SCALABLE PROCESSING OF MULTIPLE AGGREGATE
CONTINUOUS QUERIES

by
Shenoda Guirguis
M.Sc. in Computer Science, University of Pittsburgh, 2010
M.Sc. in Computer Science, Alexandria University, 2006
B.Eng. in Computer Science and Engineering, Alexandria

University, 2001

Submitted to the Graduate Faculty of
the Department of Computer Science in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh
2011

UNIVERSITY OF PITTSBURGH

DEPARTMENT OF COMPUTER SCIENCE

This dissertation was presented

by

Shenoda Guirguis

It was defended on
August 23, 2011
and approved by
Panos K. Chrysanthis, Professor, University of Pittsburgh
Alexandros Labrinidis, Associate Professor, University of Pittsburgh
Kirk Pruhs, Professor, University of Pittsburgh
Mohamed Mokbel, Associate Professor, University of Minnesota
Mohamed Sharaf, Assistant Professor, The University of Queensland
Dissertation Advisors: Panos K. Chrysanthis, Professor, University of Pittsburgh,

Alexandros Labrinidis, Associate Professor, University of Pittsburgh

Copyright© by Shenoda Guirguis
2011

SCALABLE PROCESSING OF MULTIPLE AGGREGATE CONTINUOUS QUERIES
Shenoda Guirguis, PhD

University of Pittsburgh, 2011

Data Stream Management Systems (DSMSs) were developed to be at the heart of every monitor-
ing application. Monitoring applications typically register hundreds of Continuous Queries (CQs)
in DSMSs in order to continuously process unbounded data streams to detect events of interest.
DSMSs must be designed to efficiently handle unbounded streams with large volumes of data and
large numbers of CQs, i.e., exhibit scalability. This need for scalability means that the underlying
processing techniques a DSMS adopts should be optimized for high throughput (i.e., tuple output
rate). Towards this, two main approaches were proposed in the literature: (1) Multiple Query Opti-
mization (MQO) and (2) Scheduling. In this dissertation we focus on optimizing the processing of
multiple Aggregate Continuous Queries (ACQs), given their high processing cost and popularity

in all monitoring applications.

Specifically, in this dissertation, we explore shared processing of ACQs and introduce the con-
cept of Weaveability’as an indicator of the potential gains of sharing the processing of ACQs. We
developWeave Sharea multiple ACQs optimizer that considers the different uncorrelated factors
of the processing cost, such as the input rate and ACQs’ specifications. In order to fully reap the
benefits of the new weave-based optimization techniques, we conceptualize a new underlying ag-
gregate operator implementation and realize it inTh®ps framework. TriOps enables adaptive
sharing of multiple ACQs that have different window specification, predicates and group-by at-
tributes. The properties of the proposed techniques are studied analytically and their performance
advantages are experimentally evaluated using simulation and in the context of the AQSIOS DSMS

prototype.

Keywords Data Streams Management Systems, Continuous Queries, Query Optimization, Scal-

able Processing, Aggregation, AQSIOS, Weaveability.

TABLE OF CONTENTS

PREFACE e e Xiv
1.0 INTRODUCTION e e e e e e e e 1
1.1 ApproachandChallenges 4

1.2 Contributions. 7

2.0 BACKGROUND AND RELATEDWORK 11
2.1 Data Stream Management Systems. 11

2.2 AggregationoverDataStreams. 15
221 ACQSemantiCsS i 15

2.2.2 ThePaired WindowTlechnique. 16

2.2.3 SharingMultiple ACQS e 19

2.2.3.1 Shared Time Slices. 19

2.2.3.2 SharedDataShards 21

2.2.3.3 Intermediate Aggregates.o 22

2.3 Experimental Platform 23

2.4 OtherRelated Work. 25

25 Summary. . ..o e e 27

3.0 WEAVE SHARE: EXPLOITING WEAVEABILITY TO OPTIMIZE ACQS ... 28

3.1
3.2
3.3
3.4
3.5

Motivation 28
Formalization. 32
Weaveability e e 33
Challenges of Grouping Multiple ACQs. 34
TheWeave Shar@lgorithm, 35

Vi

4.0

5.0

3.5.1 Weave Sharby Example. 37

3.5.2 Sharing AVERAGE ACQS. i it 39
3.5.3 Varying Predicatesand Group-by L. 40

3.6 Implementation Optimizations of thgeave Shar®ptimizer. 41
3.6.1 Optimization I: CostLookup.. 43
3.6.2 Optimization Il: Edges Bitmap.. 44
3.6.3 Optimization lll: Probing Reorder.. 45

3.7 Evaluation e, A5
3.7.1 Quality of Weave SharePlans 46
3.7.1.1 Number of ACQs (Fidl2to14) 46

3.7.1.2 InputRate (Figl6) 49

3.7.1.3 Maximum Overlap Factor (Fig7) 50

3.7.1.4 Slide Skewness (Fi§8) 52

3.7.2 Theoretical LowerBound., 52
3.7.3 Impactof Optimizations. 53

3.8 Summary. e e 54
INCREMENTAL Weave Share it 56
4.1 Adding New ACQS. o e 56
4.2 Deleting ACQS. e e e 58
4.3 Weaved Plans Switching 59
4.4 Frequency of ACQs additionsand deletions 59
4.5 Adaptingto ChangesininputRate 60
4.6 Evaluation L 61
A7 SUMMANY. . . . o e e e e e e e e e e e e e 64
TRIOPS: THREE-LEVEL PROCESSING MODEL 65
5.1 Motivation e 65
5.2 TriOpsandTriWeave. i i e e e e e 66
5.2.1 TriOpsProcessingModel 66
5.2.2 TriOpsCostand Advantages v v v v i v i 68
5.2.3 TriWeaveOptimizer. e e 70

Vil

5.3 TriOps Windows and Predicates. 71
5.3.1 Drawbacks of Integrating Shared Data Shards TechniquaNe#ve Share 72

5.3.2 TriOps Handling Different Predicates 73

5.4 TriOps Windows, Predicatesand Group-by. 76
54.1 Windowsand Group-hy. 76

5.4.2 Windows, Predicates and Group-hy. 79

5.5 GeneralizedriWeaveOptimizer. e 79
5.5.1 ImpactofPredicatesonWeaving 80

5.5.2 TheAlgorithm 81

5.6 Evaluation 82
5.6.1 Experimental Platform 82

5.6.2 TriOpsPerformance e 84

5.7 Summary. 86

6.0 AQSIOS 3.0: REALIZATION OF WEAVE SHARE 89
6.1 The AQSIOS DSMS Prototype. o et e 89

6.2 Challenges. 90

6.3 Evaluation 94
6.3.1 PerformanceUnd&R 94

6.3.2 PerformanceUndé&tR 98

6.3.3 The Optimizer Performance 98

6.4 SUMMAIY. e 100

7.0 CONCLUSIONS AND FUTUREWORK 101
7.1 Summary of Contributions 101

7.2 Impactofthis Dissertation 103

7.3 Future Work 104
7.3.1 Generalization: Optimizing Complex CQs with ACQs. 104

7.3.2 SynergywithotherModules 105
APPENDIX A. ADAPTING LOCAL SEARCHTECHNIQUE 106
APPENDIX B. AQSIOS 3.0 RELATEDCODE 108
B.0.3 AddingWeave Shar®ptimizer, 108

viii

B.0.4 Adding New Operators v i it

B.0.5 Adding Support for Sliding Windows atmileave Share

BIBLIOGRAPHY

A W N P

LIST OF TABLES

Queries parameters. e e e 24
Experimental Parameters 25
Weave Sharby example - windows’ specifications. 39
Summary of New and Modified Code. 109

© 00 N o o B~ W N P

N NN R R R R R R R R R R
N B O © 0 N O U1 A W N B O

LIST OF FIGURES

DSMS Architecture.. 12
Paired Windowtechnique e 18
Sharing the partial aggregations. oL 19
Example3: stretching slides, merging edges, and sharedplan. 21
Intermediate Aggregatestree 22
SharevsNo Share. 31
Weave Sharby example - Iterations d\Veave Shate 38
Sharing AVERAGE ACQS. o e e 40
AniInstanceofaWeaved Plan. L. 41
CostLookup Table 44
Edges Bitmap and Probing Process, 45
Impact of #ACQs: Low input rate (50 tuples/sec) a7
Impact of #ACQs: Medium input rate (300 tuples/sec) 47
Impact of #ACQs: low, medium and high inputrates 48
Number of Execution Trees 49
Impact of Input Rate - different#of ACQs 50
Impact of(2,,,,.: differentrates 51
Impact of Slide Skewness e 53
Optimizations’ Benefits. 54
Incremental vs offlin®Veave ShareDeviation. 61
Incremental Weave Shar®©verhead 62
Incremental Weave Shardeviation 63

Xi

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Incremental Weave Shar®©verhead 64
TriOpsShared Processing Scheme 67
Inverted Predicate Signatures Structure oL 73
TriOps- Windows and Predicates, 74
Fragment-signature pairs that belong to the same fragment. 75
Aninstance of FOurACQS e 77
IntegratingTriweavePlan with Intermediate-aggregates Tree. 78
TriWeavePlan - Varying Windows, Predicates, and Group-by. 80
TriwWeaveperformance gain - Impactof InputRate. 83
UsingTriOpsprocessing for different plans (50 tuples/sec). 84
Triweave- Impact of Input Rateand No. of ACQs 85
UsingTriOpsprocessing for different plans (300 tuples/sec) 86
UsingTriOpsprocessing for different plans (10K tuples/sec) 87
Current ACQqueryplan 91
The Weaved QueryPlan. 93
Cost-50tuples/sec. e e e 95
Cost-300tuples/sec. e 95
Simulation results for 300 tuples/sec 96
Average Response Time - 300tuples/sec 96
Average Response Time - 50K tuples/sec 97
Average Response TiméiR scheduler - 50K tuples/sec. 97
Number of Execution-Trees WWeave Share. 99
Weave Shar®ptimization Time. 99

Xli

A W N P

LIST OF ALGORITHMS

TheWeave Shardlgorithm 36
Thelncremental Weaved Sha#dgorithm 57
TheTriWeaveAlgorithm 71
GeneralizedriWeaveOptimizer o 88

Xiii

PREFACE

No dream comes true without generous support of people and institutions. | am very grateful to the
organizations that financially supported this work. Namely, the US National Science Foundation
partially supported this work through out the NSF awards 11S-0534531 and 11S-0746696, and the
University of Pittsburgh also partially supported this work through the School of Arts and Science
Departmental Fellowship and by an Andrew Mellon Predoctoral Fellowship.

| am also truly very grateful to all the people who supported me throughout the years. First of
all, am grateful to my advisers, Panos K. Chrysanthis and Alexandros Labrinidis, who were to me
not only advisers, but dear friends. | did learn a lot from them academically as well as personally.
Their patience, hard work, pastorship of the work, and their being a model to follow were the
main reasons behind my success. Sincere thanks are due to my PhD Committee memebers for
their insightful and constructive feedback. Thanks are due to faculty members of the Computer
Science department, each taught me something to treasure for the rest of my life. | am also very
thankful and grateful to my family, my parents and my two brothers, without whom support and
encouragement during hardships | would not have been able to reach to this successful stage. And
thanks to the many colleagues and friends who made this journey of graduate school, a pleasant
one.

And above all, | am thankful to God, Jesus Christ, Who is always there whenever | need Him.

Xiv

1.0 INTRODUCTION

Data Stream Management Systems (DSMSs) deviate completely fr@toteethen-querparadig-

m of traditional database management systems (DBMS). In a DSMS, it is the queries that are stored
or registered ahead of time, while the data arrives and is processed without the need for storing it
first. DSMSs were developed to be at the heart of every monitoring application, from environmen-
tal monitoring, to patient care and outbreaks of disease detection, to network and financial market
and cosmic phenomena monitoring (e.6,,3, 7, 2, 73, 77, 39, 74, 56, 22]).

Monitoring applications registé&ontinuous Querie€CQs) in DSMSs in order to continuously
process unbounded data streams to detect events of interest. DSMSs are designed to efficiently
handle unbounded streams with large volumes of data and large numbers of CQs, i.e.seahibit
ability. Thus, optimizing the processing of multiple continuous queries is imperative for DSMSs
to reach their full potential.

In a typical monitoring application, hundreds of Aggregate Continuous Queries (ACQs) are
normally registeredq9] to monitor few input data streams. In fact, more than often, these ACQs
are also computing the exact same aggregate function, but may have slightly different specifica-
tions. In particular, there are three characteristics that can vary among similar ACQs: (1) the
window-specifications, (2) pre-aggregation filters (i.e., predicates) and (3) group-by attributes.

For example, a network monitoring application could employ three ACQs to monitor the IP
traffic, all of which could compute th€OUNTof incoming packets. While the first ACQ could
report the count in the last minute, updated every five seconds, the second and third ACQs could
report the count in the last minute, to be updated every half minute. Further, the first ACQ might
be interested in the count of IP traffic originating from a specific source, i.e., have a predicate
that the source IP has a certain value. The second and third ACQs, on the other hand, might be

counting all received packets, but have them grouped by source IP and destination IP, respectively.

Given the proliferation and similarity of ACQs, and given the high data arrival rates, optimizing
the processing of ACQs is crucial for scalability.

The need for scalability means that the underlying processing techniques a DSMS adopts
should be optimized for high throughput (i.e., tuple output rate). Towards this, two main ap-
proaches were proposed in the literature: Ql)ery processing optimizatiofe.g., {6, 47, 45,

81, 28, 29]) and (2)Schedulinge.g., [L1, 70, 30]). While query processing optimization aims at
minimizing the processing delays, scheduling on the other hand aims to dynamically decide which
operator to execute next in order to minimize queuing delays. In this dissertation, we focus on
optimizing the processing of multiple Aggregate Continuous Queries (ACQSs).

Towards optimizing the processing of ACQs, two categories of optimization techniques have
been proposed in the literature: (1) efficient implementation of individual continuous operators and
(2) multiple query optimization (MQO). Efficient implementation aims to adopt the most efficient
techniques an operator can utilize to perform its task. On the other hand, MQO aims to generate
guery execution plans, typically statically, in order to minimize the tuple processing delay. The
query execution plan consists of the operators of the submitted CQs and their execution order
based on their interdependency.

Under the first category of techniques (i.e., operator implementafanfjal Aggregatiorhas
been proposed to minimize the repeated processing of overlapping data windows within a single
ACQ (e.g., B6, 47, 29, 45]). In particular, thePartial Aggregationprocessing scheme aims at
processing each input tuple only once and assemble the final aggregate value from a set of partial
aggregate values. In this scheme, ACQ processing is modeled as a two-level (i.e., two-operator)
guery execution plan: in the first level a sub-aggregate function is computed over the data stream
generating a stream of partial aggregates, whereas in the second level a final-aggregate function is
computed over those partial aggregates.

Under the second category of techniques (i.e., multiple query optimization), the general princi-
ple is to minimize (or eliminate) the repeated processing of overlapping operations across multiple
ACQs. This repetition occurs as a result of processing the same data by different queries, which
exhibit an overlap in at least one of the three specifications, as mentioned earlier: (1) window
specifications, (2) predicate conditions, or (3) group-by attributes.

In general, MQO is well known to be NP-hard for traditional database systerms$ well

as for DSMSs 83]. Therefore, MQO techniques are typically based on heuristics that aim to
share the processing obmmon sub-expressioasiong the execution plans of the various queries.
This raises the challenge of identifying which sub-expressions are beneficial to share, if any
[85, 42]. The optimization of multiple ACQs goes beyond the classic identification of common
sub-expressions to exploiting the window semantics, the overlap of predicates, the overlap of the
group-by attributes, and theartial Aggregation this is the challenge we are addressing in this

dissertation.

On one hand, leveraging overlaps in predicate conditions and group-by attributes across dif-
ferent queries has been the focus of intense research in classical multiple query optimization. On
the other hand, the shared processing of overlapping windows is a new area of research that has

emerged with the paradigm shift for handling continuous queries with the use of scalable DSMSs.

A first step towards optimizing multiple ACQPRartial Aggregationhas been utilized to share

the processing of multiple similar ACQs with different windows and predicates, but same group-by
attributes, assuming it is always beneficial to share the partial aggregéfonrhe assumption

that it is always beneficial to share is based on the premise that data arrival rate is the predomi-
nant factor in determining the sharing decision, where a high rate is always a precursor for plan
sharing. It is also based on the observation that, in most practical applications, data streams do
in fact exhibit a high rate. This approximation, however, considers only one facet of the problem
(i.e., the characteristics of data streams) while diminishing the impact of the other facet (i.e., the

characteristics of the registered ACQSs).

Orthogonally, 9] proposed an extension to the classical subsumption-based multiple query
optimization techniques towards sharing the processing of multiple ACQs with varying group-
by attributes, but similar windows and predicates. This technique utiPzesal Aggregation
in a hierarchical fashion (i.e., more than two levels of aggregate operators). Regardless of the
differences between the above multiple query optimization techniques, they all rely on the same

concept of partial aggregation.

Given the crucially of optimizing the processing of multiple similar ACQs, and given the lack
of a general technique that handles all different cases, one is intrigued to ask the following ques-

tions.

Q1. In addition to the data streams input rate, what other factors of the workload characteristics and
ACQs properties affect the cost of a shared query plan? And more importantly, how do these
factors interact with each other to affect the cost of a query plan?

Q2. Given our understanding of how the factors that affect the cost of the shared plan interact, can
we design a multiple ACQs optimizer that considers all these factors while making the sharing
decision? Could this new optimizer comprehensively handle all three cases of variability in the
ACQs specifications (i.e., windows, predicates and group-by attributes)?

Q3. Given that ACQs are added to, and deleted from, the DSMS over time, and given that input
rates also fluctuates, what is the best adaptive sharing strategy? In other words, when the
workload characteristics changes, should the query plan be recomputed or be incrementally
updated?

Q4. Is the currently widely-acceptdeartial Aggregatiortechnique the best continuous aggregation

operator implementation for the shared processing of multiple ACQs?

In this dissertation, in answering the above questions, we argue that the properties and speci-
fications of the installed ACQs are of equal importance to the workload characteristics (i.e., input
rate and number of ACQs) in determining the sharing decision. In fact, the main thesis of this
dissertation is thantelligent shared processing of ACQs that (1) considers all factors that affect
the processing cost of ACQs and (2) handles all cases of variability in ACQs specifications, is the
key solution for achieving scalability in DSMS¥%Ve discuss our approach to address the above

guestions next.

1.1 APPROACH AND CHALLENGES

The objective of this dissertation is to identify the best strategies a DSMS should adopt in order
to optimize the processing of ACQs, to achieve the desired level of system scalability. Towards
achieving this goal, this dissertation tries to answer the main four intriguing questions mentioned
above. Briefly, we first study the interaction between the properties of ACQs and the characteristics

of the workload that affect the cost of the shared processing of ACQs. Once we understand the

interaction between the different factors, we can devise a multiple ACQs optimizer that utilizes
this knowledge. Then, given the insights gained from the previous step, we explore the efficient
processing schemes searching for an efficient scheme that is more suitable for shared processing
and that is efficiently adapting to changes in the workload. Finally, we revisit the multiple ACQs
optimization problem given the new processing scheme. Below, we detail these steps and the

challenges involved with each step.

Addressing Q1: What other factors of the workload characteristics and ACQs properties

affect the cost of a shared query plan?

To address this question, we first formulate the problem and build the cost model of the shared
guery plan. Given this cost model, we can identify the tradeoffs involved in optimizing the shared
processing of multiple ACQs. We can further study the tradeoffs by performing a thorough ex-
perimental analysis which considers many different settings of the workload parameters. Once we
identify the tradeoffs, the hope is to develop a formula that captures the interaction between the

different workload characteristics that affect the cost of the shared query plan.

Challenge: Uncorrelated Factors

We observed that the most challenging part in this task is that the performance of an aggregate
operator relies on a set of uncorrelated, and sometimes contradicting, factors. These factors are the
input arrival rate, the size of the workload (i.e., number of ACQs), as well as per ACQ specifica-
tions (e.g., window specifications, predicate and group-by attributes). The effect of these factors
varies depending on the underlying single ACQ processing scheme. For exampléantidieAg-
gregationprocessing scheme not only the number of ACQs, but also which ACQs are being shared
affects the processing overhead. Unfortunately, all these factors are not correlated. Prior work in
multiple ACQ optimization has considered only one factor. Therefore, there is a need for solutions

that consider all factors comprehensively in order to achieve the best possible performance.

Addressing Q2: Can we design a multiple ACQs optimizer that considers all these factors
comprehensively while making the sharing decision?
Once we have devised a formula that captures the interaction of the different factors that affect the

cost of processing ACQs, we search for an optimizer that utilizes this formula. We first consider

the simple case where all similar ACQs vary in window specifications only. Then we consider the
more general case when ACQs can arbitrary vary in any specification, i.e., windows, predicates

and group-by attributes.

Challenge: Exponential Search Space

As it is the case with traditional multiple query optimization (MQO), finding the optimal query
plan of multiple ACQs, given a set of workload parameters, is an NP-Hard prot@@ém [n

terms of search space, the number of possible plans is exponential in the number of ACQs. The
research community has investigated several heuristics to approximate the optimal query plan in
both traditional MQO (e.g.,q6]) as well as in multiple ACQs (e.g.8B]). The challenge is to
develop a multiple ACQs optimizer that efficiently prunes the search space without compromising

the quality of the generated query plan.

Addressing Q3: To recompute or not to recompute?

Given that the factors that affect the cost of a query plan, in addition to being uncorrelated, are
dynamic, i.e., change over time, we investigate how to adapt the query plan efficiently. We consider
different options between over-provisioning and recomputation from scratch in order to find the

best online strategy.

Challenge: Quality versus overhead tradeoff

There are many factors that are dynamic. The stream arrival rate is known to be of bursty nature.
ACQs can be added and deleted on demand, at run time. This further complicates the task of
finding the optimal query plan and calls for solutions capable to adapt to workload changes in real
time. That is, the optimizer should be able to choose the best way to update the query plan when
faced with different types of changes, balancing the tradeoff between the quality of the query plan
and the overhead needed to compute the updated plan or to recompute the new query plan from

scratch.

Addressing Q4: Is thePartial Aggregationtechnique the best continuous aggregation opera-

tor implementation?

Based on the experience of developing a new optimizer, we investigate whether we can improve
the underlying aggregation operator processing scheme. Specifically, we reviBdrtted Ag-

gregationscheme to devise a new scheme that better suits the new sharing scheme (i.e., the new

optimizer), and the dynamic nature of the problem. Given this new sharing-friendly processing
scheme, we revisit the multiple ACQs optimizer to explorer potential chances for further improve-

ments.

Challenge: Multiple dimensions to optimize for

The new processing scheme should be designed to optimize the shared processing of similar ACQs
that have arbitrary different specifications. The challenge is that it is unclear which dimension of
these specifications should the new scheme prioritize to optimize for to promote sharing. Further,
in such dynamic environment of changing workload characteristics, the new processing scheme

should be online by design, i.e., support adaptive optimization of multiple ACQs.

1.2 CONTRIBUTIONS

In this dissertation, we address all the above challenges and make contributions to the theory and
practice of efficient processing of multiple ACQs in DSMSs alike. We identify the sharing tradeoff
and introduce the concept dfleaveabilityof ACQs. TheWeaveabilityof a set of ACQs is an
indicator of the potential gains from sharing their processing.

We then propos#Veave Sharea cost-based multiple ACQs optimizer, which exploits weave-
ability to optimize the shared processing of multiple ACQs that vary in window specifications
only. Weave Sharselectively groups ACQs into multiple execution trees to minimize the total
plan cost by considering all factors that affect the cost of the shared query plan. We experimen-
tally evaluate and analyze the performancéAgave Sharén terms of quality of the generated
plans using all possible settings of workload characteristics. Our experimental analysis shows that
Weave Shargenerates up to four orders of magnitude better quality plans compared to the best
alternative sharing schemes. We develop and experimentally evaluate a practical implementation
and several optimizations that dramatically improve the efficiency oftbave Shareptimizer in
generating high quality plans.

Given theWeave Shareptimizer, and in order to efficiently handle the addition and deletion of
ACQs in an online fashion, we propoberemental Weave Shatkat efficiently weaves the new

ACQs into the execution trees of an existing plan, as long as the quality of the query plan is not

compromised, i.e., remains within specified tolerance limit€remental Weave Shalmlances

the tradeoff between quality and efficiency by triggering a recomputation from scratch whenever
the quality of the incrementally maintained query plan deteriorates beyond a certain threshold. We
experimentally evaluateicremental Weave Shaamd perform sensitivity analysis of the threshold

with respect to performance.

To fully reap the benefits of the neWeave Sharenultiple ACQs optimizer, we investigate a
new underlying aggregate operator implementation. This implementation allows more flexibility
in the data flow between the sub-aggregation and final-aggregation levels so that partial aggregate
results are easily pipelined to different final-aggregate operators, or equivalently, to different trees
of operators as in the case\WwWeave ShareSpecifically, we propos&iOps a new aggregate opera-
tor implementation that works in synergy with the né&gave Shareptimizer towards minimizing
the total cost of processing multiple ACQ3$riOps employs a novel three-level data processing
model that minimizes the repetition of operations at the sub-aggregate level. GivérQips
framework, we proposé&riWeavea TriOps-aware multiple ACQs weave-based optimizer. We ex-
perimentally demonstrate the performance gains providetrivyeaveand show it is superior to

other alternatives including/eave Sharbased on the two-levélartial Aggregationtechnique.

In addition to those gains[riOps still maintains all the attractive features of the two-level
aggregation model, which allows it to directly incorporate traditional multiple query optimization
techniques for exploiting overlapping predicates and group-by attributes. As such, we generalize
TriWeaveo integrate the classical subsumption-based multiple query optimization techniques (i.e.,
overlapping predicates and group-by attributes) with the new weaveability-based multiple ACQs
optimization.

A design goal of all solutions proposed in this dissertation is to adapt to changes in workload
characteristics in an online fashion. TheOpsframework enables a smooth and efficient query
plan switching and, therefore, enables adaptivity to changes to all workload settings.

We extended the AQSIOS DSMS prototyi 19], which implement3Neave Sharand the
two-operators shared processing scheme. Previous version of AQSIOS did not support sliding
windows, a serious shortage. Our realizationVdgave Sharand the two-operator processing
scheme introduces the support for the sliding windows. The basic evaluatideadfe Sharen

AQSIOS confirmed our simulation results. Finally, the implementatioNedve Shars AQSIOS

(v. 3.0) sets up the stage for future studies, in a real-system, of the synergy between the query
optimizer and the other DSMS modules, such as the scheduler, load shedder and admission control.
The interaction with the scheduler is particularly important given the underlying two-operators
scheme, where each operator is typically scheduled independently. As mentioned earlier, different
scheduling techniques and query optimizers have been proposed independently to optimize the
performance of ACQs. It is crucial that the different adopted techniques for the different DSMS
modules work well together to avoid the undesired situation where the optimization efforts of one
module, e.g., scheduler, are canceled by the optimization efforts of another module, e.g., query
optimizer. AQSIOS 3.0 is expected to enable the design of new synergistic strategies among the

DSMS modules.

In summary, the contributions of this dissertation are:

e Weaveability a new concept that captures the potential gains from sharing the processing of
multiple ACQs. We introduce the concept of weaveability after we identify and demonstrate
the tradeoffs in optimizing the shared processing of multiple ACQs.

e Weave Sharea new multiple ACQs optimizer that comprehensively considers all cost factors
and applies to ACQs with different window specifications as well as different predicates.

¢ Incremental Weave Sharthe online version ofVeave Sharthat efficiently handles the addi-
tion and deletion of ACQs.

e TriOps, a new aggregation processing scheme that is designed to optimize the shared pro-
cessing of ACQs that can vary in any specification (i.e., window, predicates or group-by at-
tributes). TriOpsalso enables efficient adaptive processing to changes in the workload in terms
of changes in the input rate and addition or deletion of ACQs.

e AQSIOS 3.0, which is our realization §¥¥eave Shareptimizer in the AQSIOS DSMS proto-
type.

e Extensive performance evaluation and sensitivity analysis of multiple ACQs optimization tech-

niques using the developed simulation platform and the AQSIOS prototype.

Road map: The rest of the dissertation is organized as follows: the background and related work
are discussed in Chapt2r In Chapter3 we define weaveability of ACQs and how to exploit it to
achieve better plans using théeave Shareptimizer. The online incremental version \éleave
Sharethat handles the addition and deletion of ACQs is discussed in Chaptée then propose

TriOps a new aggregation processing scheme, that enables adaptive weaving of stream aggregation
with different window specifications, predicates and group-by attributes in ChapleiWeave

the generalized multiple ACQs optimizer that utiliZE#Opsis also presented in ChapterThen

we summarize the realization of our proposed solutions in AQSIOS prototype in Cleaptés

finally conclude the dissertation discussing the future work and how to generalize our proposed

weaving techniques to handle more complex CQs in Chapter

10

2.0 BACKGROUND AND RELATED WORK

In order to set up the stage for the rest of this dissertation, in this chapter, we first furnish the
necessary background on data streams management systems (DSMSs). Second, we discuss oul
assumed underlying model for aggregation over data streams. Then we describe our experimental
platform. Finally, we provide a survey of other related work on Aggregate Continuous Queries

(ACQs) processing.

2.1 DATA STREAM MANAGEMENT SYSTEMS

As mentioned in the Introduction chapter, DSMSs deviate completely fromsttiie-then-query
paradigm of traditional database management systems (DBMS). Specifically, in a DSMS, the con-
tinuous queries are registered ahead of time and continuously process arriving data. The data,
therefore, need not to be stored except for archival purposes. Data arrives in the form of unbounded
streams from different data sources, where the arrival of new data is similairieeationopera-

tion in traditional database systems. A DSMS is typically connected to different data sources and
a single data stream might feed more than one query.

That is, in DSMSs, users of monitoring applications register Continuous Queries (CQs) which
continuously process unbounded data streams looking for data that represent events of interest
to the end user. DSMSs are designed to efficiently handle such large and burst volumes of data
and large number of continuous queries. That is DSMS are designed to exhibit scalability, while
at the same time providing fast response times. Towards developing a scalable DSMS, several
prototypes have been proposed (e.6,.3 7, 2, 39, 56]) as well as several commercial products
(e.q.,[73, 77, 39, 74, 56, 22)).

11

Scheduler |

Load Shedder |

|
Admission Control |
T |

.| Query
Optimizer

Memory Manager |

v

- users submit CQs
Monitoring Q

Applications [

v

Results Dissemination

Stream sources

Figure 1:.DSMS Architecture.

The typical architecture of a DSMS is illustrated in Figdrevhich shows the main modules
of the DSMS, namely, thQuery Optimizer Query SchedulerBuffer/Memory ManagerLoad
ShedderAdmission ControhndResults Disseminatioe now briefly describe the functionality

of each of these modules.

As CQs are registered to the DSMS, Qaery Optimizeis invoked to generate an optimized
CQ evaluation plan that minimizes the processing overhead. A CQ evaluation plan can be concep-
tualized as a data flow tre&3, 11] (e.g., the Query Plan in Figur®. The nodes are operators
that process tuples and edges represent the flow of tuples from one operator to another. An edge
from operaton; to o, means that the output of is an input ta;. Each operator is associated with
a queuewhere input tuples are buffered until they are processed. A continuous query evaluation

plan is usually, and in this dissertation hereatfter, referred to azecution treas well.

Optimizing the execution tree to minimize the processing overhead is achieved in two lev-
els. First is optimizing the query plan of a single CQs by applying traditional query optimization
heuristics, such as pushing selections and projections down the execution tree. Second, at a more
global level, is the multiple query optimization, which exploits common sub-expressions among
the individual query execution trees to avoid repeating processing of the same operators on the

same data.

12

The query optimizer also utilizes as much information available about the data semantics and
meta-data, whenever available, to generate the most possible efficient evaluatiddZpl&irice
the data semantics (e.g., data ranges and distributions) and meta-data (e.g., workload settings such
as arrival rate and CQs) change over time, a continuous adaption of the query evaluation plan is
also neededd0, 49, 9, 10.

Once the query plan is generated, the DSMS utilizesSttteeduleto chose the order at which
CQ operators shall be executed. Different metrics have been proposed to capture the requirements
of difference monitoring applications. Different scheduling algorithms are needed to optimize, at
run time, the execution of the queries for the different metrdds 70]. Two categories of metrics
have been utilized, namel@uality of ServicdQoS) metrics anQuality of Data(QoD) metrics.
The most common QoS metric is thessponse timewhich is the time span between when an event
of interest occurs (i.e., a data tuple arrives) and when it was produced as an output of the interested
CQs (i.e., all CQs that this input tuple is part of their outpDtxta freshneson the other hand, is
usually used to capture the QoD of the output.f, [69], the output tuple is fresh if and only if it

is still valid, i.e., no overwriting output tuple is due.

The Scheduleiis also sometimes utilized as a query optimizer, in the sense that it is used to
synchronize the execution of operators that share partial proce8§i28[81] to avoid repeating
that processing and minimize the memory used for storing intermediate resijlts [

TheMemory Manage(Buffer Manageyrole is to dynamically allocate memory buffers to dif-
ferent queues and operators. Shared queues to store intermediate results among different operators
are typically utilized 14]. The memory manager is a crucial module, given the memory intense
nature of the DSMSs. That is, given the real-time requirements of the monitoring applications
DSMSs support, all data should fit into main memory (similar to main-memory databases). Since
a DSMSs support a large number of registered CQs, as well as the large and bursty volumes of input
data streams, main memory could become a bottleneck. This memory intense nature might lead to
overloading situations, where the DSMS might fail to meet the promised performance guarantees.

In such cases, load shedding is employed to resolve this i8s48, [65, 64, 79].

Load shedding is one of the two approaches to load management in a DSMS. Under overload-
ing situations, thé.oad Sheddemodule would select certain tuples to discard without processing

them in order to reduce the memory and processing requirements at the moment. This is per-

13

formed on the hope that by reducing the load, the DSMS could meet the QoS guarant@ég [
Typically this comes at the expense of deteriorating the QoD. Thus, the load shedder main goal is
to improve the QoS while minimizing the deterioration of the QoD. Semantics of the input data

streams could be utilized to better select which tuples to sh&dbf, 65].

Orthogonal to load sheddingydmission Controtries to avoid overloading situations. The
Admission Controimodule would decide which CQs to admit into the DSMS, so that to minimize
the chances for the system to run into an overload situation AGih@ssion Controinodule would
selectively admit CQs to be registered into the the system, given the system capacity, in order to
guarantee the promised QoS and QoD. One can regafAdiinéssion Controas avoidance scheme,
while theLoad shedders a detect and resolution scheme. 32][a game theoretic approach was
proposed to pick the set of CQs to admit in a way to maximize the system profit while maintaining

user satisfaction.

The Results Disseminatdask is to timely return query results to users. Each ACQ is associ-
ated with a socket, or network connection, which has a limit depending on the multi-programming
level (MPL) of the system. The objective of tResults Disseminataos to prioritize results deliv-
ery, i.e., scheduling the connections, in order to minimize the response time as perceived by the
end user. In a wireless setting, whenever the delivery media is a broadcast netwdRksthes
Disseminatorlso schedules the delivery of the results with the objective of minimizing the energy

consumption$l, 62].

Thus far, we have described the different main modules of a general purpose DSMS. In addi-
tion, there is a lot of work done in specialized DSMSs, such as for spatio-temporal applications
[56, 58, 5, 55]. For example, PLACEJ6, 57] and its extension SOLESP] presented a scalable
scheme of processing moving queries over a stream of moving objects. Moving queries are spatio-
temporal queries with continually changing (i.e., moving) spatio-temporal predicates. PLACE
[56] is a location-aware database server that utilizes a set of spatio-temporal operators 5SOLE [
achieves scalability by keeping track of only the significant spatio-temporal objects. A spatio-

temporalLoad Sheddeis utilized to handle overloading situations.

In the following section we discuss our assumed underlying model for aggregation processing

over data streams.

14

2.2 AGGREGATION OVER DATA STREAMS

Multiple query optimization (MQO) of ACQs poses a challenge because of the variability in win-
dow specifications, predicates and group-by attribute across multiple ACQs. In particular, it goes
beyond the level of identifying common sub-expressions as in traditional MQO @6g24, 43])

to the level of exploiting the window semantics, the overlap of predicates and the overlap of group-
by attributes and the partial aggregation. In the following sections, we first discuss the window
semantics of ACQs and explain tRartial Aggregationprocessing scheme. Then, we discuss the

problem of sharing multiple ACQs.

2.2.1 ACQ Semantics

Since the input stream is continuous, i.e., unbounded, an ACQ is defined over a sliding window
which is specified in terms of two intervals: dBnge ¢), and 2)slide (s). For example, in a stock
monitoring application, a user may register an ACQ that computes the average stock price over the
last hour (range) and update it every 30 minutes (slide). In addition, an optional predicate could be
used to filter tuples before performing the aggregation.

The settings of both the range and slide parameters per ACQ determine its semantics. For
instance, whenever the slide equals the ramge: (s), the window is called aumbling window
and if the slide is greater than the rangex(r) then it is called dopping windowOtherwise, it is
asliding or overlapping windowFurther, both the range and slide intervals could be defined either
as tuple-based or time-based, where the former is set to a certain number of tuples, whereas the
latter is set to a certain time period. In this dissertation, we consider the more general time-based
definition for both the range and slide parameters.

The settings of range and slide also determine the data processing requirements per ACQ.
In particular, producing a new result requires processing each subset of tuples within the range
interval. Slide, on the other hand, defines how the window boundaries move over the continuous
data stream. For instance, when slide is less then range (sliding window), different consecutive
windows overlap and a single tuple will belong to more than one window, hence, it is involved in

the computation of different aggregate instants.

15

Example 1. Consider an ACQ with range = 1 hour and slide = 10 minutes. For this window
definition, a boundary line is reached every 10 minutes and an aggregation is performed over the
tuples within the last 1 hour. Hence, each input tuples will be involved in the computation of 6

consecutive windows (=1 hour/10 minutes).

In a straight forward implementation of aggregates, input tuples are buffered and once a win-
dow boundary is reached, the aggregate function is evaluated using the buffered tuples that are
within the range boundaries. After evaluating the aggregate, the range boundaries are shifted and
all the buffered tuples that fall outside the new boundaries are expired and discarded since they

cannot contribute to in any future computation.

2.2.2 ThePaired WindowTechnique

Towards efficient processing of a single ACQs over sliding window, current techniques exploit
Partial Aggregation where the final aggregate value is assembled from a set of partial aggregate
values (e.g.,46, 45]). In general, under such techniques the input data is divided into a set of
partitions where an initisdub-aggregatéunction is applied on each partition separately to generate
a partial aggregate. Thenfiaal-aggregatgunction is applied on the set of partial aggregates to
generate the final result. This concept is materialized via an aggregate query plan composed of two
operators: 1) sub-aggregate operator, and 2) final-aggregate operator.

As an example, under thRartial Aggregationrscheme, an aggrega@®UNT(*) over a certain
window range is computed using (1)JGDUNT(*) on each partition and (2) @UM(*) over the
partial count of each partition. Clearly, partial aggregation is applicable over all distributive and
algebraic aggregate functions that are widely used in database systems and monitoring applications
such asMAX MIN, SUMCOUNTandAVERAGEFormally:

Definition 1. For a datasetG of disjoint fragments;,go, ..., g,, an aggregate functiomd over
G can be computed from sub-aggregate funcidmver each datase; and a final-aggregate

functionF over the partial aggregates.

A(G) = F{S(g:)ll <i <n}) (2.1)

16

Partial Aggregatiorallows for reducing data processing cost since each input tuple is processed
only once by the sub-aggregate function/operator. As the window slides, only partial aggregates
are buffered and processed to generate new results, whereas individual input tuples are processed
only once to produce those partial aggregates then discaPdetihl Aggregationalso reduces the
memory needed, since input tuples are buffered until they are aggregated once (as opposed to the
number of overlapping windows it belongs to). Further, storing partial aggregates requires less
space.

Clearly, the less the number of partial aggregates in a window, the better because it means that
the final-aggregate operator performs fewer operations per output. The wd#t proposes what
is called thePaired Windowtechnique for ACQ processing and shows that it is possible to partition
each slide into at most twilbpagmentg(i.e., a pair). Hence, producing a final aggregate requires at
most2|[| operations, wherg’ | is the number of slides per sliding window and 2 is the maximum

number of fragments per slide. Formally:

Definition 2. Under thePaired Windowtechnique, the slide of an ACQ with range is split into

two fragments;; and g, where:

g1 =r%s,andgy = s — ¢, (2.2)

Figure2(a)illustrates the idea of Raired Window The lower part of Figur@(a)shows the set
of input tuples, while the upper part shows different overlapping window instances of a window
of sizer and slides. As shown in Figure(a), eachslide is paired into exactly twdragments
of length: g; and gy, whereg; = r%s andg, = s — g;. In the partitioning of Figure(a), the
range consists of a sequence;ofgs, g1 fragments, where the length of a pair of fragments equals
g1 + g2 = s. In general, whem > 2s, the range would consist of a sequengeys, g1, g2, ---, 1
fragments. Notice that if is a multiple ofs, then only one fragment per slide is produced. In the
rest of this dissertation, however, we will consider the general case of 2 fragments per slide.
Figure 2(b) shows the execution tree of an ACQ, assuming RPaged Windowprocessing
scheme. The plan consists of a sub- and final-aggregation operators, and the input queue of each
operators. As illustrated in Figub), the sub-aggregate operator processes the input tuples as
they arrive generating a sequence of partial aggregates. Specifically, the end of each fragment

corresponds to amdge where the tuples in are assembled into a partial aggregate. Since the ACQ

17

Range (r) | Aggregate Result F(S(g)),5(g,).5(g,)

E ! Range (r) ‘)
1 Eeﬁi Final-aggregate F()
| Slide (s) | Slide(s) [| >

S(gy)
S(g,) fragments

S(g,)

Partial
Aggregates

|
==

iNERERNRNENERRENANEEEED Sub-aggregate S

I B e B N e e

g & g & &1 8 g % $ g
e
= %gz
g=0%s) &=(-g) g &
(a) Range, slide and fragments (b) Query Plan

Figure 2:Paired Windowtechnique

results are due every slide (i.e., two edges), the final aggregation is computed every two edges. All
fragments (partial aggregates) that are within the new window boundaries (i.e., within theyange
are aggregated by the final-aggregation operator to produce a results. This is further illustrated in

the following example.

Example 2. Consider an ACQ illustrated in Figure®(a) and 2(b). The figures shows that the
ranger consists of exactly three fragments (i7e= g1 + g2 + g1). A window instance is due every
two fragmentsy; and g, and is computed by applying the final-aggregation functfoto exactly
three fragments, that i(S(g1), S(g2), S(g1)). Then the first pair of fragments can be discarded

immediately since they do not contribute to any further computations.

Notice that the sub-aggregate operator processes each tuple exactly once and produces a se-
guence of non-overlapping fragments. On the other hand, the final-aggregate operator needs to

process each fragment several times to generate the sequence of overlapping windows results.

18

SUM AVERAG COUNT

sumpg \ % z

Final-
aggregates

Partial aggregates
Partial aggregates

2) sumy countg \E"

Sub-aggregates

Input Tuples
Input Tuples

Figure 3:Sharing the partial aggregations.

2.2.3 Sharing Multiple ACQs

Several shared processing schemes as well multiple ACQs optimizers that utilRairexd Win-
dowtechnique have been proposd®,[59]. Below we describe th&hared Time Sliceechnique
which handles the case of varying windows, 8teared Data Shardshich handles varying pred-

icates, and théntermediate Aggregatashich handles varying group-by attributes.

2.2.3.1 Shared Time Slices TheShared Time Slicdg5] (we refer to asSharechereafter) tech-
nique was proposed to share the processing of multiple ACQs with varying windows but same pred-
icates and same group-by attributes. The main idea beStiadeds to share the sub-aggregation
operators and to generate fine grained fragments in a way to satisfy all varying windows. Specif-
ically, thePartial aggregationscheme allows for sharing the computation performed at the tuple-
level (i.e., sub-aggregate level) across multiple queries and, hence, avoid repeating that phase for
each and every query individually.

For example, if the system has three ACQSWAHV COUNTBANdAVERAGEThe SUMs rewrit-

19

ten asSUMof subSUM, theCOUNTas SUMof sub-COUNS, and theAVERAGEas theSUMof
sub-SUNM divided by theSUMof sub-COUNS. Then the sub-aggregate operator that performs the
subSUMcan be shared among tis®JMand AVERAGHjueries, while the sub-aggregate opera-
tor that performs the suBOUNTcan be shared among t@OUNTand AVERAGHjueries. The
execution tree of this example is illustrated in Fig8re

In order to utilizePaired Windowscheme, while at the same time allow for sharing between
multiple ACQs, the process of fragment generation is extended to accommodate shared process-
ing. That is, the fragments produced by fPared Windowtechnique are merged to support the
variability in ranges and slides exhibited by the different ACQs sharing the same sub-aggregate
operator.

For a set of ACQS ¢, ¢2, -, ¢ } With slides{s, s, ..., s, }, to determine the new sequence of
fragments (or equivalently, edges) under Bagred Windowscheme, the following three steps are

needed:

1. Define composite slide: Multiple slides are integrated into a cemposite slide(.S), where
the period (length) of the composite slide is the lowest common multiple of the slides of indi-
vidual ACQs (i.e., length of'S = lcm;(s;)).

2. Stretch individual slides: Each slidgis then stretched into a new slidewhere the length
of s, is equal toC'S. Further, the edges (i.e., end of each fragment) in each slidee then
copied and repeated to the Iengthsp(:repeatecg times, or equivalently %ﬁ .

3. Merge edges: The fragments in the composite slide are created by overlaying the edges from
each individual slide; onto the new composite slidéS. Specifically, each individual slide
s. is scanned and each edge is added to the new composite slide unless it already exists (i.e.,

common edge).

Example 3. Consider two ACQg, and ¢, with rangesr, = 12 andr, = 10, and slidess, = 9

ands, = 6 seconds. As illustrated in Figue the fragments irg,’s slide are of lengthy,; = 3
andg,» = 6 and forg,, the fragments are, ; = 4 andg, > = 2. For this setting, thécm(sy, s2) is

of length 18. By stretching each slide to the Icm period, the edgeg fppear at times (3, 9, 12,

18) and those foy, appear at (4, 6, 10, 12, 16, 18) and the edges in the composite slide appear at
times (3, 4, 6, 9, 10, 12, 16, 18).

20

Ty, (TS,
9a(TaSd) An(risy) Composite Slide

, 5,=9 , Length = lem(s,, s,)=18

s stretch

&:,/:3| 8,2=6 | — 8a1 | 82 | 8a1 | 82

1
1
1
Hl 8h1 |&’h,2| 8h1 |é’h,z| 8b1 |Sb,:

Partial aggregates

Merge
Sub-aggregate S() edges
[
E' Time: 3 4 6 910 12 A 16 18
El LB ENIEI K 2
2
]
Execution tree edges common

edge

Figure 4:Example3: stretching slides, merging edges, and shared plan.

2.2.3.2 Shared Data Shards The Shared Data Shardé&SDS) |5] technique was proposed to

share the processing of multiple ACQs with different predicates but same windows specifications
and group-by attributes, assuming tRaired Windowtechnique. The main advantage $DS

is that it avoids any unnecessary repeated evaluation of predicates. In particular, each predicate
is evaluated for each tuple exactly once in a preprocessing phase prior to the sub-aggregation
level. The outcome of this preprocessing phase is a set of augmented tuples, where each tuple is
augmented with a predicates signature which encodes the results of evaluating all the predicates
for this tuple. This signature is a bitmap vector, where each bit represents a predicate and is set to
one only if this predicate evaluates to 1 for this tuple. In this way, this signature identifies which

set of ACQs this tuple belongs to.

Given the set of augmented tuples, the sub-aggregation operator then aggregates tuples of
identical signatures together, resulting in a set of fragment-signature pairs. Once an edge is due,
each fragment-signature pair is pushed and routed into the input buffers of all ACQs that it satisfies

their predicates, i.e., have matching signature.

21

q, qp q. 9a
A BC AC CD

\/’

ABC

AN

ABCD

Figure 5:Intermediate Aggregates tree

2.2.3.3 Intermediate Aggregates The problem of optimizing multiple ACQs with different
group-by attributes, but same windows and same predicates was addresggd# $9. Moti-

vated by the constrained memory on the Network Interface Card (NIC), a shared processing scheme
calledPhantomd83, 84] was proposedPhantomsessentially introduces a set of sub-aggregates
(i.e., Phantom}¥ to share the processing of the ACQs that have identical window specifications,
same predicates, but have different group-by attribudsntomdechnique is developed for the
specific architecture of Gigascop23], where the sub-aggregation is performed in the limited
memory of the NIC. In this architecture, the goal is to minimize the rate with which data is copied
between the NIC and the main memory. 59, the Intermediate Aggregateéschnique generalizes
thePhantomgechnique to general, yet memory-constrained, DSMS. In the latter case, moving data
from one operator to another is not the most expensive operation anymore, rather, it is the number

of aggregation operations.

The main concept dhtermediate Aggregatas that if two similar ACQs have different group-
by attributes, then a sub-aggregation that uses for its group-by attributes the union of the group-by
attributes of both ACQs can be shared among the two ACQs. For more than two ACQs, the
same concept is recursively applicable to sub-sets of the final-aggregation operators (which are
essentially ACQs). Thudntermediate Aggregategims to exploit the overlapping of group-by
attributes to generate the best possible execution tree. We further illustrate the idea in the example

below.

22

Example 4. Assume four ACQg,, ¢, ¢. anda, with same window specifications and same pred-
icates. Assume also that the ACQs have group-by attributeB.C, AC' andC' D, respectively, as
illustrated in Figure5. The label of each node in the figure represent the set of group-by attributes
used by this node. That is, each node represent an aggregation operator that performs a group-by
aggregation using this set of attributes. The figure shows¢hat andg. share a sub-aggregation

that uses the union of attribute$BC' for its group-by attributes. This sub-aggregation further
shares withy. another sub-aggregation operator that uses the union of attribdt8§’ D for its

group-by attributes.

It was mentioned without further details i89] that if the ACQs have different windows speci-
fications, then either an epoch (i.e., a fragment) of size equals to the greatest common divisor of the
ranges or th&aired Windowscheme can be utilized. In this dissertation, we investigate strategies
that best minimize the processing overhead of multiple ACQs, with varying windows, predicates

and group-by attributes, exploiting sharfeartial Aggregation

2.3 EXPERIMENTAL PLATFORM

In order to study the sharing trade off and to evaluate the schemes we propose in this dissertation
in a controlled environment, we built a simulation platform in C++. We validated our simulation
model by reproducing same results trends as reported in the related work and by running exhaus-
tive search to find the optimal plan for small cases that we solved by hand. In this section, we list
the baseline algorithms we used in our experiments and describe the generated workload charac-

teristics, experiments parameters and the performance metrics.

Algorithms: We have implemented thHeaired Windowprocessing scheme as the underlying ACQ
processing scheme. In terms of multiple ACQs optimizers, we implem&aadom Exhaustive
SearchSharedwhere all ACQs are merged in one single tré8], No Shargas a base line, where

each ACQ is executed separately) and an adapted versiarcaf Searci{LS) (see Appendi®).

ACQs: We generated ACQs randomly with different parameters summarized in Talle used

the SUMas the aggregate function, so that the sub- and final-aggregate operators both perform a

23

Table 1:Queries parameters

Parameter Values

Slide Length §) | [1-100000] using Zipf distribution
Slide Skewness [0.0-3.3] (skewed to large-slide)

Overlap Factor| [1—2,,,42]

SUM The type of the aggregate function, however, does not affect the performance of the opti-

mization algorithms. The parameters of the queries are as follows:

e Slide (s): randomly generated from a Zipf distribution with minimum 1 second and maximum
100000 seconds. The Zipf's skewness parameter is in the range [0.0-3.3], where a value of 0.0
is equivalent to uniform distribution, whereas higher values result in a more skewed distribution
that has more large-slide ACQs. This reflects the different levels of interest the users typically

have in real world applications.

e Range (): the range) of each query was generated relative to the query’s slide using an
overlap factor). That is, for each query;, r; = Q; x s;, wheref); is generated randomly
from a uniform distribution in the range [©5,..]. Q2. 1S themaximum overlap factawhich

is a simulation parameter.

Experimental Parameters: In addition to changing the ACQs parameters, each experiment has
a set of parameters that are summarized in TableBriefly, these parameters are the number

of ACQs, the input rate and the initial state and the iterations boundcdl SearchLS). The

input rate values are chosen to cover the input rate ranges of all different monitoring applications.
Specifically, the 1M tuples/sec covers network monitoring applications, whilétthéuples/sec
covers Web Analysis applications. Financial applications, however, have a typical input rate of
couple hundreds5[0] and sensor networks and phenomena monitoring applications have a typical

input rate of few tuples, or less, per second.

Dataset: We chose to use synthetic workload, which allows us to control the system parameters,

in order to conduct detailed sensitivity analysis and gain better insight into the behavior of the

24

Table 2:Experimental Parameters

Parameter Values
Number of ACQs [50-1000]
Input arrival rate [0.5-1,000,000] tuples/sec.
Max. Overlap Factor{¢,,..) | [50 - 2000]
LS initial state {No Share, Randoin
LS iterations bound {2x, 5%, 10¥ proposed optimizer iterations

different techniques by setting the parameters to cover all possible real scenarios. For instance,
controlling the skewness of windows specifications allows us to depict different cases, from the
simple pre-specified time-scale classes asruvisoto the more demanding uniform distribution

as in 5. Our choices based od}| were also for fairness and validation.

Performance Metrics: We measured the quality of the optimized shared plans in terms of their

total cost. The cost is measured as the number of aggregate operations per second (which also
indicates the throughput). We chose this metric because it provides an accurate and fair measure
of the performance, regardless of the platform used to conduct the experiments. We also evaluate

the different algorithms efficiency in terms of their overhead to generate the query plan.

2.4 OTHER RELATED WORK

As discussed in SectioR.2, the main idea of paired windows scheme is to split the slide into
two fragments to be processed using the sub-aggregation operatoPaib@46] scheme was

the first to propose the idea of rewriting the ACQ as a final-aggregation of sub-aggregation and
split the slide into fragments. OpposedRaired WindowPanesplits the window into equal sized
fragments Paired Windowimproves ovelPaneby splitting the slide into exactly two fragments to

minimize the processing needed at the final-aggregation operator.

25

The Window-1D (WID) technique proposed] improves the performance of an ACQ by
maintaining multiple aggregates of multiple window extents at the same time. A bucket operator
is utilized to tag the input tuples appending a range of window extents that the tuple belongs to, or
may contribute to. The tagged tuple is then aggregated to all window extents at once. It was shown
in [47] that WID can be easily integrated witPanescheme and sindeaired Windowscheme is a
variation ofPane it can similarly be integrated wit/ID.

There are also alternative approaches for processing ACQs. For example, optimization tech-
niques for processing sliding-window queries that utilize legative tuplegpproach have been
proposed in29]. ACQs are instances of sliding-window queries. In the negative tuples approach,
tuple expiration is determined when a negative tuple is inserted. This doubles the number of tuples
through the query plan. Also, i29], query operators were classified into two classes according to
whether an operator can avoid the processing of negative tuples or not. Based on this classification,
several optimization techniques over the negative tuples approach where presented to reduce the
overhead of processing negative tuples.

At the multiple ACQ processing level, sharing results of aggregation among different queries
has also been proposed B0], where a scheduling technique to optimize the execution of ACQs
has been developed. This technique utilizes a window-aware scheduling scheme that synchronizes

the re-execution times of similar queries to execute common parts only once.

In general, there is a rich literature on multiple query optimization (MQO) in traditional
databases6, 66, 42, 51, 40, 80] as well as in data stream8(, 3, 81, 49]. Multi-query opti-
mization in traditional databases aims at exploiting common sub-expressions to reduce evaluation
cost [66]. Similarly, shared processing is exploited in multiple continuous query optimization. In
both cases, finding the optimal query plan is an NP-Hard prob#&madnd hence the data manage-
ment research community has investigated heuristic approaches to optimize the generated query
plans.

For instance, two cost-based and one greedy heuristics where propo66f rhe main idea
behind the two cost-based heuristics @][is to extend thé/olcano[32] query optimizer, which
performs a depth-first search in the state space of alternative query plans. Different alternatives
are represented using AND-OR graphs. The proposed heuristics improves the performance of

Volcanoby augmenting the AND-OR DAG representation to enable the detection of common sub-

26

expressions across different queries as well as expressions’ subsumption. Thus, while performing
the depth-first search-and-prune phase, Volcano can generate much more efficient plans.

Recently, DSMSs and monitoring applications are being moved to the ciild [n [21]
in particular, a demonstration of implementing event monitoring application using the modified
Hadoopframework was presented. This shows the importance of optimizing the processing of
aggregate continuous queries.

Closely related to the DSMSs in the cloud is the distributed DSMSs (D-DSMSs).8nD-

DSMSs have been motivated by the fact that monitoring applications are inherently geographically
distributed. The Medusalp] was proposed to address the main new challenge of D-DSMSs,
which is adaptive load balancing. Special operator implementations for D-DSMSs have also been
proposed, such as the binary joir6] and aggregation approximation, with differential accuracy
requirements per data item37]. In general, moving traditional relational operators to the data
streams involves new queuing requirements that has been studi&q.in [

Finally, adaptive processing of queries traditional DBMSs has been prop@sei §s well as
adaptive processing of CQs in DSMSH). In the former case, the motivation was the changing
characteristics of resources and data distributions in large-federated and shared-nothing databases.
In such settings, assumptions made at query optimization may not hold at the execution time. The
Eddies P] adaptive processing scheme continuously determine the order of operators in a query
plan, per tuple, depending on operators selectivities and resources characteristics. The continu-
ously adaptive continuous query (CQC@¥] scheme was proposed to extend Eddies scheme to

process CQs, adaptively.

2.5 SUMMARY

In this chapter, we presented the general background on DSMSs, and the specific background on
optimizing the processing of ACQBartial Aggregatiorand thePaired Windowprocessing scheme

for optimizing individual ACQs andhared Shared Data Shardand Intermediate Aggregates
optimizers for multiple ACQs. We also presented our experimental platform and summarized

other related work.

27

3.0 WEAVE SHARE: EXPLOITING WEAVEABILITY TO OPTIMIZE ACQS

In this chapter, we study the interaction of the factors that affect the cost of a shared plan and
identify the sharing trade off. The problem is first motivated and formally defined in Se&ibns
and 3.2 respectively. The proposed solution and a discussion about practical implementation of
the proposed optimizer is discussed in Secti®f@sand 3.6, respectively. Finally, we evaluate our

proposed schemes experimentally in Sec8ofn

3.1 MOTIVATION

Examining theSharedoptimizer (discussed in Sectidh2.3.) that utilizesPaired Windowpro-
cessing scheme (discussed in Secfidd), it becomes clear that there is a tradeoff involved in the
sharing of multiple ACQs. On one hand, partial aggregation is performed only once for all ACQs,
as opposed once for each ACQ.

Onthe other hand, sharing might lead to increasing the number of fragments (and in turn edges)
for each individual ACQ. This means that for each ACQ, more partial aggregates are generated at
the sub-aggregate level and in turn, more operations are needed at the final-aggregate level. In
some cases, the increase in number of final-aggregate operations per ACQ might outnumber the
gains from sharing the sub-aggregate operations leading to an overall cost higher than processing
each ACQ individually.

In particular, in a shared execution plan of a set of ACQSf | = {s;|s; is the slide of ¢; €
Q,1 <i < |Q|}, then during a period dim;(s;) each query; € @ sees a number of edges equal
to M, where)M is the number of merged edges in the common glide= lcm;(s;). For a set of

gueries) with slidesl, theedge rateF per(is defined as:

28

Definition 3. Edge RatgFE) is the rate of sub-aggregate fragments (or equivalently, edges) pro-

. M
lem(S) "

duced by a shared sub-aggregate operator and is computefl as
To illustrate sharing trade off, consider again Exantple two ACQsq, andg, with ranges
r, = 12 andr, = 10, and slides;, = 9 ands;, = 6 seconds, respectively. According to thaired
Window(Definition 2), the fragments img,’s slide are of lengthy,; = 3 andg,» = 6 and forg,,
the fragments arg, ; = 4 andg, » = 2.
If ¢, andq, are processed independently, their sub-aggregation operators will produce 2 frag-
ments every 9 and 6 sec, respectively. That isedge rate(i.e., number of fragments generated
per sec) ofE, = 0.22 andE}, = 0.33 edges per sec. Thus, the total final-aggregation operations
performed per sec is 0.55.
Meanwhile, if g, and ¢, share their partial aggregation, thepn and s, are integrated into
composite slide’'S, , = lem(s,, sp) = 18 and the union of edges i@1'S, , will appear at times
3, 4, 6,9, 10, 12, 16, 18). Hence, eachgpfand ¢, would examine a combined edge rate of
E,, = 0.44, resulting in more final-aggregation operations (0.88 per sec). This simple example
clearly shows the presence of a trade off in the shared processing of multiple ACQs.

The increase in edge rate, in turn, presents a trade-off in the total cost between shared and

unshared processing of ACQs. In particular, for:

e No Share:Partial aggregation is performed onceeaafchquery, whereas the final-aggregate
operator for each query receives at mogivo fragments per slide;.
e Sharing: Partial aggregation is performed once &l queries, whereas the final-aggregate

operator of each quewry receivestl x s; fragments per slide;.

From the above, and given an input data stream with arrivalxatgles per second, we can
compute the total processing cost wisharedset of n queries in terms of total number of
aggregate operations per seconds.

T

2
Cho Sharing=— nA + Z S_ X (——I (31)

Si
The termn) is the total number of operations required for partial aggregation and the term
183 x [2] is the total number of final-aggregate operation. In particusﬂa'rs the number of

edges (fragments) per second for AGQwhich is the edge rat&; of ¢;. Each of those edges

29

participates in the final-aggregate computation| &ff window instances, which is the overlap

factor ofg;.

Definition 4. Overlap factor §;) of ACQ ¢; is the number of overlapping windows each tuple
(and hence each fragment) belongs to and is computedvas= (f;—ﬂ. Similarly, theOverlap
Factor (2) of a set of shared ACQ3 is the number of overlapping windows each tuple/fragment

belongs to and is computed as the sum of overlap factor of each ACQ in the shared set. That is
Q= ZV%EQ Wi.
Similarly, we can compute the total processing costladredset () of n ACQs in terms of

total number of aggregate operations per second as:
CShared =A+ExQ (32)

whereF is the output edge rate of the sub-aggregate operator. Notice that the cost of partial aggre-
gation under sharing is only (as opposed ta\ in Equation3.1). The cost of final-aggregation,
however, is computed a® x §2; sinceF is the number of edges generated per second and each
of those edges participates in the final-aggregate computat@mafdow instances.

From EquatiorB.2, it is clear that at high input rat®, a shared processing is beneficial since
it avoids repeating the work needed to compute partial aggregates leading to a constant cost of
A operations per second regardless of the number of queri@s ifhe more sharing of ACQs,
however, might lead to a significant increase in the cost of final-aggregation. This is due to two

factors:

1. High Edge Rate: This is especially the case when the queri€shave very few edges in
common resulting in a high'.
2. High Overlap Factor: This is especially the case when the queri@sixhibit a large number

of slides per window resulting in a high’, [3] or equivalently, hig.

To further study that conflict, we performed an experiment to compare the costsSthaned
scheme45] vs. No Sharewhere queries are executed separately. Please, refer to S2&ion
the experimental setup. The results obtained by varying the input rate and by varying the number

of ACQs are shown in Figuré.

30

30000 80000

—e— No Share —e— No Share v
25000 4 - -v- Shared --v - Shared

60000 -
20000 -
15000 - 40000 -

10000 -

Cost (aggregations/sec)
Cost (aggregations/sec)

20000 -
5000 -

.
0 20 40 60 80 100 0 200 400 600 800 1000
Input Rate (tuples/sec) Number of Aggregate Queries

(a) Input Rate (b) Number of Queries

Figure 6:Sharevs No Share

Figure 6(a) shows that for a workload of 250 querieSharedoutperformsNo Sharefor all
input rates above 25 tuples/sec. For instance, at input rate 50 tupleSi'seedreduces the cost
by 50%. This result is consistent with the result 4%]f Figure 6(b), however, shows that at the
same input rate of 50 tuples per second, No share consistently outpeBbaredas the number

of ACQs increase. This is due to the increase in cost of final-aggregates as explained above.

Figures6(a)and6(b) show that there is no clear winner betwegimaredandNo Share That
is, sharing at the sub-aggregate level is sometimes at odds with the amount of processing needed at
the final-aggregate level. This conflict depends on several factors such as data input rate, the size
of workload (i.e., number of queries), as well as per query specifications (i.e., range and slide).
The above observations motivated us to consider a new technique for optimizing multiple ACQs

that would use a criterion that considers all the factors that impact the cost of the query plan.

31

3.2 FORMALIZATION

Our proposed optimizeWeave Sharaims at reaping the benefits of cost reduction provided by
sharing of partial aggregation phase while at the same time minimizing the increase in cost incurred
at the final aggregation phase when sharing. This led us to the idea of grouping AGQHipie
execution trees, where each tree contains only those ACQStthast together.

Under our scheme, a set of AC@5 = ¢, ¢, ..., ¢, are distributed over a set of trees
t1,1s, ..., t,, Where all ACQs that belong to the same ttgare shared. Hence, the cost of each
execution tree is the same as Equatso? but is calculated for the set of ACQs in the tree. Thus
the total cost of th&Veave Sharguery plan is simply the sum of the cost of the individual trees.

Formally:

Definition 5. For a query plan that contains: execution trees, the total cost of the query plan in
terms of total number of aggregate operations per second is computed as:
Cweave share= MA + Z EiQ; (3.3)
i=1

where)\ is the data input ratey; and(?; are the edge rate and overlap factor for treeespectively.

Equation3.3 above represents the objective function that we are trying to minimize. The first
term of the cost function\) is the number of operations needed to generate the fragments (i.e.,
sub-aggregation), wheres the second component is the number of aggregate operations performed
on the fragments to produce outputs (i.e., final aggregation).

Notice, that bothSharedandNo Shareare two special cases of EquatiBr8. In particular,
underShared the number of trees is equal to (= 1), whereas undeNo Share the number
of trees is equal to the number of individual querieén = n). On one hand, settingy = 1
enables Share to minimize the cost of the first component of the objective function (i.e., cost of
partial aggregation). On the other hand, setting= n enabledNo Shareto minimize the second
component (i.e., final-aggregation).

Our goal inWeave Shares to find the balance between the two components of the objective
function so that to minimize the total cost of the query plan. In particular, our objective is to find
the most beneficial number of trees (ix2.) as well as the best assignment of queries to each tree

in order to provide the lowest execution time and highest throughput.

32

To this end, finding an optimal solution for ACQ sharing is provably an NP-hard combinatorial
optimization problem as was formally shown B8]. This motivated us to explore solutions based
on greedy heuristics as it is the case &3][and in traditional multiple query optimization and

materialized views selectio®§, 51].

3.3 WEAVEABILITY

The affinity of ACQs, i.e., their similarity, is an important factor that determines whether it is bene-
ficial to share two ACQs or not. We refer to this affinity as tieaveabilityof ACQs. Specifically,

given the paired-window processing scheme, two ACQs are said perbectly weaveabld the

edges of both ACQs are identical. That is, when the two ACQs are shared, the edge rate does not
increase for either of the ACQs. If the ACQs are not perfectly weaveable, thecoiomaoredges
between the ACQs in their composite slide, the less the increase in edge rate for the ACQs when

shared, hence the moneeaveabléhey are. Thus, we define the degree of weaveability as follows.

Definition 6. Given two ACQg, and g, with slidess, and s;, respectively, the degree of Weave-
ability of ¢, andg, 0VV,;) is the ratio of the number of common eddésin the composite slide
CSap = lem(sq, sp), to the total number of edges(, ;) in C'S, ;. Specifically,

M,
Ma,b

WV, = (3.4)

Note that the definition of weaveability is recursively applicable to two groups of shared ACQs,
i.e., execution trees.

Thus, if the edges of one ACQ is contained in the other, then all edges of the composite slide
are common edges, and they have weaveability dédgi®e= 1.0. This definition is recursively
applicable to two groups of shared ACQs, i.e., execution trees. That is the degree of weaveability
of two trees is the ratio of the common edges to the total number of edges in their composite slide.

Sharing weaveable ACQs has a minimum impact on increasing the final-aggregation cost since
they encounter minimal increase in the edges rate of the shared ACQs. For example, for the two
ACQs ¢, andq, (Example3), the set of edges of the composite slide are (3, 4, 6, 9, 10, 12, 16,
18), while the common edges are (12, 18). Thus, the weavealiility, = % = 0.25, which is a

33

weak weaveability and that is why their shared tree encounter a high increase in the edge rate as

discussed in Exampl&

3.4 CHALLENGES OF GROUPING MULTIPLE ACQS

Grouping ACQs to multiple trees involves three major challenges. Namely: 1) designing a tech-
nique that effectively prunes the combinatorial search space, 2) handling the dynamic addition and
deletion of ACQs over time, and 3) efficiently computing the weaveability with minimal overhead.

Towards the first challenge, grouping ACQs could be seen as first determining the optimal
number of execution trees and then assigning ACQs to the trees. Thus, we have initially considered
mapping our ACQ sharing problem to the generalized task assignment problem which is known to
be NP-Hard 26]: the input is a set of heterogeneous machines and a set of tasks, where each task
has a certain cost when processed on a certain machine. The output is an assignment of tasks to
machines that minimizes the total cost.

This mapping, however, assumes the knowledge of number of machines (i.e., trees), which is
not the case. Furthermore, even if we assume the knowledge of the optimal number of trees to
use, the increase in processing cost when adding an ACQ to a tree is not constant as it depends on
which other ACQs have already been assigned to that tree. This is simply true because the cost
function in EquatiorB.3 involves the edge rate term, which depends on which ACQs are shared
and the degree of weaveability of those ACQs.

Thus, we can not directly use any of the classical algorithms for solving the task assignment
problem (e.g., Dynamic Programming) to solve our ACQ sharing problem. This is mainly because
an optimal solution for a sub-problem is not necessarily a part of the optimal solution of the whole
problem. In other words, there is no optimal substructure property.

Given the problem complexity discussed above, we have explored a suite of alternative algo-
rithms towards the efficient sharing of ACQs. In this paper, we préafatve Sharean efficient
heuristic that fully considers all cost factors in generating shared plans (S8cion

The second challenge is the need for an online version of the algorithm that handles the addition

and deletion of ACQs as time advances. To handle this challenge, we plopos@ental Weave

34

Share the online version ofMeave Shar¢hat avoids the reconstruction of the query plan every
time an ACQ is added or deleted. Bdtffeave Sharand its online version are discussed in the
following section (Sectio.5).

The third challenge (i.e., computing weaveability) stems from the complexity of counting the
number of common edges between two different trees. This is because when merging two trees,
there is no closed-form formula that determines the common edges. Specifically, this problem
maps to small sieve theory problem which is a hard problem, and whose current solutions mostly
deal with approximations and there is no closed formula to sohejt [vet, the degree of weave-
ability directly determines the amount of increase in total processing cost (if any) when merging.
To efficiently consider the weaveability while generating the shared plan, we propose several opti-

mizations for the process of counting the number of common edges (S8dj)on

3.5 THE WEAVE SHAREALGORITHM

In this section, we describd/eave Shareour proposed algorithm for minimizing the execution
cost of multiple aggregate continuous queries. Our propWdéeailze Sharexploits weaveability to

reap the benefits of cost reduction provided by sharing partial aggregation, while minimizing the
increase in cost incurred at the final aggregation. Basicdalgave Sharé&ries to group ACQs in
multiple execution trees, where each tree contains only ACQsvibavebest together.

To achieve our goalWeave Shareakes a global view of the execution plan as well as the
objective function to minimize (i.e., Equatiéhd). In particular, it simultaneously considers both
of the cost components (i.e., partial- and final-aggregation) to group ACQs in multiple trees with
minimum execution cost.

Weave Sharépseudo-code in Algorithm) takes as an input a set of ACQs ¢-, ..., ¢, and
produces a set ofi shared trees where each tree contains one or more ACQs. Initially, the number
of trees is equal to the number of individual queri@s= n and each ACQ forms a separate tree,
which is equivalent to the case of no sharing.

Weave Sharadvances towards sharing one step at a time in a greedy manner, where in each

iteration two weaveable execution trees are merged, reducing the number of trees by one, until

35

Algorithm 1 TheWeave Shar@lgorithm
1: Input: A set of n ACQs

2: Output: Weaved query plan P that consists ofm execution trees
3: begin
4: P « Create an execution tree for each ACQ

5: | < n {current number of treés

6: (max-reductionty, t;) < (0, —, —) {current tree-pair to merge
7: repeat

8 fori=0tol—1do

9 for j=i+1toldo

10: temp «— cost-reduction-if-mergingy, ¢,)

11: if temp > max-reductiorthen

12: (max — reduction, t;,ts) «— (temp,t;, t;)

13: end if

14: end for

15: end for

16: if max-reduction> 0 then

17: merge(;,tz)
18: l—1-1
19: endif

20: until No merge is done
21: ReturnP

22: end

either no more merging is beneficial or a single tree is reached. In particular, at each iteration,
given a sefl’ of [trees:T = t4,1s, ..., t; (I < n), Weave Sharestimates the benefits of merging all
possible pairs of trees i and merges the pair of trees that yields the maximum reduction in total

cost.

Given Equatior8.2, it is expected that for a pair of treels @ndt,) to qualify for merging, they

must satisfy either one or both of the following properties:

36

1. High degree of weaveability. The higher the degree of weaveability of the merged trees, the
less the increase in the combined edge ftg and the less the overall merged tree cost.

2. Low total overlap factorQ, , = 2, +£2,), which is the total number of final-aggregation oper-
ations performed on each fragment in the new tree. The less the number of window instances,

the less the number of final-aggregate operations performed on each fragment.

The benefit (i.e., cost reduction) from mergiygandt, is:

ACyy) = A+ EQ, +EQ, - E,,Q,, (3.5)

Note the term\ in Equation3.5 above denotes the savings at the sub-aggregation level. That is,
each tuple is processed once instead of twice. The rest of the terms in the equation represents the
savings in the final aggregation level.

Clearly, any two trees that exhibit the two properties above are good candidates for merging
as they allow us to exploit the sharing of partial-aggregation while at the same time minimize
the increase in final-aggregation. These are the main optimization criteNscfave ShareWe

demonstrate howeave Shargerations work using the example below.

3.5.1 Weave Shardy Example

Consider three querieg, ¢, andq. with sliding window specifications as shown in TaBleAddi-
tionally, consider an input rate= 1.2 tuples per second. Figureshows the sequence of iterations
performed byWeave Sharas well as the resulting query plans along with the trees weaveability.

Figure7 shows that initially (first column to the left of the Figure), the number of trees is three,
with no sharing, i.e., where each ACQ is to be processed independently. This results in a total
cost of 11.6 based on EquatiBr8, as shown in the Figure (the calculations details are omitted for
brevity). Next, the algorithm enters the main loop where it tries to merge a pair of trees that would
reduce the cost the most.

In the first iteration, there are three possible pair-wise merges as illustrated in the second col-
umn of Figure7. Specifically, the possibilities areq,, ¢, >, < ¢4, ¢.>, Or < q, ¢.>. Merging the

pair < q., g. > leads to the maximal reduction in cost, reducing it to 4.3 aggregations per second

37

E,=0.25

Cost=5.3 wv,,=1/8

& "
qu(16’ 4) qb(IO’ 5) qc(& 4) E &Ose‘\qa qh q(- ‘ E qa ql7 q(-
I, T 3 T, 3
a o o o E,, 0.4 9
Cost=11.6 | Cost=4.3 <1 | Cost=44 WV,=1/8 | Cost=4.3
T I8
& o
Cost=5 Wv,,=1/8 :
Initial query plan ! I3 iteration ; 2nd jteration ¢ Final query plan

Figure 7:Weave Sharby example - Iterations dlVeave Share

according to EquatioB.5. Thus, the algorithm merges them together into tgeeand proceeds to

the second iteration.

In the second iteration (the third column in Figukethe only possibility is to mergg, . with
q»- This, however, would lead to an increase in the cost to 4.4 aggregations per second. Since
there is no room for improvementyeave Shargerminates the loop and returns the query plan it

constructedt, . andg,, whereg, andq. are shared in, . andg, is executed independently.

Note thatg, andq. weavewell together, in the sense that all the edgesg,oéxist in edges of
q. (i.e., common). This is due to the fact that their slides are equal. This results in no increase in

the edge rate when they are merged and in turn, minimizes the overall execution cost.

38

Table 3:Weave Sharby example - windows’ specifications

ACQ | range ;) | slide (s;) | w;
da 16 4 4
ab 10 5 2
Qe 8 4 2

3.5.2 Sharing AVERAGE ACQs

SharingAVERAGEACQs is a special case due to the way an average function is rewritten as a
sub- and final-aggregation. In particular, tAFERAGEACQ is rewritten as the division of the
SUMof subSUM by theSUMof sub-COUNS. This is illustrated in the left-most part of Figure
8. Thus the sub-aggregation operator performs 2 operat®iddandCOUNTand the fragments
gueue actually holds two fragments per entry. Thus, as illustrated in the middle part of &igure
the sub-aggregation is in fact equivalent to two operators, and the intermediate queue is equivalent
to two queues. Similarly, the final-aggregation is equivalent to three operators, one that sums the
sub-sums, second sums the sub-counts, and the last divides the two.

Computational overhead-wise, the two plans on the left- and the right-most parts of Figure
8 are identical. The only difference is that the right-most plan is more flexible to the scheduler
to change order of execution to improve response time. In addition, the right-most plan has the
potential to share the sub-aggregation operators with @deandCOUNTACQs. Therefore, the
AVERAGECQs can be shared as follows.

i SUM
. Rewrite allAVERAGERACQs aSEpNT

. Apply Weave Share to aBUMACQs, including those of thAVERAGEewriting.
. Apply Weave Share to aCOUNTACQs, including those of thAVERAGEewriting.

A W N P

. After the above 2 steps, if alyVERAGHEunction is not beneficial to rewrite, both iBJMand
its COUNTwon’t be shared. Therefore, we re-group these sub-aggregation operators into one
operator that performs both SUM and COUNT at same time, and apply Weave Share to these

set of operators.

5. the final-aggregation operators of re-grouped sub-aggregation operators are also re-grouped.

39

AVERAGE AVERAGE AVERAGE

. L ‘ g ;
Final-aggregates 1 Final-aggregates ZD T,,V*C”t)f ! SUM()

’) H Final-
aggregates

T
1
T
1
Partial aggregates

3
3
54
-
&h
o
&
=
E=}
g
&

Partial aggregates
Partial aggregates

SUM() COUNT{)
Sub-aggregates

SUM() and COUNT() SUM() and COUNT()

Sub-aggregates Sub-aggregates

Input Tuples

Input Tuples
Input Tuples
Input Tuples

Figure 8:Sharing AVERAGE ACQs.

3.5.3 Varying Predicates and Group-by

Weave Sharean easily handle the case when different ACQs have different pre-aggregation filters
(i.e., selection operators). For example, one query might monitor the average-volume of stock-
trades that are higher than $100, while another monitors the same for trades that are higher than
$500. To share the execution of such ACQs, we adopStiered Data ShardéSDS) technique

[45] as follows.

Figure9 illustrates the weaved (M/eave Sha)elan, integrated with th8hared Data Shards
(SDS) scheme to optimize the handle the case of varying window specifications and different
predicates (as discussed in Cha@e$ection3.5.3. The figure shows that ACQs with predicates
defined on the same set of attributes, calpeedicate-compatibl&ACQs, are weaved separately,
each yielding to one or more shared groups. ThaVeave Shares applied to each set of predicate-
compatible ACQs.

The lower part of Figur® shows the augmentation process, where each tuple is evaluated
against all predicates and augmented with a lineage, i.e. a signature, to encode which predicates
this tuple satisfies. The signature is simply a bitmap vector, where each bit is set to 1 if the

tuple satisfies the corresponding predicate. A router uses the signature of each tuple to route, and

40

Predicate-compatible groups

Group 1 Group 2 Group 3
)\)\)\

Weave Share Plan
A

Augmented Tuple

Data Shards

Tuple augmentation

i/p Tuple

Figure 9:An Instance of a Weaved Plan

possibly duplicate, the tuple to every group for which the tuple satisfies a subset of its predicates.
Further, when different ACQs have different group-by attribut®@save Sharean utilize the
techniques in%9, 84]. Specifically, each sub-aggregation operator can utilize a hash table based
on the values of the union of all group-by attributes. When a fragment is due, proper hash table
entries are combined together to form the fragment of each set of queries with identical group by

attributes.

3.6 IMPLEMENTATION OPTIMIZATIONS OF THE WEAVE SHAREOPTIMIZER

In this section, we propose a set of implementation optimizations to increase the efficiency of the
Weave Shareptimizer in generating the weaved plan. We first analyze the time complexity of the
Weave Sharalgorithm to spot potential performance bottlenecks to be optimized.

Given a set of: ACQs, the time complexity dVeave Sharalgorithm is asymptoticallp) (n?).
The algorithm starts with trees and in each iteration it reduces the number of trees by one. Thus,

in worst case, the algorithm needgerations. In each iteratioiy (n —i)* comparisons are needed

41

to find the pair of trees that yield the maximum benefit. Thus, the total time complexitynis).
Computing the benefit of merging two trees (sayndt,), requires calculating the new edge
rate £, , (Equation3.5). Given that there is no closed-form formula that determines the common
edges as as discussed in Sec8aof) this is clearly an expensive operation which requires counting
the set of common edges between the two trgeandt,,.
Conceptually, to calculate the new edge rate resulting from merging two executiort trees
andt, into one execution tree, ,, we need to extend the steps needed for merging two ACQs

(described in Sectiof.1) as follows:

1. Set the composite slid€'S, , to be the least common multiple of the individual slides of all
ACQs int, andt,.

2. The edge cound/, of the ACQs int, within the new composite slid€'S, , is computed as:
M! = M, Ccsgf , Where the last term is the number of tintéS,, has been replicated. Similarly,
the edge count/; of the ACQs int, is computed.

3. The composite edge count, , is computed asi, , = M, + M, — M..

In order to compute the last step, we need to know the number of common edges in the com-
posite slide {/.) betweert, andt,. This could be done by checking each edge in each ACQ in
t, to see if it is the same to any edge of any ACQ.in Each one of those checks requires two
comparisons. Specifically, to check if edge®f some ACQ int, is the same to some edge of
ACQ ¢; in t,, we check ife is a multiple of the slide o, or a shifted byg; ; multiple of the slide.

Formally,e is a common edge iff:

e%s; = 0or (6 — gi71)%si =0 (36)

This is illustrated in the following example.

Example 5. Consider a tree with one query. that has slides, = 5 and fragmentg, ; = 2 and
gz2 = 3. Further consider a query, which has slide,, = 3 and fragmentg, ; = 0 andg, » = 3.
If ¢, andg, are to be merged, the common slide lengtt's, , = 15, the edge counts of stretched
q. andgq, are M; = 6 and M, = 5, respectively. Hencell, , is 5 plus 6 minus the number of

common edges\{.), which is computed by checking each and every edggadainst those of,,.

42

The first edge iny, is e = 3, which is not divisible by the slide ef = 5 norise — g, =
3 — 2 = 1 divisible bys, = 5. Hence, it is not a common edge anfl, , is kept at 11 edges. The
current edge: is then advanced to next edge= 6, and the two comparisons are performed and
so on untile = 12, wheree — ¢,; = 12 — 2 = 10 is divisible bys, = 5, i.e., it is a common edge
and the count is decremented. Similarlyeat C'S,, = 15, e is divisible bys, and the count is

decremented once again.

This naive approach encounters a high overhead given that counting the edges process is re-
peated many times in the main loop of the algorithm, where, in each iteration, an edge count is
needed for each pair of trees. We propose three optimizations that can dramatically minimize this

overhead as discussed next.

3.6.1 Optimization I: Cost Lookup.

The first optimization we propose is to memoize the benefit (i.e., reduction in the total cost of the
guery plan) gained by merging two execution trees. This is very similar to Dynamic Programming
approach which avoids repeated computations by memoizing previous computations in a look up
table. We utilize a two dimensional array call€dst Lookupgable to store the merging benefits.
Thus, in the main loop of the algorithm, only the first iteration will compute the cost saving for each
pair of trees. Next iterations will use the lookup table for all pairs, except those that involve the
new merged tree from the previous iteration. Thus, the number of computations in each iteration
is reduced from{n — ¢)? to (n — i) computations. This minimizes the number of pairs for which

an edge count needs to be performed.

Figurel0shows a possible instance of the Cost Lookup table. To check if merging twatrees
andt; is beneficial or not, we lookup the ent€ost_Lookupl[i][j], which is 101.2 in this instance.
This means that mergingwith ¢; would reduce the cost by 101.2 operations per second. Negative
values mean that the merge would actually increase the ¢Qst....qq IS the merged tree in a

previous iteration and that is why all its entries are nullified in order to be recomputed.

43

b
t}usL merged ‘L
62.6 52 62.3 | 66.7

z}'usL merged

t,- 85.2 | 101.2 | 91.2

72.6

Figure 10:Cost Lookup Table

3.6.2 Optimization Il: Edges Bitmap.

The second optimization is to use a bitmap vector that acts as a hash table to represent the edges.
The top part of Figurell shows the bitmap vector for an ACQ with s, = 5 and edges at
locations 2 and 5 (i.e., fragmenis; = 2 andg, » = 3). Given theEdges Bitmajstructure, finding

the common edges between two trees requires to simply traverse the edges of one of the Edges
Bitmap to probe the other, i.e., check if they exist in the other bitmap. This requires a number of
probes equal to the number of edges in one of the trees, regardless of the number of ACQs in the
other tree. Effectively, this optimization pre-computes and materializes the results of finding the

common edges described in Example 4.

The Edges Bitmap is maintained as follows. When the tree has one query at most two edges are
hashed into the bitmap. When adding a query to a tree, 1) new bitmap is created with length equal
to the new composite slide, 2) the old bitmap is replicated in this new bitmap and the previous
count of edges is updated accordingly, and 3) the edges of the new query are hashed into the new

bitmap, incrementing the edge counter only if no collision occurs.

44

Edges Bitmap

oft]ofo]1]

Probed Replicated Edges Bitmap
lo[1]o]of1]of1[ofof1[of1{ofof;
X X X

12
15

Probing Array
of Edges
©

Figure 11:Edges Bitmap and Probing Process

3.6.3 Optimization Ill: Probing Reorder.

Clearly, given the Edges Bitmap structure, the overall complexity of the algorithm will be affected

by the choice of which bitmap to probe when counting common edges. Similar to join optimiza-
tion, which uses the relation with fewer blocks to probe the other, we propose to use the tree with
fewer edges (i.e., smaller edge rate) to probe the other. (this is illustrated in the lower part of
Figurell, where we used, which has 5 edges to prolge which has 6 edges). Specifically, the
bitmap of the probed tree is replicated to the new composite slide, while the bitmap of the prob-
ing tree is used to generate an array of edges in the new composite slide. Edges in the array are
then hashed into the bitmap of the probed tree, and if collision occurs, then the checked edge is

common.

3.7 EVALUATION

Using the simulation platform introduced in Secti@r8 we evaluated the qualitjveave Share
plans (discussed in Secti@7.]), as well as evaluating the performance of Whieave Sharepti-
mizer (discussed in Sectidh6).

Before presenting our results, let us review the the algorithms used in our evaluation.

e Randomitinitializes by creating a tree for an arbitrary ACQ. Then it proceeds for each ACQ,

45

in random order, to either add the ACQ to the last tree, or to create a new tree for it by flipping

an even coin, i.e., equal probability to both decisions.

e Exhaustive searchimply tries all possible grouping of ACQs. It worth mentioning that in the
few simple cases (input rates of 200, 300 and 400 tuples/sec, each with 5, 10 and 15 ACQs),
that we were able to get results for exhaustive search (after running the simulator for days-

week),Weave Shargenerated the same result as exhaustive search.

e We implementedshared(where all ACQs are merged in one single execution td&$) [No
Share(as a base line, where each ACQ is executed separately) and an adapted versaah of

Search(LS) (see Appendid).

Recall (Table2) that we changed the number of ACQs, the input rate, slide skewness, maxi-

mum overlap factor and the initial state and the steps bouh&.of

3.7.1 Quality of Weave Share Plans

In this section, we present the evaluation and sensitivity analysis of the qualtieaye Share

plans.

3.7.1.1 Number of ACQs (Fig.12to 14) Figuresl2and13show the cost of th&V/eave Share
plan as the number of ACQs increases from 50 to 1000, for low (50 tuples/sec) and medium (300
tuple/sec) input rates, respectively. In both plots, the maximum overlap factor is set to 50, and the
slide skewness is 0.6. As shown in the figurd&ave Sharalways outperforms the best of all
other algorithms. For instance, for 1000 ACQ¥ave Shareutperformdnsert-then-Weavand
Sharedby three and four orders of magnitude, at low and medium input rates, respectively.
Among the different versions dfocal Searchwe ran, we plot the results of the best version,
which starts fromNo Sharestate, and proceeds for a maximum of 10 times the steps\bave
Shareneeded for the same workload instance.
We note thafNo Shareand Randomgenerate the most expensive plans in both cakesal
Searchand Insert-then-Weavyeon the other hand, performs better thaimaredat low input rate

(50 tuples/sec), whil&haredoutperforms both at medium input rate (300 tuples/sec). We also

46

60000
—@— LS -NS10x
@] No Share o
50000 - ——-%-— Random
—+&—- Insert-then-weave @)

s — @ — Shared
) — —
2 40000 4 -0~ Weave Share O
2
S ©
g
o 30000 o
b
=)
o
A2
» 20000 4
o
&)

10000

0 T T T T T

0 200 400 600 800 1000 1200
Number of ACQs

Figure 12:Impact of #ACQs: Low input rate (50 tuples/sec)

3.5e+5
—®— LS-NS-10x
3.0e+5 o o No Share ©
——-%-- Random o
—~ —A = Insert-then-Weave
o 2.5e+5 o — -8 — Shared o
% ——{— Weave Share
c @)
2 2.0e+5 4
S o
2
[S) 1
o> 1.5e+5
s
@
8 1.0e+5 4
5.0e+4 4
0.0

1200

Number of ACQs

Figure 13:Impact of #ACQs: Medium input rate (300 tuples/sec)

repeated the experiment for high input rate (10K tuples/sec) and the relative behavior of different

algorithms is similar to the medium input case.

In Figurel4, we zoom into the performance Weave Shareompared t&haredas the number

47

1.0 1 A —@— 50 tuples/sec
\ O 300 tuples/sec
\ —¥-- 10K tuples/sec

0.8 - W

0.6 N

0.4 - -y ¥y

o o} o}
0.2 4 \‘*‘\“‘—H—o

0.0

Normalized Cost (Weave Share/Shared)
(0]
«

T T T T T
0 200 400 600 800 1000 1200

Number of ACQs

Figure 14:Impact of #ACQs: low, medium and high input rates

of ACQs increases, for the low, medium and high input rates. Specifically, we plot the normalized
cost ofWeave Sharplan to the cost oShared for the three input rates. The figure shows that as
the number of ACQs increases, the gaiddave Sharacreases. It also shows that even for high
input rate (10K tuples/sec), as the number of ACQs incrédeave ShareutperformsShared

For instance, at 1000 ACQs, for input rate of 10K tuples/8ézave Sharachieves a gain of 62%.

The improvement ofWeave Sharever the best of other algorithms increases as the number of
ACQs increases. This is because, the more AGAE=ve Sharselectively merges together those
ACQs that weave well together, limiting the increment in edge r&deand overlap factor(g) per
tree, while gaining the benefits of shared sub-aggregdtiocal Searclseemed to need more than
10 times the steps to reach a better plan, while incurring a very high overhead. LS-NS 10x took
thousand times the time needed \Wgave Sharelt worth mentioning that for an instance of 10
ACQs,Local Searclgenerated a plan that is 13% cheaper than théfexdve ShareHowever, this

small size does not reflect the commonality of ACQs in monitoring applications.

Figure 15 shows the number of execution trees that were generatéfldaye Sharéor the
same settings as in Figutd. As expected, the number of trees increases as the number of ACQs

increases, while it decreases as the input rate increases. It also shows that for high input rate of

48

35

. 50 tuples/sec
[/ 300 tuples/sec
30 1 mm 10K tuples/sec

25 1

20 A

Number of Execution Trees

0 200 400 600 800 1000 1200

Number of ACQs

Figure 15:Number of Execution Trees

10K tuples/secWeave Sharstill generates more than one tree for more than 100 ACQs. This
confirms our observation that the properties of the installed ACQs are as important as the input
rate in determining the sharing decision.

Finally, we also tested the performanceVidéave Sharavith the workload used to study the
sharing tradeoff in SectioB.1 (Figure6(b)). For all data points\Weave Shareutperforms the best
of the SharedandNo Shareby orders of magnitude. For instance, in Figafe), at 1000 ACQs
Weave Shareeduces the cost by 20 times comparedtw Shareand by 30 times compared to
Shared

3.7.1.2 Input Rate (Fig. 16) In this experiment we study sensitivity d¥feave Shar¢o the
input rate. We report the normalized costVdéave Shareo that ofShared in all the experiments
hereafter, aShareds the best alternative (in each experiment).

We plot the normalized cost for different values of number of ACQs in Figérel he results
in this plot are for workload witif2,,,,,. of 50 and slide skewness of 0.6. Similar to the previous
experiment, as the input rate increases, the gaWWedive Shardecreases. For instance, for 250

ACQs, the gain ofVeave Sharstarts at 80% at input rate of 50 tuples/sec, and reaches 24% and

49

250 ACQ
500 ACQ
1K ACQ
2K ACQ

Normalized Cost (Weave Share / Shared)

0.0

T T T T T
0 2000 4000 6000 8000 10000

Input Rate (tuples/sec)

Figure 16:Impact of Input Rate - different # of ACQs

6% at input rates of 2K and 3K tuples/sec, respectively. For this small number of ACQs (only 250),
Weave Shareonverges to generate one shared tree only at input rate of 4K tuples/sec. Moreover,
even for high input rate (10K tuples/se@yeave Sharachieves a gain of 12% and 24% for 1000
and 2000 ACQs (which confirms the results of the first experiment).

We observed thdhsert-then-Weaveonverges t&haredvery fast, i.e., at low input rate values.
For instance, for input rate of 300 tuples/skisert-then-Weavgenerates one tree, whildeave
Sharegenerates a plan that is three orders of magnitude betteSihared The reason is that the
initial insert phase generates much fewer trees thaNth8harecase, and thus, the weaving phase
has higher potential to generate one tree (because it merges fewer trees).

Weave Sharalso outperform®No ShareLocal SearchandRandomby orders of magnitude.
For instance, at input rate of 10K tuples/séave Shargenerates a plan that is more than 100

times better than the best of them.

3.7.1.3 Maximum Overlap Factor (Fig.17) In this experiment, we vary the maximum over-
lap factor (2,,..) for different input rate values. Specifically, we set the input rate to 100, 1K, 10K,

100K and 1M tuples/sec. For all cases, the slide skewness was 0.6, and number of ACQs was 2000

50

1.0 4 lﬂ+******77+7‘\
o
o \ -
®© \ \\.
<
D 08 A A o
s O \ "
5 \
=
z N —@&—— 0.1 K tuples/sec
g - . o 1 K tuples/sec
S . v . ——-%—— 10K tuples/sec
E \\ . A — 100 K tuples/sec
g \ - “a — @ — 1 M tuples/sec
B ool % s
o 0. \ ~
A
o \ s
ko] A T
I s T
S 021 oo v_\ﬁ_\““
: . J'__,,___'L___',_,,_,v
3 O
O O O %

0.0 =

0 500 1000 1500 2000

Max. overlap factor

Figure 17:Impact of(2,,..: different rates

ACQs. Recall that the overlap factor is the ratio between an ACQ’s range and its slide. Hence,
increasing the overlap factor increases the number of final-aggregations but it has no effect on the

sub-aggregation.

In Figure17 we plot the normalized cost d/eave Shareo Shared As expected, as the max-
imum overlap factor increases from 50 to 2000, the gaiWeave Sharencreases. For instance,
for 1M tuples/sec input rat&Veave Sharachieves a gain of 23% at overlap factor of 2000, while

it achieves a gain of 98% at input rate of 100 tuples/sec.

We also observe that all algorithms exhibit an increment in the cost as the maximum overlap
factor increases, reflecting the fact that the the overlap factor is multiplied by the edge rate in
Equatior8.2, which is the cost of final-aggregation. The incrementieave Shar&éowever, is
much slower than that &hared This is becaus@/eave Shargenerates plans that consist of more
than one tree, keeping the maximum valueiist as small as possible. This enables Weave Share
to outperform all other algorithms for most cases, or performs similar to the Bleatgd in the

remaining cases.

51

3.7.1.4 Slide Skewness (Fid.8) In this experiment, we examined the slide distribution skew-
ness parameter. By increasing the skewness, the query workload will contain more large-slide
gueries as generated by the Zipf distribution. Figl8shows the normalized cost Weave Share

to Sharedfor different number of ACQs, at input arrival rate of 100 tuple/second and maximum
overlap factor of 10.

For all number of ACQs, we see that as the skewness increases, the relative gain provided by
Weave Sharencreases. This continues until a global maximum is reached, where the gain starts
to diminish untilWeave Sharperforms similar td&Shared(i.e., share all ACQs). The reason is that
initially, as the skewness increases the more large-slide ACQs we have, and hence the higher the
penaltyof sharing them with small-slide ACQs which are not weaveable to thé@mave Share
avoids this by selectively sharing ACQs that weave well together.

As the Zipf distribution becomes very skewed towards large-slides, most of the ACQs are
large-slide ones, whereas small-slide ACQs gradually disappear. This means that grouping all in
a single tree is the right choice. In which ca¥éave Shareaptures this phenomenon and does
generate a single execution tree, sharing all ACQs. Fifj8so shows that the more ACQs are
in the system, the larger the maximum gaindg¢ave Shares. This is consistent with the previous

results shown in Figurek2 and13.

3.7.2 Theoretical Lower Bound

Finding a theoretical lower bound is interesting and challenging, and it is one of our ongoing
efforts. As in traditional multi-query optimization, our goal is to avoid "worst-case” query plans
and indeed it could be easily shown thsiéave Sharalways avoids the poor plans that might be
generated by eithe8haredor No Share We also experimentally investigate and demonstrate the
competitiveness ofVeave Sharby comparing it toExhaustive SearcfOPT) andLocal Search
(LS).

The OPT experiments (with different settings, some ran for a month and some ran for over
200 days) showed th&teave Shargenerates mostly optimal plans. Specifically, for input rates
of 200, 300 and 400, with number of ACQs 5, 10 and 15, respectiwdgve Shargenerated the

optimal plan. In only one cas®yeave Shargenerated the optimal number of execution trees, but

52

0.2 1

Normalized Cost (Weave Share/Shared)

T 250 ACQs R s
-——- 500ACQs == :3—3:5/
—+=<>— 1000 ACQs

0.0

Slide Skewness

Figure 18:Impact of Slide Skewness

with 3% higher cost, due to a different grouping of ACQs. In this specific caisaredplan was
32% more costly compared to the optimal plan.

LSis a near-optimal technique that utilize backtracking to avoid local optima. LS didn’t find
a better plan than those generatedMyave Sharevhile incurring a very high overhead. Specifi-
cally, LS-NS-10x took thousand times the time needetMeave Sharand didn’t generate a better
plan. The reason is that an iteration of LS moves a single ACQ from a tree to another, while an
iteration of Weave Sharenerges two trees, i.e., moves a group of ACQs at once. Thus, Weave

Share reaches a reasonable sub-optimal solution much faster than LS.

3.7.3 Impact of Optimizations

The impact of the above optimizations can be seen in FigAreThe figure shows the overhead

for a setting of 250 ACQs, input rate of 100 tuple/second, a slide skewness of 0.7 and a maximum
overlap factor 10. The figure shows the overhead of the N&e@ve Sharevhere no optimization

is used, compared to the three optimization variants. In the first variant, only cost lookup is used.
In the second variant, both cost lookup and edge bitmap are used and finally, in the third variant all

three optimizations are used.

53

4.1e+9

4.0e+9

3.9e+9

3.8e+9™
-

— I
—

2.0e+8

1.0e+8

1.0e+7

1.0e+6

Naive
(no optimization)

Overhead: Number of Comparisons (log scale)

Cost Lookup Cost Lookup + Cost Lookup +
only Edges Bitmap Edges Bitmap+
Probing Reorder

Figure 19:0Optimizations’ Benefits

Figure 19 shows orders of magnitude reduction in the overhead with the addition of each of
the proposed optimization techniques (notice the log scale for the Y-axis). This leads to a total
overall reduction of 99% compared to the naive approach. We obtained similar results for different

workload settings.

3.8 SUMMARY

In this chapter, we studied the factors that affect the sharing decision of multiple similar ACQs,
assuming they have the same pre-aggregation predicates and same group-by attributes, but different
window specifications. We introduced the concepiMelaveabilityto capture the affinity of ACQs

and the potential gains of sharing their processing. We also propos¥detine Shareptimizer,

which is a cost-based multiple ACQs optimizer that utilix@saveabilityto group ACQs into

multiple execution trees to minimize the total cost of the query plan. We also proposed several
optimizations for theMeave Shareptimizer that dramatically improves its efficiency, compared

to the naive implementation. We experimentally demonstrated the quality of the gendfeded

54

Shareplans which are up to four orders of magnitude better than the best alternative. We also

demonstrated the impact of the implementation optimizations.

55

4.0 INCREMENTAL Weave Share

In the previous chapter, we described the basic (offlileave Shatewhich constructs a query
execution plan from scratch. In this chapter, we consider the online case where newly submitted
ACQs are weaved into an existing weave share query plan, as well as the case of re-weaving

existing trees after the deletion of some ACQs.

4.1 ADDING NEW ACQS

Reconstructing th&Veave Sharguery plan from scratch is one possible solution to handle
the submission of a new set of ACQs into the system. In that solution, given an already existing
set of ACQs() in a Weave Sharglan P and a set of new ACQ&’, Weave Sharés invoked to
generate a new weave share pR{rwhich includes the ACQ& U @'. This solution, however, has
two drawbacks: 1) it incurs a large overhead since the algorithm is re-invoked to run from scratch
whenever new ACQs are added, and 2) it might often lead to an unnecessary reconstruction since,
in many cases, the new pldt can be directly achieved from the current plan

To address the above drawbacks, we devétmpemental Weave Shawehich takes a more

lazyapproach for maintaining the weaved plan. This involves the following two steps:

1. Immediately incorporating new ACQs into the existing plan.

2. Reconstruct the query plan from scratatly when needed

In this incremental version ofVeave Shatea new treet,,.,, is created for each new ACQ
dnew that is added to the system akéeave Sharés invoked to merge,,.,, with the trees in the

current planP to generate a new incremental plBf. Thus, among the existing trees,,, will be

56

Algorithm 2 Thelncremental Weaved Shafdgorithm

1: Input: A new query ¢ and current query plan P
2: Input: Offline slope and tolerance factor e

3: Output: Updated weaved query planP’

4: BEGIN

5. t «— Create a new execution tree for

6: PP— PUt

7: repeat

8: [« current number of trees

9: mazrimumsave «— (0

10 fori=0tol—1do

11: forj=i+1toldo

12: calculate the save if tre¢sandt; are merged
13: update maximum save info

14: end for

15 end for

16: if a pair foundthen

17: merge the trees that would lead to maximum save
18: l—1-1
19: endif

20: until No merge is done

if cost(P’)

cost(offline weaved plan > ¢ then

21:
22: P’ «— Call(Weaved Share(set of all querigs)
23: Update learnedf flineslope

24: end if

25: ReturnpP’

26: END

57

merged with the one tree with which it weaves the best. The newly merged tree might be further
merged with other trees in the plan if this is beneficial. This process continues until no further
improvements are attainable.

The cost of the incremental pla?’ might, however, be worse than the pl&hwhich would
be generated by the offlind/eave ShareIn order to detect the magnitude of that degradation,
Incremental Weave Shareaintains theperformance slopef the plan-cost curve This curve is
basically a plot of the offline-generated plan cost vs. the number of ACQs. The points on the curve
are obtained when a pla is generated from scratch.

As new ACQs are submitted to the system, the cog?’6fs compared with the extrapolated
cost using the performance slope. If the difference percentage is more than a deviation
tolerancethreshold, which is a system parameter, a reconstruction phase is triggered and performed
asynchronously. Specifically, fordeviation tolerancef ¢, a reconstruction is triggered iff:

cost(P") 1>
A — €
extrapolated cost using performance slope

(4.1)

As such, the deviation tolerance value acts ksabto control the reconstruction behavior. For
instance, setting the tolerance to zero, resembles reconstructing the weaved plan whenever a new
ACQ is added, whereas setting the tolerance:its equivalent to the case where no reconstruction
is ever performed.

Finally, it worth mentioning that if a reconstruction is triggered, the actual cost of the offline
query plan is compared to the online one and the better is deployed. This is to avoid the case when

the extrapolated cost is misleading.

4.2 DELETING ACQS

We handle the deletion of existing ACQs similarly to the addition of new ACQs. Specifically,
deleted ACQs are first removed from their respective execution trees. Then the benefit of merg-
ing each of those updated trees with each of all the other trees (updated and not updated) in the
weaved plan need to be computed. This is similaMeave Sharierations, where the just merged

execution tree entries in the cost-lookup table are updated. This process is repeated until no more

58

improvements are attainable. Similarly to adding ACQs, given the performance slope and a tol-
erance factor, a reconstruction phase may be triggered depending on the degradation from the

extrapolated cost.

4.3 WEAVED PLANS SWITCHING

In this section we describe hawcremental Weave Shacan switch to new weaved plans without
interrupting in progress data processing. Specifically, the updated weaved plan contains three types
of execution trees: deleted, new and updated trees. Below we describe how to handle each of them.

First, the final-aggregation operators of deleted ACQs are marked in the current executing
weaved plan, and stop executing. Secdndremental Weave Shagenerates the updated Weaved
plan while the current plan continues executing. Once the new weaved plan is ready, the new
trees are added to the running plan and starts execution. Finally, the updated trees are handled as
follows.

The current window edge due by each final-aggregation operator is marked both in the current
and updated plans. Input tuples and fragments (sub-aggregations) needed to generate the current
window are fed to both plans. The current plan is allowed to continue execution until each ACQ
produces the current window aggregate result, at which point, the corresponding final-aggregation
operator in the new plan starts executing. Once all ACQs in the current plan produces its output,
the tree is removed from current plan. Eventually, all updated trees will be replaced by the new

plan trees.

4.4 FREQUENCY OF ACQS ADDITIONS AND DELETIONS

The frequency of how often ACQs are being added or deleted has a direct impact on the perfor-
mance ofincremental Weave Shar@he more frequent the additions and deletions are, the more
benefitsincremental Weave Shates, because it avoids frequent expensive reconstructions. In

a typical monitoring application, there are several phases of popularity of the application which

59

is reflected on the frequency of addition of ACQs. The first phase is the setup phase, in which
the application, or the phenomenon to be monitored, is not popular yet. In that phase, ACQs are
added sporadically. The peak phase of an application is when it becomes very popular, during
which ACQs are massively added. Then a calm down phase follows, when saturation of number of
ACQs is reached: a saturation phase. Finally, occasionally, some external events might trigger new
interest in the application, which leads a new epoch of ACQs to be added (epoch phase). Another
possibility is the periodic interest, such as monitoring events that trigger interest periodically. For
instance, sales of flu shots is of interest during the Fall season. ACQs that monitor flu shots sales
is expected to be registered periodically, and be deleted after the season passes. Deleting ACQs in
general is not very common, by definition of the ACQ being a continuous query, i.e., a query that

runs continuously.

Example 6. In a financial market monitoring application, when a new start-up company launches
(setup phase), people starts slowly monitoring its index performance. Once it becomes popular
(peak phase), hundreds of ACQs will be registered to monitor this company, until the saturation
phase is reached. Once a while, some global, technical, economical or political events may trigger

new interest in this company, which lead to a the epoch phase

4.5 ADAPTING TO CHANGES IN INPUT RATE

The data stream input rate affects the cost of the Weaved plan. It is known that input rates typically
fluctuate. To adopt to every single change in the input rate will incur a huge unnecessarily over-
head, especially that the weaved plan won’t change for a small change in the input rate. Dramatic
changes, however, might lead to a change in the weaved plan. By dramatic changes we mean when
the change of the input rate exceeds the edges rate. Vise versa, when the change of the input rate
goes below the edge rate, it is also a dramatic change. A dramatic change essentially changes the
dominating factors of the cost function of the weaved plan, and hence might change the sharing
decision.

To handle the changes in the input rate, we propose to segment the expected input rate range

into low, medium and high ranges. A weaved plan is then generated for each range. Thus, for

60

2000

1800

1600

1400

1200

1000

800

600

Cost (aggregations per sec)

400

—@— Weave Share (25% tolerance)
- Weave Share (offline)

200

O T T T T T T T
0 100 200 300 400 500 600 700

Number of Aggregate Queries

Figure 20: Incremental vs offliné@Veave ShareDeviation

changes between these ranges no computations are needs to be done. If the input rate changes tc
a value not contained in the existing ranges, e.g., a burst arrival that exceeds the high range, the
nearest range can be utilized while a reconstruction takes place in offline. The plan for this new

input rate range is memoized to be utilized later if needed.

To handle both changes in ACQs (i.e., addition and deletion) and changes in input rate, when-
ever a reconstruction phase is triggeredgremental Weave Sharié computes a plan for each

of the input ranges, starting with the current input rate range.

4.6 EVALUATION

In this section we study the performance of theremental Weave Shagptimizer. In the first
experiment shown in Figur20, we plot the cost of the weaved plans that are incrementally gen-

erated byincremental Weave Shaas ACQs are added to the system. The tolerance factor for the

61

180

160 - Igflmty

140 ~
120 A
100
80 -
60

40 -
5%
20 $ 40%

30% @0, J0%

0,
0 - %

Relative Deviation (vs. offline Weave Share)

0 2e+5 4e+5 6e+5 8e+5 1e+6

Overhead: Number of Comparisons (log scale)

Figure 21:Incremental Weave Sharé®verhead

results in this figure was 25%. We also plot, in the same figure, the cost of the weaved plans that

are generated by the offlindeave Share

Recall that, forincremental Weave Sharthe tolerance factor is used to determine when to
issue a reconstruction phase. That is, a reconstruction phase is triggered if the ratio of the current
execution plan cost to the extrapolated offline cost, given the learned offline slope, exceeds the
tolerance factor. As such, as the figure shows, with adding more AldQemental Weave Share
deviates from the offline version until the deviation exceeds the tolerance of 25% that is when
reconstruction is performed and the online and offline performances become the same. The figure
also shows that the rate of reconstruction decreases with increasing the number of ACQs. This is
because the more ACQs, there is a higher chance for a new ACQ to find an existing tree that it

weaves well with.

In Figure21 we plot the overhead as number of comparisons on the X-axis, versus the average
relative error between the plan generatedrnyremental Weave Shaend the plan generated by

offline Weave Sharen the Y-axis, for different tolerance factor values (the points’ labels). For

62

180%

160% 7

140%

120%

100% o

80%

60% -

40% A

Relative Deviation (vs. offline Weave Share)

20% A

0%

Tolerance

Figure 22:Incremental Weave Sharéeviation

instance, the point labeled as Infinity shows the online performance when no reconstruction is
issued at all (tolerance). As expected, the Figure shows that as the tolerance factor increases,
the relative error increases while the overhead decreases. It also shows that the relative error is
always less then or equal to the tolerance factor. From the above results, we conclude that a

tolerance factor of 20% or 30% achieves a good balance between performance and overhead.

In Figure22 we plot the average deviation between the plan generatéacbymental Weave
Shareand the plan generated by offlIWeave ShateThe corresponding overheadlatremental
Weave Shares plotted in Figuré&3. The last column in the two plots labeledlaginity shows
the online performance when no reconstruction is issued at all (tolerasce As expected, the
figures show that as the tolerance factor increases, the relative error increases while the overhead
decreases. It also shows that the relative error is always less then or equal to the tolerance factor.
From the above results, we conclude that a tolerance factor of 20% or 30% achieves a good balance

between performance and overhead.

63

(log scale)

Overhead: Number of Comparisons

Figure 23:Incremental Weave Sharéverhead

4.7 SUMMARY

In this chapter, we proposed tecremental Weave Shamptimizer which handles the addition

and deletion of ACQs by incrementally update the weaved praastemental Weave Shawtilizes

a tolerance factor, which is a system parameter, to control how often a reconstruction from scratch
phase is triggered. We experimentally demonstrated the performahwer@iental Weave Share

and showed that a tolerance factor of 20% or 30% achieves a good balance between the quality of

the weaved plan and the overhead.

64

5.0 TRIOPS: THREE-LEVEL PROCESSING MODEL

In this chapter, we propose a novel processing model for ACQs, cati@ps with the goal

of minimizing the repetition of operator execution at the sub-aggregation level. We also present
TriWeave a TriOps-aware multi-query optimizer built on the same principleS\&ave Sharé\Ne
analytically and experimentally demonstrate the performance gains of our proposed schemes which
shows their superiority over alternative schemes. Finally, we generail&aveto incorporate

the classical subsumptions-based multi-query optimization techniques.

5.1 MOTIVATION

The ACQ processing model under tRaired Windowtechnique is a two-level (i.e., two opera-

tors) query execution plan,as discussed in Chap{&ection2.2.2. TheWeave Shareptimizer

[35, 34] adopted the two-level processing model, under which model, partitioning of ACQs into
multiple execution trees requires duplicating the sub-aggregation operator across the different dis-
joint trees (i.e., one sub-aggregation operator for each tree). NatWfye Shareonsiders that
duplicated cost in its optimization objective and tries to minimize the number of generated trees to
minimize the overall cost.

While Weave Shartries to balance the tradeoff between sharing and no sharing, it still suffer
another sharing tradeoff by using the tow-operators processing model. On one hand, fewer exe-
cution trees (i.e., sharing) means fewer sub-aggregation operators, which means less cost at the
sub-aggregation level. On the other hand, more execution trees (i.e., no sharing) means smaller
edge rate for each ACQ, which reduces the cost at the final-aggregation level.

As mentioned in Chaptet, in order to fully reap the benefits of the n&eave Sharenulti-

65

guery optimizer, a new underlying aggregate operator implementation is needed that minimizes or
eliminates the effect of replication of sub-aggregation operators. This implementation should allow
more flexibility in the data flow between the sub-aggregation and final-aggregation levels so that
partial aggregate results are easily pipelined to different final-aggregate operators, or equivalently,

to different trees of operators as in the cas®efive Share

5.2 TRIOPSAND TRIWEAVE

5.2.1 TriOpsProcessing Model

TriOpsis a new aggregate operator implementation that works in synergy with théAfeawe
Share optimizeto minimize the total cost of processing multiple ACQ@siOpsemploys a three-
level data processing model that minimizes the repetition of operations at the sub-aggregate level.

Consider first the case when similar ACQs have varying window specifications, but same pred-
icates and same group-by attributes (the cases with different predicate and group-by attributes are
discussed next in SectioBs3 and5.4, respectively). As with alPartial Aggregationbased pro-
cessing modelsriOpsuses a sub-aggregation operator to aggregate input tuples once, generating
a stream of fragments. MriOps a single sub-aggregation operator is shared among all ACQs.
Instead of directly rolling up into the final-aggregation operators, howdve&dps introduces a
new intermediate level of aggregation.

The intercede-aggregatiomperator is introduced to the query plan between sub- and final-
aggregation levels. This new level of aggregation is made aware of the weaved plan and its ACQs
partitions. In particular, it behaves for each group of ACQs that are shared in one execution tree
(which we refer to, hereafter, gmrtition group as its unshared sub-aggregation operators in the
case of the two-operator model und#eave Share

In this way, TriOps avoids the disadvantages of replicating the sub-aggregation operator for
eachpartition groupand the disadvantages of using a single sub-aggregation operator shared by all
ACQs. By utilizing a single sub-aggregatioiriOpsavoids processing input tuples multiple times,

and by making thentercede-aggregationperatompartition groupaware, it avoids the increase in

66

Weaved groups
Group 1 Group 2 Group 3
— A A A

aggregation

groups-mapping
table

intercede-
aggregation

TriOps Procelssing scheme

sub-aggregation

i/p Tuples

Figure 24:TriOpsShared Processing Scheme

the processing overhead, i.e., the number of aggregate operations, needed at the final-aggregation

level.

Theintercede-aggregatioperforms the following tasks.

1. It buffers all the fragments generated by the sub-aggregation for all partition groups and keep

them until they are rolled up into ghlartition groupsof ACQs that use them.

2. When an edge of a certajpartition groupis reached)ntercede-aggregatiomggregate all
relevant (smaller) fragments that together form the fragment that this group expects and pass

it to the group’s final-aggregation operators.

Being partition group-aware,intercede-aggregatioachieves the last step by coalescing, for
each group, the smaller fragments generated by the single shared sub-aggregation operator into the
stream of fragments that this group would have seen if it had its own sub-aggregation operator.
This is done only once for each group of ACQs, when a window edge is due for one of the ACQs
in that group. Thus, each fragment is aggregated once per group, instead of once per window
instance, as the case with the two-operator model. To illustrate the idetemede-aggregatign

consider the following example.

Example 7. Consider the first two ACQs of our running example, namgi§g, 5) and ¢,(5, 4).

67

Let us assume that the weaved plan decides to not share execution. ¢J has, the following
sequence of edges timestamps’, 8, 10, 13, On the other handg, has edges at timestamps
1,4,5,8,9,12,.... UnderTriOps the shared sub-aggregate operator would produce fragments
with the timestamps sequencelos, 4,5, 8,9, 10, 12, 13, .., that is the union of the two sequences

of edges. When the edge at timestah{pf ¢,) is reached, for instance, thetercede-aggregation

will aggregate the fragments and 3 to produce the fragment that, is expecting, and route this
fragment to the input buffer of,. For another instance, when edde(of a;) is reached, the
intercede-aggregationill aggregate fragment8 and4 to generate the fragment tha is expect-

ing. This can be easily generalized to groups of ACQs where every edge belongs to a certain
group, instead of a single ACQ, and th@ercede-aggregatiocomputes the fragment that this

group expects to see.

A weaved plan using th&iOpsprocessing model is illustrated in Figuzd. The figure shows
the introduced new level of aggregation, that isititercede-aggregationperator. As illustrated
in the figure,intercede-aggregatiomises a group-mapping lookup table to generate the proper
fragments for each group. This table is generated and maintained by the multiple ACQs optimizer

(Weave Sharm this case) as will be explained in Sectidr2.3

5.2.2 TriOps Cost and Advantages

In this section, we analyze the cost function of a weaved plan usingriBg@s processing model
and discuss its advantages. Recall from Chapt8ection3.2that the total cost of a weaved plan

that is consisted of: trees is computed as:

C(m—trees;, 2-operator— mA + Z EQ; (5-1)
=1
Note that the first term of Equatidn l is the cost at the sub-aggregation level, whereas the
second term is the cost at the final-aggregation level.
GivenTriOpsnew processing scheme, however, the total cost of a weaved plan in Eddtion

changes to:

Cm-trees, TriOps— A+m.E+ Z EiQ; (5-2)

=1

68

whereF represent the edge rate of the shared sub-aggregatioi; amthe edge rate of fragments
eachpatrtition groupsees from théntercede-aggregationperator. The ternm.E represents the
cost of theintercede-aggregatigrwhere each fragment is aggregated once for each group.

Comparing the cost function ariOps(Equation5.2) to that of the two-operator model (Equa-
tion 5.1), the new processing model reduces the cofRastial Aggregation which is the cost of
the sub-aggregation level in case of two-operator model, frono A +m. E, which is the cost of
the sub-aggregation plus that of tilkercede-aggregationperators in case of tHEiOps. Since
the edge rateK) is typically much smaller than, the TriOps scheme typically reduces the cost
by a factor proportional t@E. The only exception is the hypothetical case when the input rate
is one tuple per time unit and the sub-aggregation is generating one fragment per time unit (i.e.,
E = X = 1). In this case, the cost of using two-operator model will be less expensive by exactly
the value of the input rate (= 1 extra aggregations per time unit).

In addition to reducing the cost of the weaved pl&anQps processing model offers several
other performance advantages, namely, efficient adaptivity, smaller operator invocation overhead
and less memory overhead.

Adaptivity to changes in the workload characteristics becomes more efficient, as mentioned
earlier, because of the fixed physical query plan acrosgéngtion groups If the input rate
changes, for instance, the new plan might group the ACQs differently. Yet, the physical plan (i.e.,
the set of operators) will still utilize a single shared sub-aggregation operator, a isitegtede-
aggregationand the same set of final-aggregation operators, one for each ACQ. The only change
in the plan is the group-mapping table. Further, the addition and deletion of ACQs becomes as
simple as adding or dropping a final-aggregation operator, and updating the group-mapping table.

In terms of operator invocation overhealtjOps replacesm sub-aggregation operators of
paired-windows scheme, by exactly two operators; one shared sub-aggregation artdroade-
aggregation The fewer number of operators means fewer context switching, which means less
overhead. Finally, given that tiHgiOpsprocessing scheme uses a single sub-aggregation operator,
input tuples are buffered until they are consumed only once, as opposed to be buffered until they are
consumedn times, once pepartition group as in thePaired Windowcase. While thentercede-
aggregationrequires extra buffering of the fragments, the savings from shorter buffering of the

input tuples surpasses this overhead. Specifically, instead of buffetmgles/second until they

69

are consumed by ath sub-aggregate operators, theuples per time unit are buffered until they
are consumed once, aglfragments per time unit are buffered until they are consumed by:ithe

groups.

5.2.3 TriWeaveOptimizer

The fact that our new processing model reduces the cd3amial Aggregationsuggests that
a selective grouping of ACQs based dnOpss cost model would result to more partition groups
and lead to better performance. This led us to dev@loyweave which is a newTriOps-aware

multiple ACQs optimizer.

The Triweaveoptimizer works similar to théVeave Shareptimizer, trying to selectively
weave together in shargmartition groupsthe ACQs that weave well. That is, to group ACQs in
a way that minimizes the total plan cost as per Equaii@n The steps of th@&riWWeaveoptimizer

are shown in Algorithn8 and can be summarized as follows.

e Initialize the plan by creating a group for each ACQ, i.e., no sharing at all.

e While beneficial, i.e., reducing the total cost of the plan, find the pair of groups that yields the

maximum reduction in the plan cost when shared.

e Merge the pair of groups found in the previous step and update the plan.

e When no such pair of groups is found, generate the group-mappings table and return the current

plan as thélriWeavePlan.

Notice that upon changes of the workload, such as addition or deletion of ACQs or major
changes in the input ratdriWeaveneeds to regenerate the group-mapping table to replace the

current one.

We experimentally demonstrate the performance gaiffsidfeavein Section5.6. The results
confirm our hypothesis thatriWeavegenerates better quality weaved plans with more partition

groups compared td/eave Share

70

Algorithm 3 The TriweaveAlgorithm
1: Input: A set of n ACQs

2. Output: TriwWeavequery plan P

3: Begin

4: P « Create an execution tree for each ACQ

5: | < n {current number of treés

6: (max-reductionty, t;) < (0, —, —) {current tree-pair to merge
7: repeat

8 for:=0tol—-1do

9 for j=i+1toldo

10: temp «— cost-reduction-if-mergingy, ¢,)

11: if temp > max-reductiorthen

12: (max — reduction, t;,ts) «— (temp,t;, t;)
13: end if

14: end for

15 end for

16: if max-reduction> 0 then

17: merge(;,tz)
18: l—1-1
19: endif

20: until No merge is done
21: group-mapping— Generate-Mapping-Tal(€)
22: ReturnP

23: End

5.3 TRIOPS WINDOWS AND PREDICATES

In this section, we study the case when ACQs have varying window specifications as well as differ-
ent predicates. We first discuss the drawbacks of the adophiaged Data Shard$SDS) technique
that handles the case when ACQs have different predicates in SB@idnWe provide the details

71

of the Inverted Predicate-signatut®$) structure, which is howriOps efficiently adoptsSDSto

process ACQs with different predicates and varying window specifications, in S&clidnh

5.3.1 Drawbacks of Integrating Shared Data Shards Technique withWeave Share

As discussed in details in Secti@.3.2 the Shared Data ShardéSDS) 5] technique was pro-

posed to handle the case when ACQs have the same window specifications but different predicates.
The assumption is that complex predicates over the same data stream may 08&&gan be
integrated with th&Veave Share® handle ACQs with different window specifications and different
predicates, as discussed in Cha@eBection3.5.3 This integration is achieved by introducing an
operator before the sub-aggregation operator that pre-processes the input tuples, augmenting them
with a signature that determines which predicates this tuple satisfies (Bjguraen, in the sub-
aggregation operator, each set of tuples with the same signature are aggregated together producing
shards of fragments. Finally, each shard is routed to the proper final aggregate operator to produce

the results.

There are two drawbacks of ti&ED Sscheme that th&riOpsprocessing model addresses. The
first drawback is the transient memory overhead involved in replicating the fine grained fragments
in the input buffer. That is, given a set bpredicates, a signature of lendtts augmented to each
tuple, yielding2’ different possible signatures. This means that each fragment is split into possibly
2! fragment-signature pairs. Replicating these fragments in the input buffers of each and every

ACQ, exponentially increases the memory overhead.

Directly related to this issue is the the second drawback, which is the increase in the processing
overhead. That is, the final aggregation operator of each ACQ needs to péffaggregations
per fragment, for every window instanc&riOps overcomes these two drawbacks through the
intercede-aggregatiofevel and by fusing the tuple-augmentation with the sub-aggregation level
as we discuss next. Another drawbacks®dS when utilized byWeave Sharas the need to store
tuple signatures due to the multiple sub-aggregation operators. Undér®@ys model, there is

never a need to store the signatures, since it uses a single sub-aggregation operator.

72

Sl:g(? [~ & | timestamp,
Sl.g 1 value, ref.
Sig, 3 count
/ . . .
. timestamp, | timestamp, | timestamp,
Sig; value, ref. | value, ref. | value, ref.
count count count
fragments with signature Sig;
Level 0
Hashing
E—
— |
Level 1
Hashing Sig, —
Leveln
Hashing

Figure 25:Inverted Predicate Signatures Structure

5.3.2 TriOps: Handling Different Predicates

TriOps efficiently adopts theSDSscheme to process ACQs with different predicates as well as
varying window specifications. To do soriOpsfirst fuses the tuple-augmentation with the sub-
aggregation phase. The goal of this merge of tasks is to remedy the need to store the signature of
each tuple, or fragment. Further, it utilizes an inverted-predicate signatix®srfdex, which is
essentially a multi-level hash-based shared buffer between the sub-aggregationiatet¢bde-
aggregatioroperators. The sub-aggregation operator UB8$0 aggregate the different fragments.

Each entry olPSis a list of fragments that have the same signature of that entry, for the different
timestamps, i.e., different partitions of the input data. Thus, the signatures need not be augmented

to the fragments, nor to the input tuples, but are instead embeddedIPSké&ucture.

Figure25illustrates thdPSdata structure using multi-level hashing. Every node in the linked
lists is a fragment of a certain edge, plus a reference count which indicates how many groups shall
read this fragment, so that once the reference counter drops to zero, the fragment is discarded.
Given this structure, the group-mapping table becomes a lookup table, where for each group, a set

of fixed pointers to entries ilPSindicate the set of fragments that satisfies this group’s predicates.

73

Weaved groups
Grmip 1 Group 2 GI‘OLip 3

final-
aggregation

intercede-
aggregation

~— groups-mapping
table

IPS

tuple augmentation
& sub-aggregation

TriWeav Plan — Ti riOpAS Processing Scheme

i/p Tuples

Figure 26:TriOps- Windows and Predicates

The second optimization that tA&iOps model offers is the reduction of the memory over-
head. Specifically, the fragment-signature pairs are no longer replicated in the input buffers of
each ACQ. Rather, they are maintained in HA& index until theintercede-aggregationperator
aggregates them and pushes them to the shared buffer opa#dition groupof ACQs, observing
the relevance to groups as encoded in the implicit signatures.

Figure 26 shows theTriWeaveplan using theTriOps model for handling different window

specifications and predicates. Given such plan, the execution proceeds as follows:

1. The sub-aggregation operator processes each input tuple and incrementally evaluates all the
predicates (e.g., using predicate indexes and group fildé&k} fior this tuple. The results of
these predicate evaluations are used to locate the entry iIR#irdex to aggregate the tuple.

2. The group-mapping table is modified by adding, for each group, a list of pointéSten-
tries that represent the set of fragments that belong to this group, i.e., satisfies the predicates
of at least one ACQ in this group. When an edge is due for a certain groumtéreede-
aggregationlooks up the group-mapping table to directly collect the different fragments that
belong to this group, aggregates them and produces the fragments of this group. This is illus-

trated in the example below.

74

timestamp 3, [timestamp 4,

Sig: 0]| I > val 2, val 7,

ref. cnt 1 ref. cnt 1

 [timestamp 1, |timestamp 3, qimestamp 4,
Sig: 10 E val 1, val 0, 1 val, 2

ref. cnt 1 ref. cnt 0 : ref. cnt 1

no fragment !

timestamp 1, [timestamp 3, ﬂimestamp 4, |timestamp 5,
Sig: 11 E val 10, val 12, [|' wval 15, val 2,
1] ref cntl ref.cnt2 |1 ref. cnt 2 ref. cnt 2

The fragment of g,
at edge 3

newest fragment

Figure 27:Fragment-signature pairs that belong to the same fragment

3. Finally, each final-aggregation operator aggregates the augmented-fragments that satisfy its

predicate to generate the final results.
We further illustrate these steps with the following example.

Example 8. Consider ACQg,, and g, of our running example, where the predicatas different

from predicatec,. In this case, the signature has two bits, and there are three possible signature
values: 01,10 and 11. Figure 27 shows a snapshot of tHe'S for these two ACQs. The figure
shows the fragments that together constitute the fragment due at edge,3 éssuming that the
most significant bit in the signatures represents predicatel hus, thentercede-aggregatiomill

aggregate these fragments and push them to the input buffer of

Figure27 also shows interesting possible scenarios. Fooihgignature entry, the fragment
at edge 1 was already consumedgpyand was therefore deleted. Also, the fragment at edge 3 in
the row of10 signature does not exist, because no tuples with this signature were inserted during
this fragment time span. Finally, in tié signature row, the Figure shows that some tuples arrived
with this signature and were aggregated to form a new fragment for edge 5.

To efficiently handle addition of new ACQs, the new predicate is represented by adding a

75

most significant bit in the signature. Thus, all previous hash entries remain valid and new entries
are hashed properly. Deletion of ACQs needs a careful handling. If the deleted ACQ results in
deleting the predicate represented by the most significant bit, théR81table can be reduced to
half, or the top most level hashing if multi-level hashing is utilized. If that is not the case, then a
new IPSwith half the size is instantiated for new entries. The tR8 work simultaneously until
no entries exist in the old IPS at which point it is to be discarded. It worth mentioning that if the
two-levels processing model adopts tR&technique, it mainly converts into tHgiOps model.

Finally, it worth mentining thatPS can be utilized by the two-level processing scheme, which

will essentially convert it into a three-levels processing scheme.

5.4 TRIOPS WINDOWS, PREDICATES AND GROUP-BY

In this section, we demonstrate hawiOps can efficiently optimize the processing of multiple
ACQs with varying window specifications, predicates and group-by attributes. We first consider
the case when all ACQs have the same predicate, but varying window specifications and different
group-by attributes in Sectioh4.1 Then we consider the general case when window specifica-

tions, predicates and group-by attributes are all different in Sebtib2

5.4.1 Windows and Group-by

In order to optimize the shared processing of multiple ACQs that have varying window specifi-
cations, as well as different group-by attributes, we utilizeititermediate-aggregatesptimizer

[59]. As discussed in details in Chapt@&rintermediate-aggregatdsandles the case of same win-
dow specifications, same predicates but different group-by attributes. We utilize it in the following

manner.

1. We apply thentermediate-aggregatesptimizer as if all windows are identical to generate the

group-by tree for this case.

2. Given the group-by tree, each first level node (i.e., a node that is a child of the root) represents

a set of ACQs that can share their processing, given their different group-by attributes, but

76

q, qp q. qa
A BC AC CD

\ / TriWeave partition TriWeave partition

ABC groups for {q, g q.} groups for { g,
\ Cde @ 3l oae | Ta]
ABCD e

(a) The group-by tree (b) TriweaveWeaving

Figure 28:An Instance of Four ACQs

assuming same windows. We then apphMWeavefor each of these sets, independently to

generate theipartition groups

3. Finally, we integrate the ACQgartition groupswith the group-by tree using thEiOps pro-

cessing model.

The last step is achieved by replacing each first level node in the group-by treeimigicade-
aggregationthat is aware of theartition groups and also performs a group-by aggregation using
the set of attributes of that group-by tree node. To illustrate these steps, consider our running

example (Figure&8and?29).

Example 9. Assume we have four ACQs, ¢, g. and a, with windows’ specifications(8, 5),

(5,4), (10,1) and (5,4), respectively. Assume also that the ACQs has group-by attributes:

BC, AC andC D, respectively. We first generate the group-by tree for the four ACQs, using the
intermediate-aggregateheme, which is shown in Figuz8(a). The label of each node represent

the set of group-by attributes used by this node. That is, each node represent an aggregation
operator that performs a group-by aggregation using this set of attributes. The group-by tree in
this case has one internal node labeld@®C'. Thus, the set of leaf nodes (i.e., ACQs) of the sub-
tree for whichABC' is the root, represent a set of ACQs that share their processing given their

different group-by attributes, but assuming they have the same window specifications. Specifically,

77

Groiup 1 GrOllp 2 Group 3

final- [
aggregation

intercede-
aggregation

intercede-
aggregation

sub-aggregation

i/p Tuples

Figure 29:IntegratingTriWeavePlan with Intermediate-aggregates Tree

da, q» and g. are shared together, whilg. is shared with the sub-aggregation of the other three
ACQs. Thus, we have two set of ACQs,Bet= {q., ¢, a.} and setl, = {q,}. We proceed by
generating the weaved plan for each set, i.e., agpiWeaveon T} thenTs. Figure 28(b)shows

the output of this step which weavEsinto two groups, one that shares anda,, while the other
hasgq. by itself. The weaved plan @i is trivial as it has one ACQ. The last step is to integrate the
results of the first two steps together intdaOps plan. Figure29 shows the integrated@riOps

plan. Simply, the root of group-by tree is mapped to the sub-aggregation operator, while each

internal node is mapped intoiatercede-aggregatiarperator, whenever possible.

The rational behind this procedure is to follow a conservative approach towards sharing. Specif-
ically, two ACQs are shared only if they are shared under both the group-by tree and the weaved
plan. For instance, whilg, andg, have identical window specification, they were not shared in
the group-by tree, so we do not share them. Notice that the group-by tree might has multi-levels of
nodes, for further processing optimization. For example, in ExaSal®ve g, andq. could have
a common parent node labeled”, which performs a group-by aggregation using the attributes

setAC and is a child of the nodd BC'. Mapping such internal nodes to tlaOpsplan depends

78

on the weave plan of the set of ACQs of this internal node, following the same conservative ra-
tional. Specifically, if the weaved plan shares the ACQs of the internal node, then this internal
node is mapped into anothietercede-aggregationperator. Otherwise, it is just dropped from the
integrated plan.

Another remark on the integration process is that in case the group-by tree has the input stream
as its root, we still use the first level nodes to determine the sets of ACQs to be weaved sepa-
rately. Finally, it worth mentioning that if thBaired Windowscheme is utilized, each node except
leaf ones, can be mapped to a sub-aggregation, and the leaf hodes mapped to final-aggregation.
This however does not allow any optimization for the varying window specifications. Using the
TriOps processing scheme, specifically ihéercede-aggregatioallows such optimization being
weaving-aware. Further, it enables efficient handling of predicates usiri§8w®s we discuss in

the following Section.

5.4.2 Windows, Predicates and Group-by

In order to optimize the processing of multiple ACQs with varying windows specifications, pred-
icates and group-by attributes, we first follow the same integration procedure discussed in Sec-
tion 5.4.1above, which optimizes the plan for varying window specifications and different group-
by attributes. Then, to support different predicates, we augment the plaiP&igitructures before

each and everyntercede-aggregatian Figure 30 shows such augmented plan for the ACQs of

Example9.

5.5 GENERALIZED TRIWEAVE OPTIMIZER

In this section we put everything together into the generaliz@d/eave the weaveability based
optimizer that optimizes the plans to process ACQs with varying window specifications, different
predicates and different group-by attributes. Generalizéfeavefollows the steps discussed in
Section5.4to handle different group-bys. In Sectiérb.1we discuss the impact of predicates on

the optimization process and then present the generaliz@éaveoptimizer in Sectiorb.5.2

79

_ [| [|
Sl

aggregation

router-aggregate

IPS

router-aggregate

1PS

[0 |

sub-aggregation ¢ ABCD

i/p Tuples

Figure 30:TriweavePlan - Varying Windows, Predicates, and Group-by

5.5.1 Impact of Predicates on Weaving

Assume there are ACQs which are weaved intor groups, and each group hasACQs, s.t.

>, n; = n. If each ACQ has its unique predicate, then the more groups (i.e., layglee more
buffering (i.e., memory overhead) and aggregate operations needed ipyetttede-aggregation
operator. The number of unique signature fragments per edge for greup< p; < 2™. Using

the Paired Windowprocessing scheme, this leads to an increment afjgregations at the final-
aggregation level, per fragment for every edge. However, usingrikps processing scheme,

this increment on cost is only reflected at theercede-aggregationperator, which means it is to

be done once per group. Specifically, for each group, each fragment is computed by aggregating
the fragment-signature pairs that satisfy its predicates only once, and routed to the proper final-

aggregation operators.

Clearly, if two ACQs have two predicates that are disjoint, or are identical, then they are best
shared since this minimizes the number of fragment-signature pairs per fragment. On the other

hand, if the two predicates overlap, this leads to the maximum increase in the cost, depending

80

on data distribution, which is not known a priori. If a predicate is contained in another, this will
be the average case of in terms of number of fragment-signature pairs per fragment. Finally, if
the predicates are orthogonal, i.e., defined on different attributes, it is even harder to estimate the

expected number of fragment-signature pairs per fragment. Now, consider the following cases:

1. Given two ACQs that are not are not weaveable (i.e., should not be shared given their window
specifications), the relationship between their predicates does not impact their weaveability.
In particular, if the two predicates are disjoint or identical (i.e., least number of fragment-
signature pairs), it is still not beneficial to group these two ACQs together, given that they are

not weaveable. Because their sharing leads to an increase in the cost without any gain.

2. Given two ACQs that are perfectly weaveable (e.g., they have the same window specifications),
the predicates relationship might impact the sharing decision. If the predicates are disjoint or
identical (i.e., best to share) and the two ACQs are already shared, then nothing changes. On
the other hand, if the two ACQs has overlapping predicates, it might be beneficial to not share
them, to reduce the number of fragment-signature pairs to be aggregated per fragment. This
however, depends on trezlge rate(the higher the edge rate, the more beneficial it is to not
share them) and the number of fragment-signature pairs per fragment, which depends on the

data distribution and the predicates’ constants.

However, given that it is not feasible to have accurate estimates of the data distribution for
data streams, where data characteristics change over time, and given that it is expensive to analyze
predicate containment, especially since ACQs are added and deleted over time, and given that
using theTriOpsprocessing scheme, the cost overhead is at the intermediate level, it is more better

to ignore the impact of predicates on the sharing decision, for the sake of efficiency.

5.5.2 The Algorithm

The steps of the generalizédd\Weaveare shown in Algorithn?t and summarized as follows:

e Generate the group-by tree.

e Generate theartition groupsfor each set of ACQs that are represented as a root-child node in

the tree. The output of this step is the group-mapping table.

81

e Integrate the group-by tree and the weaved plan.

e Augment the plan withPS structures to generate the firlal\Weaveplan that utilizesTriOps

Notice that upon changes of the workload that lead to changes in the weaved plan only, such
as addition or deletion of ACQs with no new group-by attributes, or major change in the input
rate, only the group-mapping table that is used byibercede-aggregationeeds to be updated.
However, if the group-by attributes are modified, then the whdM/eaveneed to be re-applied. If
the updated plan can be applied using an existing plan by changing the group-mapping table, then
the new plan can be deployed immediately. Otherwise, a more careful plan switching needs to be
done.

It worth mentioning that we chose to first generateititermediate-aggregatdsee, then use
it to determine partitions of ACQs to be used as inpultideavesince it sounds more natural,
and efficient mapping to @riOpsplan. It is interesting however to examine the perforamnce and
overhead of the reverse ordering, i.e., appliVeavefirst, then use group-paritions as input for

intermediate=aggregatedVe leave that to our future work.

5.6 EVALUATION

Using the simulation platform introduced in Secti®13 we evaluated the performance TiOps
processing scheme afddiWeaveoptimizer. We briefly highlight the additions in Sectiérb.],

and discuss the experimental results in Sechidn2

5.6.1 Experimental Platform
We used the simulation platform discussed in Sec?i@to evaluatelriOpsandTriWeave Below
we highlight the specific additions used here.

ACQs: In these experiments, we used overlap factg) (vith a maximum valu«?,,,,. = 50.

Recall that; = s; x w;.

Performance Metrics: We measured the quality @fiWeaveplans in terms of their cost computed

as the number of aggregate operations per second (which also indicates the throughput). We chose

82

—@— 250 ACQs
104 O~ 500 ACQs
’ -¥-- 1k ACQs

0.8 1

Normalized Cost (TriWeave / Weave Share)

0.2 =1

T T T T T
0 2000 4000 6000 8000 10000

Input Rate (tuples / sec)

Figure 31:Triweaveperformance gain - Impact of Input Rate

this metric because it provides an accurate and fair measure of the performance, regardless of
the platform used to conduct the experiments. To quantify the performance gain®p§ we
compare different weaved plans, each usiingps as the underlying processing scheme versus

using paired-windows.

Algorithms: We usedWeave Shar¢35 and Shared[45] as the base case algorithms for our
comparisons. Recall th&haredis the optimizer that shares the sub-aggregation operator among
all ACQs. That is, the weaved plan has exactly one grolfeave Sharés the optimizer that
assumes the two-level processing model in selectively partitioning the ACQs into one or more
partition groups based on their weaveability. We also tried different combinations of optimizers
and processing models. For instance, we geneitalve Sharand Sharedplans, assuming the
two-level model, but then ran the plan using Tri@®Opsmodel. The goal is to get better insight and

understanding of the behavior dfiweaveandTriOps

83

I TriWeave

[Weave Share (using TriOps)
12 I Weave Share

[Shared (using TriOps)

Trend of TriWeave

0.8 1

0.6

0.2 + —

0 200 400 600 800 1000
Number of ACQs

Normalized Cost (to Shared)

Figure 32:Using TriOpsprocessing for different plans (50 tuples/sec)

5.6.2 TriOps Performance

In the first set of experiments, we measured the performance gaifsQygs-varying windows.
Specifically, we compare the quality of the weave-plan u3in@psto that using Data Slices. In
Figure31we plot the normalized cost (to reflect the gains) of weaved-plans Uisi@dgscompared

to that using Data Slices, as the input rate increases, for different numbers of ACQs. The figure
shows that for the low input rates, the edge rate is the dominating factor of the cost. This is
revealed by the small improvement owdeave Shar@ess than 40%). Figur@l also shows that

at low input rate, the gain reduces as the number of ACQs increases.

Interestingly, at very low input rates, the role of the number of ACQs is reverted. That is, the
more ACQs, the less the performance gain$rd®ps This is because when the input rate is very
low, the cost at the final-aggregation becomes the dominating factor of the total cost. Thus, the
more ACQs, the more overlapping operations needed and the less th@g@ipsachieves.

In Figure33 we show the performance gains ri\Weavecompared tdNeave ShareWe see
that Triweaveachieved a further 63% improvement over ieave Shareptimizer. We observe
the same phenomena of reverting the impact of ACQs for different input rates.

In the next set of experiments, we take a further look into the performante@pbs Specif-

84

Normalized Cost (TriWeave / Weave Share)

1000 2000 3000 4000 10005
A

Input Rate (tuples/sec) eo

Figure 33:Triweave- Impact of Input Rate and No. of ACQs

ically, we generated query plans using different optimizers (nanvédave ShareShared and
Triweav@, then we measured the cost of each plan when using the Data Slices vs when using the
TriOps scheme and report the normalized cost of different alternatives, normalized to the cost of

the Shared plan using Data Slices.

Figures32, 34 and 35 show the performance gains of tléOps processing scheme for low
(50), medium (300) and high (10K tuples/second) input rates, respectively. We plot the normal-
ized cost as the number of ACQs increases. We also highlight the trend ofitideaveplan in
each plot. All three Figures show that for each plan, utiliZimgOps achieves gains over Data
Slices, except for th8haredcase. The reason is simply because when there is only one group, the
intercede-aggregatioadds an overhead with no benefit. On the other hand, when there are at least

two groups, utilizingTriOpsachieves between 40 and 60% gain.

All three Figures also show that the gaintafOpsincreases as the number of ACQs increases.
This is mainly due to the fact that the more ACQs, the more chances for selective sharing. While
Data Slices will be less aggressive to generate more groups (due to its cost function, i.e, the shar-
ing trade-off), TriOps on the other hand is able to take full advantage of such opportunity. We

confirmed that by checking the number of groups each scheme produces, and we fodmid that

85

I TriWeave

[Weave Share (using TriOps)
1.2 I Weave Share

[Shared (using TriOps)
Trend of TriWeave

0.8 4

0.6

Normalized Cost (to Shared)

0.4 4

0.2 —
0 200 400 600 800 1000

Number of ACQs

Figure 34:Using TriOpsprocessing for different plans (300 tuples/sec)

Opsconsistently generate plans with much larger number of groups. This is also seen in Figure
35, whenWeave Shargenerates one shared group, whiléOps generates multiple groups and
achieves up to 40% gain.

Finally, the rate with which the gain dffriOps increases as the number of ACQs increases
is faster for higher input rates. The reason is clear by comparing the cost functions of Data
Slices (Equatiorb.1) and that ofTriOps (Equation5.2). Simply, that the higher input ratdri-
Ops achieves larger reduction by replacing the multiple sub-aggregation operators by one sub-

aggregation and onatercede-aggregatian

5.7 SUMMARY

In this chapter, we questioned the effectiveness of the widely accepted two-level or two-operator
implementation of aggregate continuous queries (ACQs) and proposed a new three-level process-
ing model, calledTiOps in the context of Weaved Plans which selectively group ACQs into multi-

ple query execution trees (partition groups). We illustrated that the proptdseckde-aggregation

86

HE TriWeave

[Weave Share (using TriOps)
1.2 4 [Weave Share

[Shared (using TriOps)
Trend of TriWeave

0.8 1

0.6

Normalized Cost (to Shared)

0.4 4

0 200 400 600 800 1000
Number of ACQ

Figure 35:Using TriOpsprocessing for different plans (10K tuples/sec)

operator inTriOps minimizes the total cost of processing multiple ACQs by allowing sharing of
the sub-aggregation across all partition groups and performing partial final-aggregation shared by
the ACQs of a given partition group. Further, we illustrated hotercede-aggregatiooperator

can efficiently support the processing of multiple ACQs with different predicates and group-by
attributes in addition to varying window specifications. Finally, we develdpatleave aTriOps

aware multiple query optimizer along the lines of Weave Share optimizer and genefaiizedve

to integrate the classical subsumption-based multi-query optimization techniques. We evaluated
the effectiveness ofriOpsand the quality of the query plans producedibiyVeaveusing simula-

tion. Our experimental results demonstrated the performance gains and superiority of our proposed

schemes to other alternatives.

87

Algorithm 4 GeneralizedriWeaveOptimizer

1:
2:
3:
4.
5:
6:
7
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

30:

Input: A set of n ACQs
Output: TriwWeavequery plan P
Begin
T «— Generate the group-by tree
WP «— () {weaved plah
for For every node; that is child ofroot(T") do
C; — ACQs(t;)
P, — Create an execution tree for each AG@Qitialize to no sharing plah
[— n; {current number of partition groups
(max-reductionty, t2) < (0, —, —) {current tree-pair to merge
repeat
fori=0tol—1do
forj=i+1toldo
temp « cost-reduction-if-merging(, ¢;)
if temp > max-reductiorthen
(max — reduction, ty,ty) «— (temp,t;,t;)
end if
end for
end for
if max-reductior> 0 then
merge(;,t2)
[—1—-1
end if
until No merge is done
WP «— P,UWP
end for
P — integrate(", W P)
P — augmentlPS(P)
ReturnP
End

88

6.0 AQSIOS 3.0: REALIZATION OF WEAVE SHARE

In this chapter we describe the challenges and the final design decisions in realizing our proposed
weave-based algorithms to optimize the shared processing of ACQs in a real system. Specifically,
we implementWeave Sharen AQSIOS 3.0 p]. We first overview the AQSIOS prototype in Sec-

tion 6.1 Then, we describe the challenges involved in implementingdred-windowprocessing
scheme as well as theave Shareptimizer in AQSIOS and how we address them in Seddi@n

We finally provide performance results for our implementations in Seétian

6.1 THE AQSIOS DSMS PROTOTYPE

Advanced Query System Infrastructure On Streams (AQSIG% b prototype DSMS developed
by the ADMT Lab (Advanced Data Management and Technology Laboratory) of the University
of Pittsburgh. When AQSIOS was first developed, it was an effort to prototype the new generation
DSMS, whose design had equal emphasis on optimizing performance and enhancing functionality.
The goal was that these new generation DSMSs will simplify the development of a wide range of
monitoring applications, with diverse requirements.

The AQSIOS project reexamined all four critical components of a DSMS, namelWlbey
SchedulertheLoad SheddertheQuery processgrand theData Disseminatiomodules. The two

key innovations of this project are:

1. it formalizes QoS/QoD metrics for DSMSs and develops algorithms designed to optimize these

metrics.

2. it looks at how the four DSMS modules mentioned above, Qeiery Schedulerthe Load

89

Shedderthe Query processoand theData Disseminationcan be integrated to work in syn-
ergy, instead of making isolated decisions that may have a significant negative impact on the
overall performance; and

3. its plans included the analytical and experimental evaluation of the proposed algorithms and

also the implementation and evaluation of a prototype system.

AQSIOS 1.0 prototype is implemented starting from STREAM 0.6.0 code. AQSIOS 1.0 im-
plementHighest Rat€HR) [71], a priority-based scheduler, in addition to the bd&mind Robin
(RR) schedulerHR scheduler prioritizes operators based on the their output rate, and executes the
operator with the highest priority in order to minimize the response time. Furthermore, AQSIOS
1.0 implements a simple yet complete load manager that monitors the system workload at run time
and automatically decides the appropriate amount of random shedding from the input data when
the system is overloaded.

The second release, AQSIOS 2.0, incorporates the second versiohiahta[64] load man-
ager and supports priority-classes scheduling incorporating the Continuous Query Class scheduler
(CQQO) [53]. CQCis a two-level scheduler which combines weighi&andHR to effectively
handle different ranks of CQ classes. In addition, AQSIOS 2.0 RlheS[65], a complete syn-
ergy betweeLoMaandCQC. DILoSis an integrated approach that exploits the synergy between
scheduling CQQ) and load shedding\NLoMa) to effectively handle different ranks of CQ classes,
each associated with different QoS and QoD requirements, in a a multi-tenant environment. Users
of AQSIOS 2.0 can specify which class a query belongs to and the priorities of the classes, which
will be honored byDILoS

The new release, AQSIOS 3.0 contains our implementation o¥\thave Sharguery opti-

mizer. We describe the challenges we faced to redlizave Sharaeext.

6.2 CHALLENGES

AQSIOS inherited the basic query processing and optimizer from STREAMS code, which was
mostly based on traditional DBMS techniques. As such, in order to redleae Sharen AQ-

SIOS, we need to first implement tRaired Windowprocessing scheme (Secti@r.2. This, in

90

group_
aggr
Operator

win
Operator

Figure 36:Current ACQ query plan

turn, involved the full implementation of sliding windows. Another challenge was the modifica-
tion of the current optimizer to recognize similar ACQs and invokeVileave Shareptimizer to

generate their execution plan.

To better illustrate the first challenge, Figud® shows how an Aggregate Continuous Query
(ACQ) plan would look like in the current release of AQSIOS (version 28)) [The window
operator exists only if there is a window specification clause in the CZDL If no window is
specified in the query, the system applies the aggregation on each input tuple, which is equivalent to
a tuple based window of size 1 and slide 1. AQSIOS supports both time- and tuple-based windows,
which is inherited from STREAMS code. The window operators, however, do not support sliding
windows. More precisely, the current support for sliding windows in AQSIOS is a slide of one
tuple. This is regardless of whether the window is a range (i.e., time) or row (i.e., tuple) based
window for the range specification. This implementation assumes the slide to be always a row-
based slide of length 1. That is for every input tuple, an aggregation result is due. Thus, we needed

to add support for the sliding windows.

Not only is support for sliding windows needed, but also a whole set of new operators, with

91

their semantics, need to be added to AQSIOS in order to suppoRatined Windowprocessing
scheme. Specifically, a sub-aggregation, a slice-manager and a final-aggregation operators need to
be implemented.

We chose to implement the slice manager as part of the sub-aggregation operator to reduce
context inter-operator communication and context switching.

To support sliding windows, there are three choices. Either to implementitin: (1) the Window
operator, (2) the Synopsis, which is the buffer area associated with the operator to maintain its
state, or (3) the new slice manager operator. The third choice might be the easiest, but this means
that only ACQs will support sliding windows. On the other hand, the first and second choices
mean that all CQs can support the sliding windows. Given that the ACQ query plan does not
need any window operators, since the slice manager is effectively the window operator, it does not
make sense to extend window operators to support sliding windows. We therefore chose to support
sliding windows in the implementation of the slice manager. Thus, the query plan would look as
the instance in Figura?.

In summary, we performed the following implementation tasks.

1. Supporting Sliding windows. This involves:
a. CQL parsing to get the slide.
b. Processing the Slide window. For this, we have three different options that shall be dis-
cussed next.
2. Optimizing multiple ACQs
a. Allow a CQL directive to instantiate the multiple-ACQs optimizer.
b. Bypass the current optimizer when this directive exists.
3. Implementation of New Operators.
a. Slide Manager, which could potentially be merged with the sub-aggregation operator.
b. Sub-Aggregation operator.
c. Final-Aggregation operator.
4. Modifying current implementation.
a. Range Window operator to be slide-aware.
b. Synopsis operator to be slide-aware.

c. Group Aggregation operator to be slide-aware.

92

output output

Final_ \ _(Final_
aggr2 aggrn

Sub_aggr
& Slice
Manager

Figure 37:The Weaved Query Plan

To enable th&\eave Shareptimizer, we had to to re-do many steps in converting the logical
plan into a physical plan, as mentioned before. That was mainly due to the lack of modularity of
the STREAMS basic optimizer. In order to focus on ACQs, we assumed that all continuous queries

in the system are ACQs that uses the following template.

SELECT <aggregate _function>(<attribute>)

FROM <stream_source> [RANGE <window _range> SLIDE <window _slide>];

To invoke theWeave Shareptimizer, a configuration file parameter need to best properly to
request the query optimizer to utiliAz®%eave Share Our implementation of the sub- and final-
aggregation operators do support group-by attributes. However, AQSIOS 3.0 does not support

different group-by attributes, nor different predicates.

93

6.3 EVALUATION

In this section we provide the results\Weave Sharamplementation in AQSIOS. In addition, we
implementedSharedandNo Share Shareds the optimizer that generates a single execution tree,
while No Shareis the one that generates an execution tree for each ACQ. All other optimizers
utilize the same implementation of sub- and final-aggregation operativs@fe Share

In these experiments, we used synthetic data to regenerate the settings of our simulation-based
experiments. In all experiments, the data has a Poisson arrival rate of 50 or 300 tuples/sec. We
generated a workload of 2 minutes. The ACQs are generated using a slide length following a Zipf
distribution with skewness of 0.6, and a maximum overlap factor of 50, as in our simulation-based
experiments.

We utilized both the simpl&R scheduler and thEIR scheduler. We disabled the load shed-
der in order to study the performance of the query optimizer with minimal effect from the other

modules, i.e., scheduler and load shedder. Reported results are the average of 10 runs.

6.3.1 Performance UndeRR

As mentioned earlier, the Continuous Query Language (C@Lddes not support window slide.
The default window operator performs a slide by one tuple by default. We focus in our experiments
on Weave ShareersusSharedto confirm the observed simulation-based performance gains of
Weave Share

In Figures38 and39 we plot the cost in terms of number of aggregation operations per sec-
ond of Weave Sharand Sharedfor 50 and 300 tuples/sec, respectively, as the number of ACQs
increases. For 300 tuples/satieave Sharachieved 3 orders of magnitude improvement over
Share Also, for 50 tuples/sed/eave Sharalways reduces the cost ov@hared with reduction
between 22% and 62%. These results are similar to the simulation results discussed in €hapter
(which showed three orders of magnitude improvement compar8tidcedfor 500 ACQs.) We
replicate here a snapshot of this simulation results in FigQre

We also compared the response timeVgave Share¢o that of Sharedand No Share In

Figure41 we plot the average response time (in micro-seconds) per window, i.e., per ACQ output

94

6e+5

—@— Shared
O Weave Share

5e+5 4

4e+5 o

3e+5

2e+5

Cost (Aggregations/second)

1e+5

0 100 200 300 400 500 600
Number of ACQs (50 tuples/sec)

Figure 38:Cost - 50 tuples/sec

8e+8
O
—@- Weave Share o
6e+8 O Shared o
0 o]
o
(2
B o]
_5 4e+8 o O
© o
3 0
>
< 2e+8 A o
»
o (¢]
o
0 i
T T T T T
0 100 200 300 400 500 600

Number of ACQs (300 tuples/sec)

Figure 39:Cost - 300 tuples/sec

tuple. The average was taken across all ACQs, across multiple runs. We s@éethet Share

reduces the average response time by between 43% to 67%.

We also noticed in FigurélthatNo Shareperforms better thaBhared which is and indicator

that the system is under-loaded sirde ShareoutperformsSharedwhen the system is under-

95

Cost (aggregations/sec)

Average Response Time (micro-seconds)

Figure 41:Average Response Time - 300 tuples/sec

14000

12000

10000

8000

6000

4000

2000

—@— Weave Share
O Shared

T T

200 400

Number of ACQs

600

Figure 40:Simulation results for 300 tuples/sec

20000

18000 4

16000 -

14000 -

12000 4

10000 4

8000 4

6000 4

4000 +

2000 1

—&— Weave Share
O Shared
—w¥- No Share

T T T T T
100 200 300 400 500
Number of ACQs

96

600

loaded. We repeated the experiment with higher input rate of 50K tuples/seconds. The results of
this experiment are shown in Figud2. We first notice that the response time jumps from micro
seconds to few seconds. Performance gaiWedve Sharare also clearer for this high input rate.

Specifically,Weave Shareesduces the response time between 75% and 99%, compasbated

1.2e+7
-V
_—-v
0 vy
B 1.0e+7 A /v,,—v —&— Weave Share
S /,’/ O~ Shared
2 j/ —%-- No Share
O 8.0e+6 4 7/
S ,
E y o
@ 6.0e+6 - !
E |
[/ o
o i
2 4.0e+6 1 !
2 ! o
3 /
€ 2.004+6 !
7 /
o | o
o |
® /
2 00 4 8———-0-——0————0———0—‘—0—0—0—0/.
<
T T T T T

100 200 300 400 500 600

Number of ACQs

Figure 42:Average Response Time - 50K tuples/sec

5e+5
@
° —@— Weave Share
o 4e+5 A O~ Shared y
o
)
@
<
QO 3e+5
E
)
E
= 2e+5
@
1%2]
c
S)
&
® fe+5
o
)
=)
o
o 0 1
>
<
T T T T
0 100 200 300 400 500

Number of ACQs

Figure 43:Average Response TimeéHR scheduler - 50K tuples/sec

for more than 100 ACQs. For 50 and 100 ACQs, where the response time is in few milliseconds,

Weave Shareesponse time was similar 8hared No Shareon the other hand, suffers a relatively

huge response time for 100 or more ACQs.

97

6.3.2 Performance UndeHR

HR is better tharRRas a cost-based scheduler, although unfair and hence susceptible to starva-

tion. We expect that utilizing a smarter scheduler, further gains, in terms of response time, can be

achieved. In order to minimize the average response tiRaives higher priority for execution to

the operator that have a higher production rate. We had to instrument the sub- and final-aggregation
operators to measure and report their production rate.

In Figure43 we plot the average response time (in micro-seconds) f oWwbave Sharand
Sharedoptimizers, for input rate of 50K tuples/second, usingkti[71] scheduler. The results
however did not show the expected further gains\idgave Share Specifically, Weave Share
response time is less than thatStharedby 53% and 97%, as opposed to 75% and 99% in the
case of using the round-robin scheduler. The reason is that sub-aggregation operators typically
has higher production rate (which is the edge rate) than that of the final-aggregation (which is
one output every window instance). Thus, unBi®, sub-aggregation operators receives higher
priority until they process all the tuples currently in the input buffer, or until the output buffer is
full. At this point, the final-aggregation operators gets chance to process their input fragments,
which increases their priority and gives them a chance to catch-up with the response time.

The performance gains d¢iR was not seen when utilizing thieaired Windowprocessing
scheme. This shows that careful choice of the scheduler is needed. In fact, this confirms our
motivation for our suggested future work (discussed in Chaptehat a study of the synergy
between the query optimizer and the scheduler is needed to discover best practice strategies. Oth-
erwise, while optimizing each component independently, one optimized solution for one module

might cancel the optimization of the other module and vice-versa.

6.3.3 The Optimizer Performance

In Figure44 we plot the number of generated execution trees byhkave Shareptimizer, for

two input rate values; 50 and 300 tuples/sec. As expected, the higher the input rate the less the
number of execution trees. On the other hand, for each input rate, the more the number of ACQs,
the more execution tre&feave Shargenerates, which also confirms our expectations.

In Figure45we plot the optimization time needed Weave Shart generate the weaved plan.

98

16 4 I 50 tuples/sec
[300 tuples/sec

Number of Execution Trees

0 100 200 300 400 500
Number of ACQs

Figure 44:Number of Execution-Trees &ffeave Share

N 50 tuples/sec
[300 tuples/sec

Optimization Time (Sec.)

0 100 200 300 400 500
Number of ACQs

Figure 45:Weave Shar®ptimization Time

The figures show that théeave Shartakes up to 16 seconds for 500 ACQs to generate orders of
magnitude better plans. This confirms that utilizing Weave Shares practical. As expected, we

also see that the more ACQs the longer it talkésave Sharto generate the plan.

99

6.4 SUMMARY

In this chapter, we presented our implementation of\Weave Shareptimizer in the AQSIOS

DSMS prototype. We documented the design and code changes. We also presented the results
of Weave Sharanplementation and compared them with those obtained using simulation. We
comparedNVeave Sharéo SharedandNo Share using synthetic data. The results confirmed our
simulation-based results of orders of magnitude improvement&ivared We also measured the
response time, andleave Sharachieved up to 50% less response time. It remains for our future
work to use benchmarks to evaluate our implementation. Another future extension to this imple-
mentation is to implement thEiOps processing scheme and the generalize@psoptimizer, to

handle different group-by attributes and different predicates.

100

7.0 CONCLUSIONS AND FUTURE WORK

7.1 SUMMARY OF CONTRIBUTIONS

Optimizing the processing of Aggregate Continuous Queries is imperative for Data Stream Man-
agement Systems (DSMSSs) to reach their full potential in supporting (critical) monitoring applica-
tions. Towards this, Shared Processing and Scheduling has been utilized in the literature.

This dissertation provides a new perspective of how multiple ACQs should be shared in order
for DSMSs to achieve the desired scalability. It formalizes the ACQs properties that determine
their affinity to be shared, proposes a new selective sharing optimizer, and proposes a novel ACQs

processing model.

Specifically, in this dissertation we have initially aimed at addressing the following four fun-

damental questions related to multiple ACQs optimization.

Q1. In addition to the data streams input rate, what other factors of the workload characteristics and
ACQs properties affect the cost of a shared query plan? And more importantly, how do these
factors interact with each other to affect the cost of a query plan?

Q2. Given our understanding of how the factors that affect the cost of the shared plan interact, can
we design a multiple ACQs optimizer that considers all these factors while making the sharing
decision? Could this new optimizer comprehensively handle all three cases of variability in the
ACQs specifications (i.e., windows, predicates and group-by attributes)?

Q3. Given that ACQs are added to, and deleted from, the DSMS over time, and given that input
rates also fluctuates, what is the best adaptive sharing strategy? In other words, when the
workload characteristics changes, should the query plan be recomputed or be incrementally

updated?

101

Q4. Is the currently widely-acceptdeartial Aggregatiortechnique the best continuous aggregation

operator implementation for the shared processing of multiple ACQs?

During the course of our experimentation with our simulator, a fifth question motivated the last

part of our dissertation.

Q5. Does different optimization techniques for the different DSMS modules integrate well together,
in the sense that the integrated system achieves an aggregated performance gain of the gains of

the individual techniques, or do different techniques negatively impact each other?

In this dissertation, we identified thMdeaveabilityproperty of Aggregate Continuous Queries,
which quantifies their potential to benefit from sharing their processing. We demonstrated how
utilizing the Weaveability in optimizing the shared plan of multiple ACQs can yield up to orders
of magnitude better plans using tiieave Shareptimizer. We also proposddcremental Weave

Share to handle the addition and deletion of ACQs.

We questioned the effectiveness of the widely accepted two-level or two-operator implemen-
tation of aggregate continuous queries (ACQs) and proposed a new three-level processing model,
calledTriOps in the context of Weaved Plans which selectively group ACQs into multiple query
execution trees (partition groups). We illustrated that the proposeidtéreede-aggregatioop-
erator inTriOps minimizes the total cost of processing multiple ACQs by allowing sharing of the
sub-aggregation across all partition groups and performing partial final-aggregation shared by the
ACQs of a given partition group. Further, we illustrated how ititercede-aggregationperator
can efficiently support the processing of multiple ACQs with different predicates and group-by
attributes in addition to varying window specifications. Finally, we develdpatleave aTriOps
aware multiple query optimizer along the lines of fAeave Shareptimizer and generalized
TriWeaveto integrate the classical subsumption-based multi-query optimization technigues.

We analytically and experimentally demonstrate the performance gains of our proposed op-
timization techniques and processing schemes. Finally, we realeede Sharand thePaired
Windowprocessing scheme in the AQSIOS prototype. We demonsiégeste Sharperformance
through experiments using synthetic data sets and showed the impact of different schedulers on the

performance of the query optimizer.

102

7.2 IMPACT OF THIS DISSERTATION

This dissertation provides a better understanding of how characteristics of ACQs and properties of
the workload affect the cost of a shared plan. The conceyiezfveabilitycaptures the interaction

of ACQs characteristics and they affect the cost of a shared plan, in one méteiaveability

is a new powerful tool, which this dissertation introduces, that can, and should, be utilized by a

multiple ACQs optimizer to generate better quality shared plans. This opens the door for a new
dimension in multiple ACQs optimization.

To share (share all) or not to share (share nothing) among ACQs has been the focus of the
data management research community in optimizing multiple ACQs with different windows and
different predicates. This dissertation brings in the option of selective sharing, or grouping, of
multiple ACQs in order to generate even better shared plansWEa&e Shareptimizer, proposed
in this dissertation, efficiently utilizeseaveabilityand selectively partitions the ACQs into shared
groups. Achieving up to four orders of magnitude improvement over the best other alternative,
Weave Sharestitutes the corner stone step towards scalability for DSMSs in serving monitoring
applications.

This dissertation also proposes solutions that solves the two problems that have been studied
orthogonally in the literature. Namely, the optimization of multiple ACQs with different window
specifications and/or predicates, and the optimization of ACQs with different group-by attributes.
This dissertation proposes the generaliZetdVeaveoptimizer, which efficiently integrates the
selective sharing ofVeave Sharevith the subsumption-based solutions that handle the overlap
of different group-by attributesTriWeaveis the first, in the literature, general multiple ACQs
optimizer that solves the general case, which is the real world case.

This dissertation further developed a new processing model for the AG@psis a sharing-
aware processing model that this dissertation proposes to fully reap the advantages of selective
sharing. In fact,TriOpsis what enablegriWeaveto handle all possible cases of variability in
ACQs specifications.

AQSIOS 3.0, which is the implementation Weave Sharen the AQSIOS DSMS prototype
and is available online, is the first step towards implemening/eave This contribution of

the dissertation sets the stage for the data management research community to further study the

103

problem of optimizing the processing of multiple similar ACQs and to study the synergy between

the query optimizer and other modules in the DSMS, using real system implementation.

7.3 FUTURE WORK

Our future work is mainly to generalize the propo3eiYWeaveOptimizer to handle general com-

plex continuous queries. That is, when the system has Aggregate Continuous Queries as well as
regular SPJ (i.e., Select, Project and Join) continuous queries. We also consider the case when
ACQs are sub-queries of a more complex continuous query. Then, given our realizali@awé

Sharein AQSIOS, we can study the synergy between the two-levels-basbEiQpsbased ACQs

guery plan and the scheduler and load shedder, given that these processing schemes involves mul-
tiple operators which can be potentially scheduled independently in an arbitrary order. modules in
the DSMS so that we can integrate our weave-based optimizers with these other modules. These
challenges form the major two possible future extensions to the work in this dissertation discussed
below. Another extension include to examine the reverse ordering of the generbiidézhve

optimizer steps, as discussed in Sectob 2

7.3.1 Generalization: Optimizing Complex CQs with ACQs

Currently, we consider only (simple) ACQs consisting of only one aggregation, which is the typical
case for monitoring applications. However, the more general case is when some of the aggregations
are actually sub-queries of more complex CQs. We need to generalize our query optimizer so that
it handles the general case. In particular, having non-ACQs might affect the sharing decision.
For example, when the CQ hasd&VINGclause, the results of the aggregation are fed to a filter
(selection) operator. In this case, sharing might not be feasible because the continuous query is
not reporting the aggregate value, it is actually reporting other attributes of the input schema based
on the aggregate value. Further, when the output of an ACQ is fed to different continuous queries
with different rates, sharing might not always be the best thing to do. An investigation of how to

generalize the proposed heuristics in order to handle such cases is needed.

104

7.3.2 Synergy with other Modules

We need to first upgrade our implementationVé&ave Sharéo Triweave That is to implement
theTriOpsprocessing scheme, so that we can perform our studies with the more gendkesdve
optimizer. Given this implementation, we can utilize AQSIOS to study the synergy dfitlheeave
optimizer with other modules of the DSMSs. This will lead to designing an integrated query
optimizer and best practices recommendations.

For instance, Admission Control is utilized to avoid overloading situations52hwje follow
a Game Theoretid[3] approach and propose an auction-based admission control mechanisms to
host continuous queries on the cloud. Our proposed admission control mechanisms exploit sharing
in making the admission decision. We shall investigate how our proposed admission control mech-
anisms can benefit from the knowledge about our optimizer. For instance, a very expensive ACQ
that weaves perfectly with other ACQs might be admitted, and vice versa. Thus, we can develop
admission mechanisms that exploit weaveability and shared processing of ACQs.

Similarly, Scheduling goes hand in hand with query optimization to optimize for QoS and
QoD metrics. Studying which scheduler performs better for a given shared processing scheme
might lead to new discoveries or at least best practice recommendations. Typically, the DSMS
scheduler utilizes information about the query plan, input rates, operators’ costs and selectivities,
and queue status in order to decide which operator to execute next. In our exploration, we shall
investigate how to improve the scheduler’'s performance minimizing the response timégiven
Weave The intuition is that our proposed web-transactions schedA&&# TS 36, 72], can be

modified to schedule ACQs in a way to adaptively minimize the response time.

105

APPENDIX A

ADAPTING LOCAL SEARCH TECHNIQUE

Finding a theoretical lower bound is interesting and challenging, and it is one of our ongoing
efforts. As in traditional multi-query optimization, our goal is to avevdrst-casequery plans

and indeed it could be easily shown thgtave Sharalways avoids the poor plans that might be
generated by either Shared or NoShare. We also experimentally investigated and demonstrated the
competitiveness dieave Sharby comparing it to exhaustive search (optimal) and Local Search
(LS) which is near-optimal by supporting backtracking to avoid local optima.

Local search (LS) is a an approach that can be adapted to exploit weaveability to further ex-
plore the solution space and better evaluate our proposed approach. LS is a “meta-heuristic” state
space search approadt.[It is used for solving computationally hard combinatorial optimization
problems, that can be formulated as finding a solution that minimizes (or maximizes) a certain cost
function.

The Local Search approach start by randomly selecting state (i.e., a valid solution) and pro-
ceeds towards a local minimum one step at a time, where a step is a single small change in the
current solution. The resolution of the step should be small enough in order to guarantee exploring
all possible states that are adjacent to the current state.

In each iteration, LS checks all adjacent states and moves to the one that minimizes the cost
function until no more adjacent steps are better (i.e., a local minimum is reached) or a time, or
number of steps bound is reached. Examples of problems where LS has been applied are the
traveling salesman, vertex cover and boolean satisfiability problems.

In order to adapt Local Search to exploit weaveability of ACQs, we chose the step to be a single

106

move of one ACQ from one execution tree to another existing one, or to a new one. This allows
for backtracking and considering all possible adjacent states. As for the initial state, we considered
two possible simple initial states. The first is the No Share state, where each tree contains one

ACQ only. The second is a randomly generated grouping of ACQs.

107

APPENDIX B

AQSIOS 3.0 RELATED CODE

We modified the existing code, and added new code. In Fable summarize both modified and
added code files and the purpose of each addition or modification. Below, we briefly describe the
major changes in the code. We categorize the changes in three tasks: (1) adding the weave share

optimizer, (2) adding the new operators, and (3) adding support for the new optimizer and the new

operators.

B.0.3 AddingWeave Shar@©ptimizer

The Query Optimization in AQSIOS 2.0 is not modular and does not execute at a certain part
of the code. However, while the client reads in the queries, each query is registered, at which
point a logical plan is generated and converted into a physical plan. While generating the physical
plan, some optimizations take place. Then, after all the queries are registered, a simple global
optimization phase is instantiated. In order to addWeave Shareptimizer, we had to redo all

these steps; i.e., generating the logical representation of the plan, converting it into a physical one,

and adding auxiliary structures to the physical plan.

Related code:weaveshare.h, servenpl.cc, planmgr.cc,

planmgr.impl.cc, planmgr.h and planomgr.impl.h

108

Table 4:Summary of New and Modified Code

g

—

n

File Name New/Modified | Description
dsms/src/execution/operators/firsadgr.cc | New the finall-aggregation operator
(&.h)
dsms/src/execution/operators/sagpgr.cc New the slice manager and the sub-
(&.h) aggregation operator
dsms/include/metadata/plop.h Modified added metadata about the ng
physical operators
/dsms/src/metadata/inaggr.cc Modified instantiate the new operators
dsms/include/server/params.h, Modified add the Optimizer specifica
dsms/src/server/confifije_reader.cc (&.h) tion tag and input rate
dsms/src/common/include/parser/nodes.h, Modified added window slide specifica
dsms/src/common/include/parser/nadies tions to the parser and for the
bug.h, dsms/include/parser/nodgsbug.h, logical plan representation
dsms/src/parser/nodes.cc (& .h)
dsms/include/querygen/query.h Modified added slide specification fa
the query representation
dsms/include/metadata/weaveshare.h New definitions of Data structure
needed byVeave Share
dsms/src/server/servanpl.cc (& .h), | Modified added theWeave Sharepti-
dsms/src/metadata/plangr_.impl.cc (&.h) mizer

B.0.4 Adding New Operators

We implemented the final-aggregation as well as the sub-aggregation operators. The implemen-
tation of the sub-aggregation operator also also includes the slice manager. The support for the
sliding window was also implicitly implemented in both new operators. Thus, we didn’t need to

modify the existing window operators. The new sub- and final-aggregation operators both allow

109

group-by attributes.

Related code:final_aggr.cc, finalaggr.h, subaggr.cc, sukaggr.h, phyop.h, and insiaggr.cc

B.0.5 Adding Support for Sliding Windows and Weave Share

In order to support sliding windows, we needed to modify the CQL, and hence the parser, to read
in the slide specifications. This required changes in the internal logical representations of the query
and the logical query plan. To supp®eave Shareptimizer we needed to add two tags in the
configuration file. Namely, a tag to specify ifVdeave Shareptimizer is to be used or not, and
another to specify the initial input rate théteave Sharshall use to generate the initial weaved

plan. AQSIOS has mechanisms that monitor the input rate, and hence, the plan could be changed
accordingly. This would, however, require to implement a mechanism for dynamic plan switching.

This was left for future work.

Related code:params.h, configile_reader.cc, confidile_reader.h,

nodes.h, nodedebug.h, nodedebug.h, nodes.cc, nodes.h and query.h

110

BIBLIOGRAPHY

[1] E. Aarts and J. K. Lenstré.ocal Search in Combinatorial OptimizarioRrinceton University
Press, 2003.

[2] D.J. Abadi, Y. Ahmad, M. Balazinska, U. C. etintemel, M. Cherniack, J.-H. Hwang, W. Lind-
ner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. B. Zdonik. The design of
the borealis stream processing engineCIDR, 2005.

[3] D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker,
N. Tatbul, and S. Zdonik. Aurora: a new model and architecture for data stream management.
VLDBJ 12(2):120-139, 2003.

[4] M. H. Ali, W. G. Aref, R. Bose, A. K. EImagarmid, A. Helal, I. Kamel, and M. F. Mokbel.
NILE-PDT: A phenomenon detection and tracking framework for data stream management
systems. II'WVLDB, pages 1295-1298, 2005.

[5] M. H. Ali, M. F. Mokbel, and W. G. Aref. Phenomenon-aware stream query processing. In
MDM, pages 8-15, 2007.

[6] AQSIOS, http://db.cs.pitt.edu/agsios, 2011.

[7] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I. Nishizawa, J. Rosenstein, and J. Widom.
Stream: The stanford stream data manager (demonstration descripti@sMOD ACM,
2003.

[8] A. Arasu, S. Babu, and J. Widom. The cgl continuous query language: semantic foundations
and query executiorVLDBJ, 15(2):121-142, 2006.

[9] R. Avnur and J. M. Hellerstein. Eddies: continuously adaptive query processiRgodeed-
ings of the 2000 ACM SIGMOD international conference on Management qf S$i&@&OD,
pages 261-272, New York, NY, USA, 2000. ACM.

[10] R. Avnur and J. M. Hellerstein. Eddies: continuously adaptive query procesSIGMOD
Rec, 29:261-272, May 2000.

[11] B. Babcock, S. Babu, R. Motwani, and M. Datar. Chain: operator scheduling for memory
minimization in data stream systems.3iGMOD, pages 253-264. ACM, 2003.

111

[12] E. Bach and K. Pruhs. Personal communications, June 2010.

[13] M. Balazinska, H. Balakrishnan, and M. Stonebraker. Load management and high availabil-
ity in the medusa distributed stream processing systenmPrdceedings of the 2004 ACM
SIGMOD international conference on Management of d&i&MOD '04, pages 929-930,
New York, NY, USA, 2004. ACM.

[14] M. Cammert, J. Kramer, B. Seeger, and S. Vaupel. An approach to adaptive memory man-
agement in data stream systemsI@DE, 2006.

[15] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker,
N. Tatbul, and S. Zdonik. Monitoring streams: a new class of data management applications.
In VLDB '02: Proceedings of the 28th international conference on Very Large Data Bases
pages 215-226. VLDB Endowment, 2002.

[16] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong,
S. Krishnamurthy, S. R. Madden, F. Reiss, and M. A. Shah. Telegraphcq: continuous dataflow
processing. II'BIGMOD pages 668-668. ACM, 2003.

[17] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Niagaracq: a scalable continuous query system
for internet databases. BIGMOD, 2000.

[18] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel, Y. Xing, and
S. Zdonik. Scalable distributed stream processindn I@IDR, 2003.

[19] P. K. Chrysanthis. Agsios - next generation data stream management SySI&NET
Newsletter June 2010.

[20] C. Chung.Evolutionary Solutions and Internet Applications for Algorithmic Game Theory
PhD thesis, U. of Pittsburgh, Pittsburgh, PA, Aug. 2009.

[21] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, J. Gerth, J. Talbot, K. EImeleegy, and
R. Sears. Online aggregation and continuous query support in mapredu&GNMOD,
pages 1115-1118. ACM, 2010.

[22] http://www.coral8.com/, 2004.

[23] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk. Gigascope: a stream database for
network applications. IfProceedings of the 2003 ACM SIGMOD international conference

on Management of dat&IGMOD '03, pages 647-651, New York, NY, USA, 2003. ACM.

[24] C. D. Cranor, T. Johnson, and O. Spatsch&ikeams Bogkchapter Data Stream Processing
Techniques for Network Management. November 2006.

[25] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi. Multi-query optimization for sketch-
based estimatiorinf. Syst, 34(2), 2009.

112

[26] M. R. Garey and D. S. JohnsorComputers and Intractability; A Guide to the Theory of
NP-CompletenessVH.Freeman & Co., New York, NY, USA, 1990.

[27] B. Gedik, K.-L. Wu, P. S. Yu, and L. Liu. Adaptive load shedding for windowed stream joins.
In CIKM 05, 2005.

[28] T. M. Ghanem, W. G. Aref, and A. K. EImagarmid. Exploiting predicate-window semantics
over data streamsSIGMOD Re¢.35(1):3-8, 2006.

[29] T. M. Ghanem, M. A. Hammad, M. F. Mokbel, W. G. Aref, and A. K. Elmagarmid. Incre-
mental evaluation of sliding-window queries over data strealBEE TKDE 19(1):57-72,
2007.

[30] L. Golab, K. G. Bijay, and M. T. Ozsu. Multi-query optimization of sliding window aggre-
gates by schedule synchronization.QiKM, pages 844—-845, 2006.

[31] L. Golab, T. Johnson, and O. Spatscheck. Prefilter: predicate pushdown at streaming speeds.
In Proceedings of the 2nd international workshop on Scalable stream processing ,system
SSPS '08, pages 29-37, New York, NY, USA, 2008. ACM.

[32] G. Graefe and W. J. McKenna. The volcano optimizer generator: Extensibility and efficient
search. INCDE, pages 209-218. IEEE Computer Society, 1993.

[33] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and
H. Pirahesh. Data cube: A relational aggregation operator generalizing group-by, cross-tab,
and sub-totalsJ. DMKD, 1(1):29-53, 1997.

[34] S. Guirguis, M. A. Sharaf, P. K. Chrysanthis, and A. Labrinidis. Exploiting weaveability to
optimize the processing of multiple aggregate continuous queries. Technical Report TR-11-
177, University of Pittsburgh, 2010.

[35] S. Guirguis, M. A. Sharaf, P. K. Chrysanthis, and A. Labrinidis. Optimized processing of
multiple aggregate continuous queries KM, 2011.

[36] S. Guirguis, M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis, and K. Pruhs. Adaptive schedul-
ing of web transactions. INFCDE, pages 357—368. IEEE Computer Society, 2009.

[37] R. Gupta and K. Ramamritham. Query planning for continuous aggregation queries over
a network of data aggregator&nowledge and Data Engineering, IEEE Transactions on
PP(99):1, 2011.

[38] M. Hammad, M. Franklin, and W. Aref. Scheduling for shared window joins over data
streams, 2003.

[39] M. A. Hammad, M. F. Mokbel, M. H. Ali, W. G. Aref, A. C. Catlin, A. K. Elmagarmid,
M. Y. Eltabakh, M. G. Elfeky, T. M. Ghanem, R. Gwadera, I. F. llyas, M. S. Marzouk, and
X. Xiong. Nile: A query processing engine for data streamdCIDE, page 851, 2004.

113

[40] R. Huebsch, M. Garofalakis, J. M. Hellerstein, and |. Stoica. Sharing aggregate computation
for distributed queries. I8IGMOD pages 485-496, 2007.

[41] Q. Jiang and S. Chakravarthy. Queueing analysis of relational operators for continuous data
streams. IfProceedings of the twelfth international conference on Information and knowledge
managementCIKM '03, pages 271-278, New York, NY, USA, 2003. ACM.

[42] R. Johnson, S. Harizopoulos, N. Hardavellas, K. Sabirli, I. Pandis, A. Ailamaki, N. G.
Mancheril, and B. Falsafi. To share or not to share¥LDB, 2007.

[43] A. Kementsietsidis, F. Neven, D. Van de Craen, and S. Vansummeren. Scalable multi-query
optimization for exploratory queries over federated scientific databBS&<DB, 1(1):16-27,
2008.

[44] S. Krishnamurthy, M. J. Franklin, J. Davis, D. Farina, P. Golovko, A. Li, and N. Thombre.
Continuous analytics over discontinuous streams.SIBMOD, pages 1081-1092. ACM,
2010.

[45] S. Krishnamurthy, C. Wu, and M. Franklin. On-the-fly sharing for streamed aggregation. In
SIGMOD, pages 623—-634. ACM, 2006.

[46] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker. No pane, no gain: efficient
evaluation of sliding-window aggregates over data strea®EGMOD Reg. 34(1):39-44,
2005.

[47] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker. Semantics and evaluation tech-
niques for window aggregates in data streamsSIBMOD, pages 311-322. ACM, 2005.

[48] L. Ma, Q. Zhang, K. Wang, X. Li, and H. Wang. Semantic load shedding over real-time data
streams. International Symposium on Computational Intelligence and Desigh65—-468,
2008.

[49] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman. Continuously adaptive continuous
gueries over streams. BIGMOD, pages 49-60. ACM, 2002.

[50] V. Markl, V. Raman, D. Simmen, G. Lohman, H. Pirahesh, and M. Cilimdzic. Robust query
processing through progressive optimizationSIGMOD, pages 659-670. ACM, 2004.

[51] H. Mistry, P. Roy, S. Sudarshan, and K. Ramamritham. Materialized view selection and
maintenance using multi-query optimization.3tGMOD, pages 307-318. ACM, 2001.

[52] L. A. Moakar, P. K. Chrysanthis, C. Chung, S. Guirguis, A. Labrinidis, P. Neophytou, and
K. Pruhs. Admission control mechanisms for continuous queries in the clou@Dig '10:
Proc. of the 26th International Conference on Data Engineeriie)eE Computer Society,
March 2010.

[53] L. A. Moakar, T. N. Pham, P. Neophytou, P. K. Chrysanthis, A. Labrinidis, and M. A. Sharaf.
Class-based continuous query scheduling for data streams. pages pp. 1-6, August 20009.

114

[54] M. F. Mokbel and W. G. Aref. Place: A scalable location-aware database server for spatio-
temporal data streamtEEE Data Engineering Bulletin28(3):3-10, 2005.

[55] M. F. Mokbel and W. G. Aref. Sole: scalable on-line execution of continuous queries on
spatio-temporal data stream#LDB J, 17(5):971-995, 2008.

[56] M. F. Mokbel, X. Xiong, W. G. Aref, S. E. Hambrusch, S. Prabhakar, and M. A. Hammad.
Place: A guery processor for handling real-time spatio-temporal data streamé_DB,
pages 1377-1380, 2004.

[57] M. F. Mokbel, X. Xiong, M. A. Hammad, and W. G. Aref. Continuous query processing of
spatio-temporal data streams in placeSIFDBM pages 57-64, 2004.

[58] M. F. Mokbel, X. Xiong, M. A. Hammad, and W. G. Aref. Continuous query processing of
spatio-temporal data streams in plaGeolnformatica9(4):343—-365, 2005.

[59] K. Naidu, R. Rastogi, S. Satkin, and A. Srinivasan. Memory-constrained aggregate computa-
tion over data streams. ICDE, 2011.

[60] Nasdaq. nastraq: North american securities tracking and quantifying system.
http://www.nastraq.com/description.htm.

[61] P. Neophytou, M. A. Sharaf, P. K. Chrysanthis, and A. Labrinidis. Power-aware operator
placement and broadcasting of continuous query resultslolnDE, pages 49-56, 2010.

[62] P. Neophytou, J. Szwedko, P. K. Chrysanthis, A. Labrinidis, and M. A. Sharaf. Optimizing
the energy consumption of continuous query processing with mobile clients. pages pp. 1-6,
June 2011.

[63] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, editAltgorithmic Game Theoty
2007.

[64] T. Pham, P. Chrysanthis, and A. Labrinid. An adaptive load manager for the agsios stream
engine.Technical Report2010.

[65] T. N. Pham, L. A. Moakar, P. K. Chrysanthis, and A. Labrinidis. Dilos: A dynamic integrated
load manager and scheduler for continuous queries. pages 1-6, April 2011.

[66] P.Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and extensible algorithms for multi
guery optimization. I'SIGMOD 2000.

[67] W. Scheufele and G. Moerkotte. On the complexity of generating optimal plans with cross
products. InPPODS pages 238-248. ACM, 1997.

[68] T. K. Sellis. Multiple-query optimizationACM Trans. Database Sys1.3(1):23-52, 1988.

[69] M. A. Sharaf, P. K. Chrysanthis, and A. Labrinidis. Tuning qod in stream processing engines.
In ADC, pages 103-112, 2010.

115

[70] M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis, and K. Pruhs. Efficient scheduling of hetero-
geneous continuous queries.MhDB, pages 511-522. VLDB Endowment, 2006.

[71] M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis, and K. Pruhs. Algorithms and metrics for pro-
cessing multiple heterogeneous continuous queA€SA Transactions on Database Systems
33(1):1-44, 2008.

[72] M. A. Sharaf, S. Guirguis, A. Labrinidis, K. Pruhs, and P. K. Chrysanthis. Asets: A self-
managing transaction scheduler.SMDB Workshop at ICDE2008.

[73] Streambase: http://www.streambase.com, 2006.
[74] System S, http://domino.research.ibm.com/, 2008.

[75] N. Tatbul, U. Cetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker. Load shedding in a
data stream manager. YfLDB Conf 2003.

[76] J. Teubner and R. Mueller. How soccer players would do stream joirRrolteedings of the
2011 international conference on Management of d&i&MOD '11, pages 625-636, New
York, NY, USA, 2011. ACM.

[77] http://www.truviso.com, 2005.

[78] Y.-C. Tu, S. Liu, S. Prabhakar, and B. Yao. Load shedding in stream databases: a control-
based approach. IRroceedings of the 32nd international conference on Very large data
basesVLDB, pages 787-798. VLDB Endowment, 2006.

[79] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras. Exploiting punctuation semantics in
continuous data stream$§KDE, 15(3):555-568, 2003.

[80] S. D. Viglas and J. F. Naughton. Rate-based query optimization for streaming information
sources. IIBIGMOD, pages 37-48. ACM, 2002.

[81] S. Wang, E. Rundensteiner, S. Ganguly, and S. Bhatnagar. State-slice: new paradigm of
multi-query optimization of window-based stream queriesVLIDB, 2006.

[82] G. Xue, Q. Pan, and M. Li. A new semantic-based query processing architeBanalel
Processing Workshops, International Conferencepage 63, 2007.

[83] R. Zhang, N. Koudas, B. C. Ooi, and D. Srivastava. Multiple aggregations over data streams.
In SIGMOD, pages 299-310. ACM, 2005.

[84] R. Zhang, N. Koudas, B. C. Ooi, D. Srivastava, and P. Zhou. Streaming multiple aggregations
using phantomsVLDBJ, 19(4):557-583, 2010.

[85] J. Zhou, P.-A. Larson, J.-C. Freytag, and W. Lehner. Efficient exploitation of similar subex-
pressions for query processing. $lGMOD pages 533-544. ACM, 2007.

116

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Queries parameters
	2. Experimental Parameters
	3. Weave Share by example - windows' specifications
	4. Summary of New and Modified Code

	LIST OF FIGURES
	1. DSMS Architecture.
	2. Paired Window technique
	(a). Range, slide and fragments
	(b). Query Plan
	3. Sharing the partial aggregations.
	4. Example 3: stretching slides, merging edges, and shared plan.
	5. Intermediate Aggregates tree
	6. Share vs No Share
	(a). Input Rate
	(b). Number of Queries
	7. Weave Share by example - Iterations of Weave Share.
	8. Sharing AVERAGE ACQs.
	9. An Instance of a Weaved Plan
	10. Cost Lookup Table
	11. Edges Bitmap and Probing Process
	12. Impact of #ACQs: Low input rate (50 tuples/sec)
	13. Impact of #ACQs: Medium input rate (300 tuples/sec)
	14. Impact of #ACQs: low, medium and high input rates
	15. Number of Execution Trees
	16. Impact of Input Rate - different # of ACQs
	17. Impact of max: different rates
	18. Impact of Slide Skewness
	19. Optimizations' Benefits
	20. Incremental vs offline Weave Share - Deviation
	21. Incremental Weave Share - Overhead
	22. Incremental Weave Share - Deviation
	23. Incremental Weave Share - Overhead
	24. TriOps Shared Processing Scheme
	25. Inverted Predicate Signatures Structure
	26. TriOps - Windows and Predicates
	27. Fragment-signature pairs that belong to the same fragment
	28. An Instance of Four ACQs
	(a). The group-by tree
	(b). TriWeave Weaving
	29. Integrating TriWeave Plan with Intermediate-aggregates Tree
	30. TriWeave Plan - Varying Windows, Predicates, and Group-by
	31. TriWeave performance gain - Impact of Input Rate
	32. Using TriOps processing for different plans (50 tuples/sec)
	33. TriWeave - Impact of Input Rate and No. of ACQs
	34. Using TriOps processing for different plans (300 tuples/sec)
	35. Using TriOps processing for different plans (10K tuples/sec)
	36. Current ACQ query plan
	37. The Weaved Query Plan
	38. Cost - 50 tuples/sec
	39. Cost - 300 tuples/sec
	40. Simulation results for 300 tuples/sec
	41. Average Response Time - 300 tuples/sec
	42. Average Response Time - 50K tuples/sec
	43. Average Response Time - HR scheduler - 50K tuples/sec
	44. Number of Execution-Trees of Weave Share
	45. Weave Share Optimization Time

	LIST OF ALGORITHMS
	1. The Weave Share Algorithm
	2. The Incremental Weaved Share Algorithm
	3. The TriWeave Algorithm
	4. Generalized TriWeave Optimizer

	PREFACE
	1.0 INTRODUCTION
	1.1 Approach and Challenges
	1.2 Contributions

	2.0 BACKGROUND AND RELATED WORK
	2.1 Data Stream Management Systems
	2.2 Aggregation over Data Streams
	2.2.1 ACQ Semantics
	2.2.2 The Paired Window Technique
	2.2.3 Sharing Multiple ACQs
	2.2.3.1 Shared Time Slices
	2.2.3.2 Shared Data Shards
	2.2.3.3 Intermediate Aggregates

	2.3 Experimental Platform
	2.4 Other Related Work
	2.5 Summary

	3.0 WEAVE SHARE: EXPLOITING WEAVEABILITY TO OPTIMIZE ACQS
	3.1 Motivation
	3.2 Formalization
	3.3 Weaveability
	3.4 Challenges of Grouping Multiple ACQs
	3.5 The Weave Share Algorithm
	3.5.1 Weave Share by Example
	3.5.2 Sharing AVERAGE ACQs
	3.5.3 Varying Predicates and Group-by

	3.6 Implementation Optimizations of the Weave Share Optimizer
	3.6.1 Optimization I: Cost Lookup.
	3.6.2 Optimization II: Edges Bitmap.
	3.6.3 Optimization III: Probing Reorder.

	3.7 Evaluation
	3.7.1 Quality of Weave Share Plans
	3.7.1.1 Number of ACQs (Fig. 12 to 14)
	3.7.1.2 Input Rate (Fig. 16)
	3.7.1.3 Maximum Overlap Factor (Fig. 17)
	3.7.1.4 Slide Skewness (Fig. 18)

	3.7.2 Theoretical Lower Bound
	3.7.3 Impact of Optimizations

	3.8 Summary

	4.0 INCREMENTAL WEAVE SHARE
	4.1 Adding New ACQs
	4.2 Deleting ACQs
	4.3 Weaved Plans Switching
	4.4 Frequency of ACQs additions and deletions
	4.5 Adapting to Changes in Input Rate
	4.6 Evaluation
	4.7 Summary

	5.0 TRIOPS: THREE-LEVEL PROCESSING MODEL
	5.1 Motivation
	5.2 TriOps and TriWeave
	5.2.1 TriOps Processing Model
	5.2.2 TriOps Cost and Advantages
	5.2.3 TriWeave Optimizer

	5.3 TriOps: Windows and Predicates
	5.3.1 Drawbacks of Integrating Shared Data Shards Technique with Weave Share
	5.3.2 TriOps: Handling Different Predicates

	5.4 TriOps: Windows, Predicates and Group-by
	5.4.1 Windows and Group-by
	5.4.2 Windows, Predicates and Group-by

	5.5 Generalized TriWeave Optimizer
	5.5.1 Impact of Predicates on Weaving
	5.5.2 The Algorithm

	5.6 Evaluation
	5.6.1 Experimental Platform
	5.6.2 TriOps Performance

	5.7 Summary

	6.0 AQSIOS 3.0: REALIZATION OF WEAVE SHARE
	6.1 The AQSIOS DSMS Prototype
	6.2 Challenges
	6.3 Evaluation
	6.3.1 Performance Under RR
	6.3.2 Performance Under HR
	6.3.3 The Optimizer Performance

	6.4 Summary

	7.0 CONCLUSIONS AND FUTURE WORK
	7.1 Summary of Contributions
	7.2 Impact of this Dissertation
	7.3 Future Work
	7.3.1 Generalization: Optimizing Complex CQs with ACQs
	7.3.2 Synergy with other Modules

	APPENDIX A. ADAPTING LOCAL SEARCH TECHNIQUE
	APPENDIX B. AQSIOS 3.0 RELATED CODE
	 B.0.3 Adding Weave Share Optimizer
	 B.0.4 Adding New Operators
	 B.0.5 Adding Support for Sliding Windows and Weave Share

	BIBLIOGRAPHY

