Concordant Hamster-to-Rat Liver Xenotransplantation Leads to Hyperlipidemia

DIFFERENT species have adapted in different ways to their environment through the variation of specific metabolic parameters. For example, hamsters, unlike rats, are able to adjust their metabolism when they are subjected to extreme temperatures, modifying the mobilization of fat and regulating its storage.1 Knowing that the liver plays a primary role in lipid metabolism, we performed liver transplantation between hamsters and rats to determine what effects this might have in recipient cholesterol and triglyceride levels.

MATERIALS AND METHODS
Golden Syrian hamsters were the donors and LEW rats were the recipients of the orthotopic liver transplant. Syngeneic (LEW to LEW) liver transplants were controls. Both xenogeneic and syngeneic recipients received 1 mg/kg/d of tacrolimus and a 10-day treatment with mycophenolate mofetil 10 mg/kg/d. Recipients' body weight was registered weekly as well as the serum levels of metabolic parameters. For example, hamsters, unlike rats, are able to adjust their metabolism when they are subjected to extreme temperatures, modifying the mobilization of fat and regulating its storage.

RESULTS
Naive rats had a serum cholesterol level of 91.17 ± 17.93 mg/dL and a triglyceride level of 92.17 ± 16.8 mg/dL. Naive hamsters had a higher serum cholesterol and triglyceride levels of 173.5 ± 40.3 mg/dL and 125 ± 14.5 mg/dL, respectively. Both cholesterol and triglyceride serum levels in xenogeneic recipients were highly elevated during the first weeks posttransplantation. While hypercholesterolemia recovered to normal values after 3 weeks, hypertriglyceridemia persisted significantly at high levels throughout the observation period (Table 1). Liver histology from representative xenograft recipients at 2 and 8 weeks posttransplantation revealed a normal lobule architecture. Similarly, serum AST and total bilirubin levels were within normal ranges. The body weight of the rats receiving a hamster liver stayed significantly below that of syngeneic controls. Cholesterol level in bile of naive hamsters was half of that in naive rats (12 ± 2.53 vs. 21.83 ± 3.13, respectively). After xenotransplantation, biliary cholesterol levels remained diminished, as in naive hamsters.

DISCUSSION
The rate of fat utilization and deposition in normal hamster is 200% of that in normal rats. This peculiar trait in hamsters has allowed them to survive in extremely cold and arid environments. Liver xenotransplantation from hamster to rat resulted in transient hypercholesterolemia and sustained hypertriglyceridemia, which did not correlate with body weight gain. The initial hypercholesterolemia may be partially explained by the diminished biliary cholesterol excretion that follows xenogeneic liver transplantation. Syngeneic controls and liver function tests, together with histologic examination of liver xenografts, ruled out that the observed hyperlipidemia was an effect of immunosuppression or liver dysfunction. We propose that the sustained hypertriglyceridemia may be due to an inefficient activity of the rat lipoprotein lipase present on the endothelial cells in dealing with hamsters apoproteins, present in VLDL produced by the new hamster liver. Clearly, even in concordant liver xenotransplantation there are metabolic incompatibilities that must be further explored before we engage in clinical xenotransplantation.

REFERENCE

From the Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
Address reprint requests to Luis A. Valdivia, MD, PhD, University of Pittsburgh, E-1546 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261.

Table 1. Serum Cholesterol and Triglyceride Levels Following Syngeneic and Xenogeneic Liver Transplantation

<table>
<thead>
<tr>
<th></th>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
<th>Week 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syngeneic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chol (mg/dL)</td>
<td>95.8 ± 21.4</td>
<td>114.6 ± 21.0</td>
<td>131.2 ± 30.2</td>
<td>113.4 ± 19.1</td>
<td>123.8 ± 33.0</td>
</tr>
<tr>
<td>Tg (mg/dL)</td>
<td>118.3 ± 32.1</td>
<td>147.1 ± 42.9</td>
<td>126.7 ± 37.4</td>
<td>102.2 ± 40.3</td>
<td>121.2 ± 49.7</td>
</tr>
<tr>
<td>Xenogeneic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chol (mg/dL)</td>
<td>252 ± 30.0</td>
<td>227.5 ± 55.6</td>
<td>155 ± 12.9</td>
<td>127.3 ± 26.5</td>
<td>111 ± 19</td>
</tr>
<tr>
<td>Tg (mg/dL)</td>
<td>350 ± 94.1</td>
<td>277.5 ± 55.0</td>
<td>252.5 ± 42.7</td>
<td>229 ± 45.1</td>
<td>306.2 ± 87.5</td>
</tr>
</tbody>
</table>

© 2000 by Elsevier Science Inc.
655 Avenue of the Americas, New York, NY 10010

0041-1345/00/$—see front matter
PII S0041-1345(00)01147-7

Transplantation Proceedings, 32, 1109 (2000)