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a b s t r a c t

We propose a framework for building graphical decision models from individual causal mechanisms. Our
approach is based on the work of Simon [Simon, H.A., 1953. Causal ordering and identifiability. In: Hood,
W.C., Koopmans, T.C. (Eds.), Studies in Econometric Method. Cowles Commission for Research in Econom-
ics. Monograph No. 14. John Wiley and Sons Inc., New York, NY, pp. 49–74 (Ch. III)], who proposed a cau-
sal ordering algorithm for explicating causal asymmetries among variables in a self-contained set of
structural equations. We extend the causal ordering algorithm to under-constrained sets of structural
equations, common during the process of problem structuring. We demonstrate that the causal ordering
explicated by our extension is an intermediate representation of a modeler’s understanding of a problem
and that the process of model construction consists of assembling mechanisms into self-contained causal
models. We describe IMAGENIE, an interactive modeling tool that supports mechanism-based model con-
struction and demonstrate empirically that it can effectively assist users in constructing graphical deci-
sion models.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Probabilistic Graphical Models, such as influence diagrams
(Howard and Matheson, 1981) and Bayesian networks (Pearl,
1988), have become popular modeling tools for supporting decision
making under uncertainty. Their ability to efficiently represent
joint probability distributions over tens, hundreds or even thou-
sands of variables makes it possible to build decision models
involving systems of challenging complexity, hard to imagine with
modeling tools such as decision trees. Since the normative charac-
ter of graphical decision models guarantees the correctness of infer-
ence procedures, the quality of advice derived from such models
directly depends on the quality of the models. A model is requisite
if it contains everything that is essential for solving the problem
and no new insights about the problem will emerge by elaborating
on it (Phillips, 1984). As the notion of requisiteness is fairly subjec-
tive, building requisite models requires a good measure of human
intuition and creativity. Effectively, construction of graphical deci-
sion models is demanding in terms of human expertise. This calls
for sound methodologies and effective tools to facilitate problem
structuring and parameter elicitation. Although support for obtain-
ing model parameters, such as probability distribution and utilities,
has received some attention in behavioral decision theory literature
(e.g., von Winterfeldt and Edwards, 1986) and in artificial intelli-
gence (e.g., Druzdzel and van der Gaag, 2000), there are some indi-
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cations that the quality of advice is more sensitive to the model
structure than to the precision of its numerical parameters
(Druzdzel and Oniśko, 2008a,b; Oniśko and Druzdzel, 2003;
Pradhan et al., 1996).

Prior efforts in aiding model structuring in artificial intelligence
can be classified into four approaches. The first approach focuses on
more expressive structure representations. Instances of the Indepen-
dence of Causal Influences (ICI) gates, such as the Noisy-OR (Pearl,
1988; Henrion, 1989) and its generalization Noisy-MAX (Diez,
1993; Maaskant and Druzdzel, 2008; Srinivas, 1993), simplify elic-
itation of numerical probabilities, so do similarity network and par-
titioning for representing subset independence (Heckerman, 1990).
Object-oriented Bayesian networks (OOBN) (Koller and Pfeffer,
1997; Pfeffer et al., 1999) provide a way of reusing fragments of
models across problem instances. Other approaches (Poole, 2003;
Laskey, 2004) draw on intuitive foundations of first-order logic.
The second approach, usually referred to as knowledge-based model
construction (KBMC), emphasizes aiding model building by auto-
mated generation of decision models from a domain knowledge-
base guided by the problem description and observed information
(Holtzman, 1989; Breese et al., 1994). The third approach focuses
on algorithms that can learn the model structure and parameters
from a database of observations (Cooper and Herskovits, 1991; Pearl
and Verma, 1991; Spirtes et al., 1993). The fourth approach, most
related to our work, is to apply system and knowledge engineering
techniques for aiding the process of building graphical models.
Mahoney and Laskey (1996) address the issues of modularization,
object-oriented design, knowledge-base, and evaluation in a spiral
model development cycle.

mailto:tlu@hrl.com
mailto:marek@sis.pitt.edu
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor


1 In the later section, we will see that the manipulability plays an important role in
our approach of causal modeling.
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In decision analysis, Mingers and Rosenhead (2004) summarize
various problem structuring methods and their applications. Two
approaches closely related to ours are causal maps (see Montibel-
ler and Belton (2006) for a review) and influence diagrams (How-
ard and Matheson, 1981). Causal maps are directed graphs that
reflect decision-makers’ thinking of means and ends of their deci-
sion problems. Nadkarni and Shenoy (2004) demonstrate an ap-
proach to convert causal maps into Bayesian networks by
checking conditional independence and non-circular relations
among concepts. Howard and Matheson (1981) emphasize deci-
sion analysis cycle where a problem is represented by decision
alternatives, information uncertainties, and preferences of the
decision maker. Both causal maps and influence diagrams employ
the notion of causal influences in their model structuring, i.e., deci-
sion makers suppose to reason upon their problem in causal terms,
normally facilitated or guided by knowledge engineers. Such
exploratory modeling process can be further assisted by more rig-
orous methodologies, such as value focused thinking (Keeney,
1992). However, it quickly becomes a daunting task for decision
makers to reason upon tens or hundreds variables and to verify
their direct and indirect causal relations.

In our framework, we take the mechanism-based view of cau-
sality (Simon, 1953; Druzdzel, 1992) where causality is defined
within models and causal asymmetries arise when mechanisms
are placed in the context of a system. The building blocks of a mod-
el are individual causal mechanisms represented by structural
equations (as shown in Druzdzel and Simon (1993), families of
nodes in Bayesian networks can be viewed as encodings of struc-
tural equations). Our framework supports encoding mechanisms
as functional relations and, wherever causal mechanisms are
asymmetric, the direction of causal influence among variables. As
causal mechanisms encode our understanding of local interactions
among variables, often based on the laws of physics, economics,
etc., they are fairly model independent and can be reused in vari-
ous models. Mechanisms can be organized hierarchically (Iwasaki
and Simon, 1994), similar to the abstraction of object-hierarchy,
so that domain knowledge can be compiled as libraries of mecha-
nisms. Effectively, mechanism-based view of causality provides a
valuable heuristic for acquiring and managing domain knowledge,
i.e., mechanisms can be contemplated even without particular
decision problems.

In the process of model structuring, when not all mechanisms
have been brought into the picture, we are typically dealing with
under-constrained systems, i.e., systems of equations that cannot
yet be solved because they contain fewer equations than variables.
The main theoretical contribution of this paper is extending Si-
mon’s causal ordering algorithm to under-constrained systems.
Our extended causal ordering algorithm explicates causal relations
in under-constrained systems so that our framework can assist
knowledge engineer and decision maker in exploring, aggregating,
and manipulating mechanisms in order to make a model self-
contained.

There are two advantages of our framework, compared to exist-
ing methods. Firstly, the resulting model structures generated by
our framework are guaranteed to be causal, as defined by mecha-
nism-based view of causality, if the underlying structural equa-
tions reflect causal mechanisms of the modeled problem.
Secondly, the framework functions as a decision facilitator by pro-
viding meaningful suggestions on how to expand the model and
how to make it self-contained. Our framework assists decision
makers in (1) identifying a set of mechanisms related to the cur-
rent model and bringing them into model workspace, (2) aggregat-
ing the newly added mechanisms with the model under
construction, (3) specifying the exogenous variables, and (4)
extracting reusable mechanisms from existing models into the li-
braries of mechanisms. We implemented the proposed framework
in an interactive modeling tool that we call IMAGENIE. We con-
ducted an empirical evaluation of IMAGENIE and found that it can
effectively assist users in constructing causal models.

2. Causal ordering

We consider models as abstraction of systems, pieces of the real
world that can be reasonably studied in isolation. A model can be
represented by a set of structural equations, E ¼ fe1; e2; . . . ; emg,
where each structural equation, eiðV1;V2; . . . ;VnÞ ¼ 0, describes a
conceptually distinct mechanism active in the system. Such models
are known as Simultaneous Equation Models (Simon, 1953), or
Structural Equation Models (Goldberger, 1972) in economics and
social sciences. We normally postulate mechanisms with stability
criterion to screen off transitory relations and assert autonomous
assumption in the sense that the external change on any one of
the mechanisms in a system does not imply the change of others
(Haavelmo, 1944, p. 26).

An equation may be solvable for any of its variables in the alge-
braic sense. However, causal interpretation of an explicit form of a
structure equation requires more care. Simon (1979), as well as
others (Haavelmo, 1944; Wold, 1954), believe that different a pri-
ori assumptions may lead to different interpretations of causal
relations among variables. For example, schooling helps in increas-
ing verbal ability in one experimental context, but verbal ability
helps in getting higher schooling in another. Simon used the term
causal mechanisms to refer to mechanisms under different a priori
assumptions. He suggested three sources in asserting asymmetries
for causal mechanisms: manipulability, time precedence, and
prepotency.1 In other words, an explicit function Vi ¼ fiðV1; . . . ;

Vi�1;Viþ1; . . . ;VnÞ for a structural equation e represents a causal
mechanism where the set of variables fV1; . . . ;Vi�1;Viþ1; . . . ;Vng
are the causes of the effect variable Vi.

To ensure that E is consistent (the solution set of E is not empty)
and independent (none of the equations can be derived algebrai-
cally from the others), Simon and Rescher (1966) defined the con-
cept of structure:

Definition 1 (structure). A structure is a set of equations E where
jEj 6 jVðEÞj such that in any subset E0# E:

(1) jE0 j 6 jVðE0Þj, and
(2) if the values of any jVðE0Þj � jE0 j variables in VðE0Þ are chosen

arbitrarily, then the values of the remaining jE0j variables are
determined uniquely. where VðeÞ denotes the set of
variables appearing in a structural equation e and
VðEÞ ¼

S
e2EVðeÞ.

Simon (1953) proposed an algorithm for explicating asymme-
tries among variables in a self-contained simultaneous structure
equations and producing a causal ordering among variables (equa-
tions) in a self-contained structure, jEj ¼ jVðEÞj. Causal ordering
only requires qualitative knowledge of which variables appears
in which structural equations, i.e., structure matrix.

Definition 2 (Structure matrix (Simon and Rescher, 1966; Druzdzel
and Simon, 1993)). A structure matrix is a qualitative representa-
tion of a set of structural equations E, where an element aij ¼ x if
Vj 2 V participates in ei 2 E; and aij ¼ 0, otherwise.

The causal ordering algorithm (COA) takes a self-contained
structure E as input and outputs a causal graph GðEÞ ¼ hN;Ai,
where N represents variables V ¼ VðEÞ and A is a set of directed



Fig. 1. Causal ordering algorithm takes a self-contained structure as input (left) and outputs a causal graph (right) for Example 1.
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arcs among N. More precisely, N is a partitioning of V, meaning that
N ¼ fN1;N2; . . . ;Nrg is a pairwise disjoint sets such that

Sr
i¼1Ni ¼ V,

and A is a set of directed arcs Vj ! Ni where Vj 2 V, Ni 2 N and
Vj R Ni. A self-contained structure E is minimal if it does not contain
any proper self-contained subsets. The algorithm starts with iden-
tifying the minimal self-contained structures in E. These identified
minimal self-contained structures, C0 ¼ fC0

1;C
0
2; . . . ;C0

l g, are called
complete structures of 0th order and a partition N0

k on V is created
for VðC0

kÞ, for each C0
k 2 C0. For each variable Vj 2 N0

k , a correspond-
ing node is created. When the minimal complete structure is a
strongly coupled component, i.e., jC0

k j > 1, we draw the nodes cre-
ated for variables in N0

k as overlapping circles because the equa-
tions in C0

k need to be solved simultaneously. Next, the algorithm
removes C0 from E because the values of VðC0Þ are solved. We

denote the new structure E n C0 as cE1 . The algorithm then removes
the columns representing VðC0Þ as substituting the solved values of
VðC0Þ into cE1 to obtain the derived structure of the first order E1. The
algorithm repeats the process of identifying, solving, removing,
and substituting on the derived structure of pth order until it is
empty. In addition, whenever a partition Np

k and corresponding
nodes are created for a complete structure Cp

k in the complete
structures of pth order, the algorithm refers Cp

k back to its equations

before any substitutions in E, denoted as cCp
k , and adds arcs from

nodes representing variables in VðcCp
k Þ nVðCp

kÞ to the nodes repre-
senting Np

k . Effectively, the causal ordering algorithm creates
one-to-one mapping between equations cCp

k and variables Np
k ,

denoted as hcCp
k ;N

p
ki, for a self-contained causal structure.

Simon (1953) introduces the concept of endogenous and exoge-
nous variables pertinent to the structure before substitutions of a
complete structure of pth order.

Definition 3 (Endogenous and exogenous variables). Let Cp and Cq

be the complete structures of pth and qth order respectively in a
self-contained structure E when applying causal ordering algo-
rithm. Let cCp

k be the structure before any substitutions of a
complete structure Cp

k 2 Cp and Vi 2 VðcCp
k Þ:

(1) Vi is endogenous with respect to cCp
k , if Vi R VðCqÞ for all

q < p.
(2) Vi is exogenous with respect to cCp

k , if Vi 2 VðCqÞ for some
q < p.

The sets of endogenous and exogenous variables pertinent to cCp
k

are denoted as EnVðcCp
k Þ and ExVðcCp

k Þ, respectively.

Simon (1953) uses the concept of endogenous and exogenous
variables pertinent to cCp

k to define direct causes.
Definition 4 (direct cause). For every cCp
k in a self-contained

structure E, each Vi 2 ExVðcCp
k Þ is a direct cause of each

Vj 2 EnVðcCp
k Þ.

Example 1. Consider the structure matrix presented in Fig. 1. The
causal ordering algorithm takes the structure matrix as input and

identifies C0 ¼ cC0 ¼ ffe1g; fe2g; fe3gg, cC1 ¼ ffe4; e5gg, cC2 ¼
ffe6g; fe7gg, and cC3 ¼ ffe8gg to generate the causal graph. The
mapping between equations and variables are he1;V1i, he2;V2i,
he3;V3i, hfe4; e5g; fV4;V5gi, he6;V6i, he7;V7i and he8;V8i. From the
causal graph, we can read off the direct causes of each variable from
the set of its parent nodes, e.g., fV4;V5g is directly caused by V2 and

V3 which directly corresponds to EnVðcC1Þ ¼ fV4;V5g and

ExVðcC1Þ ¼ fV2;V3g; similarly, V6 is directly caused by V3, V4, and

V5 with respect to EnVðcC2
1Þ ¼ fV6g and ExVðcC2

1Þ ¼ fV3;V4;V5g.
We can also read off transitive causal relations, e.g., V3 is an
indirect cause of V7 because there is a directed path from V3 to
V7. However, the causal relation between V4 and V5 is undefined,
since they are in a strongly coupled component.
3. The theoretical framework for interactive model building

We develop an interactive system, IMAGENIE, that assists in
building graphical decision models in causal form. IMAGENIE in-
cludes three knowledge structures: mechanism libraries, which
holds domain knowledge expressed as causal mechanisms, model
building workspace, which serves as a blackboard for model compo-
sitions, and graphical decision models, which represent decision
problems at hand. IMAGENIE functions as a modeling facilitator that
helps structuring a decision problems by means of knowledge pro-
vided by domain experts. Because a user of IMAGENIE can be all
three: a domain expert, a knowledge engineer, and a decision ma-
ker, we will refer to the users of IMAGENIE as model builders. The do-
main knowledge can be maintained either by the equation
authoring interface, where model builders can compose structural
equations directly, or by the mechanism extraction operation that
enables model builders to extract reusable causal mechanisms
from existing models. Model builders can use a hierarchical naviga-
tion interface to locate the mechanisms of interest and to select
them into the model building workspace with assistance of the
mechanism selection operation. In addition to mechanism selection
and traditional model authoring operations, model builders can
manipulate variables and aggregate mechanisms as the model build-
ing process unfolds.

The mechanism libraries are organized as a hierarchical sys-
tem that consists of subsystems and causal mechanisms as its
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fundamental building elements. The hierarchical approach not
only assists model builders in expressing their domain knowledge
in cognitively meaningful units but also helps them to access
stored mechanisms easily. The approach is similar to type-hierar-
chy in Koller and Pfeffer (1997) and Laskey and Mahoney (1997)
but without imposing the inheritance constraint, since knowledge
can be possibly organized hierarchically from different perspec-
tives. The fundamental knowledge units in mechanism libraries
are mechanisms, represented as structural equations. Users can
specify structural equations in their implicit or explicit functional
forms, such as algebraic functions, conditional probability tables,
truth tables, value/utility tables, and choice tables. While most
mechanisms may be described in one, perhaps their only, mode
of operation, some mechanisms will be described in different
modes of operation. This is because causal relations among vari-
ables are determined by the context, i.e., a system in which they
are embedded.

To aid the process of model building, we define the manipulabil-
ity and observability properties for each variable in mechanism li-
braries. A variable is manipulable if it can be manipulated
directly, i.e., if its value can be set directly, by forces outside of
the model. In an influence diagram, for example, all decision vari-
ables are manipulable. A variable is non-manipulable if its value has
to be derived from the model. For example, the mechanism
describing the intensity of sunshine (S) and our tendency to wear
sunglasses (SG) can be represented by a structural equation
f ðS; SGÞ ¼ 0. We define SG as manipulable variables in the modeling
domain. The intensity of sunshine S is determined by the external
force of nature. Wearing sunglasses (SG) can be controlled by us.
Note that the manipulability property of a variable in a modeling
domain is different from its appearance as an exogenous variable
in a model. For example, we can have gðSÞ ¼ 0, which describes
the intensity of sunshine, together with f ðS; SGÞ ¼ 0 to model the
situation where we wear our sunglasses because of the sunshine
ðS! SGÞ. In this example, we have S as an exogenous variable,
but not SG. However, SG is still manipulable in our modeling do-
main, since we can always decide to wear sunglasses regardless
of the intensity of sunshine. In such case, we have the model with
structural equations gðSÞ ¼ 0 and hðSGÞ ¼ 0 (representing the
behavior of wearing sunglasses regardless of sunshine) with a cau-
sal graph in which SG is disconnected from S and both are exoge-
nous variables with respect to the model. In other words, a
manipulable variable is not necessarily manipulated in a model,
but an exogenous variable is manipulated in a model and it has
to be a manipulable variable in the modeling domain. A variable
is observable if we can observe or measure its value directly. An
unobservable variable is a hidden variable, (e.g., a disease) which
has to be inferred through observable variables (e.g., symptoms).
It is sometime desirable to associate other properties with vari-
ables to facilitate the use of models. For example, one may want
to associate the properties such as manipulation cost/observation
cost with manipulable/observable variables to incorporate the
modeling of costs into causal models.
2 Due to space limitation, we refer readers to Lu (2003) for details of the proofs of
this and other theorems and lemmas reported in this paper.
4. Causal ordering in under-constrained systems

Model construction, in IMAGENIE, is a reflection of molders’ prob-
lem structuring. The under-constrained structures emerged in such
process reveal different stages of problem solving. Mechanisms in
different under-constrained structures are structural relations rec-
ognized by modelers as pertinent to each stage of problem solving.
Exogenous variables in under-constrained structures are outside
influences that have been committed by modelers. An under-con-
strained model cannot be drawn as an acyclic directed graph, as
the causal interactions are not completely determined until a mod-
el is self-contained. However, it is desirable to have a graphical
representation of under-constrained models throughout model
construction, as the graphical representation can help modelers
in identifying focus of modeling and commitments of the outside
influences. We extend Simon’s causal ordering algorithm to expli-
cate the causal ordering that has been identified in under-con-
strained models. In addition, we propose a graphical
representation of under-constrained models.

In order to formalize extended causal ordering, we prove the
following theorem.2

Theorem 1. Let E be a structure and E0 be the derived set of structural
equations from E by applying identification, solving, removing, and
substitution. If E0 is not empty, then E0 is a structure.

Given Theorem 1, we can keep applying identification, solving,
removing, and substitution operations on derived structure till
either E0 is empty or there are no more minimal self-contained
structures that can be identified. If E0 is empty, we know that E
is self-contained. If E0 is not empty and no more self-contained
structures can be identified, we know that E is under-constrained
and we call the final E0 the derived strictly under-constrained
structure.

Definition 5 (strictly under-constrained structure). An under-con-
strained structure is strictly under-constrained if it does not
contain any self-contained structures.

Theorem 2. A structure E is under-constrained if and only if it con-
tains a derived strictly under-constrained structure in E.

Based on Theorem 2, we present the extended causal ordering
algorithm (ECOA) as follows. The input of the algorithm is a struc-
ture matrix E. The output is a graph GðEÞ ¼ hN;A;Ai where N rep-
resents VðEÞ, A is a set of directed arcs, and A is a set of undirected
arcs among N. The algorithm essentially follows the steps of iden-
tification, solving, removing, and substitution as Simon’s causal
ordering algorithm until there are no more self-contained subsets
that can be identified from the derived structure. The algorithm
will explicitly depict the causal relations and relevant relations en-
coded in the strictly under-constrained subset, if there remains
one.

The graph generated by the extended causal ordering algorithm
is designed to aid the process of model construction. Unlike the ori-
ginal causal ordering algorithm, each variable in the structure is
represented as a separate node so that the modeler can access
and manipulate on it directly. The set of directed arcs depicts cau-
sal relations encoded in an under-constrained structure. A strongly
coupled component is drawn as a set of overlapping nodes. Undi-
rected arcs present relevant but undetermined causal relations
among variables so that the modeler can focus on clarifying the
mechanisms governing these variables to make a model self-
contained.

5. Bipartite graph matching and causal ordering

The ECOA presented in Section 4 and COA discussed in Section 2
are worst-case exponential time algorithms. Nayak (1994) dis-
cussed a polynomial time algorithm, based on the bipartite graph
matching, for causal ordering over self-contained structures.
Nayak’s work focused on automated modeling of physical systems
and he did not address the problem of causal ordering for under-
constrained structures in model construction. Nayak’s work on
causal ordering was based on the work of Serrano and Gossard
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(1987), who focused on constraint management in conceptual de-
sign. Given a set of equations, they recognized that the complete
matching between the set of equations and the set of variables
yields causal ordering. Although Serrano and Gossard discussed
the use of bipartite graph matching for detecting under-con-
strained and over-constrained systems, they did not discuss causal
relation among variables in these systems. In this section, we pres-
ent worst-case polynomial time algorithms for both COA and
ECOA, based on bipartite graphs.

We first present the algorithm COABGM which is the polynomial
time algorithm of COA using bipartite graph matching. The algo-
rithm first represents a structure E as a bipartite graph
BGðEÞ ¼ hNE;NV;Ai, which consists of two disjoint sets of nodes
NE and NV , and a set of undirected arcs A, where (1) for each equa-
tion ei 2 E, there is a node Nei

2 NE, (2) for each variable
Vi 2 V ¼ VðEÞ, there is a node NVi

2 NV , and (3) for each equation
ei 2 E, there is a set of undirected arcs ðNei

;NVj
Þ in A for each

Vj 2 VðeiÞ. A matching in a bipartite graph is a set of arcs such that
no two nodes in the matching share an arc. A node Nei

is matched to
a node NVj

(or vise versa) with respect to a matching Am # A, if
ðNei

;NVj
Þ 2 Am. A matching is complete if and only if each node in

the graph is covered by an arc in the matching (Even, 1979). Such
complete matching for BGðEÞ resembles one-to-one mapping in the
causal ordering for a self-contained structure E. In other words,
each arc ðNei

;NVj
Þ in Am can be interpreted as a direct dependency

relation where VðeiÞ n Vj directly determine Vj with equation ei.
Based on this interpretation, a directed graph DGðEÞ is created to
depict the dependency relations encoded in E by Am. However,
there might be more than one complete matching for a self-con-
tained structure E. Nayak (1994) proved that there exists an unique
transitive closure for all possible complete matchings for a self-con-
tained structure E. The algorithm, therefore, identifies the strongly
connected components in DGðEÞ, and interpreting variables within
such strongly connected component as interdependent in DGðEÞ.
The algorithm finally outputs the modified acyclic graph DGðEÞ as
GðEÞ by grouping variables in a strongly coupled component.
COABGM is worst-case polynomial because we can find the complete
matching using network-flow technique with time complexity
Oð

ffiffiffi
n
p

aÞ, where n ¼ jNEj ¼ jNVj and a ¼ jAj (Papadimitriou and Stel-
glitz, 1982).
Fig. 2. A bipartite graph (left) and its complete matching (right).
Example 2. Consider applying the COABGM algorithm on the
structure in Example 1. COABGM first creates the corresponding
bipartite graph of the structure as shown in Fig. 2(left). Next,
COABGM computes the complete matching as shown in Fig. 2(right),
where each bold arc depicts an arc in the matching. Third, COABGM

creates a directed graph, shown in Fig. 3(left), according to the
complete matching. Finally, COABGM generates the causal graph by
identifying the strongly coupled components and creating corre-
sponding partitions with modifications over the set of incoming
arcs of strongly coupled components in Fig. 3(right).

A maximum matching in a bipartite graph is a matching with
maximum cardinality. A complete matching is by definition a max-
imum matching. We prove the following theorem to show that
complete matching can be used to determine if a structure E is
self-contained or under-constrained.

Theorem 3. A structure E is self-contained, if there is a complete
matching in its bipartite graph BGðEÞ, and is under-constrained
otherwise.

Proof. According to Hall’s theorem (Even, 1979, pp. 137–138), a
bipartite graph BGðEÞ ¼ hNE;NV;Ai has complete matching if and
only if (a) jNEj ¼ jNVj and (b) for every subset NE0 # NE,
jNE0 j 6 jNV0 j, where NV0 are nodes connected with NE0 in A. The
BGðEÞ of a self-contained structure E satisfies criteria (a) and (b).
Therefore, if there is a complete matching in BGðEÞ of a structure
E, then E is self-contained. The BGðEÞ of an under-constrained
structure E, on the other hand, violates the criteria (a). Therefore,
the BGðEÞ of an under-constrained structure E cannot have a com-
plete matching according to Hall’s theorem. h

Given Theorem 3 and the fact that a complete matching is also a
maximum matching, we can apply an algorithm finding maximum
matching to the BGðEÞ of a given structure E. If we find a complete
matching, then the structure E is self-contained and the identified
complete matching can be used to construct the causal graph;
otherwise, we have a maximum matching for the under-con-
strained structure E.

Next, we show how to derive the extended causal ordering from
the maximum matching of BGðEÞ. We first denote the set of
matched nodes in any matching Am as NEm # NE and NVm # NV ,
and the set of unmatched nodes as NE �m # NE and NV �m # NV . We
prove the following theorem to show that given any under-con-
strained structure E, all NE are matched in any maximum matching
Am of BGðEÞ.

Theorem 4. Any maximum matching Am for the BGðEÞ of an under-
constrained structure E has all NE matched ðNE �m ¼ ;Þ and some NV

unmatched ðNV �m – ;Þ.
Fig. 3. The directed graph (left) and causal graph (right) created by COABGM .



Fig. 5. (a) The modified matching of Fig. 4b. ECOABGM outputs the graph in (b) to
depict causal and relevant relations among variables in the under-constrained
structure in Fig. 4a.
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Given Theorem 4, we assign Y as NV �m and X # NEm as those adja-
cent to Y in A. We propose the following procedure to identify the
strictly under-constrained subset:

(1) Am0 :¼ Am

(2) do
(3) Identify Z # NVm that are matched to X in Am0 .
(4) Let Ar # Am0 denote the set of arcs that match Z and X.
(5) Am0 :¼ Am0 nAr . Consequently, Z # NV

m0
and X # NE

m0
.

(6) Y :¼ Z; Identify X # NEm0 that are adjacent to Y in A.
(7) until X ¼ ;.

Given a finite under-constrained structure E, the procedure will
stop and return the modified Am0 . If Am0 ¼ ;, then E is strictly un-
der-constrained. If Am0 – ;, then NEm0 represents a self-contained
structure Em0 and NE

m0
represents the derived strictly under-con-

strained structure Em0 . We prove the following theorem to show
that the procedure will result in the same NEm0 and NE

m0
.

Theorem 5. Any maximum matching Am for the BGðEÞ of an under-
constrained structure E has the same NEm0 and NE

m0
with respect to the

modified matching Am0 .

Given Theorem 3–5, we have the extended causal ordering algo-
rithm based on maximum matching ECOABGM , which is a worst-cast
polynomial time algorithm since it takes polynomial time to find
maximum matching and linear time to derive the modified match-
ing. We remark that not all modified matchings Am0 are the same
given different maximum matchings Am of an under-constrained
structure E. If there is no strongly-coupled component in Em0 with
respect to Am0 , any maximum matching Am results in the same
modified matching Am0 .

Example 3. Consider applying the ECOABGM algorithm to the
structure in Fig. 4a. ECOABGM first construct the corresponding
bipartite graph of the structure as shown in Fig. 4b. Next, ECOABGM

computes the maximum matching as shown in Fig. 4b, where each
bold arc depicts an arc in the matching. ECOABGM then modifies the
maximum matching as shown in Fig. 5a. ECOABGM finally creates
the graph, as shown in Fig. 5b, that depicts causal and relevant
relations for Fig. 4a.
6. Interactive modeling process

The modeling process usually starts with the value variable in
the spirit of value-focused thinking (Keeney, 1992). IMAGENIE sup-
Fig. 4. (a) The bipartite graph representation of an under-constrained structure E.
(b) A maximum matching of the bipartite graph is depicted as bold arcs.
ports interactive browsing of mechanisms related to their focus
variables. Selected mechanisms are brought into the workspace
and aggregated with the existing mechanisms. However, we
encourage users to focus on one variable and add relevant mecha-
nisms one at a time. This amounts to focusing on a variable of
interest and explaining or observing it in terms of its underlying
mechanisms. The model builders repeat the process iteratively un-
til the model is requisite. In other words, it is the model builders
who decide about the model’s level of granularity and when to
stop. The system only plays the passive role of a facilitator: assist-
ing in searches for relevant mechanisms, indicating the possible
mechanisms to aggregate, selecting the manipulable variables,
and showing the status of each variable and (causal or relevant)
relations among variables in the workspace.

A model normally starts from an under-constrained model and
ends up being a self-contained model. Designating manipulable
variables as exogenous helps in obtaining a self-contained system,
i.e., orienting all arcs in the graph. If the user assigns a potential
policy variable, a manipulable variable that is endogenous in a
self-contained system as exogenous, the model becomes over-con-
strained, because the number of equations is greater than the num-
ber of variables. IMAGENIE allows a model to be under-constrained
or self-contained at any stage of the model development, but not
to be over-constrained. When a model becomes over-constrained,
IMAGENIE presents a list of mechanisms that are currently in the
model and ask the user to release one of them.

We describe a user’s interaction with the system by means of a
simple practical example. The University Performance Budget
Planning Model (Simon et al., 2000) is composed of 38 nonlinear
structural equations that describe interactions among 88 variables.
These structural equations are divided into seven subsystems:
Teaching Operations, Teaching Expenditures, Research Expenditures,
Income, Space Cost, Total Expense, and Surplus. We show below
how IMAGENIE assists a model builders in building a simplified uni-
versity budget model from structural equations captured in a
mechanism libraries.

Suppose Tom, an officer of the budget planning office, would
like to investigate consequences of an increase in the faculty salary.
He starts up IMAGENIE and loads the university mechanism library.
He may use the navigation tree to locate the relevant mechanisms
for faculty salary. Suppose he identifies a mechanism that describes
the interactions among variables: faculty salary (facsal), other in-
come (oinc), tuition fee (tuition), number of students (nstud), num-



Fig. 6. Tom selects a mechanism from libraries (right pane) into workspace. IMAGENIE generates a graphical model (middle pane) and variables in the model are also displayed
in the network tree view (left pane).
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ber of faculty (nfac), and overhead (overh), as facsal ¼
ðoinc þ tuition � nstudÞ=ðnfac � ð1þ overhÞÞ. He selects the mecha-
nism by clicking and dragging it into the model building work-
space. The extended causal ordering module generates a
corresponding graph as shown in Fig. 6 and the variables in the
workspace are also shown in the network tree view. He then desig-
nates nstud, nfac, tuition, overh, and oinc as exogenous variables by
either right-clicking on the context menu of the nodes in the work-
space or the nodes in network tree view to invoke the Make exog-
enous dialogue box to provide values for those exogenous
variables. The extended causal ordering module then derives the
new graph (see Fig. 7). Tom then identifies the student–faculty ra-
tio mechanism ðstratio ¼ nstud=nfacÞ and brings it into the work-
space. The workspace of IMAGENIE now contains two mechanism
boxes, representing two mechanisms brought in by Tom, where
each mechanism box has a title named by the mechanism: faculty
salary and student–faculty ratio. Tom then integrates these two
mechanisms by selecting the node number of students (nstud) from
one (source) mechanism box and dragging it over to the other (tar-
get) mechanism box. When the cursor enters the target mecha-
Fig. 7. Tom designates the variables number of students (nstud), number of faculties (nf
IMAGENIE generates the corresponding graph (right).
nism box, IMAGENIE searches over the variable identifiers in the
target mechanism box and highlights the variable with identical
identifiers. Tom then releases the mouse cursor and IMAGENIE auto-
matically integrates other variables with the same identifiers in
both mechanism boxes and integrates two mechanism boxes into
one box with two mechanisms (see Fig. 8). Tom then brings in
the mechanism describing the interactions among variables: class
size (classize), number of students (nstud), class load (cload), number
of faculty (nfac), and teaching load (tload), as classsize ¼
ðnstud � cloadÞ=ðnfac � tloadÞ. He aggregates the mechanism boxes
of class size with the integrated mechanism box. He then makes
teaching load (tload) and class load (cload) exogenous and obtains
a self-contained model that describes the causal relations among
those variables of interests (Fig. 9).

Note that IMAGENIE has effectively assisted Tom in focusing from
one value variable (facsal) to other relevant variables. In particular,
IMAGENIE assisted Tom in considering other decision criteria by
examining what other variables may be effected by the causes vari-
ables. For example, by exploring mechanisms relevant to nstud and
nfac, Tom identified two mechanisms related to decision criteria
ac), tuition (tuition), overhead (overh), and other income (oinc) as exogenous (left).



Fig. 8. When Tom drags nfac from the student–faculty ratio mechanism box entering into the faculty salary mechanism box, the variable with the same identifier is highlighted
(the triple lines around nfac at left). IMAGENIE performs the aggregate operations for nstud and nsfac, as soon as model builders drop the nsfac over the highlighted nsfac, and
generate the corresponding graph of aggregated mechanisms (right).

Fig. 9. A simplified university model that contains three core mechanisms and seven value assignment equations. The causal graph of the model is shown on the left; and the
structure matrix of the model is shown on the right.

880 T.-C. Lu, M.J. Druzdzel / European Journal of Operational Research 199 (2009) 873–882
faculty–teacher ratio and class size. In other words, IMAGENIE has
effectively helped Tom to build a multi-criteria graphical decision
model. Furthermore, IMAGENIE can supports trade-off analysis by
plotting the decision surface of an effect variable, given the value
ranges of cause variables (see Fig. 10).

Finally, Tom makes the facsal exogenous to see the conse-
quences of an increase in the faculty salary. Since the system is
self-contained, IMAGENIE searches for relevant mechanisms that
could be released to ensure the system remain self-contained.3

The dialogue box in Fig. 11 shows that Tom chooses to release tuition
as an exogenous variable. IMAGENIE then restructures the graph
(Fig. 11) to reflect such changes. In other words, increasing the fac-
ulty salary will result in the increase of tuition, while leaving other
mechanisms intact.

7. Evaluation

We compared the effectiveness of IMAGENIE in constructing cau-
sal models to the effectiveness of a plain graphical modeling envi-
ronment and to a spreadsheet in a within-subjects design. The
description below is brief because of space limitations. Lu (2003)
contains a detailed description of the experiments:

(1) Subjects: Subjects were 40 graduate students who either
were taking the course Decision Analysis and Decision Support
Systems offered by the second author in the Spring 2003
semester at the School of Information Sciences or who had
taken this course in the past. All subjects had received basic
training in decision analysis in the course and were familiar
3 Due to space limitation, we refer readers to Lu (2003) for theoretical aspects of
support for changes in structure.
with the graphical modeling tools such as GENIE. All subjects
were volunteers and were compensated for their participa-
tion by a small course credit and candies.

(2) Materials: Each subject received the following: (1) a training
session in using IMAGENIE, EQGENIE and EXCEL to construct
models for the example case, (2) two cases to solve using
IMAGENIE, EQGENIE and EXCEL in a randomized order, and (3)
a questionnaire to fill out after the experiment. We asked
the subjects to rate the usefulness of the three systems for
solving each task case on an 11-point scale ranging from use-
less (0) to extremely useful (10). We then asked for subjects’
open-ended comments on using different systems in solving
each task case. We chose four mechanisms involving nine
variables from the domain of stock market investment and
constructed two test cases. Each of the subjects was fairly
familiar with this domain. In Task I, the subjects were asked
to solve a problem by constructing models using IMAGENIE,
EQGENIE and EXCEL. In Task II, the subjects were asked to solve
another problem by changing the structure of the models
constructed in Task I. In order to make the comparison fair
to EQGENIE and EXCEL, we made sure that the gold standard
solutions of the two cases were directed acyclic graphs,
i.e., they contained no strongly-coupled components.To
ensure that subjects were familiar with the functionalities
needed for solving cases in IMAGENIE, EQGENIE and EXCEL, we
first gave a brief demo of each of the systems. Then we
assisted each subject in constructing models for an example
case and made sure that each subject had sufficient confi-
dence and skill in working with the systems.

(3) Evaluation criteria: Effectiveness: We measured structural
discrepancy between the constructed models and the gold
standard models. While we have formalized the distance
measure, space limitations do not allow us to present it in



Fig. 10. IMAGENIE supports trade-off analysis by sowing the decision surface of effect variable facsal given the causes variables nstud and nfac.

Fig. 11. Tom makes facsal exogenous by controlling its value. IMAGENIE requires that one of mechanisms be released to ensure the system is self-contained. Tom releases the
tuition mechanism (left). IMAGENIE restructures the system and generates the corresponding graph (right).
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detail. Simply speaking, structural discrepancy consisted of
the count of arcs omitted or drawn incorrectly between
the solution and the gold standard. Although models con-
structed by EXCEL system were not in a graphical form, we
converted them into directed graphs by reading off the
dependency relations specified in cells. Efficiency: For each
subject i and task j, we recorded the time taken to construct
models. Usefulness: We collected the subjective evaluation of
usefulness of each of the systems as part of the question-
naire given at the conclusion of the experiment.

(4) The Results: Of the 40 subjects who participated in the
experiment, four dropped out for personal reasons, leaving
36 usable results. The effectiveness measure did not show
any significant difference between the three systems
(p ¼ 0:832 for Task I and p ¼ 0:289 for Task II, ANOVA). In
terms of efficiency, it looked like EXCEL was a clear winner
in Task I (p ¼ 1:039� 10�7 ANOVA) but IMAGENIE was a clear
winner in Task II (p ¼ 1:191� 10�9 ANOVA). Similarly, use-
fulness measure showed significant results (the measures
were different for the three systems at p ¼ 0:00099 for Task
I and p ¼ 1:621 times10�9 for Task II, ANOVA).

(5) Discussion: The subjects found IMAGENIE an efficient and
useful system for causal model construction. We did not find
any significant differences among the effectiveness of model
construction using different systems. While EXCEL outper-
formed IMAGENIE and EQGENIE in terms of the average time
taken to solve the problems, it might be explained by our
subjects’ a priori familiarity with it. The fact that IMAGENIE

outperformed EXCEL and EQGENIE on Task II shows that IMA-

GENIE is helpful in the task of changes in structure.

8. Conclusion

Supporting model structuring is one of the best ways to im-
prove the ultimate quality of advice suggested by decision models.
Our framework supports building decision models by viewing the
process of model structuring as assembling of individual mecha-
nisms into a self-contained system. In such process, we often
encounter under-constrained systems, since not all relevant mech-
anisms may have been brought into the model. We extend Simon’s
causal ordering algorithm to explicate causal relations in under-
constrained systems. Graphs encoding under-constrained systems,
in turns, help model builders exploring relevant mechanisms and
specifying exogenous variables. Built upon our framework and
the extended causal ordering, IMAGENIE functions as a model facil-
itator that assists model builders (domain experts, knowledge
engineers, and decision makers) in selecting, aggregating, explor-
ing, controlling, and extracting mechanisms for decision problems
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at hand. Furthermore, the resulting models are guaranteed to be
causal, as defined by mechanism-based view of causality, if the
underlying structural equations reflect causal mechanisms of the
modeled problem. In this paper, we have also briefly shown how
IMAGENIE can support for multi-criterion decision problems,
trade-off analysis, and changes in structure. In Lu (2003), we fur-
ther showed how IMAGENIE can assist the problem of search for
opportunities by an automatic designation of those manipulable
variable to be decision nodes and, in effect, search for those vari-
ables that can give the largest effect on the utility function over
outcomes of a priori specified value nodes.
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