. If t = 0, 1 then the result is obvious. Let t ∈ (0, 1). For any x, y, z ∈ Rn, by (2)

f(y) − L

1 + α
|y − z|1+α ≤ f(z) + ⟨∇f(z), y − z⟩

f(x) − L

1 + α
|x− z|1+α ≤ f(z) + ⟨∇f(z), x− z⟩.

Thus letting z = tx+ (1 − t)y yields,

f(y) − Lt1+α

1 + α
|y − x|1+α ≤ f(z) + t⟨∇f(z), y − x⟩

f(x) − L(1 − t)1+α

1 + α
|y − x|1+α ≤ f(z) − (1 − t)⟨∇f(z), y − x⟩.

Therefore by dividing by t and 1 − t, respectively, we have,

f(y)

t
− Ltα

1 + α
|y − x|1+α ≤ f(z)

t
+ ⟨∇f(z), y − x⟩

f(x)

(1 − t)
− L(1 − t)α

1 + α
|y − x|1+α ≤ f(z)

1 − t
− ⟨∇f(z), y − x⟩

and adding these two inequalities yields,

f(y)

t
+

f(x)

(1 − t)
− Ltα

1 + α
|y − x|1+α − L(1 − t)α

1 + α
|y − x|1+α ≤ f(z)

t
+
f(z)

1 − t
.

Multiplying through by t(1 − t),

(1 − t)f(y) + tf(x) − Lt1+α(1−t)

1 + α
|y − x|1+α − Lt(1 − t)1+α

|y − x|1+α
≤ (1 − t)f(z) + tf(z)

or equivalently,

(1 − t)f(y) + tf(x) − L

1 + α
|y − x|1+α(t1+α(1 − t) − t(1 − t)1+α) ≤ f(z).

We now claim that, 2t(1 − t) ≥ t1+α(1 − t) − t(1 − t)1+α and thus,

−2t(1 − t)L

1 + α
|y − x|1+α ≤ − L

1 + α
|y − x|1+α(t1+α(1 − t) − t(1 − t)1+α)

proving the desired inequality, as we recall z = tx+ (1 − t)y,

(1 − t)f(y) + tf(x) − 2t(1 − t)L

1 + α
|y − x|1+α ≤ f(tx+ (1 − t)y).

104



We now provide the proof of the claim:

2t(1 − t) ≥ t1+α(1 − t) − t(1 − t)1+α.

This inequality is equivalent to,

2 ≥ tα − (1 − t)α

and thus defining, g(t) = tα − (1 − t)α, we have that

g′(t) = αtα−1 + α(1 − t)α−1

but as this quantity is positive for all t ∈ [0, 1] and α ∈ (0, 1), then the absolute max must

be attained at either t = 0 or t = 1. Therefore considering g(0) = −1 and g(1) = 1 we see

that for all t ∈ [0, 1],

−1 ≤ g(t) ≤ 1 < 2

QED

105



Bibliography

[1] A. D. Alexandroff. Almost everywhere existence of the second differential of a convex
function and some properties of convex surfaces connected with it. Leningrad State
Univ. Annals [Uchenye Zapiski] Math. Ser., 6:3–35, 1939.

[2] Daniel Azagra. Global and fine approximation of convex functions. Proc. Lond. Math.
Soc. (3), 107(4):799–824, 2013.

[3] Daniel Azagra, Anthony Cappello, and Piotr Haj lasz. A geometric approach to second-
order differentiability of convex functions. Proc. Amer. Math. Soc. Ser. B, 10:382–397,
2023.

[4] Daniel Azagra and Piotr Haj lasz. Lusin-type properties of convex functions and convex
bodies. J. Geom. Anal., 31(12):11685–11701, 2021.

[5] Daniel Azagra, E. Le Gruyer, and C. Mudarra. Explicit formulas for C1,1 and C1,ω
conv

extensions of 1-jets in Hilbert and superreflexive spaces. J. Funct. Anal., 274(10):3003–
3032, 2018.

[6] Daniel Azagra and Carlos Mudarra. Whitney extension theorems for convex functions
of the classes C1 and C1,ω. Proc. Lond. Math. Soc. (3), 114(1):133–158, 2017.

[7] J. Benoist and J.-B. Hiriart-Urruty. What is the subdifferential of the closed convex
hull of a function? SIAM Journal on Mathematical Analysis, 27(6):1661–1679, 1996.

[8] Gabriele Bianchi, Andrea Colesanti, and Carlo Pucci. On the second differentiability
of convex surfaces. Geom. Dedicata, 60(1):39–48, 1996.

[9] Bogdan Bojarski, Piotr Haj lasz, and Pawe l Strzelecki. Sard’s theorem for mappings
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