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Principles of Transplantation 
Jorge Reyes, Noriko Murase, and Thomas E. Starzl 

Histocompatibility matching, immunosuppression, tissue 
preservation, and techniques of implantation have been 
considered to be the generic struts of both organ and 
bone marrow cell transplantation. However, neither kind 
of transplantation could have emerged as a clinical service 
were it not for the induction by the graft itself of various 
degrees on donor-specific nonreactivity (tolerance). 
Without this fifth factor, no transplant recipient could 
survive for long if the amount of immunosuppression 
given to obtain initial engraftment had to be continued. 

THE ENIGMA OF ACQUIRED TOLERANCE 

The variable acquired tolerance on which transplanta­
tion depends has been one of the most enigmatic and 
controversial issues in all of biology. This was caused, in 
part, by the unexpected achievement of organ engraftment 
at an early time-a decade before successful bone marrow 
transplantation and in ostensible violation of the very 
principles that would shape the impending revolution in 
general immunology. As a consequence, clinical organ 
transplantation was developed empirically rather than as 
a branch of classic immunology. This occurred in four 
distinct phases, each lasting more than a decade. Only at 
the end was it possible to explain organ engraftment and 
thereby eliminate the mystique of transplantation. 

Phase 1: 1953-1968 

Phase 1 began between 1953-1956 with the demonstration 
that neonatal mice8,9 and irradiated adult mice36 develop 
donor-specific tolerance after successful engraftrnent of 
donor hematolyrnphopoietic cells. The key observation 
was that the mice bearing donor cells (donor leukocyte 
chimerism) could now accept skin grafts from the origi­
nal donor strain but from no other strain (Fig. 42-1). 
The chimeric neonatal mice and the irradiated adult 
mice were analogues of today's bone marrow transplan­
tation into immune deficient and cytoablated humans, 
respectively. But because a good histocompatibility 
match was required for avoidance of graft-versus-host 
clisease (GVHD) and of rejection,39 clinical application 

of bone marrow transplantation had to await discovery 
of the human leukocyte antigens (HLA). When this was 
accomplished,3,21,99 the successfully treated human bone 
marrow recipients of 1968 were oversized versions of the 
tolerant chimeric mice. 

By the time of the clinical bone marrow transplant 
breakthrough of 1968, kidney transplantation22,23,29,42,48,49,64 
already was an established clinical service, albeit a flawed 
one. 65 In addition, the first long survivals had been 
recorded after liver72 and heart transplantation5; these 
were followed in 1968-1969 by the first prolonged survival 
of a lung18 and a pancreas recipient34 (Table 42-1). All of 
the organ transplant successes had been accomplished in 
the ostensible absence of leukocyte chimerism, without 
HLA matching and with no evidence of GVHD. By going 

WHlli¥f§1 The mouse models of acquired tolerance described 
between 1953 and 1956. White cells (leukocytes) were isolated from the 

spleen or bone marrow of adult donor mice (upper left) and i~ected 

into the bloodstream of newborn mice (upper right) or of irradiated 

adult mice (middle right). Under both circumstances, the recipient 

immune system was too weak to reject the foreign cells (dark shaded). 

With engraftment of the injected cells (i.e., donor leukocyte chimerism), 

the recipient mice now could freely accept tissues and organs from the 

leukocyte donor but from no other donor (bottom left). 
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686 PART IV TRANSPlANTATION 

~ TABLE 42-1 First Successful Transplantation 
of Human Allografts (Survival > 1 Year) 

Physician/ 
Organ City Date Surgeon Reference 

Kidney Boston Jan. 24, 1959 Merril l! 42,48 
Murray 

Liver Denver July 23, 1967 StalLl 72 
Heart Cape Town Jan. 2, 1968 Barnard 5 
Lung Ghent Nov. 14, 1968 Derom 18 
Pancreas Minneapolis June 3, 1969 Lillehei 34 

beyond the leukocyte chimerism boundaries established 
by the mouse tolerance models, organ transplantation 
had entered unmapped territory. 

"Pseudoto/erant" Organ Recipients 

Two unexplained features of the alloimmune response 
had made it feasible to forge ahead precociously with organ 
transplantation. 64 The first was that organ rejection is 
highly reversible . The second was that an organ allograft, 
if protected by nonspecific immunosuppression, could 
induce its own acceptance. "Self-induced engraftment" 
was observed for the first time in 1959 in two fraternal 
twin kidney recipients, first in Boston by Joseph Murray48 
and then in Paris by Jean Hamburger.22 These were the 
first successful transplantations in the world of an organ 
allograft, in any species. Both patients had been condi­
tioned with 450 R sublethal total-body irradiation before 
transplantation. The renal allografts functioned for more 
than 2 decades without a need for maintenance drug 
therapy, which was, in fact, not yet available. 

A similar drug-free state was next occasionally observed 
after kidney transplantation (and more frequently after 
liver replacement) in mongrel dogs who were treated 
with a single immunosuppressive agent: 6-mercaptopurine 
(6-MP),55.1J2 azathioprine,50,66 prednisone,J13 or antilym­
phocyte globulin (ALG). 70 After treatment was stopped, 
rejection in some animals never developed (Fig. 42-2A). 
Such results were exceedingly rare; less than 1 % of the 
canine kidney experiments done under 6-MP and aza­
thioprine up to the summer of 1962. However, the 
possibility that an organ could be inherently tolerogenic 
was crystallized by the human experience summarized 
in the title of a report in 1963 of a series of live donor 
kidney recipients treated in Denver: "The Reversal of 
Rejection in Human Renal Homografts with Subsequent 
Development of Homograft Tolerance."64 The recipients 
had been given azathioprine before as well as after renal 
transplantation, adding large doses of prednisone to treat 
rejections that were monitored by serial testing of serum 
creatinine (Fig. 42-3A). Rejection occurred in almost 
every case, and 25% of the grafts were lost to uncon­
trolled acu te rejection. However, the I-year survival of 46 
allografts obtained from familial donors over a 16-month 
period in 1962-1963 was an unprecedented 75%. 

The development of partial tolerance in many of the 
survivors was inferred from the rapidly declining need 

for treatment after rejection reversal (see Fig. 42-3A). 
Nine (19%) of the 46 allografts functioned for the next 
-l decades, each depicted in Figure 424 as a hOlizontal bar. 
Moreover, all immunosuppression eventually was stopped 
in seven of the nine patients without rejection for periods 
ranging from 6 to 40 years (the solid portion of the bars). 
Eight of the nine patients are still alive and bear the 
longest sLlniving organ allografts in the world9~ 

What was the connection between the tolerant mouse 
modeis, the irradiated fraternal twin kidney recipients 
in Boston and Paris, the ultimate drug-free canine organ 
recipients (see Fig. 42-2A), and the unique cluster of 
"pseudotolerant" human kidney recipients in Denver 
(Fig 42-4)? The mystery deepened with the demon­
stration in 1966 in France, Iii England, 11.l2 . 'i~ and the 
United States7" that the liver can be trans plan ted in 
about 20% of outbred pigs without any treatment at 
all (see Fig. 42-2B). None of the animal or human organ 
recipients. whether off or on maintenance immuno­
suppression, was thought to have donor leukocyte 
chimerism. 

A 

B 

Wliiii¥f§) .1 . Caine recipient of an orthotopic liver homograll . 

5 years laler. The operatio n Ivas on March ~3, J 964 . The dog was 

trealed for o nlv 120 clavs with azathioprine <lnd died of old ;t>,;e 

after l~ ,·ears. B. A spontaneousl" tolerant pig recipient described 

bv Caine." 
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Wi',,;¥f§' A, Empirically developed immunosuppression used for kidney transplant recipients in 1962-1963. Note the reversal of rejection 
with the addition of prednisone to azathioprine. More than a third of a century later it was realized that the timing of drug administration had 
been in accord with the tolerogenic principles of immunosuppression (see text~ B, Treatment revisions in immunosuppression made at the 
University of Colorado in December, 1963, that unwittingly violated principles of tolerogenic immunosuppression. Pretreatment was de-emphasized 
or eliminated, and high doses of prednisone were given prophylactically instead of as needed. Although the frequency of acute rejection was 
reduced, the drug-free tolerance shown in Figure 42-4 was no longer seen. 

False Premises of Phase 1. 

Thus, organ transplantation became disconnected at a 
very early time from the scientific anchor of leukocyte 
chimerism that had been established by the mouse models 
and was soon to be exemplified by human bone marrow 
transplantation. The resulting intellectual separation of 
the two kinds of transplantation (Fig. 42-5) was an unchal­
lenged legacy of phase 1, passed on from generation to 
generation ever since. 

There was another dark legacy of phase 1. This was 
a modified version of the treatment strategy that had 

been developed with azathioprine and prednisone (see 
Fig. 42-3B). The principal change was the use of large 
prophylactic doses of prednisone from the time of opera­
tion, instead of the administration of corticosteroids only 
when needed. In a second modification, the pretreatment 
was de-emphasized (see Fig. 42-3B). The incidence of acute 
rejection was greatly reduced after these changes. However, 
no cluster of drug-free kidney recipients like that shown in 
Figure 42-4 was ever seen again, anywhere in the world. 
More than 35 years passed before the long-term immuno­
logic consequences of the modifications were realized. 

W@¥fJU Nine (19%) of the 46 live donor kidney 
recipients treated at the University of Colorado over an 
IS-month period beginning in the autumn of 1962. The 
solid portion of the horizontal bars depicts the time off 
immunosuppression. Note that the current serum creatinine 
concentration (CR) is normal in all but one patient. 
"'Murdered: kidney allograft normal at autopsy. 
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688 PAR T I V TRANSPLANTATION 

Solid Organ Wllii¥f§l The developmental rree of 
bone marrow (right) and organ transplantation 

(/eft) after it was demonstrated that rejection is 

an immunologic response. GVHD, graft­

versus-host disease. 

Nonessential _-~-+r~f--- Tissue match ----'~"-':"'!\;F---- Essential 

Acceptance _f----+I~~---- Graft take -----¥'-~t---~ Tolerance 

Uncommon GVHD ------,l;l-,H:'t---'- Common 

Phase 2: 1969-1979 

Throughout the succeeding phase 2 that began in 1969, 
immunosuppression for organ transplantation was based 
on azathioprine and prophylactic high-dose prednisone 
to which ALG was added after 196670,71 in about 15% of 
centers. Phase 2 was a bleak period. In the view of critics, 
the heavy mortality, and particularly the devastating mor­
bidity caused by corticosteroid dependence, made organ 
transplantation (even of kidneys) as much a disease as 

A B 

a treatment. Most of the liver and heart transplant 
programs that had been established in an initial burst of 
optimism after the first successful cases closed down. 

But in the few remaining centers, patients like the one 
shown in Figure 42-6 bore witness to what some day 
would be accomplished on a grand scale. Four years old 
at the time of her liver replacement for biliary atresia 
and a hepatoma in 1969, she is the longest surviving 
recipient of an extrarenal organ . 

c 
Will i¥fJU' four-year-o ld at the time of liver replacement for biliary atresia and a hepatoma but now in her 35th post-transplan t year. She is 

the longest surviving recipient of an extrarenal organ. 
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Phase 3: 1980·1991 

In fact, what had appeared to be the sunset of extrarenal 
organ transplantation was only the dawn of phase 3, which 
began with the clinical introduction of cyclosporine, 13.14,77,78 

followed a decade later by that of tacrolimus,20,81.82,102 
The use of these drugs was associated with stepwise 
improvements with all organs, but their impact was most 
conclusively demonstrated with liver and heart transplan­
tation, The results with liver transplantation shown in 
Figure 42-7 using azathioprine-, cyclosporine-, and 
tacrolimus-based immunosuppression were presented at 
the meeting of the American Surgical Association in 
April 1994,103 By then, intestinal transplantation under 
tacrolimus-based immunosuppression had become a 
service ,104,105 

As the new agents became available, they were simply 
incorporated into the modified formula of heavy pro­
phylactic immunosuppression that had been inherited 
from phases 1 and 2. Used in a variety of multiple-agent 
combinations from the time of surgery, the better drugs 
fueled the golden age of transplantation of the 19805 
and early 1990s. Acute rejection had become almost a 
"non" problem. However, the unresolved issues now were 
chronic rejection, risks oflong-term immunosuppression 
(e.g" infections and de novo malignancies), and drug 
toxicity (e.g., the nephrotoxicity of cyclosporine and 
tacrolimus) . 

Phase 4: 1992·Present 

It was clear that relief from the burden of lifetime 
immunosuppression would require elucidation of the 
mechanisms of alloengraftment and of acquired tolerance. 
An intensified search for the engraftment mechanisms 
has dominated the current phase 4, which began in the 
early 1990s. 

The Historical Dogma 

Until this time, organ engraftment had been attributed 
to mechanisms that did not involve either the presence 
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mll'l¥f§J Patient survival: results with orthotopic liver trans­
plantation at the Universities of Colorado (1963-1980) and Pittsburgh 

(1981-1993), in periods defined by azathioprine (AZA)-, cyclosporine 
(CYA)-, and tacrolimus (TAC)-based immune suppression. Stepwise 
improvements associated with the advent of these drugs also were 
made with other kinds of organs . 
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or a role of leukocyte chimerism. Although it was known 
that organs contain large numbers of passenger leukocytes, 
these donor cells were largely replaced in the successfully 
transplanted allograft by recipient leukocytes as shown in 
Figure 42-SA. The missing donor cells were thought to 
have undergone immune destruction with selective 
sparing of the specialized parenchymal cells. As for 
bone marrow transplantation (see Fig. 42-8B), the ideal 
result had been perceived as complete replacement of 
recipient immune cells (i.e., total hematolymphopoietic 
chimerism) . 

The Discovery of Microchimerism 

A flaw in this historical dogma began to be exposed in the 
early 1990s. The first puzzling observation in Seattle56 

and Helsinki107 was the invariable presence of a small 
residual population of recipient hematolymphopoietic 
cells in patients previously thought to have complete 
bone marrow replacement (see Fig. 42-8D). This was 
followed in 1992 by the discovery of donor leukocyte 
microchimerism in long-surviving human organ recip­
ients. Now it was evident that organ engraftment (see 
Fig, 42-8C) and bone marrow cell engraftment (see 
Fig. 42-8D) were mirror-image versions of leukocyte 
chimerism, differing in the reversed proportion of donor 
and recipient cells. 

The discovery of microchimerism in organ recipients 
was made with a very simple clinical study.83-87 With the 
use of sensitive detection techniques, donor hematolym­
phopoietic cells of different lineages (including dendritic 
cells) were found in the blood, lymph nodes, skin, or 
other tissues of 30 of 30 liver or kidney recipients who 
had borne functioning allografts for up to 30 years. The 
donor leukocytes obviously were progeny of donor 
precursor or pluripotent hematolymphopoietic stem 
cells that had migrated from the graft into the recipient 
after surviving a double immune reaction that presum­
ably had occurred just after transplantation, years or 
decades earlier.35,45,57,94 

It was concluded that organ engraftment had been 
the result of "responses of co-existing donor and recipi­
ent cells, each to the other, causing reciprocal clonal 
exhaustion, followed by peripheral clonal deletion. "83,85 
The host response (the upright curve in Fig. 42-9) was 
the dominant one in most cases of organ transplantation 
but with the occasional exception of GVHD. In the con­
ventionally treated bone marrow recipient, host 
cytoablation simply transferred immune dominance from 
the host to the graft (the inverted curve in Fig, 42-9), 
explaining the high risk of GVHD. All of the major dif­
ferences between the two kinds of transplantation were 
caused by the recipient cytoablation. After an estrange­
ment of more than a third of a century, the intellectual 
separation of bone marrow and organ transplantation 
was ended (Fig. 42-10). 

Immune Regulation by Antigen Migration 
and Localization 

But how was the exhaustion-deletion of the double 
immune reaction shown in Figure 42-9 maintained after its 
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Wi i I' '%fl:1 Old (A and B) and new views (C and D) of transplantation recipients. A, The early conceptualization of immune mechanisms in 
organ transplantation in terms of a unidirectional host-versus-graft (HVG) response. Although this readily explained organ rejection, it limited 
possible explanations of organ engraftment. B, Mirror image of A depicting the early understanding of successful bone marrow transplantation 
as a complete replacement of the recipient immune system by that of the donor, with the potential complication of an unopposed lethal unidi­
rectional graft-versus-host (GVH) response, that is, rejection of the recipient by the graft. C, Our current view of bidirectional and reciprocally 
modulating immune responses of coexisting immune competent cell populations. Because of variable reciprocal induction of deletional toler­
ance, organ engraftment was feasible despite a usually dominant HVG reaction. The bone silhouette in the graft represents passenger leukocytes 

of bone marrow origin. D, Our currently conceived mirror image of C after successful bone marrow transplantation. Recipient's cytoablation has 
caused a reversal of the size proportions of the donor and recipient populations of immune cells. 

Failure 

Immune 
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Time after organ transplantation 

Wi"h%f§' Contemporaneous HVG 
(upright curves) and GVH (inverted curves) 

responses after transplan tation. In contrast to 
the usually dominant HVG reaction of organ 
transplantation, the GVH reaction usually is 
dominant after bone marrow cell transplanta­
tion to the irradiated or otherwise 
immunodepressed recipient. Therapeutic failure 
with either type of transplantation implies the 
inability to control one, the other, or both of the 
contemporaneous responses with a protective 

umbrella of immunosuppression. (Starzl TE, 
Zinkernagel R: Antigen localization and migra­
tion in immunity and tolerance. N Engl] Med 
1998:339: 1905-1913.) 
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Wiiljl¥f§[" Unification of organ and bone marrow transplantation 

(See text). 

acute induction by the first wave of migratory leukocytes? 
Rolf Zinkernagel, in Zurich (Fig. 42-11), had addressed 
this question during the 1990s in experimental studies 
of the nonresponsiveness that may develop to intra­
cellular microorganisms such as tubercle bacillus and 
non cytopathic viruses.43,!09-111 The analogies between the 
syndromes caused by such infectious agents and the events 
following transplantation were described in 1998 in ajoint 

adapli"e JlnmUlle response to nonc),lopalhic microorganisms earned 

the No bel pl'ize in 1996, 
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review with Zinkemagel in the New England Journal of 
Medicine. 89 

The analogies between transplantation and infection 
had been obscured by the characteristic double immune 
reaction of transplantation and by the complicating 
factor of immunosuppression. Now, these analogies were 
obvious. The antidonor response induced by the initially 
selective migration of the graft's leukocytes to host lym­
phoid organs (Fig. 42-12, left) 17,32,44.51 is comparable to the 
response induced by a spreading intracellular pathogen. 
The migration patterns of the donor leukocytes were the 
same whether these cells emigrated from an organ or 
were delivered as a bone marrow cell infusion. Cells that 
survived the antidonor response that they had induced 
begin within a few days to move on (see Fig. 42-12, right) 
to protected nonlymphoid niches where their presence 
may be detected no longer by the immune system 
(immune ignorance4.27,30,31 ,89). This was a survival tactic 
of noncytopathic microorganisms. 

The migration of donor leukocytes is shown schemat­
ically in Figure 42-13, left by centrifugal arrows: first by 
hematogenous routes to lymphoid organs and, after 
a few weeks, on to nonlymphoid sites (outer circle). 
A subsequent reverse migration of donor cells from pro­
tected nonlymphoid niches back to host lymphoid 
organs is depicted by the inwardly directed dashed arrows 
in Figure 42-13, right. The retrograde migration is a two­
edged sword. On one hand, these cells may sustain the 
clonal exhaustion-deletion induced at the outset, usually 
requiring an umbrella of maintenance immunosuppres­
sion. But on the other hand, these cells can perpetuate 
alloimmunity in the same way as surviving residual 
microorganisms perpetuate protective immunity. Not 
surprisingly, therefore, an alternative consequence of 
microchimerism may be the high panel reactive antibody 
(connoting sensitization to HLA antigens) that commonly 
develops after unsuccessful transplantation.25 ,61 

Therapeutic Implications 

How could the new insight be exploited clinically? The 
window of opportunity for the donor leukocyte-induced 
clonal deletion that corresponds with collapse of the 
antigraft response (Fig. 42-14, left) is open only for the 
first few post-transplant weeks.46,47,57,95 It was apparent 
that the window could be closed by excessive postopera­
tive immunosuppression (see Fig. 42-14, middle). With 
later reduction of the initial overimmunosuppression, 
recovery of the inefficiently deleted clone would be 
expected, leading to the delayed acute rejection, or the 
chronic rejection, that was being seen in the transplant 
clinics. Even in the best-case scenario, the patients would 
be predestined to lifetime dependence on immunosup­
pression. However, too little immunosuppression would 
result in uncontrolled rejection (see Fig. 42-14, right). 

The problem faced by clinicians was how to find just the 
right amount of post-transplant immunosuppression. In 
2001, it was suggested that this dilemma could be addressed 
by successively applying two historically rooted therapeutic 
principles: recipient pretreatment, followed by minimalistic 
post-transplant immunosuppression.9o With pretreatment, 
the recipients, immune responsiveness would be reduced 
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before exposure to donor antigen, thereby lowering the 
anticipated donor-specific response into a more readily 
deletable range (Fig. 42-15). Clonal deletion by the kidneys' 
passenger leukocytes undoubtedly is what had been 
accomplished after sublethal irradiation alone in the 
ground-breaking fraternal twin (i.e., sublethal total body 
irradiation or myelotoxic drugs) cases of 1959.22•48 In fact, 
radical pretreatment by recipient cytoablation ultimately 

JDn Coulter, MA. CMI 

W'IIi¥fMfJ Initial preferen­
tial migration of passenger 

leukocytes from organ allografts 

(here a liver) to host lymphoid 

organs (left), where they induce a 

donor-specific immune response. 

After about 30 days, many of the 

surviving cells move on to nonlym­

phoid sites (right). 

became the essential therapeutic step for conventional 
bone marrow transplantation. Because of the high risk of 
GVHD, this approach was too dangerous and too restric­
tive to be practical for organ transplantation. 

However, less drastic lymphoid depletion by ALG or 
other measures (so-called nonmyeloablative conditioning) 
had been repeatedly shown since the 1960s to be effec­
tive without causing GVHD71 (see Fig. 42-15). 

Wi!ii¥fA" The migration 
routes of passenger leukocytes of 

transplanted organs are similar to 

those of infused bone marrow 

cells. Left, Selective migration at 

first to host lymphoid organs. 
After 15 to 30 davs, surviving 

leukocytes begin to secondarily 

move to nonlymphoid sites. 
Right, Establishment of reverse 

traffic by which the exhaustion­

deletion induced at the outset can 

be maintained. 
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Wi II IJ*f. GI The effect of post-transplant immunosuppression 
on the seminal mechanism of clonal exhaustion deletion. Left,just 
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After pretreatment with one of today's potent antilym­
phoid antibody preparations, the preemptively weakened 
clonal activation could proceed efficiently to clonal dele­
tion under minimalistic short- and long-term maintenance 
therapy (Fig. 42-16). In July 2001, we instituted the 
double-principle strategy in adult organ recipients. The 
pretreatment was with a single infusion of 5 mg/kg of 
thymoglobulin. Beginning in 2002, a single Campath 
dose of 30 mg was substituted for thymoglobulin in most 
adult cases. After either kind of lymphoid depletion, 
treatment after transplantation was given with a conser­
vative daily dose of a single drug (usually tacrolimus), 
adding other agents only in the event of breakthrough 
rejection and for as brief a period as possible. The strategy 
was extended to infants and children for intestinal trans­
plantation in 2002 and for all kidney transplantations 
after April 2003. 

After 4 to 8 months, weaning from monotherapy to 
less than daily doses was begun in adults whose graft 
function was stable: every other day, then three times per 
week, twice a week, and in many cases to once a week by 
1 year (Fig. 42-17). The strategy has been used for the 
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Wit!U¥f.f1 Rather than producing rejection (thick dark arrow), 

the donor-specific immune response to allografts may be exhausted 
and deleted, as depicted IYv the fall of the initially ascending continuous thin 

line, when recipient immune responsiveness is weakened in advance 
of transplantation (the pretreatment principle). 
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treatment of more than 1000 adult kidney, liver, intestine, 
pancreas, and lung recipients.4ll,59,91 This experience has 
demonstrated that the quality of life of transplant recipi­
ents can be improved. For the first time, children are 
being considered for spaced weaning. 

ORGAN PRESERVATION 

Procurement 

The breakthroughs of the early 1960s that made trans­
plantation clinically practical were so unexpected that 
almost no formal preparation had been made to preserve 
the transplanted organs. Cardiac surgeons had used 
hypothermia for open-heart operations from 1950 
onward and knew that ischemic damage below the level 
of aortic cross-clamping could be reduced by cooling the 
subdiaphagmatic organs. 58 In an early report, Lillehei 
and colleagues33 immersed intestines in iced saline before 
autotransplantation. In Boston, Sicular and Moore60 

reported greatly slowed enzyme degradation in cold 
slices of liver. 

Despite this awareness, kidneys were routinely trans­
planted until 1963 with no protection from warm ischemia 
during organ transfer. The only attempt to cool kidney allo­
grafts until then was by the potentially dangerous practice 
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(used by thoracic surgeons for open-heart surgery) of 
immersing the live donor in a bathtub of ice water (total­
body hypothermia). 63 This cumbersome method of cooling 
was quickly replaced by infusion of chilled solutions into 
the renal artery after donor nephrectomy,67 exploiting a 
principle of core (transvascular) cooling that had been 
standardized several years earlier for experimental liver 
transplantation.62 

Core cooling in situ, the first critical step in the pres­
ervation of all cadaveric whole organs, is done today with 
variations of the technique described in 1963 by 
Marchioro and coworkers,37 which permits in situ cool­
ing to be undertaken68 (Fig. 42-18). Ackerman and Snelll 
and Merkel and associates41 popularized in situ cooling 
of cadaveric kidneys with simple infusion of cold elec­
trolyte solutions into the donor femoral artery or distal 
aorta. Procurement techniques were eventually perfected 
that allowed removal of all thoracic and abdominal 
organs, including the liver, without jeopardizing any of 
the individual organs (Fig. 42-19).79 Modifications of this 
flexible procedure have been made for unstable donors 
and even for donors whose hearts have stopped beating.so 
During the 5 years between 1980 and 1985, such tech­
niques had become interchangeable in all parts of the 
world, setting the stage for reliable organ sharing. Mter 
the chilled organs are removed, subsequent preservation 
is possible with prototype strategies: simple refrigeration 
or continuous perfusion (see later). 

Extended Preservation 

Continuous Vascular Perfusion 

Efforts to continuously perfuse isolated organs have 
proved to be difficult. For renal allografts, Ackerman and 
Barnard2 used a normothermic perfusate primed with 

a. 

OM q¥fJif:1 First technique of in situ cooling by 
extracorporeal hypothennic perfusion. The catheters were 

inserted into the aorta and vena cava by way of the 

femoral vessels as soon as possible after death. 

Temperature control was provided with a heat exchanger. 

Cross-clamping of the thoracic aorta limited perfusion to 

the lower part of the body. This method of cadaveric 

organ procurement was used from 1962 to 1969, before 

the acceptance of brain death criteria. The preliminary 

stages of this approach provided the basis for subsequent 

in situ infusion techniques. 

Wiiih¥fJiP', Principle of in situ cooling used for multiple organ 
procurement. With limited preliminary dissection of the aorta and of 

the great splanchnic veins (in this case the splenic vein), cold infusates 

can be used to chill organs in situ. In this case, the kidneys and liver 

were being removed. ~ote the aortic cross-clamp above the celiac axis. 



blood that was oxygenated within a hyperbaric chamber. 
Brettschneider and colleagues10 modified the appara­
tus and were able to preserve canine livers for 2 days, 
an unprecedented feat at the time. When Belzer and 
associates6 eliminated the hemoglobin and hyperbaric 
chamber components, their asanguinous hypothermic 
perfusion technique was immediately accepted for tli~i­
cal renal transplantation but then slowly abandoned 111 

most centers when it was learned that the quality of 2-day 
preservation was not markedly better than that of sim­
pler and less expensive infusion and slush methods (see 
later). However, refinement of perfusion techniques may 
someday permit true organ banking. 

Static Preservation 
With these "slush techniques," special solutions, such as 
those described by Collins and coworkers, 15 were instilled 
into the renal vascular system of kidneys or the vascular 
system of other organs after their preliminary chilling 
and separation. The original Collins solution or modifi­
cations of it were used for nearly 2 decades before they 
were replaced with the University of Wisconsin (UW) 
solution that was developed by the team of Folkert 
Belzer. Although it was first used for the liver,7.26.101 the 
OW solution provides superior preservation of kidneys 
and other organs.24.106 The UW preservation permitted 
longer and safer preservation of kidneys (2 days) and 
livers (18 hours), a higher rate of graft survival, and 
a lower rate of primary nonfunction. With the UW 
solution, national organ sharing was made economical 
and practical. 

TISSUE TYPING 

Antigen Matching 

The first prospective antigen matching trials were begun 
in 1964 by Terasaki and associates97 in collaboration with 
the University of Colorado kidney transplantation team. 
Although the value of this serologic technology was 
demonstrable when the kidney donor was a highly 
compatible family member (the "perfect match") ,75 lesser 
degrees of matching correlated poorly with renal trans­
plantation outcome.ss The reasons for this paradox were 
inexplicable untH the discovery of recipient chimerism 
(Fig. 42-20). However, the belief that matching should be 
a prime determinant of success resulted in its use as an 
overriding factor for the allocation of cadaver kidneys in 
the United States. 

The propriety of this kidney allocation policy has been 
repeatedly challenged on ethical as well as scientific 
grounds for nearly a third of a century. Those in favor of 
perpetuating the role of graded HLA matches cite multi­
center case compilations in the United States and Europe 
showing a small gain in allograft survival with histocompat­
ible kidneys, whereas many of the individual contributing 
centers see no such trend in their own experience.19.38.58,93 
In a compelling study, Terasaki and associates98 reported 
that early survival and the subsequent half-life of kidneys 
from randomly matched, living unrelated donors was 

CHAPTER 42 Principles of Transplantatlol1 u ..... 

Match 

Partial 
mismatch 

Total 
mismatch 

Wlil"¥f§'1'J The nullification effect of simultaneous host-versus­
graft (HVG) and graft-versus-host (GVH) reactions when organs are 

transplanted to recipients whose immune system has not been 
cytoablated. The reciprocal induction of tolerance, each to the other, 
of the coexisting cell populations is the explanation for the poor 

correlation ofHlA matching with outcome after organ transplantation. 

identical to that of parent-offspring (one haplotype 
matched) grafts. The inescapable conclusion is that more 
effective timing and dosage of immunosuppressive ther­
apy rather than refinements in tissue matching and organ 
sharing will be the primary method of improving the 
results of whole-organ transplantation. 

Crossmatching 

None of the immunosuppressive measures available today 
can prevent immediate destruction of kidneys and other 
kinds of organ grafts in what has been called hyperacute 
rejection. This complication was first seen with the trans­
plantation of kidneys from ABO-incompatible donors 
when they were placed in recipients with antidonor 
isoagglutinins.69 After the description by Terasaki and 
associates96 of hyperacute kidney rejection by a recipient 
with antidonor lymphocytotoxic antibodies, Kissmeyer­
Nielsen and colleagues28 and others73.76.100.108 confirmed 
the association of hyperacute rejection with these anti­
graft antibodies. Although hyperacute rejection can 
usually be avoided with the lymphocytotoxic crossmatch 
briginally recommended by Terasaki and associates, the 
precise pathogenesis of such rejection remains poorly 
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understood more than 30 years after its recognition as a 
complement activation syndrome.73,76 

FUTURE PROSPECTS 
The revisions in timing and dose control that encourage 
the seminal mechanisms of clonal exhaustion-deletion 
and immune ignorance should make it possible to sys­
tematically reduce exposure to the risks of chronic 
immunosuppression. Our prediction is that completely 
drug free tolerance will be largely, but not exclusively, 
limited to recipients of RiA-matched organs. But vari­
able partial tolerance will be more regularly attainable in 
most of the others, not so much by developing better 
drugs as by the mechanism-based use of drugs we already 
have in hand. Xenotransplantation will have to be devel­
oped within the same immunologic framework. Here, 
the problem in principle is to create a better interspecies 
tissue match by transgenic modification. Although the 
a-l,3GT gene responsible for hyperacute rejection of pig 
organs by higher primates has been knocked out in 
pigs,54 it is not yet known what further changes have to 
be made before porcine organs can be used clinically. 
Where stem cell biology will fit remains unknown. But 
it also will have to conform to the same immunologic 
rules. 
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