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Background. The role of leukocyte migration and 
chimerism in organ allograft acceptance has been ob­
scured by the lack of information about the late local­
ization of the donor cells. 

Methods. Male Lewis rat---female Brown Norway ab­
dominal heart transplantation was performed under 
tacrolimus immunosuppression (days 0-13, 20, and 27) 
with or without donor bone marrow and (in bone mar­
row subgroups) a I-week postoperative course of a 
possibly chimerism-enhancing drug. Using rat sex­
determining region-Y-specific oligonucleotide prim­
ers, we determined the donor DNA concentration by 
polymerase chain reaction in serial venous blood sam­
ples for 100 days and in tissue specimens when ani­
mals were killed. 

Results. Chimerism was detected out to 56 days in 
89% of the blood samples but in none of the samples at 
100 days. However, donor DNA was detected when 
animals were killed in 95% of the native hearts, 80% of 
the skin biopsy specimens, and 23% of the spleens. The 
presence and quantity of early and late chimerism 
were strongly correlated the administration of ad­
junct bone marrow and with a reduction in the vascu­
Iopathy and inflammation index in the cardiac allo­
grafts. Marginally significant further increases in 
chimerism and/or reductions in chronic heart rejec­
tion beyond those achieved with adjunct bone marrow 
alone were associated with additional treatment with 
the growth factors Flt-3 ligand, granulocyte colony­
stimulating factor, and a recombinant molecular vari­
ant of interleukin-6 (interleukin-6 mutein) but not 
with hepatocyte growth factor or lisofylline. 

Conclusions. The previously suspected shift of early 
chimerism in the blood and lymphoid organs to dom­
inance in host nonlymphoid tissues is consistent with 
the dual mechanisms of clonal exhaustion and im­
mune indifference, governed by antigen migration 
and localization, that have been postulated elsewhere 
to account for organ allograft acceptance. 

Widespread activation of the recipient immune system is 
induced peripherally by the migration of donor leukocytes 
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from the graft to host lymphoid organs via vascular routes 
(1-4), including pluripotent stem cells (5, 6). Although it was 
long assumed that the donor leukocytes were promptly de­
stroyed by the recipient immune system as l'l prerequisite for 
successful organ transplantation, their more complex role 
was recognized with the discovery that they persisted periph­
erally (microchimerism) and eventually were widely dis­
persed to host nonlymphoid (e.g., skin [7,8] and heart [9]) as 
well as lymphoid sites. 

The migration kinetics involved in the transition from a 
lymphoid-oriented donor leukocyte traffic to a more ubiqui­
tous distribution and the eventual proportions in lymphoid 
versus nonlymphoid areas have not been determined. Filling 
this informational void out to 100 days was the primary 
objective of the experiments reported herein, using the rat 
heterotopic heart transplantation model, with or without 
adjunct donor bona marrow cell infusion. In an attempt to 
further augment the increased chimerism, subgroups of 
heart recipients given adjunct bone marrow were also treated 
with one of four hematolymphopoietic growth factors or with 
the phosphatidic acid inhibitor lisofylline. 

MATERIALS AND METHODS 

Animals and Transplant Procedures 

Heart transplantation. Male Lewis (LEW"; RT11) and female 
Brown Norway (EN; RT1n) rats weighing 150-200 g (Harlan 
Sprague Dawley, Indianapolis, IN) were used as donors and lecipi­
ents, respectively. The use of sex-mismatched allografts allowed 
estimation of the level of chimerism after transplantation with a 
probe specific for sex-determining region Y CY chromosome). The 
male LEW heart grafts were transplanted heterotopically into the 
abdomen of female BN recipients (10). 

Adjunct bone marrow infusion. Male LEW bone marrow cells 
were obtained by flushing the tibias and femurs. The irrigating fluid· 
was processed with RPM I 1640 medium supplemented with 25 mY I 
HEPES buffer, 2 mM L-glutamine, and 10 iJ.g/ml gentamicin (all from 
Life Technologies, Grand Island, NY). Bone marrow cells (2.5X 108 

cells/animal) with >95% viability in the trypan blue exclusion test 
were injected intravenously into the jugular vein of female recipients 
on the day of heart transplantation. 

I 

Immunosuppression and Hematopoietic Grou,th Factors 

Tacrolimus. All recipients received 1.5 mg/kg intramuscular ta­
crolimus per day (Fujisawa Pharmaceutical Co., Ltd .. Osaka .. Japan) 

* Abbreviations: BN, Brown Norway; G-CSF, granulocyte colony­
stimulating factor; IL, interleukin; LEW, Lewis; PCR, polymerase 
chain reaction; Sry, sex-determining region Y. 
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on days 0 to 13 after transplantation with additional single injections 
on days 20 and 27. With this model, hearts have prolonged survival, 
but at 100 days, the allografts frequently have histopathologic evi­
dence of chronic rejection (10, 11). 

Growt;, factors. As shown in Table 1, the conventional growth 
factors tested were the folIo\ving: rh-granulocyte colony-stimulating 
factor (G-CSF, 200 /-Lg/kg/day; Amgen, Thousand Oaks, CAl, Chinese 
hamster ovary cell-derived rh-Flt-3 ligand (200 /-Lglkg/day; a gift from 
Immunex, Seattle. WA) (12), interleukin (IL)-6 mutein, a recombi­
nant molecular variant of human IL-6 (500 /-Lg/kg/day, a gift from 
ImClone System Inc., Somerville, NJ) (13), and rr-hepatocyte growth 
factor (200 /-Lg/kg/day, a gift from Pharmaceutical Research Center, 
Toyobo Co., Ohtsu, Japan). In addition, the effect ofthe phosphatidic 
acid inhibitor lisofylline (150 mg/kg/day, a gift from Cell Therapeutic 
Inc., Seattle. WA) was determined (14). The daily doses, routes, and 
frequency of injection during the 7-day course (days 0-6) are shown 
in Table 1. 

All reagents have been confirmed to be active in rats. Although a 
detailed dose-effectiveness experiment was not conducted in this 
study, the dosage and route for each molecule were determined from 
published recommendations (15, 16) or according to information 
from the supplier. In general, dosages that were confirmed to pro­
duce specific biologic effects of each molecule in rats were selected, 
and molecules with short half-lives were administered twice daily 
and those with relatively long half-lives <IL-6 and Flt-3 ligand) were 
administered once daily. To test their comparative biologic activity, 
the effects on venous hematocrit (tail vein), total leukocytes, and 
leukocyte subsets (Table 2) were determined 7 days after the various 
transplantation procedures, 1 day after completion of the treatment 
course. Flow cytometry was performed using monoclonal antibodies 
R7.3 (0:{3-T cell receptor). OX1 (CD45). OX33 (B cells), 3.2.3 (natural 

killer cells), and ED1 (monocyte/macrophage) (all from Sera-Lab. 
Crawley Down, UK). The percentage of granulocytes was assessed on 
a cytocentrifuge preparation stained with a-naphthyl acetate ester­
ase (Sigma Diagnostics, St. Louis. MO). 

Intergroup hematocrit variances were minor or nonsignificant 
(data not shown). Although the BN allograft recipients receiving 
tacrolimus (all groups 1-7) had lower total leukocyte counts than 
normal nonoperated animals, this was significantly influenced by 
growth factor therapy only in the heart transplant/bone marrow 
recipients treated with IL-6. The most striking finding was an in­
crease in the percentage of granulocytes in allograft recipients 
treated with lisofylline, FIt-3 ligand, and G-CSF (Table 2). Changes 
in the subset profile of polymorphonuclear leukocytes attributable 
specifically to a growth factor (as opposed to the transplant proce­
dure or tacrolimus) were minor except for a near doubling of the 
percentage of natural killer cells by G-CSF treatment (Table 2). 

Pathologic Studies 

At autopsy, graft and native hearts were serially sectioned across 
both ventricles in the transverse plane. One section from the mid­
portion of the ventricles was fixed in neutral buffered formalin for 
routine histopathology, a.."1d a second similar cross-section was snap­
frozen in optimum cold temperature compound (Tissue-Tek, Ames 
Division, Miles Laboratories, Inc., Elkhart, IN) for immunohisto­
chemical studies. A third cross-section of both donor and recipient 
hearts and samples from other recipient organs (including the kid­
ney, liver, spleen, thymus, skin, cervical lymph nodes, and bone 
marrow) were immediately snap-frozen in liquid nitrogen for chimer­
ism analysis with polymerase chain reaction (PCR). Special precau-

TABLE 1. Experimental groups-all transplantations were from male LEW donors to female BN recipients treated with tacrolimusa 

Group 

1 
2 
3 

4 

5 

6 

Transplantationb 

None 
H 
H1BM 
HlBM 

HlBM 

HlBM 

HlBM 

Drug 

None 
None 
None 
Lisofylline (i.p.) 

Flt-3 ligand (i.p.) 

G-CSF (s.c.) 

HGF (i.p.) 

Dose/day 

NA 
NA 
NA 
150 mglk~ 

200 /-Lglkg" 

200 /-Lg/k~ 

NA 
NA 
NA 

Growth factor 

Principal action 

Inhibits lysophosphatidic acid acyl transferase and blocks the 
formation of phosphatidic acid 1-0: induced by the stimulation of 
cytokines, endotoxin, hypoxia-reoxygeneration, and cytotoxic 
agents; suppresses production of inflammatory and 
hematopoiesis-inhibiting cytokines (IL-1, IL-6. IFN -"Y. TNF -a, 
TGF-I3, macrophage inhibitory protein 1-0:, and platelet factor 
4) (14) 

Promotes the growth and mobilization of hematopoietic stem cells 
and committed precursor cells for multiple myeloid and lymphoid 
lineages; dramatically increases the numbers of dendritic cells in 
both lymphoid and nonlymphoid tissues (12) 

Supports the proliferation and differentiation of progenitors already 
committed to the neutrophil lineage; also affects all lineages 
derivative from stem cells 

One of a functionally related group of factors that modulate 
hematopoiesis; is a ligand for the comet proto-oncogene, which is 
expressed on epithelial cells as well as hematopoietic progenitor 
cells 

7 HlBM IL-6 (s.c.) 500 /-Lg/kg" Multipotential cytokine that stimulates B- and T-cell differentiation 
and primitive hematopoietic stem cell population; IL-6 mutein 
used in this study lacks 22 amino acids from the amino terminus 
of IL-6 and has serine replacements at positions 74 and 84; has 
maximum activity at a lower concentrations than native 1L-6 (13) 

-------------------------------------------~ 
a Intramuscular tacrolimus: 1.5 mglkg/day on days 0-13, 20, and 27. 
b H. heart; BM, unfractionated bone marrow 2.5x10B cells/animal. 
C Nonoperated and nonimmunosuppressed normal female BN rat. 
d Twice daily injection of divided dose. 
e Once daily injection. 

r 
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T.-\BLE 2. Effect of hematopoietic growth factors and lisofylline on peripheral blood leukocytes 7 days after transplantation ----Total :Ylonocytes/ 
Growth leukocytesa af3-TCR (R7.3) B cells (OX33l NK cells (3.2.3) 

Group Transplantation N Granulocytesb (%) macrophage 
factor (cell countsl (%) (%) (%) (EDl\(%) 

mm3 ) ----0 None None 5 7182:!:1481 15.60:'::6.38 49.96:'::4.04 30.80:'::5.18 4.42:'::1.17 2.42:::0.93 

1 HTX None 5 5670:!:1580 14.52:'::3.97 53.37:!:3.66 17.4 7:':: 1.336 5.30:':: 1.59 2.13:::0.25 

2 HTX+BMTX None 5 5352:!:983 16.56:::2.06 57. 17:':: 6.34a 26.73:::7.53" 4.08:'::0.89 2.17::':0.75 

3 HTX+BMTX Lisofylline 2 5088:!:3189 21.38:!:4.82a •e.i 47.30:!:3.25i 32.10:!:1.13'" 6.05:!:0.64 3.30:::0.00 

-± HTX+BMTX Flt-:3 ligand 5 6562:!:2089 24.05:!:5.l1C,gJ 51.17:!:7.34 30.85:!:4.4[/ 6.80:!:1.31GJ 2.40:::0.78 

5 HTX..,.BivITX G-CSF 3 5812:!:655 26.27:'::5.01d •h •k 48.60:!:1.47' 23.47:!: 1.89 9.50:!: 1.85d . ..,..k 1.57:'::0.45 

6 HTX+Blv'ITX HGF 3 6664:'::2286 19.13:!:5.26 53.77:'::2.06 27.00:!:3.32e 4.17:'::1.10 1.17:!:0.15" 
7 HTX+BMTX IL-6 3 3997:!:2543a 17.38:'::5.10 55.87:!:6.90 18.80:!:6.416 6.03:'::0.55i 2.67:!:1.11 

- ---
a Cells were counted on a hemacytometer. 
b Granulocytes were determined on blood smear after an a-naphthyl acetate esterase stain. 
P ys group 0: a<0.05. 6<0.01, c<O.OOl, d<O.OOOl 
P vs group 1: e<0.05, (<O.Ol, g<O.OOl, h<O.OOOl 
P vs group 2: i<0.05, j<O.Ol. k<O.OOOl 

tions were taken during sampling not to contaminate female recip­
ient tissues by contact with the male heart graft. 

The formalin-fixed heart grafts were embedded in paraffin, sec­
tioned at 4 J.Lm, and stained with hematoxylin and eosin. All slides 
were reviewed by one of the authors IA.J.D.l without knowledge of 
the treatment protocols. The overall severity of inflammation in the 
endocardium, pericardium, interstitium, and periarterial spaces was 
graded semiquantitatively on a scale of 0 to 4 as none, minimal, mild, 
moderate. or severe, as previously described (11). Arterial alter­
ations, including the presence of inflammation, edema, fibrosis. and 
vacuolation of the intima, media, and adventitia, were graded in the 
same fashion. In addition, the total numbers of arteries >80 J.Lm 
present in the cross-section were recorded, to ensure a similar sam­
pling between animals. The grading of obliterative arteriopathy was 
as follows: none (grade 0), <10% luminal narrowing Igrade 1), 10-
25% (grade 2), 26-50% (grade 3), 51-75%(grade 4), and >75% lumi­
nal narrowing I grade 5) un 

peR and Southern blot hybridization 

Genomic DNAs were prepared from blood samples and recipient 
tissues using a standard procedure and quantitated by spectropho­
tometer (J 7l. The PCR was performed with 1.5 J.Lg of genomic DNA in 
50 J.LI of total reaction mixture containing 1.25 units of Taq DNA 
polymerase, 1 J.Ll each of 25 J.LM rat sex determining region-Y (Sry)­
specific oligonucleotide primers (5' -GAGAGAGGCACAAGTTGGC-3' 
and 5'-GCCTCCTGGAAAAAGGGCC-3'), 8 J.Ll of 1.25 mM dNTP, and 
5 J.Ll of lOx PCR buffer (500 mM KCI, 20 mM MgCI2, 100 mM Tris 
HCl, and 0.1 % gelatin, adjusted to pH 8.4) (8). The PCR was carried 
out under the following conditions: denaturation at 95°C for 60 
seconds. annealing at 55°C for 45 seconds, and extension at 72°C for 
2 min for 35 cycles in a DNA thermal cycler. The reaction was then 
extended for 7 min at 72°C to ensure the production of full-length 
PCR products. 

The PCR products were then fractionated in 1.5% agarose gels and 
stained with ethidium bromide. DNA products amplified with Sry­
specific primers were also transferred onto nylon membranes for 
Southern blotting and semiquantitation. The Sry-specific probe was 
prepared by extraction and purification of PCR product, which was 
prepared from male LEW spleen DNA, using the QIAEX II gel 
extraction kit (QIAGEN Inc., Chatsworth, CAl. It was also multi­
prime-labeled with a_ 32p dCTP (3000 Cilmmo!, NEN Research Prod­
ucts, Boston, MAl using the multi prime DNA labeling systems IAro­
ersham Life Science, Buckinghamshire, UK). Membranes were 
prehybridized for 2 hr at 47°C in buffer containing saline-sodium 
phosphate EDTA buffer (5x), 0.1% sodium dodecyl sulfate, Den­
hart's solution (5X). and 0.1% SSDNA. The Cl2P-labeled probe was 
added to hybridization buffer and further incubated for 16 hr at 

47°C. After hybridization, each membrane was washed four times in 
Ix SSPE/O.1 % sodium dodecyl sulfate for 5 min at room temperature 
and then once in the same solution for 5 min at 50°C. Membranes 
were exposed to Storage Phosphor Screen (Molecular Dynamics, 
Sunnyvale, CAl for 4 hr at room temperature, and the radioactivity 
on the screen was measured with the PhosphorImager (Molecular 
Dynamics). 

The level of chimerism in each sample was calculated with a 
standard curve prepared using known concentrations of male DNA. 
DNAs were prepared from male LEW and female BN spleens and 
mixed at various ratios ranging from 1:10 to 1:10s Mixtures were 
amplified with PCR. After Southern hybridization, radioactivities of 
these mixtures were analyzed by phosphoimaging and the standard 
curve was created ,Fig. 1), with which male DNA concentrations in 
blood and organs obtained from the female recipients were semi­
quantified. It was possible to detect the male DNA concentration up 
to 0.001% (donor-recipient ratio = 1:100,000). Donor DNA was con­
sidered to be nondetectable when the radioactivity after Southern 
hybridization of experimental samples was below the value of control 
females. 

Statistical Analysis 

One-way analysis of variance and Fisher's PLSD test were applied 
to assess the statistical significance of different groups. A value of 
P<O.05 was considered significant. 

(A) Ethidium bromide staining 
after electrophoresis 
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FIGURE 1. Standard curve for the semiquantitation of male DNA 
concentration in samples. DNAs from male LEW spleen and female 
BN spleen were mixed at ratios ranging from 1:10 to 1:10'. These 
mixtures were amplified by PCR using Sry-specific prilllers. PCR 
products were (A) separated in 1.5% agarose gel for ethidium bro­
mide staining and (B) transferred onto nylon membrane for South­
ern hybridization. After hybridization, radioactivities were analyzed 
by phosphoimaging and a standard curve was created (el. 
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RESULTS 

Peripheral Blood Chimerism 

Figure 2 demonstrates the frequency of detection and the 
concentrations of male DNA in the tail vein blood ofthe heart 
recipients 7, 14, 28, 56, and 100 days after transplantation. 
Adjunct donor bone I!1arrow infusion was the only treatment 
variable that increased the detection rate or concentration of 
the chimerism, with no additional effect of growth factor 
treatment. In the heartlbone marrow recipients (groups 2-7), 
the concentration of male DNA reached 1-10% in the periph­
eral blood at 7-28 days after transplantation and then de­
creased slowly to 0.1-1% at 56 days after transplantation. 
Donor DNA was not detectable in the peripheral blood of any 
recipient by 100 days after transplantation, no matter what 
the treatment regimen. 

Tissue Chimerism at 100 Posttransplant Days 

In contrast to the disappearance of blood chimerism, male 
DNA was found in the following host tissues when the rats 
were killed: liver, native heart, skin (tongue), spleen, cervical 
lymph nodes, and bone marrow. The complete results from 
the spleen samples shown in Figure 3A are representative of 
the other lymphoid organs (data not shown), The results from 
the skin and recipient heart (Fig. 3, B and C) typify the 
pattern in the nonlymphoid sites. Both the frequency ofpos­
itive samples and the concentrations of donor DNA were 
higher in the skin and native heart than in the spleen 
(Fig. 3). 

Adjunct donor bone marrow alone (group 2) significantly 
increased the frequency of detection and concentration of 
male DNA in all locations assayed, compared with those 
observed with transplantation of the heart only (group 1) 
(Fig. 3), Additional treatment with Flt-3 ligand (group 4) was 
associated with a further increase in male DNA in the spleen 
(P=0.0093. vs. group 2, Fig. 3A) and native heart (P=O.025, 
Fig. 3C). IL-6 treatment (group 7) was also associated with a 
significant increase of male DNA in the recipient native 
heart compared with group 2 (P=O.0402, Fig. 3C). 

Group 1 
HTX 

GroupS 
HTX+8MTX .. G-CSF 

Histopatlwlogic Evaluation of Heart Grafts 

As expected from previous experience with this model 
(10,11), all 39 heart grafts transplanted hetero.topically be~t 
for 100 days. Thirty-seven were available for hlstopathologtc 
analysis and standardized grading; two grafts, one each from 
groups 3 and 5, were not analyzed because of an inadequate 
sample. The overall inflammation score reflects the general 
alloreactivity in the heart grafts. This score was significantly 
reduced in all groups in which heart grafts were transplanted 
simultaneously with donor bone marrow (Table 3). The great­
est improvement relative to group 1 was with G-CSF, Flt-3 
ligand, or IL-6 treatment (Table 3), but this advantage was 
not statistically significant when compared with the results 
with adjunct bone marrow alone (group 2). 

Obliterative arteriopathy was evaluated in each sample 
and is expressed as the percentage of arteries showing vas­
culopathy and as the average grade of the disease seen in 6 to 
22 arteries per heart graft. Compared with hearts trans­
planted alone (group 1), the cardiac allografts transplanted 
with adjunct bone marrow to recipients also treated with 
G-CSF (group 5) and IL-6 (group 7) had significant improve­
ment in both categories (Table 3). 

Histopathologic Correlations with Chimerism 

The autopsy samples from all the cardiac allografts of 
groups 1-7 were pooled and the histopathologic changes were 
correlated with the pooled levels of chimerism in the native 
hearts of these same animals. The native hearts were se­
lected as the chimerism reference because donor DNA was 
found in >90% of these specimens (see Fig. 3C). 

The scattergrams in Figure 4 demonstrate the correlation 
between the concentration of chimerism and the average 
grade of arterial lesions (Fig. 4A), percentages of diseased 
arteries (Fig. 4B), and overall inflammation (Fig. 4C). De­
spite strong trends, there was no statistically significant 
linear relationship between the average histopathologic 
grades of arterial lesions and chimerism (R"2=O,098, 
P=O.0594; Fig. 4A) or percentages of diseased arteries 
(R"2=O.070, P=O.1146; Fig. 4B), However, a highly signifi-

Group 2 
HTX.OM'fX 

Groupe 
HTX+BU1"X+HGF 

l ' 
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~ 0.1 ... .' 
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FIGl:RE 2. Sequential changes of chi­
merism (male DNA concentration) in 
recipient peripheral blood (0, samples 
with undetectable levels of male DNA). 
Both the frequency of detection and the 
concentrations of male DNA were sig­
nificantly higher (P<O.OOOl, analysis 
of variance) in recipients with simulta­
neous donor bone marrow infusion 
(groups 2-7) than in those without in­
fusion (group 11 at 7, 14, 21, and 56 
days after transplantation. 
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FIGURE 3. Systemic chimerism in re­
cipient (A) spleen, (B) skin, and (C) na­
tive heart at 100 days after transplan_ 
tation (0, samples with undetectable 
levels of male DNA). a: P<O.Ol VS. 
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TABLE 3. Comparison of severity of obliterative arteriopathy and overall inflammation in heart allografts at 
100 days after transplantation" 

Arterial changes 
Overall 

Group Transplantation Growth factor n Total no. of Average grade of Percent of arteries inflammation 
arteries lesions with disease (%) score 
scored 

1 HTX None 5 60 
2 HTX+BMTX None 5 60 
3 HTX+BMTX Lisofylline 5 48 
4 HTX+BMTX Flt-3 ligand 6 87 
5 HTX+BMTX G-CSF 4 63 
6 HTX+BMTX HGF 6 83 
7 HTX+BMTX IL-6 6 86 

a P-value vs group 1: a<0.05, b<O.Ol, c<O.OOl. 

cant inverse correlation was found between the levels of 
overall inflammation and chimerism (R"2=0.261, P=0.0012; 
Fig.4Cl. 

DISCUSSION 

When microchimerism was discovered in long-surviving 
human organ recipients, two mechanisms of allograft accep­
tance were proposed (7,8): (1) reciprocal clonal exhaustion of 
the co-existing donor and recipient immunocyte populations, 
and (2) reduced organ graft immunogenicity of the trans­
planted organ due to depletion of its peripheralized passen­
ger leukocytes. Bishop et al. (19, 20) reported experimental 
evidence confirming a role of acute clonal exhaustion, attrib­
uted by Qian et al. (21) to apoptosis. However, skeptics of the 
significance of persistent late microchimerism (22) have fo­
cused on the inconsistency with which donor leukocytes can 
be found in the blood (or limited tissue samples) from pa­
tients (7-9, 23-30) and animals (31-34) bearing long-surviv­
ing organ allografts. Incomplete sampling (in some reports of 
blood only) in both the clinical and experimental studies is 
one possible explanation for wide discrepancies in the fre­
quency of donor leukocyte detection. 

It was evident in the current study that both the site and 
timing of sampling profoundly influenced the finding of chi­
merism. Blood chimerism in the heart recipients was detect­
able during the first 2 postoperative months in 139 (89%) of 
the 156 samples, including 37 (95%) of39 at 56 days. By 100 
days, at which time all of the heart allografts were still 
beating, all 39 blood samples were negative. When the ani­
mals were killed, however, tissue chimerism was detected in 
37/39 (95%) of the native hearts, 31/39 (80%) of the skin 
biopsy specimens, and only 9/39 (23%) of the spleens. A 
similar but less clear late pattern of localization in host 
nonlymphoid tissues has also been noted recently in a rat 
heart transplant model by Shirwan et al. (34). 

1. 12::c:0.96 53.202::22.07 2.80=1.10 
0.84:':0.08 47.162::8.44 1.30=0.76b 

1.42::c:0.50 60.922::20.63 1.20=0.57" 
0.57::+:0.25 43.08::+: 16.39 0.75::+:0.27c 

0.38::+:0.18a 26.84::+: 12.64a 0.632::0.25c 

1.05::+:0.71 51.00::+:24.22 1.502::1.27a 

0.44::+:0.23a 30.17::+: 13.86a 0.92:!:0.59c 

The eventual dominance of micro chimerism in the nonlym­
phoid compartment (Fig. 5), which has not been recognized 
before, extends the second originally proposed mechanism of 
graft acceptance, by immune indifference (i.e., loss of organ 
immunogenicity caused by depletion of the donor leukocytes 
from the allograft [7, 8]). It is now clear that chronic survival 
of the peripheralized donor cells may depend in part on their 
confinement to nonlymphoid sites. In spite of their seques­
tration, we have suggested that they may be critical for 
maintenance of the clonal exhaustion (4) which, under cir­
cumstances of transplantation across an MHC barrier, is 
rarely if ever complete and nonreversible (10, 3.5, 36), Peri­
odic leakage ofthe "hidden" chimeric cells to lymphoid organs 
has been postulated to fill this maintenance role (4). 

In this context, persistent chimerism, no matter whf.t its 
level, is only a necessary condition for, and is not synony­
mous with, graft acceptance or tolerance (4, 7, 8, 37). It 
follows that neither the development of rejection coincident 
with chimerism (33, 34, 38-40) nor the inability to use chi­
merism to guide immunosuppressive drug weaning (38, 4]) 
contravene the key role of microchimerism in allograft accep­
tance and tolerance (4). Although it has been argued that 
tolerance can be produced in the absence of donor hemato­
poietic cells (31, 32), the experiments prompting this conclu­
sion may be experimental examples of "immune indifference" 
in which long survival of allografts does not confer donor­
specific nonreactivity (42-44). 

In the studies reported herein, we determined whether 
there was a correlation between chronic rejection and the 
quantity and localization of early and late chimerism, using 
three different histopathologic end points: (1) percentage of 
arteries showing vasculopathy, (2) severity of the vascular 
lesions, and (3) overall inflammation score. By all three end 
points, chronic rejection was reduced in inverse proportion to 
the amount of detectable chimerism, which in turn was al-
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FIGURE 4. Correlation between histopathologic changes in heart al­
lografts and chimerism levels (male DNA concentration) in native 
hearts. Hematoxylin and eosin samples were analyzed from the 
middle of heart allografts that were harvested 100 days after trans­
plantation. Scattergrams demonstrate the correlation between the 
level of chimerism and (Al the average grade of arterial lesions, (B) 
percentages of diseased arteries, and (C) overall inflammation. The 
linear regression for each group was the following: A, RI\2=0.098, 
P=0.0594; E, R""2=0.070, P=0.1146; and C, RI\2=0.261, P=0.0012. 

ways greater in animals given adjunct bone marrow. This 
was statistically significant with the inflammation score, in 
accord with numerous previous reports of the protective ef­
fect of bone marrow (45-47). 

Although the further advantage conferred by adding 
growth factor therapy postoperatively did not reach signifi­
cance when compared with the protection of adjunct bone 
marrow alone, it can be concluded that none ofthe five tested 
molecules made chronic rejection worse. On the contrary, 
trends of reduced chronic rejection were seen with three of 
them (G-CSF, IL-6, and Flt-3 ligand), which suggests the 
need for further evaluation. Such investigations also can be 
justified by our previous demonstration that organ-based 
hematopoietic progenitor cells are increased by growth fac­
tors, such as G-CSF, that promote the growth and mobiliza­
tion of hematolymphopoietic stem cells (see Table 1). G-CSF 
and granulocyte/macrophage CSF already have been widely 
Used in clinical bone marrow transplant recipients and after 
cancer chemotherapy (48); similar trials with Flt-3ligand are 
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FIGURE 5. Reconstruction of events after organ transplantation, 
epitomized by the heart with its "passenger leukocyte" component 
depicted as a bone silhouette. Although these donor leukocytes are 
largely replaced by similar recipient cells. a small number «5o/r) 
remain donor cells. The eventual localization of the donor migratory 
cells is heavily represented in nonlymphoid tissues (skin and native 
heart shown here), from where they presumably leak to the lymphoid 
organs and maintain clonal exhaustion. 

underway. The administration of G-CSF and granulocyte/ 
macrophage CSF long after transplantation to stable organ 
recipients has not increased the risk of either rejection or 
graft-versus-host disease (49-53). 

In nonrandomized trials, Foster et al. (54) have reported a 
reduction in both infection and rejection in liver transplant 
recipients treated with G-CSF during the early postoperative 
period (54). Because these benefits have not been duplicated 
in multicenter randomized trials (J.W. Williams, personal 
communication, 1998), further preclinical laboratory studies 
under controlled circumstances will be doubly important. 
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DIFFERENTIAL INHIBITION OF B-CELL DEVELOPMENT AND 
XENOREACTIVE NATURAL ANTIBODY PRODUCTION BY 
ADMINISTRATION OF ANTI-p, OR ANTI-8 MONOCLONAL 

ANTIBODIES IN ADULT RATS1 

MIGUEL SOARES,2 XAVIER HAVAlJX, RONALD VAN BE~·mDEN, ISABEL KrNET, AzIZ A. CHENTOUFI, 

FRANCOISE NISOL, FRANCOISE CORMONT, HERVE BAZIN,3 AND DOMINIQVE LATINNE 

Experimental Immunolog)· [in it. Faculty of Medicine, University of Loul'ain. B·1200 Brussels. Belgium 

Background. Given the role of xenoreactive natural 
antibodies (XNA) in the pathogenesis of xenograft re­
jection, we tested whether the administration of an­
ti-IL or anti-o monoclonal antibodies (mAbs) in adult 
rats would suppress the generation of XNA. 

Methods. Adult LOU/C (IgK-la) rats were treated 
with anti-IL or anti-o mAbs after nonlethal total body 
irradiation and bone marrow transplantation from 
congenic LOU/C (IgK-lb) rats. The differentiation of 
donor bone marrow (BM)-driven IgK-lb+ B cells and 
XNA production were analyzed. 

Results. Both anti-IL and anti-o mAbs arrested B-cell 
differentiation in the BM. In anti-IL-treated rats, there 
was a total depletion of donor-driven, peripheral IgK­
lb+ B cells, secreting cells, and circulating XNA of the 
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Recherche Scientifique (Belgium) and by a fellowship from IRSlA 
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IgK-lb allotype. In anti-o-treated rats, a significant 
number of IgK-lb+ B cells, which did not express mem­
brane IgD, "escaped" deletion and partially repopu­
lated peripheral lymphoid organs. This B-cell popula­
tion wa,s active in the production of XNA, as revealed 
by the high serum levels of XNA in these animals. 

Conclusions. Anti-IL administration resulted in ar­
rest of B-cell differentiation and in down-regulation of 
IgM and IgG XNA production in adult rats. These data 
suggest that the use of anti-IL mAbs may be a useful 
approach to suppress the production of XNA and pre­
vent xenograft rejection. Furthermore, we suggest 
that the B-cell population responsible for the produc­
tion of XNA in adult rats belongs to a B-cell lineage 
expressing low levels of membrane IgD and "escaping" 
deletion in the BM upon anti-o treatment. 

The xenotransplantation of immediately vascularized or­
gans from pigs to humans is perceived as a potential solution 
to overcome the current organ donor shortage in clinical 
transplantation (1 J. The success of this approach remains 
limited due to the occurrence of hyperacute or delayed xeno­
graft rejection. Humans and Old World primates have high 
serum levels of preformed IgM and IgG xenoreactive natural 


