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With the advanced capabilities of mobile devices and the success of car navigation systems, 

interest in pedestrian navigation systems is on the rise. A critical component of any navigation 

system is a map database which represents a network (e.g., road networks in car navigation 

systems) and supports key functionality such as map display, geocoding, and routing. Road 

networks, mainly due to the popularity of car navigation systems, are well defined and publicly 

available. However, in pedestrian navigation systems, as well as other applications including 

urban planning and physical activities studies, road networks do not adequately represent the 

paths that pedestrians usually travel. Currently, there are no techniques to automatically construct 

pedestrian networks, impeding research and development of applications requiring pedestrian 

data. This coupled with the increased demand for pedestrian networks is the prime motivation for 

this dissertation which is focused on development of a methodology and algorithms that can 

construct pedestrian networks automatically.  

A methodology, which involves three independent approaches, network buffering (using 

existing road networks), collaborative mapping (using GPS traces collected by volunteers), and 

image processing (using high-resolution satellite and laser imageries) was developed. 

Experiments were conducted to evaluate the pedestrian networks constructed by these 

approaches with a pedestrian network baseline as a ground truth. The results of the experiments 

indicate that these three approaches, while differing in complexity and outcome, are viable for 

automatically constructing pedestrian networks. 
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1.0  INTRODUCTION 

1.1 MOTIVATION 

The availability of ubiquitous computing devices and wireless networks along with the 

advancements of high accuracy satellite-based positioning systems have paved the way for new 

services capable of providing location-sensitive information to mobile users (Theodoridis, 2003). 

These types of services are termed Location-Based Services (LBSs) and are changing the way 

people live and work by allowing mobile users to send and receive digital content anytime and 

anywhere. LBS providers are engaged in a variety of business opportunities by creating 

innovative services such as mobile guides and navigation, shopping assistants, emergency 

services, and social networking, to name a few (Wang et al., 2008). Car navigation systems, a 

very popular application of LBSs, are being used by a large number of people around the world. 

Navigation systems popularity is primarily due to the fact that they make the essential and 

everyday task of traveling much easier and safer by simply providing vehicle’s current location 

as well as routes to selected destinations. Car navigation systems would not be possible without 

advancements in positioning and mobile computing devices. Furthermore, technology trends 

today are advancing into many new and exciting areas providing opportunities that would not 

have been possible just a short time ago. 
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In order to understand the motivation for this research, it is necessary to underline the 

importance of a digital map database in a navigation system. Generally, a navigation system is 

constructed by the integration of six main components: positioning, map matching, routing, 

geocoding, interface, and digital map database, as shown in Figure 1-1.  

 

Figure 1-1. Main components of a navigation system 

The digital map database component represents driving environment (e.g., road network) 

and is the backbone of a navigation system (Kasemsuppakorn and Karimi, 2008, Steiniger et al., 

2006) as it provides essential map-related data to most other components. The positioning 

component estimates user’s current location by using Global Positioning System (GPS), among 

other possible positioning technologies, which may be inaccurate due to errors such as 

multipathing or attenuation.  This position information is then fed to the map matching 

component which first finds the road segment on which the user is and then snaps the estimated 

position to the segment. The road segment is found by searching a digital map database (Quddus, 

2006). The routing component, which is used for planning and guidance (Zhao, 1997), invokes 
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the geocoding component to find the coordinates for the desired destination in order to compute 

a route to it from current location (obtained from the map matching component). Given an 

address, such as a destination, the geocoding component uses the map database to find its 

coordinates (e.g., latitude/ longitude). The interface component displays user’s current location 

and computed routes using the digital map database as a visual reference to orient the user.  

With the success of car navigation systems, road network databases are now well 

developed and widely available for many countries in North America, Europe, and Asia. Data 

sources for road network databases are provided by government agencies, e.g., the U.S. Census 

Bureau’s Topographically Integrated Geographic Encoding and Reference (TIGER), non-profit 

organizations, e.g., Pennsylvania Spatial Data Access (PASDA), and commercial mapping 

companies, e.g., NAVTEQ. Today, with the increasing capabilities of mobile devices, navigation 

system functionality can also be extended into handheld devices such as mobile phones, assisting 

pedestrians, especially disabled individuals, with travel related tasks, called pedestrian 

navigation services. Unlike motorized vehicles, pedestrian movement takes place along 

pedestrian paths, not along the street lanes and are not constrained by the boundaries of the road. 

A major difference between road and pedestrian network models is that road networks used for 

navigation are generally based on road centerlines which are of no, or little, use to pedestrians 

traveling along pedestrian paths such as sidewalks (Elias, 2007, Gaisbauer and Frank, 2008, 

Holone et al., 2007, Stark et al., 2007, Walter et al., 2006). Furthermore, not all pedestrian path 

segments are adjacent to roads and can be substituted by road networks. Therefore, roads do not 

adequately represent pedestrian navigation environments and their use for assisting pedestrians 

result in poor performance and errors. Such differences between roads and pedestrian paths are 

the reasons why road networks are inappropriate for assisting pedestrians with their navigation 
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needs (Elias, 2007, Hampe and Elias, 2003, Pressel and Weiser, 2006), especially in navigation 

applications that require reliable assistance, e.g., assisting people with disabilities who require 

specialized guidance for mobility. 

Compared to road networks, pedestrian networks of many countries are not available, or 

are provided by commercial mapping companies at significant costs. As a result, navigation 

systems intended for use by pedestrians resort to road networks as their main data source 

(Gaisbauer and Frank, 2008), with such disclaimers as “the routes may be missing sidewalks or 

pedestrian paths”.  We conducted an experiment to demonstrate the issues of using a road 

network as a substitute for a pedestrian network for computing routes. We computed the shortest 

routes using Dijkstra’s algorithm between three pairs of buildings within the University of 

Pittsburgh’s main campus, by using both a road network and a pedestrian network. The road 

network was derived from NAVTEQ and the pedestrian network was manually digitized from 

satellite imagery using the technique described in Kasemsuppakorn and Karimi (2008). The 

results of this experiment are shown in Figure 1-2, where the thick solid line is the route 

computed based on the road network and the dashed line is the route calculated based on the 

pedestrian network. 

 

Figure 1-2. Route calculated by using road network and pedestrian network 
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In Figure 1-2, the route computed based on the road network starts and ends at the road 

segments that are closest to the origin and destination, respectively, and the route computed 

based on the pedestrian network, which contains more details and is denser than the road 

network, provides realistic walking paths to the destination. For example, the route in Pair 2 was 

computed based on the pedestrian network, starts right at the origin point and arrives right at the 

destination point and it is much shorter than the route computed based on the road network. This 

simple experiment demonstrates that for computing relevant routes in pedestrian navigation 

services, navigation aids for handicapped or elderly people, and LBSs such as tourism or 

recreational trips, pedestrian networks are needed. 

Another application area that requires a pedestrian network is urban planning. A common 

objective in urban planning projects is to make cities more “walkable”, helping increase the 

physical activity of its inhabitants and at the same time decrease traffic congestion and pollution. 

Southworth (2005) defined “walkablity” as the extent to which the built environment encourages 

walking by providing pedestrians a safe, comfortable, convenient and appealing travel corridor.  

The most common factors that influence an individual’s decision to walk rather than drive to a 

destination generally include personal health and fitness, pedestrian-friendly routes, and route 

distance (Southworth, 2005).  

 Figure 1-3 presents two areas related to urban planning: auditing pedestrian environment 

and evaluating pedestrian network connectivity. These two areas are related to pedestrian 

environments and require pedestrian networks. 
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Figure 1-3. Examples of research areas in urban planning 

 

Auditing pedestrian environment’s aim is to develop methodologies that collect 

information and analyze the walking environment by looking at pedestrian facilities such as 

sidewalk, walkway, and/or trail. Common auditing instruments today include handheld 

technology such as Personal Digital Assistants (PDAs) which allow auditors to incorporate 

surveyed data directly into a database (Clifton et al., 2007). A digital map database, which is 

served as a base map for survey data entry at a given location, is an essential component in 

auditing pedestrian environment. The main advantage of employing a digital map on mobile 

Geospatial Information System (GIS) is that it speeds up analysis and decision making by using 

the up-to-date and accurate spatial data. 

Urban planning requires pedestrian networks to examine pedestrian network connectivity. 

It has been shown that evaluation of network connectivity and accessibility has significant 

associations with physical activities such as walking (Humpel et al., 2002). A high degree of 

connectivity usually results in shorter travel distances and more route choices (Handy et al., 

2003), both of which greatly benefit pedestrians. There are various indices to measure network 

connectivity such as Pedestrian Route Directness (PRD), Link Node Ratio (LNR), or Intersection 
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Density. These indices require a pedestrian network for calculations.  The resultant indices are 

then used to analyze and improve the urban form as well as provide health experts with data 

points for physical activity analysis. 

In the absence of pedestrian networks for many areas, most pedestrian auditing and 

accessibility/connectivity studies substitute pedestrian networks with road networks on the 

assumption that all streets have sidewalks while completely ignoring pedestrian walkways not 

adjacent to streets (Handy et al., 2002). Such a substitution does not often guarantee the type of 

data required for measurements in auditing and accessibility/connectivity studies because 

pedestrian networks usually have a much finer resolution than road networks do. Research by 

Chin et al. (2008) studied the differences between road and pedestrian networks and how the 

differences between them influence the walkability index. The pedestrian network in this study 

included parks and walkways and was manually digitized from aerial photos. The Pedsheds, LNR, 

and PRD are the methods used to measure network connectivity. The result showed that using a 

pedestrian network offers a more realistic means of measuring level of connectivity than a road 

network does. 

In order to demonstrate how the differences in road and pedestrian networks influence the 

walkability index, the experiment in Chin et al. (2008) using the PRD method was replicated. 

PRD is the ratio between the actual route distance travelled and the Euclidean distance between 

specific origins and destinations within a network (Randall and Baetz, 2001). The lower value of 

PRD indicates better connectivity because it is believed that people are willing to walk to a 

destination if the route is short and straight. We compared walkability, using the PRD metric, 

between a road network and a pedestrian network within the University of Pittsburgh’s main 

campus.  We computed the shortest routes between pairs of campus buildings by using both a 
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road network and a pedestrian network. Four walking distance ranges were <500, 500-700, 700-

900, and >900 m. Five routes within each walking distance range were computed using both 

networks. The total number of sample routes in each network (road network and pedestrian 

network) is equal to 20 and the average PRD values of those routes based on each walking 

distance range were calculated as illustrated in Figure 1-4. 

 

Figure 1-4. Comparison between average PRD values for road and pedestrian networks 

 

The result from this experiment showed that using a pedestrian network has the average 

PRD value lower than the road network for all walking distance ranges. This means that using a 

pedestrian network in the analysis produces higher connectivity result. In urban planning and 

physical activities, using a pedestrian network in the evaluation process should produce more 

realistic results than the road network does. 

Despite the growing demand for pedestrian networks, they are currently not publicly 

available and compared to road networks little attention has been paid to them. Currently, 
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researchers requiring pedestrian networks for studies generate their own data. One major problem 

with this approach is that the produced data is very specific and only useful for a particular 

scenario and chosen area. This and other observations indicate that there is an absolute need for 

developing new methodologies and techniques for acquiring and maintaining pedestrian 

networks; this is an important area of study for further advancements in pedestrian-centric LBS 

applications. 

1.2 RESEARCH PROBLEMS, CHALLENGES, AND SIGNIFICANCE 

As mentioned earlier, there are many applications that require pedestrian networks, but published 

papers focusing on collection, construction, and maintenance of these databases are scarce. 

Furthermore, pedestrian networks are not publicly available or are provided by commercial 

mapping companies at significant costs impeding research and development in applications 

needing such data. In this dissertation, possible data sources and a new methodology and 

algorithms for pedestrian network construction are investigated and developed. This research is 

challenging because of the complexity of pedestrian networks and the difficulty of extract 

information from noisy data sources. Pedestrian networks are complex as they usually exist in 

urban areas and include multiple types of paths. Possible data sources to construct pedestrian 

networks are road networks, GPS traces, and satellite imageries. Generally, these data sources, 

especially in urban areas, contain noises that impede network construction; for instance, the 

pedestrian path areas appearing in the images are often influenced by neighboring objects (e.g., 

buildings, shadows). Therefore, approaches that can automatically construct pedestrian networks 
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and can handle noises are needed. In this dissertation, the following research questions are 

addressed: 

 What are the properties of pedestrian networks? 

 What data should a pedestrian network base map contain? 

 What are suitable approaches to automatically construct pedestrian networks? 

 What are the evaluation criteria and how to measure the quality of pedestrian 

networks? 

1.3 RESEARCH OBJECTIVES AND CONTRIBUTIONS 

In this dissertation, a new methodology and algorithms to construct pedestrian network are 

investigated and developed. The objectives of this dissertation are:  

 To develop a methodology for recommending a suitable approach for constructing 

pedestrian networks in a given area and a set of criteria 

 To develop and evaluate techniques for collecting raw pedestrian data 

 To develop and evaluate techniques for generating pedestrian paths from raw data 

 To develop and evaluate algorithms for constructing pedestrian network from 

generated pedestrian path segments 

While pedestrians may travel indoors as well as outdoors, this research focuses on outdoor 

pedestrian networks. The main contributions of this dissertation are: 

 Analysis and categorization of pedestrian path types 

 Techniques to collect raw pedestrian data 

 Algorithms to generate pedestrian path segments and construct pedestrian networks 



 11 

 A methodology to recommend a suitable approach for constructing pedestrian 

networks 

1.4 ORGANIZATION OF THE DISSERTATION 

This dissertation is organized as follows. Chapter 2 provides a definition of pedestrian 

networks and an analysis and categorization of pedestrian path types and pedestrian network 

database structure. Chapter 3 provides backgrounds on applications requiring pedestrian network 

and digital map data providers, as well as related work on existing techniques for map generation 

using GIS tools, collected GPS points, and image processing. Chapter 4 discusses the pedestrian 

network construction approaches. Chapter 5 discusses the data source and details of the 

algorithm in the network buffering approach. Chapter 6 discusses the data source and details of 

the algorithm in the collaborative mapping approach. Chapter 7 provides details of data sources, 

data preparation and network construction using the image processing approach. Chapter 8 

describes the evaluation methodology, the pedestrian network baseline, the study area and the 

evaluation results by the three approaches. Chapter 9 provides the recommendation 

methodology. Finally, the conclusions and future research are discussed in Chapter 10. 
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2.0  PEDESTRIAN NETWORK 

This chapter begins by describing terminologies used within this dissertation. A pedestrian is 

“any person who is afoot or who is using a wheelchair or a means of conveyance propelled by 

human power other than a bicycle” (WashingtonStateLegislature, 2003). A pedestrian network is 

a topological map that delineates the geometric relationship between pedestrian path segments. A 

pedestrian path segment is a segment describing any pathway that is designed for a pedestrian in 

order to improve pedestrian safety, reduce potential accidents, and promote mobility and 

accessibility. The digital representation and organization of a pedestrian network is discussed in 

the following. In general, a geographic representation conceptually models real-world objects 

into a computer data representation (data model and database level) as illustrated in Figure 2-1.  

 

Figure 2-1. A conceptual of model of the real world (adapted from Lo and Yeung (2006)) 
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At the conceptual level, a model basically represents user’s perception of the real world 

and tends to be tailored to a specific application. The concept starts by clarifying what objects 

are deemed necessary to be represented by a data model because real-world geographic objects 

are varied and complicated. Two distinct approaches for representing the real-world objects in a 

geospatial database are the object-based model and the field-based model (Lo and Yeung, 2006). 

The object-based model represents geographic space as an empty space occupied by discrete and 

identifiable objects. Spatial objects represent discrete objects with well-defined boundaries called 

“exact objects” such as buildings or roads. The field-based model conceptualizes spatial 

phenomena that vary continuously over space such as elevation, temperature, air pressure, or 

concentration of pollutants. Generally, these spatial phenomena are represented as surfaces 

containing field values and modeling as 3D, or 2.5D. There is no exact criterion to select one 

model over the other; however, the choice of a model sometimes depends on the data available. 

For example, one would adopt the field-based model if the observed data is from satellite 

imagery or adopt the object-based model if the input data are points collected using a GPS 

receiver.  

Even though a conceptual model allows us to view real-world objects in a certain way, it 

is not designed for the computer data representation. Basically, two steps are required to prepare 

digital spatial data: choosing a spatial data model (data model level) and organizing geometric 

objects (database level) (Chang, 2010). There are two spatial data models, vector and raster, that 

are widely employed to represent spatial data. The vector model is best suited to represent 

discrete objects, whereas the raster model is best employed to represent spatial features that are 

continuous over a large area (Chang, 2010). Since a pedestrian network base map mostly 

represents man-made features, which are discrete objects, we consider only the vector data 
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model in this dissertation. The vector model generally represents phenomena as a collection of 

three geometric primitives: points, lines, and polygons. However, only points and lines are 

required in pedestrian network databases.  A point, the simplest type of vector data, is specified 

by a pair of coordinates with respect to a reference coordinate system, and a line is represented 

by at least two connected points. Locations of features are purely geometric and do not contain 

relationships among objects (non-topological data). Therefore, there is considerable redundancy 

in this data model. For example, the places where two polylines connect have duplicate points. 

The database level involves geometric objects, attributes, and spatial relationships organized in 

such a way that computer can access, interpret, and process. At this level, vector data must be 

properly structured, explicitly store spatial relationships (topology) between geometric elements, 

and link spatial and non-spatial data.   

2.1 CATEGORIZATION OF PEDESTRIAN PATHS 

In this dissertation, seven types of pedestrian path segments are distinguished. Name and 

description of each type are explained in Table 2-1.  

 

Table 2-1. Pedestrian path types 

Path Types Description 
1. Sidewalk A path designed for pedestrian traffic alongside a road 

2. Pedestrian 

Walkway 

A path not necessary at the side of a road such as a walkway between 

buildings, or a foot path to the plaza 

3. Accessible 

Path/Ramp 

A part of pedestrian walkway, but specifically at the entrance of the 

buildings or ramp for disabled group 

4. Crosswalk 
A facility that is marked off on a road to indicate where pedestrians 

should cross, generally at an intersection 
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Path Types Description 
5. Pedestrian 

Bridges 
A grade-separated crossing that is constructed over the roadway 

6. Pedestrian 

Tunnels 
A grade-separated crossing that is an below-ground passageway 

7. Trails 
A path that is mostly designated as recreational such as running trails 

or natural trails 

 

A sidewalk, the most common structure, is a paved walkway along the side of a road, 

whereas a pedestrian walkway is not along the side of a road.  An accessible entrance is a part of 

a pedestrian walkway and is the actual entrance to a building. A path marked off on a road 

indicating where pedestrians should cross, generally at intersections, is called a crosswalk. The 

pedestrian bridge is a grade-separated crossing that is constructed over the roadway, while the 

pedestrian tunnel is a grade-separated crossing that is a belowground passageway.  A trail is a 

path that is mostly designed for recreational activities such as running trails or natural trails. In 

addition to the seven main pedestrian path types, we also identify one subtype of pedestrian path, 

stairs, which is a facility normally located on main path types (e.g., pedestrian walkway, building 

entrance, or trail). Stairs is a series of steps designed to fill the gap in elevation. The physical 

characteristics, on-path man-made objects and off-path man-made objects, of each pedestrian 

path type are described in Table 2-2. We also provide the inner junction information to describe 

the connection between pedestrian path types. Unlike a road network, a pedestrian network is 

found mostly in urban areas and in some areas there may be more than one pedestrian network. 

Ideally, to provide complete navigation assistance for different modes of transportation, a 

pedestrian network should connect with a road network and a public transportation network in a 

given area, as described in Table 2-2 (outer junction). 
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Table 2-2. Pedestrian path types, characteristics, and connection information 

Type 
Characteristics On-Path man-

made objects 
Off-Path man-made 

objects 
Inner  

Junction 
Outer Junction 

Location ground 
Side of roads 

Surface concrete 
Asphalt 

Shape Continuous/ 
elongated 

Sidewalk 

Stairs No 

Fire hydrants 
Telephone poles 
Street signs 
Streetlights 
Traffic lights 
Parking meter 
Mail box 
Garbage can 
Tree 
Bus stop 

Road edge/curb 
Cars 
Parking lots 
Grass 
Trees 

- Crosswalk 
- Walkway 
- Building 
entrances 

- Pedestrian 
bridge 

- Pedestrian 
tunnel 

- Trail 

- Road network 
- Public 
Transportation 
Network 

(connect through 
bus stop) 

Location Ground 
On roads, 
mostly at the 
intersections  

Surface Asphalt  
Color: white/ 
yellow (two 
stripes/ zebra 
crossing) 

Shape short stripe 

Crosswalk 

Stairs No 

Cars 
Bus 
Traffic light 

Bus stop 
Street sign 

Sidewalk - 

Location Ground 
Attached to 
the building  

Surface concrete 

Shape Short 

Building 
entrance 

Stairs yes/no 

Garbage can Buildings Sidewalk 
Pedestrian 
walkway 

Hallway Network 
 

Location ground 

Surface concrete 
Asphalt  
Brick 
Stone 

Region continuous/ 
elongated 
open space 
area 

Pedestrian 
walkway 

Stairs yes/no 

Seating place 
Garbage can 
Streetlights 

Buildings 
Grass 
Tree 

Sidewalk 
Trail 

Road Network 
(connect through 
parking lot) 

Location Above ground  
(over the 
road) 

Surface Concrete 

Region Short 

Pedestrian 
Bridges 

Stairs Yes 

- - Sidewalk Sky train network 

Pedestrian 
Tunnels 

Location Underground  
(under the 

road) 

- - Sidewalk Subway Network 
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Type 
Characteristics On-Path man-

made objects 
Off-Path man-made 

objects 
Inner  

Junction 
Outer Junction 

surface Concrete 

Region Short 

Stairs Yes 

Location Ground 

Surface Concrete 
Asphalt 
Soil 

Region Continuous/ 
elongated 

Walking 
Trails 

Stairs Yes/no 

- Trees 
Grass 

Sidewalk 
Pedestrian 
walkway 

- 

2.2 VECTOR DATA MODEL 

The vector data model for representing pedestrian networks can model complex spatial objects 

from basic graphical elements, allows explicit topological representation between objects, and  is 

suitable for many types of computations such as routing. The pedestrian path types defined 

above can be represented by two basic graphical elements: point and line. A point, defined by a 

pair of coordinates, is used for identifying a topological junction of two or more lines (marked as 

 in Table 2-3), or the location of objects such as an accessible entrance of a building (marked 

as  in Table 2-3). A line, described by a start point, an end point, and a list of shape points 

(marked as  in Table 2-3), is used to represent pedestrian paths for all seven types as depicted in 

Table 2-1. Examples of pedestrian paths and their corresponding vector data are shown in Table 

2-3.  
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Table 2-3. Examples of pedestrian path types 

Pedestrian path types Vector data 

 
Sidewalk 
Crosswalk 

  

 
Pedestrian 

Bridge 
Pedestrian 

Tunnel 
  

 
Accessible/ 

Building 
Entrance 

  

 
Pedestrian 
Walkway 

 
Walking Trail 

  

2.3 PEDESTRIAN NETWORK DATABASE STRUCTURE 

A network generally refers to “a type of mathematical graph that captures relationships between 

objects using connectivity” (Kothuri et al., 2007). An object in the network is represented by a 

node (point) and the relationship between two objects is represented by a link (line). Topology 

stores the line connectivity information. Spatial data include geometric information (e.g., 

longitude, latitude, or shape), and non-spatial data include the descriptive element of geographic 
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features such as name and length.  A pedestrian network database contains both geometric and 

topologic information. The Open Geospatial Consortium, Inc. (OGC, 2003), an international 

consortium of companies, government agencies, and universities, has been producing worldwide 

standards for spatial data including Simple Feature Specification for storing, retrieving, and 

updating simple geospatial features. A pedestrian network database designed based on OGC’s 

Simple Feature Specification can be used by many Database Management Systems (DBMSs) 

that employ and follow OGC’s standards including Oracle Spatial (Kothuri et al., 2007), 

Microsoft’s SQL Server (Microsoft, 2008), ESRI’s ArcGIS Geodatabase (ESRI, 2008), and the 

Postgres extension PostGIS (PostGIS, 2009). Also, today’s DBMSs enable efficient management 

of geographic data by supporting spatial data attribute types, spatial operations in query 

language, and spatial indexing methods. The overall structure of a pedestrian network database 

using the Unified Modeling Language (UML) (Ambler, 2005) is illustrated in Figure 2-2.  

 

Figure 2-2. A pedestrian network database structure 
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In this UML, a class is represented by a rectangle divided into three compartments. The 

topmost compartment shows the name of the class, the middle compartment contains a list of 

attributes and the bottom compartment contains a list of operations or methods. We do not 

include methods in this diagram since we focus on the data structure. Solid lines with action 

labels indicate associations between two classes. Symbols at end of each line represent 

multiplicity of association; for example, “0..1” indicates zero or one instance; “2..*” indicates at 

least two instances. The hollow diamond shape represents an association with an aggregation 

relationship indicating that one class is a part of another class. For example, a line string is 

composed of two or more points or vertices.  The triangular arrowhead represents an inheritance 

relationship between superclass and subclass. An arrowhead points from subclass to superclass 

implying that subclass inherits common attributes and methods defined in superclass. 

As shown in Figure 2-2, the geometry class hierarchy is derived from OGC’s Simple 

Feature Specifications which are based on 1D geometry with linear interpolation between 

vertices. Geometry is a root class and is associated with a spatial reference system that describes 

the coordinate space. All geometry classes include basic methods (e.g., dimension, boundary), 

spatial relation methods (e.g., equals, intersects, within), and spatial analysis methods (e.g., 

distance, buffer, difference). The base geometry class has subclasses for points, curves, 

polygons, and geometry collections (OGC, 2003). Only point and curve geometric objects based 

on OGC are included in pedestrian network database structure to represent points and lines. A 

point is a 0-dimensional geometry that represents a single position in coordinate space by using 

an x-coordinate value and a y-coordinate value. A point value may include a z-coordinate value 

and an m-coordinate value, but these are not required in pedestrian network databases. The z-

coordinate generally represents altitude or elevation and the m-coordinate basically represents a 
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scalar measurement. A curve is a 1-D geometric object representing the continuous image of a 

line. One subclass of a curve is a line string, representing a sequence of points and line segments 

connecting them. At least two distinct points form a line string. Two subclasses of a linear ring 

include a line and a linear ring. A line is a linear edge between two points, whereas a linear ring 

is a closed line string (start point is equal to end point). Geometric curve objects generally 

contain start and end points as well as length of the associated spatial reference.   

Since the geometry class has no explicit declaration of topological information, node and 

link classes are added to describe the connectivity between nodes in a pedestrian network. The 

node class describes all nodes in the network that represent junctions, end points, and entity 

points. Each node has a unique numerical identifier, type of node (e.g., junction, entity point), 

and name of node (e.g., building name). The link class describes all links in the network that 

represent the pedestrian path segments between two nodes. Unlike road segments, pedestrian 

segments are undirected links that can be traversed in either direction. Each link has a unique 

numerical identifier, type of link (e.g., crosswalk, sidewalk), name of link (e.g., street name), 

cost for traversing the link (e.g., distance, slope). As shown in Figure 2-2, both nodes and links 

have geometric information associated with them. Each link connects only two nodes and each 

node might be connected by one or multiple links. Therefore, each link also contains the 

identifiers of the two nodes it connects. 

2.4 DATA NEEDS ANALYSIS 

Today, spatial data play an important role in planning, design, analysis, and administration of 

transportation systems and facilities. Many applications require high quality and reliable spatial 
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data in order to support various analyses. Generally, there is a lack of quality standards in spatial 

data because different applications have dissimilar needs (Chrisman, 1983). In other words, the 

quality of data depends on their fitness for a particular purpose. The U.S. National committee for 

Digital Cartographic Data Standards identified five general elements for spatial data quality: 

positional accuracy, attribute accuracy, completeness, logical consistency, and lineage 

(Chrisman, 1991). As discussed in Chapter 1, a pedestrian network is mainly employed in 

pedestrian-related navigation systems and measuring network connectivity for urban planning. 

For navigation systems, the correctness of the network and the locations of map features have a 

great impact on route computation and route guidance. The spatial road network data 

requirements of car navigation systems can be used as a starting point for determining the data 

requirements of pedestrian network data since both network data support navigation functions.  

Elements of spatial road network data quality include geometrical and topological errors, 

correctness of feature classifications (e.g., junction, roundabout), and how up-to-date features are 

(Quddus et al., 2009). Moreover, car navigation systems are very sensitive to spatial data as 

reported by State Departments of Transportation (NRC, 2003). For urban planning purposes, 

correctness of the network also significantly impacts computation of network connectivity index. 

In this dissertation, the quality of pedestrian networks is determined by four evaluation 

criteria: geometrical completeness, geometrical correctness, topological completeness, and 

topological correctness. These four criteria are selected as they are commonly used in the 

literatures of road network extraction. Geometrical completeness refers to the degree to which 

map features describe real-world pedestrian paths. In other words, it refers to the missing 

pedestrian path segments in a database. Geometrical correctness represents the percentage of 

geographic features, which is matched with actual pedestrian paths. Network quality is 
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determined by two criteria: topological completeness and topological correctness. Topological 

completeness means the degree to which geographic features represent connection nodes. 

Therefore, the percentage of topological completeness decreases with increasing fragmentation 

of the pedestrian paths. In other words, a map with a high topological completeness means high 

number of pedestrian path intersections represented in the map. On the other hand, topological 

correctness refers to the accuracy of connection nodes. The percentage of topological correctness 

decreases with an increase in the number of incorrect connection nodes. Table 2-4 presents a 

summary of the criteria needed to measure quality of pedestrian network base map. These 

criteria are chosen based on the needs of navigation and urban planning applications. The 

optimum or near-optimum value of each criterion indicates that the pedestrian network is of high 

quality, thus the ideal pedestrian network base map.   Moreover, spatial data should include a 

document explaining data sources, methods used to construct spatial dataset, and the construction 

time. This additional information will assist application developers in deciding the suitability of 

the database for the underlying applications. 

Table 2-4. Summary of pedestrian network data quality criteria 

Criteria Definition Range value Optimum 
value 

Geometrical 
completeness 

The degree to which pedestrian path segments 
describing the actual pedestrian paths are included 
in the constructed dataset 

[0;1] 1 

Geometrical 
correctness 

The percentage of the constructed pedestrian 
networks, which is in accordance with the baseline

[0;1] 1 

Topological 
completeness 

The presence or absence of connection nodes in a 
dataset 

[0;1] 1 

Topological 
correctness 

The degree to which constructed features 
represent correct connections 

[0;1] 1 
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3.0  BACKGROUND AND RELATED WORK 

3.1 BACKGROUND 

3.1.1 Applications 

In this section, two main categories of applications that require pedestrian networks, navigation 

systems/services and urban planning, are discussed. Figure 3-1 shows general characteristics of 

these two applications. 

 

 

 

 

Figure 3-1. Example applications requiring pedestrian networks 

The concept of navigation has been expanded from car navigation into pedestrian 

navigation for all pedestrians including mobility, visually, and cognitively impaired. This 

expansion is primarily stemmed from the technological advancements that have made devices 

and applications possible for use by pedestrians. Development of Internet-capable mobile 

Pedestrian 
Network 
Database 

Navigation 
System/Services

Urban 
Planning 

 Pedestrians 
 Unaided Mobility 
 Wheelchair Users 
 Visually-Impaired 
 Cognitive-Impaired 

 Audit Pedestrian 
Environment 

 Measuring Network 
Connectivity 
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devices, portable positioning devices, and communication capabilities have paved the way for 

developing specialized applications on suitable devices geared towards assisting pedestrians and 

disabled individuals. Most LBS applications developed for pedestrians (general population and 

individuals with special needs) require pedestrian networks for route planning and visualization. 

However, in some cases people with special needs, in particular wheelchair users, require an 

even more detailed base map which might include information such as sidewalk’s surface type, 

sidewalk’s width, or locations of stairs (Kasemsuppakorn and Karimi, 2009b).  

Urban planning applications also require pedestrian networks for modeling, analysis, and 

planning. It is believed that good physical layout and design of a city (urban area) can lead to a 

reduction in total transportation costs and automobile usage as well as promotion of physical 

activity resulting in more livable communities (Leslie et al., 2007). Network connectivity is one 

parameter that measures the built environment for conduciveness to physical activity and 

requires pedestrian network for analysis. Digital pedestrian networks can also serve as a base 

map for entering survey data on pedestrian facilities or pavement maintenance at a given 

location. Using digital pedestrian networks can speed up analysis for auditing pedestrian 

environment by using up-to-date and accurate spatial data.   

3.1.1.1 Pedestrian Navigation Systems/Services 

Table 3-1 provides data, data sources, and data acquisition techniques used by five commercial 

systems and two research projects related to pedestrian navigation systems/services. 

Table 3-1. Summary of selected pedestrian navigation systems/services 

Authors Area Data Data Sources Techniques 

Navitime 
(Arikawa et 
al., 2007) 

Mobile-based 
Commercial 
Pedestrian 
Navigation 

 Sidewalk Network 

 Road network 

Data-supply 
companies (Japan) 

 Integrate all required 
data provided by 
various companies into 
a specific format 
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Authors Area Data Data Sources Techniques 

System (Japan)  Public Transportation 

 Point of Interest (POI) 

 Weather/ Traffic 
Google 
(2010) 

Web-based route 
services 

 Road Network 

 Pedestrian Network 

Google Maps  Provide pedestrian 
routes based on road 
network and pedestrian 
network (if available) 

MapQuest 
(2011) 

Web-based route 
services 

 Road Network 

 

NAVTEQ and 
Open source data 

 Provide pedestrian 
routes based on road 
network 

Bing (2011) Web-based route 
services 

 Road Network 

 

NAVTEQ  Provide pedestrian 
routes based on road 
network 

Nokia Maps 
(2008) 

Mobile-based 
Commercial 
Pedestrian 
Navigation 

System (Europe) 

 Road Network 

 Landmark 

OviMaps Beta  Provide pedestrian 
routes based on road 
network data or 
provide a straight line 
between origin and 
destination 

Walter et al. 
(2006) 

Route Calculation  Graph representation of 
the walkable space for 
both indoor and 
outdoor 

Raster Image  Image pre-processing 
 Skeletonizing 

algorithms 
 A* algorithm 
 Smoothing techniques 

Elias (2007) Database  Road Network 

 Buildings 

 Indoor plan 

ATKIS 
(Authoritative 
Topographic-
Cartographic 
Information 

System) 

 GIS analysis and 
Geometric Integration 
(e.g. conflation 
techniques) 

 

 Navitime (Arikawa et al., 2007) is a commercial mobile pedestrian navigation system in 

Japan that provides users with navigation assistance for different modes of transportation such as 

walking, driving, or riding trains. One necessary dataset in NaviTime is sidewalk network that is 

used to compute suitable walking routes. Sidewalk networks are provided by the commercial 

mapping companies in Japan. 

Google Maps (2010), MapQuest (2011), and Bing Maps (2011) are  popular Web 

Mapping Services (WMSs) that provide map-based services for pedestrian navigation with 
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walking direction mode (beta version). Google Maps delivers walking routes based on road 

network and pedestrian network (if the data is available) with the disclaimer: “the route may be 

missing sidewalks or pedestrian paths”. For MapQuest and Bing Maps, pedestrian routes are 

based on road networks.  

Nokia Map 2.0 (2008) is a commercial mobile navigation system that supports both cars 

and pedestrians. Users are able to find their current location, nearby points of interest, and 

receive real-time car and pedestrian navigation assistance. The required data sources are a road 

network, points of interests, and public transportation information, which are provided by Ovi 

MapsBeta. However, routes for pedestrians are computed based on road networks, which may 

not contain pedestrian paths or false positives in cases where there is no sidewalk adjacent to the 

street. 

Walter et al.,(2006) conducted research with the purpose of determining alternative 

approaches to computing shortest routes for pedestrians based on raster maps. The authors 

confirm that the data used in vehicle navigation is inappropriate for pedestrian navigation and 

methods of collecting data for pedestrian navigation need to be investigated. To compute routes, 

pre-processing and skeletonizing techniques were employed to generate an undirected graph 

from raster images for both indoor and outdoor environments.  

Elias (2007) presented a method for creating a pedestrian-tailored geospatial database for 

indoor and outdoor environments using already existing geospatial datasets available in 

Germany. Three steps were implemented to generate the pedestrian geospatial database: data 

selection, GIS analysis, and geometric integration. However, results from this research showed 

that the method created paths that did not exist, such as phantom paths from a building to the 

street. 
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3.1.1.2 Navigation Systems for Individuals with Special Needs 

While navigation systems for disabled are being explored by many researchers, at the time of this 

writing there is no commercial navigation system for disabled individuals. Table 3-2 provides 

data, data sources, and data acquisition techniques used by eight research projects. 

Table 3-2. Summary of selected navigation systems/services for individuals with special needs 

Authors Area Data Data Sources Techniques 

Drishti (Helal et 
al., 2001) 

Wireless Navigation 
System (Visually-

impaired) 

 Building location 
 Streets 
 Walkways 
 Campus building plan 

University of Florida 
Physical Plant 

Division (UFPPD) 

 Digitized the 
centerline of 
walkways  

MAGUS (Beale 
et al., 2006) 

Web-based 
Wheelchair 

Navigation System 

 Sidewalk Network  
 Obstacles 

Ordnance Survey 
Land Line Data 

Aerial Photography 

 Manually digitized 
and incorporating 
local knowledge 

U-Access (Sobek 
and Miller, 2006) 

Web-based 
Navigation 

System 

 Sidewalk Network 
 Accessible Entrances 
 Obstacles 

University of Utah 
Facilities 

Management 
Department Center of 
Disabilities Services 

 Adding stairs and 
curb cuts by using 
GPS-based 

 Convert GIS data 
to SVG file format 

Karimanzira et 
al., (2006) 

Adaptive routing 
(Wheelchair and 

visually-impaired) 

 Street network 
 Sidewalk Network 
 Obstacles simulation 

data 

N/A N/A 

Ourway (Holone 
et al., 2007) 

Mobile-based 
Navigation Prototype 
(Physically-impaired) 

 Road Network 
 Sidewalks and paths 

OpenStreetMap 
(OSM) project 

 

 Supplementing the 
existing network 
by field survey and 
manually editing 

ODILIA 
(Mayerhofer et 

al., 2008) 

Navigation 
System Concept 

(visually-impaired) 

 Sidewalk Network 
 Landmarks (e.g. 

public buildings, 
shops, restaurants)  

 Obstacles 

N/A  Modeled with the 
support of GIS 

RouteCheckr 
(Volker and 

Weber, 2008) 

Personalized Routing  Sidewalk network 
 Annotation on safety 

rating 

University map from 
local land surveying 

office 

 Manually 
preprocessing to 
generate the digital 
format 

Kasemsuppakorn 
and Karimi 

(2009b) 

Personalized routing 
(Wheelchair) 

 Sidewalk Network 
 Obstacles 

Aerial Photography  Manually digitized 
and incorporating 
local knowledge 

 

Drishti (Helal et al., 2001) is a wireless pedestrian navigation system for the visually and 

mobility impaired, which aims to provide users with optimized routes based on specified 

preferences and to guide them from one location to another. The required dataset includes 
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building locations, streets, walkways, parkings, and building plans. The centerline of walkways 

was manually digitized and the building dataset for the University of Florida’s campus was 

provided by University of Florida Physical Plant Division (UFPPD).  

MAGUS (Beale et al., 2006) is a web-based navigation service that guides wheelchair 

users in urban areas. Its route planning requires a pedestrian route network with very high- 

resolution details such as slope, surface type, and curb cuts of each sidewalk segment in order to 

calculate suitable routes. The pedestrian network base map was manually digitized using the 

Ordnance Survey land line data and aerial photo as backdrops and incorporated field survey or 

knowledge from local people.  

U-Access (Sobek and Miller, 2006) is a web-based routing tool that provides pre-trip 

planning and shortest feasible routes to given destinations for people with three ability levels: 

unaided mobility, aided mobility, and wheelchair users. Spatial data creation includes a 

peripatetic network, an aided mobility network, and a disabled network with accessible building 

entrances. Data sources for U-Access include the University of Utah’s Facilities Management 

department and Center of Disability services. However, the network base map acquisition 

process is not explained in detail. 

Karimanzira et al., (2006) developed  a  travel  aid  to  assist  the visual/limb/hearing 

impaired for  pre-trip planning in  urban  areas.  A mathematical model and various machine 

learning techniques were used to generate routes tailored to the needs of disabled pedestrians. 

The spatial database used in this research was created for the test area in Georgenthal, Germany. 

However, details of the spatial data acquisition and creation for this project are no provided.  

Ourway (Holone et al., 2007) is a mobile pedestrian navigation prototype with special 

emphasis on the physically impaired like wheelchair users or parents with baby strollers. The 
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pedestrian base map, used for route planning, was constructed through the OpenStreetMap 

Project, where users can add pedestrian paths to the system and give a rating on the path. The 

complete pedestrian base map of the downtown area of Halden in Southern Norway was 

constructed through field survey and the existing network was manually edited. 

ODILIA (Mayerhofer et al., 2008) is a navigation system prototype for the visually 

impaired. The system requires a high-resolution pedestrian navigable map that is geometrically 

accurate, topologically consistent, up-to-date, and complete. A pedestrian path network was 

manually constructed in the testing area of Graz with the support of GIS. 

RouteCheckr (Volker and Weber, 2008) is a client/server system for collaborative 

multimodal annotation of geographical data and personalized routing for the mobility impaired. 

The objective of multimodal annotation is to allow users to annotate existing geographical data 

with their own information such as safety rate. This additional information would be useful for 

optimal route computation. However, a navigable network that includes sidewalks and footpaths 

is required by this system. The data for the university campus and the area surrounding the main 

railway station was manually created. 

Kasemsuppakorn and Karimi (2009b) developed a personalized routing system for 

wheelchair users that considers user’s aversion to certain sidewalk obstacles when computing 

routes. In this project, sidewalk centerlines were manually digitized using satellite images and 

the University of Pittsburgh’s campus buildings and accessible entrances were incorporated into 

the base map. 
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3.1.1.3 Urban Planning 

This section reviews the required data by five research projects, two are related to pedestrian 

audit instrument and three related to measuring network connectivity for urban planning. Table 

3-3 provides data, data sources, and data acquisition techniques used by five research projects. 

Table 3-3. Summary of urban planning research projects 

Authors Area Required data Data Sources Techniques 

Randall and 
Baetz (2001) 

Measuring Pedestrian 
Connectivity 

 Pedestrian Network 
 Buildings and Point 

of Interests 

N/A N/A 

Schlossberg 
(2006) 

Pedestrian Audit 
instrument 

 Street Network with 
road type 

 TIGER Street 
Street network from 

METRO 

 Create pedestrian 
skeleton from 
using GIS tools 
and street network 

Clifton et al. 
(2007) 

Pedestrian Audit 
instrument 

 Street Network 
 Sidewalk Network 

TIGER Street  Manually editing 
sidewalk network 
based on street 
center lines 

Titheridge et al. 
(2007) 

Measuring Pedestrian 
Accessibility 

 Street Network 
 Pedestrian Network 
 Bus stops 
 Buildings 
 Road crossings 

Integrated Transport 
Network (ITN) road 

centerline 

 Field survey 
 Network buffer 

method 
 Network link 

method 
Chin et al., (2008) Measuring Network 

Connectivity 
 Street Network 
 Pedestrian Network 

 TIGER Street 
network 
Aerial Photography 

 Manually digitized 
for pedestrian 
network 

 

Randall and Baetz (2001) provided a methodology and a prototype for urban planners to 

evaluate pedestrian network connectivity and to generate retrofitting alternatives for the 

pedestrian environment in suburban neighborhoods. Route distance and PRD were used to 

measure network connectivity. The analysis requires a pedestrian network consisting of 

sidewalks and paved pedestrian paths. However, the pedestrian network acquisition process is 

not explained in detail.  

 Schlossberg (2006) explored how street networks around transit stops and schools can be 

visually and quantitatively analyzed to provide useful planning and evaluation tools for 
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pedestrian environments. This study explained how to use GIS tools for street classification 

analysis to remove inaccessible pedestrian paths and for connectivity analysis to measure 

intersection intensity.   

 Clifton et al., (2007) developed and tested a complete environmental audit methodology 

called Pedestrian Environmental Data Scan (PEDS). PEDS was designed to evaluate pedestrian 

environments with walking paths/sidewalks quality as one of its items. The pedestrian path data, 

which was generated by using the street network as the starting point, is needed to audit the 

pedestrian environment. Segments of pedestrian facilities that are not adjacent to roadways are 

added and segments inaccessible to pedestrians are removed from the street network. 

Titheridge et al., (2007) developed a GIS-based tool named AMELIA to measure 

pedestrian accessibility to services and facilities at the micro data level. The pedestrian network 

database, composed of footways and crossings, was set up for the city of St Albans in the UK for 

the prototype testing. The network buffer and the network link method were used to 

automatically generate pedestrian paths. The network buffer generates approximate sidewalks 

and the network link creates additional paths that connect the centroid of the buildings to the 

nearest footpaths. Building’s centroids were used because the actual locations of entrances to the 

buildings were not available.   

Chin et al., (2008) studied the differences between road and pedestrian networks and how 

the differences in these networks influence the walkability index. The pedestrian network in this 

study included parks and walkways and was manually digitized from aerial photos. The 

Pedsheds, LNR, and PRD methods were used to measure network connectivity. The results 

showed that using a pedestrian network offers a more realistic means of measuring connectivity 

levels than a road network does. 
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3.1.2 Digital Map Data Providers 

Digital map data providers are those organizations that create and provide digital map data and 

other map related content. Data providers can be grouped into three categories: government and 

non-profit agencies, commercial mapping companies, and community mapping organizations. 

Digital map data created by government agencies such as the U.S. Geological Survey (USGS) 

are available for free or at a nominal cost, whereas data created by commercial mapping 

company such as Tele Atlas can be purchased at costs and are subject to strict copyright laws. 

The third group is community mapping which aims to provide free access to current digital map 

data, often considered to be expensive through other providers. Its motivation is driven by the 

lack of publicly-available geographic data and the rapid development of mobile positioning 

technology and online communities (Goodchild, 2007). The concept of community mapping is to 

allow any user in the community to add important information to a particular area of a map by 

collecting and editing their own GPS traces, digitally tracing aerial images, or obtaining data 

from other free sources (Hakley and Weber, 2008). Table 3-4 presents examples of data 

providers in the three groups. The coverage area and the focus of the data content are also 

included.  

Table 3-4. Examples of digital map data providers 

Group Examples Coverage 
Area 

Transportation 
Contents 

TIGER/Line 2009 by 
“U.S. Census 

Bureau” (Bureau, 
2011) 

 United States  
 American 

Indian Area-
based 

Digital base map for geographic features of  

 Roads 
 Railroads 
 Rivers 
 Lakes 

Government and 
non-profit 
organization 

 

State Data (e.g., 
PASDA (2011) 

 U.S. States  Digital base map for geographic features of  

 Street Centerlines 
 Railroads 
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Group Examples Coverage 
Area 

Transportation 
Contents 

 Rivers 
NAVTEQ (2010)  78 Countries  Digital base map for geographic features of  

 Streets (called “NAVSTREET”) 
 Traffic 
 Landuse (e.g., Railroads, Buildings) 
 Pedestrian Geometry and POI called “Discover 

Cities” (available in some cities) 

Commercial 
Mapping 
Company 

Tele Atlas (TomTom, 
2010) 

 90 Countries Digital base map for geographic features of  

 Roads and related navigation information (called 
“MultiNet”) 

 Integrate sidewalks and buildings features into 
road networks called “Urban Maps” (available in 
some cities) 

OpenStreetMap 
(OSM, 2010) 

 Global area Digital base map for geographic features of  

 Roads  
 Footway 
 Cycle way 
 Railway 
 Subway 

Community 
Mapping 
 
(data depends on 
contributors; 
therefore, it 
might not be 
complete) WikiMapia (2011)  Global area Digital base map for geographic features of  

 Roads 
 Railroads 
 Ferry, Rivers 

 

The government agencies in each country generally serve as the primary source of 

geographic data. The USGS and the U.S. Census Bureau are examples of federal sources, which 

serve as the primary civilian mapping agencies in the United States. TIGER, a digital base map 

for geographic features of roads and address ranges, railroads, rivers, and lakes, is provided and 

maintained by the U.S. Census. State government sources, supported by universities, state 

agencies, or non-profit groups, are also important GIS data providers at the state level. 

Pennsylvania Spatial Data Access (PASDA) is an example of a state agency that provides many 

map datasets including digital base map for transportation in Pennsylvania.  At the time of this 

writing, there are no government agencies that provide digital base map data for pedestrian 

networks.  
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NAVTEQ and Tele Atlas (TomTom) are examples of commercial mapping companies 

that provide digital maps and related information for many parts of the globe with focus on 

navigation and LBS applications. Bing Maps and MapQuest are examples of online mapping 

portals that employ digital map data from NAVTEQ under a restricted license. Tele Atlas is a 

major data provider for Google Maps and Google Earth. Both companies supply comprehensive 

map data at the street level, however, constructing pedestrian networks is currently in early 

stages and the pedestrian networks are not publicly available.  

The impetus for community mapping is driven by the lack of publicly-available 

geographic data and the rapid development of mobile positioning technology, location-

awareness, and online communities (Gillavry, 2006). Advanced technologies provide individuals 

with easy access to devices capable of recording and sharing geographic data through mobile 

social networking. There has been a dramatic growth in the number of active users of mobile 

social network sites with forecasted growth from 54 million in 2008 to nearly 730 million in 

2013 (Holden, 2009). The reason for this can be attributed to people wanting to meet new 

friends, to get in touch with their networks, to get comments on their uploaded content, and to 

utilize location services. Dong et al. (2009) analyzed the structure of mobile social networks and 

confirmed that it is a typical “scale-free network” that the degree of connectivity distribution 

almost fits the power law distribution like other social networks. Considering the success of 

mobile social networking and the rapid adoption of mobile devices by a wide variety of users, it 

is feasible to conceive a mobile social network where members, among other activities, 

participate in building alternative map data with free access. OpenStreetMap (OSM) and 

WikiMapia are extensive and effective projects that currently facilitate access to collaboratively 

collected map data for the whole world. OSM also provides editing tools for manually adding 



 36 

and editing pedestrian paths, such as sidewalks, crosswalks, or walkways. The benefit of 

community mapping is that it provides a free resource for data in large geographic areas. 

However, the availability and quality of data relies heavily on the network of people to collect 

and edit map data. Geographic features provided by current community mapping sites are mainly 

related to street data.   

3.2 RELATED WORK 

This section summarizes a review of related work for existing techniques used in map data 

generation. The map generation techniques are divided into three categories: (1) GIS-based tools, 

(2) GPS traces, and (3) image processing.  

3.2.1 Map Generation Using GIS Tools 

The existing techniques reviewed in this category were employed by researchers that generated 

their own data for testing purposes.  

The first technique is “Road Network Proxy” that uses portions of the available road 

networks as a proxy and supplements them by manually adding and removing paths that are not 

included in the existing road networks. The advantages of this technique are that it uses road 

networks, which are widely available, the process is fast, and it is not labor intensive. The main 

disadvantage is that the computed routes might not be accurate because the network does not 

contain all the possible paths between pairs of origin and destination.  
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The second technique is “Manual Digitization” which uses satellite or aerial images as a 

backdrop and tools such as GIS software. Manual digitization or vectorization refers to the 

process of converting satellite or raster images into vector data. This technique is popular 

because of the availability of high-resolution raster images for wide areas and the availability of 

easy-to-use tools to generate data from images. Today, there are many sources of high-resolution 

raster images such as USGS, e.g., a 0.305 m natural color orthoimages (USGS, 2009) covering 

many urban areas. Research studies in Beale et al. (2006), Holone et al. (2007), Chin et al. 

(2008), and Kasemsuppakorn and Karimi (2009b) employed manual digitization and validated 

the results by field survey or local knowledge. The advantage of this technique is its ability to 

create a pedestrian network base map, which includes such required elements as walking 

pathways or trails. However, this technique is generally suitable for a small area as it requires 

field survey in order to complete and validate the data collection process. 

3.2.2 Map Generation Using GPS Traces 

With the availability of GPS-enabled mobile devices and the rapid growth of mobile users, a new 

and potentially large source of GPS data is emerging. Mobile users, using their mobile phones, 

can now collect GPS traces of where they are and where they have been in a simple manner. A 

variety of LBSN web sites, such as OSM (2010) and WikiLoc (2010), provide their members 

with a set of tools to contribute GPS traces. There is also the “Data Recycling” (Guo et al., 2007) 

method which allows collection and accumulation of in-vehicle GPS traces through car 

navigation systems. Nowadays, there are various methods for collecting large amounts of raw 

GPS data and there has been much research on extracting useful information from such data. 

Research on extracting GPS data includes mining of locations of interest or travel sequences, 
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e.g., see Lee and Cho (2007), studying human behavior and users’ mobility, e.g., see Zheng et al. 

(2008), and updating existing maps or generating new map data. Of these GPS data extraction 

projects, existing techniques for updating and generating road map data are the closest to the 

work presented in this dissertation and can be used as a good starting point. In the remainder of 

this section, two groups of research projects, updating and refining maps using GPS traces and 

generating maps from scratch using GPS traces, are overviewed. 

The first group addresses the problem of automatically updating and refining existing 

maps using GPS traces. Existence of map data is required as a priori knowledge and is updated 

or improved by using GPS traces. While distance, speed or direction noise filtering methods are 

common in map refinement algorithms for GPS data, different approaches are employed to 

extract and generate road features. Guo et al. (2007) examined two conditions, the necessity of 

update of the target roads and the number of available GPS traces on them. If these two 

conditions are met, the least squares approximation method, to extract road feature points, and 

the spline curve fitting method, to approximate road centerline, are used. The result of their study 

confirmed that the extracted road centerlines quickly converge to a stable position as the number 

of GPS traces increases. Rogers et al. (1999) proposed an approach that generates road 

centerlines and augments them with lane information. In this approach, geometry of each road 

segment is improved by iteratively performing a weighted average on an existing road map with 

each GPS trace. A hierarchical agglomerative clustering method groups centerline offsets into 

lanes and averages them to find lane centerlines. The results showed that it is possible to 

generate an accurate road centerline with existing commercial maps and few high-precision GPS 

traces. Ekpenyong et al. (2009) presented an approach to extend existing road maps with specific 

road type information such as specifying private roads or roundabouts. In this approach, the 
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Snap-Drift Neural Network was used to group GPS traces into road types based on speed, 

horizontal and vertical curvature, and bearing between successive points. The results show that 

the approach is able to detect road change and achieves a high percentage of road type 

classification accuracy. Niehoefar et al. (2009) presented a high-level architecture for a road map 

generation system consisting of trace recording, trace uploading and map generation algorithms. 

Davies et al. (2006) presented a different approach for generating map data through image 

processing techniques. Instead of using GPS points, they were converted to a raster data set using 

histogram and a Voronoi graph to compute road centerlines and a directed graph for route 

calculation. The results showed that the approach is able to detect road change; however, the 

generated map has some skewed junctions due to GPS errors.  In short, the research in this group 

is focused on updating geometry, topology, and attribute information of existing road networks. 

While the work presented in this dissertation is to generate map data from scratch using 

collected GPS traces, the vehicle trajectory data exploration used in Ekpenyong et al. (2009) for 

road type detection provides useful guidelines of processing information obtained from GPS 

data. Example GPS data include change in travel direction which can be used to detect the shape 

of pedestrian paths.  

Unlike the first group, the second group aims to generate road maps from scratch using 

GPS traces. In other words, the map generation process is independent of any existing road map 

data. Edelkamp and Schrodll (2003) and Schroedll et al. (2004) extended the work by Rogers et 

al. (1999) to identify common segments in several GPS traces and estimated road centerlines for 

each segment by using the weighted least-squares spline with a suitable number of control 

points. They also improved the lane clustering algorithm in Rogers et al. (1999) to handle lane 

splits and merges. The experimental results showed that the proposed method can both 



 40 

automatically generate digital road maps from GPS traces and improve on initial maps when they 

are available. 

Worrall and Nebot (2007) discussed line and arc models for roads that provide a simple 

digital map representation and a technique for extracting a set of road waypoints using GPS data. 

The technique is composed of two steps: clustering and linking. The clustering step groups GPS 

data into regions of similar position with similar headings and the linking step connects those 

clusters to form the road structure. The results from this approach showed a close match between 

the GPS data and the aerial images of the same area. Bruntrup et al., (2005) also included travel 

time information in the graph, which is useful for calculating fastest routes between pairs of 

origins and destinations on the map. The most common process in Bruntrup et al. (2005) and Cao 

and Krumm (2009) is clarification of multiple GPS traces belonging to the same road with the 

same direction. Bruntrup et al., (2005) claimed that their algorithm could correctly determine 

most road structures except for narrow roads and mini-roundabouts. Cao and Krumm (2009) 

calculated routes from their generated map and compared them with those produced by Bing 

Maps using the same pairs of origins and destinations. The results showed matches with 

moderate accuracy in most cases.  

Castro et al., (2006) presented an approach to generate road centerlines for two-lane rural 

highways using GPS traces collected on both lanes. The two-lane rural highway centerline and 

the width of a lane of the highway are estimated by GPS point interpolation. The centerline 

estimation was further refined using the parametric cubic spline to smooth out any further errors. 

The result showed that the maximum error from the generated road centerline is 1 m. However, 

the GPS traces used in their work were collected from vehicles driven at an approximate speed of 

80 km/h, which is much faster than walking and produces less GPS error.  
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Fathi and Jrumm (2010) introduced an approach that is different from the aforementioned 

research in that the process begins with finding road intersections instead of finding road shape 

geometry. The “local shape descriptor”, a 2D circular window, slides over the GPS points and 

detects the intersection by using the Adaboost classifier. The locations of the detected 

intersections are then refined by iteratively matching the points in the model and the ones in the 

data, until convergence. Finally, the road centerline is formed by connecting those intersections. 

The results showed that the detected intersections deviated from their ground truth intersections 

by approximately 4.6 m.  

Chen and Cheng (2008) and Shi et al. (2009) employed an image processing technique to 

generate road maps from GPS traces. The vehicle trajectories are first transformed to a road 

network bit map. Morphological operations were used to extract road network skeleton from 

road network bit map. The extracted road network skeleton was then used to find road junctions 

and elaborate the road network graph. To validate the algorithm, they overlaid their results on 

Google Earth and found a satisfying match between the two. The research in this group suggests 

that it is feasible to extract road centerlines, road network graph, and peripheral information such 

as lanes or road type by using only GPS traces. However, single GPS trace or a small number of 

GPS traces is insufficient to accurately represent road information. 

The major difference between the research discussed above and this dissertation is that 

the former needs driving GPS data and the latter needs walking GPS data. This difference can 

pose significant challenges as GPS accuracy while walking is more susceptible to the multipath 

problem than driving is. This is because pedestrian paths are closer to buildings than roads are, 

and buildings are one main source of interference with GPS signals in urban environments. Also, 
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pedestrian path features are different from road features requiring development of new 

techniques for their extraction.  

3.2.3 Map Generation Using Image Processing 

Cartographic object extraction from remotely-sensed data is a challenging research topic that has 

been approached in many different ways. Compared to the relatively high number of research 

projects that are focused on extracting cartographic objects (e.g., roads, buildings), extraction of 

pedestrian networks from images is in its infancy. Walter et al., (2006) proposed an algorithm for 

semi-automatic pedestrian path extraction from raster images. The proposed algorithm has two 

steps to create an undirected graph representing pedestrian paths from raster images. The first 

step (pre-processing) generates a binary raster map, where “1” represents a pedestrian path and 

“0” represents an obstacle. Human input is required to select pixels on the map, which are 

considered walkable areas. The second step (skeleton) generates pedestrian paths from a binary 

raster map and employs morphological image processing operations. The limitation of this 

algorithm is that it requires manual input from human to indicate the pixel of walkable area. 

Given that there is little research directly related to pedestrian network data extraction 

and that pedestrian networks are in many ways similar to roads (i.e., characteristics), existing 

automatic urban road network extraction techniques, which are a good starting point for further 

research in pedestrian network extraction, are overviewed.  

Hinz and Baumgartner (2003) proposed an automatic road extraction approach in 

complex urban scenes using high-resolution imagery with context based analysis. The non-

building areas are first extracted by detecting the building outlines followed by detecting the 

valleys between them. In the non-building areas, the road lane markings, which are thin bright 
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lines, are extracted and form the road segments. Limitations of this approach are the influence of 

large vehicles on the extraction process and the weakness of the model at complex road 

intersections (e.g., the location where a highway, several main and minor roads converge). The 

authors emphasize the importance of a feature model and context model for feature extraction in 

urban areas. 

Hu et al. (2004) developed an automatic urban road extraction method that integrates 

LiDAR data and high-resolution satellite imagery. The method starts by detecting the primitives 

of the roads and the contextual targets, such as parking lots, from the LiDAR data using both 

intensity and height information. Detected trees and grasslands are eliminated by using 

morphological operations on color images. Road strips are extracted using an iterative Hough 

transform algorithm with the assumption that urban roads exist in a grid structure. The authors 

indicated that integrating multiple sources of data would definitely improve the extraction results 

in the urban area. 

Karimi and Liu (2004) developed a set of algorithms to automatically extract road data 

from satellite images and vectorize the extract data for use in GIS and Intelligent Transportation 

Systems (ITS) applications. The automate procedure includes a set of algorithms: region 

growing, edge detection, image enhancement, vectorization, and georeferencing. Three 1-m 

resolution satellite images from different areas were tested and the running time of the procedure 

was analyzed.  

Zhu et al. (2005) extracted roads from IKONOS satellite images by using a line segment 

match method and a mathematical morphology. This method assumes that roads have a darker 

color compared with surrounding areas and that roads are straight or slightly curved. This 

method begins by recognizing road and non-road pixels classified by morphological leveling that 
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combines opening and closing operations. Then the line segment matching method finds parallel 

line segments corresponding to roads. Lastly, the mathematical morphology is employed to 

generate the road network. The assumption about the road model can induce some problems in 

different situations, e.g., color of road is darker than surrounding features.  

Wang et al., (2006) employed a machine learning algorithm to extract urban road features 

from the Quickbird satellite imagery. They first extracted lane markings by using the algorithm 

by Hinz and Baumgarther (2003). Road and non-road scenes were collected using small 

rectangular windows and were used to calculate three types of features: coverage ratios, direction 

consistency of lane markings, and local binary patterns. These features were then input to the 

AdaBoost learning algorithm for training classifiers. Finally, roads were extracted with a sliding 

window using the learned result and road connectivity. The limitation of this approach is the 

weakness of the algorithm at road areas without lane markings. 

Clode et al., (2007) discussed a method for automatic detection and vectorization of roads 

using only LiDAR data. The method consists of two steps. First, the LiDAR points are classified 

into “road” or “non-road” using both height and intensity information and a hierarchical 

classification technique. Second, the road centerlines and road width are extracted by employing 

the Phase-Coded-Disk (PCD) method on the classified binary image. The final result is the road 

centerline with width and direction information. The method was applied to two urban test sites 

and the results showed an acceptable quality. However, the method is susceptible to parked cars 

and data noise. 
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4.0  PEDESTRIAN NETWORK CONSTRUCTION APPROACHES 

While pedestrian network databases are required by a variety of different applications, they are 

not publicly available; in some areas they are available through commercial mapping companies 

at significant costs. Despite the fact that road and pedestrian networks overlap in content, the two 

are dissimilar in scale and details and are not irreplaceable for most applications. Moreover, 

research on pedestrian network construction and maintenance is scarce. In this dissertation, three 

approaches for automatically constructing pedestrian networks are investigated and developed, in 

order to understand their challenges, issues, and performances. The approaches were chosen 

based on research conducted in the automatic road network construction field and available data 

sources. Based on the performance of these three approaches, a recommendation methodology  

(Chapter 9) for pedestrian network construction for a given set of resources and locations is 

provided.   

In general, the approaches that were chosen for pedestrian network construction consist 

of two main steps (1) data preparation and (2) network construction, as shown in Figure 4-1. The 

data preparation step is the process of assembling, preparing, and collecting raw data from a 

variety of sources such as people, road networks, and images. Raw data, such as a GPS 

trajectory, which is a series of GPS points on a path, are needed to generate the geometries of 

pedestrian path segments. The network construction step generates pedestrian path segments, 

composed of points and lines. Geometric elements and relationships among them (i.e., topology) 
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of pedestrian networks are explicitly stored. The pedestrian network data explicitly stores 

geometric elements and spatial relationships among geometric elements.  

Figure 4-1. The proposed pedestrian network construction approaches 

 

The approaches chosen for this dissertation include network buffering (Chapter 5), 

collaborative mapping (Chapter 6), and image processing (Chapter 7). These approaches are 

implemented and tested for completeness and correctness (Chapter 8). An overview of the steps 

and data sources for each approach is shown in Figure 4-2. 
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Figure 4-2. Steps of three algorithms for pedestrian network construction 

  

Network buffering is the most common operation in cartographic modeling. Using road 

network as a reference, buffering generally results in polygons whose boundaries are on both 

sides of each road segment. These boundaries are considered as the approximate locations of 

sidewalk segments. The assumption to construct pedestrian networks based on a network 

buffering approach is that pedestrian path segments only exist along roads. The data preparation 

step of the approach involves selection of road segments that most likely have adjacent sidewalks 

where pedestrians would travel. There are situations where roads may not have adjacent 

sidewalks such as alongside highways. The network construction step of the approach involves 

calculating the geometries of pedestrian path segments and connecting them through the 
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algorithm called “NB Algorithm”. One advantage of network buffering is that it only requires 

road networks, which are widely available, as input. 

 Collaborative mapping is the aggregation of web mapping and user-generated content 

from a group of people. The pedestrian network construction algorithm based on the 

collaborative mapping approach aims to automatically construct pedestrian network from 

collected walking GPS traces. The data preparation step involves collecting GPS traces on 

walking paths. GPS traces (raw GPS data) are collected by GPS receivers or GPS-enabled 

mobile phones. This step is labor intensive, as it requires a number of volunteers to travel a 

particular area and record their GPS traces. The network construction step of the approach 

involves generating pedestrian path segments and constructing the network from raw GPS traces 

through the algorithms called “CM Algorithms”.   

Image processing is an approach to analyze, enhance, and extract features from digital 

images, such as remotely-sensed imagery or laser imagery. The data preparation step involves 

raster generation and image classification. The network construction step employs the generated 

raster and classified image to extract and generate pedestrian path segments and to form a 

network by connecting adjacent segments through the algorithms called “IP Algorithms”.  
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5.0  NETWORK BUFFERING 

A buffer zone is an area that is within a specified distance from a map feature such as points or 

lines (Smith et al., 2007). A network is made up of many line segments and their buffering areas 

are usually handled independently of each other. Two types of buffers are constant width buffers 

and variable width buffers. Figure 5-1b shows an example of a constant width buffer that 

identifies a region with a fixed distance away from the road segments in Figure 5-1a. Figure 5-1c 

presents an example of a variable width buffer in which a different buffer width is used for each 

line segment based on attributes such as number of road lanes. 

 

Figure 5-1. Examples of constant width buffering and variable width buffering 

Line buffering is considered as a potential technique to estimate the location of pedestrian 

paths and to construct pedestrian networks, using the road network as a reference. Road 

segments are buffered using the variable width method, since each road segment might have a 

different width and number of road lanes.  
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The details of the pedestrian network construction algorithm based on network buffering 

approach are illustrated in Figure 5-2  

 

Figure 5-2. Data preparation and NB algorithm for pedestrian network construction 

The algorithm is able to construct only two pedestrian path types, sidewalk and 

crosswalk. However, sidewalks and crosswalks constitute bulk of pedestrian paths and share 
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common characteristics, i.e., they are generally along road features. For this, a road network is 

used to construct pedestrian networks with the assumptions that sidewalks are in parallel on both 

sides of road segments and crosswalks are located at every road intersections (e.g., 3-way or 4-

way). Data source for this algorithm is described in Section 5.1. The algorithm has two main 

components: data preparation and network construction, described in Section 5.2 and 5.3, 

respectively.  

5.1 DATA SOURCES 

The input data for the algorithm is a road network. Road network data include road geometry, 

network topology, and road attributes. Sources of road network of the University of Pittsburgh’s 

main campus include TIGER/Line, provided by the U.S. Census Bureau, Allegheny Street 

centerlines, provided by PASDA, and the NAVSTREETS road network, provided by NAVTEQ. 

Each source may have a different quality data since several techniques are typically used to 

generate a road network database. Figure 5-3 shows two examples of a road network from three 

different providers (i.e. PASDA, TIGER/Line 2009, and NAVTEQ), overlaid and verified with 

0.3 m resolution natural color orthoimages obtained from the USGS. TIGER/Line provides the 

lowest positional accuracy as shown in the figure where some street centerlines intersect 

buildings. NAVTEQ provides a higher resolution and positional accuracy for cul-de-sac features 

than the other two data sources, see the figure on the right. However, NAVTEQ data are 

available at significant costs and their usage is subject to copyright laws, while the PASDA and 

TIGER are free or available at nominal cost.  
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Figure 5-3. Digital road networks from three different map providers 

5.2 DATA PREPARATION 

The purpose of data preparation is to collect road segments that most likely have sidewalks along 

both sides. Road attributes can be used in filtering candidate road segments. For instance, road 

class and speed in NAVSTREETS, major road in Allegheny Street Centerlines, and road type in 

TIGER could be used to filter out road segments that are unlikely to have adjacent parallel 

sidewalks.  

5.3 NETWORK CONSTRUCTION (NB ALGORITHM) 

The purpose of network construction is to generate geometries of sidewalks and crosswalks 

along both sides of selected road segments and to construct pedestrian networks from generated 

sidewalks and crosswalks. Once road segments are filtered, geometries of sidewalks are 
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calculated. Each road segment’s start point, end point, and shape points are extracted and used to 

calculate the geometry (latitude and longitude) of the shape points along pedestrian paths by 

using the great circle navigation formula (Williams, 2008):  

		 ))cos(*)sin(*)cos()cos(*)sin(sin( radialdistlatdistlatanewlat  	 	 	 (5.1) 

))sin(*)sin()cos(),cos(*)sin(*)(sin(2tanlnln newlatlatdistlatdistradialaggnew  	(5.2)	

In Equations 5.1 and 5.2, three parameters required for calculating the geometry of a 

pedestrian path: start point, gap distance, and radial. A start point with latitude (lat) and longitude 

(lng), can be one of the points at either end of the segment or a shape point along the path of a 

road segment. The distance (dist) refers to the gap between a road segment and a pedestrian path 

segment. The gap distance between roads and sidewalks can be estimated using road attributes 

together with the standards minimum road width and sidewalk width. Examples of road 

attributes to determine the gap distance are number of lanes (included in NAVTEQ and PASDA 

data) and direction of travel (included in NAVTEQ data). The American Association of State 

Highway and Transportation Officials specifies a minimum lane width of 4.267 m (including 0.61 

m for inner shoulder width) and a minimum outside shoulder width of 3.048 m to provide refuge 

for disabled vehicles and bicyclists (AASHTO, 2005). The Institute of Transportation Engineers 

(ITE) recommends a minimum sidewalk or walkway width of 1.829 m, which allows two people 

to pass alongside comfortably (Center, 2009). Based on these standards, the gap distance along 

each side of a road centerline is approximated, by summation of road width, shoulder width, and 

sidewalk width for each lane category and by taking into account road segment’s direction of 

travel. Radial is the direction from a start point, expressed as the angle measured from north in a 

clockwise direction. East (90) and West (270) are degrees for calculating geometry of shape 

points and 2-way intersection point on the east and west sides, respectively. For intersection points 
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(a 3-or 4-way connection), radial is derived by averaging the bearing of two intersecting road 

segments. Figure 5-4 shows examples of radial parameter for both shape points (a) and the 

intersection point (b). For example, if two road segments intersected where the bearing of road 

segment A is 0 East and the bearing of road segment B is 90 East, then the resulting radial would 

be 45 East.  

 

Figure 5-4. Examples of the radial parameter 

An example of calculating geometry of sidewalk segments using great circle navigation 

formula is shown in Figure 5-5. 

 

Figure 5-5. The calculated geometries of sidewalk segments 
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The red curve is a road segment with end points and shape points marked as green 

rectangles. The dashed blue curves are sidewalk segments along the east and west sides of a road 

segment which were calculated using the great circle navigation formula. 	 After calculating the 

sidewalk segment geometries, the crosswalk segments are generated by linking the end point 

(intersection) of the east side and the west side of the sidewalk segment. Once all sidewalk 

segments and crosswalk segments are generated from road segments and the network topology is 

validated, by checking whether start and end nodes of connected segments coincide, the 

pedestrian network is constructed.  
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6.0  COLLABORATIVE MAPPING APPROACH 

Collaborative mapping, or community mapping, is “an initiative to collectively create models of 

real-world location online that anyone can access and use to virtually annotate locations in 

space” (Gillavry, 2006). Its goal is to create a copyright-free and/or an alternative data source for 

geographic data. This chapter provides details of the pedestrian network construction algorithm 

based on GPS traces, collected through collaborative mapping. The data source required in the 

algorithm is discussed in Section 6.1. The algorithm consists of two main steps, data preparation, 

explained in Section 6.2 and network construction (CM algorithms), discussed in Section 6.3.  

6.1 DATA SOURCE 

Data required in this approach are GPS traces. A GPS trace refers to a trajectory of a pedestrian 

travelling along pedestrian paths as recorded by a GPS receiver. The assumption is that GPS 

traces represent the pedestrian path segments travelled by contributors. Each contributor may 

provide more than one trace at different times, and over time, each pedestrian path segment 

might be covered by multiple GPS traces.  
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6.2 DATA PREPARATION 

The data preparation step involves collecting GPS traces, which require contributors to walk in a 

particular area. Goodchild defines Volunteered Geographic Information (VGI) as a special case 

of user-generated geospatial content on the GeoWeb and discusses the role of people as sensors 

to monitor the world (Goodchild, 2007). The emergence of Web 2.0 has facilitated collaborative 

content and modification by establishing connection among people with common interests, 

(Murugesan, 2007). An appropriate Web 2.0 technology, coupled with GPS-enabled mobile 

phones, portable digital maps, and free WMSs such as Google Maps and Bing Maps, provides 

users with easy access to location information and enables them to supply their own location 

content. Today, social networking services, such as Facebook and Friendster, have become 

extremely popular where people are able to post personal information, communicate and share 

information with other members. Location-Based Social Networking (LBSN), an extension of 

web-based social networking to mobile devices, where people can track and share location 

related information with each other is emerging. 

  Currently, there are several LBSN web sites (e.g., OSM1, WikiLoc2, everytrail3, and 

timatio4) that facilitate an environment where members of the network can participate in 

collaborative mapping projects or sharing leisure trips. These web sites provide tools for 

uploading GPS traces from walking, driving, or biking, collected by GPS devices or GPS-

enabled mobile phones. The shared data can be downloaded, modified, and enriched by anyone. 

OSM is the most extensive and effective project that provides public GPS traces for mapping 

                                                 

1 http://www.openstreetmap.org/traces 
2 http://www.wikiloc.com/wikiloc/home.do 
3 http://www.everytrail.com/ 
4 http://timatio.com/ 
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purpose, while the purpose of other websites is mainly for health and leisure services where GPS 

traces are a by-product of contributors’ activities. Figure 6-1 and Figure 6-2 show the screenshot 

of public GPS traces available from OSM and Wikiloc.  

 

Figure 6-1. Public GPS traces available in Pittsburgh, PA 

 

Figure 6-2. Public walking GPS traces (left) and public bike traces (right) 

 

We searched for but could not find walking GPS traces in the University of Pittsburgh’s 

area from OSM, Wikiloc, Everytrail, and timatio web sites. Therefore, we decided to collect data 

by volunteers, similar to the mapping parties found in the OSM project (Hakley and Weber, 
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2008) where large groups of people within a given area are offered guidance for collecting real-

world data using GPS devices. Students in courses with location topics, such as GIS, are 

potential volunteers for collecting data as it helps them learn how GPS works and how to collect 

data with GPS. Other incentives for contributors include getting a community sense by 

exchanging information with other members in the community and deriving personal 

information from contributing valuable information, among others.  

Although the LBSN approach is sound, it imposes certain constraints when collecting 

location data. Such constraints include walkable distance, complexity of mobile service, 

characteristics of the underlying area, and quality of GPS traces. Two of such constraints are 

related to human ability, while others are related to the environment. For walkable distance, the 

average human walking distance a day is around 2400 m in general (Frank et al., 2004); this 

implies that a large number of participants are needed to collect data in large areas. Maintaining 

up-to-date pedestrian network requires that members participate in repeated data collection. The 

closer the buildings are together, the narrower the streets are, and the closer the pedestrian 

footpaths are. Thus, a dense area (large number of pedestrian path segments) requires a larger 

number of volunteers than a sparse area does. Lastly, quality of GPS traces is affected by the 

types of GPS receivers at members’ disposal and by the accuracy and continuity of GPS signals 

in some areas. 

6.3 NETWORK CONSTRUCTION (CM ALGORITHMS) 

This section discusses an algorithm to automatically construct pedestrian networks using 

multiple GPS traces collected by individuals on foot (Sinnot, 1984). The input to this algorithm 



 60 

is walking GPS traces and the output is the constructed pedestrian network in a given area. A 

pedestrian network can be generated either manually or automatically. Manual generation means 

that contributors manually create and edit pedestrian paths using online GIS tools, such as JOSM 

(Java OpenStreetMap Editor), an online tool for creating and editing map based on GPS traces. 

Automatic generation means creation of map features from GPS traces without user intervention. 

The algorithm aims to process one raw GPS trace at a time and consists of three main steps: pre-

processing, significant point filtering, and pedestrian network construction. Figure 6-3 highlights 

the input, the three steps, and the output of the CM algorithms.  

 

Figure 6-3. Three steps of the CM algorithms 

 

The first two steps are concerned with preparing of individual GPS traces based on point-

to-point property. The last step is concerned with incorporating new input traces to the already 

constructed paths stored in the database (initially empty) and consists of three tasks: (1) 

geometrical improvement of existing pedestrian paths, (2) generation of new pedestrian path 

features, and (3) construction of pedestrian networks. Details of these steps are described in the 

following. 
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6.3.1 Pre-Processing 

Understanding quality of raw GPS traces is essential in constructing pedestrian networks; the 

lower the GPS accuracy, the lower the correctness of constructed pedestrian networks. This is 

particularly important as collected GPS traces usually contain errors due to the GPS Time-To-

First-Fix (TTFF) problem, and the obscured GPS satellite signals. Generally, pedestrian paths are 

closer to buildings than roads are, and buildings are the main source of interference with GPS 

signals in urban environments. Therefore, GPS accuracy might be degraded while walking along 

pedestrian paths next to high-rise buildings. Moreover, because GPS data are constantly shifting, 

data recorded along the same path at different times may yield different accuracies. The pre-

processing step aims to filter noises and outliers from GPS traces. In this step, GPS data, 

including latitude, longitude, time, speed, Horizontal Dilution of Precision (HDOP), and number 

of used satellites, are extracted. Serving as a filter, GPS observations with less than 4 satellites 

and HDOP greater than a threshold are considered as outliers and are eliminated. This task also 

eliminates the stored positions by GPS receivers when they are first powered up. The stored 

positions are the latitude and longitude (with no information on speed, HDOP, and number of 

used satellites) of the last location detected by the GPS receiver before it was powered off. 

Figure 6-4 shows a raw GPS trace (left side) and a filtered GPS trace (right side). 
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Figure 6-4. Example result after pre-processing 

6.3.2 Significant Point Filtering 

The objective of the significant point filtering step is to identify those GPS points that are 

important to determine the geometry of the underlying individual traces. A “significant point” 

refers to a GPS point with a high probability of determining the geometry of the walking path. 

For example, a GPS trace collected from an individual walking in a straight line would only need 

two significant points, start and end points, to represent the geometry of the GPS trace. This is a 

simple example and it is more challenging to identify the significant points for curved and 

irregular pedestrian paths from GPS traces. The input is the filtered GPS trace, obtained from the 

pre-processing step, and the output is the significant points of the GPS trace. Figure 6-5 shows 

input, output, and three tasks of the significant point filtering step.  
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Figure 6-5. Steps of significant point filtering 

 

The first task is to calculate bearing change (Δα), which is used to identify significant 

points in the algorithm. To calculate bearing change, the bearing of successive points in a filtered 

GPS trace is required. Note that GPS receivers provide bearing information, but it is not 

employed in this task because it is not highly accurate, especially when travelling at speeds of 

less than 3.0 m/s (Ochieng et al., 2003). Bearing change )(  , i.e., the absolute value obtained 

from subtracting successive bearings, is calculated, using the great circle navigation formula 

(Williams, 2008), is calculated as follows:  

)cos(*)lnsin( 2latgY        (6.1) 

              where   12 lnlnln ggg    

)lncos(*)cos(*)sin()sin(*)cos( 2121 glatlatlatlatX    (6.2) 

  ),(tan2 XYa          (6.3) 

            where α is the bearing between two coordinates. 
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The second task (see Figure 6-5) is to select candidate significant points using the chain 

coding technique. Each GPS point now contains bearing between successive points and bearing 

change (α). Given that bearing change is a real number ranging between 0 and 360, it is 

difficult to set a threshold for candidate significant point selection. For example, consider a 

bearing change between 3 to 359, the numerical difference between the values of the two 

numbers is very high but the actual change in direction is not. To address this problem, the chain 

coding technique to detect bearing change in the ordinal scale is employed. Chain coding is a 

common technique used to represent curves and recognized shapes of objects in image 

processing (Freeman, 1974). In our algorithm, a 12-direction chain code is chosen to represent  

bearing change in twelve direction intervals based on a counterclockwise direction starting from 

positive x-axis. A 12-direction is chosen because it is able to represent gently curves and angles 

of turns. The integer values, which range between 0 and 11, are used to represent direction of 

consecutive GPS points, as shown in Figure 6-6a. For instance, code 0 corresponds to bearing 

change from 0 to 15 and from 345 to 360; code 1 corresponds to bearing change from 15 to 

45.  The values determined from chain coding are then used to eliminate those points with a 

bearing change of 0 and 6. This is because these codes do not represent any turn or curve, as can 

be seen in Figure 6-6a. Examples of chain coding and significant point selection are given in 

Figure 6-6b. In the figure, the bearing change from P1 to P2 and P2 to P3 is 10˚ which corresponds 

to chain code 0, thus P2 is not considered a candidate significant point while P3 is considered a 

candidate significant point because its bearing change represents a turn.  
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Figure 6-6. 12-direction chain code and an example 

At this point, the algorithm has produced filtered GPS points along a walking trace that 

includes start, end, and candidate significant points. The selected GPS points from the chain 

coding task must be filtered further before they are considered significant points as they still may 

contain inaccuracies or may contain redundant data. A clustering analysis method is used to 

group candidate significant points to yield a significant point as the representative of each group. 

There are many types of clustering analysis, of which we chose the Partitioning Around Medoids 

(PAM) (Kaufman and Rousseeuw, 1987) method due to its robustness to noise and outliers. 

More specifically, PAM minimizes the dissimilarity (e.g., the geometrical distance) of the data 

points within a cluster, allows for a good clustering structure, and makes it possible to isolate 

outliers in most situations. PAM aims to find k representatives, called “medoids”, to minimize 

the objective function, which is the sum of the dissimilarities of all objects to their nearest 

medoid. PAM has two steps: (1) selecting sequentially k initial medoids and (2) swapping 

iteratively selected objects (medoid) with an unselected objects if the objective function can be 

reduced. This iterative process continues until the objective function can no longer be decreased 

(Kaufman and Rousseeuw, 1987). Considering PAM in our algorithm, the Euclidean distance 

function is used to compute the similarity between two candidate significant points, and the most 
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difficult task is the determination of a suitable number of clusters (k) since it cannot be known in 

advance. Kaufman and Rousseeuw (1990) suggest use of “Silhouettes” to validate quality of  

computed clusters and to determine which points lie well within their clusters and which do not. 

Each point i is represented by one silhouette (si), which is defined as follows:  

 
 )(),(max

)()(

ibia

iaib
Si


       (6.4) 

where  a(i) is average dissimilarity of point i to all other points within the same cluster and b(i) is 

average dissimilarity of point i to all other points in the neighboring cluster 

The value of si ranges between -1 and 1 where a value close to 1 means that the data is 

appropriately clustered, a value near zero means that the data is on the border of two clusters, 

and a value close to -1 mean that the data would be more appropriate for a neighboring cluster. 

The average silhouette width is the mean of si for all points i in a cluster and can be used to select 

a suitable number of clusters by choosing the number of clusters that yield the highest silhouette 

width.  

To illustrate the entire process of significant point filtering, two examples are given in 

Figure 6-7. Figure 6-7a shows the filtered GPS points through the pre-processing step. Black 

rectangular points in Figure 6-7b represent candidate significant points chosen by the chain 

coding technique. As shown in the figure, candidate significant points are able to represent the 

shape of a pedestrian path; however, some redundant points can be removed without loss of 

information. Green circle points in Figure 6-7c represent the significant points obtained from 

PAM where candidate significant points were clustered. The number of GPS points after 

processing each task is also illustrated in the figure. At the end of this process, the significant 

points extracted from each trace are used as an input to the pedestrian network construction step. 
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Figure 6-7. Examples of significant point filtering 

6.3.3 Pedestrian Network Construction 

Initially, the pedestrian network is empty and over time is incrementally extended/refined by 

collected GPS traces. The input is the significant points of a GPS trace, obtained from the 

previous step, and the output is the pedestrian network. Figure 6-8 shows the flowchart of this 

step.  
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Figure 6-8. Steps of pedestrian network construction  

This step begins by loading the set of significant points of a GPS trace and defining its 

map boundary. Then the algorithm decides the next task based on the following three conditions: 

(1) generating a new path segment, (2) merging and improving existing path segments, and (3) 

generating a new path segment and improving existing path segments. Within the defined map 

boundary, if there is no existing pedestrian path segments (called EPs), the new pedestrian path 

segment is detected and the next task is to generate the geometry of a new pedestrian path 

segment by connecting the given significant points. The new generated path is subsequently 

added to existing pedestrian network. An example is shown in Figure 6-9. 

 



 69 

 

 

Figure 6-9. An example of a generated pedestrian path segment 

On the other hand, if there are EPs within the boundary, a set of significant points are 

compared to the geometry of EPs in order to decide whether they should be merged or not. Given 

a set of significant points, several cases are possible. For instance, some significant points are 

merged to EPs and others represent a new path; all significant points are merged to EPs; and all 

significant points form a new path. The set of significant points are decided to merge and 

improve EPs when all the following three conditions are satisfied: (1) the shortest distance from 

a significant point to the closest EP is smaller than a predetermined threshold (called merged 

points); (2) there are at least two merged points on a particular EP segment; and (3) the 

directions of a curve drawn by contiguous merged points and a particular EP are nearly parallel. 

If consecutive significant points do not satisfy those three criteria, they form a new path and will 

be used to generate new geometry. Figure 6-10 shows an example of a new set of significant 

points (highlighted in circle “A”) considering as merged points. However, the significant points 

in circle “B” do not satisfy all the criteria for merging in that the direction of curve on merged 

points is almost perpendicular to the existing line. In this example, only significant points in 

circle “A” are merged to the existing line (called merged path) and other points contribute to the 

new pedestrian path. 
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Figure 6-10. An example of merged significant points and paths (in circle A) 

In a case where pedestrian path segments are close to each other, such as parallel 

sidewalks along narrow roads, to which pedestrian path segment the significant points belong to 

is not clear. To deal with this problem, the previous travelled path can be used to determine the 

next paths based on connectivity. Another possible way to determine the right path is to use the 

result by majority of merged points.  

Once points are merged, the next task is to improve the geometry of the merged 

pedestrian paths by applying statistics. The geometrical improvement process begins by 

extracting shape points (including start/end points) of the merged path.  Each merged significant 

point is then grouped to the closest shape points of the merged path. The new geographic 

locations of shape points are identified by calculating the mean position of geographic points in 

the group. However, there could be a case where the significant point itself could represent a new 

shape point of the merged path, if its geographic location is not close to existing shape points 

(i.e., distance to the closest shape point is larger than the threshold). An example of the 

geometrical improvement process is illustrated in Figure 6-11. Figure 6-11a shows the geometric 

location of shape points (green rectangle) of the merged path and the location of merged 

significant points (red circle). Figure 6-11b shows the new shape points (black triangle) of the 

merged path, which are derived from the mean position of geographic points in the group (each 
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circle). Figure 6-11c shows the geometry of the old path (solid blue line) and the new path 

(dashed red line) after overlaying the merged data on a raster image. As shown in the figure, the 

geometry of new path (after merging 2 GPS traces) is more accurate than the geometry of the old 

path (using one GPS trace). 

 

Figure 6-11. An example of geometric update of merged pedestrian path 

The last task of constructing pedestrian network is to update the topology of the network. 

After generating new geometry of a pedestrian path, new intersection points are created when 

either newly generated path intersects with EPs or there is a gap smaller than the minimum width 

of the pedestrian path between the end points of the newly generated paths and EPs. In the 

former case, the intersection points are used to split the lines and ensure the connectivity between 

them. The short lines after splitting are considered spurious and are removed. In the latter case, 

the gap is closed by snapping the end point to the closest paths and the snapped point is used as a 

new intersection. After improving the geometry of existing paths, the location of existing 

junction is updated based on the new geometry of pedestrian paths. Figure 6-12 gives three 

examples of the task of topology update. 
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Figure 6-12. Examples of validating network topology 
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7.0  IMAGE PROCESSING 

With the development of digital photogrammetry, computer vision, and pattern recognition, 

currently several semi-automatic and automatic techniques for analyzing, enhancing, and 

extracting features from digital images are available. Due to the need for efficient acquisition and 

update of data for GIS, much research has been on extracting road networks, vegetation areas, 

and buildings from high-resolution images. In contrast, research on extracting pedestrian 

networks from imagery is scarce (Walter et al., 2006). Since roads and pedestrian paths are man-

made objects and share similar characteristics, existing automatic urban road network extraction 

techniques are reviewed (Chapter 3) and are considered as a starting point for developing the 

pedestrian network extraction algorithm. Table 7-1 shows the characteristics of roads and 

pedestrian path segments. 

Table 7-1. Characteristics of roads and pedestrian paths 

Characteristics Road Pedestrian path segment 

Surface Concrete, Firm and smooth 
Color: dark gray 

Concrete, Firm and smooth 
Color: light gray 

Shape Line Line 
Width Constant: 3.96-4.57 m/ lane Constant: 1.83-7.62 m 
Curve Depend on road type (e.g., highway 

has less curvature than rural road) 
Curve radious should vary 
between 15.25 – 91.44 m 

Context objects Cars, buildings, trees, pedestrians, 
sidewalks 

Road, building, vegetation, 
parking lot 
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In high-resolution images, pedestrian paths appear as small-elongated regions with 

parallel borders. They generally have smooth and firm surfaces and are usually made of concrete, 

asphalt, brick, or cobblestone (ADA, 2004). The Federal Highway Administration (FHWA) and 

ITE recommend a minimum width of 1.83 m, which allows two people to pass comfortably 

(Center, 2009). Figure 7-1 shows the relationship between the pedestrian network model and 

context objects in the image. 

Figure 7-1. A pedestrian network model and context relations 

Pedestrian path segments are approximately parallel, connected, or close to context 

objects including roads, buildings, parking lots, and vegetation areas. The image intensity of 

pedestrian path areas is not constant because of shadows from trees or buildings, and small 

objects located on the path such as mailboxes, garbage cans, fire hydrants, or parking meters. A 

parking lot refers to an outdoor area reserved for off-street parking for multiple cars and it can be 

considered in two different ways: (1) as a walkable area where pedestrians can walk at random 

and (2) as an obstacle that precludes pedestrian paths. In this dissertation, the parking lot is 

considered as an obstacle, not a pedestrian path type because the digital representation of a 

parking lot is significantly different from the other types described above and it requires a special 

model and design.  
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Figure 7-2 shows the steps of the pedestrian network construction using two types of 

sensors, remotely-sensed imagery and laser imagery.  

 

Figure 7-2. Steps of the IP approach 

Section 7.1 discusses data sources required in this algorithm. Section 7.2 explains data 

preparation and Section 7.3 provides details of four steps of network construction: (1) objects 
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filtering, (2) pedestrian path region extraction, (3) pedestrian network construction, and (4) raster 

to vector conversion.  

7.1 DATA SOURCES 

Data required in the image processing approach for constructing pedestrian networks are derived 

from two sources: remotely-sensed imagery and laser imagery. We chose to utilize these two 

data sources for two reasons. First, both data sources are widely available and secondly, it has 

been proven that the 3D information from laser imagery, such as LiDAR point cloud data, is able 

to improve the analysis of optical images such as high-resolution images for detecting roads and 

buildings in urban areas (Hinz et al., 2001, Hofmann, 2001, Hu et al., 2004).  

7.1.1 Orthoimages 

Remotely-sensed images (e.g., aerial photos) are taken from an elevated position such as from an 

airplane or helicopter and contain measurements in x, y, z coordinates (NRC, 2003). Remotely 

sensed imagery has been widely used for creating and updating large-scale maps as well as for 

maintaining up-to-date GIS databases. The resolution of the orthoimages (low-resolution and 

high-resolution) has impacted on the techniques used to extract objects.  High-resolution imagary 

is required for extracting pedestrian paths because the geometrical properties of pedestrian paths 

are much clearer in them than the low-resolution imagary. An orthoimage is “remotely-sensed 

image data in which displacement of features in the image caused by terrain relief and sensor 
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orientation have been mathematically removed” (PAMAP, 2008). Figure 7-3 shows an example 

covering an orthoimage of the University of Pittsburgh’s main campus area.  

 

Figure 7-3. Example of orthoimage in the University of Pittsburgh's main campus 

7.1.2 LiDAR (Light Detection and Ranging) 

Aireborne LiDAR is a remote sensing technology that integrates laser scanner, GPS, and Inertial 

Navigation System (INS) in order to determine the shape of the ground surface for both natural 

and man-made features (Ackermann, 1999). The laser scanning technique is shown in Figure 7-4.  

 

Figure 7-4. The laser scanning technique (Renslow, 2001) 
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 While the aircraft is in flight, the laser transmits a pulse that is reflected off an object or 

the terrain and returned to the receiver. From a single beam, laser pulses can have multiple 

reflections that enable detailed modeling of terrain surface. For example, the first return hits the 

top leaves of the tree and reflect back to the sensor and the last return travels through a gap to hit 

the ground under the tree. By applying the speed of light, the distance from the sensor to the 

terrain point is determined by measuring the time delay between the transmitted pulse and return 

signal. At the same time, the x, y, z positions of antenna and the altitude angles of the aircraft are 

periodically recorded by the GPS receivers and INS, respectively. Consequently, the system 

produces abundant 3D information (x, y, z coordinates), called “point cloud” from which most 

grounds features, such as roads or buildings, are visible. Moreover, the reflective intensity or 

strength of the reflected laser pulse is commonly collected along with other data. An example of 

LiDAR point cloud data covering the University of Pittsburgh’s main campus is shown in Figure 

7-5.  

Figure 7-5. Example of LiDAR point cloud in the University of Pittsburgh's main campus 
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7.2 DATA PREPARATION 

Data preparation for image processing involves three tasks. The first task is to create raster-based 

data from LiDAR point cloud. The four raster-based datasets required for image processing are: 

(1) Digital Surface Model (DSM), (2) Digital Elevation Model (DEM), (3) Last-return surface, 

and (4) LiDAR intensity image.  DSM represents the surface from the first-return or from which 

the laser pulse is reflected and typically indicates trees, buildings, and terrain surface. DEM 

represents height information of the bare ground surface with no objects. Last-return surface 

represents elevations detected by the LiDAR pulse struck. LiDAR intensity image is a black and 

white image representing the return strength of the laser pulse that generated the point. 

 There are two common formats for representing raster surfaces: Triangulated Irregular 

Network (TIN) and raster grid format. A TIN is a digital structure that uses an irregularly spaced 

set of points to approximate the terrain surfaces as a series of triangles. Figure 7-6 shows an 

example of a TIN representing the DSM of the University of Pittsburgh’s main campus and 

Figure 7-7 represents its 3D view. The raster grid format is represented by the origin point, X 

and Y spacing, and the size of grid.  To represent raster-based surface from LiDAR point 

collections, the raster grid format is chosen because it is a simple way of storing elevation and 

intensity values. Although TIN representation is able to model the surface more accurate and 

uses fewer points than the raster grid, determining the elevation of a point is more complicated 

and requires more computation.  
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Figure 7-6. An example of TIN representing DSM in the University of Pittsburgh main campus 

        

Figure 7-7. A 3D view of DSM 
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 To produce raster grid data, each point data is resampled into a regular grid with a 

selected cell size. The nearest neighbor interpolation method is employed to create raster grid 

data because it is the simplest method and fast, and it preserves edges (e.g., building edges), 

which are important for huge amount of points representing objects in urban area (Youn, 2006). 

An example of raster data generated from point clouds using nearest neighbor interpolation is 

shown in Figure 7-8. 

 

Figure 7-8. Example of DSM, DEM, Last-Return surface, and LiDAR intensity image of the same location 
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The second task of data preparation (see Figure 7-2) is data fusion. Data fusion integrates 

information from remotely-sensed images (orthoimage) and laser images (LiDAR). An 

orthoimage has three color bands, i.e., R (Red), G (Green), B (Blue). The fused data is a 4-band, 

R, G, B, I (LiDAR intensity), multispectral image that incorporates RGB data with the LiDAR 

intensity image, after a resampling of points to raster data. 

 The third task of data preparation (see Figure 7-2) is pixel-based classification. Pixel-

based classification refers to the task of extracting information classes using the spectral 

information from a multiband raster image. The resulting classified image will be used in two 

subsequent tasks: object filtering (Step1 of network construction) and automatic seed selection 

(Step 2 of network construction). Two common image classification approaches are supervised 

classification and unsupervised classification. Supervised classification uses the spectral 

signature of different classes obtained from training samples to classify an image, while 

unsupervised classification groups the image into clusters without the training data. Support 

Vector Machine (SVM), Maximum Likelihood classifier, and Neural Network classifier are 

common classifier algorithms. Supervised classification using SVM is selected in this 

dissertation because it has been proven that it can produce a high classification accuracy and 

outperforms other competing algorithms (Hermes et al., 1999, Song and Civco, 2004).  SVM 

is a classification technique developed by Vapnik and his group at AT&T BELL laboratories 

(Vapnik, 1995) and is widely used in a variety of applications. The main idea of SVM is to 

separate classes with a hyperplane surface so as to maximize the margin among them. For more 

details of SVM refer to Burges (1998).  

 To perform supervised classification, groups of features need to be specified, in order to 

collect training samples and create a classifier model. We first identify two groups of features, a 
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pedestrian paths group including actual pedestrian paths, and a non-pedestrian paths group 

including other features, which have spectral values different from pedestrian paths. Training 

samples of two classes are manually collected and evaluated using tools in GIS. An example of 

training samples is shown in Figure 7-9, where blue polygons represent pedestrian paths group 

and red polygons represent non-pedestrian paths group.  

 

Figure 7-9. An example of training sample for pedestrian paths and non-pedestrian paths groups 

 

The histogram and statistics are used to compare the distributions of specified classes and 

to evaluate the training samples. If the training samples represent different classes, their 

histogram should not overlap. An example of the histogram of R (red), G (green), B (blue), and I 

(LiDAR intensity) is shown in Figure 7-10 and the statistics of training samples are shown in 

Table 7-2. 
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Figure 7-10. The histogram of the training samples 

Table 7-2. The statistics of training samples for two groups 

Pedestrian path group Non-pedestrian path group 
Statistics 

R G B I R G B I 
Minimum 46 54 65 5 44 48 60 3 
Maximum 227 228 229 255 190 187 182 255 
Mean 164.17 160.59 154.39 120.7 118.92 118.70 113.10 135.25 
Stdev 35.72 34.65 28.65 56.05 30.37 27.15 24.82 85.98 

 

 As seen in the image, the histogram shows that there is significant overlapping between 

two classes, especially using LiDAR intensity. The standard deviation of LiDAR intensity values 

for both pedestrian paths group and non-pedestrian paths group are high. This is the reason why 

we tried to classify classes based on surface material. Four classes, which are concrete, asphalt, 

brick, and vegetation, are identified. The training samples of these four classes are collected and 

their histograms are shown in Figure 7-11.  
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Figure 7-11. Examples of histograms for four classes 

Table 7-3. Statistics of training samples for four classes 

Groups Minimum Maximum Mean Stdev 

Vegetation 
R 46 157 102.47 20.13 
G 55 159 106.10 17.4 
B 59 149 99.37 12.86 
I 9 255 179.66 90.08 

Concrete 
R 53 217 174.08 32.89 
G 60 215 174.48 32.58 
B 69 212 167.02 28.19 
I 21 241 145.62 36.92 

Brick 
R 124 218 187.95 7.56 
G 101 212 167.47 13.05 
B 99 208 153.68 14.63 
I 136 255 192.90 28.99 

Asphalt 
R 54 235 143.85 33.14 
G 54 230 142.74 35.65 
B 63 232 143.51 30.21 
I 26 120 74.63 26.10 
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 Comparing the histograms and statistics of training data between two classes and four 

classes, we chose to classify images into four classes because of less overlapping between 

classes.  

To generate a classifier model, we experimented and compared results of SVM using three 

different image sources: 1-band (I-LiDAR intensity), 3-band (R, G, B), and 4-band (R, G, B, I). 

To perform supervised classification, the training data were used to generate a classifier model 

and the resulting model was used to classify the image into predefined classes. The selection of 

training areas was done in ArcGIS software, which supports a polygon tool for selecting features. 

The LIBSVM library by Chang and Lin (2011) was employed to implement SVM. The Radial 

Basis Function (RBF) was selected as a kernel function due to its suitably for classification of 

images that have nonlinear relationship between class labels and attributes. Two parameters for 

RBF kernel are C and γ and they were selected by using the 10-fold cross validation and grid 

search. In 10-fold cross validation, the training data was divided into 10 subsets of equal size, 

where one subset was used as the testing set and the remaining data were used as the training set. 

To measure the performance of the classifier model, the cross-validation accuracy, which is the 

percentage of data that are correctly classified, was used. As recommended by Chang and Lin 

(2011), various pairs of (C, γ) were tried and the one with the highest cross validation accuracy 

(C = 1024 and γ  = 64) was selected. The classifier model was tested by 10-fold cross validation 

with three image sources: 1-band (LiDAR intensity), 3-band (RGB), and 4-band (RGBI). The 

error matrix introduced by Congalton (1991) was employed to represent the classification 

accuracy. Table 7-4, Table 7-5, and Table 7-6 show the error matrices for the classification 

results for 1-band, 3-band, and 4-band, respectively. In the error matrix, each column represents 

the reference data (actual class) and each row represents the instances in a classified class.  Three 
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measurement values including producer’s accuracy, user’s accuracy, and overall accuracy were 

calculated. Producer’s accuracy corresponds to error of omission indicating the probability of a 

reference pixel being incorrectly classified. User’s accuracy corresponds to the error of 

commission (false alarm rate) indicating the probability that a pixel classified actually does not 

represent that class on the ground.  Overall classification accuracy is the proportion of the total 

number of correct predictions. 

Table 7-4. Error matrix for the classification result using 1-band (LiDAR intensity) 

Reference Data Classified 
class Vegetation Concrete Brick Asphalt 

Total User’s 
Accuracy (%) 

Vegetation 2632 138 428 79 3277 80.32
Concrete 459 2442 458 324 3683 66.30
Brick 1708 1844 4247 0 7799 54.46
Asphalt 940 627 0 4935 6502 75.90
Total 5739 5051 5133 5338 21261  
Producer’s 
Accuracy (%) 45.86 48.35 82.74 92.45  

 
Overall classification accuracy = 67.05% 

 
Table 7-5. Error matrix for the classification result using 3-band (RGB) 

Reference Data Classified class 
Vegetation Concrete Brick Asphalt 

Total User’s 
Accuracy (%) 

Vegetation 5516 380 2 588 6486 85.04
Concrete 85 3369 301 764 4519 74.55
Brick 2 451 4802 40 5295 90.69
Asphalt 136 851 28 3946 4961 79.54
Total 5739 5051 5133 5338 21261  
Producer’s 
Accuracy (%) 96.11 66.70 93.55 73.92  

 
Overall classification accuracy = 82.94% 

 
Table 7-6. Error matrix for the classification result using 4-band (RGBI) 

Reference Data Classified 
class Vegetation Concrete Brick Asphalt 

Total User’s 
Accuracy (%) 

Vegetation 5636 154 0 166 5956 94.63
Concrete 50 4423 187 378 5038 87.79
Brick 1 245 4916 0 5162 95.23
Asphalt 52 229 30 4794 5105 93.91
Total 5739 5051 5133 5338 21261  
Producer’s 
Accuracy (%) 98.21 87.57 95.77 89.81  

 
Overall classification accuracy = 92.98% 
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A comparison of Table 7-4, Table 7-5, and Table 7-6 reveals that, from producer’s 

accuracy, classification using RGBI produced the most accurate result for all classes, except the 

asphalt class. The asphalt class is most accurate in classification using the LiDAR intensity; 

however, the resulting rate is not much different from the RGBI (92.45% and 89.81%) rate. 

From user’s accuracy, using RGBI produced the most accurate result for all classes. With this 

result, the final classifier model was generated using the entire training data set of RGBI and the 

selected parameters for SVM. This classifier model was employed to classify the images in the 

study area. Figure 7-12 shows examples of classification results where white areas represent  

“concrete” class and black areas are background. 

 

Figure 7-12. Examples of classified class "Concrete" represented by white areas 
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7.3 NETWORK CONSTRUCTION (IP ALGORITHMS) 

As seen in Figure 7-2, the network construction based on image processing approach employs 

the generated classified raster image to construct pedestrian networks. Four main tasks of the 

network construction are explained as follows. 

7.3.1 Object Filtering 

Pedestrian networks often exist in urban areas and are surrounded by objects such as buildings, 

roads, parking lots, and vegetation areas and might be occluded by trees or shadows. The 

algorithm first attempts to eliminate those nearby features that are unlikely to represent 

pedestrian paths before extracting them. Since we focus only on outdoors, buildings, roads, and 

parking lots are three large potential features in an image that preclude pedestrian paths. The goal 

of object filtering is to filter building, road, and parking lot pixel out of an image and to produce 

a binary image containing candidate pedestrian path pixels. There are three separate tasks in this 

step: building detection, road detection, and parking lot detection. Building and parking lot pixels 

are detected and marked as obstacles, while road pixels are detected and used in crosswalk 

linking. Moreover, detected road pixels can alleviate the difficulty of pedestrian path extraction 

because roads and pedestrian paths have similar shape and intensity. The steps of the object 

filtering algorithm are illustrated in Figure 7-13. 
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Figure 7-13. Steps of object filtering algorithm 

Building detection employs DSM, DEM, and Last-return surface raster images generated 

from LiDAR point clouds. The ground filtering method (Morgan and Tempfli, 2000, Ekhtari et 

al., 2008, Meng et al., 2009) is used to separate ground and non-ground pixels. Non-ground 

pixels that do not represent buildings, such as trees, telephone poles, and vehicles, are removed 

by using the elevation difference filtering method. The ground filtering method starts by 

generating normalized DSM (nDSM), where each pixel contains height information 

aboveground. nDSM is the difference between DSM and DEM. Then the threshold value (σ) for 

maximum height is set in order to separate the aboveground and ground areas. This can be 

expressed as: 
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 where Aboveground(i,j) denotes the value for the binary map corresponding to the ith and 

the jth pixel coordinates.  
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The ground filtering method can detect most buildings but large size trees and other 

noises still remain and need further filtering. The most common characteristic used to remove 

trees from aboveground features is the elevation between the first and last LiDAR returns (Δh). 

The first return data contains elevations from the first or the only surfaces that the LIDAR pulse 

struck, whereas the last return contains elevations from the second or last surface that the LIDAR 

pulse struck. Therefore, Δh can indicate the likelihood of the existence of a penetrable object 

(e.g., trees) or a non-penetrable object (e.g., buildings). Theoretically, Δh for buildings should be 

0 or a small value because laser lights do not penetrate hard (man-made) objects such as building 

roofs (Meng et al., 2009). On the other hand, a large Δh is a critical indicator of large sized trees. 

The aboveground features extracted as described above can be refined with the result of tree 

extraction and expressed as: 
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 where Building(i,j) denotes the value for the binary map corresponding to the ith and the 

jth pixel coordinates.  

The pixel is classified as a building feature when it is an aboveground feature and is not a 

tree feature. Building regions are derived after combining the extracted aboveground and tree 

features. However, the resultant building regions might still contain small features or holes 

caused by the ground filtering and the elevation difference filtering. The mathematical 

morphology operators of dilation and erosion are applied to fill in the holes and remove the small 

regions, respectively. Figure 7-14 shows the processes of building detection consisting of (a) 

nDSM, (b) aboveground binary image, (c) tree binary image, and (d) building binary image. 
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Figure 7-14. Example of building detection result 

Road detection can be achieved by using either breakline data or road centerlines. 

Breaklines are contour enhancing lines that were collected photogrammetrically along both 

natural and man-made features, such as road edges, bridges, overpasses, shorelines of 

lakes/ponds/rivers, and railroads. Breaklines are usually one data product from LiDAR and are 

used in the creation of DEM and contour lines. Breaklines are 3D polylines with elevation values 
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and each breakline has attributes described with feature type such as paved roads, bridges, lakes 

and ponds. Breaklines of paved roads and unpaved roads are selected to generate the binary 

image of road area. The selected breaklines are used to generate the polygon when polyline 

objects are closed and then the non-polygon area is assigned as the road pixel in the binary 

image. If the breakline data is not available, another way to indicate the road area is to use the 

buffering method on existing road centerlines network. The buffer size can be approximated by 

using a road lane category and direction of travel, as employed in the network buffering 

approach. The binary image is generated from the road buffer polygon, where “1” represents a 

road area and “0” represents a non-road area. Figure 7-15 shows an example of (a) breakline and 

(b) road detection, where black color represents road pixels.   

 

Figure 7-15. An example of road detection result 

Once building and road are detected, their pixels are removed and a binary map of non-

road ground level is generated, using Equation 7.3.  Figure 7-16 shows the derivation of non-

road ground level map, where white color represents road-building and black color represents 

non-road ground level pixels.  
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 where non-road ground level (i,j) denotes the value for the binary map corresponding to 

the ith and the jth pixel coordinates .  

 

Figure 7-16. Building and road filtering 

As mentioned earlier, parking lots are considered as obstacles in this dissertation. Parking 

lot detection and filtering are described as follows. Parking lot detection employs the classified 

image and the resultant binary image from building and road filtering processes to extract the 

pixels representing parking lots. Each pixel of the classified image, derived from pixel-based 

classification, contains a class label, which can be asphalt, concrete, brick, or vegetation. 

Detecting parking lots starts by choosing only pixels that are non-road ground level features and 

have class label of “asphalt”. The class label “asphalt” is selected because parking lots are 

commonly paved with an asphalt material. Next, the median filter (Lim, 1990), a non-linear 

operation, is applied to remove randomly occurring white and black pixels, also known as salt 

and pepper noise. After noise filtering, the mathematical morphological operations are employed 
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to analyze and distinguish the objects according to shape and size characteristics. The 

morphological operators of opening and closing are applied using a rectangular shaped 

structuring element. The opening operator removes small objects from an image while 

preserving the shape and size of larger objects. The closing operator fills in the region gaps and 

smoothes the outer edges. Finally, the regions with a minimum number of pixels representing a 

2-space parking lot are kept. Figure 7-17b shows the example of candidate parking lot pixels and 

Figure 7-17c shows the result after noise removal and applying morphological operation. Figure 

7-17d shows parking lots in the image.  

 

Figure 7-17. Parking lot detection 

Once parking lot pixels are determined, the binary map of pedestrian path candidates is 

obtained from Equation 7.4. 
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 where pedestrian path candidate (i,j) denotes the value for the binary map corresponding 

to the ith and the jth pixel coordinates.  
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7.3.2 Pedestrian Path Region Extraction 

Image segmentation is the process of partitioning a given image into salient objects or regions 

(e.g., pedestrian path regions representing walking areas). There are three types of segmentation 

techniques: thresholding, edge-based, and region-based. Thresholding is a simple but effective 

technique used to separate objects from the image background when the intensity of pixels 

belonging to the object is substantially different from the intensity of the pixels belonging to the 

background. In edge-based segmentation, an edge detector is applied to the image to classify 

each pixel as edge or non-edge and form connected regions. This technique is suitable for images 

in which the pixel properties change abruptly between different regions. Region-based 

segmentation aims to find the regions directly by iteratively grouping neighboring pixels that 

have similar values and splitting groups of pixels, which are dissimilar in value. To segment 

pedestrian path regions, a hybrid method that combines edge-based and region-based methods 

was employed to achieve better segmentation because many regions (e.g., vegetation, concrete 

structure) in remotely-sensed images contain noises, which are not well separated. The 

pedestrian path region extraction algorithm starts with selecting seed points that are considered 

to be inside pedestrian path regions. From assigned seeds, regions are grown by merging the 

neighboring pixels that are likely to represent pedestrian paths under the condition that regions 

are not grown beyond their edges. Figure 7-18 highlights the algorithm’s steps: (1) seed 

selection, (2) region growing, and (3) region refining. Two required inputs are the binary image 

representing the pedestrian path candidate map derived from the object filtering step and the 

pixel spectral information derived from the data fusion. 
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Figure 7-18. Flowchart of pedestrian path area extraction 

The goal of the seed selection is to select initial growing pixels or seeds from the image. 

This step is very important because poorly selected initial pixels may result in incorrect 

segmentation of an image. In this algorithm, seeds must have: (1) class label (L) “concrete” or 

“brick”, (2) high color and intensity similarity (S) to neighbor pixels, and (3) low color and 

intensity difference (D) to neighbor pixels expressed as:  
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 where t1 is similarity threshold and t2 is difference threshold.  

The class label concrete and brick are specified since pedestrian path surfaces are most 

often made of concrete and brick. The second and third criteria are needed to verify that the 

seeds do not lie on the edge of a region. To calculate the similarity of a pixel to its neighbors, the 

formula by Frank and Cheng (2005) is applied and explained as follows. Considering eight-

connected neighbors, the standard deviations of the 4-band spectral (R, G, B, I) of each pixel are 

calculated and then summed (Equation 7.6) to calculate the spectral deviation. This spectral 
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deviation is then normalized by dividing the maximum spectral deviation of all the pixels in the 

image )( max  by the spectral deviation of each individual pixel as illustrated in Equation 7.7. 

Therefore, the normalized spectral deviation of each pixel falls in the range from 0 to 1. Finally, 

the similarity value of a pixel to its eight neighbors is derived by subtracting the normalized 

spectral deviation from 1 as shown in Equation 7.8.  

IBGR         (7.6) 
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 N       (7.7) 

NSimilarity 1              (7.8) 

The Euclidean distance formula is used to determine the color and intensity difference of 

a pixel to its eight neighbors, as shown in Equation 7.9. For each pixel, the maximum difference 

of eight neighbors is used as the third criteria of seed selection.  
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Once suitable seeds are identified, the second step, region growing, is performed, in order 

to obtain homogeneous regions of pedestrian paths in the image. This step incorporates both 

spatial context and spectral information with the goal of selecting a group of adjacent pixels that 

have similar spectral information. The process starts by selecting an initial active pixel and 

comparing its spectral information to the eight neighboring pixels that are candidate pedestrian 

path pixels, are non-edge pixels, and are not yet allocated to the region. The edge pixels are 

extracted using the canny edge operator and are excluded from the growing process because 

they, by definition, indicate a border and not a continuation.  The comparison of an active pixel 

and its neighbor pixels consists of first calculating the difference between its color and intensity 

value from the neighbors’ color and intensity value. This calculated value is then ranked lowest 
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to highest, stored in list N, and is the basis for choosing the next active pixel. The next active 

pixel is chosen by looking at the lowest value in list N and comparing it to a predetermined 

threshold value. If the lowest value is below the threshold then it is added to the region. The 

process continues in a similar fashion where the pixels in list N are compared with the average 

color and intensity value determined from the pixels in the region. The region grows until no 

adjacent pixel is below the predetermined threshold value. When the growth of a region stops, 

another seed, which does not yet belong to any region, is chosen and the process starts again. 

This process continues until all pixels are assigned to a region.  

The outcome from the region growing process might result in holes, spurious regions, or 

overgrowing as a result of various noises, non-optimal parameter settings, or inappropriate seed 

locations. To overcome these problems, the region refining process is applied. The refining 

process starts by calculating each region’s properties including area, eccentricity, and spectral 

difference (in terms of RGBI). The spectral difference is the difference between a region and the 

sample pedestrian path region with shadow and no shadow. Area is the actual number of pixels 

in the region and the eccentricity is the fraction of the distance along the major axis’ length at 

which the focus lies. The eccentricity value is between 0 and 1 where 0 represents a circle and 1 

represents a line segment. The mean spectral (R,G,B,I) of each extracted region and sample 

pedestrian path region both with and without a shadow are computed. The spectral difference 

between each region and both samples are calculated using the Mahalanobis distance (De 

Maesschalck et al., 2000) as follows: 

)()(),( 1 yxSyxyxD T         (7.10) 

Where ),,,( IBGRx   of a region 

           ),,,( IBGRy  of sample region 

          S is a covariance matrix 
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 Once the properties of all extracted regions are calculated, they are then classified into 

one of two classes, pedestrian path and non-pedestrian path, based on properties and training 

samples. The training samples are manually chosen from a set of regions for which the correct 

classification is known and used to create a region refining model based on the k-Nearest 

Neighbor algorithm. According to the region refining model, each region is assigned to its 

closest class and only regions corresponding to the pedestrian path class are kept and used in the 

following step. Figure 7-19a shows the example results of seed selection, where red dots 

represent seeds. Figure 7-19b presents three examples of region growing, where white pixels 

represent the extracted regions. The final result of pedestrian path extraction is shown in blue in 

Figure 7-19c.  

 

Figure 7-19. Examples of pedestrian path regions extraction 
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7.3.3 Pedestrian Network Construction 

The pedestrian network is generally composed of pedestrian path centerlines and their 

connections. The pedestrian network construction algorithm first reduces the number of pixels 

from several (regions) to one (lines) and then closes the remaining gaps through edge linking. 

The crosswalks, which are one type of pedestrian path, are added in order to complete the 

pedestrian network.  

The pedestrian path centerline extraction is the process of generating the centerline of the 

extracted pedestrian path regions. The mathematical morphology erosion operator and thinning 

algorithm are employed to extract centerlines. The erosion operator is used to shrink the 

pedestrian path regions and the thinning algorithm (Lam et al., 1992) is used to reduce the 

regions to lines of one pixel wide that approximate their centerlines and preserve the extent and 

connectivity of the original regions. The erosion operator is applied before the thinning algorithm 

because the thinning process distorts lines near the intersections and the extent of the distortion 

depends on the thickness of the regions (Chiang and Knoblock, 2010).  

After the pedestrian path centerlines are obtained, there are situations where gaps in lines, 

caused by shadows or overlap objects in the images, still exist. To deal with this problem, we 

developed an algorithm to close the gaps by analyzing each end point and extending it to the best 

linking end points. The edge linking algorithm is illustrated in Figure 7-20. 
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Figure 7-20. Algorithm to link the broken pedestrian path centerlines 

The algorithm starts by extracting endpoints of the pedestrian path centerlines using a 

morphological operation. To efficiently close the gaps between end points, correct pairs for 

linking need to be identified. However, not every end point requires linking, such as end points 

close to buildings. To identify pairs of linking, the scanning direction and area for each end point 

by evaluating the linked pixels that generated it need to be determined. The edge direction 

template from CAEL (Ghita and Whelan, 2002) is applied in determining scanning direction and 

area. The scanning direction is identified by the majority of directions derived from last four 
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edge pixels. Examples of eight scanning directions and areas of an end point are illustrated in 

Figure 7-21. 

 

Figure 7-21. Scanning direction and area of an end point 

Once the scanning direction is determined, all end points that are located within the 

scanning area and a maximum gap are considered as candidate linking points. If the list of 

candidate linking points is empty, it is interpreted that the end point does not require edge 

linking. In the next step, all candidate linking points are evaluated using the likelihood function 

(Wang and Zhang, 2008) of two parameters: Euclidean distance and angle between current end 

point and each candidate linking point:  
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where C and E are the current end point and the candidate linking point, respectively; 

D(C,E) is the number of pixels on a straight line between C and E that is derived by employing 

the Bresenham algorithm (Bresenham, 1965). However, if the straight line between C and E 

passes through a building, a road, or a parking lot, C will be eliminated from the candidate list. 

 is the angle between C and E used to evaluate how well C matches the edge direction at 

E. The smaller the , the more likely the two directions will match. The candidate linking 

point with the largest P(C,E) is chosen as the best matching point of E. An example of two 
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candidate linking points and the calculation of a likelihood function is shown in Figure 7-22. 

From the example, the candidate linking point “A” is chosen as the best match because of its 

highest likelihood value (P(C,E)). 

 

Figure 7-22. An example of candidate linking points and calculation likelihood function 

Once pairs of linking end points are identified, the algorithm attempts to determine the 

missing edge segment between each pair of end points. Most existing edge linking methods use 

the smallest distance to link between end points but are not suitable for linking the missing 

pedestrian paths because a straight line path based on the smallest distance might contain pixels 

that are not pedestrian path types. For this reason, the intensity information is used in 

determining linking paths. Dijkstra’s algorithm was employed to determine the linking path that 

has the smallest intensity difference from the current pedestrian path pixels in the image. Four 

inputs required for Dijkstra’s algorithm are an adjacency matrix, non-negative weight, and two 

end points. The adjacency matrix represents which nodes of a directed graph are adjacent to each 

other, where node refers to a pixel in the raster image. Weight of each pixel is the intensity 

difference between the pixel and other pixels that belong to pedestrian paths in the image. The 

intensity difference is calculated by using the Mahalanobis distance (Equation 7.10). Two 

examples of linking paths between two end points using the minimum intensity difference 

(intensity) and using the minimum distance (distance) are shown in Figure 7-23. As seen in the 
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figure, the linking paths obtained from using the intensity information covers more pedestrian 

path pixels than those using the minimum distance do. 

 

Figure 7-23. Two examples of linking paths between two end points 

The last task of pedestrian network construction is crosswalk linking. Crosswalk is a 

designated point on a road that aims to increase pedestrian safety. In remotely-sensed images, a 

crosswalk appears as a road marking consisting of several parallel lines in white or yellow on a 

road. Since the color of road area and crosswalk marking are quite different, it is feasible to 

extract high-brightness pixels from the road area using the thresholding method. However, some 

crosswalk markings in remotely-sensed images are not clear because of old pavements, 

obstruction by vehicles, shadows or trees.  Additionally, some crosswalks are unmarked. As a 

result, we do not extract crosswalk pavement markings from imagery, instead, we add crosswalk 

links to existing paths at all road intersections, based on the assumption that crosswalks are 

usually located at every road intersection. The algorithm of crosswalk linking is shown in Figure 

7-24. 
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Figure 7-24. Algorithm for crosswalk linking 

The crosswalk linking algorithm starts by finding road centerlines and intersections from 

the road binary image using the mathematical morphology operations. Figure 7-25a shows an 

example of road centerlines and intersections. At each intersection, we find the number of 

connections, which are used as the number of crosswalk links (e.g., 3-way intersection 

determines 3 crosswalk links) and determine the approximate crosswalk endpoints, as shown in 

Figure 7-25b. The pedestrian path pixels closest to the approximate crosswalk endpoints are 

selected and used to generate the crosswalk links, as shown in Figure 7-25c and Figure 7-25d.  
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Figure 7-25. An example of crosswalk linking 

Figure 7-26a shows the pedestrian path centerlines and the endpoints represented by red 

dots. Once the endpoints are determined, the edge-linking algorithm identifies the missing links 

between end points. Figure 7-26b shows an example of edge linking. The last task, crosswalk 

linking, added the crosswalk segments at every intersection of road segments. Figure 7-26c 

shows the final result of a pedestrian network overlaid on the image. 
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Figure 7-26. Three steps of pedestrian network construction 

7.3.4 Raster-To-Vector Conversion 

The extracted pedestrian networks are in raster format with all edge pixels stored in the order of 

screen coordinates. To support navigation systems/services or other GIS applications, the 

geographic data in vector format is often required. Two processes, vectorization and 

georeferencing, are performed on the binary raster images, obtained from the previous step. 

Vectorization is the process of transferring pixels into line vector data and georeferencing is the 

process of transforming screen coordinates into geographic coordinates.  

For vectorization, all pedestrian path pixels must be organized according to the edge they 

belong to through edge tracing. The steps of edge tracing are described in Figure 7-27. 
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Figure 7-27. Algorithm for edge tracing 

After edge tracing, a set of lines containing edge pixels is derived and is used to generate 

line vector data. The geometry of a line is represented by at least two end points. Other than two 

end points, the shape points are added to represent the curved line geometry. For this reason, we 

choose only the necessary edge pixels to represent the geometry of each line by employing the 

corner detector based on chord-to-point distance accumulation (Awrangjeb and Lu, 2008). 

Figure 7-28 shows examples of selected edge pixels (green circles) to represent line geometry. 
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Figure 7-28. Examples of selected edge pixels to represent the geometries of lines 

The final task of pedestrian network extraction technique is georeferencing that adds 

location information (i.e., geographic coordinates) to the extracted pedestrian networks. A spatial 

referencing matrix that ties the row and column of an image space to coordinate space is created 

and is used to transform screen coordinates to geographic coordinates, as shown in Figure 7-29. 

 

Figure 7-29. Georeferencing image space to coordinate space 

The parameters needed to create a spatial referencing matrix are lon1, lat1, dx, and dy, 

where lon1 and lat1 specify location of the center of the first pixel (1,1) in the image; dx is the 

difference in longitude between pixels in successive columns; and dy is the difference in latitude 

between pixels in successive rows. After obtaining all the parameters, the map coordinates 

(longitude, latitude) of related pixels with screen coordinates (col, row) can be calculated as: 

])1(,)1([],[ 11 dyrowlatdxcollonrowcol     (7.12) 
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8.0  EVALUATION  

This chapter describes the evaluation of the pedestrian network construction based on the three 

different approaches, network buffering, collaborative mapping, and image processing. In 

Section 8.1, the evaluation methodology is provided. Section 8.2 details the pedestrian network 

baseline and the study area for the evaluation. Sections 8.3, 8.4, and 8.5 details the experiment 

settings and the evaluation results obtained from the three approaches.  

8.1 EVALUATION METHODOLOGY 

This section describes the evaluation of the constructed pedestrian networks by the network 

buffering, collaborative mapping, and image processing approaches. The method proposed by 

Wiedemann (2003) for evaluating automatic road extraction by image processing approach, is 

adapted for evaluating the constructed pedestrian networks. The method compares the results 

from each of three approaches with a pedestrian network baseline. The pedestrian network 

baseline (ground truth) is a high-quality network of pedestrian path segments in an area. Details 

of creating the baseline are described in Section 8.2. 

The evaluation method consists of two steps: (1) comparing the pedestrian network 

baseline with the constructed pedestrian network through a pedestrian segment matching process 

and (2) calculating quality measures of evaluation criteria (described in Table 2-4). The purpose 
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of the first step is to ensure that the generated paths are correct and provide measurement data for 

the second step. The purpose of the second step is to analyze the matched results in the first step 

to determine the quality of the generated paths.  

The first step, matching, has two similar tasks. The first task begins by using a polygon 

buffer of a predefined width around the pedestrian network baseline. We have used a buffer 

width of 1.83 m as it is the recommended minimum width for a sidewalk or walkway according 

to ITE (Center, 2009). Then, the generated pedestrian path segments are individually compared 

with the baseline network buffer where the length of each segment that falls within the buffer is 

recorded. Those generated pedestrian path segments within the buffer are considered as 

“matched” (True Positive: TP), and those outside the buffer are considered as “unmatched” 

(False Positive: FP), as shown in Figure 8-1(a). The length of matched generated segments is 

calculated. Once the first task iscomplete, the buffering and matching tasks are repeated, only 

this time the buffer is produced around the generated pedestrian path segments and the pedestrian 

network baseline are compared with this buffer. The unmatched reference data are denoted as 

false negative (FN), as depicted in Figure 8-1(b). The length of matched reference segments is 

calculated from the second task. 

  

Figure 8-1. Matching principle (adapted from Wiedemann (2003)) 
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Once the matching task is complete, the next step is to calculate quality measures in order 

to validate the performance of the three approaches. Table 8-1 shows the definition and formula 

for the evaluation criteria (Wiedemann, 2003).  

Table 8-1. Definition and formula for evaluation criteria 

Criteria Formula Range 
value 

Optimu
m value 

Geometrical completeness: the degree to 
which pedestrian path features describing 
the actual pedestrian paths are included in 
the extracted dataset 

referenceoflength

referencematchoflength

__

___
 

[0;1] 1 

Geometrical correctness: the percentage 
of the generated pedestrian paths 
(extraction), which is in accordance with 
the baseline 

extractionoflength

extractionmatchedoflength

__

___

 

[0;1] 1 

Topological completeness: the presence or 
absence of connection nodes in a dataset  

CR

CBref

 
[0;1] 1 

Topological correctness: the degree to 
which extracted features represent correct 
connections CG

CBgen

 
[0;1] 1 

 

Explanations of the variables in Table 8-1 are as follows. Length of reference refers to the 

total length of related segments in the reference network, and length of matched reference refers 

to the total length of matched segments in the reference network. Length of extraction refers to 

the total length of the generated segments and length of matched extraction refers to the total 

length of generated segments that are matched with the reference segments. CR is the number of 

connection points in the reference network and refCB  is the number of points connected in both 

networks. CG is the number of connection points in the generated network and genCB  is the 

number of points connected in both networks. 
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8.2 PEDESTRIAN NETWORK BASELINE AND THE STUDY AREA 

The pedestrian network baseline (ground truth) is a high-quality geographic data representing the 

network of pedestrian path segments in a given area. It will be used as a reference for validating 

the pedestrian networks generated by the developed algorithms. Since the pedestrian network 

baseline is not publicly available, conventional methods such as field survey and manual 

digitization were employed for its generation. A field survey involves collection and preparation 

of information for a given area and is carried out through field observation and personal 

familiarity (Shekhar, 2008). Digitization generally refers to a method of manually converting 

information from analogously produced graphic maps to machine readable vector formats. 

Although conventional methods require a large amount of manpower and cost, they are able to 

extract objects of interest with the highest geometrical and topological accuracy.  High-

resolution imagery, surveyed GPS points, and GIS tools were used to generate a pedestrian 

network baseline. A 0.6 m resolution natural color orthoimage covering the city of Pittsburgh, 

Pennsylvania, obtained from the PA DCNR (Department of Conservation and Natural 

Resources) and U.S. Geological Survey was employed as a backdrop and combined with the 

field survey. The field survey was performed in the study area using both paper maps and 

Trimble’s GeoExplorere®3 handheld GPS units to verify the collected path features and record 

building entrances. Editing tools in ArcGIS 10 were used to manually create and edit geometry 

and topology of the pedestrian network baseline. To measure the accuracy of the baseline, 

sample ground truth positions (i.e., junctions) in the study area were collected by using Trimble’s 

GeoExplorer®3 handheld GPS units. Data for each ground truth position was collected for five 

minutes and the positional accuracy of the collected GPS points were improved by taking the 

Differential GPS (D-GPS) approach and using the Continuously Operating Reference Station 
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(CORS) data in a post-processing mode. The base station used for performing the differential 

correction is located at the University of Pittsburgh with 997.79 m as the approximate distance 

between the base station and the study area. A sample of 30 ground truth positions was collected 

and the difference between D-GPS points and the digitized points is on average 1.59 m with 

standard deviation of 0.76 m. Figure 8-2 shows the pedestrian network baseline collected and 

generated and Table 8-2 describes its characteristics.  

 

Figure 8-2. The pedestrian network baseline generated by field survey and manual digitization 

 

 

 



 116 

Table 8-2. The characteristics of pedestrian network baseline 

Characteristics Description 
Area University of Pittsburgh’s main campus 

Area size: 2,280,000 m2 
Number of segments 904 
Total pedestrian path length 38468.30 meters 
Scale 1:2400 
Pedestrian path types 

Sidewalk 
Crosswalk 
Building Entrance 
Footpath 
Trail 
Pedestrian bridge 

# Segments 
398
198

83
212

5
2

Total length (m) 
25158.90
3241.75
1150.33
8032.17

846.52
38.55

Percentage (%) 
65.40
8.43
2.99

20.88
2.20
0.10

Spatial Reference Information 
Geographic coordinate system 
Datum 

 
GCS_North_American_1983 
D_North_American_1983 

 

The study area is located within the main campus of the University of Pittsburgh, which 

has a mixture of environment settings, i.e., open sky, moderate or partially blocked, and blocked.  

Blocked area refers to the area surrounded with high-rise buildings and moderate area refers to 

the area with mix environment settings of open sky and blocked. The study area is divided into 

ten tiles each covering approximately 305 m x 305 m on the ground, as illustrated in Figure 8-3. 

The pedestrian network baseline was also divided into 10 tiles. The environment setting and 

percentage of pedestrian path types of baseline in each tile are described in Table 8-3. The ten 

tiles were set up for three experiments with network buffering, collaborative mapping, and image 

processing approaches.  
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Figure 8-3. Ten tiles in the study area 

Table 8-3. Environment settings and characteristic of 10 tiles 

Percentage of pedestrian path types 
Tile No. 

Environment 
setting Sidewalk Crosswalk Entrance Footpath 

1 Blocked 79.22 12.80 2.45 5.52

2 Blocked 61.94 10.91 2.31 24.85

3 Open Sky 43.41 9.50 3.12 43.97

4 Open Sky 65.69 3.83 2.17 28.31

5 Blocked 51.81 6.38 1.33 40.48

6 Moderate 68.69 7.49 2.41 21.24

7 Open Sky 46.60 4.32 3.46 45.61

8 Blocked 84.18 11.93 0.25 3.63

9 Moderate 73.99 5.16 10.82 10.02

10 Moderate 87.62 12.02 0.36 0
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8.3 EVALUATION OF THE NETWORK BUFFERING APPROACH 

The data source and parameters used in the network buffering experimentation are explained in 

Table 8-4.  

Table 8-4. Parameters for the experimentation (Network buffering) 

Data source (Input) NAVSTREETS 
Data preparation Use road attribute “SPEED_CAT” for road 

filtering 
Network 
construction 

Use road attribute “LANE_CAT” and 
“DIR_TRAVEL” for estimating gap distance 
between road and sidewalks (see Table 8-5) 

Output The pedestrian network containing sidewalk 
and crosswalk features in vector format 

 

NAVSTREETS road networks were employed for the experimentation because they are 

free for academic research and development, and the data are of high quality. NAVTEQ road 

networks contain many road attributes describing road characteristics. For the data preparation 

step, “SPEED_CAT” was used to filter out road segments that were unlikely to have adjacent 

parallel sidewalks. “SPEED_CAT” classifies road segments based on speed limit. There are 8 

speed limit categories where categories 5-8 correspond to a maximum speed of 64 km/h or less 

and categories 1-4 correspond to a maximum speed of greater than 64 km/h. In this experiment, 

only roads in the last 4 categories, 5-8, were used for filtering. This is because roads with a speed 

limit of less than 64 km/h have a high probability of having adjacent sidewalks. To calculate the 

geometries of sidewalk features, one parameter is gap distance, which was approximated by 

using road attribute “LANE_CAT” and “DIR_TRAVEL”. Road lane category is determined by 

number of lanes (“LANE_CAT”) in each direction and direction of travel (“DIR_TRAVEL”) 

identifies legal travel directions of a road segment (i.e., one-way or two-way). Based on the 
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standard for minimum road width and sidewalk width, the gap distance along each side of road 

centerlines was estimated by summation of road width, shoulder width, and sidewalk width for 

each lane category and direction of travel of a road segment. Examples of gap distance for both 

one-way and two-way directions are given in Table 8-5.  

Table 8-5. Example of gap distance for each direction of travel and number of lanes 

Direction of 
Travel 

Figure Gap distance 

One lane: 
Buffer size  = 4.267 + 3.048+ (1.829/2)  = 8.23 m. 

Two lanes: 
Buffer size = (4.267*2) + 3.048 + (1.829/2) = 12.50 m. 

Two-way 
Direction 

 
 

Three lanes: 
Buffer size =  (4.267*3) + 3.048 + (1.829/2) = 16.76 m. 

One lane: 
Buffer size  = (4.267/2) + 3.048+ (1.829/2)  = 6.1 m. 

Two lanes: 
Buffer size = (4.267*2)/2 + 3.048 + (1.829/2)  = 8.23 m. 

One-way  
Direction       

Three lanes: 
Buffer size =  (4.267*3)/2 + 3.048 + (1.829/2) = 10.36 m. 

 

It is true that the measurements on real roads and sidewalks may not follow the theoretical 

values suggested by statutory authorities. In practice, high-resolution satellite images provided by 

Google Earth and its measurement tools can be used to measure the real road and sidewalk 

conditions, instead of field test. Thirty samples of two-way roads with one lane for each direction 

(group 1) and thirty samples of one-way roads with one lane (group 2) were randomly selected and 

the gap distances between the road centerlines and the sidewalk centerlines were measured. 

Average and standard deviation of gap distance of group 1 are 7.50 m and 1m, respectively. For 

group 2, average gap distance is 5.72 m and standard deviation is 0.8 m. Comparing with the 

Road Sidewalk 

Gap Distance

  Gap 

Road Sidewalk
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estimated gap distance presented in Table 8-5, the gap difference between the estimated value 

suggested by authorities and the actual value for group 1 is 0.73 m and for group 2 is 0.38 m, 

which is a small difference. Since there is no information on real road and sidewalk condition, 

using the theoretical values as an estimate of the actual value is reasonable. 

To implement the algorithm, GeoTools 2.7-M1, an open source Java library that provides 

a standard source of methods for manipulation of geospatial data (GeoTools, 2009), was used to 

work with shapefiles, create geometries, perform geometric operations, and manage spatial data. 

NAVSTREETS road network was divided into ten tiles similar to the study area. Two examples 

of constructed pedestrian networks through the network buffering approach are shown in Figure 

8-4. Blue lines represent road segments and red lines represent sidewalk and crosswalk 

segments. 

 

Figure 8-4. Examples of constructed pedestrian networks based on the network buffering approach 

To evaluate the performance of the algorithm, a buffer polygon around the pedestrian 

network baseline was first created and then the matching process between the baseline network 

segments and the generated path segments was carried out. In the second step of the evaluation, 

four quality measurements (Table 8-1) were calculated. Figure 8-5 shows an example of 
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evaluation result. Table 8-6 show the statistics of evaluation results and Table 8-7 shows the 

results based on environment settings. 

  

Figure 8-5. Evaluation result of constructed pedestrian network (using network buffering) 

Table 8-6. Statistics results of network buffering approach 

Tile 
Number 

Path Type Geometrical 
Completeness 

(%) 

Geometrical 
Correctness 

(%) 

Topological 
Completeness 

(%) 

Topological 
Correctness 

(%) 
Sidewalk 69.2Tile 1 
Crosswalk 76.3

49.3 69.3 58.9

Sidewalk 83.0Tile 2 
Crosswalk 88.0

79.7 50.8 84.8

Sidewalk 73.1Tile 3 
Crosswalk 65.2

72.3 18.4 74.8

Sidewalk 61.7Tile 4 
Crosswalk 65.3

56.3 42.4 59.2

Sidewalk 69.3Tile 5 
Crosswalk 69.9

45.2 28.4 57.8
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Tile 
Number 

Path Type Geometrical 
Completeness 

(%) 

Geometrical 
Correctness 

(%) 

Topological 
Completeness 

(%) 

Topological 
Correctness 

(%) 
Sidewalk 80.0Tile 6 
Crosswalk 71.3

77.2 39.4 75.2

Sidewalk 74.0Tile 7 
Crosswalk 68.1

72.1 21.4 77.9

Sidewalk 76.2Tile 8 
Crosswalk 75.0

89.0 63.1 59.2

Sidewalk 70.2Tile 9 
Crosswalk 98.6

77.1 35.3 62

Sidewalk 66.2Tile 10 
Crosswalk 68.3

69.0 71.3 65.4

Sidewalk 72.29Average 
Crosswalk 74.6

68.72 43.98 67.52

  

Table 8-7. Statistic results of network buffering approach (Environment setting) 

Environment 
Settings Path Type 

Geometrical 
Completeness 

(%) 

Geometrical 
Correctness 

(%) 

Topological 
Completeness 

(%) 

Topological 
Correctness 

(%) 
Sidewalk 74.43

Blocked 
Crosswalk 77.30

65.80 52.90 65.18

Sidewalk 72.13
Moderate 

Crosswalk 79.40
74.43 48.67 67.53

Sidewalk 69.60
Open-Sky 

Crosswalk 66.20
66.90 27.40 70.63

 

Based on the experimental results, the network buffering approach is able to 

automatically generate the geometries of sidewalk and crosswalk segments and to construct the 

network. The evaluation results show that the average percentages of geometrical completeness 

for sidewalk and crosswalk are 72.29% and 74.6%, respectively. The average percentage of 

geometrical correctness is 68.72%. For quality of pedestrian network, the average values of 

topological completeness and topological correctness are 43.98% and 67.52%, respectively. The 

geometrical correctness of Tile 1, Tile 4, and Tile 5 are low because the algorithm generated 

sidewalk and crosswalk features that do not actually exist. This is because the road attributes 

used for road selection might contain errors and the areas might not always have sidewalks along 



 123 

both sides of roads. Figure 8-6 shows an example of a situation where network buffering 

produces non-existent sidewalks. To verify the existence of sidewalks and crosswalks, 

combining network buffering with collaborative mapping is a potential approach (see Appendix 

A).  

Figure 8-6. Errors from network buffering approach 

The topological completeness is low because the algorithm generated only sidewalk and 

crosswalk features, where the actual network contains other pedestrian path types (see Figure 

8-6). For instance, Tile 3 contains 47% of other pedestrian path types (see Table 8-3) that cannot 

generate by network buffering approach. However, around 68% of the connection points 

determined by the algorithm are correct. To improve the geometrical and topological 

completeness, other pedestrian path types that could not be captured by the network buffering 

approach need to be included. These other pedestrian path types can be captured through other 

approaches such as collaborative mapping and image processing.  

Generated path 
segments that do not 

ll i

Actual path 
segments that are 
not along the roads 
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8.4 EVALUATION OF THE COLLABORATIVE MAPPING APPROACH 

The data source and parameters used in the collaborative mapping experiment were explained in 

Table 8-8.  

Table 8-8. Data source and parameters used in collaborative mapping 

Data source (Input) Walking GPS traces, Volunteers 
Data preparation GPS data collection with fix interval of 1 s 
Network construction Step 1: Pre-processing 

      HDOP > 0 and HDOP < Average HDOP of a trace 
      Speed > 0 
      Number of satellites used > 4 
Step 2: Significant point filtering 

      Minimum number of cluster = 
2

n
 

      Maximum number of clusters = n/2,  (max=50) 
where n: number of GPS points 
Step 3: Network construction 
      Distance threshold = 9 m 

Output Pedestrian network in vector format 
 

As part of this research, we searched for but could not find sharing walking GPS traces 

from existing LBSN web sites (e.g., OSM) in the study area. We emulated a collaborative 

mapping environment by employing the Social Navigation Network (SoNavNet) prototype 

(Karimi et al., 2009, Kasemsuppakorn and Karimi, 2009a). The prototype has been developed in 

the Geoinformatics Laboratory of the School of Information Sciences at the University of 

Pittsburgh for locating, tracking, and sharing navigation related information (Karimi et al., 

2009). Ten members of the Geoinformatics Laboratory participated in collecting data by using 

Android-based phone and the data logger QStarZ BT-Q1000ex. This data logger features A-GPS 

and is Wide Area Augmentation System (WAAS)-enabled. An update interval of 1 s was 
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selected. A total of 60 walking GPS traces in the testing area were collected and the average 

number of GPS points per trace was about 650 points. Figure 8-7 shows the collected walking 

traces in the study area. 

 

Figure 8-7. GPS points of walking GPS traces in the study area 

The algorithm was implemented using Java, Matlab 2010, and GeoTools 2.7-M1. Each of 

the raw GPS traces was first filtered through the pre-processing step of the algorithm. GPS points 

were filtered out and excluded from the experiment based on such criteria as number of satellites 

used (less than 4 or not), walking speed derived from GPS points (equal to 0 or not), and HDOP 

value (equal to 0 and greater than average HDOP for all GPS points in a trace or not). Duplicate 

GPS points were also removed. After pre-processing, approximately 7.3% of raw GPS points 

were filtered as outliers. To measure the effect of pre-processing, five sample GPS traces and 

measured were randomly selected and the deviation between each GPS point and the 

corresponding baseline before and after pre-processing was measured. Of the five sample traces, 
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compared to the GPS points before pre-processing, the average deviation between GPS points 

and baseline after pre-processing was reduced around 18%.  

Next, significant points on each filtered trace were extracted using the chain coding and 

PAM clustering techniques. The 12-direction chain code was applied to select candidate 

significant points representing straight, curved-shape paths and turning angles. Of the 60 traces, 

about 37% of the filtered GPS points were selected as candidate significant points and were kept 

for further processing. An important parameter in the subsequent significant filtering process is 

number of clusters for PAM. Since the optimal number of clusters is unknown, a range of 

clusters is bounded by a minimum number of clusters derived from the rule of thumb , where 

n is the number of data points and the maximum number of clusters is n/2. The set of clusters 

with the highest silhouette value was selected. From the experiment, the average silhouette 

widths were between 0.6 and 0.7, which is considered a reasonable clustering structure 

(Kaufman and Rousseeuw, 1990). After applying PAM, the significant points on each trace 

(approximately 20% of candidate significant points) were kept. The average running time for 

PAM is about 7.5 seconds for each trace.  

Once the significant points on a trace were extracted, they were used as input to construct 

pedestrian network. The new significant points were compared with the existing network data 

and were employed to generate a new path or merged with the existing paths in order to improve 

path’s geometry. The distance threshold for merging was set to 9 m, based on the accuracy of the 

GPS Standard Positioning System (SPS) (InsideGNSS, 2008). Each GPS trace was processed 

one at a time and was incrementally added to and updated the already constructed pedestrian 

network. Figure 8-8 illustrates the constructed pedestrian network with different number of GPS 

traces.  
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Figure 8-8. Constructed pedestrian networks with different number of traces 

Using all 60 GPS traces, the constructed pedestrian network consists of 115 segments. 

The constructed pedestrian network was overlaid on a high-resolution image, as shown in Figure 

8-9. In addition to sidewalks and crosswalks, the constructed pedestrian networks using the 

collected GPS points include other path types. 

 

Figure 8-9. Constructed pedestrian networks in 10 tiles of the study area 
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To measure the performance of the algorithm, the constructed pedestrian network was 

matched against the pedestrian network baseline and quality measures were calculated. A 

summary of the evaluation process is shown in Figure 8-10. Since available walking GPS traces 

do not completely cover the study area, geometrical completeness and topological completeness 

were not reported in this evaluation. Table 8-9 shows the statistics of evaluation results of ten 

tiles. We calculated the average values of geometrical correctness and topological correctness for 

the generated pedestrian paths within the open-sky, moderate and blocked areas (Figure 8-3 and 

Table 8-3); the results are shown in Table 8-10.  

 

Figure 8-10. An example of evaluation process (Collaborative Mapping) 

 



 129 

Table 8-9. Statistics results of collaborative mapping approach 

Tile No 
Geometrical 
Correctness 

(%) 

Topological 
Correctness 

(%) 

Tile 1 42.3 67.4

Tile 2 47.3 63.4

Tile 3 71.5 81.8

Tile 4 74.6 83.0

Tile 5 43.5 75.1

Tile 6 55.2 85.3

Tile 7 64.4 84.2

Tile 8 50.9 70.2

Tile 9 64.2 75.3

Tile 10 61.6 83.3

Average 57.55 76.9
 

Table 8-10. Statistics results of Collaborative Mapping approach (Environment setting) 

Environment 
settings 

Geometrical 
correctness (%) 

Topological 
correctness (%) 

Blocked 46.0 69.03 
Moderate 60.33 81.3 
Open-Sky 70.17 83.0 

 

The evaluation result shows that the average geometrical correctness is 57.55%, the 

topological correctness is 76.9%, and the average RMSE for all generated pedestrian paths is 

2.25 m. As expected, the quality of the constructed pedestrian network depends heavily on the 

quality of GPS traces; the constructed paths in the blocked area have low geometrical and 

topological accuracies. Figure 8-11 shows the generated path segments using collected GPS 

traces in the blocked area (left) and in the open sky area (right). As seen in the figure, the 

geometrical accuracies of generated paths in the open sky area are better than those in the 

blocked area (using the same number of traces).  
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Figure 8-11. The generated path segments in the blocked and open sky area 

The evaluation result also shows that the number of GPS traces and the geometrical 

accuracy of generated pedestrian paths are positively correlated. In the experiment, the 

geometrical correctness is low (57.55%) because approximately 50% of the pedestrian path 

segments generated were from 1-2 GPS traces. Of the 30 generated segments using five GPS 

traces, the average increase in geometrical accuracy is 6.86%.  

8.5 EVALUATION OF THE IMAGE PROCESSING APPROACH 

For evaluation of the image processing approach, orthoimagery and LiDAR point cloud data, 

provided by PAMAP were employed. PAMAP (2011) is a program of the federal government 

that provides publicly available mapping for the state of Pennsylvania. The LiDAR point cloud 

data was collected with a 1.4 m average point spacing and the natural color orthoimage was 

produced at 0.61 m resolution. Both data sets were captured in spring 2006 and organized into 

tiles, with no overlap. Each tile represents 3.048 m x 3.048 m on the ground and is referenced 

using the NAD83 Pennsylvania State Plane South Coordinate System. Details of the two data 

sources are provided in Table 8-11. 

Blocked area

Open Sky area
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Table 8-11. Details of Orthoimage and LiDAR point cloud 

 Orthoimage LiDAR point cloud 

Year 2006 2006-2008 

Created By PA Department of Conservation and 
Natural Resources, Bureau of 
Topographic and Geologic Survey 

PA Department of Conservation and 
Natural Resources, Bureau of 
Topographic and Geologic Survey 

Data Components R,G,B x,y,z, intensity, class, echo number, echo 
type, flight line no. 

Resolution/ 
Average of Point 
Spacing 

0.6 m (2-feet) pixel resolution 1.4-m. (2-m. maximum) point spacing 

Vertical Accuracy N/A 18.5-cm. (open area) and 37 cm. (forested 
areas) RMSE. 

Horizontal 
Accuracy 

1.46 m or less 1.52 m or less 

Datum NAD83 horizontal datum, Ellipsoid 
GRS80, NAVD88 vertical datum, 
and Geoid03 

NAD83 horizontal datum, Ellipsoid 
GRS80, NAVD88 vertical datum, and 
Geoid03 

Coordinate 
System 

NAD_1983_Stateplane_Pennsylvania NAD_1983_Stateplane_Pennsylvania 

 

Raster images used in the construction algorithm were split into ten tiles (same 

configuration as the study area) of 1000 x 1000 pixels with each pixel approximately covering 

0.305 m by 0.305 m on the ground. Let R represent the raster image, which is divided into n 

small tiles R1, R2,…, Rn such that RR
n

i
i 

1

  and ji RR   is a null set for all i and j (where i ≠ j). 

The example of splitting raster image is shown in Figure 8-12.  

 

Figure 8-12. An example of splitting orthoimage 
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 For the experimentation, four parameters were used in the algorithm. The first two 

parameters are minimum building height and tree height thresholds, which were used in the 

object filtering step. The threshold value of 3 m, (suggested by Tao and Yasuoka (2002)), was 

set for both heights. The last two parameters, employed in seed selection and region growing, are 

similarity spectral threshold value and maximum distance. From the experiment, the threshold 

values of 0.95 and 0.05 were set for the third and forth parameters, respectively. For the 

pedestrian network centerline extraction, the mathematical morphology erosion operator and the 

thinning algorithm by Lam, et al., (1992) were employed to reduce several-pixel wide regions 

(derived from the previous step) to one-pixel wide lines. The 3 x 3 rectangle-shaped structuring 

element was used for the erosion operation and the results, after applying the thinning algorithm, 

were improved by removing spur pixels (small areas). In the last step, raster-to-vector 

conversion, the set of pixels representing the generated pedestrian network were obtained from 

edge tracing and pedestrian path pixels selection. Then the set of pixels was converted to line 

vector data. To deliver the final product, the location information (i.e., longitude and latitude) 

was added to the line vector data, which are registered to the GCS_North_American_1983. 

 To measure the performance of the algorithm, the constructed pedestrian network using 

ten images was compared with the pedestrian network baseline in the same area. Once the 

matching between the two networks was complete, the quality measures of four evaluation 

criteria were calculated.  Figure 8-13 shows the evaluation process and Table 8-12 shows the 

statistic results of 10 tiles. We calculated the average values of geometrical correctness and 

topological correctness for the generated pedestrian paths within the open-sky, moderate, and 

blocked areas (Figure 8-3 and Table 8-3); the results are shown in Table 8-13. 
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Figure 8-13. The evaluation process (image processing) 

Table 8-12. Statistics results of image processing approach 

Tile 
Number 

Path Type Geometrical 
Completeness 

(%) 

Geometrical 
Correctness 

(%) 

Topological 
Completeness 

(%) 

Topological 
Correctness 

(%) 
Sidewalk 73.1
Crosswalk 54.3
Entrance 63.2

Tile 1 

Footpath 54.8

68.5 61.2 48.3

Sidewalk 60.1
Crosswalk 44.2
Entrance 32.2

Tile 2 

Footpath 59.4

69.2 75.1 51.3

Sidewalk 70.1
Crosswalk 54.9
Entrance 38.3

Tile 3 

Footpath 65.2

76.4 84.8 72.3

Sidewalk 68.2
Crosswalk 78.4
Entrance 53.9

Tile 4 

Footpath 77.8

79.7 69.8 53.9

Sidewalk 65.2
Crosswalk 45.4
Entrance 53.3

Tile 5 

Footpath 69.2

64.2 74.2 43.9
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Tile 
Number 

Path Type Geometrical 
Completeness 

(%) 

Geometrical 
Correctness 

(%) 

Topological 
Completeness 

(%) 

Topological 
Correctness 

(%) 
Sidewalk 79.1
Crosswalk 67.2
Entrance 38.3

Tile 6 

Footpath 57.2

63.4 65.3 44.1

Sidewalk 83.8
Crosswalk 57.4
Entrance 57.0

Tile 7 

Footpath 72.3

74.8 60.9 48.3

Sidewalk 42.1
Crosswalk 28.9
Entrance 77.3

Tile 8 

Footpath 82.8

51.2 59.1 40.9

Sidewalk 74.7
Crosswalk 59.9
Entrance 41.2

Tile 9 

Footpath 67.2

66.2 80.1 48.3

Sidewalk 63.9
Crosswalk 67.2
Entrance 55.3

Tile 10 

Footpath 66.7

55.8 75.1 57.2

Sidewalk 68.03
Crosswalk 55.78
Entrance 51.00

Average 

Footpath 67.26

66.94 70.56 50.85

 

Table 8-13. Statistics results of image processing approach (Environment settings) 

Environment 
Settings Path Type 

Geometrical 
Completeness 

(%) 

Geometrical 
correctness 

(%) 

Topological 
Completeness 

(%) 

Topological 
Correctness 

(%) 
Sidewalk 60.13

Crosswalk 43.20

Entrance 56.50
Blocked 

Footpath 66.55

63.28 67.4 46.1

Sidewalk 72.57

Crosswalk 64.77

Entrance 44.93
Moderate 

Footpath 63.70

61.8 73.5 49.87

Sidewalk 74.03

Crosswalk 63.57

Entrance 49.73
Open Sky 

Footpath 71.77

76.97 71.83 58.17
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The evaluation result of the extracted pedestrian networks in Table 8-12 shows that the 

algorithm is able to automatically extract four types of pedestrian paths: sidewalk, crosswalk, 

entrance, and footpath. The average values of geometrical completeness are 68.03%, 55.78%, 

51%, and 67.26% for sidewalk, crosswalk, entrance, and footpath, respectively. The extracted 

data do not exactly match the baseline for the following reasons: (1) missing crosswalks at non-

intersection locations (2) generating non-existent crosswalks, (3) creating geometric errors 

through the thinning algorithm, (4) creating errors through refining regions and edge linking, and 

(5) creating errors through the extraction of geospatial objects in complex scenes (e.g., dense 

buildings, shadows, and trees). Figure 8-14 shows examples of errors from shadows and 

geometric distortion. The extracted data from each image tile has different values for all 

evaluation criteria because of differences between images such as shadows, number of buildings, 

and parking lots. The average values of geometrical correctness (66.94%) and topological 

correctness (50.85%) are low because the algorithm generated spurious pedestrian paths through 

image misclassification.  

 

 

 

 

 

  

 

 

 

Figure 8-14. Errors from image processing approach 

Non-
existing 
crosswalks 

Non-existing paths 
(errors from 
shadow)

* Geometric distortion 
from thinning algorithm

*

*

*
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8.6 EVALUATION DISCUSSION 

This section discusses the summary results obtained from evaluating the three approaches. In the 

study area, the percentage distribution of pedestrian path types in the network is shown in Figure 

8-15. This chart shows three main pedestrian path types that constitute the bulk of a pedestrian 

network (e.g., 94.71% in the study area) which are sidewalks, crosswalks, and footpaths.  

Figure 8-15. Percentage distribution of pedestrian path types 

 

The experimental results indicate that all three approaches are able to collect five 

pedestrian path types. Figure 8-16 illustrates the proportion of each path type collected by each 

approach in the study area. The network buffering approach can generate only sidewalks and 

crosswalks, while the collaborative mapping and image processing approaches are able to 

generate all types, except pedestrian bridge and tunnel. The collaborative mapping approach 

employs collected GPS traces, which cannot differentiate between a pedestrian bridge (a grade 

separated crossing that is typically at a high elevation above the ground) and other path types 

because the elevation data computed by GPS devices are not highly accurate. Moreover, given 
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that GPS receivers usually lose satellite signals while travelling in tunnels or indoor areas, 

pedestrian tunnels are not collected by this approach as well. The current algorithm based on the 

image processing approach in this dissertation does not extract pedestrian bridges and tunnels for 

the following reasons: (1) pedestrian tunnels are usually masked by other objects in high-

resolution satellite and LiDAR images, (2) pedestrian bridges collected by using a threshold on 

height information of LiDAR data are not highly corrected, (3) the percentage of both pedestrian 

path types (i.e., pedestrian bridges and tunnes) in a pedestrian network is small. However, we 

believe that other unexplored image sources (e.g., Google Street View, city map) and advanced 

image processing techniques may have potential to extract pedestrian bridges and tunnels, while 

their collection by the other two approaches is impossible. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-16. Pedestrian Path types and the three approaches 
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Considering the performances of the three approaches, the average percentage values of 

the geometrical and topological correctness of generated pedestrian path segments are shown in 

Figure 8-17. Based on the experimental results, the average value of geometrical correctness 

from the network buffering approach is higher than the other two approaches, even though 

network buffering generates only sidewalks and crosswalks. Nevertheless, in the collaborative 

mapping approach, the geometrical correctness is improved by increasing the number of repeated 

traces on a segment (e.g., five traces on a segment in the experiment resulted in 6.86% 

geometrical correctness improvement). The results obtained through the collaborative mapping 

approach could be used to verify the generated paths from the network buffering approach and to 

generate other pedestrian path types. For the topological correctness, the collaborative mapping 

approach has the best performance on topological correctness as it generates only existing 

pedestrian path segments. 

Figure 8-17. Average values of geometrical and topological correctness of the three approaches in the study area 

A single approach is unable to generate a complete network consisting of all pedestrian 

path types in a given area. However, by leveraging the advantages of each approach, it is 

possible to develop a method to construct a complete network; by “complete network”, a 

pedestrian network that represents real-world pedestrian paths containing all the seven pedestrian 
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path types is meant. We analyzed the results obtained from the three approaches and determined 

the approach with the highest geometrical completeness for each pedestrian path type, see Figure 

8-18. In this figure, sidewalks and crosswalks are generated most accurately with the network 

buffering approach, while building entrances, footpaths, and trails are best collected through the 

image processing approach. The remaining uncovered segments, or gaps, could be filled in by 

the collaborative mapping approach since the missing segments can be collected by GPS devices. 

Furthermore  the generated segments can be validated by using walking GPS traces. As can be 

seen in the figure, no single approach achieves 100% completeness. However, it is possible to 

achieve 100% completeness by integrating different approaches. Nevertheless, none of the 

current version of the three approaches can generate pedestrian bridges or tunnels. 

 

Figure 8-18. Completeness percentages of pedestrian path types and the recommended approaches 
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9.0  RECOMMENDATION 

One objective in this dissertation is to recommend a methodology for constructing pedestrian 

networks for a given set of requirements and resources, including application requirements and 

available data sources.  This chapter starts by comparing the three pedestrian network 

construction approaches in terms of development complexity and performance. The chapter 

closes with a recommendation methodology of choosing appropriate approaches for constructing 

pedestrian networks. 

Table 9-1 compares the development complexity of the three approaches presented in this 

dissertation by examining required data sources, data acquisition cost, data preparation tasks and 

effort, and network construction tasks and effort.  

Table 9-1. Comparison of development complexity of the three approaches 

Approaches 
Data 

Sources 
Data Cost 

Data 
Availability 

Data 
Preparation 

Tasks 

Data 
Preparation 
Effort (days) 

Network 
Construction 

Tasks 

Network 
Construction 
Effort (days) 

Network 
Buffering 

Road 
Network 
 

Inexpensive High Road attribute 
selection for 
approximating 
sidewalk 
locations 

2  Pedestrian 
network 
construction 

21 

Collaborative 
Mapping 

Walking 
GPS Traces 
 

Free Sparse GPS traces 
collection in a 
given area 
 
 

20  Pre-processing 
 Significant 

point filtering 
 Pedestrian 

network 
construction 

2 
14 
 

21 
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Approaches 
Data 

Sources 
Data Cost 

Data 
Availability 

Data 
Preparation 

Tasks 

Data 
Preparation 
Effort (days) 

Network 
Construction 

Tasks 

Network 
Construction 
Effort (days) 

Image 
Processing 

Orthoimages 
and LiDAR 
Point Clouds 
 

Inexpensive
/ varies 

Medium 
(Urban 
Areas) 

Data noises 
removing and 
raster data 
generation 
 

7  Data fusion  
 Pixel-based 

classification 
 Object filtering 
 Pedestrian path 

area extraction 
 Pedestrian 

network       
construction 

  Raster-to-
vector 
conversion 

7 
14 
 

30 
30 
 

60 
 
 

7 

 

In Table 9-1, Data Sources refers to the data required for each approach and Data Cost 

indicates the estimated money cost for acquiring the listed data source. Data Availability 

indicates accessibility to data source and completeness of data given an area. The network 

buffering approach requires existing road networks, which vary in price but generally 

inexpensive and widely available. Even though several free road networks are available (e.g., 

TIGER line data in the U.S.), the data cost for this approach is not considered as free. This is 

because specific attributes on road segments (e.g., road types, number of lanes), which are not 

generally available in free databases, are required for the network buffering approach in order to 

generate accurate pedestrian networks. The collaborative mapping approach requires publicly- 

shared walking GPS traces, which are expected to become widely available due to proliferation 

of GPS-enabled mobile devices. GPS traces are considered as the free data source because it 

assumes the data are shared with others through public collaborative mapping websites and 

available for download. The image processing approach requires orthoimages and LiDAR point 

clouds, which are relatively abundant in urban areas within the U.S. and can be acquired from 

private and public sources for varying prices but generally at a nominal cost. Overall, the easiest 

to obtain and most abundant data source is road networks and the most affordable is GPS traces. 
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Data Preparation Tasks and Data Preparation Effort refer to the steps and efforts for 

processing raw data required for each approach. The Data Preparation Tasks column 

summarizes the individual tasks in the refinement process. Since the collaborative mapping 

approach uses GPS traces, which are currently very sparse, the GPS traces collected in this 

research are listed as a task in the data preparation of the collaborative mapping approach. The 

Data Preparation Effort column is a rough estimate number of days for a person based on the 

author’s experience with each task and is useful as a relative measure. The Data Preparation 

Tasks of these approaches require manual intervention and cannot be performed in a completely 

automatic fashion. For example, the network buffering approach requires a human to understand 

and select road attributes for network construction but takes the least amount of time when 

compared to the other approaches. The collaborative mapping approach requires volunteers to 

collect GPS traces in a given area, which significantly depends on the geographic extent. The 

image processing approach involves the creation of a raster-grid surface from LiDAR point 

cloud data. Overall, the data preparation for the network buffering approach is the quickest. The 

collaborative mapping data collection is the most labor intensive and time consuming, since the 

the average human walking distance a day is around 2,400 m in general (Frank et al., 2004). 

However, it should be noted that the image processing approach requires knowledge of raster 

data processing and geospatial tools. 

The Network Construction Tasks column summarizes the tasks needed to implement an 

application to build a pedestrian network and the Network Construction Effort column lists the 

estimated number of days for developing such an application, based on the author’s experience 

and is useful as a relative measure. Of the three approaches, the network buffering approach is 
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the simplest to implement and the image processing approach the most complex requiring a 

series of steps.   

To compare the performance of the three approaches, Table 9-2 provides an analysis of 

running time and quality measures of the four evaluation criteria.  

Table 9-2. Comparison of evaluation results 

Result 

Approach Tasks 
Average 
Running 

Time (Sec) 
Path 
Type 

Geometrical 
Completeness 

(%) 

Geometrical 
Correctness 

(%) 

Topological 
Completeness 

(%) 

Topological 
Correctness 

(%) 

Sidewalk 72.29 Network 
Buffering 

Pedestrian 
network 
construction 

1.63 

Crosswalk 74.60 
68.72 43.98 67.52 

Sidewalk - 

Crosswalk - 

Entrance - 

Collaborative 
Mapping 

 Pre-processing 
 Significant point 
filtering 
 Pedestrian 
network 
construction 

1.26 
7.5 

 
14.24 

Footpath - 

57.55 - 76.9 

Sidewalk 68.03 

Crosswalk 55.78 

Entrance 51.00 

Image 
Processing 

 Data fusion 
 Pixel-based 
classification 
 Object filtering 
 Pedestrian path 
area extraction 
 Pedestrian 
network       
construction 
 Raster-to-vector 
conversion 

0.8 
62.33 

 
2.23 

717.74 
 

50.34 
 
 

12.33 
Footpath 67.26 

66.94 70.56 50.85 

 

In each approach, the average running time of the listed tasks are reported. All 

approaches are tested for ten tiles (305 x 305 m2) in the study area and are run under the same 

computing environment (Intel i7 2.7 GHz Processor with 4 GB of memory). The result shows 

that the network buffering approach is the fastest (1.63 s) whereas the image processing 

approach is the most computationally intensive. This is because image processing deals with 

raster data, which is relatively large comparing to the vector data. In addition, extracting 

information from images requires several tasks, which must be performed in a sequence.  As 
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shown in Table 9-2, the most expensive task of the image processing approach is pedestrian path 

area extraction, which employs a region-based segmentation technique.  

Before discussing the quality of a pedestrian network constructed by each approach, the 

assumptions for implementing each approach are outlined as follows. The assumptions for the 

network buffering approach are: (1) sidewalks exist along both sides of selected roads and (2) 

crosswalks are located at every intersection. The assumptions for the collaborative mapping 

approach are: (1) there are always volunteers to collect data, (2) volunteers have GPS-enabled 

mobile devices, and (3) volunteers walk along the pedestrian path segments. The assumptions for 

the image processing approach are: (1) LiDAR data, with the same resolution and same 

collection year with the high-resolution orthoimage are available, (2) crosswalks are located at 

every intersection, (3) pedestrian path areas are mostly made up of concrete, and (4) parking lot 

areas are mostly made up of asphalt. 

Qualities of the constructed pedestrian networks from the three approaches are described 

in Table 9-2. All four quality measures, shown in Table 9-2, were derived from the average value 

of each measure criterion of ten study areas (details in Chapter 8). The results show that the 

network buffering approach can generate only sidewalks and crosswalks, while the other two 

approaches are able to generate other pedestrian path types, such as footpath and building 

entrance (depending on the available data). Network buffering generated more than 70% 

completeness of sidewalks and crosswalks and around 68.72% of generated sidewalks and 

crosswalks are correct. This is because network buffering generates non-existent sidewalks and 

crosswalks in some areas, due to the assumption that all roads have parallel sidewalks on both 

sides. The topological completeness of the constructed pedestrian networks from the network 

buffering approach is low (43.98%) because the constructed network is incomplete; other 
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pedestrian path types are missing. For collaborative mapping, the percentages of geometrical and 

topological completeness of the results are not reported because this approach depends on the 

availability of walking GPS traces, which are currently incomplete for the study area. Regarding 

correctness, the collaborative mapping approach is able to determine the geometries of 

pedestrian path segments accurately from multiple GPS traces. The higher the number of 

repeated GPS traces on a single path segment, the higher the percentage of geometrical 

correctness. As reported in Chapter 8, the average geometrical correctness increases 6.86% by 

using five repeated GPS traces. The topological correctness of the collaborative mapping 

approach is high because walking GPS traces only models pedestrian path segments that exist in 

the real world. The image processing approach provides a moderate level (50-70%) of quality 

measurements mainly due to noises (e.g., shadows) in the image and errors from the algorithms, 

such as pedestrian path centerline extraction. The percentage of geometrical correctness is 

approximately 66.94% because there are geometric distortions due to the thinning algorithm and 

the errors from edge linking. Moreover, the approach generates spurious pedestrian path 

segments from image classification. 

Comparing the generated sidewalks and crosswalks across the three approaches, the 

network buffering approach provides better result than the other two approaches due to noises in 

collected GPS points and in images. Table 9-3 shows a comparison of geometrical and 

topological correctness between the three approaches in three environment settings. The 

collaborative mapping and image processing approaches perform well in open sky areas because 

of high accuracy of collected GPS points and less shadow areas as well as less tall buildings in 

the images. On the other hand, environment settings have minor impact on the network buffering 

approach.  
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Table 9-3. Comparison of evaluation results based on three environment settings 

Network buffering Collaborative Mapping Image Processing 
Environment 

Setting 
Geometrical 
Correctness 

(%) 

Topological 
Correctness 

(%) 

Geometrical 
Correctness 

(%) 

Topological 
Correctness 

(%) 

Geometrical 
Correctness 

(%) 

Topological 
Correctness 

(%) 
Blocked 65.80 65.18 46.00 69.03 63.28 46.10 

Moderate 74.30 67.53 60.33 81.30 61.80 49.87 
Open Sky 66.90 70.63 70.17 83.00 76.97 58.17 

 

The evaluation results and the analysis of quality result of the three approaches reveal 

that each approach has its own advantages and disadvantages. The advantages of the network 

buffering approach are that it is very fast and able to automatically construct pedestrian networks 

in a wide area. Nevertheless, it does not cover the off-road pedestrian path segments and it might 

create nonexistent segments. The advantage of the collaborative mapping approach is that it is 

able to generate along the road and off-road pedestrian path segments. However, its data 

collection is labor intensive and the quality of generated segments is dependent on the GPS 

accuracy. The advantages of the image processing approach are that it is able to automatically 

construct pedestrian networks in a wide area and the results include along the road and off-road 

pedestrian path segments. Nevertheless, the approach is complex, takes long computation time, 

and might not be able to generate accurate results. 

The following section provides the explanation of a methodology for recommending 

suitable approaches for constructing pedestrian networks of a given location according to the 

required output pedestrian path type, available data sources, time constraint, cost constraint, and 

environment settings. Time constraint refers to the amount of time available to complete 

construction of a pedestrian network. Time constraint is categorized into three groups: short time 

constraint (less than 1 month), medium time constraint (between 1-3 months), and long time 

constraint (greater than 3 months). Cost constraint refers to the budgeted amount available for 
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acquiring data sources for constructing pedestrian networks. Since the quality of constructed 

pedestrian networks varies based on the provided data sources and network construction 

approaches, the network quality is categorized into three levels: good, acceptable, and no 

guarantee. As described in the evaluation chapter (Chapter 8), the quality measures are ranged 

between 0 and 1, where 1 is the best value. The pedestrian network quality is considered “good” 

if the quality measure values are greater than 0.7 (70%), “acceptable” if the quality measure 

values are between 0.5 (50%) and 0.69 (69%), and if the quality measures are below 0.5, the 

approach cannot guarantee the quality of the results. Since there is no standard to evaluate the 

level of network quality obtained from automatic construction approaches, the range of each 

quality level is set based on the claims in the literatures related to automatic road network 

extraction.  

Figure 9-1 shows the criteria for recommending the network buffering approach and the 

expected quality of constructed pedestrian networks. The network buffering approach is suitable 

for constructing a pedestrian network, containing only sidewalks and crosswalks, in a short time 

constraint. Two requirements to employ network buffering approach are: (1) road networks are 

available in a given location and (2) cost for road networks is affordable. The quality of the 

constructed pedestrian network is heavily dependent on quality of the underlying road network. 

In fact, without a road network this approach cannot be used at all. If the road network does not 

exist for the given area, other approaches would be more suitable. Another criteria to examine 

quality of this approach are up- to-dateness of the data, accuracy of the data, and scale of the 

data.  The more up to date a road network is, the more closely the data models the real world. It 

is recommended that the road network data considered in the network buffering approach be less 

than five years old. Likewise, the more accurate the road network, the more accurate the 
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generated pedestrian network will be. The recommendation for the scale and accuracy of a road 

network for urban areas is 1:5000 with a RMSE less than 1.25 m according to the American 

Society for Photogrammetry and Remote Sensing (ASPRS, 1989). If any of these criteria are not 

satisfied, then the quality of the generated pedestrian path will most likely be poor.  

Figure 9-1. The criteria and quality result of the network buffering approach 

The final set of criteria to examine for the road network buffering approach are road 

network attributes, e.g., road width and road type, for each segment. The network buffering 

approach uses these attributes to more accurately estimate sidewalk locations. Other road 
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network attributes recommended are number of lanes and road direction (e.g., one-way or two-

way). Without these attributes the network buffering approach must assume a fixed distance 

from the road network to determine sidewalk and crosswalk locations and will most likely 

produce acceptable results.   

Figure 9-2 shows the criteria for recommending collaborative mapping approach and 

expected quality of constructed pedestrian networks. 

Figure 9-2. The criteria and quality result of the collaborative mapping approach 
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The collaborative mapping approach is suitable for constructing pedestrian networks 

containing not only sidewalks and crosswalks, but also other pedestrian path types. To employ 

this approach, the amount of time requiring to complete data preparation and network 

construction task is grouped into the medium time constraint. The quality of the constructed 

pedestrian networks by the collaborative mapping approach is heavily dependent on available 

walking GPS traces and GPS accuracy. Before collecting GPS traces in a particular area, it is 

recommended to search various websites (e.g., OSM, Wikimapia) for existing GPS traces in the 

geographic area of interest. If no GPS traces exist, volunteers with GPS devices or GPS-enabled 

mobile phones are needed. Accuracy of available GPS traces is a factor affecting quality of the 

constructed network. GPS accuracy is potentially degraded when collected data along pedestrian 

paths next to high-rise buildings (i.e., blocked area). In order to produce higher quality pedestrian 

networks, using multiple traces for a single pedestrian path is recommended. Multiple traces can 

help lower GPS uncertainty where one GPS trace does not provide enough information to 

accurately determine the pedestrian path. 

Figure 9-3 shows the criteria for recommending the image processing approach and the 

expected quality of constructed pedestrian networks. Similar to the collaborative mapping 

approach, the image processing approach is suitable for constructing pedestrian networks 

containing not only sidewalks and crosswalks, but also other pedestrian path types. Three 

requirements to employ the image processing approach are: (1) image sources are available in a 

given location, (2) costs for images are affordable, and (3) there is flexible time constraint. 
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Figure 9-3. The criteria and quality result of the image processing approach 

The image processing approach requires a significant amount of time to complete the 

processes of data preparation and network construction because of the complexity of algorithms 

involved. Quality of the constructed networks by the image processing approach is heavily 

dependent on the underlying orthoimages and LiDAR point clouds. The first criterion to examine 

is resolution of satellite images. Images with resolutions of 0.5 m or better are recommended. 

Therefore, if high-resolution imagery for a particular area is unavailable, the other approaches 

may be more suitable. Based on the results of the experiments, 3D information can assist feature 

extraction and improve results obtained by satellite images alone. For fusion of LiDAR and 
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satellite imageries, it is recommended that the data be up to date and images be captured from the 

same period of time for consistency. Another major influence on network extraction is the 

prevalence of shadow areas caused by trees or buildings in satellite imagery. To obtain good 

results in areas with many tall buildings, additional image processing algorithms are needed.   

In general, sidewalks and crosswalks are two main pedestrian path types in urban areas 

(e.g., 73.83% of the pedestrian network are sidewalks and crosswalks in the study area). Clearly, 

no single approach can produce accurate and complete results. In projects where all three 

approaches are considered, it is suggested to construct pedestrian networks using the network 

buffering approach first and then to use the other two approaches to incrementally generate 

complete pedestrian networks. The advantage of collaborative mapping and image processing 

approaches is that they are able to generate other pedestrian path types (e.g., footpath). 
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10.0  CONCLUSIONS AND FUTURE RESEARCH 

10.1 CONCLUSIONS 

A pedestrian network is an essential resource in a variety of applications, especially in pedestrian 

navigation systems and urban planning projects. Pedestrian networks can be used as base maps 

for several tasks including route calculation for navigation systems, survey data entry (pedestrian 

facilities), and walkability index calculations (e.g., Link Node Ratio, Intersection Density) for 

urban planning projects. However, there is currently a lack of approaches and techniques for 

automatically constructing pedestrian networks. This dissertation was focused on the problem of 

automatically generating pedestrian networks and examined various techniques for their 

automatic construction. The dissertation first defined seven pedestrian path types and their 

relation to the pedestrian network data model. Three pedestrian network construction 

approaches, network buffering, collaborative mapping, and image processing, were presented, 

explored, and evaluated against a pedestrian network baseline in the University of Pittsburgh’s 

main campus. The final result from each of the three approaches was the constructed pedestrian 

network containing the geometries and topologies of pedestrian path segments.   In all three 

approaches, data inputs were prepared manually and pedestrian networks were constructed 

automatically.  Based on the results, several conclusions can be drawn as discussed below. 
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The network buffering approach requires a suitable road network database in a given area 

as input and is able to generate only sidewalks and crosswalks, as they generally exist along 

roads. The approach is simple and fast, and creates good quality sidewalks and crosswalks with 

up-to-date and high quality road networks that contain the required attributes. The limitations of 

this approach are: (a) it cannot generate all pedestrian path types (i.e., footpath, trail, pedestrian 

bridge, and pedestrian tunnel) and (b) it may produce nonexistent pedestrian path segments.  

The collaborative mapping approach requires walking GPS traces in a desired area as an 

input and is able to generate five pedestrian path types: sidewalk, crosswalk, footpath, trail, and 

building entrance. The approach cannot detect pedestrian bridges and pedestrian tunnels because 

the elevation data collected on pedestrian bridges by GPS devices are not of high quality and 

GPS signals are obscured in tunnels. The results show that the number of repeated GPS traces on 

the same path and the geometrical correctness of the constructed pedestrian networks are 

positively correlated. The percentages of geometrical and topological completeness are heavily 

dependent on available GPS traces. The advantages of this approach are: (a) it generates actual 

pedestrian path segments and (b) it is able to collect the pedestrian path types that other 

approaches (e.g., network buffering) cannot generate. Its limitations are: (1) the process of GPS 

data collection is time consuming and labor intensive and (2) GPS data are of low quality in the 

urban canyons.  

The image processing approach utilizes satellite imagery and laser imagery to extract 

pedestrian path segments and construct pedestrian networks. The approach is able to extract five 

pedestrian path types: sidewalk, crosswalk, footpath, trail, and building entrance. The current 

implementation of the approach does not extract pedestrian bridges, tunnels, or stairs due to the 

limitation of the data sources (e.g., pedestrian tunnels are not captured in the images).  From the 
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experiments, the pixel-based classification results showed that the satellite/laser fusion provided 

better results than either satellite or laser alone. The approach can automatically extract 

pedestrian networks, but does not perform well with images that contain shadows or dense 

objects.  

In summary, this dissertation presents and discusses the concept of pedestrian network 

model and the three approaches for automatically constructing pedestrian networks. The results 

of the experiments indicate that these three approaches, while differing in complexity and 

outcome, are viable for automatically constructing pedestrian networks. However, no single 

approach can generate complete pedestrian networks. An alternative is to complement each 

approach by the others as the advantages of one approach can be used to offset the disadvantages 

of the other approaches. For instance, network buffering only generates pedestrian paths along 

roads, whereas collaborative mapping and image processing are able to generate pedestrian paths 

in other areas. Therefore, considering multi approaches could improve the performance of 

pedestrian network construction. One recommendation is to first use the network buffering 

approach to automatically generate sidewalks and crosswalks (two main pedestrian path types in 

urban areas) and then to include additional pedestrian path segments (those not captured by the 

network buffering) through the collaborative mapping and/or image processing approaches. With 

the current implementations of the three approaches, pedestrian bridges and tunnels are not 

collected; however, these two types are a very small percentage of pedestrian networks.  
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10.2 FUTURE RESEARCH 

Future research should address the three main tasks of pedestrian network map generation: 

pedestrian network data model analysis, pedestrian network construction, and pedestrian network 

database design.  

 Firstly, a pedestrian network data model can represent objects either in 2D or in 3D. The 

pedestrian network data model employed in this dissertation is a 2D data model representing 

pedestrian networks as points and lines. However, points and lines do not represent some 

pedestrian areas well, such as parking lots or free walking areas. Future research should extend 

the current pedestrian network data model in order to represent geometries of walking areas and 

how to incorporate them into pedestrian networks.  

Modern city footpath designs include many kinds of interchanges (e.g., stairs, pedestrian 

bridges, pedestrian tunnels, and walking areas between buildings) making 2D data models 

inappropriate to represent such 3D objects, especially in large-scale maps.  Future research 

should address designing and building 3D pedestrian network data models and spatial operations 

in 3D pedestrian networks.  

Secondly, future research on pedestrian network construction can be carried out in two 

directions: (1) improving the developed algorithms and (2) investigating and developing new 

approaches. The findings in this dissertation revealed that the three developed approaches are 

practical for automatically constructing pedestrian networks. However, future research is needed 

to improve the developed algorithms (e.g., network buffering algorithms and collaborative 

mapping algorithms) in order to generate more accurate results. Additionally, the experimental 

results revealed that there is no single approach that can generate complete pedestrian networks. 

Combinations of the three approaches to generate complete pedestrian networks should be 
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investigated. The feasibility of combining network buffering with collaborative mapping is 

discussed in Appendix A. Future work will need to compare the performance of an integrated 

approach and a single approach, in terms of geometrical and topological completeness. 

Currently, several collaborative mapping projects allow people to contribute their 

travelled GPS traces; however, the map generation process still requires manual work. Future 

work could integrate the network construction algorithm presented in this dissertation with 

existing collaborative mapping projects (e.g., OpenStreetMap).   

New data sources and new approaches for pedestrian network construction are other 

topics of future research. With today’s advanced technologies, many valuable datasets are 

unexplored. Examples of new data sources are Synthetic Aperture Radar (SAR) imagery and 

Google Street View. SAR, an active microwave instrument, produces high-resolution imagery of 

the Earth’s surface in all weather. Google Street View supports 360-degree panorama images in 

wide areas. Such new data sources could be used to extract pedestrian networks, especially 

Google street view that provides close-up images and makes it possible to detect pedestrian 

bridges and tunnels. Similar to data sources, several techniques, such as snakes or optimization 

techniques, could be explored.  

Lastly, future research should explore pedestrian network databases. One area for 

exploration is 3D database design for pedestrian networks. Research in this area should focus on 

ways to efficiently store, visualize, and manipulate complex geometrical models. Along with the 

database design, automatic attribute extraction techniques on pedestrian path segments, e.g., to 

support pedestrian navigation systems/services, are needed. Examples of attributes are distance, 

width, surface type, surface condition, stairs, and slope. Research could also be focused on 

connecting pedestrian networks with other existing transportation networks, such as road 
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networks, hallway networks, public transportation networks, subway networks, and sky train 

networks, in order to support universal/multimode navigation services.  
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APPENDIX A  

VERIFICATION: SIDEWALKS AND CROSSWALKS USING GPS TRACES 

The experimental results of the network buffering approach reveal that the approach may 

generate non-existing sidewalk and crosswalk features. The existence of sidewalks and 

crosswalks generated from the network buffering can be verified by using GPS traces collected 

from the collaborative mapping approach. A verification algorithm and an experiment are 

provided in the proceeding sections. Furthermore, combining different approaches to improve 

the completeness and accuracy of generated pedestrian networks is explored.  

A.1 VERIFICATION ALGORITHM 

This section discusses the algorithm to verify the existence of sidewalks and crosswalk using 

walking GPS traces. Figure A-1shows the flowchart of the verification algorithm. 
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Figure A-1. Flowchart of verification of sidewalks and crosswalks using GPS traces 

 

The algorithm starts by loading GPS traces and eliminate outliers caused by GPS errors 

and the TTFF problem. After filtering GPS traces, the road segments within the boundary of the 

filtered GPS traces are selected, in order to reduce the number processed road segments. Then, 

the selected road segments are buffered using a road lane category and road direction as the 

buffer size. After buffering selected road segments, the filtered GPS points are clustered using the 

geometry relationship “within”. GPS points are grouped into the same segment if their coordinates 

are within the same buffer geometry. An example of GPS point segmentation is illustrated in 

Figure A-2.  
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Figure A-2. An example of GPS point segmentation 

 

The next task is to determine whether or not the segment crosses the road and the side of 

the road on which the segment is. To achieve this task, we first determine the geographic 

relationship between the road segment and associated GPS points using the bearing and 

geographical distance. Between successive GPS points, the bearing is calculated by using the great 

circle navigation formula (Williams, 2008) and the geographical distance is calculated by using the 

haversine formula (Sinnot, 1984). A segment is classified as a “sidewalk” when the average 

bearing between successive points is closely parallel to the bearing of a particular road segment. 

Moreover, the total distance between successive points in a segment should be close to the length 

of a road segment in order to be considered as a sidewalk segment, otherwise, these GPS points are 

considered as noise. A segment is identified as a “crosswalk” when the average bearing between 

successive points is nearly perpendicular to the bearing of the road segment. 

To determine the east or west side of a road segment, the linear regression model is 

employed and the pseudocode of the side determination is illustrated in Figure A-3.  
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Figure A-3. Pseudocode of side determination 

In practice, the coordinates of two end points of each road segment in the road network are 

used. One point (x1,y1) is considered as the start and the other (x2,y2) as the end point. There are four 

possible cases of road segment alignment. The first is vertical line which uses the longitude of a 

GPS point to determine the side. A GPS point lies to the west when the longitude of a GPS point is 

less than the longitude of either the start or the end point, otherwise it lies to the east. For other 

three cases, the slope and intercept of each road segment are calculated in order to generate a line 

equation, using the linear regression model. The heading of each road segment is indicated by the 

latitude of each coordinate. The second case, the heading of a road segment points to north (m > 0), 

if the latitude of the start point is less than the latitude of the end point, otherwise (m <0), it points 

to south (the third case). The side of a GPS point lies to the west of a road, when the heading of a 

road segment points to north and the latitude of a GPS point (y3) is greater than the calculated 

latitude from the line equation. If the heading of a road segment points to south, a GPS point lies to 

the east of a road when the latitude of a GPS point (y3) is greater than the calculated latitude from 

the line equation. The last case, horizontal line, uses the latitude of a GPS point to determine the 
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side of the segment. A GPS point lies to the west when the latitude of a GPS point is greater than 

the latitude of either the start or end point, otherwise it lies to the east. 

To illustrate the process of determining side of a road segment, two examples are given. 

The first example is a straight road segment that is composed of two points, as shown in Figure 

A-4 (left) and the second example is a curved line that is composed of seven points, as shown in 

Figure A-4 (right). A GPS point (within the circle) in the first example is determined to be on the 

west side of the road segment because the slope of a line is greater than zero and the calculated 

latitude is less than the latitude of this GPS point. On the other hand, a GPS point (within the 

circle) in the second example is determined to be on the east side of the road segment. Using only 

one GPS point along a road segment is not sufficient to determine the actual side of the road 

segment. To reduce biases in determining side of a road segment to which every GPS point 

belongs, the probability of being east or west is calculated. The final result is determined by 

majority of GPS points. 

 

Figure A-4. Examples of establishing sides of a road segment 



 164 

A.2 EXPERIMENT 

The goal of this experiment is to demonstrate the possibility of using walking GPS point to 

verify the existence of actual sidewalks and crosswalks. Three metrics were used to evaluate the 

algorithm: (1) accuracy of distinguishing between sidewalks and crosswalks, (2) success rate of 

sidewalk/ crosswalk determination, and (3) accuracy of determining side of the road for sidewalk 

segments.  

A.2.1 Test Data 

The testing environment was confined within the University of Pittsburgh’s main campus which 

includes both high-rise buildings and open sky environments. Ten GPS traces (with fixed 

interval of 1 s) along sidewalks and crosswalks were collected and treated as separate inputs to 

the algorithm and experimented one at a time. Number of GPS points, number of sidewalk 

segments, crosswalk segments and total length of each actual walking path were collected, in 

order to validate the performance of the algorithm. The characteristics of the ten GPS traces used 

in the experiment are shown in the Table A-1. 

Table A-1. GPS traces used in the experiment 

Actual Walking Paths Trip # # GPS 
points # segments # sidewalks #crosswalks Total Length (m) 

1 992 32 24 8 1,486.90 
2 325 22 13 9 1,234.00 
3 282 20 14 6 1,244.50 
4 1,264 73 44 29 3,019.10 
5 1,247 68 45 23 3,159.60 
6 767 37 28 9 2,395.50 
7 1,127 42 30 12 2,784.50 
8 1,311 49 37 12 3,121.70 
9 1,307 56 41 15 3,756.40 

10 881 28 20 8 1,704.10 
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A.2.2 Experimental results 

The purposes of this experiment were to measure the accuracy of the algorithm in 

classifying path type, sidewalk and crosswalk, and to examine the accuracy of the algorithm in 

identifying the correct side of the road for each sidewalk segment. Inputs to this experiment 

included ten GPS traces and the road network of the testing area. The result from the algorithm 

was the segments of pedestrian path type along with road segment number and the side of the 

road. This result was compared against actual pedestrian paths travelled (identified from data 

collectors after trips). The number of actual sidewalks and crosswalks travelled and those 

generated by the algorithm in each trip were reported. For comparison, the numbers of correctly 

identified sidewalks (Sc), crosswalks (Cc), and side of sidewalks (SSc) were calculated. Three 

evaluation parameters to validate the performance of the algorithm are accuracy of path type 

identification (Ap), success rate of sidewalk/ crosswalk determination (SR), and accuracy of side 

identification (As). Ap, SR, and As values range from 0 to 1, with 1 being highest.  Ap, SR, and 

As are calculated as follows: 

Ap = (Sc + Cc) / number of generated sidewalk and crosswalk segments  (A.1) 

SR = (Sc + Cc) / actual number of travelled sidewalks and crosswalks  (A.2) 

As = SSc / number of generated sidewalk segments     (A.3) 

Ap was calculated by dividing the number of correctly identified sidewalks and 

crosswalks by the number of generated segments (sidewalk and crosswalk segments) by the 

algorithm. SR was calculated by dividing the number of correctly identified sidewalks and 

crosswalks by the actual number of travelled segments for both sidewalks and crosswalks. AS 
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was calculated by dividing the number of correctly identified sides by the number of generated 

sidewalk segments by the algorithm. Table A-2 shows the result. 

Table A-2. Results of three evaluation metrics 

Trip # 

# actual 
travelled 
sidewalk 

# actual 
travelled 
crosswalk 

#  
generated 
sidewalk 

# 
generated 
crosswalk 

Sc Cc SSc Ap SR As 

Trip 1 24 8 19 10 18 7 18 0.862 0.781 0.947 

Trip 2 13 9 11 9 10 9 10 0.95 0.864 0.909 

Trip 3 14 6 11 8 11 1 4 0.632 0.600 0.364 

Trip 4 44 29 41 28 39 18 30 0.826 0.781 0.732 

Trip 5 45 23 40 23 39 23 39 0.984 0.912 0.975 

Trip 6 28 9 25 8 22 8 21 0.909 0.811 0.840 

Trip 7 30 12 30 10 28 7 20 0.875 0.833 0.667 

Trip 8 37 12 35 15 31 14 30 0.9 0.918 0.857 

Trip 9 41 15 34 13 31 12 30 0.915 0.768 0.882 

Trip 10 20 8 21 9 19 5 19 0.8 0.857 0.905 

Average value 0.865 0.812 0.808 

 
The average accuracy of path type identification, success rate of sidewalk/crosswalk 

determination, and accuracy of side identification are 0.865, 0.812, and 0.808, respectively. The 

results from most trips are near optimum (greater than 85%), which means that the algorithm is 

able to determine pedestrian path type and side of the road segments from collected walking GPS 

traces. However, the algorithm performed poorly around high-rise buildings and narrow road 

areas as it identified wrong walking sides (e.g., Trip3 and Trip7).  
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