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Abstract—DSA research must explicitly consider the 

perspective of secondary users.  This paper considers the spatio-
temporal properties of spectrum holes as they impact the 
secondary user’s communications needs.  Like Weiss et.al. [1], 
this paper develops a taxonomy of spectrum holes from the point 
of view of the secondary user.  Each type of spectrum hole is 
analyzed for the kinds of communications requirements that can 
be supported, illustrated, where possible, by existing 
measurement data.  The analysis concludes that a secondary 
user’s ability to meet their communications need varies 
considerably.  More detailed analysis of the spatio-temporal 
density of spectrum holes would be necessary to further quantify 
these conclusions.   
 

Index Terms—Appropriate technology, Telecommunications, 
Radio Communications, Cognitive Radio 
 

I. INTRODUCTION 

OINT-OF-VIEW  matters in the analysis of dynamic 
spectrum access (DSA) systems.  With some exceptions, 

DSA research has focussed on either general systems 
problems or problems that are analyzed largely from the 
perspective of the primary user.  This is understandable 
because one must first have unused radio bands if one is to 
have DSA.  More fundamentally, license holders are fewer in 
number (probably), have well defined applications and are 
motivated to ensure suitable QoS over their license tuple 
(space, time and frequency).  In contrast, because secondary 
use is an emergent opportunity, potential secondary users’ 
applications and goals are not well defined nor can they be 
easily identified, which means they cannot be easily organized 
into a credible interest group at a regulatory agency.  Thus, it 
is not surprising that their viewpoint is not represented as fully 
in the regulatory debate.  Nonetheless, secondary users are an 
essential part of the DSA picture, since there would be no 
DSA without them. 

That is not to say that the secondary users have been 
ignored entirely, however.  Weiss and Lehr [2] consider 
different strategies for DSA that explicitly consider secondary 
users. Akyildiz et.al. [3] consider user requirements as part of 
the spectrum analysis function, but do not elaborate.  Chapin 
and Lehr [4] also consider user application factors, but again 
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in general terms. This paper combines the spatio-temporal 
analysis of [1] with the generalized secondary user perspective 
adopted in [5] to determine feasible use cases for different 
kinds of spectrum holes.   

To consider a secondary user’s application requirements in 
more detail, it is important to consider both the spatial and 
temporal dimensions of spectrum holes [1, 6].  Figure 1 
illustrates the temporal characteristics at a single point in 
space1.  The vertical axis of this figure is time of day and the 
horizontal axis is frequency.  If we assume that this figure 
contains a representative sample of any 24 hour period, one 
can see temporal spectrum holes (blue areas in the figure) with 
different characteristics.    illustrates the spatial characteristics 
of spectrum [7], though it is a predicted coverage plot rather 
than a measured one and assumes a static signal.  Here, the 
white areas would consist of spatial spectrum holes.  As with  
Figure 1, one might infer spectrum holes with a variety of 
spatial characteristics.   

 
Figure 1 – Example of the temporal structure of spectrum 

Weiss et.al. create a spatio-temporal taxonomy of spectrum 
holes by classifying their characteristics as static, periodic or 
stochastic in both time and space.  Figure 3 combines these 
dimensions and provides some examples of representative 
real-world systems.  

 
1 From the WINCOM lab at Illinois Institute of Technology 

(http://www.cs.iit.edu/~wincomweb/24hrtv.html).  This figure illustrates the 
UHF television band (600-700 MHz) on the horizontal axis and time of day 
on the vertical axis. 
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This paper follows a similar approach in that it examines 
how the spatio-temporal characteristics of spectrum holes 
affects the QoS experienced by potential secondary users. 
Tonmukayakul and Weiss [5] consider end user QoS in their 
paper, but the purpose of that paper was to study the 
conditions under which secondary use might occur (from the 
point of view of potential secondary users) rather than 
considering how the spatio-temporal characteristics of 
spectrum holes affect QoS.  Since they were considering only 
cooperative secondary sharing, they could reasonably assume 
that the spectrum hole would be adequate as a result of the 
bargaining between primary and secondary users.      

 
 
Figure 2 – Example of the spatial structure of spectrum 
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Figure 3 -- Taxonomy of spectrum holes based on primary user 
activity [1] 

Modelling the spatial aspects of DSA-based systems has not 
received much attention from the research community thus far, 

even though it is generally recognized as a characteristic of 
spectrum holes [6].  Some researchers have made progress in 
addressing this gap in the research literature, however.  In 
particular, [8] considers the spatial power spectral density 
using spatial statistics and [9] considers the spatial distribution 
of nodes in a communications system.  Further, [10] begins to 
match the needs of primary and secondary users.  Together, 
these contribute to an understanding of the spatial aspects of 
DSA as they apply to communications systems. 

II. SECONDARY USERS’ PERSPECTIVE 

We begin by assuming that secondary users have a 
communications requirement that they seek to satisfy via a 
wireless channel.  Paraphrasing [5], these users can choose an 
unlicensed band, secondary use, or commercial services.  We 
further assume that these choices are ordered by net cost 
(which is the value of the communication less the cost of 
executing it).  These choices also have potential quality 
tradeoffs; with unlicensed bands ordered by the variability of 
QoS (highest to lowest). A secondary user therefore must 
choose the best QoS for the net cost.   

It is useful to be slightly more specific about QoS, since it 
depends on the nature of the communications requirement.  
Communications engineers have classified user 
communications requirements in several ways.  One is to 
characterize them as “elastic” if they are tolerant of delay and 
delay variation and “inelastic” if they are not [11].  This 
relatively gross characterization is useful to an extent.  
However, additional parameters, such as absolute delay, may 
also be necessary: 
 What is the absolute value of end-to-end delay 

requirement? (e.g., the ITU-T recommends round trip 
delays of less than 250msec for telephone calls)  

 What is the average throughput and the peak throughput? 
 What delay jitter is tolerable? 
 Is the communications interactive or in a broadcast mode? 

 
To simplify matters, the discussion below assumes that the 

throughput achievable in a spectrum hole is affected only by 
the characteristics of the spectrum hole and the bandwidth 
available.  In practice, the throughput and properties of the 
available communications channel is also affected by the 
competing users, the MAC protocol used to resolve contention 
and the upper layer protocols used.  

We further posit that, for a secondary user, communications 
takes place across a collection of nodes that are separated in 
space.  For successful communications, a spectrum hole must 
coincide both spatially and temporally with the 
communicating nodes for the period of the communication.  If 
interference with the licensed user is to be avoided, the 
radiated signal energy of the secondary user must be 
substantially contained within the spectrum hole.  Thus, the 
antenna directionality and the location of the radiating nodes 
make a difference in how a spectrum hole might be used.  If a 
secondary user knew the contours of the spectrum hole, its 
utility could be maximized through careful system design. 
However, building a representation of the contours of a 
spectrum hole would require specific context acquisition 
approaches (see, e.g., [12]).    
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We will organize the remaining discussion according to the 
temporal characteristics of spectrum holes. 

III. STATIC TIME SPECTRUM HOLES 

The simplest kind of spectrum hole to address is one that is 
static in time.  The main questions that must be addressed by 
the secondary user for these kinds of spectrum holes is 
whether the available bandwidth is sufficient for the 
communications need and whether the spatial configuration of 
the nodes can be contained within the contours of the 
spectrum hole.  It is possible to have two kinds of (spatial) 
spectrum holes, contiguous and non-contiguous.  The 
distinction between the two can only be addressed in the 
context of a particular spatial arrangement of communications 
nodes. 

A. Contiguous space 

In many senses, this represents the easiest type of spectrum 
hole to use.  The main questions that communications 
engineers have to address with this configuration are: 
 Is the available bandwidth sufficient to meet the 

throughput requirement? 
 Are all nodes that must communicate within the 

boundaries2 of the spectrum hole? 
If the answers to the above are both affirmative, the spectrum 
hole can be used for the communication requirement.   
 The investment that will be required for such a system 
depends on (1) the required spectral efficiency and (2) whether 
more sophisticated antennas are required to ensure that the 
secondary user’s signal energy is contained within the 
spectrum hole.  If a node is located near the edge of the 
spectrum hole, and if the communication is bi-directional, then 
it may be necessary to use a directional antenna that is 
generally more costly than an omnidirectional one.    

B. Non-contiguous space 

The practicality of this kind of spectrum hole depends on 
whether transmission paths exist between the spectrum holes 
in the non-contiguous spatial matrix.   

For example, the white regions in the bottom right quadrant 
of   are the result of a shadowing from a series of geological 
ridges to the west of the town of Kiowa, Colorado.  In these 
holes, only nodes placed within each hole (white areas in 
Figure 2) would be able to communicate via the 162-174 MHz 
band modelled in the figure; communications between 
spectrum holes could not be achieved in this frequency band.  
Communications between holes must occur out-of-band, 
possibly at additional cost3.  The same would be true for non-
contiguous spectrum holes that are separated by, for example, 
low power transmitters, since transmitting through the 

 
2 Note that the nodes as well as their transmission radii must reside within 

the spectrum hole to prevent interference. 
3 Out-of-band communications channels may occur via a spectrum hole at 

a different frequency that is not affected by the boundary mechanism; for 
example, in the situation illustrated in  , a spectrum hole at a lower frequency 
may be able to overcome the geographic barrier that creates the boundary 
between the holes.  Additional cost would be incurred if, for example, a 
commercial service would have to be purchased to maintain the needed 
connectivity. 

occupied spectrum at the operating frequency could result in 
interference with licensed users.   

Thus, the utility of this spectrum hole would be limited to a 
particular spatial configuration; secondary users requiring a 
less limited one that exceeds the boundaries of the spectrum 
hole would incur a higher cost.  

 Since the spectrum hole is static in time, it would be 
possible to support elastic and inelastic applications. Any 
applications would be limited in throughput, of course, by the 
bandwidth of the spectrum hole4.   

IV. PERIODIC TIME SPECTRUM HOLES 

Periodic spectrum holes with different origins (and 
therefore different characteristics) exist.  In [1], Weiss et.al. 
differentiated between periodic and fast periodic spectrum 
holes, where the latter are those with a period shorter than the 
context acquisition time; fast periodic spectrum holes might 
occur in TDMA systems.  Fast periodic spectrum holes can 
only be discovered through cooperation with the primary user; 
thus, they would be well defined and users could align their 
communications requirements with them explicitly.  
Consequently, for the purposes of this paper, periodic 
spectrum holes are those that can be sensed and used.   

Rotating antenna radar is an example of this kind of 
spectrum hole.  In this kind of system, the spectrum hole 
changes jointly in time and space but in a very predictable 
way.  When the researchers in [13] measured a Terminal 
Doppler Weather Radar (TDWR) signal at a fixed point in 
space over time, the periodicity of the radar signal became 
apparent (20sec) as shown in  Figure 45.  Also apparent was 
the signal energy in the side lobes. 

Another example of periodic time spectrum hole can be 
inferred from  Figure 1.  In this figure, the transmitters in 
several bands are off for distinct times of day (for example, 
the 614-620MHz band between approximately 0100 and 
0500).  If this temporal spectrum trace repeats daily, then the 
resulting spectrum hole would have contiguous space if all 
communications nodes were located in the area covered by 
that television channel.   

From a communications perspective, the questions are: 
What is the minimum delay that could be expected? What 
average throughput can be expected?   

A. Rotating antenna radar 

In the context of  Figure 4, if the receivers can tolerate 
interference of -50dBm, then approximately 20% of the 
rotation is taken up by the main lobe when the antenna 
elevation is low6.  After the 10th rotation period, 100% of the 
transmission time has signal energy below this threshold.  In 
the 2nd and 3rd rotations, the side lobe energy is sufficiently 
high to restrict the usable bandwidth to approximately 40% of 
 

4 The survey that resulted in   indicates that the nominal bandwidth of the 
spectrum hole is 12MHz.  If a wideband measurement apparatus were placed 
in the spectrum hole, the available bandwidth could be larger.   

5 The decreasing peak signal strength in the figure occurs because the 
elevation of the radar changes over time.  Thus, the fixed measurement 
apparatus would increasingly fall outside of the main lobe of the radar beam. 

6 These figures are estimates derived from careful visual inspection of 
Figure 4.   
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the 20 second rotational period.  
In summary, for the entire volume 360 second scan pictured 

in Figure 4, approximately 321 seconds (or 89%) would be 
usable (this decreases if the interference tolerance of the 
receivers is lower)7.  In the worst case, the latency would be 
approximately 8 seconds due to main- and side-lobe 
interference.  This would prohibit inelastic communications, 
removing that application as a reasonable use case for this 
kind of spectrum hole (unless substantial buffering is feasible). 

 
 Figure 4 -- Fixed location time domain trace of a radar signal 
[13] 

Rotating antenna radars bifurcate the transmission space at 
any point in time with the main lobe of their antenna.  Thus, it 
may temporarily create non-contiguous space if the main lobe 
of the radar separates the communicating nodes.  Maintaining 
communication among the nodes will require out-of-band 
channels at additional cost.   

B. Broadcast transmitter downtime 

Referring to Figure 1, inelastic and elastic communications 
would clearly be possible during the 0100 to 0500 period in 
some of the channels depicted. Communications outside of 
that period would need to use a channel outside of that band.  
The periodic bifurcation that is characteristic of rotating 
antenna radars would not apply in this case.  Therefore, as 
long as all nodes were located in the spectrum hole, the 
spectrum hole would be contiguous. 

V. STOCHASTIC TIME SPECTRUM HOLES 

The situation of stochastic time is the most challenging of 
all.  The utility of the spectrum hole depends entirely on the 
spatial and temporal statistics of the channel with regard to the 
communications need.   

A. Spectrum hole contains user’s nodes 

The simpler case occurs if the communications requirement 
is temporally short and spatially small with respect to the 
statistics of the spectrum hole.  In that case, the secondary user 
can compute the probability that their communication 
requirement will be met (assuming that the spatial and 
 

7 The red line in the figure is the Dynamic Frequency Selection (DFS) 
detection threshold of the U-NII devices in the band being studied. 

temporal distributions of the spectrum hole are known).  If the 
probability is sufficiently high, the secondary user would use 
the spectrum hole instead of an alternative. 

A more complex case occurs when the communication 
requirement is, with sufficiently high probability, longer than 
the duration of the spectrum hole.  If the secondary user’s 
transmission requirement is elastic, then it could be feasible to 
wait until the next spectrum hole occurs in the required 
location.  If the resulting average delay is too long, then the 
secondary user would have to either find an alternative 
spectrum hole (i.e., on another frequency) or find an 
alternative communications mechanism (e.g., unlicensed).  In 
this case, the density of spectrum holes across frequency, 
space and time become important.  A high spectrum hole 
density means that, with sufficiently high probability, the user 
could move to a new spectrum hole as the availability of the 
old hole expired.  If the density is sufficiently high, then the 
secondary users could, with a computable probability, transmit 
at their required QoS, assuming their radios were sufficiently 
agile, of course. 

B. Spectrum hole does not contain the user’s nodes 

If the spectrum hole does not (spatially) contain the 
secondary user’s nodes (with sufficiently high probability), 
then the problem changes again.  If the secondary user’s 
communications requirement is sufficiently short such that the 
probability of successful transmission is sufficiently high, then 
the secondary user must either (1) find another spectrum hole 
at another frequency to connect the remaining nodes (2) buffer 
transmissions to the nodes not contained by the spectrum hole 
until they can be connected or (3) find an out-of-band 
mechanism (e.g., unlicensed) to complete the 
communications.  Approach (2) – and possibly also (3) – may 
only be viable if the secondary user’s QoS requirement 
permits it.   

If the secondary user’s communication requirement is long 
with respect to the temporal characteristics of the spectrum 
hole, the density of the spectrum holes becomes important as 
described above.  However, the problem becomes more 
complex as the user must manage spectrum holes in both time 
and space. 

C. Meteor Burst Communications and DSA 

To anticipate the performance that might be expected from 
a system using stochastic spectrum holes, it is useful to 
consider an analogous system where the channel availability is 
exogenously stochastic.  Meteor burst communications (MBC) 
systems (see [14] for an overview) is such a system.  Because 
MBC was studied in some depth and because systems were 
built, we might get some insight into the system requirements 
of the kinds of stochastic channels presented by DSA by 
examining the reported performance of MBC systems.   

MBC systems were developed for Beyond Line-of-Sight 
(BLOS) communications and depend on the statistical 
frequency of meteors entering the earth’s atmosphere RF 
energy can be reflected off of the ionized trails of these 
entering meteors to support BLOS communications at 
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relatively low cost and with relatively low delay8.  According 
to [14], 1010 meteors of all sizes enter the earth’s atmosphere 
in a typical 24 hr. period and the entry statistics are Poisson.  
The spatial characteristics of meteor entry are also statistical 
[15].  These spatio-temporal properties combine to form the 
duty cycle9 of MBC systems.  In [14], the duty cycle was 
measured to be less than 10% in the systems that they studied. 

In order to estimate the impact of duty cycle on 
communications systems further experiments were performed.  
The experiments reported round trip times in the worst-case 
scenario ranging from 50 to 140 seconds and approximately 
20 to 60 seconds in the best case scenario.  Further, the 
standard deviations for each collected data point were quite 
high (26 for the 50 second data point in the worst case trace, 
for example).  Subsequent technological improvements 
produced better outcomes (see, for example, [16]), but these 
systems never achieved widespread acceptance, in large 
measure because of the availability of better alternatives.  

D. Lessons of MBC systems for DSA 

Not surprisingly, the MBC experiments show is that users 
can expect widely varying QoS that depends on the spatial and 
temporal statistics of the meteors they rely on.  DSA systems 
rely on spectrum holes instead of meteor trails to facilitate 
communications, and, in the section we are considering here, 
these spectrum holes are stochastic and (presumably) 
exogenous.  As with MBC systems, it is of critical importance 
to understand the spatio-temporal statistics of meteor trails as 
they affect MBC communications.  By analogy, it is of critical 
importance for secondary users to understand the spatio-
temporal statistics of spectrum holes if they can be expected to 
invest in systems to exploit them.  In fact, given the results 
from [14], a reasonable proposition to advance is that the 
spatial and temporal statistics of MBC systems set a kind of 
lower bound for what would be required by secondary users in 
DSA systems. 

Since potential secondary users are directly affected by the 
characteristics of spectrum holes, it would be unreasonable to 
expect their active participation in DSA systems of this kind 
without such a detailed understanding.  Though the research in 
[5] did not assume exogenous spectrum holes, the choice 
model of the secondary user can be applied here.  In [5], the 
potential secondary user chooses between licensed, unlicensed 
and secondary use; secondary use is chosen only when the 
price and QoS preferences dominate the alternatives.  When 
the spatio-temporal statistics of spectrum holes are exogenous, 
then price falls away as a decision parameter and it becomes a 
matter of satisfying the potential secondary user’s QoS 
requirement.  If the statistics are unknown, then the expected 
QoS cannot be computed so secondary use (e.g., DSA) would 
always be dominated by the alternatives. 

E. On the Exogeneity  of Spectrum Holes 

But it is clear that analogies between MBC and DSA 
require that statistics of spectrum holes be exogenous.  DSA 
differs from MBC in this regard because spectrum holes need 

 
8 The ion trails of meteors occur at about 90-100km altitude, much lower 

than ionospheric communication or geostationary satellite communications. 
9 The duty cycle is defined as the expected percentage of time from which 

usable signals can be received and decoded. 

not be exogenous.  For example, the spectrum holes in  Figure 
1 and   could be treated exogenously without loss of 
generality.  In the case of the latter figure, for example, the 
spectrum holes are due to geological features that are indeed 
exogenous.   

However, if one considers the case of the spectrum holes 
that occur from 0100 to 0500 in  Figure 1, the situation is less 
clear.  These spectrum holes would be exogenous if the 
licensed user chose to turn off their transmitters during this 
period independent of any potential secondary use of this 
spectrum.   For example, in [17], the authors propose turning 
off unused radios during periods of slack demand as part of an 
optimal energy savings strategy 

But such spectrum holes need not be exogenous.  When 
cooperative sharing is considered, spectrum holes may be the 
result of bargaining on the part of primary and secondary 
users.  To illustrate, let us reconsider the dimming strategy 
proposed in [17]: if the mobile operator’s computation 
included potential revenues from secondary user, the primary 
users could become more aggressive in shutting down radios, 
thereby creating spectrum holes that could be used by 
secondary users.  Endogenously derived spectrum holes would 
be an outcome most likely to occur in these cooperative 
scenarios as was suggested by [18] as a rational strategy for 
operators; these cooperative scenarios were modelled by [5] 
and [19] among others.   

The main conclusion here is that if spectrum holes are 
endogenous, then alternate tools should be used to characterize 
them, as their arrival rate cannot legitimately be considered as 
occurring from a Poisson process.  

The question of the density of spectrum holes that was 
raised in the previous section, then, should be addressed by 
considering spectrum holes both as exogenous as well as 
endogenous phenomena.  Like Swiss cheese, the density of 
spectrum holes is the result of natural (i.e., exogenous) and 
manufactured (i.e., endogenous) inputs.   

For secondary users, this means that they are partially 
masters of their own fate.  If the communications requirement 
of secondary users is sufficiently valuable and if the 
exogenous spectrum hole density is not sufficient, then the 
secondary user would be motivated to share the benefits of the 
communication by bargaining with primary users to create the 
needed spectrum holes.  In other words, if they don’t find what 
they need, they may have to invest to make it. 

VI. SUMMARY 

 The previous sections have considered which secondary 
users’ communications might be met using DSA-based 
systems.  The conclusions of this analysis are collected and 
summarized in Figure 5.   
.  It is clear that inelastic communications requirements can 
only be supported without reservation by static, contiguous 
spectrum holes.  Other kinds of spectrum holes require either a 
secondary channel to connect non-contiguous nodes or are 
limited to uni-directional channels with buffering.  In the case 
of stochastic spectrum holes, the ability to support inelastic 
secondary user’s communications depends entirely on the 
density of the spectrum holes.   
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Little is known about the density of spectrum holes across 
frequency, space and time.  Some work has been performed to 
study spectrum holes based on a primary user’s activities [20], 
but it remains focussed on a single band and does not yet help 
a potential secondary user determine if their communications 
requirements can be met using DSA.   Clearly, this is an area 
requiring considerably more research. 

VII. CONCLUSION AND FURTHER RESEARCH 

In bilateral systems such as DSA, it is necessary to consider 
the decision processes of both parties (i.e., the primary and 
secondary users).  Failure to do so can limit practical 
applications of these technologies.  It is important for the 
emergent regulatory policies to explicitly consider the 
requirements of secondary users, especially since they are 
generally not well represented in regulatory proceedings 
because of the structural aspects of the emergent market.  In 
other words, secondary users do not yet exist in meaningful 
numbers, nor is the optimal application of this technology 
clear yet, so their interests cannot be easily articulated in 
regulatory proceedings.   

In this paper I argue that one approach to address this 
imbalance is to explicitly consider the impact of the spatio-
temporal properties of spectrum holes on the use decision by 
potential secondary users.  While my analysis was largely 
qualitative, its main objective was to set the stage for more 
careful analytical analyses in future.   

This paper also makes clear the importance of studying and 
modeling the spatial and temporal properties of spectrum 
holes in greater detail.  This is especially the case as one 
moves away from spectrum holes that are static in time and 
space.  In particular, a research campaign is necessary that will 
characterize the temporal and spatial properties of spectrum 

holes.  This research must extend the work of  [20] [21] to first 
model and then measure spectrum holes across frequency 
bands.  This research must also consider the question of 
exogeneity of spectrum holes. 

Developing usable characterizations of spectrum holes in 
frequency, time and space is necessary.  These 
characterizations must be explicitly linked to user 
communications requirements and the spatio-temporal 
characteristics of spectrum holes.  This is clearly an area of 
research that will require considerable development.   

General application of DSA will require not just the spatial 
and temporal characteristics of spectrum holes, but also the 
density of spectrum holes across numerous frequency bands to 
determine if (1) out of band communications between non-
contiguous spectrum holes is possible without purchasing 
commercial services and (2) if inelastic user requirements can 
be supported.  
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