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ABSTRACT General Terms 
Human Factors, Measurement, Experimentation This paper proposes a theory of human control of robot teams 

based on considering how people coordinate across different task 
allocations.  Our current work focuses on domains such as 
foraging in which robots perform largely independent tasks. The 
present study addresses the interaction between automation and 
organization of human teams in controlling large robot teams 
performing an Urban Search and Rescue (USAR) task. We 
identify three subtasks: perceptual search-visual search for 
victims, assistance-teleoperation to assist robot, and navigation-
path planning and coordination.  For the studies reported here, 
navigation was selected for automation because it involves weak 
dependencies among robots making it more complex and because 
it was shown in an earlier experiment to be the most difficult. 
This paper reports an extended analysis of the two conditions 
from a larger four condition study.  In these two “shared pool” 
conditions Twenty four simulated robots were controlled by 
teams of 2 participants.  Sixty paid participants (30 teams) were 
recruited to perform the shared pool tasks in which participants 
shared control of the 24 UGVs and viewed the same screens.  
Groups in the manual control condition issued waypoints to 
navigate their robots.  In the autonomy condition robots generated 
their own waypoints using distributed path planning.    We 
identify three self-organizing team strategies in the shared pool 
condition: joint control operators share full authority over robots,  
mixed control in which one operator takes primary control while 
the other acts as an assistant, and split control in which operators 
divide the robots with each controlling a sub-team. Automating 
path planning improved system performance. Effects of team 
organization favored operator teams who shared authority for the 
pool of robots. 

Keywords 
Human-robot interaction, metrics, evaluation, multi-robot system, 
autonomy, team organization 

1. INTRODUCTION 
Unmanned vehicle systems (UVSs), whether in the air or ground, 
are intrinsically complex systems and rely on remote operator 
guidance to accomplish different missions. Specifically, 
applications for multi-robot systems (MRS) such as interplanetary 
construction or cooperating uninhabited aerial vehicles will 
require close coordination and control between human operator(s) 
and teams of robots in uncertain environments.  Human 
supervision will be needed because humans must supply the 
perhaps changing, goals that direct MRS activity. Robot 
autonomy will be needed because the aggregate decision making 
demands of a MRS are likely to exceed the cognitive capabilities 
of a human operator. Envisioned missions such as search and 
rescue or underwater construction, however, will require multiple 
UV operators to work as teams to control a much larger team of 
UVs. Yet today, a UV such as the Predator requires a team made 
up of three operators to be operational [1].   

Controlling multiple robots substantially increases the complexity 
of the operator’s task because attention must be shared among 
robots in order to maintain situation awareness (SA) and exert 
control. In the simplest case an operator controls multiple 
independent robots interacting with each as needed. A foraging 
task [2] in which each robot searches its own region would be of 
this category although minimal coordination might be required to 
avoid overlaps and prevent gaps in coverage especially if robots 
are in close proximity. Control performance at such tasks can be 
characterized by the average demand of each robot on human 
attention [3]. Because robots are operated independently an 
additional robot imposes only an additive demand on cognitive 
resources.  Under these conditions increasing autonomy for 
individual robots should allow them to be neglected for longer 
periods of time making it possible for a single operator to control 
more robots.  

 

Categories and Subject Descriptors 
I.2.9 [Artificial Intelligence]: Robotics—operator interfaces 
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For dependent tasks the round-robin control strategy used for 
controlling individual robots would force an operator to plan and 
predict actions needed for multiple joint activities and be highly 



susceptible to errors in prediction, synchronization or execution. 
For highly dependent tasks such as teleoperating robots to push a 
box, coordination demand for even two robots completely 
occupies an operator’s attention excluding any other task [4]. A 
multi-UV, multi-operator discrete event simulation model has 
shown a similar steep increase in difficulty when teams of 
operators must control interacting robots as a team. [5]  

If robots are not rigidly assigned to small teams under the control 
of a single operator, then each event requiring cooperation will 
either occupy more of an operator’s attention than corresponding 
independent tasks or require the operator to find the controller of 
another robot and assume the communication and coordination 
overhead needed to coordinate with him.  These interaction times 
are likely to be highly variable making it difficult to schedule 
interactions without introducing excessive idle times.  Since even 
moderate variability in neglect time (NT) has been shown [6] 
capable of having an operator spending 90% of the time waiting, 
avoiding such bottlenecks is crucial.   

We are developing a general architecture for controlling robot 
teams based on these observations. We begin by considering how 
operators self-organize to control robot teams and the effects of 
the different strategies they adopt.  Two possible ways to impose 
organization on operators are through assigning a subset of robots 
to each or through a Shared Pool [7] in which operators service 
robots from the full population as needed.  Robot assignment has 
the advantage of reducing the number of robots the operator must 
monitor and control.  The shared pool offers the scheduling 
advantage of load balancing in that a pool of operators are 
available as robots need servicing eliminating situations in which 
one operator is overloaded and the other idle. Efficiencies such as 
improved SA that might result from controlling a dedicated team 
at a particular locale, however, must be sacrificed if operator 
attention is switched among robots following FIFO (first in first 
out) or similar discipline. 

For monitoring, shared pool offers the redundant observer 
advantage in that a second observer with partially overlapping 
perceptual judgments may detect things missed by the first.  We 
expect the effects of these advantages to interact with the types of 
autonomy possessed by the controlled robots.  If navigation and 
path planning were fully autonomous, we would expect benefits 
to accrue to shared pool operators due to both scheduling and 
redundant observer advantages.  Autonomous path planning 
should additionally lessen the effects of loss of SA due to 
switching between robots because only the victim-marking 
subtask would be affected.   If robots were able to self-reflect and 
report when they need assistance we might expect to see a 
stronger scheduling advantage for shared pool.  We would 
additionally expect to see substantial differences between types of 
autonomy in the numbers of robots that could be adequately 
controlled. 

The present experiment compares performance of robot teams 
navigating either autonomously or using operator supplied 
waypoints.  The teams were controlled by pairs of operators 
organized through assigned robots or as a shared pool.  In recent 
experiments [10] we have found that participants performing an 
Urban Search And Rescue (USAR) foraging task using waypoint 
control were at or over their limits when controlling 12 robots 
each.  Participants who were asked merely to explore showed 
very similar performance in area covered and reported similar 

levels of workload on the NASA-TLX.  Participants in a 
perceptual search condition in which the foraging task was 
performed without the requirement to navigate found twice the 
victims when monitoring 12 robots and reported substantially 
lower workload. 

This paper continues this line of research by allowing robots to 
autonomously explore, while operators focus purely on the 
perceptual task. Specifically, we use autonomous path planning 
for 24 robots and require operators to focus on the perceptual 
task. Operators can also teleoperate robots that become stuck. 
There are distinct qualitative differences between the paths taken 
by autonomous robots and those laid out by human operators. 
Humans are able to use camera feedback and an intuitive 
understanding of the environment to reason about angles and 
perspectives that will give them the most information. The 
autonomous planning on the other hand, relied exclusively on 
occupancy grids generated from laser scan data. However, robots 
have the advantage of being able to focus exclusively on their 
path planning and work cooperatively to provide the most 
coverage. One of the question asked in this paper is whether the 
gain in search efficiency due to autonomous path planning 
outweighs the less natural paths and, presumably, poorer video 
angles that result. 

The present study uses the same robots and environment but with 
teams of two operators assigned to control 24 robots.  These 
operators controlled teams of 12 robots in the assigned robots 
condition.   In the shared pool condition operators shared control 
of the 24 robots.  Robots were navigated by operator assigned 
waypoints as in [10] in the manual condition and by an 
autonomous path planner in the autonomy condition. Participants 
were told they were a team and would share a joint score for the 
experiment.  Because team organization was not dictated by the 
experimenter, operators were free to choose their own strategies 
for accomplishing their tasks.  Strategies could vary over the 
course of the task.  Operators might act with relative 
independence in the initial path planning phase, for example, 
while dividing monitoring duties later on.  One of the goals of our 
experiment was to identify the coordination strategies that 
emerged and find the relationship between these strategies and 
performance.  

2. Methods 
2.1 USARSim and MrCS 
The experiment reported in this paper was conducted using the 
USARSim robotic simulation with 24 simulated Pioneer P2-AT 
robots performing Urban Search and Rescue (USAR) foraging 
tasks.  USARSim is a high-fidelity simulation of urban search and 
rescue (USAR) robots and environments developed as a research 
tool for the study of human-robot interaction (HRI) and multi-
robot coordination.  USARSim supports HRI by accurately 
rendering user interface elements (particularly camera video), 
accurately representing robot automation and behavior, and 
accurately representing the remote environment that links the 
operator’s awareness with the robot’s behaviors. USARSim uses 
Epic Games’ UnrealEngine2 [11] to provide a high fidelity 
simulator at low cost and also serves as the basis for the Virtual 
Robots Competition of the RoboCup Rescue League.  Other 
sensors including sonar and audio are also accurately modeled.  
Validation data showing close agreement in detection of walls and 



associated Hough transforms for a simulated Hokuyo laser range 
finder are described in [13]. The current UnrealEngine2 integrates 
MathEngine’s Karma physics engine [14] to support high fidelity 
rigid body simulation. Validation studies showing close 
agreement in behavior between USARSim models and real robots 
being modeled are reported in [15,16,17,18,19]  as well as 
agreement for a variety of feature extraction techniques between 
USARSim images and camera video are reported in Carpin et al. 
[12]. MrCS (Multi-robot Control System), a multi-robot 
communications and control infrastructure with accompanying 
user interface, developed for experiments in multirobot control 
and RoboCup competition [20] was used in many experiments. 
MrCS provides facilities for starting and controlling robots in the 
simulation, displaying multiple camera and laser output, and 
supporting inter-robot communication through Machinetta which 
is a distributed multi-agent coordination infrastructure. 

     
Figure 1.  The MrCS user interface with 24 robots for shared 

pool condition of both autonomy and manual groups. 

Figure 1 shows the elements of the MrCS.  The operator selects 
the robot to be controlled from the colored thumbnails at the top 
of the screen.  To view more of the selected scene shown in the 
large video window the operator uses pan/tilt sliders to control the 
camera. The current locations and paths of the robots are shown 
on the Map Data Viewer (bottom right). Under manual control, 
robots are tasked by assigning waypoints on a heading-up map on 
the Map Viewer (bottom right) or through a teleoperation widget 
(upper right). In the autonomous condition robots were equipped 
with autonomous path planning and could explore autonomously. 
In the shared pool condition the participants have equal authority 
to control every robot and modify marked victims. 

2.2 Path Planning 
Autonomous path planning was performed by a deterministic 
roadmap planner [20] developed using the Carnegie Mellon Robot 
Navigation Toolkit (CARMEN) [21] for these experiments.  As 
input, the planner used the current occupancy grid representing 
the joint robot team knowledge of the environment and available 
information about the planned paths of other robots.  Possible 
locations are generated and accepted or rejected based on the 
expected information gain for being at that location.  The 
expected information gain was a function of the uncertainty in the 
occupancy grid around that point and whether or not another 
robot was known to be planning to go near that point.  Edges were 
generated between nodes if the occupancy grid indicated a 

sufficiently high probability of being able to move between the 
locations.  Finally, a branch-and-bound search was performed 
across the network of locations and edges for the path that 
maximized the expected information gain.  Plans were allowed to 
backtrack, but no additional value was received for visiting a 
location multiple times.   When a robot finished planning, it 
shared its planned path with some nearby robots to allow them to 
both avoid collisions and search distinct areas. 

Figure 2 shows a screenshot of the path planning debugging 
interface. Green background shows unexplored areas, which 
brighter green representing higher uncertainty. Red background is 
the proposed path of another robot. Blue lines connecting blue 
circles show the possible locations and edges. The yellow line 
shows the planned path from the center of the window. 

 
Figure 2.  Screen shot for path planning debugging interface 

2.3 Experimental Conditions 
A large USAR environment previously used in the 2006 RoboCup 
Rescue Virtual Robots competition [20] was selected for use in 
the experiment.  The environment was an office like hall with 
many rooms and full of obstacles like chairs, desks, and bricks. 
Victims were evenly distributed within the environment. The 
experiment followed a between groups design with 24 robots. 
Each task was performed by a team of 2 participants. The teams 
of participants in the autonomous condition were assigned 24 
robots with autonomous path planning capability but they could 
also control one robot each time via teleoperation. Participants 
were instructed to use teleoperation only for helping stuck robots, 
not for exploration. The teams of participants in the manual 
control condition were assigned 24 robots, for which participants 
could issue sequences of waypoints as well as teleoperate any 
robot. 

The users were seated at separate interfaces, were able to control 
the same robots and watch the same video and were able to 
communicate freely with one another. They were not given any 
specific instructions on how to coordinate, although they were 
told it was a cooperative task. Generally, the participants 



2.5 Procedure informally either divided the area or the robots between them.  No 
difference was noticed in the different modalities. After providing demographic data participants read standard 

instructions on how to control robots via MrCS. In the following 
30 minute training session, participants in all conditions practiced 
control operations.  Participants were encouraged to find and 
mark at least one victim in the training environment under the 
guidance of the experimenter.  After the training session, 
participants then began the experimental session (25 minutes) in 
which they performed the search task controlling 24 robots in 
teams. After the task, the participants were asked to complete the 
NASA-TLX workload survey.   

2.4 Participants 
60 paid participants (30 teams) were recruited from the University 
of Pittsburgh community balanced among conditions for genders. 
None had prior experience with robot control although most were 
frequent computer users. 

 

Table 1 Performance Measures 

Variables 
Autonomy 

(N＝15) 

Manual 

(N＝15) 

 x  SD x  SD 

T-value P 

Victim Found 15.86 2.538 12.33 3.200 3.270 .003 

Region Explored 729.69 69.404 638.89 105.433 4.603 .000 

Victim/Region ratio 0.020 0.0026 0.193 0.0046 0.473 .640 

RMS Errors 0.521 0.1341 0.670 0.0988 -3.424 .002 

Missing Sequence 69.71 18.898 43.07 15.714 4.140 .000 

Select to Mark Time 31.35 11.593 18.58 9.196 3.298 .003 

 

3. Result 

3.1 Performance Measures 
Table 1 shows the T-test results of performance measures 
between autonomy and manual conditions. Overall participants 
were successful in searching the environment in both conditions 
finding as many as 21 victims per team on a trial.  The average 
number of victims found was 15.86 in the autonomous condition 
but only 12.33 for the manual control condition. A T-test showed 
that there was a significant difference for victims found in the two 
conditions (t (28) = 3.270; p= .003).  

The region explored also showed a significant advantage (t (28) = 
4.603; p < .001) for the autonomous condition. The extra 
exploration was likely due to the autonomous robots moving 
almost constantly, while in the manual case, an average of 7.66 
robots were left after being given a single set of waypoints, with 
an average of 4.26 receiving no waypoints at all. It is clear from 
this result that taking the cognitively and time demanding task of 
exploration away from the operator and automating it helped 
overall system performance.  

While participants enjoying automated path planning found more 
victims for which areas explored were comparable, their overall 
advantage in finding victims might have resulted simply from the 
greater opportunity afforded by exploring larger areas.  To 
examine this possibility we tested the adjusted measure 
victims/region explored.  A T-test was used to test the difference 

in the Victim/Region ratio among the autonomous and manual 
control conditions. The victims found per square meter had no 
significant difference across the two conditions (t(28) = 0.473; p 
= .640). This suggests that the difference in the number of victims 
found was exclusively due to the larger area searched. 

Operator actions, robot states, and artifacts such as laser generated 
maps were collected throughout the experiment. Later, measures 
of operator behavior linked to victim observations were annotated 
in the data. After the user has successfully selected a robot, a 
series of actions need to be performed to develop sufficient 
situation awareness to perform the victim marking task, such as 
stopping the robot, viewing the map and locating the robot which 
may cost a certain period of time. Otherwise, when the victim 
passed out of the field of view (FOV) of a robot’s camera, it was 
counted as a missed victim.  T-tests showed participants in the 
Autonomy condition missed more victims, t(28)=4.140, p<.001. 
The select to mark time showed a similar pattern, t(28)=3.298, 
p=.003, with participants following manual control marking 
victims more quickly. However, the related issue of accuracy in 
marking victims on the laser generated map favored the autonomy 
conditions.  T-tests showed smaller RMS errors in marking for 
autonomy participants, t(28)=-3.424, p=.002. 

3.2 Team Organization 
Since participants shared control of the 24 UGVs and viewed the 
same screens in the shared pool conditions, a responsibility 
allocation procedure was a necessary part of the task. In this study 



we observed three patterns of self-organization in the shared pool 
condition. Some of the participants practiced joint control 
controlling all 24 robots together, while others followed a Split 
control strategy by splitting the robots with each controlling a 
sub-team. A third group of mixed strategy teams failed to settle 
on an identifiable strategy and instead alternated between 
strategies suggesting joint or split control.  As a result, the shared 
pool conditions in both autonomy and manual condition could be 
divided into subgroups according to the way the robots were 
controlled. (Table 2) 

Table 2. Team Organization for shared Pool 

Condition Split Mixed Joint 

Auto 3 4 8 

Manual 9 3 3 

 

A chi-square test of independence was performed to examine the 
relation between autonomy and team organization (Figure 3). The 
relation between these variables was significant, X2 (2, N = 23) = 
5.239, p =.022, Manual condition participants were less likely to 
choose joint control than were Autonomy participants. 

 

Figure 3. Team Organization Counts 

A two-way ANOVA was conducted comparing strategies (joint, 
mixed, split) and the level of autonomy (auto vs. manual) for all 
the performance measures.  A main effect for team organization 
was found for victim found per region explored, F 1, 26 = 3.627, 
p= .042 (Figure 4).   

 

Figure 4.  Victims per Region Explored for shared pool 

Considering only teams with clearly discernible strategies (joint 
vs. split) T-tests show joint control participants found more 
victims, t(21)=-2.764, p=.012 (Figure 5).   RMS error showed a 
similar pattern, t(21)=2.134, p=.045, with teams following joint 
strategies marking victims more accurately (Figure 6). However, 
joint control participants also missed more victims, t(21)=-3.836, 
p=.001.   

              

Figure 5.  Victims Found for shared pool 

 

 

Figure6.  RMS for shared pool 

 



4. Discussion 

4.1 Performance Measures 
The current experiment with teams of two operators replicates the 
effects of automated path planning found in an earlier single 
operator experiment [10]. In both experiments, relieving operators 
of the need to perform path planning and manually controlling 
robots led to finding more victims and marking their locations 
more accurately. A deterministic roadmap planner using a 
distributed information gain algorithm was used in the current 
experiment to drive the robots unlike the previous study in which 
paths were played back from those generated by earlier 
participants.  Operators appeared to have little difficulty in 
following these algorithmically generated paths and identified 
approximately the same numbers of victims as in [10] following 
human generated paths.   

The extra exploration appears principally due to autonomous 
robots being able to move more or less continuously with only 
brief pauses.  In the manual condition, by contrast, an average of 
6.19 robots were left after being given a single set of waypoints, 
while an average of 3.13 received no waypoints at all.  

Replication of the accuracy advantage for automated path 
planning was also reassuring because studies such as [23] 
suggested that this advantage might go in the other direction.   
Peruch et al. [23] demonstrated that self-controlled viewers 
tended to develop a rich survey knowledge more quickly than 
passive observers.  Because operators in the manual control 
condition needed to match landmarks between camera views and 
the laser map, the active exposure to the environment offered by 
path planning and entering waypoints might have been expected 
to provide them a more detailed knowledge of the environment 
and hence greater accuracy in marking victims.  Our replicated 
finding that automated path planning improves accuracy suggests 
that either the advantage in reduced cognitive load masks poorer 
survey knowledge in the autonomous condition or that the 
frequent switching between robots and viewpoints common to the 
two conditions allows autonomous participants to develop 
equivalent or superior survey knowledge. 

Since avoiding missed targets is crucial to many foraging tasks 
such as de-mining or search and rescue, thoroughness may be 
more important than other performance gains such as widening 
the search area.  The analysis of victims per region explored 
shows that in the assigned robot condition participants using 
automated path planning found twenty-two percent more victims.  
This gain is particularly significant because this group was 
exploring 67% of the map and coming close to matching the 
actual density of victims of .029/m2.  Similar improvements in 
RMS error and reduction in reported workload suggest that 
substantial cognitive resources were required for navigation and 
became available for other subtasks improving overall 
performance when navigation was automated.  

The process measures provide a somewhat different account.  
Operators in the autonomous conditions found more victims, 
explored regions more thoroughly, and marked victims more 
accurately, superiorities in performance of the sort often attributed 
to better SA.  An examination of process measures, however, 
show the opposite may be true.  Autonomous operators, however, 
miss almost twice as many of the victims that appear in their 

cameras, perhaps the result of attempting to monitor continuously 
moving robots which may have multiple victims in view.  Select-
to-mark time is much shorter in the manual conditions going as 
low as 18 seconds, approximately half of the 31 seconds required 
for autonomous operators controlling dedicated robots. These data 
suggest that operators in the autonomous path planning condition 
had, in fact, poorer SA than those choosing paths themselves.  
Although missing fewer of the victims appearing in their 
thumbnails operators in the manual condition had fewer 
opportunities as their robots were often idle at terminal waypoints 
while those in the autonomous condition moved continuously 
explaining their advantage on the overall performance measures.  
This account supports our earlier conjecture that reduced 
cognitive load may mask poorer survey knowledge (SA) in the 
autonomous condition.   Confusions in marking in the shared pool 
condition are an additional finding with nearly half of the 
markings in the shared pool condition leading to deletions while 
only ~16% did so when controlling dedicated robots. 

4.2 Team Organization 
A premise of our research is that if the supervisory control task 
can be made more similar to conventional alarm driven control, 
teams of operators will be able to control increasing numbers of 
robots due to advantages in load balancing and redundant 
observations.  An overall advantage for Area Explored was not 
observed. We attribute this lack of effect to the weak contribution 
the assistance subtask made to team performance.  While we had 
expected the office environment to provide many opportunities in 
which robots would require human assistance our results show 
that the robots (autonomous) managed to explore an equivalent 
area without any human assistance.   Because the assistance 
subtask was the task we expected to benefit most from load 
balancing, its effects were muted.  Suggestions of such effects, 
however, were found within the shared pool conditions.  We 
hypothesized that increasing automation would improve shared 
pool performance which allows load balancing and redundant 
observations to a greater extent than assigned robot performance 
which does not.    
This shared pool advantage was found but only for teams 
choosing the joint control strategy which allowed it.  Joint control 
teams performance bettered in accuracy as well finding .021 
and .023 victims/m2 respectively in auto and manual conditions.   
A similar advantage for joint control participants was found in 
locating victims more accurately (Low RMS error). 
These results add to a growing picture of the complex problem of 
controlling multiple robots with human teams.   Such tasks are 
invariably a mixture of subtasks of varying difficulties and 
contributions.  In this experiment the difficulty of the monitoring 
task dominated and human interventions of the sort described by 
the neglect tolerance model had little impact.  In future studies we 
hope to examine a range of task/autonomy combinations to 
develop a more comprehensive theory of team for teams HRI. 
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