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Neuronal and glial glutamate transporters function to clear synaptically released glutamate from 

the extracellular space. This process not only ensures the spatial and temporal fidelity of 

excitatory signaling, but also prevents neuronal death triggered by excess glutamate. In addition, 

glutamate transporters possess a substrate-gated anion channel function, which may play an 

important role in shaping synaptic transmission.  Although much progress has been made on the 

topology, structure, and function of these carriers, our knowledge of the conformational 

dynamics that drive glutamate transporter functions is far from complete.  

Using biochemical, electrophysiological and functional assays in combination with 

computational simulations, we identified several large-scale collective motions that are intrinsic 

to glutamate transporter trimers. These collective motions are functionally important for 

substrate transport, but not for the substrate-gated anion conductance. Furthermore, we showed 

that these collective motions are coupled to the inward movement of the transport domain, and 

thus serve a critical function in the transport cycle. Next, we identified a conserved arginine 

residue, R388 in human EAAT1, that is involved in both substrate transport and anion 

conduction. Mutants reversing the positive charge (R388D and R388E) predominantly exist in 

the anion leak state and abolish the substrate-activated anion current. We also demonstrated that 

the transport domain in the negatively-charged mutant R388D spends a longer time in the 
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inward-facing orientation in the absence of substrate compared to the wild type transporter. 

These results not only suggest the characterized arginine residue is an important element in the 

functional coupling between substrate transport and the anion channel activity, but also indicate 

the role of the inward transport domain movement in anion permeation. Finally, we constructed a 

functional glutamate transporter concatemer. Our preliminary results suggested that glutamate 

transporters are functional as trimers and the individual subunits transport substrate 

independently. 

The work presented in this dissertation provides a greater understanding of the structural 

determinants of the dual functions of glutamate transporters. Furthermore, it provides a powerful 

tool to further study contributions of subunit interactions and the inward piston-like movement of 

the transport domain to channel gating and anion permeation.  
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1.0  INTRODUCTION 

 

1.1 GLUTAMATE TRANSPORTERS AND EXCITATORY SYNAPTIC 

TRANSMISSION 

The amino acid L-glutamate is the major excitatory neurotransmitter in the mammalian central 

nervous system. It is released from presynaptic neurons in response to electrical impulses (e.g. 

action potentials). Within less than a millisecond, glutamate diffuses across the synaptic cleft and 

transmits information to postsynaptic neurons by acting on both synaptic and extrasynaptic 

glutamate receptors. The glutamate concentration in the extracellular environment determines the 

extent and duration of receptor activation and thus glutamate clearance plays an essential role in 

the maintenance of precise communication between neurons. In addition, excessive activation of 

glutamate receptors is neurotoxic and the rapid clearance of glutamate limits the neuronal death 

that can be caused by high extracellular glutamate concentrations (1).  

 



 2 

1.1.1 Extracellular glutamate is mainly removed by glutamate transporters and reused in 

the cell 

Unlike the neurotransmitter acetylcholine, glutamate is not inactivated by specific extracellular 

enzymes. Although simple diffusion plays an important role in reducing glutamate 

concentrations in the synaptic cleft at a submillisecond timescale, the maintenance of low 

extracellular glutamate concentrations relies on the active uptake into cells by glutamate 

transporters (2). These carriers transport L-glutamate, L-aspartate and D-aspartate with high 

affinity (Km in low micromolar range). Once it enters the neuronal cytoplasm, glutamate can be 

used subsequently for protein synthesis in cellular metabolism, or packaged in vesicles for re-

release during neurotransmission. By contrast, glutamate transported into glial cells is initially 

converted to glutamine by glutamine synthetase. Glutamine is then actively transported back 

from glial cells into presynaptic neurons to serve as a source for new glutamate synthesis. This 

trafficking of glutamate and glutamine between neurons and glial cells is referred to as the 

glutamine-glutamate cycle, and has been proposed to be a major pathway by which glutamate is 

recycled (3).    

1.1.2 Glutamate transporters and diseases 

As the major excitatory signaling molecule, glutamate contributes to nearly all aspects of normal 

brain development and function. Altered clearance of glutamate as a consequence of glutamate 

transporter malfunction is associated with a variety of neurological diseases and psychiatric 

disorders (4). Sustained elevation of extracellular glutamate, either due to the downreglutation of 

transporter activity or by glutamate release through a direct reversal of the transporter, leads to 
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severe excitotoxic damage to surrounding neurons. This mechanism is implicated in both acute 

brain injuries (e.g. epilepsy and ischemia), and chronic pathological conditions, including 

amyotrophic lateral sclerosis, Huntington’s disease and Alzheimer’s disease (4). On the other 

hand, glutamate hypoactivity, which could result from the upregulation of transporter functions, 

has been reported to occur in schizophrenia patients (1, 4). Glutamate transporters thus represent 

potential therapeutic targets for treating these neuropsychiatric and neurodegenerative diseases, 

and understanding the structural determinants of transporter functions will help in the design of 

allosteric transport regulators and inhibitors of reverse transport.  

1.2 FUNCTIONAL PROPERTIES OF GLUTAMATE TRANSPORTERS 

Over the last three decades, the study of the structure and function of glutamate transporters has 

spanned from initial investigations of transport system in brain slices, synaptosomes and plasma 

membrane vesicles to extensive explorations of individual transporter subtypes exogenously 

expressed in cultured cells, greatly expanding our knowledge of this protein family.  

1.2.1 Glutamate transporter subtypes  

Early studies showed that glutamate transport activities in different brain regions have distinct 

pharmacological profiles, suggesting the existence of more than one subtypes of glutamate 

transporters (5-6). This diversity was confirmed by the cloning of the first three genes encoding 

different subtypes of glutamate transporters in 1992: rat GLAST, rat GLT-1 and rabbit EAAC1 

(7-9). To date, five members of glutamate transporter family have been characterized from 
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human (10-12) and a variety of other eukaryotic species (for a review, see (13)). The human 

transporters were named using the acronym EAAT (Excitatory Amino Acid Transporter) (12). 

Based on sequence similarity, EAAT1 is homologous to GLAST, EAAT2 to GLT-1 and EAAT3 

to EAAC1. Several prokaryotic genes have also been isolated, including proton dependent 

glutamate transporters from Escherichia coli, (GltPEc), Bacillus stearothermophilus (GltTBs) and 

Bacillus caldotenax (GltTBc), as well as a dicarboxylic acid transporter from Rhizobium meliloti 

(DctA) (14-16). Other glutamate transporter family members include two related neutral amino 

acid transporters ASCT1 and ASCT2, which transport L-alanine, L-serine and L-cysteine (17-

18). The primary sequences of the five mammalian carriers share ~50% identity and ~60% 

similarity, while the identity with the prokaryotic carriers is around 20-30%. It is therefore 

reasonable to assume that the mammalian EAATs will have many structural and mechanistic 

features in common with their prokaryotic counterparts. However, considerable variations in 

structure, ion requirements and substrate selectivity exist between different subtypes, which 

sometimes makes it difficult to compare structure-function data obtained from different family 

members. 

 

1.2.2 Glutamate transport cycle  

Glutamate transporters belong to a secondary active transporter family that uses free energy 

stored in ion/solute gradients to enable the uphill translocation of their substrates. Studies in 

brain slices, synaptosomes and brain-derived cell lines revealed that glutamate transport is 

thermodynamically coupled to the inward movement of multiple sodium ions (19-20) and a 

proton ion (or an OH- is ejected) (21), and to the outward movement of a potassium ion (22). The 
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detailed coupling stoichiometry has been further explored using the cloned human EAAT1 

expressed in Xenopus oocytes (23), as well as GLT-1 expressed in CHO cells (24). It is now 

generally accepted that for mammalian carriers the transport cycle involves two sequential half-

cycles (Figure 1A): i) co-transport of 1 glutamate with 3 sodium ions and 1 proton ion into the 

cell cytosol, and ii) counter-transport of 1 potassium ion to return transporters to their externally-

facing, unoccupied state. Based on the Goldman-Hodgkin-Katz equation and physiological ion 

gradients, such stoichiometry enables the generation of  up to a 106-fold gradient of glutamate 

across the cell membrane, which could bring the extracellular glutamate concentration down to 

approximately 10 nM (23).  Glutamate transport is therefore electrogenic, as two net positive 

charges move into the cell with each transport cycle. The resulting current is referred to as 

transport current, and is sometimes termed coupled transport current or uptake current because it 

represents the stoichiometric charge movements associated with glutamate transport. 

1.2.3 Transporter associated anion conductance  

Glutamate transporters also function as anion channels (Figure 1B). Before the cloning of 

glutamate transporters, Attwell’s group observed a glutamate-activated chloride conductance in 

retina photoreceptors (25). These currents displayed properties in common with glutamate 

transporters: they were Na+-dependent, and could be inhibited by transporter inhibitors. Several 

groups made similar observations (26-27), but the direct association of an anion current with a 

glutamate transporter remained unclear until the identification and characterization of a human 

EAAT4 (11). Application of glutamate to Xenopus oocytes expressing recombinant EAAT4 

generates a current that is predominantly due to chloride ions and is not blocked by compounds 

that inhibit endogenous chloride channels. The chloride current through the transporter is 
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thermodynamically uncoupled from the substrate transport process because the rate of uptake is 

independent of the presence of Cl- or the direction of Cl- flux (11). Subsequent studies of other 

transporter subtypes confirmed that mammalian EAATs as well as structurally related neutral 

amino acid transporters, known as ASCTs, have intrinsic anion channel activities (10, 28-31).   

More recently, Ryan et al. used proteoliposomes to identify an uncoupled chloride conductance 

in a glutamate transporter homolog GltPh from the archaeal species Pyrococcus horikoshii, 

suggesting that chloride permeation is a feature conserved in both prokaryotic and eukaryotic 

carriers (32). In addition to the anion conductance activated by glutamate, mammalian EAATs 

also possess an anion leak conductance in the absence of substrate (33-35). The anion leak 

currents are activated by extracellular Na+ and can be blocked by transporter inhibitors. Thus, 

there are two distinct anion currents associated with EAATs, and they are referred to as the Na+-

activated anion leak current and the substrate-activated anion current. 

Although the physiological function of the Na+-activated leak chloride current associated 

with glutamate transporters is not yet clear, the substrate-activated chloride current can influence 

synaptic transmission in several ways.  First, coupled glutamate transport generates a net transfer 

of two positive charges per transport cycle. The influx of Cl- counteracts the accumulation of 

positive charges during transport, which otherwise will depolarize the cell and inhibit voltage-

dependent glutamate transport. Consistent with this idea, the rate of transport slows rapidly in 

GltPh-containing liposomes if Cl- or other permeant anions are not present in the uptake media 

(32). Second, the influx of Cl- may serve as a feedback sensor of extracellular glutamate 

concentration to dampen neuron excitability and prevent further glutamate release. This 

mechanism is elegantly demonstrated in rat rod bipolar cells which express a transporter that has 

relatively large Cl- conductance compared to the coupled transport current (36).   
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Figure 1. Transport cycle and stoichiometry of EAATs 

(A) Simplified state diagram of the EAAT transport cycle. After glutamate and coupled ions (step 1) bind to the 

transporter (T), they are translocated (step 2) and released into the cell cytosol (step 3). Next K+ binds from the 

intracellular side (step 4) and reorients the substrate-free transporter (step 5). K+ is released outside the cell (step 6). 

(B) Cartoon illustrating the ion coupling stoichiometry of an EAAT (blue). The uptake of 1 glutamate molecule is 

coupled with the influx of 3 Na+, 1 H+ and the efflux of 1 K+ (black). In addition, EAATs have a glutamate-activated 

Cl- conductance (red), which results in the influx of chloride ions under physiological conditions. 
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1.3 MOLECULAR STRUCTURES OF GLUTAMATE TRANSPORTERS 

An appreciation of the molecular structures of glutamate transporters has been a crucial first step 

towards understanding how structural elements contribute to different aspects of transporter 

function. This section will focus on the current knowledge of the general membrane topology 

and the subunit stoichiometry of glutamate transporters.   

 

1.3.1 Membrane topology of glutamate transporters  

Hydropathy analyses of GLAST-1, GLT-1 and EAAC-1, as well as direct experimental evidence 

provided support for the presence of six transmembrane (TM) α-helices in the N-terminal part of 

glutamate transporters with two N-glycosylation sites located in the extracellular loop between 

TM domain 3 & 4 (Figure 2) (37-38). However, structural predictions were ambiguous for the 

C-terminus, in part because of many charged residues present within the otherwise hydrophobic 

domains. Early studies attempted to assess the membrane orientation of a reporter epitope fused 

with sequential C-terminal deletions of glutamate transporters, resulting in several different 

models for the C-terminal domains (37, 39-40). Despite the the information gathered, these 

studies were criticized for being based on data using truncated non-functional transporters, which 

might not reflect the organization of full-length native carriers. 

 As an alternative approach, several laboratories used cysteine substitutions combined 

with thiol-modifications to determine the membrane topology of the C-terminal domains. In 

these strategies, single cysteine residues are introduced into regions of interest and their 

accessibility probed with various sulfhydryl-reactive reagents. Residues that can be modified by 
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both membrane permeable and impermeable agents are designated as extracellular, whereas 

residues that can only be modified by membrane permeant agents are intracellular. Finally, 

residues that do not react with either permeable or impermeable agents are presumed to reside 

within TM domains (41). Two models were developed for human EAAT1 (42-43) and GLT-1 

(44-45) respectively using this kind of approach, and the results for GLT-1 generally agreed with 

the predicted topology of the bacterial transporter GltTBs (46-47). Both mammalian carrier 

models (Figure 2A and 2B) proposed the existence of re-entrant loops, but differed in the 

number and location of the TM domains and re-entrant loops. The major basis for the differences 

in the two models is the accessibility of a single substituted residue, A395C in human EAAT1 

(A393C in GLT-1) (43, 45). Although A395C in human EAAT1 could be readily modified by 

small impermeant methanethiosulfonate reagents (MTSET and MTSES), implying an 

extracellular location, Kanner and colleagues showed that the corresponding residue in GLT-1, 

A393C, is inaccessible by these reagents and placed it at the end of a large intracellular loop.  

A breakthrough in understanding the membrane topology of glutamate transporters came 

with the first crystallization of the archaeal transporter GltPh [Protein data bank (PDB) ID: 

1XFH] (48). GltPh exists as a trimer comprised of three identical subunits in the crystal. Each 

protomer contains eight TM domains and two re-entrant loops. The first six TM domains form a 

scaffold surrounding a C-terminal transport domain that contains structural elements required for 

the transport mechanism. The C-terminal transport domain includes two opposite-facing helical 

hairpins (HP1 and HP2), a seventh TM helix interrupted by a β-linker and an amphipathic helix, 

TM8 (Figure 2C and 2D). A non-protein electron density nestled between HP1 and HP2 was 

also observed in the crystal and was later confirmed to be the bound substrate (49).  
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Figure 2. Structural features of GltPh and the mammalian EAATs  

Three different membrane topology models are illustrated in panels A-C. Two were suggested based on the results 

obtained in substituted cysteine modification studies using human EAAT1 (A) and GLT-1 (B), and the third (C) was 

revealed by the crystallization of an archaeal homolog from Pyrococcus horikoshii, GltPh. (D) Cartoon 

representation of the GltPh protomer viewed in the plane of the membrane. Transmembrane domains 1-6 colored in 

grey form a scaffold that holds the transport domain comprised of HP1 (yellow), TM7 (orange), HP2 (red) and TM8 

(magenta). Residue A395 in human EAAT1 referred to in the text (equivalent to A393 in GLT-1 and A307 in GltPh) 

is shown as red dots in the topology models (A-C) and is also illustrated as a blue sphere in the GltPh protomer (D). 

(E) View of a GltPh trimer parallel to the membrane. Subunits in the trimer are colored green, magenta or cyan. The 

protomer and the trimer structure are based on the GltPh crystal structure 1XFH (48), and are made using the 

software Pymol (Schrödinger, LLC). 

3 
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Therefore, this GltPh structure is referred to as the substrate-bound conformation. One striking 

feature of GltPh is that it forms a large bowl-shaped basin that extends halfway through the 

membrane and thus, several regions in the C-terminal part are solvent accessible despite their 

location within the plane of the membrane (Figure 2E). 

Although many structural features of glutamate transporters, including the existence of 

two re-entrant loops, were predicted by the substituted cysteine modification studies, the exact 

locations of the TM domains and the re-entrant loops in GltPh differ from the proposed 

mammalian models (Figure 2C). How well does the membrane topology of GltPh represent that 

of the mammalian EAATs?  

To address this question, it is useful to revisit data obtained from substituted cysteine 

modification studies in light of not only the substrate-bound GltPh structure, but also the two 

other available 3-dimensional GltPh structures. A second structure (PDB ID: 2NWW), referred to 

as the TBOA-bound conformation, was crystallized in the presence of a competitive inhibitor, 

DL-threo-benzyloxyaspartate (TBOA) (Figure 3A). The overall structural features of the 

TBOA-bound GltPh are very similar to those of the substrate-bound carrier (PDB ID: 1XFH) 

except that the HP2 region is displaced away from the substrate binding site (49). A third GltPh 

structure (PDB ID: 3KBC) was recently resolved by crosslinking two cysteines introduced into 

TM2 and HP2 (Figure 3B). This structure is referred to as the inward-facing conformation, in 

which the C-terminal transport domain moves inward approximately 18Å toward the cytoplasm 

(50).  

Each crystal structure of GltPh may represent a single snapshot of one of many 

conformational states that occur during the transport cycle, and the carrier dynamics are likely to 

affect the solvent accessibility of certain protein domains. When residues characterized in 
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substituted cysteine modification studies using mammalian carriers were mapped onto the three 

reported GltPh structures based on their sequence alignment, the thiol-modification behavior of 

many of these residues can be explained by at least one of these GltPh structures. For example, 

the residue A395C in human EAAT1 noted above is located in the vicinity of the unwound 

segment “NMDGT” in TM7 and is occluded by the HP2 region in the substrate-bound GltPh 

structure (Figure 2D). At first glance, this residue seems to be inaccessible from either the 

intracellular or extracellular side of the cell. However, the displacement of HP2 in the TBOA-

bound GltPh structure exposes this residue to the extracellular environment (Figure 3A) and the 

inward movement of the transport domain in the inward-facing GltPh structure exposes it 

intracellularly (Figure 3B). Therefore, A395C can be accessed from both sides of the cell, which 

reconciles differences in the modification of this residue observed experimentally in human 

EAAT1 and GLT-1 (43, 45). Indeed, the modification of the residue A395C by another thiol-

reactive methanethiosulfonate reagent, MTSEA, was protected by L-glutamate only when 

MTSEA was applied at low concentrations but not at high concentrations. As MTSEA can 

permeate the cell membrane under some conditions, this observation suggests that at high 

concentrations MTSEA can modify A395C from the cytoplasm and supports the idea that this 

residue is alternatively accessed from either side of the membrane (43).  
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Figure 3. Mammalian EAATs and GltPh share similar structure features 

Residue A307 shown as a blue sphere (equivalent to residue A395 in human EAAT1 and A393 in GLT-1, refer to 

the main text), is accessible from either the extracellular space in the TBOA-bound conformation (A) or the 

intracellular space in the inward-facing conformation (B). Note that TBOA in (A) is removed from the structure for 

clarity. The spatial relationships among C-terminal transmembrane domains are conserved between GltPh and 

EAATs, as shown in C and D. (C) Residue pairs in the mammalian EAATs that were characterized to form copper 

phenathroline (CuPh)-induced disulfide crosslinks when substituted with cysteines are illustrated on the GltPh 

structure. Shown in blue are two pairs identified in GLT-1, A412C/V427C (pair 1, TM7/HP2) and A364C/S440C 

(pair 2, HP1/HP2), corresponding to A326/I341 and S279/G354 in GltPh, respectively. Shown in green are two pairs 
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identified in human EAAT1, A395C/A367C (pair 3, TM7/HP1) and A395C/A440C (pair 4, TM7/HP2), 

corresponding to G280/A307 and A307/T352 in GltPh, respectively. (D) Residue pairs that are spatially close in the 

GltPh structure were confirmed by substituted cysteine crosslinking studies in the mammalian EAATs. These include 

pairs of L363/L387 (pair 5, HP2/TM8), L367/Y383 (pair 6, HP2/TM8) and I325/Y383 (pair 7, TM7/TM8) in GltPh, 

corresponding to M449C/L466C, L453C/I463, I411C/I463C in GLT-1, respectively. The illustrations are based the 

GltPh crystal structures 2NWW, 2NWX and 3KBC, and are made using the software Pymol (Schrödinger, LLC). 
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Cysteine crosslinking studies have provided even stronger evidence supporting the 

structural similarities between GltPh and the mammalian EAATs. These studies aimed to look for 

residue pairs that are close in space and when mutated to cysteines could be crosslinked by 

oxidizing reagents such as copper phenanthroline (CuPh). The rationale for the original studies 

was simply based on similarities of residue pairs in thiol accessibility and modification rate, and 

in the ability of substrates, coupled ions and non-transportable analogs to prevent or enhance 

modification. These studies identified residue pairs of A412C/V427C (TM7/HP2) and 

A364C/S440C (HP1/HP2) in GLT-1 (51), and pairs of A395C/A440C (TM7/HP2) and 

A395C/A367C (TM7/HP1) in human EAAT1 (52). When these residue pairs are mapped onto 

the substrate-bound GltPh structure, they are also sufficiently close in space to allow the 

formation of disulfide bonds when substituted with cysteines (Figure 3C). The structure of GltPh 

was also used as a model to look for additional pairs, which led to the identification of residue 

pairs of M449C/L466C (HP2/TM8), L453C/I463C (HP2/TM8), I411C/I463C (TM7/TM8) in 

GLT-1 (Figure 3D) (53). These results clearly demonstrate that the relative positions of TM7, 

TM8, HP1 and HP2 are conserved in GltPh and the mammalian EAATs. 

 

 

1.3.2 Glutamate transporters form trimers  

It has long been proposed that EAATs form multimers (54) and the quaternary stoichiometry was 

explored with various biochemical approaches, including the use of chemical crosslinking 

reagents. Early studies showed that GLT-1 migrates as a trimer in SDS polyacrylamide gels after 

crosslinking, whereas GLAST may exist as both trimers and dimers (54). Similar crosslinked 
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trimer species were observed for two bacterial transporters, GltBc and GltBs (55) and for the 

mammalian transporter EAAC1 (56). The trimeric structure was further confirmed for human 

EAAT2 and the bacterial transporter GltPEc using blue native polyacrylamide gel analysis (57).  

In addition, by applying a coupled chromatographic and spectroscopic technique that accurately 

measures the native molecular masses of membrane proteins, Yernool et al. have shown that 

GltTBc and GltTBs have molecular weights of 140 kDa and 154 kDa respectively under non-

denaturing conditions, approximately three times the size of their corresponding protomers (55). 

Although one study reported a pentameric assembly of human EAAT3 (58), with the 

crystallization of GltPh as a symmetric trimer, it is generally accepted that glutamate transporters 

are comprised of three identical subunits, and this stoichiometry appears conserved in both 

prokaryotic and eukaryotic carriers (48). In addition, recent studies demonstrated that EAAT3 

and EAAT4, but neither EAAT1 and EAAT2 nor EAAT2 and EAAT3, coassemble into stable 

heterotrimers in in vitro expression systems (59). Although the biological significance of the 

hetero-oligomerization of EAAT3 and EAAT4 is currently unknown, it has been shown that 

EAAT3 and EAAT4 are coexpressed in several cell types in the mammalian brain (60-61), 

suggesting that heterotrimers might represent a significant portion of the native transporters. 

Thus, GltPh and the mammalian EAATs form trimers and also share similar 3-

dimensional membrane topology, at least for the C-terminal part of the proteins. In addition to 

these shared features, the mammalian EAATs have a segment of more than 50 amino acids 

between TM4b and TM4c containing N-linked glycosylation sites, which is absent in GltPh. It 

has been postulated that these extra residues form a loop that extends from the center of the 

trimer basin and is accommodated in the large vestibule formed by the assembly of three 

subunits (62). Further studies are needed to reveal the membrane topology of the N-terminal part 
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of the mammalian EAATs in three dimensions, particularly the structure of the additional 

residues not present in GltPh.  

1.4 BINDING SITES FOR GLUTAMATE AND COUPLED IONS 

Structural analyses, including mutagenesis studies and crystallography, have also examined 

potential binding sites for substrates and for the various coupled ions, Na+, H+ and K+, providing 

data that have facilitated our understanding of transport mechanisms. Mutagenesis studies have 

generally focused on conserved polar or charged amino acid residues because of their potential 

for interacting with charged substrates and coupled ions. However, these studies have limitations 

because changes in substrate binding or ion dependence can arise from structural changes that 

indirectly alter the binding sites. In this section, we will consider the residues critical for the 

binding of glutamate and coupled ions, comparing results from mutagenesis studies with the 

binding sites resolved in the GltPh structures (49). 

 

1.4.1 Substrate binding site 

Elements of the substrate binding site were resolved at the atomic level for GltPh by exploiting 

the fact that L-cysteine sulphinic acid (L-CS) binds tightly to GltPh and produces a clear 

anomalous scattering from its sulfur atom (49). Because GltPh prefers L-aspartate over L-

glutamate as a substrate, the structure of L-aspartate was superimposed on the electron density of 

L-CS assuming that the γ-carboxyl group of L-aspartate occupies the same position as the 



 18 

sulphinic acid group of L-CS. This strategy revealed a substrate binding site formed by the tips 

of HP1 and HP2, the unwound region of TM7 (NMDGT motif) and the polar residues of 

amphipathic TM8 (Figure 4A), which is very similar to the previously observed non-protein 

electron density in the substrate-bound GltPh (48). Several key interactions important for 

substrate binding were also suggested for GltPh. These include interactions between the amino 

and α-carboxyl groups of L-aspartate with R276/S278 (HP1), V355 (HP2), D394/N401 (TM8), 

as well as interactions between the γ-carboxyl group with T314 (TM7), G359 (HP2) and R397 

(TM8).  

The importance of the charged residues D394 and R397 for substrate binding is 

compatible with data obtained in the mammalian EAATs. Without any available high resolution 

structural information, these studies were based on the comparison of amino acid sequence 

variations between subtypes displaying different substrate specificities. Conradt et al. noticed 

that R479 in GLAST-1 (R397 in GltPh) is conserved in acidic amino acid transporters, but a 

threonine residue sits in the corresponding position in the neutral amino acid transporter, 

ASCT1. Mutation of the arginine in GLAST-1 to threonine abolishes glutamate uptake, 

suggesting that R479 is essential for substrate transport (63). Evidence directly linking this 

residue to glutamate binding came from a mutagenesis study of the equivalent residue in EAAC-

1, R447 (64). Wild type EAAC-1 transports L-cysteine in addition to acidic amino acids. 

Mutated carriers with uncharged or negatively-charged substitutions at R447 no longer transport 

acidic amino acids, but are still able to accumulate L-cysteine. In addition, these mutated carriers 

transport L-serine, which is not a substrate for wild type EAAC-1. Acidic amino acids do not 

compete with L-cysteine, indicating that they no longer bind to the R447 mutant carriers. Thus, it 

was proposed that R447 (EAAC-1 numbering) interacts with the γ-carboxyl group of glutamate.  
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Studies using a similar strategy identified another conserved aspartate residue D444 in 

EAAC-1 (D394 in GltPh) that is also important for the productive interaction with acidic amino 

acid substrates (65).  The bacterial dicarboxylic acid transporter DctA has a serine residue in 

place of the aspartate corresponding to D444 in EAAC-1. Wild type EAAC-1 does not bind the 

dicarboxylic acid succinate, but DctA can. When D444 in EAAC-1 is mutated to neutral 

residues, succinate can bind to the mutant carriers and inhibit Na+-induced transient currents, 

which are thought to represent charge-moving conformational changes following 

binding/unbinding of sodium ions. Unlike the R447 mutant carriers, D444 mutant carriers still 

bind acidic amino acids, but no longer transport substrates. Instead, acidic amino acids function 

as non-transportable inhibitors that block the Na+-induced transient currents as well as Na+-

activated anion leak currents. The authors proposed that the interaction of D444 with the amino 

group of substrates is an obligate step for the translocation of acidic amino acids (65). 

The role of other residues proposed to comprise the substrate binding site in GltPh, such 

as R276, T314 and N401, has not been thoroughly investigated in the mammalian EAATs 

(Table I). Mutations of these corresponding residues in human EAAT1 generally abolishes or 

significantly impairs glutamate uptake (42). Further experiments are necessary to clarify whether 

the reduced transport activity of these mutants reflects their inability to bind substrates correctly. 
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Figure 4. Binding sites for substrate and coupled sodium ions 

 (A) The substrate binding site revealed in the GltPh structure is comprised of residues from HP1 (yellow), TM7 

(orange), HP2 (red) and TM8 (magenta). Residues highlighted in red boxes represent those also proposed from the 

results of mutagenesis studies in the mammalian EAATs. (B) Two sodium binding sites revealed in the GltPh 

structure. The two sodium ions are shown as purple spheres. Residues S278 (HP1), G306/N310 (TM7), and 

N401/D405 (TM8) form the Na+ binding site #1, whereas residues T308 (TM7) and S349/I350/T352 (HP2) form the 

Na+ binding site #2. (C) Potential third Na+ binding sites, shown as cyan spheres.  The site #3a is proposed to be a 

transient Na+ binding site that is comprised of T92 (TM3), N310/D312 (TM7), and G404 (TM8), whereas the newly 

suggested site #3b is formed by residues T314 (TM7), A353 (HP2), and N401 (TM8) as well as the substrate itself. 

When a sodium ion binds to the site #1, the sodium ion at the site #3a moves quickly over to the site #3b (see text). 

The illustrations are based the GltPh crystal structure 2NWX, and are made using the software Pymol (Schrödinger, 

LLC). 
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1.4.2 Na+ binding sites 

The coupling of sodium ions to the movement of substrate is a mechanistic feature shared by the 

mammalian EAATs and their prokaryotic ancestors. Y403 in GLT-1 was the first residue to be 

implicated in Na+ binding. The mutant carrier Y403F not only exhibits an approximately 8-fold 

increase in the apparent Na+ affinity, but also allows glutamate transport when Na+ is replaced by 

lithium or cesium ions (66).  Efforts to identify residues near Y403 that influence Na+ binding 

revealed two additional amino acids within the loop structure of HP2 (S440 and S443 in GLT-1). 

It has been demonstrated that Li+ can replace at least one sodium ion, but not all three, to support 

transport activity in GLT-1 (67), whereas all three sodium  ions can be replaced by lithium ions 

to support substrate transport by EAAC-1 (68). Mutation of S440 in GLT-1 to glycine, the 

residue found at this position in EAAC-1, allows Li+ to drive substrate uptake. Transport by this 

mutant carrier also depends on the nature of amino acid at position S443 (69). The reciprocal 

mutation of glycine to serine in EAAC-1 disrupts the ability of Li+ to support substrate transport 

(68). These results suggest that S440 and S443 in GLT-1 play a role in sodium ion 

discrimination. Further studies (Table I) have focused mainly on conserved, negatively charged 

or polar residues that have the potential to interact with cations. The mutant carrier T370S of 

EAAC-1, which is near the equivalent residue of Y403 (GLT-1 numbering), also disrupts Li+ 

dependent substrate transport (68). Moreover, Tao et al. showed that residue T101 and D367 in 

EAAC-1 are involved in the binding of Na+ to the substrate-free form of transporters (70-71). 

The substrate itself, in cooperation with a conserved aspartate residue D439 in EAAC-1, helps 

determine the affinity for binding of additional sodium ions (72).   

Residues that form the Na+ binding sites in GltPh were also suggested by the 

crystallization of the transporter with two thallium ions, which have stronger anomalous 
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scattering properties than sodium ions (49). The Na+ binding site #1 is buried deeply in the 

protein and is comprised of residues (GltPh numbering) S278 (HP1), G306/N310 (TM7), and 

N401/D405 (TM8). Residues T308 (TM7) and S349/I350/T352 (HP2) form the Na+ binding site 

#2 (Figure 4B). Interestingly, although they are nearby to the two proposed sites, most of the 

residues characterized in mutagenesis studies do not agree precisely with the ones proposed for 

GltPh (Table I). These observations illustrate some of the limitations inherent in using 

mutagenesis studies to predict binding sites for substrates and coupled ions. In addition, concerns 

have also been raised as to whether the anomalous difference map seen in Tl+-soaked GltPh 

accurately represents the Na+ binding sites because Tl+ does not support substrate transport in 

GltPh (49). 

Computational approaches, such as molecular dynamics simulations and electrostatic 

mapping, have also been used to model the Na+ binding sites (73-75). These studies revealed two 

putative Na+ binding sites in the vicinity of those suggested by the GltPh structure. In addition, 

molecular dynamics simulations suggest that one sodium ion is stabilized by interacting with 

N310 and D312 in the “NMDGT” motif of TM7, and G404/N401 in TM8 of GltPh (74-76). The 

aspartate D312 is equivalent to D367 in EAAC-1, a residue that has been suggested to bind 

sodium ions prior to glutamate binding (70) and also to form a β-bridge with the residue N310 

(77). T101 of EAAC1 (equivalent to T92 in GltPh) protrudes into a hydrophilic cavity occupied 

by the D367 side chain and is also involved in the initial Na+ binding (78). These results suggest 

a previously uncharacterized Na+ binding site comprised of T92 (TM3), N310/D312 (TM7), and 

G404 (TM8) in GltPh (site #3a in Figure 4C). Larsson et al. further proposed that this Na+ 

binding site is transient (75). When a sodium ion binds to the site #1, the sodium ion at the site 

#3a moves quickly over to a new place that is formed by the substrate itself and residues T314 
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(TM7), A353 (HP2), and N401 (TM8) (site #3b in Figure 4C). The Na+ binding site #3b is also 

suggested by the electrostatic mapping study (73) and agrees with the proposal that the bound 

substrate controls the rate and the extent of Na+ interactions with the transporter (72). 

1.4.3 K+ binding site 

In addition to its proposed contribution to Na+ binding, Y403 in GLT-1 has been implicated in 

the K+-induced reorientation of the substrate-free carriers. Mutation of this residue locks the 

transporter in a Na+-dependent exchange mode and renders the transporter insensitive to K+ (66). 

A similar phenotype has been reported for mutations of the residue E404 in GLT-1, which is also 

involved in H+ binding and will be discussed later in section 1.4.4, and the residue R447 in 

EAAC-1, which interacts with the γ-carboxyl group of glutamate (64, 79). Although Tl+ is 

traditionally viewed as a K+ congener, the thallium binding sites in GltPh are thought to be 

genuine Na+ binding sites because only Na+, but not K+ diminishes the thallium anomalous 

density peaks during crystallization (49). However, GltPh does not require K+ to support substrate 

transport  (80) and it is intriguing that the Na+ binding sites analogous to those identified in the 

GltPh structure may bind K+ in the mammalian EAATs. In support of this idea, Tl+ can replace 

intracellular K+ to mediate glutamate transport in EAAC-1 (81) and residue D455 in GLT-1, 

which corresponds to D405 in the Na+ binding site #1 of GltPh, is required for the interaction of 

the transporter with K+ (81-82). In addition, a 3-dimensional representation of the K+ binding site 

was generated using electrostatic mapping based on a homology model of EAAC-1 (73). The 

proposed site overlaps substantially with the glutamate binding site and is mutually exclusive 

with glutamate binding. These results suggest that the K+ binding site overlaps with the binding 

sites for glutamate, H+ and Na+, and may explain why the K+-induced orientation step is 
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vulnerable to mutations in various regions. It is conceivable that as EAATs reorient to the 

outward-facing state, K+ interacts with regions that were previously occupied by glutamate and 

coupled ions. Recently, a compound present in spider venom, Parawixin1, has been isolated and 

characterized to specifically speed the K+-induced reorientation step of the transport cycle (83). 

Further studies using Parawixin1 and related compounds may help delineate how K+ binds and 

drives the reorientation of substrate-free transporters. 

1.4.4 H+ binding site  

It was originally proposed that a proton ion is transported by EAATs along with the protonated 

form of glutamate (23). Because the γ-carboxyl group of glutamate appears to interact with 

residue R447 in EAAC-1, this mechanism requires that H+ binds to the negatively charged 

glutamate which has bound to the transporter. By contrast, work by Watzke et al. (84) 

demonstrated that EAAC-1 must be protonated before glutamate binds at the extracellular side 

and implied the existence of an ionizable residue in the transporter with apparent pKa of 8. In 

addition, the pKa of this residue shifts by at least 1.5 units after glutamate translocation (84). The 

residue has been identified as E373 in EAAC-1, because amino acid substitutions at E373 render 

substrate transport by the carriers pH-independent (85). E373 is equivalent to E404 in GLT-1, 

which has also been proposed to be crucial for the K+-induced reorientation step (79). Taken 

together, these data support a general mechanism in which E373 in EAAC1 functions as a proton 

acceptor at the extracellular side before glutamate binding, as a proton donor at the intracellular 

side, and once deprotonated, as a binding site for K+ which triggers the reorientation of 

transporters. 
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Table 1. Residues contributing to substrate and coupled ion binding as suggested by GltPh crystal structures, 
computational simulations and by mutagenesis studies in the mammalian EAATs 
 
Residues suggested by computational simulations are marked with asterisks and residues highlighted in red are 
equivalent between two subtypes.  
 

 

 

 

 

 

 Residues in GltPh 
 
 

 

Residues explored in the 
mammalian EAATs 

Proposed role in the mammalian EAATs References 

 
 
 

Substrate 
binding site 

R276, HP1 
S278, HP1 
T314, TM7 
V355, HP2 
G359, HP2 

 
 
 
 
 

D444 in EAAC-1 proposed to interact with the 
amino group of glutamate 

 
R447 in EAAC-1 proposed to interact with the γ-

carboxyl group of glutamate 

(65) 
 
 
 

(64) 
D394, TM8 D444 (EAAC-1), TM8 
R397, TM8 R447 (EAAC-1), TM8 
N401, TM8  

 
 

Na+ binding site 
#1 

S278,  HP1 
G306,  TM7 
N310, TM7 
N401, TM8 
D405, TM8 

Y403 (GLT-1), TM7 
 
 

S440 (GLT-1),  HP2 
S443 (GLT-1) , HP2 

 
D439 (EAAC-1), TM8 

 

Y403 in GLT-1 is implicated in sodium binding 
 

 
S440 and S443 in GLT-1 influence sodium ion 

discrimination 
 

Residue D439 in EAAC-1 controls high-affinity 
sodium binding to glutamate bound transporters 

(66) 
 
 

(69) 
 
 
 

(72) 

 
 

Na+ binding site 
#2 

T308, TM7 
S349, HP2 
I450, HP2 
T352, HP2 

 
 

Transient Na+ 
binding site #3a 

T92*, TM3 T101 (EAAC-1), TM3 T101 and D367 in EAAC-1 appear critical for 
sodium binding to the substrate-free transporters 

 
N365 in EAAC-1 forms a β-bridge with D367 

and is also important for Na+ binding. 

(70, 78) 
 
 

(77) 

N310*, TM7 N365 (EAAC-1), TM7 
D312*, TM7 D367 (EAAC-1), TM7 
G404*, TM8  

 
 

Na+ binding site 
#3b 

T314*, TM7 T370 (EAAC-1), TM7 T370S disrupts the ability of lithium ions to 
support substrate transport. 

 
Both T370 and N451 bind to Na+ before 

glutamate has bound 

(68) 
 
 

(75) 
A353*, HP2  

N401*, TM8 N451 (EAAC-1), TM8 

 
 

 

K+ binding site 

  
Y403 (GLT-1), TM7 
E404 (GLT-1), TM7 

R447 (EAAC-1), TM8 
 
 

D454C (EAAC-1), TM8 

 
These three residues when mutated  lock the 

carriers in an obligatory exchange mode and are 
proposed to be involved in the potassium-induced 

translocation of substrate-free transporters 
 

D454 contributes to potassium binding. 

 
 

(64, 66, 79) 
 
 

 
(81-82) 

 

H+ binding site 
  

E373 (EAAC-1), TM7 
 
E373 in EAAC-1 proposed to be a H+ acceptor 

 
(85) 



 26 

1.5 MECHANISMS OF SUBSTRATE TRANSPORT 

Secondary active transporters including glutamate transporters are thought to function through an 

alternating access mechanism (86). In this model, the substrate binding site is alternatively 

accessible from the extracellular and intracellular sides through a process that depends on one or 

more conformational changes. Several studies have been carried out to probe the conformational 

transitions that occur during substrate transport. Early work by Grunewald and Kanner compared 

how trypsin cleaves EAATs into different sets of proteolytic fragments in the absence or 

presence of substrates, and demonstrated that conformational changes triggered by substrate 

transport expose additional trypsin sites (67). Larsson et al. used voltage-clamp fluorometry to 

directly measure fluorescence changes in a neuronal EAAT covalently labeled with a fluorescent 

reporter. Their results showed that alterations in concentrations of glutamate and co-transported 

ion and in the membrane voltage induce conformational rearrangements in EAATs (87). More 

recently, Mim et al. determined the activation parameters of rapid, glutamate-induced processes 

by analyzing the temperature dependence of glutamate transport at steady state and pre-steady 

state. They proposed that two conformational changes accompany glutamate translocation and at 

least one conformational change accompanies relocation of the empty transporter based on the 

large calculated enthalpies associated with these processes (88). Although these studies do not 

have sufficient resolution to reveal the nature of these conformational changes, they do suggest 

the potential for multiple discrete conformational transitions during the transport cycle.  

The substrate binding site of GltPh is cradled by the two helical hairpins (HP1 and HP2).  

These hairpins have thus been proposed to act as inner and outer gates for glutamate transporters, 

and the GltPh structure with substrate bound (PDB ID: 1XFH) represents an occluded state with 

two gates closed. The structural evidence supporting HP2 as the outer gate comes from the 
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TBOA-bound GltPh structure (PDB ID: 2NWW). The structure provided a clear view showing 

that when TBOA is bound, HP2 is locked in an open conformation, thus precluding the binding 

of a sodium ion and further conformational changes (Figure 5A). The opening of HP2 was also 

suggested by molecular dynamics simulations based on the apo-state (unliganded state) of the 

GltPh structure and is considered to be an intrinsic feature of glutamate transporter dynamics that 

occurs within tens of nanoseconds in simulations (74, 89). Indeed, substituted cysteine 

modification studies performed on human EAAT1 and GLT-1 showed that substrates and 

coupled ions can modify solvent accessibilities of the residues in HP2, consistent with the idea 

that this region undergoes conformational changes during substrate translocation in the 

mammalian EAATs (90-91). 

On the other hand, more limited data exist to support HP1 as the inner gate. Biochemical 

studies showed that a conserved motif of three consecutive serine residues at the HP1 tip can be 

accessed by hydrophilic agents from both sides of the membrane in the bacterial transporter 

GltTBs (47). In addition, Shlaifer and Kanner (92) probed the reactivity of cysteines introduced 

into the C-terminal part of GLT-1 to membrane permeable agent N-ethylmaleimide (NEM). 

They reported an increase in the modification of cysteine substituted mutants in TM7, TM8 and 

HP1 when external Na+ is replaced by K+, a condition expected to increase the proportion of 

inward-facing transporters. By contrast, the modification of these cysteines was decreased by 

non-transportable analogs, which presumably lock transporters in the outward-facing state. 

Based on these observations, the authors suggested that the inward movement of HP1 leads to 

the opening of a pathway between the binding pocket and the cytoplasm, lined by parts of TM7 

and TM8. Interestingly, our lab demonstrated that a disulfide crosslink that limits the movement 

of HP1 appears to abolish transport, whereas constraint of HP2 movement alters the apparent 
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affinity for substrates with no effect on the maximal transport rate. These results link the 

movement of HP2 to initial substrate binding events and the movement of HP1 to later steps in 

translocation, consistent with the view that these two domains may function as outer and inner 

gates of the translocation pore, respectively (52).   

While HP2 can move freely toward the large aqueous basin formed by the three subunits, 

HP1 is tightly packed with TM7, TM8 and the surrounding scaffold structure in the substrate-

bound GltPh structure (Figure 5B). It was therefore proposed that HP1 first moves vertically 

towards the cytoplasm and then laterally away to create a pathway along the polar face of TM7 

and TM8, exposing the serine-rich HP1 tip (48). Evidence for such vertical movement of HP1 is 

revealed in a recent inward-facing structure of GltPh (PDB ID: 3KBC) in which two substituted 

cysteines (K55C/A364C) in TM2 and HP2 regions are crosslinked by divalent mercury (Hg2+) 

(50). The most striking feature of this structure compared to the original substrate-bound GltPh 

structure is that not only HP1, but the whole C-terminal transport domain moves approximately 

18 Å towards the cytoplasm (Figure 5C). Such movements significantly increase the exposure of 

the transport domain to the cytoplasm allowing the potential gating movement of HP1, which 

contradicts the earlier proposal that only small-scale molecular motions are required to 

accomplish glutamate uptake in EAATs (93). The inward-facing conformation of GltPh is 

recapitulated by a modeling study based on the symmetric considerations of the transporter 

(inverted-topology structural repeats) (94). The equivalent residue pairs of K55C/A364C can 

also be crosslinked in human EAAT1 and EAAC-1 (94-95), reinforcing the idea that GltPh and 

the mammalian EAATs share similar dynamic movements during substrate transport.  
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Figure 5. Mechanisms of substrate transport 

(A) The TBOA-bound GltPh structure (PDB ID: 2NWW) showing HP2 displaced from the substrate binding site 

(TBOA is removed from the structure for clarity). (B) The substrate-bound GltPh structure (PDB ID: 2NWX) 

showing the closed HP2, two sodium ions and the bound substrate, L-aspartate. (C) The inward-facing GltPh 

structure (PDB ID: 3KBC) in which the whole C-terminal transport domain moves towards the cytoplasm. (D) 

Surface representation of the outward-facing GltPh (as the substrate-bound conformation) before the transport 

domain moves into the cytoplasm. (E) Surface representation of the inward-facing GltPh. The three protomers are 

colored in either green, magenta or cyan. The illustrations are made using the software Pymol (Schrödinger, LLC). 
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Thus, a general picture of how glutamate transporters uptake substrate emerges (Figure 

5). HP2 opens up spontaneously to expose the substrate binding site. After glutamate and co-

transported ions bind, HP2 closes and seals the substrate binding site, and the transporter is in an 

occluded, outward-facing conformation (Figure 5D). The whole transport domain then moves in 

a piston-like motion toward the cytosol which permits the opening of the internal gate, 

presumably HP1, and the transporter is in an occluded, inward-facing conformation (Figure 5E). 

After the release of substrate, K+ binds to and facilitates reorientation of the carrier back to the 

outward-facing state. 

1.6 THE STRUCTURAL BASIS FOR THE TRANSPORTER-ASSOCIATED ANION 

CONDUCTANCE 

In addition to transporting substrates, glutamate transporters have also been shown to possess an 

anion channel activity (11, 28). The anion current is activated by coupled Na+ (the Na+-activated 

anion leak current) and is significantly increased with the addition of substrates (the substrate-

activated anion current). At present it is not known if the two anion currents share the same 

pathway or go through different ones. The relative anion permeability sequence for the Na+-

activated anion leak current determined in human EAAT1 is I- > NO3- > Br- > Cl- and is 

different from that for the substrate-activated anion current (NO3- > I- > Br- > Cl-). If the two 

anion currents share a similar pathway, the selective filter that controls anion interaction must 

experience subtle changes when substrate binds to the transporter. Nevertheless, the anion 

channel activity of glutamate transporters is thermodynamically uncoupled from the substrate 

transport process. Modification of substituted cysteines in the HP2 region completely abolishes 



 31 

uptake activity in the mutated carriers, but preserves the glutamate-activated anion current (96-

98). Studies have also shown that the substrate-activated anion current can still occur at 4 ºC or 

at membrane potential >70 mV when glutamate uptake is abolished (29). In addition, the 

temperature coefficient (Q10) of EAAC-1 for the Na+-activated anion leak current and the 

substrate-activated anion current are 1.9 and 1.7 at 0 mV membrane potential, respectively (88). 

These values are similar to the Q10 value for diffusion-limited processes in an aqueous solution 

(1.3 to 1.6) and are smaller than that of substrate transport (3.7 at 0 mV and 3.2 at -30 mV) (29, 

88). Thus, while substrate transport requires substantial conformational changes and is 

temperature dependent, small structural rearrangements might be sufficient to maintain the anion 

channel activity of glutamate transporters.  

The molecular determinants of the transporter-associated anion conductance have been 

explored by Vandenberg and colleagues (95, 99). They initially focused on polar or charged 

residues in the TM2 region of human EAAT1 because such residues form ion permeation 

pathways of many ion channels (100-101).  Mutations of several polar or charged residues in 

TM2 affected various properties of the anion channel activity, but not the transport of glutamate 

(95). Consistent with the idea that they form a chloride permeating pore, most of the 

characterized residues are solvent accessible, as judged by their reactivity to either thiol-

modifying methanethiosulfonate reagents or HgCl2. Two mutant carriers show particularly 

interesting phenotypes. The glutamate-activated anion currents in the mutant carrier S103V 

display an altered sequence of anion permeation, Cl- < NO3
- < Br- < I- (for the wild type EAAT1, 

Cl- < Br- < I- < NO3-), suggesting that S103 contributes to the selectivity filter of the channel. In 

addition, the mutant carrier D112A has a greatly increased Na+-activated anion leak current, but 

a decreased substrate-activated anion current. It was proposed that D112 may serve as a gating 
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residue for the anion channel. When mutated, the channel is locked in an open state, which leads 

to a large increase in anion leak current. Thus, little additional current can be activated by 

glutamate (95). This interpretation assumes that the Na+- and substrate- activated anion channel 

pathways are closely related. Alternatively, the D112A mutation may facilitate opening of the 

leak conductance pathway, but prevent opening of a separate substrate-activated anion pathway 

(102). 

An additional study investigated charged residues that are within 5 Å of S103 and D112 

based on a 3-dimensional homology model of human EAAT1. Residues D272 in TM5 and 

K384/R385 in TM7 show an altered anion leak conductance and substrate-activated anion 

conductance when mutated to neutral or oppositely charged amino acids (99). Unlike the D112A 

transporter, the mutant carriers D272A and D272K display increased amplitudes of both the leak 

and substrate-activated anion conductance. On the other hand, mutants K384A and R385A have 

increased leak conductance with little change in the substrate-activated anion current. Mutants 

K384D and R385D have both increased leak and substrate-activated anion conductance even 

though the increased amplitude of the leak conductance is smaller than that of the respective 

alanine mutants. These results suggest that both the position and charge of residues in the 

intracellular region of EAAT1 influence the two components of the anion conductance. 

 Because GltPh also have anion channel activity (32), it is intriguing to look at the anion 

channel function of EAATs in light of the GltPh structures. The mutant carrier S65V in GltPh 

(equivalent to S103V in human EAAT1) displays reduced substrate-activated Cl- influx 

compared to the wild type transporter, suggesting that the chloride permeation pathway is 

conserved in GltPh and human EAAT1 (32). The residue equivalent to D112 is located at the 

TM2-TM3 loop, which undergoes significant conformational changes to accommodate the large 
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movement of the C-terminal transport domain as revealed by the inward-facing GltPh structure. 

Whether this large inward movement of the transport domain is linked to the transporter 

associated anion conductance warrants further exploration. 

1.7 THESIS GOALS  

Although several high resolution structures of GltPh in different conformations provides clarity in 

regards to the structural domains involved in substrate transport, our knowledge on the 

conformational dynamics of the carrier is far from complete. The regions that participate in 

permeation and gating of the anion channel activity are also not yet established, nor is the 

structural linkage between substrate transport and the anion channel function. The goal of this 

thesis is to use biochemical, electrophysiological and functional assays in combination with 

computational simulations to identify key domains and conformational changes involved in the 

glutamate transporter’s dual functions.    
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2.0  LARGE COLLECTIVE MOTIONS REGULATE THE FUNCTIONAL 

PROPERTIES OF GLUTAMATE TRANSPORTER TRIMERS 

2.1 INTRODUCTION 

Glutamate transporters, like many other proteins, carry out their biological activities by sampling 

an ensemble of conformations (67, 87-88).  The equilibrium motions accessible to the transporter 

can vary over a wide range of length- and time- scales, e.g., from fluctuations in bond lengths, 

bond angles and dihedral angles (local motions) to cooperative movements of entire domains or 

subunits (global motions). The crystallization of GltPh in several different conformational states 

greatly expanded our understanding of substrate transport achieved via an alternating access 

mechanism.  Local conformational changes in HP1 and HP2 allow for the opening or occlusion 

of the substrate-binding site, whereas the piston-like movement of the transport domain provides 

a means for transition between the outward- and inward-facing states (Figure 5). However, 

transport is inherently a dynamic process and cannot be completely understood solely on the 

basis of static pictures, even if they are of high resolution.  

Ideally, researchers would like to observe individual atoms moving within a protein to 

study the conformational changes associated with protein functions. This goal is not possible to 

achieve experimentally at present and the dynamics of proteins are largely inferred from 

sophisticated biophysical methods that measure physical properties (103). In one such study of 
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glutamate transporters, Larsson and colleagues employed fluorescence/Förster resonance energy 

transfer (FRET) analysis to determine the relative positions of different TM domains of human 

EAAT3. FRET is a phenomenon by which a donor fluorophore transfers its excitation energy to 

a nearby acceptor fluorophore. The efficiency of FRET depends on and can be used to estimate 

the relative distance of the donor and acceptor fluorophores. This study suggested very little 

structural changes in glutamate transporters during substrate transport (93). Mutagenesis studies 

can also provide valuable information on the in-depth mechanism of proteins if mutations or 

sulfhydryl modifications of cysteine substitutions lock biomolecules in specific conformational 

states (104). One good example of this strategy is to constrain the movement of certain areas of 

proteins by crosslinking two exogenously introduced cysteines that are spatially close with each 

other. Using this method, our lab has successfully restricted the movements of the HP2 or HP1 

domains and provided insights into the mechanism of the substrate translocation (52). Finally, 

computational simulations have the unbeatable power to putatively describe protein dynamics in 

detail, because they can simulate the precise position of each atom at any instant time, provided 

that a high resolution structure of the protein is known (103). In this chapter, we utilized cysteine 

crosslinking study in combination with computational modeling to identify a series of large-scale 

collective motions that are intrinsic to glutamate transporter trimers. 

Using a cysteineless version of the human excitatory amino acid transporter EAAT1, we 

show that single cysteine residues introduced into the extracellular gate (helical hairpin HP2) on 

each of the three subunits form reversible intersubunit crosslinks spontaneously and/or catalyzed 

by the oxidizing reagent copper phenanthroline (CuPh). After crosslinking, substrate uptake, but 

not the substrate-activated anion conductance, is completely inhibited in these mutants. The 

formation of disulfide bridges between pairs of cysteines that are more than 40 Å apart in the 



 36 

static structure can be explained by the concerted subunit movements predicted by anisotropic 

network model (ANM) analysis. The existence of these global motions is further supported by 

the observation that single cysteine substitutions at the N-terminal part of TM8 helix can also be 

crosslinked by CuPh, as predicted by the ANM analysis. Interestingly, the transport domain in 

the third (uncrosslinked) subunit of the trimer assumes an inward-facing orientation, suggesting 

that individual subunits potentially undergo separate transitions between outward-facing and 

inward-facing forms, rather than an all-or-none transition of the three subunits, a mechanism also 

supported by ANM-predicted intrinsic dynamics. These results shed light on how large collective 

motions contribute to the functional dynamics of glutamate transporters. 

2.2 RESULTS 

2.2.1 Inhibition of substrate transport by CuPh and cadmium ions in mutants V449C and 

I453C  

Previously, our lab used CuPh-catalyzed crosslinking of cysteine pairs introduced into a highly 

functional cysteineless version of human EAAT1 (CSLS) to examine the interaction of key 

domains associated with substrate translocation (52). To serve as a control, single cysteine 

mutants were also treated with CuPh to confirm that crosslinking occurs between cysteine pairs 

within a single subunit. We unexpectedly found that for one single cysteine mutant, V449C, 

incubation with 300 μM CuPh for 5 min completely abolishes transport activity. V449C-

transfected COS7 cells show 36.68 ± 2.84% of the transport activity of the CSLS control when 5 

μM L-glutamate is used as substrate (Figure 6B). After 5 min exposure to 300 μM CuPh, 



 37 

V449C-expressing COS7 cells display minimal transport, even at high substrate concentrations 

(up to 1 mM, Figure 6E). In contrast, no change in transport is observed for CSLS-transfected 

cells after CuPh treatment (Figure 6A and 6D). To confirm that the effect of CuPh is associated 

with the formation of disulfide bonds, we incubated cells expressing V449C first with 300 μM 

CuPh and then with 20 mM dithiothreitol (DTT) for 5 min to reduce crosslinks. To our surprise, 

incubation with DTT not only recovers, but also increases substrate accumulation by this mutant. 

Consistent with this observation, treatment with DTT alone also enhances the uptake activity of 

V449C, suggesting disulfide bonds form spontaneously (Figure 6B).  

We also explored the effect of CuPh on another mutant, I453C, a residue one helical turn 

away from V449. Before crosslinking, the I453C mutant exhibits 60.67 ± 2.64% of the transport 

activity of CSLS. After 5 min treatment with 300 μM CuPh, this mutant displays modest 

transport activity (~50% compared to the untreated control, Figure 6C). Analysis of the kinetic 

properties of the mutant carrier I453C shows that CuPh treatment results in a decrease of Vmax 

(35% - 62.5% of the untreated control), but the Km remains essentially the same (34.82 ± 9.82 

µM for the untreated control vs. 33.25 ± 5.48 µM for the CuPh treated group). The residual 

uptake activity after CuPh treatment arises from uncrosslinked I453C, because prolonged 

incubation with CuPh or additional treatment with a thiol-modifying reagent, MTSET, further 

reduces its uptake activity (Figure 7). The inhibition of I453C by CuPh can be completely 

reversed by 20 mM DTT, though no enhancement of transport activity is seen as for V449C 

(Figure 6C). 
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Figure 6. Inhibition of substrate transport by CuPh and cadmium ions in mutants V449C and I453C 

COS7 cells expressing CSLS, V449C and I453C were treated with 20 mM DTT, 300 μM CuPh, or 300 μM CuPh 

followed by DTT, for 5 min. Uptake assays were performed for 10 min at room temperature using 5 μM L-[3H] 

glutamate as substrate in panel A-C or using various concentrations of L-[3H] glutamate as substrate in panel D-F. 

The effect of Cd2+ on transport activity was determined by including 100 μM cadmium chloride in the uptake 

solution.  Data for V449C and I453C are expressed as the percent of uptake activity relative to the CSLS control in 

Panel A-C.  
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Figure 7. The effect of prolonged incubation of CuPh or additional incubation with MTSET on uptake 

activity of the I453C mutant carrier  

(A) COS7 cells expressing I453C were treated with 300 μM CuPh for indicated time. (B) Cells expressing I453C 

were treated with 300 μM CuPh, 1 mM MTSET or 300 μM CuPh followed by MTSET, for 5 min. Uptake assays 

were performed for 10 min at room temperature using 5 μM L-[3H] glutamate as substrate.  Data are expressed as 

the percent of uptake activity relative to the untreated control.  

As a complementary method to determine the proximity of cysteine residues, we 

performed transport assays with V449C or I453C in the presence of 100 μM cadmium ions. This 

divalent cation interacts with cysteinyl side chains and the affinity of the interaction is 

dramatically increased if Cd2+ can be coordinated by two cysteines (95). The presence of Cd2+ in 

the uptake solution abolishes the transport activity of V449C (Figure 6B) and significantly 

inhibits that of I453C (Figure 6C).   
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2.2.2 Single cysteine substitutions at the N-terminal end of helix HP2b are more reactive 

to CuPh and form spontaneous crosslinks 

Residues V449 and I453 are located at the N-terminal end of helix HP2b, which along with 

HP2a forms the helical hairpin HP2 (Figure 8A). To determine whether other residues in HP2b 

can also crosslink, we measured the effect of CuPh on single cysteine mutants within the HP2b 

helix from A446 to V458. All but three cysteine mutants in this region are able to accumulate L-

glutamate above background levels when expressed in COS7 cells (90). Upon treatment with 

CuPh, the most reactive cysteine substitutions are L448C and V449C, and their uptake activities 

are completely inhibited after 5 min incubation with 300 μM CuPh (Figure 8C). The mutant 

carrier V449C readily forms disulfide bonds because CuPh concentrations as low as 5 μM CuPh 

are sufficient to completely inhibit transport activity (Figure 8B). The second order rate constant 

of CuPh is 1790 ± 263 M-1s-1 for V449C. By contrast, residues near the C-terminal end of HP2b 

(L455C, T456C and V458C) still accumulate substrate comparably to untreated controls, 

indicating they do not achieve sufficient proximity to form disulfide bonds. Mutants V452C, 

I453C, and V454C in HP2b show intermediate inhibition by CuPh. The inhibition of all these 

mutants by CuPh can be reversed by additional incubation with 20 mM DTT, as demonstrated in 

Figure 8D. Furthermore, DTT significantly increases transport activity of L448C, to an even 

greater degree than that observed for V449C, suggesting that L448C also forms spontaneous 

crosslinks.  
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Figure 8. Single cysteine substitutions at the N-terminal end of the helix HP2b are more reactive to CuPh and 

form spontaneous crosslinks.  

 (A) Locations of V449 and I453 on the helix H2b of the HP2 hairpin, shown for one subunit (viewed in the plane of 

the membrane). (B) COS7 cells expressing V449C were treated with different concentrations of CuPh for 5 min and 

uptake activity was measured. (C) The effects of 300 μM CuPh for 5 min on the L-glutamate transport activity of 

transporters with a series of single cysteine substitutions in HP2b. (D) Substrate transport by mutant transporters 

after additional treatment with 20 mM DTT for 5 min. Uptake assays were performed for 10 min at room 

temperature using 5 μM L-[3H] glutamate as substrate. Data are represented as the percentage of untreated controls 

in two to four experiments done in triplicate.  
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2.2.3 The formation of disulfide bonds in V449C and I453C as confirmed by biochemical 

assays 

We next sought to obtain biochemical evidence of disulfide bond formation after CuPh 

treatment. Because of their propensity to form both spontaneous and CuPh-catalyzed crosslinks, 

we focused on the V449C and I453C mutant carriers. V449C and I453C each contain only one 

cysteine residue per subunit within the trimer, the covalent disulfide bridges must span two 

subunits, and should be readily detectable as dimers by non-reducing SDS-PAGE. However, 

glutamate transporters tend to form oligomers in polyacrylamide gels when overexpressed in 

COS7 cells. We thus turned to Xenopus oocytes which predominantly show transporter species 

corresponding to monomers when analyzed by SDS-PAGE (57), and used a method for isolating 

plasma and microsomal membranes from oocytes originally described by Kobilka et al. (105).  

In oocytes, CuPh and DTT have similar effects on the uptake activity of V449C and I453C as in 

COS7 cells (Figure 9). When oocyte membrane proteins are separated by non-reducing SDS-

PAGE and immunoblotted, the CSLS control exhibits two species at molecular mass of ~70 kDa 

and ~50 kDa, corresponding to fully glycosylated and unglycosylated/partially glycosylated 

monomers, respectively (Figure 9). With V449C and I453C, bands migrating at ~70 kDa and 

~50 kDa are seen in untreated oocytes, whereas an additional ~140 kDa species appears after the 

oocytes are treated with 300 μM CuPh for 5 min, consistent with the predicted size of a 

crosslinked transporter dimer. A weak dimer band signal is also observed in untreated V449C-

expressing oocytes, confirming the existence of spontaneous crosslinks. The high molecular 

weight band disappears in V449C-expressing oocytes and is significantly less in I453C-

expressing oocytes after additional incubation with 20 mM DTT. These results strongly suggest 

that V449C and I453C form CuPh-catalyzed, DTT-reversible disulfide bonds.  
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Figure 9. CuPh catalyzes the formation of disulfide bonds in V449C and I453C as confirmed by biochemical 

assays 

Transporters were expressed in Xenopus oocytes and treated with 300 μM CuPh, or 300 μM CuPh followed by DTT, 

for 5 min. Oocyte membranes were lysed and separated by non-reducing gradient SDS-PAGE, and subjected to 

western blotting analyses. Glutamate transporter proteins were identified using an anti-EAAT1 polyclonal antibody 

directed against the C-terminus. Uptake assays in oocytes were carried out at room temperature using 5 μM L-[3H] 

glutamate as substrate for 15 min and data are normalized to untreated controls. 
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The mutant I453C shows a stronger dimer band signal compared to V449C after 

crosslinking, although transport by I453C is less dramatically inhibited. In addition, a weak 

dimer band signal of I453C is observed after additional DTT treatment even though DTT 

completely reverses the inhibition of uptake by CuPh. During CuPh incubation, a portion of 

crosslinked I453C may be internalized and are no longer accessible to DTT. The weak dimer 

band signal in V449C could also result from the instability of disulfide bonds in this mutant 

carrier during the process of biochemical assays. We therefore treated V449C-expressing oocytes 

with a bifunctional crosslinking reagent, 1,8-Octadiyl Bismethanethiosulfonate (M8M).  5 min 

incubation with 1 mM M8M significantly inhibits the uptake activity of the mutant carrier 

V449C (Figure 10A) and induces a prominent dimer species when analyzed by non-reducing 

SDS-PAGE (Figure 10B).  

 

 

Figure 10. The effect of a 

bifunctional crosslinking reagent, 

M8M, on the mutant V449C.  

(A) Oocytes expressing V449C were 

treated with 300 μM CuPh or 1 mM 

M8M for 5 min. Uptake assays were 

performed at room temperature using 

5 μM L-[3H] glutamate as substrate 

for 15 min. (B) After indicated 

treatment, oocyte membrane samples 

were collected and subjected to 

western blotting analyses using an EAAT1-specific antibody.  (C) The chemical structure of M8M. 
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2.2.4 Crosslinks in the mutant carrier V449C take place between two transporter 

subunits in the same trimer 

Although the additional high molecular weight species appeared after CuPh treatment in the 

mutant carrier V449C migrates at the predicted size of the transporter dimers, it is possible that 

the crosslinks might take place between a transporter subunit and an unknown protein with a 

similar apparent molecular mass.  To exclude this possibility, we constructed an N-terminus GFP 

tagged V449C. When expressed in Xenopus oocytes, 5 min incubation with 300 µM CuPh 

significantly inhibits the uptake activity of GFP-V449C, similar to that is observed for non-

tagged V449C (Figure 11A). We then expressed V449C, GFP-V449C or a 1:1 ratio of 

V449C/GFP-V449C mixture in oocytes and treated the cells with 1 mM M8M for 5 min, which 

induces stronger crosslinked dimer band signals (Figure 10). When membrane protein samples 

are separated by non-reducing SDS PAGE, three different species of crosslinked dimers are 

detected, corresponding to V449C/V449C, V449C/GFP-V449C, and GFP-V449C/GFP-V449C 

(Figure 11B). If the subunits were crosslinked to an unknown protein, we would expect to see 

two crosslinked species, one between V449C and the unknown protein, and the other between 

GFP-V449C and the unknown protein. Thus, CuPh catalyzes V449C crosslinks between two 

transporter subunits.  
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Figure 11. CuPh-catalyzed V449C 

crosslinks take place between two 

transporter subunits   

(A) Oocytes expressing V449C or GFP-

V449C were treated with 300 μM CuPh for 5 

min. Uptake assays were performed for 15 

min at room temperature using 5 μM L-[3H] 

glutamate as substrate. (B) V449C, GFP-

V449C or a 1:1 ratio of V449C/GFP-V449C mixture were expressed in oocytes. After treatment with 1 mM M8M 

for 5 min, oocyte membrane samples were collected and subjected to western blotting analyses using an EAAT1-

specific antibody.   

 

 

 

Figure 12. human EAAT1 forms trimers   

CSLS glutamate transporters were expressed in 

Xenopus oocytes. Oocyte membranes were collected 

for blue native polyacrylamide gel electrophoresis 

(BN-PAGE) analyses (left two lanes). The native 

samples were further treated with SDS and heat as 

indicated to dissociate the oligomer structure (right 

three lanes). The western blotting was probed with a C-terminally-directed EAAT1-specific antibody. 
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The GltPh structure is comprised of three identical subunits and the trimeric stoichiometry 

has also been suggested for both bacterial (GltTBc, GltTBs and GltPEc) and mammalian (GLT-1 

and EAAC1) glutamate transporters (55-57). The subunit stoichiometry of human EAAT1 has 

not been explored, although its homologous subtype in rat (GLAST) forms either dimers or 

trimers (54). Thus it is possible that the CuPh-catalyzed disulfide bonds observed in our study 

might form between two protomers of adjacent transporter multimers. Previous studies using 

freeze-fracture, immuno-gold labeling and electron microscopy have shown that glutamate 

transporters concentrate in ~200 nm protein-rich islands in the plasma membrane (106), 

suggesting that transporters can be very close spatially. To determine if crosslinks take place 

within a single transporter multimer or between adjacent multimers, we used blue native 

polyacrylamide gel electrophoresis (BN-PAGE) analysis, which permits gel electrophoresis 

under non-denaturing conditions and thus the determination of the oligomeric structure of 

proteins.  

Similar to what has been reported for human EAAT2 (57), the CSLS transporter 

expressed in Xenopus oocytes migrates predominantly as a single band in blue native 

polyacrylamide gels. When the protein samples were incubated at 56 °C for 1 hour in the 

presence of 1% SDS, two bands at lower molecular weight appear, corresponding to the dimer 

and monomer forms of the transporter. Increasing SDS concentration to 2% completely 

dissociates transporters to monomer form (Figure 12). These data suggest that human EAAT1 

exists in the plasma membrane as trimers. Thus, if crosslinks occur between adjacent transporter 

multimers, single cysteine-substitution mutants would form at minimum, a hexameric structure 

after CuPh treatment. 
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Figure 13. CuPh induced crosslinks occur within the trimeric structure 

CSLS and mutant transporters were expressed in Xenopus oocytes. Oocytes were treated with 300 μM CuPh, or 300 

μM CuPh followed by DTT, for 5 min. Oocyte membranes were collected for BN-PAGE analysis (A) and The 

native samples were further incubated at 56 ºC for 1 hour in the presence of 2% SDS, which completely disrupted 

trimeric CSLS transporters to monomers. Glutamate transporter proteins were identified using an anti-hEAAT1 

polyclonal antibody directed against the C-terminus. (B) Estimated distances (in Å) between the three V449 

residues, and the three I453 residues in an EAAT1 trimer, a model based on the crystal structure of GltPh in the 

outward-facing state (PDB ID: 1XFH). The transporter is viewed from the extracellular region. GltPh counterparts of 

V449 and I453 are I361 and M365, respectively. 
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The mutants V449C and I453C display trimer species of similar intensity before and after 

treatment with 300 μM CuPh and no higher molecular weight crosslinked species observed when 

analyzed by BN-PAGE (Figure 13A). We further dissociated the native samples by incubating 

them at 56 ºC for 1 hour in the presence of 2% SDS, which completely disrupted trimeric CSLS 

transporters to monomers when separated in SDS gels. We found that V449C and I453C with 

CuPh treatment display dimer bands in addition to their monomer forms (Figure 13A), 

suggesting that the trimeric species obtained by blue native gel analysis after CuPh treatment in 

the mutants V449C and I453C is comprised of two covalently linked subunits and one 

uncrosslinked subunit. V449C and I453C thus form disulfide bridges within their trimeric 

structures after CuPh treatment. 

In the absence of substrate, glutamate transporters spend the majority of time in the 

outward-facing orientation, waiting to clear extracellular glutamate. Interestingly, the Cα atoms 

of the intersubunit disulfide bridge forming residues, V449C and I453C, are separated in the 

equilibrium structure by more than 40 Å based on the outward-facing crystal structure of GltPh 

(PDB ID: 1XFH, Figure 13B). In order to form a CuPh-catalyzed disulfide bond, the α-carbons 

of the two cysteines would need to be within 7 Å of each other (107) and this distance would 

need to be even shorter (within 5 Å) to form spontaneous crosslinks (108). The observed 

formation of intersubunit disulfide bridges suggests that large conformational transitions must 

take place to bring the HP2b helices of two subunits together and enable covalent bonding 

between cysteines of different subunits. To gain insight into the mechanism that allows these 

residues to interact, we examined the dynamics of the transporter at multiple scales using 

computational simulations based on the available crystal structures of GltPh. Although GltPh 
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shares only ~25% sequence identity with human EAAT1 (Figure 14), its structural features and 

trimeric organization agree with many aspects of the models originally proposed based on 

biochemical assays (109). Thus, GltPh provides a framework for investigating the structural 

changes associated with carrier functions. 

 

Figure 14. Sequence alignment of GltPh and human EAAT1 

Boxes above the alignment correspond to transmembrane domains and sequences highlighted in blue are regions of 

exact identity between the two carriers. The mutants used for experiments in part 2 of this dissertation are indicated 

with red arrows (V449C and I453C in HP2 region, and the mutants I469C, A470C and W473C in TM8). The 

alignment was made using ClustalW and adjusted manually. Sequences used in the alignment are P. horikoshii GltPh 

(pubmed access number: NP_143181) and human EAAT1 (P43003). 
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2.2.5 Molecular dynamics (MD) simulations show spontaneous opening of the HP2 loop 

We first explored the dynamic motions of glutamate transporters using molecular dynamics 

simulations. This computational method calculates the time dependent behavior of a molecular 

system and can provide detailed information on the fluctuations and conformational changes of 

proteins (110). The simulations were performed for 40 ns using the outward-facing structure of 

GltPh (PDB ID: 1XFH) embedded in a lipid bilayer as the initial conformation. The most striking 

motion observed in the simulation is the large amplitude fluctuations of the HP2 loop moving 

away from the substrate binding site toward the aqueous basin (Figure 15A). This type of 

motion is evidenced by the change in the distance between residues S278 and G354 at the tips of 

the respective helical hairpins HP1 and HP2 (Figure 15B). When HP2 is closed and shields the 

substrate binding site, the distance between the hydrogen bond-forming backbone nitrogen and 

oxygen on the respective residues G354 and S278 is ~1.9 Å in all three subunits. The distance is 

increased by more than 9 Å in subunit A (black curve in Figure 15C) succeeding the 

reconfiguration of the HP2 loop. The HP2 loop in subunit B (red curve) exhibits a displacement 

of about 7 Å at 17 ns, whereas that in subunit C (green curve) remains closed throughout the 

entire duration of the MD simulations (Figure 15C). Once the original tight packing of the two 

hairpins is disrupted, the HP2 loop tends to remain open and disordered as indicated by the large 

fluctuations in the HP1-HP2 distance for both subunits A and B. The opening of HP2 loop 

exposes the substrate binding site to the aqueous basin, suggesting that HP2 serves as the 

external gate.  

In light of our crosslinking results, we examined the MD trajectories to determine the 

time evolution of the Cα distance between the same residues of adjacent subunits that have 

shown to form intersubunit crosslinks. We found that the Cα atoms of residue I361 (equivalent to 
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V449 in human EAAT1, Figure 14) between two subunits reach a minimum of ~30Å, a distance 

too far to allow for disulfide bond formation. Larger movements, which are outside the range of 

MD simulations, are required to explain the data. Thus, we turned to anisotropic network model 

(ANM) analysis (111-112) to investigate the collective dynamics of GltPh. 
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Figure 15. Molecular dynamics (MD) simulations show spontaneous opening of the HP2 loop 

Simulations were performed for 40 ns using the outward-facing structure of GltPh (PDB ID: 1XFH) embedded in a 

lipid bilayer as the initial conformation. (A) Three snapshots at t = 0, 3, and 7 ns of simulations display an increase 

in the separation between the helical hairpins HP1 and HP2 (see circled region). (B) Positions of residue S278 and 

G354 at the tips of the respective helical hairpins HP1 and HP2. The two residues are highlighted as blue spheres. 

(C) Time evolution of the distance between hydrogen bond-forming backbone S278(N) and G354(O), observed in 

subunit A (black), B (red), and C (green). 
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2.2.6 ANM analysis suggests that large collective motions of glutamate transporter 

trimers significantly alter intersubunit distances 

ANM analysis explores collective fluctuations or so-called global motions that are intrinsically 

accessible to a given protein structure under physiological conditions. In this approach, the 

structure is modeled as a network of harmonic oscillators. The nodes of the network are 

identified by the Cα atoms and the springs, usually taken to be uniform (identical force 

constants), account for inter-residue interactions. The collective dynamics of such a network is 

uniquely defined by the network topology, and resolved by a normal mode analysis into 3N-6 

modes of motions (N is the total number of amino acids of the given protein). The top-ranking 

modes are characterized by low frequency/large amplitude movements that generally occur 

within a micro- to millisecond time range. These so-called the soft modes usually play a 

dominant role in defining the structural changes involved in the biological activity of the protein, 

as has been demonstrated for both water-soluble and membrane proteins (113-114) . 

Three ANM global modes accessible to GltPh are distinguished by their high collectivity. 

The first two (modes 1 and 2) are degenerate, i.e., they have the same frequency and complement 

each other. In these two modes, the extracellular domains of two subunits move towards each 

other, while those in the third move away from them, and vice versa (Figure 16A). The third 

(mode 3) is a non-degenerate mode that cooperatively induces a 3-fold symmetric 

opening/closing of the three subunits (Figure 16C). Residues at the bottom of the transporter, 

within the membrane, remain rigid in either mode. In view of their mechanistic features, we refer 

to these modes as asymmetric stretching/contraction (mode 1 and 2), and symmetric 

opening/closing (mode 3).  
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In principle, a multitude of modes simultaneously drive the dynamics of the carrier to 

bring HP2 domains together, with the softest modes, including the two shown here, providing the 

largest contributions. We examined the potential change in intersubunit distances at the region of 

interest as the molecule would gradually move along the asymmetric stretching/contraction and 

the symmetric opening/closing modes. As shown in Figure 16B and 16D, the central (bold, red) 

curves display the equilibrium distance between the two approaching subunits, used as reference 

for the residues listed along the abscissa, and the other curves display the distances sampled upon 

collective fluctuations of the trimeric structure along the respective mode.  Residues on HP2b, 

and particularly those at the N-terminal end, tend to come into close proximity, whereas those at 

the C-terminal end remain well-separated, consistent with experimental data in Figure 8.  
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Figure 16. Large collective motions of glutamate transporter trimers predicted by ANM analysis 

(A) and (C) show schematic representations of the asymmetric stretching/contraction mode and the symmetric 

opening/closing mode, respectively, viewed from the EC face. The arrows indicate the direction of motions of the 

three subunits. Intersubunit distances of residues in HP2 and TM8 (based on GltPh Cα atoms between two 

approaching subunits) are significantly altered along the asymmetric stretching/contraction mode (B) and the 

symmetric opening/closing mode (D). The thick red curve refers to the equilibrium distances derived from the X-ray 

structure (PDB ID: 1XFH), and the series of curves above and below refer to different extents of deformation along 

the respective softest mode in positive and negative directions. Human EAAT1 residue numbers are denoted in blue, 

below the abscissa. 
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2.2.7 Crosslinking cysteine substituted mutants of several residues at the N-terminal end 

of TM8 

Interestingly, the analysis of global motions suggests that residues at the N-terminal end of TM8 

and at the loop connecting TM8 and HP2b also come into close proximity (Figure 16B and 

16D). Inspired by this observation, we substituted cysteines for several additional residues at the 

N-terminal end of TM8 and examined the effects of CuPh and/or DTT on transport activity. 

Figure 17A shows the uptake activity for TM8 mutants I469C, A470C and W473C. Consistent 

with the residue proximities predicted by ANM analysis, the transport activity of these mutants is 

significantly impaired by 5 min incubation with 300 μM CuPh, and this inhibition can be 

reversed by DTT. The second order rate constants of crosslinking for I469C, A470C and W473C 

are 6,375 ± 1,344 M-1s-1, 372 ± 116 M-1s-1, and 5,882 ± 2,094 M-1s-1, respectively (Figure 17B). 

Furthermore, I469C and W473C form spontaneous disulfide bonds, because DTT significantly 

increases their uptake activity compared to untreated controls. We also observed dimer band 

signals in I469C and W473C after treatment with the bifunctional crosslinker M8M (Figure 

17C). These data confirm and reinforce the idea that large collective motions of glutamate 

transporters, consistent with the softest modes predicted by ANM analysis, underlie the 

unexpected proximities of residues within the trimer.   
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Figure 17. Crosslinking cysteine substituted mutants of several residues at the N-terminal end of TM8 

 (A) COS7 cells expressing wild type or mutant transporters were treated with 20 mM DTT, or 300 μM CuPh, or 

300 μM CuPh followed by DTT, for 5 min. Uptake assays were performed for 10 min at room temperature using 5 

μM L-[3H] glutamate as substrate. Data are expressed as the percent of uptake activity relative to the CSLS control 

obtained in 2-4 different experiments in triplicate. (B) COS7 cells expressing V449C were treated with different 

concentrations of CuPh for 5 min and uptake activity was measured. IC50 was obtained by fitting data with the 

Michaelis-menten equation and the second order rate constants were also calculated. (C) Oocytes expressing I469C 

or W473C were treated with 1 mM M8M for 5 min. Oocyte membrane samples were collected and subjected to 

western blotting analyses using an EAAT1-specific antibody.   
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2.2.8 Residue V449C in the uncrosslinked subunit is inaccessible for modification after 

crosslinking 

We further examined the functional significance of these large collective motions with regard to 

the transport cycle. A critical step after substrate and co-transported ions bind to the transporter 

is that the transport domain of each subunit moves inward into the cell cytosol, which allows for 

the exposure of the substrate-binding site to the cytoplasm and the release of substrate upon 

opening of the internal gate (50). We hypothesized that the large collective motions might be 

important for the transport domain movement. To test this hypothesis, we focused on the V449C 

mutant, which exhibits a high propensity to crosslink, and asked whether the transport domain in 

the uncrosslinked V449C subunit within the trimer is in an outward- or inward-facing state.  

Earlier studies have shown that V449C can be modified from the extracellular 

environment in Na+-containing solution and modification of V449C completely inhibits substrate 

transport (96). In the inward-facing conformation of GltPh, the equivalent residue of V449 moves 

toward the cytoplasm and is shielded by surrounding TM domains (Figure 18A). We therefore 

first determined whether the V449C cysteine in the uncrosslinked subunit is accessible to thiol-

modifying reagents from the outside. We treated cells expressing V449C with 300 μM CuPh to 

completely crosslink two subunits, and then attempted to react the V449C residue in the 

uncrosslinked subunit with NEM, an irreversible thiol-modifying reagent. As a control, PBS or a 

reversible thiol-modifying reagent, MTSET, was used in place of NEM. After treatment with 

modifying reagents, cells were further treated with 10 mM DTT to reduce disulfide bonds and 

remove reversible modifying groups. If NEM could modify V449C in the uncrosslinked subunit, 

then the uptake activity of the mutant treated with NEM could be reduced by as much as one 

third compared to the PBS or MTSET treated group, assuming that the three subunits operate 
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independently as has been proposed (56, 115). Our results showed that V449C-expressing cells 

treated with CuPh/NEM/DTT exhibit uptake activity comparable to those treated with 

CuPh/PBS/DTT or CuPh/MTSET/DTT (Figure 18B).  

The above data suggest that either the V449C residue in the uncrosslinked subunit is 

inaccessible to NEM or modification in one subunit does not affect the function of the 

transporter trimer. To exclude the latter possibility, we used a biotin-conjugated thiol-modifying 

reagent (maleimide-PEO2-biotin) to react with V449C in the uncrosslinked subunit and then 

allowed the transporter proteins to bind to avidin-conjugated agarose beads. As a control, 

V449C-expressing cells were treated with DTT to reduce spontaneously crosslinked cysteines. 

Although the control group could readily react with the biotin reagent and affinity purified, no 

significant amount of transporter proteins could be obtained in this manner from V449C-

expressing cells treated with CuPh (Figure 18C). Thus, V449C in the uncrosslinked subunit 

cannot be accessed by NEM, indicating that the uncrosslinked subunit exists in an inward-facing 

conformation.  
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Figure 18. Residue V449C in the uncrosslinked subunit is inaccessible for modification after crosslinking 

(A) Location of the equivalent V449 residue (human EAAT1 numbering) in the context of the outward-facing and 

inward-facing GltPh crystal structure (PDB ID:  1XFH and 3KBC). (B) COS7 cells expressing V449C were treated 

for 5 min sequentially with 300 μM CuPh, 1 mM MTSET, 0.5 mM NEM, or 10 mM DTT as indicated. Uptake 

assays were performed for 10 min at room temperature using 5 μM L-[3H] glutamate as substrate. Data are 

represented as the percentage of control in four experiments done in triplicate (n.s., not significant). (C) After 

indicated treatments, surface proteins were biotinylated with maleimide-PEO2-biotin and subjected to western 

blotting analyses. Glutamate transporter proteins were identified using an anti-EAAT1 polyclonal antibody directed 

against the C-terminus. 
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2.2.9 Residue L376C in the uncrosslinked subunit is exposed intracellularly after 

crosslinking of V449C 

The alternating access model predicts that distinct sets of residues are exposed to the intracellular 

environment depending upon whether the carrier faces inward or outward.  An earlier study (92) 

reported that several cysteine substitutions in HP1, TM7, and TM8 of a rat glutamate transporter 

(GLT-1) display increased accessibility to NEM when external Na+ was replaced by K+, a 

condition expected to increase the proportion of inward-facing transporters. We generated single 

cysteine mutations in CSLS background corresponding to the ones identified in GLT-1. As 

expected, the uptake activity of several mutants (A355C, T368C, L376C and V390C) was more 

significantly inhibited after treatment with NEM in a K+- containing solution compared to a Na+- 

containing solution (Figure 19A). Thus, these residues are exposed intracellularly as the 

transport domain moves toward the cytoplasm, which agrees with their positions in the outward-

facing and inward-facing GltPh structures (Figure 19B).  

To determine whether the uncrosslinked subunit in the V449C mutant is inwardly 

oriented, we introduced these cysteine substitutions into the V449C mutant and asked whether 

these conformationally-sensitive residues in the uncrosslinked subunit were accessible 

intracellularly after V449C crosslinking. Cells were treated with 10 mM DTT to reduce 

spontaneous V449C crosslinks, followed by incubation with 300 μM CuPh. As a control, the 

membrane impermeant thiol-modifying reagent, MTSET, was used to protect V449C from 

further modification, and lock transporters in an outward-facing conformation (96). Cells were 

then incubated with the membrane permeant thiol-modifying reagent, NEM. Finally, CuPh-

induced disulfide bonds and MTSET modifications were reversed with 10 mM DTT. We found 

that substrate transport by V449C_L376C is significantly inhibited after sequentially treated with 
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DTT/CuPh/NEM/DTT compared to that treated with DTT/MTSET/NEM/DTT. By contrast, 

other double mutants (V449_A355C, V449C_T368C, and V449C_V390C) show no differences 

in substrate transport between these two treatments (Figure 19C). We also used a membrane 

permeable biotin-conjugated thiol-modifying reagent (maleimide-biotin) to react with the 

cysteines in uncrosslinked subunits and then allowed the transporters to bind to avidin-

conjugated agarose beads. Significant amounts of V449C_L376 are affinity-purified after 

crosslinking, but not the mutant carrier V449C_T368C (Figure 19D). Interestingly, L376C is 

most proximal to the cytoplasm among the residues tested, and would be the first exposed to the 

IC environment as the transport domain moves down (Figure 19B). These data confirm that the 

transport domain in the uncrosslinked subunit is inwardly oriented when the two remaining 

subunits are crosslinked extracellularly. 
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Figure 19. Residue L376C in the uncrosslinked subunit is exposed intracellularly after crosslinking of V449C 

(A) COS7 cells expressing wild type or mutant transporters were treated with 0.25 mM NEM, except for the mutant 

L352C where 1 mM NEM was used, for 5 min in Na+- or K+-containing solution. Uptake assays were carried out for 

10 min at room temperature using 5 μM L-[3H] glutamate as substrate. The remaining uptake activity was presented 

after normalizing to untreated controls in respective cation condition. (B) Location of the equivalent residues (A355, 

T368, L376 and V390, human EAAT1 numbering) in the context of the outward-facing and inward-facing GltPh 

crystal structure (PDB ID:  1XFH and 3KBC). (C) COS7 cells expressing wild type or mutant transporters were 

treated with 10 mM DTT, 1 mM MTSET, 0.5 mM NEM or 300 μM CuPh for 5 min as indicated before assaying for 

transport activity (*, p<0.05). (D) After indicated treatments, surface proteins were biotinylated with maleimide-

biotin and subjected to western blotting analyses. Glutamate transporter proteins were identified using an anti-

EAAT1 polyclonal antibody directed against the C-terminus. 
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2.2.10 Glutamate transporters favor stepwise transitions between outward-facing and 

inward-facing states 

The above experimental data suggest that the glutamate transporter trimer transits through a state 

where two subunits are outward-facing and approach each other while the third moves inward. 

However, the available crystal structures of GltPh show that all three subunits assume the same 

conformation, facing either outward or inward (PDB ID: 1XFH and 3KBC). Whether the 

conformation state we observed is an on-pathway structure towards achieving the fully-inward 

conformation or a consequence of intersubunit crosslinks, is not known. In other words, whether 

glutamate transporters tend to undergo an all-or-none transition (of all three subunits) between 

inward-facing and outward-facing states or a stepwise transition, to enable alternating access, is 

yet to be understood.  

To address this question, we examined the distribution of ANM modes that contribute to 

the structural transition between different states. Many studies have compared the structural 

change between two structurally resolved forms (e.g., open and closed states) of a given protein, 

with the soft modes predicted by ANM analysis for one of the conformers (116). The difference 

between any pair of structures is quantitatively described by a 3N-dimensional deformation 

vector d, evaluated by overlaying the two structures to remove rigid-body translations and 

rotations. The deformation vector d is then compared with the eigenvectors of individual 

predicted ANM modes and the correlation cosines squared represents the contribution of each 

ANM modes to the overall structural change between two endpoints. In principle, because the 

eigenvectors form a complete orthonormal basis set, the correlation cosines squared sum up to 

unity 1. The summation (cumulative overlap) is performed over the subset of modes of interest, 

usually starting from the lowest-lying modes. These studies show that a very small subset of soft 
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modes (if not the top 1–3) yields a cumulative overlap of 0.80 ± 0.15 with experimentally 

observed structural changes (117). Cumulative overlap also provides a means to compare the 

ease of different transitions because soft modes are by definition the most energetically favorable 

modes, and undertaking a structural change along softer modes is more likely than another which 

involves higher-frequency (or stiffer) modes. 

We consider four possible states of GltPh, with the numbers of outward/inward- facing 

subunits being 3/0, 2/1, 1/2 and 0/3, as illustrated in Figure 20A. The states 3/0 and 0/3 are the 

experimentally resolved 3-fold symmetric structures, and 2/1 and 1/2 are models reconstructed 

by assembling the outward-facing and inward-facing subunits upon superimposition of their 

trimerization domains. Figure 20B provides a schematic view of possible transitions between 

these states. The left vertical path (designated as 4 and 4’ for the clockwise and counterclockwise 

steps, respectively) refers to an all-or-none transition, and the other three steps (1-3 and 1’-3’) 

refer to the stepwise transitions, between the two experimentally known structures. We examined 

cumulative overlaps between ANM-predicted low frequency modes and the structural change at 

each step (Figure 20C and 20D). Panel C compares the all-or-none transition from the outward-

facing state to the inward-facing state (blue curve) to the stepwise transitions in the same 

direction (red, green and black curves).  Each of the three transitions that involve intermediate 

states is achieved by fewer number of low frequency modes (i.e. energetically more favorable) 

and is thus ‘easier’ than the all-or-none transition. A similar pattern is observed for the reverse 

transition as well (Figure 20D). These results support the notion that the conformation state we 

observed is a physically viable step towards achieving the fully-inward conformation.  
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Figure 20. Cumulative overlap of ANM modes and transitions between pairs of conformations 

(A) Cartoon representation of the four structures used for transport domain transitions. The All Outward (3/0) and 

the All Inward (0/3) conformations represent the 1XFH and 3KBC structures, respectively. In the Two Outward 

structure (2/1), one subunit faces inward (cyan), while in the Two Inward structure (1/2), two subunits face inward 

(green and cyan). (B) A schematic representation of the passages between different conformations. (C) and (D) 

Cumulative overlap of the ANM modes with the deformation vector between pairs of conformations indicated by 

the labels on the paths.  The control curves refer to the case of randomly oriented modes that contribute equally to 

conformational transitions.  
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2.2.11 Impact of crosslinking on the substrate-gated anion flux 

In addition to transporting substrates, which generate two positive charges into the cell per 

transport cycle, glutamate transporters also function as a substrate-activated anion channel. Thus, 

glutamate elicited currents are comprised of a substrate-coupled component that dominates at 

membrane potential of -100 mV, and a substrate-activated uncoupled anion component that 

dominates at +60 mV. To examine the impact of crosslinking on the anion channel activity, we 

focused on V449C, which displays minimal transport activity after crosslinking in oocytes, thus 

no substrate-coupled currents. In Cl- containing solution, the control CSLS transporter exhibits 

similar glutamate-elicited currents before and after CuPh treatment. When the mutant carrier 

V449C was treated with 300 µM CuPh, substrate-elicited currents at -100 mV are significantly 

decreased and the currents reverse near the oocyte chloride reversal potential. Further incubation 

with 20 mM DTT increases the amplitude of currents at -100 mV induced by glutamate and the 

reversal potential becomes more positive compared to the untreated control, as the spontaneous 

crosslinks are reduced (Figure 21A). We also substituted the more permeable anion NO3
- for Cl-, 

and observed comparable glutamate-elicited NO3
- currents in V449C-espressing oocytes after 

DTT or CuPh treatment (Figure 21B). These results suggest that, remarkably, glutamate can still 

activate the anion conductance even when two subunits are constrained by crosslinking, and 

substrate transport no longer occurs.  
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Figure 21. V449C retains substrate-activated anion conductance after crosslinking 

Using a two electrode voltage clamp, currents from oocytes expressing CSLS or V449C were recorded in 

Cl--containing solution (A), and in a solution in which Cl- was replaced by NO3
- (B).  Recordings were 

made before (filled square) and after (filled triangle) application of 300 µM CuPh (5 min), as well as after 

additional treatment with 20 mM DTT (5 min, open circle). Currents obtained in the absence of glutamate 

were subtracted from those elicited by 1 mM L-glutamate. Currents were normalized to the control 

currents at -100 mV. 
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2.3 DISCUSSION 

The present study was driven by the observation that single cysteine substitutions for residues of 

HP2b in the human glutamate transporter EAAT1, form spontaneous and/or CuPh-catalyzed 

intersubunit crosslinks. Substrate translocation activity is abolished in the mutant transporters as 

a consequence of crosslinking, but the substrate-activated anion conductance associated with the 

carrier is retained. Evidence for the close proximity of two inter-subunit cysteines and their 

capacity to form disulfide bonds comes from the following observations: first, although the 

mutants V449C and I453C fractionate as monomers by non-reducing SDS-PAGE before CuPh 

treatment, they migrate as both monomers and dimers after CuPh treatment (Figure 9); second, 

the addition of the reducing reagent, DTT, reverses both the transport inhibition and the 

formation of crosslinked dimers (Figure 6 and 9); and third, the presence of cadmium ions in the 

uptake solution also inhibits the transport activity of V449C and I453C (Figure 6). This latter 

observation is consistent with the idea that the two cysteines are near each other to coordinate 

Cd2+, although it should be noted that Cd2+ can bind to the thiol-group of a single cysteine 

residue. Previous studies have shown that modification of cysteine substituted residues in HP2b 

region by other thiol-modifying reagents such as MTSET significantly inhibits substrate 

transport (90). Thus, the inhibition of substrate transport by Cd2+ in the mutant carriers V449C 

and I453C could be a consequence of interaction between Cd2+ and single cysteines instead of 

the coordination of Cd2+ by two adjacent cysteines. At present, we are unable to rule out this 

possibility and the Cd2+ experiment can only be viewed as complementary evidence to support 

the proximity of substituted cysteines between two adjacent subunits.  

We noticed that the mutant I453C shows a stronger dimer band signal compared to 

V449C, although transport by I453C is less dramatically inhibited after crosslinking (Figure 9). 
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This inconsistency would be explained by either the complete inhibition of substrate transport by 

CuPh in V449C is partially due to the oxidization of single cysteines, or alternatively, by the 

instability of disulfide bonds during the biochemical assays.  It is suggested that CuPh treatment, 

under some cases, oxidizes cysteine residues to sulfinic and sulfonic acids (118). However, these 

high oxidation states of cysteine cannot be reduced by DTT and in our study, the functional 

inhibition of the cysteine substituted mutants is completely reversed by DTT (Figure 8). These 

results suggest that the complete inhibition of substrate transport in V449C is a result of CuPh-

catalyzed disulfide bond formation. Additional experiments revealed that the V449C disulfide 

bonds are less stable during oocyte membrane preparation, because we observed a similar 

inhibition of uptake, but a substantially more prominent V449C dimer species using a 

bifunctional crosslinking reagent instead of CuPh (Figure 10).  

We further excluded several other scenarios in which CuPh-catalyzed crosslinks might 

occur in single cysteine substituted glutamate transporters. First, we considered the possibility 

that disulfide bonds form between a transporter subunit and an unknown protein of similar 

molecular mass. Because mutant glutamate transporters are overexpressed in both the COS7 cell 

and Xenopus oocyte expression systems, the unknown protein would need to be a membrane 

protein expressed abundantly in both systems in order to crosslink one-to-one with transporter 

subunits, making this scenario less attractive. One way to experimentally exclude this possibility 

is to coexpress two different tagged mutant transporters (e.g. HA-V449C and myc-V449C) and 

see if antibody against one tag could pull down the other after crosslinking. This strategy is 

problematic because we and others have shown that glutamate transporters tend to aggregate 

during biochemical assays even without crosslinking (43, 77). Instead, we took advantage of size 

difference between the untagged V449C and an N-terminus GFP-tagged V449C. When 
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coexpressed, we observed crosslinked bands corresponding to three dimer species 

(V449C/V449C, V449C/GFP-V449C, and GFP-V449C/GFP-V449C). If crosslinking the 

subunits to an unknown protein, we would expect to see two crosslinked species, one between 

V449C and the unknown protein, and the other between GFP-V449C and the unknown protein 

(Figure 11). These results suggest that crosslinks in V449C take place between two transporter 

subunits. Second, we considered the possibility that disulfide bonds form between two 

transporter subunits of adjacent trimers. If this occurred, we would expect to see at least hexamer 

species (crosslinking of two transporter trimers) when separated by BN-PAGE, which preserves 

oligomeric structures of proteins. Our results showed that both V449C and I453C migrate as 

trimer species in blue native gels and no higher molecular weight bands are observed after CuPh 

treatment, suggesting that disulfide bonds form between two transporter subunit in a single 

trimer (Figure 12). These results further support that crosslinking does not occur between a 

transporter subunit and an unknown protein. In addition, we have successfully constructed a 

functional concatenated glutamate transporter trimer that physically links the three transporter 

subunits with flexible peptide linkers. This construct allows the introduction of either one or two 

V449C subunits in the trimer. We found that CuPh inhibits the uptake activity of the 

concatenated carrier when it contains two V449C subunits, but not when it contains only one 

V449C subunit (Data not shown, and see chapter 4 in this dissertation for concatemer 

information). Taken together, we concluded that several single cysteine substitutions for residues 

of HP2b form spontaneous or CuPh-induced disulfide bonds between two transporter subunits of 

a single trimer.  

Based on the outward-facing crystal structure of the GltPh trimer, the distances between 

the crosslinkable residues of HP2b in adjacent subunits are significantly greater than that 
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required to form disulfide bonds, suggesting that domains within the glutamate transporter trimer 

are capable of large-scale movements in the absence of substrate. In collaboration with Dr. Ivet 

Bahar’s group in the Department of Computational and Systems Biology at the University of 

Pittsburgh, we explored the dynamics of glutamate transporters using computational simulations. 

Our molecular dynamics (MD) simulations revealed that the HP2 loop possesses an intrinsic, 

structure-induced ability to ‘open up’ and expose the substrate binding site to the aqueous basin, 

thus acting as an extracellular gate (Figure 15). These results agree with the TBOA-bound 

crystal structure of GltPh, which revealed the displacement of HP2 from the substrate binding site 

(49). However, detailed analysis of the MD trajectory suggest that such local motions fall short 

of bringing two HP2b helices sufficiently close to form crosslinks. ANM analysis, on the other 

hand, predicts two major types of large collective motions to be energetically more favorable: an 

asymmetric stretching/contraction and a symmetric opening/closing mode. Residues in the EC 

domains of adjacent subunits approach each other in either modes, and thus enable the formation 

of intersubunit disulfide bridges (Figure 16). By contrast, residues at the bottom of the 

transporter, within the membrane, remain rigid, in agreement with earlier findings (119). ANM 

calculations also suggest that residues at the N-terminal end of TM8 between two subunits tend 

to come into close proximity. This prediction was confirmed experimentally by crosslinking of 

single cysteine substituted mutants in this region (Figure 17). Our current study thus underscores 

the existence of large-scale, intrinsic movements of subunits in glutamate transporters shown 

experimentally and predicted computationally. 

 Because global motions of proteins are usually intrinsic and driven by their tertiary and 

quaternary structures, the presence of substrate is unlikely to disrupt such collective movements 

(120). Experiments to confirm this argument are complicated by the fact that substrate or 

http://en.wikipedia.org/wiki/Quaternary_structure
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inhibitors may influence conformational changes other than large collective motions that also 

contribute to observed crosslinks. We noted that the ability of cysteine substituted mutants in 

HP2b to form disulfide bonds, parallels their modification rates by sulfhydryl-reactive reagents 

reported previously (90). In particular, mutants L448C, V449C, V452C and I453C exhibit fast 

rates of modification whereas M451C, V454C, L455C, T456C and V458C have much slower 

rates. Similarly, transporters with mutations near the HP2 loop, L448C, V449C, V452C, I453C, 

V454C, readily form crosslinks after CuPh treatment. Furthermore, the mutant carriers L448C 

and V449C form spontaneous crosslinks (Figure 8). These results suggest that local 

rearrangements of the HP2 region may also contribute to bringing residues in HP2b between two 

subunits into close proximity. Nevertheless, there is growing evidence for the functional 

relevance of the global movements predicted by coarse-grained network models in substrate-free 

forms (120-121). Although the crosslinking captured in the current study occurs in non-

transporting carriers, the large collective motions that enable crosslinking will also take place 

and have functional impact in actively-transporting carriers. Supporting this idea, the inward 

movement of the transport domain, which was proposed based on crosslinking two introduced 

cysteines in TM2 and HP2, readily occurs in the absence of Na+ and substrate, and has been 

suggested to be a critical step of the transport cycle (50, 94).  

In contrast to our report, Koch et al. proposed that small-scale molecular motions around 

the substrate binding site are sufficient to accomplish glutamate uptake in human glutamate 

transporters (93). Their findings can be easily reconciled with our observations. Koch et al. used 

FRET assays as a means to compare the relative positions of extracellularly exposed EAAT 

residue pairs in a choline-substituted solution in the absence of substrate (non-transporting state) 

to those in a Na+-containing solution with 1 mM glutamate (transporting state). No significant 



 75 

changes in FRET efficiencies were observed between the two conditions. FRET assays 

determine the distance of residue pairs averaged from a population of proteins and over the 

experimental timeframe of signal acquisition when proteins undergo a broad range of 

conformational fluctuations. Because the large collective motions proposed in our study are 

likely to occur in both substrate-free and actively-translocating transporters, the average 

distances measured by FRET assays under the two conditions would be comparable. 

In fact, such collective motions are essential to the transition of the transporter from 

outward-facing to inward-facing state and vice versa, during the completion of the transport 

cycle. After crosslinking of V449C, the uncrosslinked subunit assumes an inwardly-facing 

orientation, as evidenced by the inaccessibility of the V449C cysteine from the extracellular 

environment in the uncrosslinked subunit (Figure 18) and the exposure of the L376C cysteine to 

the cytoplasm (Figure 19). Thus, crosslinking captures a conformational state during the 

transport cycle in which two subunits of the trimer approach each other in the outward-facing 

state while the transport domain of the third subunit moves inward. These results suggest that the 

large changes in structure observed in our study can be functionally linked to the inward 

movement of the transport domain, a critical step for substrate transport.  

ANM calculations confirm that a stepwise transition of individual transport domain is a 

more viable mechanism to enable alternating access of the transporter to the EC and IC regions, 

compared to an all-or-none transition of all three subunits. Several studies introduced mutations 

to alter the function of one or more subunits, determined their impact on overall function, and 

concluded that each subunit functions independently during substrate transport (56, 115, 122). 

Yet it is still debatable whether allosteric interactions modulate the anion channel function (115, 

123). Although our results generally agree with the idea that each subunit can function 
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independently (the transport domain moves individually), the experiments presented here, which 

disrupt the collective motions of the trimer, reveal a higher order cooperative nature of subunit-

subunit interactions. Such cooperativity would not be captured in earlier studies because the 

mutations used would have no effect on global motions.  In chapter 4, we will further explore the 

subunit interactions of transport functions using a concatenated glutamate transporter trimer.  

Finally, although the V449C mutant is unable to transport substrates after crosslinking, it 

retains substrate-elicited anion currents. Since the uncrosslinked subunit in V449C is restricted in 

an inward-oriented conformation and is likely not accessed by substrate, anions have to flow 

through the two crosslinked subunits. The apparent Km for glutamate activation of the anion 

conductance is reduced after V449C crosslinking (Km = 8.35 ± 1.02 µM for V449/CuPh vs. Km = 

30.98 ± 3.05 µM for V449C/DTT), consistent with the idea that HP2 remains open in the two 

crosslinked subunits. Similarly, Seal et al. showed that modification of V449C also abolishes 

substrate transport, but increases the substrate-gated anion conductance (96). It is currently 

debatable which step in the substrate transport cycle conducts anion currents, but our results 

support the idea of a conducting state at an early step of the transport cycle after substrate 

binding. Further studies will shed light on how the substrate transport is linked to the anion 

conduction (See chapter 3) and whether the alternating access mechanism is facilitated by 

visiting intermediate states with different conformations of the subunits (i.e. inward- and 

outward-facing). 
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3.0  A CONSERVED POSITIVE CHARGE IN TM7: A KEY PLAYER IN 

GLUTAMATE TRANSPORTER DUAL FUNCTIONS 

3.1 INTRODUCTION 

In Chapter 2, we showed that after crosslinking of V449C, substrate cannot be transported into 

the cell, but is still able to elicit anion currents. We suggested that the substrate-activated anion 

currents are generated by the two crosslinked subunits which have a more restricted capacity to 

undergo conformational changes. Thus, a conducting state occurs at an early step after substrate 

binds to the transporter and does not require substantial structural rearrangement. Supporting this 

idea, studies have shown that the substrate-activated anion currents can still occur at 4°C when 

substrate transport is abolished (29).  

In addition to this anion conducting state activated by substrate at the early step(s) of the 

transport cycle, glutamate transporters allow anions to traverse the cell membrane in the absence 

of the substrate (33). This current requires extracellular Na+ and is referred to as the Na+-

activated anion leak current. Other anion conducting states during the transport cycle have also 

been suggested (124-125). Because of technical challenges to isolate individual steps of the 

transport cycle following glutamate binding, the assignment of the anion conducting states was 

achieved by chemical-kinetic simulations that model recorded transport and anion currents. In 

addition, by using fast application of glutamate to measure the pre-steady state of the transport 
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current and the anion current, these studies show that both pre-steady state currents rise quickly 

after glutamate application and decay to a steady state, suggesting that the substrate transport 

process is closely linked to the substrate-gated anion conductance (124, 126). However, despite 

gains in knowledge of transporter domains and conformational changes required for substrate 

transport, limited evidence exists to show how the anion channel is activated by Na+ and 

substrate, and how anion channel activation and substrate transport are coordinated.   

Establishing the anion permeation pathway will also facilitate our understanding of the 

anion channel function. It is suggested that anions permeate glutamate transporters through a 

pathway different from the substrate. As we have observed for the crosslinked V449C, three 

separate studies showed that modification of cysteine substituted residues in HP2 disrupts 

glutamate transport, but allows glutamate binding and activation of the anion channel (96-98). 

Mutants that abolish substrate-activated anion current without interfering with substrate transport 

have yet to be identified. Ryan et al. reported that mutations of several polar or charged residues 

in TM2 influence various properties of the anion channel, but not the transport of substrate (95). 

In particular, residue S103 in human EAAT1 is implicated in forming part of the selectivity filter 

of the anion channel, because glutamate-activated anion current in the mutant carrier S103V 

displays an altered rank order of relative permeability to different anions (95). In addition, one 

mutant, D112A in human EAAT1 has a greatly increased Na+-activated anion leak currents, but 

decreased substrate-activated anion currents. Residue D112 was proposed to serve as a gating 

residue for the channel (95).  

Based on the crystal structure of GltPh (PDB ID: 1XFH), we hypothesized that residues in 

TM7 might be involved in the anion channel function because TM7 is spatially very close to 

TM2, and is also a critical domain for binding Na+ and substrate. While we were testing this 
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hypothesis, Huang et al. identified additional residues in TM7 and TM5 that are involved in 

mediating the leak and substrate-activated anion current (99). In this study, they investigated 

charged residues within 5Å from residues S103 and D112 in EAAT1 based on the GltPh 

structure, which could influence the conformations of these two residues. Their results showed 

that residues D272 in TM5 and K384/R385 in TM7 display changed amplitudes of leak 

conductance and substrate-activated anion conductance when mutated to neutral or oppositely 

charged amino acids (99). Thus, TM2, 5 and 7 appear to contribute to the formation of the anion 

permeation pathway. It should be noted that both this study and one by Ryan et al. directly 

compare uptake activities and current amplitudes between wild type and mutant transporters, 

without considering the surface expression of individual carriers. Most of their data can also be 

attributed to the altered surface expression by the mutations. Thus, more rigorous 

characterization of these mutant carriers or identification of new mutants around this region may 

further elucidate the molecular determinants of the anion channel function.  

In the present study, we identified a conserved residue, R388 in TM7 of human EAAT1 

that is involved in both substrate transport and anion conduction. Neutralizing R388 with the 

amino acid alanine significantly impairs uptake activity compared to wild type transporters, and 

increases the Na+-activated anion leak current. Reversing the positive charge of R388 with either 

amino acid aspartate or glutamate results in accumulation of substrate through an electroneutral 

process. More interestingly, the mutant carriers R388D and R388E display no substrate-activated 

anion current. A similar phenotype is also observed in an equivalent mutant of rat EAAT4, 

rEAAT4 R410E. Detailed characterization of the mutant transporter R388D show that this 

carrier predominantly exists in the anion leak state, indicating the gating mechanism of substrate-

activated anion current is disrupted. Finally, we demonstrate that the transport domain of the 
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mutant carrier R388D spends a longer time in the inward-facing orientation in the absence of 

substrate. These results not only suggest that R388 is an important element in the functional 

coupling between substrate transport and the anion channel activity, but also illuminate the role 

of the inward transport domain movement in anion permeation.  

3.2 RESULTS 

3.2.1 Residue R388 plays an important role in substrate transport 

Residue R388 is highly conserved in mammalian glutamate transporters (Figure 22A) and is one 

helix turn away from residues K384 and R385 in TM7. To determine the importance of this 

residue in transporter functions, we first neutralized R388 by replacing arginine with a small 

non-polar amino acid, alanine, and assessed its transport activity relative to the wild type 

transporter. It should be noted that the initial EAAT1 mutations in this chapter were generated 

within a cysteineless version of the transporter because it enables the use of cysteine accessibility 

assays to probe the conformation of the transport domain (see section 3.2.6). Previous studies 

have shown that the activity of the CSLS carrier is very similar to the wild type EAAT1 (41), 

however, we have also reconfirmed critical observations using mutant carriers generated within 

the wild type EAAT1 background. 
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Figure 22. Neutralizing the charge of residue R388 with amino acid alanine impairs substrate transport 

(A) Sequence alignment of the highly conserved TM7 region. R388 is highlighted with red box, and residues K384 

and R385 are indicated with inverted triangles. (B) Wild type human EAAT1 transporters and mutant carriers 

(R388K or R388A) were expressed in Xenopus oocytes. Uptake assays were carried out at room temperature using 

100 μM L-[3H] glutamate as substrate for 15 min and data are normalized to wild type transporters.  (C) I-V relation 

of 100 μM L-glutamate elicited current recorded in Cl- solution using two-electrode voltage clamp for oocytes 

expressing wild type transporters (filled circle), R388K (filled square), R388A (filled triangle) or water-injected 

oocytes (open diamond). (D) Representative surface biotinlyation assays of oocytes expressing wild type and mutant 

transporters. Glutamate transporter proteins were identified using an anti-EAAT1 polyclonal antibody directed 

against the C-terminus. 
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Using radioactive glutamate uptake assays, we found that the transport activity of R388A 

is reduced to ~20% of the wild type transporters (Figure 22B). We also recorded substrate-

elicited currents in Cl- solution using two-electrode voltage clamp recordings (the current in the 

absence of substrate was subtracted from that in the presence of substrate). Because the influx of 

one glutamate molecule is associated with the inward movement of two positive charges and 

glutamate transporters also possess an anion channel function, the recorded current is comprised 

of substrate-coupled current and substrate-activated uncoupled anion current. At a membrane 

potential of -100 mV, the majority of current arises from the substrate-coupled transport current 

with its amplitude being proportional to the substrate transport activity. Consistent with the 

results obtained with uptake assays, application of 100 µM glutamate to the R388A mutant 

carrier generates a significantly decreased inward current at -100mV compared to wild type 

transporters (Figure 22B and 22C), although the voltage dependence of glutamate-elicited 

currents remains unchanged (Figure 22C). The decreased substrate transport activity of R388A 

cannot be explained by reduced surface expressions because cell surface biotinylation assays 

show that R388A has a comparable surface level as wild type transporters (Figure 22D). 

The mutant carrier R388K, which conserves the positive charge, also shows a reduced 

substrate transport activity compared to the wild type EAAT1, but is less impaired than R388A 

(Figure 22 B-D). In contrast, when we replace arginine with the negatively charged amino acid 

aspartate or glutamate, the mutant carriers R388D and R388E accumulate 10%-15% radioactive 

substrates compared to the wild type EAAT1 (Figure 23A). R388D and R388E also express less 

at the cell surface, which may contribute to their reduced transport activity. To our surprise, even 

though these two mutant carriers accumulate substantial amounts of radioactive substrate, no 

substrate-coupled transport currents at -100 mV are observed (Figure 23B). These data suggest 



 83 

that R388D and R388E uptake substrate through an electroneutral process. Thus, arginine at 

position 388 in human EAAT1 plays an important role in substrate transport. Mutating arginine 

to alanine significantly decreases substrate transport activity and reversing the positive charge 

with either aspartate or glutamate results in accumulation of substrate through an electroneutral 

process. 

 

 

 

 

 

 

 

 

 

Figure 23. The mutant carriers R388D and R388E accumulate substrate through an electroneutral process 

(A) Wild type human EAAT1 transporters and mutant carriers (R388D or R388E) were expressed in Xenopus 

oocytes. Uptake assays were carried out at room temperature using 100 μM L-[3H] glutamate as substrate for 15 min 

and data are normalized to wild type transporters (Note the segmented y-axis). Representative surface expression of 

wild type and mutant transporters is shown in the boxed inset.  (B) I-V relation of 100 μM L-glutamate elicited 

current recorded in Cl- solution using two-electrode voltage clamp for oocytes expressing wild type EAAT1 

transporters (filled circle), R388D (open square), R388E (inverted open triangle) or water-injected oocytes (open 

diamond). 
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3.2.2 Residue R388 is critical for the anion channel function  

To determine the role of residue R388 on the anion channel function, we substituted NO3
-, a 

more permeant anion for extracellular Cl- to increase the amplitude of anion currents. Under this 

condition, the recorded current is largely contributed by anions flowing through the transporter 

and the substrate-coupled current is negligible. Because anion conductance associated with 

glutamate transporters can be activated by Na+ alone (in the absence of substrate, termed as        

I-Glutamate in the following sections) and is significantly increased with the addition of substrate (in 

the presence of substrate, as I+Glutamate), we directly plotted I-V curves of recorded currents 

without subtracting I-Glutamate from I+Glutamate as we did in previous sections. Such analysis allows 

assessment of the magnitude of the Na+-activated anion leak current and also enables a quick 

determination of whether the transporter is expressed on the cell surface. In addition, the ratio of 

I+Glutamate to I-Glutamate (usually at positive membrane potentials) is not dramatically influenced by 

the surface expression level of transporter proteins and can be used to assess any selective 

changes in either the anion leak current or the substrate-activated anion current. 

Oocytes expressing wild type or mutant transporters R388A and R388K display 

significantly larger I-Glutamate compared to water-injected oocytes, indicating that transporter 

proteins are expressed on the cell surface and that leak anions flow through (Figure 24A-C, 

black circle vs. open diamond). The mutant carrier R388A in general has larger current in the 

absence of glutamate (I-Glutamate) than the wild type EAAT1 transporter or the mutant carrier 

R388K, but less additional current elicited by glutamate. The ratio of I+Glutamate to I-Glutamate at +60 

mV for R388A is 1.395 ± 0.032, and is significantly smaller than that of the wild type EAAT1 

transporter (2.571 ± 0.1) and the mutant carrier R388K (2.511 ± 0.09) (Figure 24D). These 
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results suggest that either the Na+-activated anion leak current or the substrate-activated anion 

current is altered in the mutant carrier R388A. 

 

 

Figure 24. Neutralizing the charge of Residue R388 alters the anion channel function of EAAT1 

Oocytes expressing wild type transporters (A), R388A (B) or R388K (C) were recorded in the absence and presence 

of 1 mM L-glutamate using NO3
- as external anions in replacement of Cl-. Endogenous currents were also included 

by recording water-injected oocytes (open diamond). The ratio of current in the presence of substrates (I+Glutamate, 

red triangle) relative to that in the absence of substrate (I-Glutamate, black circle) at positive potentials in (A-C) was 

calculated and shown in (D). 
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Oocytes expressing the mutant carriers R388D and R388E also display larger I-Glutamate 

compared to water-injected oocytes (Figure 25, black circle vs. open diamond). This current can 

be inhibited by 400 µM TBOA, confirming that the current arises from the anion leak 

conductance through the mutant carriers (Figure 25, inverted triangle). Interestingly, current 

recorded in the presence of 1 mM glutamate (I+Glutamate) superimposes on the top of that in the 

absence of glutamate (I-Glutamate) (Figure 25, red triangle vs. black circle), suggesting that 

substrate no longer elicits additional anion currents in either mutant carrier. Thus, R388 is also 

critical for the anion channel function. Mutating arginine to alanine significantly decreases the 

ratio of current in the presence of substrate (I+Glutamate) to that in the absence of substrate (I-

Glutamate), and reversing the positive charge with either aspartate or glutamate abolishes the 

substrate-activated anion current. 
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Figure 25. Substrate no longer elicits additional currents in the negatively-charged R388 mutants 

The mutant carriers R388D (A) and R388E (B) were expressed in Xenopus oocytes. Currents in the absence (black 

circle) and presence of 1 mM L-glutamate (red triangle) were recorded using NO3
- as external anions. Currents in 

the presence of 400 μM TBOA was shown as inverted triangle and endogenous currents were also included by 

recording water-injected oocytes (open diamond). 
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3.2.3 The mutant carrier R388D predominantly exists in the anion leak state 

The inability of L-glutamate or D-aspartate (data not shown) to elicit additional currents in the 

mutant carriers R388D and R388E suggests that the link between glutamate binding and the 

gating mechanism may be disrupted, and thus the mutant carriers spend more time in the anion 

leak state (I-Glutamate). Alternatively, the mutated carrier may exist in a conformation in which the 

channel reaches the I+Glutamate state even in the absence of substrate. To resolve these possibilities, 

we focused on unique properties that distinguish the substrate-gated and anion leak conductance. 

It has been shown that substrate alters the relative permeability to different anions in EAAT2 and 

EAAT4. In other words, the relative conductance of various anions differs between the I+Glutamate 

and I-Glutamate states (127). We therefore determined the relative permeability of anions for the 

I+Glutamate and I-Glutamate states by measuring the ratio of macroscopic currents at +60 mV in one 

anion relative to another. 

. 

In oocytes expressing wild type EAAT1, the relative conductance of NO3
-/Cl- and SCN-

/Cl- is 1.91 ± 0.11 and 6.90 ± 0.51 in the I-Glutamate state, respectively. Application of 1 mM 

glutamate (the I+Glutamate state) increases the respective relative conductance of NO3
-/Cl- and SCN-

/Cl- to 4.62 ± 0.42 and 23.96 ± 1.78 (Figure 26A and 26B). Because glutamate cannot elicit 

additional currents in the mutant carrier R383D, the relative conductance in the I-Glutamate state 

would be the same as that in the I+Glutamate state. Indeed, our results showed that the relative 

conductance of NO3
-/Cl- and SCN-/Cl- measured for R388D is 1.89 ± 0.26 and 6.81 ± 1.0 in the I-

Glutamate state, and is 1.91 ± 0.26 and 6.90 ± 1.13 in the I+Glutamate state, respectively. These ratios 

are remarkably similar to those of the I-Glutamate state of the wild type EAAT1 transporter (Figure 
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26B), suggesting that the mutant carrier R388D predominantly exists in the anion leak state and 

the gating mechanism by glutamate might be impaired with the introduced negative charge.   

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 26. The mutant carrier R388D predominantly exists in the anion leak state 

(A) Wild type EAAT1 and the mutant carrier R388D were expressed in Xenopus oocytes. Currents in the absence 

(filled circle) and presence of substrate (open circle) were recorded in Cl-, NO3
- or SCN- containing solutions. (B) 

Ratio of the current measured at +60 mV with different permeating anions (NO3
- to Cl- and SCN- to Cl-) for both 

wild type and mutant carriers. Black dashed lines represent the ratio of currents recorded in the absence of substrate 

and red dashed lines represent the ratio of currents recorded in the presence of substrate for the wild type EAAT1 

transporter.   *, p<0.05.   

 

 

 



 90 

3.2.4 The corresponding mutant carrier R410E of rat EAAT4 predominantly exists in the 

anion leak state  

Because the arginine residue is highly conserved in all of the mammalian glutamate transporters, 

we replaced the equivalent arginine residue in rat EAAT4 (rEAAT4) by the amino acid 

glutamate and asked if the mutation also abolishes the glutamate-gated anion channel activity. 

Just as we observed with R388D and R388E in EAAT1, no additional macroscopic anion current 

is observed upon glutamate application in oocytes expressing the rEAAT4 R410E mutant carrier, 

while glutamate elicits a large NO3
- current in those expressing the wild type rEAAT4 

transporter (Figure 27A). rEAAT4 R410E transporter proteins are expressed on the cell surface 

because the current recorded in the absence of substrate (I-Glutamate) is significantly larger than that 

obtained in water-injected oocytes, as a result of the anion leak conductance through the 

expressed transporters (Figure 27A). Glutamate increases the relative conductance of NO3
-/Cl- 

from 1.77 ± 0.11 in the I-Glutamate state to 6.31 ± 0.65 in the I+Glutamate state for the wild type 

rEAAT4 transporter, and increases the relative conductance of SCN-/Cl- from 11.59 ± 1.42 in the 

I-Glutamate state to 24.26 ± 2.13 in the I+Glutamate state.  The mutant carrier rEAAT4 R410E has 

similar relative conductance as the wild type rEAAT4 in the I-Glutamate state (Figure 27B). The 

relative conductance of NO3
-/Cl- is 2.94 ± 0.14 in the I-Glutamate state and 2.93 ± 0.15 in the 

I+Glutamate state,  and that of SCN-/Cl- is 10.62 ± 0.84 in the I-Glutamate state to 10.87 ± 0.78 in the 

I+Glutamate state. These results indicate that with both isoforms (human EAAT1 and rEAAT4), 

mutating the arginine to a negatively charged amino acid prevents glutamate from gating the 

anion channel and therefore glutamate is no longer able to increase anion permeation. 
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Figure 27. The mutant carrier rEAAT4 R410E predominantly exists in the anion leak state 

(A) Currents in the absence (black circle) and presence of 1 mM L-glutamate (red triangle) were recorded using 

NO3
- as external anions. Endogenous currents were also included by recording water-injected oocytes (open 

diamond). (B) Currents were recorded in Cl-, NO3
- or SCN- containing solutions. Ratio of the current measured at 

+60 mV with different permeating anions (NO3
- to Cl- and SCN- to Cl-) for both wild type and mutant carriers. Black 

dash lines represent the ratio of currents recorded in the absence of substrate and red dash lines represent the ratio of 

currents recorded in the presence of substrate for the wild type rEAAT4 transporter. *, p<0.05.  
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3.2.5 The mutant carriers R388A and R388D have dramatically increased anion leak 

currents  

The smaller ratio of I+Glutamate to I-Glutamate at +60 mV in the mutant carrier R388A compared to 

the wild type EAAT1 transporter and the mutant R388K indicates either changed anion leak 

conductance or substrate-activated anion current when neutralizing the arginine charge (Figure 

24).  Because the mutant carrier R388D displays no glutamate-activated anion current and the 

transporter exists predominantly in the anion leak state (Figure 25 and 26), we hypothesized that 

the anion leak conductance might also be increased in the mutant carrier R388A, which would 

result in a decreased ratio of I+Glutamate to I-Glutamate at +60 mV. Consistent with this idea, the         

I-Glutamate of R388A is generally larger than that of the wild type EAAT1 or the mutant R388K 

(Figure 24). Alternatively, R388A could express more on the cell surface, leading to large         

I-Glutamate, but have decreased I+Glutamate, which will also result in a decreased ratio of I+Glutamate to    

I-Glutamate at +60 mV. Thus we assessed the relative surface expression levels of transporter 

proteins, and normalized the anion leak current to transporter surface density. We recorded I-

Glutamate using NO3
- as the permeating anion and also determined the cell surface expression of 

transporter proteins from the same batch of injected oocytes. When normalizing the NO3
- current 

at +60 mV to their respective surface expression levels, we found that the Na+-activated anion 

leak current of the mutant R388A is significantly increased relative to the wild type EAAT1 

transporter, and the anion leak current of the mutant carrier R388D is even larger (Figure 28A).  

R388 is located close to TM2 residue D112 in the outward-facing GltPh structure (Figure 

28B). Previous studies have shown that neutralizing D112 with alanine also leads to a large 

increase in the anion leak current, raising the possibility that R388 may interact with D112 to 

control gating of the anion channel in human EAAT1. To test this hypothesis, we attempted to 
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restore substrate-elicited anion currents in the mutant R388D by introducing a positive charge at 

position D112. Unfortunately, this attempt was not successful. Even though the double mutant 

carrier R388D_D112R expresses well on the cell surface as indicated by a larger I-Glutamate 

compared to water-injected oocytes, it does not display substrate-elicited anion currents (Figure 

28C).  

3.2.6 The mutant carrier R388D spends more time in the inward-facing conformation in 

the absence of substrate 

During substrate transport, the transport domain moves toward the cell cytosol to allow 

cytoplasmic access of the substrate binding site. Such movement is intrinsic to the transporter 

protein and occurs in the absence of the substrate (50). Crisman et al. (94) have also shown that 

substrate accelerates the inward movement of the transport domain, while the non-transportable 

inhibitor TBOA blocks it (94). The characteristics of the inward movement of the transport 

domain are reminiscent of those of the anion channel function. Like the transport domain 

movement, the anion conductance occurs in the absence of substrate (activated by Na+), is 

blocked by TBOA and is increased by substrate. Thus, it is interesting to hypothesize that the 

transport domain movement may be linked to the anion channel function, and that the negative 

charge we introduced at position R388 might alter the conformation or limit the movement of the 

transport domain. 
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Figure 28. The mutant carriers R388A and R388D have dramatically increased anion leak currents 

Wild type EAAT1 and the mutant carriers (R388A, R388D, and R388D_D112R) were expressed in Xenopus 

oocytes. (A) Currents in the absence of substrate were recorded in NO3
- containing solutions. Surface expression 

levels were determined using cell surface biotinylation assays from the same batch of injected oocytes. Relative 

anion leak currents were obtained after normalizing to respective surface expression levels and data were normalized 

to wild type EAAT1 transporters. (B) Residues equivalent to R388 and D112 of human EAAT1 were highlighted in 

blue spheres based on the crystal structure of GltPh (PDB ID: 1XFH). (C) Currents in the absence (black circle) and 

presence of 1 mM L-glutamate (red triangle) were recorded using NO3
- as external anions. Endogenous currents 

were also included by recording water-injected oocytes (open diamond). 
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We first assessed the affinity of substrate for the mutant carrier R388D, reasoning that 

any change in the conformation of the transport domain could affect the extracellular 

accessibility of the substrate binding site. Because R388D accumulates substrate very poorly, but 

has a large Na+-activated anion leak current (Figure 23 and 26), we determined the affinity of 

TBOA by measuring TBOA-blocked anion leak current. Our results showed that the Km for 

TBOA is increased in the mutant carrier R388D compared to the wild type transporter (2.22 ± 

1.08 µM for the wild type EAAT1 and 12.83 ± 1.08 µM for the mutant R388D), consistent with 

the idea that the substrate binding site in the mutant carrier is less accessible (Figure 29A).  

To probe the conformation of the transport domain in the mutant carrier R388D, we took 

advantage of several previously characterized cysteine substitutions that demonstrate 

conformational sensitivity to thiol modification, particularly with respect to the transport domain 

movement (Figure 18A). We have observed that L376C displays the greatest sensitivity to 

conformational changes in the transport domain among the residues we have examined so far. 

We thus introduced L376C into the R388D background, and determined the accessibility of 

L376C to the membrane permeable thiol-modifying agent, NEM, under Na+ (the transport 

spends most of the time in the outward-facing orientation) or K+ conditions (in the inward-facing 

orientation). As expected, glutamate elicits a large NO3
+ current in the single mutant carrier 

L376C, but no additional glutamate-elicited currents are seen in the double mutant carrier 

R388D_L376C (Figure 29B). R388D_L376C is expressed on the oocyte cell surface because 

oocytes expressing the mutant carrier have a larger I-Glutamate compared to water-injected oocytes 

(Figure 29B). We treated oocytes expressing transporter carriers with 0.25 mM NEM, a 

condition that has very different modification rates of L376C in Na+ and K+ containing solutions. 

5 min incubation with 0.25 mM NEM in Na+ solution does not inhibit the uptake activity of 
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L376C. In contrast, L376C shows 63.21 ± 9.82% of transport activity after NEM treatment in K+ 

solution (Figure 29C), due to the increased frequency of the inward movement of the transport 

domain by high extracellular K+ and the intracellular exposure of L376C  enabling NEM 

modification. It should be noted that when expressed in COS7 cells, treatment with 0.25 mM 

NEM in a solution with high extracellular K+ almost completely inhibits the uptake activity of 

L376C. The large cell volume of Xenopus oocytes might affect the effective intracellular NEM 

concentration. Supporting this idea, we have observed that NEM non-specifically inhibits 

transport activity of the CSLS control carrier by approximately 20% in COS7 cells, but not of the 

R388D single mutant carrier expressed in Xenopus oocytes. After 5 min treatment with 0.25 mM 

NEM in the Na+ condition, oocytes expressing the mutant carrier R388D_L376C displays 42.51 

± 4.38% of transport activity compared to the untreated control, suggesting that residue L376C is 

already exposed intracellularly in the Na+ condition. Modification with NEM in the K+ condition 

does not further inhibit the transport activity of the mutant carrier R388D_L376C (Figure 29C). 

Thus, the mutation of R388 to aspartate appears to cause the transport domain spend more time 

in the inward-facing orientation in the absence of substrate, which is in line with the decreased 

accessibility of the substrate binding site from the extracellular environment. 
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Figure 29. The mutant carrier R388D spends more time in the inward-facing conformation in the absence of 

substrate compared to the wile type transporter 

Wild type EAAT1 and mutant carriers (R388D, L376C, and R388D_L376C) were expressed in Xenopus oocytes. 

(A) Currents in the presence of various concentrations of TBOA were recorded in NO3
- containing solutions. 

Currents at +60 mV in the presence TBOA were normalized to that in the absence of TBOA. Note that the basal 
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current (I-Glutamate recorded in the presence of maximal concentration of TBOA) was subtracted for the normalization. 

(B) Currents in the absence (black circle) and presence of 1 mM L-glutamate (red triangle) were recorded using 

NO3
- as external anions. Endogenous currents were also included by recording water-injected oocytes (open 

diamond). (C) Oocytes expressing mutant carriers were treated with 0.25 mM NEM for 5 min under Na+ or K+ 

conditions as indicated. Uptake assays were performed for 15 min at room temperature using 5 μM L-[3H] glutamate 

as substrate. Data are normalized to the Na+ column. 
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3.3 DISCUSSION 

Glutamate transporters possess dual functions to clear extracellular glutamate and to conduct 

anions. Mutagenesis studies obtained so far suggest that these two functions seem to be mediated 

by independent processes. Modification of cysteine substituted residues in HP2 abolishes 

substrate transport, but the substrate-activate anion channel activity remains (96-98). On the 

other hand, mutating several charged or polar residues in TM2, 5 and 7 affects the anion channel 

function with modest changes in the substrate transport (95, 99). However, because both 

substrate transport and the substrate-activated anion current require the presence of Na+ and 

glutamate, these two functions must utilize similar structural components at various steps in the 

two processes. The present study shows that a conserved residue R388 in TM7 of human EAAT1 

serves a critical role in both substrate transport and anion conduction. Neutralizing R388 with 

amino acid alanine significantly impairs uptake activity compared to wild type transporters, and 

increases the Na+-activated anion leak current. The mutant carriers R388D and R388E 

accumulate substrate through an electroneutral process and also abolish the substrate-activated 

anion current (Figure 22-25).  

R388 is located one helix turn away from two other conserved basic residues, K384 and 

R385 in TM7. Mutant carriers with K384 or R385 replaced by either amino acid alanine or 

aspartate generally have similar rates of substrate transport and the voltage dependence of 

transport currents compared to wild type transporters. In addition, they display both changed 

Na+-activated anion leak current and the substrate-activated anion current (99). In our study, the 

mutant carrier R388A accumulates only ~20% of radioactive L-glutamte relative to the wild type 

transporter. The transport current at -100 mV is also decreased to a similar degree, although the 

voltage dependence of the transport current is unchanged (Figure 22). We also examined the cell 
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surface expression of R388A and concluded that the impaired substrate transport is not due to the 

decreased surface protein level. Thus, residue R388 is important for substrate transport. This is 

not so surprising in that TM7, as part of the transport domain, contributes to form the binding 

pocket for substrate and coupled ions, and moves inward to enable the alternating access of the 

binding pocket to the EC or IC environment.  

The involvement of the residue R388 in substrate transport is also supported by the 

phenotype of the mutant carriers R388D and R388E. Although these two mutants still 

accumulate radioactive substrate, no substrate-coupled transport current is observed. For a 

complete transport cycle, the inward movement of each glutamate molecule is coupled to the 

influx of 3 Na+, 1 H+ and the efflux of 1 K+, which generates two positive charges (Figure 1). If 

the mutant carriers R388D and R388E accumulate radioactive substrate by making a full cycle, 

the absence of coupled currents would suggest that the stoichiometry of coupled ions and 

glutamate is altered in these two mutants. Alternatively, radioactive substrate can be accumulated 

through a process called exchange, in which the K+-induced reorientation step is impaired and 

the transport returns to the outward-facing state by moving intracellular substrate and coupled 

ions outside the cell (Figure 1A). The K+-induced reorientation step is very vulnerable and 

several mutations have been reported to impair this step (64, 66, 79). The general properties of 

forward and reverse glutamate transport are symmetric (128). Experimentally, high extracellular 

K+ applied to cells expressing the wild type transporter leads to reverse transport, with release of 

intracellular substrate and co-transported ions and gating of the anion conductance. However, 

mutants with the impaired K+-induced reorientation step lose their ability to elicit anion currents 

when high concentrations of K+ are applied outside. Our preliminary results show that raising 

extracellular concentrations of K+ does not elicit any NO3
- current in the mutant carriers R388D 
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and R388E (data not shown), similar to what has been observed for the mutants that impair the 

K+-induced reorientation step. However, we found later that glutamate no longer elicit additional 

anion current during forward transport for these two mutants (Figure 25) and thus the inability 

of high extracellular K+ to elicit anion currents could be due to the fact that no substrate-

activated anion currents are associated with reverse transport in the mutant carriers R388D and 

R388E. Nevertheless, our results show that reversing the positive charge of R388 with either 

aspartate or glutamate results in accumulation of radio-labeled substrate through an 

electroneutral process, supporting the role of R388 in substrate transport. 

Traditionally, the substrate-activated anion current is obtained by subtracting current in 

the absence of substrate from that in the presence of substrate. Because the Na+-activated anion 

leak current is blocked by non-transportable inhibitors such as TBOA, this current is obtained by 

subtracting current in the presence of inhibitors from that in the absence of inhibitors. In 

addition, more permeable anions such as NO3
- and SCN- are used to study anion channel 

function. When comparing the subtracted currents between wild type and mutant transporters, 

variations arise within oocytes of different batches and sometimes even of the same batch 

because of inconsistent expression.  In our study, we plot currents recorded in the absence of 

substrate (I-Glutamate) and in the presence of substrate (I+Glutamate) without subtraction. Currents 

recorded at +60 mV, the most positive potential in our recording, are used to compare the anion 

channel activity because at this voltage the majority of current is due to the anion flow. The ratio 

of I+Glutamate to I-Glutamate at +60 mV is not significantly influenced by the expression of transporter 

proteins, even though both I-Glutamate and I+Glutamate contain endogenous oocyte currents (Figure 

24). This is because endogenous oocyte currents are generally small compared to I-Glutamate or 

I+Glutamate. Furthermore, comparison of I-Glutamate with endogenous oocyte currents from the same 
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batch provides a means to quickly determine if transporter proteins are expressed on the cell 

surface. The ratio of  I-Glutamate to I+Glutamate at +60 mV for the mutant carrier R388A is 

significantly smaller than that for the wild type EAAT1 transporter and the mutant carrier 

R388K, suggesting that either the Na+-activated anion leak current or the substrate-activated 

anion current is altered in the mutant carrier R388A. Further determination of the Na+-activated 

leak current after normalizing to the cell surface expression suggests that the mutant R388A has 

a larger Na+-activated leak current compared to the wild type EAAT1 transporter (Figure 28A).   

Surprisingly, even though the mutant carriers R388D and R388E still accumulate 

radioactive substrate, no glutamate-elicited anion current is observed (Figure 25). This 

phenotype is also seen in the equivalent charge reversing mutant of rat EAAT4, rEAAT4 R410E 

(Figure 27). Detailed analysis of the mutant carriers R388D and rEAAT4 R410E show that these 

mutants predominantly exist in the anion leak state. Consistent with this observation, the mutant 

R388D has a larger Na+-activated leak current after normalizing to the cell surface expression 

compared to the wild type EAAT1 transporter (Figure 28A). Thus, mutating the arginine to 

negatively charged amino acids prevents glutamate from gating the anion channel and therefore 

glutamate is no longer able to increase anion permeation. Taken together, these results suggest 

that R388 in TM7 plays a critical role in the anion channel function.  

We initially speculated that residue R388 might interact with residue D112 in TM2 

through charge attractions based on following observations. First, the mutant carrier D112A 

display increased Na+-activated anion leak current, but decreased substrate-activated anion 

current (95). This phenotype is very similar to that for the mutant R388A, but is not observed in 

the mutant R388K when the positive charge is preserved. Second, although the residues 

corresponding to R388 and D112 are conserved within mammalian EAATs, in GltPh the 
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corresponding residues are both serine, suggesting a potential co-evolution of residues. Third, 

based on the outward-facing crystal structure of GltPh, the Cα atom distance between residues 

equivalent to D112 and R388 is ~13 Å. Forth, the equivalent residue of D112 in GltPh is located 

in the TM2-TM3 loop, which undergoes significant conformational changes to accommodate the 

inward movement of the transport domain, where residue R388 resides (50). We attempted to 

restore the substrate-activated anion current by reversing the charges of R388 and D112 to 

maintain their potential interactions. However, glutamate does not elicit additional anion currents 

in the double mutant carrier R388D_D112R. The side chains of D388 and R112 in the double 

mutant carrier might not face the right directions to allow interaction or in wild type transporters 

a network of charge interactions may exist instead of a simple R388_D112 interaction. 

Supporting the latter explanation, mutations of several charged residues near these two residues 

have resulted in altered anion channel function (95, 99). It is thus possible that the introduced 

negative charge might interfere with the network of charge interactions and change the 

conformation of the transporter protein.  

We considered the conformation of the transport domain because this domain contains 

binding sites for substrate and coupled Na+ that are required to activate the anion channel.  In 

addition, the transport domain moves inward into the cell cytosol, which may disrupt charge 

interactions of residues in TM7 with those in TM2 and TM5, gating the anion channel. By 

determining the accessibility of a conformation-sensitive cysteine residue L376C, our results 

show that the transport domain of the mutant carrier R388D spends more time in the inward-

facing orientation in the absence of substrate (Figure 29). Consistent with this observation, the 

affinity of TBOA to block Na+-activated anion leak currents is also decreased in the mutant 

carrier R388D, suggesting decreased accessibility of the substrate binding site from the 
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extracellular environment when the transport domain moves in. These results indicate that the 

movement of the transport domain, a critical step during substrate transport, is required for the 

anion channel gating. In the mutant carrier R388D, the transport domain shifts to the inward-

facing orientation and this renders the carrier in the anion leak state.  

Our results are also consistent with previous notions that the substrate transport process is 

tightly linked to the anion channel function. Early evidence showed that fast application of 

glutamate elicits pre-steady state currents for both the transport current and the anion current, 

which then decay to steady state currents. These currents can be mathematically modeled by 

going through connected states occupied at similar early steps in the transport cycle (124). 

Grewer and colleagues rigorously studied the kinetics, Na+ and voltage dependence of these pre-

steady state currents (34, 126). They found that the pre-steady state of the anion current rises 

more slowly and the rising time constant is in the same range as the fast decay phase for the 

transport current (both called τfast). The decay phase of the anion current is best fit with one 

exponential component and is similar to the slow decay phase for transport current (τslow), 

suggesting that at least two phases (τfast and τslow) of the pre-steady state transport currents and 

anion currents share similar kinetic steps of the transport cycle. Additional experiments 

examining the Na+ and voltage dependence of these phases support this conclusion (88, 126). 

Interestingly, the activation enthalpies of these two processes are very large, indicating they are 

rate-limited by substantial conformational changes of the transporter (88). In light of our results, 

we attribute one of the conformational changes to be the inward movement of the transport 

domain.  

 Together, our results show that a positively charged residue in TM7 is invovled in both 

substrate transport and the anion channel function. By studying the charge-reversing mutants, 
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this study also suggests for the first time how the inward movement of the transport domain, a 

critical step of substrate transport, might be linked to the anion channel function. Our study 

opens new avenues toward a complete understanding of the complex dual mechanism carried by 

glutamate transporters.     
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4.0  SUBUNIT INTERACTIONS OF GLUTAMATE TRANSPORTERS  

4.1 INTRODUCTION 

Glutamate transporters are multimeric proteins composed of three identical subunits that line a 

small central hole (48, 55, 57). In studies of ours (Figure 12) and others (57), protein samples 

collected from oocytes expressing human EAAT1 or EAAT2 migrate predominantly as a single 

trimer species in blue native polyacrylamide gels. Virtually no dimer or monomer species is 

seen, suggesting that the trimerization of monomers occurs efficiently during or shortly after 

synthesis of the individual subunits.  

One fundamental question associated with multimeric structures is whether the individual 

subunits function independently of each other or whether there is cross-talk between them. It has 

been shown that the Hill coefficient for glutamate dependence of substrate transport is close to 

one, suggesting that only one glutamate molecule needs to bind to the transporter to be 

transported (34, 123). Grewer et al. (56) further explored this question by coexpressing wild type 

EAAT3 transporters and mutant transporters that have different substrate specificity and kinetic 

properties. Although the wild type and mutant transporters coassemble into trimers, they behave 

as two independent populations of transporters, leading to the conclusion that the individual 

subunits in the glutamate transporter trimer function independently of each other in both 
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substrate transport and anion conduction (56). Several other studies generally agree with this 

notion (115, 122).  

In contrast, Torres-Salazar et al. observed sigmoidal glutamate concentration dependence 

for the anion conduction with Hill coefficients ≥3 in EAAT4 (123).  Because it is sometimes 

difficult to draw conclusions about cooperativity based only on Hill coefficients, the authors also 

showed that in contrast to the early findings, cells coexpressing wild type EAAT4 transporters 

and mutant transporters do not show characteristics of two independent populations of 

transporters in the anion channel function (123). Based on these results, the authors concluded 

that multiple glutamate binding sites must be occupied to activate the anion channel, similar to 

ideas proposed to explain the behavior of ligand-gated channels such as acetylcholine receptors 

(129). Apart from the different transporter subtypes used experimentally in this study and the 

Grewer’s (56), the basis for the differences in the results remains unresolved. One explanation 

might be the untested assumptions of random translation and interaction of wild-type and mutant 

subunits expressed at the plasma membrane. The coexpression strategy theoretically results in 

four populations of glutamate transporters, comprised of either three wild type subunits, two 

mutant and one wild type subunits, one mutant and two wild type subunits, or three mutant 

subunits. The steady-state data essentially come from a mixed population of transporter trimers 

and in practice it is very difficult to determine the percentage contribution of each population to 

the total transporter function. Thus, fitting data to a model based equation may be problematic, 

since the information on the contribution of each population is not available. To overcome this 

shortcoming, we constructed a tandem-linked trimeric glutamate transporter. This concatenated 

glutamate transporter has 3 identical subunits connected by flexible linkers, each harboring 

unique restriction sites that enables us to “cut and paste” mutant subunits in any combinations 
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desired. The advantage of this concatenated gene is that it generates a homogeneous population 

of transporters with fixed stoichiometry of mutant and wild type subunits. Using this concatemer 

strategy, our preliminary data suggest that glutamate transporters are functional as trimers and 

the individual subunits transport substrate independently. 

4.2 RESULTS 

4.2.1 Characterization of a concatenated glutamate transporter trimer 

We made a concatenated glutamate transporter trimer by linking three cysteine-less EAAT1 

subunits (CSLS) at the DNA level. The linkers used are “GYPYDVPDYAGSAAISAAAAAAA 

AAAAA” and “AAAAAAAAAAAAGSAAISAAAAAAAAAAAA”. We named this construct 

as “1WT2WT3WT”, in which the number corresponds to the position of the subunit in the 

concatemer and the letter “WT” represents cysteine-less EAAT1. When expressed in COS7 cells, 

the concatenated carrier displays ~30 percent of uptake activity compared to the wild-type 

transporter (Figure 30A) and it also has comparable substrate affinity of transport activity (53.31 

± 15.18 µM for the wild type EAAT1 transporter vs. 28.09 ± 8.56 µM for the 1WT2WT3WT 

concatemer).  It should be noted that the concatenated carriers takes 3 days after cell transfection 

to achieve this substrate transport level. Similar to the wild type EAAT1 transporter, substrate 

transport of the concatenated carrier depends on sodium ions and can be inhibited by the 

presence of TBOA, a common non-transporting inhibitor of glutamate transporters (Figure 

30B), suggesting that the concatenated glutamate transporter has functional characteristics 

similar to that of the wild type EAAT1 transporter. To exclude the possibility that the 
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concatenated carriers form higher order oligomers between concatemers, we performed blue 

native gel analysis to determine the quaternary structure of proteins. Both the wild type EAAT1 

transporter and the concatenated carrier migrate predominantly as a single trimer species and no 

other apparent species at higher molecular weight is observed (Figure 30C). The concatenated 

carrier runs a little bit slower, which may be due to the two linkers inserted into the protein. 

When the concatenated carrier is denatured and separated by SDS-PAGE, the majority of species 

migrate at a molecular weight of >190 kDa, corresponding to the size of a trimeric glutamate 

transporter. In contrast, the wild type EAAT1 transporter displays a monomer species of ~70 

kDa and an additional species at ~140 kDa, which arises from the aggregation of glutamate 

transporters (Figure 30D). Thus, the concatenated glutamate transporter carriers self-assemble 

into trimer and are highly functional.  
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Figure 30. Characterization of a concatenated glutamate transporter trimer 

The wild type EAAT1 transporter and the concatenated carrier 1WT2WT3WT were expressed in COS7 cells. (A) 3 

days post transfection, uptake assays were performed for 10 min at room temperature using concentrations of L-[3H] 

glutamate as indicated. (B) Uptake assays were carried out using 5 µM L-[3H] glutamate as substrate in the absence 

and presence of 384 μM TBOA. For Na+ dependence, sodium ions were replaced by equal molar of choline. (C) 

Proteins samples were separated by blue native PAGE. (D) Proteins samples were separated by SDS PAGE. Lane 1: 

the wild type EAAT1 transporter, Lane 2: the concatenated carrier 1WT2WT3WT. Glutamate transporter proteins 

were identified using an anti-human EAAT1 polyclonal antibody directed against the C-terminus. 
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4.2.2 The mutant carrier R479C in human EAAT1 changes its substrate specificity 

It has been shown previously that the neutralization of a conserved arginine residue R447 results 

in the conversion to neutral amino acid substrate specificity in a neuronal glutamate transporter 

EAAC1. Whereas wild type EAAC1 is capable of accommodating both L-glutamate and L-

cysteine as substrates, several EAAC1 R447 mutants do not bind acidic amino acids, but are able 

to transport L-cysteine and other neutral amino acids, such as L-serine, which is not a substrate 

for the wild type transporter (64). When coexpressed with the wild type EAAC1 transporter, a 

population of the assembled trimers are composed of individual subunits that transport either L-

glutamate or L-serine. Using this strategy, Grewer et al. showed that the amplitudes of anion 

currents elicited at 0 mV by the mixture of two substrates is identical to the sum of the anion 

current amplitudes activated by the application of either L-glutamate of L-serine alone. Data 

obtained by coexpressing human EAAT4 and the equivalent arginine mutant show different 

results, thus reaching distinct conclusions on the subunit interactions of the anion channel 

function. We intend to revisit this question by generating concatenated heterotrimers that allow 

the expression of a single population of the heterotrimers containing subunits that transport either 

L-glutamate or L-serine. With these constructs, we can address the following questions: a) Is a 

single subunit capable of transporting substrate and conducting anions, and b) Is there cross-talk 

between subunits?   

We first mutated the equivalent arginine residue in human EAAT1 (R479) to cysteine 

and tested the substrate specificity of the mutant carrier in oocytes. As shown in Figure 31, 

application of 1 mM L-glutamate to oocytes expressing the WT EAAT1 transporter elicits an 

outward NO3
- current +60 mV, whereas 1 mM L-ser or L-alanine does not elicit any detectable 

currents. With the mutant R479C, 1 mM L-serine or L-alanine elicits an outward NO3
- current, 
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but 1 mM L-glutamate does not (Figure 31). These results demonstrate that the function of the 

arginine residue is conserved in different subtypes of mammalian transporters. The mutant 

carrier R479C changes its substrate specificity from preferring acidic amino acids to neutral 

amino acids.   

 

 

 

 

 

 

 

 

Figure 31. The mutant carrier R479C in human EAAT1 changes its substrate specificity 

The wild type EAAT1 transporter and the mutant carrier R479C were expressed in Xenopus oocytes. Currents 

elicited by 1 mM L-glutamate, 1 mM L-serine or 1 mM L-alanine were recorded using NO3
- as external anions. The 

oocytes were clamped at a membrane potential of +60 mV. Open bars on the top of current traces represent the 

application of the substrates. 
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4.2.3 A single subunit of glutamate transporter trimer is capable of transporting 

substrate  

We next replaced one or two subunits in the concatenated 1WT2WT3WT with the R479C 

mutant subunit(s) and asked whether a single subunit is capable of transporting substrate. The 

concatenated carrier 1WT2WT3R479C, which contains a single R479C subunit in the third 

position, is able to accumulate radioactive L-serine (Figure 32A). Similarly, the concatenated 

carrier 1WT2R479C3R479C, which contains only one wild type EAAT1 subunit, transports L-

glutamate (Figure 32B). These results indicate that a single transporter subunit within a trimer is 

capable of transporting substrate.  

 

 

 

 

 

 

 

 

 

 

 

Figure 32. A single subunit of the glutamate transporter trimer is capable of transporting substrate 

The concatenated carriers (1WT2WT3WT, 1WT2WT3R479C, and 1WT2R479C3R479C), the EAAT1 mutant 

carrier R479C and the wild type human ASCT1 were expressed in COS7 cells. 3 days post transfection, uptake 

assays were performed for 10 min at room temperature using 100 nM L-[3H] serine (A) or 5 μM L-[3H] glutamate 

(B) as substrates. 
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4.2.4 Each subunit of the glutamate transporter trimer uptakes substrate independently 

from each other  

To examine the potential subunit interactions on transporting substrates, we tested whether the 

substrate transport capability of one subunit is influenced by the function of a neighboring 

subunit in the trimer. We compared the accumulation of radioactive L-glutamate by the 

concatenated carriers 1WT2WT3R479C and 1WT2R479C3R479C in the absence or presence of 

500 μM unlabeled L-serine. No significant difference in L-glutamate accumulation is observed 

for both concatenated carriers 1WT2WT3R479C and 1WT2R479C3R479C using either 5 μM 

(Figure 33A) or 500 μM L-[3H] glutamate (Figure 33B) as substrate, suggesting that each 

subunit transports substrate independently.  

4.3 DISCUSSION 

In this study, we made a concatenated gene by linking three glutamate transporter subunits at the 

DNA level. This concatenated carrier is highly functional and assembles as a trimer in 

mammalian cells. These results confirm that glutamate transporters can function through a 

trimeric stoichiometry. We further studied subunit interactions by introducing into the 

concatenated carrier mutant subunit(s) that only transport neutral amino acids. We found that a 

single glutamate transporter subunit is capable of transporting substrate. In addition, each subunit 

functions independently in substrate transport. To explore whether a single subunit of glutamate 

transporters is able to conduct anion currents and whether there are interactions between subunits 

during this process, we expressed the concatenated carriers in Xenopus oocytes. Unfortunately, 
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despite the success at expressing the concatenated trimer constructs in mammalian cells, 

expression of these carriers in oocytes has proved difficult thus far. Further studies using patch 

clamping in mammalian cells or improved expression in oocytes will help delineate the subunit 

interactions of glutamate transporters in the anion channel function.  

 

 

 

 

 

 

 

 

 

 

Figure 33. Each subunit of the glutamate transporter trimer uptakes substrate independently from each 

other 

The concatenated carriers 1WT2WT3WT, 1WT2WT3R479C, and 1WT2R479C3R479C were expressed in COS7 

cells. 3 days post transfection, uptake assays were performed for 10min at room temperature using 5μM L-[3H] 

glutamate (A) or 500μM L-[3H] glutamate (B) as substrate in the absence or presence of 500 µM unlabeled L-serine.  
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5.0  CONCLUSIONS, GENERAL DISCUSSIONS AND FUTURE DIRECTIONS  

Neuronal and glial glutamate transporters function to clear synaptically released glutamate from 

the extracellular space. This process not only ensures the spatial and temporal fidelity of 

excitatory signaling, but also prevents the neuronal death triggered by excess glutamate (130). In 

addition, glutamate transporters possess a substrate-gated anion channel function, which may 

play an important role in shaping the synaptic transmission. The overarching questions that have 

driven this thesis project are how these two distinct functions can take place within a glutamate 

transporter trimer and what are the domains and domain movements required for glutamate 

transport and/or the anion channel function 

As described in Chapter 2, we have used cysteine crosslinking in combination with 

computational simulations to obtain evidence for large-scale collective movements of the 

glutamate transporter trimer that are functionally important. Two types of these movements are 

suggested by the ANM analysis: asymmetric contraction/stretching and symmetric 

opening/closing. In both modes, the extracellular domains of adjacent subunits approach each 

other, whereas residues at the bottom of the transporter, within the membrane, remain rigid. 

Restricting these motions by the formation of disulfide bonds between two subunits of a trimer 

completely abolishes substrate transport. In addition, when two subunits approach each other and 

are crosslinked, the transport domain of the third uncrosslinked subunit assumes an inward-

facing orientation, suggesting that the large collective movements of the transporter trimer are 
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functionally linked to the piston-like movement of the transport domain. The ANM analysis also 

confirms that individual subunits potentially undergo separate transitions between outward-

facing and inward-facing forms, rather than an all-or-none transition of the three subunits.  

Finally, glutamate still elicits anion currents after crosslinking, presumably through two 

crosslinked subunits that have limited capability to move. Thus, substrate-activated anion 

conduction likely occurs at an early step of the transport cycle without significant conformational 

changes. 

We went on to explore the anion permeation pathway and the conformational changes 

associated with the anion channel function in Chapter 3. A conserved arginine residue in TM7 

was identified to be important for both substrate transport and the anion channel function. This 

positively charged residue, R388 in human EAAT1, displays impaired substrate transport 

activity when mutated to the neutral amino acid alanine. The mutant carrier R388A also has 

increased Na+-activated anion leak currents, but decreased substrate-activated anion currents. 

When R388 is replaced with a negatively charged amino acid, such as glutamate or aspartate, the 

mutant carriers R388D and R388E accumulate radioactive substrate through an electroneutral 

process, and abolish the ability of substrate to elicit additional anion currents. The transport 

domain in the mutant carrier R388D spends a longer time in the inward-facing orientation, 

pointing to the possibility that the piston-like movement of the transport domain, a critical step 

during substrate transport, might also be involved in the anion channel function.  

Finally, we constructed a concatenated glutamate transporter trimer in Chapter 4, which 

has functional characteristics similar to the wild type transporter. Using this concatenated 

construct, we concluded that a single glutamate transporter subunit is capable of transporting 

substrates and its transport activity is not influenced by the activity of adjacent subunits. 
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In summary, data presented in this dissertation expand our understanding of domains and 

conformational changes associated with these domains critical for glutamate transporter dual 

functions.  As is always true in scientific research, our results stimulate more questions than they 

answer. In the following sections, I will discuss the implication of our proposed mechanisms and 

areas of future research.  

5.1 LARGE COLLECTIVE MOVEMENTS PROVIDE A DIFFERENT VIEW TO 

UNDERSTAND THE ALTERNATING ACCESS MECHANISM OF GLUTAMATE 

TRANSPORTERS 

The successful crystallization of the archaeal glutamate transporter homolog GltPh marks a new 

chapter in studying the structure and function of this protein family, which started decades ago 

with the discovery of transport systems that use the gradients of ions across the cell membrane to 

concentrate glutamate. Each structure crystallized under a specific condition (substrate-bound, 

TBOA-bound and crosslinked) provides tantalizing clues of how these proteins work through the 

alternate accessing mechanism. This mechanism contends that the transporter isomerizes 

between an outward-facing and an inward-facing conformation, in which the substrate binding 

site is alternatively accessible from the external and internal solutions. Two conceptual models 

have been proposed to fulfill this mechanism by different proteins. The canonical model, called 

‘gated pore’, involves the presence of two gates—one external and one internal. The two gates 

flank the substrate binding site and open sequentially to allow alternate accessing (86). Examples 

of carriers using this model include the H+/Cl- exchanger of the CLC family (131). The ‘rocker-

switch’ model, on the other hand, focuses on the rocking movements of protein domains, usually 
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through a global conformational change that pivots at the substrate binding site (132). Members 

of the major facilitator superfamily (MFS), such as lactose permease, belong to this category 

(133). Glutamate transporters seem to integrate both models. In the substrate-bound 

conformation of GltPh, the two hairpin loops HP1 and HP2 cradle the substrate binding site. 

Molecular dynamics simulations show that the HP2 loop opens up within tens of nanoseconds 

and remains open during 40 ns duration of the simulation (Figure 15, Chapter 2 and (89)). 

Consistent with these results, HP2 is displaced from the substrate binding site in the TBOA-

bound conformation of GltPh, due to the hindrance of the large benzyl group of TBOA (49), 

supporting the idea that HP2 serves as an external gate. Based on the ‘gated pore’ model, HP1 

may serve as the internal gate. Mutagenesis studies exploring the accessibility of residues in this 

region also support this notion (92). The conformation of GltPh with HP1 open is not yet 

available. Steered-MD simulations suggested the existence of two large energy barriers along the 

putative intracellular substrate pathway aligned by HP1, TM7 and TM8 (134). Such energy 

barriers will be relieved by the opening of the HP1 gate. On the other hand, initial evidence 

supporting the ‘rocker-switch’ model was obtained by crosslinking two introduced cysteines in 

TM2 and HP2. This structure, known as the inward-facing conformation, reveals the inward 

movement of the transport domain into the cell cytosol that is necessary to expose the substrate 

binding site intracellularly. The surface representations of the substrate bound and crosslinked 

structures clearly show the alternate access of the substrate binding site, in a similar manner as 

that of the ‘rocker-switch’ model in the MFS proteins (Figure 5D and 5E). However, the 

conformational changes adopted by the MFS proteins to achieve ‘rocker-switch’ model are quite 

different from the piston-like movement of the transport domain, but instead are similar to the 

large collective movements shown in our study. Thus, the large collective movements provide a 
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different view of how glutamate transporters achieve their functions through the alternating 

access mechanism.  

5.2 DETERMINATION OF THE FREQUENCY OF THE LARGE COLLECTIVE 

MOVEMENTS AS A MEANS TO ESTABLISH THEIR PHYSIOLOGICAL 

RELEVANCE  

Our cysteine crosslinking, accessibility and ANM analysis data are consistent with a 

conformational state of the glutamate transporter in which two subunits move towards each 

other, while the transport domain of the third subunit starts to move into the cell cytosol. 

Obtaining a crystal structure of a glutamate transporter trapped in this state will further confirm 

this prediction. Is this conformation frequently visited during substrate transport or are we just 

trapping some extreme condition that rarely occurs? These questions can be partially addressed 

by assessing the frequency of these large collective motions and how close the adjacent subunits 

might reach. Unfortunately, the ANM analysis is an analytical tool that only predicts the 

direction of global motions, and the exact amplitude and frequency of these motions cannot be 

inferred. In addition, current ANM technology does not include plasma membrane and it has 

been shown that the membrane composition influences the localization and function of glutamate 

transporters (135).  In our study, the second order rate constants calculated for the CuPh-

catalyzed functional inhibition are lower than those obtained in the previous work for Shaker K+ 

channels and the E. coli D-galactose receptor in which the two crosslinked cysteines are already 

very proximal in their respective structures (136-137). Instead, both the frequency of the large 

collective motions and the distance between reactive cysteines contribute to the reaction rate in 
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the present work and it is not possible to distinguish which has the greatest impact on the rate of 

bond formation. Based on the ratio of the eigenvalues computed by the ANM for the global 

modes to the eigenvalues computed for local (nanoseconds) events, we have estimated that the 

low frequency global modes take place at a time range of micro- to milliseconds. In line with the 

observation that intersubunit crosslinks readily occur between at least 8 cysteine pairs, we 

propose that the transporter does transit through the conformation(s) we capture at a relatively 

high and readily detectable frequency. Recently, the application of fluorescence at the single-

molecular level brings to life the dream of watching a single protein molecule functioning in real 

time, although not at the atomic level. This kind of technique can detect transient intermediates 

and the sequence of events that might be hidden in population-averaged measured. Using single-

molecule FRET, Diez et al. (138) successfully identified the step wise rotation of the γ subunit in 

F0F1-ATP synthase driven by the proton gradient. Zhao et al. (139) reported a process whereby 

substrate binding from the extracellular side of a Neurotransmitter/Na+ symporter (LeuT) 

facilitates intracellular gate opening and substrate release at the intracellular face of the protein. 

Similar application of single-molecule FRET in glutamate transporters will allow the assessment 

of the frequency of the large collective movements, and the discovery of other conformational 

changes required for transporter functions.  
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5.3 ADDITIONAL CROSSLINKING STUDIES TO ADDRESS THE RELATIONSHIP 

BETWEEN LARGE COLLECTIVE MOTIONS AND THE PISTON-LIKE MOVEMENT 

OF THE TRANSPORT DOMAIN 

Our results suggest that large collective movements of the glutamate transporter trimer can be 

functionally linked to the piston-like movement of the transport domain. However, it is currently 

unknown how they are associated. One intriguing hypothesis is that the large collective 

movements involving all three transporter subunits may provide the energy required for the 

transport domain movement, which is shown to occur in the absence of substrate and coupled 

ions (50). In our study, all of the intersubunit crosslinkable residues are located in the transport 

domain. Because the transport domain needs to move substantially during substrate transport, the 

inhibition of uptake could also be a consequence of inability of the transport domain to complete 

the required movement. Future studies could use similar strategy to crosslink residues in the 

scaffold domain (TM1-6) between two subunits. This kind of crosslinking would only restrict the 

large collective movements, but not the piston-like movement of the transport domain. Searching 

such crosslinkable residues based on the GltPh structures should proceed with cautions. Although 

the structural features of the transport domain are similar between the mammalian EAATs and 

GltPh, the structure of the scaffold domain in the mammalian EAATs is still an enigma. A recent 

study explored the proximity of residues between TM5 and TM8 in a rat transporter, GLT-1 

(140). The locations of the identified residue pairs, when mapped onto the GltPh structures, do 

not agree with the proximity suggested by the crosslinking data. Comparing to GltPh, the 

mammalian EAATs have an additional segment of over 50 amino acids in TM4, which contains 

the N-linked glycosylation sites. The structure of this segment and its relationship to the rest of 

the transporter are unknown. One study suggested that this segment extends from near the center 
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of the protein and that the majority of the residues are positioned on the outer perimeter of the 

protein (62). If this is true, this segment will also influence the ability of large collective 

movements that bring two adjacent subunits close together. In recent years, significant progress 

has been made to determine the atomic structure of membrane proteins by crystallography, 

benefited from a raft of technical advances including the application of high throughput 

platforms (141). With the advances of other biophysical methods, such as NMR spectroscopy  

and electron crystallography of 2D crystals in the presence of lipids (142-143), it is conceivable 

that the atomic structure of mammalian EAATs will be available in the near future, which will 

help the design of additional crosslinking studies to explore the importance of the large collective 

movements. 

5.4 LARGE COLLECTIVE MOVEMENTS AND THE GLUTAMATE BUFFERING 

THEORY 

In addition to facilitating substrate transport, the large collective movement of the transport 

trimer may influence glutamatergic signaling in other ways such as changing the buffering 

capacity of the glutamate transporter. It is no doubt that glutamate transporters play a crucial role 

in glutamatergic synaptic transmission. Several studies have shown that blocking glutamate 

transporters increases the amplitude or the decay time of excitatory postsynaptic currents (144-

145). However, the cycling time of glutamate transporters, estimated to range from 30 ms to 100 

ms (125-126, 146), is significantly slower than the time course of synaptically released 

glutamate, leading to the hypothesis that transporters remove free glutamate from the cleft very 

quickly primarily by binding, with transport to following on a longer timescale (147). Supporting 
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this buffering theory, chemical-kinetic simulations of currents evoked by the fast application of 

glutamate show that binding of glutamate to the transporters is very rapid, and occurs within 10-

100 µs at typical released glutamate concentrations (34, 125). Another parameter important for 

the buffering hypothesis is the rate of glutamate dissociation from the substrate binding site, 

which has been estimate to be about 500 µs to 2 ms (34, 125). Thus, glutamate also can come off 

the substrate binding site before being translocated. The three subunits of glutamate transporters 

form a bowl-shape structure. By measuring the binding and unbinding rates of a potent inhibitor, 

4-fluorenyl-L-aspartylamide, in the presence or absence of glutamate, Kavanaugh and colleagues 

suggested that the three subunits surrounding the large aqueous central cavity restrict diffusion of 

substrates out of the basin and facilitate transport efficiency (148). We propose that the large 

collective motions may also help prevent the escape of glutamate from the central basin and 

ensure the rapid clearance of glutamate from the extracellular space. One strategy to test this 

hypothesis is to crosslink adjacent subunits with bifunctional crosslinking reagents of different 

length, which theoretically will change the size and pore of the aqueous central cavity of 

glutamate transporters and influence the diffusion of substrates. Such studies will also establish 

how flexible the extracellular domains of glutamate transporters are required to carry out their 

functions, as has been shown for the lactose permease LacY (149).   
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5.5 EXPLORING THE ANION PERMEATION PATHWAY  

Our study has also identified for the first time two charge-reversing mutants of human EAAT1, 

R388D and R388E that abolish the substrate-activated anion current, but retain the ability to 

accumulate radioactive substrate. These mutants, together with others identified in the previous 

studies by Vandenberg and colleagues, suggest that TM2, TM5 and TM7 form the anion 

permeation pathway (95, 99). To obtain a complete picture of the anion permeation pathway, 

cysteine substituted mutants can be generated in this region and modification of the cysteines by 

thiol-modifying reagents should inhibit the permeation of anions if they line the pathway. This 

strategy has been successfully applied in Na+-K+ ATPase to identify the cation permeation 

pathway (150).  

5.6 LINKING THE INWARD MOVEMENT OF THE TRANSPORT DOMAIN TO 

THE ANION CHANNEL ACTIVITY  

An interesting hypothesis inferred from the characterization of the mutant carrier R388D is that 

the inward movement of the transport domain might be required for anion channel gating. 

Supporting this idea, TBOA inhibits an anion leak current when applied to the intracellular side, 

suggesting that the inward-facing transporter is also anion conducting (128). How deep does the 

transport domain have to move to gate the channel?  Our results suggest that a small movement 

might be sufficient because glutamate is able to activate the anion current when two subunits are 

crosslinked and have limited ability to undergo conformational changes. Further studies can 

utilize cysteine crosslinking studies to restrict the transport domain at positions along its 
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trajectory moving towards the cytoplasm and explore the consequence on the anion channel 

function. In addition, computational simulations might also help to elucidate the importance of 

the transport domain movement for gating the channel and to identify the anion permeating 

pathway.  
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6.0  MATERIALS AND METHODS 

6.1 MATERIALS 

All chemical were purchased from Sigma-Aldrich unless specified. MTS derivatives were from 

Toronto Research Chemicals Inc.  

6.2 MUTAGENESIS 

Mutant transporters were generated based on the appropriate cDNA template using a PCR-based 

site directed mutagenesis strategy (Stratagene). PCR products were then subcloned into empty 

vectors to avoid unexpected mutations in vectors and the transporter insertions were sequenced 

using dye terminator cycle sequencing (PerkinElmer).    

6.3 CELL CULTURE AND TRANSFECTION  

COS7 cells were maintained in DMEM medium containing 10% fetal bovine serum, 100 U/ml 

penicillin and 100 U/ml streptomycin in humidified air with 5% CO2 at 37 °C. Cells were 
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passaged, plated into 24-well plates or 6-well plates, and then transfected using Fugene 6 

(Roche) or TransIT®-LT1 (Mirus Bio LLC) according to the manufacturers’ guidelines.  

6.4 XENOPUS OOCYTE PREPARATION 

Female Xenopus laevis were ordered from the following commercial vendors (Nasco, Xenopus 

1, and Xenopus Express). Late-stage oocytes (stage V-VI) were removed from the ovaries of the 

adult female. Specifically, the frog was anesthetized in a chilled 0.1% tricaine solution for 15-25 

min. Once anesthetized, a one centimeter incision through the skin and abdominal muscle was 

made to one side of the ventral midline of abdomen. Autoclaved instruments were used for the 

extraction of ovarian tissue, and harvested oocytes were defolliculated for 60-90 min with 1.5 

mg/ml type 2 collagenase (280 U/mg; Worthington Biochemical Corp) in sterile OR2 solution 

containing: 82.5 mM NaCl, 2.5 mM KCl, 1 mM MgCl2, and 5 mM Hepes, pH 7.4. After 

collagenase treatment, isolated oocytes were rinsed with OR2 and stored in ND96++ storage 

solution containing: 96 mM NaCl, 2 mM KCl, 1.8 mM CaCl2, 1 mM MgCl2, 5 mM Hepes, 50 

µg/ml of gentamicin (Invitrogen) and 100 µg/ml amikacin (Sigma-Aldrich), pH 7.4 at 17°C. 

Oocytes were checked daily for death and rinsed with fresh ND96++ solution.  

6.5 RNA PREPARATION AND OOCYTE INJECTION 

cDNA sequence transcribing wild type and mutant transporters were subcloned into an oocyte 

transcription vector (pOTV) that utilizes Xenopus 6-globin 5’- and 3’- untranslated regions 

http://www.mirusbio.com/transitlt1
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derived from pSP64T to enhance expression (18). pOTV constructs containing transporter 

cDNAs were usually linearized with BamH I and capped RNAs were transcribed by using T7 

RNA polymerase provided in mMessage mMachine kits (Ambion). Approximately 10 ng RNAs 

(50 nl) were injected into defolliculated stage V to VI oocytes with a microprocessor-controlled 

nanoliter injector (World Precision Instruments, Inc.).  The oocytes were kept at 17 °C for 2-4 

days. 

6.6 CUPH-CATALYZED DISULFIDE BRIDGE FORMATION AND DTT 

APPLICATION 

COS7 cells expressing either wild type or mutant transporters were washed with phosphate-

buffered saline (171 mM NaCl, 10.1 mM Na2HPO4, 3.35 mM KCl, and 1.84 mM KH2PO4, pH 

7.4) and then incubated for 5 min at room temperature with various concentrations of CuPh or 20 

mM DL-dithiothreitol (DTT) in phosphate-buffered saline (PBS). CuPh was generated prior to 

experimental use by mixing CuSO4 and 1,10-phenanthroline in a 1:2 ratio. For DTT application 

after CuPh treatment, cells were washed with PBS and incubated with 20 mM DTT in PBS for 

an additional 5 min. Transporter-expressing oocytes were treated with CuPh or DTT in ND96 

solution similarly as described. 
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6.7 UPTAKE ASSAYS AND TRANSPORT KINETIC MEASUREMENTS 

Uptake assays in COS7 cells were usually performed two days post transfection, except for 

experiments involving concatenated glutamate transporters (3 days post transfection). Briefly, 

cells were washed with phosphate-buffered saline solution plus 0.1 mM calcium chloride and 1 

mM magnesium chloride (PBSCM), and then incubated for 10 min at room temperature with 5 

μM L-[3H] glutamate (50 nM L-[3H] glutamate and 4.95 μM unlabeled L-glutamate).  After 

washing twice with cold PBSCM, cells were lysed in 0.1% SDS and counted in a Beckman 

scintillation counter. For Vmax and Km measurements, cells were washed once with PBSCM and 

then incubated with 7.8125, 15.625, 31.25, 62.5, 125, 250, 500, 1000 μM L-glutamate containing 

a fixed ratio of L-[3H] glutamate (1:10,000) for 10 min at room temperature. Vmax and Km values 

were determined using the Michaelis-Menten equation with the software package Prism 4.0 

(Graphpad software). Background L-glutamate uptake measured in cells transfected with the 

pCMV5 vector was subtracted for each condition. Uptake in Xenopus oocytes were performed 

similarly in ND96 solution using 5 μM L-[3H] glutamate as substrate for 15 min at room 

temperature.   

6.8 CALCULATION OF THE REACTION RATE CONSTANTS 

The reaction rate constants for CuPh-catalyzed crosslinking were determined as previously 

described (90, 151). We plot the fraction of uptake remaining (F = uptake after/uptake before) as 

a function of the concentration of CuPh and then fit to a non-linear regression equation for one 

phase exponential decay, F = Fmax × exp(-yct) - Fmin, where t is the incubation time in seconds (5 
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min), c is the concentration of CuPh reagent, and y is the second order reaction rate constant 

expressed as (M-1s-1). 

6.9 CELL SURFACE BIOTINYLATION 

Cell surface expression of transiently transfected transporters was assayed as previously 

described (152). Briefly, cells were washed with PBS and then incubated with 1.5 mg/ml NHS-

SS-biotin (Pierce) in biotinylation buffer (2 mM CaCl2, 150 mM NaCl, 10 mM triethanolamine, 

pH 8.0) for 30 min at 4 °C. For thiol-specific biotinylation assay, cells were treated with 1 mg/ml 

maleimide-PEO2-biotin (Thermo Scientific) or 1 mg/ml maleimide-biotin (Vector Labs) in PBS. 

Following the biotinlyation reaction, unreacted NHS-SS-biotin was quenched by the addition of 

100 mM glycine. Cells were then lysed on ice in 1 ml lysis buffer containing 1% Triton X-100, 

150 mM NaCl, 5 mM EDTA and 50 mM Tris, pH 7.5. The cell lysates were centrifuged at 

10,000 × g for 30 min.  The supernatants were collected and divided into two portions: a 50 µl 

aliquot was mixed with 50 µl 2 × SDS sample loading buffer to be used as total input, and the 

rest 950 µl was mixed with Ultralink Immobilized NeutrAvidin beads (Pierce) overnight at 4 °C. 

The beads were then washed and 1.3 × SDS loading buffer was added. Protein samples were 

incubated at 37 °C for 30 min before gel electrophoresis. 
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6.10 OOCYTE MEMBRANE PREPARATION 

Ooctye membranes were prepared as described by Kobilka with some modifications (105). 

Briefly, 6-12 oocytes were transferred into a microcentrifuge tube and pipetted to disrupt the 

membrane in 200 μl disruption buffer containing 7.5 mM NaH2PO4, 1 mM EDTA, 10 mM NEM 

and protease inhibitors (Roche), pH 7.4. The homogenate was then centrifuged for 5 min at 

3,000×g. The supernatant was transferred to a new tube and centrifuged at 10,000×g for 30 min. 

The yellow yolk was removed with a cotton swab and the collected membranes were dissolved 

with 40 μl disruption buffer containing 2% SDS.  

 

6.11 BLUE NATIVE POLYACRYLAMIDE GEL ANALYSIS 

BN/PAGE was carried out as described (153). Protein samples were collected from oocytes as 

described above and then homogenized in 500 μl of sucrose buffer (250mM sucrose, 20mM 

imidazole/HCl, pH 7.0). The samples were centrifuged for 10min at 10,000×g and the pellets 

were dissolved in 10% glycerol, 0.2% (wt/vol) Serva blue G, and 2% digitonin before loading 

onto 4-12% gradient native polyacrylamide gels (Invitrogen). For SDS PAGE, proteins were 

solubilized in 2% SDS and incubated at 56 ºC for 1 hr before electrophoresis. 
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6.12 WESTERN BLOTTING 

Proteins samples were generally separated on 4-12% or 8-6% Tris-glycine gradient 

polyacrylamide gels (Invitrogen), and transferred to a PVDF membrane (Millipore). Glutamate 

transporter proteins were probed with a polyclonal antibody against the C-terminus of EAAT1 

(1:1,000 dilution) (43), and other proteins such as β-actin were probed with optimized 

concentrations of antibodies. Proteins were visualized with a horseradish peroxidase (HRP)-

conjugated secondary antibody and chemiluminescent detection (PerkinElmer).  For protein 

quantitation, multiple exposures of Western blots were collected, and densitometry of 

appropriate images was performed using Image J software (NIH).  

6.13 ELECTROPHYSIOLOGY 

Two-electrode voltage clamp recordings were performed at room temperature using glass 

microelectrodes filled with 3 M KCl solution (resistance < 1 MΩ) and a Ag/AgCl wire and an 

active bath probe. An Axon Geneclamp 500B amplifier (Axon instruments) was used with 

Digidata 1322A interface. The pClamp suite of programs were used to control simulation 

parameters and for data acquisition and analysis. Oocyte recordings were routinely done in either 

frog Ringers (ND96) or anion substituted Ringers. For anion substitution experiment, NaCl was 

replaced with equal molar NaNO3 or NaSCN. We used a 3 M KCl/agar bridge to avoid offset 

voltages associated with anion buffer changes. To generate current-voltage (I-V) relationships, 

steady state currents were elicited by 150 ms voltage steps from a holding potential of -60 mV or 

0 mV over the range of -100 to +60 mV in 10 mV increments. 
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6.14 MOLECULAR DYNAMICS SIMULATIONS 

We simulated the dynamics of GltPh (PDB ID: 1XFH) embedded in a bilayer-solvent 

environment using the GROMACS program 3.2.1 with the Gromacs force field (154). The 

membrane consisted of 353 1-palmitoyl-2-oleoylphosphatidyl ethanolamine molecules, and the 

system was solvated with ~23,000 water molecules. Missing atoms on the side chains of some 

residues in the crystal structure of GltPh were constructed using Xplor (154). Constant number 

of particles (N), pressure (P), and temperature (T) conditions, with a pressure of 1 bar and a 

coupling constant of τp = 1.0 ps, were adopted. Water, protein, and lipid molecules were coupled 

separately to a temperature bath at 310 K using a coupling constant of τt = 0.1 ps. The van der 

Waals interactions were calculated using a cutoff distance of 10 Å, and long range electrostatic 

interactions were calculated using the particle mesh Ewald method. The single point charge 

model was adopted for water molecules as a plausible model for lipid simulations, along with the 

lipid parameters used for other membrane proteins (155). Simulations were preceded by energy 

minimization with steepest descent followed by equilibration periods of 200 ps during which the 

protein backbone atoms were restrained by harmonic potentials so as to allow for the packing of 

lipid molecules around the protein. The constraints were then removed for the productive runs. 

6.15 ANISOTROPIC NETWORK MODEL (ANM) ANALYSIS 

ANM analysis is a coarse-grained normal mode analysis, which models the structure as an elastic 

network with individual nodes corresponding to the α-carbons of the protein. Inter-residue 

interactions are described by harmonic potentials with uniform spring constant γ. For a protein of 
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N residues, ANM predicts an ensemble of 3N-6 modes of motion. The motion along mode k 

changes the position of residue i as 

Ri
(k)(±s) = Ri

0 ± s λk
(-½) [uk]i             (1) 

where Ri
0 is the position vector in the original (i.e., X-ray) structure, s is a parameter that scales 

the size of the deformation induced by mode k, [uk]i is the ith super element (3-dimensional 

vector) of the kth eigenvector uk (a 3N-dimensional normalized vector) of the 3N × 3N Hessian 

matrix H, and λk is the corresponding eigenvalue (3-4). [uk]i  describes the motion of residue i 

along the kth principal/normal coordinate, and λk
(-½) scales with the frequency of the kth mode, 

such that lower frequency modes make larger contributions to Ri
(k). The lowest frequency modes, 

also called the softest modes, define the mechanisms of global reconfiguration intrinsically 

favored by the molecular architecture under physiological conditions. Here we carried out the 

ANM with default parameters based on the Gltph outward-facing structure (PDB ID: 1XFH), 

inward-facing structure (PDB ID: 3KBC), and models constructed for intermediate states (see 

below). 

6.16 MODELING THE STRUCTURE AND DYNAMICS OF INTERMEDIATE 

STATES 

Intermediate structures are constructed by assembling the individual inward-facing or outward-

facing subunits upon superimposition of their trimerization domains. The difference between any 

pair of structures (including the experimentally observed all-outward or all-inward states, and the 

modeled/assembled intermediate states) is quantitatively described by a 3N-dimensional 

deformation vector d, evaluated by overlaying the two structures to remove rigid-body 
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translations and rotations. The correlation between the kth mode of motion predicted by the ANM 

and the deformation d is given by cos(uk, d) = uk . d/|d| where |d| is the magnitude of d, and uk is 

the kth eigenvector calculated for the starting structure. The cumulative overlap between a subset 

of soft modes (m of them) and the observed/modeled structural change d is given by  

Ocum(m) = [∑ 𝑐𝑐𝑐𝑐𝑠𝑠2(𝒖𝒖𝑘𝑘 ,𝒅𝒅)𝑚𝑚
𝑘𝑘=1 ]1/2    (2) 

By definition, Ocum(m) sums up to unity for m = 3N-6, because the 3N-6 eigenvectors form an 

orthonormal basis set that spans the space of conformational changes. In the extreme case of 

completely random modes, which are uncorrelated with d, Ocum(m) = (m/3N-6)1/2. This 

relationship defines the control curves in panels C and D of Figure 6. High cumulative overlaps 

achieved by a small subset of low frequency modes indicate the accessibility of the structural 

changes via soft (energetically favorable) motions.   

6.17 DATA ANALYSES 

All experiments reported were repeated a minimum of three times with similar results. Data were 

presented as mean ± SEM and were analyzed using student’s t-test or one-way ANOVA 

followed by Bonferroni’s multiple comparisons test using the software package Prism 4.0 

(Graphpad software). p<0.05 was considered to be statistically significant.  
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