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Directional wavelets have orientation selectivity and thus are able to efficiently represent highly 

anisotropic elements such as line segments and edges.  Ridgelet transform is a kind of directional 

multi-resolution transform and has been successful in many image processing and texture 

analysis applications. The objective of this research is to develop multi-ridgelet transform by 

applying multiwavelet transform to the Radon transform so as to attain attractive improvements. 

By adapting the cardinal orthogonal multiwavelets to the ridgelet transform, it is shown that the 

proposed cardinal multiridgelet transform (CMRT) possesses cardinality, approximate 

translation invariance, and approximate rotation invariance simultaneously, whereas no single 

ridgelet transform can hold all these properties at the same time. These properties are beneficial 

to image texture analysis. This is demonstrated in three studies of texture analysis applications. 

Firstly a texture database retrieval study taking a portion of the Brodatz texture album as an 

example has demonstrated that the CMRT-based texture representation for database retrieval 

performed better than other directional wavelet methods. Secondly the study of the LCD mura 

defect detection was based upon the classification of simulated abnormalities with a linear 

support vector machine classifier, the CMRT-based analysis of defects were shown to provide 

efficient features for superior detection performance than other competitive methods.  Lastly and 

the most importantly, a study on the prostate cancer tissue image classification was conducted. 

With the CMRT-based texture extraction, Gaussian kernel support vector machines have been 
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developed to discriminate prostate cancer Gleason grade 3 versus grade 4. Based on a limited 

database of prostate specimens, one classifier was trained to have remarkable test performance. 

This approach is unquestionably promising and is worthy to be fully developed. 
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1.0  INTRODUCTION 

Since the advent of compactly supported orthogonal wavelets [1] and multiresolution signal 

decomposition [2], the multiresolution analysis has been widely applied to many science and 

engineering fields. One of the most important features of the wavelet transform is its capability 

of compacting the signal energy and thus efficiently representing functions that are smooth 

away from point singularities. Despite the fact that wavelets have had a wide impact on image 

processing, it has been noted that the standard wavelet transform has some limitations regarding 

their effectiveness in representing objects in images with highly anisotropic elements such as 

linear and curvilinear structures. Wavelets are non-geometrical and do not exploit regularity of 

edges, because wavelets rely on a dictionary of isotropic elements but do not describe 

anisotropic elements. Thus the standard 2-D wavelet transform of an image has poor directional 

selectivity. Most natural images exhibit curvilinear edges resulted from discontinuities across 

objects, which are called line and curve singularities. Thus the geometric feature extraction 

based upon the conventional 2-D wavelet transform would become less efficient in comparison 

to what can be achieved for 1-D signals. 

An anisotropic geometric wavelet, named ridgelet, was proposed by Candés [3] and 

Donoho [4] to overcome the limitation of the standard 2-D wavelet transform, ridgelet 

transform is a kind of multiscale orientation-selective transform which takes the ridgelet as the 

basis element that has high directional selectivity; thus the ridgelet transform provides a key to 
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the analysis of higher dimensional singularities. It processes the image data by first computing 

line integrals over different orientations and locations to obtain the Radon transform and then 

applying wavelet transform to the Radon transform coefficients. The Radon transform maps a 

line singularity of an input image into a point singularity along a certain radial direction [5], 

then the wavelet transform handles the point singularities in the Radon coefficients effectively. 

Hence, the ridgelet transform of 2-D image is very effective in representing objects with 

singularities along piecewise line segments. 

The objective of this research is to improve the performance of ridgelet transform by 

introducing the multiwavelet transform [6] in the Radon domain to develop the multiridgelet 

transform. Multiwavelet basis possesses symmetry, orthogonality, compact support, and high 

approximation order simultaneously, which is not available to the single wavelet basis [7]. With 

the choice of the cardinal multiwavelet (with multiplicity equal to 2) [8] the resulting cardinal 

multiridgelet transform is both approximately shift-invariant and rotation-invariant. This will 

provide a significant advantage for image texture analysis where the cardinal multiridgelet 

transform is a dual-tree ridgelet transform and may be interpreted as a cardinal complex ridgelet 

transform. The magnitude of the complex transform coefficients can be applied in feature 

extraction for image texture classification. 

With the developed cardinal multiridgelet transform, three applications have been 

explored: texture database retrieval, LCD mura defect detection, and prostate cancer 

histopathological image texture classification. In particular, the latter takes on the challenging 

task of computer-aided discrimination between two grades of prostate cancer that would be 

critical for predicting patient prognosis and affecting adequate treatment. With the image data 

Tissue Microarray (TMA) 471 from Johns Hopkins Medical School, cardinal multiridgelet-
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based texture features are extracted and a non-linear support vector machine has been developed 

to classify Gleason grade 3 and grade 4 of the prostate cancer. 

The thesis is organized as follows. The cardinal multiridgelet transform and its 

properties are developed in Chapter 2. Chapter 3 describes experiments on two initial 

applications to texture data retrieval and LCD mura defect detection. The computer-aided 

classification of prostate cancer biopsy images is presented in Chapter 4. Chapter 5 summarizes 

the major contributions of the thesis and gives suggestions for future research. 
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2.0  CARDINAL MULTIRIDGELET TRANSFORM 

2.1 BACKGROUND REVIEW 

Ridgelets [3] were developed to represent objects with highly anisotropic elements, e.g., lines, 

which the conventional 2-D wavelets do not exploit well. The ridgelet transform is a multiscale 

transform with frame elements such as scale and location parameters, and, in addition, having 

directional specificity; thus the ridgelet transform bears with anisotropic scaling principle. This 

background review section describes key principles of the ridgelet transform, so that it paves the 

way to extend to the multiridgelet transform. 

2.1.1 Radon transform 

The Radon transform definition used in many science and engineering fields can be found in 

[9]. If a bivariate function f (x, y)  has no preferred orientation, its Radon transform is described 

as the integral over the line ρ = xcosθ + ysinθ , written as 

 

 Rf (x,y) (ρ,θ ) = f (x, y)δ(xcosθ + ysinθ − ρ)dx∫ dy∫     
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where δ(•)  is the Dirac delta function, ρ ∈ R  is the perpendicular offset of a line with respect 

to the origin 0,0( ) , and θ ∈ [0,π )  is the angle of a radial line of projection. That is, Rf (x,y) (ρ,θ )  

is the integral of the function f (x, y)  along lines ρ = xcosθ + ysinθ , as illustrated in Figure 1. 

 

 

Figure 1 The Radon transform defined by the two parameters ρ and θ specify the radial line of projection.  

 

The Radon transform converts each of the line components into a peak positioned 

corresponding to the parameters of the lines, thus the task of finding the line singularities turns 

to finding the local peaks. 
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2.1.2 Ridgelet transform 

The 2-D continuous ridgelet transform in R2  is defined as follows. For a given smooth 

univariate wavelet function ψ :R→R  satisfying the admissibility condition  

 

ψ̂ / v 2 dv <∞∫  

 

and vanishing mean  

 

 ψ(t)dt∫ = 0 , 

 

define the bivariate ridgelet ψa,b,θ :R
2 →R  by 

 

   ψa,b,θ (x, y) =
1
a
ψ xcosθ + ysinθ − b( ) / a( )     

 

for each scale a > 0 , position b∈ R , and orientation θ ∈ [0, 2π ) . Therefore, a ridgelet is 

constant along lines xcosθ + ysinθ = ρ . Transverse to these ridges, it is a single wavelet. 

The ridgelet transform of a given integrable bivariate function f (x, y)  is defined by 

 

RTf (x,y) (a,b,θ ) := f (x, y),ψa,b,θ (x, y) = f (x, y)ψa,b,θ (x, y)dx∫ dy∫ . 
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It has the exact reconstruction 

 

   f (x, y) = RTf (x,y) (a,b,θ )ψa,b,θ (x, y)
da
a30

∞

∫ db
−∞

∞

∫ dθ
4π0

2π
∫ .   

 

The ridgelet transform can be seen as the 1-D wavelet transform to the slices of the 

Radon transform. Let angular variable θ  be constant and the line offset ρ  be varying, then the 

continuous ridgelet transform is the application of the 1-D single wavelet transform to a slice of 

the Radon transform coefficients, 

 

   RTf (x,y) (a,b,θ ) = ψa,b(ρ)Rf (x,y) (ρ,θ )dρ∫ . 

 

The single wavelet transform provides a sparse representation of line singularities that are 

converted to point singularities by the Radon transform. If a complex wavelet transform is 

applied then it becomes a complex ridgelet transform [10][11].  

    

2.1.3 Curvelet transform 

For 2-D images of objects, their edges are regarded as curved or piecewise linear singularities. 

In order to analyze local line or curve singularities, a natural way is to consider a partition of the 

image and then apply the ridgelet transform to the partitioned sub-images. This is the concept of 

the block ridgelet transform, named curvelet transform, which is the first-generation curvelet 

transform proposed by Candés and Donoho [12]. 
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The idea of curvelets is to represent a curve as a superposition of functions of various 

lengths and widths obeying the parabolic scaling law width ≈ length2 . Algorithm of the first-

generation curvelet transform is given as follows: 

1. Subband decomposition. The image is filtered into subbands. 

2. Smooth partitioning. Each subband is smoothly windowed into squares of 

appropriate scale. 

3. Renormalization. Each resulting square is renormalized to unit scale. 

4. Ridgelet Analysis. Each square is analyzed with the ridgelet transform. 

However, the second-generation curvelets [13] does not use ridgelet transform. It is 

implemented with concentric squares and shears to have a tight frame expansion with lower 

redundancy. In this way the second-generation curvelet transform exhibits a simple and natural 

indexing structure with three parameters: scale, orientation, and location. 

2.1.4 Multiwavelet transform 

Multiwavelets were first proposed by Geronimo, Hardin, and Massopust (GHM) [6], and 

followed by Strang and Strela [14]. The GHM, a set of two scaling functions and two associated 

wavelets, has several attributes providing a bases for function representation to possess 

properties such as symmetry, orthogonality, compact support, and second-order approximation 

simultaneously. The ability of orthogonal wavelet bases to efficiently represent piecewise 

smooth functions is central to their success in estimation and compression. The compact support 

and approximation order are two key factors of wavelet bases, and there is a fundamental trade-

off between them. The generalization provided by bases with multiple scaling and wavelet 

functions permits greater flexibility in managing this trade-off.  
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For scalar wavelet bases, the number of zero moments is an important measure of how 

well the wavelet transform compresses smooth signals. However, in the multiwavelet case, to 

guarantee the preservation/annihilation properties of the associated filter bank, it is not 

sufficient that the multiwavelet basis have zero moments. When the multiwavelet filter bank 

possesses the preservation/annihilation property for higher order input polynomials, it is said to 

have a higher balancing order.  

The lack of balancing may be compensated by prefiltering the input [15]. However it 

may not be desirable due to some reasons. If the prefiltering step does not constitute an 

orthogonal transform, then the orthogonality of the multiwavelet transform is lost. The use of 

prefiltering increases the support of the basis functions if the prefilter has more than one 

nonzero coefficient. In the design of prefilters, it is desired that properties of the multiwavelet 

basis such as orthogonality, approximation order, and compact support be preserved as far as 

possible. One plausible solution is to consider the design of multiwavelets that preserve those 

properties with a specified approximation order, which is called balanced multiwavelets [16] 

where no prefiltering and postfiltering are required. 
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2.1.5 Cardinal multiwavelets 

A scaling function φ(t)  satisfies the following conditions 

 

φ(n) = δ(n) = 1, n = 0
0, n = ±1,±2,...

!
"
#

$#
,     

 

as well as  

 

 φ(t)φ(t − n)dt∫ = δ(n)       

 

and 

 

 φ(t) = 2 h(n)φ(2t − n)
n
∑       

 

where h(n){ }  is the scaling filter, is called a cardinal orthogonal scaling function (COSF).  
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The corresponding wavelet ψ(t)  satisfies 

 

    ψ(t) = 2 g(n)φ(2t − n)
n
∑  

 

where g(n){ }  is the wavelet filter. In this case the standard sampling theorem 

 

f (t) = f n / 2J( )φ 2J t − n( )
n
∑ , ∀f (t)∈VJ (φ)     (1) 

 

holds for every COSFs [17]. 

Selesnick [8] proposed the cardinal multiwavelet transform that is possible to achieve 

cardinality, orthogonality, compact support, and approximation order K >1  simultaneously, 

which is not possible in the scalar wavelet transform. Let φ0 (t)  and φ1(t)  be cardinal orthogonal 

multiscaling functions (COMSFs) with multiplicity equal to 2. In this case  

 

f (t) = f n( )φ0 2J t − n( )+ f n+ 1
2( )φ1 2J t − n( )( )

n
∑ , ∀f (t)∈VJ φ0,φ1( )   

       = f (n)φ0 2
J t − n( )

n
∑ + f (m)φ1 2

J t − m− 1
2( )( )

m
∑ , m = n+ 1

2  

       = f (n)φ0 2
J t − n( )

n
∑ + f (m)φ1 2

J t + 2−(J+1)( )−m( )
m
∑    (2) 

 

holds, where φ0 (n / 2) = δ(n)  and φ1(n / 2) = δ(n−1) . As a consequence, the COMSFs are a set 

of two COSFs with half-sample shift from each other. The scaling filters h0 (n)  and h1(n) , and 
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the corresponding wavelet filters g0 (n)  and g1(n)  for order-2 balanced cardinal multiwavelet 

transform are given as follows 

 

h0 (n) =1 2 a, 0,b,1,c, 0,d, 0,e, 0, f( )  

h1(n) =1 2 − f , 0,e, 0,−d,1,c, 0,−b, 0,a( )  

g0 (n) =1 2 −a, 0,−b,1,−c, 0,−d, 0,−e, 0,− f( )  

g1(n) =1 2 f , 0,−e, 0,d,1,−c, 0,b, 0,−a( )  

 

where 

 A = −1 8± 15 / 32  

 a =1/ 32  

 b = A+1/ 4  

 c =15 /16  

d = −2A−1/ 4  

e =1/ 32  

f = A  

 

Figure 2 shows the plots of the scaling functions and wavelets. Note that here φ0  and φ1  of 

order-2 balanced cardinal functions are shifted, φ0 (3 / 2) =1  and φ1(4 / 2) =1  [8]. 
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(a) 

 

 (b) 

Figure 2 (a) A COMSFs of approximation order 2 and (b) corresponding cardinal wavelet functions. 
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2.2 MULTIRIDGELET TRANSFORM 

2.2.1 Continuous multiridgelet transform 

For a given multiwavelet basis function ψ = ψ0 (ρ),ψ1(ρ)[ ]T  (for multiplicity 2) and lines in 

polar representation ρ = xcosθ + ysinθ  in the x-y plane, define the bivariate multiridgelet 

ψ
a,b,θ  by 

 

ψ
a,b,θ
(x, y) = 1

a
ψ xcosθ + ysinθ − b( ) / a( )      (3) 

 

for each scale a > 0 , position b , and orientation θ . Multiridgelet is constant along a line 

xcosθ + ysinθ = ρ . Transverse to these ridges, it is multiwavelet. Figure 3 is an example of 

cardinal multiscaling functions and corresponding multiridgelets. 
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(a)                                                                                (b) 

 

(c)                                                                                (d) 

Figure 3 Example of cardinal multiridgelets, (a) φ0,a,b,θ (x, y) , (b) φ1,a,b,θ (x, y) ,  

(c) ψ0,a,b,θ (x, y) , (d) ψ1,a,b,θ (x, y)  
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The multiridgelet transform for a given integrable bivariate function f (x, y)  is defined 

by the inner product f (x, y),ψa,b,θ (x, y) , 

 

MRT f (x,y) (a,b,θ ) := f (x, y),ψ
a,b,θ
(x, y) = f (x, y)ψ

a,b,θ
(x, y)dx∫ dy∫ . (4) 

 

The set of MRT f (x,y) (a,b,θ )  are called the multiridgelet transform coefficients of f (x, y) . 

The multiridgelet transform is seen as the 1-D multiwavelet transform along ρ  to the 

slices of the Radon transform of an image f (x, y) . It is first to compute the Radon transform 

Rf (x,y) (ρ,θ )  and then to apply a 1-D multiwavelet transform to the slices of Rf (x,y) (ρ,θ )  along 

ρ  for a particular angle θ  and for different θ ’s. Thus, the multiridgelet transform equation (4) 

can be rewritten as 

  

MRT f (x,y) (a,b,θ ) = Rf (x,y) (ρ,θ ),ψ a,b
(ρ) = Rf (x,y) (ρ,θ )ψ a,b

(ρ)dρ∫ .  (5) 

 

Especially, if the 1-D multiwavelet transform used is the cardinal multiwavelet transform, it is 

the cardinal multiridgelet transform (CMRT).  
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2.2.2 Multiresolution analysis of multiridgelet transform 

For a nesting of the spanned space defined as 

 

   Vj ⊂Vj+1 , ∀j ∈ Z  with V−∞ = 0{ } , V∞ = L2 .   (6) 

 

the subspaces have to satisfy a natural scaling condition 

 

f (t)∈Vj , f (2t)∈Vj+1 .    (7) 

 

From the wavelet theory, the scaling space Vj  is given by 

 

Vj = Span
k

φ0 (2
j t − k),φ1(2

j t − k){ } , ∀k ∈ Z .   (8) 

 

Also define the wavelet spanned subspaces Wi  such that 

 

V1 =V0 ⊕W0 , V2 =V1⊕W1 =V0 ⊕W0 ⊕W1 ,  .  (9) 
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For the cardinal orthogonal multiscaling function (COMSF) φ0 (t)  and φ1(t) , they satisfy the 

condition 

 

φ0 (n / 2) = δ(n) , φ1(n / 2) = δ(n−1) .    (10) 

 

Following is the multiscaling function under dyadic dilations and translations 

 

φ
j,k
(t) = 2 j/2φ(2 j t − k)  .     (11) 

 

Similarly, for the multiwavelet functions 

 

ψ
j,k
(t) = 2 j/2ψ(2 j t − k) .     (12) 
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Since the φ(t)  is the COMSF, the scaling and wavelet functions satisfy a matrix dilation and 

wavelet equations 

 

φ(t) = 2 H (n)φ(2t − n)
n
∑      (13) 

ψ(t) = 2 G(n)φ(2t − n)
n
∑      (14) 

 

where 

 

 H (n) =
h0 (2n) h0 (2n+1)
h1(2n) h1(2n+1)

!

"
#
#

$

%
&
&

    (15) 

 G(n) =
g0 (2n) g0 (2n+1)
g1(2n) g1(2n+1)

!

"
#
#

$

%
&
&

    (16)  

 

where h0 (n)  and h1(n)  are two scaling filters, and g0 (n)  and g1(n)  are two wavelet filters, 

n ∈ Z .  Also, φ0 (t)  and φ1(t)  are orthogonal to their integer shifts 

 

 φi (t)φ j (t − n)dt∫ = δ(i− j)δ(n) , i, j ∈ 0,1{ }    (17) 

 

and the wavelet functions satisfy 

 

 ψi (t)dt = 0∫ , i, j ∈ 0,1{ } .    (18) 
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2.2.3 Discrete multiridgelet transform 

For orthogonal scaling and wavelet spaces, 

 

 V0 ⊂V1 ⊂V2 ⊂⊂ L2 ,    (19) 

 

and 

 

 L2 =V0 ⊕W0 ⊕W1⊕ .    (20) 

 

From (5), for any 2-D image f (x, y) , its Radon transform Rf (x,y) (ρ,θ )∈ L2 [0,π )×R( )  can be 

expressed as a series of expansion in terms of the cardinal multiscaling function and 

multiwavelet function (multiplicity 2) with respect to the translation k  in ρ , i.e., as the inverse 

of its cardinal multiridgelet transform coefficients, 

 

Rf (x,y) (ρ,θ ) = c0,k,θφ 0,k (ρ)
k
∑ + d j,k,θψ j,k

(ρ)
k
∑

j=0

∞

∑   (21) 

 

where φ
j,k
(ρ) =

φ0, j,k (ρ)

φ1, j,k (ρ)

!

"

#
#

$

%

&
&

  and 

 

ψ
j,k
(ρ) =

ψ0, j,k (ρ)

ψ1, j,k (ρ)

!

"

#
#

$

%

&
&
 

are the discrete forms of φ a,b
(ρ)  and 

ψ
a,b
(ρ)  respectively, with scale a = 2 j  and shift b = k , 
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c0, j,k,θ = Rf (x,y) (ρ,θ )φ0, j,k (ρ)dρ∫ ,     (22) 

c1, j,k,θ = Rf (x,y) (ρ + 1
2 ,θ )φ1, j,k (ρ)dρ∫ ,     (23) 

d0, j,k,θ = Rf (x,y) (ρ,θ )ψ0, j,k (ρ)dρ∫ ,    (24)  

d1, j,k,θ = Rf (x,y) (ρ + 1
2 ,θ )ψ1, j,k (ρ)dρ∫ ,     (25) 

 

are the cardinal multiridgelet transform coefficients. Figure 4 illustrates the flow of the 

multiridgelet decomposition. A given image f (x, y)  is transformed via the Radon transform, 

and it is fed to the 1-D multiwavelet transform with respect to each radial line ρ . Note that here 

the same signal is fed into both channels for multiwavelet decomposition and no prefiltering is 

needed. The example shown at the upper right corner in Figure 4 is the Radon transform for a 

radial angle 

€ 

θ0 , Rf (x,y) (ρ,θ0 )  is one of the row element in Radon coefficients array. For 

computation purpose, the generalized Radon transform based on slant stacks is implemented for 

discretization [9]. 
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Figure 4 The multiridgelet transform. Decomposition of one scale level is shown  

using multiwavelet transform, for multiplicity 2. Two channels are involved with  

low pass components (L1 and L2) and high pass components (H1 and H2). 
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2.3 PROPERTIES OF CARDINAL MULTIRIDGELET TRANSFORM 

As discussed in the earlier sections, the cardinal multiridgelet transform (CMRT) is composed 

of the Radon transform followed by the 1-D cardinal multiwavelet transform. Naturally it is 

expected to possess advantages from both transforms. We will examine three advantageous 

properties of the CMRT, in particular, with respect to its applications to texture analysis. They 

are cardinality, approximate translation invariance, and approximate rotation invariance. 

2.3.1 Cardinality 

Based upon the Shannon sampling theorem, it is clear that the sinc function satisfies the 

condition of cardinal orthogonal scaling function (COSF), and the same for the Haar wavelets. 

However, the sinc function is not of compact support, and the Haar function has only 

approximation order-1. Xia and Zhang [17] demonstrated that there exists a COSF that exhibits 

a higher approximation order as well as compact support. When f (t)∈VJ+1(φ) , the aliasing 

error is the difference [18] 

 

e(t) := f (t)− f n / 2J( )φ(2J t − n)
n
∑ .    (26) 

 

For estimating this error numerically, f (t)  is not necessarily in VJ+1(φ)  [17]. For the case 

expressed by Equation (1), the estimated aliasing error of COSFs is none. It is also true for the 
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expression given by the cardinal multiscaling function (COMSF) in Equation (2). The fact that 

the COMSFs φ0 (t)  and φ1(t)  are half-sample shift from each other leads to achieve nice 

properties that will be described in the next subsections. 

2.3.2 Approximate translation invariance 

Since the real-valued wavelets are bandpass functions, the wavelet transform coefficients tend 

to oscillate around singularities, therefore a small shift of the signal will result in substantial 

changes of the wavelet coefficients around singularities. It is also carried through to the single 

ridgelet transform. A most practical solution to this problem is to use the complex-valued 

wavelets [19]. By applying complex wavelet transform, the magnitude of the complex 

coefficients does not oscillate but provide a smooth positive envelope that preserves shift 

invariant property. 

A complex-valued wavelet ψc (t)  is described by 

 

ψc (t) =ψr (t)+ j ⋅ψi (t)      

 

where ψr (t)  is the real part and jψi (t)  is the imaginary part.  
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Decomposing a signal by complex wavelet transform, we obtain the complex wavelet 

transform coefficients 

 

dc (n) = dr (n)+ j ⋅di (n)      

 

with magnitude 

 

dc (n) = dr (n)
2
+ di (n)

2      

 

and phase 

 

∠dc (n) = arctan
di (n)
dr (n)
"

#
$

%

&
' .     

 

Kingsbury  [20] proposed an application of two real-valued wavelet transforms in 

parallel with filters forming a Hilbert transform pair, where one wavelet is the Hilbert transform 

of the other. Selesnick [21] showed that for two orthogonal wavelets to form a Hilbert transform 

pair, the scaling filters h0 (n){ }  and h1(n){ }  should be offset by a half sample, rewritten in 

terms of the magnitude and phase conditions, they are 

 

H1 ω( ) = H0 ω( ) , 

∠H1 ω( ) =∠H0 ω( )− 1
2
ω . 
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However, such a system is not realizable with an ideal fractional delay filter, because if h0 (n)  is 

FIR, then h1(n)  would be of infinite length. If both h0 (n)  and h1(n)  are FIR filters and if the 

above two conditions are approximately satisfied for nearly the whole frequency interval, then 

the wavelets ψr (t)  and ψi (t)  would be an approximate Hilbert transform pair. A number of 

filter design methods have been studied such as biorthogonal solution [22][23], orthonormal 

allpass solution [24][25], and orthonormal IIR filter solution [26]. Among those studies, the 

equal magnitude response and half-sample phase delay between the filter responses are the 

primary tools for considering Hilbert transform pairs. 
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The observation that the two scaling functions and the two wavelet functions of the 

cardinal multiwavelet transform are half-sample shifted leads to our inquiry into the possibility 

of being an approximate Hilbert transform pair under certain situations, and some interesting 

characteristics were explored by computational results. The two scaling filters, h0 (n){ }  and 

h1(n){ } , of the cardinal multiwavelet transform have almost the same magnitude responses, 

H0 (ω)  and H1(ω) , while the two filters have half-sample group delay difference as well as 

half-sample phase delay difference in their pass-band. Similarly, the wavelet filters, g0 (n){ }  

and g1(n){ } , of the cardinal multiwavelet transform also have almost the same magnitude 

responses, G0 (ω)  and G1(ω) , and have half-sample group delay difference and half-sample 

phase delay difference in their pass-band as well. Figure 5 illustrates the characteristics of two 

scaling filters and wavelet filters of the cardinal multiwavelet transform, where the frequency ω  

is normalized by π . Therefore, we conclude here that the cardinal multiwavelet basis may be 

utilized as an approximate Hilbert transform pair. 
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(a)                                                                          (b) 

 
(c)                                                                          (d) 

 
(e)                                                                          (f) 

 
 

Figure 5 Characteristics of the scaling filters and wavelet filters of cardinal multiwavelet transform, (a) magnitude 

responses of the two scaling filters, (b) magnitude responses of the two wavelet filters, (c) group delay of scaling 

filters, (d) phase delay of scaling filters, (e) group delay of wavelet filters, and (f) phase delay of wavelet filters. 
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The effect of adaptation of the two cardinal multiwavelet basis as an almost approximate 

Hilbert transform pair is further examined by the replication of the demonstration shown in 

[27]. Figure 6 illustrates the magnitude of complex coefficients of the cardinal multiwavelet 

transform. With the dual-tree implementation, each pair of the 2-channel coefficients is 

combined in the form of the square root of sum of squares. This would be equivalent to 

considering the cardinal multiwavelet transform as providing a complex wavelet transform. The 

total energy at the third scale level decomposition is nearly constant regardless of the shift of 

input signal. In contrast, the Daubechies-5 discrete wavelet transform coefficients show 

substantial differences in regard to the shift of the input signal. 
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Figure 6 The wavelet coefficients of a signal x(n), (a) signal x(n)=δ(n-60), (b) signal x(n)=δ(n-64), (c) real 

coefficients of (a) using Daubechies-5 discrete wavelet transform, (d) real coefficients of (b) using Daubechies-5 

discrete wavelet transform, (e) magnitude of complex coefficients of (a) using the cardinal multiwavelet transform, 

(f) magnitude of complex coefficients of (b) using the cardinal multiwavelet transform. 
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Another example considered is a rectangular pulse signal, its shifted version, and their 

corresponding reconstructions from the respective transform coefficients at the scale level 3 as 

shown in Figure 7. It demonstrates that the dual-tree based cardinal multiwavelet transform 

maintains its shape of the high-frequency component regardless the signal shift, thus illustrating 

its almost shift invariance characteristic. 
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Figure 7 (a) a signal x(n), (b) its shifted version x(n-4), (c) and (d) reconstruction of (a) and (b) from Daubechies-5 

discrete wavelet transform at scale level 3, (e) and (f) reconstruction of (a) and (b) from dual-tree complex wavelet 

transform based on the cardinal multiwavelet transform at scale level 3. 
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Because of the almost shift invariance of the cardinal multiwavelet transform, the 

coefficients of CMRT may also be considered as complex coefficients as used in complex 

ridgelet which has nearly shift invariant characteristics [10][11], so that 

 

CMRTC, f (x,y) (a,b,θ ) =CMRT0, f (x,y) (a,b,θ )+ j ⋅CMRT1, f (x,y) (a,b,θ )    (27) 

 

where CMRT0  is the coefficient from the first channel regarded as the real part and CMRT1  is 

the coefficients from the second channel regarded as the imaginary part. Then, 

 

CMRTC, f (x,y) (a,b,θ ) = CMRT0, f (x,y) (a,b,θ )
2
+ CMRT1, f (x,y) (a,b,θ )

2
  (28) 

 

and 

 

∠CMRTC, f (x,y) (a,b,θ ) = arctan
CMRT1, f (x,y) (a,b,θ )
CMRT0, f (x,y) (a,b,θ )

"

#
$$

%

&
'' ,  (29) 
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The magnitude array of the CMRT coefficients also has the almost shift invariant property. 

Suppose that a square object f (x, y)  is translated from the center coordinates by ζ  pixels along 

the y  axis 

 

  f '(x, y) = f (x, y−ζ )      (30) 

 

as shown in Figure 8(c). Its Radon transform is given by 

 

  
Rf '(x,y) (ρ,θ ) = f (x, y)δ xcosθ + y+ζ( )sinθ − ρ( )dx∫ dy∫
                   = f (x, y)δ xcosθ + ysinθ − ρ −ζ sinθ( )( )dx∫ dy∫

 (31) 

 

which implies that the translation of the object is reflected as a sinusoidal shift in the ρ  variable 

in the Radon transform. When there is no translation ζ = 0( )  as shown in Figure 8(a), its Radon 

coefficients are aligned at the center as shown in Figure 8(b). When there is a translation shown 

in Figure 8(c), its Radon coefficients do appear as a twisted beam shape shown in Figure 8(d). 

Indeed, the amplitude of the sinusoidal twist in Radon domain is equal to the radial distance of 

translation from the center of the image. 

Because the single ridgelet transform is translation sensitive, the high frequency 

coefficients of the single ridgelet coefficients of Figure 8(a) and Figure 8(c) are shown in Figure 

8(e) and Figure 8(f), respectively. They do not show the same amplitude. It is observed that 

some positive peaks of coefficients in Figure 8(e) are inverted to negative peaks in Figure 8(f), 

and vice versa. On the other hand, the magnitudes of high frequency coefficients of the CMRT 

of the original and the translated object given in Figure 8(g) and Figure 8(h), respectively, show 
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that the magnitude peaks are not changed by the shift of an object. This supports assumption 

that the CMRT is almost translation invariant. 
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(a)                                                            (b) 

      

(c)                                                            (d) 
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(e)                                                                             (f) 

 

(g)                                                                             (h) 

Figure 8 Sample 2-D images with square object and its Radon transform coefficients, (a) object aligned at 

center, (b) Radon coefficients of (a), (c) object translated, (d) Radon coefficients of (c), (e) high frequency 

coefficients of ridgelet transform of (a), (f) high frequency coefficients of ridgelet transform of (c),  

(g) magnitude of high frequency coefficients of the CMRT of (a),  

and (h) magnitude of high frequency coefficients of the CMRT of (c). 
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2.3.3 Approximate rotation invariance 

One of the advantages inherited from the Radon transform is its rotation invariant property. Let 

f (x, y)  be the original image, its Radon transform is Rf (x,y) (ρ,θ ) . Suppose that the image is 

rotated by angle ϕ , f ''(x, y) , then Rf ''(x,y) (ρ,θ )  is the integral of the object f (x, y)  over the 

line ρ = xcos θ +ϕ( )+ ysin θ +ϕ( ) , which leads to a circular shift of the Radon transform 

Rf (x,y) (ρ,θ )  of the origin of f (x, y) , 

 

Rf ''(x,y) (ρ,θ ) = f (x, y)δ xcos(θ +ϕ )+ ysin θ +ϕ( )− ρ( )dx∫ dy∫  

                               = Rf (x,y) (ρ,θ +ϕ )        (32) 

 

Therefore, Rf ''(x,y) (ρ,θ )  is a circular shift by angle ϕ  in the θ  dimension.  

Consider the given image f (x, y)  with a square object not aligned at the center as 

illustrated in Figure 9(a), its Radon transform, as discussed before, shows a sinusoidal shift in 

ρ  as shown in Figure 9(b). Suppose that the square object is rotated by 45º with respect to its 

centroid as illustrated in Figure 9(c). The Radon transform shown in in Figure 9(d) reflects that 

the object rotation of 45º is a shift of Radon transform coefficients by 45º in the θ  axis. The two 

peaks located in 45º and 135º angle in Figure 9(b) are shifted downward to 0º and 90º angle, 

respectively, in θ , as shown in Figure 9(d). Consequently, the rotation of an off-center object 

produces a shift in θ  and also sinusoidal shift in ρ axis. Since the cardinal multiwavelet 

transform of ρ  axis is almost shift invariant, the CMRT of f (x, y)  is approximately shift 

invariant and approximately orientation invariant except with a shift in θ  variable. 
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Figure 9(e) and Figure 9(f) are the single ridgelet coefficients of Figure 9(a) and Figure 

9(c). Rotation of the object made shifts of the Radon coefficients both in θ  and ρ axes, thus the 

amplitude of the high frequency coefficients of the ridgelet transform changes drastically. On 

the other hand, magnitude of the high frequency coefficients of the CMRT shown in Figure 9(g) 

and Figure 9(h) is nearly invariant except with a shift in θ  designating the rotation. 
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(a)                                                            (b) 

 

(c)                                                            (d) 
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(e)                                                                             (f) 

 

(g)                                                                             (h) 

 

Figure 9 Sample 2-D images with square object and its Radon transform coefficients, (a) object off from 

the center, (b) Radon coefficients of (a), (c) object rotated 45 degree, (d) Radon coefficients of (c), (e) high 

frequency coefficients of ridgelet transform of (a), (f) high frequency coefficients of ridgelet transform of (c), (g) 

magnitude of high frequency scale coefficients of the CMRT of (a), and (h) magnitude of high frequency scale 

coefficients of the CMRT of (c). 
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2.3.4 Advantages of CMRT-based texture analysis 

One advantage of the cardinal multiridgelet transform (CMRT) inherited from the Radon 

transform is its robustness to noise. Since the Radon transform is composed of line integrals of 

an image, the effect of any additive zero-mean Gaussian noise in the image will be essentially 

cancelled out, hence the CMRT of the image is nearly noise-free. It may result in a more 

faithful texture representation from the CMRT coefficients. 

The advantages inherited from the cardinal orthogonal multiwavelet transform are its 

cardinality, orthogonality and compact support. Cardinality is an important property because, 

for a cardinal scaling function as the sampling function in the scaling space, there is no aliasing 

error in the cardinal wavelet transform, therefore we can expect to obtain a more effective 

ridgelet decomposition for extraction of image texture features. Orthogonality along with 

cardinality in the dual-tree provides a balanced multiwavelet system. The cardinal balanced 

multiwavelet has the shortest support, beside the GHM multiwavelet, which is shorter than that 

of the dual-tree complex wavelets. 

The two approximate invariance properties of the CMRT discussed in the earlier 

sections are important for image texture analysis, because they enable to extract invariant 

features regardless of the position and orientation of the region of interest. The key aspect is the 

shift invariance of the transform within the passband of each signal component. An object 

rotation is manifested by a shift in the theta-axis along with a sinusoidal shift in the radial axis, 

so the feature description will remain unchanged except with a simple rotation. These properties 

are particularly important in medical image texture classification. 
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3.0  APPLICATIONS TO TEXTURE ANALYSIS 

Textures, a function of spatial variations in pixel intensity, provide important characteristics for 

object recognition and categorization. Numerous techniques for automatic texture analysis have 

been developed during the past half-century. Wavelet-based texture recognition and 

classification have shown many successful applications in recent years. Texture description 

using directional wavelets is an important development. This includes ridgelets, curvelets, and 

contourlets. The applications of the cardinal multiridgelet transform (CMRT) to texture analysis 

has been explored in three studies, two of which are discussed in this chapter: texture database 

retrieval and LCD "mura" defect detection. The third study on prostate cancer tissue image 

classification will be presented in the next chapter. 

3.1 TEXTURE DATABASE RETRIEVAL 

 

Texture database retrieval using Gabor wavelet-based feature extraction has been reported by 

many studies [28-30], and some are referenced as a baseline performance of texture database 

retrieval tests [31][32]. Directional wavelets have also been applied such as complex wavelets 

[31], contourlets [32], and ridgelets [33]. In this study, we examine the application of CMRT for 
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texture database retrieval performance, in comparison to the use of Gabor wavelet, ridgelet, and 

curvelet. 

3.1.1 Feature vector from the cardinal multiridgelet transform 

The order-2 CMRT was applied for 3-scale decomposition of images. At each scale, the CMRT 

coefficients were divided into subbands with respect to orientations. The low frequency 

coefficients (at the scale level 3) constitute one subband, the first high frequency region (at scale 

level 3) is divided into 3 orientations, the next higher frequency region (at scale level 2) is 

divided into 6 orientations, and the highest frequency region (at scale level 1) is divided into 9 

orientations with respect to directions. Therefore, the total number of subbands is 19. 

Let W  be a matrix of transform coefficients. Its first subscript indicates transform 

method and channel, e.g., CMRT coefficients WCMRT 0  are from the first channel and WCMRT1  

from the second channel. The first channel matrix element WCMRT 0,mn  has two indices m  and n , 

subscript m indicates scale level where low number means a coarser scale and higher number 

means a finer scale, and subscript n  is an index of orientation. Since there are both low 

frequency and high frequency components at the lowest scale level, they are denoted by m =1  

and m = 2  respectively; so for the 3-scale decomposition used in this study, m ∈ [1,4] . For 

the low frequency coefficients at the coarsest scale, there is no orientation division, so there is 

only one subband denoted by WCMRT 0,11  at scale index m =1 . But at the finest scale m = 4 , there 

are 9 divisions (subbands): WCMRT 0,41 ~WCMRT 0,49 . Similar notations are used for the second 

channel, WCMRT1,mn . Coefficients from both channels are combined into the magnitude  
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WCMRT ,mn = WCMRT 0,mn
2
+ WCMRT1,mn

2
.  Figure 10 illustrates the subband allocation of CMRT 

coefficients. 

 

 

 

Figure 10 CMRT decomposition to 3-scale and subband allocation with respect to scale and orientation. 
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Three statistical features were computed for each coefficient subband: mean 

µmn = µ WCMRT ,mn( ) , standard deviation σ mn =σ WCMRT ,mn( ) , and entropy smn = s WCMRT ,mn( ) . For a 

given texture image indexed by k  in the texture database, the feature vector extracted from the 

CMRT coefficients is given by 

 

FCMRT (k) = µ11(k),σ11(k), s11(k),,µ49 (k),σ 49 (k), s49 (k)[ ]T    (33) 

 

where the number of elements of the feature vector FCMRT (k)  is 1+3+ 6+ 9( )×3= 57 .  

For Gabor wavelet method, we used four scales and six orientations, the dimension of its 

feature vector FGABOR (k)  is 6× 4×3= 72 . For curvelet method, the dimension of FCURVELET (k)  

is 54, and for ridgelet method, the dimension of FRT (k)  is 57. 
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3.1.2 Similarity measure  

The normalized Euclidean distance metric was used as a similarity measure, which is given by 

 

    d F(i),F( j)( ) = dmn i, j( )
n
∑

m
∑      (34) 

 

where 

 

 dmn i, j( ) = µmn (i)−µmn ( j)
α µmn( )

+
σ mn (i)−σ mn ( j)

α σ mn( )
+
smn (i)− smn ( j)

α smn( )
  (35) 

 

where m  and n  are the indices of subband of transform coefficients with respect to their scale 

and orientation, and α(µmn ) , α(σ mn ) , and α(smn )  are the standard deviations of the respective 

features over the entire database. 

3.1.3 Texture database 

The texture image set used in this study is from Brodatz texture photographic album [34]. Size 

of each texture image is 640x640. The texture database used in the experiment consists of 25 

different texture classes, they are formed by cropping sixteen 64x64 non-overlapping subimages 

from each original 640x640 images of each texture classes, thus the database consists of 400 

different 64x64 images represent 25 different classes of data, 16 samples per class, which is a 
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relatively large number of classes and a small number of examples for each class. Figure 11 

shows images in the database.  

 

 

Figure 11 List of images consists of the texture database of the study. Each image is 640x640 pixel. 

 

A query pattern is any one of the 400 patterns in the database. The pattern is then 

processed to obtain its feature vector. The feature vector distance d(i, j) , where i  denotes the 

query image and j  denotes any one element of the database, is computed. The distances are 
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then sorted in increasing order, and the closest set of patterns is then retrieved. The performance 

is measured in terms of the average retrieval rate, which is defined as the average number of 

patterns belonging to the same class as the query image.  

3.1.4 Test result 

For each query image, 

€ 

C  closest matches are selected, and the number of those samples 

belonging to the same class of the query, except the query image itself, is counted; this number 

(less than or equal to 15) divided by 15 is defined as the retrieval rate. In the ideal case, all the 

closest 15 retrievals are from the same class. The performance of the entire class is obtained by 

averaging this rate over the 16 members. The overall average performance of the 25 classes 

results in the overall performance of the method. 

Table 1 elaborates average retrieval rates of all texture classes using different methods at 

€ 

C =15. The CMRT method showed the best retrieval rate 75.22%, followed by the curvelet 

method 74.75%, and Gabor wavelet method 71.17%, while single ridgelet method gave lowest 

rate 60.03%. Figure 12 shows the overall performances for the case of 

€ 

C  varying from 15 to 

100. The CMRT and curvelet method gave the similar overall performance, while the CMRT 

method were slightly better. 
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Figure 12 Average retrieval rate of texture database, the number of closest matches increased from 15 to 100 with 

step size 5. 
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Table 1 Average retrieval rate for the 25 texture images in database at C=15. 

Images Gabor Ridgelet Curvelet CMRT 

D1 61.67% 95.42% 99.17% 95.83% 
D2 60.00% 55.00% 57.92% 50.00% 
D4 91.67% 96.67% 93.33% 98.75% 
D5 45.83% 37.92% 40.00% 52.08% 
D6 47.08% 100.00% 100.00% 100.00% 
D7 14.58% 35.00% 35.00% 37.08% 
D8 65.83% 62.92% 85.83% 70.00% 
D9 84.17% 81.67% 86.25% 85.83% 

D10 32.92% 71.25% 72.08% 79.17% 
D11 76.67% 82.92% 77.92% 79.58% 
D13 17.92% 11.25% 22.50% 18.33% 
D15 68.75% 66.25% 64.58% 65.83% 
D16 93.33% 100.00% 96.25% 100.00% 
D17 65.42% 94.17% 98.75% 95.83% 
D18 57.92% 57.08% 67.08% 76.67% 
D19 65.00% 65.42% 68.75% 68.75% 
D20 100.00% 79.58% 99.58% 90.42% 
D21 62.08% 100.00% 100.00% 100.00% 
D23 42.92% 38.33% 53.33% 42.08% 
D24 71.67% 73.33% 84.17% 89.58% 
D25 47.92% 95.42% 83.33% 95.00% 
D26 63.75% 66.25% 71.67% 79.58% 
D28 62.50% 64.58% 70.83% 75.00% 
D29 65.83% 90.42% 94.58% 94.17% 
D30 35.42% 58.33% 45.83% 40.83% 

Average at 
C=15 60.03% 71.17% 74.75% 75.22% 
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An example shown in Figure 13 demonstrates the qualitative performance of the CMRT 

over other methods. In Figure 13(a) shows the retrieval of top 15 closest matches of the query 

image based upon Gabor wavelet method, Figure 13(b) is the retrieval based upon single 

ridgelet method, Figure 13(c) is the retrieval based on curvelet method, and Figure 13(d) is the 

retrieval based on CMRT method. In Figure 13(a) and Figure 13(b), it is seen that Gabor 

wavelet and single ridgelet methods retrieve perceptually similar images from the query image, 

however there are a number of samples from other classes of images. As is reported in Table 1, 

the retrieval rates of Gabor wavelet and single ridgelet methods for the query images of class 

“D24” are 71.67% and 73.33%. On the contrary, in Figure 13(c) and Figure 13(d), it is seen that 

curvelet and CMRT methods performing better than former two methods. Curvelet method 

misses only one sample, and CMRT method collects what is from the same class for all 15 

closest matches. Overall, the retrieval rates of curvelet method and CMRT method for the query 

images of class “D24” are 84.17% and 89.58% respectively.  
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(a) 

 

(b) 
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(c) 

 

 (d) 

Figure 13 Example of closest 15 similar matched images for a given query image from the image class 

“D24”, (a) using Gabor wavelets, (b) using single ridgelets, (c) using curvelets, and (d) using CMRT, bold italic 

rank index indicates where the corresponding subsample is belonging to another class. 
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3.2 LCD MURA DEFECT DETECTION 

The detection of “mura” defect on liquid crystal display (LCD) is essential to maintain the 

quality of the display. The term "mura" defect is derived from the Japanese word for blemish 

and is defined as irregular lightness dispersion without clear contour on the display. Such 

defects are resulted from improper cell thickness in a region, larger than a single pixel, typically 

appearing as low-contrast textural variations, and are visible when the display is driven to a 

constant signal level [35]. There are many reasons that cause mura such as uneven layer 

thickness, local non-uniformity in a chemical process, and local surface roughness. It depends 

on the human perception as to whether the mura is acceptable and how much the quality of the 

device degrades. However it is often more serious to the high resolution medical LCD display 

because a blob mura might be misclassified as a lesion. While LCD display manufacturing is 

highly automated, it is examined for defects detection mostly by human visual inspection, 

which is slow, costly, and becomes more difficult as panel size increases [36]. An automatic 

mura detection is beneficial to assure the uniform quality of the display product. This section 

discusses our study of applying the CMRT in feature extraction to detect blob mura defects.  

3.2.1 Linear support vector machine classifier 

The choice of feature classifier for the study is a linear Support Vector Machine (SVM) 

classifier [37]. Because of its capacity of prediction of unknown samples with a good degree of 

accuracy, SVM provides superior classification performance in higher dimensional feature 

space with relatively less training samples than other classifiers [38]. 
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Training of a 2-class SVM is the task of finding separation hyperplane parameters 

w,b( ) , which maximize the separation margin of the closest data samples from two classes if all 

the training samples are linearly separable. For an input feature vector xk , k ∈ [1,K ]  where 

K  is the total number of training samples, the decision function is 

 

g xk( ) = w ⋅ xk + b
≥ 0 for class 1 (abnormal)
< 0 for class 2 (normal)

#
$
%

&%
.  (36) 

 

Even when the training samples are not 100% separable by a hyperplane in the feature space, 

slack variables can be introduced to train the best linear SVM for minimum training error. The 

Smooth SVM [39] software was used in this study. 

3.2.2 Simulation of artificial mura defects 

Since mura defects are vague and complex, it is difficult to establish an accurate mathematical 

model [40]. Typically, a blob mura defect appears somewhat circularly shaped with low-

contrast, and having no distinctive boundaries, therefore it is often modeled as an isotropic 

Gaussian shaped function with various ranges of radii and intensity levels [41], typically larger 

than a single pixel. 

In this study, the CMRT method was applied in feature extraction of samples digitized 

from the Dome C5i active matrix LCD medical display by Planar, Inc. To capture normal 

display surface, set 50% intensity to the display, and capture it with a digital camera. The LCD 
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has 165 µm spatial resolutions for each pixel. In the captured image, 5x5 image pixels are 

rendering one LCD pixel.  

Consider that in the medical display for mammographic studies, each microcalcification 

has an average diameter from 0.3 mm to about 0.7 mm [42]. A typical resolution of the digitized 

mammograms is 50 µm per pixel (pixel dimension of a slide: 3540x4740) or 100 µm per pixel 

(pixel dimension of a slide: 1770x2370) [43]. The 5 megapixel display (pixel dimension of 

display: 2048x2560) shows a slide at full-screen with resolution around 90~100 µm. Therefore, 

subsampling LCD images by 256x256 pixels is adequate to measure the blob mura defects 

which can affect detection and classification of digital mammography.  

An isotropic Gaussian function was placed in the center of a subsampled image to form 

a simulated abnormal case. Various intensity (1.5~15 pixel intensity) and size (8~24 pixels) of 

the blob mura were supplied for training data. Figure 14 demonstrates two examples of the 

simulated mura defects. 

  

 (a)                                                     (b) 

Figure 14 An example of simulated mura defects. An isotropic Gaussian function is placed at the center of the 

256x256 sampled block of LCD display image displaying 50% grayscale level: (a) mura with smaller radius and 

more intensity, and (b) mura with larger radius and less intensity. 
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3.2.3 Feature extraction in CMRT domain 

Mura defects are typically round shaped and omnidirectional. For classifying mura 

blobs, sensing where it is directed is not essential, but identifying circular objects superimposed 

to an even surface is required. Therefore in this study, CMRT coefficients are not partitioned 

directionally but all directions are considered in one subband. 

Three-scale CMRT decomposition was taken for each 256x256 subimages. The 2-

channel CMRT coefficients were merged into a complex matrix where channel 1 coefficients 

are considered as the real part and channel 2 coefficients are considered as the imaginary part. 

Figure 15 shows how CMRT coefficients were partitioned. The magnitude of the merged 

coefficients was calculated by Ws = W0,s
2
+ W1,s

2
 where s ∈ [0,1, 2,3]  is the scale index, and 

at the coarsest scale level the low frequency component is denoted by s = 0  and high frequency 

component is denoted by s =1 . 

 

Figure 15 CMRT coefficients 3-scale decomposed, merged all directions. 
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For each scale s , mean µs = µ Ws( ) , variance σ s
2 =σ 2 Ws( ) , and entropy ss = s Ws( )  

features were calculated, and a feature vector x = µ0,σ 0
2, s0,,µ3,σ 3

2, s3!" #$  was formed by 

features from all scales. Therefore the number of elements of the feature vector is 12. 

For comparisons, classifiers trained with features extracted by single ridgelet, Gabor 

wavelet, and curvelet methods were also studied. The 3-scale decomposed ridgelet coefficients 

were not partitioned directionally, but mean, variance, and entropy features were calculated for 

each subband. Therefore the number of ridgelet-based features extracted from a 256x256 

subimage was also 12. 

Gabor wavelet in this study was utilized with 4 scales and 6 orientations. For each scale, 

mean, variance, and entropy features were calculated for each orientation, and then the average 

of each feature was taken for all orientations. Therefore the number of features extracted from 

256x256 subimage using Gabor wavelet method was 12. 

The Curvelab Toolbox [44] was used for curvelet transform. The three-scale curvelet 

decomposition was taken. At each scale, mean, variance, and entropy features were calculated 

for each orientation, and each feature was averaged over for all direction. Therefore the number 

of features using curvelet method was 12. 

3.2.4 Classifier training and validation 

Training set was composed of 240 normal images and 240 simulated defective LCD images, 

and validation set was composed of 60 normal images and 60 simulated abnormal images. 

Extract features with the CMRT method (as well as with other methods mentioned above for 

comparative study), train a linear SVM with the training set of feature vectors and measure 
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training accuracy with ROC curve and AUC measure if the training samples are not 100% 

linearly separable, and test the SVM classifier with the validation set and measure accuracy 

with ROC curve and AUC measure. As it turned out, the training data were not linearly 

separable under each feature extraction method, an optimum classifier was trained by 

introducing slack variables in the quadratic optimization process. The number of support 

vectors for CMRT based method was 41, Gabor based method was 22, ridgelet based method 

was 28, and curvelet based method was 33. 

Figure 16(a) demonstrates the performance of each method with ROC curves using the 

training set. The first row in Table 2 is their comparison with area under ROC curve (AUC) 

measure along with their 95% confidence intervals, determined by using the JAFROC analysis 

software [45]. 
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(a) 

 

(b) 

Figure 16 ROC curves of the mura defect classifiers based on (a) training sets and (b) validation sets. 
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Table 2 Comparison of figures of merit in AUC of four methods, 95% confidence intervals in parenthesis. 

 Gabor Ridgelet Curvelet CMRT 

Training 0.7476 
(0.7039, 0.7914) 

0.6414 
(0.5923, 0.6904) 

0.6751 
(0.6275, 0.7227) 

0.8142 
(0.7765, 0.8520) 

Validation 0.5094 
(0.4028, 0.6161) 

0.4642 
(0.3580, 0.5703) 

0.5183 
(0.4125, 0.6242) 

0.7261 
(0.6350, 0.8172) 

 

With the training set of the single ridgelet-based features, the trained linear SVM 

showed the least performance of AUC = 0.6414. The trained linear SVM with the curvelet-

based features also did not perform well. The AUCs of these two methods were each within 

95% confidence interval of the other. However, the linear SVM trained with the CMRT-based 

features showed the significant performance. Its AUC is higher than AUC’s of other three 

methods, and was above their confidence intervals. 

Superior performance of the CMRT-based method is also supported by the results 

obtained with the validation set. Figure 16(b) demonstrated that CMRT method outperformed 

the other three methods. The second row in Table 2 is the list of AUC’s of all methods along 

with their 95% confidence intervals. Based upon these results, there is no doubt that CMRT-

based features are significantly more effective than the other three methods in discriminating 

mura defects from the normal display. 

3.2.5 Mura defect detection 

Each trained linear SVM classifiers was then tested in detection study. A set of 40 normal and 

40 abnormal images, each of 1280x960 pixels, were used in the detection study. In each 

abnormal image of simulating a defective display, two Gaussian blobs were superimposed to the 
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image at arbitrary locations, as illustrated in Figure 17. For each image, 256x256 pixel 

subimages were taken, a feature vectors was extracted from the subimage, and it was classified 

by the trained linear SVM for detection of any mura block appearing in the image.  

 

 

Figure 17 Sample of test image for Mura defect detection. Placed two simulated blobs with different radius and 

intensity superimposed to the screen. White box indicates where the 256x256 pixel subimage taken to the 

algorithm. 

 

The DBM MRMC software [46] was utilized to quantify performances of the detection 

tests. Figure 18 gives the ROC curves of the detection tests of all four trained linear classifiers 

based on different feature extraction methods. The ROC fitting was performed by using 

PROPROC [47]. 

Table 3 is the list of AUC’s and their 95% confidence intervals. The AUC for CMRT-

based method was 0.8208, which outperforms the other three methods. It is significantly higher 

than that from Gabor wavelet-based and  single ridgelet-based methods, and is slightly within 
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the confidence interval of the AUC from the curvelet-based method. The AUC of the curvelet-

based method was 0.7218, AUC from ridgelet-based method was 0.6934, and that from the 

Gabor wavelet-based method was 0.6533. They were all within the confidence intervals of each 

other. 

 

 

Figure 18 ROC curves of the detection test performance. 

 

Table 3 Mura defect detection accuracy of all four methods, AUC and 95% confidence intervals were determined 

by DBM MRMC software with PROPROC fit. 

 Gabor Ridgelet Curvelet CMRT 

AUC 0.6533 
(0.5400, 0.7666) 

0.6934 
(0.5768, 0.8099) 

0.7218 
(0.6193, 0.8243) 

0.8208 
(0.7335, 0.9081) 
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3.3 SUMMARY 

In this chapter, the CMRT-based texture feature extraction method was applied to two 

experimental studies. The texture database retrieval study is a model example showing that the 

shift-invariant texture features are beneficial. Because the 16 patches were sampled from each 

image where the position of directional structures may be arbitrarily located, matching with 

shift-invariant texture features are necessary in order to provide a proper identification of the 

same class of images. This was demonstrated by the relatively high accuracy of the shift-

invariant methods such as our CMRT-based method and the curvelet-based method. The study 

on LCD mura defect detection, on the other hand, highlights the advantage of robustness to 

noise of the CMRT-based method which showed better performance than the curvelet-based 

method; because the curvelet transform is developed for sparse representation of smooth regions 

separated by smooth boundaries, while there is no clearly distinctive boundaries of the mura 

defects which are of extremely low contrast. 
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4.0  PROSTATE CANCER CLASSIFICATION 

Prostate cancer is one of the most frequently diagnosed cancers and ranks the second among the 

cancer deaths of men in the United States [48]. One of the most reliable detection methods of 

prostate cancer is the examination of prostate histological specimens under a microscope by 

pathologists. The histological grading of prostate cancer tissue is assigned according to the 

Gleason grading system [49][50]. It is based on microscopic tumor patterns assessed by 

pathologists while interpreting the biopsy specimen. The Gleason grading consists of five basic 

tissue patterns that reflect the degree of loss of normal glandular structure caused by the cancer. 

The grade, ranging from 1 to 5, increases with the increasing level of malignancy, as illustrated 

in Figure 19. In essence, the Gleason grade characterizes the degree of resemblance of a tissue 

under examination to the normal tissue. Grade 1 designates a well-differentiated tissue having 

the highest degree of resemblance to the normal tissue, and grade 5 designates a very poorly 

differentiated tissue showing the drastic departure from the normal tissue pattern. The final 

Gleason score given to urologists is the sum of the most and the second most predominant 

grades seen in the prostate tissue.  
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Figure 19 The Gleason grading system diagram by D.F. Gleason, M.D 

 

Examples of prostatic adenocarcinoma for Gleason grade 2 to 5 are shown in Figure 20. 

In Figure 20(a), stroma, which is the fibromuscular tissue, clearly surrounds gland units, each of 

which is made of epithelial cells around a lumen; this retains to Gleason grade 2, where the 

glands are still round-shaped and are nearly uniformly distributed. Figure 20(b) is of Gleason 

grade 3, where glands are shown with an irregular arrangement due to the progress of cancer. 

Figure 20(c) illustrates Gleason grade 4; as cancer gets worse, epithelial cells replicate 

irregularly and tend to occupy lumen areas. Figure 20(d) shows Gleason grade 5, where lumens 

and stroma become virtually disappeared. 
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(a)                                                                         (b) 

  

(c)                                                                         (d) 

Figure 20 Examples of prostatic adenocarcinoma, (a) Gleason grade 2, (b) Gleason grade 3, (c) Gleason grade 4, 

and (d) Gleason grade 5, courtesy of WebPathology.com 

 

Because human visual grading is very time-consuming and also subject to inter- and 

intra-observer variations, the development of machine vision techniques in aiding pathologists 

to analyze prostate tissue images and detect cancer in different stages has been in steady 

progress during the past decade. Applications of image texture analysis to computer-aided 

Gleason grading of prostate cancer tissues have been reported since 2003 [51-64]. Wavelet and 
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multiwavelet transforms, fractal analysis, and texton forest / random tree have been utilized for 

texture feature extraction and classification in studies of automated Gleason grading [51-55][57-

58][60-64].  

As the malignancy of the prostate cancer is manifested by the loss of the normal 

glandular architecture (i.e. shape, size, and differentiation of the glands), it is appealing to apply 

the cardinal multiridgelet transform that has the excellent directional selectivity to represent the 

glandular architecture effectively. We thus propose to explore the application of the developed 

cardinal multiridgelet transform technique to extract tissue texture features for training a 

Gaussian-kernel support vector machine to aid the Gleason grading. 

The biopsy Gleason score is the sum of the primary grade (representing the majority of 

tumor cells) and the secondary grade (assigned to the minority of the tumor cells), and is a 

number ranging from 2 to 10. The higher the Gleason score, the more aggressive the cancer is 

likely to act and the worse the patient’s prognosis will be. The primary Gleason grade has to be 

greater than 50% of the total tissue pattern seen. The secondary Gleason grade has to be less 

than 50%, but at least 5% of the tissue patterns seen. 

In reality, the primary Gleason grades 1, 2 and 5 are rarely used in clinical situations due 

to their uncommonness [65], as a result, the interface between grade 3 and 4 (or Gleason score 6 

and 7) is recognized as the boundary between the low-grade and the high-grade cancer, and it is 

there that most disagreements arise in second-opinion consultations. Attention to the Gleason 

grading and scoring has been focused on all patients with a Gleason score of 6 (Primary 3 and 

Secondary 3 (P3S3)), 7 (Primary 3 and Secondary 4 (P3S4), or Primary 4 and Secondary 3 

(P4S3)), or 8 (Primary 4 and Secondary 4 (P4S4)). The presence of a secondary grade 4 is 

sufficient to label a cancer as of high grade overall [65]. Proper grading is a key to predict the 
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patient’s prognosis and to provide adequate prescription for treatment. The objective of the 

study here is to explore the use of the cardinal multiridgelet transform (CMRT) to aid the 

classification between Gleason grade 3 and grade 4. 

4.1 METHODS 

The multiridgelet-based methodology for multiresolution texture feature extraction from 

prostate pathological images in described below. Non-linear support vector machines are 

developed for classification of Gleason grade 4 versus Gleason grade 3. 

4.1.1 Prostate cancer image database 

Prostate cancer images utilized in this study is the Tissue Microarray (TMA) 471 from the 

Pathology/Urology Departments of the Johns Hopkins University (under the courtesy of Dr. R. 

Veltri), that consists of 41 cases of patients with 2 needle biopsies per each patient, resulting in 

a total of 82 images of prostate specimens. Table 4 summarizes the number of images per each 

Gleason score. Note that P3S4 and P4S3 are separately listed for our study. Due to the limited 

quantity of sample in database, only a small number of features can be used in designing a 

classifier. 
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Table 4 Number of samples per each Gleason score in TMA-471 database. 

 

 

 

4.1.2 Feature extraction from cardinal multiridgelet packets 

As mentioned earlier, the merit of the cardinal multiridgelet transform (CMRT) is its directional 

selectivity, cardinality, approximate translation invariance and approximate rotation invariance 

properties. The ability to localize piecewise line (curvilinear) components is a key aspect in 

image texture classification problems. In our case of prostate cancer tissue image classification, 

it is important to localize directional components specifying structural textures of gland units 

and lumina, but it is not necessarily to know where they are actually directed. Therefore, in this 

study, CMRT coefficients are not partitioned in direction but pooled together all directions in 

each subband. On the other hand, more detailed decomposition in frequency is taken to 

distinguish the degree of disruption of the gland units; hence, multiwavelet packets are utilized 

in the study. 

The CMRT packet decomposition of prostate cancer tissue image is developed as 

follows. The three-scale packet decomposition is taken in each direction of the Radon 

Gleason score Number of samples 

6 (P3S3) 16 

7 (P3S4) 18 

7 (P4S3) 12 

8 (P4S4) 32 

9 (P4S5) 4 
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coefficients. As a result, there exist 8 packets for each of the two multiridgelet ( r = 2 ) channels. 

Packet index is frequency ordered from 0 to 7, 0 indicates the packet of the lowest frequency 

band, and 7 for the highest frequency band. As discussed in Chapter 2, the 2-channel CMRT 

coefficients are formed as complex coefficients where coefficients in channel 1 are regarded as 

the real part and in channel 2 as the imaginary part.  

Let the CMRT packet coefficients from channel 1 be denoted as WCMRP0,p  and those from 

channel 2 as WCMRP1,p  where p∈ [0,, 7]  denotes the packet index. The magnitude of the 

complex CMRT packet coefficient is given by 

  

WCMRP,p = WCMRP0,p
2
+ WCMRP1,p

2
.     (37) 

 

For each packet, variance σ 2
p =σ

2 WCMRP,p( )  and entropy sp = s WCMRP,p( )  are computed. 

Since p∈ [0,, 7]  the maximum possible number of features is sixteen. Figure 21 show 

CMRT packet decomposition and index allocation of both channels. However, not all of the 

features can be considered in the classifier design due to the limited number of training samples 

available. Feature vector dimension must be reduced in order to train a reliable support vector 

machine yet preventing the occurrence of the over-fitting phenomena. 
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Figure 21 CMRT packet 3-scale decomposition. 

 

 

For comparison purpose, similar experiments were performed with feature extraction 

based upon the curvelet approach. The Curvelab Toolbox software is used for the curvelet 

transform [44]. Three-scale decomposition was taken. For each scale, variance and entropy 

features were calculated from curvelet coefficients for each orientation, and then averaged over 

all direction for each feature. Thus, the number of features for curvelet method was 8. 

4.1.3 Non-linear support vector machine classifier  

A preliminary study on feature sets from the tissue images showed that they are not linearly 

separable. So a non-linear classifier must be considered. Let the 2-class feature vectors 

xi;i =1,2,,N{ } , where N  is the number of training samples, be mapped into a higher 
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dimensional space under a non-linear mapping φ : x→ y  such that y
i
= φ xi( );i =1,2,,N{ }  

become linearly separable, and let  

 

g y( ) = wT ⋅ y+ b = wT ⋅φ x( )+ b  

 

be a discriminant function with g y( ) > 0  for x  belongs to the class of Gleason grade 4 and 

g y( ) < 0  for x  belongs to the class of Gleason grade 3. 

To form a support vector machine (SVM) is to find the weight vector w  and threshold 

weight b  so that the hyperplane g y( ) = w ' y+ b = 0  in the y -space will have the maximum 

margin of separation for the given training data. Let zi  designate the class index of the ith 

training pattern yi ( or xi ), zi =1  for patterns of Gleason grade 4, and zi = −1  for patterns of 

Gleason grade 3. Then 

 

zi w ' yib( ) ≥1 , i =1,2,,N( ) , 

 

and 1
2
w 2  is to be minimized. 
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It becomes an optimization problem to find w  and b  for minimizing the criterion 

function J w,b,α( )  where αi ≥ 0{ }  are the associated Lagrange multipliers for the constraint 

zi w ' yi + b( )−1≥ 0 . Thus results in a non-linear SVM classifier as shown in Figure 22, where 

the non-linear discriminant function is given by 

 

g y( ) = αiziφ
T xi( )φ x( )+ b

i=1

Ns

∑ = αiziK(x, xi )+ b
i=1

Ns

∑  

 

and K x, xi( )  denotes a non-linear kernel  

 

K x, xi( ) = φ x( ),φ xi( ) = φT xi( )φ x( ) ,  

 

Ns  is the number of support vectors Ns < N( )  and support vectors are the training patterns that 

lie on the canonical surfaces w 'φ xi( )+ b = ±1  corresponding to αi > 0 . In this study, the 

Gaussian Radial Basis Function was used as the kernel function, 

 

K x, xi( ) = exp −
x − xi

2

2σ 2

"

#
$
$

%

&
'
' . 

     

The SVM and Kernel Methods Matlab toolbox was used for training our SVM classifiers [66]. 



 76 

 

Figure 22 The non-linear support vector machine. 

 

 

4.1.4 Strategy in classifier design and cross-validation test  

Since we have a relatively small number of sample images and unbalanced datasets in the sense 

of unequal number of images per grade, we have drawn balanced datasets and developed three 

classifiers as described below. The leave-one-out cross-validation was used for the case of small 

number of training samples. While there are 32 samples of P4S4, there are only 16 P3S3 

samples; to form a balanced training set for SVM, we took 16 samples from each class. Later, 
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we added P3S4 samples and P4S3 samples into the pools for grade 3 and grade 4 respectively, 

to expand to 34 samples per class for training another classifier. 

Cross validation is used to estimate the generalization capability of a trained classifier. 

Under cross-validation, the training data are divided into k  disjoint parts. Take one part out and 

train the classifier by k −1  parts and then test it by the taken-out part. This is repeated for all k  

parts, and the test results are arranged. When k  is equal to the number of training samples, it is 

known as the leave-one-out (LOO) cross-validation. LOO cross-validation is suitable when the 

available training sample size is very limited, as it gives an indication how likely a small 

perturbation in the training data may affect a substantial change in the fitted model. In this 

study, the remaining P4S4 samples were utilized as a testing set. Even though it was a single-

class testing, nevertheless it added some information to the LOO cross-validation result. 

The pixel resolution in TMA-471 database gives each image an array of 1650x1650 

pixels, however, the tissue region on the each image is in a circular area. To extract features 

from each sample image, we took an array of 768x768 pixels from the center part of the image, 

which is sufficient to contain the prostate cancer cells architectural information. Then 

subdivided into 9 smaller blocks, each of 256x256 pixels, as shown in Figure 23.  
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Figure 23 Subdividing prostate cancer images 

 

 

Examine the output within each block, it appears to cover the fibroglandular structures 

of interest, including gland units, lumina, and stroma. Each block was processed by the cardinal 

multiridgelet transform. Features were extracted from each block for consideration in 

developing SVM classifiers for discriminating Gleason grade 3 versus grade 4. Three classifiers 

have been developed based on features selected and the adoption of training samples. 
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Classifier A: Images of grade P3S3 and P4S4 are regarded as having homogeneous 

characteristics in various regions of an image, and texture feature extracted 

from each of the 9 patches (9 blocks of 256x256 subimages) may give a 

representative feature vector for the same Gleason grade of that image. The 16 

sample images of P3S3 and 16 sample images of P4S4 may provide 144 

(16x9) training patterns for each class. This will allow us to select sufficient 

number of features for training a RBF SVM classifier. The classifier will be 

validated with the 9-fold cross-validation and tested by the remaining 16 P4S4 

images (with 144 testing patterns). 

Classifier B: Each feature extracted from a patch is averaged over the 9 patches of an image 

to give a feature vector for that sample image. In this case, only 32 training 

patterns are available. Thus, the number of features used must be limited to 

not more than 3 or 4. The trained classifier will be validated with the LOO 

cross-validation technique and tested by 16 patterns from the remaining 16 

images. 

Classifier C: Add 18 sample images of P3S4 into the pool of 16 sample images of P3S3 to 

form a set of 34 training samples of class P3 (primary Gleason grade 3), and 

combining 12 sample images of P4S3 with 22 sample images of P4S4 to form 

a set of 34 training samples of class P4 (primary Gleason grade 4). Features 

are averaged over 9 patches in an image, as done in Classifier B. There are 68 

training samples available, thus, more features may be used in this case for 

discriminating class P3 and class P4. The classifier will be validated with the 

LOO cross-validation and tested by 10 remaining samples of P4S4. 
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4.2 EXPERIMENTAL RESULTS 

4.2.1 Classifier A 

Six features were selected: four variance features from multiridgelet packets 0, 1, 2, and 3 and 

two entropy features from packets 4 and 6. x = v0,v1,v2,v3, s4, s6( )T  Note that the packet index is 

frequency indexed. 144 patch-based training patterns for P3S3 and 144 training patterns for 

P4S4 were used to train the classifier of RBF SVM. The parameter of the Gaussian kernel was 

σ = 0.28 . The SVM has 115 support vectors. Cross-validation was performed with the 9-fold 

method where the 9 patterns associated with the same image were pulled out for each time. The 

testing set contains of 144 patterns from 10 P4S4 images. 

The training and testing result is given in Table 5. The 9-fold cross-validation test was 

75%, and the classification test was 73.61%. This result was based on the individual patch in an 

image. It is encouraging to note that the classification of an image should be made on the basis 

of the majority (6-to-3) decision of 9 patches in the image, the testing accuracy would be up to 

90%. For comparison, a similar RBF SVM classifier based on the curvelet method using 8 

features gave 54.86% 9-fold cross-validation accuracy and 65.63% testing set accuracy. The 

support vectors, weights wi =αizi( ) , and threshold of the RBF SVM Classifier A are listed in 

Table 8 and Table 9 in Appendix A. 

The area under ROC (AUC) curve and its 95% confidence interval based on 9-fold 

cross-validation test were determined using DBM-MRMC software with PROPROC fit. The 

ROC fitting curves are shown in Figure 24. AUC of the CMRT-based classifier is significantly 

higher than that of the curvelet-based one well above 95% confidence interval. 
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Table 5. Training and testing results of RBF SVM Classifier A for prostate cancer Gleason grade 3 versus grade 4, 

the result of the cardinal multiridgelet-based method listed in the first row and that of the curvelet-based method is 

in the second row. 

 SVM Sigma # SV Training 9-fold CV AUC Test 

CMRT 0.28 115 100.00% 75.00% 0.8857 
(0.8518, 0.9197) 

73.61% 

Curvelets 0.25 121 100.00% 54.86% 0.7011 
(0.6551, 0.7471) 

65.63% 

 

 

 

Figure 24 ROC curves of the validation test results of Classifier A  

for prostate cancer Gleason grade 3 versus grade 4 with PROPROC fitting method. 
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4.2.2 Classifier B 

In this case, features from 9 patches (blocks) were averaged for each image, only 32 testing 

samples (16 P3S3 and 16 P4S4) were available. Due to the small population of training 

samples, only three features were selected: variance features from multiridgelet packets 1 and 2, 

and entropy features from packet 6, x = v1,v2, s6( ) . The RBF SVM Classifier B was trained. The 

Gaussian kernel parameter was chosen as σ = 0.15 . The SVM has 17 support vectors. A 

curvelet-based SVM Classifier B was also studied for comparison where two variance features 

from two lower frequency scales and two entropy features from two higher frequency scales 

were selected. For both classifiers, LOO cross-validation results and 10 P4S4 test results are 

given in Table 6; as shown, the performance of the CMRT-based Classifier B was remarkable 

with the test accuracy of 100%. The AUC measure was 0.9651 with a 95% confidence interval 

of (0.9090, 1.0000) which is well above the AUC value 0.8316 of curvelet-based classifier. 

Support vectors, weights, and threshold of SVM for both CMRT-based and curvelet-based 

Classifier B are listed in Table 10 and Table 11 in the Appendix A. Superior performance of the 

CMRT-based Classifier B is also demonstrated by the area under ROC curves shown in Figure 

25. 
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Table 6. Training and testing results of RBF SVM Classifier B for prostate cancer Gleason grade 3 versus grade 4. 

 SVM Sigma # SV Training LOO CV AUC Test 

CMRT 0.15 17 100.00% 93.75% 0.9651 
(0.9090, 1.0000) 100.00% 

Curvelets 0.3 15 100.00% 81.25% 0.8316 
(0.6671, 0.9961) 70.00% 

 

 

 

Figure 25 ROC curves of LOO validation test of Classifier B  

obtained by using PROPROC fitting (with 16 P3S3 and 16 P4S4) 
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4.2.3 Classifier C 

In consideration of increasing the size of training samples from our available database, 18 

images of P3S4 were added to the pool of 16 images of P3S3 to form a set P3 training samples 

of grade 3, 12 P4S3 images were added to 22 P4S4 images to form a set P4 of training samples 

of grader 4. 10 remaining P4S4 images were taken as testing samples. Because there involved a 

number of borderline samples, a stable classification boundary may be more difficult to find. 

Six selected features were from variance features from multiridgelet packets 0, 1, 2, and 3 

again, and two entropy features from packets 1 and 2, which were found more discriminative 

than those from packets 4 and 6, x = v0,v1,v2,v3, s1, s2( ) . Gaussian kernel σ  was chosen as 0.24. 

The successful training gave 42 support vectors. The LOO cross-validation accuracy was 

86.76% and the test using the 10 P4S4 samples was 90%, which is 9 out of 10 correct 

classification of the samples. The ROC curves of the validation test was shown in Figure 26 and 

AUC=0.8802. A curvelet-based 8-feature Classifier C was also trained and tested, the numbers 

are given in Table 7. Support vectors, weights, and threshold of SVM for both CMRT-based 

and curvelet-based Classifier C are listed in Table 12 and Table 13 in Appendix A. 
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Table 7 Training and testing results of RBF SVM Classifier C for prostate cancer Gleason grade 3 versus grade 4. 

 SVM Sigma # SV Training LOO CV AUC Test 

CMRT 0.24 42 100.00% 86.76% 0.8802 
(0.7806, 0.9799) 

90.00% 

Curvelets 0.3 45 100.00% 72.06% 0.7451 
(0.6219, 0.8683) 

40.00% 

 

 

  

 

Figure 26 ROC curves of LOO validation test of Classifier C  

obtained by using PROPROC fitting (with 34 P3 and 34 P4 cases).  
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4.3 DISCUSSION 

The three classifiers presented together show the high potential of the CMRT-based texture 

classification of prostate cancer histological images for classifying Gleason grades. In reference 

to the results reported in the literature, it is worthy to note the recent contributions by Doyle et 

al. [57], by Huang et al. [61], by Khurd, et al. [63], and by Nguyen et al. [64]. For classification 

of Gleason grade 3 and grade 4, the work of Doyle et al. was based on the use of 11 training 

samples of grade 3 and 7 training samples of grade 4, which is a smaller training set than what 

we have use. Huang considered a 4-class (grades 1-2, 3, 4 and 5) RBF SVM classifier using 5 

fractal dimension based features, the machine was trained with 50 samples of grade 1-2, 72 

samples of grade 3, 31 samples of grade 4, and 52 samples of grade 5, the overall 4-class test 

accuracy was 94.6% but specific test results for classification between grade 3 and grade 4 was 

not given. Khurd et al. used the random texton forest approach and gave a high testing accuracy 

of their RBF SVM classifier. It was trained with 15 samples of grade 3 and 15 samples of grade 

4. The test accuracy was 94.0% with AUC=0.976 for testing with 10 samples of grade 3 and 35 

samples of grade 4. Nguyen et al. extracted 9 statistical features from segmented regions and 

trained a linear SVM classifier with 28 samples of grade 3 and 20 samples of grade 4, the two-

class classification accuracy was 87.3%. Our CMRT-based classifier B performed remarkably 

well but for a limited test set of only 10 samples of P4S4. Nevertheless, it presents a great 

impetus to develop further with a larger set of training and testing samples. Gland units and the 

corresponding cells form a unique structure that determines the cancer grade of the prostate 

histological images. The approximate translation invariance and rotation invariance properties 

of the CMRT plus the finer frequency partition of the CMRT packet decomposition may give a 
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more flexible feature extraction for achieving better classification accuracy than the curvelet 

transform based method. 
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5.0  CONCLUSIONS AND SUGGESTIONS 

One major contribution in this dissertation is the development of the cardinal multiridgelet 

transform (CMRT) for texture analysis where the cardinal multiwavelets utilized in the ridgelet 

transform are considered as nearly an approximate Hilbert transform pair.  This is supported by 

the computational result that Fourier transforms of the two cardinal scaling filters have almost 

the same magnitude response in their pass-band and the difference between their group delays 

and between their phase delays in the pass-band are nearly one half sample, the similar result 

also holds for two cardinal wavelet filters. In two experiments, when the pair of decomposition 

coefficients from the CMRT at each scale level are combined in the sum of squares form, they 

were shown to have nearly the same energy regardless the shift of the input signal.  This leads 

to our claim that the CMRT is nearly approximately shift invariant.  This enables the CMRT to 

gain three advantages, which will be advantageous for texture analysis.  First, a cardinal 

orthogonal multiscaling function assures to achieve minimal aliasing error during signal 

decomposition, which will result in a more faithful texture description in the transform domain.  

Secondly, because the pair of CMRT coefficients from two channels may be regarded as 

forming a complex coefficient, we can achieve approximate translation invariance of CMRT.  

Thirdly, a translation in image plane is reflected to a sinusoidal shift in variable ρ in the Radon 

domain and a rotation of an off-center object also results in a sinusoidal shift in variable ρ in 

addition to a shift in variable θ; as the CMRT is almost translation invariant, thus it is also 



 89 

approximately rotation invariant.  The CMRT also inherits some useful properties available in 

the single ridgelet transform and the Radon transform, such as highly anisotropic directional 

selectivity and robustness to noise.  These are its merits in image texture analysis.  Three studies 

on its applications have been conducted: texture database retrieval, LCD mura defect detection, 

and prostate cancer tissue image classification, all showed superior performances in comparison 

to those using curvelet transform, or ridgelet transform or Gabor wavelet transform. 

The second major contribution of the thesis is the machine classification of prostate 

cancer histological images on discriminating Gleason grade 3 and grade 4 which is important in 

clinical decision affecting prognosis and treatment.  The cardinal multiridgelet packet transform 

was applied in texture feature extraction from each patch of image data.  Take nine patches to 

cover a major portion of each specimen image, the average of the nine sets of patch features 

were taken as the image features which were then selected, Sample images were obtained from 

the issue microarray TMA-471 under the courtesy of Johns Hopkins Medical School, 16 images 

of P3S3 ad 16 images of P4S4 were used as training samples.  One support vector machine with 

Gaussian kernel was successfully trained and tested by the leave-one-out cross validation giving 

an accuracy of 93.75% which is very competitive among the currently reported results.      
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5.1 SUGGESTIONS FOR FURTHER RESEARCH 

The following two problems are suggested for further research: 

1. More analysis and evaluation of the CMRT on texture analysis in comparison to 

dual-tree complex ridgelet transform. -- The use of oversampled CMRT and the 

trade-off between cardinality and symmetry of wavelets in texture feature extraction 

are worthy to be investigated.   

2. Further development on the automatic classification of prostate cancer Gleason 

grading. -- When more sample images of Gleason grade 3 and grade 4, and sample 

images of other grades, are available in the database, more features can be used in 

the classifier, which will be retrained to have more accuracy and reliability.   The 

CMRT-based texture segmentation of prostate histological images will be 

investigated to facilitate the recognition and classification of the transitional phase 

P3S4 and P4S3.  Multi-class machine can be developed toward the goal of providing 

the machine-aided Gleason grading in pathology laboratories.   
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APPENDIX A 

RADIAL BASIS FUNCTION NON-LINEAR SUPPORT VECTOR MACHINE 

PARAMETERS FOR PROSTATE CANCER CLASSIFICATION STUDY 
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Table 8 Parameters of the CMRT-based RBF SVM Classifier A for prostate cancer Gleason grade 3 versus grade 4 

(16 P3S3 and 16 P4S4, 9 patches per each image). 

(a) 6-feature support vectors 
Index Support Vector Index Support Vector 

3 0.4415 0.2965 0.2538 0.3030 0.6806 0.4674 162 0.5880 0.4164 0.4226 0.3687 0.7832 0.2482 
5 0.6610 0.4749 0.3131 0.2942 0.7099 0.6431 163 0.6313 0.6446 0.5799 0.6983 0.8089 0.4456 
6 0.3875 0.3636 0.3033 0.3655 0.6695 0.6099 164 0.2682 0.4342 0.2931 0.3034 0.6531 0.6036 
8 0.2717 0.3245 0.3362 0.2360 0.7754 0.4001 165 0.3980 0.3231 0.2431 0.2438 0.6800 0.5113 

12 0.5088 0.1254 0.0876 0.0660 0.6974 0.5963 168 0.5019 0.6898 0.4757 0.5127 0.7335 0.5505 
15 0.3712 0.2802 0.2501 0.1369 0.7691 0.4334 169 0.4983 0.7154 0.5508 0.5753 0.6617 0.6964 
18 0.2474 0.3233 0.3834 0.3898 0.7091 0.5425 170 0.2486 0.4886 0.5535 0.4702 0.7582 0.5783 
20 0.2546 0.3769 0.5278 0.3432 0.8289 0.0000 171 0.6035 0.4618 0.2614 0.3309 0.5204 0.7647 
21 0.4986 0.6772 1.0000 0.8688 0.9341 0.1216 172 0.6653 0.9182 0.7893 0.7276 0.8012 0.4907 
23 0.3027 0.3502 0.4797 0.4055 0.8117 0.1306 174 0.2652 0.3314 0.1782 0.2682 0.5897 0.7848 
26 0.3349 0.2888 0.4082 0.3331 0.8031 0.1873 178 0.6534 0.9649 0.6987 0.8281 0.6838 0.6278 
27 0.3974 0.4446 0.5847 0.4827 0.7771 0.2293 179 0.8503 0.8454 0.3307 0.5195 0.4080 0.8750 
29 0.4972 0.3374 0.0796 0.1303 0.6139 0.6799 180 0.7527 0.4628 0.1481 0.2757 0.5804 0.7117 
32 0.4439 0.3559 0.3484 0.2454 0.7358 0.4654 181 0.3513 0.3976 0.3445 0.3693 0.6707 0.5063 
35 1.0000 0.5197 0.4361 0.3642 0.6952 0.4153 183 0.4693 0.4374 0.5108 0.4634 0.7897 0.1439 
41 0.3349 0.1977 0.2895 0.1818 0.8755 0.2612 184 0.4894 0.6871 0.5144 0.6654 0.6888 0.4648 
44 0.3690 0.4404 0.4836 0.3699 0.8596 0.1746 186 0.2040 0.4075 0.5170 0.3746 0.8285 0.2038 
53 0.2552 0.2556 0.3569 0.2928 0.8525 0.2549 188 0.3916 0.4633 0.3564 0.4670 0.6789 0.5819 
54 0.3292 0.2039 0.2280 0.2354 0.7632 0.6015 190 0.5341 0.4484 0.3441 0.2839 0.5592 0.6329 
55 0.6092 0.7162 0.0264 0.2484 0.0000 0.9492 192 0.8255 0.3531 0.3491 0.2683 0.6903 0.3971 
57 0.3710 0.6281 0.6487 0.4508 0.6836 0.6373 194 0.5745 0.5102 0.7202 0.5907 0.7355 0.3258 
58 0.5332 0.7180 0.3214 0.3943 0.4909 0.8821 196 0.5398 0.5813 0.3730 0.2835 0.5115 0.7834 
60 0.7543 0.4397 0.1649 0.2017 0.5422 0.8135 208 0.2361 0.3130 0.2919 0.2467 0.6416 0.5600 
61 0.5889 0.4774 0.3253 0.3340 0.6932 0.6500 209 0.1576 0.2794 0.3530 0.2430 0.8283 0.3370 
63 0.5331 0.6825 0.5395 0.5821 0.7150 0.5204 210 0.1747 0.2056 0.4038 0.2477 0.9072 0.2018 
64 0.4150 0.3494 0.1229 0.1817 0.6751 0.7299 214 0.2609 0.2928 0.2223 0.1851 0.6330 0.6206 
65 0.3929 0.3783 0.2547 0.1983 0.6444 0.5787 215 0.2396 0.3078 0.3971 0.2798 0.8193 0.1292 
67 0.2918 0.3687 0.2523 0.2265 0.7604 0.6662 216 0.2843 0.2735 0.3141 0.2626 0.8147 0.3196 
68 0.6589 0.2354 0.1460 0.1694 0.5238 0.8390 217 0.3596 0.2231 0.2734 0.2466 0.7280 0.4022 
69 0.3141 0.3712 0.3058 0.2918 0.5738 0.7249 218 0.2521 0.1324 0.2394 0.1939 0.7327 0.6210 
71 0.9319 0.5989 0.2591 0.3529 0.4664 0.9013 219 0.3007 0.1414 0.1510 0.1752 0.7615 0.3958 
76 0.7061 0.6007 0.3406 0.3552 0.6598 0.7070 220 0.3883 0.1811 0.2343 0.2135 0.7117 0.4994 
79 0.1569 0.2217 0.0098 0.0000 0.5368 0.8987 222 0.3466 0.2022 0.1961 0.2948 0.7835 0.5203 
80 0.1378 0.3495 0.1392 0.1586 0.5441 0.8161 223 0.4143 0.2284 0.4106 0.3156 0.7635 0.2596 
82 0.3061 0.2525 0.1067 0.1797 0.6871 0.6585 225 0.2403 0.2968 0.3558 0.3615 0.6632 0.5425 
88 0.2783 0.3140 0.1147 0.1522 0.5636 0.8255 239 0.4962 0.8019 0.8669 0.7022 0.6977 0.5141 
90 0.2995 0.2926 0.2153 0.2127 0.6418 0.6114 240 0.4279 0.5833 0.6772 0.6864 0.7815 0.2445 
92 0.4486 0.3013 0.2739 0.2207 0.7698 0.3672 246 0.8527 0.3215 0.3635 0.3145 0.6918 0.3780 
95 0.3383 0.2619 0.2976 0.2751 0.8299 0.3261 250 0.5592 0.4796 0.3220 0.2563 0.4822 0.7226 
97 0.4617 0.2988 0.4445 0.2483 0.8183 0.4194 252 0.4456 0.6098 0.6196 0.4682 0.8051 0.3104 

102 0.4799 0.3972 0.3378 0.2721 0.7541 0.4015 253 0.2945 0.3214 0.3358 0.2308 0.7655 0.3554 
103 0.2662 0.2954 0.4258 0.2581 0.8456 0.3122 254 0.2981 0.4157 0.5124 0.4181 0.8306 0.1842 
104 0.2690 0.3145 0.3818 0.2455 0.7925 0.3287 255 0.3384 0.3939 0.4769 0.3612 0.8568 0.1478 
109 0.2435 0.1524 0.1725 0.2101 0.7365 0.4707 256 0.3060 0.2953 0.4391 0.2953 0.7736 0.3348 
112 0.3289 0.2248 0.2318 0.2252 0.7917 0.4328 261 0.2558 0.2898 0.5041 0.3394 0.8760 0.1784 
113 0.3005 0.3602 0.5036 0.4468 0.8487 0.4398 263 0.2818 0.1872 0.3992 0.2856 0.8669 0.2472 
115 0.4009 0.4935 0.3655 0.4247 0.7669 0.4093 265 0.2982 0.4025 0.5049 0.3081 0.7152 0.3585 
121 0.3219 0.2909 0.2172 0.2333 0.6902 0.4567 267 0.3092 0.2749 0.3704 0.2223 0.8483 0.3884 
122 0.3158 0.2483 0.3508 0.2760 0.6946 0.3642 268 0.2757 0.2088 0.3414 0.2413 0.7119 0.2467 
125 0.4056 0.3448 0.3305 0.3125 0.6682 0.5505 272 0.3700 0.3350 0.3007 0.3115 0.7028 0.7356 
127 0.2559 0.4175 0.5193 0.4002 0.8665 0.2693 273 0.3638 0.3126 0.1167 0.1542 0.6833 0.6647 
134 0.2569 0.4441 0.6245 0.4851 0.8962 0.1712 280 0.3481 0.2644 0.3178 0.2891 0.7830 0.4185 
137 0.1216 0.3034 0.2677 0.2219 0.6627 0.6120 282 0.5983 0.2799 0.1926 0.1026 0.6296 0.7155 
142 0.2149 0.3371 0.3391 0.3236 0.8643 0.3301 285 0.3021 0.2010 0.1315 0.1569 0.6931 0.5495 
144 0.2833 0.4305 0.3954 0.4168 0.7621 0.4060 286 0.2651 0.3986 0.4720 0.4268 0.8613 0.3619 
150 0.5878 0.5760 0.3822 0.4250 0.8124 0.3805 287 0.1771 0.2731 0.2629 0.2611 0.7781 0.5308 
156 0.6016 0.4859 0.3836 0.3565 0.7473 0.5775 288 0.3113 0.3534 0.2693 0.1888 0.7140 0.5553 
159 0.4361 0.5675 0.5862 0.4883 0.9105 0.1218        

Pattern index 1     to 144 : Gleason grade 3 
        145 to 288 : Gleason grade 4  
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(b) weights                                                                      (x e+03) 
Index 3 5 6 8 12 15 18 20 21 23 26 27 29 

Weight -1.7045 -0.0708 -0.8672 -5.5544 -0.1718 -0.9039 -2.4687 -0.2921 -0.0071 -0.4598 -0.5264 -0.3241 -0.1292 
Index 32 35 41 44 53 54 55 57 58 60 61 63 64 

Weight -1.2085 -0.0386 -0.2508 -1.5029 -2.8714 -1.3383 -0.0024 -0.1137 -0.0392 -0.051 -0.5457 -0.2484 -0.0437 
Index 65 67 68 69 71 76 79 80 82 88 90 92 95 

Weight -2.4211 -0.6366 -0.0505 -0.622 -0.006 -0.0265 -0.0405 -0.0085 -0.6944 -0.0152 -3.8746 -0.0702 -2.2009 
Index 97 102 103 104 109 112 113 115 121 122 125 127 134 

Weight -0.1593 -0.0792 -1.6184 -4.9936 -0.9071 -3.7085 -0.5391 -0.1436 -3.7563 -2.5568 -0.4161 -1.4447 -0.212 
Index 137 142 144 150 156 159 162 163 164 165 168 169 170 

Weight -0.8359 -0.3919 -0.65 0.0133 0.6157 0.1124 0.0568 0.0025 0.188 6.6755 0.0098 0.0917 0.2138 
Index 171 172 174 178 179 180 181 183 184 186 188 190 192 

Weight 0.0615 0.0023 0.5022 0.0047 0.0049 0.0523 0.9992 0.0988 0.0738 0.7105 0.2042 0.2021 0.0196 
Index 194 196 208 209 210 214 215 216 217 218 219 220 222 

Weight 0.0308 0.0523 0.9587 0.8071 0.1914 2.2615 0.1524 7.6189 2.5994 0.1649 0.642 0.0562 1.6538 
Index 223 225 239 240 246 250 252 253 254 255 256 261 263 

Weight 0.1362 2.4217 0.0072 0.0189 0.0169 0.1187 0.1527 5.8916 0.4578 2.0907 2.0973 0.5183 0.064 
Index 265 267 268 272 273 280 282 285 286 287 288   

Weight 0.4347 2.6601 0.2107 0.8508 0.6485 0.3953 0.2126 1.5787 2.0802 1.0506 2.5948   

 

(c) threshold 
threshold 
-0.1986 
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Table 9 Parameters of the curvelet-based RBF SVM Classifier A for prostate cancer Gleason grade 3 versus grade 

4 
 

(a) 8-feature support vectors 
Index Support Vector Index Support Vector 

4 0.6209 0.0409 0.2473 0.6400 0.4702 0.8099 0.5855 0.9703 125 0.5627 0.2044 0.2164 0.6189 0.4212 0.7284 0.3524 0.6918 
6 0.2292 0.0205 0.2848 0.6642 0.4763 0.7705 0.2807 0.7173 126 0.4441 0.4371 0.3105 0.6892 0.5088 0.7593 0.3449 0.6420 
7 0.5856 0.1533 0.3285 0.7050 0.5156 0.8284 0.5700 0.9213 129 0.2311 0.3486 0.1704 0.6436 0.3638 0.7612 0.1756 0.6070 
8 0.1636 0.0614 0.2399 0.6639 0.3544 0.7590 0.2845 0.7537 130 0.2280 0.2436 0.2362 0.7177 0.4205 0.8154 0.3384 0.8050 
10 0.3030 0.0102 0.3281 0.7726 0.6377 0.9387 0.4795 0.9524 131 0.2742 0.5578 0.1911 0.6431 0.3479 0.7319 0.2740 0.6871 
13 0.2908 0.0000 0.3665 0.6396 0.6031 0.8170 0.5076 0.8899 134 0.4017 0.6790 0.3839 0.8252 0.5153 0.8813 0.4276 0.8041 
16 0.3242 0.0409 0.4611 0.8000 0.5656 0.8852 0.5338 0.9030 143 0.2678 0.2521 0.2794 0.7227 0.3077 0.7245 0.2135 0.6177 
17 0.0116 0.0000 0.2971 0.5952 0.4611 0.7323 0.5000 0.8304 145 0.2863 0.0409 0.4215 0.7867 0.6637 0.9306 0.6033 0.9946 
18 0.0224 0.0614 0.4789 0.7381 0.4816 0.7451 0.2997 0.7109 146 0.3426 0.2198 0.3615 0.7391 0.5748 0.8762 0.6283 0.9393 
20 0.2459 0.1840 0.2845 0.7122 0.5584 0.8953 0.4554 0.8616 147 0.3460 0.1533 0.2206 0.6452 0.5507 0.8282 0.5058 0.8578 
21 0.2435 0.0102 0.5451 0.8208 0.9239 1.0000 0.6705 1.0000 150 0.4385 0.2828 0.2209 0.6644 0.4236 0.7933 0.3412 0.7955 
23 0.2345 0.0716 0.1894 0.6652 0.4906 0.8741 0.3671 0.8205 153 0.4381 0.2130 0.2253 0.6376 0.4803 0.8198 0.4285 0.8614 
29 0.0693 0.0102 0.0891 0.4770 0.2150 0.6287 0.1710 0.6342 156 0.1237 0.0920 0.2114 0.5790 0.3573 0.7083 0.2750 0.7231 
34 0.3279 0.0716 0.2194 0.6729 0.4568 0.8302 0.4778 0.9040 157 0.1916 0.1108 0.3095 0.7278 0.4935 0.8646 0.4329 0.8962 
43 0.3177 0.0409 0.1764 0.5854 0.4832 0.7994 0.4303 0.8499 159 0.4049 0.2794 0.2728 0.7444 0.5084 0.8750 0.4269 0.8739 
45 0.4226 0.3486 0.2235 0.6894 0.4680 0.8526 0.4533 0.8758 160 0.4368 0.1125 0.3013 0.6533 0.4718 0.8032 0.5147 0.9032 
48 0.3302 0.1586 0.2694 0.6873 0.4880 0.7987 0.5049 0.8282 165 0.2007 0.0614 0.2877 0.6944 0.3208 0.7229 0.1937 0.6505 
50 0.4995 0.3690 0.4281 0.8507 0.4686 0.8701 0.3994 0.8448 168 0.3986 0.0102 0.4079 0.7373 0.5266 0.8168 0.3828 0.7798 
51 0.2845 0.2334 0.2147 0.6107 0.4450 0.7629 0.5558 0.8347 169 0.6111 0.1636 0.4511 0.6215 0.6162 0.7128 0.6817 0.8096 
53 0.3648 0.3045 0.2178 0.6926 0.3791 0.8079 0.3410 0.8098 170 0.5891 0.5305 0.4800 0.7770 0.5786 0.7867 0.5627 0.7826 
54 0.1306 0.1279 0.2032 0.5530 0.3660 0.7086 0.4516 0.7775 171 0.9888 0.4852 0.2930 0.5959 0.3747 0.6822 0.3263 0.6232 
55 0.5510 0.0205 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 174 0.1418 0.0409 0.2140 0.5656 0.2546 0.5932 0.1920 0.5631 
56 0.5535 0.1902 0.1279 0.4522 0.0695 0.2848 0.0350 0.1788 176 0.4743 0.1415 0.3502 0.7213 0.5104 0.7977 0.3690 0.7088 
57 0.3509 0.0818 0.3684 0.6666 0.5802 0.7588 0.4280 0.7095 179 0.6752 0.0614 0.3773 0.5505 0.4501 0.5843 0.2860 0.4501 
60 0.5743 0.1022 0.1660 0.5438 0.3781 0.6585 0.2915 0.6019 180 0.6130 0.1006 0.2021 0.5349 0.3995 0.6536 0.4086 0.6819 
61 0.6783 0.2726 0.3509 0.6950 0.5236 0.7267 0.3354 0.6823 181 0.3094 0.2248 0.2053 0.6654 0.3696 0.7425 0.2185 0.6045 
62 0.3723 0.0307 0.1741 0.5564 0.2550 0.5521 0.1790 0.4430 182 0.7848 0.2215 0.2884 0.7168 0.6156 0.8443 0.3543 0.7140 
63 0.4780 0.0716 0.4141 0.7179 0.6861 0.8331 0.4971 0.7946 183 0.6642 0.1636 0.2638 0.6808 0.5971 0.8773 0.4708 0.8387 
64 0.0878 0.0511 0.1533 0.5224 0.1973 0.5919 0.1697 0.6248 188 0.6107 0.4591 0.4462 0.7202 0.3921 0.7428 0.2233 0.6468 
65 0.1411 0.0511 0.2347 0.6171 0.2691 0.6628 0.1793 0.6111 189 0.6719 0.4870 0.2601 0.6734 0.4838 0.8197 0.4767 0.8357 
67 0.2005 0.1721 0.1452 0.5546 0.2991 0.6690 0.3852 0.7602 193 0.6420 0.3492 0.3215 0.6888 0.5372 0.7499 0.3277 0.5616 
68 0.8090 0.3101 0.1779 0.5394 0.2777 0.6136 0.2731 0.6353 196 0.7088 0.2027 0.1666 0.5562 0.3565 0.6660 0.2811 0.5492 
70 0.6701 0.1312 0.2533 0.5398 0.3569 0.6480 0.3500 0.7196 197 0.5442 0.2930 0.1687 0.6536 0.5445 0.9039 0.5348 0.8585 
71 0.9075 0.2044 0.2830 0.4411 0.3224 0.4967 0.3078 0.4701 198 0.8875 0.2930 0.3156 0.7041 0.6253 0.8614 0.6037 0.8813 
73 0.9309 1.0000 0.3145 0.6678 0.4168 0.6967 0.4383 0.7073 211 0.2058 0.3424 0.1980 0.6189 0.2758 0.6888 0.1196 0.5543 
74 0.7284 0.4104 0.2219 0.5662 0.3120 0.6355 0.3145 0.6198 214 0.3810 0.4529 0.2036 0.6055 0.3198 0.7189 0.1318 0.5715 
76 0.8472 0.3963 0.3999 0.6320 0.4840 0.6864 0.4061 0.7018 215 0.2056 0.3611 0.3286 0.7312 0.5211 0.8497 0.3612 0.7826 
80 0.3380 0.3900 0.2062 0.5595 0.2131 0.5664 0.1120 0.4772 221 0.0508 0.0511 0.1409 0.5458 0.4766 0.7858 0.3972 0.8083 
82 0.5413 0.4976 0.1712 0.6181 0.2457 0.6570 0.2683 0.6487 222 0.0280 0.0000 0.1434 0.5229 0.3798 0.7280 0.4363 0.7852 
90 0.7322 0.6092 0.2062 0.6725 0.3612 0.7594 0.2632 0.6616 225 0.0987 0.0511 0.2623 0.5844 0.4953 0.7796 0.4835 0.8064 
92 0.3584 0.1619 0.2109 0.6277 0.4109 0.7812 0.3697 0.7982 234 0.0501 0.0102 0.1028 0.5772 0.3637 0.7801 0.2897 0.7875 
94 0.3801 0.1636 0.2162 0.5997 0.6360 0.8357 0.6196 0.8755 243 0.2321 0.0307 0.8935 0.9120 0.9194 0.8986 0.3871 0.6749 
95 0.3590 0.1619 0.1542 0.5895 0.3972 0.8067 0.4030 0.8487 254 0.1866 0.1415 0.2425 0.6916 0.4638 0.8805 0.3606 0.8439 
98 0.5749 0.3628 0.3289 0.7497 0.5084 0.8682 0.4565 0.8679 255 0.1806 0.0716 0.2610 0.6945 0.5733 0.8784 0.4835 0.8815 
101 0.3416 0.2709 0.1484 0.6588 0.3638 0.8242 0.3893 0.8400 257 0.2582 0.0920 0.1168 0.5886 0.4384 0.8476 0.3455 0.8369 
103 0.3125 0.2317 0.1926 0.6456 0.4560 0.8316 0.4373 0.8228 258 0.1659 0.1431 0.2375 0.6876 0.4779 0.8597 0.3844 0.8495 
105 0.6868 0.2726 0.1882 0.6218 0.3536 0.7421 0.3210 0.7446 265 0.2062 0.0716 0.2143 0.6477 0.4997 0.8502 0.3080 0.7604 
106 0.5262 0.2436 0.1292 0.6104 0.3805 0.7982 0.3947 0.8145 268 0.3856 0.0920 0.0749 0.5739 0.4497 0.8611 0.3827 0.8257 
107 0.5149 0.3424 0.2096 0.6178 0.3650 0.7712 0.3669 0.8043 269 0.3049 0.0511 0.0770 0.5777 0.4534 0.8645 0.3765 0.8530 
109 0.0936 0.0409 0.1085 0.5618 0.3642 0.7575 0.3087 0.7634 272 0.0626 0.0000 0.3142 0.5450 0.4608 0.6301 0.4278 0.7166 
110 0.0338 0.0102 0.1498 0.5811 0.4208 0.7612 0.4044 0.8064 273 0.1540 0.0102 0.1239 0.5690 0.2035 0.6256 0.2105 0.6487 
111 0.4235 0.0307 0.2134 0.6179 0.4926 0.7790 0.5073 0.8313 275 0.1700 0.1415 0.0767 0.5065 0.2832 0.6731 0.3224 0.7473 
113 0.1218 0.0920 0.2842 0.6579 0.6230 0.8334 0.7050 0.9170 277 0.1032 0.1533 0.2477 0.6293 0.5023 0.7603 0.5249 0.8331 
114 0.1496 0.0614 0.0960 0.5559 0.2497 0.6940 0.2812 0.7432 279 0.3758 0.3355 0.1243 0.4710 0.2517 0.6797 0.4279 0.8574 
117 0.4299 0.1022 0.3301 0.7273 0.4123 0.7930 0.3392 0.7988 280 0.2648 0.1125 0.1936 0.6267 0.4302 0.7550 0.4396 0.7846 
119 0.3967 0.0511 0.0416 0.4556 0.2131 0.6232 0.1733 0.6069 282 0.6525 0.2607 0.1693 0.5691 0.3039 0.6789 0.3131 0.6781 
120 0.2481 0.0409 0.2510 0.6183 0.4304 0.7506 0.2519 0.6475 283 0.2179 0.2317 0.1873 0.6393 0.3511 0.7550 0.3645 0.7802 
121 0.1557 0.1125 0.1834 0.5930 0.4451 0.7724 0.3484 0.7581 286 0.2927 0.2027 0.4450 0.7550 0.5578 0.8204 0.6610 0.8981 
122 0.1534 0.1227 0.1743 0.6068 0.3896 0.7679 0.3148 0.7427 287 0.3218 0.3265 0.2480 0.6541 0.3724 0.7168 0.3887 0.7705 
123 0.2117 0.1533 0.3091 0.6623 0.6892 0.8160 0.3198 0.6796 288 0.6993 0.5430 0.1862 0.6637 0.2996 0.7262 0.2264 0.7085 
124 0.6518 0.3509 0.2793 0.6804 0.5636 0.8034 0.4384 0.7448          

Pattern index 1     to 144 : Gleason grade 3 
        145 to 288 : Gleason grade 4 
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(b) weights 
Index 4 6 7 8 10 13 16 17 18 20 21 23 29 

Weight -0.722 -111.208 -47.435 -127.746 -7.775 -25.658 -23.103 -48.862 -10.333 -187.116 -2.382 -428.745 -42.266 
Index 34 43 45 48 50 51 53 54 55 56 57 60 61 

Weight -17.430 -105.708 -59.797 -288.228 -3.774 -72.165 -58.472 -30.791 -2.467 -0.022 -8.926 -20.983 -10.973 
Index 62 63 64 65 67 68 70 71 73 74 76 80 82 

Weight -12.644 -6.798 -72.999 -264.088 -397.578 -29.935 -8.778 -0.579 -2.377 -2.197 -2.294 -16.698 -18.869 
Index 90 92 94 95 98 101 103 105 106 107 109 110 111 

Weight -24.085 -245.605 -36.764 -77.620 -64.426 -7.658 -57.401 -13.852 -10.056 -40.148 -249.866 -155.074 -64.726 
Index 113 114 117 119 120 121 122 123 124 125 126 129 130 

Weight -22.809 -137.659 -0.856 -16.950 -53.122 -556.694 -72.658 -16.313 -24.707 -73.060 -12.467 -86.326 -262.871 
Index 131 134 143 145 146 147 150 153 156 157 159 160 165 

Weight -1.816 -6.937 -68.737 10.673 22.117 206.324 190.933 11.595 426.853 16.145 172.269 147.411 155.793 
Index 168 169 170 171 174 176 179 180 181 182 183 188 189 

Weight 46.974 8.829 9.168 7.565 112.212 19.793 1.043 45.289 67.988 4.135 11.436 4.645 40.158 
Index 193 196 197 198 211 214 215 221 222 225 234 243 254 

Weight 18.638 8.713 16.432 4.310 58.579 16.999 64.035 63.754 126.194 41.540 193.677 0.113 161.420 
Index 255 257 258 265 268 269 272 273 275 277 279 280 282 

Weight 120.425 141.448 46.807 456.846 18.932 26.388 7.186 166.322 233.725 26.564 24.009 689.112 69.151 
Index 283 286 287 288          

Weight 436.082 23.205 13.406 26.825          

 

 (c) threshold 
threshold 
1.4772 
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Table 10 Parameters of the CMRT-based RBF SVM Classifier B for prostate cancer Gleason grade 3 versus grade 

4 (16 P3S3 and 16 P4S4, features from the average of 9 patches of an image).  

Index 3-feature Support Vectors Weights Threshold 
3 0.4857 0.4424 0.1402 -2.6943 0.3912 
4 0.5206 0.3522 0.4541 -1.0269  
7 0.8799 0.6224 1.0000 -1.4699  
9 0.5055 0.1740 0.9452 -1.0330  

10 0.3556 0.2004 0.7533 -1.3915  
12 0.3861 0.2948 0.2394 -2.3887  
14 0.4191 0.3976 0.4570 -0.6575  
16 0.3930 0.2268 0.3781 -4.7864  
17 0.8000 0.7476 0.0000 0.4201  
18 0.7902 0.8072 0.1392 0.3346  
20 0.9060 0.7966 0.7358 0.7439  
22 0.5483 0.4642 0.3527 3.2445  
23 0.0000 0.0000 0.1617 0.4934  
24 0.3172 0.2058 0.3232 5.8969  
27 1.0000 1.0000 0.4213 0.5715  
29 0.4292 0.3468 0.0124 2.4418  
31 0.2733 0.1460 0.5603 1.3014  

Pattern index 1   to 16 : Gleason grade 3 
        17 to 32 : Gleason grade 4 

 

Table 11 Parameters of the curvelet-based RBF SVM Classifier B for prostate cancer Gleason grade 3 versus grade 

4 (16 P3S3 and 16 P4S4, features from the average of 9 patches of an image). 

Index 4-feature Support Vectors Weights Threshold 
1 0.6978 0.2715 0.7129 0.8080 -11.5511 1.3364 
3 0.2688 0.2779 1.0000 0.7744 -8.4969  
4 0.4596 0.1228 0.5536 0.5854 -56.0298  
7 0.6571 0.2341 0.0000 0.0000 -1.5807  
8 0.7048 0.2024 0.2318 0.2743 -0.8730  
9 0.8080 0.1789 0.0911 0.1066 -0.1793  

13 0.3131 0.1996 0.7090 0.7727 -33.4909  
14 0.4423 0.2066 0.6419 0.5283 -20.9858  
15 0.3962 0.2957 0.7813 0.5679 -0.8780  
18 0.4265 0.3427 0.9364 0.9878 9.9646  
21 0.8438 0.4313 0.8389 0.5495 1.9276  
22 0.9889 0.2646 0.8558 0.6453 2.2524  
24 0.2844 0.1985 0.6752 0.5721 34.2223  
30 0.2504 0.0573 0.8965 0.8369 13.2421  
32 0.4883 0.1838 0.5492 0.6437 72.4565  

Pattern index 1   to 16 : Gleason grade 3 
        17 to 32 : Gleason grade 4 

 



 97 

 

 

 

Table 12 Parameters of CMRT-based RBF SVM Classifier C for prostate cancer Gleason grade 3 versus grade 4 

(34 P3 and 34 P4, average features from 9 patches of an image). 

 
Index 6-feature Support Vectors Weights 

2 0.5207 0.3904 0.5059 0.5056 0.3582 0.3111 -2.6145 
3 0.4290 0.4857 0.3346 0.5409 0.4424 0.2086 -14.2418 
6 0.4367 0.4465 0.2018 0.5179 0.3363 0.1608 -22.8745 
7 0.8287 0.8799 0.6489 0.2820 0.6224 0.8737 -1.2331 
9 0.5365 0.5055 0.5536 0.0866 0.1740 0.6778 -0.3937 

10 0.4167 0.3556 0.4599 0.1019 0.2004 0.4167 -3.5994 
11 0.7782 0.6695 0.0102 0.7564 0.6085 0.0402 -5.9980 
12 0.6065 0.4347 0.8457 0.2105 0.2906 0.7283 -1.7755 
13 0.8104 0.5659 0.5437 0.2660 0.3917 0.7174 -0.3486 
14 0.9412 0.5871 1.0000 0.0000 0.2638 1.0000 -0.8268 
15 0.4388 0.2666 0.4869 0.3885 0.2429 0.3152 -48.0859 
17 0.6260 0.4615 0.2011 0.3733 0.4314 0.2322 -13.5838 
20 0.8354 0.3758 0.6677 0.0185 0.0611 0.7126 -0.6008 
21 0.5855 0.4757 0.2631 0.5213 0.3895 0.2398 -14.7456 
24 0.5097 0.4191 0.4385 0.3600 0.3976 0.3629 -6.2532 
25 0.3167 0.4630 0.1586 0.4858 0.3338 0.1593 -1.0974 
26 0.2153 0.3930 0.1908 0.4033 0.2268 0.1582 -6.6003 
27 0.6003 0.3739 0.1630 0.3683 0.3146 0.1832 -4.5787 
31 0.7158 0.6815 0.6179 0.2579 0.4777 0.7452 -0.1930 
33 0.4322 0.3086 0.3274 0.2190 0.2134 0.3527 -7.7438 
34 0.3483 0.3707 0.3641 0.1253 0.1937 0.3723 -3.3986 
35 0.4996 0.4665 0.0494 0.8210 0.6260 0.0000 2.4840 
36 0.2888 0.3318 0.1818 0.7163 0.4084 0.1684 0.4341 
37 0.5303 0.4409 0.1212 0.4001 0.3594 0.2042 21.9117 
38 0.3820 0.3555 0.3191 0.4711 0.2604 0.1942 10.6966 
39 0.9332 0.7580 0.0000 0.7802 0.7724 0.1215 3.2053 
42 0.4690 0.4045 0.4381 0.3658 0.2869 0.3296 16.9594 
43 0.4933 0.5146 0.0379 0.4826 0.4206 0.1255 0.2673 
47 0.6196 0.6428 0.6564 0.4667 0.5259 0.4554 1.2258 
48 0.8957 0.9060 0.8879 0.4883 0.7966 0.7161 1.1913 
50 0.7724 0.5483 0.3309 0.5171 0.4642 0.3752 1.4684 
53 0.4513 0.2566 0.6449 0.2883 0.2550 0.3811 11.7989 
56 0.3177 0.1495 0.4737 0.2949 0.1224 0.2923 5.1884 
57 0.7339 1.0000 0.2127 1.0000 1.0000 0.1710 0.7049 
59 0.4162 0.4292 0.2318 0.5575 0.3468 0.2313 12.5034 
60 0.4312 0.3155 0.4700 0.4276 0.2452 0.3435 19.7921 
61 0.4138 0.2733 0.7103 0.1604 0.1460 0.6986 0.2567 
62 0.4191 0.3036 0.3987 0.2683 0.1511 0.3155 13.3064 
64 0.4037 0.4121 0.3412 0.5141 0.4034 0.2562 17.5858 
65 0.6595 0.5390 0.1599 0.4414 0.4525 0.1941 7.7303 
66 0.6725 0.5407 0.2537 0.5828 0.5036 0.2087 11.0421 
68 0.3085 0.2286 0.4282 0.1140 0.0685 0.3937 1.0344 

Threshold 0.0770  
Pattern index 1   to 34 : Gleason grade 3 

        35 to 68 : Gleason grade 4 
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Table 13 Parameters of the curvelet-based RBF SVM Classifier C for prostate cancer Gleason grade 3 and grade 4 

(34 P3 and 34 P4, average features from 9 patches of an image). 

 
Index 8-feature Support Vectors Weights 

3 0.2619 0.0616 0.2779 0.5755 0.5681 0.7984 0.5716 0.7401 -23.2183 
4 0.4478 0.0232 0.1228 0.2799 0.2732 0.4679 0.3582 0.5595 -0.7627 
5 0.5601 0.1125 0.2401 0.4952 0.4884 0.6840 0.7132 0.8336 -20.4858 
6 0.4846 0.1601 0.2925 0.6286 0.4015 0.6878 0.6843 0.7934 -25.4163 
7 0.6401 0.0568 0.2341 0.2636 0.1904 0.0581 0.1114 0.0000 -0.5213 

10 0.7577 0.4219 0.2078 0.4408 0.1624 0.3405 0.0436 0.2144 -1.2973 
11 0.7153 0.2151 0.5007 0.8935 0.7018 0.8835 0.9038 0.9586 -4.2042 
12 0.0590 0.0175 0.2364 0.2791 0.2323 0.3422 0.3121 0.6092 -5.0307 
14 0.7483 0.0507 0.0532 0.0000 0.0003 0.0000 0.0470 0.0442 -1.0216 
15 0.2390 0.0167 0.1161 0.3423 0.3617 0.6469 0.5254 0.7953 -14.4367 
16 0.2563 0.0223 0.1140 0.2947 0.0607 0.3387 0.1880 0.5241 -4.6513 
17 0.1683 0.0128 0.1697 0.4568 0.3238 0.6210 0.4654 0.7501 -13.5515 
20 0.4935 0.0817 0.0292 0.0444 0.0074 0.1147 0.2269 0.3442 -0.0277 
21 0.5612 0.1281 0.2443 0.4965 0.4862 0.6831 0.7255 0.8338 -9.0106 
22 0.6290 0.1788 0.1776 0.4939 0.2971 0.6331 0.5101 0.7310 -6.9644 
24 0.4309 0.1009 0.2066 0.4205 0.3976 0.5333 0.3660 0.5049 -9.8285 
25 0.3860 0.3287 0.2957 0.6747 0.3220 0.6364 0.2552 0.5428 -10.1208 
26 0.4587 0.3746 0.2032 0.6028 0.2262 0.5569 0.1065 0.3858 -3.8714 
29 0.5679 0.1101 0.0953 0.3440 0.3255 0.5772 0.4279 0.5666 -0.2390 
32 0.8735 0.1339 0.0862 0.1596 0.2076 0.3213 0.3431 0.3740 -0.3585 
33 0.5790 0.0635 0.1516 0.4050 0.2023 0.4595 0.4445 0.6431 -4.7601 
34 0.5128 0.0776 0.1475 0.3586 0.0358 0.2536 0.1047 0.3412 -0.7329 
35 0.8531 0.5826 0.3925 0.8439 0.8414 1.0000 1.0000 1.0000 0.9379 
36 1.0000 1.0000 0.3766 0.7887 0.7209 0.8982 0.8644 0.8455 0.1376 
37 0.5096 0.2327 0.2131 0.5417 0.3062 0.5888 0.2188 0.4801 11.2431 
38 0.4163 0.2032 0.2135 0.5238 0.3890 0.7017 0.5535 0.7509 17.7379 
40 0.2815 0.0864 0.3561 0.6571 0.5044 0.7165 0.6570 0.7786 13.4621 
41 0.3933 0.0413 0.1751 0.4436 0.5210 0.7418 0.7445 0.8512 11.6998 
42 0.3984 0.0428 0.1563 0.3845 0.2616 0.5587 0.3835 0.7185 9.2356 
43 0.6850 0.4007 0.2630 0.6507 0.3547 0.6501 0.6845 0.7914 6.1825 
44 0.9496 0.4352 0.5826 0.8488 0.8147 0.8262 0.9901 0.7257 1.0741 
48 0.6481 0.0443 0.4885 0.4993 0.5444 0.4494 0.6377 0.4934 4.2397 
49 0.8220 0.2225 0.4313 0.6917 0.5043 0.6791 0.3970 0.5251 0.4957 
50 0.9634 0.1967 0.2646 0.4894 0.6177 0.6916 0.6827 0.6167 0.9640 
53 0.0000 0.0040 0.0677 0.2477 0.3163 0.5872 0.4043 0.7243 7.7023 
56 0.3700 0.0683 0.0882 0.3570 0.2997 0.6442 0.4922 0.8145 6.9003 
57 0.5626 0.1110 1.0000 1.0000 1.0000 0.7725 0.4467 0.4369 0.4970 
59 0.2343 0.0768 0.1695 0.4912 0.4776 0.7949 0.5553 0.8430 7.1543 
61 0.1582 0.0855 0.0866 0.1870 0.1208 0.3164 0.4306 0.6409 3.7626 
62 0.4757 0.1680 0.1838 0.4532 0.2159 0.4647 0.4253 0.6152 6.5913 
63 0.6602 0.1170 0.2669 0.5798 0.4869 0.7285 0.7393 0.9084 17.2108 
64 0.4379 0.1020 0.3024 0.5726 0.5192 0.7295 0.6593 0.8263 18.5491 
65 0.1578 0.1075 0.2575 0.5070 0.3707 0.6062 0.3581 0.6418 11.3687 
67 0.1859 0.2270 0.1876 0.4214 0.0701 0.3556 0.0570 0.4646 0.5990 
68 0.2333 0.2175 0.1621 0.4326 0.0000 0.2868 0.0000 0.3598 2.7659 

Threshold 0.4880  
Pattern index 1   to 34 : Gleason grade 3 

        35 to 68 : Gleason grade 4 
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