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This dissertation revolves around the intricate domains of information and mechanism

design in operations management, presented in two essays. The first essay delves into the con-

cerns surrounding customer apprehensions about price discrimination and explores the op-

timal utilization of information to alleviate such concerns. Employing a correlated Bayesian

persuasion framework, we uncover the conditions under which a binary inventory signal com-

plements pricing strategies, concurrently enhancing firm revenue and customer welfare. In

the second essay, we study the design of rating platforms in the presence of disconfirmation

effects, i.e., when customers incorporate their prior belief of the product into their ratings.

The study elucidates the pivotal role of reference effects in shaping rating convergence to

true product quality.

In the first essay, we focus on the strategic information transmission between firms and

strategic customers. Customers have heterogeneous valuations for the products and ser-

vices, and firms use various price discrimination tactics where they charge different prices

to different customers. This practice, i.e., customizing the price for individual customers, is

known as personalized pricing (PP) and is implemented in various industries. We investi-

gate whether pricing can informatively signal PP to customers and how firms should adjust

pricing strategies in response to customer reactions. We also investigate whether disclosing

inventory information can benefit firms and customers, ultimately advocating for increased

transparency in PP practices. By modeling dynamic interactions between firms and a con-

tinuum of heterogeneous strategic customers over two periods, we unveil nuanced insights.

We find that firms reduce the first-period price to persuade high-valuation customers to

purchase in the first period, even when they do not intend to implement PP. This is because

the mere presence of PP risk makes customers reluctant to reveal their identity. The firm

then must “compensate” customers to persuade them to reveal their valuations. We show

that the price alone cannot perfectly signal the firm’s PP intention when the firm takes the
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strategic customer behavior into account. We next consider whether customers can infer the

implementation of PP from the inventory availability information. To study this, we focus

on a class of binary signals where the firm marks the inventory low when it is below a thresh-

old. Such inventory signals are commonly adopted by retailers such as IKEA and ZARA.

We show that an inventory signal can improve the firm revenue only when customers believe

the firm conducts PP with a sufficiently low probability. In this case, an inventory signal

alleviates customer PP concerns and allows the firm to set higher prices. Additionally, we

demonstrate that disclosing inventory availability information is a strategic complement to

the prices when alleviating the customer PP concerns. Furthermore, an inventory signal, in

addition to the firm, can benefit all customers. With the growing interest in PP regulation,

requiring firms to disclose inventory availability information could be a viable policy to make

PP more transparent and credibly reduce customer concerns.

In the second essay, we study the customers’ social learning problem upon observing the

product ratings. Customers and platforms increasingly rely on online ratings to assess the

quality of products and services. However, customer ratings are susceptible to various biases.

Disconfirmation bias is a specific form where customers incorporate the discrepancy between

their prior expectations and post-purchase experiences into their ratings. We study the

asymptotic behavior of ratings in the presence of disconfirmation bias in three rating systems:

(i) complete system, where customers observe the entire rating history; (ii) aggregate system,

where only the frequency of each rating option is available; and (iii) average ratings, where

customers solely use the average of past ratings. Customers are Bayesian and update their

quality beliefs upon observing the ratings. After experiencing the product, they rate it

according to their heterogeneous ex-post utility and disconfirmation bias. In complete and

aggregate systems, we show that customer beliefs converge to the intrinsic quality when

disconfirmation bias is small. When this bias is large, there will be a discrepancy between

converged beliefs and the intrinsic quality, although this discrepancy could be arbitrarily

small. When the disconfirmation bias is intermediate, beliefs may diverge significantly from

the intrinsic quality or not converge. However, we establish that the platform can guarantee

correct learning by designing a sufficiently granular rating system, i.e., a system with more

rating options. We confirm all these results in the system with average ratings, albeit with
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a bias-correcting rule. Finally, we characterize the learning speed in the aggregate system.

In summary, this thesis contributes to the literature on the interface of information,

platform, and mechanism design in operations management, unraveling the intricacies of

pricing strategies, information revelation mechanisms, and rating platforms.
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1.0 Introduction

Platforms fostering strategic interactions among multiple stakeholders, including firms,

customers, and content contributors, have recently become ubiquitous. I have concentrated

my scholarly pursuits on investigating the underlying mechanisms governing these plat-

forms and deciphering the complex interactions and incentives among agents to facilitate

system-wide efficiency and fairness. My interdisciplinary approach draws from the realms of

operations management, information systems, game theory, information economics, revenue

management, pricing strategies, and machine learning.

In the contemporary business environment, effective information design enables busi-

nesses to fine-tune their communications and offerings to their customers’ needs and prefer-

ences. This, in turn, enhances customer satisfaction and loyalty. Similarly, platform design,

particularly in the context of social learning and rating systems, influences how customers

perceive and evaluate products and services. By mitigating customer rating biases, busi-

nesses can ensure that customer feedback is more accurate and reliable, leading to better

decision-making and improved product offerings.

Due to the critical importance of these areas, information design and platform design re-

quire further research. Their interdisciplinary nature, spanning design, technology, business,

and social sciences, complicates the development of a unified research framework. The rapid

pace of technological advancement also means that research must often catch up to practical

applications. Nevertheless, integrating thoughtful information and platform design in busi-

ness practices leads to improved efficiency, agility, and competitive advantage, ultimately

contributing to sustained success and growth in a dynamic marketplace.

Chapter 2 of the dissertation focuses on firm’s optimal information provision problem in

Personalized Pricing (PP), where the firm customizes prices for individual customers. Despite

the evident benefits of PP for firms and potential benefits for customers, customers remain

concerned about PP. Our research explores whether pricing can informatively signal PP to

customers and how firms should adjust pricing strategies in response to customer reactions.

We also investigate whether disclosing inventory information can benefit both firms and
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customers, ultimately advocating for increased transparency in PP practices. To address

these questions, we build a dynamic Bayesian persuasion game of repeated interactions

between a firm and a continuum of heterogeneous customers. We assume the firm and

customers are a priori uncertain about the feasibility of PP. We refer to a firm that can

personalize the prices as P-type, and a firm that must charge uniform prices to all customers

as U-type. A P-type firm has the additional incentive to learn customers’ valuations, and

then can use this information to personalize the prices . Customers cannot directly observe

the firm’s pricing strategy or inventory. Hence, they may be unable to identify whether a

high price reflects inventory scarcity or the firm’s intention to learn customer valuations for

PP. Consequently, strategic customers have the incentive to forgo the purchase and hide

their private information. As a result, such customer concerns may hurt both firm’s revenue

and customer’s utility. Therefore, we consider firm’s optimal information provision strategy

to alleviate customer’s concern about PP.

Chapter 3 of the dissertation studies the rating systems in the presence of disconfir-

mation bias, where customers reflect the discrepancy between their prior expectations and

post-purchase experience in their ratings. This bias has been the subject of empirical stud-

ies, where researchers examine its magnitude and direction. In our social learning context,

we explore the dynamics of customer learning when the customer disconfirmation bias influ-

ences ratings. We show whether customer beliefs about intrinsic quality converges depends

on customer heterogeneity, disconfirmation bias, and the rating system’s granularity. We

investigate this convergence in three rating systems: a system where customers observe in-

dividual past customer ratings (complete system), only observe the frequency of each rating

option (aggregate system), and only observe the average of past ratings. In each of these

rating systems, we study the asymptotic behavior of the ratings and the effect of the dis-

confirmation bias on this behavior. We also examine the implications of the granularity of

the rating system, i.e., the number of rating options available to customers. Finally, we

investigate the speed of convergence in the aggregate system.

This thesis considers the information transmission problems from both firm’s and cus-

tomer’s perspectives. It bridges the gap between theoretical models and practical applica-

tions, offering guidelines for firms on how to enhance customer trust and market efficiency
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through informed decision-making. The findings underscore the importance of transparency,

strategic information disclosure, and platform design.
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2.0 Is Your Price Personalized? Alleviating Customer Concerns with

Inventory Availability Information

Personalized pricing (PP), i.e., customizing prices for individual customers, can bene-

fit firms and some customers. However, customer concerns about being targeted by such

practices have raised debates on PP tactics. In a Bayesian persuasion framework, we study

whether and when price can signal such PP implementation to customers. We also inves-

tigate whether disclosing inventory availability information can alleviate customer concerns

and benefit the stakeholders, including the firm and customers. We consider a dynamic

personalized pricing and information provisioning game between a firm and a market of het-

erogeneous customers. The firm may set the price to learn the customer valuations in the

first period and exploit this information in the second period. Customers are uncertain about

inventory availability and PP implementation. However, they update their beliefs upon re-

ceiving new information. In addition to myopic customers who make decisions based on their

immediate utility, we study strategic customers who consider their future utility. We show

that price is insufficient to signal PP, hurting the firm and customers. We find conditions

under which a binary inventory signal complements price and simultaneously increases the

firm’s revenue and benefits customers. We establish the robustness of our insights in a series

of extensions.

2.1 Introduction

Customers have heterogeneous valuations for products and services. Therefore, a single

price charged to all customers often fails to capture the full revenue potential. While a high

price increases the revenue for each unit sold, it excludes the customers with lower valuations

and reduces demand. To overcome this challenge, firms use various price discrimination

tactics. For example, they may assign different prices to distinct customer segments such as

students and senior citizens US Council of Economic Advisers (2016) or intertemporally alter
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prices to skim the market Besanko and Winston (1990) and Elmaghraby and Keskinocak

(2003). Firms should ideally charge customers their maximum willingness to pay to maximize

revenue. This practice, i.e., customizing the price for individual customers, is known as

personalized pricing (PP) and is implemented in various industries.

Despite the evident benefits of PP for firms, it imposes unique implementation challenges.

For example, PP is successful only when the firm can efficiently learn the customer valuations.

In addition to IT capabilities, this requires experimentation with prices which some firms do

not desire Wallheimer (2018), Ban and Keskin (2021). Also, while the extant literature has

shown that customers may benefit from PP Dubé and Misra (2019), they remain concerned

about these practices. Specifically, PP can hurt the customer trust Garbarino and Lee (2003)

and be perceived as unfair Haws and Bearden (2006). In 2000, when Amazon experimented

with using customer purchase history to personalize the prices for DVD movies, it was not

received well. Later, Amazon apologized and issued refunds to the customers Streitfeld

(2000).

From the regulatory standpoint, while PP is generally not illegal, it may conflict with

other acts such as consumer protection laws. As Organisation for Economic Co-operation and

Development (OECD) reports, PP is problematic when it uses “techniques that are deceptive

or misleading, lack transparency and are implemented without user choice or consent OECD

(2020).” Firms intending to implement PP must disclose that in their data privacy policy.

While most customers would never read through these policies Deloitte (2017), disclosing PP

implementation risks customer setbacks. PP may also conflict with anti-discrimination laws,

which protect customers against discrimination based on attributes such as gender, race, age,

and nationality. Although firms may not directly target customers based on these attributes,

customer valuations may be correlated with them Wallheimer (2018). For example, when

Princeton Review charged different prices for its SAT tutoring course based on ZIP codes,

it targeted Asians twice as likely to receive a high price as Non-Asians Angwin et al. (2016).

Due to these implementation and regulatory challenges, many firms remain wary of

implementing PP Wallheimer (2018). In a consumer market study, European Commission

(2018) did not find significant evidence of PP for identical products: they only observed

it in 6% of the situations with a median price difference of less than 1.6%. US Council of
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Economic Advisers (2016) reports that the extensive use of PP remains relatively limited

among US companies.

Firms also increasingly implement data-driven pricing in response to market conditions

and inventories (Elmaghraby and Keskinocak 2003, Chen et al. 2021a, Keskin et al. 2022).

For example, they may offer non-personalized promotions to all or a fraction of customers to

boost demand and increase revenue. The prices also reflect the supply-demand mismatch,

where poor-performing products are sold at lower prices. For example, in the airline industry,

the prices are constantly updated based on the availability of the seats and demand for the

routes (Gallego and Van Ryzin 1994). In retail, prices may vary based on inventories or pre-

scheduled promotional events such as Holiday sales. While customers generally accept these

reactive pricing strategies, they are averse to being targeted solely for their willingness-to-pay

(Reinartz et al. 2018). With many price changes and non-transparent algorithmic pricing,

it would be hard for customers to distinguish the price drivers. In a survey collected from

European countries, more than a third of participants indicated concerns about a profile

being made on them for online pricing, and 28% indicated they might end up paying more

(European Commission 2018). In a experiment, European Commission (2018) found that

40% of the customers who received a high price correctly identified whether prices were per-

sonalized. When the participants were told their history was used, this percentage increased

to 50%. Notably, over half of the customers remained unaware of the PP implementation.

Thus, it is unclear whether price alone can serve as an instrument to signal PP.

Nonetheless, customers have become sophisticated in their shopping: they may forgo

purchasing from firms they do not trust (Taylor 2004) and take action to anonymize their

shopping or game the system (Conitzer et al. 2012, European Commission 2018, Wallheimer

2018). For example, they may use VPNs, delete their cookies, and refuse to log in before

seeing the price if they suspect their personal information will be used for PP.

2.1.1 Contribution and Methodology

While PP and its value for the firm have received growing attention in the operations

literature (Ban and Keskin 2021, Chen et al. 2021c, Elmachtoub et al. 2021), whether cus-
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tomers can detect and react to PP when firms reflect the market condition and product

availability into prices is unknown. In this work, we study this problem and address whether

the price can informatively signal PP to customers. We also study how firms should adjust

their pricing strategies when customers strategically react to PP practices. Finally, we in-

vestigate whether disclosing product availability information to customers can benefit firms

and customers.

To address these questions, we build a dynamic Bayesian game of repeated interactions

between a firm and a continuum of heterogeneous customers over two periods. Due to the

uncertainty in the firm’s high-level strategy and potential regulatory restrictions, the firm

and customers are a priori uncertain about the feasibility of PP before the first period. We

refer to a firm that can personalize the prices as P-type, and a firm that must charge uniform

prices to all customers as U-type. The firm and customers are also uncertain about the inven-

tory availability. At the beginning of the first period, the firm learns its type and inventory

and sets the price according to a pre-committed price mapping. The firm does not know the

customer valuations a priori; however, it updates its belief about valuations over time using

customers’ purchase history. A P-type firm then can use this information to personalize the

prices in the second period. Customers cannot directly observe the firm’s pricing strategy

or inventory. Hence, they may be unable to identify whether a high price reflects inventory

scarcity or the firm’s intention to learn customer valuations for PP. However, after observing

the first-period price, they update their beliefs about these uncertainties. We initially con-

sider myopic customers who do not consider the possibility of future PP and purchase if they

receive a price lower than their valuations. Later, we extend the model to include strategic

customers who consider this possibility when making purchase decisions. Moreover, we al-

low the firm to disclose information about the product availability by announcing whether

inventory is below or above a threshold.

Finally, we consider three extensions to establish the robustness of our insights:

(i) A case where the firm discloses finer inventory information by announcing the precise

inventory level.

(ii) A game with more than two periods and nonstationary customer valuations.

(iii) An environment where customer uncertainty regarding inventory availability stems from
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demand instead of inventories. In this case, we also allow the firm to decide the inventory.

2.1.2 Findings and Managerial Implications

We find that firms must reduce the first-period price to persuade high-valuation cus-

tomers to purchase in the first period even when they do not implement PP. This is because

the mere presence of PP risk makes customers reluctant to reveal their valuations. The

firm then must compensate these customers by charging a lower price. Also, we find that

firms implement PP more often (for a broader range of inventory realizations) with myopic

customers than with strategic customers, leading to higher expected prices in both periods.

Among many reasons, strategic customer behavior can explain why PP is not widely adopted

in practice. We demonstrate that price alone cannot perfectly signal the firm’s PP intention,

even to the most strategic customers. Specifically, we identify two regions: (i) When the

firm is P-type with high probability, the game has a partial-pooling equilibrium where cus-

tomers cannot perfectly identify the firm type; however, they can update their beliefs upon

observing the first-period price. (ii) When the probability of the firm being P-type is low,

the game has a pooling equilibrium where the price does not convey any information about

the firm type.

Having found that price does not always informatively signal the firm’s type, we inves-

tigate the role of disclosing availability information to customers. The prior literature has

primarily focused on the role of availability information in creating urgency for customers

to purchase early (Yin et al. 2009, Cui et al. 2019, Calvo et al. 2020). In addition to this

aspect, we consider whether customers can infer the PP implementation from the availabil-

ity information. Generally speaking, if customers believe the price is high due to inventory

scarcity, they are less likely to associate it with PP. To study this, we consider a class of

binary signals where the firm marks the product low on inventory when inventory is below

a threshold. Such inventory signals are commonly adopted by retailers such as IKEA and

ZARA. We show that an inventory signal can improve the firm revenue only when customers

believe the firm is P-type with a high probability. In this case, an inventory signal alleviates

customer PP concerns and allows the firm to set prices closer to what is optimal with my-
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opic customers. When the firm’s likelihood of being P-type is low, an informative inventory

signal can backfire and exacerbate customer concerns and hurt the firm revenue. In this

situation, we also prove that fully disclosing the inventory—another commonly used inven-

tory signal—does not outperform the binary signal. Interestingly, we find that an inventory

signal benefits the firm only when price alone (in the absence of an inventory signal) can

reveal “some” information regarding the firm type. Therefore, disclosing product availability

information is a strategic complement to price when alleviating customer PP concerns.

We show that an inventory signal, in addition to the firm, can benefit all customers. High-

valuation customers may enjoy lower prices. Low-valuation customers benefit from higher

chances of obtaining a unit when the availability signal reduces the prices. In this case,

they can afford the item in the first period, and in the second period, they are pooled with

high-valuation customers, which increases their chances of obtaining a unit. Furthermore, we

identify conditions under which the availability signal a priori benefits all the stakeholders,

including the firm and customers. With the growing interest in PP regulation, requiring firms

to disclose availability information could be a viable policy to make PP more transparent.

We illustrate that our insights remain when customer uncertainty stems from demand

instead of inventory. Especially, we show that price continues not to be a perfect signal

for PP. Furthermore, the firm can benefit from disclosing product popularity/availability

information. Interestingly, when the firm optimizes inventory, the value of the availability

signal increases. This is because the firm stocks less when it can inform customers about

product scarcity.

Finally, we investigate a setting where customer valuations change over multiple—possibly

more than two—periods. In this setting, we uncover the exploration-exploitation trade-off

commonly present in dynamic games with incomplete information. We partition the selling

horizon into three intervals: 1) In the first interval, which we label the dormancy stage, both

firm types set the same price for customers, making all players unable to learn new infor-

mation. 2) In the exploration stage, the P-type firm sets prices to learn customer types, and

the U-type firm adjusts its prices to signal uniform pricing. 3) In the exploitation stage, the

P-type firm implements personalized pricing. We also establish that price cannot perfectly

separate the two firm types.
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2.2 Literature Review

Price discrimination has received growing attention in the Operations, Marketing, and

Economics literature. A body of literature studies intertemporal price discrimination in the

presence of strategic customers (Su 2007, Aviv and Pazgal 2008, Cachon and Swinney 2009,

Li et al. 2014, Kremer et al. 2017, Aviv et al. 2019, Aflaki et al. 2020). In this literature,

price varies over time and customers time their purchases to maximize their utilities. Since

the opportunity cost of waiting is higher for high-valuation customers than those with low

valuations, the firm can gradually reduce the price to skim the market.

While in these papers customers “self-select” the prices based on their valuations and

patience, a stream of work focuses on PP tactics where a firm customizes prices for different

customers based on their distinct features (Cohen et al. 2020, Ban and Keskin 2021, Chen

et al. 2022). These papers study the statistical properties of algorithms that balance the

learning-and-earning trade-off in PP using customer features. Since PP requires granular

feature-based learning, it results in a high-dimensional problem requiring special solution

treatments. Aydin and Ziya (2009) study dynamic PP of limited inventories when the firm

does not have perfect knowledge of the customer valuations; however, it receives a signal

correlated with customer valuations. They find that a mere positive correlation between

customer valuations and the signal is insufficient to set a high price. Elmachtoub et al. (2021)

study the value of PP when the firm has limited knowledge of the distribution of customer

valuations. Similar to these papers, we consider PP when the firm does not a priori know

the customer valuations and balances the learning-and-earning trade-off. However, we focus

on two-sided learning where the firm learns about the customers, and customers learn about

the firm and may strategically respond to that.

We are also related to the literature on behavior-based pricing and marketing, where

the firm discriminates against customers based on their purchase history. In a multi-period

setting, this literature studies various aspects of behavior-based pricing, including the con-

ditions under which price discrimination benefits firms facing strategic customers (Acquisti

and Varian 2005), valuation enhancing offers based on customer purchase history (Pazgal

and Soberman 2008), and interplay of price discrimination and product differentiation under
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competition (Jing 2017, Amaldoss and He 2019). Fudenberg and Villas-Boas (2006) surveys

this literature. Most of this literature assumes customers have perfect knowledge of the

firm’s pricing strategy. We investigate this assumption by asking whether price can serve as

an instrument to signal the firm’s pricing strategy and whether availability information can

complement such a signal.

A few papers consider privacy-concerned customers who strategically react to the firm’s

customer profiling policy. Taylor (2004) studies a situation where a firm learns the customer

valuations by selling a product. The firm can then sell the customer information to another

firm that personalizes the prices using this information. He finds that strategic customer

behavior significantly impacts the firms’ payoff and customer surplus. Conitzer et al. (2012)

consider the repeated interactions of a monopolistic firm with strategic customers over two

periods. The firm uses the customer purchase history from the first period to personalize

the prices in the second period. Customers can exert effort to anonymize their purchases.

They find that increasing the cost of anonymity might benefit the customers as long as

it is sufficiently low. However, it often harms the customers when the firm can set this

cost. In our model, customers are uncertain about the product availability and whether the

firm implements PP. This two-dimensional uncertainty prevents customers from identifying

whether their profile will be used for PP. Furthermore, our work adds the operational aspect

of disclosing availability information to customers.

Allon et al. (2012) and Drakopoulos et al. (2021) study the correlation between price and

inventory signals. In the presence of inventory availability uncertainty, Allon et al. (2012)

show that a separating equilibrium exists in the game where customers perfectly learn the

product availability by observing prices. However, the firm may set a suboptimal price to

signal availability. Drakopoulos et al. (2021) study a pricing and inventory provisioning game

where the firm sets uniform prices for all customers and sends personalized availability sig-

nals. They find customized information can significantly benefit the firm and has properties

similar to PP. Yu et al. (2015) show that rationing capacity in advance selling can signal

product quality. However, the possibility of rationing capacity may harm the seller. Lingen-

brink and Iyer (2019) study whether a single-server queue should share information about

the queue’s state to strategic customers who decide whether to join the queue. They show
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the optimality of binary signaling mechanisms and that the firm may benefit from strate-

gically concealing information. In addition to product availability (correspondingly queue

length), in our model, customers are uncertain whether the firm can or intends to implement

PP. In this environment, we study the welfare implications of an availability signal.

A body of literature investigates the role of information provisioning in social learn-

ing when customers learn about the product characteristics from other customer purchase

experiences through levers such as product reviews and recommendation systems (Besbes

and Scarsini 2018, Che and Hörner 2018, Papanastasiou et al. 2018, Acemoglu et al. 2022,

Bimpikis and Papanastasiou 2019, Garg and Johari 2019). In the context of inventory in-

formation provisioning, Yin et al. (2009) show that displaying one unit of inventory instead

of displaying all at once can create a shortage risk and improve the firm profit. Allon

and Bassamboo (2011) prove that sharing inventory information with a homogeneous pop-

ulation of customers does not change the intertemporal customer behavior. They identify

conditions under which inventory information would not be cheap talk when customers are

heterogeneous. Aydinliyim et al. (2017) study the optimal disclosure of inventory availabil-

ity information in online retailing. They show that an optimal inventory threshold exists

below which the firm should disclose the exact inventory level, and above that, it should only

disclose availability. Cui and Shin (2018) show that for a retailer selling multiple products,

sharing aggregate inventory information could outperform sharing more granular product

availability information. Cui et al. (2019) empirically establish that customers learn from

availability information and a decrease in inventory availability increases future sales. Chen

et al. (2021b) analyze the timing of inventory disclosure policies and show that a threshold

policy that discloses the inventory information when inventory drops below a given level

outperforms always-disclose and never-disclose policies. Similar to this literature, we study

the inventory disclosure policies, and answer whether and under what conditions such signals

benefit firms and customers.

12



2.3 Model

We study a firm selling a product over two periods to a continuum of customers with

unit mass. Let M denote the market of customers. Each customer purchases at most one

unit of the product in period t ∈ {1, 2}, totaling a maximum of two purchases over the

two selling periods. We note that the product sold in one period could be different from

the other. For example, customers repeatedly purchase flight tickets from travel agencies.

These tickets may differ as they could be for different times or flights. In the retail context,

customers purchase apparel (e.g., T-shirts) with various designs in different seasons. In this

environment, firms can still learn about customers from their purchase history.

Customers are heterogeneous in their valuations for the product. Specifically, Customer

i ∈ M values the product at vi ∈ {vL, vH} in each period, where vH > vL ≥ 0. We refer to

customers with vi = vL and vi = vH as L-Type and H-type, respectively. The customer type

is unknown to the firm; however, it has prior knowledge of its distribution. Specifically, a

fraction α of customers are H-type, i.e., P (vi = vH) = α. Parameter α is common knowledge

between the firm and customers. Let ML and MH denote the population of L-type and

H-type customers, respectively.

As is common in the related literature, we assume that the firm and customers are a

priori uncertain about the inventory levels at the beginning of each period (Allon et al. 2012,

Drakopoulos et al. 2021). However, they have a common belief about its distribution and

density functions denoted, respectively, by F (·) and f(·) supported on I. While inventory

levels are uncertain before the start of the first selling period, we assume their realizations

are the same in both periods, denoted by I.1 We furthermore assume I has a uniform

distribution on interval [α, 1]. That is because a fraction α of customers are H-type, and the

market has a unit mass.2 At the beginning of the first period, the firm learns the inventory

realization while customers remain uncertain. This creates information asymmetry between

1We make this assumption mainly for tractability to focus on the pricing and information provisioning
game dynamics between the firm and customers without ad-hoc treatment of various sub-game realizations.
This is a reasonable assumption as we assume consistent demand over the two periods and consider firm’s
high-level pricing strategy.

2We also considered a variation where inventory is a binary random variable. The results remain quali-
tatively the same.
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the firm and customers.

Although we refer to the supply of products as “inventory” throughout the paper, it may

represent other forms of capacity, such as the number of seats in a flight. As we will see,

inventory availability (henceforth availability), i.e., the probability that customers can obtain

a unit, is the primary driver of the results rather than the absolute value of the inventory. In

§2.6.1, we formally confirm this observation by considering a variation of the model where

uncertainty stems from demand instead of inventory. We analytically show that our insights

continue to hold. We also numerically establish the robustness of our results when the firm

optimizes inventory.

The firm can implement uniform pricing (UP) or personalized pricing (PP). With UP,

the firm charges the same price to all customers. With PP, however, different customers may

receive different prices. Specifically, the firm may use the customers’ first-period purchase

history to learn their valuations and target them with customized prices in the second period.

As discussed in the introduction, firms face uncertainty over the possibility of using PP

due to their high-level pricing strategy, and regulatory and implementation challenges. Let

ω ∈ Ω = {0, 1} denote this possibility: when ω = 1, the firm is allowed to personalize the

prices, while when ω = 0, it cannot implement PP. The firm and customers do not know

the state of ω before the first selling period. However, they have a common belief about its

realization. Suppose P(ω = 1) = τ ∈ (0, 1). We refer to the firm of type ω = 1 as P-type (for

personalized pricing) and the firm with ω = 0 as U-type (for uniform pricing). Like inventory,

at the beginning of the first period, the firm learns the state of ω while customers remain

uncertain, creating information asymmetry. Here we distinguish between the “possibility”

of PP and the actual “implementation” of that: While a P-type firm can implement PP, it

does not necessarily benefit from it. In other words, a P-type firm may find it optimal to

implement UP.

Upon observing price pit, Customer i decides whether to purchase the product or opt

for her outside option. Let ait ∈ {0, 1} be the indicator function for the customer purchase

decision, where ait = 1 if the customer purchases in period t. Moreover, let pt = {(pit) : i ∈

M} and at = {(ait) : i ∈ M} be period t vector of prices and customer decisions, respectively.

In the next section, we discuss the details of the sequence of events and player decisions.
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We focus on a two-period problem with two customer segments to analyze the complex

dynamics of a two-sided learning game with information asymmetry. However, when cus-

tomer valuations are non-stationary or in a game with more than two customer segments, the

game may continue beyond two periods. §2.6.2 considers an extension with non-stationary

customer valuations and a general finite selling horizon. We show that our framework is not

bound to a two-customer-segment two-period problem.

2.3.1 Sequence of Events, Information Sets, and Signaling Mechanism

In each period, the firm and customers learn about the game dynamics and take actions

according to their information sets. Let Hf
t and Hc

it, respectively, denote the information

sets of the firm and Customer i up until the beginning of period t. The dynamics of the

game unfold as follows:

Period -1: Before the game starts, all players are uncertain about ω and I. Thus, Hf
−1 = ∅.

Similar to Drakopoulos et al. (2021), we assume the first-period price mapping is set prior

to the realization of uncertainty, i.e., the firm commits to the first-period price mapping

p1(ω, I) : Ω × I → [vL, vH ] before learning ω and I. This assumption captures that the

pricing strategy is designed in advance using prior information about the inventory and

possibility of PP; however, the actual price depends on the precise realizations of ω and I

when selling the product.

Period 0: The states of ω and I realize, and the firm sets price p1 according to price mapping

p1(ω, I). We first consider a base model, where the firm does not disclose any information

to customers other than the price. Later, we allow the firm to signal availability. An

inventory signaling mechanism is a mapping Σ : I → S, which discloses information about

the inventory to customers. For most of the analysis, we focus on a class of binary signaling

mechanisms, where the firm marks the product low-on-inventory when the inventory is below

a threshold Ic. For example, IKEA labels the products that are unlikely to run out during the

day as “in stock” and the products that may run out of inventory as “low in stock.” ZARA

marks the items short on inventory as “last items in stock.” We study if such a signaling

mechanism can benefit the firm and customers when customers infer information about the
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firm’s pricing strategy. When this binary inventory signal is ineffective in improving the firm

revenue, we also consider a signaling mechanism where the firm fully discloses the inventory

level. Similar to the prices, we assume the firm commits to signaling mechanism Σ before

the realization of inventory (Drakopoulos et al. 2021). However, signal s ∈ S is sent after

the inventory realizes in period 0. In this period, the firm and customer information sets are

Hf
0 = {ω, I} and Hc

i0 = ∅.

Period 1: All customers enter the market and stay until the last period. Customer i observes

price p1 and inventory signal s (if any inventory information is disclosed). Based on this

information, she decides whether to purchase the product, i.e., she determines ai1(pi1, s) ∈

{0, 1}. In period 1, the firm and customers update their information as Hf
1 = {ω, I, s} and

Hc
i1 = {vi, p1, s}. We assume any unsold inventory at the end of period 1 is liquidated at

price zero.

Period 2: The firm observes the customer purchase decisions and sets the second-period

prices. Let pi2(ω, I,Hf
2) be the second-period price charged to Customer i when the firm is

of type ω and carries inventory I, where Hf
2 = {ω, I, s, a1(p1, s)}. We note that if ω = 0, we

must have pi2(ω, I,H2) = pj2(ω, I,H2) for all i, j ∈ M . In other words, a U-type firm cannot

implement PP. However, for ω = 1, the firm can use the customer purchase history Hf
2 to

personalize the price. We let p2(ω, I,Hf
2) = {pi2(ω, I,Hf

2) : i ∈ M} be the set of all prices

offered to customers in period t. Any unsold inventory at the end of the second period is

disposed of at price zero.

2.3.2 Belief Updating and Inventory Availability

Both the firm and customers update their prior beliefs upon receiving new information.

The firm updates its belief about customer valuations after observing their purchase deci-

sions. Intuitively, if the firm charges price vL, it cannot infer any information about the

customer type. However, if a customer purchases the product at a price greater than vL, the

firm would learn that the customer is H-type. Accordingly, the firm updates its belief about

the customer types following the Bayes’ rule.

Customers update their beliefs about the firm type upon observing the price and inven-
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tory signal. Since they are also uncertain about inventory, they may not precisely learn the

firm type upon receiving the first-period information. For example, a firm charging price

p1 = vH may do so because the inventory is low, and can sell out even at the highest viable

price. Alternatively, a P-type firm may charge a higher price than vL to learn the customer

valuations and personalize the prices in the second period.

Also, since the firm has limited inventory, customers’ decisions to purchase do not guar-

antee they would receive a unit. Let Dt(pt) =
∫
i∈M ait (pit, s) di denote the total demand

in period t. If I < Dt(pt), then a fraction of customers would not receive the product. In

the case of insufficient inventory, we assume the firm first prioritizes the customers who pay

higher prices (Su and Zhang 2008, Cachon and Feldman 2015). For the customers who pay

the same price, we assume the inventory is randomly allocated between the customers de-

manding the product (Dana Jr and Petruzzi 2001, Aflaki and Swinney 2021). Let ξ̃it ∈ [0, 1]

be the probability that Customer i would be allocated a unit in period t.

Note that the availability depends on the firm type and inventory as well as prices charged

to all customers. If the firm sets uniform price vL, all customers demand the product, and

the probability that a customer receives the product would be ξ̃it = I for all i ∈ M and

t ∈ {1, 2}. Also, if a firm sets a uniform price higher than vL, then L-type customers cannot

afford the product. In this case, H-type customers are guaranteed to receive a unit. Finally,

if the firm implements PP, H-type customers receive the product with certainty as they are

prioritized over the L-type customers. In contrast, L-type customers are randomly allocated

a unit from the leftover products. Thus, we have ξ̃i2 = 1 for i ∈ MH and ξ̃i2 = I−α
1−α

for

i ∈ ML.

Since the inventory and firm type are unknown a priori, the customers and firm form

beliefs about the availabilities. Let ξcit(Hc
ij) and ξfit(H

f
ij) be Customer i and the firm beliefs

about the availability in period t at the beginning of period j. These beliefs are updated in

each period following the Bayes’ Rule based on the firm and customer information sets.
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2.3.3 Customer Behavior and Utility

Customer i ∈ M who obtains a unit of the product at price pit, receives utility vi − pit.

Hence, the customer ex-ante utility-to-go function at the beginning of period t ∈ {1, 2} is

given by

uit(pi1, pi2,Hc
it) = EI,ω

[
2∑

j=t

aij (pij, s) ξ
c
ij(Hc

ij)(vi − pij)

∣∣∣∣∣Hc
it

]
. (1)

If a customer decides to purchase the product at the posted price pij (i.e., aij (pij, s) = 1),

and if she is assigned a unit (with probability ξcij(Hc
ij)), she receives utility (vi − pij) from

her purchase.

Recall that a P-type firm may use the customer purchase history in the first period to

learn the valuations and charge a personalized price in the second period. L-type customers

never pay a higher price than vL and are not concerned that the firm would learn their

valuations. However, an H-type customer may receive a higher price because of PP. These

customers may benefit from not revealing their types to the firm. We consider two customer

types: Myopic customers do not include their future utility when making first-period deci-

sions. Therefore, they purchase a unit in period t if they receive a positive surplus. Strategic

customers recognize the possibility of PP and may choose their outside option if doing so

would increase their total utility. Without loss of generality, we assume the customer’s out-

side option yields a zero surplus. For example, customers may buy from another seller who

does not implement PP but always charges price vH .
3

In §2.6.2, we consider an extension where customer valuations may change over time,

and the game extends beyond two periods. We demonstrate that customers choosing their

outside option in a period may purchase from the firm in the later periods.

A customer choosing the outside option effectively hides her type. However, hiding type

comes at the risk of not being able to obtain the product in the second period. This is

because customers who pay a higher price are prioritized in being allocated a unit, and

customers paying vL enter a lottery to receive the product. Therefore, strategic customers

balance the trade-off between (i) utility of the first-period purchase, (ii) the impact on future

3Customers may use other methods to anonymize their types. For example, they may refuse to log in, use
VPN, or delete their cookies (OECD 2018). This, requires customers to exert costly effort (Conitzer et al.
2012), which reduces their utilities. Our insights continue to hold in such a model.
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prices if the firm is P-type, and (iii) the probability of obtaining a unit in the second period.

Consequently, they maximize their ex-ante surplus by dynamically making purchase decisions

at the beginning of each period. In other words, Customer i solves

max
ait∈{0,1}

uit(pi1, pi2,Hc
it) for t ∈ {1, 2}. (2)

2.3.4 Firm Behavior and Revenue

The firm considers its inventory, type, and customer behavior when setting the prices and

designing the inventory signal. While a U-type firm cannot use the customer purchase history

to personalize the prices, it may adjust them to separate itself from P-type. Similarly, a P-

type firm may not find it optimal to implement PP if the gain from doing so is not justified

by the revenue loss due to strategic customer behavior. Given these trade-offs, the firm

revenue-to-go function at the beginning of period t is given by

Rt(Hf
t , pt) = EI,ω

[
2∑

j=t

∫
i∈M

aij (pij,Σ(I)) ξ
f
ij(H

f
j )pij di

∣∣∣∣∣Hf
t

]
. (3)

The firm earns revenue pij if Customer i purchases in period j, i.e., aij (pit,Σ(I)) = 1, and is

allocated a unit from inventory, which occurs with probability ξfij(H
f
j ). The firm dynamically

maximizes its ex-ante revenue by setting prices and the inventory signal (if applicable) for

t ∈ {1, 2}:
max
pt,Σ(I)

Rt(Hf
t , pt)

s.t. (p1,Σ) ∈ argmax
p1(ω,I),Σ(I)

R1(Hf
−1, pt)

(1− ω)(pi2 − pl2) = 0, ∀i, l ∈ M & ω ∈ Ω

(4)

The first constraint ensures that the first-period prices are selected from the price menu

designed in period -1. The second constraint in Problem (4) guarantees that the firm sets

uniform prices if it is U-type. We note that if the firm sends an inventory signal, it also

impacts the customers’ beliefs about the inventory and firm type, which influence customer

decisions ait (pit, s).
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Table 2.1: Caption: Notation Summary (Chapter 2)

Variables

vi
Customer i ∈ M values the product at vi ∈ {vL, vH} in each period, where

vH > vL ≥ 0

α A fraction α of customers are H-type, i.e., P (vi = vH) = α

I Inventory realization for both periods

ω
ω ∈ Ω = {0, 1} denote this possibility: when ω = 1, the firm is allowed to

personalize the prices, while when ω = 0, it cannot implement PP

τ P(ω = 1) = τ ∈ (0, 1) as the probability that the firm is able to conduct PP

pit The price for Customer i at period t

ait
ait ∈ {0, 1} be the indicator function for the customer purchase decision, where

ait = 1 if the customer purchases in period t

Hf
t Information set of the firm at period t

Hc
it Information set of the Customer i at period t

s Inventory signal sent by the firm, either sa (Above) or sb (Below)

Σ
An inventory signaling mechanism, which is a mapping from the inventory real-

ization to an inventory signal

Dt(pt) The total demand in period t

ξ̃it The probability that Customer i would be allocated a unit in period t

ξcit(Hc
ij) Customer i’s belief about the availability in period t at the beginning of period j

ξfit(H
f
ij) Firm’s belief about the availability in period t at the beginning of period j

uit Customer i’s expected utility-to-go at the beginning of period t

Rt Firm’s expected revenue-to-go at the beginning of period t

pmt Equilibrium price at period t when customers are myopic

Im
Unique equilibrium threshold, under which P-type firm sets prices pm1 > vL if

I < Im when customers are myopic

pnt Equilibrium price at period t when customers are strategic

γ Size for the interval, i.e., I − I ≡ γ(τ, α), which is a function of τ and α
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Variables (Continued)

Ic A threshold that marks the inventory as low if I ≤ Ic and high if I > Ic

pb Optimal pricing function when s = sb, which is a function of Ic

pa Optimal pricing function when s = sa, which is a function of Ic

I∗c the equilibrium inventory signal cut-off

p∗it Equilibrium pricing function for Customer i at period t

CSn Expected total customer surplus without inventory signal

CSs Expected total customer surplus with inventory signal

Qn
L Expected number of units received by L-type customer without inventory signal

Qs
L Expected number of units received by L-type customer with inventory signal

sd Extension: Demand signal sent by the firm, either sda (Above) or sdb (Below)

Σd
Extension: A demand signaling mechanism, which is a mapping from the demand

realization to an demand signal

αc

Extension: A threshold that marks the demand as low if α ≤ αc and high if

α > αc

ṽit Extension: Customer i’s valuation at period t

λ Extension: H-type customers would have valuation vH with probability λ

tm

A threshold that partitions the selling horizon into two stages. In the exploration

stage, for t ≤ tm, the firm explores the customer valuations by charging vH to all

customers. In the exploitation stage, for t > tm, the firm personalizes the prices

and exploits its knowledge about customers

2.3.5 Solution Concept

We base our analysis on the Bayesian persuasion framework (Kamenica and Gentzkow

2011, Anunrojwong et al. 2023) and study the sender-preferred subgame perfect Bayesian

equilibrium (SPBE) of the game. An SPBE consists of prices pt, an inventory signaling

mechanism Σ (if applicable), and customer purchase decisions ait(pit, s) such that for t ∈

{1, 2} and i ∈ M they satisfy the following conditions:

1) Firms and customers update their beliefs according to the Bayes’ rule upon receiving new
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information.

2) Myopic customers purchase the product in each period they receive a positive surplus.

Strategic customers maximize their ex-ante utility by dynamically solving Problem (2).

3) The firm maximizes its revenue-to-go function by solving Problem (4).

4) The equilibrium is sender-preferred, i.e., the best outcome for the firm among all the

possible equilibria.

2.4 Equilibrium Analysis

In this section, we analyze the SBPE of the game between the firm and customers. We

initially consider a model with myopic customers to illustrate the PP dynamics without

customer concerns. Then, we analyze a model with strategic customers. When customers

are strategic, first, we study the equilibrium in a base model where the firm only sets the

price and does not send any inventory signal. In the base model, we drop argument s

from the notations that depend on inventory signal. For example, we denote the customer

purchase decision by ait(pit) instead of ait(pit, s). Finally, we consider a scenario where the

firm discloses inventory information to customers. Throughout, we use notation 1(·) for the

characteristic function.

2.4.1 Myopic Customers

Following the Solution concept in §2.3.5, myopic customers purchase the product in each

period they receive a positive surplus without considering the impact of their decisions on

future prices. The following proposition characterizes the SBPE of the game with myopic

customers.

Proposition 2.1. A unique SBPE to the game with myopic customers exists. Let pm1 (ω, I)

and pm2 (ω, I,H
f
2) be the equilibrium first and second-period prices with myopic customers.

Then,

(i) A U-type firm sets prices
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pm1 (0, I) = pm2 (0, I,H
f
2) =

vH if I ≤ αvH
vL

vL otherwise.

(5)

(ii) A unique threshold Im ∈ [αvH
vL

, 1] exists such that a P-type firm sets prices

pm1 (1, I) =

vH if I ≤ Im

vL otherwise,

and

pmi2(1, I,H
f
2) =

1(vi = vH)vH + 1(vi = vL)vL if I ≤ Im

vL otherwise.

Proof. All proofs appear in Appendix A.1.

With myopic customers, both firm types charge either price vL or vH in both periods. For

any price p ∈ (vL, vH), all H-type customers purchase the product, while L-type customers

are excluded. In this situation, the firm is incentivized to increase the price to improve its

revenue without losing demand. Furthermore, for sufficiently a low inventory (I ≤ αvH
vL

), a

U-type firm is better off to set price vH and sell only to the H-type customers. However, if

the inventory is high (I > αvH
vL

), the revenue loss from the exclusion of the L-type customers

dominates the revenue gain from charging a higher price. In this case, the firm sets price vL

in both periods.

Part (ii) of the proposition shows that, similar to a U-type firm, a P-type firm would set

price vH only when inventory is below a threshold (I ≤ Im). Again, for sufficiently a high

inventory (I > Im), the firm is better off selling to all customers in the first period by setting

price vL. However, this prevents the firm from learning the customer valuations. Moreover,

we have Im > αvH
vL

. This is because setting first-period price vH in addition to offering a

higher revenue for each unit sold (which also benefits a U-type firm) allows the firm to learn

the customer valuations and personalize the prices in the second period. This additional

value motivates a P-type firm to set first-period price vH for a larger range of inventory

realizations than a U-type firm. This implies that EI [p
m
1 (1, I)] > EI [p

m
1 (0, I)], i.e., a P-type

firm charges a higher “expected” price in the first period than a U-type firm. This correlation

between the first-period price and firm type allows customers to infer information about the

firm type and inventory availability by observing the first-period price. This information does
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not change the behavior of myopic customers as they do not consider their future utilities.

In the next section, we consider strategic customers who use this information when making

purchase decisions.

2.4.2 Strategic Customers

Following §2.3.5, strategic customers solve Problem (2). In this game, different firm

types may have the incentive to differentiate from or mimic the other firm. In §2.4.2.1, we

consider a model without any inventory signal. Later, in §2.4.2.2, we allow the firm to signal

availability to customers.

2.4.2.1 Base Model: Equilibrium Without an Inventory Signal

In this base model, the firm sets the prices, and customers update their beliefs and make

decisions based on these prices. First, we characterize the customer best responses in the

following lemma:

Lemma 2.1. In any SBPE, we have ai2(pi2) = 1(vi ≥ pi2). Furthermore, there exists a

unique threshold p ∈ (vL, vH) such that H-type customers purchase in the first period if and

only if p ≤ p. Thus, we have

ai1(pi1) =

1(pi1 ≤ vL) if vi = vL

1(pi1 ≤ p) if vi = vH .

Furthermore, p is non-increasing in τ .

Intuitively, all customers who receive a non-negative surplus would purchase the product

in the second period. Also, L-type customers would buy in the first period if they receive

a price not greater than their valuations, i.e., price vL. These customers are not concerned

about revealing their valuations as even a P-type firm implementing PP would charge second-

period price vL to these customers. However, H-type customers have the incentive to hide

their types to receive the product at a lower price in the second period. Lemma 2.1 shows

that these customers would purchase if the price is sufficiently low. If the customers were
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myopic, all H-type customers would purchase the product at price vH , and we would have

p = vH . However, strategic customers should be persuaded to reveal their types. Hence, the

firm sets price p < vH .

The existence of unique threshold p is not a priori trivial. On the one hand, a higher first-

period price reduces the customer surplus from purchasing the product in the first period.

This motivates customers to choose their outside option. On the other hand, a higher first-

period price may signal an inventory shortage, which increases the availability risk. A higher

availability risk favors revealing H-type to the firm by purchasing at a high price in the

first period. Lemma 2.1 shows that customers purchase in the first period if they receive

sufficiently a low price p. Additionally, as the lemma shows, p is non-increasing in τ . Recall

that τ is the likelihood of the firm being P-type. Consequently, as τ increases, customer

concerns regarding the use of their purchase history for PP increase. This prevents the firm

from setting a high first-period price.

Threshold p > vL critically depends on the availability risk. In fact, a P-type firm

cannot persuade H-type customers to reveal their types without this risk (Taylor 2004). In

our problem, however, the availability risk discourages customers from hiding their types for

two reasons: First, hiding type would pool them with L-type customers and decreases their

chances of obtaining a unit in the second period. Second, a high price may reflect inventory

scarcity, reducing its association with PP.

Having the customer behavior on hand, next, we establish the existence and uniqueness

of the SBPE for the game with strategic customers and characterize the equilibrium.

Proposition 2.2. A unique SBPE to the game exists. Define I = min(αp
vL
, 1) and I =

min
(

αp
vL

+ α(vH−vL)
vL

, 1
)
, where p is given in Lemma 2.1. Let pn1 (ω, I) and pn2 (ω, I,H

f
2) be the

equilibrium first and second-period prices. Then,

(i) A U-type firm sets prices

pn1 (0, I) =

p if I ≤ I

vL otherwise,

and pn2 (0, I,H
f
2) =


vH if I ≤ αvH

vL

vL otherwise.

(ii) A P-type firm sets prices
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pn1 (1, I) =

p if I ≤ I

vL otherwise,

and pni2(1, I,H
f
2) =

ai1(p)vH + (1− ai1(p))vL if I ≤ I

vL otherwise,

and customers follow the strategy characterized in Lemma 2.1.

Similar to the case with myopic customers, a P-type firm implements PP only if the

inventory is sufficiently low. However, the inventory threshold below which the P-type firm

implements PP is lower with strategic customers than myopic customers, i.e., I ≤ Im. This

is because customer strategic behavior limits a P-type firm’s ability to personalize the prices

without raising customer concerns. Hence, with strategic customers, the firm can implement

PP only when the inventory is sufficiently low such that customers attribute a high price

to an inventory shortage. This concern does not exist with myopic customers, which allows

implementing PP for a higher range of inventory.

Moreover, we have I ≤ αvH
vL

. In other words, similar to the P-type firm, the inventory

threshold for charging a high price for a U-type firm is also lower with strategic customers

than with myopic customers. Therefore, from Propositions 2.1 & 2.2, we find that a U-

type firm always sets a higher price with myopic customers than with strategic customers.

Although a U-type firm cannot implement PP, it sets a lower price for strategic customers

to “differentiate” itself from a P-type firm. In response, a P-type firm decreases its price

to “mimic” U-type and reduce customer concerns regarding future PP. A lower first-period

price compensates H-type customers for potential loss in their second-period surplus, further

encouraging them to purchase in the first period.

Interestingly, both firm types set the same equilibrium price p in the first period if

they intend to sell only to the H-type customers. As a result, customers cannot perfectly

distinguish between the two firm types upon observing first-period price p. This implies

that both firms cannot charge a price higher than vL without raising customer concerns

regarding future PP. However, since I ≥ I, a higher price is more likely to be associated

with a P-type than a U-type firm. Because of this, customers may be able to “partially”

distinguish between the two firm types. Specifically, if I ∈ (I, I], the U-type firm sets vL

while the P-type firm sets p.

Furthermore, for I > I, although both firm types set the same first-period price vL, it
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would not raise customer concerns because vL is the lowest possible price and prevents the

firm from learning the customer valuations. However, for I ≤ I, both firm types set a similar

price in the first period while only the P-type firm implements PP. In this environment,

customers can only probabilistically distinguish between the two firms, leading to a “partial-

pooling” equilibrium. Consequently, the existence of non-empty interval (I, I] is the only

source of information about the firm type. If such an interval does not exist, customers

cannot update their beliefs about the firm type. In fact, a larger size for this interval, i.e.,

I − I ≡ γ(τ, α), increases the strength of the price signal in determining the firm type. The

following corollary is a direct consequence of this discussion and Proposition 2.2.

Corollary 1. With strategic customers,

(i) If γ(τ, α) > 0, the game has a partial-pooling equilibrium, where the customers update

their beliefs about the firm type; however, they cannot perfectly distinguish them.

(ii) If γ(τ, α) = 0, the game has a pooling equilibrium where the first-period price does not

convey any information about the firm type.

While γ(τ, α) is independent of the inventory realization, it critically depends on param-

eters τ and α. We study the behavior of γ(τ, α) in these parameters in the next proposition.

Proposition 2.3. In the game with strategic customers,

(i) γ(τ, α) is non-decreasing in τ .

(ii) γ(τ, α) initially increases, then decreases, and finally remains constant in α.

(iii) There exists thresholds τ(α) and α such that γ(τ, α) = 0 for any τ ≤ τ(α) or α ≥ α.

Part (i) shows that the price signal strengthens as τ increases. This is because when τ is

small, the customers are not too concerned about the threat of being targeted by PP. This

enables both firm types to increase the first-period price, which pools them together and

reduces the strength of the first-period price as a signal to separate the firms. The customer

PP concerns increase as τ increases beyond a threshold. This makes the U-type firm reduce

its price for intermediate inventory realizations to separate itself from the P-type firm and

persuade customers to purchase in the first period. The P-type firm, however, continues to

charge a high price to extract customer surplus in the second period. Thus, the first-period

price becomes a stronger signal of the firm type, and γ(τ, α) increases in τ . For sufficiently

27



a high value of τ < 1, there always exists an inventory interval with a constant length in τ

where the two firms charge different prices. Hence, γ(τ, α) remains constant at a positive

value as τ increases beyond a threshold.

Part (ii) illustrates that the behavior of γ(τ, α) is not monotonic in α. An increase

in α increases the value of learning customer valuations for a P-type firm because it can

personalize the prices for a larger population of H-type customers. It also increases the

U-type firm’s desire to set a high price in the first period. For sufficiently a small α, both

firm types serve all customers by setting price vL, as L-type customers comprise a large

market population and excluding them is costly. This is specifically true for a U-type firm

as the firm cannot utilize the customer information in the second period. Therefore, as α

initially increases, the P-type firm’s incentive to set a high price increases faster than the

L-type firm’s incentive. This asymmetry in the firm incentives leads to the initial increasing

behavior of γ(τ, α) as a function of α. As α increases beyond a threshold, the P-type firm

charges p for all inventory values, while the U-type firm continues to set price vL when the

inventory is sufficiently large. An increase in α beyond this threshold encourages the U-type

firm to set p for a larger inventory range and become more similar to the P-type firm. As

the two firm types set the same prices for more inventory realizations, the price becomes a

weaker signal to differentiate the firms. Consequently, after this threshold, γ(τ, α) decreases

in α until it eventually becomes zero. In this case, i.e., for α ≥ α, the game accepts only a

pooling equilibrium.

2.4.2.2 Equilibrium With an Inventory Signal

As discussed earlier, uncertainty over two dimensions, i.e., firm type and inventory, pre-

vents customers from perfectly identifying if a high price is a result of inventory scarcity or

the firm’s intention to learn the customer valuations for PP.4 In this section, we allow the

firm to partially resolve this uncertainty by disclosing inventory availability information.5

4Inventory scarcity is relative to demand. In §2.6.1, we consider a scenario where demand uncertainty is
the root of availability risk.

5Firms also disclose whether they implement PP in their data privacy policies. However, these disclosures
are often lost in long documents not read by customers. For example, a survey by Deloitte (2017) showed
that 91% of customers accept legal terms and conditions without reading them for installing applications
and using online services. This number is likely higher in retail. Thus, we study inventory availability
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We consider a class of binary signaling mechanisms similar to the examples of IKEA

and ZARA discussed in §2.3.1. Specifically, we assume that the firm sets a threshold Ic and

marks the inventory as low if I ≤ Ic and high if I > Ic (we use subscript c for cut-off). Such

an inventory signal has the form

Σc(I) =

sb if I ≤ Ic

sa otherwise,

(6)

where sb is sent when inventory is “below” threshold Ic and sa is sent when inventory is

“above” this threshold. We refer to sb and sa as LI (for Low-Inventory) and HI (for High-

Inventory) signals, respectively. Since the structure of the signal is designed before the

inventory realization, it is a priori stochastic. However, the actual signal is sent according

to function Σc(I) after the realization of uncertainty.

In this binary mechanism, customers immediately infer the HI signal upon not observing

LI. Hence, this signaling mechanism is equivalent to a mechanism where the firm sends signal

sb when inventory is low and does not send any signal when it is high. Furthermore, signaling

mechanism (6) does not convey any information when Ic = 1. Therefore, the model with

this signaling mechanism is a generalization of the base model without the inventory signal

studied in §2.4.2.1.

First, we characterize the customer behavior in the following lemma.

Lemma 2.2. In any SBPE, Customer i who receives price pi2 and signal s ∈ {sa, sb} makes

decision ai2(pi2, s) = 1(vi ≥ pi2) in the second period. Additionally, there exist unique

thresholds pa(Ic) ∈ (vL, vH) and pb(Ic) ∈ (vL, vH ] such that H-type customers purchase the

product in the first period if and only if p1 ≤ pb(Ic) when they receive signal sb and p1 ≤ pa(Ic)

when they receive signal sa. Hence,

ai1(p1, s) =


1(p1 ≤ vL) if vi = vL

1(p1 ≤ pb(Ic)) if vi = vH and s = sb

1(p1 ≤ pa(Ic)) if vi = vH and s = sa.

information often utilized by sellers as an operational proxy to signal the pricing strategy.
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Furthermore, for any signaling mechanism Σc(I), there exist thresholds Ib(Ic), Ib(Ic),

Ia(Ic), and Ia(Ic) as functions of Ic such that

pb(Ic) =


vH − τ

2
· Ic−α

1−α
· (vH − vL) if Ic ∈ [α, Ib(Ic)]

vH − τ
2
· (Ic−α)2

1−α
· (vH−vL)
(1−τ)Ib(Ic)+τIc−α

if Ic ∈ (Ib(Ic), Ib(Ic)]

p if Ic ∈ (Ib(Ic), 1],

where p is given in Lemma 2.1. Also,

pa(Ic) =


vH − τ(Ia(Ic)−Ic)

(1−τ)Ia(Ic)+τIa(Ic)−Ic
· Ic+Ia(Ic)−2α

2(1−α)
(vH − vL) if Ic ∈ [α, Ia(Ic)]

vH − Ic+Ia(Ic)−2α
2(1−α)

(vH − vL) if Ic ∈ (Ia(Ic), Ia(Ic)]

vH − 2Ia(Ic)−2α
2(1−α)

(vH − vL) if Ic ∈ (Ia(Ic), 1].

Finally, pb(Ic) and pa(Ic) are non-increasing in Ic, and pa(Ic) ≤ p ≤ pb(Ic).

Similar to the base model, H-type customers purchase the product in the first period only

if the price is lower than a threshold. However, this threshold depends on the inventory signal

they receive. As illustrated in the lemma, pa ≤ p ≤ pb. Intuitively, an HI signal increases

the likelihood of the price being high due to PP. Hence, the firm must reduce the price

to compensate H-type customers for this possibility. In contrast, an LI signal correlates

with a higher likelihood of a high price in response to an inventory shortage. Moreover,

when inventory is limited, H-type customers, by hiding their types, enter a lottery with

L-type customers to obtain a unit, which significantly reduces their chances. Because of

these reasons, the firm can increase its first-period price without the risk of losing H-type

customers.

Lemma 2.2 also shows that pa(Ic) and pa(Ic) are both non-increasing in Ic. This is

because, as Ic increases, an LI signal becomes a weaker indicator of inventory scarcity. Also,

an HI signal becomes a stronger indicator of product availability. Consequently, independent

of the signal sent to the customers, H-type customers associate a high price with a higher

likelihood of PP implementation. Therefore, they require a lower price to purchase in the

first period as Ic increases. Figure 2.1 illustrates this behavior.
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(a) Prices when τ = 0.7. (b) Prices when τ = 0.2.

Figure 2.1: Prices p, pb(Ic), and pa(Ic) as functions of signal cut-off Ic, when vH = 1,

vL = 0.5, and α = 0.4.

Let p∗1(ω, I) and p∗2(ω, I,H
f
2) be the first and second-period equilibrium prices, respec-

tively. Also, let I∗c be the equilibrium inventory signal cut-off and Σ∗(I) be the corresponding

signaling mechanism. Moreover, we use superscript ∗ for the values of the functions defined

in Lemma 2.2 calculated at point I∗c . For example, we define I
∗
b = Ib(I

∗
c ) and p∗b = pa(I

∗
c ).

We assert the following proposition:

Proposition 2.4. An SBPE to the signaling game between the firm and customers exists.

Furthermore,

(i) A U-type firm sets,

p∗1(0, I) =


p∗b if I ≤ min(I∗b , I

∗
c )

p∗a if I∗c < I ≤ I∗a

vL otherwise,

and p∗2(0, I,H
f
2) =


vH if I ≤ αvH

vL

vL otherwise.

(ii) A P-type firm sets,

p∗1(1, I) =


p∗b if I ≤ min(I

∗
b , I

∗
c )

p∗a if I∗c < I ≤ I
∗
a

vL otherwise.

Additionally,
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p∗i2(1, I,H
f
2) =


ai1(p

∗
b , sb)vH + (1− ai1(p

∗
b , sb)) vL if I ≤ min(I

∗
b , I

∗
c )

ai1(p
∗
a, sa)vH + (1− ai1(p

∗
a, sa)) vL if I∗c < I ≤ I

∗
a

vL otherwise,

where customers follow the strategy characterized in Lemma 2.2.

(iii) We have I
∗
b ≥ I∗b and I

∗
a ≥ I∗a.

Proposition 2.4 shows that while the first-period price “values” are the same for both

firm types (i.e., they both set either vL, p
∗
a, or p∗b), the “inventory intervals” under which

these prices are set may be different. Specifically, the proposition establishes that I
∗
b ≥ I∗b

and I
∗
a ≥ I∗a. Thus, for any inventory signal, a P-type firm sets a high price for a larger

range of inventory realizations than a U-type firm. This observation combined with Lemma

2.2 implies that a P-type firm, in equilibrium, sets a higher price than a U-type firm. Hence,

customers can use a combination of price and inventory signals to update their beliefs about

the likelihood of future PP.

While Proposition 2.4 establishes the existence of an SBPE, it does not guarantee that an

inventory signal benefits the firm: when I∗c = 1, the inventory signal does not communicate

any information, and the firm achieves the same revenue as the base model. A firm may

choose I∗c = 1 because an informative inventory signal may lead to a lower first-period price,

which can harm both firm types. The following proposition finds the conditions under which

a binary inventory signal improves the firm revenue.

Proposition 2.5. A unique I∗c < 1 exists if and only if τ > τ(α), where τ(α) is defined in

Proposition 2.3. Furthermore, τ(α) is increasing in α.

Condition I∗c < 1 represents the case where an inventory signal benefits the firm; other-

wise, the firm could set I∗c = 1 to achieve the same revenue as the base model. Thus, this

proposition shows that an inventory signal improves the firm revenue only when τ > τ(α).

When τ is large, the firm’s likelihood of being P-type is high. Therefore, firms intending to

price higher than vL must compensate customers by offering a sufficiently low price to per-

suade them to purchase in the first period. An inventory signal, in this case, helps customers

differentiate between the U-type and P-type firms, which enables them to set a higher price
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than the base model. To illustrate, note that by setting a sufficiently high signal cut-off

I∗c < 1, the firm sends an LI signal with a high probability which enables it to set price

p∗b > p and improve its revenue. Also, an HI signal is sent when inventory is large, in which

case firms set price vL even in the base model. Consequently, an HI signal does not signifi-

cantly reduce the firm expected revenue. In sum, an LI signal improves the revenue, and an

HI signal does not substantially harm the firm. As such, inventory signal benefits the firm

when τ is large.

In contrast, when τ is small, customers’ PP concerns alleviate. In this case, both firms

would behave the same, and an inventory signal does not help separate them. From Propo-

sition 2.3, recall that τ(α) is the threshold such that for τ ≤ τ(α) price alone cannot even

partially separate the firms, i.e., γ(τ, α) = 0. Hence, customers do not learn about the firm

type by observing the first-period price. Moreover, in this case, Proposition 2.5 shows that

I∗c = 1. In other words, an inventory signal does not convey any information to the customers

either. Therefore, this proposition implies that an inventory signal benefits firms only when

customers can “complement” their inventory information with prices.

Furthermore, the proposition shows that τ(α) is increasing in α. In other words, as the

fraction of H-type customers increases, the inventory signal benefits the firm for a smaller

range of high τ values. This is because an increase in α increases a U-type firm’s incentive

to set a high price in the first period and exclude the L-type customers. Simultaneously, it

increases the PP value for a P-type firm. In both cases, i.e., a high uniform or personalized

price, inventory becomes a less determinant factor of the firm’s pricing strategy than cus-

tomer valuations. Consequently, an inventory signal does not convey much information to

customers regarding the firm type and pricing strategy when α is high.

Figure 2.2 plots the regions of τ and α where an inventory signal improves the firm

revenue. We observe that when α is sufficiently low (α ≲ 0.5), the inventory signal improves

the firm revenue for all values of τ . This follows because τ(α) is an increasing function of

α and condition τ > τ(α) translates to condition α < α for some threshold α. Also, when

α is sufficiently large (α ≳ 0.67), both firm types only sell to the H-type customers. In this

case, H-type customers do not have much incentive to hide their types, as doing so would

significantly reduce their chances of obtaining a unit. Therefore, the firm does not need to
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Figure 2.2: Regions of τ and α where an inventory signal improves the firm revenue. In this

figure, we have vH = 1 and vL = 0.5.

send an informative inventory signal to persuade customers to reveal their types. Thus, for

the entire range of τ , the firm with an inventory signal achieves the same revenue as the base

model. However, for intermediate values of α (0.5 ≲ α ≲ 0.67), a binary inventory signal

only benefits the firm when τ > τ(α), as shown in Proposition 2.5.

In § A.2, we consider a variation of the inventory signaling mechanism where the firm

fully discloses the inventory level to customers. We show that when the binary inventory

signal does not improve the firm revenue, a full-disclosure signal also does not convey any

information to the customers and does not benefit the firm.

In sum, a binary inventory signal benefits the firm when τ is sufficiently large or when α

is sufficiently low. These are the cases when customers use the price to update their beliefs

about the firm type. As such, an inventory signal is a complement rather than a substitute

to price when informing customers about PP. Next, we study the customer surplus.
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2.5 Customer Surplus

In this section, we study how an inventory signal impacts customers. L-type customers

only buy the product at price vL. Hence, they would always receive a zero surplus. The

total customer surplus is then given by

CSn =

∫
i∈MH

ui0(p
n
1 (ω, I), vH ,Hc

i0) di = α× ui0(p
n
1 (ω, I), vH ,Hc

i0) for i ∈ MH ,

in the base model, and

CSs =

∫
i∈MH

ui0(p
∗
1(ω, I), vH ,Hc

i0) di = α× ui0(p
∗
1(ω, I), vH ,Hc

i0) for i ∈ MH ,

in the model with an inventory signal. Recall that ui0(·) is the ex-ante utility Customer i

receives over both periods before period 1. Therefore, integrating ui0(·) over i ∈ MH yields

the customer surplus.

Since L-type customers receive a zeros surplus, the CS does not capture the impact on

these customers whether they purchase or not. To study the impact on these customers,

we also consider the expected number of units an L-type customer receives during the two

periods. For Customer i ∈ ML, this expected number is given by

Qn
L = EI,ω[ai1(p

n
i1)ξ

c
i1(Hc

i0) + ai2(p
n
i2)ξ

c
i2(Hc

i0)],

in the base model, and

Qs
L = EI,ω[ai1(p

∗
i1, s)ξ

c
i1(Hc

i0) + ai2(p
∗
i2, s)ξ

c
i2(Hc

i0)],

in the model with an inventory signal. Note that both values of ξci1(Hc
i0) and ξci2(Hc

i0),

i.e., the availabilities in the first and second periods, are calculated based on the customer

information before the first period, i.e., Hc
i0. Hence, QL calculates the expected number

of units an L-type customer receives before observing the first-period price and inventory

signal.

Three interplaying forces determine the impact of an inventory signal on customers: (i)

the first-period price directly influences the surplus of the H-type customers. Also, L-type

customers can only purchase the product if the price is set at vL. (ii) The first-period price
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impacts the likelihood of customers receiving the product. If the firm charges price vL in the

first period, all customers can purchase the product. However, H-type customers compete

with L-type customers to randomly receive a unit. In contrast, if the firm charges a first-

period price higher than vL, all H-type customers attempting to purchase the product would

obtain a unit. At the same time, the remaining items are randomly assigned to the L-type

customers. (iii) A price higher than vL enables the firm to learn the valuations of those who

purchased in the first period. Hence, a P-type firm can fully extract the customer surplus

in the second period. This also reduces the L-type customers’ chances of receiving a unit as

they receive less priority than the higher-paying H-type customers. Albeit, PP increases the

affordability of a unit for L-type customers in the second period as they would receive price

vL. The following proposition characterizes the impact of the signaling game on customers.

Proposition 2.6. Let α = τ−1(τ). There exists a unique threshold α ≤ α such that

(i) If α < α, then CSs > CSn and Qs
L > Qn

L.

(ii) If α < α < α, then CSs < CSn and Qs
L < Qn

L.

(iii) If α ≤ α, then CSs = CSn and Qs
L = Qn

L.

Figure 2.3 plots the regions identified in the proposition. Interestingly, besides the firm,

an inventory signal can benefit all customers through a higher surplus for the H-type cus-

tomers and a higher expected number of products for the L-type customers. This happens

specifically when α is sufficiently low, i.e., α < α. In this case, PP does not offer a significant

value to the firm because only a small population of customers are H-type, and knowing their

valuations does not significantly add to the second-period revenue. Hence, when α < α, a

P-type firm implements PP only if the inventory is sufficiently low. To benefit from this, the

firm sets a low I∗c so that an LI signal conveys significant information about the availability.

For example, when I∗c = 0, an LI signal perfectly informs customers about a stockout. Si-

multaneously, an HI signal would not contain much information about the inventory. In the

example with I∗c = 0, an HI signal does not communicate any information to the customers.

However, a low I∗c increases the likelihood of sending an HI signal. In other words, although

a low I∗c weakens the HI signal, it occurs with a higher probability. This leads to a lower

price than the base model, as shown in Lemma 2.2. A lower price then benefits the H-type
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Figure 2.3: Regions of τ and α where an inventory signal improves the firm revenue and

customer surplus. In this figure, we set vH = 1 and vL = 0.5.

customers and customer surplus.

Furthermore, in this case, when inventory has an intermediate value, the firm sets first-

period price vL with an inventory signal whereas it charges p in the base model. In this

region, L-type customers have a positive chance of receiving the product in the first period

with an inventory signal, while they cannot afford it in the base model. Additionally, in

this range, the first-period price p in the base model enables the firm to learn the customer

valuations and implement PP in the second period. However, in the model with inventory

signal, first-period price vL prevents the firm from learning customer valuations. In this

situation, H-type customers are prioritized in the base model, while they are pooled with

L-type customers in the model with inventory signal. This increases the chances of L-type

customers receiving the product in the second period. As such, L-type customers may

have a higher chance of obtaining a unit in “both” periods as the firm sends an inventory

signal. Note that this reduces the product availability for the H-type customers. However,

Proposition 2.6 shows that the effect of a lower first-period price dominates the effect of

lower availability and the customer surplus increases when α is small. In fact, we observe

that H-type and L-type customers benefit from an inventory signal for the same range of
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α. This is because both customer segments benefit from an inventory signal only when it

reduces the expected first-period price.

As α increases beyond threshold α, the inventory signal enables the firm to learn the

customer valuations at a higher price than the base model, which reduces the customer

surplus. Also, as H-type customers purchase the product at a high price, they would be

prioritized over the L-type customers in the second period. This reduces the chances of

L-type customers obtaining a unit in the second period. Additionally, the firm’s tendency

to set a higher first-period price eliminates the L-type customer’s ability to purchase in the

first period. Hence, for α ∈ (α, α), both customer types are worse-off as the firm sends an

inventory signal. This is the region specified in Part (ii) of the proposition.

As α exceeds threshold α, the firm sets I∗c = 1 as shown in Proposition 2.5, which leads

to the same game dynamics with and without the inventory signal. Thus, both customer

types would be treated equally in both models.

Finally, we note that for α < α, we have τ > τ(α) as given in Proposition 2.5. This

is the region where the firm benefits from sending an informative inventory signal, i.e.,

a signal with I∗c < 1. Since α ≤ α, we find that an inventory signal benefits “all” the

stakeholders, including the firm and customers when α < α. In light of growing interest in

PP regulations, requiring firms to disclose such inventory information can be a viable policy

design, particularly for markets populated with low valuation customers (i.e., low α) and

high possibility of PP (i.e., high τ) where inventory availability disclosure benefits all the

stakeholders.

2.6 Extensions

In this section, we consider two extensions to establish the robustness of our results and

modeling approach. For brevity, we only discuss the main insights in this section.6

6The details of the analyses, including the supporting results, are available upon request.
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2.6.1 Demand Uncertainty and Optimal Inventory

Consider a case where the firm and customers are a priori uncertain about α, i.e., the

fraction of H-type customers. Parameter α captures the popularity of the product and

determines the demand for any price higher than vL. Let fα(·) and Fα(·) be the density and

distribution functions of α. We assume that the firm learns the precise value of α at the

beginning of the selling horizon while customers remain uncertain. This reflects that firms

are often more informed about demand than their customers through market research. We

continue to assume that I1 = I2 = I to focus on the high-level implications of implementing

PP. Furthermore, we assume α has a uniform distribution on interval [0, 1]. We consider the

same sequence of events as in §2.3.1.

In this section, an availability signaling mechanism maps α to a measure of product

popularity. For example, the firm can mark the product as “trendy” or “selling fast.” The

firm can also signal availability by sharing the fill rate or the service level information. Let

Σd : α → Sd = {sdb , sda} be this signaling mechanism where sdb and sda are the signals sent

when the product availability is high (α < αc) and low (α ≥ αc), respectively.

In this model, we analytically replicate most of the results from the main model with

modifications to the equilibrium values. Specifically, the customers’ purchase decisions follow

a threshold policy where they purchase the product if the price is below a threshold. Also, a

P-type firm implements PP if the product is sufficiently popular, i.e., when α is sufficiently

high. Moreover, we find that price alone cannot serve as a signal to entirely separate the

two firm types.

When the firm can send a signal regarding product availability, we establish the existence

of the equilibrium. We also show that the expected revenue function has at most two local

maximizers in αc such that one is below I and the other is I. When αc = I, the firm

merely signals whether inventory is sufficient to meet the demand of all H-type customers.

However, it does not inform customers regarding the degree of product availability. This

strategy would particularly be optimal when τ and I are relatively large. In this case, the

firm is P-type with high probability and has the incentive to personalize the price. Therefore,

it benefits from not communicating too much information about the product availability.

39



However, when τ is small, the firm benefits from informing customers about shortage

situations, which is achieved by setting a low value for αc. Figure 2.4 plots the ex-ante

expected revenue function as a function of the signal cut-off αc and illustrates this discussion.

(a) τ = 0.7. (b) τ = 0.45.

Figure 2.4: Ex-ante expected revenue as functions of signal cut-off αc, when vH = 1,

vL = 0.1, and I = 0.95.

Finally, we numerically investigate the optimal inventory level with and without an

availability signal. We observe that the firm stocks less inventory when it uses an availability

signal. This increases the shortage situations, which will be communicated to customers

through the availability signal.

Interestingly, when the firm optimally sets inventory, the value of using an availability

signal increases. This observation is not a priori intuitive: setting inventory enables the firm

to reduce stocks and signal shortage via price even without any availability signal. This

undermines the value of an availability signal. However, such a signal allows the firm to

convey information about the inventory shortage more effectively. This re-purposes the role

of prices from signaling availability to matching customer valuations. Figure 2.5 shows this

behavior.

2.6.2 Customer Non-Stationary Valuations and a T−Period Model

In the main model, we considered two customer segments in a two-period model. In such

a model, if a customer purchases the product at a price higher than vL, she reveals her type
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Figure 2.5: Optimal Ex-ante expected revenues with and without demand signaling as

functions of inventory I, when vH = 1, vL = 0.1, and τ = 0.7.

to the firm. In this environment, we found that some customers may hide their types in the

first period. However, this result should not be interpreted as customers permanently hide

their types until the last period when there are more than two periods. This is because,

first, when the customer valuations are non-stationary, or there are more than two segments,

purchasing a product does not fully reveal the customers’ private valuations. Additionally,

by hiding her type, a customer forgoes a positive utility, which might not be optimal in any

period. This section shows how our model could be extended to more than two periods when

customer valuations are non-stationary.

Consider T > 0 selling periods and a continuum of customers with unit mass. Similar

to our main model, Customer i has valuation ṽit ∈ {vL, vH} in period t. We consider two

customer types: L-type customers (denoted by set L) always possess valuation vL, i.e.,

ṽit = vL for all t ∈ {1, 2, ..., T} and i ∈ L. However, H-type customers (denoted by set H)

would have valuation vH with probability λ and vL with probability 1 − λ (Taylor 2004).

In other words, P (ṽit = vH) = λ for i ∈ H. For example, a student traveler may rarely be

willing to pay a high price for airfare. An H-type traveler, however, may be willing to pay a

premium for a business travel. The same customer may not be willing to pay a high price
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for a leisure trip.

We assume that λvH ≥ vL. Otherwise, the firm always charges vL to all customers.

Also, let α denote the fraction of H-type customers. The firm and customer types as well

as “valuations” are private, but their distributions are common knowledge. The sequence

of events unfolds following §2.3.1. Additionally, customers learn their valuations at the

beginning of each period, and the game continues beyond period 2. Also, since customer

valuations change over time, the firm can only explore customer types rather than their

valuations directly. In this setting, our main model with two periods and stationary customer

valuations is a special case of this model with T = 2 and λ = 1.

The uncertainty regarding firm and customer types introduces an exploration-exploitation

trade-off for both the firm and customers, where they initially take actions to learn about the

other player’s type and subsequently make decisions based on their acquired knowledge to

maximize payoff. We establish that, for a P-type firm facing myopic customers, there exist

threshold tm that partitions the selling horizon into two stages. In the exploration stage, for

t ≤ tm, the firm explores the customer valuations by charging vH to all customers. In the

exploitation stage, for t > tm, the firm personalizes the prices and exploits its knowledge

about customers.

For a P-type firm facing strategic customers, there exist thresholds ts1 ≤ ts2 and p̄t for

t ∈ {1, 2, ..., T − 1} such that the selling horizon is partitioned into three intervals. In the

dormancy stage, for t ≤ ts1, the firm charges vL to all customers. In the exploration stage,

for t ∈ (ts1, t
s
2], the firm explores customer valuations by setting price p̄t for the customers

who have not purchased before and price vH for previous purchasers. In the exploitation

stage, for t > ts2, the firm sets price vH for previous H-type purchasers and vL for the other

customers.

Comparing the cases with myopic and strategic customers, we observe that in addition

to the exploration and exploitation stages, there is a stage when the firm charges the lowest

possible price to all strategic customers. This is the stage when strategic customers intend

to learn about the firm type. Also, any purchase at a high price enables a P-type firm to

extract customer surplus for the rest of the selling horizon, which is costly for customers at

the early stages. Thus, these customers would only purchase at a price higher than vL once
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they are assured the firm is U-type and the utility lost due to hiding their types dominates

the cost of revealing their types to a P-type firm.

The above observations suggest that our two-period model in the main part of the paper

could be interpreted as a reparametrization of time into the exploration and exploitation

stages after a period of dormancy.

2.7 Conclusions

We studied a pricing and inventory information provisioning game between a monop-

olistic firm and a market of heterogeneous customers. The firm has repeated interactions

with customers and can use their purchase history to learn their valuations and personalize

the price. Customers are uncertain about the product availability and the possibility of be-

ing targeted by PP. In this environment, we investigated a previously unanswered question:

Can price serve as an instrument to signal the implementation of PP? We demonstrate that

when high-valuation customers comprise a significant population of customers and when PP

is anticipated, the price alone does not communicate any information about the PP imple-

mentation. We also find that customer concerns hurt the firm revenue even if the firm does

not intend to implement PP. This is because the firm must reduce the price to alleviate these

concerns. In this situation, we prove that an inventory availability signal can help customers

identify the use of PP. This additional information can alleviate customer concerns and help

improve the firm revenue. We show that an inventory signal only benefits the customers

when the price is also an informative signal of PP. Thus, price and inventory signal are

complements in informing customers about the PP implementation.

While most of the literature focuses on the role of inventory information in creating

purchase urgency for customers, our paper uncovers a new role for the disclosure of such

information: communicating the firm’s pricing strategy and its intention to use the customer

purchase history for PP. Our paper also has important policy implications. There has been

growing interest in regulating PP due to customers’ concerns and their potential surplus loss.

Preventing firms from implementing PP might hurt the stakeholders. Our results suggest
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that an operational intervention such as requiring disclosure of inventory information under

some circumstances can benefit all the stakeholders, including firms and customers.

Our work shows that communicating inventory availability information as a signal for

firm’s pricing strategy has important implications for firms, customers, and policymakers.

In this work, we focused on the optimal binary inventory signals. We also studied full

inventory disclosure signals when the binary signal does not improve the firm revenue. One

can explore the optimal signal structure for the inventory disclosure policies in the space of

all possible signaling mechanisms. Furthermore, future work can investigate the interplay

of PP with signals other than inventory availability. For example, product reviews that

correlate with quality can signal the implementation of PP. Also, future empirical work can

verify our theoretical findings and the role of inventory in resolving uncertainty about the

firm’s pricing strategy.
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3.0 Rating Systems under Customer Disconfirmation Bias: Asymptotic

Behavior and Granularity

Customers and platforms increasingly rely on online ratings to assess the quality of

products and services. However, customer ratings are susceptible to various biases. Discon-

firmation bias is a specific form where customers incorporate the discrepancy between their

prior expectations and post-purchase experiences into their ratings. We study the asymp-

totic behavior of ratings in the presence of disconfirmation bias in three rating systems: (i)

complete system, where customers observe the entire rating history; (ii) aggregate system,

where only the frequency of each rating option is available; and (iii) average ratings, where

customers solely use the average of past ratings. Customers are Bayesian and update their

quality beliefs upon observing the ratings. After experiencing the product, they rate it ac-

cording to their heterogeneous ex-post utility and disconfirmation bias. In complete and

aggregate systems, we show that customer beliefs converge to the intrinsic quality when

disconfirmation bias is small. When this bias is large, there will be a discrepancy between

converged beliefs and the intrinsic quality, although this discrepancy could be arbitrarily

small. When the disconfirmation bias is intermediate, beliefs may diverge significantly from

the intrinsic quality or not converge. However, we establish that the platform can guarantee

correct learning by designing a sufficiently granular rating system, i.e., a system with more

rating options. We confirm all these results in the system with average ratings, albeit with

a bias-correcting rule. Finally, we characterize the learning speed in the aggregate system.

3.1 Introduction

Whether choosing restaurants, booking hotels, or shopping, customers increasingly rely

on online reviews to gauge the quality of the products and services. In a survey, 89% of

global customers stated they check online reviews when shopping (Trustpilot 2020) and 77%

of customers look for websites with reviews and ratings (PowerReviews 2023). While reviews
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are often more comprehensive evaluations and can include written articulations, ratings are

typically simpler expressions of customer experience using a numerical score. For example,

many platforms such as Amazon use a 5-star system that allows customers to rate the

products on a 1-5 scale. IMDb, an online database for digital entertainment, allows users to

rate movie titles on a 1-10 scale while Steam, a video game distribution service, collects and

reports positive-negative ratings. Critical questions in this environment are whether ratings

can correctly reflect the underlying quality of the product or service and whether the design

of the rating system affects this reflection.

Although customers have subjective preferences for product horizontal attributes such

as color, the vertical attributes such as quality are objective. In other words, all customers

would perceive a higher quality product as superior to a product with lower quality. If

customers were to incorporate only these vertical characteristics in their ratings, we could

naturally expect ratings to be an unbiased estimator of intrinsic quality. However, customers

are not necessarily objective and may include their subjective preferences when rating their

experience. For example, Besbes and Scarsini (2018) consider customers who experience

quality differently and Acemoglu et al. (2022) study customers who rate based on their

heterogeneous ex-post utilities. In this environment, it is not clear whether ratings can in-

formatively uncover the intrinsic quality. Specifically, in these models, customers inevitably

exhibit a selection bias: only those who derive sufficiently high utility purchase the product.

These customers tend to have a higher ex-post utility, which can inflate their ratings. Sim-

ilarly, a higher rating can motivate lower-valuation customers to purchase, which can lower

the ratings.

Nevertheless, the selection bias is the result of rational purchasing choices of heteroge-

neous customers. However, customers also exhibit cognitive biases due to their prior expec-

tations. Particularly, empirical work has established that customers with inferior experience

than their prior expectations are more likely to rate the product negatively and those whose

experience exceeds their expectations tend to rate more positively (Talwar et al. 2007, Ho

et al. 2017). This well-established behavioral phenomenon is usually referred to as discon-

firmation or expectation bias in various contexts. The term disconfirmation (as opposed to

confirmation) in this context is used because customer ratings positively correlate with the
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sign of the discrepancy between their prior belief and actual experience.

3.1.1 Contribution and Methodology

In this work, we study the behavior of ratings in the presence of customer disconfirmation

bias and its interplay with various rating systems. Specifically, customers who purchase the

product rate based on the weighted average of two terms: (i) their ex-post utility which

depends on the intrinsic quality, idiosyncratic heterogeneity, and price; and (ii) discrepancy

between their prior quality belief and post-purchase experience. We refer to this weighted

average as the reference utility. The weight of the average between the two terms determines

the strength of the disconfirmation bias. In one end of the spectrum, customers purely

rate their ex-post heterogeneity aligned with majority of the literature. In the other end,

customers purely rate based on their disconfirmation bias which is endogenously formed

upon observing the ratings. In the context of rating systems, this bias has been the subject

of empirical studies, where researchers examine its magnitude and direction. To the best

of our knowledge, we are the first to analytically study the evolution of ratings under the

disconfirmation bias and the effect of various rating systems on this evolution.

We consider rating systems with an arbitrary finite set of rating options. Customers are

Bayesian and form beliefs about intrinsic quality upon observing the ratings. We consider

three rating systems: In the first system, customers observe the individual ratings of all

past customers. We refer to this model as the complete system. In the second model,

which we call the aggregate system, customers only observe the frequency of each rating

option. Lastly, we study a system where customers solely analyze average ratings. In each of

these rating systems, we study the asymptotic behavior of the ratings and the effect of the

disconfirmation bias on this behavior. We also examine the implications of the granularity

of the rating system, i.e., the number of rating options available to customers. Finally,

we investigate the speed of convergence in the aggregate system both when the customer

heterogeneity is low and high.

While we make assumptions to filter out the selection bias and focus on disconfirmation

bias, our framework allows us to generalize in multiple directions. For example, unlike most
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literature, we do not require significant richness in customer heterogeneity. This enables us to

derive distinct insights about the interplay of disconfirmation bias, customer heterogeneity,

and granularity of the rating system. Also, we consider a relatively general rating system and

distribution for the prior quality beliefs. A general distribution for quality beliefs enables us

to even out the space of rating options and interpret the granularity of the rating system in

the language of the number of rating options for customers.

3.1.2 Findings and Managerial Implications

We establish the following results:

1) When the customer disconfirmation bias is sufficiently small, the customer beliefs

would eventually converge to the intrinsic quality in the complete and aggregate systems.

In this environment, customers can incorporate these biases into their beliefs and uncover

the intrinsic quality. Furthermore, in the system with average ratings, beliefs converge to

a value that is strictly increasing in the intrinsic quality. In other words, average ratings

enable customers to rank the quality of different products correctly. However, the converged

beliefs have a systematic error due to limited information or cognitive ability. Since this is

a systematic error, we find a bias-correcting rule that can fix it.

2) When the disconfirmation bias is large, all three models lead to biased quality beliefs.

In this case, the disconfirmation bias is significant to the extent that customers can no longer

distinguish between others’ heterogeneous experiences and their cognitive biases. This results

in a discrepancy between customer beliefs and the intrinsic quality. However, we show that

this discrepancy is small for a large disconfirmation bias. Specifically, in the extreme case

when customers solely reflect their disconfirmation bias rather than ex-post utility, the beliefs

correctly converge to the intrinsic quality. In this setting, customers are so cognitively biased

that they do not consider their ex-post heterogeneity, making it easier for future customers

to uncover the effect of disconfirmation bias.

3) When the disconfirmation bias is intermediate, all three systems can lead to a large

gap between customer beliefs and the intrinsic quality. In this case, customers’ reference

utility and rating choices convey the least information to future customers.
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4) While disconfirmation bias can lead to incorrect learning, the platform can guarantee

correct learning by designing a sufficiently granular rating system, i.e., by giving more rat-

ing options to customers. Notably, the granularity required to ensure correct convergence

decreases in the degree of customer heterogeneity and is proportional to 1/(1 − α), where

α is the weight of customer disconfirmation bias. In other words, the platform does not

need to significantly increase granularity unless disconfirmation bias is very high. Interest-

ingly, however, the case of high disconfirmation bias corresponds to when the gap between

quality beliefs and intrinsic quality would be small (as discussed in Insight (2)). Hence, the

platform may prefer to keep the number of rating options limited at the expense of a slight

discrepancy.

5) We characterize the learning speed under the aggregate system. When heterogeneity is

small, we show that there exist ratings that can separate two given quality values when they

arise. We formulate a lower bound on the expected number of customers required for such a

rating to occur as a function of the distribution of customer heterogeneity, disconfirmation

bias, and the rating system’s granularity. We show that this lower bound is monotonically in-

creasing in the granularity of the rating system. However, it may be increasing or decreasing

in the disconfirmation bias. Specifically, when customer beliefs are too far from the intrinsic

quality, the disconfirmation bias can slow down learning. In contrast, when customer beliefs

are close to the intrinsic quality, an increase in disconfirmation bias makes learning faster.

When customer heterogeneity is large, we show that customer learning is exponentially

fast. We also bound the learning speed using Kullback-Leibler (KL) divergence between

the probability of different ratings conditioned on various beliefs. Using these bounds, we

observe that the granularity of the rating system does not necessarily translate to faster

learning.

The remainder of the paper is organized as follows: In §3.2, we review the related liter-

ature. §3.3 introduces the model setup, including the customer rating behavior and rating

system design. §3.4-3.6 study the asymptotic behavior of the ratings in the complete, aggre-

gate, and average rating systems. The learning speed in the aggregate system is analyzed in

§3.7. Finally, §3.8 concludes the paper.
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3.2 Literature Review

Social learning, i.e., when decision-makers learn from others’ actions, has received grow-

ing attention in the Economics and Operations literature. The seminal works of Banerjee

(1992) and Bikhchandani et al. (1992) illustrate the possibility of an informational cascade

and herd behavior wherein rational agents mimic the actions of their peers under social

learning. This environment was later extended in various directions to incorporate factors

such as heterogeneous preferences (Smith and Sørensen 2000), imperfect information (Çelen

and Kariv 2004, Herrera and Hörner 2013), network effects (Acemoglu et al. 2011, Mossel

et al. 2014, Lobel and Sadler 2015), and non-Bayesian learning (Jadbabaie et al. 2012).

When customers do not directly observe the purchase decisions and quality experiences of

others, reviews and online ratings can serve as an instrument to convey information to future

customers. A body of literature empirically studies online ratings. Using an experiment, Hu

et al. (2006) show that online ratings may not converge to the intrinsic quality. Chevalier

and Mayzlin (2006) find improved reviews for books can increase sales. Li and Hitt (2008)

study the effect of self-selection bias on the evolution of ratings. Using the case of books on

Amazon, they argue that marketing strategies should target customers who are more likely

to write positive reviews to encourage them to purchase early.

Anderson and Sullivan (1993) show that quality satisfaction is not solely impacted by

customer pre-purchase expectations; Instead, it is best captured by the disconfirmation be-

tween the perceived quality and expectations. Talwar et al. (2007) study the behavior of

ratings using numerical and textual review analysis. They show that customer ratings partly

reflect customers’ discrepancies between intrinsic quality and their prior expectations. Ho

et al. (2017) formalizes this in the context of disconfirmation bias. Using a hierarchical

Bayesian model and data from an e-commerce website, they establish a positive disconfirma-

tion bias in customer ratings. Motivated by these empirical findings, we analytically study

the evolution of ratings and the impact of rating system design on this evolution.

Crapis et al. (2017) consider customers who are uncertain about the product quality

and learn from a two-scale rating system where previous customers either like or dislike

the product based on their ex-post utility. Customers are non-Bayesian and estimate the
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quality using a Maximum Likelihood approach. In this setting, they establish the conver-

gence of quality beliefs to the intrinsic quality. They also find that various pricing policies

that incorporate learning can increase the firm revenue. Besbes and Scarsini (2018) study

sequential ratings of Bayesian customers who report their precise ex-post utility. They focus

on two information availability schemes where customers either observe all past ratings or

their sample mean. They find that customers learn the intrinsic quality asymptotically when

observing the entire rating history; however, their estimate may be biased with the sample

mean. Ifrach et al. (2019) focus on a binary rating system where purchasing customers would

like the product if they receive a positive ex-post utility and dislike it otherwise. They prove

that customer quality beliefs converge to the intrinsic quality as long customers continue

purchasing the product. Since the firm’s pricing influences customers’ purchase decisions

and ratings, they also consider the pricing problem and show that a single price is optimal if

the set of possible prices is finite. The dynamic pricing with social learning has been further

studied by Yu et al. (2016), Papanastasiou and Savva (2017), Shin et al. (2023), and Stenzel

et al. (2020).

Among other mechanisms to control the evolution of social learning, Papanastasiou et al.

(2014) consider a two-stage game where, in the first stage, the product is sold to customers

who would then rate the product. The ratings inform future customers about the product

quality in the second period. They show that strategic stockouts in the first stage can

benefit the firm by boosting ratings when higher-valuation customers have a higher chance of

obtaining the product in the first stage. Their model assumes a positive correlation between

customer ex-ante expectations and their ratings. Maglaras et al. (2023) study the problem

of ranking products when displayed to customers who incur a search cost. Using a fluid

approximation, they establish that customers can learn the product quality and compare

the performance of various ranking policies.

The closest to our work is Acemoglu et al. (2022) who study the behavior of ratings

under a general rating system and customer selection bias. This bias stems from ex-ante and

ex-post customer heterogeneity: Higher ratings can motivate customers with lower ex-ante

beliefs to purchase the product. These customers, may end up with a low ex-post utility,

motivating them to rate negatively. In the same vein, only those customers who derive
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sufficiently high utility may purchase the product. These customers tend to have higher ex-

post utility, motivating them to rate positively. While their model considers the customers’

selection bias, they do not incorporate the disconfirmation bias. Hence, customers ex-post

utility used for ratings is independent of other customer actions. In other words, “past actions

affect player t’s inference, not her payoff” (Ifrach et al. 2019). In contrast, our work considers

the disconfirmation bias. In our model, a customer’s reference utility—the weighted average

of the ex-post utility and disconfirmation bias—depends on her inference before the purchase

decision. To filter out the direct effect of the selection bias, we assume customers are ex-ante

homogeneous but ex-post heterogeneous. Nevertheless, we find that disconfirmation bias

causes intertemporal ex-ante heterogeneity among customers. In other words, depending on

the order in which customers arrive on the platform, they receive a different payoff because

of the different information they receive from ratings. Our approach further enables us

to generalize in a few directions. For example, in contrast to the literature that requires

sufficiently high heterogeneity, we also consider scenarios where customer heterogeneity is

small. For example, we allow situations where customers purely rate products based on their

disconfirmation bias without any additional ex-ante or ex-post heterogeneity. We also do

not require the intrinsic quality to have a binary domain. In this environment, we explicitly

find the interplay between the disconfirmation bias, customer heterogeneity, and granularity

of the rating system.

A workstream studies the firm decisions when customers exhibit various cognitive traits.

Recent examples include dynamic pricing with reference effects (Chen et al. 2017), customer

loss aversion (Chen and Nasiry 2020), gain-seeking behavior (Hu et al. 2016), and rational

myopia (Aflaki et al. 2020). In our model, customers are Bayesian and use ratings to make

rational purchase decisions. However, they exhibit disconfirmation bias when rating the

product. In the context of ratings, Guan et al. (2020) consider customers who incorporate

quality references when rating. In a two-period model, they study whether the firm benefits

from disclosing assessments of first-period purchasers to future customers. In their model,

the mere act of disclosure serves as a signal for quality. We also consider quality references

in our customer rating behavior. However, our focus is on the design of rating systems and

the evolution of ratings in a multi-period model.
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3.3 Model

We consider a platform selling a product with unknown quality to a population of cus-

tomers. Let Q be the product’s intrinsic quality. The platform and customers are a priori

uncertain about Q. Let Q̃ denote the ex-ante product quality supported on a bounded in-

terval Q with density and distribution functions fQ(·) and FQ(·), respectively. We assume

FQ(·) is continuous and strictly increasing. Without loss of generality, we normalize Q to

[0, 1].

The platform has a rating system that allows customers to reflect on their experiences

by rating the product on a numerical scale. We formally define this rating system in §3.3.1.

Customers arrive sequentially over time. We refer to a customer who arrives at time t ∈

{1, 2, ...,∞} as Customer t. Upon observing the information provided by the platform,

Customer t updates her belief about the product quality. Since customers may observe

different information over time, their beliefs about the product quality may vary. Let Ic
t

be Customer t’s information set and Q̃t(Ic
t ) be her (posterior) quality belief upon receiving

information Ic
t . Furthermore, let Qc

t(Ic
t ) denote the expected value of the quality belief, i.e.,

Qc
t (Ic

t ) = E
[
Q̃t(Ic

t )
]
.

To simplify notation, we drop argument Ic
t from Q̃t and Qc

t . Additionally, we drop sub-index

t when not emphasizing the sequence at which the customer has arrived.

We assume customers value the product at its quality. Thus, Customer t, purchasing the

product at price p, receives “ex-ante” mean utility

uea
t (Ic

t ) = Qc
t − p. (7)

A customer purchases the product if she receives a positive ex-ante utility, i.e., uea
t (Ic

t ) ≥

0. Let Zt(p, Ic
t ) be the indicator function for Customer t’s purchase decision, where Zt(p, Ic

t ) =

1 if she purchases the product, and Zt(p, Ic
t ) = 0, otherwise. After the purchase, customers

learn the intrinsic quality of the product.

To focus on the implications of disconfirmation bias, we assume customers have homo-

geneous valuations a priori. However, they are intertemporally heterogeneous since they
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possess different information sets depending on their arrival times. This feature enables us

to filter out the selection bias and, as we will see, isolate the effect of the disconfirmation

bias on the evolution of the rating system. This implies that if a customer finds it optimal

not to purchase the product at any time, all subsequent customers would also stop purchas-

ing. In the presence of ex-ante heterogeneity, it is often argued that customers cannot learn

from those who do not purchase (Besbes and Scarsini 2018). Therefore, the primary role

of ex-ante heterogeneity would be its effect on the selection bias when customers rate the

product. In the absence of ex-ante heterogeneity, we do not require such arguments. In our

setting, either all customers purchase or learning stops at a given time.

Furthermore, we allow ex-post heterogeneity for non-quality related attributes. For ex-

ample, a customer may find a specific color of a piece of apparel stylish, only to use it

less often after purchase. Let θ̃ be the ex-post idiosyncratic preferences with density and

distribution functions fθ(·) and Fθ(·), respectively. We assume θ̃ has a zero mean and is

symmetric around the mean supported on bounded interval
[
−θ, θ

]
with a continuous and

strictly increasing distribution function.

Upon realization Q of Q̃ and θt of θ̃, Customer t receives ex-post utility

uep
t (θt) = Q+ θt − p. (8)

The ex-post heterogeneity and disconfirmation bias result in varying customer ratings

over time. When there is no confusion, we drop the time index from parameter θ and utility

functions. Hence, a customer receives ex-post utility uep(θ) = Q+ θ − p.

Next, we discuss the details of the rating system and customers’ rating behavior.

3.3.1 Rating System and Customer Disconfirmation Bias

We consider a platform allowing customers to rate the product on a K-scale system.

We refer to K as the size of the rating system. To avoid minor ad-hoc treatments, we

assume K = 2k for some integer k ≥ 1. Specifically, a customer can choose rating r ∈ R =

{−k, ...,−1, 1, ..., k} after purchasing the product.1

1We excluded zero from the range of the ratings to align with standard 2-scale rating systems and simplify
the representation of some of our equations. However, most findings can be extended to incorporate zero as
a rating option with minor modifications.
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As discussed in the introduction, customers exhibit disconfirmation bias when reviewing

products (Talwar et al. 2007, Ho et al. 2017). In other words, they are more likely to rate

the product positively if its quality exceeds their expectations. In contrast, they may reduce

their ratings if the product disappoints their prior expectations. Formally, we assume a

customer reflects the following metric in her rating:

ur (α, θ,Qc) = (1− α) (Q+ θ − p) + α(Q−Qc), (9)

for α ∈ [0, 1]. We refer to ur (α, θ,Qc) as the customer reference utility. In this model, α

captures the weight of the customer disconfirmation bias. When α = 0, customers do not

incorporate their prior expectations into ratings and do not directly exhibit disconfirmation

bias. Thus, they purely rate based on their ex-post utilities, i.e., Q + θ − p, as in most

literature. On the other end of the spectrum, when α = 1, customers rate the product solely

based on the discrepancy between their prior beliefs and the intrinsic quality, i.e., Q−Qc
t . In

reality, customers may consider a combination of their ex-post utility and reference quality

when rating the product, i.e., α ∈ (0, 1).

Since the platform uses a countable (possibly infinite) rating system, customers cannot

precisely report their reference utility. Consider arbitrary thresholds −∞ = λ−k < λ−k+1 <

· · · < λ0 = λ1 = 0 < · · · < λk < λk+1 = ∞. Customers rate the product according to the

following mapping:2

r (ur (α, θ,Qc)) = i, if ur (α, θ,Qc) ∈ [λi, λi+1) for i ∈ {−k, ..., k}. (10)

For instance, when k = 1, customers rate the product positively if ur (α, θ,Qc) ≥ 0 and

negatively otherwise. Also, when α = 0 and k = ∞, our model captures the case where

customers precisely report their ex-post utility (Besbes and Scarsini 2018).

While most of our insights hold for arbitrary thresholds λi, when k ≥ 2, we further assume

λk = −λ−k+1 = 1 and |λi+1 − λi|= 1/k. In other words, thresholds λi, for i ∈ [−k + 1, k],

partition interval [−1, 1] into subintervals of equal length. This assumption allows us to

control the granularity of the rating system using a single parameter k. Moreover, this

2Acemoglu et al. (2022) show how micro-foundations of customer rating decisions can lead to rating
structure (10) under natural assumptions on customer utility.
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assumption is not too restrictive as rating thresholds affect customer ratings “relative” to

their reference utility, which includes a general distribution for the quality beliefs.

We study the behavior of this rating system under three information availability schemes.

First, in §3.4, we consider customers who observe and analyze the entire rating history. In

§3.5, we study a variation where customers only observe the frequency of the past ratings.

Finally, §3.6 considers the case where customers solely use the average ratings to update

their beliefs.
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Table 3.1: Caption: Notation Summary (Chapter 3)

Variables

Q Product’s intrinsic quality

Ic
t Customer t’s information set at period t

Qc
t The expected value of the quality belief for Customer t given his information set

p Price of the product

uea
t Ex-ante utility

Zt

The indicator function for Customer t’s purchase decision, where Zt(p, Ic
t ) = 1 if

she purchases the product, and Zt(p, Ic
t ) = 0, otherwise

θ
Ex-post heterogeneity for non-quality related attributes. Assume it has a zero

mean and is symmetric around the mean supported on bounded interval
[
−θ, θ

]
uep
t Ex-post utility for Customer i

k Granularity of the rating system. K = 2k is the size of the rating system

rt Rating r ∈ R = {−k, ...,−1, 1, ..., k} at period t

α Captures the weight of the customer disconfirmation bias

ur Customer reference utility, which is a function of α, θ, and Qc

λi The threshold for rating i

πt

The distribution of previous ratings at period t, and πt =
(
πt(−k), ..., πtk

)
, where

πtj is the frequency of Rating j

Q̃p The platform’s quality belief

κ
The probability of Customer t rating the product at r, which is a function of r,

Q, and Q̃t

r̄t r̄t denote the average ratings until period t

Q̂c
t

Customer posterior belief at period t under average rating, and Q̂u
t is the unbiased

customer posterior belief

V L(Q) Speed of learning when customer heterogeneity is low

V H(Q) Speed of learning when customer heterogeneity is high
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3.4 Complete Rating System

In a complete rating system, customers have access to the entire rating history and are

capable of extracting information about product quality in a Bayesian way. In such a model,

Ic
t = {(r1, r2, ..., rt−1)}, where rj is Customer j’s rating for j < t. We refer to this regime as

the Complete (Rating) System.

Before investigating the evolution and convergence of the ratings, we illustrate the be-

havior of this rating system and the implications of the disconfirmation bias using a series

of examples.

Example 1: Consider a 2-scale rating system, i.e., k = 1. For example, this can represent

a thumbs-up/down system. Suppose Q = 2/10, Q̃ is uniformly distributed on [0, 1], and

θ = 0, i.e., customers are ex-post homogeneous. Finally, let α = 1 and p = 0. Hence,

customers do not reflect on their post-purchase experiences; they purely rate based on their

disconfirmation biases. In this example, the first customer forms quality belief Qc
1 = 1/2.

This customer receives ex-ante utility uea
1 = 0.5 > 0 and purchases the product. She then

receives reference utility ur
1 = 2/10 − 1/2 = −3/10 < 0, and therefore, negatively rates

her experience, i.e., r1 = −1. Observing this rating, the second customer updates her belief

about the product quality. A Bayesian customer would infer that Q̃2 is uniformly distributed

on [0, 0.5] and Qc
2 = 0.25. Thus, this customer purchases and rates the product at r2 = −1.

Figure 3.1 plots the evolution of customer beliefs over time. We observe that the customer

beliefs eventually converge to the intrinsic quality as more customers rate the product. In

this example, k = 1, α = 1, Q = 2/10, Q̃ ∼ U(0, 1), θ = 0, and p = 0.

Example 2: Consider the same parameters as in Example 1, except that α = 1/3. Hence,

customers partially exhibit disconfirmation bias. Since the first customer does not observe

any ratings, her prior expected belief is again Qc
1 = 1/2. This customer receives ex-ante

utility uea
1 = 0.5 > 0 and purchases the product. She receives reference utility ur

1 = (1 −

1/3) · 2/10 + 1/3 · (2/10 − 1/2) = 1/30 > 0 and rates positively, i.e., r1 = 1. Observing

this rating, the second customer updates her belief about the product quality. A Bayesian

customer would infer that Q̃ is uniformly distributed on [2/10, 1] and Qc
2 = 6/10. This

customer purchases the product and positively rates it, i.e., r2 = 1. It is straightforward
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Figure 3.1: Evolution of customer quality beliefs over time in a complete system.

to see that subsequent customers would also buy and positively rate the product. Hence,

Qc
2 = Qc

3 = · · · = Qc
∞ = 0.6, which is different from the product’s intrinsic quality.

Figure 3.2 plots Qc
∞ for various values of k. Interestingly, we observe that Qc

∞ non-

monotonically converges to the intrinsic quality as the rating system becomes more granular,

i.e., the number of rating options increases. This observation motivates us to study the in-

terplay between the disconfirmation bias and rating system’s granularity and its implications

for customer beliefs. In this example, α = 1, Q = 2/10, Q̃ ∼ U(0, 1), θ = 0, and p = 0.

Next, we formally study the convergence of the customer beliefs. We start with the

special case when α = 1, i.e., the case with maximum disconfirmation bias.

Proposition 3.1. When α = 1, there exists price threshold p > 0 such that

(i) If p ≤ p, we have limt→∞Qc
t = Q.

(ii) If p > p, threshold t̄ exists such that for t > t̄, customers do not purchase the product

and learning stops.

Part (i) establishes that when price is sufficiently low that customers continue purchasing

and rating the product, customer beliefs converge to the intrinsic quality. This is because
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Figure 3.2: Converged customer quality beliefs as a function of the rating system’s granularity

in a complete system.

when Customer t rates the product at rt > 0, the lower bound of the support of the next

customer’s quality belief, i.e., Q̃t+1, increases. Also, a rating rt < 0 would reduce the upper

bound of the customer belief. This results in a sequence of contracting belief supports that

eventually converge to the intrinsic quality as long as customers continue purchasing and

rating the product. This convergence result does not require customers to have unbiased

priors. As is typical with Bayesian updating, the prior bias eventually corrects itself as long

as learning continues.

However, similar to the conventional observation in the customer ratings’ literature,

the product’s price should be sufficiently low such that customers continue purchasing. If

the price is set too high, early customers may form a belief that yields a negative utility,

motivating them to stop purchasing. This would then stop ratings from being updated.

Notably, this price threshold may be lower than Q. In other words, customers would have

purchased the product if they knew the intrinsic quality. However, the uncertainty in the

product value would discourage them from buying.
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Remark 1. Throughout the paper, we find similar results for scenarios where a high price

interrupts customer purchases and learning. To avoid repetition, for the remainder of the

paper, we assume the price is sufficiently low such that customers continue purchasing. In

each of our information schemes, we also considered a variation where the firm optimally

sets the price. We show that a firm with sufficiently a high discount factor for future revenue

would never set a price so high that customers would stop purchasing.

Next, we consider the model with α < 1. In this scenario, in addition to the disconfir-

mation bias, customers incorporate their ex-post utility into the ratings. We establish the

following result.

Proposition 3.2. There exists threshold α(k, θ) such that

(i) If α ≤ α(k, θ), then limt→∞Qc
t = Q.

(ii) If α > α(k, θ), there exists intrinsic quality Q ∈ Q such that limt→∞Qc
t = Q∞(α) ̸= Q.

However, |Qc
∞ −Q|≤ 2(1− α)θ. As such, limα→1Q∞(α) = Q.

(iii) Threshold α(k, θ) is increasing in θ. Furthermore, it is increasing in k for k ≥ 2, and

limk→∞ α(k, θ) = 1 and limθ→∞ α(k, θ) = 1.

Part (i) shows that when customers use the entire rating history, their beliefs converge to

the intrinsic quality as long as the disconfirmation bias is not strong, i.e., when α ≤ α(k, θ).

This result is not a priori trivial: When α is positive, customers report their ex-post utility

with a “bias.” This bias distorts the ratings for future customers, which can eventually result

in the non-convergence or convergence to a biased value. However, in a complete system,

Bayesian customers can correctly account for this bias when α is small. In this setting,

customers can rationally hypothesize the thought process of previous customers from the

rating history and eventually distinguish the effect of disconfirmation bias from customers’

idiosyncratic heterogeneity.

As indicated in Part (iii), α(k, θ) is increasing in θ. Therefore, as customer heterogene-

ity increases, the convergence to the intrinsic quality is guaranteed for a larger range of

the disconfirmation bias. In the extreme case where customers are infinitely heterogeneous

(θ → ∞), the beliefs converge to the intrinsic quality for all values of α. This is somewhat

counterintuitive because a higher heterogeneity adds to the ambiguity in ratings, particu-
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larly in the presence of the disconfirmation bias: A customer may rate a product positively

(negatively) because she receives a high (low) ex-post utility or had a low (high) expectation

which resulted in a high positive (negative) disconfirmation. However, high heterogeneity

ensures that extreme ratings will eventually arise that enable customers to refine their be-

liefs. This result resembles the findings of Ifrach et al. (2019) and Acemoglu et al. (2022),

where the convergence to the intrinsic quality is guaranteed if the customer heterogeneity

possesses sufficient “Richness.”

Part (ii) illustrates that, in any rating system with a given granularity, the convergence

to the intrinsic quality is not guaranteed if the disconfirmation bias is significant. This is

because the relative heterogeneity in customers’ reference utility is governed by (1 − α)θ.

Thus, an increase in α reduces the relative richness of heterogeneity and, consequently, the

possibility of observing sufficiently low and high ratings. This can result in convergence to

a belief that deviates from the intrinsic quality. However, as the proposition shows, the

converged belief is always within the 2(1− α)θ neighborhood of the intrinsic quality, which

is decreasing in α. An important implication is that a sufficiently significant disconfirmation

bias warrants convergence to an arbitrarily close neighborhood of the intrinsic quality. Cus-

tomers’ increased emphasis on the discrepancy between the intrinsic quality and their prior

expectations reduces the weight of their private subjective preferences when rating. This

enables future customers to form beliefs closer to the intrinsic quality. In the special case

when α = 1, this result replicates the finding of Proposition 3.2.

Interestingly, Part (iii) shows that α(k, θ) is increasing in k with limk→1 α(k, θ) = 1. As

such, for any heterogeneity θ and disconfirmation bias α, the platform can ensure correct

learning by designing sufficiently a granular rating system, i.e., by setting a high value of

k. A more granular system works as a magnifier for customers to account for the previous

customer biases. We formalize this discussion in the following proposition.

Proposition 3.3. In a rating system with k ≥ 1 + 1
2θ(1−α)

, customer beliefs converge to the

intrinsic quality.

We observe that the granularity required to guarantee correct learning increases in α

proportional to 1
2θ(1−α)

. Hence, while the platform must make the system more granular to
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guarantee correct convergence when α increases, the increase in granularity does not need

to be significant as long as α is not close to one. For example, when Q = 1 and θ = 1, a

change in the value of α from 0 to 0.5 does not require any change in granularity for the

ratings to converge to the intrinsic quality. Additionally, a further increase to α = 0.75 only

requires changing from a 4-scale to a 6-scale system. In this case, even when α > 0.75, the

customer quality beliefs would always be within 25% of the intrinsic quality without further

increasing the required granularity, as shown in Part (ii) of Proposition 3.2.

3.5 Aggregate Rating System

In this section, we consider a variation where customers only observe the frequency of past

ratings to form beliefs about quality. This can occur because either the platform does not

disclose individual ratings or customers solely rely on rating statistics to reduce the cognitive

cost of processing the complete history. We refer to this scenario as the “Aggregate (Rating)

System.” In an aggregate system, Customer t observes πt =
(
πt(−k), ..., πtk

)
, where πtj is the

frequency of Rating j.3 Hence, Ic
t = {πt}.

The following example illustrates the behavior of such a rating system.

Example 3: We consider the same parameters as in Example 1, i.e., k = 1, Q = 2/10,

Q̃ ∼ U [0, 1], θ = 0, α = 1, and p = 0. In this example, customers only observe the

ratings’ frequency. Suppose Customer 3 observes π3 = (1, 1). If α = 0 and customers only

reflected their ex-post utilities in their ratings, observing rating distribution π3 = (1, 1)

would not be possible: In this case, all customers receive a positive utility, and the only

feasible rating frequency would be π3 = (0, 2). However, when α = 1, π3 = (1, 1) is feasible

and Customer 3 can deduce that one of the previous customers rated the product positively

and one negatively. Since this customer cannot observe the ratings’ order, she must account

for all possibilities that led to such a ratings’ frequency. Specifically, two rating paths can

lead to πt = (1, 1): (r1, r2) = (+1,−1) and (r1, r2) = (−1,+1).

3In our model, only customers who purchase can rate. Thus, we can equivalently work with the distri-
bution of rating options by dividing each option’s frequency by the number of purchasing customers. For
clarity, we focus on rating frequencies.
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First, consider (r1, r2) = (+1,−1). The first customer rates the product positively if

Q > 1/2. Therefore, the second customer would believe the intrinsic quality is uniformly

distributed on [1/2, 1], and Customer 2 would rate negatively if the product quality realizes

below 0.75. In this scenario, Customer 3 would form a belief that Q ∼ U [0.5, 0.75]. This

happens with ex-ante probability P (Q ∈ [0.5, 0.75]) = 1/4.

Next, consider (r1, r2) = (−1, 1). Similar to the previous scenario, Customer 3 would

believe that Q ∼ U [0.25, 0.5], which happens with ex-ante probability P (Q ∈ [0.25, 0.5]) =

1/4. Since it is equally likely to observe (r1, r2) = (−1,+1) and (r1, r2) = (+1,−1), we find

that P ((r1, r2) = (−1,+1)|πt = (1, 1)) = P ((r1, r2) = (+1,−1)|πt = (1, 1)) = 1/2 and Qc
t =

1/2. As more customers rate the product, customers must account for more possibilities.

Figure 3.3 illustrates the convergence of beliefs in this example. In this example, k = 1,

α = 1, Q = 2/10, Q̃ ∼ U(0, 1), θ = 0, and p = 0.

Figure 3.3: Evolution of customer quality beliefs over time in an aggregate system.

We observe that ratings oscillate below and above the intrinsic quality, and the size of

these oscillations non-monotonically decreases. With this example, we next study the beliefs’

convergence in an aggregate system. We first focus on the special case when α = 1.
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3.5.1 Aggregate System: α = 1

We define the following properties to be used in the subsequent analysis.

Definition 1. Let Supp
(
Q̃|π

)
be the support of the quality belief distribution conditioned

on observing rating frequency π, and let Int
(
Q̃|π

)
be the interior of Supp

(
Q̃|π

)
. Also, let

ei = (0, ..., 1, ...0) be the standard basis and define partial order >o such that π+ ei >o π+ ej

for i ≥ j. We define the following properties.

(i) Feasibility: Rating frequency πt is feasible if it can be generated by a sequence of

Bayesian customers with non-zero probability.

(ii) Separation: Two feasible rating frequencies π1
t ̸= π2

t are separate if Int
(
Q̃|π1

t

)
∩

Int
(
Q̃|π2

t

)
= ∅.

(iii) Partition: A set of rating frequencies π1
t , π

2
t , ..., π

n
t partition the quality belief space if

they are separate and
n⋃

i=1

Supp
(
Q̃|πi

t

)
= Q, where Q is the support of Q̃.

(iv) Monotonicity: An aggregate rating system satisfies the monotonicity property if for

any two feasible rating frequencies π1
t >o π

2
t , we have E

[
Q̃|π1

t

]
> E

[
Q̃|π2

t

]
.

This definition introduces a set of intuitive properties. A rating frequency is feasible

if it can arise from customer rating choices. For example, in a binary rating system, one

cannot have more than t positive or negative reviews at time t. Additionally, some combi-

nations of ratings may not arise, as discussed in Example 3. The Separation of two rating

frequencies implies that, upon observing them, rational agents can form quality beliefs with

non-overlapping domains (except for the boundaries). Hence, they induce completely sepa-

rate quality beliefs. A partition of the quality beliefs enables us to represent the belief space

in terms of separate rating frequencies. Finally, monotonicity asserts that the expected qual-

ity belief increases upon observing a rating frequency deemed better than another, e.g., an

arriving customer likes the product instead of disliking it.

While these are intuitive properties, the existence of a monotonic partition in each period

is not a priori trivial. The following lemma establishes the existence of such a partition.

Lemma 3.1. When α = 1, for any t ≥ 1, the set of all feasible rating frequencies partitions

Q. Furthermore, this partition can be uniquely ordered according to partial order >o. In

other words, this partition can be represented as tuple (π1
t , ...., π

n(t)
t ) such that πi

t >o π
i+1
t .
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This lemma illustrates that any two different rating frequencies that can feasibly arise

from customer rating choices induce disjoint supports for customer quality beliefs except

for the boundaries. Consequently, customers form distinct beliefs about the intrinsic quality

upon observing different rating frequencies. This also implies that all feasible rating frequen-

cies partition the quality belief space. In other words, upon observing a rating frequency,

customers can immediately refine their beliefs to a subinterval of their prior beliefs.

In addition, Lemma 3.1 shows that the set of feasible rating frequencies can be partially

ordered. This property is important because Customer t can only change the current rating

frequency by ei for some i ∈ R. Hence, each arriving customer forms a distinct belief from the

previous customer. This suggests that the learning continues as long as customers continue

purchasing. However, this learning is not monotonic, as observed in Figure 3.3. This result

assists us in formalizing the following Lemma.

Lemma 3.2. Given rating frequency πt at time t, there exists real numbers Qt > Q
t
such

that

(i) In an aggregate system, the support of the customer beliefs, i.e., Supp
(
Q̃|πt

)
is the in-

terval
[
Q

t
, Qt

)
. Furthermore, this interval contains the intrinsic quality, i.e., Q ∈

[
Q

t
, Qt

)
.

(ii) Let Q̃p denote the platform’s quality belief. Then,

Supp
(
Q̃p|(r1, ..., rt)

)
=
[
max
τ<t

{Q
τ
},min

τ<t
{Qτ}

)
⊂
[
Q

t
, Qt

)
.

Furthermore, Q ∈
[
maxτ<t{Qτ

},minτ<t{Qτ}
)
.

Part (i) establishes that customer quality beliefs always belong to an interval that con-

tains the intrinsic quality. In other words, upon observing the ratings, customers rule out the

quality realizations above and below certain thresholds. While the customer quality belief

intervals evolve and include the intrinsic quality, they are not necessarily unbiased and may

not contract. So, the convergence of the ratings is not apparent from this result.

In an aggregate system, there is information asymmetry between the platform and cus-

tomers: while customers do not observe the sequence of ratings, the platform has access

to the complete rating history. Part (ii) shows that the platform’s quality beliefs are more

refined than those inferred by customers. In other words, the support of the platform’s be-

lief is a subset of the customers’ belief support. Furthermore, unlike customers’ beliefs, the

66



platform’s belief constitutes a sequence of contracting intervals over time. Consequently, if

customer quality beliefs converge under the aggregate system, the platform’s beliefs would

also converge, potentially at a faster speed. This creates the opportunity to influence the

evolution of ratings through various mechanisms, such as information provisioning. Although

we do not explore such dynamics in this paper, they could be an interesting avenue for future

research.

Figure 3.4 plots the dynamics of the quality beliefs and intervals discussed in Lemma

3.2. In this example, k = 1, α = 1, Q = 2/10, Q̃ ∼ U [0, 1], θ = 0, and p = 0.

(a) The expected value and support of customer
beliefs.

(b) Comparison between the support of cus-
tomer and platform beliefs.

Figure 3.4: Evolution of customer and platform quality beliefs over time in an aggregate

system. UB: Upper Bound; LB: Lower Bound.

Next proposition shows the convergence of the quality beliefs when Q̃ is uniformly dis-

tributed and α = 1. We will return to the case with a general distribution for Q̃ in §3.5.2.

Proposition 3.4. Suppose Q̃ ∼ U [0, 1] and α = 1. Then, limt→∞ Qc
t = Q in an aggregate

system.

This result illustrates that quality beliefs eventually converge to the intrinsic quality

in the presence of significant disconfirmation bias even when customers do not observe the

complete rating history. Notably, this finding does not require customers to have unbiased

prior beliefs. Prior beliefs play an important role particularly when customers solely rate
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based on the deviation between the realized quality and their prior perception. If their prior

perception is incorrect, their ratings would also be biased. However, Proposition 3.4 shows

that these biases correct themselves as more customers rate the product. This is because

the disconfirmation effect serves as an instrument to create heterogeneity among customers

based on their arrival times. This heterogeneity leads to continued learning until quality

beliefs eventually converge to the intrinsic quality. As Figure 3.4a shows, customer biases

may not contract monotonically when customer information is incomplete.

3.5.2 Aggregate System: α < 1

In this section, we consider α ∈ [0, 1). When α = 1, customers solely rate using Q−Qc
t .

Thus, the ex-post heterogeneity (θ) does not weigh in the ratings. In this situation, as

shown in Lemma 3.1, different rating frequencies induce disjoint supports for quality beliefs.

However, when α < 1, customers not only exhibit a disconfirmation bias, but they also

reflect on their heterogeneous ex-post utilities. This creates further uncertainty, leading to

overlapping supports for quality beliefs conditioned on different rating frequencies. Notably,

the separation property defined in Definition 1 would no longer hold in the presence of ex-

post heterogeneity. However, this does not imply that customers cannot refine their beliefs

upon observing new ratings: As long as customers can form sufficiently differentiated quality

distributions from different ratings, they may eventually uncover the intrinsic quality. As

such, we require a weaker notion of separation.

To facilitate discussions, let κ
(
r;Q, Q̃t

)
denote the probability of Customer t rating the

product at r given intrinsic quality Q and belief Q̃t. Also, define Ft to be the space of all

feasible belief distributions. Motivated by the definition used in Acemoglu et al. (2022), we

define the following, which we refer to as separation in distribution.

Definition 2. (Separation in Distribution) For arbitrary quality values Q1 > Q2, a rating

system satisfies weak separation in distribution if there exists a subset of rating options

S ⊆ R, independent of Q1 and Q2, such that

inf
q̃t∈Ft

∑
i∈S

κ(i;Q1, q̃t) ≥ sup
q̃t∈Ft

∑
i∈S

κ(i;Q2, q̃t), (11)
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or

inf
q̃t∈Ft

∑
i∈S

κ(i;Q2, q̃t) ≥ sup
q̃t∈Ft

∑
i∈S

κ(i;Q1, q̃t). (12)

A rating system satisfies the strict separation condition if the above inequalities are strict.

Separation in distribution ensures that for any two intrinsic quality values, at least one

rating option exists that, if selected by the customers, can induce beliefs with distinct sup-

ports. The notion of separation defined in Definition 2 is stronger than the one used in

Acemoglu et al. (2022). In their paper, the distribution of the quality beliefs is binary.

Thus, the set of rating options S used in the definition is fixed. However, since we consider

a general distribution for the intrinsic quality, Definition 2 requires that this set be the same

for any two quality values. Additionally, we need to have Infimum and Supremum on the

space of all feasible probability distributions which is not necessary when the intrinsic quality

is supported on a binary space. The following Lemma finds a sufficient condition for the

strict separation in distribution in an aggregate system.

Lemma 3.3. In an aggregate system, there exists threshold αI(k, θ) such that if α ≤ αI(k, θ),

then any two distinct intrinsic quality values can be separated in distribution.

In contrast to the complete system, different rating frequencies do not necessarily induce

completely disjoint quality beliefs. However, when α is small, “some” rating options would

enable future customers to learn about the intrinsic quality. In other words, for any two

quality values, customers can identify with high confidence which one is more likely if they

observe a separating set of ratings. Therefore, convergence to the intrinsic quality depends

on whether the set of separating ratings would eventually arise. The following proposition

addresses this question.

Proposition 3.5. There exist thresholds α(k, θ) and αI(k, θ) such that

(i) If α < αI(k, θ), then limt→∞Qc
t = Q.

(ii) If αI(k, θ) ≤ α ≤ α(k, θ) and limt→∞ Qc
t = Qc

∞(α) exists, then Qc
∞(α) = Q.

(iii) If α > α(k, θ), there exists intrinsic quality Q such that either Qc
∞(α) does not exist or

Qc
∞(α) ̸= Q.

(iv) Threshold αI(k, θ) is non-decreasing in θ. Furthermore, it is non-decreasing in k for

k ≥ 2, and limk→∞ αI(k, θ) = 1/2 and limθ→∞ αI(k, θ) = 1/2.
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Part (i) shows that when disconfirmation bias is small (α < αI(k, θ)), customer beliefs

converge to the intrinsic quality in an aggregate system similar to the complete system. In

this case, ratings would eventually arise that allow future customers to refine their quality

beliefs. This refinement continues until customer beliefs converge to the intrinsic quality.

Furthermore, when α ≤ α(k, θ), correct learning is guaranteed as long as Qc
∞(α) exists. The

proof proceeds by showing that if beliefs converge, they would be “strictly” increasing in

the intrinsic quality. In other words, a higher quality product would induce higher quality

beliefs. Thus, Bayesian customers can infer the intrinsic quality.

For large disconfirmation bias, i.e., 1 > α > α(k, θ), either the beliefs do not converge, or

they would converge to a biased value undetectable by customers. Similar to the complete

system, an increase in α reduces the richness in customer ex-post heterogeneity, which pre-

vents sufficiently low or high ratings to arise. Hence, customers may not be able to continue

refining their beliefs.

Part (iv) implies that the platform can design a sufficiently granular rating system to

guarantee convergence in an aggregate system as long as α ≤ 1/2. Moreover, we note

that threshold α(k, θ) in Part (ii) is the same as the one found in Proposition 3.2 and

limk→∞ α(k, θ) = 1. As such, if the beliefs converge, the platform can guarantee correct

learning by offering a sufficiently large number of rating options to the customers for all

values of α.

In sum, all the results in a complete system extend to an aggregate system, with the

caveat that the convergence of the beliefs is not guaranteed for large values of the disconfir-

mation bias.

3.6 Average Ratings

As discussed earlier, although Bayesian customers may infer the intrinsic quality from the

complete and aggregate systems, it is cognitively expensive. In a complete system, this infer-

ence requires a large memory of tracking the entire rating history. In an aggregate system, it

involves combinatorially increasing number of scenario analyses. Therefore, customers may
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naturally use simpler summary statistics, such as the average of past ratings.

Let r̄t denote the average ratings until period t, i.e., r̄t =
(∑t

τ=1 rτ
)
/t. To focus on the

asymptotic behavior of the beliefs, we follow a similar approach as Shin et al. (2023) and

consider the following customer posterior belief.

Q̂c
t+1 ≡

1

γt+ 1
E(Q̃) +

γt

γt+ 1
r̄t, (13)

for γ > 0 and expected prior quality belief E(Q̃). Intuitively, customers initially give signifi-

cant weight to their prior beliefs when the product has few ratings. As more customers rate

the product, the weight of the ratings increases in customer beliefs. Parameter γ controls

the decay in customer weights for their prior beliefs. A higher γ indicates a higher sensi-

tivity to average ratings when forming beliefs about the intrinsic quality. Nevertheless, it is

straightforward to see that if r̄∞ exists, then Q̂c
∞ = r̄∞ is independent of γ. In this section,

we continue to use mapping (10) for customer ratings. However, customers use (13) to form

beliefs about the product quality when calculating their reference utility.

Let α(k, θ) be the threshold defined in Propositions 3.2 and 3.5. The following result

establishes the asymptotic behavior of the customer quality beliefs for a general α.

Proposition 3.6. limt→∞ Q̂c
t = Q̂c

∞(Q,α) exists. Furthermore,

(i) If α ≤ α(k, θ), then Q̂c
∞(Q,α) is strictly increasing in Q.

(ii) If α ∈
(
α(k, θ), 1

)
, then Q̂c

∞(Q,α) is weakly increasing in Q.

(iii) If α = 1, then Q̂c
∞(Q,α) = Q.

This Lemma shows that customer quality beliefs converge when customers use the average

ratings. However, as Part (ii) illustrates, the converged belief is not “strictly” monotonic in

the intrinsic quality when the disconfirmation bias is large. While the weak monotonicity

property implies that a higher-quality product would never receive a lower average rating,

it does not guarantee that customers would be able to distinguish two different quality

products. In other words, a product with a higher quality may receive the same rating as an

inferior product when the disconfirmation bias is large. This finding is illustrated in Figure

3.5a. In this example, all products with an intrinsic quality higher than 0.82 receive the

same average rating, making them indistinguishable.
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Part (ii) holds only when α ̸= 1. When α = 1, the customer beliefs converge to the

intrinsic quality even when customers use average ratings. In this case, customers are so

biased toward the deviations from their prior expectations that the ex-post utility does not

play a role in their ratings. In such a scenario, customers can attribute the variations in

ratings only to the disconfirmation bias, and a simple summary statistic such as average

ratings enables customers to eventually learn the intrinsic quality.

When the disconfirmation bias is small (α ≤ α), Part (i) demonstrates a one-to-one

mapping between the intrinsic quality and average ratings. Specifically, higher-quality prod-

ucts would receive higher average ratings. This enables customers to correctly “rank” the

quality of the products. However, as illustrated in Figure 3.5a, the converged beliefs do not

precisely match the intrinsic quality. In this example, Q̃ ∼ U(0, 1), θ̃ ∼ U(−0.4, 0.4), and

p = 0. In particular, we observe a systematic error between customer beliefs and the intrinsic

quality. Although such an error cannot exist with Bayesian customers as they incorporate it

into their belief updating, in this section, customers follow a simple heuristic, making them

prone to these errors.

(a) α = 0.1 (b) α = 0.8

Figure 3.5: Converged customer quality beliefs as a function of the intrinsic quality in a

system with average ratings.

Next, we explore a bias-correcting rule for customer beliefs. Since Q̂c
∞(Q,α) is strictly

increasing in Q when α is small, function ϕα(·) exists such that Q̂c
∞(Q,α) = r∞ = ϕα(Q).
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Define the following belief updating rule when α ≤ α(k, θ):

Q̂u
t+1 =

1

γt+ 1
E(Q̃) +

γt

γt+ 1
· ϕ−1

α (r̄t). (14)

The following corollary formally establishes the convergence of the above rule.

Corollary 2. When customers update their beliefs according to (14) and α ≤ α, limt→∞ Q̂c
t =

Q̂u
∞(Q,α) exists. Furthermore, Q̂u

∞(Q,α) = Q.

When the disconfirmation bias is small, the bias correcting rule (14) guarantees conver-

gence to the intrinsic quality.

3.7 Learning Speed

As discussed in the previous sections, the rating system’s granularity, customers’ discon-

firmation bias, and ex-post heterogeneity play critical roles in the customer belief evolution.

Particularly, convergence to the intrinsic quality is guaranteed as long as the disconfirmation

bias is small. In this section, we study the learning speed in the aggregate system. To com-

prehensively analyze the learning speed, we separately consider the cases of low and high

heterogeneity in §3.7.1 and §3.7.2.

To further refine our insights, for the remainder of the paper, we assume the prior quality

beliefs follow a discrete distribution with support Q = {Q1, ..., QM} for M ≥ 2.

3.7.1 Learning Speed: Low Customer Heterogeneity

In this section, we analyze the case where θ < 1
1−α

+ Q − p. Recall that κ(r;Q, Q̃t)

denotes the probability of Customer t rating the product at r given intrinsic quality Q and

customer belief Q̃t. We define the following.

Definition 3. (Separation Divergence) Given customer belief Q̃t, two arbitrary quality values

Q1 and Q2 are separation divergent if there exists at least one rating r(Q1, Q2) such that

κ
(
r(Q1, Q2);Q1, Q̃t

)
· κ
(
r(Q1, Q2);Q2, Q̃t

)
= 0,

and κ
(
r(Q1, Q2);Q1, Q̃t

)
+ κ

(
r(Q1, Q2);Q2, Q̃t

)
> 0.

(15)
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When heterogeneity is not sufficiently rich, some ratings may never arise given the in-

trinsic quality. This definition imposes that certain ratings exist such that they can only

arise for some intrinsic quality while they would never arise for others. In this circumstance,

we define the learning speed as the expected number of ratings for separation divergence

between all Qi ∈ Q \Q and the intrinsic quality.

Let τ(Q1, Q2) be the minimum number of customers until rating r(Q1, Q2) arises to

separate Q1 and Q2. In other words,

τ(Q1, Q2) = min{t : κ
(
r(Q1, Q2);Q1, Q̃t

)
= 1}. (16)

Then, for the intrinsic quality Q, the learning speed is given by

V L(Q) ≡ 1

max
Qi∈Q\{Q}

E[τ(Q,Qi)]
. (17)

Thus, V L(Q) controls the rate at which beliefs converge to the intrinsic quality. With

these preliminaries, we characterize the learning speed when heterogeneity is low.

Proposition 3.7. Let Q be the intrinsic quality and θ ≤ 1
1−α

+Q−p. Conditional on correct

learning,

(i) there exists threshold k̄ such that Q is separation divergent from any other quality value

for k ≥ k̄.

(ii) Suppose k ≥ k̄. For ϵ > 0, let Q
ϵ
≡ max{Q− ϵ, 0} and Qϵ ≡ min{Q + ϵ, 1}. Then, for

arbitrary Q′ ∈ Q, we have

E[τ(Q,Q′)] ≤ 1

F̄θ

(
θ − |Q−Q′|−α(Qϵ−Q

ϵ)−
1

k−1

1−α

) .
(18)

(iii) Furthermore, let u ≡ min
Qi∈Q\{Q}

|Q−Qi|. For all Q,

V L(Q) ≥ F̄θ

θ −
u− α

(
Qϵ −Q

ϵ

)
− 1

k−1

1− α

 . (19)
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Part (i) echoes our earlier finding that a sufficiently granular rating system guarantees

convergence to the intrinsic quality. Parts (ii) and (iii) further illustrate that the learning

speed depends on the distribution of customer heterogeneity, disconfirmation bias, and the

rating system’s granularity. Specifically, we observe that as customer heterogeneity stochas-

tically increases, the learning speed increases. This is because an increase in the likelihood

of observing extreme ratings accelerates the rise of separation divergent ratings, enabling

customers to distinguish different quality values.

Additionally, when customer beliefs are close to the intrinsic quality (ϵ is small), an

increase in the disconfirmation bias (increase in α) can speed up learning. In this case,

disconfirmation bias serves as intertemporal ex-ante heterogeneity, which increases the like-

lihood of ratings that induce separation divergence. Interestingly, however, disconfirmation

bias slows down convergence when customer beliefs are far from the intrinsic quality. In this

situation, customer biases, i.e., Q − Qc, are substantial, and an increase in α significantly

skews the reference utility, which in turn slows down learning.

Finally, an increase in the rating system’s granularity increases the learning speed. A

more refined rating system allows customers to reflect on their experiences more accurately,

making separating ratings more likely to arise.

Next, we study the learning speed when customer heterogeneity is large.

3.7.2 Learning Speed: High Customer Heterogeneity

In this section, we analyze the case where θ > 1
1−α

+Q−p. In this environment, the exis-

tence and rise of a rating that induces separation divergence discussed in the previous section

is not guaranteed. Consequently, we use the Kullback-Leibler (KL) divergence to measure

the distance between two rating frequencies arising from different intrinsic quality values.

Formally, for two discrete probability distributions µ = (µ1, ..., µm) and υ = (υ1, ..., υm) with

µi, υi > 0, KL divergence is defined as

D(µ||υ) ≡
m∑
i=1

µi log(
µi

υi
). (20)
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Intuitively, KL divergence measures the average difference between the information de-

rived from two different probability distributions. Let κ⃗(Q, Q̃t) be the vector of the proba-

bilities of Customer t choosing each rating option. In other words,

κ⃗(Q, Q̃t) =
(
κ(r;Q, Q̃t) : r ∈ R

)
. (21)

These definitions equip us with the tools to measure the expected difference between the

probability of customer actions (ratings) for different intrinsic quality values and customer

beliefs. For example, D
(
κ⃗(Q = Q1, Q̃t = Q1)||κ⃗(Q = Q1, Q̃t = Q2)

)
at time t and intrinsic

quality Q1 measures the average information difference between the rating probability dis-

tributions that arise when customers believe the intrinsic quality is Q1 compared to when

they believe it is Q2. The larger the distance, the more quickly the two rating options can

be separated.

With this background, we define the learning speed as

V H(Q) ≡ lim
τ→∞

log (1− qτ (Q))

τ
, (22)

where qτ (Q) ≡ P
(
Q̃τ = Q

)
. Hence, if this limit exists, the convergence of the beliefs to

the intrinsic quality is exponentially fast. With these preliminaries, we state the following

proposition.

Proposition 3.8. Let Q be intrinsic quality and θ > 1
1−α

+ Q − p. Conditional on correct

learning, the learning speed is exponentially fast. Specifically,

− max
Q∈Q\{Q}

D(κ⃗(Q, q∞(Q) = 1)||κ⃗(Q, q∞(Q) = 1)) ≤ V H(Q) (23)

and

V H(Q) ≤ − min
Q∈Q\{Q}

D(κ⃗(Q, q∞(Q) = 1)||κ⃗(Q, q∞(Q) = 1)) (24)
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Convergence to the intrinsic quality is exponentially fast for any disconfirmation bias as

long as it does not prohibit correct learning. This proposition also provides a lower bound

on the learning speed based on the KL divergence between the intrinsic quality and one of

the possible quality realizations. Intuitively, we can break down the problem of identifying

the underlying quality into multiple binary hypothesis tests where customers proceed by

separating all possible quality dyads. However, as the proposition shows, the time required

to separate all these dyadic problems is not additive. Particularly, these dyadic separation

problems would eventually nest such that customers can distinguish all quality values by

separating the intrinsic quality from another quality value that is the hardest to determine.

However, one should note that, as discussed in §3.5, the support of customer beliefs does not

monotonically contract over time. Hence, it is not necessarily easiest/hardest to separate a

quality value that is farthest from/closest to the intrinsic quality.

Proposition 3.8 also provides an upper bound for the learning speed. In this case, the

learning speed is bounded above by the KL divergence between the intrinsic quality and the

fastest quality value to separate from. Intuitively, distinguishing the intrinsic quality involves

separating “all” possible quality values, which cannot be faster than the KL divergence

between the intrinsic quality and any other values. In the special case where M = 2, i.e.,

the intrinsic quality can belong to only two possible values, the bounds of Proposition 3.8

sandwich the learning speed, and we have

V H(Q) = −D(κ⃗(Q, q∞(Q) = 1)||κ⃗(Q \Q, q∞(Q \Q) = 1)). (25)

This result replicates the learning speed in Acemoglu et al. (2011), where the quality

distribution is binary. While their model incorporates the selection bias, it does not explicitly

include the disconfirmation bias. We find a similar learning speed because the problem of

distinguishing quality involves validating or rejecting the hypotheses that the intrinsic quality

is low or high. In the case of the independently drawn samples, the exponential decay in

the error term is governed by KL divergence between the sample probability distributions

conditioned on each hypothesis (Cover and Thomas 2012). However, in our papers, the

samples are not independently drawn due to different biases. Yet, we both show that the
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effect of these different sources of bias can be bounded under correct learning, and the

convergence rate is governed by the KL divergence between two relevant distributions.

While the learning speed is governed by Equation (25), this equation depends on func-

tion κ⃗(·, ·), which changes based on the behavior of the reference utility. In this example,

fθ(x) = −x/θ
2
, if x ∈ [−θ, 0), and fθ(x) = x/θ

2
, if x ∈ [0, θ]. Thus, the disconfirmation

bias affects the rate at which beliefs converge to the intrinsic quality, as illustrated in Figure

(3.6a). Overall, we observe that an increase in α increases the learning speed. The discon-

firmation bias affects the learning speed in two ways: first, it adds additional noise to the

ratings, distorting the perception of the intrinsic quality. This distortion slows down learn-

ing. Second, it reduces the weight of customers’ subjective preferences, which accelerates

learning. When customer heterogeneity is large, the latter dominates the former, and the

speed of learning increases when customers exhibit more disconfirmation bias.

(a) Q = Q1 = 0.25, Q2 = 0.75, and p = 0. (b) Q = Q1 = 0, Q2 = 1, α = 0.5, k = 10, and
p = 0.

Figure 3.6: Learning Speed

Furthermore, Figure (3.6a) illustrates that the learning speed may not be monotonic in

the rating system’s granularity. On the one hand, increasing granularity allows customers

to reflect on their experiences more accurately. On the other hand, it reduces the likelihood

of customers reflecting the same experience, thus reducing the strength of each rating as an

information piece. This, in turn, requires more customers to rate the product to uncover its

intrinsic quality. However, a significant increase in granularity eventually speeds up learning
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due to allowing the possibility of significantly informative rating options.

Finally, Figure (3.6b) demonstrates that an increase in customer heterogeneity slows

down learning. This finding aligns with our initial intuition: while an increase in heterogene-

ity enhances the likelihood of observing more comprehensive ratings and ensures convergence

to the intrinsic quality, it adds to the time required for such ratings to arise.

3.8 Conclusion

We studied the asymptotic behavior of the ratings in the presence of the customer dis-

confirmation bias, where customers reflect the discrepancy between their prior expectations

and post-purchase experience in their ratings. In this environment, high ratings from past

customers induce high expectations, making the product more likely to offer a lower-than-

expected quality and receive lower ratings from new customers. These lower ratings, in turn,

can reduce expectations and lead to higher future ratings. In this situation, the convergence

of the ratings to the intrinsic quality is unclear. We investigated this convergence in three

rating systems: a system where customers observe individual past customer ratings (com-

plete system), only observe the frequency of each rating option (aggregate system), and only

observe the average of past ratings.

We show that this convergence depends on customer heterogeneity, disconfirmation bias,

and the rating system’s granularity. Specifically, we can divide the effect of the disconfir-

mation bias into three regions: when the disconfirmation bias is small, the ratings converge

to the intrinsic quality in both the complete and aggregate systems. In this case, customers

decouple the effect of heterogeneous experiences and their cognitive biases and eventually

learn the intrinsic quality. When the disconfirmation bias is large, the ratings may converge

to a value different from the intrinsic quality. However, the gap between the customer be-

liefs and intrinsic quality will be small. Particularly, when customers only rate based on

their disconfirmation, this gap will be zero, and customers learn the intrinsic quality cor-

rectly. When the disconfirmation bias is intermediate, the discrepancy between beliefs and

the intrinsic quality can be large. This corresponds to the case where the reference utility
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has the least information regarding whether the ratings result from customer heterogeneity

or disconfirmation bias. Hence, the case of intermediate disconfirmation bias can be most

problematic for customers and platforms.

We find similar insights when customers only observe the average ratings with some

nuances. Specifically, while the beliefs converge to a value that is strictly increasing in the

intrinsic quality when the disconfirmation bias is small, this converged value has a systematic

error. In other words, customers can correctly rank the products but cannot precisely uncover

the intrinsic quality. In this circumstance, a belief-correcting rule can fix this error. However,

when the disconfirmation bias is large, the converged value only weakly increases in the

intrinsic quality. Hence, customers cannot vertically rank the products.

Although correct learning may not be possible for a “given” rating system and discon-

firmation bias, we show that the platform can guarantee correct learning by increasing the

granularity of the rating system. A more granular system allows customers to more precisely

reflect on their reference utility, which enables future customers to infer further information

about the intrinsic quality. We also find that the platform requires higher granularity for cor-

rect learning as customer heterogeneity and the disconfirmation bias increase. However, the

number of required rating options increases proportionally to 1/(1−α). Hence, a significant

increase in granularity is only required when α (i.e., the weight of the disconfirmation bias

in customer reference utility) is large. In this case, the error in the converged belief would

be small. Thus, the platform can maintain granularity without sacrificing much accuracy in

learning the intrinsic quality. This finding illustrates the significance of the platform design

on the evolution of ratings in the presence of the disconfirmation bias.

We also studied the learning speed in the aggregate system. While the literature primar-

ily focuses on the case of high heterogeneity, we characterize the learning speed for various

heterogeneity levels. When the heterogeneity is small, we find a lower bound for the learn-

ing speed as a function of customer heterogeneity, disconfirmation bias, and rating system

granularity. This lower bound is increasing in the rating system’s granularity. Hence, the

platform can make convergence faster by giving more rating options to customers. However,

the learning speed is not necessarily monotonic in the disconfirmation bias. Specifically,

when customer beliefs are close to the intrinsic quality, disconfirmation bias can speed up
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learning. However, disconfirmation bias may slow down learning when customer beliefs are

far from the intrinsic quality. In the case of high customer heterogeneity, we bound the

convergence rate by the Kullback-Leibler (KL) divergence of relevant probability distribu-

tions and establish exponentially fast learning. When the domain of quality realizations is

binary, we show that the bounds are tight, and the convergence rate precisely follows the

KL divergence between the probability of customer actions when the belief about quality is

correct vs. when it is incorrect.

We consider the following managerial implications. First, the study underscores the crit-

ical role of rating system design in shaping customer perceptions and learning about product

quality. Businesses can leverage these findings by implementing more granular rating systems

to ensure customers can accurately reflect their experiences. By increasing the number of

rating options, companies can help customers express nuanced opinions, which mitigates the

effects of disconfirmation bias and enhances the accuracy of the perceived product quality.

For example, a more detailed rating system on e-commerce platforms can help prospective

buyers distinguish between products more effectively, leading to better purchase decisions

and higher customer satisfaction. This strategy is particularly beneficial in markets where

customer heterogeneity is high, as it ensures diverse customer experiences are accurately cap-

tured and conveyed. Second, from a managerial perspective, understanding the dynamics of

disconfirmation bias and its impact on customer learning offers valuable insights for strate-

gic decision making. Businesses can utilize these insights to design marketing and customer

engagement strategies that foster positive customer experiences and encourage accurate rat-

ings. For instance, companies can implement follow-up surveys to gather detailed feedback

and provide corrective measures for customers who had negative experiences. Additionally,

businesses can strategically manage their product listings and pricing based on the observed

patterns of customer ratings and feedback. By anticipating how ratings evolve and influ-

ence customer perceptions, managers can proactively adjust their strategies to maintain a

favorable market position and improve long-term customer loyalty.

In summary, we show that the disconfirmation bias has significant implications for the

evolution of ratings and platform design. This opens up various avenues for future research.

For example, we find that ratings’ evolution differs for the customers and platforms. While
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platforms observe the individual ratings, customers may not have access to this information

in an aggregate system. This creates information asymmetry and potential for information

provisioning. Furthermore, the platform’s pricing strategy affects customer reference util-

ity. The interplay between prices and disconfirmation bias is an interesting future research

direction. Other problems, such as the platform’s assortment display and customers’ multidi-

mensional rating of various attributes of the purchase, are other problems worth investigating

in the presence of the disconfirmation bias.
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4.0 Conclusion

This thesis considered the information and platform design problems from the firm’s

and customer’s perspectives. It bridges the gap between theoretical models and practical

applications, offering guidelines for firms to enhance customer trust and market efficiency

through informed decision-making. We explored these issues in two settings: the firm’s opti-

mal information revelation to alleviate customer concerns about Personalized Pricing (PP),

and customers’ social learning to infer intrinsic quality using ratings with disconfirmation

bias.

Chapter 2 studied the firm’s optimal information provision problem around PP, where

the firm customizes prices for individual customers. Specifically, we explored whether the

prices can informatively signal PP to customers and how firms should adjust pricing strategies

in response to customer reactions. We also investigated whether disclosing inventory infor-

mation could benefit firms and customers, ultimately advocating for increased transparency

in PP practices. We find that firms reduce the first-period price to persuade high-valuation

customers to purchase in the first period even when they do not intend to implement PP.

This is because the mere presence of PP risk makes customers reluctant to reveal their

identity. The firm then must “compensate” customers to persuade them to reveal their valu-

ations. We show that the price alone cannot perfectly signal the firm’s PP intention, hurting

all stakeholders. However, an inventory signal where the firm reveals whether inventory

availability is high or low, can improve the firm revenue when customers believe the firm

conducts PP with a sufficiently low probability. In this case, an inventory signal alleviates

customer PP concerns and allows the firm to set higher prices, creating a win-win outcome

for all stakeholders. With the growing interest in PP regulation, we propose that requiring

firms to disclose inventory availability information could be a viable policy to make PP more

transparent and credibly reduce customer concerns.

Chapter 3 considered the rational customers’ social learning problem in the presence of

disconfirmation bias, where customers reflect the discrepancy between their prior expecta-

tions and post-purchase experience in their ratings. In this social learning context, whether
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customers can correctly infer the intrinsic quality from the ratings is unclear. We investi-

gated this problem in three rating systems: a system where customers observe individual

past customer ratings (complete system), only observe the frequency of each rating option

(aggregate system), and only observe the average of past ratings. We divide the effect of the

disconfirmation bias into three regions: when the disconfirmation bias is small, the ratings

converge to the intrinsic quality; when the disconfirmation bias is large, the ratings may con-

verge to a value different from the intrinsic quality. However, the gap between the customer

beliefs and intrinsic quality will be small. When the disconfirmation bias is intermediate, the

discrepancy between beliefs and the intrinsic quality can be large. In addition to building a

general framework for customer learning from the ratings and identifying the conditions for

complete learning of the quality of a product, our analysis has the following contributions.

First, it shows that the platform can guarantee correct learning by increasing the granularity

of the rating system. A more granular system allows customers to more precisely reflect on

their reference utility, which enables future customers to infer further information about the

intrinsic quality. Second, we also studied the learning speed in the aggregate system. While

the literature primarily focuses on the case of high heterogeneity, we characterize the learn-

ing speed for various heterogeneity levels. When the heterogeneity is small, we find a lower

bound for the learning speed as a function of customer heterogeneity, disconfirmation bias,

and rating system granularity. In the case of high customer heterogeneity, we bound the con-

vergence rate by the Kullback-Leibler (KL) divergence of relevant probability distributions

and establish exponentially fast learning. In summary, we show that the disconfirmation

bias has significant implications for the evolution of ratings and platform design.

This thesis contributes to the growing literature on information, platform, and mecha-

nism design applications in operations management. The findings underscore the importance

of transparency, strategic information disclosure, and platform design in modern business

practices.
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Appendix A Chapter 2

A.1 Proofs from Chapter 2

A.1.1 Proof of Proposition 2.1

Part (i). Myopic customer i purchases the product in period t ∈ {1, 2} if and only if

pit ≤ vi. Therefore, the expected demand function for each period under uniform price pt is

given by

Dt(pt) =

∫
i∈M

amit (pt) =


1, if pt ≤ vL

α, if pt ∈ (vL, vH ]

0, if pt > vH

(26)

Given this demand function and the revenue maximization problem (4), we observe that the

firm must either set pt = vL or pt = vH for all t, depending on the inventory realization I. If

the firm sets pt = vL, then it sells all its inventory in both periods and earns total revenue

2IvL. If the firm sets pt = vH , then it sells only to a fraction α of the market of customers

in each period and earns total revenue 2αvH . The comparison of these two revenue values

yield the result.

Part (ii). A P-type firm can personalize the prices in the second period. Similar to the

previous part, myopic consumer i purchases the product in period t if and only if pit ≤ vi.

Given any inventory realization I, if the firm sets p1 = vL, then the revenue-to-go at the

beginning of period 1 is given by vLI +max(vHα, vLI). The updated Bayesian belief follows

the following rule.

P (vi = vH |ait(pit, s) = 1) =

1 if pit > vL,

α otherwise

(27)

and

P (vi = vH |ait(pit, s) = 0)

=
P (ait(pit, s) = 0|vi = vH)P (vi = vH)

P (ait(pit, s) = 0|vi = vH)P (vi = vH) + P (ait(pit, s) = 0|vi = vL)P (vi = vL)
.

(28)
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If it sets p1 = vH , then due to the updated belief characterized in the above Equation (27),

the firm implements PP, i.e., it sets pi2 = vH if ai1 (p1) = 1, and pi2 = vL if ai1 (p1) = 0.

Thus, the revenue from setting p1 = vH is given by vHα + vHα + (I − α)vL.

The existence of unique threshold Im follows from the fact that equation vHα + vHα +

(I − α)vL = vLI +max(vHα, vLI) has a unique solution in I, namely Im∗. Then, we define

Im = min (Im∗, 1). □

A.1.2 Proof of Lemma 2.1

In the last period, all customers purchase the product if they receive a non-negative

utility. Also, L-type customers only purchase when they receive price vL. Therefore, we

focus on the first-period decisions of H-type customers. If H-type customer i accepts the

offer at price pi1 > vL in period 1, then in period 2, she either receives personalized price

pi2 = vH if the firm is P-type or uniform price p2 = vH if the firm is U-type. Thus, the

expected utility-to-go is given by

ui1(pi1, pi2,Hc
it|ai1 = 1) = vH − p1 + 0.

Alternatively, if this customer does not purchase at price p1 > vL in the first period, i.e.,

if she hides her type, then in period 2, she will receive personalized price pi2 = vL from a

P-type firm. A U-type that charges p1 > vL in the first period, in equilibrium, charges vH

in the second period. Thus, the customer’s expected utility-to-go is given by

ui1(pi1, pi2,Hc
it|ai1 = 0) = 0 + Pr(ω = 1|p1 > vL)ξ

c
i2(Hc

2|ω = 1 & p1 > vL)(vH − vL) + 0.

Hence, Customer i’s period 1 decision must satisfy

ai1 =

1 if ui1(pi1, pi2,Hc
it|ai1 = 1) ≥ ui1(pi1, pi2,Hc

it|ai1 = 0)

0 if otherwise

From the discussion above, we have ui1(pi1, pi2,Hc
it|ai1 = 1) ≥ ui1(pi1, pi2,Hc

it|ai1 = 0) if and

only if

vH − p1 ≥ Pr(ω = 1|p1 > vL)ξ
c
i2(Hc

2|ω = 1 & p1 > vL)(vH − vL). (29)
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First, we prove the following claim.

Claim 1. Define g(I) ≡ vHα + vL(I − α) − max(αvH , vLI) and l(I) ≡ vLI − p1α. There

exist unique thresholds I = min(p1α
vL

+ (vH−vL)α
vL

, 1) and I = min(p1α
vL

, 1) such that for a P-type

firm,

pi1(1, I) =

p1 if I ≤ I

vL if otherwise

and for a U-type firm,

pi1(0, I) =

p1 if I ≤ I

vL if otherwise

Proof of Claim 1. Note that function g(I) is the revenue gain from PP compared to

UP. Also, l(I) is the revenue loss due to PP in the first period. Since g(I) and l(I) are

continuous and differentiable almost everywhere, g(α) = 0, l(α) < 0, and l′(I) ≥ g′(I) for

∀I, then g(I)−l(I) has a single crossing property. The value of the unique crossing inventory

is p1α
vL

+ (vH−vL)α
vL

. As such, g(I) ≥ l(I) if and only if I ≤ p1α
vL

+ (vH−vL)α
vL

. In other words,

if inventory is above this threshold, a P-type firm does not benefit from implementing PP.

Since we may have p1α
vL

+ (vH−vL)α
vL

> 1, we define I = min(p1α
vL

+ (vH−vL)α
vL

, 1). Hence, a P-type

firm sets price pi1(1, I) = p1 if I ≤ I and price vL, otherwise. This proves the claim for a

P-type firm.

Next, we prove the claim for a U-type firm. Given price p1, a U-type firm’s revenue

for the first period is max(p1α, vLI). Therefore, the firm sets price p1 iff p1α ≥ vLI, or

equivalently, iff I ≤ p1α
vL

. We define I = min(p1α
vL

, 1). This completes the proof of the claim.

Having this result, now we continue the proof of Lemma 2.1. First, we show that p ∈ (vL, vH ]

exists such that it satisfies the equality in Equation (29). Note that the left side of the

inequality in Equation (29) is continuous in price on domain (vL, vH ] and has the range

[0, vH − vL).

Furthermore, from Claim 1, the right-hand side of the inequality in Equation (29) is
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given by

Pr(ω = 1|p1 > vL)ξ
c
i2(Hc

2|ω = 1 & p1 > vL)(vH − vL)

=
τ(I − α)

τ(I − α) + (1− τ)(I − α)

∫ I

α

I − α

1− α

1

I − α
dF (I)(vH − vL)

=
τ(I − α)2(vH − vL)

2
(
τ(I − α) + (1− τ)(I − α)

)
(1− α)

<
vH − vL

2
,

(30)

where the last inequality followed from noting that τ(I−α)2

[τ(I−α)+(1−τ)(I−α)](1−α)
< 1. Therefore, the

range of the right-hand side of Equation (29) is (0, vH−vL
2

) and vH − τ(I−α)2(vH−vL)

2[τ(I−α)+(1−τ)(I−α)](1−α)
∈

[vH+vL
2

, vH ]. Hence, from the Brower’s fixed point theorem, this equation has a fixed point.

Consequently, there exists at least a solution p such that Equation (29) holds with equality.

Next, we show the uniqueness of this solution. Define

y(p1) ≡ 2(vH − p1)
(
τ(I − α) + (1− τ)(I − α)

)
(1− α)− τ(I − α)2(vH − vL). (31)

Then, the equality holds in Equation (29) if and only if y(p1) = 0. We consider three cases:

(a) I < I ≤ 1, (b) I < 1 = I, and (c) I = I = 1.

If solution p satisfies Case (a), then

ya(p1) ≡ y(p1) =2(vH − p1)(1− α)[τ(
p1α

vL
+

(vH − vL)α

vL
) + (1− τ)

p1α

vL
− α]

− (vH − vL)τ(
p1α

vL
+

(vH − vL)α

vL
− α)2 = 0.

(32)

Note that ya(p1) is concave and quadratic in p1. Also, ya(vH) = −(vH−vL)τ(
vHα
vL

+ (vH−vL)α
vL

−

α)2 < 0 and ya(vL) > 0. Therefore, a unique value of p is guaranteed in the region where

Case (a) holds. Moreover, we have y′a(p) < 0. Also, I is nondecreasing in p1. Let po = inf{p :

I = 1}. Hence, as p1 increases beyond po, y(p1) switches from ya(p1) to

yb(p1) ≡ 2(vH − p1)(1− α)[τ + (1− τ)
p1α

vL
− α]− (vH − vL)τ(1− α)2, (33)

where yb(po) = ya(po). Additionally, we observe that yb(p1) is concave and quadratic in p1. If

p satisfies Case (a), then we must have y′b(po) ≤ 0, which shows that a solution does not exist

that satisfies Case (b). Also, I is nondecreasing in p1. Let pe = inf{p : I = 1}. Hence, as p1
increases beyond pe, y(p1) switches from yb(p1) to yc(p1) = 2(vH−p1)(1−α)2−(vH−vL)τ(1−

α)2, which is linearly decreasing in p1 with yc(pe) = yb(pe). Hence, a solution cannot satisfy
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Case (c). In sum, if a solution satisfies Case (a), it is unique. Following similar steps, one

can argue the uniqueness of the solution if it belongs to Cases (b) and (c). This completes

the uniqueness of solution p.

Next, we prove the monotonicity of p in τ . First, we consider p that satisfies ya(p) = 0.

From implicit differentiation with respect to τ , we obtain

∂ya(p1)

∂p1

∂p1
∂τ

(p) =(vH − vL)(
pα

vL
+

(vH − vL)α

vL
− α)2 − 2(vH − p)(1− α)

(vH − vL)α

vL

=(vH − vL)(I − α)2
(
1− I − I

I − α

τ(I − α)

τ(I − α) + (1− τ)(I − α)

)
,

(34)

where the last equality followed from substituting (vH−p) with τ(I−α)2(vH−vL)

2(τ(I−α)+(1−τ)(I−α))(1−α)
from

Equation (30). Since I−I

I−α
< 1 and τ(I−α)

τ(I−α)+(1−τ)(I−α)
< 1, Equation (34) is positive, which

implies that ∂p1
∂τ

(p) < 0.

Similarly for Cases (b) and (c), we obtain

∂yb(p1)

∂p1

∂p1
∂τ

(p) = (vH − vL)(1− α)2 − 2(vH − p)(1− α)(1− I)

= (vH − vL)(1− α)2
(
1− 1− I

1− α

τ(1− α)

τ(1− α) + (1− τ)(I − α)

)
> 0,

and
∂yc(p1)

∂p1

∂p1
∂τ

(p) = (1− α)2(vH − vL) > 0.

Since p is continuous in τ in each case discussed above and it is monotonic in τ , the result

follows. □
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A.1.3 Proof of Proposition 2.2

The result follows from the proofs of Proposition 2.1 and Lemma 2.1. Also, demand is

constant in price for values greater than vL until it drops to 0, as price increases beyond a

threshold. Since the firm revenue is increasing in price for a given demand, both firm types

set the maximum price that will be accepted by the H-type customers, if they decide not

to sell to the L-type customers. The maximum price that will be accepted by the H-type

customers is p defined in Lemma 2.1. □

A.1.4 Proof of Corollary 1

The proof follows from the discussion before the corollary and Proposition 2.2. □

A.1.5 Proof of Proposition 2.3

Part (i). From Proposition 2.2, I = min(pα
vL

+ (vH−vL)α
vL

, 1), and I = min(pα
vL
, 1). Thus,

γ(τ, α) = I − I = min(pα
vL

+ (vH−vL)α
vL

, 1) − min(pα
vL
, 1). Consider the Cases (a), (b), and

(c) defined in the proof of Lemma 2.1. Since p is non-increasing in τ , as τ increases, the

conditions switch from Case (c) to Case (b) and then Case (a). For sufficiently small τ , Case

(c) holds and γ(τ, α) = 0. For an intermediate value of τ , Case (b) holds and γ(τ, α) = 1− pα
vL
,

which is increasing in τ . For sufficiently large value of τ , we have γ(τ, α) = (vH−vL)α
vL

, which

is independent of τ . Since γ(τ, α) is continuous in τ , Part (i) follows.

Part (ii). First, we characterize the behavior of I in α in the following lemma.

Lemma A.1. I is monotonically non-decreasing in α.

Proof of Lemma A.1. If α is such that Case (a) holds, then vH − p = (vH−vL)τ(I−α)2

2(1−α)[τI+(1−τ)I−α]
.
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Multiplying both side of the equation by α
vL

and replacing pα
vL

by I, we derive

vHα

vL
− I =

(vH − vL)τα(I − α)2

2vL(1− α)[τI + (1− τ)I − α]
.

Using this equations, from implicit differentiation we find

∂I

∂α
= [−vH(1− α)(I +

(vH − vL)τα

vL
− α) + 2(αvH − IvL)(I +

(vH − vL)τα

vL
− α)

− 2(αvH − IvL)(1− α)(
(vH − vL)τ

vL
− 1) + τ(vH − vL)(I +

(vH − vL)α

vL
− α)2

+ 2τα
vH − 2vL

vL
(vH − vL)(I +

(vH − vL)α

vL
− α)]/(

2[−vL(1− α)(I +
(vH − vL)ατ

vL
− α) + (αvH − IvL)(1− α)− (vH − vL)τα(I +

(vH − vL)α

vL
− α)]

)
.

(35)

With some algebraic manipulations we derive the following for the denominator of Equation

(35):

− vL(1− α)(I +
(vH − vL)ατ

vL
− α) + (αvH − IvL)(1− α)− (vH − vL)τα(I +

(vH − vL)α

vL
− α)

= [vL(α− 1) + (vL − vH)α]
(vH − vL)ατ

vL
+ (vL − vH)τα(I − α) + (1− α)α(vH + vL − 2p).

Since the terms (α − 1), (vL − vH), and (vH + vL − 2p) are negative and the rest of the

terms in the above equation are positive, the denominator of ∂I
∂α

defined in Equation (35) is

negative. For the numerator of Equation (35), we have

− vH(1− α)(I +
(vH − vL)τα

vL
− α) + 2(αvH − IvL)(I +

(vH − vL)τα

vL
− α)

− 2(αvH − IvL)(1− α)(
(vH − vL)τ

vL
− 1) + τ(vH − vL)(I +

(vH − vL)α

vL
− α)2

+ 2τα
vH − 2vL

vL
(vH − vL)(I +

(vH − vL)α

vL
− α)

=2τ
(vH − vL)α

vL
vH(I − 1) + 3τ(vH − vL)α(α− I) + ατ(vH − vL)(I − α)(

I − α

1− α
− 1)

+ 2(1− α)α
vHvL − p2

vL
.

Since (I−1), (α− I), ( I−α
1−α

−1), and (vHvL−p2) are negative, we find that the numerator of

Equation (35) is also negative. Combining the results above, we have ∂I
∂α

> 0. Thus, Lemma
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A.1 holds when α satisfies Case (a). Moreover, note that I = I + (vH−vL)α
vL

. Therefore, I is

also strictly increasing when Case (a) holds.

When Case (b) holds, then vH − p = (vH−vL)τ(1−α)
2[τ+(1−τ)I−α]

. Similar to the previous case, from

implicit differentiation we have

∂I

∂α
=

p

vL
+

α

vL

∂p1
∂α

(p),

where

∂p1
∂α

(p) =
2(vH − p)[τ(1− α) + (1− τ)(I − α)]− 2(1− α)(vH − p)[(1− τ) p

vL
− 1]− 2(vH − vL)τ(1− α)

∂yb(p)
∂p

=
−1−α

α
[ (vH−vL)τ

2
− (vH − p)τ ]

∂yb(p)
∂p

> 0,

where the positive sign followed from noting that ∂yb(p)
∂p

(p) < 0 . This shows that when Case

(b) holds, I is also strictly increasing in α. Furthermore, in this case I = 1.

When Case (c) holds, I = I = 1, which are constant in α.

Finally, note that as α increases, the cases switch from Case (a) to Case (b), and then Case

(c). Given the behavior of I and I in α discussed above, and from noting that γ(τ, α) = I−I,

the result of Part (ii) follows.

Part (iii). Follows from the proofs of Parts (i) and (ii). □

A.1.6 Proof of Lemma 2.2

In the last period, customers purchase the product if they receive a nonnegative utility.

In period 1, when the firm sends the LI signal, customers update their beliefs about the

inventory to a uniform distribution on [α, Ic]. The proof of the existence Ib and Ib then follows

by repeating the steps in the proof of Lemma 2.1, and redefining I = min(pbα
vL

+ (vH−vL)α
vL

, Ic)

and I = min(pbα
vL

, Ic), where pb is the first-period price when the firm sends the LI signal.

Furthermore, by dividing the space into the following three cases (a) Ic ≤ Ib, (b) Ib <

Ic ≤ Ib, and (c) Ib < Ic, we can characterize pb given in the Lemma. However, we note that
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the characterization of pb is an implicit function when Case (b) occurs. We prove that in

this case, pb is well-defined and possesses a unique value.

Note that Ib is a function of pb. In this proof, we denote this dependence by using Ib(pb).

With this dependence in mind, in Case (b), pb(Ic) is the solution to the implicit Equation

pb = vH − vH−vL
2

Ic−α
1−α

τ(Ic−α)
τIc+(1−τ)Ib(pb)−α

. From the definition of Ib(pb), then pb is the solution to

pb = vH − vH − vL
2

Ic − α

1− α

τ(Ic − α)

τIc + (1− τ)pbα
vL

− α
, or equivalently,

2(vH − pb)(1− α)

(
τIc + (1− τ)

pbα

vL
− α

)
= (vH − vL)(Ic − α)2τ.

(36)

The above function defines an Ellipse, where its upper curve crosses the point (Ic, pb) =

(α, vH). Solving this equation in pb yields that it has a unique solution in the interval

(p, vH ]. This completes the proof for the uniqueness and existence of pb(Ic).

Next, we consider the case where the firm sends the HI signal. In this case, customers

update their inventory beliefs to a uniform distribution on [Ic, 1]. Following the steps of

Proof of Lemma 2.1 and by redefining I = min(paα
vL

+ (vH−vL)α
vL

, 1), where pa is the first-period

price when the firm sends the HI signal, we can show the existence of Ia.

To prove the existence of Ia, note that if such threshold exists, it must satisfy Ia ≥ I˜a ≡
min(paα

vL
, 1), because I˜a is the threshold below which a U-type firm sets a price higher than

vL. We divide the space into the following three cases: (a) Ic ≤ Ia, (b) Ia < Ic ≤ Ia, and

(c) Ia < Ic. In all these cases, we note that pa(Ic) is implicitly defined. In Case (b), pa(Ic)

is the solution to

pa = vH − Ic + Ia(Ic)− 2α

2(1− α)
(vH − vL) ≡ vH − J(pa, Ic). (37)

Since Ia is nondecreasing in pa, function vH − J(pa, Ic) is nonincreasing in pa, which

suggests that it has a unique fixed point. Solving the equation gives us the value of the price

characterized in the Lemma for Case (b).

In Case (c), pa(Ic) is the solution to pa = vH − 2Ia(Ic)−2α
2(1−α)

(vH − vL). Once again, the

right-hand side of the equation is nonincreasing in pa, and therefore, has a unique fixed

point. Solving for this fixed point, gives the price characterized in the lemma for Case (c).
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When Case (a) occurs, pa(Ic) is the solution to

pa = vH − τ(vH − vL)(Ia(Ic)− Ic)

(1− τ)Ia(Ic) + τIa(Ic)− Ic
· Ic + Ia(Ic)− 2α

2(1− α)
. (38)

If a unique solution pa(Ic) to the Equation (38) exists such that it is higher than the one

found in Case (b), then Ia(Ic) = I˜a(Ic) and Equation (38) turns into:

pa = vH − τ(vH − vL)(Ia(Ic)− Ic)

(1− τ)I˜a(Ic) + τIa(Ic)− Ic
· Ic + Ia(Ic)− 2α

2(1− α)
≡ vH −H(pa, Ic). (39)

Since both Ia(Ic) and I˜a(Ic) are minimization functions truncated at 1, we further divide

Case (a) into three subcases: Case a1) Ia(Ic) < 1, Case a2) I˜a(Ic) < 1 ≤ Ia(Ic), and Case

a3) Ia(Ic) = 1. For Case (a3), the right-hand side of Equation (39) is independent of pa, and

therefore pa(Ic) is explicitly defined by the equation and is decreasing in Ic. Furthermore,

this solution is the same as the solution we find in Case (b). Hence, Ia(Ic) exists and it is

equal to I˜a(Ic).
For Cases (a1) and (a2), we can rewrite the Equation (39) as follows:

τ(vH − vL)(Ic −N1)
2 − 2(1− α)paIc −

(
2(1− α)

α

vL
+ τ(vH − vL)

α2

v2L

)
(pa −N2)

2 = C,

(40)

where N1, N2, and C are independent of pa and Ic. Note that Equation (40) represent an

angled hyperbola in (Ic, pa) space. Furthermore, this hyperbola crosses the point (Ic, pa) =

(α, p). Hence, for any threshold Ic, there exists at most two prices pa that satisfy Equation

(39). Also, note that

∂pa
∂Ic

|{Ic=α}=

τ(vH − vL)

(
Ic − α− (Ia−Ic)

(Ia−
(1−τ)(vH−vL)α

vL
−Ic)

· (Ia+Ic−2α)
2

)
α
vL

(
(1− α)(2pa − Ic

vL
α
− vH) + τ(vH − vL)(1− α + Ia − α)

) |{Ic=α}.

Since (Ia−Ic)

(Ia−
(1−τ)(vH−vL)α

vL
−Ic)

> 1, we have Ic − α − (Ia−Ic)

(Ia−
(1−τ)(vH−vL)α

vL
−Ic)

· (Ia+Ic−2α)
2

< Ic − α −
(Ia+Ic−2α)

2
< 0. Hence, the numerator of the above equation is negative. We also know that

1 − α + Ia − α > 0. Furthermore, at Ic = α, we have 2pa − vL − vH = 2p − vL − vH > 0;

therefore, the denominator of the above equation is positive. As such, ∂pa
∂Ic

< 0 at Ic = α.

This shows that the hyperbola defined by Equation (40) is decreasing and is less than or

equal to p at Ic = α. Since the equation defined in (40) is a hyperbola, it is either concave
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or convex in Ic at Ic = α. Using the notations of functions J(pa, Ic) and H(pa, Ic) defined in

Equations (37) and (39), we have

H(pa, Ic)

J(pa, Ic)
=

τ(Ia − Ic)

τ(Ia − Ic) + (1− τ)(I˜a − Ic)
= τ +

τ(1− τ) (vH−vL)α
vL

Ia − (1− τ) (vH−vL)α
vL

− Ic
∈ (τ, 1].

We observe that H(pa,Ic)
J(pa,Ic)

is increasing in Ic. Since J(pa, Ic) is linearly increasing in Ic, we find

that pa is concave in Ic at Ic = α.

Let p̃a(Ic) be the price when Ic satisfies Case (a) and p̂a(Ic) be the price when Ic satisfies

Case (b). Since we showed that p̂a(Ic) is linearly nonincreasing in Ic, it crosses p̃a(Ic) at

most once. If this crossing point occurs above the vertex of the hyperbola, then Ia(Ic) exists

and is equal to I˜a(Ic). However, if the crossing point occurs below the vertex, then Ia(Ic)

might not be equal to I˜a(Ic). In this case, the customer believes that a U-type firm would

never charge a price higher than vL if Ic is greater than the x-coordinate of the vertex. Thus,

Ia(Ic) would be the x-axis value of the vertex of the hyperbola.

Finally, we prove the monotonicity of pb and pa in Ic. First, we show that pb(Ic) is

piece-wise nonincreasing in Ic. In Case (a), pb(Ic) is linearly decreasing in Ic. In Case (c),

pb(Ic) = p, which is constant in Ic. In Case (b), we have

∂pb
∂Ic

=
τ(vH − vL)(Ic − α)− τ(vH − pb)(1− α)

(1− α)
(
(vH − pb)(1− τ) α

vL
− τ(Ic − α)− (1− τ)(pb

α
vL

− α)
)

=
(vH − vL)(Ic − α)(1− τ(Ic−α)

2[τ(Ic−α)+(1−τ)(Ib−α)]
)

(1− α)
(
(1− τ) α

vL
(vH + vL − 2pb)− τ(Ic − α)

) .
From Equation (36), we observe that vH + vL − 2pb < 0. Therefore, the denominator is

negative. Also, the numerator is positive. Consequently, ∂pb
∂Ic

< 0. Hence, pb(Ic) is piecewise

nonincreasing in Ic. Since pb(Ic) is piecewise nonincreasing in Ic, we find that Ib and Ib are

also nonincreasing in Ic. This combined with the fact that pb(Ic) is continues in Ic, prove

the nonincreasing property of pb(Ic) in Ic.

Next, we show that pa(Ic) is nonincreasing in Ic. From the discussion above, we showed

that pa(Ic) is piecewise nonincreasing. Also, pa(Ic) continuously transitions from Case (b)

to Case (c). Furthermore, the arguments above show that pa(Ic) is either continuous or
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jumps down when it transitions from Case (a) to Case (b). This completes the proof of

nonincreasing property of pa(Ic).

Finally, since pb(Ic) is nonincreasing in Ic and pb(Ib) = p, we have pb(Ic) ≥ p. Also, since

pa(Ic) is nonincreasing in Ic and pa(α) = p, we have p ≥ pa(α). This completes the proof of

the last part of the lemma. □

A.1.7 Proof of Proposition 2.4

First, we show that the optimal signal cut-off does not belong to the interval [α, Ia]. To

show this, we argue that there exists a signal cut-off Îc ∈ [I, Ib) that yields an strictly higher

revenue than the case when the firm chooses any cut-off Ic ∈ [α, Ia]. Denote the revenue

with signal cut-off Ic ∈ [α, Ia] by RC
1 (Ic), the revenue with signal cut-off Îc ∈ [I, Ib) with

RC
2 (Îc), and the expected revenue in base model with RB. Then,

RC
1 (Ic)−RB =τ

∫ I

Ia(Ic)

(
vLI − (vH − vL)α +

(I − α)(vH − vL)α

1− α
− vHα

)
dF (I)

+ (1− τ)

∫ I

Ia(Ic)

(vLI − vHα)dF (I)

<τ

∫ I

Ia(Îc)

(
vLI − (vH − vL)α +

(I − α)(vH − vL)α

1− α
− vHα

)
dF (I)

+ (1− τ)

∫ I

Ia(Ic)

(vLI − vHα)dF (I)

≤τ

∫ I

Ia(Îc)

(
vLI − (vH − vL)α +

(I − α)(vH − vL)α

1− α
− vHα

)
dF (I)

+ (1− τ)

∫ Îc

I

(vHα− vLI)dF (I)

=R2(Îc)−RB,

where the first inequality followed from the fact that the term

τ

∫ I

Ia(Ic)

(
vLI − (vH − vL)α +

(I − α)(vH − vL)α

1− α
− vHα

)
dF (I)
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is increasing in Ic and Îc > Ic. The second inequality followed from noting that (1 −

τ)
∫ I

Ia(Ic)
(vLI − vHα)dF (I) < 0 and (1 − τ)

∫ Îc
I
(vHα − vLI)dF (I) ≥ 0. Hence, the optimal

signal cut-off cannot belong to interval [α, Ia].

Since for Ic /∈ [α, Ia], pa and pb from Lemma 2.2 are continuous in Ic, the firm revenue is

also a continuous function. Thus, on the compact interval (Ia, 1], the firm revenue achieves

its maximum in Ic, which shows the existence of I∗c .

Part (i) and Part (ii). Follow from Lemma 2.2 and the existence of I∗c .

Part (iii). It is straightforward to see that for any I∗c , we must have I
∗
b ≥ I∗b and I

∗
a ≥ I∗a,

where the inequalities are strict when I∗b < 1 and I∗a < 1, respectively. □

A.1.8 Proof of Proposition 2.5

From the proof of Proposition 2.4 recall that the optimal cut-off cannot belong to the

interval [α, Ia]. Thus, we only focus on the interval (Ia, 1]. Let I be the threshold for the

base model without the inventory signal. First, we prove that if I = 1, then there does not

exist any I∗c < 1 such that an inventory signal can improve the firm’s revenue. Let RB and

RC(Ic) be the expected revenues in the base model and the model with inventory signal,

respectively. In this case, i.e., when I = 1, we have

RC(Ic)−RB = (1− τ)

∫ I

Ic

(vLI − vHα)dF (I) < 0,

which is what we desired to show.

Next, consider the case where I < 1. We prove there exists a unique I∗c ∈ [I, 1) such that

the model with the inventory signal yields strictly a higher revenue than the base model.

Consider the following four cases: (i) Ia < Ic < Ib, (ii) Ib ≤ Ic ≤ Ia, (iii) Ia < Ic ≤ Ib,

and (iv) Ib < Ic ≤ 1. We observe that the ex-ante expected revenue is equivalent to the base

model when Ic is in (iv).

We first show that, for Case (i), RC(Ic)−RB is strictly increasing in Ic. In this case, we

have
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RC(Ic)−RB =τ

∫ I

Ia

(
vLI − (vH − vL)α +

(I − α)(vH − vL)α

1− α
− vHα

)
dF (I)

+ (1− τ)

∫ Ic

I

(vHα− vLI)dF (I).

From the proof of Proposition 2.4, we know that first line of the equation above is strictly

increasing in Ic if Ia < 1, and zero otherwise. We show that the second line is also strictly

increasing in Ic. The first derivative of the second line is vLIc − vHα. Since Ic <
vHα
vL

for all

Ic ∈ (Ia, Ib), we have vLIc − vHα > 0. Therefore, RC(Ic)−RB is strictly increasing in Case

(i).

Next, we prove that the expected revenue in Case (iii) is strictly decreasing in Ic. The

expected revenue is Case (iii) is

RC(Ic) = (τ(Ic − α) + (1− τ)(Ib − α)) vHα− τα(vH − vL)(Ic − α)2

2(1− α)
+ τ

∫ Ic

α

(vH − vL)αdF (I)

+ τ

∫ 1

Ic

vLIdF (I) + (1− τ)

∫ 1

Ib

vLIdF (I)

Thus, for any Ic from Case (iii), the difference is given by RC(Ic)−RB = τvL
∫ Ic
Ia
(I−Ia)dF (I),

which is positive for any Ic in Case (iii). Taking the first derivative of this equation yields:

∂(RC(Ic)−RB)

∂Ic
= τ

(
α(vH − vL)(1− Ic)

1− α
+ vHα− vLIc

)
=τ

(
α(vH − vL)(1− Ia)

1− α
+ vHα− vLIa +

α(vH − vL)(Ia − Ic)

1− α
+ vL(Ia − Ic)

)
=

(
α(vH − vL)

2(1− α)
+ vL

)
(Ia − Ic) < 0,

(41)

where the last inequality followed from noting that Ic > Ia in Case (iii). Therefore, RC(Ic)−

RB is strictly decreasing in Ic in Case (iii).

We claim that the optimal cut-off must belong to Case (ii) by showing that, in this case,

the revenue function RC(Ic) is concave and decreasing at Ic = Ia. The expected revenue in

Case (ii) is

RC(Ic) =
(
τ(Ia − α) + (1− τ)(Ib − α)

)
vHα− τα(vH − vL)(Ia − α)2

2(1− α)

+ τ

∫ Ia

α

(vH − vL)αdF (I) + τ

∫ 1

Ia

vLIdF (I) + (1− τ)

∫ 1

Ib

vLIdF (I).
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The first derivative of the revenue function is given by

∂RC(Ic)

∂Ic
= τ

(
α(vH − vL)(Ic − Ia)

2(1− α)

)
∂Ia
∂Ic

+ (1− τ)(vHα− vLIb)
∂Ib
∂Ic

. (42)

where on the interval [Ib, Ia], we have

Ia(Ic) =
2vHα(1− α) + 2(vH − vL)α− Icα(vH − vL)

2(1− α)vL + α(vH − vL)
, and

Ib(Ic) = (2(1− τ)vL(1− α))−1 α(1− α)(vH + vL − vHτ)− vL(1− α)τIc

+ (1− α)
1
2 [(2αvL(1− τ)(α2(vH(2− τ) + vLτ) + τI∗c (vH(2− Ic) + vLIc)− 2α(vH + vLτIc))

+ (1− α)(α(vH + vL − vHτ)− vLτIc)
2]

1
2

Plugging these values in Equation (41), we find that τ
(

α(vH−vL)(Ic−Ia)
2(1−α)

)
∂Ia
∂Ic

> 0. Fur-

thermore, τ
(

α(vH−vL)(Ic−Ia)
2(1−α)

)
∂Ia
∂Ic

is strictly decreasing in Ic, because
∂Ia
∂Ic

< 0 is constant and

α(vH−vL)(Ic−Ia)
2(1−α)

< 0 is increasing in Ic. Moreover, since vHα − vLIb > 0 is increasing in Ic,

and
∂Ib
∂Ic

< 0 is decreasing in Ic, we observe that (1− τ)(vHα− vLIb)
∂Ib
∂Ic

< 0 and it is strictly

decreasing in Ic. Therefore, the first order derivative is strictly decreasing, and RC(Ic) is a

concave function in the range [Ib, Ia].

Furthermore, the first derivative of the revenue function at Ic = Ia is given by

∂RC(Ic)

∂Ic
|{Ic=Ia}=τ

(
α(vH − vL)(Ic − Ia)

2(1− α)

)
∂Ia
∂Ic

|{Ic=Ia}+(1− τ)(vHα− vLIb)
∂Ib
∂Ic

|{Ic=Ia}

=(1− τ)(vHα− vLIb)
∂Ib
∂Ic

|{Ic=Ia}< 0,

where the last equality followed from noting that α(vH−vL)(Ic−Ia)
2(1−α)

= 0 at Ic = Ia, and the

last inequality followed from the facts that (vHα − vLIb) > 0 and
∂Ib
∂Ic

< 0. Therefore, at

Ic = Ia, the expected revenue is strictly decreasing. Since the revenue function in this region

is concave and the expected revenue is continuous on (Ia, 1], the optimal solution I∗c must

exist in the interval [Ib, Ia), and I∗c is unique. □
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A.1.9 Proof of Proposition 2.6

Let I0 ≡ min(αvH
vL

, 1). To emphasize the dependence of the functions Ia and Ib on Ic, we

denote them by Ia(Ic) and Ib(Ic). From the definition of the H-type customer surplus and

I∗c ∈ [Ib, Ia), we have

CSn =τ

(∫ I

α

(vH − p)dF (I) +

∫ I0

I

(vH − vL)IdF (I) +

∫ 1

I0

2(vH − vL)IdF (I)

)
+

(1− τ)

(∫ I

α

(vH − p)dF (I) +

∫ 1

I

2(vH − vL)IdF (I)

)
,

and,

CSs(Ic) =τ

(∫ Ib(Ic)

α

(vH − pb(Ic))dF (I) +

∫ I0

Ib(Ic)

(vH − vL)IdF (I) +

∫ 1

I0

2(vH − vL)IdF (I)

)
+

(1− τ)

(∫ Ic

α

(vH − pb(Ic))dF (I) +

∫ Ia(Ic)

Ic

(vH − pb(Ic))dF (I) +

∫ 1

Ia(Ic)

2(vH − vL)IdF (I)

)
.

Therefore,

CSs(Ic)− CSn =
τ

2(1− α)

(
(Ia(Ic)− α)2 − (I − α)2

)
+ τ(I

2 − Ia(Ic)
2)− (1− τ)

Ib(Ic)
2 − I2

2
.

(43)

We first show that the function CSs(Ic) − CSn is strictly increasing in Ic. The first-order

derivative of this function with respect to Ic is

∂(CSs(Ic)− CSn)

∂Ic
= τ

−α− Ia + 2Iaα

1− α

∂Ia
∂Ic

− (1− τ)Ib
∂Ib
∂Ic

(44)

From Lemma 2.2, we know both pa and pb are non-increasing in Ic, therefore, both Ia(Ic)

and Ib(Ic) are also non-increasing in Ic. Consequently, from Equation (44), ∂(CSs(Ic)−CSn)
∂Ic

>

0, which is what we desired to show. Since I∗c ≥ Ib, we have

CSs(I∗c )− CSn ≥ CSs(Ib)− CSn.

Hence, CSs(Ib)− CSn is a lower bound for CSs(I∗c )− CSn. Plugging Ic = Ib, we have

CSs(Ib)− CSn =− τ

2(1− α)
(I − α)2 + τI

2
+

τ

2(1− α)
(Ia(Ib)− α)2 − τIa(Ib)

2 − (1− τ)
Ib(Ib)

2 − I2

2
.

Note that Ib(Ib) = α + 2(1−α)(vH−vL)α
2(1−α)vL+τα(vH−vL)

and Ia(Ib) =
2(1−α)vHα+α(vH−vL)(2−Ib)

2(1−α)vL+α(vH−vL)
.
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Following the proof of Proposition 2.3, we know that I and I are strictly increasing in

α when I < 1 and I < 1, respectively. Following the same steps as the proof of Proposition

2.3, one can show that Ia(Ib) and Ib(Ib) are strictly increasing in α when Ia(Ib) < 1 and

Ib(Ib) < 1, respectively. Therefore, the pattern for CSs(Ib) − CSn can be divided into 4

cases: Case (i) I < 1, Case (ii) I = 1 and Ia(Ib) < 1, Case (iii) Ia(Ib) = 1 and Ib(Ib) < 1,

Case (iv) I = 1.

The first-order derivative of the lower bound CSs(Ib) − CSn with respect to α is given

by

∂(CSs(Ib)− CSn)

∂α
=

τ

(
Ia

∂Ia
∂α

− I ∂I
∂α

1− α
+

I − Ia
1− α

+
(Ia − α)2 − (I − α)2

2(1− α)2
+ 2(I

∂I

∂α
− Ia

∂Ia
∂α

) +
∂I
∂α

− ∂Ia
∂α

1− α

)
+ (1− τ)(I

∂I

∂α
− Ib

∂Ib
∂α

).

(45)

By plugging the formulas for Ia(Ib) and Ib(Ib), we find that CSs(Ib)−CSn behaves in α as

follows: strictly increases when Case (i) holds, strictly decreases when Case (ii) holds, and

strictly increases when Case (iii) holds.

Define α1 ≡ inf{α|I = 1}, α2 ≡ inf{α|Ia(Ib) = 1}, and α3 ≡ inf{α|I = 1}. Note that

since CSs(Ib)− CSn = 0 for α = 0, CSs(Ib)− CSn > 0 for α = α1, CSs(Ib)− CSn < 0 for

α = α2, and CSs(Ib)−CSn = 0 for α = α3, there exists a unique threshold α˜ ∈ (0, α3) such

that CSs(Ib)− CSn = 0 when α = α˜.
Next we show the existence and uniqueness of α. Define α∗

2 = inf{α|Ia(I∗c ) = 1}. Firstly,

since CSs(I∗c ) − CSn ≥ CSs(Ib) − CSn > 0 when α = α1, and CSs(I∗c ) − CSn < 0 when

α = α∗
2, there exists at least one α such that CSs(I∗c )−CSn = −(1− τ)

Ib(I
∗
c )

2−I2

2
< 0. Next,

we show this threshold is unique.

When Ic = I∗c , we rearrange Equation (43) as follows:

CSs(I∗c )− CSn =− τ

2(1− α)
(I − α)2 + τI

2
+

τ

2(1− α)
(Ia(I

∗
c )− α)2 − τIa(I

∗
c )

2

− (1− τ)
Ib(I

∗
c )

2 − I2

2
.

(46)
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Recall that on the interval [α1, α
∗
2], we have

I =1,

Ia(I
∗
c ) =

2vHα(1− α) + 2(vH − vL)α− I∗cα(vH − vL)

2(1− α)vL + α(vH − vL)
,

Ib(I
∗
c ) = (2(1− τ)vL(1− α))−1 α(1− α)(vH + vL − vHτ)− vL(1− α)τI∗c

+ (1− α)
1
2 [(2αvL(1− τ)(α2(vH(2− τ) + vLτ) + τI∗c (vH(2− I∗c ) + vLI

∗
c )− 2α(vH + vLτI

∗
c ))

+ (1− α)(α(vH + vL − vHτ)− vLτI
∗
c )

2]
1
2

(47)

Note that either I∗c > Ib(I
∗
c ), and therefore, I∗c satisfies the first-order condition

∂RC(Ic)
∂Ic

|{Ic=I∗c }=

0 , or I∗c = Ib(I
∗
c ). Plugging the values from Equation (47) into

∂RC(Ic)

∂Ic
|{Ic=I∗c }= τ

(
α(vH − vL)(Ic − Ia(I

∗
c ))

2(1− α)

)
∂Ia
∂Ic

|{Ic=I∗c }+(1−τ)(vHα−vLIb(I
∗
c ))

∂Ib
∂Ic

|{Ic=I∗c }= 0,

and solving for I∗c , we find I∗c as a function of α. Then, one can prove that the first line in

Equation (46) is strictly decreasing and convex in α on the interval [α1, α
∗
2], and the second

line in Equation (46) is strictly increasing and convex in α on the interval [α1, α3]. Therefore,

CSs(I∗c )− CSn is a convex function on the interval [α1, α
∗
2] ∪ [α1, α3] = [α1, α

∗
2]. As such, α

is unique.

For the L-type customer, we have

Qn
L = τ

(∫ I

α

I − α

1− α
dF (I) +

∫ 1

I

2IdF (I)

)
+ (1− τ)

(∫ I0

I

IdF (I) +

∫ 1

I0

2IdF (I)

)
,

and

Qs
L(Ic) = τ

(∫ Ia

α

I − α

1− α
dF (I) +

∫ 1

Ia

2IdF (I)

)
+ (1− τ)

(∫ I0

Ib

IdF (I) +

∫ 1

I0

2IdF (I)

)
.

Therefore, CSs(Ic) − CSn = Qs
L(Ic) − Qn

L, and the results for Qs
L(Ic) − Qn

L follow from the

above analysis for CSs(Ic)− CSn.

From Proposition 2.5, we know that when I = 1, the model with inventory signal is

equivalent to the base model, and therefore, an inventory signal does not change the customer

surplus compared to the base model. Also, recall that I is strictly increasing in α when I < 1.

Define α = α3 ≡ inf{α|I = 1} to obtain the result of the proposition. □
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A.2 Full-Disclosure Inventory Signal

Since the binary signaling mechanism (6) does not always improve the firm revenue,

one may conjecture that a more refined signaling mechanism can benefit the firm by sending

more information to the customers. To investigate this possibility, we consider an alternative

signaling mechanism

Σr(I) = sI for I ∈ [α, 1]. (48)

With this mechanism, the firm fully discloses the inventory level to the customers, re-

solving the inventory uncertainty. However, customers would remain uncertain about the

firm type and use the inventory and price information to update their beliefs about the pos-

sibility of future PP. The following proposition studies whether such signaling mechanism

outperforms the binary signal structure studied in the main body of the paper for τ ≤ τ(α).

Proposition A.1. When τ ≤ τ(α), the firm revenue with signaling mechanism Σr(I) is no

larger than the base model revenue without any inventory signal.

Proof of Proposition A.1. Let IF ≡ min(α vH(1−α)+τα(vH−vL)
vL(1−α)+τα(vH−vL)

, 1) and I
F ≡ min(vHα(1−α)+(vH−vL)α

vL(1−α)+(vH−vL)α
, 1).

Since the firm fully discloses the inventory information to the customers, for any given in-

ventory level, the first-period equilibrium prices are:

(i) U-type firm sets,

p∗1(0, I) =

vH − τ(vH−vL)(I−α)
1−α

if I ≤ IF

vL otherwise.

(ii) P-type firm sets,

p∗1(1, I) =


vH − τ(vH−vL)(I−α)

1−α
if I ≤ IF

vH − (vH−vL)(I−α)
1−α

if IF < I ≤ I
F

vL otherwise.

The second-period equilibrium prices would be the same as the ones found in Proposition

2.4.
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When τ ≤ τ(α), we have vHα
vL

> I = 1. Consequently, I
F

= 1. Then, the expected

revenue in the base model is:

RB =τ

(∫ 1

α

(vH − τ(vH − vL)

2
)αdF (I) +

∫ 1

α

(vHα + vL(I − α))dF (I)

)
+ (1− τ)

(∫ 1

α

(vH − τ(vH − vL)

2
)αdF (I) +

∫ 1

α

vHαdF (I)

)
.

Furthermore, the expected revenue with full-disclosure inventory signal is given by

RF =τ

(∫ IF

α

(vH − τ(vH − vL)
I − α

1− α
)αdF (I) +

∫ 1

IF
(vH − (vH − vL)

I − α

1− α
)αdF (I)

)

+ τ

(∫ 1

α

(vHα + vL(I − α))dF (I)

)
+ (1− τ)

(∫ IF

α

(vH − τ(vH − vL)
I − α

1− α
)αdF (I) +

∫ 1

IF
vLIdF (I) +

∫ 1

α

vHαdF (I)

)
.

Therefore,

RB −RF = (1− τ)(

∫ 1

IF
(vHα− vLI) ≥ 0,

which proves the proposition. □

As such, when the binary inventory signal does not improve the firm revenue (i.e., when

τ ≤ τ(α)), a full-disclosure signal also does not increase the revenue over the base model. As

discussed in §2.4, a low value of τ corresponds to a higher likelihood of having a U-type firm.

In this case, customers associate a high price with inventory scarcity rather than the firm’s

intention to implement PP in the future. By committing to a full-disclosure inventory signal,

the firm risks skewing the customer beliefs toward PP when the inventory realization is high.

The firm then must reduce the first-period price to persuade H-type customers to purchase,

which hurts the firm revenue. Additionally, when inventory realizes low, an inventory signal

is not much beneficial, as customers already believe the firm is U-type with a high probability

when τ is small. Hence, the revenue loss from committing to a full-disclosure signal when

inventory realizes high outweighs the benefit when inventory realization is low. Consequently,

both firm types are a priori worse off by committing to a full-disclosure inventory signal.

The two inventory signaling mechanisms considered in this paper are the extreme cases

in the space of all possible mechanisms: With the binary signal, the inventory support is
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divided into two intervals. With the full-disclosure signal, the firm precisely informs the

customers about the state of inventory; in other words, the inventory support is divided

into infinite intervals. While these two mechanisms are commonly used in practice, we do

not study the “optimal” mechanism in the space of “all” possible mechanisms. In a general

signaling framework, Guo and Shmaya (2019) find that a nested structure such as dividing

the inventory space into multiple intervals and sending a separate signal for each interval is

optimal. Arieli et al. (2019) show that when the state-space is continuous (such as inventory

in our model), a bi-pooling signal is optimal where the sender divides the sate-space into

two disjoint intervals and separately signals the receivers for each interval. This is similar to

the binary signal studied in our paper. However, to prove the result, they require that the

sender’s utility be state-independent, which is not the case in our application. Nevertheless,

the optimal structural design of the inventory signal is a fruitful avenue for future research.

A.3 Supporting Results for Section 2.6.1: Demand Uncertainty and Optimal

Inventory

When there is no confusion, we use the same notation in this section as the main model with

inventory uncertainty. For example, we use pit for the price set for customer i in period t.

However, one should keep in mind that the precise equilibrium values would be different with

inventory uncertainty than demand uncertainty. With this note in mind, we first replicate

the result regarding the customer behavior.

Lemma A.2. In any SBPE, we have ai2(pi2) = 1(vi ≥ pi2). Furthermore, there exists a

unique threshold p ∈ (vL, vH) such that H-type customers purchase in the first period if and

only if p ≤ p. Thus, we have

ai1(pi1) =

1(pi1 ≤ vL) if vi = vL

1(pi1 ≤ p) if vi = vH .

Proof. Similar to the proof of Lemma 2.1, we know that if H-type customer i purchases at

price pi1 > vL in period 1, she may receive personalized price pi2 = vH in period 2. Therefore,
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the incentive compatible condition to motivate H-type customers to purchase at pi1 is

vH − p1 ≥ Pr(ω = 1|p1 > vL)ξ
c
i2(Hc

2|ω = 1 & p1 > vL)(vH − vL). (49)

We assert the following claim.

Claim A1. Define g(α) ≡ vH min(α, I) + vL max(I − α, 0) − max(min(α, I)vH , vLI) and

l(α) ≡ vLI − p1min(α, I). There exist unique thresholds α = IvL
p1+vH−vL

and α = IvL
p1

such

that for a P-type firm,

pi1(1, α) =

p1 if α ≥ α

vL otherwise,

and for a U-type firm,

pi1(0, α) =

p1 if α ≥ α

vL otherwise.

For α > I, we have g(α) = 0 and l(α) < 0. For α ≤ I, g(α) and l(α) are continuous and

differentiable almost everywhere, and l′(α) ≥ g′(α) for each α. Therefore, g(α) − l(α) has

the single-crossing property. The rest of the proof of Claim A1 follows similarly to the proof

of Claim 1 in Lemma 2.1.

Using this result, the right-hand side of Equation (49) is given by

Pr(ω = 1|p1 > vL)ξ
c
i2(Hc

2|ω = 1 & p1 > vL)(vH − vL)

=
τ(1− α)

τ(1− α) + (1− τ)(1− α)

∫ I

α

I − α

1− α

1

I − α
dF (I)(vH − vL),

(50)

Since the functional form of Equation (50) is similar to Equation (30), the rest of the proof

follows from same steps as in the proof of Lemma 2.1. □

Proposition A.2. A unique SBPE to the game exists when α is uncertain. Define α = IvL
p

and α = IvL
vH+p−vL

, whereα and α are given in Lemma A.2. Let pn1 (ω, α) and pn2 (ω, α,H
f
2) be

the equilibrium first and second-period prices. Then,

(i) A U-type firm sets prices

pn1 (0, α) =

p if α ≥ α

vL otherwise,

and pn2 (0, α,H
f
2) =


vH if α ≥ IvL

vH

vL otherwise.

(ii) A P-type firm sets prices
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pn1 (1, α) =

p if α ≥ α

vL otherwise,

and pni2(1, α,H
f
2) =

ai1(p)vH + (1− ai1(p))vL if α ≥ α

vL otherwise.

Proof. Similar to the proof of Proposition 2.2. □

The P-type firm implements PP only if the demand popularity, α, is sufficiently large.

Furthermore, both firm types set the same equilibrium price p in the first period if they

intend to sell only to the H-type customers. Therefore, an H-type customer cannot fully

distinguish between the two firm types upon observing the price. However, since α ≤ α,

a price p1 > vL is more likely to be associated with a P-type firm. Thus, price can only

partially signal the firm type.

Similar to the main model, we consider a binary class of inventory signals, i.e., signaling

mechanisms of the form

Σd(I) =

sdb if α ≤ αc

sda otherwise.

(51)

Parallel to Lemma 2.2, we characterize the following result.

Lemma A.3. In any SBPE, Customer i who receives price pi2 and signal s ∈ {sda, sdb}

makes decision ai2(pi2, s) = 1(vi ≥ pi2) in the second period. Additionally, there exist unique

thresholds pa(αc) ∈ (vL, vH) and pb(αc) ∈ (vL, vH ] such that H-type customers purchase

the product in the first period if and only if p1 ≤ pb(αc) when they receive signal sdb and

p1 ≤ pa(αc) when they receive signal sda. Hence,

ai1(p1, s) =


1(p1 ≤ vL) if vi = vL

1(p1 ≤ pb(αc)) if vi = vH and s = sdb

1(p1 ≤ pa(αc)) if vi = vH and s = sda.

Furthermore, for any signaling mechanism Σc(α), there exist thresholds αb(αc), αb(αc),
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αa(αc), and αa(αc) as functions of αc such that

pb(αc) =

vL if αc ∈ [0, αb(αc))

vH − (1 + 1−I
αc−αb(αc)

· log( 1−αc

1−αb(αc)
)) · (vH − vL) if αc ∈ [αb(αc), αb(αc))

vH − τ(αc−αb(αc))

τ(αc−αb(αc))+(1−τ)(αc−αb(αc))
(1 + 1−I

αc−αb(αc)
· log( 1−αc

1−αb(αc)
)) · (vH − vL) if αc ∈ [αb(αc), I)

vH − τ(αc−αb(αc))

τ(αc−αb(αc))+(1−τ)(αc−αb(αc))
(1 + 1−I

I−αb(αc)
· log( 1−I

1−αb(αc)
)) · (vH − vL) if αc ∈ [I, 1],

where p is given in Lemma A.2. Also,

pa(αc) =



p if αc ∈ [0, αa(αc))

vH − τ(1−αc)
τ(1−αc)+(1−τ)(1−αa(αc))

(1 + 1−I
I−αc

· log( 1−I
1−αc

)) · (vH − vL) if αc ∈ [αa(αc), αa(αc))

vH − τ(1 + 1−I
I−αc

· log( 1−I
1−αc

)) · (vH − vL) if αc ∈ [αa(αc), I)

vH if αc ∈ [I, 1].

Finally, pb(αc) and pa(αc) are non-decreasing in αc, and pb(αc) ≤ p ≤ pa(αc).

Proof. The proof follows similar to the proof of Lemma 2.2 with two main differences:

First, the signal mechanism reveals information about α instead of inventory, I. Second,

in contrast to the model with inventory uncertainty, α may realize in a way that α > I.

However, we note that the Low-α signal corresponds to the HI signal in the main model,

and the High-α signal corresponds to the LI signal. Intuitively, a product low on inventory

has the same availability as a popular product with high demand and vice versa, inducing

the same availability risk as in our main model.

In period 1, when the firm sends the Low-α signal, customers update their beliefs about

α to a uniform distribution supported on [0, αc). The proof of the existence αb then follows

from repeating the steps in the proof of Lemma 2.2 with the HI signal and defining α =

min( IvL
pb+vH−vL

, αc). In addition, the proof of the existence of αb follows from similar steps to

the proof of the existence of Ia in the main model. Given the existence of αb and αb, we

can divide the space into the following four subcases (a) αc ≤ αb, (b) αb < αc ≤ αb, (c)

αb < αc ≤ I, and (d) I < αc, and repeat the analysis in the proof of Lemma 2.2 for each

case.
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When the firm sends the Low-α signal, one can also prove the existence and uniqueness

of pa(αc) ∈ [p, vH ] following similar analysis in Lemma 2.2 for the HI inventory signal.

When the firm sends the High-α signal, the existence and uniqueness of pa(αc) in the

interval [p, 1] follows from similar analysis to the Proof of Lemma 2.2 with the LI signal and

defining α = min( IvL
pa+vH−vL

, αc) and α = min( IvL
pa

, αc).

To prove the monotonicity results, similar to the proof of Lemma 2.2, we can show

that price pa(αc) is constant in αc for αc ∈ [0, αa(αc)) and αc ∈ [I, 1], and monotonically

increases for αc ∈ [αa(αc), αa(αc)) and αc ∈ [αa(αc), I). Furthermore, pb(αc) is piecewise

non-decreasing, and continuously transitions from Case (a) to Case (b) and from Case (c)

to Case (d). Additionally, when αc transitions from Case (b) to Case (c), pb(αc) is either

continuous or jumps up. □

Except for the logarithmic terms in pa(αc) and pb(αc), these equilibrium values derived

from above equations possess similar functional forms as those found in Lemma 2.2. This

lemma enables us to study the existence and structure of the optimal signaling mechanism.

Let α∗
c be the optimal signal cut-off in (51) and Σ∗(α) be the corresponding signaling mech-

anism. We establish the following result.

Lemma A.4. In any SBPE, there exist at most two local maxima, one in the interval [αb, I)

and one at α∗
c = I.

Proof. First, when αc ∈ [0, I], the availability risk and expected revenue with demand signal

will have equivalent functional forms to the main model with inventory uncertainty for some

Ic > α. Therefore, an argument similar to the proof of Proposition 2.5 shows the existence

of at most one interior optimal cut-off α∗
c ∈ [αb, I). This cut-off would be one of the local

maxima for the problem.

Next, we consider the case when αc ∈ [I, 1]. In this case, the expected revenue is given
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by

RC(αc) = τ [

∫ αb

0

2vLIdF (α) +

∫ I

αb

((pb(αc) + vH − vL)α + vLI) dF (α) +

∫ αc

I

(pb(αc) + vH) IdF (α)

+

∫ 1

αc

2vHIdF (α)] + (1− τ)[

∫ αb

0

(vLI +max(vHα, vLI)) dF (α) +

∫ I

αb

(pb(αc) + vH)αdF (α)

+

∫ αc

I

(pb(αc) + vH) IdF (α) +

∫ 1

αc

2vHIdF (α)].

(52)

We can show that the derivative of RC(αc) with respect to αc is negative for αc ∈ [I, 1].

Thus, RC(αc) is decreasing in this interval.

Furthermore, when αc ∈ [αb, I), the expected revenue is given by

RC(αc) = τ [

∫ αb

0

2vLIdF (α) +

∫ αc

αb

((pb(αc) + vH − vL)α + vLI) dF (α)

+

∫ I

αc

((pa(αc) + vH − vL)α + vLI) dF (α) +

∫ 1

I

(vH + pa(αc))IdF (α)]

+ (1− τ)[

∫ αb

0

(vLI +max(vHα, vLI)) dF (α) +

∫ αc

αb

(pb(αc) + vH)αdF (α)

+

∫ I

αc

(pa(αc) + vH)αdF (α) +

∫ 1

I

(pa(αc) + vH)IdF (α)].

(53)

One can show that when αc < I, RC(αc), defined in Equation (53), is increasing in αc.

Hence, αc = I is another local maximum, proving the existence of at most two local maxima.

Since the expected revenue function is upper semi-continuous with at most one jump up, the

global maximum exists and must be one of the two local maxima. □

Figure 2.4 in the main body of the paper visualizes Lemma A.4.

A.4 Supporting Results for Section 2.6.2: Customer Non-Stationary

Valuations and a T−Period Model

Given the model setup discussed in §2.6.2, the customer utility is given by

uit(pi1, pi2,Hc
it) = EI,ω

[
T∑
j=t

aij (pij, s) ξ
c
ij(Hc

ij)(vi − pij)

∣∣∣∣∣Hc
it

]
, (54)
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and customers solve

max
ait∈{0,1}

uit(pi1, pi2,Hc
it) for t ∈ {1, ..., T}. (55)

Similarly, the firm revenue-to-go function at the beginning of period t is given by

Rt(Hf
t , pt) = EI,ω

[
T∑
j=t

∫
i∈M

aij (pij,Σ(I)) ξ
f
ij(H

f
j )pij di

∣∣∣∣∣Hf
t

]
, (56)

and the firm solves

max
pt

Rt(Hf
t , pt)

s.t. p1(ω, I) ∈ argmax
p1(ω,I)

R1(Hf
t , pt),

(1− ω)(pit − plt) = 0, ∀i, l ∈ M , ω ∈ Ω, & t ∈ {1, 2, ..., T}.

(57)

First, we replicate the result of Proposition 2.1 with myopic customers.

Proposition A.3. A unique SBPE to the game with myopic customers exists. Let pmt (ω, I,H
f
t )

be the equilibrium prices in period t with myopic customers. Then,

(i) A U-type firm sets prices

pmt (0, I,H
f
t ) =


vH if I ≤ αλvH

vL

vL otherwise.

(ii) A unique threshold tm exists such that, for t ≤ tm (possibly tm = 0), a P-type firm sets

prices pmt (1, I,H
f
t ) = vH . Furthermore, for t > tm, it sets prices

pmt (1, I,H
f
t ) = max

k<tm
{aik(pmk )}vH +

(
1−max

k<tm
{aik(pmk )}

)
vL.

Proof. Part (i). Myopic customers purchase the product if they receive a non-negative

utility. In this case, a U-type firm either sets price vH to all customers and obtains revenue

αλvH in each period, or sets price vL and receives the revenue IvL in each period. Hence,

the optimal pricing strategy for the U-type firm follows from solving max (αλvH , IvL). This

completes the proof of Part (i).
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Part (ii). Since λvH > vL, it would be optimal to set price vH for the rest of the periods to the

identified H-type customers. Therefore, the P-type firm either charges vH to all customers,

or charges vH to “identified” H-type customers and vL to the remaining customers.

Next, we show that a P-type firm is always better-off to explore in the earlier stages

than later. Given any period t, suppose a P-type firm has explored for s periods, where

s ≤ t. Then, the size of the identified H-type customers is αλ
∑s−1

j=0(1− λ)j. Moreover, the

size of the unidentified H-type customers is given by α(1− λ)s. Finally, a fraction 1− α of

customers are L-type. We have

max
pj ,j∈{t,...,T}

Rt(Hf
t , pt) ≥vHαλ(1− λ)s + vHαλ(1− (1− λ)s)

+ αλ(1− (1− λ)s+1)vH + (I − αλ(1− (1− λ)s+1))vL

+ max
pj ,j∈{t+2,...,T}

Rt+2(Hf
t+2, pt+2)

≥αλ(1− (1− λ)s)vH + (I − αλ(1− (1− λ)s))vL

+ vHαλ(1− λ)s + αλ(1− (1− λ)s)vH

+ max
pj ,j∈{t+2,...,T}

Rt+2(Hf
t+2, pt+2).

The term after the first inequality corresponds to the case when the P-type firm explores

in period t and exploits in period t + 1. In contrast, the term after the second inequality

corresponds to the case when the firm exploits in period t and explores in period t + 1.

Note that the information sets in period t+2 would be identical for both cases. The second

inequality followed because λvH > vL.

Next, we show that if the firm stops exploration in a period, then it would never be

optimal to explore after that period. Since a fraction α(1 − (1 − λ)s) of customers are

identified as H-type, the remaining inventory to be divided among the remaining customers

is I − αλ(1− (1− λ)s). Suppose the firm stops exploring in period ts. For this strategy to

be optimal, we must have

(T − ts)vL min
(
I − αλ((1− (1− λ)ts), α(1− λ)s + (1− α)

)
≥vHα(1− λ)tsλ+ vHαλ

2(1− λ)ts(T − st − 1)

+ min
(
I − αλ(1− (1− λ)ts+1), α(1− λ)ts+1 + (1− α)vL(T − ts − 1)

)
.
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Consequently, we must have (1−α)vL ≥ (λ(T−ts−1)+1)α(1−λ)ts(λvH−vL) or vL(I−αλ) ≥

(λ(T − ts − 1) + 1)αλ(1− λ)ts(vH − vL). Note that the right-hand side of both inequalities

are decreasing in ts while the left-hand side is constant. As such, it would never be optimal

to explore again for any t ≥ ts. This completes the proof of Part (ii). □

The P-type firm first explores customer types early on during the selling season by

charging price vH to all customers. This enables the firm to identify some of the customers

who are H-type. However, since some of the H-type customers may not have possessed

valuation vH until period tm, the firm cannot identify all H-type customers. After period tm,

the firm exploits its knowledge about the customers by personalizing the prices.

Also, whether the firm benefits from PP depends on the demand popularity realization.

Particularly, if the popularity realization is low, the firm would not benefit from PP, and we

would have tm = 0.

We next extend the results of Lemma 2.1 and Proposition 2.2 in the main body to any

arbitrary finite number of selling periods with strategic customers.

Lemma A.5. In any SBPE in the model with T periods, we have aiT (piT ) = 1(vit ≥ piT ).

Furthermore, there exists a unique sequence of thresholds pt ∈ [vL, vH) such that unidentified

H-type customers purchase in period t if and only if p ≤ pt. Thus, we have

ait(pit) =

1(pit ≤ vL) if vit = vL

1(pit ≤ pt) if vit = vH .

Proof. In any period t, an unidentified H-type customer with valuation vH can purchase

the product at price pt > vL to receive a positive utility in period t at the cost of receiving

personalized prices vH for the remaining periods if the firm is P-type. Alternatively, the

customer may forgo the purchase and wait until the next period she will have valuation

vH for a similar decision. Similar to the proof of Lemma 2.1, The monotonic indifference

conditions in each period guarantee the existence and uniqueness of pt. □

Intuitively, only H-type customers who possess a high valuation vH face the problem of

deciding to reveal their types. If such a customer chooses to hide her type, she only benefits

during future periods when she will have a high valuation. Thus, the value of the hiding
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type in period t is bounded above by λ(T − t)(vH − vL). However, the customer can learn

more about the firm type by hiding her type for a longer period.

We assert the following lemma to be used for characterizing the SBPE of the game. To

facilitate the rest of the analyses, we assume that I < (1−α)+αλ. Additionally, with abuse

of notation, we let pt represent the price charged to the unidentified customers.

Lemma A.6. Let t1 and t2 be two arbitrary periods with t1 < t2. Also, let p∗it1(1, I)

and p∗it2(1, I) be the corresponding equilibrium price mappings set for unidentified Customer

i when the firm is P-type. If p∗it2(1, I) ∈ (vL, vH) and p∗it1(1, I) ∈ (vL, vH), then for any

t1 ≤ t ≤ t2, we have p∗it(1, I) ∈ (vL, vH).

Proof. We show that once the firm starts exploring, it would never be optimal to pause the

exploration and restart it later. To show this, it is sufficient to show that a one-period pause

would not be optimal. For any period t ∈ [t1, t2], suppose the P-type firm has explored the

customer types for s periods, where s ≤ t. Note that a firm intending to explore the high-

valuation customers sets the prices such that customers with valuation vH would purchase

the product. Thus, the size of the identified H-type customers is given by αλ
∑s−1

j=0(1− λ)j.

Moreover, the size of the unidentified H-type customers is given by α(1 − λ)s. Suppose pt

be the thresholds proved in Lemma A.5 for the case when the firm first explores and then

exploits. Also, we use superscript ′ for parameters corresponding to the case when the firm

first exploits and then explores. For example, p′t are the price thresholds when the firm first

exploits and then explores. We have

max
pj ,j∈{t,...,T}

Rt(Hf
t , pt) ≥pt(H

f
t )αλ(1− λ)s + αλ(1− (1− λ)s)vH

+ αλ(1− (1− λ)s+1)vH + (I − αλ(1− (1− λ)s+1))vL

+ max
pj ,j∈{t+2,...,T}

Rt+2(Hf
t+2, pt+2|pt, pt+1)

≥αλ(1− (1− λ)s)vH + (I − αλ(1− (1− λ)s))vL

+ p′t+1(H
f
t+1|pt = vL)αλ(1− λ)s + αλ(1− (1− λ)s)vH

+ max
pj ,j∈{t+2,...,T}

Rt+2(Hf ′
t+2, pt+2|p′t, p′t+1)

The term after the first inequality represents the revenue-to-go under the strategy that

pt = pt and pt+1 = vL, i.e., exploration in period t and exploitation in period t+1. The term
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after the second inequality represents the revenue-to-go under the strategy that pt = vL and

pt+1 = p′t+1, i.e., exploitation in period t and exploration in period t+1. The second inequality

follows if and only if pt+λ(vH − vL) ≥ p′t+1. We prove that this inequality holds. Parameter

pt is the price that compensates H-type customers to reveal their types for the remaining

T − t periods. Also, p′t+1 is the price that motivates the same H-type customers to reveal

their types for the remaining T − t− 1 periods. These prices are influenced by three factors:

(1) posterior belief about firm’s type, (2) posterior belief about inventory availability, and

(3) the number of the remaining periods. When comparing pt and p′t+1, the first two factors

remain the same. However, the number of the remaining periods differ. When there are more

periods left, the customers should receive a lower price to reveal their types because they

may be targeted by personalized prices for a longer period. An H-type customer’s potential

benefit from forgoing a purchase for one additional period is bounded above by λ(vH − vL).

This is because, to benefit from forgoing a purchase, the H-type customer’s valuation must

realize to be vH , in which case she would gain extra utility vH − vL. This extra utility,

however, realizes only if the customer is assigned a unit. As such, pt + λ(vH − vL) ≥ p′t+1,

which is what we desired to show. □

Lemma A.6 states that if a P-type firm benefits from further exploring the unidentified

H-type customers in a given period by charging a price higher than vL, it also benefits

from doing so in the earlier periods once exploration starts. With the above lemma, we

characterize the game’s equilibrium in the next proposition.

Proposition A.4. A unique SBPE to the game with strategic customers exists. Let

pst(ω, I,H
f
t ) be the equilibrium prices in period t with strategic customers. Unique thresh-

olds ts1 and ts2 exist such that

(i) U-type firm sets

pst(0, I,H
f
t ) =


pt if I ≤ αλpt

vL
and t ≥ ts1

vL otherwise.

(ii) P-type firm’s pricing strategy spans into three stages as follows:

Dormancy stage: For t < ts1, p
s
t(0, I,H

f
t ) = vL.
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Exploration stage: For ts1 ≤ t < ts2,

pst(1, I,H
f
t ) = max

k≤t
{aik(pmk )}vH +

(
1−max

k≤t
{aik(pmk )}

)
pt.

Exploitation Stage: For ts2 ≤ t,

pst(1, I,H
f
t ) = max

k≤ts2

{aik(pmk )}vH +

(
1−max

k≤ts2

{aik(pmk )}
)
vL.

Proof. Part (i). Note that the U-type firm does not face the exploration-exploitation trade-

off. Given Lemma A.5, in equilibrium, there exists a unique price path pt such that any

price higher than pt will be rejected by the customers. Therefore, the U-type firm optimizes

its revenue by choosing between prices pt and vL.

Part (ii). We first show the existence and uniqueness of ts2. We argue that the exploration

stage must be continuous, i.e., if the P-type firm stops exploring in any period, then it would

not be optimal to restart exploration later. To show this, suppose the exploration stops at

period ts after γ ≤ ts periods of exploration. Then, similar to the argument in the proof of

Proposition A.3, we must have

(T − ts)vL min (I − αλ(1− (1− λ)γ), α(1− λ)γ + (1− α))

≥ptsα(1− λ)γλ+ vHαλ
2(1− λ)γ(T − ts − 1)

+ min
(
I − αλ(1− (1− λ)γ+1), α(1− λ)γ+1 + (1− α)vL(T − ts − 1)

)
.

Since the right-hand side of the inequality is decreasing in ts, if the P-type firm stops

exploration in period ts, it would never be optimal to explore in any period t > ts. Further-

more, because it is optimal for the P-type firm to exploit in period T , we have ts ≤ T − 1.

This argument shows the existence and uniqueness of ts2.

For the existence and uniqueness of ts1, we first show that price thresholds pt are non-

decreasing in t for any t < ts2. For t = ts2−1, since the firm stops exploring before ts2, we have

pts2−1 = vH − (T − ts2 + 1)Pr(ω = 1|Hc
ts2−1)ξ

c
ts2−1(Hc

ts2−1|ω = 1)λ(vH − vL). Note that Hc
ts2−1 is

the information of a customer with valuation vH in period ts2 − 1. Additionally, let Hc′
ts2−1 be

the information set of an H-type customer who had valuation vH in period ts2−2 but did not

purchase and has valuation vL in Period ts2 − 1. Then, pts2−2 satisfies the following equation.
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vH − pts2−2 ≥ E
[
λ(vH − pts2−1) + (1− λ)(T − ts2 + 1)Pr(ω = 1|Hc′

ts2−1)ξ
c
ts2−1(Hc′

ts2−1|ω = 1)λ(vH − vL)
]
.

(58)

Note that the term on the left-hand side of the inequality is the utility the customer

would receive if she purchases the product at a price higher than vL. In this case, for the

rest of the periods, she would receive a zero utility. The right-hand side corresponds to the

utility the customer would receive from forgoing a purchase. Thus, price pts2−2 should be set

in a way that the customer has the incentive to reveal her type.

This, combined with that pts2−1 = vH − (T − ts2 + 1)Pr(ω = 1|Hc
ts2−1)ξ

c
ts2−1(Hc

ts2−1|ω =

1)λ(vH − vL) concludes that pts2−2 ≤ pts2−1. One can inductively extend this result to any

t < ts2. We then define ts1 as the maximum value such that for t < ts1, we have pt < vL.

In other words, before period ts1, price pt does not exist such that H-type customers would

purchase the product at this price. Hence, the P-type firm must set price vL for all customers

to receive a positive revenue. This completes the proof of Part (ii). □
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Appendix B Chapter 3

B.1 Proofs from Chapter 3

B.1.1 Proof of Proposition 3.1

Part (i) We initially assume p = 0 to guarantee the price would never interrupt the

customer learning. Then, we define p to be the lowest customer belief that may arise over

time.

Suppose p = 0. Since Q has a bounded support on [0, 1], Qc
t ≥ 0. Therefore, Zt = 1 for

all t. We show that the support of customer beliefs over time, i.e., Supp(Q̃t), form a set of

non-empty contracting intervals [Q
t
, Qt).

Suppose Supp(Q̃t) = [Q
t
, Qt). If rt = i, then the lower bound of Customer t+ 1’s belief

is

Q
t+1

= max{Q
t
, λi +Qc

t}, (59)

and its upper bound is given by

Qt+1 = min{Qt, λi+1 +Qc
t}. (60)

Since Q̃ has a continuous and strictly increasing distribution, Supp(Q̃t+1) = [Q
t+1

, Qt+1).

Hence, Supp(Q̃t+1) ⊆ Supp(Q̃t). Also, note that, when α = 1, the customer rates rt = i if

Q−Qc
t ∈ [λi, λi+1). Thus, Q ∈ Supp(Q̃t).

We claim Supp(Q̃∞) exists and Q∞ = Q∞. If Q
t
= Qt for some t, then the proof

is complete. Suppose Q
t
< Qt. In this case, Qc

t ∈ (Q
t
, Qt). If rt = i > 0, from (59),

Q
t+1

> Q
t
. Alternatively, if rt = i < 0, from (60), we have Qt+1 < Qt. Therefore,

Supp(Q̃t+1) ⊂ Supp(Q̃t). Since Supp(Q̃) = [0, 1], we can inductively conclude the support

of the beliefs remain intervals that contract over time. As such, there exists a limiting

interval for the support of the beliefs. In other words, Supp(Q̃∞) = [Q∞, Q∞]. If Q∞ = Q∞,

the proof is complete because we argued earlier that both Q and Qc
t must belong to the
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support of the beliefs. Suppose Q∞ > Q∞. Recall that Q∞ = min{Q∞, λi+1 + Qc
∞} and

Q∞ = max{Q∞, λi +Qc
∞}. If r∞ > 0, then λi ≥ 0. Consequently, λi +Qc

∞ > Q∞, which is

a contradiction with Q∞ = max{Q∞, λi +Qc
∞}. Similarly, one can derive a contradiction if

r∞ < 0. Hence, Q∞ > Q∞ cannot hold and we must have Q∞ = Q∞, which proves Part (i).

Part (ii) define p = mint{Qc
t}. Then, if p ≤ p, all customers continue purchasing and

learning dynamics are the same as in the case with p = 0. However, when p > p, customers

stop purchasing, which interrupts learning. □

B.1.2 Proof of Proposition 3.2

First, we prove the convergence of the customer beliefs for all α. Suppose the intrinsic

quality is Q. Let κ(r;Q, Q̃) be the probability that the customer rates the product at r given

the intrinsic quality Q and customer belief Q̃. This probability can be written as

κ(r = i;Q, Q̃t) = Pθ[λi ≤ Q− αQc
t − (1− α)(pt − θt) < λi+1]. (61)

Given rt−1, Customer t can eliminate any Q′ such that Q′−αQc
t−1+(1−α)θ−(1−α)p <

λrt−1 , or Q
′ − αQc

t−1 − (1− α)θ − (1− α)p ≥ λrt−1+1. Therefore,

Supp(Q̃t|Ic
t ) =[

αQc
t−1 − (1− α)θ + (1− α)p+ λrt−1 , αQ

c
t−1 + (1− α)θ + (1− α)p+ λrt−1+1

)⋂
Supp(Q̃t−1|Ic

t−1).

(62)

Consequently, Supp(Q̃t|Ic
t ) ⊆ Supp(Q̃t−1|Ic

t−1). Additionally, Supp(Q̃∞) =
⋂∞

t=1 Supp(Q̃t|Ic
t ).

This implies that κ(rt;Q
′, Q̃t) > 0 for all t andQ′ ∈ Supp(Q̃∞). Let R∞ = {r : κ(r;Q, Q̃∞) >

0}.

In a general social learning context, Theorem 3 of Frick et al. (2022) proves the con-

vergence of the beliefs with mild assumptions on the continuity of the actions under the

potentially misspecified beliefs. In our context, their assumption on belief continuity trans-

lates to the continuity of κ(r;Q, Q̃), κ(r;Q′, Q̃)/κ(r;Q, Q̃), and κ(r;Q′, Q̃) in Q̃ for intrinsic

quality Q, and arbitrary values Q′ ∈ Supp(Q̃∞) and r ∈ R∞. In this context, an arbitrary

deterministic function g(·) is said to be continuous in random variable Q̃ if for any sequence
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of random variables {Q̃n} that converges in distribution to Q̃, the sequence {g(Q̃n)} also

converges in distribution to g(Q̃).

Note that, as argued above, the denominator for the second term, i.e., κ(r;Q, Q̃) is

positive. Hence, it is sufficient to show the continuity of κ(r;Q, Q̃) in Q̃, which follows from

the definition of κ(r;Q, Q̃) and that Qc
t = E(Q̃t). Hence, we can use Theorem 3 of Frick

et al. (2022) to show the convergence of the customer beliefs. Next, we prove Parts (i)-(iii)

of the proposition.

Part (i) We show that if the converged belief Q̃∞ exists and α is sufficiently small, then

P(Q̃∞ = Q) = 1.

Suppose Supp(Q̃∞) contains more than one element, namely Q and Q′ such that Q ̸= Q′.

In other words, Q and Q′ cannot be separated from each other by customers through time.

Note that if the heterogeneity is rich enough, then there exists some rating r such that

κ(r;Q, Q̃∞) ̸= κ(r;Q′, Q̃∞), in which case Q and Q′ can be separated over time. We show

that when α is small, such r exists.

If κ(r;Q, Q̃∞) ̸= κ(r;Q′, Q̃∞) for some r, there is nothing to prove. Also, since Fθ(·) is

strictly monotonic, then κ(r;Q, Q̃∞) ̸= κ(r;Q′, Q̃∞) for Q ̸= Q′ except when κ(r;Q, Q̃∞) =

κ(r;Q′, Q̃∞) = 1. If κ(r;Q, Q̃∞) = κ(r;Q′, Q̃∞) = 1, only “one” of the ratings can arise. We

show this cannot be the case by finding conditions such that at least two ratings arise.

We consider the cases of k = 1 and k ≥ 2 separately. When k = 1, R = {−1, 1}, and

customers rate the product positively if and only if ur(α, θ,Qc) ≥ 0. A sufficient condition

for both ratings to arise is

min
θ
{max
Q,Qc

Q− αQc + (1− α)(θ − p)} = 1− 0 + (1− α)(−θ − p) ≤ 0,

and max
θ

{min
Q,Qc

Q− αQc + (1− α)(θ − p)} = 0− α + (1− α)(θ − p) ≥ 0,
(63)

which holds if α ≤ max{1− 1
1+θ−p

, 1− 1
θ+p

}. In this case, define α ≡ max{1− 1
1+θ−p

, 1− 1
θ+p

},

which completes the proof for the case with k = 1.

When k ≥ 2, if maxθ u
r(α, θ,Qc) − minθ u

r(α, θ,Qc) > λi+1 − λi =
1

k−1
, then at least

two ratings will arise. From the definition of ur(α, θ,Qc), we have maxθ u
r(α, θ,Qc) −

minθ u
r(α, θ,Qc) = 2(1 − α)θ. Consequently, it is sufficient to have α ≤ 1 − 1

2θ(k−1)
. In

this case, denote α ≡ 1− 1
2θ(k−1)

to prove the case of k ≥ 2.
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To complete the proof for Part (i), define

α(k, θ) =

max{1− 1
1+θ−p

, 1− 1
θ+p

} if k = 1

1− 1
2θ(k−1)

if k ≥ 2.

(64)

Part (ii) Note that Q has a continuous support. Hence, when α ≥ α, from the argument

of Part (i), there exists some Q′ close to Q that cannot be separated from Q. Specifically,

this occurs when for some i, minθ u
r(α, θ,Qc) ≥ λi and maxθ u

r(α, θ,Qc) < λi+1 for both

Q and Q′, i.e., when |Q − Q′|≤ 2(1 − α)θ. Any Q′ outside this neighborhood of Q can be

separated from the intrinsic quality. This implies that the converged belief has support with

the length of at most 2(1− α)θ. This also shows that limα→1Q∞(α) = Q.

Part (iii) Follows from the definition of α(k, θ) in Equation (64). □

B.1.3 Proof of Proposition 3.3

The proof follows from the proof of Proposition 3.2, where it is shown that, when k ≥ 2,

customer beliefs converge to the intrinsic quality if α ≤ 1− 1
2θ(k−1)

. We can then rewrite the

inequality with respect to k and obtain k ≥ 1 + 1
2θ(1−α)

. □

B.1.4 Proof of Lemma 3.1

We prove the result by induction. For t = 1, the rating frequencies are of the form

πi
1 = ei. It is then straightforward to see the result.

Suppose these properties hold for Period t − 1. Consider any two rating frequencies of

the form πi
t = π + ei and πj

t = π + ej at time t for j > i and arbitrary frequency π. We

first show that for any rating history leading to πi
t, there exists a rating history leading to

πj
t that induces a higher expected customer belief.

Note that πi
t can be constructed from two rating frequencies in Period t − 1: πt−1 = π

and πi
t−1 = π + ei − em, where m represents the index of any non-zero element in πi

t other

than i. Similarly, πj
t can only arise from πt−1 = π and πj

t−1 = π + ej − em. Since πi
t and πj

t

differ only in i and j, only the following two cases are feasible: (i) πi
t and πj

t share the same
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history path until period t − 1, i.e, πi
t−1 = πj

t−1 = π; or (ii) they are different before period

t− 1, i.e., πi
t−1 ̸= πj

t−1.

Case (i). Rating frequencies πi
t and πj

t arise from π by rt = i and rt = j, respectively.

Thus, when α = 1,

Supp(Q̃|πt = π+ei & πt−1 = π) =
[
λi + E

[
Q̃|πt−1 = π

]
, λi+1 + E

[
Q̃|πt−1 = π

])
∩Supp(Q̃|πt−1 = π),

and

Supp(Q̃|πt = π+ej & πt−1 = π) =
[
λj + E

[
Q̃|πt−1 = π

]
, λj+1 + E

[
Q̃|πt−1 = π

])
∩Supp(Q̃|πt−1 = π).

Since λj ≥ λi+1, the equations above imply that

E
[
Q̃|πt = π + ej & πt−1 = π

]
> E

[
Q̃|πt = π + ei & πt−1 = π

]
.

Case (ii). In this case, for each πi
t that arises from πi

t−1 = π + ei − em for each m, there

exists πj
t that arises from πj

t−1 = π + ej − em. We have

Supp(Q̃|πt = π + ei & πt−1 = π + ei − em)

=
[
λm + E

[
Q̃|πt−1 = π + ei − em

]
, λm+1 + E

[
Q̃|πt−1 = π + ei − em

])
∩ Supp(Q̃|πt−1 = π + ei − em),

(65)

and

Supp(Q̃|πt = π + ej & πt−1 = π + ej − em)

=
[
λm + E

[
Q̃|πt−1 = π + ej − em

]
, λm+1 + E

[
Q̃|πt−1 = π + ej − em

])
∩ Supp(Q̃|πt−1 = π + ej − em).

(66)

From the induction hypothesis, the separation and monotonicity properties hold for

period t−1. Therefore, we have Supp(Q̃|πt−1 = π+ei−em)∩Supp(Q̃|πt−1 = π+ej−em) = ∅

and E
[
Q̃|πt−1 = π + ei − em

]
< E

[
Q̃|πt−1 = π + ej − em

]
. Combining this observation with

Equations (65) and (66), we establish the separation and monotonicity properties for Period

t.

To see the partition property, we need to show that
n⋃

i=1

Supp
(
Q̃|πi

t

)
= Q. To prove this,

we first argue that Supp
(
Q̃|πi

t

)
contains intrinsic quality Q. From the induction hypothesis,
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we have Q ∈ Supp
(
Q̃|πi

t−1

)
. Additionally, by definition of the customer rating behavior,

the intrinsic quality must belong to[
λi + E

[
Q̃|πt−1 = π

]
, λi+1 + E

[
Q̃|πt−1 = π

])
.

Therefore, Q also belongs to their intersection, i.e.,

Supp(Q̃|πt = π+ei & πt−1 = π) =
[
λi + E

[
Q̃|πt−1 = π

]
, λi+1 + E

[
Q̃|πt−1 = π

])
∩Supp(Q̃|πt−1 = π).

Since this holds for any arbitrary Q ∈ Q, the result follows. □

B.1.5 Proof of Lemma 3.2

Part (i) Follows from the proof of Lemma 3.1.

Part (ii) In an aggregate system, the customer refines her belief by considering all scenarios

leading to the current rating frequency, πt. Thus, Supp
(
Q̃|πt

)
is the union of all belief

supports conditional on different complete rating paths, i.e., Supp
(
Q̃|πt & (r1, ..., rt)

)
. Since

the platform observes the entire rating history, we have

Supp
(
Q̃p|r = (r1, ..., rt)

)
=
⋂
τ<t

⋃
r

Supp
(
Q̃|πτ & r = (r1, ..., rτ )

)
=

⋂
τ<t

[Q
τ
, Qτ ) = [max

τ<t
{Q

τ
},min

τ<t
{Qτ}),

(67)

which completes the proof. □
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B.1.6 Proof of Proposition 3.4

We first prove the following claim.

Claim 1. For t ≥ 2, only ratings rt = −1 and rt = 1 may occur.

The claim is trivial for the case with k = 1. Suppose k ≥ 2. When α = 1, the reference

utility ur (1, θ, Qc) = Q−Qc ∈ [−1, 1]. This implies that the ratings −k and k never occur.

Therefore, for all i such that πt(i) > 0,

Supp(Q̃t|πt) ⊆
⋃

i∈R\{−k,k}

(
[λi +Qc

t , λi+1 +Qc
t) ∩ Supp(Q̃t−1|πt − ei)

)
. (68)

For each first-period rating r1, we have Supp(Q̃2) = [λr1 + E(Q̃), λr1+1 + E(Q̃)). We

observe that |Supp(Q̃2)|= 1
k−1

, which yields that |Q − Qc
2|≤ 1

k−1
. Note that from Equation

(68), Supp(Q̃t) ⊆ Supp(Q̃2). Hence, |Q − Qc
t |≤ 1

k−1
and rt is either +1 or −1 for all t ≥ 2.

This proves Claim 1.

Next, we prove the following claim.

Claim 2. Suppose Q̃T−1 ∼ U(Q
T−1

, QT−1) and |rt|= 1 for ∀t > T . If Supp(Q̃t|πt) =

[Q
t
, Qt) ⊆ [Q

T−1
, QT−1), then ∀Q ∈ [Q

T−1
, QT−1), we have Q ∈ Supp(Q̃t) = [Q

t
, Qt) for

some Q
t
and Qt. Furthermore, limt→∞(Qt −Q

t
) = 0.

From Claim 1, ∀t ≥ 2, only two rating paths may generate rating frequency πt: {π(1)
t−1 =

πt − e1 & rt−1 = 1} or {π(−1)
t−1 = πt − e−1 & rt−1 = −1}.

Additionally, from Lemma 3.2, we know that Supp(Q̃t−1|π(1)
t−1) = [Q(1)

t−1
, Q

(1)

t−1) and Supp(Q̃t−1|π(−1)
t−1 ) =

[Q(−1)

t−1
, Q

(−1)

t−1 ) for some Q(1)

t−1
, Q

(1)

t−1, Q
(−1)

t−1
, and Q

(−1)

t−1 . Moreover, from the partition property

established in Lemma 3.1, Q
(1)

t−1 = Q(−1)

t−1
. As such, from Equation (68),

Supp(Q̃t|rt−1 = 1 & π
(1)
t−1) =

[
E
[
Q̃t−1|π(1)

t−1

]
, λ2 + E

[
Q̃t−1|π(1)

t−1

])
∩ Supp(Q̃t−1|π(1)

t−1), (69)

and

Supp(Q̃t|rt−1 = −1 & π
(−1)
t−1 ) =

[
λ−1 + E

[
Q̃t−1|π(−1)

t−1

]
,E
[
Q̃t−1|π(−1)

t−1

])
∩ Supp(Q̃t−1|π(−1)

t−1 ).

(70)

Let Supp(Q̃t|πt) = [Q
t
, Qt). Then, Equation (68) also implies that

Q(1)

t−1
< E

[
Q̃t−1|π(1)

t−1

]
= Q

t
< Qt = E

[
Q̃t−1|π(−1)

t−1

]
< Q

(−1)

t−1 . (71)
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Without loss of generality, reparameterize time to τ = t − T + 1. With this reparam-

eterize, supp(Q̃1) = [Q
T
, QT ). For technical convenience, we further normalize interval

[Q
T
, QT ) to [−1, 1) by changing rating thresholds, intrinsic quality, and the initial be-

lief distribution. This normalization will help us simplify the subsequent analysis. Thus,

supp(Q̃1) = [Q
T
, QT ) = [−1, 1). From the partition property established in Lemma 3.2, there

exist a set of cutoffs Cutτ = {−1 = xN+1
τ , xN

τ , ..., x
2
τ , x

1
τ , x

0
τ = 1} such that Supp(Q̃τ |πn

τ ) =

[xN+2−n
τ , xN+1−n

τ ), where πn
τ are the feasible rating frequencies defined in Lemma 3.1 and

N + 1 is the number of feasible rating frequencies by time τ . We also observe that when

α = 1 and beliefs are uniformly distributed, the distribution of beliefs on Supp(Q̃|πn
τ ) is

symmetric and uniformly distributed upon observing πn
τ . This observation, combined with

Equation (68), implies that xn
τ+1 = (xn

τ + xn−1
τ )/2 for any n.

With this background, we also observe that N = τ . Furthermore, due to symmetry of the

distributions, when τ is odd, we can rewrite the cutoffs as Cutτ = {−1, ...,−x
(τ−1)/2
τ , 0, x

(τ−1)/2
τ , ..., x1

τ , 1}.

When τ is even, we can rewrite the cutoffs as Cutτ = {−1,−x1
τ , ...,−x

τ/2
τ , x

τ/2
τ , ..., x1

τ , 1}.

For the rest of the proof, we focus on the positive cutoffs, i.e., xn
τ > 0. The argument for

the negative cutoffs is similar due to symmetry. Define xn = {xn
τ : τ ≥ 2n} (note that for xn

τ

to be one of the cutoffs, we must have τ ≥ 2n). In the following, we characterize xn
τ .

For n = 1 and τ = 2, we have x1
2 =

0+1
2
. Further, ∀τ > 2, we have x1

τ =
x1
τ−1+1

2
. Hence,

x1
τ = 1− 1

2τ−1
. (72)

For n = 2 and τ = 4, Then, x2
4 = E

[
Q̃3|Supp(Q̃3) = [0, x1

3)
]
=

0+x1
3

2
. In addition,

x2
τ+1 =

x2
τ+x1

τ

2
. Therefore, for n = 2 and τ ≥ 4,

x2
τ =

τ−1∑
k=3

x1
k

2τ−k
= 1− τ + 1

2τ−1
. (73)

Repeating these steps, we find that

xn
τ =

τ−1∑
k=2n−1

xn−1
k

2τ−k
, for τ ≥ 2n. (74)

We argue that for τ ≥ 2n, we have

xn−1
τ − xn

τ =
Πn−1

k=1(τ + 1− k)

(n− 1)! 2τ−1
. (75)
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We prove this by induction on n− 1, i.e, if the result holds for xn−2
τ −xn−1

τ , then it holds

for xn−1
τ − xn

τ .

We begin with n = 2 as the basis of the induction. Then,

x1
τ − x2

τ = 1− 1

2τ−1
− (1− τ + 1

2τ−1
) =

τ

2τ−1
. (76)

Next, suppose Equation (75) holds for xn−2
τ − xn−1

τ for all τ . Then, for Period τ − 1,

xn−2
τ−1 − xn−1

τ−1 =
Πn−2

k=1(τ − k)

(n− 2)! 2τ−2
. (77)

Alternatively,

xn−2
τ−1 = xn−1

τ−1 +
Πn−2

k=1(τ − k)

(n− 2)! 2τ−2
. (78)

Recall that for all τ and n, xn
τ =

xn
τ−1+xn−1

τ−1

2
. Therefore,

xn−1
τ − xn

τ =
xn−1
τ−1 + xn−2

τ−1

2
−

xn
τ−1 + xn−1

τ−1

2

=
xn−1
τ−1 +

Πn−2
k=1 (τ−k)

(n−2)!2τ−2

2
−

xn
τ−1

2

=
xn−1
τ−1 − xn

τ−1

2
+

Πn−2
k=1(τ − k)

(n− 2)! 2τ−1
.

(79)

By iteratively applying (78) for τ = 2n− 1, we have

xn−1
2n − xn

2n =
xn−2
2n−1

2

=
1

2
·
(
xn−3
2n−1 −

Πn−3
k=1(2n− k)

(n− 3)! 22n−2

)
=

1

2
·

(
x1
2n−1 −

n−3∑
j=1

Πj
k=1(2n− k)

(j)! 22n−2

)

=
1

2
·

(
1− 1

22n−2
−

n−3∑
j=1

Πj
k=1(2n− k)

(j)! 22n−2

)

=
1

22n−1
·

(
22n−2 − 1−

n−3∑
j=1

Πj
k=1(2n− k)

(j)!

)

=
1

22n−1
·

(
22n−2 − 1−

n−1∑
j=1

Πj
k=1(2n− k)

(j)!
+

Πn−2
k=1(2n− k)

(n− 2)!
+

Πn−1
k=1(2n− k)

(n− 1)!

)

=
1

22n−1
·

(
22n−2 − 1−

n−1∑
j=1

Πj
k=1(2n− k)

(j)!
+

Πn−1
k=1(2n+ 1− k)

(n− 1)!

)
.

(80)
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Note that since
Πj

k=1(2n−k)

(j)!
=
(
2n−1

j

)
,

n−1∑
j=1

Πj
k=1(2n− k)

(j)!
= 22n−1 − 1−

n−1∑
j=0

(
2n− 1

j

)
= 22n−1 − 1− 22n−2 = 22n−2 − 1. (81)

Plugging this equation into Equation (80), we find that xn−1
2n − xn

2n =
Πn−1

k=1 (2n+1−k)

(n−1)!22n−1 , which

shows the induction result for τ = 2n.

xn−1
2n+1 − xn

2n+1 =
xn−1
2n − xn

2n

2
+

Πn−2
k=1(2n+ 1− k)

(n− 2)! 22n

=
Πn−1

k=1(2n+ 1− k)

(n− 1)! 22n
+

Πn−2
k=1(2n+ 1− k)

(n− 2)! 22n

=
Πn−1

k=1(2n+ 2− k)

(n− 1)! 22n
,

(82)

where the first equality followed from applying Equation (79). By iteratively repeating these

steps we find that

xn−1
τ − xn

τ =
Πn−1

k=1(τ + 1− k)

(n− 1)! 2τ−1
, (83)

for τ ≥ 2n, which is what we desired to show.

Note that xn−1
τ − xn

τ is the length of each partition at Period τ . Further, ∀n,

lim
τ→∞

(xn−1
τ − xn

τ ) = lim
τ→∞

Πn−1
k=1(τ + 1− k)

(n− 1)! 2τ−1
= 0. (84)

As such, as t → ∞, the size of each element of the partition approaches 0. That is to

say, limt→∞(Qt −Q
t
) = 0, which completes the proof for Claim 2.

Combining Claims 1 and 2, and the observations that all feasible rating frequencies

partition the entire support, and that the intrinsic quality Q belongs to a certain element of

the partition at Period t, we conclude that the limt→∞Qc
t = Q. □
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B.1.7 Proof of Lemma 3.3

We prove the above lemma by showing that for any Q ∈ [0, 1], we can separate Q from

any other potential quality value. We prove cases of k = 1 and k ≥ 2, separately.

Case (i) k ≥ 2. Consider Q1, Q2 ∈ [0, 1] such that Q1 > Q2. We show that we can separate

Q1 from Q2 using strict separation in distribution defined in Definition 2 when α is small.

Let r be the highest rating that satisfies inf q̃∈F κ(r;Q1, q̃) > 0.

We use S = {r} to establish the condition required for the separation in distribution.

Recall that Qc depends on the distribution of the customer beliefs, i.e., Q̃. For notational

convenience, we drop this dependence from the argument of Qc. With this note in mind, we

have

inf
q̃∈F

κ(r;Q1, q̃) = inf
q̃∈F

Pθ(θ ≥ λr + αQc −Q1

1− α
+ p) ≥ Pθ(θ ≥ λr + α−Q1

1− α
+ p), (85)

where the inequality followed from the fact that Qc ≤ 1. Similarly,

sup
q̃∈F

κ(r;Q2, q̃) = sup
q̃∈F

Pθ(θ ≥ λr + αQc −Q2

1− α
+ p) ≤ Pθ(θ ≥ λr −Q2

1− α
+ p), (86)

where the inequality followed from the fact that Qc ≥ 0.

Consequently, a sufficient condition for the strict separation in distribution to hold is

Pθ(θ ≥ λr + α−Q1

1− α
+ p) > Pθ(θ ≥ λr −Q2

1− α
+ p). (87)

Similar to the Proof of Proposition 3.2, we can show that κ(r;Q1, Q̃) < 1 for any arbitrary

belief Q̃, when α ≤ 1 − 1
2θ(k−1)

. Additionally, Fθ(·) is continuous and strictly increasing.

Hence, condition in Equation (87) holds if an only if Q1 − Q2 > α. Intuitively, any two

quality values with a distance greater than α can be strictly separated in distribution.

Let Q2 be the intrinsic quality. Following the discussion above, any Q1 /∈ (Q2−α,Q2+α)

can be separated from the intrinsic quality. Hence, the support of the customer belief is

Supp(Q̃) ⊆ [max(Q2 − α, 0),min(Q2 + α, 1)]. Therefore, Qc ∈ [max(Q2 − α, 0),min(Q2 + α, 1)].

Let F1 be the space of all distribution functions with support [max(Q2 − α, 0),min(Q2 + α, 1)].

Additionally, let r1 be the highest rating that satisfies inf q̃∈F1 κ(r1;Q1, q̃) > 0. We use
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S1 = {r1} to establish the condition required for the separation in distribution between Q1

and Q2 with a more refined domain. We have

inf
q̃∈F1

κ(r1;Q1, q̃) = inf
q̃∈F1

Pθ(θ ≥ λr1 + αQc −Q1

1− α
+ p) ≥ Pθ(θ ≥ λr1 + αmin{1, Q2 + α} −Q1

1− α
+ p),

(88)

where the last inequality followed from Qc ≤ min{1, Q+ α}. Similarly,

sup
q̃∈F1

κ(r1;Q2, q̃) = sup
q̃∈F1

Pθ(θ ≥ λr1 + αQc −Q2

1− α
+ p) ≤ Pθ(θ ≥ λr1 + αmax{0, Q2 − α} −Q2

1− α
+ p),

(89)

where the last inequality followed from Qc ≥ max{0, Q2 − α}.

Therefore, a sufficient condition this time for the strict separation in distribution to hold

is

Pθ(θ ≥ λr1 + αmin{1, Q2 + α} −Q1

1− α
+ p) > Pθ(θ ≥ λr1 + αmax{0, Q2 − α} −Q2

1− α
+ p).

(90)

Similar to the argument for Condition (87), one can argue that Condition (90) is equiv-

alent to

Q1 −Q2 > α(min{1, Q2 + α} −max{0, Q2 − α}). (91)

Note that since min{1, Q2 + α} − max{0, Q2 − α} ≤ 2α, a sufficient condition for (90)

to hold is Q1 − Q2 ≥ α(2α). Intuitively, any two quality values with a distance greater

than α(2α) can be strictly separated in distribution. Suppose α < 1/2; then, α(2α) < α.

In other words, in the second iteration of the argument, the distance between Q1 and Q2

required for strictly separating the two values in distribution decreases. By repeating this

belief refinement process n times, we can show that Q1 and Q2 can be strictly separated in

distribution if Q1 −Q2 > α(2α)n−1. As n → ∞, we have α(2α)n−1 → 0. Hence, Q1 and Q2

can be strictly separated in distribution if Q1 > Q2. One can similarly argue the case when

Q1 < Q2. Recall that we assumed α < 1/2. Additionally, to ensure κ(r;Q1, Q̃) < 1, we

required α ≤ 1 − 1
2θ(k−1)

. Hence, one can separate any two possible values for the intrinsic

quality if α < α1
I ≡ min{1

2
, 1− 1

2θ(k−1)
}.

Case (ii) k = 1. When k = 1, we use S = {r} = {1} to strictly separate any two quality

values Q1 and Q2. Similar to the proof of Proposition 3.2, to guarantee κ(r = 1;Q1, Q̃) and
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κ(r = 1;Q2, Q̃) to be non-negative and less than 1, we must have α < max{1− 1
1+θ−p

, 1− 1
θ+p

}.

We can then repeat a similar argument as in Case (i) to prove any two quality values can

be strictly separated in distribution if α < α2
I ≡ min{1

2
,max{1− 1

1+θ−p
, 1− 1

θ+p
}}.

The result of the Lemma then follows by defining αI ≡ α2
I when k = 1 and αI ≡ α1

I

when k ≥ 2. □

B.1.8 Proof of Proposition 3.5

Part (i) Immediately follows from Lemma 3.3.

Part (ii) We add argument (α,Q) to Qc
t(α,Q) to emphasize its dependence on the discon-

firmation bias and the intrinsic quality. If limt→∞ Qc
t(α,Q) = Qc

∞(α,Q) exists, then we show

that Qc
∞(α,Q) is strictly increasing in the intrinsic quality Q. We prove this by contradiction.

Consider Q1 < Q2. By contradiction, assume Qc
∞(α,Q2) ≤ Qc

∞(α,Q1). Then,

ur(α,Q1) = Q1 − αQc
∞(α,Q1)− (1− α)p+ (1− α)θ

< Q2 − αQc
∞(α,Q2)− (1− α)p+ (1− α)θ = ur(α,Q2).

(92)

Furthermore, similar to the Proof of Proposition 3.2, we find that, when α ≤ α(k, θ), at least

two ratings are realizable under Q1 and Q2 (note that Proposition 3.2 is for the complete

history setting while in this section we study the aggregate system. However, the customer

ratings only depend on the reference utility and not the customer information set. So, we

can use the same argument as in the proof of Proposition 3.2).

Combining (92) and that at least two ratings realize under Q1 and Q2, we observe

that the distribution of the ratings generated under intrinsic quality Q2 strictly stochas-

tically dominates the distribution of ratings generated under intrinsic quality Q1. Hence,

Qc
∞(α,Q2) > Qc

∞(α,Q1), which is a contradiction. Therefore, Qc
∞(α,Q) is strictly increas-

ing in the intrinsic quality Q. Furthermore, since customers are Bayesian rational, they can

identify any systematic bias. As such, Qc
∞(α,Q) = Q.

Part (iii) We show that, when α > α(k, θ), if Qc
∞(α,Q) exists, there exist Q1 and Q2, such

that Q1 ̸= Q2, and Qc
∞(α,Q1) = Qc

∞(α,Q2).
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If Qc
t converges, for any arbitrary ϵ > 0, there exists period Tϵ such that |Qc

t − Qc
∞|< ϵ

2

for t ≥ Tϵ. Let πTϵ denote the rating frequency that Customer Tϵ observes. First, we prove

the following claim.

Claim 1. For any intrinsic quality Q1, there exists Q2 such that they can both generate the

rating frequency πTϵ at period Tϵ.

We prove the claim by induction on Tϵ. When Tϵ = 1, then all customers have the same

prior belief. Since the reference utility is Continuous in Q, for a fixed Qc, we can choose Q2

arbitrarily close to Q1 such that both Q1 and Q2 induce the same rating in Period 1. Suppose

the result holds for Tϵ = T − 1, we show the result holds for Tϵ = T . Since there exists Q2

such that it generates the same rating frequency as for Q1 until period T − 1, in Period T

we have Qc
T (α,Q1) = Qc

T (α,Q2). Once again, since the reference utility is continuous in Q,

we can find another quality value that generates the same rating rT as the rating that is

induced by Q1. This proves Claim 1.

Next, we prove the following claim.

Claim 2. For any intrinsic qualityQ1, there exists neighborhoodNQ1 such that κ(i∗, Q2, Q̃t) =

1 for some rating i∗ and any t ≥ Tϵ and Q2 ∈ NQ1 .

To see this, note that customers rate according to their reference utility. Consider α >

1− 1
2θ(k−1)

+ ϵ. The minimum value for the reference utility is

min
Qc

t ,θ
ur(α, θ,Qc

t) = Q1 − αmax(Qc
t)− (1− α)max(θ) + (1− α)p

= Q1 − α(Qc
∞(α,Q) + ϵ/2)− (1− α)θ + (1− α)p,

(93)

where we used the facts that |Qc
t −Qc

∞|< ϵ
2
for t ≥ Tϵ and that θ ≤ θ.

Similarly,

max
Qc

t ,θ
ur(α, θ,Qc

t) = Q1 − αmin(Qc
t)− (1− α)min(θ) + (1− α)p

= Q1 − α(Qc
∞(α,Q)− ϵ/2) + (1− α)θ + (1− α)p.

(94)

Hence,

max
Qc

t ,θ
ur(α, θ,Qc

t)−min
Qc

t ,θ
ur(α, θ,Qc

t) = 2(1− α)θ + αϵ < 1/(k − 1), (95)
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where the last inequality followed from α > 1− 1
2θ(k−1)

+ϵ. Hence, for t > Tϵ, all customers rate

the product with intrinsic quality Q1 the same, namely i∗. Since ur(α, θ,Qc
t) is continuous

in Q, the existence of NQ1 follows.

Combining Claims 1 and 2 and letting ϵ → 0, we observe that, when α > α(k, θ), for

any intrinsic quality Q1, there exists another quality value that generates the same rating

frequency in all periods which proves Part (iii).

Part (iv) follows from the definition of αI(k, θ) provided in Lemma 3.3. □

B.1.9 Proof of Proposition 3.6

First, we show the convergence of the customer beliefs, i.e., the existence of Q̂c
∞ < ∞.

For any t ≥ 1, we have

Q̂c
t+1 =

1

γ · t+ 1
E0(Q) +

γ · t
γ · t+ 1

r̄t =
γ · (t− 1) + 1

γ · t+ 1
Q̂c

t +
γ

γ · t+ 1
rt. (96)

The convergence then follows from noting that limt→∞
γ·(t−1)+1

γ·t+1
= 1−, limt→∞

γ
γ·t+1

= 0,

and rt < ∞.

Next, we show that Q̂c
∞(Q,α) “weakly” increases in Q for “any” value of α. We prove

this by contradiction.

By contradiction suppose Q1 < Q2, but Q̂
c
∞(Q1, α) > Q̂c

∞(Q2, α). Then,

ur(α, θ, Q̂c
∞(Q1, α)) = Q1 − αQ̂c

∞(Q1, α) + (1− α)θ − (1− α)p <

Q2 − αQ̂c
∞(Q2, α) + (1− α)θ − (1− α)p = ur(α, θ, Q̂c

∞(Q2, α)).
(97)

As a result, in steady states, the ratings generated for Q1 would be weakly worse than

the ratings generated for Q2. In other words, Q1 receives infinitely many equal or worse

ratings than Q2. Furthermore, from Equation (13), we observe that Q̂c
∞(Q,α) = r̄∞(Q,α).

Therefore, Q̂c
∞(Q1, α) = r̄∞(Q1, α) ≤ r̄∞(Q2, α) = Q̂c

∞(Q2, α), which is a contradiction.

This proves the weakly increasing property of Q̂c
∞(Q,α) in Q for any α. This immediately

yields the result in Part (ii).

Next, we prove Part (i) by showing strict monotonicity when α is small. From the

weak monotonicity property established in the above argument, for any Q1 < Q2, we have

Q̂c
∞(Q1, α) ≤ Q̂c

∞(Q2, α). If the inequality is strict, there is nothing to prove. Suppose
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Q̂c
∞(Q1, α) = Q̂c

∞(Q2, α). Note that since the beliefs converges to r̄∞(Q,α), in steady state,

we must have

Q̂c
∞(Q,α) =

K∑
j=−K

j × κ(j;Q, Q̃∞) =
K∑

j=−K

j × Pθ[λj ≤ Q− αQc − (1− α)(p− θ) < λj+1],

(98)

where the last equality followed from the definition of κ(r = i;Q, Q̃). Hence, Q̂c
∞(Q1, α) =

Q̂c
∞(Q2, α) can hold only if, in steady state, only “one” rating can realize under both quality

values, i.e., κ(r = i;Q1, Q̃) = κ(r = i;Q2, Q̃) = 1 for some i. We find conditions such that

this does not occur.

Similar to the proof of Proposition 3.2, a sufficient condition for this is to have Q1 −

αQ̂c
∞ − (1− α)p− (1− α)θ ≥ λi−1, and Q2 − αQ̂c

∞ − (1− α)p+ (1− α)θ < λi, which holds

if α ≤ 1− 1
2θ(k−1)

. This completes the proof of Part (i).

Part (iii) By contradiction, suppose Q > Q̂c
∞(Q, 1) (the proof for Q < Q̂c

∞(Q, 1) is similar).

If α = 1, we have ur(α, θ, Q̂c
∞(Q,α)) = Q− Q̂c

∞(Q, 1) ≡ ∆ > 0. Hence, there exists t∆ such

that for any t > t∆, we have ∆ > 0 and customers rate the product positively. In other words,

rt+1 ≥ 1. Consequently, Q̂c
∞(Q, 1) = r̄∞ ≥ 1. Since Q ∈ [0, 1], we have Q − Q̂c

∞(Q, 1) ≤ 0,

which is a contradiction with the initial assumption that ∆ > 0. As such, we must have

∆ = 0. □

B.1.10 Proof of Corollary 2

First, we prove the following claim.

Claim 1. When α ≤ α(k, θ), the function ϕ−1
α (x) is Lipschitz continuous on R.

From the proof of Proposition 3.6, Q̂c
∞(Q,α) =

∑K
j=−K j×κ(j;Q, Q̃∞). Since κ(j;Q, Q̃∞)

is continuous in Q for all j, we know that Q̂c
∞(Q,α) = ϕα(Q) is continuous in Q. Further,

since ϕα(Q) is bounded on the compact interval Q, ϕα(Q) is uniformly continuous on Q.

Additionally, from Part (i) of Proposition 3.6, ϕα(Q) = Q̂c
∞(Q,α) is bounded and strictly

increasing inQ when α ≤ α(k, θ). Combining these observations and using established results

of Lipschitz continuity of inverse functions, we find that ϕ−1
α (r) is Lipschitz continuous. This

completes the proof of Claim 1.
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Next, we show that the customers’ beliefs converge when they use Equation (14) to form

beliefs. We have

Q̂u
t+1 =

1

γ · t+ 1
E(Q̃) +

γ · t
γ · t+ 1

· ϕ−1
α (r̄t)

=
γ · (t− 1) + 1

γ · t+ 1
Q̂u

t +
1

γ · t+ 1

(
γ · tϕ−1

α (r̄t)− γ · (t− 1)ϕ−1
α (r̄t−1)

)
=

γ · (t− 1) + 1

γ · t+ 1
Q̂u

t +
γϕ−1

α (r̄t)

γ · t+ 1
+

γ · (t− 1)

γ · t+ 1

(
ϕ−1
α (r̄t)− ϕ−1

α (r̄t−1)
)
.

(99)

Since ϕ−1
α (r̄t) < ∞, then limt→∞

γϕ−1
α (r̄t)
γ·t+1

= 0. We show that limt→∞
γ·(t−1)
γ·t+1

(ϕ−1
α (r̄t)− ϕ−1

α (r̄t−1)) =

0 by arguing |(t− 1)ϕ−1
α (r̄t)− (t− 1)ϕ−1

α (r̄t−1)|< ∞. Since ϕ−1
α (·) is Lipschitz continuous, for

any r1 and r2, there exists constant D such that |ϕ−1
α (r̄1)− ϕ−1

α (r̄2)|≤ D|r̄1 − r̄2|. Therefore,

|(t− 1)ϕ−1
α (r̄t)− (t− 1)ϕ−1

α (r̄t−1)|≤D|(t− 1)rt − (t− 1)rt−1|

=D|trt − (t− 1)rt−1 − rt|

=D|rt − rt|

≤D(|rt|+|rt|) < ∞.

(100)

Hence, limt→∞
γ·(t−1)
γ·t+1

(ϕ−1
α (r̄t)− ϕ−1

α (r̄t−1)) = 0. As such, from Equation (99),

lim
t→∞

|Q̂u
t+1 − Q̂u

t |= lim
t→∞

|γ · (t− 1) + 1

γ · t+ 1
Q̂u

t − Q̂u
t |= 0, (101)

which proves the convergence.

Finally, from the first equality in Equation (99), we observe that Q̂u
∞ = ϕ−1

α (r̄∞) = Q. □

B.1.11 Proof of Proposition 3.7

Part (i) Since Qc
t → Q conditional on complete and correct learning, for any ϵ > 0,

there exists N such that |Qc
t −Q|≤ ϵ for t ≥ N . Let Nϵ ≡ (max(Q− ϵ, 0),min(Q+ ϵ, 1)).

Consider arbitrary quality value Q′ ̸= Q. We show it is separation divergent from Q for

large k. We show this for Q′ > Q. The argument for Q < Q′ is similar.

Define Qϵ ≡ argminQc∈Nϵ
Q − αQc + (1 − α)θ − (1 − α)p = min{Q + ϵ, 1} and Q

ϵ
≡

argmaxQc∈Nϵ
Q− αQc + (1− α)θ − (1− α)p = max{Q− ϵ, 0} ≥ −1.
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Since θ ≤ 1
1−α

+Q−p, then minQc minθ u
r(α, θ,Qc) = Q−αQϵ−(1−α)θ−(1−α)p ≥ −1.

In other words, there are ratings that would never arise under intrinsic quality Q. Further,

if Q′ < Q, for sufficiently a small ϵ > 0, we have

max
Qc

min
θ

ur(α, θ, Q̃|Q′) = Q′ − αQ− (1− α)θ − (1− α)p

< Q− αQϵ − (1− α)θ − (1− α)p = min
Qc

min
θ

ur(α, θ, Q̃|Q).
(102)

Hence, for sufficiently a granular rating system, i.e., k > kQ′ , at least one of the thresholds

of the rating system, namely λ, belongs to the interval(
max
Qc

min
θ

ur(α, θ, Q̃|Q′),min
Qc

min
θ

ur(α, θ, Q̃|Q)

)
. Therefore, there exist ratings that would arise under Q′ but never under intrinsic quality

Q. Since, in this section, we assume that Q is finite, we define k̄ = maxQ′∈{Q\Q} kQ′ to prove

Part (i).

Part (ii) Consider intrinsic quality Q and arbitrary quality value Q′ < Q. Define rQ =

max{i|λi ≤ Q−αQϵ−(1−α)θ−(1−α)p} and rQ = max{i|λi ≤ Q−αQ
ϵ
−(1−α)θ−(1−α)p}.

Similarly, define rQ′ and rQ′ by replacing Q with Q′. As shown in the proof of Part (i), for

sufficiently a granular rating system, we have rQ > rQ′ . Hence, any rating r ∈ RQ′ ≡

{rQ′ , ..., rQ′} would separate Q′ from Q. We have

P(r /∈ RQ′) = 1−
∑

rQ′≤r≤rQ′

κ(r;Q, Q̃)

≥ 1−
∑

rQ′≤r≤rQ′

κ(r;Q, Q̃|E(Q̃) = Qϵ)

= 1− Fθ(
λrQ′+1 −Q+ αQϵ + (1− α)p

1− α
)

≥ 1− Fθ(
Q′ − αQ

ϵ
+ (1− α)θ − (1− α)p+ 1

k−1
−Q+ αQϵ + (1− α)p

1− α
)

= F̄θ(θ −
Q−Q′ − α(Qϵ −Q

ϵ
)− 1

k−1

1− α
) ≡ ∆ϵ,

(103)

where the last inequality followed from the definition of rQ′ and that λrQ′+1 = λrQ′+1/(k−1).
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Since k ≥ k̄, ∆ϵ ̸= 0. As such, the expected number of customers needed to separate Q′

from Q with ϵ accuracy is bounded by 1/∆ϵ, i.e., the mean of a Geometric distribution with

parameter ∆ϵ.

Part (iii). Follows from Part (ii) and definition of V L(Q). □

B.1.12 Proof of Proposition 3.8

Consider intrinsic quality Q and correct learning. Hence, Qc
t → Q. Moreover, under

assumption θ > 1
1−α

+Q− p, following a similar argument used in the proof of Proposition

3.7, we find that all ratings can arise with non-zero probability. Recall that qt(Q) is the

probability that Customer t believes the the intrinsic quality is Q. Note that because of

correct learning, limt→∞
πt(i)
t

= κ(i;Q, Q̃∞). Therefore, for any ϵ > 0, there exists N > 0

such that for τ ≥ N ,

qτ (Q) ≥ 1− ϵ and

∣∣∣∣πτ (i)

τ
− κ(i;Q, Q̃τ )

∣∣∣∣ ≤ ϵ, for all i and Q̃τ . (104)

Let F ϵ
τ (Q) be the space of all feasible customer beliefs realizable under intrinsic quality

Q at time τ such that qτ (Q) ≥ 1− ϵ. Then, define

κϵ(i, Q) = min
q̃∈Fϵ

τ (Q)
κ(i;Q, q̃), and

κϵ(i, Q′) = max
q̃∈Fϵ

τ (Q)
κ(i;Q′, q̃).

(105)

We consider the following notations:

Hτ and |Hτ |: respectively, the set and size of all feasible history rating paths that are

consistent with the observation at time τ , i.e., πt.

P[hτ |Q]: the probability that rating path hτ realizes when the intrinsic quality is Q by the

time τ .

hN+1:τ : The tail of rating path hτ after time N .

π̃τ (i): the difference between πτ (i) and the maximum number of rating is over all feasible

rating paths up to time N that are consistent with set Hτ .

π̂τ (i): the difference between πτ (i) and the minimum number of rating is over all feasible

rating paths up to time N .
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With this background, we have

log
1− qτ (Q)

qτ (Q)
= log

(∑
Q′∈{Q\Q}

∑
hτ∈Hτ

P[hτ |Q′]∑
hτ∈Hτ

P[hτ |Q]

)

= log

(∑
Q′∈{Q\Q}

∑
hτ∈Hτ

P[hN |Q′]P[hN+1:τ |hN , Q
′]∑

hτ∈Hτ
P[hN |Q]P[hN+1:τ |hN , Q]

)

≤ log

(∑
Q′∈{Q\Q}(maxhN

P[hN |Q′])
∑

hτ∈Hτ
P[hN+1:τ |hN , Q

′]

(minhN
P[hN |Q])

∑
hτ∈Hτ

P[hN+1:τ |hN , Q]

)

≤ log

(∑
Q′∈{Q\Q}(maxhN

P[hN |Q′]) · |Hτ |·Πi∈R(κ
ϵ(i, Q′))π̃τ (i)

(minhN
P[hN |Q]) · |Hτ |·Πi∈R(κϵ(i, Q))π̂τ (i)

)

≤ log

(
(M − 1)(maxhN

P[hN |Q])Πi∈R(κ
ϵ(i, Q))π̃τ (i)

(minhN
P[hN |Q])Πi∈R(κϵ(i, Q))π̂τ (i)

)
,

(106)

where Q = argmaxQ′∈{Q\Q}(maxhN
P[hN |Q′])Πi∈R(κ

ϵ(i, Q′))π̃τ (i). The first inequality holds

because we take the maximum among all rating paths in the numerator, and minimum in

the denominator. The second inequality followed from the definitions in (105). The last

inequality followed by replacing Q′ with Q and using the fact that |Q|= M .

As argued in the proof of Proposition 3.7, when θ ≥ 1
1−α

+Q−p, there exists some quality

value Q′ such that it is not separation divergent from Q. In other words, κϵ(i, Q′) > 0 for

some Q′ and all i. Therefore, κϵ(i, Q) > 0 from the definition of Q. Consequently, for all i,

(κϵ(i, Q))π̃τ (i)

(κϵ(i, Q))π̂τ (i)
≤
(
κϵ(i, Q)

κϵ(i, Q)

)πτ (i)(
1

κϵ(i, Q)κϵ(i, Q)

)N

, (107)

where the inequality follows from knowing π̃τ (i) ≥ πτ (i)−N and π̂τ (i) ≤ πτ (i) +N . Using

this inequality in (106), we find that

log
1− qτ (Q)

qτ (Q)
≤ log

(
(M − 1) · maxhN

P[hN |Q]

minhN
P[hN |Q]

· Πi

(
κϵ(i, Q)

κϵ(i, Q)

)πτ (i)(
1

κϵ(i, Q)κϵ(i, Q)

)N
)

(108)
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Recall that limτ→∞
πτ (i)
τ

= κ(i;Q, Q̃∞). Hence,

lim
τ→∞

1

τ
log

1− qτ (Q)

qτ (Q)
≤ lim

τ→∞

1

τ

(
log

(
maxhN

P[hN |Q]

minhN
P[hN |Q]

)
+ log

((
1

κϵ(i, Q)κϵ(i, Q)

)N
))

+ lim
τ→∞

1

τ
log(M − 1) + lim

τ→∞

1

τ
log

(
Πi

(
κϵ(i, Q)

κϵ(i, Q)

)πτ (i)
)

= lim
τ→∞

∑
i

πτ (i)

τ
log

(
κϵ(i, Q)

κϵ(i, Q)

)
=
∑
i

κ(i;Q, Q̃∞) log

(
κϵ(i, Q)

κϵ(i, Q)

)
.

(109)

Since the above inequality holds for any ϵ, then limϵ→0 κ
ϵ(i, Q) = κ(i, Q, Q̃∞(Q)) and

limϵ→0 κ
ϵ(i, Q) = κ(i, Q, Q̃∞(Q)). Therefore,

lim
τ→∞

1

τ
log

1− qτ (Q)

qτ (Q)
≤
∑
i

κ(i, Q, Q̃∞(Q)) log

(
κ(i, Q, Q̃∞(Q))

κ(i, Q, Q̃∞(Q))

)

= −
∑
i

κ(i, Q, Q̃∞(Q)) log

(
κ(i, Q, Q̃∞(Q))

κ(i, Q, Q̃∞(Q))

)
= −D(κ⃗(Q, q∞(Q) = 1)||κ⃗(Q, q∞(Q) = 1))

≤ max
Q∈{Q\Q}

−D(κ⃗(Q, q∞(Q) = 1)||κ⃗(Q, q∞(Q) = 1))

= − min
Q∈{Q\Q}

D(κ⃗(Q, q∞(Q) = 1)||κ⃗(Q, q∞(Q) = 1)).

(110)

This proves the upper bound in the proposition.

To prove the lower bound, change the definitions of κϵ(i, Q) and κϵ(i, Q′) to

κϵ(i, Q) = max
q̃∈Fϵ

τ (Q)
κ(i;Q, q̃), and

κϵ(i, Q′) = min
q̃∈Fϵ

τ (Q)
κ(i;Q′, q̃).

(111)

Also, let Q = argminQ′∈{Q\Q}(minhN
P[hN |Q′])Πi=1(κ

ϵ(i, Q′))π̃τ (i) such that κϵ(i, Q′) > 0

for all i. Following a similar argument used to prove the upper bound, we can show that for

all ϵ > 0,

lim
τ→∞

1

τ
log

1− qτ (Q)

qτ (Q)
≥
∑
i

κ(i, Q) log

(
κϵ(i, Q)

κϵ(i, Q)

)
. (112)
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Since this inequality holds for any ϵ > 0, we have

∑
i

κ(i, Q, Q̃∞(Q)) log

(
κ(i, Q, Q̃∞(Q))

κ(i, Q, Q̃∞(Q))

)
≤ lim

τ→∞

1

τ
log

1− qτ (Q)

qτ (Q)
, (113)

which implies the lower bound in the proposition. □
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