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CONFORMATIONAL DYNAMICS OF PROTEINS: 

INSIGHTS FROM STRUCTURAL AND COMPUTATIONAL STUDIES 

Lin Liu, PhD 

University of Pittsburgh, 2011 

 

Proteins are not static; they undergo both random thermal fluctuations near a given equilibrium 

state, and transitions between different sub-states. These motions are usually intricately 

connected to the function of the protein. Therefore, understanding the dynamics of proteins is 

important to gain insights into the mechanisms of many biological phenomena. Only the 

combination of structure and dynamics does allow for describing a functional protein (or 

biological molecule) properly. Therefore, this thesis is centered on computational and structural 

studies of protein dynamics. I carried out full atomic simulations and coarse-grained analyses 

(using elastic network models) as computational approaches, and used NMR as well as X-ray 

crystallography on the experimental side. With regard to the understanding of the fluctuations 

accessible under equilibrium conditions, a detailed analysis of high-resolution structural data and 

computationally predicted dynamics was carried out for a designed sugar-binding protein. The 

mean-square deviations in the positions of residues derived from NMR models and those 

inferred from X-ray crystallographic B-factors for two different crystal forms were compared 

with the predictions based on the Gaussian network model (GNM) and the results from 

molecular dynamics (MD) simulations. The results highlighted the significance of considering 

ensembles of structures (or structural models) from experiments, in order to make an accurate



v 

 assessment of the fluctuation dynamics of proteins under equilibrium conditions. Moreover, we 

analyzed the amplitudes, correlation times, and directions of residue motions in multiple MD 

runs of durations varying in the range 1 ns – 400 ns. Our data show that the distribution of 

residue fluctuations is insensitive to the simulation length, while the amplitudes increase with 

simulation time with a power law. Another area of interest concerned the phenomenon of 

“domain swapping”. We investigated the molecular basis of this unusual multimerization, using 

a broad range of approaches. A systematic analysis of a large set of domain-swapped structures 

was performed to this aim. Results suggest that almost any protein may be capable of undergoing 

domain swapping, and that domain swapping is solely a specialized form of oligomer assembly 

but is closely associated with the unfolding/folding process of proteins. We also use 

experimental 
19

F-NMR to study the thermodynamic and kinetic properties in CV-N domain 

swapping. The activation energy barrier for the passage  between monomeric anddomain-

swapped dimeric form is of similar magnitude to that for complete unfolding of the protein, 

indicating that the overall unfolding of the polypeptide is required for domain swapping. Crystal 

structures of a domain-swapped trimer and a tetramer of CV-N provide further insights into the 

potential mechanics of CV-N domain swapping.  
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1.0 INTRODUCTION 

 

1.1 CONFORMATIONAL DYNAMICS 

A general way to investigate biological phenomena is to study an individual component from a 

living organism, such as a protein, the major constituent of cells. Proteins are polymers of 

covalently linked amino acids, with the amino acid sequence characteristic of each protein. The 

spatial arrangement of atoms in a protein is called its conformation. The most stable 

conformation under physiological conditions, known as the native state, is encoded by the 

protein‟s amino acid sequence, and is highly related to the protein‟s function. In a strict sense, the 

native state is an ensemble of fluctuating conformations, or microstates, narrowly distributed 

around a global energy minimum. At each instantaneous conformation, the interactions 

responsible for maintaining the arrangement of atoms in the neighborhood of the native energy 

minimum originate from various physicochemical effects: hydrophobic contacts, hydrogen bond 

formation, electrostatic interactions, disulfide bridges, and so on. Therefore, the protein is not 

static; it undergoes both thermal fluctuations near its equilibrium state and occasional transitions 

between sub-states, and thus samples multiple conformations. The conformational dynamics of 

the protein or the ability to sample various conformations usually assists in its chemical or 

biological activities (e.g. interacting with different substrates).
1
 Therefore, it is necessary to 

examine the dynamics of a protein in addition to its static structure in order to gain a better 

understanding of its mechanisms of activities. 
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Figure 1.1 Schematic diagram of energy profile near native state conditions, modeled at 

different resolutions. 

N denotes the native state, modeled at a coarse-grained scale as a single energy minimum. A more 

detailed examination of the structure and energetics reveals two or more sub-states (S1, S2, etc.), which in 

turn contain multiple microstates (m1, m2, etc.). Structural models corresponding to different hierarchical 

levels of resolution are shown: an elastic network model representation where the global energy minimum 

on a coarse-grained scale (N) is approximated by a harmonic potential along each mode direction; two 

sub-states S1 and S2 sampled by global motions near native state conditions; and an ensemble of 

conformers sampled by small fluctuations in the neighborhood of each substate. The diagrams have been 

constructed using the following rhodopsin structures deposited in the Protein Data Bank: 1U19 (N); 1U19 

and 3CAP (S1 and S2); and 1F88, 1GZM, 1HZX, 1L9H, 1U19, 2G87, 2HPY, 2I35, 2I36, 2I37, 2J4Y, 

2PED, 3C9L, and 3C9M (microstates). Figure is adopted from Bahar et al. Chem. Rev., 2010, 110: 1463-

1479. 

 

Although the conformational space is vast, a folded protein is often confined to a 

significantly narrower distribution of conformations in the close neighborhood of its native state, 

compared to disordered polymers. It is possible to view these conformations as different sub-

states (on a more global scale) or different microstates (at a higher resolution). Microstates 



3 

 

usually share the overall „fold‟ and regular secondary structure, with variations in bond lengths, 

bond angles, dihedral angles, loop conformations, substructure packing, or even entire domain or 

subunit positions and orientations. Importantly, there is a dynamic equilibrium among these 

microstates, allowing for their continual interconversions and maintaining their probability 

distribution,
2
 which could be altered by a change in the system (e.g., ligand binding or changes in 

external conditions).
3
 Figure 1.1 illustrates the different hierarchical levels of structures, from 

native „state‟, to sub-states, to microstates that coexist in a dynamic equilibrium.
2
 It is clear that 

transitions between two or more microstates may be treated as the thermal motions around one 

state. „Equilibrium motions‟ of a folded protein are referred to as all types of motions, including 

fluctuations between microstates or passages between sub-states, that are achieved while 

maintaining the fold and navigating within the global energy minimum corresponding to the 

native state.  

 

1.2 STRUCTURAL AND COMPUTATIONAL METHODS 

Structures deposited in Protein Data Bank (PDB)
12

 have increased rapidly from 695 in 1991 to 

about 75,000 in 2011,
13

 benefitting from the developments in multi-dimensional NMR analysis,
14

 

restrained refinement of structural models,
15

 automated multiple wavelength anomalous 

diffraction (MAD) and multiple isomorphous replacement (MIR).
16

 99% structures deposited in 

the PDB are solved by one of the two classical methods: NMR spectroscopy and X-ray 

crystallography, indicating their dominant and important position in structural biology. 

Sometimes, one protein has more than one resolved structure, indicating its dynamic 

intermediates such as crystal structures of the cytochrome P450,
17

 or structures resolved in the 

presence of different substrates /inhibitors, or under different conditions. 
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Protein dynamics became a major topic of investigation in many recent studies. A broad 

range of experimental techniques provides information on protein dynamics, including NMR 

relaxation measurements,
18, 19

 Laue X-ray diffraction data,
20, 21

 infrared and fluorescence 

spectroscopy,
22

 and single-molecule studies,
23

 although they inform about different aspects and 

time scales of protein dynamics. On the computational side, structure-based methods such as 

molecular dynamics (MD) simulations
24

 and normal mode analysis (NMA) with elastic network 

models (ENMs)
25-28

 have been broadly exploited in recent years, so as to gain insights into 

biomolecular systems dynamics at multiple scales. For example, the cyclophilin A catalysis 

dynamics has been investigated by NMR relaxation experiments;
29

 its substrate binding 

dynamics has been observed by single-molecule FRET as well as MD simulations.
7
 Many 

studies focus on principal components analysis (PCA)
30

 of biomolecular experimental structures 

or simulation models, in order to extract information on dominant patterns, or cooperative 

events. One example is the recent ensemble study about ubiquitin,
8
 whose conformational space 

built based on residual dipolar coupling measurements has been shown to share similarities with 

the conformational space deduced from PCA of  different ubiquitin crystal complexes (resolved 

with different substrates). More details about structural and computational methods will be 

presented in the following chapters.  

 

1.3 DOMAIN SWAPPING 

Four levels of organization are usually used for describing protein structures: primary, 

secondary, tertiary, and quaternary structures. Primary structure is the description of all covalent 

bonds linking the consecutive amino acid residues in a polypeptide chain, and as such they 

essentially provide information on a one-dimensional sequence space; secondary structure refers 
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to the local, particularly stable, arrangements of residues forming structural patterns; tertiary 

structure refers to all aspects of the three-dimensional folding of a polypeptide such as the 

packing of secondary structural elements and their topological features; and quaternary structure 

describes the arrangement of two or more polypeptide subunits in space. 

A small but growing subset „domain-swapped oligomers‟, as originally coined by 

Eisenberg,
31

 have received more and more attention in recent years, as a special type of 

quaternary structure. True domain-swapped structures require that both, monomeric and 

oligomeric states must be observed for the protein.
32

 However, this stringent designation is not 

always adhered to in the literature. Sometimes, structures are called domain-swapped, even if no 

structure of the closed monomer has ever been observed or where only a homolog exhibits a 

closed monomer. In the first case, the protein is a „candidate‟ for domain swapping, while in the 

second, the oligomers are classified as „quasi-domain-swapped‟.  

In true domain-swapped structures, the exchanged subunit or domain in the oligomer is 

identical to the one in the corresponding monomer, exhibiting no differences in the ,  dihedral 

angles on the backbone, except for the region that links the exchanging domains. This region is 

called the „hinge-loop‟ and often adopts an extended conformation in the domain-swapped 

oligomer while it folds back on itself in the monomer. Although called „domain swapping‟, the 

term 'domain' encompasses a variety of structural units: the largest may be an independently 

folded domain, while the smallest can be single secondary structure elements, such as a single β-

strand or an isolated α-helix. The inter-molecular interfaces in the oligomer that possess identical 

intra-molecular counterparts in the monomer form are called the „closed‟ or „primary‟ interface 

while the newly created contact surfaces constitute the „open‟ or „secondary‟ interface. A 



6 

 

schematic representation of different domain swapping scenarios as well as the delineation of the 

different structural interfaces is provided in Figure 1.2. 

 

 

Figure 1.2  Schematic representation of domain-swapped structures and their pertinent 

features. 

M, monomer; D, dimer; T, trimer; P, daisy chain-type multimer. Closed and open interfaces are 

boxed-in by black and red squares, respectively. 

 

In this thesis, we consider mainly those proteins that contain swapped elements in their 

multimeric forms and for which a monomeric structure is seen for a mutant or close relative. We 

focus in particular on cyanovirin-N (CV-N),
33

 a well-characterized protein with domain 

swapping abilities. 
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1.4 THE GOAL AND SPECIFIC SUBPROJECTS 

Protein motions are usually intricately connected to the function of the protein. Therefore, 

understanding the dynamics of proteins is important to gain insights into the mechanisms of 

many biological phenomena. Only the combination of structure and dynamics does allow for 

describing a functional protein (or biological molecule) properly. For these reasons, I combined 

experimental and computational approaches in my work. My thesis is centered on computational 

and experimental studies of protein dynamics. I carried out full atomic (MD) simulations and 

coarse-grained analyses (using ENMs) as computational approaches, and used NMR 

spectroscopy as well as X-ray crystallography for dynamic study and structure determination on 

the experimental side.  

With regard to the study of proteins’ equilibrium dynamics (i.e., the fluctuations 

accessible under equilibrium conditions), I carried out the following two specific investigations 

reported in Chapters 2 and 3, respectively:  

 A comparative analysis of the equilibrium dynamics of a designed protein inferred 

from NMR, X-ray, and computational studies. 

 Extensive MD simulations of a CV-N to demonstrate that full atomic simulations 

provide insights into the mechanics, but not the time scales, of protein motions under 

equilibrium conditions. 

Another area of investigation within the scope of my dissertation studies has been the 

phenomenon of “domain swapping”. We investigated the molecular basis of this unusual 

multimerization, using a broad range of approaches. A systematic analysis of a large set of 

domain-swapped structures was performed to this aim, along with experimental studies of the 
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folding thermodynamics and structural properties of CV-N. The results reported in the respective 

Chapters 4 and 5 therefore include:  

 Bioinformatics analysis of domain-swapped proteins. 

 Elucidation of domain swapping thermodynamics with a 
19

F-NMR study of CV-N, to 

show that domain swapping proceeds via complete unfolding.  

Overall, both equilibrium and transition dynamics of proteins were studied in my thesis, 

using multiple biophysical and computational approaches. Moreover, two recently solved crystal 

structures of CV-N domain-swapped oligomers in my recent study enlighten our understanding 

about domain swapping. These results show that computational and experimental methods yield 

complementary results and are ideally used in combination for evaluating protein dynamics and 

gaining insights into the molecular basis of observed phenomena. 
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2.0 A COMPARATIVE ANALYSIS OF THE EQUILIBRIUM 

DYNAMICS OF A DESIGNED PROTEIN INFERRED FROM NMR, 

X-RAY AND COMPUTATIONAL STUDIES 

 

The results presented in this chapter have been published in Proteins, 2009, 77: 927-39. Detailed 

analyses of high-resolution structural data and computationally predicted dynamics were carried 

out in this study for a designed sugar binding protein, LKAMG. The mean-square-deviations in 

the positions of residues derived from NMR models, and those inferred from X-ray 

crystallographic B-factors for two different crystal forms were compared with the predictions 

based on the Gaussian Network Model (GNM), and the results from MD simulations. The GNM 

systematically yielded a higher correlation than MD, with experimental data, suggesting that the 

lack of atomistic details in the coarse-grained GNM is more than compensated for by the 

mathematically exact evaluation of fluctuations using the native contacts topology. Evidence is 

provided that particular loop motions are curtailed by intermolecular contacts in the crystal 

environment causing a discrepancy between theory and experiments. Interestingly, the 

information conveyed by X-ray crystallography becomes more consistent with NMR models and 

computational predictions when ensembles of X-ray models are considered. Less precise 

(broadly distributed) ensembles indeed appear to describe the accessible conformational space 

under native state conditions better than B-factors. Our results highlight the importance of 

utilizing multiple conformations obtained by alternative experimental methods, and analyzing 
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results from both coarse-grained models and atomic simulations, for accurate assessment of 

motions accessible to proteins under native state conditions. 

 

2.1 INTRODUCTION 

Understanding structure and dynamics is essential for elucidating protein function that is 

governed by the complement of accessible energetically favored motions as seen for 

ligand/substrate binding in catalysis and protein-protein interactions in signaling and regulation.  

It has long been appreciated that native proteins are not confined to a single, static 

conformation, but sample numerous sub-states under equilibrium conditions.34-36  Similarly, the 

denatured state also consists of an ensemble of conformations. The main difference between the 

two states is simply that the native ensemble is narrow, confined to fluctuating conformations 

that maintain the native fold, whereas the denatured ensemble consists of a wide range of 

conformations. Both experiments and computations indicate that ensemble-based approaches 

provide superior information on the properties of a given molecule and the advantages of 

ensemble-based approaches have been demonstrated for NMR37 and X-ray structure 

refinement.38 Novel methods that simultaneously and synergistically determine structure and 

dynamics, called dynamic ensemble refinement,8, 39 hold great promise for providing insight into 

equilibrium dynamics. 

Focused efforts in developing and interpreting relaxation measurements, primarily by 

NMR spectroscopy, provide increased understanding of the temporal and spatial scales that are 

associated with the broad range of protein motions. Small-scale (≤ 1.5 Å) motions, such as the 

small fluctuations in the positions of backbone and side chain atoms occur on femto- to 

picosecond time scales. These are accessible via NMR Lipari-Szabo order parameters (S2)19 or 
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short (< 1 ns) molecular dynamics (MD) simulations.
24

 This fast motional regime is also 

reflected in the X-ray crystallographic temperature factors
40, 41

 or can be studied using infrared or 

fluorescence correlation spectroscopy.
22

 Mid-scale motions that take place over hundreds of 

pico- to nanoseconds or low microseconds may comprise loop or terminal-end fluctuations as 

well as peptide plane motions (change in dihedral angles) and other local dynamics information. 

This regime can be also be extracted via NMR Lipari-Szabo order parameters (S
2
) as long as 

these motions are faster than the overall correlation time (c). Computationally, this regime may 

be probed by performing long (10-100 ns) MD simulations.
42

 This mid-scale range has also been 

evoked to contribute to the spread of conformers in NMR ensembles
43

 or may be accessible from 

collections of X-ray structures of the same protein in different crystal isomorphs.
44

 Slow motions 

are most frequently associated with large displacement (> 15 Å) of entire secondary structure 

elements, domains or subunits. If these occur on the micro- to millisecond timescale, they can be 

detected in the T2 or T1 Carr–Purcell–Meiboom–Gill (CPMG) type NMR relaxation 

experiments.
18

 Such motions may also be been studied in the crystal by Laue diffraction.
21

 On 

the computational side, this regime is beyond the range accessible by MD. 

To overcome the limitations of MD simulations and predict the mechanisms of low 

frequency, or „global’, modes of motion, coarse-grained models and methods based on inter-

residue contact topology have been proposed, such as the elastic network models (ENMs) 

introduced a decade ago.
26-28, 45

 ENMs have been broadly used in normal mode analysis (NMA) 

of known structures,
46

 and shown to yield results that correlate with those from principal 

component analysis of ensembles of structures.
47

 Such large scale movements were evoked in a 

recent study of ubiquitin where an ensemble of conformations based on residual dipolar 

couplings was determined.
8
 The ensemble covered a conformational space similar to that seen 



12 

 

for the X-ray structures of ubiquitin complexed with different substrates, and were consistent 

with structural changes along a well-defined principal direction of motion.
8
  

ENMs have gained widespread use given their simplicity and ability to yield a unique, 

analytical solution for low frequency motions (e.g., cooperative domain movements), without 

requiring knowledge of detailed force fields or implementation of expensive energy 

minimization algorithms.
48, 49

 Notably, global modes are insensitive to details of force field 

parameters or specific interactions at the atomic scale.
50, 51

 They are uniquely defined by the 

native contact topology for a particular structure, and provide insights into the potentially 

functional motions intrinsically favored by the proteins‟ native structure.
5
  

We previously investigated the correlation between (i) the mean-square (ms) deviations 

(MSDs) in atomic coordinates for NMR ensembles, (ii) the B-factors observed in X-ray 

crystallographic structures, and (iii) the equilibrium fluctuations in residue positions predicted by 

a simple ENM, the Gaussian Network Model (GNM),
26, 45

 for a large set of proteins structurally 

characterized by both techniques.
52

 GNM results exhibited then a better correlation with the 

NMR data than with X-ray data.
52

 We suggested that the superior correlation with NMR data 

may arise from the larger spectrum of modes accessible in solution, which may be represented by 

the NMR ensemble, as opposed to the crystalline environment where the largest amplitude 

modes of motion may be suppressed by crystal contacts. Another study by Phillips and 

coworkers
53

 demonstrated that the GNM results for B-factors outperform those predicted by 

models that attribute the observed mobilities exclusively to rigid-body motions.
54

  More recent 

applications suggest that the ENM methodology provides a reasonable estimate of the 

anisotropic displacement parameters
55, 56

 and can assist in the structural refinement of 

supramolecular complexes.
57
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Despite these practical successes there still remain a number of uncertainties about the 

origin of the agreement between the GNM results and experimental ensembles. In principle, the 

GNM exclusively depends on inter-residue contact topology. Thus, the results for a given protein 

are uniquely determined, irrespective of the experimental conditions.  On the other hand, 

different crystal packing arrangements may result in disparaging B-factors for the same protein 

crystallized under varying conditions. Song and Jernigan pointed out that selected modes may be 

favored or suppressed, depending on different crystal packing geometries,
58

 and Phillips and 

coworkers noted that crystal packing selects conformers from the ensemble of structures 

accessible in solution.
59

 Furthermore, B-factors may contain contributions from rigid-body 

rotations of the molecules in the crystal environment. Hinsen recently showed that crystal 

packing considerably modifies the distributions of atomic
 

fluctuations, and that thermal 

fluctuations are not necessarily
 
the dominant contribution to the crystallographic Debye-Waller 

factors.
60

 Therefore, the observed discrepancies between the GNM predictions and X-ray B-

factors could arise from the packing of the protein in the crystal lattice, from static disorder, or 

approximations (such as the lack of amino acid specificity) inherent to the GNM method.  

Comparing GNM, X-ray and NMR models the question arises why one observes better 

agreement between GNM and NMR RMSDs, compared to X-ray B-factors. The width of the 

distribution among the NMR models usually results from a combination of sparse data and 

motion of the polypeptide chain in solution. Furthermore, most methods for calculating NMR 

ensembles use Nuclear Overhauser effect (NOE) distances as the predominant constraints, which 

represent a similar contact topology inherent to the GNM analysis. Thus, the good agreement 

between NMR data and GNM predictions could be caused by the commonality in methodology 

and similar inherent assumptions in the two approaches.  
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To address these open questions, we undertook a comprehensive analysis for a designed 

sugar-binding protein, LKAMG, which we have structurally characterized by both NMR and X-

ray crystallography (Koharudin et al., submitted).  We simultaneously analyzed the ensemble of 

NMR models and the X-ray models obtained from two crystal forms, as well as computational 

data from both the GNM analysis and full atomic MD simulations, for a rigorous assessment of 

the origins of similarities and differences between the experimental and computational data. Our 

results show that ensembles, NMR or X-ray, agree well with GNM predictions. The noted 

consistency of MD and GNM results point to the dominance of inter-residue contact topology 

(basic ingredient of the GNM) in equilibrium dynamics, even if a detailed force field with non-

linear and specific interactions is used, as in MD simulations. Interestingly, our data suggest that 

less precise ensembles appear to describe the accessible conformational space under native state 

conditions better than tight ensembles.  

 

2.2 MATERIALS AND METHODS 

2.2.1 Materials 

We used two sets of independently determined structures of LKAMG, a cyanovirin-N homolog 

(CVNH) chimera, as our defined model system, determined by NMR spectroscopy and X-ray 

crystallography. LKAMG is a small protein of 107 residues. It is monomeric both in solution and 

in the crystalline state. LKAMG crystals were obtained in two different space groups, P21 and 

P212121, designated as X1 and X2 throughout this manuscript. The NMR structure was solved 

using commonly used methodology
15

 and a final ensemble comprising 100 conformers with the 

lowest energy was selected from the calculated 4000 structural models. The backbone RMSD of 

the NMR ensemble with respect to the mean was 0.23 ± 0.04 Å and the lowest energy model is 
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designated as N1. Details about the design, expression, and structural characterization of the 

protein by both methods are given in an accompanying manuscript (Koharudin et al., submitted). 

We have additionally constructed a homology model of LKAMG, called H1, using a cyanovirin-

N structure (PDB ID: 2EZM)
33

 as template in MODELLER 8v2.
61

 The sequence identity 

between LKAMG and its template was 29%. H1 has been adopted as the starting structure in 

MD simulations.  

The structure of LKAMG is displayed in Figure 2.1A. The protein has a pseudo-

symmetric architecture comprised of two domains, and closely resembles other members of the 

CVNH family. Each domain is composed of a three-stranded -sheet on top of which resides a 

-hairpin (-strands are colored yellow). The two domains are connected by short helical turns 

(red). In addition, three loops (residues 25-29, 68-73, 81-87; colored purple) protrude out from 

the core structure. A superposition of the X-ray models X1 and X2 (blue and green), the NMR 

conformer N1 (magenta) and the homology model H1 (gray) is displayed in Figure 2.1B. Table 

2.1 lists the root-mean-square differences (RMSDs) in the backbone atom coordinates of these 

models. The RMSDs vary from 0.36 Å (between X1 and X2) to 2.01 Å (between N1 and H1).   

 

Table 2.1 Backbone RMSD (Å) between different LKAMG structural models.
a
 

 X2 N1 H1 

X1 0.36 0.99 1.69 

X2 - 0.96 1.78 

N1 - - 2.01 

a
 X1 and X2 are the P21 and P212121 crystal structures, respectively; N1 is the lowest energy conformer in 

the NMR solution structure ensemble; H1 is the homology model. 
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Figure 2.1 Structure of the designed protein, LKAMG. 

(A) Ribbon representation, color-coded according to secondary structure; -strands are shown in yellow, 

helical turns in red, and loops and chain termini in purple. Amino acid sequence positions are labeled at 

every 10
th
 residue. (B) Best-fit superposition of four different structural models for LKAMG in modified 

ribbon representation; the X-ray models X1 and X2 are shown in blue and green, respectively, the lowest 

energy conformer of the NMR ensemble N1 in magenta, and the homology model H1 in gray.  
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2.2.2 RMSD calculation for the ensemble of NMR models  

The RMSD in the position of residue i is calculated as:  

                                               〈(   )
 〉
 

   √
∑ |       ̅|

  
   

 
                                               (2.1) 

where   ̅  designates the position of that particular residue averaged over all optimally 

superimposed models (m of them). The MSDs in residue positions, < (   )
   as a function of 

residue index i are referred to as the fluctuations profile in residue positions.   

2.2.3 Generation of NMR-like ensembles from the X-ray models 

NMR-like ensembles were created using inter-proton distance constraints with commonly 

employed methodology.
15

 In order to extract inter-proton distances from X-ray models, hydrogen 

atoms were added using REDUCE.
62

 In this manner, standardized geometry and optimized 

orientations for OH, SH, NH3
+
, Met methyls, Asn and Gln sidechain amino groups, and His rings 

were created. Since we use high resolution X-ray models (1.56 Å and 1.36 Å for the P21 and 

P212121 data, respectively), one-cycle of refinement in the presence of the added hydrogen atoms 

was carried out using PHENIX.
63

 The resulting models exhibit R and Rfree values of 0.1607 and 

0.2018 for the P21 and 0.1669 and 0.1972 for the P212121 structures, respectively. Inter-protons 

distances shorter than or equal to 5 Å were then extracted using MOLMOL
64

 and a total of 3972 

and 3982 inter-protons distances were generated for the P21 and P212121 structures, respectively. 

Note that a total of 2756 inter-proton distances were used for calculating the NMR ensemble. 

Therefore, an equal number of constraints is used in the pseudo-X-ray ensemble with ~ 70% of 

the complete constraints set. In order to mimic the structure calculation methodology by NMR, 

we classified these distances according to three NOE classes (strong, medium, and weak) and 

added distance corrections to the upper bounds to allow for some distance variability. The upper 

bound was set to 3.0, 4.0, and 6.0 Å for any extracted distances that were less or equal to 2.5 Å 
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(strong NOE), less or equal to 3.5 Å but more than 2.5 Å (medium NOE), and less or equal to 5.0 

Å but more than 3.5 Å (weak NOE), respectively. This correction reflects distance allowances of 

0.5, 0.5, and 1.0 Å for the short, medium, and long distances.  From the total set of distance 

constraints, we randomly removed 20% or 50% of the data, yielding the 80% or 50% distance 

sets. Inter-proton distances were measured including exchangeable hydrogens, some of which 

may not be observable in the experimental setting due to fast exchange with solvent. No intra-

residue proton distances, however, were included. Note, removal of the exchangeable hydrogens 

from the lists did not affect the generated NMR-like ensembles in any significant manner (data 

not shown).  

2.2.4 Fluctuations and collective modes predicted by the Gaussian Network Model  

In the GNM, the structure is modeled as a 3-dimensional elastic network of n nodes. The position 

of each node is determined by the α-carbons. The network topology is described by a     

Kirchhoff matrix    

                                       {

                                      
                                        

      ∑                                                      

                      (2.2) 

         is the cutoff distance that defines pairs of residues to be connected in the network.     is 

the equilibrium distance between residue i and residue j, calculated using the Protein Data Bank 

(PDB)
65

 coordinates. The cross-correlations between the fluctuations     and     of the nodes i 

and j are given by
45

 

                〈       〉  
    

 
 [   ]              (2.3) 

where    is the Boltzmann constant, T is the absolute temperature and γ is a uniform spring 

constant. The inverse of    is expressed in terms of the nonzero eigenvalues k  (1  k  N-1) and 

corresponding eigenvectors    of   as
26
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                                                                 ∑   
      

    
                                                    (2.4) 

which permits us to express the ms fluctuations of a given residue as a sum over the 

contributions of all modes  

                                             〈(   )
 〉  ∑

    

 
(  

- 
    

 )  
 - 
                                        (2.5) 

Here the subscript ii designates the i
th

 diagonal element of the matrix enclosed in parenthesis. 

The X-ray crystallographic B-factors are compared with the theoretical predictions using  

                                        
   

 
〈(   )

 〉  ∑
      

 
(  
      

 )  
   
                              (2.6) 

The GNM predictions for (i) NMR model N1, (ii) the mean structure of NMR ensemble, 

or (iii) those averaged over all models in the NMR ensemble were found to be almost identical 

(correlation coefficients above 0.95); hence we use NMR model N1 as a representative model for 

the NMR ensemble. 

2.2.5 Comparison of MD essential modes with GNM global modes 

The MD simulations were performed using NAMD
66

 with the Charmm22 force field
67

.  Three 

runs were performed with explicit water for a total duration of 10 ns, each, at constant 

temperature (298 K) and pressure (1 atm). Instantaneous conformations were saved every 1ps 

excluding the first 1.5 ns portion of the trajectories (Figure 2.2A). The resulting M snapshots 

where organized in the fluctuation trajectory matrix 

                                      

[
 
 
 
 
   (  )    (  )     (  )

   (  )    (  )     (  )

   (  )     (  )     (  )
    

   (  )    (  )     (  )]
 
 
 
 

    

                       (2.7) 

    (  ) is the 3-dimensional vector representing the departure of the i
th

 α-carbon from its 

mean position, at the j
th

 snapshot. Multiplication of R by its transpose yields the       
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covariance matrix A. A can be viewed as an     supermatrix, the ij
th

 „element‟ of which is the 

3   matrix  

                                     [

〈      〉 〈      〉 〈      〉

〈      〉 〈      〉 〈      〉

〈      〉 〈      〉 〈      〉

]

   

                               (2.8) 

The cross-correlation between the fluctuations of residues i and j is found from the trace 

of     as 

                                      〈       〉  (   )  [   ]         (2.9) 

These cross-correlations may be conveniently organized in an N x N covariance matrix C, the 

diagonal elements of which are simply the ms fluctuations of residues. C may be expressed in 

terms of its eigenvalues (sl) and eigenvectors (ql) as 

                                                                                  ∑       
 

                                                   (2.10) 

The eigenvalues serve as weights for square displacements induced by different modes. 

Trajectories along the essential modes 1, 2, 4 and 16 of an MD run are illustrated in the Figure 

2.2B.  

C is the counterpart of    . Likewise, sl is the counterpart of (
    

 
)  
   , and ql is the 

counterpart of   . Therefore the eigenvalues extracted from MD can be directly compared to the 

reciprocal eigenvalues from the GNM. Likewise, the top-ranking eigenvectors (corresponding to 

the lowest frequency, or global, modes) may be directly compared. The cumulative square 

correlation {

(k)}ltot between a given GNM mode (e.g., uk) and an ensemble of ltot MD modes is 

evaluated from  

                        {

(k)} ltot = l cos

2
(uk, ql)                                 (2.11) 

where the summation is performed for 1 ≤ l ≤ ltot.  
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Figure 2.2  Analysis of MD trajectories. 

(A) Time evolution of average RMSD (with respect to the starting conformation) in Cα-coordinates for 

three runs MD1 (black), MD2 (dark gray) and MD3 (light gray). (B) Motions along essential modes, 

illustrated for modes 1, 2, 4 and 16 evaluated for MD1, after excluding the equilibration period of 1500 

ps. 
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2.3 RESULTS AND DISCUSSION 

2.3.1 Comparison of the two computational approaches 

The main impetus for our current study was to uncover any reasons that cause the better 

agreement between predicted equilibrium dynamics by GNM and the NMR RMSDs compared to 

X-ray B-factors. In order to exclude any potential errors that may arise from neglecting nonlinear 

effects in the GNM, we first compared the results predicted by the GNM with those obtained by 

MD simulations.  

Figure 2.3 compares the MSDs, <(ΔRi)
2
>, 1  i  N, extracted from experimental data 

(NMR ensemble and X-ray crystallographic B-factors) with the square fluctuations computed by 

MD and GNM. The MSDs refer to the positions of the -carbons with respect to their mean 

positions. The MSD profiles based on NMR, X1 and X2 data, designated as <(ΔRi)
2
>NMR, 

<(ΔRi)
2
>X1, and <(ΔRi)

2
>X2, are colored magenta, blue, and green, respectively (top panel). 

<(ΔRi)
2
>GNM-N1, <(ΔRi)

2
>GNM-X1 and <(ΔRi)

2
>GNM-X2 are their counterparts predicted by the 

GNM, using the NMR model N1 and the two crystal structures X1 and X2, respectively, as input 

(middle panel). <(ΔRi)
2
>MD1, <(ΔRi)

2
>MD2 and <(ΔRi)

2
>MD3 are the square fluctuations profiles 

observed in three independent MD runs (bottom panel). The correlation coefficients between 

these profiles are summarized in Table 2.2.  

As can be appreciated from the results presented in Table 2.2, GNM predictions for 

different models (N1, X1 or X2) are highly correlated, also reflected by the very similar profiles 

in Figure 2.3 (middle panel). The pairwise correlations between <(ΔRi)
2
>GNM-N1, <(ΔRi)

2
>GNM-X1 

and <(ΔRi)
2
>GNM-X2 are all equal to or higher than 0.95. Such close agreement is not surprising 

since GNM results are primarily defined by the coarse-grained distribution of inter-residue 

contacts (C

-C


 pairs within an interaction cutoff distance of rc = 7 Å).  The three models N1, 
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X1 and X2, which differ in their backbone coordinates by less than 1 Å (Table 2.1), are expected 

to exhibit very similar contact topologies.  

 

 

Figure 2.3  Mean-square fluctuations profiles of LKAMG from experimental data and 

computations. 

The fluctuations in the positions of the residues, <(ΔRi)
2
>, are plotted as a function of residue position 

along the polypeptide chain, 1  i  N. The upper panel displays the MSDs from experimental data, 

<(ΔRi)
2
>NMR, <(ΔRi)

2
>X1 and <(ΔRi)

2
>X2 colored magenta, blue and green, respectively. Crystallographic 

fluctuations are extracted from the B-factors, using Bi = (8
2
/3) <(ΔRi)

2
>, The left and right ordinates 

correspond to NMR and X-ray data, respectively. The middle panel displays the square fluctuations 
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predicted by the GNM for the different structural models, <(ΔRi)
2
>GNM-N1 (magenta,), <(ΔRi)

2
>GNM-X1 

(blue), and <(ΔRi)
2
>GNM-X2 (green). The lower panel shows the results from three MD runs, <(ΔRi)

2
>MD1 

(solid black), <(ΔRi)
2
>MD2 (dotted black), and <(ΔRi)

2
>MD3 (dashed black). A schematic representation of 

the LKAMG secondary structure is displayed on top. The three loop regions are indicated by the gray 

columns. 

 

Table 2.2 Correlation coefficients for mean-square fluctuations (MSFs) and MSDs in 

residue positions observed in experiments and computations.
a
 

< (ΔRi)
2
> GNM (N1) X1 GNM(X1) X2 GNM(X2) MD1 MD2  MD3 

NMR 0.80 0.64 0.77 0.31 0.78 0.54 0.60 0.65 

GNM (N1) - 0.76 0.95 0.50 0.95 0.62 0.61 0.58 

X1 - - 0.76/0.72
b
 0.25 0.76 0.69 0.62 0.60 

GNM(X1) - - - 0.52 0.99 0.69 0.65 0.61 

X2 - - - - 0.51/0.69
b
 0.18 0.49 0.13 

GNM(X2) - - - - - 0.68 0.66 0.63 

MD1 - - - - - - 0.64 0.79 

MD2 - - - - - - - 0.65 

a 
Computational results were obtained by GNM predictions for the NMR model N1, and the X-ray models 

X1 and X2, as well as by MD simulations MD1-3. Boldface entries refer to correlations between 

experimental data the corresponding computational predictions.  

b
 0.76 and 0.51 are the correlation coefficients based on the GNM predictions for the isolated protein, and 

0.72 and 0.69 are their counterpart for the protein in the lattice (see Figure 2.7).    

 

The correlations between GNM and MD profiles, on the other hand, vary from 0.58 

(between <(ΔRi)
2
>GNM-N1 and <(ΔRi)

2
>MD3) to 0.69 (between <(ΔRi)

2
>GNM-X1 and <(ΔRi)

2
>MD1) 

and are mainly influenced by the particular trajectories (MD1, MD2, and MD3). This level of 

agreement is reasonable, given the fundamentally different assumptions and methodologies 

inherent to the two types of computations: GNM is a low resolution approach, based exclusively 

on inter-residue contact topology; MD includes full atomic details with elaborate force fields. 

Notably, GNM yields consistent solutions for the fluctuations behavior of LKAMG and results 
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are obtained within seconds.  MD runs, on the other hand, take weeks, and the results suffer from 

sampling inaccuracies, as evidenced by the correlations of 0.64, 0.65 and 0.79 between pairs of 

MD runs. What is even more striking is that GNM results consistently agree better with 

experimental data, either NMR or X-ray, than MD results, as will be discussed below. 

Two further comparative analyses of the two sets of computational results were carried 

out focusing on (i) their level of agreement with experimental data, and (ii) the spectra of modes 

predicted in each case.  

2.3.2 Comparison of computational and experimental data 

As shown in Table 2.2, the fluctuations profiles predicted by the GNM for the models N1 

(<(ΔRi)
2
>GNM-N1), X1 (<(ΔRi)

2
>GNM-X1) and X2 (<(ΔRi)

2
>GNM-X2)  yielded respective correlation 

coefficients of 0.80, 0.76 and 0.51 with their experimental counterparts, <(ΔRi)
2
>NMR, 

<(ΔRi)
2
>X1 and <(ΔRi)

2
>X2, respectively. For the MD trajectories, on the other hand, respective 

correlation coefficients of {0.54, 0.69 and 0.18} were found between <(ΔRi)
2
>MD1 (from MD1) 

and {<(ΔRi)
2
>NMR, <(ΔRi)

2
>X1 and <(ΔRi)

2
>X2} and their counterparts for MD2 and MD3 were 

{0.60, 0.62 and 0.49} and {0.65, 0.60, and 0.13}, respectively. These entries are listed in 

boldface in the Table 2.2. 

These results clearly show that the fluctuations profiles predicted by the GNM exhibit 

higher correlation with experimental data compared to those obtained by MD. It is also 

interesting to note that the correlation between the results from the three different MD runs is 

0.69 ± 0.08, indicating that the results from MD simulations are not as robust as those from 

GNM, despite the fact that all MD runs were performed with the same starting structure (H1) 

while GNM calculations, almost identically reproduced, were performed using different 

structural models.  
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Additionally, it can also be easily noticed that, in both cases, the computational results 

obtained for X2 exhibit poorer agreement with the experimental data, compared to those 

obtained for N1 and X1. It is worth noting, however, that, even for the X2 data, GNM 

systematically yielded a higher correlation than MD, suggesting that the lack of atomistic details 

in the GNM is more than compensated for by the mathematically exact evaluation of fluctuations 

using the complete, collective coupling of all residues. A detailed analysis pertaining to the 

comparison of the X2 data with computational predictions is discussed below.  

2.3.3 Comparison of essential modes from MD and GNM 

To provide a more in-depth analysis of the GNM and MD results, we decomposed the 

predictions into the contributions of the underlying modes and compared both methods‟ 

individual (top-ranking) modes. In doing so, we verified that the motions in different time 

regimes predicted by GNM are comparable to those sampled by MD simulations. There is, 

however, no one-to-one correspondence between pairs of modes. 

GNM equilibrium fluctuations result from the superposition of N-1 normal modes for a 

protein of N residues. On the other hand, the essential dynamics analysis of a MD trajectory 

yields 3N-6 modes (unless the number of snapshots M is smaller than 3N-6). As described in the 

Methods, the 3N x 3N covariance matrix derived from a given MD trajectory may be 

conveniently organized into an N x N covariance matrix C of residue fluctuations, the 

eigenvalues and eigenvectors of which can be directly compared to those predicted by the GNM. 

We focused on the top-ranking modes at the low frequency end of the spectrum. These modes, 

also referred to as the global or essential modes,
68

 define those motions that contribute the most 

to the observed dynamics, and are usually relevant to functional changes in conformation.
5, 49
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The correlation coefficients between the top-ranking modes extracted from MD and those 

predicted by the GNM are displayed in Figure 2.4A. Two pertinent observations emerge: (i) a 

given MD mode can be correlated with more than one GNM mode. For example, the MD mode 

3 exhibits a correlation of 0.5 or higher with both modes 1 and 2 predicted by the GNM (see the 

corresponding brown and red boxes in Figure 2.4A), and (ii) the order of the modes in the two 

methods differ (for example, the 4
th

 MD mode is highly correlated with the 5
th

 GNM mode; i.e., 

the red boxes are not necessarily clustered along the diagonal). This analysis shows that it is hard, 

if not impossible, to identify a unique counterpart of each GNM mode in MD, or vice versa, 

probably due to different types and scales of movements represented by these modes. Yet, 

similarities between preferred modes of motions could be detected by consolidating the results 

using subsets of modes.  We examined to this aim the combined contributions of the first 10 MD 

modes in relation to the individual GNM modes k in the range k ≤ 10. The cumulative correlation 

cosine (squared) {

(k)}10 between the set of 10 MD modes and the k

th
 GNM mode (Eq. 2.11 in 

Methods) is shown in Figure 2.4B. The result for the first GNM mode is 0.95, shown by the 

magenta bar at k = 1, i.e., the combined first 10 MD modes [{

(k)}10]

½
 overlap by 97% with the 

1
st
 GNM mode. The overlap with the 2

nd
 GNM mode is equally high and only gradually 

decreases with mode number, remaining above 0.75 for 5 out of 10 GNM modes. Note that the 

10 MD modes represent only a small fraction (less than ten percent) of the entire set of modes 

retrieved by decomposing the MD covariance matrix C. However, their weighted contribution 

amounts to 98% while that of first 10 GNM modes represents 47% of the predicted motions. 

 



28 

 

 

Figure 2.4 Correlation map for essential modes predicted by the GNM and derived from 

MD. 

(A) Correlations, [ql· uk], between the essential modes ql (1 ≤ l ≤ 10) retrieved from MD1 and those (uk, 

1≤ k ≤ 10) predicted by the GNM. (B) Cumulative correlations (sum over cosines squared; see Eq. 2.12) 

for the first ten essential MD modes and individual GNM modes predicted for the models N1 (magenta), 

X1 (blue) and X2 (green). See Figure 2.5 for a more extensive comparison of the mode spectra obtained 

by MD and GNM. 
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Figure 2.5  Cumulative correlations between mode spectra obtained from GNM and MD. 

(A) Cumulative squared cosines {σ
2
(k)}ltot between ltot essential modes from MD simulations and each 

GNM mode (k) for ltot = 10 (black), 20 (gray) and 30 (white). (B) {σ
2
(l)}ktot between top-ranking ktot = 10 

(black), 20 (gray) and 30 (white) GNM modes with the MD modes (l) listed along the abscissa. Note, the 

dominant contribution of the slowest modes to the low frequency end of the spectrum, in each case, 

followed by the larger contribution of intermediate frequency, and then higher frequency modes, indicate 

the consistency between the two sets of mode spectra. 
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The above numbers refer to GNM calculations performed with N1 as the model. Similar 

results were obtained using the X-ray models X1 and X2, shown by blue and green bars in 

Figure 2.4B. The correlation falls below 0.1 beyond the 20
th

 GNM mode. The dependence of 

{

(k)}ltot  on k, for ltot = 10, 20 and 30 MD modes is provided in Figure 2.5 panel A for all GNM 

modes 1 ≤ k ≤ N-1; and panel B in the same figure displays the joint contribution {

(l)}ktot of ktot 

= 10, 20 and 30 GNM modes to the l
th

 MD mode. Interestingly, there is a hierarchical influence 

of relatively higher frequency MD modes on the higher GNM modes, confirming consistency 

between the two spectra of modes. MD simulations and GNM predictions are thus comparable 

with regard to the dominant, usually biologically relevant, low frequency modes. The differences 

between the MD and GNM fluctuation profiles mainly originate from higher frequency modes 

that are known to be noisy. 

2.3.4 The close relationship between NMR and GNM - is the agreement simply based on 

the similarity in methodology? 

The above analysis indicates that MSDs predicted by the GNM consistently exhibit a better 

correlation with experimental data than MD results, and that the level of correlation between the 

fluctuations predicted by GNM and the MSD extracted from the NMR ensemble is higher than 

that between GNM and X-ray B-factors. NMR ensembles calculations use NOE distances as the 

predominant constraints, and GNM analysis is also based on knowledge of inter-residue contact 

topology. In order to critically evaluate whether the good correlation between the distribution of 

the conformers in an NMR ensemble and GNM-predicted fluctuations arises mainly from the 

similarity in the methodologies for NMR structure determination/refinement and for GNM 

calculations, we analyzed six differently calculated ensembles of structures that were derived 

from the X-ray models X1 and X2.  For each crystal structure, three ensembles of 30 conformers 
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each were generated, using the standard constraints-based NMR structure determination 

procedure. As constraints, 100%, 80%, and 50% of all possible inter-proton distance constraints 

were used. These ensembles are designated as X1- and X2-ensembles. The final 30 conformer 

ensembles exhibit backbone RMSD values of 0.32 ± 0.07 Ǻ, 0.33 ± 0.06 Ǻ, and 0.43 ± 0.06 Å 

when 100%, 80%, and 50% of constraints were used, respectively. The corresponding values for 

the X2-ensembles are 0.29 ± 0.06 Å, 0.37 ± 0.06 Å, and 0.40 ± 0.07 Å, respectively. As 

expected, there is a correlation between the ensemble precision and the number of constraints 

used to generate these ensembles, i.e. the ensemble RMSDs increase with decreasing number of 

constraints.
15

  

Using these so-called pseudo X-ray ensembles, we compared their MSDs with the ms 

fluctuations predicted by GNM and with the MSDs extracted from NMR data (N1) (Figure 2.6). 

Figure 2.6A displays the correlation coefficients between the MSDs in -carbon coordinates 

<(ΔRi)
2
>ensemble for each X-ray ensemble and the fluctuations predicted by the GNM for the 

single crystal structures X1 (blue) and X2 (green); and Figure 2.6B displays the correlation 

coefficients between the MSDs <(ΔRi)
2
>ensemble for each X-ray ensemble and the MSDs extracted 

from the original NMR data (N1). For comparative purposes, the correlations between the 

experimental B-factors and their GNM counterparts (Table 2.2 and Figure 2.6A) and between the 

experimental B-factors and the experimental MSD from the NMR ensemble (Table 2.2 and 

Figure 2.6B) are displayed by the light-colored bars on the panels.  

If only methodological similarities between NMR structure determination and GNM 

would play a role in their better correlation, we would expect that decreasing the number of 

constraints used for generating the pseudo ensembles would increase the correlation between 

these pseudo ensemble MSDs and the predicted GNM fluctuation for both X1 and X2 pseudo  
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Figure 2.6  Correlations between residue fluctuations from theoretical predictions and 

inferred from pseudo X-ray ensembles (panel A) and NMR experiments (panel B). 

Results for pseudo X-ray ensembles X1 and X2 are shown in blue and green bars. Theoretical data in 

panel A refers to GNM results obtained for the original crystal structures (X1 or X2). Experimental data 

in panel B refers to the RMSDs in C-positions between the models in the solution NMR ensemble. 

Results are displayed for three pseudo-X-ray ensembles, generated using 100%, 80% and 50% of the total 

constraints set. The light-colored bars on the left refer to the comparison of the original structures‟ B-

factors with GNM theory (A) and NMRexperiments (B).   

 

ensembles. Since the ensemble precision would be loosened with decreasing number of 

constraints, it might be mimicking the GNM methodology of using C

-C


 distances of 7 Å.  As 

can be appreciated from Figure 2.6A, we did not observe this effect. For X1 pseudo ensembles, 
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the correlations of the ensemble MSDs with the GNM predicted fluctuations were 0.80, 0.75, and 

0.83 for the 100%, 80%, and 50% constraints employed, respectively. Therefore, the degree of 

correlation is very similar, irrespective of how many constraints were employed. For the X2 

ensembles, the correlations are 0.83, 0.74, and 0.77 for the 100%, 80%, and 50% constraints set, 

respectively, similar to what is observed for the X1 ensembles. Therefore, our data show that the 

methodological similarity between NMR structure determination and GNM analysis is not a 

major factor causing good agreement between GNM predictions and NMR ensemble data.  

Most importantly, we also noticed that the X-ray ensembles‟ MSDs are in better 

agreement with the equilibrium fluctuations inferred from GNM than the sole use of X-ray 

crystallographic B-factors. This is especially true for the X2 pseudo ensembles. As can be 

appreciated from Figure 2.6A and 2.6B, the correlations among the MSD profiles of both X1 and 

X2 ensembles agree equally well with their GNM predictions (panel A) and with the 

experimental NMR data (panel B), across the three different constraint sets. While there seems to 

be no noticeable change comparing the pseudo X1 ensembles and their GNM predictions versus 

the X1 B-factors and the GNM prediction, a large improvement in the correlations was seen in 

the X2 case.  

Similar behavior was noted in the comparison of the pseudo X1 and X2 ensemble MSDs 

with the experimental NMR MSD. For X1, no significant differences in correlation were 

observed for all three ensemble MSDs and the corresponding experimental NMR MSD (0.77, 

0.70, and 0.89 for 100%, 80%, and 50%, respectively) versus the correlation between the X1 B-

factors and the NMR MSD (0.64). In contrast, a large improvement in the correlation between 

the pseudo X2 ensembles and the experimental NMR MSDs (0.77, 0.75, and 0.73 for 100%, 

80%, and 50%, respectively) was noted, compared to the poor correlation of 0.31 between the B-
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factors and the NMR MSDs. Based on these findings, we conclude that it is preferable to 

consider the MSDs obtained from an ensemble of conformers, rather than solely considering the 

B-factors from a single crystal structure, for assessing the equilibrium fluctuation behavior of 

residues.  

2.3.5 Interactions between neighboring molecules affect the dynamics in the crystal lattice 

One may ask why improvements in the correlation were only found for X2 and not for X1? In 

order to answer this question, we analyzed the distinctive behavior of the X1- and X2-models 

and how it may relate to influencing B-factors. As pointed out previously, crystal packing can 

influence residue motions since the interactions between one molecule and its neighbors can 

dampen equilibrium motions.
5, 58, 60

 The fluctuations accessible in the crystal environment may 

therefore deviate from those observed in solution (or under physiological conditions), depending 

on the extent of intermolecular contacts in a given crystal lattice.
53, 58, 60

 Motions in the crystal 

will also deviate from those calculated by the GNM, since the GNM, by definition, predicts the 

„intrinsic‟ dynamics in the absence of intermolecular interactions. It therefore is critical in any 

comparative assessment of the equilibrium dynamics to consider the isolated molecule and that 

in the crystal environment and elucidate any biases induced by crystal contacts.  

We therefore carried out additional GNM calculations that took into account inter-

molecular contacts between adjacent proteins in the crystal lattices, including all immediate 

neighbors in the crystal lattice (Figure 2.7, panels C and D). The resulting MSD profiles for the 

crystal forms X1 and X2 are shown by the dashed gray curves in Figure 2.7 along with the 

experimental data (<(ΔRi)
2
>X1 , blue, and  <(ΔRi)

2
>X2, green, by solid curves. For comparative 

purposes, we also display the GNM predictions for the isolated protein (dotted blue and green 

curves). No significant differences are observed for the two sets of GNM results for X1 
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(correlation coefficients of 0.76 and 0.72 for the isolated and lattice embedded chain, 

respectively), while for X2 an increase from 0.51 to 0.69 is noted.  

 

 

Figure 2.7 Comparison of theoretical and experimental residue fluctuations based on 

crystal packing of LKAMG in two different lattices. 

Panels A and B refer to the crystal structures X1 and X2, respectively. Mean-square fluctuations of 

residues predicted by the GNM for the isolated protein (dashed blue in panel A, dashed green in panel B) 

and those in the crystal lattice (dashed gray in both panels) are compared with those inferred from X-ray 

crystallographic B-factors (solid blue and green in the respective panels). (C) and (D) ribbon diagram of 

LKAMG surrounded by its first neighbors in the respective P21 (X1) and P212121 (X2) crystal forms. The 

total number of surrounding molecules is 14 and 12 in the respective crystals. Four symmetrically related 

molecules on the upper plane are not displayed in each diagram for clarity. Encircled regions are enlarged 

in panels E, F, G, and H. Panels (E) and (F) highlights the inter-molecular contacts in X1, (G) and (F) 

those in X2. 



36 

 

Closer examination of the fluctuations profiles reveals that the three loops comprising 

residues 25-29, 68-73 and 81-87 are predicted by the GNM to be the most mobile regions. In the 

case of X1, these regions, indeed, exhibit relatively high B-factors. For X2, on the other hand, 

motions in loops 68-73 and 81-87 are dampened as evidenced by the experimentally observed 

smaller B-factors. The GNM calculations performed in the presence of neighboring molecules in 

the crystal lattice unambiguously reveal that the observed deviations are related to crystal 

packing. Note, a total of 15 (X1) or 13 (X2) molecules, including the central molecule of interest, 

were considered in the GNM predictions, and the fluctuations profiles for the central molecules 

are shown in the figure.  

The different behavior of the GNM predictions for the two X-ray models in the context of 

their crystal neighbors is related to the different arrangement of individual proteins in the two 

different crystal space groups, P21 and P212121. In the X1 structure, one molecule is surrounded by 

14 neighbors (Figure 2.7C) and the loop comprising residues 25-29 of the central molecule is in 

close contact with the 81-87 loop in the translationally related neighboring molecule (Figure 

2.7E). In the contact region, the side chains of Arg24 and Asn29 of one molecule engage in 

electrostatic interactions with Asn84 and Arg81 of the neighboring molecule. Another 

intermolecular interaction involves the 68-73 and 94-96 loops (not shown). Clearly, such crystal 

contacts will influence the observed fluctuations, causing slight suppressions in GNM-predicted 

motions, compared to those obtained for the isolated protein.  

In X2, each individual molecule is surrounded by 12 neighbors (Figure 2.7D) and the 81-

87 loop makes intimate backbone contacts with residues in -strands 1 (7-13) and 6 (59-68) of 

the neighboring molecule. In particular, the backbone atom Cys83-O forms a hydrogen bond 

with Phe64-N, and Asn84-O with Leu12-N (Figure 2.7G).  In addition, a number of side chain-
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backbone interactions are observed, including Ala70-N and Glu22-O, Ala70-O and Arg20-N, 

and Gly69-O and Arg20-N. Clearly, such intimate interactions exert a significant effect of the 

fluctuations profile, and the experimentally observed suppression of residue motions in the 

crystal structure is reproduced by the GNM calculations performed for the X2 lattice.  

 

2.4 CONCLUSION 

The current work extends our previous analysis of NMR and X-ray structure parameters and 

GNM predictions.
47

 In order to uncover the origin of the correlation between NMR data and 

computations, we undertook here a detailed analysis for a specific protein. We chose LKAMG, 

given its small size, high thermodynamic stability and its multiple structures solved in our 

laboratory to high resolution. We applied multiple experimental and computational methods to 

examine its structure and dynamics, allowing us to assess the limitations inherent to the different 

methodologies, and reconciling the apparent disparate data derived using different 

methodologies.  

We previously suggested that the lower correlation between X-ray crystallographic B-

factors and GNM results may be caused by the inaccessibility of large-scale motions in the 

crystal lattice, while solution NMR ensembles may inherently contain such motional 

characteristics.
47

 Although compelling, the validity of this conjecture, and/or the contribution of 

other effects, had to be established. The present study provides data to that effect. Furthermore, 

in view of potential errors due to lack of specificity and nonlinear effects in the GNM predictions, 

we also compared the GNM results with MD simulations that use realistic force fields.  

Our results show that the fluctuations profiles predicted by the GNM and observed in MD 

simulations exhibit a correlation of 0.64 ± 0.04 (comparable to the correlation between the 
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individual MD runs), despite their fundamental differences in terms of the underlying model 

(e.g., all atoms vs. only -carbons, specific nonlinear potentials vs. nonspecific, linear potentials) 

and method (simulations vs. unique analytical solution). Strikingly, GNM exhibits even higher 

correlation than MD with the experimental data, suggesting that the improved accuracy of the 

mathematically „exact‟ GNM method that takes into account the entire network of structural 

interactions more than counterbalances the lack of precision/specificity in the model. An 

important feature of elastic network models is their ability to capture the cohesiveness and 

cooperativity in the structures overall. This cohesiveness accounted for by the network 

connectivity appears to play a dominant role in defining the accessible motions.  Since GNM 

results can be generated extremely rapidly, our data suggest that they can be securely and 

effectively used to assess the equilibrium dynamics of proteins. The relatively good correlation 

between the GNM results obtained for different conformers (N1, X1, X2) also support the notion 

that GNM is relatively insensitive to atomic details.  

An interesting finding pertains to the crystallographic data. The GNM predictions did not 

exhibit comparable correlations with the B-factor of the two crystal structures, although both X-

ray structures are of the same protein and were solved to similar resolution: the correlation with 

X2 B-factors was distinctively lower than that with X1 B-factors (Table 2.2). Likewise, all MD 

runs yielded poorer correlation with X2 data, pointing to an inherent feature of the X2 data. We 

therefore generated NMR-like ensembles of conformers, called X2-ensembles, using different 

sets of distance constraints extracted from the X-ray model.  Three sets with 50-100% of the 

complete distance constraints were considered. The resulting MSD profiles exhibited 

distinctively better agreement with both GNM predictions and NMR data. This suggests that the 

inferior behavior observed for the X2 predictions originates from incomplete coverage of the 
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accessible conformational space. Examination of the crystal contacts in the X2 structure 

substantiates this conclusion and GNM calculations in the presence of crystallographic neighbors 

confirmed that the origin of discrepancy between theory/computations and experiments lies in 

crystal contacts. 

Our results also lend credence to the view that ensembles of conformers, rather than 

unique structures, allow computational methods to assess equilibrium dynamics more 

accurately.
8, 38, 69, 70

 Not surprisingly, higher accuracy comes at the expense of lower precision, 

paralleling the lack of precision in coarse-grained analytical approaches such as GNM compared 

to MD simulations. However, useful information on structural dynamics, otherwise inaccessible, 

can be extracted in this fashion. 
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3.0 MOLECULAR SIMULATIONS PROVIDE INSIGHTS INTO THE 

MECHANICS, BUT NOT THE TIME SCALES, OF PROTEIN 

MOTIONS UNDER EQUILIBRIUM CONDITIONS 

 

This chapter is based on a recent study that has been submitted for publication in Proteins, and 

has been recently accepted for publication with minor revision. Recent studies suggest that 

protein motions observed in molecular simulations are related to biochemical activities, although 

the computed time scales do not necessarily match those of the experimentally observed 

processes.  The molecular origin of this conflicting observation is explored here for a test protein 

through a series of molecular dynamics simulations that span a time range of three orders of 

magnitude up to 0.4 microseconds. Strikingly, increasing the simulation time leads to an 

approximately uniform amplification of the motional sizes, while maintaining the same 

conformational mechanics. Residue fluctuations exhibit amplitudes of 1-2 Å in the nanosecond 

simulations, while their average sizes increase by a factor of 4-5 in the microsecond regime. The 

mean-square displacements averaged over all residues (y) exhibit a power law dependence of the 

form y  x
0.26 

on the simulation time (x). The effective correlation times, on the other hand, tend 

to increase linearly with the total length of the simulations. Our results demonstrate that proteins 

possess robust preferences to undergo specific types of motions that already can be detected at 

short simulation times, provided that multiple runs are performed and carefully analyzed. In 

contrast, experimental relaxation time scale and absolute size of the motions cannot be extracted 

unambiguously from current state-of-the-art atomic simulations in the submicroseconds regime. 
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3.1 INTRODUCTION 

Native proteins are not static entities under physiological conditions. On the contrary, they 

undergo a broad range of motions around their native state structures, ranging from local 

conformational changes such as peptide bond re-orientations or amino acid side chain 

isomerization to global rearrangements involving entire domains or subunits. The type and size 

of these motions are governed by the free energy landscape near native state conditions.
3, 35, 71

 In 

terms of functional relevance, many structural rearrangements, especially those collectively 

involving large substructures, are necessary for proteins to carry out their chemical and 

biological activities.
1, 3, 71, 72

 Therefore, in order to understand protein function, it is necessary to 

also examine the dynamics of proteins and not only their atomic structures. In particular, the 

lowest frequency internal motions, or global motions, need to be evaluated since they usually 

relate to the molecules‟ biological functions.  

Despite the complexity of protein motions, and contrary to expectations, experimental 

and computational studies suggest that dynamic features that can be detected computationally or 

experimentally at short times, may explain experimental data associated with much slower 

processes. A typical example is the dataset of order parameters derived by Palmer and coworkers 

for protein G binding domain 3 (GB3),
73

 based on two alternative datasets: NMR relaxation 

parameters for probing motions on the order of nanoseconds
74

 and residual dipolar couplings 

(RDCs) that probe motions on the microsecond time scale.
75

 Notably, the order parameter 

profiles extracted from these two datasets exhibit similar shapes,
73

 and the most „disordered‟ 

residues, associated with the minima in the order parameter profiles plotted as a function of 

residue number (Figure 3.1A), become even more pronounced in the longer-time events. In  
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Figure 3.1  Experimental and computational literature data exhibit  similar motional 

behavior for short and long times. 

(A) Order parameters S
2
 of GB3 extracted from NMR data: spin-relaxation (7), dashed black; 

and RDC (8), solid black. (B) Order parameters S
2
 of GB1 extracted from MD simulations: 10 ns 

MD simulation (12), dashed black; and 175 ns MD simulation (12), solid black. Secondary 

structure elements are depicted at the top of each panel. 

 

contrast, the shape of the profiles, i.e., the distribution of order parameters as a function of 

residue index, remains essentially unchanged, suggesting that events at short time scales and 

those at long time scales share common features. Another example that indicates similar 

behavior is an NMR study of ubiquitin in which RDC and spin-lattice relaxation experiments 
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exhibit comparable profiles that also agree with the predictions of accelerated molecular 

dynamics (MD) simulations, except for the amplitudes of the motions at long times.
76-78

 

Likewise, results for GB1 from two different length MD runs (Figure 3.1B) also demonstrate that 

the two simulations result in comparable order parameter profiles.
79

 In addition, other 

observations indicate a correspondence between experiments and computations, such as the 

relationship between MD events and catalytic turnover times observed by Kern and coworkers 

for adenylate kinase, even though the MD events are several orders of magnitude faster than the 

experimental ones.
80

 All these observations point to the existence of robust mechanism(s) of 

motions that dominate both short-time and long-time dynamics.  

Atomic motions can be divided into three basic components: the time scale of the motion, 

its amplitude, and its direction. In the strictest sense, characterization of protein dynamics 

requires the collection of thousands of time-resolved data at multiple length and time scales.
1
 As 

mentioned above, a broad range of experimental techniques provides information on protein 

dynamics, including NMR relaxation measurements,
18, 19

 Laue X-ray diffraction data,
20, 21

 

infrared and fluorescence spectroscopy,
22

 and single-molecule studies,
23

 although they inform 

about different aspects and time scales of protein dynamics. On the computational side, 

structure-based methods such as MD simulations
24

 and normal mode analysis (NMA) with 

elastic network models (ENMs)
26-28, 45

 have been exploited to gain insights into biomolecular 

systems dynamics. In particular, MD simulations are uniquely suited for examining time-

resolved events in proteins at high resolution. Although extremely powerful, two shortcomings 

are inherent to MD simulations.
81

 The first arises from sampling inefficiency, which becomes 

increasingly noticeable in large molecular system.
81-83

 Limitations of this nature can be alleviated 

to some extent by performing multiple independent runs for assessing convergence.
82, 84

 Second, 
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the lengths of MD runs often remain below microseconds due to memory and computing time 

limitations.
81

 Therefore, it still is an open issue whether functional motions at low frequencies 

can be inferred from relatively short MD runs. The present study was carried out to answer the 

following questions: (i) How similar are the residue fluctuation profiles for different lengths 

runs? (ii) Do top-ranking modes from a short simulation become high frequency modes with 

increasing simulation time?
85

 (iii) Do short MD simulations provide insights into functional 

motions, i.e., to what extent are the directions of motions near the native state energy minimum 

at short simulation times preserved at longer times? (iv) Do simulations provide information on 

the absolute time scales and sizes of various mechanisms of motions? 

Our results in combination with data reported previously for other systems, suggest that 

the distribution (or relative size) of residue fluctuations along the polypeptide chain, or the 

conformational mechanics, is a robust quantity under equilibrium conditions, predominantly 

defined by the 3-dimensional architecture in the native state, while their absolute size and 

effective correlation times predicted by MD simulations change with simulation duration, in the 

time regime (< 400 ns) investigated. The ratios for the observed mean-square displacements, y = 

<(R)
2
>MDk / <(R)

2
>MDk’ observed in two MD runs k and k’ of different durations,  and for the 

total simulation time, x = tMDk / tMDk’, are governed by a power law of the form y = x
0.26

, similar 

to results reported by Scheraga and co-workers.
86, 87

 The decomposition of the trajectories into 

essential modes revealed that well-defined directions of the global motions, encoded by the 

native topology of inter-residue contacts, can be discerned even in short runs, as long as the 

region around the native state energy minimum is comprehensively sampled by multiple runs.  
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3.2 MATERIALS AND METHODS 

3.2.1 MD simulations 

The starting structure (PDB ID: 2EZM)
33

 is highly anisotropic, occupying a volume of about 30 

× 52 × 27 Å
3
. We adopted a simulation box of size 40 × 62 × 37 Å

3
, which ensured a minimal 

water layer thickness of 5 Å for all surface residues.  This thickness has been verified in our 

earlier simulations,
4
 and shown in previous work,

88
 to satisfactorily solvate the protein. The 

resulting system consisted of 8,159 atoms, including 2,216 TOP3P water molecules. NAMD
66

 

with the Charmm22 force field
67

 was used with a 2 fs time step. After energy minimization and 

equilibration, multiple independent runs were performed at constant temperature (298K) and 

pressure (1 atm).  

3.2.2 Principal component analysis (PCA) of MD trajectories and NMR models 

The instantaneous position Ri(t) of each residue i is defined by the coordinates of its α-carbon 

atoms, which are organized into a 3n-dimensional vector of instantaneous configurations, R(t), 

for the protein of n residues. The configuration vector definition applies to each snapshot from 

MD runs or each model in the NMR structure ensemble (where t is replaced by the model index). 

In order to identify global changes in configuration originating from the collective fluctuations 

sampled in each MD run, or associated with the structural deviations observed in NMR 

ensemble, the following steps are taken. First, the instantaneous fluctuation ΔRi(t) = Ri(t) − <Ri> 

from mean position <Ri> is evaluated for each residue, for each recorded time t (a total of m 

snapshots or models). This is performed after optimal superimposition of the configuration onto 

the starting structure so as to eliminate the rigid-body translations and rotations. The 

superimposition is achieved by least squares fitting to backbone heavy atoms. Second, the 

fluctuation vectors ΔRi(t) (1 ≤ i ≤ n) are organized in a trajectory matrix A of dimension 3n x m, 
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for a set of m snapshots. Multiplication of A by its transpose and division by m yields the 3n × 3n 

covariance matrix C for each run (or for the NMR ensemble). C may be expressed as an n × n 

supermatrix, the element Cij of which is a 3 × 3 matrix of the form  

      [

〈      〉 〈      〉 〈      〉

〈      〉 〈      〉 〈      〉

〈      〉 〈      〉 〈      〉

]      (3.1) 

Here, <ΔXi ΔYj> represents the cross-correlation between the X-component of ΔRi for residue i 

and the Y-component of ΔRj for residue j, averaged over all m snapshots. Third, the eigenvalue 

decomposition of C is performed, which produces 3n − 6 nonzero eigenvalues and the 

corresponding eigenvectors. The eigenvectors define the directions of motions and the 

eigenvalues scale with the amplitudes.   

3.2.3 GNM and ANM 

The Gaussian Network Model (GNM)
26, 45

 and anisotropic network model (ANM)
56, 89

 analyses 

also lend themselves to a series of eigenmodes. In the GNM and ANM, the atomic structure 

could be simplified to a three-dimensional elastic network of n nodes (defined by positions of α-

carbons), where n is the residue number. By assuming that the fluctuations of nodes are isotropic 

and Gaussian distributed, the Kirchhoff matrix is used to describe the connectivity of the 

network as below: 

      {

                                      
                                        

      ∑                                                      

                     (3.2) 

Here    is the cutoff distance that defines pairs of residues to be connected in the network. Rij is 

the distance between node i and node j, 1 ≤ i,j ≤ n. The inverse of Γ can be expressed in terms of 

the non-zero eigenvalues λk (1  k  n-1) and corresponding eigenvectors    of Γ as     

∑   
      

    
   , and the MSF of a given residue is the sum over the contributions of all modes 
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(  

- 
    

 )  
 - 
   where kB is the Boltzmann constant, T is the absolute 

temperature, γ is a uniform spring constant, and the subscript ii designates the i
th

 diagonal 

element of the matrix enclosed in parenthesis.  

For ANM, the n × n Hessian matrix is used, with each element Hij is a 3 × 3 matrix that 

holds the anisotropic information:  

       
    

   
 [

                  
                  
                  

]      (3.3) 

The decomposition of H produces 3n-6 eigenvectors and their respective non-zero eigenvalues, 

where the eigenvectors describe the vibrational directions and the relative amplitudes of different 

modes.  

 

3.3 RESULTS AND DISCUSSION 

3.3.1 The distribution of residue fluctuations is insensitive to the duration of simulations 

In our study we compared the dynamic information retrieved from 1 ns to 400 ns MD runs for 

the protein cyanovirin-N (CV-N).
33

 We selected CV-N as our model system, based on its small 

size (n = 101 residues), its considerable thermodynamic stability and the large body of prior data 

available in our laboratory.
90-93

 CV-N‟s high stability at room temperature makes it a good 

candidate for performing extended simulations without the risk of significant structural changes 

or large conformational drift.
94

 As depicted in the Figure 3.2 inset, CV-N has a compact, pseudo-

symmetric fold and is made up of two domains. Residues 1-39 and 91-101 form domain A 

(green), and 40-90, domain B (blue). The two domains share 32% sequence identity and are 

connected by short helical linkers. Each domain is composed of a triple-stranded β-sheet with a 

β-hairpin packed on top. There are two carbohydrate-binding sites located at distal 



48 

 

Figure 3.2  Mean-square-fluctuation profiles of CV-N from simulations with different 

durations. 

The MSFs <(ΔRi)
2
> in the residue positions are plotted along the polypeptide chain of CV-N. 

Averages over twenty independent 1 ns, sixteen 5 ns, twelve 25 ns, eight 100 ns and two 400 ns 

runs are shown in blue, red, green, magenta, and black, respectively. Secondary structure 

elements of the protein are depicted at the top with disulfide bonds represented by dashed yellow 

lines and residues in the sugar binding sites labeled by asterisks. The inset shows the CV-N 

structure in ribbon representation. Domains A and B are colored green and blue, respectively, 

and the two sugar binding sites are colored red. Amino acid sequence positions are labeled for 

every 10
th

 residue.   
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positions (shown in red), one in each domain.
95

 The two binding sites exhibit distinct affinities 

and specificities for high-mannose sugars.
96

 The rotational correlation time τc of CV-N has been 

measured to be 4.5 ns.
97

 Our simulations thus permit us to investigate both the sub-τc and supra-

τc dynamics of CV-N under native state conditions. 

Figure 3.2 presents the results from a series of fifty-eight runs, adding up to a total 

simulation time of 2 microseconds. Multiple trajectories were generated for each simulation time 

(tMDk = 1, 5, 25, 100 and 400 ns, also called the time window) to reduce inaccuracies arising from 

inadequate sampling of sub-states near the native state, especially for the short runs. The curves 

in Figure 3.2 represent the mean-square-fluctuations (MSFs) in residue positions, <(ΔRi)
2
> for 

residue 1 ≤ i ≤ n, for each time window in the range 1 to 400 ns, averaged over all runs of a 

given duration. Residue positions are those of the -carbons.  

As can be appreciated, the family of curves shown in Figure 3.2 exhibits a striking 

similarity between the shapes of the residue fluctuation profiles for the different time windows. 

Essentially, all peaks/maxima that are noted at short time scales (e.g., 1-5 ns simulations) are 

amplified at longer times, with minimal changes in the relative sizes of the residue excursions. In 

principle, one might expect to detect new motional modes at longer times, possibly changing the 

MSF profiles. However, only slight variations can be discerned in the profiles, such as the 

emergence of a peak near the helical hairpin loop around residues 65-67 in domain B in the 

longer time windows. Indeed, most features are robustly maintained: the loop regions usually 

tend to have high fluctuations, while secondary structure elements exhibit more restricted 

motions. Interestingly, an asymmetry in residue fluctuations can be seen, with residues in domain 

B exhibiting larger motions than those in domain A, consistently noted in all simulations. 
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A quantitative measure of the degree of similarity between these MSF profiles is 

provided by the correlation coefficients listed in Table 3.1. The correlation coefficient between 

the MSFs for the 1 ns and the 400 ns runs is 0.83. Thus increasing the time window of 

observation by 4-5 orders of magnitude essentially leaves the fluctuation profile unchanged. A 

recent study of MDM2 dynamics also showed that the correlations between dihedral angle 

motions were conserved while the motional amplitudes changed upon binding the p53-peptide 

ligand,
98

 which also supports the view that the conformational mechanics are robustly 

maintained while the sizes of motions differ.  

 

Table 3.1 Correlation coefficients between the MSFs of CV-N Residues observed in MD 

simulations
a
 and those predicted by the GNM 

cc of MSFs  1nsavg 5nsavg 25nsavg 100nsavg 400nsavg 

5nsavg 0.96     

25nsavg 0.76 0.80    

100nsavg 0.71 0.76 0.79   

400nsavg 0.83 0.83 0.63 0.77  

GNM 0.71 0.70 0.74 0.60 0.67 

a
 Averages over multiple runs (see the text). 

 

What distinguishes the different MSFs is their absolute size. The longer the simulation, 

the further the displacement of a residue from its mean position is. The increase in fluctuations is 

also evident from the root-mean-square-deviation (RMSD) profiles provided in Figure 3.3. The 

RMSD remains around 3.7Å, which may be viewed as an indication of sampling the native state 

energy minimum even though this state may comprise narrowly distributed microstates that 

differ in their local conformers. But the fluctuations around the average RMSD increase with 

increasing simulation time, consistent with the observed dependence of <(ΔRi)
2
> on the duration 



51 

of the simulation. In order to uncover whether and what kind of dependency exists between the 

MSFs and the simulation time, we analyzed the data further (below).   

 

 

Figure 3.3 RMSD profiles for several simulation times. 

 

3.3.2 The increase in residue MSFs with simulation duration obeys a power law 

First, we consider two sets of trajectories, corresponding to two simulation times, e.g., tMD1 = 1 

ns and tMD2 = 5 ns. Figure 3.4A displays the <(ΔRi)
2
> values of residues 2 ≤ i ≤ 101 for these two 
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time windows: the abscissa represents the MSFs observed in MD1, and the ordinate, that in 

MD2. Linear regression of the data yields a correlation coefficient R
2
 of 0.95, the slope of which, 

1.34 in the present case, represents the average ratio of residue MSFs observed in MD2 to those 

in MD1. In other words, increasing the simulation time by a factor of 5 increases the residue 

MSFs by 34%, on average.  Panel B represents a similar plot for two other time windows, tMD3 = 

25 ns and tMD5 = 400 ns, which, in turn, yields a slope of 2.14, i.e., increasing the simulation time 

by a factor of 16 enhances the square displacements by a factor of 2.14.  

Repeating the same analysis for all pairwise combinations of simulation times, tMDk for k 

= 1-5 (5!/3!2! = 10 of them), yields the master curve displayed in Figure 3.4C. The data points 

show the enhancements in the MSFs accompanying the increases in the simulations, also listed 

in Table 3.2, for each pairwise combination. In other words, the ratio of MSFs for each pair of 

MD runs is plotted against the ratio of simulation times in Figure 3.4C. Each point represents the 

average behavior of all residues, averaged over multiple runs, i.e., the resulting dependence 

represents the outcome from the complete dataset of trajectories with a cumulative simulation 

time of 2 s.  Note that the scales of both, abscissa and ordinate, is logarithmic and a linear 

relationship on such a log-log plot indicates a power law of the form y ~ x
α
. The value of the 

exponent can be extracted from the slope of the best fit and is 0.26. Thus, the overall dependence 

is  

    <(ΔR)
2
> MDk / <(ΔR)

2
> MDk’ = (tMDk / tMDk’)

0.26   
(3.4) 

The subscript i in <(ΔRi)
2
> has been removed since the MSFs refer to averages over all residues.  

Equation 3.4 conveys two messages: (i) the MSFs observed in MD simulations depend on 

the duration of the simulations, and (ii) the dependence obeys a power law, with exponent 0.26. 

While this dependence seems small, it maps to displacements of <(ΔR)
2
>MD1 = 0.5 Å

2
 for tMD1 = 
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1 ns, and <(ΔR)
2
>MD5 = 2.6 Å

2
 for tMD5 = 400 ns. Thus, the square amplitudes of motions are 

enhanced by a factor of ~ 5 in long simulations. The major difference between short and long 

runs appears to be the larger excursions undertaken by the molecule around the native state 

energy minimum in longer runs, while the preferred directions of motions exhibit little, if any, 

changes.  

 

Table 3.2 Scaling factors for MSFs between different MD runs
a
 

Run1\Run2     1nsavg 5nsavg 25nsavg 100nsavg 

5nsavg 1.34    

25nsavg 1.93 1.42   

100nsavg 3.31 2.41 1.56  

400nsavg 4.76 3.54 2.14 1.44 

a
 See Figure 3.4C for the corresponding plot.  

 

We note that the power law observed in present simulations (Eq. 3.4) applies to CV-N 

equilibrium dynamics near its native state, and it cannot be extended to larger scale transitions, 

such as those occurring during unfolding events. Evidently, the shape of the native state energy 

minimum defines the maximal size of fluctuations accessible to a given protein under native state 

conditions, and those beyond a certain range inevitably fall into new energy minima, including 

the unfolded state; and fluctuations in the unfolded state are limited by chain connectivity or 

covalent bonds. Such structural changes are beyond the range of current equilibrium simulations 

which maintain the native fold. The increase in the motional amplitudes simply reflects the 

sampling of a broader range of the global energy basin with increasing time window (up to 400 

ns), and suggests that the observed MSFs simply reflect the portion of the global energy basin 

that is being accessed in a given run. 
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Figure 3.4 The magnitude of the fluctuations increases with increasing simulation time. 

(A) and (B) Comparison of the mean-square fluctuations for different simulations. (A) <(ΔRi)
2
> 

of residue i in the 5 ns simulation (y axis) is plotted against <(ΔRi)
2
> of the same residue in the 1 

ns simulation (x axis). (B) <(ΔRi)
2
> of residue i in the 400 ns simulation (y axis) versus <(ΔRi)

2
> 

of the same residue in the 25 ns simulation (x axis). (C) The relationship between MSF and 

simulation time is a power function, with exponent 0.26. The MSF scaling factors for different 

simulations are plotted against the corresponding ratios of simulation lengths.  



55 

 

Figure 3.5 Power law exponents for the fluctuation size of CV-N residues as a function of 

simulation time. 

The results are shown on domain A (green), and domain B (blue). The upper abscissa displays 

residue positions in domain A, and the lower abscissa, the residue positions in domain B. The 

secondary structures with disulfide bonds (dashed yellow lines) are represented on the top, and 

residues comprising the binding sites are labeled by asterisks. 

 

We further analyzed the behavior of each residue. Calculations yielded a range from 0.13 

to 0.46, for the exponent depending on residue position/conformation (see Figure 3.5). Larger 

exponents indicate a more pronounced dependence of the fluctuation sizes on the simulation 

time, i.e., residues with larger exponents enjoy larger conformational freedom. Examining the 

exponents with respect to secondary structure elements clearly indicated that loop residues 
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possess larger exponents than their neighbors located in helices and -strands. Another 

interesting finding is the observation that the two structurally similar, but distinct, domains of 

CV-N exhibit distinctive distributions of exponents. This suggests that in some cases it may be 

possible to use the exponent of individual residues or substructures to gain information on 

intrinsic dynamics, or conformational flexibility, which, in turn, may inform on functional 

properties.  

The above power law relationship suggests that there may be a time-dependent 

conformational drift throughout our simulations, even though we are exploring the neighborhood 

of the native state energy minimum. The deviation of the time-dependence of observed motion 

from that of a classical Brownian motion (where the exponent α is unity) might be attributed not 

only the subdiffusive motion which has been suggested to originate from the trapping in a local 

minimum/sub-state of the native state in the energy landscape
87, 99

 and from the sampling of 

infrequent and large jumps between such local minima,
100

 but also the bounded motion 

constrained by native contact topology in addition to covalent bonds. 

3.3.3 Longer simulations yield larger correlation times 

Next, we explored the time scales of observed motions. To this end, we evaluated the 

autocorrelation time τi for each residue in each run and averaged the results over all residues, and 

all runs of equal length to extract an effective correlation time for the protein for each simulation 

length. The autocorrelation time for residue i is obtained from the time decay of the time-delayed 

autorrelation function <ΔRi(t) · ΔRi(t+Δt)>. Figure 3.6 illustrates the time decay of the 

autocorrelation function for Gln78, based on 1 ns, 5 ns, and 100 ns runs, on the respective panels 

A-C. The function decays exponentially at short Δt, and fluctuates before leveling off to zero 

(indicating the loss of any correlation). The correlation times extracted for Gln78 by fitting the 
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early portion (20%) of the profiles to a single exponential are 0.013 ns for the 1 ns simulation, 

0.097 ns for the 5 ns simulation, and 3.64 ns for the 100 ns simulation, i.e., longer simulations 

yield larger correlation times. We further checked if the evaluated correlation times were stable 

by comparing the results from fitting the first 5%, 20%, and 60% portions of the autocorrelation 

decay curves (Figure 3.6C), to find out that the fluctuation of the observed time was acceptable. 

Calculations were repeated for all residues and all runs to obtain highly robust values for the 

effective correlation time of the protein for each simulation length. The resulting average scaling 

factors, by evaluating the ratios of effective correlation times for all pairs of simulation lengths, 

are listed in Table 3.3 and plotted in Figure 3.6D. Paralleling the increase in the motional 

amplitudes with increasing simulation time, the correlation times also increase. However, this 

increase exhibits a near linear dependence. Least square fitting to the results shown in Figure 

3.6D yields an exponent of 1.1. Notably, the correlation times (either τe extracted from the 

original model-free approach, or the fast and slow dynamics correlation times, τf and τs based on 

the extended model-free approach with four parameters) reported by Bui et al. for their MD 

simulation of GB1
79

 also exhibited a dependence on simulation time, with the correlation time of 

the 175 ns simulation being 7.8 or 17.5 times larger than that of the 10 ns simulation (using 

original or extended model-free approach), suggesting that it is not possible to make an 

unambiguous assessment of the absolute time scale of configurational relaxation motions based 

on the correlation times observed in MD simulations up to hundreds of nanoseconds. 

In principle, the representation of the time-delayed autocorrelation functions‟ decay by a 

single exponential is an approximation that overlooks the multitude of motions/modes effectively 

controlling the dynamics. However, performing this analysis for each individual residue yields a  
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different modes in the evaluation of the effective correlation times. Application of the same 

procedure to all runs, and then taking averages over all runs of a given length, provided us with a 

consistent metric, called effective correlation times. 

 

Table 3.3 Scaling factors for autocorrelation time (τ) between different MD simulations
a
 

Run1\Run2  1nsavg 5nsavg 25nsavg 100nsavg 

5nsavg 5.8    

25nsavg 35.3 5.7   

100nsavg 140.4 22.4 3.9  

400nsavg 797.2 132.5 21.6 5.2 

a
 See Figure 3.6D for the corresponding plot. 

 

3.3.4 Comparison of essential modes extracted from different MD runs 

As a further test, we examined the principal motional modes inferred from simulations of 

different lengths. To this end, we decomposed the CV-N motions that were sampled in each MD 

run into a series of collective modes, each ranked by their weights. We next focused on the top-

ranking modes, also called global or essential modes, since these are usually the most collective 

modes and numerous applications have shown their relevance to biological function.
71

 

We considered two most extreme runs: the 1 ns and 400 ns simulations. The global 

(lowest frequency) mode obtained from two such runs is illustrated in Figure 3.7, A and B. 

Strikingly, although one might expect that the longer simulations probe more collective motions 

that only emerge at longer time scales, the global motional behavior is remarkably similar in the 

two runs. The correlation coefficient between the two modes is 0.77, suggesting that the global 

modes at either short or long times share robust features that are uniquely defined by the 

structure, and can be extracted to a good approximation from short runs.  
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Figure 3.7 The shared global mode between theory and simulations. 

The CV-N backbone structure is shown in tube representation (red) with the directions of the 

global motion for the 1 ns simulation (A) and the 400 ns simulation (B), or the second mode 

predicted by the ANM (C) depicted by blue, green, and yellow arrows, respectively. The 

correlation coefficients between pairs of modes displayed are 0.77 (blue/green), 0.69 

(blue/yellow), and 0.64 (green/yellow). Primary sequence positions are labeled for every 10
th

 

residue. 

 

To validate these findings, the first two modes of two 400 ns simulations were compared 

with the global modes extracted from all other shorter simulations. The results of this analysis 

are presented in Table 3.5. Thirty-two of all fifty-six short (≤ 100 ns) simulations yielded global 

motions similar to those in the first 400 ns simulation, with similarity defined as a correlation 

coefficient > 0.6 between the two modes. A very similar result was obtained, performing the 

analysis for the second 400 ns simulation. Even though not all the different length simulations in 

our dataset converged completely, a large fraction of them share the low frequency motions with 

the longest runs. As a further analysis, we combined trajectories from all individual runs with the 
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same duration, and compared the principal modes of motions computed for different time scales. 

The results compiled in Table 3.4 also confirm that the directions (not the size) of the global 

motions are reproducible and conserved across runs of various lengths, although the orders of the 

modes may shift in some cases. It thus is important to carry out multiple simulations and subject 

the compiled data to mode decomposition in order to detect the „consensus‟ global modes and 

extract information on collective mechanics.
101

  

 

Table 3.4 Shared global modes between MD simulations
a
, NMR structural ensemble, and 

ANM predictions
b
 

cc of Modes 1nscomb 5nscomb 25nscomb 100nscomb 400nscomb 

5nscomb 0.80 (1,1)     

25nscomb 0.75 (2,1) 0.64 (2,1)    

100nscomb 0.58 (5,3) 0.57 (2,1) 0.84 (1,1)   

400nscomb 0.59 (1,4) 0.67 (1,2) 0.80 (4,4) 0.59 (1,3)  

ANM 0.57 (1,1) 0.60 (2,2) 0.61 (2,3) 0.60 (2,3) 0.58 (1,4) 

NMR 0.60 (2,1) 0.63 (2,1) 0.57 (2,2) 0.56 (2,2) 0.47 (2,2) 

a
 The MD global modes refer to the combination of multiple trajectories of a given simulation 

length. 

b 
Entries in parentheses represent the mode numbers, e.g. the 2

nd
 mode of the combined 25 ns 

simulations (total of 12 runs) displays a correlation coefficient of 0.75 with the 1
st
 mode of the 

combined 1 ns simulations (20 runs).   

 

Given that the top-ranking modes of long simulations can be extracted to a good 

approximation from short simulations, insights into biological motions of low frequencies may 

be gained via multiple short simulations. The explanation for such unexpected behavior may lie 

in the nature of the folding energy landscape. The energy space may be described in terms of an 

orthogonal basis set, with each basis vector defining a different mode of motion. If the global 

modes of motion in long and short simulations, respectively, display the same patterns, this  
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Table 3.5 Shared modes between 400 ns simulations and shorter simulations 

Runs 400ns-01 Runs 400ns-01 

Mode 1 Mode 2 Mode 1 Mode 2 

1ns-02 1 0.61 - - 5ns-01 - - 2 0.63 

1ns-03 3 0.61 - - 5ns-02 - - 3 0.73 

1ns-05 1 0.77 - - 5ns-03 - - 3 0.66 

1ns-08 - - 2 0.70 5ns-05 1 0.62 2 0.64 

1ns-10 2 0.68 1 0.72 5ns-06 1 0.63 2 0.64 

1ns-11 1 0.60 1 0.62 5ns-07 2 0.67 - - 

1ns-12 - - 3 0.72 5ns-09 3 0.71 2 0.71 

1ns-14 1 0.73 - - 5ns-10 1 0.71 3 0.71 

1ns-16 5 0.68 1 0.61 5ns-11 - - 2 0.72 

1ns-18 2 0.60 - - 5ns-12 1 0.77 3 0.75 

1nscomb - - 2 0.71 5nscomb 2 0.76 4 0.64 

25ns-01 1 0.78 - - 100ns-01 - - 4 0.63 

25ns-03 - - 3 0.65 100ns-03 3 0.62 - - 

25ns-04 6 0.61 - - 100ns-04 - - 5 0.61 

25ns-05 1 0.61 2 0.61 100ns-05 - - 1 0.65 

25ns-06 3 0.60 - - 100ns-06 - - 2 0.63 

25ns-07 1 0.68 3 0.75 100ns-08 2 0.60 - - 

25nscomb 2 0.61 - - 100nscomb 3 0.80 - - 

 

Runs 400ns-02 Runs 400ns-02 

Mode 1 Mode 2 Mode 1 Mode 2 

1ns-01 1 0.62 - - 5ns-14 - - 1 0.64 

1ns-05 - - 1 0.62 5ns-15 - - 1 0.62 

1ns-12 - - 1 0.61 5ns-16 - - 1 0.72 

1ns-15 5 0.64 - - 25ns-01 2 0.62 4 0.64 

1ns-17 2 0.60 3 0.64 25ns-03 - - 1 0.76 

1nscomb - - 1 0.72 25ns-04 - - 1 0.75 

5ns-02 - - 1 0.63 25ns-05 - - 1 0.68 

5ns-04 2 0.65 3 0.62 25nscomb - - 2 0.88 

5ns-05 2 0.60 1 0.73 100ns-01 4 0.65 - - 

5ns-08 - - 1 0.60 100ns-02 - - 3 0.69 

5ns-09 - - 1 0.67 100ns-03 2 0.62 - - 

5ns-11 2 0.69 1 0.69 100ns-04 - - 3 0.66 

a
 The independent runs are indexed by the duration of the simulation, followed by the simulation 

number.  For example, there are twenty 1 ns simulations, the first indicated as 1ns-01 and the last 

as 1ns-20. Likewise, we have sixteen 5 ns runs, twelve 25 ns, etc. Only those runs that exhibit 

shared modes are listed. The results from combing the multiple individual runs of the same 

duration are highlighted by gray. 
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b 
The upper and lower parts of the table refer to two independent runs of 400 ns each. The 

correlating global mode (mode 1-6) is listed provided that a correlation cosine of 0.6 or more is 

observed with the mode 1 or 2 of the 400 ns simulation.   

 

suggests that the molecule tends to move along the same direction, or samples the same 

subspace, in both cases, although the amplitudes of the displacements differ. All the observations 

made here are consistent with different levels of coverage of the native state energy well, shorter 

simulations covering the bottom only, while longer simulations reaching distant locations while 

remaining in the same well. 

3.3.5 Both ENM and NMR results are consistent with the MD simulation results 

 

Table 3.6 Shared modes between ANM prediction and different MD simulations 

    ANM 

MD 

Mode 1 Mode 2        ANM 

MD 

Mode 1 Mode 2 

1ns-01 3 0.76 - - 5ns-12 - - 1 0.70 

1ns-03 - - 3 0.73 5ns-13 4 0.65 3 0.60 

1ns-05 3 0.72 1 0.69 5ns-15 - - 2 0.68 

1ns-07 2 0.63 - - 5ns-16 - - 4 0.64 

1ns-08 2 0.67 1 0.77 5nscomb - - 2 0.60 

1ns-09 4 0.64 2 0.81 25ns-01 4 0.63 1 0.68 

1ns-10 - - 2 0.71 25ns-02 4 0.66 - - 

1ns-14 - - 1 0.67 25ns-07 - - 1 0.75 

1ns-15 2 0.68 1 0.61 25ns-10 - - 3 0.63 

1ns-16 6 0.60 - - 25nscomb - - 3 0.61 

1ns-17 3 0.66 - - 100ns-01 - - 3 0.60 

1ns-20 1 0.67 - - 100ns-04 2 0.66 4 0.69 

5ns-02 - - 2 0.65 100ns-05 - - 3 0.61 

5ns-05 5 0.66 - - 100ns-06 - - 6 0.62 

5ns-07 - - 2 0.75 100nscomb - - 3 0.60 

5ns-08 6 0.68 - - 400ns-01 - - 1 0.64 

5ns-09 - - 3 0.64 400ns-02 2 0.61 - - 

5ns-10 - - 1 0.72      

a
 Same indexing as Table 3.5 is adopted to label the runs.  



64 

b 
The correlating global mode (mode 1-6) is listed provided that a correlation cosine of 0.6 or 

more is observed with the mode 1 or 2 predicted by the ANM.   

As further verification of the relevance of our findings to CV-N dynamics, we performed the 

GNM
26, 45

 analysis of the PDB structure 2EZM, the NMA
46, 102

 of the same structure using the 

ANM,
89

 and the PCA of the NMR ensemble of 40 structural models for CV-N.
33

 ANM modes 

have been observed in previous studies to correlate with the structural dynamics intrinsically 

accessible to enzymes
71, 103, 104

 and with the microseconds dynamics of G-protein coupled 

receptors.
83

 The distribution of NMR models also provides information on structural variabilities, 

which may be compared to those observed in MD runs.
4, 52, 105

 

 

The correlations between the distribution of MSFs predicted by the GNM, <(ΔRi)
2
>GNM, 

and those observed in different MD runs are presented in Table 3.1. The correlations vary from 

0.60 (with <(ΔRi)
2
>100ns,avg) to 0.74 (with <(ΔRi)

2
>25ns,avg). Here the subscript designates that the 

MSFs refer to the averages over multiple MD runs of a given duration (e.g., 12 runs of 25 ns 

each, or eight runs of 100 ns, etc).  These results are consistent with our previous findings where 

correlations of 0.64 ± 0.04 were obtained
4
 between GNM-predicted MSFs and the MSFs inferred 

from multiple 10 ns MD simulations. The results presented in Figure 3.7C, Table 3.4, and Table 

3.6 further show that the global modes predicted by the ANM correlate with the global modes 

derived from MD simulations, irrespective of the length of the simulation, again suggesting the 

global motions observed in MD simulations and those predicted by coarse-grained models such 

as the ANM share robust features uniquely encoded by the equilibrium structure. Table 3.4 also 

displays the correlations between the principal modes of structural deviations inferred from 

NMR models (last row) and global modes observed in MD simulations. The correlations 

between the NMR principal modes and MD global modes, 0.55 ± 0.06, are not as high as those 
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among MD runs with different lengths, 0.68 ± 0.11 (Table 3.4), presumably due to the fact that 

there are only 40 models in the NMR ensemble, which may provide an incomplete description of 

the accessible reconfigurations. The level of agreement appears to decrease with increasing 

simulation duration, which may be due to the inadequate sampling of the accessible (larger) 

conformational subspace by fewer independent runs.  The above results emphasize the 

importance of performing a sufficient number of independent runs in order to ensure complete 

coverage and adequate sampling of accessible conformers. 

The conformational dynamics usually consists of a continuous spectrum of motions, with 

varying frequencies and amplitudes. As such, it can hardly be divided into two distinctive groups, 

fast and slow. However, in the literature, for simplicity, two time regimes have been defined, 

sub-τc and supra-τc, to describe fast and slow motions, respectively. τc is the correlation time 

deduced from T1/T2 ratio measured by NMR spectroscopy.
8, 79

  In the case of CV-N, the 

experimentally measured τc is 4.5 ns.
97

 Therefore, the time scale of present simulations includes 

motions in the „fast‟ regime, as well as „slow‟ regime. The frequency range of slow motions 

varies by two orders of magnitude up to 0.4 microseconds time scale. The conclusions drawn 

therefore apply to this time regime. Yet, it is worth noting that the most cooperative (global) 

modes of internal motions derived from short and long simulations share close similarities 

(compare, for example, panels A and B in Figure 3.7). Furthermore, they exhibit reasonable 

agreement with the results from ANM calculations, and NMR data, which also supports the 

robustness of the results from simulations. 
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3.4 CONCLUSION 

In the present work, we have analyzed amplitudes, correlation times, and directions of residue 

motions in multiple MD runs of durations varying in the range 1 ns – 400 ns. The simulation 

conditions were identical in all runs, except for the lengths of the simulations. Our data show that 

the distribution of residue fluctuations, or the MSF profile, is insensitive to the simulation length, 

while the amplitudes and correlation times increase with simulation time. The square amplitudes 

exhibit a power law dependence on the simulation time, while the correlation times are linearly 

dependent. These findings suggest that the types of motions, but not their absolute time and 

length scales, can be accurately extracted from MD runs in the observed time regime, which 

includes both sub- and supra-c motions up to hundreds of nanoseconds  

The present study also explains why and how simulations that sample several order of 

magnitude faster events may provide insights into the conformational mechanics of much slower 

processes. Our in-depth examination of the spectra of essential modes retrieved from the 

different simulations suggests that highly robust and usually functional modes that persist (or 

fully evolve) at longer times can be discerned even in short simulations provided that the 

dominant modes are extracted by a PCA of the combination of multiple trajectories. The motions 

are robustly defined by the shape of the native state energy minimum, which apparently governs 

protein fluctuations not only in the close neighborhood but also during relatively large 

excursions away from the minimum. The fact that the GNM and ANM results are consistent with 

MD simulation results also points to the dominance of shape of the energy landscape near the 

native state minimum in defining the accessible routes/modes of reconfiguration. We suggest 

that performing multiple simulations should be considered as a key strategy for identifying 
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consensus modes and that PCA may help test the convergence and conservation of collective 

motions in a given protein.   
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4.0 BIOINFORMATIC ANALYSIS OF DOMAIN-SWAPPED PROTEINS 

Work discussed in this chapter has been accepted for publication as a chapter in Comprehensive 

Biophysics, 2012. Among thousands of homo-oligomeric protein structures, there is a small but 

growing subset of „domain-swapped‟ proteins. The term „domain swapping‟, originally coined 

by D. Eisenberg, describes a scenario in which two or more polypeptide chains exchange 

identical units for oligomerization.
12

 This type of assembly could play a role in disease-related 

aggregation and amyloid formation or as a specific mechanism for regulating function, and hence 

it is important to understand how proteins perform domain swapping. Although a lot of effort has 

been directed towards analyzing domain swapping, no unifying molecular mechanism of domain 

swapping has emerged to date. We compiled all domain-swapped protein structures in the PDB, 

performed a detailed examination of the common/different features of the chains in our 

collection and summarized ideas about putative mechanisms. Results from this analysis, for 

instance with respect to chain lengths, structural classification or amino acid composition, did 

not reveal any special properties associated with domain-swapped proteins or the exchanged 

domains. The diversity of sequences and architectures suggests that almost any protein may be 

capable of undergoing domain swapping and that domain swapping maybe solely a specialized 

form of oligomer assembly. On the other side, structure-based computational analysis, i.e., 

GNM, on the monomeric conformations of our collection suggested that native contact and 

topology information alone is not sufficient for uncovering hinge residues in our diverse set of 

domain-swapped proteins.  
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4.1 INTRODUCTION 

It is generally accepted as a central truth in biochemistry that the amino acid sequence of a 

protein encodes all necessary information for the chain in a given environment to fold into a 

single, well-defined stable structure.
106

 For most proteins, this structure is under physiological 

conditions the native, functional state. Under certain circumstances, however, proteins may be 

able to fold into distinctly different structures, and over the past few years, increasing numbers of 

alternative folds are being discovered. Lymphotactin
107

 and Mad2 (the mitotic arrest deficiency 2 

protein)
108

 are extreme examples of this type.  

The most common alternative structures comprise different multimeric assemblies of 

identical polypeptide chains. Multimers are endowed with structural and functional advantages, 

such as improved stability and control over the accessibility and specificity of active sites, 

explaining why oligomerization is favored during protein evolution.
109

 Special cases of 

multimers are the so-called morpheeins, homo-oligomeric proteins that can switch their structure 

between functionally distinct alternate quaternary states. The prototypical example of a 

morpheein is the enzyme porphobilinogen synthase (PBGS) which exists in an equilibrium 

between an octamer, a hexamer, and two dimer conformations.
110

 Another special case of 

oligomerization has been described as „3D domain swapping‟.
32

 A „domain-swapped‟ structure 

contains two or more polypeptide chains that exchange identical units. The exchanged portion 

may consist of a single secondary structure element or an entire globular domain. If exchange is 

reciprocal between two monomers, dimers are formed, or, if more chains are involved, oligomers 

ensue.  

Folding into the native state is driven by a combination of entropic and enthalpic forces 

that result in burial of hydrophobic residues in the interior and exposure of polar residues on the 
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surface of the protein. This network of defined attractive and repulsive forces arranges the chain 

in well-defined, secondary structure elements. In multimers, each single polypeptide chain 

usually adopts the same conformation, although the assembly of individual chains in the 

oligomer can vary. Often, small changes in protein composition or environment can tip the 

balance from one arrangement to the next, with some proteins coexisting in more than one 

oligomeric state. A classic example of alternate oligomers is the Bence-Jones protein, 

characterized by X-ray diffraction more than 40 years ago. This protein exists in the crystal in 

three quaternary structures
111

 that vary in their domain interactions.  

By Jul 2010, PDB
112

 contains 28723 homo-oligomeric protein structures. The most 

commonly found assembly patterns are „side by side‟ and „head-to-tail‟, but domain-swapped 

structures are becoming a sizeable fraction. In the current review not all oligomeric structures are 

considered; we solely concern ourselves with proteins for which domain swapping has been 

described. 

The term „three-dimensional (3D) domain swapping‟, or simply domain swapping, was 

originally coined by Eisenberg and colleagues for describing the X-ray structure of a diphtheria 

toxin (DT) dimer in 1994.
113

 However, already in 1962 a report was published describing the 

exchange of an N-terminal fragment for bovine pancreatic ribonuclease A (RNase A) upon 

dimerization.
114

 The first protein X-ray structures that contained domain-swapped elements were 

determined in the early 1980s,
115-117

 with more and more structures of domain-swapped 

multimers following suit (Figure 4.1).  

In the following, we will report on domain-swapped structures we derived from the PDB, 

summarize ideas about putative mechanisms for this type of oligomerization, and describe a few 
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examples in detail for which domain swapping may be important for regulating function or 

triggering disease. 

 

Figure 4.1 Growth in domain-swapped structures deposited in the PDB. 

Proteins with identical sequences for monomeric and oligomeric states are shown in red; proteins 

that share > 90% sequence identity between the monomer and oligomer are shown in green, and 

proteins for which swapped structures have been described without monomeric counterparts are 

shown in blue. 

 

4.2 GENERAL ASPECTS 

4.2.1 Dataset of domain-swapped proteins 

Currently, more than 100 domain-swapped structures are deposited in the PDB, with 38 

examples for which both monomeric and oligomeric structures are available (Table 4.1 and 4.2). 

These 38 proteins are non-related and exhibit < 20% pairwise sequence identity. Among them, 

19 cases exist with identical sequences for monomeric and oligomeric states, thus they are 
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examples of true domain swapping. The other 19 share > 90% sequence identity between the 

monomer and oligomer polypeptide, some involving single amino acid mutations. Not 

surprisingly, structures for most domain-swapped oligomeric proteins have been determined by 

X-ray crystallography.  

Analysis of the chain lengths, structural classification or amino acid composition, does 

not reveal any special properties associated with domain-swapped proteins. In our dataset, the 

shortest protein is the immunoglobulin binding domain B1 of streptococcal protein G (GB1)
118

 

which comprises only 56 residues, and the longest one is DT
119

 with 535 amino acids. The ratio 

of all α proteins, all β proteins and mixed α/β proteins for domain-swapped proteins is 2:2:5, 

identical to the ratio reported for all structures in Structural Classification of Proteins (SCOP),
120

 

and there appears to exist no specific amino acid requirements for domain-swapped proteins, 

compared to overall protein space.  

Similar findings hold when examining only the exchanged domains. They exhibit 

different sizes, ranging from a few residues to more than 100 amino acids. Single α-helix or β-

strand can be swapped, bundles of α-helices or β-hairpins are found exchanged and even mixed 

α-helix and β-strand elements can serve as the swapped domain, without any discernable 

sequence signature among them.
32

 Although, the exchanging unit can be located anywhere in the 

sequence, it is often found at one of the two termini. Human antithrombin III is an example in 

which the exchanged domain resides in the middle of the protein; this kind of exchange has also 

been termed „hairpin insertion‟.
121

 An example in which almost one half of the entire polypeptide 

chain is exchanged is cyanovirin-N (CV-N).
33

  

Taken together, the above analysis reveals that proteins found in domain-swapped 

structures display the same diversity as any protein in the PDB. This suggests that almost any 
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protein may be capable of undergoing domain swapping and that domain swapping is solely a 

specialized form of oligomer assembly. 

 

Table 4.1 Proteins for which monomeric and swapped oligomeric structures are available 

for the identical polypeptide sequence. 

 

Protein 
PDB ID 

Monomer
a
 

PDB ID 

Oligomer 

Polypeptide 

length
b
 

Hinge 

location
c
 

exchanged 

element(s) 
References 

Syntaxin TLG1 2C5K 2C5J 95 65-69 helix 
122

 

VAMP-7 2VX8 2VX8 169 40-45
e
 helix 

123
 

spo0A 1QMP 1DZ3 130 107 helix 
124, 125

 

Barnase 1BRN
d
 1YVS 110 37-41 helices 

126, 127
 

FOXP2 2A07 2A07 93 538, 544 helices 
128

 

Bcl2-L-1 1R2D 2B48 218 158-159 helices 
129, 130

 

trpR 1P6Z
d
 1MI7 107 

64-67, 

76-78 
helices 

131, 132
 

CD47 2JJS 2VSC 127 101-102 β-strand 
133

 

DAP-150 2HKQ 2HKN 97 37-40 β-strand 
134

 

LB1 1K50 1K50 63 52-56 β-strand 
135

 

cspB 1C9O 2HAX 66 37 β-strands 
136, 137

 

CV-N 2EZM 3EZM 101 50-54 β-strands 
33, 138

 

ATIII 1ATH 2ZNH 432 
338-339, 

390-406
e
 

β-strands 
121, 139

 

RNase A N-swap    

C-swap 

5RSA 

 

1A2W 

1F0V 

124 

 

19-20 

112 

helix        

β-strand 
140-142

 

ASP1 3BFB 3CYZ 119 13 β-strand 
143, 144

 

yopH 1M0V 1K46 136 28-29 mixed 
145, 146

 

Cystatin-A 1DVC 1N9J 98 48-50 mixed 
147, 148

 

ptsH 1Y51 1Y50 88 54 mixed 
149

 

DT 1MDT 1DDT 535 379-386 domain 
113, 119

 

a 
Some structures are not available as isolated monomers.  

b 
Sequence information was obtained from the FASTA file in the PDB. Coordinate information 

may be not available for all residues in the PDB file.   
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c 
Hinge residues are numbered according to the monomer PDB file; these numbers may differ 

between monomer and dimer. 

d 
No monomeric structure is available. The comparison is carried out for the monomer unit in a 

non-swapped dimer or oligomer (see text for details). 

e 
The protein contains a cleaved peptide bond in the hinge region or has no coordinate 

information in the PDB file.  

 

Table 4.2 Proteins for which monomeric and swapped oligomeric structures are available 

for closely related polypetide sequences
a
. 

Protein 
PDB ID 

Monomer
b
 

PDB ID 

Oligomer 

Polypeptide 

length
c
 

mutation; 

extension
d
 

Hinge 

location
e
 

exchanged 

element(s) 
References 

TRX 2O7K 3DIE 107 1; 1 27-30 mixed 
150, 151

 

CABP 1N65 1HT9 75 1; 1 42-45 helices 
152, 153

 

CD2 1T6W 1CDC 99 3; 0 45-46 β-  
154, 155

 

Rab27b 2ZET 2IF0 203 0; 3 43, 77 β-strands 
156, 157

 

GRB2 1BM2 1FYR 117 1; 2 121-122 mixed 
158, 159

 

GB1 1GB1 1Q10 56 4; 0 38-41 β-strands 
118, 160

 

OBP 2HLV 1OBP 160 4; 0 121-122 mixed 
161, 162

 

PrP
C
 2W9E 1I4M 113 0; 5 190-197 helix 

163, 164
 

HasA 1YBJ 2CN4 178 0; 5 48-50 mixed 
165, 166

 

iNOS 1M8D
f
 1QOM 434 0; 6 104 mixed 

167, 168
 

TNase 1SNC 1SND 149 6; 0 112-120
g
 helix 

169, 170
 

GR 3BQD 3H52 255 7; 0 547-552 mixed 
171, 172

 

Trk-A 1WWW 1WWA 101 0; 8 297 β-strand 
173, 174

 

IL-10 1LK3 1ILK 160 6; 3 107-114 helices 
175, 176

 

HDGF 1RI0 2NLU 110 0; 10 34-41 β-strands 
177, 178

 

CA-CTD 2KOD
f
 2ONT 70 2; 12 177 helix 

179, 180
 

EMMPRIN 3B5H
f
 3I84 184 >15 93-94 β-strand 

181, 182
 

RGS7 2D9J 2A72 139 >15 100 helix 
183, 184

 

afaD 2IXQ 2AXW 142 >15 116-130 β-strand 
185, 186

 

a 
The monomeric and swapped oligomeric structures for each pair are in the same entry in 

Uniprot.
187

 

b 
Some structures are not available as isolated monomers.  
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c 
Sequence information was obtained from the FASTA file in the PDB. Coordinate information 

may be not available for all residues in the PDB file.  

d
 Sequence information was obtained from the FASTA file in the PDB. The polypeptide lengths 

in the pairs are different. Some such cases, for instance HasA is indeed a bona fide example of 

domain swapping. 

e 
Hinge residues are numbered according to the monomer PDB file; these numbers may differ 

between monomer and dimer.  

f 
No monomeric structure is available. The comparison is carried out for the monomer unit in a 

non-swapped dimer or oligomer (see text for details). 

g 
The protein contains a cleaved peptide bond in the hinge region or has no coordinate 

information in the PDB file.  

 

4.2.2 Mechanistic considerations  

Comparison between the closed conformation of the monomeric polypeptide chain and the open 

conformation of the same chain in the domain-swapped dimer implies that the observed large 

conformational differences most likely require some kind of un/refolding. Intra-molecular 

interactions involving hydrophobic contacts, hydrogen-bonding, electrostatic interactions, and 

even disulfide bridge interactions
163, 188, 189

 at the closed interface in the monomer are exchanged 

to inter-molecular interactions. Naturally, such breaking and reforming of contacts requires 

energy, the activation energy for 3D domain swapping.
190

 In order to overcome the activation 

barrier between the monomer and dimer, changes in environment, in particular conditions that 

favor unfolding, may play a role. 

For proteins capable of domain swapping, folding from the unfolded polypeptide chain 

can lead, in principle, to either the closed monomer or the domain-swapped dimer. Partitioning 

between the two products is determined by their free energy difference. This difference is 

naturally very small, given that all interactions within the two structures are extremely similar; 
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only the hinge-loop conformation is distinct. Therefore, any free energy difference needs to be 

traced to the hinge-loop, which can either introduce or relieve strain during monomer-dimer 

interconversion.  

4.2.2.1 The hinge-loop The hinge-loop is the only region of the protein that adopts a 

different conformation in monomeric and domain-swapped structures. Therefore, sequences and 

secondary structures have received considerable attention in the search for local signals that 

could cause or influence domain swapping. 

Several studies show that altering the length of the hinge-loop can switch the domain 

swapping propensity of a protein. Intuitively, one would expect that long loops preferentially 

result in monomers and short ones in dimer structures: a short loop will make it difficult for the 

polypeptide to fold back on itself, and in turn allow the swapped portion of the chain to find 

partners more easily. This clearly is the case in staphylococcal nuclease.
169

 The only sequence 

difference between the monomer and domain-swapped dimer is the loop length, with the 

monomer loop containing 6 more residues than the hinge in the dimer. Loop residue deletion has 

also been used in some designed proteins. An elegant example illustrating the importance of loop 

length is provided by two different three helix bundles that were engineered in the Eisenberg 

laboratory.
191

 Loop deletion in one of these caused the formation of a domain-swapped dimer 

whereas loop deletion in the other resulted in fibril formation. On the other hand, Perutz and 

colleagues found that adding a stretch of polyglutamines into the active site loop of 

Chymotrypsin Inhibitor 2 caused domain swapping and higher order oligomer formation.
192

 

Indeed, in this case, oligomerization increased with increasing loop lengths. Therefore, a 

universal statement regarding the influence of hinge-loop length cannot be made at present. 
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Not every amino acid in the hinge-loop region has to change conformation. Sometimes it 

is one or two residues for which the alternative conformation is observed. These could be the key 

hinge amino acids and only their backbone phi and psi angles may have to change between 

monomer and dimer conformations. In our dataset, alanine and glycine are the most frequent 

amino acids in these key hinge positions, with their occurrence being much higher than 

commonly found. Glycine can adopt phi and psi angles in all four quadrants of 

the Ramachandran plot, due to the lack of a side chain; therefore it is possible to accommodate a 

glycine in any kind of turn, even quite sharp ones, that are sterically forbidden for other residues. 

For the cold shock protein cspB,
136

 a flip in the backbone of G37 (Δυ ≈ 180º) is observed 

between monomer and domain-swapped dimer. Similarly, the small alanine residue is also more 

tolerant in terms of steric effects and in the N-terminal swapped dimer of RNase A only two 

adjacent alanines change their conformation compared to the monomer structure.  

In the middle of hinge-loop sequences one also finds conserved prolines.
193

 Since proline 

residues are thought to impart rigidity to the polypeptide backbone, Rousseau and colleagues 

suggested for the cyclin-dependent kinase regulatory subunit suc1
194

 that the proline-caused 

strain in the hinge-loop influences domain swapping. Indeed, replacement of the first proline in 

the hinge with an alanine stabilized the monomer form, whereas the same substitution of the 

second proline stabilized the dimer form. The authors suggest that tension in the hinge-loop in 

the monomer caused it to behave like a loaded molecular spring which is released when the 

alternative conformation is adopted in the dimer.
194

 Unlike in suc1, mutation of the single proline 

in the hinge-loop of CV-N to glycine, substantially stabilized both states of the protein, with 

greater stabilization of the monomer compared to the dimer.
195

 Furthermore, adding a second 

proline residue by mutating a neighboring amino acid causes the domain-swapped dimer to 
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become the thermodynamically most stable state.
195

 Similarly, the change of alanine in the 

hinge-loop of the FOXP2 to proline prevented the formation of the swapped dimer.
128

 This 

suggests that the addition or deletion of prolines creates no uniform outcome and that each 

protein may have its unique signature of hinge-loop residues. 

Aside from glycine, alanine and proline, other amino acids in the hinge-loops could also 

play a role in stabilizing particular secondary structure elements in the swapped domains. For 

example, a hinge-loop could be a coil in the monomer form, but become embedded into a long β-

strand or an α-helix. This could stabilize the dimeric forms of these proteins, given the higher 

degree of secondary structure and the elimination of a flexible hinge region. 

For a region in the protein to function as a hinge-loop, it needs to be pliable enough to 

adopt different conformations. RNase nicely illustrates this point. RNase A,
140

 bovine seminal 

ribonuclease (BS-RNase)
196

 and a human pancreatic ribonuclease (hRNase) chimera
197

 share > 

60% sequence identity and all three proteins undergo domain swapping of their N-terminal 

helices, albeit with different relative orientations of the helix and different conformations in the 

three hinge-loops. As an aside, RNase A is also one of the rare examples that can swap either N- 

or C-terminal parts, with C-terminal strand exchange resulting in a domain-swapped dimer
141

 or 

cyclic swapped trimer (see detailed discussion below).
198

  

Overall, the combined results obtained for hinge-loop properties provide useful hints with 

respect to domain swapping.  However, no clear, predictive rules have emerged yet. 

4.2.2.2 Mutations promoting domain swapping outside of the hinge-loop  Several 

examples exist where residue changes in other parts of the protein, not the hinge-loop, are 

associated with domain swapping. A prime example is GB1. Compared to wild type monomeric 

GB1, the domain-swapped dimer comprises four mutations: L5V, F30V, Y33F, and A34F, none 
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of which is located in the hinge region.
160

 A theoretical analysis of the quadruple mutant and 

wild type GB1 from Wodak‟s group
199

 suggested different effects caused by each change: L5V 

introduces general destabilization due to unfavorable interactions with its surrounding residues, 

F30V induces local strain due to a clash with its own backbone, and A34F not only destabilizes 

the monomer conformation by forcing W43 to adopt a strained side chain conformation, and 

therefore disrupts the hydrophobic core of GB1, but also stabilizes the swapped dimer by tightly 

packing its side chains from both subunits against each other in the dimer core. The importance 

of the individual mutated residues (L5V/F30V/Y33F/A34F) in the integrity of the domain-

swapped structure was also investigated by modeling and mutagenesis.
160

 Inspection of the dimer 

structure suggested that the shorter mutant side chains of the L5V and F30V variants could easily 

be accommodated within the core, although possibly causing some destabilization of the 

structure. Indeed, each change is tolerated within the wild type structure. The Y33F mutation 

represents a conservative change and either side chain can substitute for the other in the 

respective cores. The position of F34 in the domain-swapped dimer appeared to be most crucial. 

This was verified experimentally, since reverting F34 in the amino acid sequence of the domain-

swapped dimer mutant back to the wild type alanine residue resulted in a monomeric protein 

with a very similar structure as wild type GB1.
160

  

In the T-cell surface antigen CD2, the propensity for dimer formation could be modulated 

by mutations in the new interface that is created by domain swapping.
200

 In addition, a R87A 

mutation that destabilizes the monomer, simultaneously increased dimer formation. However, as 

with the majority of other proteins, the hinge residues in CD2 were still the most crucial amino 

acids with respect to domain swapping.
200
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In summary, residues distant from the hinge region can shift the relative stabilities of 

monomer and domain-swapped dimer and thereby modulate domain swapping properties. 

However, compared to the amino acids in the hinge-loop region, they appear to play only a 

secondary role. 

4.2.2.3 Stability and folding of the monomer Despite substantial efforts, no compelling 

proposal for a generally applicable and unified molecular mechanism of domain swapping has 

emerged to date.
32, 201-204

  

Eisenberg and colleagues suggested a free energy diagram involving pathways for 

domain swapping based on their studies on DT.
190

 In their scenario, the „open monomer‟ 

conformation retains the native fold of other parts of the „closed monomer‟, and only interactions 

at the closed interface are disrupted during unfolding of the monomer. Such partial unfolding 

scheme may be at play in multi-domain proteins in which separate, independently folding 

domains are exchanged. However, the existence of a stable „open monomer‟ is unlikely for most 

domain-swapped proteins in which only a few secondary structural elements are exchanged. 

These isolated structural elements will be unstable and therefore complete un/refolding is more 

likely to be at play in these cases.  

In RNase A more than one portion of the chain can exchange, creating different 

oligomers (Figure 4.2). Two different domain-swapped dimers and two domain-swapped trimers 

are formed in different relative proportions.
198

 Among the two dimers, the C-terminal swapped 

dimer is the major form, suggesting that it is more stable. For the trimers, only the crystal 

structure of the cyclic C-terminal swapped form has been solved. Biochemical studies suggested 

that the second, uncharacterized trimer may be a linear trimer in which one RNase A molecule 

swaps its N-terminal helix with a neighboring RNase A molecule at one end and its C-terminal 
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strand at the other end.
198

 In this kind of trimer, both types of exchange occur simultaneously at 

very distant sites in the same protein molecule, supporting the notion that the closed monomers 

may fully unfold and refold to form these various forms of domain-swapped oligomers.    

 

 

Figure 4.2 Structures of RNase A. 

In the monomer, the two secondary structure elements involved in exchange are colored blue and 

orange. In the dimers and trimers, the individual polypeptide chains are colored green, blue and 

orange respectively. Hinge residues are shown with their side chains in stick representation and 

colored in magenta.  

 

In the cyclin-dependent kinase regulatory subunit Cks1, exchange of the last β-strand β4, 

is involved in dimer formation.
205

 NMR studies indicated that β4 in free monomeric Cks1 
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exhibits conformational heterogeneity.
206

 This motion is abrogated by binding of Cdk2 to Cks1, 

resulting in a more homogeneous conformation of Cks1. Since Cdk2 binds to one face of the 

Cks1 β-sheet, the flexibility of β4 is reduced, preventing domain swapping. Interestingly, the 

binding of Cdk2 increases the binding affinity of Cks1 for phosphopeptides that bind to the other 

face of the β-sheet.
206

 Therefore, configurational entropy not only influences ligand binding of 

Cks1 but also domain swapping.  

4.2.3 Theoretical and computational explorations  

A number of computational approaches for deciphering the basic events in protein folding and 

assembly are available, using reduced models and detailed atomistic simulations. Several groups 

are applying these methodologies to domain swapping. Movement of the polypeptide chain by 

Brownian motion through a funneled energy landscape with structure formation dominated by 

native stability
207

 is the most elegant and widely accepted protein folding concept. This concept 

has also been applied to protein associations in domain-swapped multimers. In particular, 

Onuchic and Wolynes
208

 have used a symmetrized Go-type potential to simulate domain 

swapping in MD simulations. For the epidermal growth factor receptor kinase substrate 8 (Eps8) 

SH3 dimer, they discovered a frustrated hinge region and suggested the following most favorable 

path for domain swapping: native monomers → partially folded monomers → unfolded 

monomers → open-end domain-swapped dimers → domain-swapped dimers. The authors 

suggested that the overall monomeric topology, rather than local signals in the hinge region, 

determines where in the polypeptide chain domain swapping will occur.
208

 Although plausible, it 

appears at odds with some experimental results. For instance, in GB1 and LB1 

(Protein L B1 domain, see below), proteins with identical monomeric topologies, different 

domain-swapped dimers are observed, clearly at odds with expectations if topology plays the 
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dominant role. Proteins with intrinsic symmetry of the sequence and/or structure are „highly 

frustrated‟ in the language of these authors and in their simulations multi-mode domain 

swapping was observed and necessitated the inclusion of inter- or intra-molecular disulfide 

bonds.
209

 Two proteins that fall into the „highly frustrated‟ category are the human prion protein 

(PrP
C
) and CV-N. However, at least for CV-N, the presence of disulfide bonds is not necessary 

for domain swapping since several homologs of CV-N with varying numbers of disulfide bonds 

appear to lack domain swapping
92, 210

 and no differences in disulfides were noted for the 

monomers or domain-swapped dimers. 

Coarse-grained MD simulations for several known domain-swapped proteins were also 

performed by Ding et al
211

 who found that starting from monomeric conformations sometimes 

domain-swapped dimers formed. Based on native contact changes and topology maps, a web 

server for predicting the hinge region of domain-swapped proteins
211

 was created. Testing the 

predictive value with the current set of 38 proteins resulted in correct predictions for only ~1/3 of 

the proteins in this set. 

Analyzing large-scale domain motions of DT via Gaussian Network Models (GNM), 

Kundu and Jernigan
212

 uncovered the major hinge in this protein based on the observed slower 

modes in GNM. The direction of the motion of the swapped domain about the hinge was 

predicted using the ANM.
212

 However, it appears that DT is a special case among the domain-

swapped proteins, given its multiple domain structure and the fact that a true folded domain 

undergoes the exchange and not single secondary structural elements.  

 We performed GNM analysis on the monomeric conformations of all 38 domain-

swapped proteins (Table 4.1 and 4.2) in order to uncover any motions that may induce domain 

swapping. Initially, the domain-swapped structures were not used and were simply employed as 
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controls in this analysis. For each protein, hinge residues were defined by comparing backbone 

dihedral angles for the experimentally determined monomer and dimer structures (dihedral angle 

changes > 60
o
 at the open interface). The motional behavior for all residues via the first slow 

modes from GNM were examined. Disappointingly, GNM did not successfully distinguish hinge 

residues for our diverse set of domain-swapped proteins. Investigating the behavior of every 

residue we found that the hinge residues are neither the most mobile nor the most rigid ones in 

some proteins. For that matter, taking the picture of a hinge literally, the actual hinge usually 

stays fixed with the two objects that are connected by the hinge changing their relative positions. 

This would translate to relative rigidity of hinge residues and mobility at the edge of the hinge. 

On the other hand, hinge residues are often located in loops that naturally are more mobile than 

the cores of proteins, thereby allowing conformational changes to occur more easily.  

 A quite different mechanism of domain swapping has been proposed by the Wodak 

group, involving a progressive and reversible transformation between monomer and dimer.
213

 

This process, starts from either end of the polypeptide chain and intra-molecular contacts are 

traded for equivalent inter-molecular ones, with the total number of native contacts remaining 

essentially constant. In this manner more and more of the monomer chains are substituted for 

each other, until a stable state is reached. Exchange initiated at one end, such as the C-terminus, 

and did not involve unfolding. Conformational changes within the individual monomers and the 

binding between them were tightly coupled and the total number of native contacts was 

maximized. In this process, a large number of hinge conformations and association modes are 

sampled by the intermediates, suggesting that the exchange reaction is nonspecific and amino 

acid sequence only plays a minor role. However, so far, no experimental evidence exists for such 

a mechanism and it remains highly speculative. 
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4.3 INSRUCTIVE EXAMPLES AND BIOLOGICAL IMPLICATIONS 

Is domain swapping an in vitro curiosity or does it serve a biological function? A number of 

results suggest that this type of oligomerization could be exploited in biology. One possible role 

for domain swapping could be to regulate protein function by modulating the populations of 

active molecules or the availability of functional sites. In addition, domain swapping could play a 

role in the allosteric regulation and signal transduction. Furthermore, in protein oligomerization 

scenarios, possible cytotoxic aggregation could be inhibited by domain-swapped dimerization. 

Finally, domain swapping is an efficient means for supramolecular structural organization of 

oligomers, such as seen in viral capsid structures. Therefore, although domain swapping may be 

involved in misfolding, aggregation, and amyloid formation of many proteins,
204, 214

 this may not 

be the only function it serves. 

Below we will discuss several notable examples of domain-swapped proteins in more 

detail. These are not stringent examples as defined above and for the associated proteins a stably 

folded monomeric structure may not be available. 

4.3.1 RNase A  

RNase A is the classic example of a protein engaged in domain swapping. Dimerization 

involving exchange of the N-terminus was proposed in 1962 prior to any structural information 

by Crestfield, Stein, and Moore to explain its behavior under acidic conditions.
10

 The first X-ray 

structure for a domain-swapped RNase A dimer was solved in the late nineties by Eisenberg,
140

 

and the Eisenberg laboratory subsequently identified more domain-swapped dimers, trimers, and 

multimers (Figure 4.2).
141, 198

 Because of its versatility, RNase A is frequently portrayed as the 

prototypical domain-swapped protein and with its different oligomeric states it beautifully 

illustrates the remarkable options of domain swapping modes.  
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Different folding conditions result in different types of RNase A oligomerization. Dimers 

are found at pH 6.5 and 37°C, close to the physiological conditions. However, the dissociation 

constant for the dimer under these conditions is ~2 mM, about 20-fold greater than the 

concentration of RNase A in the bovine pancreas. Polyethylene glycol (PEG) 10,000 stabilizes 

the RNase A minor trimer under crystallization conditions at pH 3.5.
198

 Interestingly, RNase A 

oligomers exhibit higher enzyme activity on double-strand RNA than the monomer
215

 and this is 

easily explained by the spatial arrangement of amino acids from different subunits that create the 

active site. Indeed, catalytic histidines are contributed by the N-terminal α-helix and the C-

terminal β-strand, respectively.
216

  

In one of the trimer forms of RNase A, both N- and C-terminal units are exchanged, 

resulting in a linear arrangement.
198

 In the other trimer that only exhibits swapping of the C-

terminal strand, a cyclic structure is formed. Therefore, for proteins that can swap two different 

domains, a variety of assembled oligomeric structures can be formed and models for such 

trimers, tetramers, and other oligomers have been proposed  for RNase A.
217

  

Although wild type RNase A does not form fibrils, a variant with a polyglutamine 

insertion in its hinge-loop (RNase A Q10) forms amyloids in vitro.
218

 A model for the RNase A 

Q10 fibrils was proposed in which the Q10 containing hinge-loops residues form β-strands that 

arrange into two β-sheets. The individual domains in this model keep their native fold and are 

involved in 'runaway' domain swapping.
218

 In addition to the linear-type arrangements, 

simultaneous exchange of two different domains allows the formation of branched aggregates, 

possibly explaining the observation of some nonfibrillar aggregates. 
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4.3.2 B1 domain 

GB1 is a small, 56 residue, stable, single domain protein. It comprises a four-stranded β-sheet 

with a single α-helix packed on top of it.
118

 This protein exhibits astounding structural 

variability. A number of surprising structural variants were obtained in a large mutagenesis study 

involving a library of randomized hydrophobic core residues. Among the alternative structures 

was a domain-swapped dimer in which one hairpin was exchanged between the subunits.
160

 The 

dimeric structure comprises an eight-stranded β-sheet made from four adjacent hairpins, resulting 

in two extensive new interfaces (Figure 4.3). The two α-helices are anti-parallel and cross at their 

C-termini. Half of the dimer, composed of the first β-hairpin and the α-helix from one 

polypeptide chain and the second β-hairpin from the other chain, is essentially identical to the 

monomer structure. The dimer dissociates into partially folded, monomeric species at low 

micromolar protein concentrations. The monomer is not a native, stable structure, but is a 

partially folded protein with extensive motions on the micro- to millisecond timescale. Despite 

these conformational fluctuations, the overall architecture of the monomer resembles that of wild 

type GB1. Thus, for this variant, dimerization via domain swapping stabilizes the molten, 

monomeric hydrophobic core.
219

  

Structural comparison between the domain-swapped dimer and the wild type monomer 

suggested that the F34 side chain was the pivot for the monomer-dimer switch. Indeed, changing 

this residue back to the wild type alanine resulted in a wild type-like monomer structure. 

Interestingly, changing A34 to phenylalanine in the wild type sequence did not induce domain 

swapping, but resulted in a side-by-side dimer.
220

   

GB1 variants are also capable of fibril formation, especially those sequences that are 

prone to domain swapping. Mutants that fold into the stable, wild type GB1 structure or variants 

http://en.wikipedia.org/wiki/Phenylalanine
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that exist as a highly destabilized, fluctuating ensemble of random, folded and partially folded 

structures under the same experimental conditions do not easily fibrillize. A left-handed helical 

ribbon model for the fibril was built, based on experimental disulfide cross-linking results, 

containing the swapped dimer structure as the smallest unit.
221

  

 

 

Figure 4.3 Structures of B1 domains. 

In monomers, exchanged elements are colored in blue. In the dimers, individual polypeptide 

chains are colored in green and blue, respectively. Hinge residues are shown with their side 

chains in stick representation and colored in magenta.  
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An additional amino acid change in the domain-swapped dimer core caused a further 

dramatic change in structure: a symmetric tetramer ensued with inter-molecular strand-exchange 

involving all four units.
222

 Three β-strands and the α-helix were retained in the tetramer, although 

their intra- and intermolecular interactions were radically different, with strand β2 of the first 

hairpin missing. The β3-β4 hairpin was changed to a side by side arrangement of strands β3 and β4 

from one subunit, running antiparallel to β3 and β4 of another one. This topological change was 

accompanied by a shift in register. In addition to strand-exchange of the domain swapping kind, a 

new interface between surface elements of the individual chains was formed.  

LB1 exhibits the same fold as the GB1 monomer,
223

 however, a quite different domain-

swapped structure was found for its mutants (Figure 4.3). Substitution of a glycine by alanine in 

the turn of the second β-hairpin caused exchange of the C-terminal β-strand between the 

subunits, with the wild type hairpin straightening and creating the inter-molecular β-sheet 

interface. These long β-strands are kinked, causing both B1 units to be rotated around the hinge 

region. Exchange of valine to alanine in the hydrophobic core also resulted in this type of 

domain-swapped structure.
135

 Interestingly, in the X-ray structure, the asymmetric unit contains 

two wild type-like monomers and a domain-swapped dimer. Novel inter-molecular hydrophobic 

contacts as well as inter-molecular hydrogen bonds between the exchanged β-strands contribute 

to the stability of the domain swap.
135

 

The above described different oligomeric B1 structures are illuminating examples for 

structural evolutionary paths from monomers to multimers.  

4.3.3 Lectins 

Several lectin structures were found to exhibit domain-swapped multimers. The first example 

was CV-N, which has been introduced in Chapter 3 and will be studied further in the next 
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chapter. The second antiviral lectin that exhibited domain swapping was Griffithsin (GRFT).
224

 

GRFT is a 121 amino acid protein of the red alga Griffithsia sp.. It exhibits antiviral activity 

against HIV-1 and severe acute respiratory syndrome (SARS) virus, by binding to various viral 

glycoproteins (gp) such as gp120, gp41, and gp160 in a monosaccharide-dependent manner.
224, 

225
 The structure of GRFT closely resembles jacalin lectins and comprises three repeats of a four-

stranded antiparallel β-sheet. In the swapped dimer, the first two β-strands of one chain complete 

the β-prism of the other chain (Figure 4.4). Thus far, GRFT is the only example of a jacalin-fold 

protein for which a domain-swapped structure has been observed. GRFT is also the only member 

in its fold family that contains three carbohydrate binding sites. Other jacalins usually have a 

single one. The prism structure of GRFT is encoded by its triple sequence repeat. The three sugar 

binding sites reside in the loops of the β-hairpins formed by the second and third strand of each 

β-sheet.
224

 Another lectin, Microcystis viridis lectin (MVL) was also suggested to show a 

domain-swapped structure. However, since no monomeric structure is available, it is difficult to 

ascertain that indeed a domain swapping has occured.
226

 

Although CV-N and GRFT undergo domain swapping, the extent of the exchanged 

sequence is quite different. In CV-N, half of the molecule is involved in the swap, while in 

GRFT only the first two β-strands out of twelve are swapped. In addition, for CV-N, both 

monomeric and dimeric structures have been extensively characterized, while for GRFT only the 

dimeric structure is available.  

As to their anti-HIV activities, the above lectins interact with oligosaccharides on viral 

envelope glycoproteins. The GRFT dimer contains six sugar binding sites, while CV-N exhibits 

two (monomer) or four (dimer). Both proteins are highly potent and inhibit HIV-1 at nanomolar 

concentrations.
224, 227

 The binding sites on CV-N interact with the terminal epitopes (D1 and D3 
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arms) of the large, branched oligosaccharides. For GRFT, a similar binding mode has been 

proposed.
224, 227

    

 

Figure 4.4 Structures of Lectins. 

In the monomer, exchanged elements are colored in blue. In the dimers, individual polypeptide 

chains are colored in green and blue, respectively. Hinge residues are shown with their side 

chains in stick representation and colored in magenta.  

 

4.4 CONCLUSIONS 

Over the last decades, more and more domain-swapped protein structures have become available, 

and, at least for some cases, there is evidence in support of the dimer or multimer constituting 

biologically important species. Indeed, irrespective of whether domain swapping is a specific 

mechanism for regulating function in vivo, it is becoming clear that it is not solely an in vitro 

artifact.  
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Despite considerable efforts by numerous groups no unifying molecular mechanism of 

domain swapping has emerged: each protein seemingly behaves in a distinctive and individual 

fashion, and a general explanation for how proteins exchange domains still remains elusive. 

What seems to emerge is that domain swapping is closely associated with the unfolding/folding 

process of proteins. For some proteins, distinct intermediates, in which some hydrophobic part of 

the monomeric protein becomes exposed and, thereby, is available for interaction with a „like‟ 

molecule may play a role, while for others, complete unfolding may occur. The fact that high 

protein concentration and additives (always present during crystallization) promote domain 

swapping suggests a switch in solute/solvent interaction. For example, exposed hydrophobic 

regions may no longer undergo unfavorable interactions with the aqueous solvent, but favorable 

ones with another polypeptide chain. In this manner an oligomeric structure can be trapped either 

in a crystal or an aggregate. Such behavior may also occur in vivo under conditions where 

monomer promoting factors are missing or where high local protein concentrations are induced 

through compartmentalization or the action of protein–protein interaction modules. 

A more thorough understanding of the underlying features associated with domain 

swapping is certainly desirable. On one hand, domain swapping seems a means by which stable 

multimers can be generated under evolutionary pressure, and provides ways to improve protein 

stability. On the other hand, the fact that more and more proteins that exhibit disease-related 

aggregation also can form domain-swapped structures suggests a possible involvement in protein 

deposition diseases. Therefore, it may be possible to suppress aggregation by modulating domain 

swapping, an unexplored avenue in drug discovery. 
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5.0 DOMAIN SWAPPING PROCEEDS VIA COMPLETE UNFOLDING: 

A 
19

F-NMR STUDY OF CYANOVIRIN-N  

 

Work discussed in this chapter has been recently submitted for possible publication. Domain 

swapping creates protein oligomers by exchange of structural units between identical monomers. 

At present, no unifying molecular mechanism of domain swapping has emerged. Here we used 

the protein Cyanovirin-N and 
19

F-NMR to investigate the process of domain swapping. CV-N is 

an HIV inactivating protein that can exist as a monomer or a domain-swapped dimer. We 

measured thermodynamic and kinetic parameters of the conversion process and determined the 

size of the energy barrier between the two species. The barrier is very large and of similar 

magnitude to that for complete unfolding of the protein. Therefore, for CV-N, overall unfolding 

of the polypeptide is required for domain swapping. 

 

5.1 INTRODUCTION 

Under physiological conditions most proteins exhibit a unique, narrowly distributed ensemble of 

conformations, broadly termed the native state. Within this native state ensemble, relatively low 

kinetic barriers separate the individual, very similar conformational sub-states.
36

 Under specific 

circumstances, proteins may sample multiple sub-states, and such structural plasticity is 

exploited in molecular switches. For example, proteins that bind different substrates often 

employ alternative binding modes that optimize the intermolecular interactions, which are 
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facilitated by their conformational adaptability. Likewise, oligomerization may occur in different 

geometries, depending on the environmental conditions. Among thousands of homo-oligomers, a 

special type of oligomerization involves „domain swapping‟.
190

 In domain-swapped structures 

one monomeric subunit exchanges one or more identical structural elements (domains, sub-

domains or secondary structure elements) with another monomer. The three-dimensional 

structure of the pseudo-monomer within the domain-swapped multimer is identical to its 

corresponding monomer structure, except for the „hinge‟ region that links the exchanged units.
190

  

Currently, more than 100 domain-swapped structures are deposited in the PDB.
228

 The analysis 

of their chain lengths, structural class or amino acid composition does not reveal any special 

properties, suggesting that almost any protein may be capable of undergoing domain swapping, 

and that domain swapping is a specialized form of oligomer assembly.
229

 Furthermore, domain 

swapping cannot be solely an in vitro artifact, given that some domain-swapped structures 

constitute biologically important species
230, 231

 or cause disease-related aggregation.
232, 233

 

Therefore, understanding the mechanism of domain swapping is desirable.  

Despite considerable efforts by several experimental and computational groups, a general 

explanation for how proteins exchange domains still remains elusive; each protein seemingly 

behaves in a distinctive and individual fashion.
128, 160, 200, 211, 229, 234, 235

 What seems to emerge as a 

common theme is that domain swapping is closely associated with the unfolding/folding process 

of proteins. Comparing the closed conformation of the monomeric polypeptide chain with the 

open conformation of the same chain in the domain-swapped structure does not immediately 

suggest a pathway by which all intra-molecular interactions can be replaced by inter-molecular 

ones. Hydrophobic contacts, hydrogen-bonding, electrostatic interactions, and even disulfide 

bridges can be exchanged, and only the loop region in the monomer adopts a different 
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conformation from the hinge in the domain-swapped dimer.
32, 229

 Therefore, starting with a 

folded monomer structure, the expectation would be that breaking and re-establishing 

interactions in conjunction with backbone conformational changes in the hinge-loop may require 

considerable energy. We call this energy the activation energy for 3D domain swapping starting 

from folded monomers.
190, 229

 Folding from the unfolded polypeptide chain can result in either 

the closed monomer or the domain-swapped dimer, with partitioning between the two products 

determined by their free energy difference.  

Here, we experimentally investigated domain swapping by NMR using the fluorine 

nucleus as the NMR-active probe. Fluorine has several favorable properties: it is the smallest 

atom that can be substituted for a hydrogen in a molecule; it possesses a nuclear spin of 1/2, 

100% natural abundance, and a high gyromagnetic ratio (0.94 of that of a proton).
236

 In addition, 

the 
19

F lone pair electrons can participate in non-bonded interactions with the local environment, 

rendering 
19

F chemical shifts extremely sensitive to even very small changes in van der Waals 

contacts, electrostatic fields, and hydrogen bonding in proteins.
237

 These advantages render 

fluorine labeling extremely attractive for NMR studies of complex systems. Although not 

plentiful, applications of 
19

F-NMR have been previously used to monitor conformational changes 

in proteins and to evaluate kinetic parameters associated with conformational transitions.
238-242

  

The system that we selected for our studies is Cyanovirin-N (CV-N),
33

 a well-

characterized protein with domain swapping abilities.
138, 243

 Using 
19

F-NMR, we investigated the 

thermodynamics and kinetics of the conversion process between monomeric form and domain-

swapped dimer for the wild type (wt) CV-N and its variants (Figure 5.1). Our results permit us to 

assess for the first time the energy landscape for interconversion between monomer and domain-

swapped dimer, including the energy barrier height between the two states. To the best of our 
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knowledge, our work represents the first example of directly probing and determining the 

activation barrier for a protein when it undergoes domain swapping. 

 

 

Figure 5.1 Structures of wt CV-N monomer (left, PDB ID: 2EZM) and domain-swapped 

dimer (right, PDB ID: 3EZM). 

Ribbon diagrams are shown with chains A and B colored in green and blue, respectively, and the 

hinge-loop in magenta. The side chain of W49 is shown in stick representation (pink) with a red 

sphere of radius 5 Å drawn around the fluorine atom at position 5 of the tryptophan ring. Amino 

acid sequence positions are labeled for every 10
th

 residue, in black for chain A and in gray for 

chain B.  

 

5.2 EXPERIMENTS AND METHODS 

5.2.1 Sample preparation 

The genes for mutant variants (CV-N
P51G

, CV-N
ΔQ50

) of wt CV-N were prepared using the 

QuikChange Site-directed Mutagenesis kit (Stratagene Corp., La Jolla, CA). The presence of the 

desired mutations was confirmed by sequencing. All proteins were expressed using the 

pET26b(+) (Novagen Inc., Madison, WI) vector in Escherichia coli BL-21 (DE3). Cultures were 

grown at 37 ºC in modified minimal medium, and 5-
19

F-DL-tryptophan (Sigma-Aldrich Corp., 
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St. Louis, MO) was added to the medium at a final concentration of 500 mg/L 15 minutes prior 

to induction with 0.5 mM IPTG. Cells were harvested 3 hours after induction by centrifugation 

and suspended in ice-cold PBS buffer (40 ml/1 L culture) for opening by sonication. Insoluble 

material was removed by centrifugation. The soluble protein present in the supernatant was 

fractionated by anion-exchange chromatography on a Q HP column (GE Healthcare, Piscataway, 

NJ) using a linear gradient of NaCl (0-1000 mM) for elution. Additional purification was 

achieved by gel filtration on Superdex 75 (HiLoad 2.6 × 60 cm, GE Healthcare, Piscataway, NJ), 

equilibrated in 20 mM sodium phosphate buffer (pH 6.0). Fractions with different quaternary 

states were collected: monomeric wt CV-N, monomeric CV-N
P51G

, and dimeric CV-N
ΔQ50

. A 

sample of domain-swapped dimeric wt CV-N was obtained by incubating an ~ 10 mM 

monomeric sample at 39 ºC for a week.
195

 Dimeric domain-swapped CV-N
P51G

 was obtained by 

unfolding ~ 4 mM monomer in 8 M GdnHCl overnight, followed by extensive dialysis against 

20 mM sodium phosphate buffer (pH 6.0) at 4 ºC overnight for refolding. The domain-swapped 

dimer species was separated from the monomer species on a Superdex 75 gel filtration column 

equilibrated in 20 mM sodium phosphate, pH 6.0, containing 0.02% sodium azide, 2 mM DTT at 

4 ºC. The extent of fluorine labeling (> 95%), purity and identity of all proteins were assessed 

and verified by mass spectrometry and SDS-PAGE. All samples were prepared in 20 mM 

sodium phosphate buffer, pH 6.0, and kept at 4 ºC until used. D2O was added to a final 

concentration of 8% to all NMR samples. 

5.2.2 Differential Scanning Calorimetry (DSC)  

20 mM sodium phosphate buffer (pH 6.0) was degassed overnight, and samples at a protein 

concentration of 1 mg/mL were dialyzed against the degassed buffer for at least 12 hours. DSC 

measurements were carried out using a VP-DSC instrument (MicroCal Inc., Northampton, MA) 
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at a heating scan rate of 1 ºC per minute from 20 ºC to 100 ºC. Data were analyzed using the 

Microcal Origin 7.0 software (MicroCal Inc., Northampton, MA).  

5.2.3 NMR spectroscopy 

Experiments were performed on Bruker Avance 600 or 900 MHz NMR spectrometers equipped 

with TCI triple-resonance, z-axis gradient cryoprobes (Bruker, Billerica, MA). External 2,2-

dimethyl-2-silapentene-5-sulfonate (DSS) solution (1mM) was used for 
1
H chemical shift 

referencing.
244

 
19

F-NMR spectra were obtained on a Bruker Avance 600 spectrometer equipped 

with a Bruker CP TXO triple-resonance, X-nuclei observe, z-axis gradient cryoprobe (Bruker, 

Billerica, MA). External trifluoroacetic acid (TFA) solution (10 mM) was used for 
19

F chemical 

shift referencing.
241, 245

 The temperature was calibrated using 100% ethylene glycol.
246

 

5.2.4 Data analysis 

Conversion between CV-N monomer and CV-N domain-swapped dimer on an accessible 

timescale occurs only at elevated temperatures.
195

 The conversion was followed by NMR. The 

fractions of polypeptide chains in the monomeric and dimeric states, fM and fD, were determined 

from the relative intensities of their associated resonances, using either 
19

F- or 
1
H-spectra. 

Integration of the peak areas (volumes) was carried out in Topspin (Bruker, Billerica, MA). The 

absolute concentrations of CV-N monomer [M] and CV-N dimer [D] were calculated based on 

their respective initial concentrations, CM and CD, before incubation at elevated temperatures as:  

{
[ ]     
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(   

  

     
)  

 

 
(    

  

     
)
    (5.1) 

These equations are derived using the following properties: (i) each dimer contains two 

polypeptide chains, while each monomer contains only one; (ii) the total number of polypeptide 

chains (participating in either monomers or dimers) is conserved, i.e., [M] + 2[D] = constant.  
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For domain swapping, both conversions D 
  
→ 2M and 2M 

   
→  D occur simultaneously. 

According to classical chemical kinetics theory,
247

 the order of a reaction and the rate constant k 

for a reaction can be obtained by monitoring the change in the concentration of the reactant 

during the time course of the reaction and fitting the data by appropriate models. The reaction 

isobserved in our case to obey a first-order reaction kinetics such that the integrated rate law 

reads:  

[A] = [A]0 exp(-kat)     (5.2) 

where [A] is the instantaneous concentration of the reactant (monomer or dimer) and ka is the 

effective rate constant (ka = k1 + k-1). Additionally, the relative resonance intensity ratio fM/fD at 

equilibrium is governed by the ratio of k1/k-1, allowing for the extraction of k1 and k-1 values. 

The temperature dependence of the reaction rate constant k permits us to calculate the 

Gibbs free energy of activation ΔG
‡
 at any given temperature using the Eyring equation:  

  
   

 
   

   

       (5.3) 

which leads to: 

                       
 

 
  

   

 
 
 

 
 
   

 
   

  

 
      (5.4) 

using ΔG
‡
 = ΔH

‡
 - T ΔS

‡
, with the gas constant R = 1.986 cal·K

-1
mol

-1
, the Boltzmann factor kB = 

1.38 x 10
-23

 J/K, and the Planck‟s constant h = 6.63 x 10
-34

 J·s. Plotting ln(k/T) vs. 1/T yields a 

straight line with slope equal to –ΔH
‡
/R.  

The equilibrium constant Keq and the Gibbs free energy change ΔGD-M for the conversion 

reaction are given by:  

Keq = [M]eq
2
 / [D]eq       (5.5) 

ΔGD-M  = -RT lnKeq       (5.6) 
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5.3 RESULTS AND DISCUSSION 

5.3.1 CV-N system 

CV-N is a 101 amino acid cyanobacterial lectin that was originally isolated from an aqueous 

extract of Nostoc ellipsosporum.
33

 CV-N exhibits potent anti-HIV activity and is being 

developed as a general virucidal agent against HIV and other enveloped viruses.
33

 The original 

solution structure found the protein to be monomeric
33

 while in the subsequently solved X-ray 

structures domain-swapped dimers were observed
138, 243

 (Figure 5.1). Manipulating experimental 

conditions, both quaternary states can be generated for CV-N, and the CV-N system has been 

used extensively for biophysical, structural, and functional studies.
33, 90, 97, 138, 195, 243, 248-251

 The 

monomer structure exhibits a compact, bilobal fold with C2 pseudo-symmetry. Each domain 

comprises a triple-stranded β-sheet with a β-hairpin packed on top. A helical linker is located in 

the middle of the sequence. In the domain-swapped dimer structure, this linker acts as a hinge to 

open the monomers which pair up to form a dimer exhibiting essentially the same interactions as 

present in the monomer, but now inter-molecular. Residues in the hinge region (Q50-N53) 

provide important determinants for domain swapping. For instance, changing the single proline 

at position 51 to glycine results in substantial stabilization of the mutant, compared to the wild 

type, for both the monomer and the domain-swapped dimer.
195

 The S52P mutant yields 

predominantly dimeric protein,
195

 and the deletion mutant, ΔQ50, exists solely as a domain-

swapped dimer.
97

  

CV-N contains only one tryptophan (W49) in its sequence, and the side chain sits at the 

junction between the pseudo-symmetric halves, close to the pseudo two-fold axis, occupying a 

pivotal region during domain swapping. We therefore introduced 5-
19

F-tryptophan into CV-N 

(Figure 5.1), for exploring the mechanism of domain swapping by 
19

F-NMR. Incorporation of a 



101 
 

single or a few 5-
19

F-tryptophan residues into proteins has been shown previously to cause no 

discernible effects on global and local structure or thermodynamic stability of 
19

F labeled 

proteins.
237, 241, 242

  

5.3.2 
19

F spectroscopy  

 

 

Figure 5.2 Linewidths of  5-
19

F-tryptophan resonances as a function of temperature. 

Results are presented for free tryptophan (squares), that in CV-N
P51G

 monomer (triangles), and in 

the CV-N
P51G

 domain-swapped dimer (diamonds). 

 

Since there is only one tryptophan in CV-N sequence, a single 
19

F resonance is expected in the 

1D 
19

F spectrum. If, on the other hand, more than one species of the same protein exists, multiple 

resonances corresponding to the number of the species will be observed. Given the extreme 

sensitivity of the 
19

F chemical shift to conformational and electronic influences, combined with 
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its large chemical shift range, little overlap in the 
19

F spectra of F-labeled proteins ensues.
242

 In 

addition, the temperature dependence of the 
19

F chemical shift is small in the present case, with 

chemical shift differences of 0.12 ppm and 0.28 ppm observed for free 5-
19

F-tryptophan and 

monomeric CV-N
P51G

, respectively, between 278 and 323 K. In addition, essentially identical 

linewidths were observed for free 5-
19

F-tryptophan over the temperature range 278-323 K, 

indicating that the rotational correlation time does not appreciably vary within this temperature 

range (Figure 5.2). For the CV-N monomer and the domain-swapped dimer, however, increases 

in linewidths were noted in the 
19

F resonance when the temperature was reduced, reflecting the 

slower overall tumbling of the protein at lower temperature. This effect was more pronounced 

for dimer, due its larger size (Figure 5.2).   

Figure 5.3 displays the 
19

F spectra of 5-
19

F-tryptophan labeled CV-N at 298 K. and 

pertinent spectral parameters are listed in Table 5.1. Interestingly, the single amino acid change 

from proline to glycine at position 51 did not significantly affect the chemical shift and linewidth 

of the 
19

F resonance of the 5-
19

F-tryptophan labeled CV-N monomer species. However, a 

significant difference was observed for the CV-N
P51G

 dimer, with the 
19

F resonance substantially 

upfield shifted, compared to wt CV-N monomer, wt CV-N dimer, and CV-N
P51G

 monomer. In 

addition, the linewidth for the wt CV-N dimer (71.83 Hz) was noticeably larger than that of the 

CV-N
P51G

 dimer (56.42 Hz). Since W49 is adjacent to the hinge-loop region, these observations 

suggest that the influence of msec motions imparted by slow cis-trans isomerization of the 

proline containing wt CV-N hinge is removed in the CV-N
P51G

 variant. This is consistent with 

the fact that the wild type sequence contains a proline residue, and prolines are known for slow 

cis-trans isomerization and imparting rigidity to polypeptide backbones.
252

 Since the 
19

F 

resonance of 5-
19

F-tryptophan labeled wt CV-N monomer and domain-swapped dimer species 
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are partially overlapping, we used the well separated Nε1 proton resonances of the tryptophan 

side chain of the monomer and the domain-swapped dimer
195

 for monitoring the conversion time 

course for wt CV-N. 

 

 

Figure 5.3 
19

F-NMR spectra of 5-
19

F-tryptophan labeled CV-N samples and free 5-
19

F-

tryptophan at 298 K. 

 

Table 5.1 
19

F-NMR parameters of 5-
19

F-Tryptophan labeled CV-N samples at 298 K 

 

 free 5-
19

F-

tryptophan 

wt CV-N CV-N
P51G

 

M D M D 

resonance frequency (ppm) -46.99 -45.19 -45.06 -45.12 -45.82 

linewidth at half-height (Hz) 23.69 31.60 71.83 32.79 56.42 
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5.3.3 Kinetics of the conversion between domain-swapped dimer and monomer 

 

Figure 5.4 
19

F-NMR spectra recorded at 298 K following the conversion process from 

domain-swapped dimer to monomer of 5-
19

F-tryptophan labeled CV-N
P51G

 at 330.5 K.  

The length of incubation at 330.5 K is indicated at the right side of each spectrum. NMR spectra 

were recorded at 298 K to prevent any conversion during the time of the NMR measurement. 

 

For CV-N
P51G

, the monomer and domain-swapped dimer 
19

F resonances are well separated and 

conversion between the two species can be followed readily using 1D spectra (Figure 5.4). The 

predominantly dimeric sample was incubated at 330.5 K for increasing amounts of time, and 
19

F 
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spectra were recorded at 298 K, where the conversion process is slowed sufficiently to not 

interfere with accurate determination of the relative intensities/amounts. The data provided in 

Figure 5.4 clearly show that after ~ 4 hours of incubation at 330.5 K, ~ 50% of the swapped-

dimer species had converted into monomer. Spectra were also recorded for the CV-N
P51G

 dimer 

conversion at other temperatures, as well as for the wt CV-N conversion process. The excellent 

spectral quality allowed to fit the data using eq 5.2 and permitted us to extract rate constants, for 

example: k1 of 3.3*10
-5

 s
-1

 for the reaction D  2M at 330.5K. 

The same analysis was repeated for a series of temperatures. The time-courses for the 

conversion of the wt CV-N swapped dimer at different temperatures are displayed, and the 

resonance intensities exhibited an exponential decrease at each temperature, as shown in Figure 

5.5A. Not surprisingly, faster rates were observed at higher temperatures. Using the 

experimentally determined temperature dependence of the rate constant k, the activation enthalpy 

ΔH
‡

D-M, entropy ΔS
‡

D-M and Gibbs energy ΔG
‡

D-M for the conversion from domain-swapped 

dimer to monomer was calculated using eqs 5.3 and 5.4 (Figure 5.5A inset). 

The series of gray data points in Figure 5.5A represents the conversion at 325.5 K, the 

fastest reaction for wt CV-N domain-swapped dimer (k1 = 8.2*10
-5

 s
-1

). At a very similar 

temperature, 327.8 K, conversion for the CV-N
P51G

 domain-swapped dimer was the slowest 

reaction in the series (k1 = 4.3 x 10
-6

 s
-1

, black data points in Figure 5.5B), and required more 

than six days to reach the equilibrium. Therefore, the accessible temperature windows for the 

conversion reaction for wt CV-N and CV-N
P51G

 are distinctly different and non-overlapping: at 

327.8 K, the conversion for wt CV-N is too fast, while the conversion for CV-N
P51G

 at 325.5 K is 

too slow. As a consequence, temperature dependent ΔG
‡

D-M values could only be extracted for 

different sets of temperatures (Table 5.2). Given that smaller activation energies are seen with 
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increasing temperatures, it is safe to assume that the ΔG
‡

D-M for the wt CV-N domain-swapped 

dimer conversion at 327.8 K should be lower than 25.2 kcal/mol, the measured ΔG
‡

D-M for the wt 

CV-N domain-swapped dimer conversion at 325.5 K. Comparison of this value with the ΔG
‡

D-M 

for CV-N
P51G

 (27.3 kcal/mol at 327.8 K) reveals that less energy is required for the wt CV-N 

conversion than for the CV-N
P51G

 dimer at the same temperature. This is consistent with the 

experimentally observed faster equilibration during the conversion of wt CV-N dimer into 

monomer.  

Since equivalent experiments were carried out for wt CV-N and CV-N
P51G

, we can 

directly compare the activation barriers for conversion. The ΔH
‡
 values are listed in Table 5.2. 

Interestingly, these ΔH
‡
 values are very similar in magnitude to the unfolding enthalpy changes, 

ΔH, observed by DSC. Since both wt CV-N and CV-N
P51G

 comprise monomeric and dimeric 

species that can undergo interconversions, we used a unique mutant, CV-N
ΔQ50

, that exists only 

as an unfolded monomer or a folded domain-swapped dimer for the control DSC experiment. 

The ΔHD-U value for CV-N
ΔQ50

 unfolding was 141.9 kcal/mol; this value is of the same order of 

magnitude as the activation enthalpy ΔH
‡

D-M for the conversion from domain-swapped dimer to 

monomer for wt CV-N (152.6 kcal/mol) and CV-N
P51G

 (161.7 kcal/mol) extracted for the NMR 

kinetic study. This surprising result implies that the monomer/swapped dimer conversion 

proceeds via complete unfolding of the protein, rather than partially un/folded states.     

We also followed the reverse reaction for wt CV-N, namely conversion from monomer to 

domain-swapped dimer (Figure 5.5C). At 325.5 K, the reaction was carried out twice to evaluate 

and confirm the reliability of the experimental data. Both datasets agree extremely well (magenta 

and blue symbols) and can be fit to the same curve. In addition, the extracted ΔH
‡

M-D value for 

the conversion of the wt CV-N monomer to the domain-swapped dimer (144.8 kcal/mol) agrees 
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well with the DSC result (129.9 kcal/mol) and the derived value (125.3 kcal/mol) for the CV-

N
P51G

 monomer to domain-swapped dimer conversion. This is very gratifying and again implies 

that complete unfolding is involved in the conversion process.     

 

 

Figure 5.5 Time dependence of the conversion reactions for wt CV-N and CV-N
P51G

 at 

different temperatures. 

Each point represents the concentration of the domain-swapped dimer (or monomer) species at a 

particular point in time as measured by the relative intensities of the dimer and monomer 

resonances. The inset shows the temperature dependence of reaction rate constant. The data fits a 

straight line whose slope ( 
   

 
) and intercept (

   

 
   

  

 
) yield the activation enthalpy ΔH

‡
 and 

entropy ΔS
‡
, respectively, using eq 5.4. (A) The conversion from wt CV-N domain-swapped 
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dimer to monomer. The incubation temperatures are: 322.5 K, red; 323 K, green; 323.5 K, 

magenta; 324 K, blue; 324.5 K, brown; and 325.5, gray. (B) The conversion from CV-N
P51G

 

domain-swapped dimer to monomer. The incubation temperatures are: 327.8 K, black; 329.6 K, 

cyan; 329.8 K, purple; and 330.5 K, orange. (C) The conversion for wt CV-N monomer to 

domain-swapped dimer. The incubation temperatures are: 323.9 K, red; 325.5 K (1), blue; 325.5 

K (2), magenta; and 326.9 K, green. 

 

Both conversion reactions (monomer to dimer and dimer to monomer) exhibit 

exponential time dependence, suggesting that both are first order reactions. This observation 

appears to be at odds with the assumption that a molecular reaction of the type M + M → D 

might be a second order reaction. Although puzzling at first, the observed first order kinetics is in 

perfect agreement with the fact that complete unfolding occurs in the conversion reaction. The 

observations are indeed consistent with the presence of the rate-limiting steps of M → U and D 

→ 2U for conversion of monomer to domain-swapped dimer and conversion from domain-

swapped dimer to monomer, respectively. Each conversion process consists of two steps, with 

the unfolded state (U) as the intermediate.  

Our current system is particularly suitable to investigate the kinetics given our excellent 

fluorine labeling efficiency. However, even if incomplete labeling were the case, resulting in 

sample heterogeneity,
241

 it should be possible to follow the first order reaction and determine the 

reaction rate constant. Kinetic parameters (but not thermodynamic ones) are extracted from the 

temperature dependence of the reaction rate, and thus do not depend on the concentration. 

Therefore, only the labeled fraction of the protein is contributing to the data and correct kinetic 

information is obtained.     

In addition to the Gibbs free energy barrier ΔG
‡
 and the activation enthalpy ΔH

‡
 

discussed above, the average entropy change ΔS
‡
 can also be extracted using eq 5.4. The entropy 
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change was 391.3 cal/(mol·K) for the wt CV-N domain-swapped dimer to monomer conversion, 

~ 30 cal/(mol.K) larger than the value extracted for the wt CV-N monomer to dimer conversion 

of 362.5 cal/(mol·K). Given that in the conversion reaction one dimer molecule converts into two 

unfolded single-chain molecules, the total number of molecules in the system increases while the 

number of polypeptide chains remains the same. Therefore, the system becomes more disordered 

and its entropy change is larger than for unfolding of a single folded to and unfolded chain, for 

which no increase in the number of molecules occurs. The slight increase in entropy for the CV-

N
P51G

 domain-swapped dimer conversion compared to the wt CV-N dimer (410.0 cal/mol·K) can 

be explained by the increased flexibility in the linker introduced by the P51G mutation.     

 

Table 5.2 Energetics of domain swapping and protein unfolding of wt CV-N and its 

variants 

 Kinetic parameters for domain 

swapping measured by NMR 

Thermodynamic properties for 

unfolding measured by DSC 

wt CV-N 

(M-D) 

wt CV-N 

(D-M) 

CV-N
P51G

 

(D-M) 

CV-N
P51G

 

(M-U) 

CV-N
P51G 

(D-U) 

CV-N
ΔQ50 

(D-U) 

ΔH
‡ 
or ΔH 

(kcal·mol
-1

) 

144.8±21.5 152.6±14.5 161.7±31.8 129.9±1.1 171.0±3.5 141.9±0.5 

ΔS
‡ 

(cal/mol·K) 

362.5±65.9 391.3±44.9 410.0±96.5 - - - 

ΔG
‡ 

(kcal·mol
-1

) 

26.8±0.1 

(325.5K) 

25.2±0.1 

(325.5K) 

27.3±0.1 

(327.8K) 

- - - 

k1 or k-1  

× 10
6
 (

 
s

-1
) 

6.6±0.3 

(325.5K) 

82.0±2.6 

(325.5K) 

4.3±0.5 

(327.8K) 

- - - 

 

5.3.4 Equilibrium properties 

The data presented in Figure 5.5 also allows for the extraction of the monomer-dimer 

equilibrium constant, Keq, since the final flat part of each curve at long conversion times yields 

the equilibrium concentration. For the conversion starting from the wt CV-N domain-swapped 

dimer all reactions reached a similar equilibrium concentration of 11.2 ± 2.8 μM. Taking the 
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reaction D → 2M into account, we then extracted an average equilibrium constant Keq of 15.3 

mM, which leads to a Gibbs free energy ΔGD-M of 2.4 ± 0.3 kcal/mol at 293 K based on eq 5.6. 

Neglecting a possible, small temperature dependence in Keq, for the temperature interval from 

322.5 K to 325.5K, this reaction Gibbs energy ΔGD-M can be equated with the difference for 

thermal unfolding of the wt CV-N domain-swapped dimer, compared to twice the value for the 

unfolding of the wt CV-N monomer. 

Although the mechanism(s) for unfolding by chaotrops, such as urea and guanidine 

hydrochloride (GdnHCl) may be different from thermal unfolding, it is expected that the energy 

difference between monomer and dimer for the two unfolding reactions is similar. In particular, 

it is reasonable to assume that the energy difference between reactants and products of the 

unfolding reaction is mainly determined by their intrinsic interaction difference. Previously 

reported unfolding free energies for wt CV-N monomer and the obligate domain-swapped dimer 

form are ΔG
wt

M-U = 4.2 ± 0.2 kcal/mol and ΔG
ΔQ50

D-U = 10.6 ± 0.5 kcal/mol, respectively,
94, 195

 

yielding a chemical reaction energy of about 2.2 (10.6 – 2 × 4.2) kcal/mol. Since the previous 

chemical unfolding and the current thermal conversion/unfolding were performed for identical 

buffer conditions and temperature (293 K), it is satisfying to observe the excellent agreement 

between these values.  

The conversion of the CV-N
P51G

 domain-swapped dimer into monomer (Figure 5.5B) 

yields a final equilibrium concentration of dimer around zero, given the experimental precision. 

(A very small amount of dimer (< 5%) cannot reliably be distinguished from the noise in the 

spectra.) In order to derive a lower limit Keq value we used the last/smallest available 

concentration as the approximate equilibrium concentration and obtained a value of Keq = 2.9 ± 

0.9 mM. 
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For both, wt CV-N and CV-N
P51G

, the interconversion ΔG is very small, in excellent 

agreement with the fact all interactions within the monomeric and swapped-dimeric structures 

are extremely similar; only the hinge-loop conformation is different. Therefore, any measurable 

free energy difference has to be associated with the hinge-loop that can either introduce or 

relieve strain in the monomer-dimer interconversion.  

5.3.5 The energy landscape of domain swapping 

The available thermodynamic and kinetic parameters (Table 5.2) permit a reconstruction of the 

overall energy landscape for domain swapping of CV-N
P51G

 (black profile). This is depicted in 

Figure 5.6, with the unfolding enthalpies for the monomer ΔHM-U and domain-swapped dimer 

ΔHD-U of CV-N
P51G

 obtained from DSC measurements and the activation enthalpy ΔH
‡

D-M for the 

CV-N
P51G

 dimer to monomer conversion extracted from the 
19

F-NMR study. The activation 

enthalpy ΔH
‡

M-D for the CV-N
P51G

 monomer to dimer conversion can also be estimated since the 

activation enthalpy difference between the monomer → dimer and the dimer → monomer 

reaction (ΔH
‡

M-D – ΔH
‡*

D-M) should be equal to their unfolding enthalpy difference (ΔHM-U – 

ΔH
*

D-U). The asterisks indicate that half the dimer values from Table 5.2 have to be used for the 

normalization, to ascertain that an identical number of polypeptide chains is taken into account. 

A similar treatment yields the energy landscape for wt CV-N (gray profile). The wt CV-N ΔH
‡

M-

D and ΔH
‡

D-M values were extracted from the NMR study and ΔHD-U for unfolding of the CV-

N
ΔQ50

 domain-swapped dimer was determined by DSC. As can be easily appreciated, the 

activation barrier for domain swapping is comparable in magnitude to the unfolding barrier for 

both wt CV-N and CV-N
P51G

. In addition, as observed previously,
195

 the single amino acid 

change in P51G mutant stabilizes both monomer and domain-swapped dimer of this variant.   

 



112 
 

 

Figure 5.6 Energy diagram for domain swapping of CV-N
P51G

 (black) and wt CV-N (gray). 

 

5.4 CONCLUSION 

We carried out an extensive investigation of the thermodynamic and kinetic behavior for domain 

swapping of wt CV-N and CV-N
P51G

, primarily using 
19

F-NMR. Both proteins can exist at room 

temperature either as monomers or domain-swapped dimers in solution, indicating that the 

equilibrium free energies of both quaternary states are comparable. However, interconversion 

between these quaternary states is slow at room temperature or below. Therefore, the kinetic 

barrier between the monomer and domain-swapped dimer for CV-N is to be significant (of the 

order of ~100  20 kcal/mol). Indeed, we determined here that this barrier is of similar 

magnitude to that for complete unfolding, suggesting that, at least for CV-N, complete unfolding 

is required for domain swapping to occur.   
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6.0 CONCLUSION AND FUTURE WORK 

 

6.1 METHODS FOR INVESTIGATEING CONFORMATIONAL DYNAMICS 

A previous study in our group collected 64 non homologous proteins, each containing a pair of 

structures solved by NMR and X-ray crystallography.
52

 When comparing the residue fluctuations 

predicted by the GNM with the RMSDs among NMR ensembles, a correlation coefficient of 

0.76 was obtained; however, the correlation between the GNM predictions and the X-ray 

crystallographic B-factors was found to be 0.59, only. To find an answer to this difference, we 

performed a further study, as described in Chapter 2. In this latter study, we found that 

intermolecular contacts between neighboring proteins occupying adjacent crystal lattice sites 

suppress the mobility of particular residues. As a result, these portions exhibit lower B-factors, 

and therefore appear to have lower RMSFs in their residue coordinates compared to GNM 

predictions. Therefore, the B-factors do not necessarily provide an accurate description of 

equilibrium dynamics. Instead, we generated X-ray ensembles based on the distance constraints 

extracted from X-ray structures. These ensembles were shown to correlate well with both the 

GNM predictions and the NMR ensemble data, suggesting that multiple conformations deduced 

from X-ray diffraction could satisfactorily describe the accessible conformational space under 

native state conditions. 

Different experimental approaches usually investigate molecular-to-systems dynamics at 

different time scales.
3
 However, in the above study, we also found that the dynamics explored by
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different methods correlated with each other, despite their different time scales. To explain such 

observations, we performed multiple MD simulations with different simulation lengths, ranging 

from 1 ns to 400 ns, as described in Chapter 3. We found that the distribution of residue 

fluctuations is practically insensitive to the simulation length, while the amplitudes and 

correlation times of molecular motions appeared to increase with simulation time, within the 

limits permitted by the constraints exerted by the native contact topology in addition to covalent 

bonds. Additionally, the PCA of the generated trajectories revealed that the global mode deduced 

from of 1 ns long simulations and that from 400 ns long simulations exhibit a correlation 

coefficient of 0.77. Our results suggest that the protein tends to sample the same essential modes 

(reconfiguration directions) in long and short simulations, albeit at different sizes. This 

concordance supports the view that global motions are robustly defined by the shape of the 

native energy minimum, and the preferred mechanisms of reconfiguration may be detected even 

in short simulations, provided that the multiple runs are performed and dominant features are 

extracted by a PCA.  

These two studies highlight the importance of using ensembles of structures for a given 

protein, so as to visualize the conformational space accessible to a given protein. Likewise, it is 

important to perform ensembles of simulations in order to gain an accurate understanding of the 

conformational dynamics accessible to the protein. Furthermore, dynamic methods can be 

advantageously used to investigate a broad range of the time scales for proteins, especially their 

low frequency motions, which are often related to biological activities. 
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6.2 DOMAIN SWAPPING 

The 38 real/quasi-domain-swapped proteins we compiled from the literature show extremely 

diverse properties from their primary structures to quaternary structures, indicating almost any 

protein may be capable of undergoing domain swapping. According to our study, the first 

question we tried to answer was how to locate the hinge residues of domain-swapped proteins in 

their monomeric conformations. Although only the native contact topology is not sufficient 

based on our GNM analysis, the identification of conserved residues and co-evolving residue 

pairs may be a feasible way to provide criteria information in future studies.
253

 The second 

concern is the molecular mechanism that underlie domain swapping, which appears closely 

associated with the unfolding/folding process of proteins. 

 

 

 

Figure 6.1 Structures of CV-N
P51G

 domain-swapped trimer (left) and tetramer (right). 
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  As a specific case for experimental investigation, the conversion process between 

monomer and domain-swapped dimer for CV-N was studied by 
19

F-NMR. This novel method 

allowed us to determine the thermodynamic and kinetic determinants of CV-N domain 

swapping, and we found that complete unfolding is required for CV-N domain swapping. This 

method may be further utilized to examine other domain-swapped systems to examine whether 

complete unfolding is a common mechanism of domain swapping or not. Moreover, the recently 

solved crystal structures of CV-N domain-swapped trimer and tetramer show new conformations 

as intermediates during refolding, providing further support for complete unfolding as a 

mechanism for CV-N domain swapping. Therefore, identifying intermediate conformations 

emerges here as the next step, toward directlyof investigating domain swapping.  



117 
 

BIBLIOGRAPHY 

 

 

 1.  Falke JJ. Enzymology. A moving story. Science 2002;295:1480-1481. 

 2.  Bahar I, Lezon TR, Bakan A, Shrivastava IH. Normal mode analysis of biomolecular 

structures: functional mechanisms of membrane proteins. Chem Rev 2010;110:1463-

1497. 

 3.  Henzler-Wildman K, Kern D. Dynamic personalities of proteins. Nature 2007;450:964-

972. 

 4.  Liu L, Koharudin LM, Gronenborn AM, Bahar I. A comparative analysis of the 

equilibrium dynamics of a designed protein inferred from NMR, X-ray, and 

computations. Proteins 2009;77:927-939. 

 5.  Bahar I, Chennubhotla C, Tobi D. Intrinsic dynamics of enzymes in the unbound state 

and relation to allosteric regulation. Curr Opin Struct Biol 2007;17:633-640. 

 6.  Frauenfelder H, McMahon BH, Austin RH, Chu K, Groves JT. The role of structure, 

energy landscape, dynamics, and allostery in the enzymatic function of myoglobin. Proc 

Natl Acad Sci U S A 2001;98:2370-2374. 

 7.  Henzler-Wildman KA, Thai V, Lei M, Ott M, Wolf-Watz M, Fenn T, Pozharski E, 

Wilson MA, Petsko GA, Karplus M, Hubner CG, Kern D. Intrinsic motions along an 

enzymatic reaction trajectory. Nature 2007;450:838-844. 

 8.  Lange OF, Lakomek NA, Fares C, Schroder GF, Walter KF, Becker S, Meiler J, 

Grubmuller H, Griesinger C, de Groot BL. Recognition dynamics up to microseconds 

revealed from an RDC-derived ubiquitin ensemble in solution. Science 2008;320:1471-

1475. 

 9.  Tobi D, Bahar I. Structural changes involved in protein binding correlate with intrinsic 

motions of proteins in the unbound state. Proc Natl Acad Sci U S A 2005;102:18908-

18913. 

 10.  Xu C, Tobi D, Bahar I. Allosteric changes in protein structure computed by a simple 

mechanical model: hemoglobin T<-->R2 transition. J Mol Biol 2003;333:153-168. 



118 
 

 11.  Yang LW, Bahar I. Coupling between catalytic site and collective dynamics: a 

requirement for mechanochemical activity of enzymes. Structure 2005;13:893-904. 

 12.  Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, 

Bourne PE. The Protein Data Bank. Nucleic Acids Res 2000;28:235-242. 

 13.  Blundell TL, Hendrickson WA. What is 'current opinion' in structural biology? Curr Opin 

Struct Biol 2011;21:447-449. 

 14.  Marion D, Driscoll PC, Kay LE, Wingfield PT, Bax A, Gronenborn AM, Clore GM. 

Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins 

by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum 

coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application 

to interleukin 1 beta. Biochemistry 1989;28:6150-6156. 

 15.  Clore GM, Gronenborn AM. New methods of structure refinement for macromolecular 

structure determination by NMR. Proc Natl Acad Sci U S A 1998;95:5891-5898. 

 16.  Terwilliger TC, Berendzen J. Automated MAD and MIR structure solution. Acta 

Crystallogr D Biol Crystallogr 1999;55:849-861. 

 17.  Schlichting I, Berendzen J, Chu K, Stock AM, Maves SA, Benson DE, Sweet RM, Ringe 

D, Petsko GA, Sligar SG. The catalytic pathway of cytochrome p450cam at atomic 

resolution. Science 2000;287:1615-1622. 

 18.  Akke M, Palmer AG. Monitoring Macromolecular Motions on Microsecond to 

Millisecond Time Scales by R1ñ-R1 Constant Relaxation Time NMR Spectroscopy. 

Journal of the American Chemical Society 1996;118:911-912. 

 19.  Lipari G, Szabo A. Model-free approach to the interpretation of nuclear magnetic 

resonance relaxation in macromolecules. 2. Analysis of experimental results. Journal of 

the American Chemical Society 1982;104:4559-4570. 

 20.  Schotte F, Soman J, Olson JS, Wulff M, Anfinrud PA. Picosecond time-resolved X-ray 

crystallography: probing protein function in real time. J Struct Biol 2004;147:235-246. 

 21.  Srajer V, Teng T, Ursby T, Pradervand C, Ren Z, Adachi S, Schildkamp W, Bourgeois 

D, Wulff M, Moffat K. Photolysis of the carbon monoxide complex of myoglobin: 

nanosecond time-resolved crystallography. Science 1996;274:1726-1729. 

 22.  Kolano C, Helbing J, Kozinski M, Sander W, Hamm P. Watching hydrogen-bond 

dynamics in a beta-turn by transient two-dimensional infrared spectroscopy. Nature 

2006;444:469-472. 

 23.  Michalet X, Weiss S, Jager M. Single-molecule fluorescence studies of protein folding 

and conformational dynamics. Chem Rev 2006;106:1785-1813. 



119 
 

 24.  Karplus M, McCammon JA. Molecular dynamics simulations of biomolecules. Nat Struct 

Biol 2002;9:646-652. 

 25.  Bahar I, Atilgan AR, Erman B. Direct evaluation of thermal fluctuations in proteins using 

a single-parameter harmonic potential. Fold Des 1997;2:173-181. 

 26.  Haliloglu T, Bahar I, Erman B. Gaussian Dynamics of Folded Proteins. Physical Review 

Letters 1997;79:3090. 

 27.  Hinsen K. Analysis of domain motions by approximate normal mode calculations. 

Proteins 1998;33:417-429. 

 28.  Tirion MM. Large Amplitude Elastic Motions in Proteins from a Single-Parameter, 

Atomic Analysis. Phys Rev Lett 1996;77:1905-1908. 

 29.  Eisenmesser EZ, Millet O, Labeikovsky W, Korzhnev DM, Wolf-Watz M, Bosco DA, 

Skalicky JJ, Kay LE, Kern D. Intrinsic dynamics of an enzyme underlies catalysis. 

Nature 2005;438:117-121. 

 30.  Jolliffe I. Principal Component Analysis. In. Encyclopedia of Statistics in Behavioral 

Science: John Wiley & Sons, Ltd; 2005. 

 31.  Bennett MJ, Choe S, Eisenberg D. Domain swapping: entangling alliances between 

proteins. Proc Natl Acad Sci U S A 1994;91:3127-3131. 

 32.  Liu Y, Eisenberg D. 3D domain swapping: as domains continue to swap. Protein Sci 

2002;11:1285-1299. 

 33.  Bewley CA, Gustafson KR, Boyd MR, Covell DG, Bax A, Clore GM, Gronenborn AM. 

Solution structure of cyanovirin-N, a potent HIV-inactivating protein. Nat Struct Biol 

1998;5:571-578. 

 34.  Hartmann H, Parak F, Steigemann W, Petsko GA, Ponzi DR, Frauenfelder H. 

Conformational substates in a protein: structure and dynamics of metmyoglobin at 80 K. 

Proc Natl Acad Sci U S A 1982;79:4967-4971. 

 35.  Frauenfelder H, Parak F, Young RD. Conformational substates in proteins. Annu Rev 

Biophys Biophys Chem 1988;17:451-479. 

 36.  Frauenfelder H, Sligar SG, Wolynes PG. The energy landscapes and motions of proteins. 

Science 1991;254:1598-1603. 

 37.  Bonvin AM, Rullmann JA, Lamerichs RM, Boelens R, Kaptein R. "Ensemble" iterative 

relaxation matrix approach: a new NMR refinement protocol applied to the solution 

structure of crambin. Proteins 1993;15:385-400. 

 38.  Levin EJ, Kondrashov DA, Wesenberg GE, Phillips GN, Jr. Ensemble refinement of 

protein crystal structures: validation and application. Structure 2007;15:1040-1052. 



120 
 

 39.  Lindorff-Larsen K, Best RB, DePristo MA, Dobson CM, Vendruscolo M. Simultaneous 

determination of protein structure and dynamics. Nature 2005;433:128-132. 

 40.  Cruickshank DWJ. The determination of the anisotropic thermal motion of atoms in 

crystals. Acta Crystallographica 1956;9:747-753. 

 41.  Lumry R. Protein substructures and folded stability. Biophys Chem 2002;101-102:81-92. 

 42.  Duan Y, Wang L, Kollman PA. The early stage of folding of villin headpiece subdomain 

observed in a 200-nanosecond fully solvated molecular dynamics simulation. Proc Natl 

Acad Sci U S A 1998;95:9897-9902. 

 43.  Abseher R, Horstink L, Hilbers CW, Nilges M. Essential spaces defined by NMR 

structure ensembles and molecular dynamics simulation show significant overlap. 

Proteins 1998;31:370-382. 

 44.  Ringe D, Petsko GA. Study of protein dynamics by X-ray diffraction. Methods Enzymol 

1986;131:389-433. 

 45.  Bahar I, Atilgan AR, Erman B. Direct evaluation of thermal fluctuations in proteins using 

a single-parameter harmonic potential. Fold Des 1997;2:173-181. 

 46.  Cui Q, Bahar I. Normal Mode Analysis: Theory and applications to biological and 

chemical systems.   Chapman & Hall/CRC; 2006. 

 47.  Yang LW, Eyal E, Bahar I, Kitao A. Principal component analysis of native ensembles of 

biomolecular structures (PCA_NEST): insights into functional dynamics. Bioinformatics 

2009;25:606-614. 

 48.  Bahar I, Rader AJ. Coarse-grained normal mode analysis in structural biology. Curr Opin 

Struct Biol 2005;15:586-592. 

 49.  Ma J. Usefulness and limitations of normal mode analysis in modeling dynamics of 

biomolecular complexes. Structure 2005;13:373-380. 

 50.  Tama F, Brooks CL. Symmetry, form, and shape: guiding principles for robustness in 

macromolecular machines. Annu Rev Biophys Biomol Struct 2006;35:115-133. 

 51.  Nicolay S, Sanejouand YH. Functional modes of proteins are among the most robust. 

Phys Rev Lett 2006;96:078104. 

 52.  Yang LW, Eyal E, Chennubhotla C, Jee J, Gronenborn AM, Bahar I. Insights into 

equilibrium dynamics of proteins from comparison of NMR and X-ray data with 

computational predictions. Structure 2007;15:741-749. 

 53.  Kundu S, Melton JS, Sorensen DC, Phillips GN, Jr. Dynamics of proteins in crystals: 

comparison of experiment with simple models. Biophys J 2002;83:723-732. 



121 
 

 54.  Schomaker V, Trueblood KN. On the rigid-body motion of molecules in crystals. Acta 

Cryst B 1968;24:63-76. 

 55.  Kondrashov DA, Van Wynsberghe AW, Bannen RM, Cui Q, Phillips GN, Jr. Protein 

structural variation in computational models and crystallographic data. Structure 

2007;15:169-177. 

 56.  Eyal E, Chennubhotla C, Yang LW, Bahar I. Anisotropic fluctuations of amino acids in 

protein structures: insights from X-ray crystallography and elastic network models. 

Bioinformatics 2007;23:i175-i184. 

 57.  Poon BK, Chen X, Lu M, Vyas NK, Quiocho FA, Wang Q, Ma J. Normal mode 

refinement of anisotropic thermal parameters for a supramolecular complex at 3.42-A 

crystallographic resolution. Proc Natl Acad Sci U S A 2007;104:7869-7874. 

 58.  Song G, Jernigan RL. vGNM: a better model for understanding the dynamics of proteins 

in crystals. J Mol Biol 2007;369:880-893. 

 59.  Kondrashov DA, Zhang W, Aranda R, Stec B, Phillips GN, Jr. Sampling of the native 

conformational ensemble of myoglobin via structures in different crystalline 

environments. Proteins 2008;70:353-362. 

 60.  Hinsen K. Structural flexibility in proteins: impact of the crystal environment. 

Bioinformatics 2008;24:521-528. 

 61.  Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J 

Mol Biol 1993;234:779-815. 

 62.  Word JM, Lovell SC, LaBean TH, Taylor HC, Zalis ME, Presley BK, Richardson JS, 

Richardson DC. Visualizing and quantifying molecular goodness-of-fit: small-probe 

contact dots with explicit hydrogen atoms. J Mol Biol 1999;285:1711-1733. 

 63.  Adams PD, Grosse-Kunstleve RW, Hung LW, Ioerger TR, McCoy AJ, Moriarty NW, 

Read RJ, Sacchettini JC, Sauter NK, Terwilliger TC. PHENIX: building new software for 

automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 

2002;58:1948-1954. 

 64.  Koradi R, Billeter M, Wuthrich K. MOLMOL: a program for display and analysis of 

macromolecular structures. J Mol Graph 1996;14:51-32. 

 65.  Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, 

Bourne PE. The Protein Data Bank. Nucleic Acids Res 2000;28:235-242. 

 66.  Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, 

Kale L, Schulten K. Scalable molecular dynamics with NAMD. J Comput Chem 

2005;26:1781-1802. 



122 
 

 67.  MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, 

Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, 

Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith 

JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M. All-

Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. J 

Phys Chem B 1998;102:3586-3616. 

 68.  Amadei A, Linssen AB, Berendsen HJ. Essential dynamics of proteins. Proteins 

1993;17:412-425. 

 69.  Best RB, Lindorff-Larsen K, DePristo MA, Vendruscolo M. Relation between native 

ensembles and experimental structures of proteins. Proc Natl Acad Sci U S A 

2006;103:10901-10906. 

 70.  Apaydin MS, Conitzer V, Donald BR. Structure-based protein NMR assignments using 

native structural ensembles. J Biomol NMR 2008;40:263-276. 

 71.  Bahar I, Lezon TR, Yang LW, Eyal E. Global dynamics of proteins: bridging between 

structure and function. Annu Rev Biophys 2010;39:23-42. 

 72.  Cavanagh J, Venters RA. Protein dynamic studies move to a new time slot. Nat Struct 

Biol 2001;8:912-914. 

 73.  Trbovic N, Kim B, Friesner RA, Palmer AG, III. Structural analysis of protein dynamics 

by MD simulations and NMR spin-relaxation. Proteins 2008;71:684-694. 

 74.  Hall JB, Fushman D. Variability of the 15N chemical shielding tensors in the B3 domain 

of protein G from 15N relaxation measurements at several fields. Implications for 

backbone order parameters. J Am Chem Soc 2006;128:7855-7870. 

 75.  Bouvignies G, Bernado P, Meier S, Cho K, Grzesiek S, Bruschweiler R, Blackledge M. 

Identification of slow correlated motions in proteins using residual dipolar and hydrogen-

bond scalar couplings. Proc Natl Acad Sci U S A 2005;102:13885-13890. 

 76.  Briggman KB, Tolman JR. De novo determination of bond orientations and order 

parameters from residual dipolar couplings with high accuracy. J Am Chem Soc 

2003;125:10164-10165. 

 77.  Lakomek NA, Walter KF, Fares C, Lange OF, de Groot BL, Grubmuller H, Bruschweiler 

R, Munk A, Becker S, Meiler J, Griesinger C. Self-consistent residual dipolar coupling 

based model-free analysis for the robust determination of nanosecond to microsecond 

protein dynamics. J Biomol NMR 2008;41:139-155. 

 78.  Markwick PR, Bouvignies G, Salmon L, McCammon JA, Nilges M, Blackledge M. 

Toward a unified representation of protein structural dynamics in solution. J Am Chem 

Soc 2009;131:16968-16975. 



123 
 

 79.  Bui JM, Gsponer J, Vendruscolo M, Dobson CM. Analysis of sub-tauc and supra-tauc 

motions in protein Gbeta1 using molecular dynamics simulations. Biophys J 

2009;97:2513-2520. 

 80.  Henzler-Wildman KA, Thai V, Lei M, Ott M, Wolf-Watz M, Fenn T, Pozharski E, 

Wilson MA, Petsko GA, Karplus M, Hubner CG, Kern D. Intrinsic motions along an 

enzymatic reaction trajectory. Nature 2007;450:838-844. 

 81.  Clarage JB, Romo T, Andrews BK, Pettitt BM, Phillips GN, Jr. A sampling problem in 

molecular dynamics simulations of macromolecules. Proc Natl Acad Sci U S A 

1995;92:3288-3292. 

 82.  Caves LS, Evanseck JD, Karplus M. Locally accessible conformations of proteins: 

multiple molecular dynamics simulations of crambin. Protein Sci 1998;7:649-666. 

 83.  Romo TD, Grossfield A. Validating and improving elastic network models with 

molecular dynamics simulations. Proteins 2011;79:23-34. 

 84.  Smith LJ, Daura X, van Gunsteren WF. Assessing equilibration and convergence in 

biomolecular simulations. Proteins 2002;48:487-496. 

 85.  Balsera MA, Wriggers W, Oono Y, Schulten K. Principal Component Analysis and Long 

Time Protein Dynamics. The Journal of Physical Chemistry 1996;100:2567-2572. 

 86.  Cote Y, Senet P, Delarue P, Maisuradze GG, Scheraga HA. Nonexponential decay of 

internal rotational correlation functions of native proteins and self-similar structural 

fluctuations. Proc Natl Acad Sci U S A 2010;107:19844-19849. 

 87.  Senet P, Maisuradze GG, Foulie C, Delarue P, Scheraga HA. How main-chains of 

proteins explore the free-energy landscape in native states. Proc Natl Acad Sci U S A 

2008;105:19708-19713. 

 88.  de Souza ON, Ornstein RL. Effect of periodic box size on aqueous molecular dynamics 

simulation of a DNA dodecamer with particle-mesh Ewald method. Biophys J 

1997;72:2395-2397. 

 89.  Atilgan AR, Durell SR, Jernigan RL, Demirel MC, Keskin O, Bahar I. Anisotropy of 

Fluctuation Dynamics of Proteins with an Elastic Network Model. Biophys J 

2001;80:505-515. 

 90.  Matei E, Zheng A, Furey W, Rose J, Aiken C, Gronenborn AM. Anti-HIV activity of 

defective cyanovirin-N mutants is restored by dimerization. J Biol Chem 

2010;285:13057-13065. 

 91.  Sandstrom C, Hakkarainen B, Matei E, Glinchert A, Lahmann M, Oscarson S, Kenne L, 

Gronenborn AM. Atomic mapping of the sugar interactions in one-site and two-site 

mutants of cyanovirin-N by NMR spectroscopy. Biochemistry 2008;47:3625-3635. 



124 
 

 92.  Matei E, Furey W, Gronenborn AM. Solution and crystal structures of a sugar binding 

site mutant of cyanovirin-N: no evidence of domain swapping. Structure 2008;16:1183-

1194. 

 93.  Barrientos LG, Gronenborn AM. The highly specific carbohydrate-binding protein 

cyanovirin-N: structure, anti-HIV/Ebola activity and possibilities for therapy. Mini Rev 

Med Chem 2005;5:21-31. 

 94.  Barrientos LG, Lasala F, Delgado R, Sanchez A, Gronenborn AM. Flipping the switch 

from monomeric to dimeric CV-N has little effect on antiviral activity. Structure 

2004;12:1799-1807. 

 95.  Shenoy SR, Barrientos LG, Ratner DM, O'Keefe BR, Seeberger PH, Gronenborn AM, 

Boyd MR. Multisite and multivalent binding between cyanovirin-N and branched 

oligomannosides: calorimetric and NMR characterization. Chem Biol 2002;9:1109-1118. 

 96.  Barrientos LG, Matei E, Lasala F, Delgado R, Gronenborn AM. Dissecting carbohydrate-

Cyanovirin-N binding by structure-guided mutagenesis: functional implications for viral 

entry inhibition. Protein Eng Des Sel 2006;19:525-535. 

 97.  Kelley BS, Chang LC, Bewley CA. Engineering an obligate domain-swapped dimer of 

cyanovirin-N with enhanced anti-HIV activity. J Am Chem Soc 2002;124:3210-3211. 

 98.  Li DW, Showalter SA, Bruschweiler R. Entropy localization in proteins. J Phys Chem B 

2010;114:16036-16044. 

 99.  Luo G, Andricioaei I, Xie XS, Karplus M. Dynamic distance disorder in proteins is 

caused by trapping. J Phys Chem B 2006;110:9363-9367. 

 100.  Wong IY, Gardel ML, Reichman DR, Weeks ER, Valentine MT, Bausch AR, Weitz DA. 

Anomalous diffusion probes microstructure dynamics of entangled F-actin networks. 

Phys Rev Lett 2004;92:178101. 

 101.  Roy J, Laughton CA. Long-timescale molecular-dynamics simulations of the major 

urinary protein provide atomistic interpretations of the unusual thermodynamics of ligand 

binding. Biophys J 2010;99:218-226. 

 102.  Kitao A, Go N. Investigating protein dynamics in collective coordinate space. Curr Opin 

Struct Biol 1999;9:164-169. 

 103.  Bakan A, Bahar I. The intrinsic dynamics of enzymes plays a dominant role in 

determining the structural changes induced upon inhibitor binding. Proc Natl Acad Sci U 

S A 2009;106:14349-14354. 

 104.  May A, Zacharias M. Protein-ligand docking accounting for receptor side chain and 

global flexibility in normal modes: evaluation on kinase inhibitor cross docking. J Med 

Chem 2008;51:3499-3506. 



125 
 

 105.  Abseher R, Horstink L, Hilbers CW, Nilges M. Essential spaces defined by NMR 

structure ensembles and molecular dynamics simulation show significant overlap. 

Proteins 1998;31:370-382. 

 106.  Anfinsen CB. Principles that govern the folding of protein chains. Science 1973;181:223-

230. 

 107.  Tuinstra RL, Peterson FC, Kutlesa S, Elgin ES, Kron MA, Volkman BF. Interconversion 

between two unrelated protein folds in the lymphotactin native state. Proc Natl Acad Sci 

U S A 2008;105:5057-5062. 

 108.  Luo X, Tang Z, Xia G, Wassmann K, Matsumoto T, Rizo J, Yu H. The Mad2 spindle 

checkpoint protein has two distinct natively folded states. Nat Struct Mol Biol 

2004;11:338-345. 

 109.  Marianayagam NJ, Sunde M, Matthews JM. The power of two: protein dimerization in 

biology. Trends Biochem Sci 2004;29:618-625. 

 110.  Lawrence SH, Ramirez UD, Tang L, Fazliyez F, Kundrat L, Markham GD, Jaffe EK. 

Shape shifting leads to small-molecule allosteric drug discovery. Chem Biol 

2008;15:586-596. 

 111.  Huang DB, Ainsworth CF, Stevens FJ, Schiffer M. Three quaternary structures for a 

single protein. Proc Natl Acad Sci U S A 1996;93:7017-7021. 

 112.  Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, 

Bourne PE. The Protein Data Bank. Nucleic Acids Res 2000;28:235-242. 

 113.  Bennett MJ, Choe S, Eisenberg D. Refined structure of dimeric diphtheria toxin at 2.0 A 

resolution. Protein Sci 1994;3:1444-1463. 

 114.  CRESTFIELD AM, STEIN WH, MOORE S. On the aggregation of bovine pancreatic 

ribonuclease. Arch Biochem Biophys 1962;Suppl 1:217-222. 

 115.  Remington S, Wiegand G, Huber R. Crystallographic refinement and atomic models of 

two different forms of citrate synthase at 2.7 and 1.7 A resolution. J Mol Biol 

1982;158:111-152. 

 116.  Anderson WF, Ohlendorf DH, Takeda Y, Matthews BW. Structure of the cro repressor 

from bacteriophage lambda and its interaction with DNA. Nature 1981;290:754-758. 

 117.  Fita I, Rossmann MG. The NADPH binding site on beef liver catalase. Proc Natl Acad 

Sci U S A 1985;82:1604-1608. 

 118.  Gronenborn AM, Filpula DR, Essig NZ, Achari A, Whitlow M, Wingfield PT, Clore 

GM. A novel, highly stable fold of the immunoglobulin binding domain of streptococcal 

protein G. Science 1991;253:657-661. 



126 
 

 119.  Bennett MJ, Eisenberg D. Refined structure of monomeric diphtheria toxin at 2.3 A 

resolution. Protein Sci 1994;3:1464-1475. 

 120.  Murzin AG, Brenner SE, Hubbard T, Chothia C. SCOP: a structural classification of 

proteins database for the investigation of sequences and structures. J Mol Biol 

1995;247:536-540. 

 121.  Schreuder HA, de BB, Dijkema R, Mulders J, Theunissen HJ, Grootenhuis PD, Hol WG. 

The intact and cleaved human antithrombin III complex as a model for serpin-proteinase 

interactions. Nat Struct Biol 1994;1:48-54. 

 122.  Fridmann-Sirkis Y, Kent HM, Lewis MJ, Evans PR, Pelham HR. Structural analysis of 

the interaction between the SNARE Tlg1 and Vps51. Traffic 2006;7:182-190. 

 123.  Pryor PR, Jackson L, Gray SR, Edeling MA, Thompson A, Sanderson CM, Evans PR, 

Owen DJ, Luzio JP. Molecular basis for the sorting of the SNARE VAMP7 into 

endocytic clathrin-coated vesicles by the ArfGAP Hrb. Cell 2008;134:817-827. 

 124.  Lewis RJ, Brannigan JA, Muchova K, Barak I, Wilkinson AJ. Phosphorylated aspartate 

in the structure of a response regulator protein. J Mol Biol 1999;294:9-15. 

 125.  Lewis RJ, Muchova K, Brannigan JA, Barak I, Leonard G, Wilkinson AJ. Domain 

swapping in the sporulation response regulator Spo0A. J Mol Biol 2000;297:757-770. 

 126.  Buckle AM, Fersht AR. Subsite binding in an RNase: structure of a barnase-

tetranucleotide complex at 1.76-A resolution. Biochemistry 1994;33:1644-1653. 

 127.  Zegers I, Deswarte J, Wyns L. Trimeric domain-swapped barnase. Proc Natl Acad Sci U 

S A 1999;96:818-822. 

 128.  Stroud JC, Wu Y, Bates DL, Han A, Nowick K, Paabo S, Tong H, Chen L. Structure of 

the forkhead domain of FOXP2 bound to DNA. Structure 2006;14:159-166. 

 129.  Manion MK, O'Neill JW, Giedt CD, Kim KM, Zhang KY, Hockenbery DM. Bcl-XL 

mutations suppress cellular sensitivity to antimycin A. J Biol Chem 2004;279:2159-2165. 

 130.  O'Neill JW, Manion MK, Maguire B, Hockenbery DM. BCL-XL dimerization by three-

dimensional domain swapping. J Mol Biol 2006;356:367-381. 

 131.  Benoff B, Lawson C, Berman H, Carey J. Long-range effects on structure in a 

temperature-sensitive mutant of trp repressor. Unknown 2012. 

 132.  Lawson CL, Benoff B, Berger T, Berman HM, Carey J. E. coli trp repressor forms a 

domain-swapped array in aqueous alcohol. Structure 2004;12:1099-1108. 

 133.  Hatherley D, Graham SC, Turner J, Harlos K, Stuart DI, Barclay AN. Paired receptor 

specificity explained by structures of signal regulatory proteins alone and complexed 

with CD47. Mol Cell 2008;31:266-277. 



127 
 

 134.  Honnappa S, Okhrimenko O, Jaussi R, Jawhari H, Jelesarov I, Winkler FK, Steinmetz 

MO. Key interaction modes of dynamic +TIP networks. Mol Cell 2006;23:663-671. 

 135.  O'Neill JW, Kim DE, Johnsen K, Baker D, Zhang KY. Single-site mutations induce 3D 

domain swapping in the B1 domain of protein L from Peptostreptococcus magnus. 

Structure 2001;9:1017-1027. 

 136.  Max KE, Zeeb M, Bienert R, Balbach J, Heinemann U. Common mode of DNA binding 

to cold shock domains. Crystal structure of hexathymidine bound to the domain-swapped 

form of a major cold shock protein from Bacillus caldolyticus. FEBS J 2007;274:1265-

1279. 

 137.  Mueller U, Perl D, Schmid FX, Heinemann U. Thermal stability and atomic-resolution 

crystal structure of the Bacillus caldolyticus cold shock protein. J Mol Biol 

2000;297:975-988. 

 138.  Yang F, Bewley CA, Louis JM, Gustafson KR, Boyd MR, Gronenborn AM, Clore GM, 

Wlodawer A. Crystal structure of cyanovirin-N, a potent HIV-inactivating protein, shows 

unexpected domain swapping. J Mol Biol 1999;288:403-412. 

 139.  Yamasaki M, Li W, Johnson DJ, Huntington JA. Crystal structure of a stable dimer 

reveals the molecular basis of serpin polymerization. Nature 2008;455:1255-1258. 

 140.  Liu Y, Hart PJ, Schlunegger MP, Eisenberg D. The crystal structure of a 3D domain-

swapped dimer of RNase A at a 2.1-A resolution. Proc Natl Acad Sci U S A 

1998;95:3437-3442. 

 141.  Liu Y, Gotte G, Libonati M, Eisenberg D. A domain-swapped RNase A dimer with 

implications for amyloid formation. Nat Struct Biol 2001;8:211-214. 

 142.  Wlodawer A, Borkakoti N, Moss DS, Howlin B. Comparison of two independently 

refined models of ribonuclease-A. Acta Cryst B 1986;42:379-387. 

 143.  Pesenti ME, Spinelli S, Bezirard V, Briand L, Pernollet JC, Tegoni M, Cambillau C. 

Structural basis of the honey bee PBP pheromone and pH-induced conformational 

change. J Mol Biol 2008;380:158-169. 

 144.  Pesenti ME, Spinelli S, Bezirard V, Briand L, Pernollet JC, Campanacci V, Tegoni M, 

Cambillau C. Queen bee pheromone binding protein pH-induced domain swapping 

favors pheromone release. J Mol Biol 2009;390:981-990. 

 145.  Khandelwal P, Keliikuli K, Smith CL, Saper MA, Zuiderweg ER. Solution structure and 

phosphopeptide binding to the N-terminal domain of Yersinia YopH: comparison with a 

crystal structure. Biochemistry 2002;41:11425-11437. 

 146.  Smith CL, Khandelwal P, Keliikuli K, Zuiderweg ER, Saper MA. Structure of the type 

III secretion and substrate-binding domain of Yersinia YopH phosphatase. Mol Microbiol 

2001;42:967-979. 



128 
 

 147.  Martin JR, Craven CJ, Jerala R, Kroon-Zitko L, Zerovnik E, Turk V, Waltho JP. The 

three-dimensional solution structure of human stefin A. J Mol Biol 1995;246:331-343. 

 148.  Staniforth RA, Giannini S, Higgins LD, Conroy MJ, Hounslow AM, Jerala R, Craven CJ, 

Waltho JP. Three-dimensional domain swapping in the folded and molten-globule states 

of cystatins, an amyloid-forming structural superfamily. EMBO J 2001;20:4774-4781. 

 149.  Sridharan S, Razvi A, Scholtz JM, Sacchettini JC. The HPr proteins from the thermophile 

Bacillus stearothermophilus can form domain-swapped dimers. J Mol Biol 2005;346:919-

931. 

 150.  Garcia-Pino A, Martinez-Rodriguez S, Wahni K, Wyns L, Loris R, Messens J. Coupling 

of domain swapping to kinetic stability in a thioredoxin mutant. J Mol Biol 

2009;385:1590-1599. 

 151.  Roos G, Garcia-Pino A, Van BK, Brosens E, Wahni K, Vandenbussche G, Wyns L, Loris 

R, Messens J. The conserved active site proline determines the reducing power of 

Staphylococcus aureus thioredoxin. J Mol Biol 2007;368:800-811. 

 152.  Hakansson M, Svensson A, Fast J, Linse S. An extended hydrophobic core induces EF-

hand swapping. Protein Sci 2001;10:927-933. 

 153.  Jimenez B, Poggi L, Piccioli M. Monitoring the early steps of unfolding of dicalcium and 

mono-Ce3+-substituted forms of P43M calbindin D9k. Biochemistry 2003;42:13066-

13073. 

 154.  Yang W, Wilkins AL, Ye Y, Liu ZR, Li SY, Urbauer JL, Hellinga HW, Kearney A, van 

der Merwe PA, Yang JJ. Design of a calcium-binding protein with desired structure in a 

cell adhesion molecule. J Am Chem Soc 2005;127:2085-2093. 

 155.  Murray AJ, Lewis SJ, Barclay AN, Brady RL. One sequence, two folds: a metastable 

structure of CD2. Proc Natl Acad Sci U S A 1995;92:7337-7341. 

 156.  Kukimoto-Niino M, Sakamoto A, Kanno E, Hanawa-Suetsugu K, Terada T, Shirouzu M, 

Fukuda M, Yokoyama S. Structural basis for the exclusive specificity of Slac2-

a/melanophilin for the Rab27 GTPases. Structure 2008;16:1478-1490. 

 157.  Chavas LM, Torii S, Kamikubo H, Kawasaki M, Ihara K, Kato R, Kataoka M, Izumi T, 

Wakatsuki S. Structure of the small GTPase Rab27b shows an unexpected swapped 

dimer. Acta Crystallogr D Biol Crystallogr 2007;63:769-779. 

 158.  Schiering N, Casale E, Caccia P, Giordano P, Battistini C. Dimer formation through 

domain swapping in the crystal structure of the Grb2-SH2-Ac-pYVNV complex. 

Biochemistry 2000;39:13376-13382. 

 159.  Ettmayer P, France D, Gounarides J, Jarosinski M, Martin MS, Rondeau JM, Sabio M, 

Topiol S, Weidmann B, Zurini M, Bair KW. Structural and conformational requirements 

for high-affinity binding to the SH2 domain of Grb2(1). J Med Chem 1999;42:971-980. 



129 
 

 160.  Byeon IJ, Louis JM, Gronenborn AM. A protein contortionist: core mutations of GB1 

that induce dimerization and domain swapping. J Mol Biol 2003;333:141-152. 

 161.  Ramoni R, Spinelli S, Grolli S, Conti V, Merli E, Cambillau C, Tegoni M. Deswapping 

bovine odorant binding protein. Biochim Biophys Acta 2008;1784:651-657. 

 162.  Tegoni M, Ramoni R, Bignetti E, Spinelli S, Cambillau C. Domain swapping creates a 

third putative combining site in bovine odorant binding protein dimer. Nat Struct Biol 

1996;3:863-867. 

 163.  Knaus KJ, Morillas M, Swietnicki W, Malone M, Surewicz WK, Yee VC. Crystal 

structure of the human prion protein reveals a mechanism for oligomerization. Nat Struct 

Biol 2001;8:770-774. 

 164.  Antonyuk SV, Trevitt CR, Strange RW, Jackson GS, Sangar D, Batchelor M, Cooper S, 

Fraser C, Jones S, Georgiou T, Khalili-Shirazi A, Clarke AR, Hasnain SS, Collinge J. 

Crystal structure of human prion protein bound to a therapeutic antibody. Proc Natl Acad 

Sci U S A 2009;106:2554-2558. 

 165.  Wolff N, Izadi-Pruneyre N, Couprie J, Habeck M, Linge J, Rieping W, Wandersman C, 

Nilges M, Delepierre M, Lecroisey A. Comparative analysis of structural and dynamic 

properties of the loaded and unloaded hemophore HasA: functional implications. J Mol 

Biol 2008;376:517-525. 

 166.  Czjzek M, Letoffe S, Wandersman C, Delepierre M, Lecroisey A, Izadi-Pruneyre N. The 

crystal structure of the secreted dimeric form of the hemophore HasA reveals a domain 

swapping with an exchanged heme ligand. J Mol Biol 2007;365:1176-1186. 

 167.  Rosenfeld RJ, Garcin ED, Panda K, Andersson G, Aberg A, Wallace AV, Morris GM, 

Olson AJ, Stuehr DJ, Tainer JA, Getzoff ED. Conformational changes in nitric oxide 

synthases induced by chlorzoxazone and nitroindazoles: crystallographic and 

computational analyses of inhibitor potency. Biochemistry 2002;41:13915-13925. 

 168.  Crane BR, Rosenfeld RJ, Arvai AS, Ghosh DK, Ghosh S, Tainer JA, Stuehr DJ, Getzoff 

ED. N-terminal domain swapping and metal ion binding in nitric oxide synthase 

dimerization. EMBO J 1999;18:6271-6281. 

 169.  Green SM, Gittis AG, Meeker AK, Lattman EE. One-step evolution of a dimer from a 

monomeric protein. Nat Struct Biol 1995;2:746-751. 

 170.  Loll PJ, Lattman EE. The crystal structure of the ternary complex of staphylococcal 

nuclease, Ca2+, and the inhibitor pdTp, refined at 1.65 A. Proteins 1989;5:183-201. 

 171.  Suino-Powell K, Xu Y, Zhang C, Tao YG, Tolbert WD, Simons SS, Jr., Xu HE. 

Doubling the size of the glucocorticoid receptor ligand binding pocket by 

deacylcortivazol. Mol Cell Biol 2008;28:1915-1923. 



130 
 

 172.  Schoch GA, D'Arcy B, Stihle M, Burger D, Bar D, Benz J, Thoma R, Ruf A. Molecular 

switch in the glucocorticoid receptor: active and passive antagonist conformations. J Mol 

Biol 2010;395:568-577. 

 173.  Wiesmann C, Ultsch MH, Bass SH, de Vos AM. Crystal structure of nerve growth factor 

in complex with the ligand-binding domain of the TrkA receptor. Nature 1999;401:184-

188. 

 174.  Ultsch MH, Wiesmann C, Simmons LC, Henrich J, Yang M, Reilly D, Bass SH, de Vos 

AM. Crystal structures of the neurotrophin-binding domain of TrkA, TrkB and TrkC. J 

Mol Biol 1999;290:149-159. 

 175.  Zdanov A, Schalk-Hihi C, Gustchina A, Tsang M, Weatherbee J, Wlodawer A. Crystal 

structure of interleukin-10 reveals the functional dimer with an unexpected topological 

similarity to interferon gamma. Structure 1995;3:591-601. 

 176.  Josephson K, Jones BC, Walter LJ, DiGiacomo R, Indelicato SR, Walter MR. 

Noncompetitive antibody neutralization of IL-10 revealed by protein engineering and x-

ray crystallography. Structure 2002;10:981-987. 

 177.  Sue SC, Lee WT, Tien SC, Lee SC, Yu JG, Wu WJ, Wu WG, Huang TH. PWWP 

module of human hepatoma-derived growth factor forms a domain-swapped dimer with 

much higher affinity for heparin. J Mol Biol 2007;367:456-472. 

 178.  Sue SC, Chen JY, Lee SC, Wu WG, Huang TH. Solution structure and heparin 

interaction of human hepatoma-derived growth factor. J Mol Biol 2004;343:1365-1377. 

 179.  Ivanov D, Tsodikov OV, Kasanov J, Ellenberger T, Wagner G, Collins T. Domain-

swapped dimerization of the HIV-1 capsid C-terminal domain. Proc Natl Acad Sci U S A 

2007;104:4353-4358. 

 180.  Byeon IJ, Meng X, Jung J, Zhao G, Yang R, Ahn J, Shi J, Concel J, Aiken C, Zhang P, 

Gronenborn AM. Structural convergence between Cryo-EM and NMR reveals 

intersubunit interactions critical for HIV-1 capsid function. Cell 2009;139:780-790. 

 181.  Yu XL, Hu T, Du JM, Ding JP, Yang XM, Zhang J, Yang B, Shen X, Zhang Z, Zhong 

WD, Wen N, Jiang H, Zhu P, Chen ZN. Crystal structure of HAb18G/CD147: 

implications for immunoglobulin superfamily homophilic adhesion. J Biol Chem 

2008;283:18056-18065. 

 182.  Luo J, Teplyakov A, Obmolova G, Malia T, Wu SJ, Beil E, Baker A, Swencki-

Underwood B, Zhao Y, Sprenkle J, Dixon K, Sweet R, Gilliland GL. Structure of the 

EMMPRIN N-terminal domain 1: dimerization via beta-strand swapping. Proteins 

2009;77:1009-1014. 

 183.  Zhang HP, Nagashima T, Hayashi F, Yokoyama S. Solution structure of the RGS domain 

of Regulator of G-protein signaling 7. to be published 2005. 



131 
 

 184.  Soundararajan M, Willard FS, Kimple AJ, Turnbull AP, Ball LJ, Schoch GA, Gileadi C, 

Fedorov OY, Dowler EF, Higman VA, Hutsell SQ, Sundstrom M, Doyle DA, Siderovski 

DP. Structural diversity in the RGS domain and its interaction with heterotrimeric G 

protein alpha-subunits. Proc Natl Acad Sci U S A 2008;105:6457-6462. 

 185.  Jedrzejczak R, Dauter Z, Dauter M, Piatek R, Zalewska B, Mroz M, Bury K, Nowicki B, 

Kur J. Structure of DraD invasin from uropathogenic Escherichia coli: a dimer with 

swapped beta-tails. Acta Crystallogr D Biol Crystallogr 2006;62:157-164. 

 186.  Cota E, Jones C, Simpson P, Altroff H, Anderson KL, du ML, Guignot J, Servin A, Le 

BC, Mardon H, Matthews S. The solution structure of the invasive tip complex from 

Afa/Dr fibrils. Mol Microbiol 2006;62:356-366. 

 187.  The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Res 2010;38:D142-

D148. 

 188.  Diederichs K, Jacques S, Boone T, Karplus PA. Low-resolution structure of recombinant 

human granulocyte-macrophage colony stimulating factor. J Mol Biol 1991;221:55-60. 

 189.  Milburn MV, Hassell AM, Lambert MH, Jordan SR, Proudfoot AE, Graber P, Wells TN. 

A novel dimer configuration revealed by the crystal structure at 2.4 A resolution of 

human interleukin-5. Nature 1993;363:172-176. 

 190.  Bennett MJ, Schlunegger MP, Eisenberg D. 3D domain swapping: a mechanism for 

oligomer assembly. Protein Sci 1995;4:2455-2468. 

 191.  Ogihara NL, Ghirlanda G, Bryson JW, Gingery M, DeGrado WF, Eisenberg D. Design of 

three-dimensional domain-swapped dimers and fibrous oligomers. Proc Natl Acad Sci U 

S A 2001;98:1404-1409. 

 192.  Chen YW, Stott K, Perutz MF. Crystal structure of a dimeric chymotrypsin inhibitor 2 

mutant containing an inserted glutamine repeat. Proc Natl Acad Sci U S A 1999;96:1257-

1261. 

 193.  Bergdoll M, Remy MH, Cagnon C, Masson JM, Dumas P. Proline-dependent 

oligomerization with arm exchange. Structure 1997;5:391-401. 

 194.  Rousseau F, Schymkowitz JW, Wilkinson HR, Itzhaki LS. Three-dimensional domain 

swapping in p13suc1 occurs in the unfolded state and is controlled by conserved proline 

residues. Proc Natl Acad Sci U S A 2001;98:5596-5601. 

 195.  Barrientos LG, Louis JM, Botos I, Mori T, Han Z, O'Keefe BR, Boyd MR, Wlodawer A, 

Gronenborn AM. The domain-swapped dimer of cyanovirin-N is in a metastable folded 

state: reconciliation of X-ray and NMR structures. Structure 2002;10:673-686. 

 196.  Mazzarella L, Capasso S, Demasi D, Dilorenzo G, Mattia CA, Zagari A. Bovine Seminal 

Ribonuclease - Structure at 1.9-Angstrom Resolution. Acta Crystallographica Section D-

Biological Crystallography 1993;49:389-402. 



132 
 

 197.  Canals A, Pous J, Guasch A, Benito A, Ribo M, Vilanova M, Coll M. The structure of an 

engineered domain-swapped ribonuclease dimer and its implications for the evolution of 

proteins toward oligomerization. Structure 2001;9:967-976. 

 198.  Liu Y, Gotte G, Libonati M, Eisenberg D. Structures of the two 3D domain-swapped 

RNase A trimers. Protein Sci 2002;11:371-380. 

 199.  Sirota FL, Hery-Huynh S, Maurer-Stroh S, Wodak SJ. Role of the amino acid sequence 

in domain swapping of the B1 domain of protein G. Proteins 2008;72:88-104. 

 200.  Murray AJ, Head JG, Barker JJ, Brady RL. Engineering an intertwined form of CD2 for 

stability and assembly. Nat Struct Biol 1998;5:778-782. 

 201.  Newcomer ME. Protein folding and three-dimensional domain swapping: a strained 

relationship? Curr Opin Struct Biol 2002;12:48-53. 

 202.  Gronenborn AM. Protein acrobatics in pairs--dimerization via domain swapping. Curr 

Opin Struct Biol 2009;19:39-49. 

 203.  Rousseau F., Schymkowitz J., Itzhaki L.S. Implications of 3D domain swapping for 

protein folding, misfolding and function. In:  2010. 

 204.  Bennett MJ, Sawaya MR, Eisenberg D. Deposition diseases and 3D domain swapping. 

Structure 2006;14:811-824. 

 205.  Parge HE, Arvai AS, Murtari DJ, Reed SI, Tainer JA. Human CksHs2 atomic structure: a 

role for its hexameric assembly in cell cycle control. Science 1993;262:387-395. 

 206.  Seeliger MA, Spichty M, Kelly SE, Bycroft M, Freund SM, Karplus M, Itzhaki LS. Role 

of conformational heterogeneity in domain swapping and adapter function of the Cks 

proteins. J Biol Chem 2005;280:30448-30459. 

 207.  Wolynes P, Luthey-Schulten Z, Onuchic J. Fast-folding experiments and the topography 

of protein folding energy landscapes. Chem Biol 1996;3:425-432. 

 208.  Yang S, Cho SS, Levy Y, Cheung MS, Levine H, Wolynes PG, Onuchic JN. Domain 

swapping is a consequence of minimal frustration. Proc Natl Acad Sci U S A 

2004;101:13786-13791. 

 209.  Cho SS, Levy Y, Onuchic JN, Wolynes PG. Overcoming residual frustration in domain-

swapping: the roles of disulfide bonds in dimerization and aggregation. Phys Biol 

2005;2:S44-S55. 

 210.  Koharudin LM, Viscomi AR, Jee JG, Ottonello S, Gronenborn AM. The evolutionarily 

conserved family of cyanovirin-N homologs: structures and carbohydrate specificity. 

Structure 2008;16:570-584. 



133 
 

 211.  Ding F, Prutzman KC, Campbell SL, Dokholyan NV. Topological determinants of 

protein domain swapping. Structure 2006;14:5-14. 

 212.  Kundu S, Jernigan RL. Molecular mechanism of domain swapping in proteins: an 

analysis of slower motions. Biophys J 2004;86:3846-3854. 

 213.  Malevanets A, Sirota FL, Wodak SJ. Mechanism and energy landscape of domain 

swapping in the B1 domain of protein G. J Mol Biol 2008;382:223-235. 

 214.  Fink AL. Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold 

Des 1998;3:R9-23. 

 215.  Gotte G, Bertoldi M, Libonati M. Structural versatility of bovine ribonuclease A. Distinct 

conformers of trimeric and tetrameric aggregates of the enzyme. Eur J Biochem 

1999;265:680-687. 

 216.  Piccoli R, Di DA, D'Alessio G. Co-operativity in seminal ribonuclease function. Kinetic 

studies. Biochem J 1988;253:329-336. 

 217.  Nenci A, Gotte G, Bertoldi M, Libonati M. Structural properties of trimers and tetramers 

of ribonuclease A. Protein Sci 2001;10:2017-2027. 

 218.  Sambashivan S, Liu Y, Sawaya MR, Gingery M, Eisenberg D. Amyloid-like fibrils of 

ribonuclease A with three-dimensional domain-swapped and native-like structure. Nature 

2005;437:266-269. 

 219.  Byeon IJ, Louis JM, Gronenborn AM. A captured folding intermediate involved in 

dimerization and domain-swapping of GB1. J Mol Biol 2004;340:615-625. 

 220.  Jee J, Byeon IJ, Louis JM, Gronenborn AM. The point mutation A34F causes 

dimerization of GB1. Proteins 2008;71:1420-1431. 

 221.  Louis JM, Byeon IJ, Baxa U, Gronenborn AM. The GB1 amyloid fibril: recruitment of 

the peripheral beta-strands of the domain swapped dimer into the polymeric interface. J 

Mol Biol 2005;348:687-698. 

 222.  Kirsten FM, Dyda F, Dobrodumov A, Gronenborn AM. Core mutations switch 

monomeric protein GB1 into an intertwined tetramer. Nat Struct Biol 2002;9:877-885. 

 223.  Wikstrom M, Drakenberg T, Forsen S, Sjobring U, Bjorck L. Three-dimensional solution 

structure of an immunoglobulin light chain-binding domain of protein L. Comparison 

with the IgG-binding domains of protein G. Biochemistry 1994;33:14011-14017. 

 224.  Ziolkowska NE, O'Keefe BR, Mori T, Zhu C, Giomarelli B, Vojdani F, Palmer KE, 

McMahon JB, Wlodawer A. Domain-swapped structure of the potent antiviral protein 

griffithsin and its mode of carbohydrate binding. Structure 2006;14:1127-1135. 



134 
 

 225.  Mori T, O'Keefe BR, Sowder RC, Bringans S, Gardella R, Berg S, Cochran P, Turpin JA, 

Buckheit RW, Jr., McMahon JB, Boyd MR. Isolation and characterization of griffithsin, a 

novel HIV-inactivating protein, from the red alga Griffithsia sp. J Biol Chem 

2005;280:9345-9353. 

 226.  Williams DC, Jr., Lee JY, Cai M, Bewley CA, Clore GM. Crystal structures of the HIV-1 

inhibitory cyanobacterial protein MVL free and bound to Man3GlcNAc2: structural basis 

for specificity and high-affinity binding to the core pentasaccharide from n-linked 

oligomannoside. J Biol Chem 2005;280:29269-29276. 

 227.  Ziolkowska NE, Wlodawer A. Structural studies of algal lectins with anti-HIV activity. 

Acta Biochim Pol 2006;53:617-626. 

 228.  Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, 

Bourne PE. The Protein Data Bank. Nucleic Acids Res 2000;28:235-242. 

 229.  Liu L, Gronenborn AM. Domain swapping in Proteins. In:  2011. 

 230.  Cafaro V, De LC, Piccoli R, Bracale A, Mastronicola MR, Di DA, D'Alessio G. The 

antitumor action of seminal ribonuclease and its quaternary conformations. FEBS Lett 

1995;359:31-34. 

 231.  Czjzek M, Letoffe S, Wandersman C, Delepierre M, Lecroisey A, Izadi-Pruneyre N. The 

crystal structure of the secreted dimeric form of the hemophore HasA reveals a domain 

swapping with an exchanged heme ligand. J Mol Biol 2007;365:1176-1186. 

 232.  Sanders A, Jeremy CC, Higgins LD, Giannini S, Conroy MJ, Hounslow AM, Waltho JP, 

Staniforth RA. Cystatin forms a tetramer through structural rearrangement of domain-

swapped dimers prior to amyloidogenesis. J Mol Biol 2004;336:165-178. 

 233.  Yamasaki M, Li W, Johnson DJ, Huntington JA. Crystal structure of a stable dimer 

reveals the molecular basis of serpin polymerization. Nature 2008;455:1255-1258. 

 234.  Chen YW, Stott K, Perutz MF. Crystal structure of a dimeric chymotrypsin inhibitor 2 

mutant containing an inserted glutamine repeat. Proc Natl Acad Sci U S A 1999;96:1257-

1261. 

 235.  Ogihara NL, Ghirlanda G, Bryson JW, Gingery M, DeGrado WF, Eisenberg D. Design of 

three-dimensional domain-swapped dimers and fibrous oligomers. Proc Natl Acad Sci U 

S A 2001;98:1404-1409. 

 236.  Dolbier WR. Guide to fluorine nmr for organic chemists. In:  2009. 

 237.  Campos-Olivas R, Aziz R, Helms GL, Evans JN, Gronenborn AM. Placement of 19F into 

the center of GB1: effects on structure and stability. FEBS Lett 2002;517:55-60. 

 238.  Abbott GL, Blouse GE, Perron MJ, Shore JD, Luck LA, Szabo AG. 19F NMR studies of 

plasminogen activator inhibitor-1. Biochemistry 2004;43:1507-1519. 



135 
 

 239.  Ahmed AH, Loh AP, Jane DE, Oswald RE. Dynamics of the S1S2 glutamate binding 

domain of GluR2 measured using 19F NMR spectroscopy. J Biol Chem 2007;282:12773-

12784. 

 240.  Toptygin D, Gronenborn AM, Brand L. Nanosecond relaxation dynamics of protein GB1 

identified by the time-dependent red shift in the fluorescence of tryptophan and 5-

fluorotryptophan. J Phys Chem B 2006;110:26292-26302. 

 241.  Schuler B, Kremer W, Kalbitzer HR, Jaenicke R. Role of entropy in protein 

thermostability: folding kinetics of a hyperthermophilic cold shock protein at high 

temperatures using 19F NMR. Biochemistry 2002;41:11670-11680. 

 242.  Danielson MA, Falke JJ. Use of 19F NMR to probe protein structure and conformational 

changes. Annu Rev Biophys Biomol Struct 1996;25:163-195. 

 243.  Botos I, O'Keefe BR, Shenoy SR, Cartner LK, Ratner DM, Seeberger PH, Boyd MR, 

Wlodawer A. Structures of the complexes of a potent anti-HIV protein cyanovirin-N and 

high mannose oligosaccharides. J Biol Chem 2002;277:34336-34342. 

 244.  Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson HJ, Oldfield E, Markley JL, Sykes 

BD. 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR 

1995;6:135-140. 

 245.  Maurer T, Kalbitzer HR. Indirect Referencing of 31P and 19F NMR Spectra. J Magn 

Reson B 1996;113:177-178. 

 246.  Van Geet AL. Calibration of the methanol and glycol nuclear magnetic resonance 

thermometers with a static thermistor probe. Analytical Chemistry 1968;40:2227-2229. 

 247.  Atkins P, De Paula J. Atkins' Physical Chemistry.  Oxford University Press; 2006. 

 248.  Fromme R, Katiliene Z, Giomarelli B, Bogani F, Mc MJ, Mori T, Fromme P, Ghirlanda 

G. A monovalent mutant of cyanovirin-N provides insight into the role of multiple 

interactions with gp120 for antiviral activity. Biochemistry 2007;46:9199-9207. 

 249.  Rohl CA, Baker D. De novo determination of protein backbone structure from residual 

dipolar couplings using Rosetta. J Am Chem Soc 2002;124:2723-2729. 

 250.  Tanaka H, Chiba H, Inokoshi J, Kuno A, Sugai T, Takahashi A, Ito Y, Tsunoda M, 

Suzuki K, Takenaka A, Sekiguchi T, Umeyama H, Hirabayashi J, Omura S. Mechanism 

by which the lectin actinohivin blocks HIV infection of target cells. Proc Natl Acad Sci U 

S A 2009;106:15633-15638. 

 251.  Zweckstetter M, Bax A. Prediction of Sterically Induced Alignment in a Dilute Liquid 

Crystalline Phase: Aid to Protein Structure Determination by NMR. Journal of the 

American Chemical Society 2000;122:3791-3792. 



136 
 

 252.  Brandts JF, Halvorson HR, Brennan M. Consideration of the Possibility that the slow step 

in protein denaturation reactions is due to cis-trans isomerism of proline residues. 

Biochemistry 1975;14:4953-4963. 

 253.  Liu Y, Gierasch LM, Bahar I. Role of Hsp70 ATPase domain intrinsic dynamics and 

sequence evolution in enabling its functional interactions with NEFs. PLoS Comput Biol 

2010;6. 

 

 


	Title Page
	Committee Membership Page
	Copyright Page
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Text
	Preface
	1.0 INTRODUCTION
	1.1 CONFORMATIONAL DYNAMICS
	1.2 STRUCTURAL AND COMPUTATIONAL METHODS
	1.3 DOMAIN SWAPPING
	1.4 THE GOAL AND SPECIFIC SUBPROJECTS

	2.0 A COMPARATIVE ANALYSIS OF THE EQUILIBRIUM DYNAMICS OF A DESIGNED PROTEIN INFERRED FROM NMR, X-RAY AND COMPUTATIONAL STUDIES
	2.1 INTRODUCTION
	2.2 MATERIALS AND METHODS
	2.2.1 Materials
	2.2.2 RMSD calculation for the ensemble of NMR models
	2.2.3 Generation of NMR-like ensembles from the X-ray models
	2.2.4 Fluctuations and collective modes predicted by the Gaussian Network Model
	2.2.5 Comparison of MD essential modes with GNM global modes

	2.3 RESULTS AND DISCUSSION
	2.3.1 Comparison of the two computational approaches
	2.3.2 Comparison of computational and experimental data
	2.3.3 Comparison of essential modes from MD and GNM
	2.3.4 The close relationship between NMR and GNM - is the agreement simply based onthe similarity in methodology?
	2.3.5 Interactions between neighboring molecules affect the dynamics in the crystal lattice

	2.4 CONCLUSION

	3.0 MOLECULAR SIMULATIONS PROVIDE INSIGHTS INTO THEMECHANICS, BUT NOT THE TIME SCALES, OF PROTEINMOTIONS UNDER EQUILIBRIUM CONDITIONS
	3.1 INTRODUCTION
	3.2 MATERIALS AND METHODS
	3.2.1 MD simulations
	3.2.2 Principal component analysis (PCA) of MD trajectories and NMR models
	3.2.3 GNM and ANM

	3.3 RESULTS AND DISCUSSION
	3.3.1 The distribution of residue fluctuations is insensitive to the duration of simulations
	3.3.2 The increase in residue MSFs with simulation duration obeys a power law
	3.3.3 Longer simulations yield larger correlation times
	3.3.4 Comparison of essential modes extracted from different MD runs
	3.3.5 Both ENM and NMR results are consistent with the MD simulation results

	3.4 CONCLUSION

	4.0 BIOINFORMATIC ANALYSIS OF DOMAIN-SWAPPED PROTEINS
	4.1 INTRODUCTION
	4.2 GENERAL ASPECTS
	4.2.1 Dataset of domain-swapped proteins
	4.2.2 Mechanistic considerations
	4.2.2.1 The hinge-loop
	4.2.2.2 Mutations promoting domain swapping outside of the hinge-loop
	4.2.2.3 Stability and folding of the monomer

	4.2.3 Theoretical and computational explorations

	4.3 INSRUCTIVE EXAMPLES AND BIOLOGICAL IMPLICATIONS
	4.3.1 RNase A
	4.3.2 B1 domain
	4.3.3 Lectins

	4.4 CONCLUSIONS

	5.0 DOMAIN SWAPPING PROCEEDS VIA COMPLETE UNFOLDING:A 19F-NMR STUDY OF CYANOVIRIN-N
	5.1 INTRODUCTION
	5.2 EXPERIMENTS AND METHODS
	5.2.1 Sample preparation
	5.2.2 Differential Scanning Calorimetry (DSC)
	5.2.3 NMR spectroscopy
	5.2.4 Data analysis

	5.3 RESULTS AND DISCUSSION
	5.3.1 CV-N system
	5.3.2 19F spectroscopy
	5.3.3 Kinetics of the conversion between domain-swapped dimer and monomer
	5.3.4 Equilibrium properties
	5.3.5 The energy landscape of domain swapping

	5.4 CONCLUSION

	6.0 CONCLUSION AND FUTURE WORK
	6.1 METHODS FOR INVESTIGATEING CONFORMATIONAL DYNAMICS
	6.2 DOMAIN SWAPPING

	BIBLIOGRAPHY




