Surgery: art or science? 
Birth of organ transplantation

TE Starzl

The revolution in organ transplantation that occurred between 1950 and 1963 can be used to illustrate the way that surgery has influenced science, all the while preserving a niche as an art form. This modern era of transplantation immunology had begun several years earlier when Peter Brian Medawar, a 24-year-old zoologist fresh from graduate studies at Oxford University, was assigned to the service of the British plastic surgeon Dr Thomas Gibson to determine if skin allografts could be used to treat casualties from the Battle of Britain.

First in human studies [1] and then with simple and logical rabbit experiments [2], it was shown that rejection of the skin was an immunologic phenomenon analogous to the cell mediated delayed hypersensitivity that confers immunity to diseases such as tuberculosis [3-5]. The principal evidence was that repetitive grafts from the same donor were rejected more rapidly with each successive attempt [1, 2]. The donor specific sensitisation caused by repetitive grafting confirmed previous clinical observations by the surgeon Emil Holman of Stanford University in skin grafted burn victims [6].

THE FRENCH “TRANSPLANTATION CLUB”

The potential value of transplantation procedures had attracted the early attention of French surgeons and, eventually, many of the grand figures of French surgery, medicine, and science contributed to the new field. Clinical transplantation activity began in France within the first few years of the 20th century, when Jaboulay in Lyon [7] and others in France and Germany performed animal to human kidney transplantation [8-10]. Although the Russian Yu Yu Vorony of Kiev reported the first known attempt at human to human renal transplantation in 1936 [11], the clinical field was quiescent until 1951 when René Küss [12] and Charles Dubost [13] of Paris and Marcel Servelle of Strasbourg [14] carried out a series of cadaveric renal transplantsations. A short time later, the urologist Louis Michon at the Necker Hospital (Paris) and a team of vascular surgeons reported the now commonplace transplantation of a kidney from a live volunteer donor [15].

Visitors flocked to France in the early 1950s to learn first hand from this experience, including John Merrill from the Peter Bent Brigham Hospital, Boston, who, with the young French physician, Jean Hamburger, founded the medical discipline of nephrology. As important as the early and subsequent contributions of Küss [16] and Hamburger [17] were to transplantation, the scientific basis for this specialty in France went far deeper. The roots of histocompatibility research were nourished in Paris by Jean Dausset (Nobel Laureate, 1980) [18]. In addition, Georges Mathé, the father of bone marrow transplantation [19], was part of the French “transplantation club” of the 1950s and early 1960s.

THE SURGEONS ROLE

At a technical level

The kidneys in the early French cases were removed from convict donors after their execution by guillotine. The pelvic kidney transplant procedure originally used by Küss and refined subsequently by the French surgeons has been used hundreds of thousands of times, including for the celebrated identical
(monozygotic) twin transplantations performed by Murray (Nobel laureate, 1990) and his associates [20] in Boston. The skills necessary to transplant the kidney (the only candidate organ until the 1960s) were applications of what became increasingly sophisticated conventional operative procedures during and after World War II.

The vascular surgical technology originated early in the century in the experimental laboratory of the Frenchman Alexis Carrel [21] (Nobel Laureate, 1912) and had a pervasive effect on essentially all surgical specialties. Although Carrel suspected that transplanted organs were not permanently accepted because of an immunologic barrier, the biologic specificity of the field of transplantation awaited the definitive studies of Medawar and Gibson.

Such experimental work in the laboratory has been critical to each major step in the evolution of organ transplantation. Progress in animal models has been transferred to the clinics, and conversely, problems encountered in the patients have been brought back to the laboratory for clarification, thus a flux has been continuous since the time of Carrel. It resulted in the development of operative techniques, the improvement of immunosuppression, and clarification of previously enigmatic physiologic principles. The objective was to avoid human experimentation, rather than depend on it, when the time came to apply these potentially life-saving procedures in the clinic.

At a leadership level

A co-product of these efforts was the concept of team construction in the laboratory. The more experience gained in the laboratory, the better the team will perform in the human operating room. The actual operations require separate donor and recipient teams, the activities of which must be closely knit. During the transplant operation, co-operation among surgeons, anaesthesiologists, nurses, and technicians is essential. From the very beginning, one of the objectives of laboratory work was to create harmony within the team, and amongst the physician specialists with whom the team would react.

The core roles of the surgeons and the steps involved in transplant operations are identical to those of conventional clinical practice. Someone, most commonly but not necessarily a surgeon, inevitably will emerge from this experience as the team leader.

Rigidity, impatience, selfishness, dishonesty, inhumanity, ignorance, and poor organizational skills are disqualifying characteristics. In addition to possessing these graces, as well as professional competence, the leader must have those scientific instincts which allow advances.

PROGRESS AND CULTURE

The Journal of the American Academy of Arts and Sciences (called “Daedalus”) is a quarterly publication in which topics of social importance and interest are examined in depth. The winter 1998 issue entitled “Science and Culture” contained two articles that explored the interface between science and art. One was written by Gerald Holton (Mallinckrodt Professor of Physics Emeritus at Harvard) [22], and the other by Lorraine Daston (Director, Max Planck Institute for the History of Science, Berlin) [23].

Both described how the influence of the imagination had long awakened fear among the rank and file of scientists and physicians. Why? Because it could make up a world of its own that was livelier, lovelier, or more logical that the real world; this power, which feeds art, could be an invitation to fraud. In a 1961 issue of the New England Journal of Medicine, the “real world” of transplantation was described by F McFarland Burnet (Nobel Laureate, 1960) in sombre terms “... much thought has been given to ways by which tissues or organs not genetically and antigenically identical with the patient might be made to survive and function in the alien environment. On the whole the present outlook is highly unfavourable to success... [24].

Yet, there already was a place for legitimate dreams. Once it was established that rejection was an immune reaction, strategies had begun to evolve to weaken the recipient immune system. By 1950–51, total body irradiation [25] and adrenal cortical steroids [26, 27] had been shown in the experimental laboratory to delay skin rejection. The immunosuppressive effect was either minor if the animals survived, or lethal to the recipient if the grafts were spared.

Although there appeared to be no margin of safety, the surgeon Joseph Murray demonstrated for the first time at the Peter Bent Brigham Hospital in January 1959 that human renal transplantation was feasible, following sublethal total body irradiation (TBI) of a fraternal twin recipient [28]. The success with TBI...
could not be duplicated at the Boston centre, but five
more examples of long survival (two with unrelated
kidney donors) were reported from Paris during the
next 3 years on the services of René Küss [29] and
Jean Hamburger [30].

Three years later (April, 1962), it was shown that
the same result could be accomplished pharmaco-
logically, using chronic therapy with azathioprine [31].
This advance was preceded by extensive studies in
dogs by the Englishman Sir Roy Calne [32]. Although
the clinical results with azathioprine alone were no
better than with total body irradiation, the fog of pes-
simism surrounding clinical organ transplantation lift-
ted dramatically in 1962 when azathioprine was sys-
tematically combined with dose-manoeuvrable
prednisone at the University of Colorado [33]. REjec-
tion that developed despite azathioprine treatment
could be reversed surprisingly easily with high doses
of the prednisone. More importantly, the subsequent
need for maintenance immunosuppression with both
drugs frequently declined.

The same characteristic cycle of immunologic con-
frontation and resolution was soon observed with the
liver [34], ultimately with all other transplanted whole
organs, and over the next 3 decades with each of the
increasingly potent new baseline drugs substitut-
ated for azathioprine. Recognition, reversal, and the
progressively easier control of rejection was the base
upon which the new and increasingly practical mul-
tidisciplinary specialty of transplantation was con-
structed. Thirty years and a revolution in immunology
elapsed before the meaning of the mysterious change
in host/graft relationship that began in the first few
weeks after transplantation was resolved.

This was made possible by a study of the still-sur-
viving early Colorado kidney and liver recipients who
by then were as long as 30 years post-transplantation
[35, 36]. Donor leukocytes of bone marrow origin
(including pluripotent stem cells), which are part of the
structure of all organ grafts (the so-called "pas-
senger leukocytes"), had migrated from the trans-
planted organs and could still be found in small num-
bers in the recipient skin, heart, lymph nodes, blood,
and elsewhere. It is only now becoming clear how
changes in the organ and the host caused by the mi-
gration and persistence of these donor cells allow "al-
lograft acceptance" [37].

How could the activities so long ago of the persons
named here from France, England and the United
States have had such an impact on medicine and
science, particularly in a modern era in which indivi-
duals are increasingly viewed as mere cogs in a mul-
tidisciplinary machine? By obliterating the artificial
distinction between art and science perhaps they were
able to exercise the imagination and creativity of the
artist. Their expressions of individuality allowed
them to see and create things far beyond the reach of
the comfortable Philistines who criticized their eff-
orts at the time.

wrote: “... ‘Progress’ can by definition never go
wrong; [Darwinian] evolution constantly does; and so
does the evolution of ideas, including those of ‘exact
science’. New ideas are thrown up spontaneously like
mutations; the vast majority of them are useless crank
theories, the equivalent of biological freaks without
survival-value” [38]. Viewed from the vantage point
of 1998, the ideas of the French surgeons of a half
century ago, and Carrel long before, were any-
thing but freaks. They were part of the primordium
for the birth of organ transplantation.

REFERENCES

1 Gibson T, Medawar PB. The fate of skin homografts in man. J
Anat 1963 ; 77 : 299-310
2 Medawar PB. The behavior and fate of skin autografts and skin
homografts in rabbits. J Anat 1944 ; 78 : 176-99
3 Mitchison NA. Passive transfer of transplantation immunity.
Proc R Soc Lond (Biol) 1954 ; 141 : 72-87
4Billingham R, Brent L, Medawar P. Quantitative studies on tissue
transplantation immunity. II. The origin, strength and duration of
actively and adoptively acquired immunity. Proc R Soc Lond
(Biol) 1954 ; 143 : 58-80
5 Lawerence HS. Homograft sensitivity. An expression of the
immunologic origins and consequences of individuality. Physiol
Rev 1959 ; 39 : 811-59
6 Holman E. Protein sensitization in isoskin grafting: is the latter
of practical value? Surg Gynecol Obstet 1924 ; 38 : 100-6
7 Jaboulay M. Greffe du rein au pli du coude par sutures arterielles
et veineuses. (Kidney grafts in the antecubital fossa by arterial
and venous anastomosis). Lyon Med 1906 ; 107 : 575
8 Unger E. Nierentransplantation. (Kidney transplantation). Wieu-
ner klinische Wochenschrift 1910 ; 37 : 573
9 Groth CG. Landmarks in clinical renal transplantation. Surg
Gynecol Obstet 1972 ; 134 : 323-8
10 Hau T In: Landes RE, ed. Chir Cirugica: Renal Transplanta-
tion. Austin, Texas: Silvergirl, Inc; 1991
11 Voronoy Yu Yu. Sobre el bloqueo del aparato reticuloendotelial
del hombre en algunas formas de intoxicacion por el sublimad
y sobre la transplantacion del rinon cadaverico como metodo de
tratamiento de la anuria consecutiva a aquella intoxicacion.
Blocking the reticuloendotheial system in man in some forms
of mercuric chloride intoxication and the transplantation of the
cadaver kidney as a method of treatment for the anuria resulting
from this intoxication). El Siglo Medico 1937 ; 97 : 296
12 Küss R, Teinturier J, Milliez P. Quelques essais de greffe de rein chez l'homme. Mem Acad Chir 1951; 77: 755-64
21 Carrel A. The operative technique for vascular anastomoses and transplantation of viscera. Lyon Med 1902; 98: 85
27 Morgan JA. The influence of cortisone on the survival of homografts of skin in the rabbit. Surgery 1951; 30: 506-15
32 Calne RY. Inhibition of the rejection of renal homografts in dogs with purine analogues. Transplant Bull 1961; 28: 445
33 Starzl TE, Marchioro TL, Waddell WR. The reversal of rejection in human renal homografts with subsequent development of homograft tolerance. Surg Gynecol Obstet 1963; 117: 385-95
38 Kessler A. The Sleepwalkers. London: Hutchinson & Co; 1959