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B.S., Boḡaziçi University, 2005

M.S. in Industrial Engineering, University of Pittsburgh, 2007

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2011



UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Osman Y. Özaltın
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OPTIMAL DESIGN OF THE ANNUAL INFLUENZA VACCINE

Osman Y. Özaltın, PhD

University of Pittsburgh, 2011

Seasonal influenza is a major public health concern, and the first line of defense is the flu

shot. Antigenic drifts and the high rate of influenza transmission require annual updates

to the flu shot composition. The World Health Organization recommends which flu strains

to include in the annual vaccine based on surveillance and epidemiological analysis. There

are two critical decisions regarding the flu shot design. One is its composition; currently,

three strains constitute the flu shot, and they influence vaccine effectiveness. Another critical

decision is the timing of the composition decisions, which affects the flu shot production.

Both of these decisions have to be made under uncertainty many months before the flu season

starts.

We quantify the trade offs involved through multi-stage stochastic mixed-integer pro-

grams that determine the optimal flu shot composition and its timing in a stochastic and

dynamic environment. Our first model takes the view of a social planner, and optimizes

strain selections based on a production plan that is provided by the flu shot manufacturers.

It also incorporates risk-sensitivity through mean-risk models. Our second model relaxes the

exogenous production planning assumption and, hence, provides a more accurate represen-

tation of the hierarchical decision mechanism between a social planner, who selects the flu

shot strains, and the manufacturers, who make the flu shot available. We derive structural

properties of both models, and calibrate them using publicly available data.

The flu shot strains are updated based on clinical, virological and immunological surveil-

lance. In the virological surveillance, hemagglutinin inhibition assays are used to identify

antigenic properties of the influenza viruses. However, this serology assay is labor-intensive
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and time-consuming. As an alternative, pairwise amino acid sequence comparison of in-

fluenza strains is used in statistical learning models to identify positions that cause antigenic

variety. The performance of these models is evaluated by cross validation. In Chapter 5,

we formulate cross validation as a bilevel program where an upper-level program chooses

the model variables to minimize the out-of-sample error, and lower-level problems in each

fold optimize in-sample errors according to their training data set by selecting the regression

coefficients of the chosen model variables. We provide an extensive computational study us-

ing clinical data, and identify amino acid positions that significantly contribute to antigenic

variety of influenza strains.

Keywords: Operations research, mixed-integer programming, multistage stochastic pro-

gramming, bilevel programming, column generation, branch-and-price, oligopolistic mar-

ket, influenza vaccine design.
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encouraging, and loving wife Nur Özge, my invaluable gift from Allah.

xiii



1.0 INTRODUCTION

Health care is the largest industry in the United States and continues to grow. National

health care expenditures grew 4.0% to $2.5 trillion in 2009, or $8,086 per person, and ac-

counted for 17.6% of the Gross Domestic Product (GDP). Furthermore, growth in spending

is projected to average 6.1% annually over the period 2009 through 2019, reaching 19.3% of

GDP by 2019 [41]. Currently, among 193 member countries of the World Health Organi-

zation (WHO), total health expenditure of the U.S. is the highest both on per-capita basis

and as percent of the GDP [190]. However, the WHO ranked the U.S. health system as 37th

in overall performance [189]. This inefficiency of the U.S. health care system have resulted

in a growing research interest in medical decision making over the last few decades.

Policy level planning and control decisions for health care services are made in the de-

sign phase, whereas operational decisions are confronted daily and often in high volumes.

Operations Research (OR) techniques have been applied to a wide range of decision prob-

lems in both levels, which have significant effects on cost, quality and patient satisfaction.

Pierskalla and Brailer [151] have classified those problems into three main groups. In the

first group, examples of system design and planning applications include treatment resource

planning [158], bed capacity planning [82], regional design for organ procurement equity and

efficiency [108, 172], developing pediatric immunization schedules [167], strain selection for

the annual influenza vaccine [45, 109, 191], and control of infectious diseases [16, 18, 125, 157].

In the second group, examples of health care operations management are patient schedul-

ing [149], workforce planning and scheduling [99, 139], and emergency room or operating

room scheduling [55]. In the last group, examples of medical decision making comprise

screening for disease [43, 131], cancer treatment planning [60, 120, 121, 136, 153, 159, 168],

and the optimal timing of organ transplants [4, 5, 6, 91, 94, 163].
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This dissertation focuses on the annual influenza vaccine, hereafter the flu shot. Influenza

is a highly contagious, acute, respiratory viral disease. Seasonal flu epidemics impact 5–15%

of the world’s population, resulting in 3–5 million cases of severe illnesses and up to 500,000

deaths annually [185]. Pneumonia, a common consequence of influenza, is the 8th-leading

cause of death in the United States [115]. In a typical year, 5–20% of the United States’

population gets the flu, of whom 200,000 are hospitalized and 36,000 die [39]. Higher risk

population groups include older adults, those with chronic medical conditions, pregnant

women and young children [35]. Seasonal flu has significant economic impacts such as direct

treatment costs, work absenteeism and reduced work productivity. These costs are estimated

to be $12–14 billion annually in the United States [27].

The flu shot is the first line of defense against seasonal epidemics [39]. However, circu-

lating influenza viruses frequently mutate in response to antibody pressure, and the flu shot

provides protection only if its composition is antigenically similar to those strains. Therefore,

the vaccine strains have to be updated frequently. There are two critical decisions regarding

the flu shot design. One is its composition, which determines the vaccine effectiveness. As

recently as the 2007–08 flu season, a poor match between the selected strains and the ones

that actually emerged in the season reduced the vaccine effectiveness by half. Figure 1.1

depicts the prevalence of the flu shot strains as well as the other strains emerged but were

not included in the vaccine in the 2007–08 season.

The other critical decision is the timing of the composition decisions, which affects the

flu shot availability. The following quote is from a flu shot manufacturer [68]:

“The timing of the strain selection is also important. We have a limited production time

due to the necessity of distributing and administering vaccine prior to the influenza season.”

The flu shot supply and its distribution cannot be guaranteed in any year, as the compo-

sition and timing decisions have to be made under uncertainty at least six months before the

epidemic [74]. If the strains are selected too early with insufficient surveillance data, there

is a greater likelihood that there will be a mismatch. However, delaying the decisions may

adversely impact production lead times, resulting in delays or shortages in the flu shot sup-

ply. As can be seen in Figure 1.2, repeated disruptions in the manufacture and distribution

of the flu shot have occurred in the last decade [28, 29].
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Figure 1.1: Prevalence of the circulating influenza strains in the 2007-08 season. Two of the

three vaccine strains failed to match the flu strains that actually emerged in the season [33].

Strains whose names are underlined are chosen for the flu shot.
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1.1 THE FLU VIRUS

There are three serotypes of the flu virus: influenza A, B and C. Influenza A and B viruses are

mainly responsible for seasonal flu epidemics, whereas influenza C viruses are less common

and usually cause mild upper respiratory illnesses [185].

Influenza A viruses are subtyped on the basis of their two surface proteins: hemagglutinin

and neuraminidase. Influenza A subtypes and influenza B viruses are further classified

into strains based on their antigenic properties. Antigenic variations of the strains emerge

according to two mechanisms: antigenic drifts, which apply to both A and B viruses and

occur as a result of point mutations in the surface proteins; and antigenic shifts, which apply

to only A viruses and occur as a result of replacement of surface proteins with novel ones [37].

Antigenic shifts are particularly dangerous, as they can lead to a flu pandemic, e.g. the

Asian Flu Pandemic of 1957 that killed two million people worldwide [47]. Seasonal flu

epidemics are caused by antigenic drifts. Although a model similar to the one described

herein may apply to pandemic flu, current policy is to design pandemic flu vaccine only

after the pandemic has emerged [88]; we therefore restrict our consideration to seasonal flu

epidemics.

1.2 THE FLU SHOT DESIGN

Currently, the flu shot contains inactivated strains of two influenza A subtypes (H3N2 and

H1N1) and one influenza B virus. However, antigenic drifts and the high rate of influenza

transmission require frequent changes in the flu shot composition. Between 1980 and 2010,

16 changes were made for the A/H3N2 strain, 13 for the A/H1N1 strain, and 15 for the B

strain [184].

The World Health Organization (WHO) coordinates an international influenza surveil-

lance network, which is responsible for making detailed analysis of circulating strains. Based

on surveillance data, the WHO annually recommends which strains to include in the flu shot.

Currently, recommendations are made in February-March for the Northern hemisphere, and
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in August-September for the Southern hemisphere. Although seasonal flu is a global health

concern, we focus on the United States where the Vaccines and Related Biological Products

Advisory Committee of Food and Drug Administration (FDA) (hereafter “the Committee”)

makes the final decision about the flu shot composition soon after the WHO recommenda-

tions. In the United States, Center for Disease Control (CDC) is responsible for influenza

surveillance.

Antigenically different flu strains may co–circulate in one season, which brings an addi-

tional challenge for determining the flu shot composition. The flu shot provides protection

against antigenically similar strains, a phenomenon known as cross–effective immunity [36].

The Committee uses Hemagglutination Inhibition (HI) assays to measure cross–effectiveness

among the strains. A large amount of data is available from surveillance; however, in current

practice, the Committee does not appear to have analytical tools to utilize these data. This

fact is verified by a quote from a Committee member [67]:

“. . . maybe we should select the non-dominant strain for this past year in anticipation of the

fact that it may be the dominant strain next year. But you are right, it is a guessing game.”

1.3 THE FLU SHOT PRODUCTION

Currently, six manufacturers provide the flu shot to the United States market [40]. Repre-

sentatives of these manufacturers attend the Committee meetings to discuss the production

capability of candidate strains [69]. However, once the strains are selected, manufacturers

make their own production plans to maximize profits.

The flu shot production has many critical and time-sensitive steps. Strain production in

fertilized chicken eggs starts right after the high-growth seed strains become ready. Harvest-

ing, purification, testing, and packaging occur from June to November. Finally, the FDA

must approve each lot prior to shipment. The amount of the flu shot produced is limited by

the lowest strain production quantity, as the strains are combined together to compose the

flu shot.
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The production yield ratio of strains is uncertain, and difficulties growing a strain might

result in reductions of the overall flu shot supply, as was the case in the 2000-01 flu season [73].

Therefore, manufacturability of a new flu shot strain has been a primary concern as stated

by a flu shot manufacturer [67]:

“. . . we ask you here to consider not only the antigenic match, but the ability of the strains

you select to enable us to produce sufficient vaccine for the marketplace. We need seed

viruses, especially the high growth reassortants.”

Furthermore, the number of chicken eggs used in strain production must be chosen a

priori, which makes it very hard to increase the supply subsequently. Therefore, we assume

that the production decisions are one-time and irreversible.

1.4 PROBLEM STATEMENT AND CONTRIBUTIONS

A large amount of data is available from clinical, virological and immunological influenza

surveillance [31]; however, the Committee does not have analytical tools to exploit those

data. The contribution of this dissertation is two-fold. First, we formulate mathematical

programming models for the annual flu shot design problem. Then, using these models

we address pressing public policy issues regarding the allocation of scarce flu prevention

resources.

The main trade off in the optimization of the strain selection decisions arises between

the composition of the annual flu shot and the timing of its production. On one hand,

deferring the strain selection decisions increase the likelihood of delays and shortages in the

flu shot supply. On the other hand, as the Committee waits, more information becomes

available from the surveillance mechanism that reduces the likelihood of mismatch between

the flu shot strains and those actually emerge in the season. In solving this optimization

problem, we are particularly interested in the objective of maximizing the societal benefit,

which is measured by the cost of infections averted by the vaccinated people minus the cost

of infections incurred by unvaccinated people. We leave the consideration of other objectives

for future research.
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Table 1.1: Candidate flu shot strains for the 2008-09 season [67].

Type Strain Name Yield Ratio

A/H1N1 A/New Caledonia/20/99† High

A/Solomon Islands/3/06 Moderate

A/Brisbane/59/07 Moderate/High

A/South Dakota/6/07 Low/Moderate

A/H3N2 A/Wisconsin/67/2005† Moderate/High

A/Brisbane/10/2007 Moderate/High

B B/Malaysia/2506/2004† Moderate

B/Florida/04/2006 Low/Moderate

B/Brisbane/03/2007 Moderate

†Strain included in 2007-08 influenza vaccine [67].

Different aspects of the flu shot design have been studied in the literature as reviewed in

Section 2.4. A common assumption is that the composition decisions are independent among

different strain categories [45, 109, 191]. However, in practice, vaccine stains are grown

separately and then combined together to compose the flu shot. As previously noted, the

total flu shot production is limited by the “least productive strain.” Therefore, unanticipated

problems in growing strain from a particular category (i.e. A/H3N2, A/H1N1 or B) would

result in reductions in the overall flu shot supply. Another common assumption in the

literature is that for each category the most prevalent circulating strain is the only alternative

for the current vaccine strain in that category [45, 109]. However, as can be seen in Table 1.1,

the Committee considers multiple candidate strains per category, as a strain, which is not

necessarily the most prevalent one, might be favorable based on its manufacturability and

cross-effectiveness.

Our models relax both of the aforementioned assumptions in the literature by considering

multiple candidate strains (not only the most prevalent ones) and all three strain categories
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simultaneously. We also consider risk sensitivity using mean-risk objective functions. We

address multiple policy questions after carefully calibrating our model using publicly available

CDC and FDA data.

The flu shot provides immunity protection if its composition is antigenically similar to

the circulating strains. In the virological surveillance, hemagglutinin inhibition (HI) assays

are used to identify antigenic properties of the influenza viruses. However, this serology

assay is labor-intensive and time-consuming. Alternatively, modeling the antigenic distance

among influenza strains using amino acid sequence analysis can provide a rapid indication

of the likelihood that the current vaccine will protect against a recently emerged strain, and

also facilitates the study of the virus’ evolution in response to antibody pressure [23, 171].

Statistical learning models are frequently used in sequence analysis [123, 126]. Typically,

the performance of those models are evaluated by cross validation. We formulate cross

validation as a bilevel program. This approach allows for optimizing the cross validation

outcome and offers modeling flexibility when considering multiple statistical learning goals.
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2.0 LITERATURE REVIEW

In this chapter, we review the literature related to the problems and methodologies discussed

in this dissertation. Section 2.1 and Section 2.2 review multi-stage stochastic integer pro-

gramming and bilevel programming, respectively. Section 2.3 summarizes the branch and

price and column generation techniques. Section 2.4 presents a survey on OR studies related

to the flu shot.

2.1 MULTI-STAGE STOCHASTIC INTEGER PROGRAMMING

Multi-stage stochastic programs are appropriate for modeling problems that involve finite

horizon sequential decision making under uncertainty. At each time stage some portion of

uncertainty is unveiled and additional information is gained about the system. The infor-

mation is modeled as a discrete time stochastic process {ξt}Tt=1 where T is the length of the

study horizon. We assume that ξ has a finite support with discrete probability distribution

P = (p1, . . . , ps) and the decision maker is risk–neutral. Therefore the objective function

considered in this work is based on taking the expectation of outcomes over all scenarios. We

incorporate risk sensitivity through mean–risk models in Section 3.2. Another assumption

is that the probability distribution does not depend on optimization decisions [191]. We

discuss the implications of relaxing this assumption in Section 6.2.

Decisions made at time stage t must obey the nonanticipativity property, which requires

that decisions made up through time period t under those scenarios that are indistinguish-

able at t must be the same. This property constitutes the essential difference between the

stochastic and deterministic multi–period optimization problems.
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Multi–stage stochastic programs can be modeled by a scenario tree T = (N ,A) with T

stages (see Figure 3.1). Each node m in the tree, except the root, is joined to its ancestor

a(m). The set of nodes at time stage t is represented by Nt. The probability of node m

is pm where
∑

m∈Nt
pm = 1 for all t ≤ T . Moreover, P(m) is the unique path linking the

root node to m and T (m) is the subtree rooted at m. Paths between the root node and the

terminal nodes correspond to individual scenarios. Thus, nodes at level t represent possible

scenario realizations at time stage t, and terminal nodes are also known as scenarios. Note

that scenario tree notation automatically satisfies the nonanticipativity condition.

Algorithms for multi-stage stochastic mixed-integer programs do not scale well. Primal

methods employ scenario tree formulation. For stochastic linear programs, the convexity

of the expected recourse function motivates cutting plane algorithms [160]. Starting from

the root node, primal solutions are passed down the tree where they are used to generate

feasibility and optimality cuts. These cuts are passed upwards to refine the primal solutions

which are again passed down the tree and so on. However, in the case of stochastic-mixed

integer programs, both convexity and continuity are lost. In this case, solution techniques

include enumeration [165] and branch-and-bound [3, 26] algorithms.

Dual methods employ scenario formulation where decision variables exist for every time

stage in each scenario. The nonanticipativity constraints are dualized to decompose the

stochastic programming problem into scenario subproblems [25, 176, 177]. Typically, there

is significant duality gap, which can be addressed by progressive hedging [176, 177] or branch-

and-bound techniques [8, 7, 129, 169].

Valid inequalities for mixed–integer programs are useful for tightening the formulation

at the root node and speeding up the solution process at other nodes of the search tree

in a branch-and-cut framework. Similarly valid inequalities for stochastic mixed–integer

programs have also been recently derived [79]. We refer the reader to Guan [78] for a

detailed survey of multi-stage stochastic mixed–integer programs.
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2.2 BILEVEL PROGRAMMING

Bilevel programs [46, 53, 138, 147] model the hierarchical relationship between two au-

tonomous, and possibly conflicting, decision makers: the leader and the follower. Each

decision maker controls a distinct set of variables and the decisions are made sequentially

according to a hierarchy: the upper-level decisions are made first by the leader, after which

the lower-level decisions are made by the follower subject to the constraints which depend

on the leader’s decisions.

The general bilevel programming problem can be formulated as:

max F (x, y), (2.1)

subject to x ∈ X, (2.2)

y ∈ R(x) ≡ argmax{f(x, y) | g(x, y) ≤ 0, y ∈ Y}, (2.3)

where x ∈ X ⊆ Rn1 × Zn2 are the leader’s (or upper-level) variables, and y ∈ Y ⊆ Ra1 × Za2

are the follower’s (or lower-level) variables. Likewise, functions F : X × Y → R1 and

f : X × Y → R1 are the leader’s (upper-level) and the follower’s (lower-level) objective

functions, respectively. The vector-valued function g : X × Y → Rm2 corresponds to the

follower’s (lower-level) constraints given the leader’s decisions x ∈ X ⊆ Rn1 × Zn2 .

There are two modeling approaches to bilevel programming [127]. In the optimistic case,

whenever the rational reaction set is not a singleton, the follower implements a so-called

strong solution that maximizes the objective function of the leader. That is, given the

leader’s decision x̄ ∈ X, the follower’s solution yo ∈ Y satisfies F (x̄, yo) ≥ F (x̄, y) ∀y ∈ R(x̄).

In the pessimistic case, the leader assumes that whenever the follower is facing ties, he

selects a so-called weak solution that minimizes the leader’s objective function, i.e., the

follower’s decision yp ∈ Y is such that F (x̄, yp) ≤ F (x̄, y) ∀y ∈ R(x̄). The optimistic case

might arise in a collaborative environment when both the leader and follower are allowed

to cooperate, while the pessimistic case corresponds to an adversarial environment, or a

risk-averse leader, who wants to minimize the worst-possible “damage” inflicted from an

noncooperative follower [46].
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Any mixed 0–1 programming problem can be reduced to an instance of bilevel linear

programming problem [11]. Therefore, bilevel linear programming is strongly NP-hard [81].

Bard and Moore [13] and Hansen et al. [81] propose a branch and bound framework for

bilevel linear programming problems that branches on the complementarity conditions of

the follower’s problem. An approximation approach by Júdice and Faustino [98] provides

an ε-optimal solution. A survey by Ben-Ayed [17] provides a detailed discussion on bilevel

linear programming.

Moore and Bard [140] propose a branch and bound algorithm and a set of heuristics

for bilevel mixed-integer programming. Furthermore, a branch-and-cut algorithm has been

recently developed by DeNegre and Ralphs [54]. Solution approaches for specific classes of

bilevel mixed-integer programs where either the leader’s or the follower’s variables are all

continuous are studied by Audet et al. [11], Dempe [52] and Wen and Yang [182]. Detailed

surveys on bilevel mixed-integer programming solution techniques are provided in [12, 53,

138].

Application areas of bivel programming include revenue management [42], congestion

management [22, 83], management of hazardous materials [100], management in energy

sector [14], network design [132] and traffic planning [137] problems. A related broad class

of problems which can be recast as a bilevel program is the network interdiction [85, 188],

where the follower (enemy) attempts to maximize flow through a capacitated network, while

the leader (interdictor) tries to minimize this maximum flow by interdicting, e.g., destroying

some arcs or decreasing their capacity. Colson et al. [46] provides a comprehensive survey

on bilevel programming applications.

2.3 BRANCH AND PRICE

First proposed by Ford and Fulkerson [71], column generation is used to solve linear programs

that have a large number of variables. Instead of considering all columns explicitly, this

technique employs a restricted master problem (RMP) that contains a subset of the columns.

The algorithm follows a loop in which the RMP is solved, and the dual solution is passed
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on to the pricing problem to find favorable columns. If such columns exist, a subset of them

are inserted into the master problem; if not, the algorithm stops with the optimal solution.

Lübbecke and Desrosiers [128] provide a detailed discussion of column generation.

Branch-and-price integrates branch-and-bound and column generation methods for solv-

ing large-scale integer programs. It is first proposed by Desrosiers et al. [58] for vehicle

routing problem with time windows. At each node of the branch-and-bound tree, column

generation is used to solve the LP relaxation. Branching occurs when no columns price

out to enter the basis and the LP solution does not satisfy integrality conditions. Barnhart

et al. [15] and Vanderbeck and Wolsey [180] present generic branch-and-price frameworks.

Algorithmic efficacy is considered in Desaulniers et al. [57] and Vanderbeck [179].

2.4 STUDIES RELATED TO INFLUENZA

Deterministic epidemiological models, also known as compartmental models, are used in the

study of the infectious diseases at the population scale [59, 66, 193]. These models categorize

members of the population into different subgroups (compartments) according to the stages

of the infectious disease, e.g. susceptible (S), infectious (I), recovered (R) [9]. Transitions

among these subgroups constitute the main dynamics of the model.

Accurate representations of antibody-antigen binding are required for building realis-

tic quantitative models of influenza spread. Perelson and Oster [150] propose a model for

antibody-antigen binding. Their model represents antibodies and antigens by unique vec-

tors in Euclidean space (the shape space). The coordinates of vectors represent generalized

physio-chemical properties related to binding. The shape-space distance between an anti-

body and an antigen represents their affinity. Lapades and Farber [117] provide algorithms

that construct explicit, quantitative coordinates for points in the shape space based on ex-

perimental data.

14



The flu shot protects against severe complications of the flu [92, 144]. There is a con-

siderable research effort on the analysis of influenza vaccine cost-effectiveness for various

population risk groups [65, 135, 181]. In the rest of this section, we focus on the studies

about the influenza in the OR literature.

Kornish and Keeney [109] formulate the annual influenza vaccine strain selection problem

as a finite-horizon optimal stopping problem. At each decision epoch, the decision maker

either selects one of two candidate strains, so ending the process, or defers the selection.

Analysis of this model indicates the importance of improved manufacturing techniques, as

it would allow selecting the strains later when more information is available.

Deo and Corbett [56] study the impact of production yield uncertainty on the flu shot

supply using a two-stage model of Cournot competition with endogenous market entry.

This model extends the one presented in [109] by considering multiple manufacturers in an

oligopolistic market, but does not consider the flu shot composition and its timing. A key

finding of [56] is that the government should consider subsidizing research into more reliable

manufacturing processes to increase the societal benefit of the flu shot.

Cho [45] builds upon both Kornish and Keeney [109] and Deo and Corbett [56] by

considering the flu shot composition and production under yield uncertainty in a two-stage

game model. The existence of an optimal threshold policy for when to retain the current

strain, change to a new strain, or defer is shown. Moreover, policies which enhance awareness

of indirect costs of infection are found to improve social welfare.

Chick et al. [44] also studies the flu shot supply chain, but focuses on contract design be-

tween a single manufacturer and a government. The manufacturer determines the production

volume to maximize its profits while the government considers the costs and public health

benefits of vaccination. This interaction is modeled as a sequential game. It is shown that a

global social optimum can be achieved by sharing production uncertainty risks between the

manufacturer and the government.

Unlike the influenza vaccine supply chain models, which make simplifying assumptions

regarding the antigenic properties of the flu strains, Wu et al. [191] formulates the strain

selection problem as a stochastic dynamic program using the antigenic shape–space model

of Perelson and Oster [150]. In each stage, a flu epidemic that comprises only one strain is
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considered, and a random walk assumption is made for the antigenic evolution. The flu shot

strains are optimized for each individual based on an approximation of her antigenic history.

The paper discusses the significant impediments to such personalized flu shots.

Larson [118] investigates the effectiveness of social distancing as a pandemic flu spread

control method. Social contact behavior of the population is depicted by a nonhomogeneous

probabilistic mixing model. A difference equation model is proposed to evaluate day-to-day

evolution of the disease based on daily human contact frequencies and infection propensities

of the susceptible population.

Tanner et al. [178] formulates stochastic programming models to find vaccination policies

for controlling infectious disease epidemics. These models consider vaccine distribution;

hence the strain selection or the characteristics of the influenza vaccine supply chain are not

discussed.
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3.0 OPTIMIZING THE SOCIETAL BENEFITS OF THE ANNUAL

INFLUENZA VACCINE

In this chapter, we take the view of the Committee, and consider the problem of maximizing

the societal benefits of the annual influenza vaccine. We formulate a multi-stage stochastic

mixed-integer program that determines the optimal influenza vaccine composition and timing

in a stochastic and dynamic environment. Some portion of the uncertainty around the

prevalence of strains, strain production, and the severity of the season unfolds at each time

stage, and for each strain category, the Committee either commits to a particular strain, or

defers the decision to a later stage to wait for more surveillance data. We consider strain

production levels as parameters of our model. Multiple candidate strains (not only the most

prevalent ones) and all three strain categories (A/H1N1, A/H3N2, B) are included in the

model simultaneously.

We assume that a production plan that is exogenously designed by the manufacturers

is available. Note that a model that optimizes strain selections and production quantities

simultaneously from the same perspective is not realistic, as governmental agencies, which

select the strains, have little influence on the manufacturers other than approving each lot

prior to distribution. This is verified by a Committee member [67]:

“I think the manufacturers know that this Committee has always given serious consideration

to the availability of vaccine. And we don’t make vaccine available. You [the manufacturers]

make vaccine available. So that [the availability of vaccine] always enters into our decisions

on what to recommend.”
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We exploit several structural properties, and propose a tailored branch-and-price algo-

rithm. In addition, we incorporate risk-sensitivity through mean-risk models. We address

multiple policy questions after carefully calibrating our model using publicly available CDC

and FDA data. Our numerical experiments provide valuable insights for pressing policy

issues. This chapter is based on Özaltın et al. [148].

3.1 MULTI-STAGE STOCHASTIC PROGRAMMING MODEL

FORMULATION

Let I be the set of candidate strains for the annual influenza vaccine in a T -stage problem.

Composition decisions are made in the first T − 1 stages, and the uncertainties about the

characteristics of the flu season are realized in the last stage. Note that the number of

possible flu shot designs grows exponentially with the number of time stages. Moreover, the

large number of scenarios exacerbates the situation, leading to a combinatorial explosion.

Clearly, a method that requires the enumeration of all possible decisions is impractical.

We model the strain selection problem as a multi–stage stochastic mixed–integer pro-

gram using a scenario tree T = (N ,A) as seen in Figure 3.1. We assume a finite number of

scenarios whose discrete probability distribution is independent of the flu shot design [191].

An essential difference between stochastic and deterministic multi–period optimization prob-

lems is the nonanticipativity property, which requires decisions made under indistinguishable

scenarios to be the same. A scenario tree formulation automatically satisfies this condition.

Uncertain elements of our model include:

• ein, the prevalence of strain i ∈ I in the flu season (i.e. the ratio of the number of flu

infections caused by strain i to the whole population) at terminal node n ∈ NT ,

• βin, the production yield ratio of strain i ∈ I (i.e. the ratio of the strain production yield

in doses to the number of chicken eggs used for that strain) at terminal node n ∈ NT ,

• Ri
m, the production quantity of strain i ∈ I (i.e. the number of chicken eggs used for

the production of strain i) when it is selected at node m ∈ Nt<T , where Nt<T denotes⋃
t<T Nt, and
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• cn, the average cost of a flu case; dn, the flu vaccine demand; and qn, the unit shortage

cost per person at terminal node n ∈ NT .

We assume that Ri
m is non-increasing over time under each scenario and for each strain

i ∈ I, that is Ri
m ≤ Ri

a(m). This assumption reflects the decreasing production capability of

the manufacturers as the flu season approaches. Furthermore, we assume that overall strain

production quantity under each scenario is no more than κ, the total number of available

chicken eggs.

Let b(i, j) denote the cross–effectiveness between strains i and j, which we interpret as

the ratio of immunity protection against strain j of a person who is vaccinated with strain i to

that she would have gained if she was vaccinated with strain j. Note that b is not necessarily

symmetric. The immune response to the flu shot is difficult to measure as it involves multiple

cell types and depends on personal immunological history [122]. The Committee wants to

ensure that there is a flu shot strain, which is antigenically close enough to each circulating

strain. Therefore, we assume that the immunity protection provided by the flu shot against

strain j ∈ I is determined by the vaccine strain that has the largest cross–effectiveness on

j [10, 146].

Let binary variable xim = 1 if strain i ∈ I is selected at node m ∈ Nt<T , and xim = 0

otherwise. Moreover, let wn be the amount of vaccine produced at terminal node n ∈ NT .

Producing more than the demand dn is not profitable since the remaining vaccines at the end

of the flu season cannot be used [74]. Therefore, dn is a natural upper bound on wn ∀n ∈ NT .

Let H(i, j) = {k ∈ I | b(k, j) > b(i, j)}, i.e. those strains that have higher cross–

effectiveness on strain j than strain i does. We define variable δijn = wn if none of the strains

in H(i, j) are selected, and δijn = 0 otherwise. We assume that no two strains have the same

cross–effectiveness on a particular strain to ensure that only one flu shot strain is effective

on a circulating strain.

Definition 3.1. The “societal vaccination benefit” is the averted cost of infections by vacci-

nated people minus the cost of infections incurred by unvaccinated people. At terminal node

n ∈ NT , it is given by Fn(δn, wn) =
∑

i∈I
∑

j∈I cne
j
nδ

ij
n b(i, j)− qn(dn − wn).
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Note that optimizing Fn(δn, wn) is equivalent to optimizing:

∑
i∈I

∑
j∈I

cne
j
nδ

ij
n b(i, j) + qnwn = Fn(δn, wn)− qndn, (3.1)

as the second term on the right-hand side of (3.1) is constant and therefore dropped from

the objective. Based on the notation defined above, the extensive form of the strain selection

problem (SSP) is formulated as:

[SSP] max
∑
n∈NT

pnFn(δn, wn) (3.2)

subject to
∑

m∈P(n)\{n}

xim ≤ 1 ∀i ∈ I, n ∈ NT , (3.3)

∑
i∈I

∑
m∈P(n)\{n}

Ri
mx

i
m ≤ κ ∀n ∈ NT , (3.4)

wn ≤
∑
i∈I

∑
m∈P(n)\{n}

Ri
mx

i
m ∀n ∈ NT , (3.5)

wn ≤
∑

m∈P(n)\{n}

min{dn, βinRi
m}xim+

dn

1−
∑

m∈P(n)\{n}

xim

 ∀i ∈ I, n ∈ NT , (3.6)

δijn ≤ dn

1−
∑

m∈P(n)\{n}

xkm

 ∀i, j ∈ I, k ∈ H(i, j), n ∈ NT , (3.7)

δijn ≤ wn, δijn ≤ dn
∑

m∈P(n)\{n}

xim ∀i, j ∈ I, n ∈ NT , (3.8)

xim ∈ {0, 1} , wn, δ
ij
n ≥ 0 ∀i ∈ I,m ∈ Nt<T , n ∈ NT . (3.9)

The objective function (3.2) maximizes the expected societal vaccination benefit. Initially, we

assume a risk-neutral decision maker; hence, our objective function is based on the expecta-

tion of all possible outcomes. We incorporate risk sensitivity in Section 3.2. Constraints (3.3)

allow a strain to be selected at most once under each scenario. Constraints (3.4) limit the

total strain production to be no more than the number of eggs available. Constraints (3.5)

ensure that wn = 0 when no strain is selected. Note that if wn = 0, the societal vacci-

nation benefit is also zero. Constraints (3.6) state that the amount of vaccine produced
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at terminal node n can not be more than the minimum production of all selected strains.

Constraints (3.7) and (3.8) together ensure that only the vaccine strain with the highest

cross–effectiveness provides immunity protection.

SSP may be viewed as a multi–stage stochastic capacity planning problem [63]. Strains

correspond to facilities, and selecting a strain to include into the vaccine corresponds to

selecting a facility to increase its capacity by a certain amount. Capacity planning problems

typically have weak LP relaxations [169]. Hence, we reformulate SSP to tighten its LP

relaxation. For all i ∈ I, n ∈ NT define variable vin = wn if strain i is selected at node

n ∈ NT , and vin = 0 otherwise. Then, consider the following reformulation of SSP:

[RSSP] max
∑
n∈NT

pnFn(δn, wn) (3.10)

subject to (3.3), (3.4), (3.5), (3.7),

vin ≤
∑

m∈P(n)\{n}

min{dn, βinRi
m}xim ∀i ∈ I, n ∈ NT , (3.11)

wn ≤ vin + dn

1−
∑

m∈P(n)\{n}

xim

 ∀i ∈ I, n ∈ NT , (3.12)

δijn ≤ vin, vin ≤ wn ∀i, j ∈ I, n ∈ NT , (3.13)

xim ∈ {0, 1} , wn, v
i
n, δ

ij
n ≥ 0 ∀i, j ∈ I,m ∈ Nt<T , n ∈ NT . (3.14)

Constraints (3.11) and (3.12) model constraints (3.6); and constraints (3.13) capture the

relation enforced by constraints (3.8).

Proposition 3.1. The optimal objective values of SSP and RSSP are equal.

The proof of Proposition 3.1 is obvious and omitted. Note that RSSP has |I| × |NT |

more variables than SSP. However, its LP relaxation is stronger.

Proposition 3.2. The optimal objective value of the LP relaxation of RSSP is no greater

than that of SSP.
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Proof. Given a feasible solution (x,w, δ, v) to the LP relaxation of RSSP, we construct a

feasible solution (x,w, δ) to the LP relaxation of SSP with an objective value which is at

least as large as that of RSSP. Consider a solution to SSP given by:

xim = xim,

wn = mini∈I

{∑
m∈P(n)\{n}min{βinRi

m, dn}xim + dn

(
1−

∑
m∈P(n)\{n} x

i
m

)}
,

δijn = δ
ij

n .

(3.15)

This solution is feasible to the LP relaxation of SSP. We show that wn ≥ wn ∀n ∈ NT .

wn = min
i∈I

 ∑
m∈P(n)\{n}

min{βinRi
m, dn}xim + dn

1−
∑

m∈P(n)\{n}

xim

 ,

≥ min
i∈I

vin + dn

1−
∑

m∈P(n)\{n}

xim

 ≥ wn, (3.16)

where (3.16) follows from (3.11) and (3.12). As δijn = δ
ij

n , the difference in the objective

values of SSP and RSSP is given by
∑

n∈NT
pnqn(wn − wn) ≥ 0.

3.2 MEAN-RISK OBJECTIVES FOR RSSP

The vast majority of patients are risk averse over health outcomes [86], and public health

officials may be as well. We extend our model to consider a risk-sensitive decision maker.

A common approach to incorporate risk into stochastic programs is to consider a weighted

mean-risk objective, where some deviation statistic is used as a measure of risk [162]. For

example, the classical Markovitz [134] portfolio optimization model uses variance to mea-

sure risk; however, this criterion leads to non-convex objective functions in stochastic pro-

grams [175]. Another challenge related to stochastic programs with mean-risk objectives

might be the loss of block-diagonal structure, which causes both computational and theoret-

ical difficulties [84].

Risk measures that do not violate block-diagonal structure are discussed in [166] for

two-stage stochastic programs and in [84] for multi-stage stochastic programs. Example

22



applications include portfolio optimization [49, 62], electricity networks optimization [113],

and petroleum refinery planning [104]. We consider two risk measures from the literature:

the absolute semideviation and the expected shortage, as we are concerned about the under

performance of the influenza vaccine.

3.2.1 The Mean-Absolute Semideviation Objective

The absolute semideviation statistic measures the expected deviation below the mean. Given

a coefficient γ ∈ [0, 1] to trade off mean with risk, the mean-absolute semideviation objective

for RSSP can be formulated as:

MASD(γ) =

[
(1− γ)

∑
n∈NT

pnFn(δn, wn)− γ
∑
n∈NT

pn max

{∑
k∈NT

pkFk(δk, wk)− Fn(δn, wn), 0

}]
.

To incorporate MASD(γ) in RSSP, we define variable Γ(n) ≥ 0 ∀n ∈ NT that represents the

absolute semideviation, and introduce:

Γ(n) ≥
∑
k∈NT

pkFk(δk, wk)− Fn(δn, wn) n ∈ NT . (3.17)

However, constraints (3.17) are not desirable as they create coupling among the terminal

nodes. We generalize MASD(γ) to reduce the coupling effect. For 1 ≤ t ≤ T define

MASDt(γ) =

[
(1− γ)

∑
n∈NT

pnFn(δn, wn)

−γ
∑
m∈Nt

∑
n∈NT∩T (m)

pn max

 1

pm

∑
k∈NT∩T (m)

pkFk(δk, wk)− Fn(δn, wn), 0


 ,

and replace (3.17) with

Γt(m,n) ≥ 1

pm

∑
k∈NT∩T (m)

pkFk(δk, wk)− Fn(δn, wn) m ∈ Nt, n ∈ NT ∩T (m). (3.18)

It is easy to see that MASD1(γ) = MASD(γ), and MASDT (γ) =(1 − γ) MASD(0). We

interpret MASDt(γ) as the absolute semideviation starting from time stage t. Note that the

coupling of terminal nodes induced by MASDt(γ) reduces as t increases.
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3.2.2 The Mean-Expected Shortage Objective

The expected shortage statistic measures the expected deviations below a fixed target η.

Given a coefficient γ ∈ [0, 1] to trade off mean with risk, the mean-expected shortage objec-

tive for RSSP can be formulated as:

MES(γ) =

[
(1− γ)

∑
n∈NT

pnFn(δn, wn)− γ
∑
n∈NT

pn max {η − Fn(δn, wn), 0}

]
.

To incorporate MES(γ) in RSSP, we define variable Γ(n) ≥ 0 ∀n ∈ NT , and introduce:

Γ(n) ≥ η − Fn(δn, wn) n ∈ NT . (3.19)

Note that MES(γ) does not create any coupling among the terminal nodes. Following

Märkert and Schultz [133], we set η to the objective value of the wait-and-see solution [130]

in our numerical experiments.

3.3 SOLUTION APPROACH

In RSSP, each strain selection decision {xim ∀i ∈ I,m ∈ NT−1} corresponds to a unique

solution of continuous variables that maximize the objective function (3.10). The general

idea behind our solution approach is optimizing over the strain selection variables while

using the continuous variables to calculate the objective value outside of the optimization

algorithm.
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3.3.1 Dantzig-Wolfe Reformulation of RSSP

We define binary variable yi`m = 1 if strain i ∈ I is selected at node ` ∈ P(m) for node

m ∈ NT−1, and yi`m = 0 otherwise. Let y`m = (yi`m)i∈I and x` = (xi`)i∈I . The strains selected

for node m ∈ NT−1 at different time stages, i.e. (y`m)`∈P(m), correspond to a vaccine design

proposal (VDPm) for terminal nodes n ∈ T (m) ∩ NT . The set of all feasible VDPm’s for

node m ∈ NT−1 is given by

Ym =
{
yi`m ∈ {0, 1} , i ∈ I, ` ∈P(m)

∣∣∣ ∑
`∈P(m)

yi`m ≤ 1, i ∈ I,
∑
i∈I

∑
`∈P(m)

Ri
`y
i
`m ≤ κ

}
.

Moreover, let Km denote the index set of Ym, i.e. Ym = {(ŷ`m)k`∈P(m) | k ∈ Km}. Note that

Km is finite ∀m ∈ NT−1, and we can express any element of Ym by

(y`m)`∈P(m) =
∑
k∈Km

λkm(ŷ`m)k`∈P(m),
∑
k∈Km

λkm = 1, λkm ∈ {0, 1}, k ∈ Km.

Note that each VDPk
m ≡ (ŷ`m)k`∈P(m) corresponds to an expected societal vaccination

benefit
∑

n∈T (m)\{m} pnFn(δ̂kn, ŵ
k
n) that maximizes the objective function (3.10), i.e. Km

indexes VDPm’s and societal vaccination benefits simultaneously. We use (y`m)`∈P(m) ∀m ∈

NT−1 to obtain the Dantzig-Wolfe reformulation of RSSP

[RSSP-DW] max
∑

m∈NT−1

∑
k∈Km

 ∑
n∈T (m)\{m}

pnFn(δ̂kn, ŵ
k
n)

λkm, (3.20)

subject to
∑
k∈Km

ŷk`mλ
k
m = x` m ∈ NT−1, ` ∈P(m), (3.21)

∑
k∈Km

λkm = 1 m ∈ NT−1, (3.22)

λkm ∈ {0, 1}, x` ≥ 0 m ∈ NT−1, ` ∈P(m), k ∈ Km. (3.23)

Constraints (3.21) ensure that selected VDPm’s are nonanticipative. Convexity constraints (3.22)

choose exactly one VDPm for each node m ∈ NT−1. Note that RSSP-DW does not impose

binary restrictions on x` variables as they are satisfied for any binary vector λ.

The cardinality of Km is huge, even for moderate-sized instances. We first create a

restricted master problem (RSSP-RMP) in which each set K′m represents a modest-sized
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subset of Km. Given the optimal duals, π̂`m and µ̂m that correspond to constraints (3.21)

and (3.22) in the LP relaxation of the RSSP-RMP (RSSP-RMP-LP), we identify the column

k̃ ∈ Km that has the most favorable reduced cost by solving the pricing subproblem

[RSSP-SP(m)] max
∑

n∈T (m)∩NT

pnFn(δn, wn)−
∑
i∈I

∑
`∈P(m)

π̂i`my
i
`m − µ̂m, (3.24)

s.t. (y`m)`∈P(m) ∈ Ym,

vin ≤
∑

`∈P(m)

min{dn, βinRi
m}yi`m i ∈ I, n ∈ T (m) ∩NT , (3.25)

wn ≤ vin + dn

1−
∑

`∈P(m)

yi`m

 i ∈ I, n ∈ T (m) ∩NT , (3.26)

δijn ≤ vin, vin ≤ wn i, j ∈ I, n ∈ T (m) ∩NT , (3.27)

δijn ≤ dn

1−
∑

`∈P(m)

yk`m

 i, j ∈ I, k ∈ H(i, j), n ∈ T (m) ∩NT , (3.28)

δijn , v
i
n, wn ≥ 0 i, j ∈ I, n ∈ T (m) ∩NT . (3.29)

Note that RSSP-SP(m) is formulated for each node m in stage T −1, and |NT−1| < |NT |

unless each node in |NT−1| has a single child. Any feasible solution to RSSP-SP(m) with a

positive objective value zRSSP−SP (m) > 0 leads to a new column for the RSSP-RMP, i.e.

add a new element to K′m. If no such solution exists for any m ∈ NT−1, then we have solved

the LP relaxation of RSSP-DW (RSSP-DW-LP) optimally. If the optimal solution to RSSP-

DW-LP is integral, then we have solved RSSP-DW. If not, the algorithm branches. For

further technical details of the branch-and-price method for multi-stage stochastic integer

programs, we refer the reader to [129].

3.3.2 Branching Rule

Branching is more intricate in branch-and-price algorithms than that in traditional branch-

and-bound algorithms, as it must prevent the regeneration of any columns previously fixed

to zero while ensuring that the pricing algorithm used in the root is unchanged in the child

nodes. In the literature, special branching rules have been developed for integer programming

column generation [179].
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Note that the only integer variables in RSSP-DW are λkm’s. However, there are numerous

different values of λkm variables that may result in the same strain selection decisions xm ∀m ∈

Nt<T . Therefore, excessive enumeration may be required if we branch on λkm variables.

Moreover, the huge size of Km exacerbates the situation.

Instead, we branch on the continuous x` variables, which are to take binary values in the

optimal solution. This approach has three main advantages over branching on λkm variables.

First, it enforces the nonanticipativity constraints (3.21). Second, it prevents regeneration

of any columns previously fixed to zero as the branching constraints on x` are enforced by

modifying the bounds of y`m variables in RSSP-SP(m). Finally, it has further implications

as a strain can be selected at most once under each scenario:

xi` = 1⇒ xi`′ = 0 `′ ∈ (T (`) \ NT ) ∪ (P(`) \ {`}) .

We enforce the branching constraints by adjusting the bounds of yi`m variables in the

pricing problem. This ensures that the pricing algorithm used in the root is unchanged in

the child nodes. Note that if xim is branched to zero, then only the solutions such that

(ŷi`m)k = 0 can be selected from K′m. Hence we can reduce the size of the RSSP-RMP at

each node of the branch-and-bound tree by eliminating all columns whose components do

not satisfy the new branching constraints in the successor nodes.

3.3.3 Solving the Pricing Subproblems

We solve RSSP-SP(m) using dynamic programming, which has two main advantages over

using an off-the-shelf MIP solver, as was verified by preliminary computations. First, it

searches over the y`m variables and calculates the corresponding values of the continuous

variables in RSSP-SP(m) exogenously, which is usually much faster than optimizing over the

whole mixed-binary variable space, particularly when there are few time stages and many

scenarios. Second, it enables us to consider all feasible columns generated throughout the

dynamic programming iterations, which may improve convergence of the column generation.

At any node g of the branch-and-price tree, let B+
m(g) be the set of all (i, `) ∈ (I×P(m))

pairs such that yi`m has been fixed to one by prior branching decisions. Likewise, let B−m(g) be

27



the set of all (i, `) ∈ (I ×P(m)) pairs such that yi`m has been fixed to zero. In our dynamic

programming formulation of SP(m), there are |I| + 1 stages. Moreover, state st at stage t

is defined by an |I|-dimensional vector whose ith component st(i) is equal to ` ∈ P(m) if

strain i is selected at node ` and 0 otherwise. Let S be the entire state space. Note that the

initial state s1 is uniquely defined by B+
m(g) and B−m(g).

We denote the remaining production capacity in state st by κ(st). Then, at stage t ≤ |I|,

the action space A(st) is empty if for i = t, st(i) 6= 0, i.e. strain i was selected before.

Otherwise, it consists of nodes ` ∈ P(m) such that Ri
` ≤ κ(st) and (i, `) /∈ B−m(g) ∪ B+

m(g).

Given decision a ∈ A(st) in state st, we denote the state at the next stage by (st + a). Note

that this definition of A(st) guarantees that starting from an initial state s1 that corresponds

to a feasible solution to SP(m), all subsequently visited states from t = 1 to |I| + 1 also

correspond to feasible solutions. Let the objective value (10a) of the feasible solution that

corresponds to s|I|+1 be equal to Jm(s|I|+1). Then for t = |I|, . . . , 1, the optimal benefit-to-go

function is defined by:

Jm(st) = max
a∈A(st)

[
Jm(st + a)

]
∀st ∈ S. (3.30)

It is easy to see that the dynamic programming algorithm defined above terminates finitely

after O(T |I|) iterations, and the optimal objective value of SP(m) is equal to Jm(s1).

3.3.4 Solving the Mean-Risk Models

We solve the mean-risk variants of RSSP by modifying the pricing subproblem RSSP-SP(m).

To the best of our knowledge, ours is the first branch-and-price algorithm proposed for

a multi-stage mean-risk model. For the mean-absolute deviation objective we consider

MASDT−1(γ), as it creates the least coupling among the terminal nodes. We solve the

following pricing subproblem ∀m ∈ NT−1.

max MASDT−1(γ)−
∑
i∈I

∑
`∈P(m)

π̂i`my
i
`m − µ̂m, (3.31)

subject to (y`m)`∈P(m) ∈ Ym,

yi`m ∈ {0, 1}, δijn , vin, wn,Γ(n) ≥ 0 ∀i, j ∈ I, ` ∈P(m).
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For the mean-expected shortage objective, we use MES(γ) in the objective function (3.31).

Either versions of the subproblem can easily be incorporated in our branch-and-price method.

3.4 PARAMETRIZATION

Our parameter values are based on the 2008-09 flu season in the United States. Nine can-

didate strains were considered in the Committee’s meeting in February 2008. As seen in

Table 1.1, four of them were A/H1N1 subtypes, two of them were A/H3N2 subtypes, and

three of them were influenza B viruses. We calibrate our model using values from the liter-

ature and/or from publicly available data. We use Monte Carlo sampling to generate point

estimations of these parameters under each scenario.

Vaccine demand and the attack rate. As seen in Figure 1.2, there is strong corre-

lation between the amounts of the flu shot produced and distributed. Therefore, estimating

the demand based on historical data is not reasonable. According to CDC recommendations,

influenza vaccination target population size is 281.1 million people in the United States in

2006 [30]. Cho [45] uses a base demand of 103 million doses (36.6% of the target) as indi-

viduals do not internalize their indirect costs of infection.

The attack rate is the proportion of individuals exposed to an infectious agent who

become clinically ill. If the influenza attack rate is expected to be higher than in a typical

season, the expected cost of infection incurred by unvaccinated individuals (qn) and the flu

shot demand (dn) increases. We use an aggregate demand that is uniformly distributed

between 30 − 40%, 40 − 50% and 50 − 60% of the CDC’s target population size when the

influenza attack rate is low, moderate and high, respectively.

Production yield ratios. We are unaware of any publicly available data from the FDA

or flu shot manufacturers about the production yields of strains. Moreover, we are unaware of

any such study in the literature. As seen in Table 1.1, the Committee classifies the candidate

flu shot strains as low, moderate and high yield based on the availability and efficiency of the

high-growth seed strains. Cho [45] uses a baseline value of 0.9 for the production yield ratio.

We assume that production yield ratios have a truncated-normal distribution between 0–1,
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and set the low yield ratio mean to 0.7, moderate yield ratio mean to 0.8, and high yield ratio

mean to 0.9. The production yields are more predictable if the current flu shot composition

is retained. Chick et al. [44] uses a baseline value of 0.2 for the standard deviation of the

production yield ratios. Cho [45] sets this value to 0.1 for the current vaccine strains and

to 0.4 for the others. Conservatively, we set the standard deviation of the production yield

ratios to 0.2 for the current vaccine strains, and to 0.4 for the others.

Egg supply. Producing 281.1 × 0.6 ∼= 170 million doses of trivalent influenza vaccine

to satisfy the maximum possible demand in our model, would require (170/0.8) × 3 ∼= 640

million fertilized eggs [89] under the medium yield ratio. This number would presumably

increase if more than three strains are included in the flu shot. In 2004, the Department of

Health and Human Services (HHS) contracted with Sanofi Aventis Inc. to ensure that there

are enough eggs to manufacture the flu shot in the event of a pandemic or shortage [87].

Therefore, the egg supply is known before the strain selections. We assume a constant egg

supply of κ = 750 million eggs under all scenarios.

Strain production quantities. There are no published data available to differentiate

between the number of chicken eggs used for the production of different strains. Therefore,

we omit the strain index i from Ri
m. All three strains for the 2008-09 flu season were selected

in the first meeting in February 2008 [67]. The manufacturers projected to produce as many

as 146 million doses of flu shot for the United States market [90] for the 2008-09 flu season.

Therefore, R1, the strain production quantity at the root node of the scenario tree should be

∼ 146/0.8 = 182.5 million under the moderate production yield ratio. Manufacturers might

not be producing at their highest capacity, as they are profit maximizers. We assume that

R1 has a truncated-normal distribution between 180− 200 million eggs with a mean of 190

million eggs and a standard deviation of 5 million eggs.

Based on a 24-week continuous flu shot production [45], the average production rate (i.e.

egg processing rate) would be ≈ 190/24 = 7.91 million eggs per week. However, the time

required for the preparation of the high-growth seed strains and testing prior to lot release is

about the same regardless of the timing of strain selection decisions. Therefore, deferring the

decisions shortens the time allocated for monovalent strain production. Around one month is

required for the preparation of high-growth seed strains, and another one month is required
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for filling, packaging and testing prior to lot release [69]. Hence, to process 190 million eggs,

weekly production rate should be as high as ≈ 190/16 = 11.87 million eggs on the basis of

a 16-week continuous monovalent strain production campaign.

We assume that the production rate is uniformly distributed between 7.91 and 11.87

million eggs per week across different scenarios. Let rm be the realization of this rate at

node m ∈ Nt<T , and ∆t be the number of weeks between two consecutive Committee

meetings. Then, we estimate the available strain production capability left at node m as

Rm = Ra(m) −∆t× rm million eggs.

Cost of infection and vaccine shortages. We assume that the expected cost of flu

infection cn, which includes the expected health care cost, work loss cost and lost earnings,

is $41 per person under all scenarios [183]. Shortage cost qn represents the expected cost of

infection incurred by an unvaccinated individual. According to the CDC [39], 5−20% of the

population gets the flu in the United States in a typical flu season. A high influenza attack

rate would increase the expected cost of infection incurred by unvaccinated individuals. We

let qn vary uniformly between $41× 0.05 = $2.05 and $41× 0.1 = $4.1 per person when the

influenza attack rate is low, between $41× 0.1 = $4.1 and $41× 0.2 = $8.2 per person when

the influenza attack rate is moderate, and between $41 × 0.2 = $8.2 and $41× 0.4 = $16.4

per person when the influenza attack rate is high.

Prevalence of strains. The relative prevalence of a strain is the ratio of the number of

people who suffered from that particular strain to the overall infected population size. We

consider three relative prevalence levels as low (0-20%), medium (20-50%) and high (>50%).

Note that the uncertainty about the relative prevalence of strains reveals gradually according

to a trend, e.g. low to medium, high to high. A straightforward point estimate that is equal

to the average of past observations might be misleading. We develop an ordinal logistic

regression model, which estimates one stage transition probabilities among the low, medium

and high relative prevalence levels of a strain based on its current relative prevalence level

(χ1) and a moving average of the past prevalence observations (χ2).
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Let πh, πm, and π` denote the transition probabilities to high, medium, and low classes.

As the outcome variable has three levels, the ordinal logistic regression model has two equa-

tions with two different intercepts, i.e. Yi = ζi + β1χ1 + β2χ2 for i = 1, 2, and the transition

probability equations are given by

π` =
exp (Y1)

1 + exp (Y1)
, πm =

exp (Y2)

1 + exp (Y2)
− exp (Y1)

1 + exp (Y1)
, πh = 1− exp (Y2)

1 + exp (Y2)

.

Every flu season is unique due to antigenic changes of the flu viruses. We assume that

historical trends in the prevalence of A/H1N1, A/H3N2 and B strain categories would rep-

resent the prevalence of specific strains in those categories. Our estimations are based on

the past weekly surveillance reports of the CDC, which date back to 1997 and contain the

prevalence of circulating flu strains between week 40 of one calender year and week 20 of the

subsequent calender year. We summarize the estimated parameters of our logistic regression

models for each three strain categories in Table 3.1.

We initialize the relative prevalence level of each strain to medium. Then using Monte

Carlo sampling we vary each strain’s relative prevalence level independently for 32 weeks, i.e.

from March to October. Once relative prevalence levels of strains in the flu season have been

determined, we make point estimations from a uniform distribution between 0− 20% for the

low level strains, 20 − 50% for the medium level strains, and 50 − 80% for the high level

strains. Note that prevalence of all candidate strains can be no more than 100%. Therefore,

we normalize this sum when necessary.

As mentioned before, 5 − 20% of the population gets the flu in the United States in a

typical flu season [39]. We multiply the point estimations of the relative prevalence of strains

by a coefficient which is uniformly distributed between 0.05 and 0.1 when the influenza attack

rate is low, between 0.1 and 0.2 when the influenza attack rate is moderate and between 0.2

and 0.5 when the influenza attack rate is high.

Cross-effectiveness. The HI assays, which are used by the Committee to evaluate

cross–effectiveness among the strains, provide only rank order information. In the literature,

the most widely used methods to quantify cross–effectiveness include comparing genetic

32



sequences based on Hamming distance [123], constructing phylogenetic trees [171], and an-

alyzing epitopes [141]. Following Wu et al. [191], we use the shape space model of Perelson

and Oster [150], which represents antigens and antibodies by unique vectors in Euclidean

space (the shape space). The coordinates of vectors are assumed to characterize binding

properties.

Lapades and Farber [117] uses an ordinal multidimensional scaling algorithm [111, 112]

to model the dimension of the shape space, and the relative coordinates of strains from

an HI assay panel. If there are M antigens and N antibodies in the panel, then there are

MN experimental values, Eij, which represent the cross–effectiveness between antigen i and

antibody j. These values are assumed to be monotonically related to the distance Dij in the

shape space. The Eij values are sorted in descending order and indexed with a number α so

that Eα+1 ≤ Eα for α = 1, . . . ,MN − 1. The cross–effectiveness of an antigen-antibody pair

is inversely proportional to their antigenic distance. The ordinal multidimensional scaling

algorithm finds shape space coordinates of antigens and antibodies so that the orderings of

Dij and Eij are reversed, i.e. Dα+1 ≥ Dα for α = 1, . . . ,MN − 1. We formulate a nonlinear

program that sorts the Dα values in the desired order according to the experimental values:

max
MN∑
α=1

1

2
[1 + tanh(Dα+1 −Dα)] (3.32a)

Dα ≤ Dα+1 α = 1, . . . ,MN − 1. (3.32b)

Note that each term of the summation in objective function (3.32a) tends to one as Dα+1−Dα

increases. Thus, the global optimal objective value is equal to MN . We use objective

function (3.32a) to eliminate trivial solutions that assign zero to all shape space coordinates.

However, different objective functions can be used since the exact algebraic form is not critical

for the shape space model [117]. We solve problem (3.32) using the off-the-shelf nonlinear

solver KNITRO [106] with different starting points. We do not search for the global optimal

solution as any feasible solution that preserves the corresponding rank ordering is sufficient.

We assume that a strain is a hundred percent effective on itself, i.e. b(i, i) = 1, ∀i ∈ I.

Given the shape space distances, we calculate the cross-effectiveness between antibody i and
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antigen j by b(i, j) = 1−Dij/Dmax ∀i 6= j, where Dmax be the largest shape space distance.

We summarize our estimations for the cross-effectiveness among candidate vaccine strains

in Table 3.2. For example, we interpret the third entry in the first row that a person who

is vaccinated with A/Brisbane/59/07 strain against A/New Caledonia/20/99 antigen will

gain 0.278 of the immunity protection that she would have gained if she was vaccinated with

A/New Caledonia/20/99 strain.

3.5 NUMERICAL EXPERIMENTS

3.5.1 Implementation

We implement our branch-and-price algorithm using BCP, a framework for branch, cut, and

price algorithms [155]. BCP handles all bookkeeping related to search tree management,

column and cut generation, branching, and so on. We initialize the restricted master problem

using a greedy heuristic. Several problem specific adjustments are required to make the

branch-and-price algorithm work efficiently. In particular, when processing a node, we do

not always solve the RSSP-DW-LP optimally. If the convergence is slow, or if zRSSP−RMP
LP ,

the objective value of the the RSSP-RMP-LP, is greater than the current local upper bound,

then we stop generating columns and branch. Moreover, we apply a dual stabilization

technique [61] to restrict the fluctuations of dual variables and improve convergence.

Given a solution to the RSSP-DW-LP, we branch on the most fractional xim variable.

When a node is either infeasible or fathomed, we select the node with the best upper bound.

Otherwise, when we branch, we dive with the hope of finding a new lower bound. At each

node of the branch-and-price algorithm, we solve the RSSP-RMP-LP using CLP, an open-

source LP solver [72].

3.5.2 Performance of the Proposed Solution Technique

We evaluate the performance of the proposed solution technique using 12 SSP instances

whose characteristics are provided in Table 3.3. As seen in Figure 3.2, the strain selection
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time horizon is equal to 4 weeks in 3-, 4- and 6-stage instances, and 4.5 weeks in 5-stage

instances. We set ∆t = 1.5 weeks for 5-stage instances as a 4/3-week time interval may not

be practical.

Table 3.4 reports the performance of our branch-and-price algorithm against CPLEX

11.0 (2010) with default settings. All computational experiments are conducted on an Intel

Xeon PC with 3GHz CPU and 3GB of RAM using ten-hour time limit. CPLEX 11.0 (2010)

cannot solve the extensive form of our instances within the time limit, except the smallest

ones with three stages, while the proposed branch-and-price algorithm solves all instances

in less than two hours. Note that RSSP-LP is much tighter than the SSP-LP for all test

instances. Moreover, MP-LP, the LP relaxation of the MP at the root node of the branch-

and-price tree, is often integer feasible.

3.6 EVALUATING POLICY ISSUES

3.6.1 Value of Integrating Timing and Composition Decisions

In this section, we evaluate the value of relaxing the two common assumptions in the litera-

ture as mentioned in Section 1.4: (i) composition decisions are independent among different

strain categories [45, 109, 191], (ii) the most prevalent circulating strain is the only alterna-

tive for the current vaccine strain [45, 109].

Considering each strain category simultaneously. To quantify the benefits of

considering all three strain categories simultaneously, we relax constraint (3.12), which limits

the flu shot production to be the minimum of all selected strain productions. Moreover,

we define a production variable for each strain category. After solving the relaxed model,

we reimpose (3.12) belatedly. As seen in the “Separate Categories” column of Table 3.5,

considering each strain category separately does not reduce the optimal objective function

much. This result is mainly due to our assumption that there is no cross-effectiveness among

strains in different categories (see Table 3.2). However, the resulting solutions are still not

optimal, as the overall production quantity of the multi-valent flu shot is not considered.
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Considering extra candidate strains in addition to the most prevalent ones.

To quantify the benefits of considering extra candidate strains beside the most prevalent

ones, we solve our instances by considering only the strains that have the highest current

expected prevalence in their category. As seen in the “Highest Exp. Prevalence” column

of Table 3.5, considering only strains that have the highest current expected prevalence

in their category may result in poor solutions, e.g. the H1 instance. This indicates that

selecting a less prevalent strain might be favorable if it has a better production yield and/or

cross–effectiveness.

3.6.2 Policy Implications

There are various opportunities to ameliorate flu epidemics, e.g. improving surveillance,

incorporating more strains into the flu shot, and reducing the production yield uncertainties.

Our model can quantify the societal benefit of these opportunities and valuable empirical

insights can be gained by numerical experiments.

More frequent decision epochs. Currently, the Committee makes at most two meet-

ings with a four-week interval; one in February and the other is in March [69]. The strain

selection decisions should not be deferred beyond March due to the lengthy manufacturing

process. However, the Committee could meet more often to enable earlier commitments. We

consider different durations between consecutive Committee meetings (∆t) for the instances

that have different number of time stages. As seen in Table 3.5, the optimal objective value

of RSSP often increases as the number stages increases. This result indicates that more

frequent Committee meetings could provide higher flexibility when selecting the strains with

respect to the uncertainties.

Influenza attack rate. If the influenza attack rate is expected to be higher than that

in a typical season, the expected cost of infection incurred by unvaccinated individuals (qn)

and the flu shot demand (dn) increases. In Table 3.3, there are four instances under each

attack rate: low, medium and high. An immediate and intuitive observation from Table 3.5

is that the higher the attack rate, the greater the benefit gained from the flu shot.
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The number of strains in the flu shot. National authorities could adjust the number

and/or dosage of strains in the flu shot. For instance, the FDA recently considered incorpo-

rating a fourth strain. The following quote is from a flu shot manufacturer [68]:

“We believe that moving to a routine four strain recommendation for annual flu vaccination,

two A strains, two B strains, while adding some manufacturing complexity, has substantial

benefits. We agree, production capacity across the industry is adequate to support this

initiative, and inclusion of both B lineages will address the recurring issue.”

Our model does not restrict the number of strains in the flu shot. More strains would

provide higher immune response but the flu shot would be more expensive and more difficult

to manufacture. To estimate the benefits of flexibility in strain selection, we solve our

instances by enforcing the selection of a single strain for each category. Formally, let I1, I2

and I3 be the index set of strains in the A/H1N1, A/H3N2 and B categories, respectively.

Then, for each strain category k = 1, 2, 3, we replace constraint (3.3) with∑
m∈P(n)\{n}

xim = 1 i ∈ Ik, n ∈ NT .

As seen in the “Single Strain per Category” column of Table 3.5, enforcing the selection of

a single strain for each category does not result in substantially worse solutions. This result

is due to our assumption that only the vaccine strain that has the highest cross-effectiveness

provides immunity protection against a particular virus strain. Note that when there are two

strains selected from a category, only one of them is effective on each circulating strain from

that category. Nevertheless, selecting more than one strain from a category might still be

favorable because either of these strains might have higher cross-effectiveness on a particular

virus strain.

Hedging against production yield uncertainties. Unanticipated problems in grow-

ing a single vaccine strain might result in reductions of the overall flu shot supply. Currently,

the Committee utilizes a fixed and somewhat vague classification of production yield ratios

(see Table 1.1). In contrast, our model allows production yield ratios to vary across scenar-

ios. To quantify the impact of this modeling flexibility, we solve our instances by assuming

that the production yield ratio of each strain is equal to its mean over all scenarios. We then

substitute the optimal solutions of these modified instances into the original model. As seen
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in the “Expected Yield” column of Table 3.5, ignoring production yield uncertainties might

result in very poor solutions under all attack rates.

Greater strain production quantities. Currently, egg-based production of flu strains

takes about six months [74]. As a remedy, researchers have proposed development of cell-

culture-based vaccine production technology [89, 103]. If feasible, cell-culture technologies

would offer distinct advantages over egg-based manufacturing methods, e.g. reduced contam-

ination risk, shorter production start-up times, greater production rates, to name a few [156],

which would enable greater strain production quantities.

Greater strain production quantities would provide flexibility in strain selections (i.e.

selecting prevalent strains which have low production yield ratios, or including additional

strains into the flu shot) and allow a longer surveillance period (i.e. waiting for more data

before selecting the flu shot strains). We perform a sensitivity analysis by solving our in-

stances with 10%, 20%, and 30% increased strain production quantities and egg supply.

Figure 3.3 reports the results of this experiment. Note that a 30% increase in the strain

production quantities leads to more than 20% increase in the societal benefit. We therefore

concur with Deo and Corbett [56] that it may be in society’s interest to subsidize research

into such manufacturing techniques.

3.6.3 The Mean-Risk Efficient Frontier

We solve the mean-risk variants of RSSP repeatedly for different values of risk coefficient

γ to approximate the mean-risk efficient frontier. It is well known that this approach may

not identify all Pareto efficient solutions [173]. However, the approximation quality can be

enhanced by solving more instances with different risk coefficients γ.

We consider three four-stage RSSP instances under the low, medium, and high attack

rates (i.e. L2, M2, H2 instances). We solve each instance using the mean-absolute semidevi-

ation and the mean-expected shortage objectives with 18 equidistant values of γ from 0.05

to 0.9. Figures 3.4, 3.5, and 3.6 depict the mean-risk efficient frontiers under different attack

rates. We observe that the expected vaccination benefit becomes more sensitive to risk as

the attack rate gets higher.
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In Figures 3.5 and 3.6, the Pareto efficient mean-risk points are clustered in a few groups.

Two phenomenons may cause this result. Consider three different values of the risk coeffi-

cient: 0 ≤ γ′ < γ0 < γ′′ ≤ 1. When γ increases from γ0 to γ′′, the optimal mean-risk pair,

or the optimal flu shot composition, may stay the same if the expected cost of updating the

solution is more than the benefit of corresponding risk decrease. Likewise, when γ decreases

from γ0 to γ′, the optimal mean-risk pair may stay the same if the expected benefit of up-

dating the current solution is less than the cost of corresponding risk increase. We note that

the numerical experiments in [1, 2] on stochastic linear programs showed similar behavior.

3.7 CONCLUSIONS

We find that more frequent Committee meetings can provide up to 10% gains in the annual

societal benefit of the flu shot. Incorporating more than three strains in the flu shot can

increase the annual societal benefit by more than $80 million, particularly under more severe

flu seasons. Complying with the current practice we recommend the use of multiple candi-

date strains per category, as a strain, which is not necessarily the most prevalent one, might

be favorable based on its manufacturability and cross-effectiveness properties. However, dif-

ferent strain categories should be considered simultaneously when choosing the composition

of the influenza vaccine, because unanticipated difficulties growing a strain might result in

reductions of the overall vaccine supply. The Committee utilizes a fixed and somewhat vague

classification of production yield ratios (see Table 1.1). We find that ignoring production

yield uncertainties might result in very poor vaccine designs. Finally, we find that enhanced

manufacturing techniques have substantial benefits, so that it may be in society’s interest

to subsidize research into such manufacturing techniques.

We model the perspective of the Committee, rather than that of the manufacturers. The

Committee’s objective is to maximize the societal vaccination benefit, whereas the manufac-

turers are profit maximizers. However, these two objectives are closely interconnected. The

manufacturers’ profits are affected by the strain selection decisions of the Committee because

not all strains grow well in chicken eggs. Moreover, if the selected strains match well with
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the virus strains that emerge during the epidemic season, there would be higher demand

for the flu shot. The societal vaccination benefit depends on the coverage rates and timely

availability of the vaccine. In Chapter 4, we propose a model that incorporates both the

Committee’s and the manufacturers’ perspectives. That model decides on the production

amounts dynamically in response to selected strains.
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0

Manufacturing Flu Season

t = 1 t = 2 t = tm t = T

Nt

a(m)
P  (m)

m T  (m)

Figure 3.1: Each node m, except the root, is joined to its ancestor a(m). The set of nodes

at time stage t is represented by Nt. The probability of node m is pm where
∑

m∈Nt
pm = 1

for all t ≤ T . Moreover, P(m) is the unique path linking the root node to m and T (m) is

the subtree rooted at m. Paths between the root node and the terminal nodes correspond to

individual scenarios. Thus, nodes at level t represent possible scenario realizations at time

stage t, and terminal nodes are also known as scenarios.

Table 3.1: Estimated parameters of the ordinal logistic regression model.

Parameter A/H1N1 A/H3N2 B

ζ1 4.0995 5.0960 4.1833

ζ2 8.1723 10.0081 9.4719

β1 -0.1606 -0.1733 -0.2302

β2 -1.4036 -1.7736 -1.6331
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Table 3.3: Sizes of the test instances. The attack rate is the proportion of individuals

exposed to an infectious agent who becomes clinically ill. The scenarios used under different

attack rates are the same except the demand (dn), shortage cost (qn) and the prevalence

(ein) parameters as explained in Section 3.4. The number of weeks between two consecutive

Committee meetings is denoted by ∆t.

Attack ∆t Scenario tree size Extensive form size

rate Name (weeks) |T | |NT | |N | Cont. Var. Bin. Var. Constraints

L
ow

L1 4 3 100 111 1000 99 84800

L2 2 4 512 585 5120 657 434176

L3 1.5 5 243 341 2430 882 206064

L4 1 6 32 63 320 279 27136

M
o
d
er

at
e

M1 4 3 100 111 1000 99 84800

M2 2 4 512 585 5120 657 434176

M3 1.5 5 243 341 2430 882 206064

M4 1 6 32 63 320 279 27136

H
ig

h

H1 4 3 100 111 1000 99 84800

H2 2 4 512 585 5120 657 434176

H3 1.5 5 243 341 2430 882 206064

H4 1 6 32 63 320 279 27136

43



Δt3

Δt5 Δt5       Δt5

Δt6 Δt6 Δt6 Δt6

Weeks

Δt4   Δt4

T=3

T=4

T=5

T=6

1 2 3 4 Flu season

Figure 3.2: Time stages of 3-, 4-, 5- and 6-stage models. Composition decisions are made in

the first T − 1 stages, and the uncertainties about the characteristics of the flu season are

realized in the last stage.
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Table 3.4: Performance of the proposed solution technique. RRSP-DW-LP is the LP relax-

ation of the RSSP-DW at the root node of the branch-and-price tree. % gap is calculated

relative to the optimal solution. A ‘-’ indicates that the 10-hour time limit was exceeded.

SSP-LP RSSP-LP RSSP-DW-LP CPLEX Branch-and-price

% gap % gap % gap sec. sec.

L1 13.21 7.59 < 0.01 323.67 5.53

L2 12.74 8.01 0.00 - 853.93

L3 13.69 8.70 0.00 - 5121.71

L4 9.38 6.48 < 0.01 - 3848.07

M1 19.63 10.63 0.00 251.05 3.84

M2 21.60 12.07 0.00 - 682.88

M3 22.38 13.39 0.00 - 3561.06

M4 20.60 12.94 0.00 - 2533.88

H1 38.76 20.75 0.00 220.27 3.28

H2 40.56 21.70 0.00 - 439.59

H3 41.02 23.45 0.00 - 2232.56

H4 33.26 19.91 < 0.01 - 3211.83
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Table 3.5: Experiments for policy issues. The columns expressing a percentage are relative

to the optimal solution.

Optimal val. Separate Highest Exp. Single Strain Expected

RSSP ($M) Categories (%) Prevalence (%) per Category (%) Yield (%)

L1 432.02 99.83 88.03 98.58 63.82

L2 444.71 99.49 92.66 97.50 71.71

L3 447.96 99.63 90.37 95.74 65.57

L4 474.95 99.44 91.13 94.41 65.99

M1 1022.92 99.89 92.24 99.77 59.73

M2 1020.45 99.76 95.19 99.61 59.31

M3 1033.36 99.42 95.59 98.30 59.96

M4 1074.32 97.86 87.74 96.11 55.61

H1 2343.53 99.97 85.95 99.97 56.08

H2 2309.87 99.88 89.63 99.88 58.11

H3 2319.21 99.30 95.54 99.00 57.67

H4 2530.17 94.03 93.92 96.72 58.89
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Figure 3.3: % improvement in the current optimal objective function value due to increasing

the strain production capacity.
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efficient frontiers under the low attack rate.
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4.0 OPTIMAL DESIGN OF THE ANNUAL INFLUENZA VACCINE WITH

AUTONOMOUS MANUFACTURERS

In this chapter, we extend the multi-stage stochastic mixed-integer programming model of

Chapter 3 to consider the hierarchical relationship between the Committee and the influenza

vaccine manufacturers. This hierarchy results from the fact that the Committee optimizes the

societal vaccination benefit by taking into account production decisions of the manufacturers,

who maximize their own profits. The manufacturers’ profit maximization problem is affected

by the strain selection decisions of the Committee because not all strains grow well in chicken

eggs. In return, the production decisions of the manufacturers affect the societal vaccination

benefit because they determine the coverage rates and timely availability of the flu shot.

The government is not the only purchaser of the influenza vaccine. For example, 51%

of the total flu shot produced was sold to physician offices and hospitals in the 2007-08 flu

season [90]. The influenza vaccine price, unlike that of other vaccines, is not controlled by

the government [51], and fluctuates in a competitive vaccine market. For example, in the

2000-01 flu season, manufacturing difficulties, which resulted in an overall delay of about 6-8

weeks in shipping the flu shot, created an initial shortage and a temporary price spike [73].

Currently, six manufacturers provide the influenza vaccine for the United States market [40].

Each manufacturer sets a production level to maximize its own profits by taking into account

the decisions of the other manufacturers. Then, the production yield is realized, the actual

quantity produced is brought to the market, and price emerges according to the total number

of doses supplied by all manufacturers. We analyze the effects of yield uncertainty, price,

and production cost on manufacturers’ production decisions. We also analyze the properties

of the consumer surplus using a hyperbolic demand function.
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4.1 BILEVEL PROGRAMMING MODEL FORMULATION

We formulate a bilevel programming model for the annual influenza strain selection problem

that incorporates both the Committee’s and the vaccine manufacturers’ perspectives. In the

upper level, the Committee selects the strains to maximize the expected societal vaccination

benefit considering the uncertainties in the prevalence of each strain and in the flu shot

supply. In the lower level, each manufacturer sets production levels of the selected strains to

maximize its profit based on the decisions of the other manufacturers as well as the uncertain

production yield ratios and production costs. This model extends that of Chapter 3, as it

could adjust production quantities of the manufacturers dynamically in response to selected

strains.

Let K be the set of influenza vaccine manufacturers, and set K = |K|. In addition, let I

be the set of candidate strains for the influenza vaccine in a T -stage problem. Some portion

of the uncertainty about the characteristics of the flu season unfolds at each time stage.

The Committee selects the strains in the first T − 1 stages. Manufacturers set their strain

production levels after all strains are selected in stage T −1. Finally, all inherent uncertainty

about the flu season is realized in the last stage, T .

As in Chapter 3, we model uncertainty using a scenario tree (see Figure 3.1) under a

finite number of scenarios whose discrete probability distribution is independent of strain

selection decisions [191]. However, in this chapter, scenarios model only the uncertainties

in the prevalence of strains, while in Chapter 3 they also model the uncertainties in the

production parameters, infection and shortage costs.
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4.1.1 The Committee’s Problem

We formulate the Committee’s strain selection problem in the upper level as a multi–stage

stochastic mixed–integer program. Denote by ein the prevalence of strain i ∈ I at terminal

node n ∈ NT , i.e. the ratio of the number of flu infections caused by strain i to the whole

population. We represent the cost of a flu case by c. The shortage cost q captures the average

cost of an unvaccinated person, e.g. health care costs, work loss cost, reduced productivity,

to name a few. We assume that the society incurs this cost if the flu shot supply is less than

a target level D.

We define binary variable xim = 1 iff strain i ∈ I is selected at node m ∈ Nt<T . For

` ∈ NT−1, let I(`) be the set strains selected by the Committee, and set X` ≡ (xim)I×P(`).

Denote by vik` the production level of strain i chosen by manufacturer k, and set vk` ≡

(vik`)∀i∈I(`).

Let random variable βi ∈ (0, 1) represent the production yield rate of strain i ∈ I. Let

gi(·) and Gi(·) be the probability density function and the cumulative distribution function

of βi, respectively. We define Ḡi(·) = 1 − Gi(·). Moreover, denote by µi the mean of βi.

We assume that each manufacturer has the same yield distribution. Then, the expected flu

shot production of manufacturer k at node ` ∈ NT−1 is equal to E[mini∈I(`){βivik`}]. For

` ∈ NT−1, denote by W` =
∑

k∈K E[mini∈I(`){βivik`}], i.e. the expected flu shot production

for terminal nodes n ∈ T (`) ∩NT .

As described in Chapter 3, let b(i, j) be the cross–effectiveness of strain i with strain j,

and H(i, j) = {h ∈ I | b(h, j) > b(i, j)} be the set of those strains that have higher cross–

effectiveness with strain j than strain i does. We define nonnegative disjunctive variable

δij` = W` iff strain i but no strain from H(i, j) is selected.

Definition 4.1. The “expected societal vaccination benefit” is the cost of infections averted

by vaccinated people minus the cost of infections incurred by unvaccinated people in the target

population. At node ` ∈ NT−1, it is given by

Ψ`(δ`,W`) =
∑

n∈T (`)∩NT

∑
i,j∈I

pnce
j
nδ

ij
` b(i, j)− qmax{D −W`, 0}. (4.1)
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We denote by Πk` the expected profit of manufacturer k at node ` ∈ NT−1. Based on

the notation defined above, the extensive form of the Committee’s strain selection problem

can be formulated as:

[CP] max
∑

`∈NT−1

p`Ψ`(δ`,W`) (4.2)

s.t.
∑

m∈P(`)

xim ≤ 1 ∀i ∈ I, ` ∈ NT−1, (4.3)

δij` ≤M min

1−
∑

m∈P(`)

xhm,
∑

m∈P(`)

xim

 ∀i, j ∈ I, h ∈ H(i, j), ` ∈ NT−1, (4.4)

vk` ∈ argmax Πk` ∀k ∈ K, ` ∈ NT−1, (4.5)

W` =
∑
k∈K

E[ min
i∈I(`)
{βivik`}] ` ∈ NT−1, (4.6)

0 ≤ δij` ≤ W`, x
i
` ∈ {0, 1} ∀i ∈ I, ` ∈ NT−1,m ∈ Nt<T . (4.7)

Objective function (4.2) maximizes the expected societal vaccination benefit. We assume a

risk-neutral decision maker; hence, the objective function is based on the expectation of all

possible outcomes. Constraints (4.3) enforce each strain to be selected at most once under

each scenario. In (4.4), M is a large positive number, e.g. the industry’s overall flu shot

production capacity. These constraints consider the antigenically closest flu shot strain to

find the the immunity protection against a particular circulating flu virus [146]. Clearly,

this modeling assumption underestimates the immunity protection provided by the flu shot.

Finally, constraints (4.5) ensure that each manufacturer maximizes its expected profit. Note

that vk` depends on the equilibrium outcome of the Manufacturers’ Problem.

4.1.2 Derivation of the Price Function

In this section, we derive the price function that is used in the profit function of the manufac-

turers. ConsiderM individuals, each of whom has a value ϑ for the influenza vaccine. This

value depends on the price in addition to the likelihood of getting infected and the resulting

costs of heath care, lost income, to name a few. Brito et al. [21], Deo and Corbett [56], and

Cho [45] assumed that ϑ follows a uniform distribution on a constant range, which lead to
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a linear demand function. We consider a variable consumer value range as a function of the

influenza vaccine price ρ.

The value of the influenza vaccine for the high-risk population, e.g. the elderly, pregnant

women, young children does not depend much on the price. However, people in the low-risk

population, e.g. healthy adults, would take price into account more seriously. Let ϑ̄ > 0 be

the upper limit of ϑ. We assume that ϑ̄ is constant and does not vary with price. Denote

by ϑ(ρ) the lower limit of ϑ at price ρ. We assume that ϑ(ρ) is decreasing in ρ.

Given the influenza vaccine price ρ, we assume that the consumer value ϑ follows a uni-

form distribution Fρ(·) in [ϑ(ρ), ϑ̄]. Note that the range (ϑ̄−ϑ(ρ)) is a nondecreasing function

of ρ, as ϑ(ρ) is decreasing in ρ. We assume that this function is defined by ~ρ = (ϑ̄− ϑ(ρ))

for ~ > 0.

A rational consumer, with valuation ρ, is indifferent between getting vaccinated and not

getting vaccinated. Hence, Q =M(1−Fρ(ρ)) is the total demand at that price. Substituting

1−F(ρ) = (ϑ̄−ρ)/~ρ, we get Q =M(ϑ̄−ρ)/~ρ. Setting a = ϑ̄ and h = ~/M, the following

hyperbolic price function is obtained:

ρ =
a

hQ+ 1
. (4.8)

Hyperbolic demand functions are well studied in economics [20, 110, 116], and have appli-

cations in electricity pricing [142, 192].

Deo and Corbett [56], and Cho [45] used a linear demand function ρ = a − hQ. Unlike

those studies, we consider multiple flu shot strains. The revenue function (a − hQ)Q is

not concave for Q = mini{viβi} for a linear demand function. However, the hyperbolic

function (4.8) preserves concavity as proven in Proposition 4.1(i). As a result, although

a hyperbolic price function is somewhat more sophisticated than a linear one, it provides

analytical tractability in our model.

4.1.3 The Manufacturers’ Problem

We assume that the industry consists of K identical firms, which ensures that the equilibrium

production quantity of each manufacturer must be the same as they also observe the same
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yield distribution. For simplicity of the notation we drop the manufacturer index k, and the

scenario tree node index ` hereafter in this section. In addition, we represent I(`) by I.

Let ϕi be the unit production cost of strain i. For constant parameters a > 0, h > 0, and

the total flu shot supply Q, the flu shot price is equal to a
hQ+1

, which is strictly decreasing

in Q. Note that the expected unit production cost of the flu shot is equal to

E[
∑
I

ϕi/βi] ≥
∑
I

ϕi/µi, (4.9)

where the inequality follows from Jensen’s inequality. If the reservation price a is less than

or equal to
∑

I ϕ
i/µi, then manufacturers’ will not produce anything. Therefore, we assume

that a >
∑

I ϕ
i/µi. Moreover, for notational convenience we assume that a/hK ≥ 1.

The manufacturer’s problem can be formulated as:

[MP] max Π = E
[

aminI{βivi}
hK minI{βivi}+ 1

]
−
∑
I

ϕivi. (4.10)

Proposition 4.1. (i) Π is jointly concave in v.

(ii) The optimal solution v∗ is given by the unique solution to the first-order condition

∂Π

∂vi
=

∫ 1

0

aβi

(hKβivi + 1)2

∏
i′ 6=i

Ḡi′

(
βivi/vi

′
)
gi(β

i)dβi = ϕi i ∈ I. (4.11)

Proof. (i) Π is the composition of strictly increasing and concave revenue function aQ/(hQ+ 1)

with minI{βivi}. The result follows from the fact that minI{βivi} is also concave.

(ii) Rewrite the expected revenue as

E
[

aminI{βivi}
hK minI{βivi}+ 1

]
=

∫ a/hK

0

Pr

(
aminI{βivi}

hK minI{βivi}+ 1
≥ r

)
dr =

∫ a/hK

0

∏
I

Ḡi

(
r/vi

a− hKr

)
dr.

Using the change of variables r̂ = r
a−hKr ,

E
[

aminI{βivi}
hK minI{βivi}+ 1

]
=

∫ a/hK

0

a

(hKr̂ + 1)2

∏
I

Ḡi

(
r̂/vi

)
dr̂.

The first-order optimality condition is given by

∂Π

∂vi
=

(
1

vi

)2 ∫ a/hK

0

ar̂

(hKr̂ + 1)2

∏
I\{i}

Ḡj

(
r̂/vj

)
gi(r̂/v

i)dr̂ − ϕi = 0 i ∈ I.
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Using the change of variables βi = r̂/vi,

∫ a/hK

0

aβi

(hKβivi + 1)2

∏
I\{i}

Ḡj

(
βivi/vj

)
gi(β

i)dβi = ϕi i ∈ I.

Note that we can replace a/hK in the upper limit of the integral with one as the strain

production yield is less than one. The left-hand side of (4.11) is the expected marginal

revenue of increasing vi, which is equal to aµi > ϕi for vi = 0. This value is continuous,

nonnegative and strictly decreasing in vi, hence the optimal vi∗ i ∈ I is unique.

Note that in the deterministic case when there is no yield uncertainty, the optimal pro-

duction level of each strain must satisfy vi/µi = w for i ∈ I, where w is a nonnegative scalar

variable that represents the target flu shot production. The manufacturer’s problem can

then be reformulated as

max Π̂ =
aw

hKw + 1
−
∑
I

ϕi
w

µi
, (4.12)

and the first-order optimality condition is given by

a

(hKw + 1)2
=
∑
I

ϕi

µi
. (4.13)

Condition (4.13) is both necessary and sufficient as Π̂ is concave in w. Let ŵ be the optimal flu

shot production level that maximizes Π̂. Denote by v̂i = ŵ/µi the optimal production level

of strain i ∈ I. Deo and Corbett [56], and Cho [45] studied the effect of yield uncertainty on

the flu shot production. They considered a single strain, and found that the yield uncertainty

can reduce the industry output. Proposition 4.2 also considers a single flu shot strain, and

compares the optimal production levels between the deterministic and stochastic cases.

Proposition 4.2. If there is a single flu shot strain i, then v̂i, the optimal production level in

the deterministic case, is no smaller than the optimal production level under uncertainty vi∗.
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Proof. If there is a single strain i, then condition (4.11) reduces to∫ 1

0

aβi

(hKβivi∗ + 1)2
gi(β

i)dβi = E
[

aβi

(hKβivi∗ + 1)2

]
= ϕi, (4.14)

and condition (4.13) reduces to

aµi

(hKµiv̂i + 1)2
= ϕi. (4.15)

Using (4.14), (4.15), and Jensen’s inequality

aµi

(hKµiv̂i + 1)2
= E

[
aβi

(hKβivi∗ + 1)2

]
≤ aµi

(hKµivi∗ + 1)2
. (4.16)

Next, we investigate the effect of production yield uncertainty on the optimal strain

production levels when there are multiple strains in the flu shot. To gain additional insights,

we analyze a special case in which only a particular strain j ∈ I has yield uncertainty. In

this case, the optimal production level of each flu shot strain i 6= j with certain yield must

be equal as the amount of the flu shot produced is limited by the lowest strain production

quantity. To ensure this condition we replace µivi i ∈ I \{j} by a nonnegative scalar variable

z that represents the target flu shot production. The manufacturer’s problem can then be

reformulated as

max Π̃ = E
[

amin{z, βjvj}
hK min{z, βjvj}+ 1

]
− z

∑
I\{j}

ϕi

µi
− ϕjvj. (4.17)

We denote optimal solution that maximizes Π̃ by (ṽj, z̃). Recall that Proposition 4.2

shows that vi∗ ≤ v̂i, when i is the only flu shot strain. Theorem 4.1 states that when there

are multiple strains in the flu shot, the optimal strain production levels may be either less or

more than those in the deterministic case depending on the reservation price a, even if only

one of the strains has uncertain production yield. Before presenting this result, we prove

some technical results.
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Proposition 4.3. ṽj and z̃ are strictly increasing in a.

Proof. Without loss of generality let z be the production level of a strain whose yield is equal

to one. Then, Proposition 4.1 is valid for Π̃. From condition (4.11),

Q1 =
∂Π̃

∂vj
=

∫ z/vj

0

aβj

(hKβjvj + 1)2
gj(β

j)dβj − ϕj = 0, (4.18a)

Q2 =
∂Π̃

∂z
=

a

(hKz + 1)2
Ḡj(z/v

j)−
∑
I\{j}

ϕi

µi
= 0. (4.18b)

Next, we apply the Implicit Function Theorem [161] to obtain

∂Q1

∂ṽj
∂ṽj

∂a
+
∂Q1

∂z̃

∂z̃

∂a
= −∂Q1

∂a
, (4.19a)

∂Q2

∂ṽj
∂ṽj

∂a
+
∂Q2

∂z̃

∂z̃

∂a
= −∂Q2

∂a
. (4.19b)

Note that ∂Q1

∂ṽj < 0, ∂Q1

∂z̃
> 0, ∂Q1

∂a
> 0, ∂Q2

∂ṽj > 0, ∂Q2

∂z̃
< 0, and ∂Q2

∂a
> 0. Therefore, ∂ṽj

∂a
and ∂z̃

∂a

must have the same sign. We solve (4.19a) and (4.19b) simultaneously to obtain(
∂Q1

∂ṽj
∂Q2

∂z̃
− ∂Q1

∂z̃

∂Q2

∂ṽj

)
∂ṽj

∂a
=
∂Q1

∂z̃

∂Q2

∂a
− ∂Q1

∂a

∂Q2

∂z̃
. (4.20)

The right-hand side of (4.20) is positive. The expression in the brackets in the left-hand side

is equal to det(∂2Π), which is nonnegative due to Proposition 4.1 (i). As a result, ∂ṽj

∂a
> 0,

so that ∂z̃
∂a
> 0, as it must have the same sign.

Proposition 4.3 states that a higher reservation price a will provide the manufacturers’

incentive to produce more flu shot strains with deterministic or uncertain yield.

Lemma 4.1. For a given reservation price a, let

L(a) =
∂Π̃(ŵ, γŵ)

∂z
=

a

(hKγŵ + 1)2
Ḡj(γ)−

∑
I\{j}

ϕi

µi
, (4.21)

where γ satisfies ∫ γ

0

aβj

(hKβjŵ + 1)2
gj(β

j)dβj = ϕj. (4.22)

Then the following results hold

(i) 0 < γ < 1,
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(ii) γ is strictly decreasing in a,

(iii) L(a) is strictly increasing in a.

Proof. (i) For γ = 0 the left-hand side of (4.22) is zero, and for γ = 1,

∫ 1

0

aβj

(hKβjŵ + 1)2
gj(β

j)dβj ≥
∫ 1

0

aβj

(hKŵ + 1)2
gj(β

j)dβj =
aµj

(hKŵ + 1)2
= ϕj + µj

∑
I\{j}

ϕi

µi
,

where the second equality follows from (4.13). Observe that (4.22) is strictly increasing and

continuous in γ, so 0 < γ < 1.

(ii) Note that γ is a function of a, but we suppress this for notational simplicity. Differ-

entiate both sides of (4.13) with respect to a,

(hKŵ + 1)2 − 2hKa(hKŵ + 1)∂ŵ
∂a

(hKŵ + 1)4
= 0⇒ ∂ŵ

∂a
=
hKŵ + 1

2ahK
. (4.23)

Now, differentiate both sides of (4.22) with respect to a,

∂γ

∂a

aγ

(hKγŵ + 1)2
gj(γ) +

∫ γ

0

(hKβjŵ + 1)− 2ahKβj ∂ŵ
∂a

(hKβjŵ + 1)3
βjgj(β

j)dβj = 0. (4.24)

Using (4.23), we can expand the second term in (4.24) as,

∫ γ

0

(hKβjŵ + 1)− (hKβjŵ + βj)

(hKβjŵ + 1)3
βjgj(β

j)dβj > 0.

Thus, it follows that ∂γ
∂a
< 0.

(iii) Differentiate L(a) with respect to a to obtain

∂L(a)

∂a
=

(hKγŵ + 1)− 2ahK(γ ∂ŵ
∂a

+ ∂γ
∂a
ŵ)

(hKγŵ + 1)3
Ḡj(γ)

=
(hKγŵ + 1)− (hKγŵ + γ)− 2ahK ∂γ

∂a
ŵ

(hKγŵ + 1)3
Ḡj(γ) > 0, (4.25)

where the first inequality follows from (4.23). The last inequality follows since γ < 1 and

∂γ
∂a
< 0.
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Lemma 4.2. For 0 < u ≤ 1 and reservation price a, let

B(a, u) =
∂Π̃(v̀j, uv̀j)

∂z
=

a

(hKuv̀j + 1)2
Ḡj(u)−

∑
I\{j}

ϕi

µi
, (4.26)

where v̀j ≥ 0 satisfies,

∂Π̃(v̀j, uv̀j)

∂vj
=

∫ u

0

aβj

(hKβj v̀j + 1)2
gj(β

j)dβj = ϕj. (4.27)

Then B(a, u) is strictly decreasing in a and u.

Proof. Note that v̀ is a function of a, but we suppress it for notational simplicity. Differentiate

both sides of (4.27) with respect to a to obtain∫ u

0

(hKβj v̀j + 1)2 − 2hKaβj(hKβj v̀j + 1)∂v̀
j

∂a

(hKβj v̀j + 1)4
βjgj(β

j)dβj = 0

⇒∂v̀j

∂a
=

∫ u
0

βj

(hKβj v̀j+1)2
gj(β

j)dβj∫ u
0

2hKa(βj)2

(hKβj v̀j+1)3
gj(βj)dβj

=
ϕj/a

2hKa
∫ u

0
(βj)2

(hKβj v̀j+1)3
gj(βj)dβj

, (4.28)

where the equality follows from (4.27). Observe that in the denominator of (4.28)∫ u

0

(βj)2

(hKβj v̀j + 1)3
gj(β

j)dβj <
u

(hKuv̀j + 1)

∫ u

0

βj

(hKβj v̀j + 1)2
gj(β

j)dβj =
u

(hKuv̀j + 1)

ϕj

a
.

(4.29)

Using inequality (4.29) in (4.28), we obtain

∂v̀j

∂a
>

ϕj/a

2hKa u
(hKuv̀j+1)

ϕj

a

=
(hKuv̀j + 1)

2hKau
. (4.30)

Differentiate B(a, u) with respect to a to obtain

∂B(a, u)

∂a
=

(hKuv̀j + 1)− 2hKau∂v̀
j

∂a

(hKuv̀j + 1)3
Ḡj(u) < 0, (4.31)

where the inequality follows from (4.30). Thus, B(a, u) is strictly decreasing in a. Observe

from (4.27) that v̀j is strictly increasing in u. It follows from (4.26) that B(a, u) is strictly

decreasing in u.
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Lemma 4.3. Let ù be such that
∫ ù

0
aβjgj(βj)dβ

j = ϕj, and B(a, u) be as in Lemma 4.2.

(i) B(a, ù) ≥ 0

(ii) There exists a unique u, ù ≤ u ≤ 1, denoted by u1(a), such that B(a, u1(a)) = 0.

Moreover, u1(a) is strictly decreasing in a.

Proof. (i) From (4.18b)

∫ ũ

0

aβj

(hKβj ṽj + 1)2
gj(β

j)dβj = ϕj =

∫ ù

0

aβjgj(βj)dβ
j. (4.32)

Thus, ù ≤ ũ. Furthermore, it follows from (4.27) that v̀j = 0 for u = ù. Thus,

B(a, ù) = aḠj(ù)−
∑
I\{j}

ϕi

µi
≥ aḠj(ũ)−

∑
I\{j}

ϕi

µi
≥ a

(hKz̃ + 1)2
Ḡj(ũ)−

∑
I\{j}

ϕi

µi
= 0. (4.33)

(ii) Clearly, B(a, 1) = −
∑

I\{j} ϕ
i/µi < 0. Lemma 4.2 (ii) states that B(a, u) is strictly

increasing in u, and we showed that B(a, ù) ≥ 0 in the first part. Thus, there must exists

some unique u between ù and 1, denoted by u1(a), such that B(a, u1(a)) = 0. As B(a, u) is

strictly decreasing in a and u from Lemma 4.2 (ii), u1(a) is strictly decreasing in a.

Proposition 4.4. There exists an a1 >
∑

I ϕ
i/µi such that

ṽj = ŵ if a = a1,

ṽj < ŵ if a < a1,

ṽj > ŵ if a > a1.

Proof. We first show that there exists an a1 such that ṽj = ŵ when a = a1. From (4.22), it

is clear that (vj, z) = (ŵ, γŵ) satisfies (4.18a) for any a >
∑

I ϕ
i/µi. It simplifies to show

that (ŵ, γŵ) also satisfies (4.18b) for some a1 >
∑

I ϕ
i/µi. Note that for a =

∑
I ϕ

i/µi we

have ŵ = 0 from (4.13). Moreover, it follows from (4.22) that

∫ γ

0

βjgj(β
j)dβj = E[βj|βj ≤ γ]Gj(γ) =

ϕj∑
I ϕ

i/µi
⇒ Gj(γ) ≥ ϕj/µj∑

I ϕ
i/µi

. (4.34)
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Then,

L

(∑
I

ϕi/µi

)
=
ϕj

µj
−Gj(γ)

∑
I

ϕi

µi
≤ 0. (4.35)

Since L(a) is strictly increasing in a, there must exist some a1 >
∑

I ϕ
i/µi such that L(a1) =

0, or equivalently, (ŵ, γŵ) satisfies (4.18b) when a = a1.

Next, we show that ṽj > ŵ when a > a1. Consider any fixed ǎ > a1. Let (v̌j, ž) be the

corresponding optimal solution. Then, from Lemma 4.3 (ii), u1(ǎ) < u1(a1), which implies

that Ḡj(u1(ǎ)) > Ḡj(u1(a1)). From (4.18b) we have that

ǎ

(hKu1(ǎ)v̌j + 1)2
Ḡj(u1(ǎ)) =

a1

(hKu1(a1)ŵ + 1)2
Ḡj(u1(a1)).

Thus, v̌j > ŵ. Similarly, we can show that v̌j < ŵ when ǎ < a1.

Lemma 4.4. For 0 < u ≤ 1 and reservation price a, parameterize the upper integrand

of (4.18a) by u. Let

J(a, u) =
∂Π̃(v̄j, z̄)

∂vj
=

∫ u

0

aβj

(hKβj z̄
u

+ 1)2
gj(β

j)dβj − ϕj, (4.36)

where z̄ satisfies

(hKz̄ + 1)2 =
a∑

I\{j} ϕ
i/µi

Ḡj(u). (4.37)

Then J(a, u) is strictly increasing in a and u.

Proof. Note that z̄ is a function of a. Differentiate both sides of (4.37) with respect to a,

∂z̄

∂a
=

Ḡj(u)∑
I\{j} ϕ

i/µi
(hKz̄ + 1)

2hK(hKz̄ + 1)2
=

(hKz̄ + 1)

2hKa
, (4.38)

where the second equality follows from (4.37).

Differentiating J(a, u) with respect to a,

∂J(a, u)

∂a
=

∫ u

0

(
(hKβj z̄

u
+ 1)2 − 2hKaβ

j

u
(hKβj z̄

u
+ 1)∂z̄

∂a

(hKβj w̄
u

+ 1)4

)
βjgj(β

j)dβj

=

∫ u

0

(
(hKβj z̄

u
+ 1)2 − (hKβj z̄

u
+ 1)(hKβj z̄

u
+ βj

u
)

(hKβj z̄
u

+ 1)4

)
βjgj(β

j)dβj > 0, (4.39)

where the first equality follows from (4.38), and the inequality follows since βj ≤ u. There-

fore, J(a, u) is strictly increasing in a. Observe from (4.37) that z̄ is strictly decreasing in

u. It follows from (4.36) that J(a, u) is strictly increasing in u.
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Lemma 4.5. Let ū be such that Ḡj(ū) =
∑

I\{j} ϕ
i/µi

a
.

(i) J(a, ū) ≥ 0.

(ii) There exists a unique u, 0 ≤ u ≤ ū, denoted by u2(a), such that J(a, u2(a)) = 0.

Moreover, u2(a) is strictly decreasing in a.

Proof. (i) Let ũ = z̃/ṽj. It follows from (4.18b) that

Ḡj(ũ) =
(hKz̃ + 1)2

∑
I\{j} ϕ

i/µi

a
≥
∑

I\{j} ϕ
i/µi

a
= Ḡj(ū). (4.40)

Thus, ū ≥ ũ. Furthermore, it follows from (4.37) that z̄ = 0 for u = ū. Thus,

J(a, ū) =

∫ ū

0

aβjgj(β
j)dβj − ϕj ≥

∫ ũ

0

aβjgj(β
j)dβj − ϕj ≥

∫ ũ

0

aβj

(hKβj ṽj + 1)2
gj(β

j)dβj − ϕj = 0,

where the first inequality follows from (4.40), and the last equality follows from (4.18a).

(ii) Clearly, limu→0+ J(a, u) = −ϕj < 0. Lemma 4.4 states that J(a, u) is strictly

increasing in u, and we showed that J(a, ū) ≥ 0 in the first part. Thus, there must exists

some unique u between 0 and ū, denoted by u2(a), such that J(a, u2(a)) = 0. As J(a, u) is

strictly increasing in a and u from Lemma 4.4, u2(a) is strictly decreasing in a.

Proposition 4.5. There exists an a2 >
∑

I ϕ
i/µi such that



z̃ = ŵ if a = a2,

z̃ < ŵ if a < a2,

z̃ > ŵ if a > a2.
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Proof. We first show that there exists some a2 such that z̃ = ŵ when a = a2. Let η =

G−1
j

(
ϕj/µj∑
I ϕ

i/µi

)
. Recalling that ŵ satisfies (4.13), it is straightforward to show that (vj, z) =

( ŵ
η
, ŵ) satisfies (4.18b) for any a >

∑
I ϕ

i/µi. We claim that there exists an a2 such that

( ŵ
η
, ŵ) also satisfies (4.18a).

Note that for a =
∑

I ϕ
i/µi and u = η, it follows from (4.37) that

(hKz̄ + 1)2 =

∑
I ϕ

i/µi∑
I\{j} ϕ

i/µi

(
1− ϕj/µj∑

I ϕ
i/µi

)
= 1. (4.41)

Thus, z̄ = 0 for a =
∑

I ϕ
i/µi and u = η. Then from (4.36),

J(
∑
I

ϕi/µi, η) =
∑
I

ϕi

µi

∫ η

0

βjgj(β
j)dβj − ϕj ≤

∑
I

ϕi

µi
Gj(η)µj − ϕj = 0, (4.42)

where the inequality follows from
∫ η

0
βjgj(β

j)dβj = Gj(η)E[βj|βj ≤ η] ≤ Gj(η)µj, and the

second equality follows from the definition of η. Since, J(a, η) is strictly increasing in a from

Lemma 4.4, there must exist some a2 >
∑

I ϕ
i/µi such that J(a2, η) = 0, or equivalently,

(vj, z) = ( ŵ
η
, ŵ) satisfies (4.18a) when a = a2.

Next, we show that z̃ > ŵ for a > a2. Consider any fixed ă > a2. Let (v̆j, z̆) be

corresponding optimal solution of (4.17). Then, from Lemma 4.5 (ii), u2(ă) < u2(a2), which

implies that Ḡj(u2(ă)) > Ḡj(u2(a2)). From (4.18b) we have that

(hKz̆ + 1)2 =
ă∑

I\{j} ϕ
i/µi

Ḡj(u2(ă)) >
a2∑

I\{j} ϕ
i/µi

Ḡj(u2(a2)) = (hKŵ + 1)2. (4.43)

Thus, z̆ > ŵ. Similarly, we can show that z̆ < ŵ when ă < a2.

Theorem 4.1. There exists a1 and a2 such that a1 ≤ a2 and



z̃ ≤ ṽj < ŵ if a < a1,

z̃ ≤ ŵ ≤ ṽj if a1 ≤ a ≤ a2,

ŵ < z̃ ≤ ṽj if a > a2.
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Proof. The flu shot production is equal to min{z̃, βj ṽj}. Observe that if z̃ > ṽj, we can

decrease z̃ to ṽj, and obtain the same flu shot production with less production cost. Hence,

z̃ ≤ ṽj in any optimal solution of the manufacturers’ problem. It follows from Proposition 4.4

that z̃ ≤ ṽj < ŵ when a < a1, which shows the first part. Moreover, it follows from

Proposition 4.5 that ŵ < z̃ ≤ ṽj when a > a2, which shows the last part. Finally, when

a1 ≤ a ≤ a2, we have ṽj ≥ ŵ from Proposition 4.4, and z̃ ≤ ŵ from Proposition 4.5, which

shows the second part.

Theorem 4.1 demonstrates the impact of yield uncertainty of one strain on the production

levels of the other strains. There are two basic factors that influence the optimal production

quantity of strain j facing yield uncertainty. First, yield uncertainty increases the effective

unit production cost, i.e. ϕj

βj ≥ ϕj, so we need to reduce the production level of strain j due

to the higher production cost. Second, we need to inflate the production level of strain j

to account for the underlying yield uncertainty. These two factors act against each other.

When the flu shot price is low, the first factor is dominant and the manufacturer needs to

decrease the production level. When the flu shot price is high, the second factor becomes

dominant and the manufacturer needs to increase the production level.

The more surprising result is that the optimal production level of the other strains could

also increase or decrease as compared to the deterministic case. As discussed above, yield

uncertainty effectively increases the unit cost of strain j and thus decreases the profit margin.

Then, it seems intuitive that z̄ should decrease as a result because there is no uncertainty

in the yield of strains i 6= j, and the manufacturer need not inflate their production levels.

Theorem 4.1 shows that this intuition is not necessarily true when the flu shot price is high.

Indeed, when a is large enough (a > a2), z̄ is greater than ŵ, the production level when there

is no uncertainty. The high flu shot price provides the manufacturer sufficient incentive to

increase the production levels of strains i 6= j with certain yield to match the corresponding

larger production level of strain j in hope of a high yield realization.

Note that Theorem 4.1 characterizes the behavior of the strain production levels under

uncertainty and in the deterministic case with respect to the reservation price. Next, we

consider the expected flu shot production, again when only strain j has yield uncertainty.
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Proposition 4.6 shows that the expected production under uncertainty can exceed the pro-

duction in the deterministic case for large enough reservation price a.

Proposition 4.6. There exists an a3 > a2 such that



E[min{z̃, βj ṽj}] = ŵ if a = a3,

E[min{z̃, βj ṽj}] < ŵ if a < a3,

E[min{z̃, βj ṽj}] > ŵ if a > a3.

Proof. We first show that E[min{z̃, βj ṽj}] < ŵ if a < a2. Observe that E[min{z̃, βj ṽj}] ≤ z̃.

It follows from Proposition 4.5 that z̃ < ŵ if a < a2.

Next, we show that E[min{z̃, βj ṽj}] > ŵ if a > a2

(µj)2
. Observe that E[min{z̃, βj ṽj}] ≥

E[min{z̃, βj z̃}] = µj z̃. If a > a2

(µj)2
, it follows from (4.43) that

(hKz̃ + 1)2 =
a∑

I\{j} ϕ
i/µi

Ḡj(u2(a)) >
a2/(µ

j)2∑
I\{j} ϕ

i/µi
Ḡj(u2

(
a2/(µ

j)2
)
)

>
a2/(µ

j)2∑
I\{j} ϕ

i/µi
Ḡj(u2(a2)) =

(hKŵ + 1)2

(µj)2
>

(hKŵ + µj)2

(µj)2
= (hK

ŵ

µj
+ 1)2. (4.44)

Thus, z̃ > ŵ
µj if a > a2

(µj)2
, and so E[min{z̃, βj z̃}] = µj z̃ > ŵ.

Finally, note that both E[min{z̃, βj ṽj}] and ŵ are nondecreasing continuous functions of

a. Therefore, there exists a reservation price between a2 and a2

(µj)2
such that E[min{z̃, βj ṽj}] = ŵ.

4.2 CONSUMER SURPLUS

Consumer surplus (CS) is an economic measure of consumer satisfaction, which is defined as

the difference between what consumers are willing to pay for a good or service and its market
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price. Given the total flu shot production Q, the consumer utility is equal to
∫ Q

0
a

hr+1
dr, and

the payment by the consumers is equal to aQ
hQ+1

. Hence, the consumer surplus is given by

CS =

∫ Q

0

a

hr + 1
dr − aQ

hQ+ 1
=
a

h
ln(hQ+ 1)− aQ

hQ+ 1
. (4.45)

For fixed a, CS is increasing in Q as

∂CS

∂Q
=

a

hQ+ 1
− a

(hQ+ 1)2
> 0. (4.46)

Clearly, CS is increasing in a for fixed Q. Furthermore, Q is also increasing in a, and so

CS is increasing in a. Deo and Corbett [56] found that the expected consumer surplus in

an equilibrium is always smaller under yield uncertainty than that in the deterministic case,

because fewer units are brought to the market when there is yield uncertainty. As a result of

Proposition 4.6 and the fact that consumer surplus is increasing in the amount of the flu shot

brought to the market, we conclude that the expected consumer surplus in an equilibrium is

not always smaller under yield uncertainty than that in the deterministic case. We illustrate

this phenomenon in our numerical experiments.

4.3 SOLUTION APPROACH

The Committee’s Problem (CP) must consider the equilibrium of the Manufacturers’ Prob-

lem (MP), hence it can not be solved by traditional multi-stage stochastic programming

techniques. In Section 4.3.1, we use a multidimensional root finding technique to solve the

MP. Then, in Section 4.3.2, we develop a branch-and-price algorithm to solve the CP based

on its [50] reformulation.
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4.3.1 Solving the Manufacturers’ Problem

The first-order optimality conditions (4.11) form a nonlinear system of equations in |I(`)|

dimensions. There are no bracketing methods available for multidimensional systems. All

algorithms proceed from an initial guess using a variant of the Newton iteration.

We solve (4.11) using a modified version of Powell’s Hybrid method [152]. The algorithm

takes the Jacobian matrix as input, and utilizes a generalized trust region to keep each step

under control. It retains the fast convergence of Newton’s method, and reduces the residual

when Newton’s method is unreliable (see Section 4.5.1).

The diagonal and off-diagonal elements of the Jacobian matrix of the nonlinear sys-

tem (4.11) are given by

∂2Π

∂(vi)2
=

∫ 1

0

−2hKa(βi)2

(hKβivi + 1)3

∏
i′ 6=i

Ḡi′

(
βivi/vi

′
)
gi(β

i)dβi

−
∫ 1

0

∑
i′ 6=i

a(βi)2

(hKβivi + 1)2vi′
∏
i′′ 6=i,i′

Ḡi′′

(
βivi/vi

′′
)
gi′(β

ivi/vi
′
)gi(β

i)dβi,

∂2Π

∂vi∂vi′
=

∫ 1

0

a(βi)2vi

(hKβivi + 1)2(vi′)2

∏
i′′ 6=i,i′

Ḡi′′

(
βivi/vi

′′
)
gi′(β

ivi/vi
′
)gi(β

i)dβi. (4.47)

We may not be able to calculate integrals in (4.11) and (4.47) analytically. Instead, we

approximate them numerically using a Gaussian quadrature rule, in particular, the adaptive

Gauss-Kronrod quadrature rule [119]. The idea behind the Gaussian quadrature rules is to

factor the integrand into a nonnegative weight function and a function that is well approx-

imated by a polynomial. Then, an N -point quadrature formula approximates the integral

within a finite interval by the sum of the integrand’s functional values at a set of N aptly

chosen points (abscissas), multiplied by certain weighting coefficients. Note that the loca-

tions of the abscissas are not necessarily equally spaced. The interested reader is referred to

Stoer and Bulirsch [174] for further details on the Gaussian quadrature rules.
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4.3.2 Solving the Committee’s Problem

We propose a branch-and-price algorithm to solve the CP. Observe that given the strain

selection decisions X̂` at node ` ∈ NT−1, we can solve the MP to get expected flu shot

production Ŵ`, and calculate the expected societal vaccination benefit Ψ̂`(δ`,W`).

For ` ∈ NT−1, define binary variable yim` = 1 iff strain i ∈ I is selected at node m ∈P(`).

Let ym` = (yim`)i∈I and xm = (xim)i∈I . The set of all feasible (ym`)m∈P(`) for node ` ∈ NT−1

is given by

Y` =
{
yim` ∈ {0, 1} , i ∈ I,m ∈P(`)

∣∣∣ ∑
m∈P(`)

yim` ≤ 1, i ∈ I
}
. (4.48a)

Let D` denote the index set of Y`, i.e. Y` = {(ŷm`)τm∈P(`) | τ ∈ D`}. Note that D` is finite,

and we can express any element of Y` by

(ym`)m∈P(`) =
∑
τ∈D`

λτ` (ŷm`)
τ
m∈P(`),

∑
τ∈D`

λτ` = 1, λτ` ∈ {0, 1}, τ ∈ D`.

Each (ŷm`)
τ
m∈P(`) corresponds to an expected societal vaccination benefit Ψ`(δ̂

τ
` , Ŵ

τ
` ) that

maximizes the objective function (3.2). We substitute (ym`)m∈P(`) ∀` ∈ NT−1 to obtain the

Dantzig-Wolfe reformulation of the CP.

[CP-DW] max
∑

`∈NT−1

p`

[∑
τ∈D`

Ψ`(δ̂
τ
` , Ŵ

τ
` )λτ`

]
, (4.49)

subject to
∑
τ∈D`

ŷτm`λ
τ
` = xm ` ∈ NT−1,m ∈P(`), (4.50)

∑
τ∈D`

λτ` = 1 ` ∈ NT−1, (4.51)

λτ` ∈ {0, 1}, xm ≥ 0 ∀m ∈ NT−1, ` ∈P(m), τ ∈ D`. (4.52)

Constraints (4.50) ensure nonanticipativity. Convexity constraints (4.51) choose exactly one

solution from set D` for each node ` ∈ NT−1. Note that CP-DW does not impose binary

restrictions on xm variables as they are satisfied for any binary vector λ.

The number of columns in DW-CP is exponential in that of CP, however, its LP relaxation

is much stronger (see Section 4.5.2). We solve CP-DW using a branch-and-price algorithm.

The main advantage of this approach is that it optimizes over the binary variables X`, ` ∈
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NT−1, while computing the corresponding values of the continuous variables in the pricing

subproblem.

The cardinality of D` is huge, even for moderate-sized instances. We first create a

restricted master problem (CP-RMP) in which each set D′` represents a modest-sized subset

of D`, ` ∈ NT−1. Given the optimal duals, π̂m` and µ̂` that correspond to constraints (4.50)

and (4.51) in the LP relaxation of the CP-RMP, we identify the column τ̃ ∈ D` that has the

most favorable reduced cost by solving a pricing subproblem.

[CP-SP(`)] max Ψ`(δ`,W`)−
∑
i∈I

∑
m∈P(`)

π̂im`y
i
m` − µ̂`, (4.53)

subject to (ym`)m∈P(`) ∈ Y`, (4.54)

vk` ∈ argmax Πk` k ∈ K, (4.55)

W` =
∑
k∈K

E[ min
i∈I(`)
{βinvik`}], (4.56)

δij` ≤M min

1−
∑

m∈P(`)

yhm`,
∑

m∈P(`)

yim`

 i, j ∈ I, h ∈ H(i, j), (4.57)

δij` ≥ 0 i, j ∈ I. (4.58)

We solve CP-SP(`) using dynamic programming (see the Appendix3.3.3) over the ym` vari-

ables. This approach improves convergence of the column generation by considering all

feasible columns generated at different iterations. The values of the continuous variables are

calculated by solving the Manufacturer’s Problem.

Any feasible solution to CP-SP(`) with a positive objective value zCP−SP (`) > 0 lets

us create a new column for CP-RMP, i.e. add a new element to D′`. If no such solution

exists for any ` ∈ NT−1, then we have solved the LP relaxation of CP-DW (CP-DW-LP)

optimally. If the optimal solution to CP-DW-LP is integral, then we have solved CP-DW.

If not, the algorithm branches. For further technical details of the branch-and-price method

for multi-stage stochastic integer programs, we refer the reader to [129].
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4.4 PARAMETRIZATION

Our parameter values are based on the 2008-09 flu season in the United States. Parametriza-

tion of the flu infection cost (c), expected cost per unvaccinated person in the target popu-

lation (qn), cross-effectiveness among the candidate strains b(i, j), and prevalence of strains

(ein) are the same as in Section 3.4.

Strain production yield ratios. We assume that the production yield ratios of strains

(βi) follow a Normal distribution that is truncated between 0.15 and 1, see Figure 4.1. We

set the mean of low yield ratio to 0.7, the mean of moderate yield ratio to 0.8, and the mean

of high yield ratio to 0.9. Moreover, we set the standard deviation of the production yield

ratios to 0.2 for the current vaccine strains, and to 0.4 for the others.

Strain production cost. We assume that the variable production cost for all strains (ϕi)

are equal. Moreover, to incorporate the effect of manufacturing difficulties due to decreased

production time, we assume that the unit strain production cost is increasing in time. Deo

and Corbett [56] and Cho [45] used the variable cost of $3 per dose of the flu shot (with

three strains). We assume that approximately 20% of this cost is due to filling and packaging

operations after growing the strains. Therefore, we set the unit strain production cost to

$(3− 0.6)/3 = $0.8 in the first time stage. We increase this cost by $0.2 in each time stage.

Target population for influenza vaccination. The 2008-2009 influenza season marked

the first season where all healthy children ages 6 months up to 19 years old were recommended

to get the vaccine [70]. With this expansion, 261 million people in the United States (D)

were in the target population for influenza vaccination.

Price function parameters. We set the reservation price (a) to the cost of flu infec-

tion (c), which is $41 per person. In the 2008-09 flu season, 136 million doses of the flu shot

was brought to the market in the United States [90], and the average price per dose was

$11.8 [32]. Using those values in the fractional price function a
hQ+1

, we solve for h, which is

approximately 0.02 per million doses.
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4.5 NUMERICAL EXPERIMENTS

4.5.1 Implementation

We implement our branch-and-price algorithm using BCP, a framework for branch, cut, and

price algorithms [155]. The same adjustments to make the branch-and-price algorithm work

efficiently are implemented as in Section 3.5.1.

We solve (4.11) using a modified version of Powell’s Hybrid method [152] as implemented

in [75]. We use the Gauss-Kronrod quadrature rule of the GNU Scientific Library [75] to

approximate the integrals in (4.11) and (4.47). Note that the Manufacturers’ Problem does

not depend on the prevalence of strains. Therefore, if the same strains are selected under two

different scenarios, then the solution of the Manufacturers’ Problem for those two scenarios

would be the same. We store the results of the Manufacturers’ Problem obtained for different

strain selection decisions, and use them under different scenarios.

4.5.2 Performance of the Proposed Solution Technique

We evaluate the performance of the proposed solution technique using 12 SSP instances

whose characteristics are provided in Table 4.1. All computational experiments are con-

ducted on an Intel Xeon PC with 3GHz CPU and 3GB of RAM using ten-hour time limit.

Table 4.2 reports the performance of our branch-and-price algorithm. Note that we can not

compare the solution time of our algorithm with off-the-shelve solvers, e.g. CPLEX 11.0

(2010), because the Committee’s Problem (CP) must consider the equilibrium of the Man-

ufacturers’ Problem, which is obtained by solving a nonlinear system of equations (4.11).

Our proposed branch-and-price algorithm solves all instances in less than two hours. Note

that CP-DW-LP, the LP relaxation of the CP-DW at the root node of the branch-and-price

tree, is often integer feasible.
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4.5.3 Sensitivity Analysis

In this section, we examine how the level of yield uncertainty and the reservation price

jointly affect the expected industry output and expected consumer surplus in equilibrium.

We consider the M2 instance in Table 4.1 (i.e. 4 stages and moderate attack rate), and

assume that the strain selection decisions are fixed to the optimum solution of this instance.

Each cell in Table 4.3 displays the ratio of expected industry output under uncertainty

to that in the deterministic case. In each column, coefficient of variation δi = µi/σi of the

production yield of strains are multiplied by ∆δ to increase the uncertainty. This table

illustrates Proposition 4.6. In addition, note that the expected industry output is decreasing

in uncertainty for fixed reservation price.

Each cell in Table 4.4 displays the ratio of expected consumer surplus under yield uncer-

tainty to that of the deterministic case. In each column, coefficient of variation δi = µi/σi of

the production yield of strains are multiplied by ∆ς to increase the uncertainty. This table

verifies our observation in Section 4.2 that the expected consumer surplus under uncertainty

exceeds that in the deterministic case above a threshold reservation price. In addition, note

that the expected consumer surplus is decreasing in uncertainty for fixed reservation price.

Each cell in Table 4.5 displays the ratio of expected industry output under uncertainty to

that in the deterministic case. This table is obtained after increasing the strain production

cost by 50%. Recall that there are two basic factors that influence the optimal production

quantity of a strain facing yield uncertainty. First, yield uncertainty increases the effective

unit production cost, i.e. ϕi/βi ≥ ϕi, so we need to reduce the production quantity of

that strain. Second, we need to inflate the production quantity of strain i to account for

the underlying yield uncertainty. These two factors act against each other. When the flu

shot price is low, the first factor is dominant and the manufacturer needs to decrease the

production quantity. When the flu shot price is high, the second factor becomes dominant

and the manufacturer needs to increase the production quantity. Table 4.5 verifies this

observation as the threshold reservation prices where the expected industry output under

uncertainty exceeds that in the deterministic case are higher than that in Table 4.3 in each

column.
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4.6 CONCLUSIONS

We formulate a two-level model for the annual influenza strain selection problem that in-

corporates both the society’s and the vaccine manufacturers’ perspectives. We analyze the

effects of yield uncertainty, price, and cost parameters on manufacturers’ production deci-

sions. Our model considers the selection and production of multiple flu shot strains.

We find that if there is a single strain in the flu shot, then the expected industry output

under yield uncertainty is always lower than that in the deterministic case. However, this is

not true when there are multiple flu shot strains. Based on price of the vaccine, the expected

industry output under yield uncertainty can exceed that in the deterministic case. The high

flu shot price provides the manufacturer sufficient incentive to increase the production levels

of strains in hope of a high level of realized yield.

Consumer surplus is increasing in the amount of the flu shot that is brought to the

market. Therefore, if the manufacturers have enough incentive to increase production levels

under uncertainty, the expected consumer surplus under yield uncertainty can exceed that

in the deterministic case.

There are several cases that we have not explored here. For instance, the influenza vaccine

manufacturers might have heterogenous and/or correlated yield distributions. Moreover, the

manufacturers might have different production lead times, allowing the ones with smaller lead

times to respond to yield realizations of the others with longer lead times. The hyperbolic

demand function shapes some of our results; considering more general demand functions,

although challenging, might be worthwhile.
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Figure 4.1: The mean of low yield ratio is 0.7, the mean of moderate yield ratio is

0.8, and the mean of high yield ratio is 0.9. Moreover, the standard deviation of

the production yield ratio is 0.2 for the current vaccine strains, and 0.4 for the oth-

ers. (i)A/NewCaledonia/20/99∼TrN(0.9,0.2),(ii)A/SolomonIslands/3/06∼TrN(0.8,0.4),

(iii)A/Brisbane/59/07∼TrN(0.85,0.4),(iv)A/SouthDakota/6/07∼TrN(0.75,0.4),

(v)A/Wisconsin/67/2005∼TrN(0.85,0.2),(vi)A/Brisbane/10/2007∼TrN(0.85,0.4),

(vii)B/Malaysia/2506/2004∼TrN(0.8,0.2),(viii)B/Florida/04/2006∼TrN(0.75,0.4),

(ix)B/Brisbane/03/2007∼TrN(0.8,0.4).
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Table 4.1: Sizes of the test instances. The attack rate is the proportion of individuals

exposed to an infectious agent who becomes clinically ill. The scenarios used under different

attack rates are the same except the demand (dn), shortage cost (qn) and the prevalence

(ein) parameters as explained in Section 3.4. The number of weeks between two consecutive

Committee meetings is denoted by ∆t.

Attack ∆t Scenario tree size Extensive form size

rate Name (weeks) |T | |NT | |N | Cont. Var. Bin. Var. Constraints

L
ow

L1 4 3 100 111 1000 99 84800

L2 2 4 512 585 5120 657 434176

L3 1.5 5 243 341 2430 882 206064

L4 1 6 32 63 320 279 27136

M
o
d
er

at
e

M1 4 3 100 111 1000 99 84800

M2 2 4 512 585 5120 657 434176

M3 1.5 5 243 341 2430 882 206064

M4 1 6 32 63 320 279 27136

H
ig

h

H1 4 3 100 111 1000 99 84800

H2 2 4 512 585 5120 657 434176

H3 1.5 5 243 341 2430 882 206064

H4 1 6 32 63 320 279 27136
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Table 4.2: Performance of the proposed solution technique. DW-LP is the LP relaxation of

the DW at the root node of the branch-and-price tree. % gap is calculated relative to the

optimal solution.

DW-LP Branch-and-price Optimal val.($M)

% gap sec. CP

L1 0.00 8.13 571.66

L2 < 0.01 685.46 585.39

L3 1.13 5998.47 606.11

L4 0.00 268.91 591.99

M1 0.00 7.10 1155.95

M2 0.00 163.11 1162.60

M3 < 0.01 563.81 1205.42

M4 0.00 209.83 1159.22

H1 0.00 6.85 2435.59

H2 0.00 158.34 2482.38

H3 < 0.01 455.62 2563.72

H4 0.00 183.08 2495.15
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5.0 BILEVEL CROSS-VALIDATION MODELS: AN APPLICATION TO

INFLUENZA A/H3N2 VIRUS

Influenza viruses frequently mutate in response to antibody pressure. Those mutations

gradually accumulate and cause antigenically distinct strains to circulate (i.e. antigenic

drift). The annual influenza vaccine provides protection if its composition is antigenically

similar to the circulating strains. Therefore, the vaccine strains have to be updated frequently

based on clinical, virological and immunological influenza surveillance. In the virological

surveillance, hemagglutinin inhibition (HI) assays are used to identify antigenic properties

of the influenza viruses (see Table 5.1). However, this serology assay is labor-intensive and

time-consuming [96]. As an alternative, representing the difference between the antigenic

properties of the influenza strains using a distance (i.e. antigenic distance) can be a rapid

indicator of the likelihood that the current vaccine will protect against a recently emerged

strain, and also facilitates the study of the virus’ evolution.

Antigenic properties of the influenza A/H3N2 virus are characterized by its hemagglu-

tinin surface protein (HA) that consists of three identical subunits. Each subunit has two

chains, HA1 and HA2, which are 329 and 175 amino acid (AA) residues long, respectively.

We focus on the HA1 chain as it mutates more frequently than HA2 does [126]. Hence, by

AA sequence of an influenza A/H3N2 virus, we refer to that of its HA1 chain. Smith et

al. [171] and Lee and Chen [123] discuss the suitability of using the HA1 chain for predicting

the antigenic variants of the influenza A/H3N2 virus.

Empirical studies have documented that one to three amino acid changes on the HA1

reduce the antigenicity and efficacy of inactivated vaccines [97, 101, 107, 143, 187], which

indicate the existence of immunodominant positions in the HA1 [124]. Bush et al. [24]

analyze 375 A/H3N2 viruses isolated between 1984 and 1996. Of the 329 AA positions on
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Table 5.1: The FDA uses Hemagglutinin Inhibition (HI) assays to evaluate the cross-

effectiveness among the candidate strains. Each cell shows the minimum antiserum con-

centration, raised against the reference influenza strain, that completely inhibits the agglu-

tination of the test strain [67].

Reference Strain (Antibody)

Test Strain (Antigen) NC/20 SI/3 AS/59 SD/6

A/New Caledonia/20/99 640 160 160 160

A/Solomon Islands/3/06 160 640 320 160

A/Brisbane/59/07 80 160 640 640

A/South Dakota/6/07 80 160 640 640

the HA1, eighteen AA positions are found to be positively associated with antibody response

difference. In another study, Smith et al. [171] have identified twenty amino acid positions

on the HA1 as antibody-binding sites. Lee and Chen [123] have compared the usefulness of

those AA positions reported in Bush et al. [24] and Smith et al. [171] on predicting antigenic

variants of influenza A/H3N2 viruses. Five regions of the HA1 chain have been identified to

undergo mutations, eventually leading to antibody escape. A model based on the number of

AA changes in those antigenic sites is found to perform well for predicting antigenic variety.

Liao et al. [126], Lee and Chen [123] and Wilson and Cox [186] propose statistical meth-

ods based on Hamming distance to predict antigenic variety. The pairwise comparisons of

AA sequences of each strain are considered as independent variables and the corresponding

antigenic distance between each pair are considered as dependent variables. As a result, AA

positions that are positively associated with antigenic distances are identified as potential

immunodominant positions that cause antigenic variety.

Smith et al. [171] provide an antigenic map of 253 A/H3N2 viruses isolated between

1968 and 2003, and cluster them into 11 antigenic groups (see Figure 5.1). Retrospective

quantitative analysis of the genetic data have revealed that 45 AA positions are related to
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cluster-difference substitutions. Huang et al. [95] use the “information gain” and “entropy”

measures from machine learning [154] to rank amino acid positions for differentiating anti-

genic variants and similar viruses. An amino acid position with high information gain implies

that this position is highly correlated to the antigenic variants. An amino acid position with

high entropy means that this position is often mutated in the data set.

Machine learning methods train a linear regression model based on available data. They

take a set of hyper-parameters including the features or variables that should be used in the

model. The most commonly used and widely accepted method for selecting these hyper-

parameters is cross validation [114]. In cross validation, hyper-parameters are selected to

minimize some estimate of the out-of-sample generalization error. A typical method would

define a grid over the hyper-parameters of interest, and then do ten-fold cross validation

for each of the grid values. Note that the combinatorial explosion of grid points in high

dimensions effectively limits the desirable number of hyper-parameters.

In this chapter, we formulate cross validation for selecting the variables of a linear re-

gression model as a bilevel program in which an upper-level program chooses the model

variables to minimize the out-of-sample error, and lower-level problems in each fold optimize

in-sample errors according to their training data set by selecting the regression coefficients

of the chosen model variables. This approach allows for optimizing the cross validation out-

come. Moreover, it offers modeling flexibility when considering multiple statistical learning

goals. In our numerical experiments, we use a serologic data set to identify AA positions on

the HA1 chain which cause antigenic variety.

5.1 BILEVEL MODEL FORMULATION

Let I = {1, . . . , I} be a finite set of A/H3N2 strains. Each strain i ∈ I is represented by a

sequence of M amino acids whose index set {1, . . . ,M} is denoted byM. Let xij ∈ {0, 1}M

be a binary vector obtained by pairwise comparison of the AA sequences of strains i and j.

Denote by cij the HI assay value for those two strains. Then, the antigenic distance between
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Figure 5.1: Antigenic map of influenza A /H3N2 virus from 1968 to 2003. Strain color

represents the antigenic cluster to which the strain belongs. Clusters were identified by a k-

means clustering algorithm and named after the first vaccine strain in the clustertwo letters

refer to the location of isolation and two digits refer to year of isolation. The vertical and

horizontal axes both represent antigenic distance, and, because only the relative positions

of antigens and antisera can be determined, the orientation of the map within these axes is

free [171].
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i and j is given by yij =
(√

cijcji/ciicjj

)−1

[105]. Two strains are considered as antigenic

variants if yij ≥ 4 [123]. We refer to this cutoff value as the classifier margin.

Let Ω = {(xij, yij)}∀i,j ⊂ {0, 1}M ×R1. For T -fold cross validation, Ω is partitioned into

T disjoint validation sets Ωt, t = 1, . . . , T . Denote by T the index set of folds {1, . . . , T}.

Subsequent T iterations are performed such that within each iteration a different fold of the

data is designated for validation while the remaining T − 1 folds are used for training. Let

Ω̄t = Ω \ Ωt be the training set of fold t ∈ T . We denote the vector of descriptors trained

for fold t’s inner-level problem using Ω̄t by πt ∈ Rm.

The objective function of the lower-level classification problem could be rather general.

However, convex functions are often used so that the only non-convexity is generated by

the optimality conditions [114]. We focus on the mean absolute deviation objective and

formulate the T -fold bilevel multiple regression problem as:

[AD] min
u∈{0,1}M

1

T

T∑
t=1

1

|Ωt|
∑

(i,j)∈Ωt

∣∣ ∑
m∈M

xijmπ
t
m − yij

∣∣ (5.1)

subject to
∑
m∈M

um ≤ U, (5.2)

πt ∈ argmin0≤π≤Πu

∑
(i,j)∈Ω̄t

∣∣ ∑
m∈M

xijmπm − yij
∣∣ ∀t ∈ T . (5.3)

If binary variable um = 1, then AA position m is included in the model and it can have

a positive descriptor in the lower-level. Parameter Π is an upper bound on the antigenic

distance and parameter U is the maximum number of AA positions that can be included

in the model. There are T lower-level problems (5.3) that model the training of descriptors

πt within each fold. The upper-level objective (5.1) minimizes the mean absolute deviation

over all folds. We discuss two more upper-level objective functions.
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The misclassification objective (MC): Let parameter hij = 1 if i and j are antigenic

variants (yij ≥ 4), and hij = 0 otherwise. Strains i and j are misclassified in fold t, if they

are antigenic variants but the regression model of that fold predicts them as antigenically

similar, or vice versa. We define binary variable ztij = 1, (i, j) ∈ Ωt iff i and j are misclassified

in fold t, and introduce two additional constraints to the upper-level problem.∑
m∈M

xijmπ
t
m ≥ 4hij(1− ztij) t ∈ T , (i, j) ∈ Ωt, (5.4)

(1− hij)
∑
m∈M

xijmπ
t
m ≤ 4 + Πztij t ∈ T , (i, j) ∈ Ωt. (5.5)

Constraints (5.4) and (5.5) are inactive when ztij = 1. Moreover, if hij = 1, con-

straint (5.5) is inactive and constraint (5.4) is satisfied with
∑

m∈M xijmπ
t
m ≥ 4 when zij = 0.

Likewise, if hij = 0, then constraint (5.4) is inactive and constraint (5.5) is satisfied with∑
m∈M xijmπ

t
m ≤ 4 when zij = 0. Then we formulate the objective function that minimizes

the misclassification of the validation points as:

[MC] min
u,z

1

T

T∑
t=1

1

|Ωt|
∑

(i,j)∈Ωt

ztij. (5.6)

The hinge loss objective (HL): For each fold t, the hinge loss is the average distance of

misclassified validation points from the classifier margin. Let hij and ztij be as defined for

the MC. We formulate the hinge loss minimization objective for the upper-level problem as:

[HL] min
u,z

1

T

T∑
t=1

1

|Ωt|
∑

(i,j)∈Ωt

ztij|4−
∑
m∈M

xijmπ
t
m|. (5.7)

To linearize the HL, we define variable δtij ≥ 0, and introduce the following constraint to the

upper-level problem in addition to the constraints (5.4)-(5.5).

δtij ≥ (1− 2hij)(
∑
m∈M

xijmπ
t
m − 4)− Π(1− ztij) t ∈ T , (i, j) ∈ Ωt. (5.8)

Note that constraint (5.8) is inactive when ztij = 0. Consider the case when ztij = 1. If

hij = 1, then constraint (5.8) is satisfied with δtij ≥ 4−
∑

m∈M xijmπ
t
m. Likewise, if hij = 0,

then constraint (5.8) is satisfied with δtij ≥
∑

m∈M xijmπ
t
m− 4. Then we reformulate the HL

as:

[HL] min
u,z,δ

1

T

T∑
t=1

1

|Ωt|
∑

(i,j)∈Ωt

δtij. (5.9)
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5.2 SOLUTION APPROACH

We convert the AD into a mathematical program with linear equilibrium constraints. For

fixed upper-level decision û ∈ {0, 1}M , the AD decomposes into T independent linear pro-

grams, one for each fold t ∈ T .

[LWt] min
π

∑
(i,j)∈Ω̄t

∣∣ ∑
m∈M

xijmπm − yij
∣∣ (5.10)

subject to 0 ≤ πm ≤ Πûm m ∈M. (5.11)

An equivalent reformulation of the LWt is given by,

[RLWt] min
π,f

∑
(i,j)∈Ω̄t

f tij (5.12)

subject to 0 ≤ πm ≤ Πûm m ∈M, (5.13)

f tij ≥ x′ijπ − yij (i, j) ∈ Ω̄t, (5.14)

f tij ≥ yij − x′ijπ (i, j) ∈ Ω̄t, (5.15)

where auxiliary variables f tij (i, j) ∈ Ω̄t and constraints (5.14)-(5.15) are introduced to elim-

inate the nonlinear absolute value term in (5.10). Let αt and βtij, γ
t
ij be the dual variables

associated with the constraints (5.13)-(5.15), respectively. Then, the dual of the RLWt is

given by,

[D-RLWt] max − Π
∑
m∈M

ûmα
t
m +

∑
(i,j)∈Ω̄t

yij
(
γtij − βtij

)
(5.16)

subject to − αtm +
∑

(i,j)∈Ω̄t

xijm(γtij − βtij) ≤ 0 m ∈M, (5.17)

βtij + γtij = 1 (i, j) ∈ Ω̄t, (5.18)

αtm, β
t
ij, γ

t
ij ≥ 0 m ∈M, (i, j) ∈ Ω̄t. (5.19)

87



From strong duality, we can reformulate the AD as,

[RAD] min
1

T

∑
t∈T

1

|Ωt|
∑

(i,j)∈Ωt

f tij (5.20)

subject to 0 ≤ πtm ≤ Πum m ∈M, t ∈ T , (5.21)∑
m∈M

um ≤ U, (5.22)

∑
(i,j)∈Ω̄t

f tij = −Π
∑
m∈M

umα
t
m +

∑
(i,j)∈Ω̄t

yij
(
γtij − βtij

)
t ∈ T , (5.23)

f tij ≥ x′ijπ
t − yij, f tij ≥ yij − x′ijπ

t t ∈ T , (i, j) ∈ Ω, (5.24)

− αtm +
∑

(i,j)∈Ω̄t

xijm(γtij − βtij) ≤ 0 m ∈M, t ∈ T , (5.25)

βtij + γtij = 1 t ∈ T , (i, j) ∈ Ω̄t, (5.26)

um ∈ {0, 1}, αtm, βtij, γtij ≥ 0 m ∈M, t ∈ T , (i, j) ∈ Ω̄t. (5.27)

In the RAD, we replace the lower-level optimality constraint (5.3) by dual feasibil-

ity (5.25)-(5.26), primal feasibility (5.24) and the strong duality condition for the lower-level

problems (5.23). Note that there exists a nonlinear expression umα
t
m in constraints (5.23).

Proposition 5.1. In the optimal solution of the RAD αt∗m ≤
∑

(i,j)∈Ω̄t x∗ijm for all m ∈

M, t ∈ T .

Proof. Constraint (5.17) is satisfied at equality in the optimal solution of the D-RLWt, be-

cause otherwise the objective value can be increased by decreasing the αtm that satisfies

αtm >
∑

(i,j)∈Ω̄t xijm(γtij − βtij). It follows from (5.25) and (5.26) that

αt∗m =
∑

(i,j)∈Ω̄t

xijm(2γt∗ij − 1) ≤
∑

(i,j)∈Ω̄t

x∗ijm.
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From Proposition 5.1 and the fact that um ∈ {0, 1}, we can linearize umα
t
m by using an

auxiliary variable ztm ≥ 0, m ∈M, t ∈ T .

ztm ≤ um
∑

(i,j)∈Ω̄t

xijm,

ztm ≥ αtm + (um − 1)
∑

(i,j)∈Ω̄t

xijm,

ztm ≤ αtm + (1− um)
∑

(i,j)∈Ω̄t

xijm.

As a result, we obtain a linear mixed 0-1 programming problem. Our reformulation and

linearization technique requires M × T auxiliary continuous variables. In the literature,

bilevel programs with LPs in the lower-level are usually reformulated as MIPs by using

complementary slackness rather than strong duality [11]. In our case, this approach would

require 2(M × T + |Ω|) auxiliary binary variables.

5.3 NUMERICAL EXPERIMENTS

The simplest AA sequence alignment method assigns zero or one to each position based

on whether two AA residues at that position are identical or not (i.e. the Hamming dis-

tance [80]). More advanced alignment methods incorporate polarity, charge and structure

of AAs by grouping them into similarity classes [64]. Those methods assign zero to each

position in the sequence if the two AA residues at that position belong to the same group, or

one otherwise. As can be seen in Table 5.2, we use 6 different grouping methods introduced

by Liao et al. [126].

Our data set is extracted from the online supplement of Liao et al. [126]. It contains 277

AA pairwise sequence alignment of 62 different AAs and the antigenic distance for each of the

those pairs. We combine the RAD with different grouping methods and upper-level objective

functions to identify the potential immunodominant AA positions. Note that the RAD

returns a different regression model for each fold t ∈ T . However, the same AA positions are

used in each model. We set the maximum number of AA positions that can be included in
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Table 5.2: Similarity classes of grouping methods for amino acid sequence alignment [126].

GM1 {non-polar: A, F, G, I, L, M, P, V, W}, {polar: C, N, Q, S, T, Y},

{charged: D, E, H, K, R}

GM2 {non-polar aliphatic: A, G, I, L, M, V}, {non-polar aromatic: F,

P, W}, {polar: C, N, Q, S, T, Y}, {charged: D, E, H, K, R}

GM3 {non-polar: A, F, G, I, L, M, P, V, W}, {polar: C, N, Q, S, T, Y},

{positively charged: H, K, R}, {negatively charged: D, E}

GM4 {non-polar aliphatic: A, G, I, L, M, V}, {non-polar aromatic: F,

P, W}, {polar: C, N, Q, S, T, Y}, {positively charged: H, K, R},

{negatively charged: D, E}

GM5 {non-polar aliphatic: A, I, L, M, P, V}, {non-polar aromatic: F, W,

Y}, {polar: N, Q, S, T}, {positively charged: H, K, R}, {negatively

charged: D, E}, {C}, {G}

GM6 {non-polar aliphatic: A, I, L, M, P, V}, {non-polar aromatic: F,

W, Y}, {polar: N, Q, S, T}, {charged: D, E, H, K, R}, {C}, {G}
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the model, U = 5, 10, 15, 20 and 25. For each value of U , we first solve the RAD with CPLEX

11.0 [48] using 1-hour time limit. After identifying the immunodominant AA positions, we

build a regression model based on the first 181 data points and use the remaining 96 data

points for validation. We compute the agreement, sensitivity and specificity for each U and

grouping method using the AD, MC, and HL objective functions. The agreement rate is

defined as the ratio of all truly predicted pairs to the number of all strain pairs. The ratio of

predicted variants to true variants and the ratio of predicted similar viruses to true similar

viruses are defined as sensitivity and specificity, respectively. We report the results of this

experiment in Tables 5.3, 5.5 and 5.7.

The highest agreement rate in the validation set is 0.938, which is achieved by the MC

model using 5 variables and the grouping methods 1 and 3. The highest agreement rate in

the training data set is 0.896, which is achieved by the HL model using 25 variables and the

grouping method 5. The agreement rate of the “no grouping” method is smaller than that

of any grouping method when there are more than 5 variables in the model. The regression

models considered here, in common with reported by many others (Lee and Chen [123], Liao

et al. [126], Huang et al. [95]), correctly identify the vast majority of antigenic variants (high

sensitivity), but tend to over predict the number of antigenic variants (relatively lower speci-

ficity). On examination of the results, we observe that a high number of false positives have

relatively few mutations in the regions under consideration. To create a model with more

balanced predictive properties, we can introduce a screening step, in which all positive results

are examined, and those which has fewer than a specified cutoff number of AA changes in

the regions under consideration are rejected.

Smith et al. [171] provide an antigenic map of 253 A/H3N2 strains (see Figure 5.1).

They define 11 clusters based on 31878 pair-wise AA sequence comparisons. We use the

regression models in Tables 5.3, 5.5 and 5.7 on the same data set. We assume that a pair of

viruses are antigenic variants if they are from different clusters, or similar if they are from the

same cluster. Smith et al. [171] report 45 AA positions associated with the cluster-difference

substitutions. As seen in Tables 5.4, 5.6 and 5.8, our approach reached over 90% agreement

rate by using only five AA positions.
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The highly consistent result reveals that our model indeed reduces the positions related

to cluster transitions to a small number and could still stand comparison with the antigenic

map. However, it is hard to compare the performances of the two studies because Smith et

al. [171] use a clustering algorithm to determine the clusters in the antigenic map, which

are not always consistent with antigenic distances. Ideally, the real performances should

be compared by using the same serological data. Furthermore, we could not solve the MC

and the HL instances optimally in 1-hour time limit using CPLEX 11.0 [48]. Therefore, the

reported statistics are based on the best available solution.

5.4 CONCLUSIONS

Our approach allows for optimizing the cross validation outcome when selecting model pa-

rameters for identifying antigenic variety among the influenza viruses. Such tools could be

readily integrated to the global influenza surveillance system for rapid identification of the

circulating strains that are antigenically different from the current vaccine strains. Our nu-

merical results are inconclusive about the best model for predicting the antigenic variants.

However, over 90% agreement rate is reached by using only 5 AA positions in the regression

models.

Our objective functions either minimize the deviation from a given target (i.e. the AD,

HL) or minimize the misclassification (i.e. the MC), which is equivalent to maximizing the

agreement rate. As can be seen in Tables 5.3, 5.5 and 5.7, optimizing the agreement rate

caused unbalanced predictive power between sensitivity and specificity. As a remedy, we can

control the ratio of sensitivity to specificity by using a weighted sum of those two statistics

in the upper-level objective function.

Finally, we use the absolute deviation objective in the lower-level objective for training

the regression models in each fold. This enables us to reformulate the lower-level problems as

a linear program. The benefit of using other objective functions such as the sum of squared

deviations is an open question, however non-convex functions require specialized solution

techniques as they would prohibit the reformulation of the bilevel model as an MIP.
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Table 5.3: Agreement, sensitivity, and specificity of the AD model. The instances are solved

with CPLEX 11.0 using a one-hour time limit.

Num. of Grouping Validation Set Training Set MIP gap%

Variables Method Agreement Sensitivity Specificity Agreement Sensitivity Specificity CPLEX

5 No Grouping 0.823 1.000 0.785 0.782 0.830 0.697 0.0

GM1 0.880 0.882 0.880 0.818 0.796 0.856 0.0

GM2 0.880 0.882 0.880 0.815 0.796 0.848 0.0

GM3 0.880 0.882 0.880 0.812 0.800 0.833 0.0

GM4 0.766 1.000 0.715 0.809 0.809 0.811 0.0

GM5 0.880 0.882 0.880 0.851 0.848 0.856 0.0

GM6 0.870 0.882 0.867 0.818 0.857 0.750 0.0

10 No Grouping 0.594 1.000 0.506 0.837 0.965 0.614 8.6

GM1 0.823 1.000 0.785 0.876 0.887 0.856 0.0

GM2 0.813 1.000 0.772 0.865 0.904 0.795 2.8

GM3 0.750 1.000 0.696 0.809 0.870 0.705 1.2

GM4 0.823 1.000 0.785 0.796 0.852 0.697 3.7

GM5 0.823 1.000 0.785 0.829 0.926 0.659 6.6

GM6 0.813 1.000 0.772 0.831 0.913 0.689 7.4

15 No Grouping 0.654 0.953 0.590 0.850 0.941 0.691 15.5

GM1 0.810 1.000 0.770 0.862 0.934 0.736 8.4

GM2 0.806 1.000 0.765 0.851 0.932 0.709 8.8

GM3 0.823 1.000 0.785 0.851 0.922 0.727 9.2

GM4 0.790 1.000 0.744 0.852 0.927 0.721 10.6

GM5 0.819 1.000 0.780 0.842 0.920 0.706 13.1

GM6 0.815 1.000 0.775 0.856 0.910 0.764 13.1

20 No Grouping 0.610 1.000 0.527 0.860 0.953 0.697 16.1

GM1 0.806 1.000 0.765 0.872 0.923 0.782 9.5

GM2 0.806 1.000 0.765 0.859 0.932 0.730 10.4

GM3 0.810 1.000 0.770 0.859 0.927 0.739 11.3

GM4 0.806 1.000 0.765 0.866 0.937 0.742 10.5

GM5 0.796 0.871 0.780 0.846 0.934 0.694 13.0

GM6 0.767 1.000 0.716 0.856 0.937 0.715 13.0

25 No Grouping 0.644 0.929 0.582 0.857 0.939 0.715 16.0

GM1 0.781 1.000 0.734 0.861 0.930 0.739 9.5

GM2 0.777 1.000 0.729 0.869 0.920 0.779 10.1

GM3 0.769 0.906 0.739 0.870 0.934 0.758 10.0

GM4 0.806 1.000 0.765 0.859 0.936 0.724 11.0

GM5 0.806 1.000 0.765 0.863 0.943 0.724 13.4

GM6 0.763 1.000 0.711 0.859 0.939 0.718 12.6
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Table 5.4: Agreement, sensitivity, and specificity of the AD model on the data set of Smith

et al. [171].

Num. of Grouping Smith Set

Variables Method Agreement Sensitivity Specificity

5 No Grouping 0.912 0.974 0.563

GM1 0.928 0.978 0.641

GM2 0.928 0.987 0.594

GM3 0.927 0.985 0.602

GM4 0.927 0.984 0.601

GM5 0.924 0.978 0.619

GM6 0.926 0.966 0.699

10 No Grouping 0.908 0.997 0.406

GM1 0.957 0.997 0.734

GM2 0.949 0.996 0.680

GM3 0.921 0.990 0.528

GM4 0.924 0.996 0.516

GM5 0.907 0.994 0.411

GM6 0.933 0.996 0.576

15 No Grouping 0.921 0.996 0.501

GM1 0.918 0.998 0.463

GM2 0.925 0.998 0.511

GM3 0.927 0.995 0.545

GM4 0.917 0.996 0.467

GM5 0.916 0.994 0.478

GM6 0.938 0.997 0.607

20 No Grouping 0.923 0.999 0.493

GM1 0.937 0.998 0.589

GM2 0.923 0.998 0.498

GM3 0.921 0.998 0.485

GM4 0.922 0.997 0.496

GM5 0.925 0.996 0.519

GM6 0.920 0.998 0.481

25 No Grouping 0.926 0.997 0.525

GM1 0.919 0.999 0.466

GM2 0.930 0.998 0.542

GM3 0.919 0.997 0.475

GM4 0.915 0.998 0.446

GM5 0.921 0.997 0.492

GM6 0.919 0.998 0.471
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Table 5.5: Agreement, sensitivity, and specificity of the MC model. The instances are solved

with CPLEX 11.0 using a one-hour time limit.

Num. of Grouping Validation Set Training Set MIP gap%

Variables Method Agreement Sensitivity Specificity Agreement Sensitivity Specificity CPLEX

5 No Grouping 0.688 1.000 0.620 0.834 0.909 0.705 46.8

GM1 0.917 0.824 0.937 0.812 0.778 0.871 15.5

GM2 0.938 0.765 0.975 0.796 0.730 0.909 20.9

GM3 0.938 0.765 0.975 0.776 0.713 0.886 38.1

GM4 0.880 0.882 0.880 0.804 0.791 0.826 45.2

GM5 0.703 1.000 0.639 0.881 0.917 0.818 46.9

GM6 0.823 1.000 0.785 0.854 0.857 0.848 20.0

10 No Grouping 0.719 1.000 0.658 0.834 0.926 0.674 92.0

GM1 0.740 0.941 0.696 0.845 0.874 0.795 82.9

GM2 0.849 0.882 0.842 0.826 0.843 0.795 88.5

GM3 0.823 1.000 0.785 0.884 0.922 0.818 87.9

GM4 0.745 1.000 0.690 0.865 0.870 0.856 91.2

GM5 0.880 0.882 0.880 0.831 0.874 0.758 88.4

GM6 0.823 1.000 0.785 0.892 0.917 0.848 86.4

15 No Grouping 0.615 1.000 0.532 0.850 0.922 0.724 96.4

GM1 0.817 0.976 0.782 0.873 0.922 0.788 93.0

GM2 0.817 0.976 0.782 0.873 0.906 0.815 93.3

GM3 0.823 1.000 0.785 0.888 0.936 0.806 93.6

GM4 0.817 0.953 0.787 0.860 0.936 0.727 94.5

GM5 0.779 1.000 0.732 0.881 0.937 0.782 93.0

GM6 0.838 0.953 0.813 0.877 0.925 0.794 93.2

20 No Grouping 0.671 0.800 0.643 0.851 0.890 0.782 96.9

GM1 0.746 1.000 0.691 0.886 0.934 0.803 92.7

GM2 0.798 0.847 0.787 0.877 0.923 0.797 92.7

GM3 0.744 1.000 0.689 0.886 0.922 0.824 93.6

GM4 0.740 0.824 0.722 0.845 0.877 0.791 95.5

GM5 0.835 0.906 0.820 0.873 0.925 0.782 93.8

GM6 0.798 1.000 0.754 0.885 0.922 0.821 93.2

25 No Grouping 0.675 0.953 0.615 0.843 0.934 0.685 96.2

GM1 0.725 0.776 0.714 0.817 0.845 0.767 94.3

GM2 0.698 0.729 0.691 0.829 0.814 0.855 95.4

GM3 0.760 0.894 0.732 0.850 0.885 0.788 95.5

GM4 0.748 1.000 0.694 0.892 0.957 0.779 94.2

GM5 0.792 1.000 0.747 0.881 0.946 0.767 94.0

GM6 0.852 0.929 0.835 0.861 0.934 0.733 94.5
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Table 5.6: Agreement, sensitivity, and specificity of the MC model on the data set of Smith

et al. [171].

Num. of Grouping Smith Set

Variables Method Agreement Sensitivity Specificity

5 No Grouping 0.911 0.961 0.627

GM1 0.894 0.944 0.612

GM2 0.885 0.917 0.702

GM3 0.881 0.913 0.701

GM4 0.912 0.952 0.682

GM5 0.939 0.995 0.616

GM6 0.937 0.990 0.641

10 No Grouping 0.908 0.958 0.624

GM1 0.935 0.976 0.700

GM2 0.935 0.965 0.763

GM3 0.962 0.999 0.756

GM4 0.926 0.973 0.657

GM5 0.922 0.978 0.605

GM6 0.928 0.997 0.536

15 No Grouping 0.934 0.991 0.615

GM1 0.927 0.994 0.548

GM2 0.945 0.988 0.704

GM3 0.930 0.998 0.549

GM4 0.927 0.990 0.570

GM5 0.937 0.994 0.619

GM6 0.928 0.996 0.539

20 No Grouping 0.909 0.971 0.561

GM1 0.919 0.994 0.493

GM2 0.919 0.992 0.500

GM3 0.926 0.996 0.532

GM4 0.918 0.971 0.615

GM5 0.920 0.984 0.556

GM6 0.937 0.996 0.604

25 No Grouping 0.926 0.988 0.575

GM1 0.913 0.971 0.580

GM2 0.904 0.966 0.554

GM3 0.909 0.974 0.540

GM4 0.931 0.997 0.556

GM5 0.934 0.997 0.575

GM6 0.921 0.996 0.496
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Table 5.7: Agreement, sensitivity, and specificity of the HL model. The instances are solved

with CPLEX 11.0 using a one-hour time limit.

Num. of Grouping Validation Set Training Set MIP gap%

Variables Method Agreement Sensitivity Specificity Agreement Sensitivity Specificity CPLEX

5 No Grouping 0.667 1.000 0.595 0.796 0.796 0.795 78.7

GM1 0.734 0.647 0.753 0.765 0.774 0.750 23.2

GM2 0.875 0.765 0.899 0.782 0.770 0.803 39.1

GM3 0.880 0.882 0.880 0.804 0.796 0.818 42.5

GM4 0.818 1.000 0.778 0.829 0.857 0.780 58.2

GM5 0.880 0.882 0.880 0.840 0.891 0.750 64.7

GM6 0.880 0.882 0.880 0.823 0.848 0.780 53.2

10 No Grouping 0.688 1.000 0.620 0.829 0.930 0.652 95.8

GM1 0.823 1.000 0.785 0.890 0.913 0.848 92.6

GM2 0.823 1.000 0.785 0.876 0.883 0.864 92.1

GM3 0.745 1.000 0.690 0.859 0.870 0.841 93.1

GM4 0.823 1.000 0.785 0.892 0.930 0.826 95.1

GM5 0.823 1.000 0.785 0.870 0.917 0.788 95.5

GM6 0.823 1.000 0.785 0.892 0.930 0.826 93.8

15 No Grouping 0.792 0.953 0.757 0.877 0.950 0.752 96.5

GM1 0.779 0.953 0.742 0.860 0.904 0.782 94.5

GM2 0.760 1.000 0.709 0.881 0.932 0.791 96.8

GM3 0.806 1.000 0.765 0.890 0.943 0.797 95.8

GM4 0.806 1.000 0.765 0.892 0.946 0.797 96.2

GM5 0.802 1.000 0.759 0.882 0.934 0.791 96.1

GM6 0.823 1.000 0.785 0.899 0.939 0.830 94.0

20 No Grouping 0.673 0.918 0.620 0.861 0.918 0.761 97.1

GM1 0.775 0.953 0.737 0.861 0.913 0.770 94.9

GM2 0.763 1.000 0.711 0.873 0.941 0.755 95.4

GM3 0.806 1.000 0.765 0.893 0.953 0.788 95.0

GM4 0.785 1.000 0.739 0.883 0.946 0.773 96.4

GM5 0.846 0.953 0.823 0.893 0.953 0.788 94.8

GM6 0.829 0.835 0.828 0.862 0.925 0.752 93.5

25 No Grouping 0.804 0.953 0.772 0.867 0.946 0.730 97.3

GM1 0.758 1.000 0.706 0.863 0.906 0.788 93.7

GM2 0.781 0.976 0.739 0.845 0.922 0.712 94.6

GM3 0.794 1.000 0.749 0.877 0.946 0.758 94.9

GM4 0.802 1.000 0.759 0.878 0.937 0.776 97.0

GM5 0.806 1.000 0.765 0.896 0.965 0.776 95.4

GM6 0.808 0.953 0.777 0.888 0.934 0.809 95.6
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Table 5.8: Agreement, sensitivity, and specificity of the HL model on the data set of Smith

et al. [171].

Num. of Grouping Smith Set

Variables Method Agreement Sensitivity Specificity

5 No Grouping 0.894 0.937 0.651

GM1 0.890 0.951 0.546

GM2 0.880 0.936 0.566

GM3 0.908 0.952 0.654

GM4 0.936 0.987 0.652

GM5 0.919 0.979 0.585

GM6 0.930 0.987 0.607

10 No Grouping 0.903 0.981 0.463

GM1 0.927 0.998 0.524

GM2 0.927 0.994 0.544

GM3 0.916 0.980 0.554

GM4 0.935 0.997 0.583

GM5 0.933 0.996 0.572

GM6 0.919 0.997 0.478

15 No Grouping 0.913 0.982 0.527

GM1 0.911 0.985 0.496

GM2 0.921 0.997 0.494

GM3 0.928 0.996 0.543

GM4 0.931 0.997 0.555

GM5 0.928 0.995 0.552

GM6 0.921 0.998 0.485

20 No Grouping 0.920 0.983 0.567

GM1 0.913 0.988 0.485

GM2 0.924 0.996 0.513

GM3 0.924 0.997 0.507

GM4 0.927 0.997 0.531

GM5 0.920 0.996 0.493

GM6 0.911 0.995 0.438

25 No Grouping 0.917 0.975 0.592

GM1 0.909 0.986 0.476

GM2 0.916 0.987 0.512

GM3 0.925 0.997 0.513

GM4 0.921 0.997 0.492

GM5 0.921 0.998 0.482

GM6 0.914 0.989 0.491
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6.0 SUMMARY AND FUTURE RESEARCH

6.1 SUMMARY

This dissertation focuses on the annual influenza vaccine strain selection problem. It intro-

duces multi-stage stochastic mixed-integer programming and bilevel stochastic mixed-integer

programming models to analyze various aspects of the influenza vaccine preparation process.

The primary goal is to increase societal vaccination benefit through integrating the compo-

sition and timing decisions of the flu shot design in a stochastic and dynamic environment.

In Chapter 3, we take the view of the Committee, and optimize strain selection decisions

based on a production plan that is exogenously designed by the manufacturers. We exploit

several structural properties, and propose a tailored branch-and-price algorithm. In addi-

tion, we incorporate risk-sensitivity through mean-risk models. We address multiple policy

questions after carefully calibrating our models using publicly available data.

Our computational experiments provide valuable insights for pressing policy issues. In

particular, we show that more frequent Committee meetings can provide up to 10% gains

in the annual societal benefit of the flu shot. Incorporating more than three strains in

the flu shot can increase the annual societal benefit by more than $80 million, particularly

under more severe flu seasons. Finally, enhanced manufacturing techniques have substantial

benefits, so that it may be in society’s interest to subsidize research into such manufacturing

techniques.

In Chapter 4, we extend the multi-stage stochastic mixed-integer programming model

of Chapter 3 to consider the hierarchical relationship between the Committee and the in-

fluenza vaccine manufacturers. We formulate a two-level model for the annual influenza

strain selection problem that incorporates both the society’s and the vaccine manufacturers’
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perspectives. We analyze the effects of yield uncertainty, price, and production cost on man-

ufacturers’ production decisions. We also analyze the properties of the consumer surplus

using a hyperbolic demand function.

We find that if there is a single strain in the flu shot, then the expected industry output

under yield uncertainty is always lower than that in the deterministic case. However, this is

not true when there are multiple flu shot strains. Based on price of the vaccine, the expected

industry output under yield uncertainty can exceed that in the deterministic case. The high

flu shot price provides the manufacturer sufficient incentive to increase the production levels

of strains in hope of a high level of realized yield.

Influenza viruses frequently mutate. If the mutant strains have significantly different

antigenic properties, then the current influenza vaccine does not provide immunity protection

and its composition has to be updated. Currently, hemagglutinin inhibition assays are used

to identify antigenic variants of influenza A strains. However, this serology assay is labor-

intensive and time-consuming. As an alternative, representing the difference between the

antigenic properties of the influenza strains using a distance (i.e. antigenic distance) can be

a rapid indicator of the likelihood that the current vaccine will protect against a recently

emerged strain, and also facilitates the study of the virus’ evolution.

In Chapter 5, we formulate cross validation as a bilevel program. Our model identifies

amino acid substitutions that are positively associated with antigenic distances to predict

antigenic variants of the influenza A/H3N2 virus. This approach allows for optimizing the

cross validation outcome. Moreover, it offers modeling flexibility when considering multiple

statistical learning goals including the average number of points misclassified, the maximum

distance of each misclassified point from the classifier margin of its fold. We calibrate our

model using serological data and compare our results with the current literature. Our models

can identify potential immunodominant amino acid substitutions for predicting antigenic

variants, so that could be readily integrated to the global influenza surveillance system.
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6.2 LIMITATIONS AND FUTURE RESEARCH

The data sources that we mostly use include the Committee meeting materials [69], the

CDC flu surveillance and vaccination reports [34], and also Morbidity and Mortality Weekly

Reports [38]. However, published data on strain production are unavailable, so our numerical

results should be interpreted cautiously.

Our models do not consider disease transmission, which is an important factor when

assessing the potential benefits of vaccination. For example, by vaccinating an individual

who would otherwise get infected, the infection cost of other people who would get the

disease from that particular individual is also prevented. To this end, compartmental disease

transmission models are more appropriate [118]. Our emphasis in this dissertation is more

on addressing the optimal composition of the annual flu shot along with the timing of its

manufacturing.

The effectiveness of the flu vaccine is different for every person. Moreover, the immune

response to flu shot can extend more than one season [191]. One of the key factors deter-

mining how well the vaccine will protect is the individual’s vaccination history [170]. On

one hand, immunity gained from past flu vaccinations may cross–react with the new vaccine

strains and reduce their immunogenicity. On the other hand, if the vaccine strain used in the

past is antigenically similar to the currently circulating strains, then antibodies produced

by the immune response to the past vaccine cross-react with the those strains and help

clear the epidemic virus. Therefore, the efficacy of annually repeated vaccination remains

unclear [19, 93, 102]. To capture the effect of repeated vaccination we could consider vacci-

nation history as a parameter. However, taking into account each individual’s vaccination

history would lead to a policy which is impossible to implement. Instead, we can consider

administering two types of vaccine with different contents. One is for people who were vac-

cinated last year, while the other is for people who were not vaccinated. This might lead

to a notable increase in vaccine effectiveness at the expense of extra difficulties in the strain

selection process.

We have assumed that uncertainty about future events is not affected or revealed by the

current optimization decisions. Fewer people are expected to get infected by a flu strain

101



that is well matched by vaccine strains. Therefore strain selection decisions may affect the

prevalence of flu types during the upcoming flu season. We can address this fact by formu-

lating a stochastic programming model with endogenous uncertainty, where the underlying

stochastic process depends on the strain selection decisions. Similar stochastic programming

models with endogenous uncertainty are also considered in many stochastic programming

models involving project design decisions over a time horizon [76, 77].

In Chapter 4, the Manufacturers’ Problem (4.10) optimizes the expected profit. However,

the manufacturers might be risk–averse when a making production decisions because of

the yield uncertainty. We could address this issue using risk measures as we do for the

strain selection problem in Section 3.2. For a review of risk measures used in stochastic

programming, see [145, 164].

In Chapter 5 we use six different grouping methods for the amino acid sequence align-

ment. We can formulate a model that also develops a grouping method when optimizing the

cross-validation outcome. In this model, there would be a binary variable for each amino

acid pair, indicating whether those two amino acids should be classified as the same or not.

Clearly, the number of such binary variables is exponential in the number of the amino acids.

Therefore, we should analyze the model structure to develop efficient solution techniques.
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