
TOKEN-BASED APPROACH FOR SCALABLE TEAM

COORDINATION

by

Yang Xu

PhD of Information Sciences

Submitted to the Graduate Faculty of

in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2007



UNIVERSITY OF PITTSBURGH

This dissertation was presented

by

Yang Xu

PhD of Information Sciences

It was defended on

December 12, 2007

and approved by

Dr. Michael Lewis, School of Information Sciences, University of Pittsburgh

Dr. Paul Scerri, Robotics Institute, Carnegie Mellon University

Dr. Marek Druzdzel, School of Information Sciences, University of Pittsburgh

Dr. Paul Munro, School of Information Sciences, University of Pittsburgh

Dr. Katia Sycara, Robotics Institute, Carnegie Mellon University

Dissertation Advisors: Dr. Michael Lewis, School of Information Sciences, University of

Pittsburgh,

Dr. Paul Scerri, Robotics Institute, Carnegie Mellon University

ii



ACKNOWLEDGMENTS

First I would like to acknowledge my dissertation committee members: Dr. Michael Lewis,

Dr. Paul Scerri, Dr. Katia Sycara, Dr. Paul Munro and Dr. Marek Druzdzel. Dr. Lewis

and Dr. Scerri, thanks for being my advisors, and for giving me great advice along the way.

This truly made me a better investigator, a quality that will undoubtedly be beneficial in

my future career. Paul, thanks for helping me out with every aspect of my project and for

being not only an exceptional teacher, but also a friend. It was my pleasure to work closely

with you for past years. Dr. Sycara, your suggestions and comments really helped me to

think critically. I have always appreciated your great advice and many words of wisdom.

Dr. Munro and Dr. Druzdzel, thanks for all of your help and suggestions for my dissertation

project. I learned a lot from all of you, and my committee really played an enormous role

in the success of my dissertation project.

I must also thank three people who helped me out so much. Bin Yu, you were always

able to make me feel more at ease and comfortable. Thanks for having been so willing to

help me with everything. Jijun and Guoming, my partners working in the same lab, I will

always remember the time we struggled and laughed together.

There are so many people in intelligent software agent lab to thank also: Joseph Gi-

ampapa, Robin Glinton and Sean Owen. I appreciate all the time and effort you put into

helping me.

I would like to thank the students in School of Information Science. In particular, I

would like to thank Ming Mao, who is so warm-hearted and helped my family a lot.

I would also like to thank my family for all of their support over the years. My mother,

father and sister, thank you for always being there for me and encouraging me to go as far

as I can in life. Thanks for always being proud of me no matter what. Specifically, I would

also like to thank my mother- and father-in-law for supporting me and taking good care of

my wife and my baby. And, last but not least, I must thank my wife, Li. Thank you for

always believing in me, being there for me and taking good care of our family. And, finally,

my future daughter Tiantian, for putting things in perspective and giving me more power

to get though any situation.

iii



TOKEN-BASED APPROACH FOR SCALABLE TEAM COORDINATION

Yang Xu

PhD of Information Sciences, PhD

University of Pittsburgh, 2007

To form a cooperative multiagent team, autonomous agents are required to harmonize activ-

ities and make the best use of exclusive resources to achieve their common goal. In addition,

to handle uncertainty and quickly respond to external environmental events, they should

share knowledge and sensor in formation. Unlike small team coordination, agents in scalable

team must limit the amount of their communications while maximizing team performance.

Communication decisions are critical to scalable-team coordination because agents should

target their communications, but these decisions cannot be supported by a precise model or

by complete team knowledge.

The hypothesis of my thesis is: local routing of tokens encapsulating discrete elements of

control, based only on decentralized local probability decision models, will lead to efficient

scalable coordination with several hundreds of agents. In my research, coordination controls

including all domain knowledge, tasks and exclusive resources are encapsulated into tokens.

By passing tokens around, agents transfer team controls encapsulated in the tokens. The

team benefits when a token is passed to an agent who can make use of it, but communications

incur costs. Hence, no single agent has sole responsible over any shared decision. The key

problem lies in how agents make the correct decisions to target communications and pass

tokens so that they will potentially benefit the team most when considering communication

costs.

My research on token-based coordination algorithm starts from the investigation of ran-

dom walk of token movement. I found a little increase of the probabilities that agents make
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the right decision to pass a token, the overall efficiency of the token movement could be

greatly enhanced. Moreover, if token movements are modeled as a Markov chain, I found

that the efficiency of passing tokens could be significantly varied based on different network

topologies.

My token-based algorithm starts at the investigation of each single decision theoretic

agents. Although under the uncertainties that exist in large multiagent teams, agents cannot

act optimal, it is still feasible to build a probability model for each agents to rationally pass

tokens. Specifically, this decision only allow agent to pass tokens over an associate network

where only a few of team members are considered as token receiver.

My proposed algorithm will build each agent’s individual decision model based on all of its

previously received tokens. This model will not require the complete knowledge of the team.

The key idea is that I will make use of the domain relationships between pairs of coordination

controls. Previously received tokens will help the receiver to infer whether the sender could

benefit the team if a related token is received. Therefore, each token is used to improve the

routing of other tokens, leading to a dramatic performance improvement when more tokens

are added. By exploring the relationships between different types of coordination controls,

an integrated coordination algorithm will be built, and an improvement of one aspect of

coordination will enhance the performance of the others.
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1.0 INTRODUCTION

With the development of intelligent agent research, single agents are required to cooperative

with others and formed as a team when they cannot solve problems themselves or achieve

goals out their own. In such a cooperative multiagent team, unselfish autonomous agents

should jointly make decisions to harmonize their activities and make the best use of exclu-

sive resources accomplish their common goal. Moreover, to handle uncertainty and quickly

respond to external environmental events, team members should share their knowledge and

sensor information, and be capable of adjusting their activities automatically when those

activities cannot produce the expected results.

Coordination within those teams are to enable agents to cooperate more efficiently

when pursuing their goals. Existing coordination algorithms have been developed including

market-based approaches [26], teamwork approaches [91], decision theoretical approaches

[11], etc. Their applications have been successfully implemented in teams supporting human

collaboration[18, 87], teams for disaster response[60], for manufacturing[44], for training[92]

and for games[45]. However, state-of-the-art coordination applications require hundreds or

thousands of agents or robots working together. Their goal could be extremely complex,

distributed and their open environment is highly dynamic, emergent, ad-hoc, or even hos-

tile. For example, in a large scale disaster response, hundreds of fire fighters, paramedics,

and many others need to work together, albeit loosely, to mitigate the effects of the disas-

ter. Those applications are critical in real-time coordination domains especially in military,

astronomy and disaster response, such as mobile sensors for target tracking[48]; unmanned

aerial vehicles for battlefield[25]; and spacecraft teams for planet explorations[65]. Different

with the small-team coordination applications, agents in those domains are highly distributed

with limited communication capabilities, but they have to independently make their deci-
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sions.

1.1 CHALLENGES

To address those large-team coordination applications above, we need the coordination al-

gorithms to be capable of handling substantially big teams but to retain the comparable

efficiency of coordinating a small team. Unfortunately, existing team coordination algo-

rithms [89, 47, 26] are not capable of coordinating agents when their team size scales up.

The major challenges include communication limitation, decentralized control, and incom-

plete knowledge for decision support. In the rest of this section, I describe those challenges

in more details.

1.1.1 Limitations in communication

Communication limitation is the primary challenge when we apply existing team coordina-

tion algorithms to a large team. Existing algorithms for small-team coordination assume that

communication is not under constraints, and agents can freely communicate with any other

agents. Under this assumption, in existing coordination approaches, centralized communi-

cation protocols, such as a blackboard [15] or specific centralized agents, such as information

agents [33], are designed.

However, communication in a large team is constrained for two reasons. First, with

a physically finite communication bandwidth, agents in a large team cannot communicate

with all their teammates when the team size is hundreds of times larger than a small team.

Second, agents in a large team normally more widely distributed than in a small team.

Their physical bandwidth is less than when they are in a small team, either because of a

weaker wireless signal or because more transmissions are required to deliver a message. In

this viewpoint, communication in a large multiagent team has been a valuable resource.

Excessive communication protocols are either infeasible, undesirable, or too expensive. To

reduce communication, coordination either adopts a silent stratagem [105] or attempts to

2



Figure 1: State-of-art coordination applications require hundreds or thousands of agents or robots working
together towards complex goals. (a) Coordination unmanned helicopters (b)RoboCup (c) Exploration of
Mars (d) Mobile agents over internet (e) Coordination of military vehicles
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target agents’ communication [102] to only one or a small number of teammates who can

potentially contribute to the team after the message is received. Unfortunately, both methods

in existing coordination approaches require the decision support based on a precise decision

model or enough knowledge of the team states. These requirements will be explained in the

following sections to be hard for a large team.

1.1.2 Decentralized control

Although in both small-team coordination and scalable-team coordination, agents are dis-

tributed in an open environment, agents in small teams are assumed to be able to observe

the complete team state or gain them via broadcast or other centralized communication

protocols, such as a blackboard [15] or an information agent [33]. By designing central-

ized algorithms, such as auction [26], decision theoretical agent [12] or GPGP/TAEMS [47],

small-team coordination tried to find the optimal joint policies for team members to act in

their environments in the center units.

Unlike small-team coordination, scalable-team coordination requires decentralized con-

trols. In scalable-team coordination, although agents work together to achieve their common

goal, they must independently make decisions to their own activities. There are three main

reasons for this. First, due to the restrictions on communication mentioned above, no agent

is capable of acting as the central unit, such as a supervisor or auctioneer that is able to

listen and dispatch orders to all the other team members. Second, the computations required

to search an efficient joint policy for a large team in a single unit is either practically too

expensive or impossible. Third, centralized-control applications are vulnerable in certain do-

mains, such as the military. The entire team will halt even if the only agent acts as central

unit fails.

1.1.3 Incomplete team states and environment

In scalable team coordination algorithms, distributed agents are always only able to sense a

part of the team state and their environment. In some of the ad-hoc environments, they may

not even know how many teammates there are. For example, an Unmanned Aerial Vehicle

4



(UAV) that is involved in a military operation may observe many features of the battlefield

on the route to an assignment. Many of its observations will be relevant to the assignments

of other combatants, but the UAV may not necessarily know which members require those

information. Events that are relevant to team goals will become available to some team

members in a spontaneous, unpredictable, and, most importantly, distributed way. To be

able to make rational decisions under uncertainty of the environment, communication is

required so that agents can obtain sufficient knowledge of the team state and react to those

dynamic environmental changes.

On the other hand, in existing team coordination models, team members are assumed

to have precise models of the team state to support their decisions in order to achieve their

joint goals [43, 92]. However, when team size is scaled up, it becomes unfeasible to maintain

up-to-date, detailed models of all other teammates and team activities, because of agents’

limited communication abilities and sensor perceptions. Without these models, key elements

of both the theory and operationalization of existing teamwork break down. For example,

without accurate models of team activities, STEAM’s communication reasoning [92] cannot

be applied, nor can Joint Intention’s reasoning about commitments [43]. Therefore, a key

challenge for scalable team coordination is how to design a rational decision mechanism that

is based on an imprecise model of the team. It has been a chicken-and-egg puzzle, where

rich localized knowledge is indispensable to target communications, while communication is

required for sharing team knowledge.

Furthermore, when the size of a team is scaled up, more variables are included in the

team state. Team state space has been exponentially expanded according to the number of

variables. Hence, to be computationally feasible to search a rational decision, the team state

has to be factored and only the variables that potentially contribute to current decision

should be taken into consideration. Another challenge exists because without sufficient

knowledge of the team states, agents do not know which variables should be taken into

account.
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1.1.4 Heterogeneous Team

Coordinating a heterogeneous team [68, 90] is another challenge when the members of a large

team have different capabilities for different roles. When coordinating such a heterogeneous

team, there are more constraints on role and resource allocation. In these teams, a specific

role can only be taken by some agents who are capable of that role, and different quantities

of team reward (a measure of team utility function for "good performance") will be expected

when it is performed by different capable agents. Moreover, specific exclusive resources are

required for agents to take a role. For example, only the robots with medical training are

capable of victim rescue, and to fight of a fire, a resource of hydrant is required. Unlike

the tight constraints in small robotics team coordination, role assignments can be performed

independently in scalable coordination. The major challenge is that no agent has the com-

plete knowledge of the capabilities of their teammates. Therefore, in scalable coordination,

without enough knowledge of the team state, agents are hard to make decisions of how to

assign a role or a resource to a teammate in a way that will benefit the team most.

1.1.5 Solving Conflicts

With the increasing of complexity, dynamics, and uncertainty in scalable teamwork, agents’

coherent joint activities are inevitably jeopardized by conflicts in agents’ beliefs, plans, and

actions [49, 98]. Based on the incomplete knowledge of team and the environment, agents

cannot always make correct decisions. Conflicts occur in several scenarios. For examples,

a noisy reading from a sensor may create an incorrect piece of information; a fast-changing

environment puts agents’ inferences of the team state out of date very quickly; an agent

duplicates a plan without noticing that other agents have created the same plan; or one or

more agents perform the same activity without noticing that the activity has been duplicated.

The successful handling of potential conflicts within a scalable team is required before a

robust coordination approach is carried out.
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1.1.6 Social Effects

When teams scale up, social organization topology is an important factor to be considered

in coordination. The efficiency of a large team is not simply the sum of all efforts of all

team members. Previous research has revealed that social structures, patterns, and inter-

connections have a strong impact on the effectiveness of communication and cooperation

within both human society [58, 100] and artificial computation-based multiagent teams [55].

The most popular manifestation of this phenomenon is the six degrees of separation concept,

which was uncovered by Milgram [58]. My research of " information sharing among scalable

teams" has revealed that sharing efficiencies are significantly varied among different social

network topologies [102]. Therefore, in a scalable team coordination design, it is important

to include the successful social effects that fosters efficient behavior in team organization,

which has not been considered in small-team coordination.

1.2 DISTRIBUTED COORDINATION APPROACHES

As explained in the previous section, small-team coordination approaches when applied in

scalable-team coordination, the major issue is its incapability of making decisions under

incomplete team knowledge with a limited communication. Initial research for scalable

coordination has been made in multiagent communities, but those distributed multiagent

coordination approaches have failed to produce algorithms or implementations that meet all

the challenges. Most algorithms that have been developed to solve key problems do not scale

to very large teams. For example, optimal search techniques in trading of computational

complexity cannot be applied when the team state space is exponentially expanded [59, 61].

The rare algorithms that do scale effectively typically either make unreasonable assump-

tions or are very specialized to a specific problem (such as emergent behavior [75]). Coor-

dination that relies on swarm-like behavior that, while robust, can be very inefficient [19].

Other approaches that have been shown to be scalable often rely on some degree of cen-

tralization, for example, using an auctioneer [41, 53, 34]. Those approaches may not always
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be desirable or feasible. Decentralized coordination models such as Decentralized Partial

Observable Markov Decision Process (DEC-POMDP). Although they can mathematically

model the problem well, their solutions are computationally NP-complete [9]. Therefore,

new approaches are needed to be designed for scalable coordination.

1.3 INTEGRATED COORDINATION ALGORITHM

Autonomous coordination is a complex process since several distributed algorithms are re-

quired to interact to produce agile, cohesive, and efficient coordinated behavior. Typical

teamwork requires different aspects of coordination, such as sharing information on exter-

nal environmental events [102], allocating individual tasks for joint actions [29], initiating

plans [104], detecting conflicts on knowledge and activities around the team [49], human

interaction[84], and sharing exclusive resources[54].

There have been several existing coordination algorithms capable of distributed coordi-

nation, but they only focus on a partial aspect of coordination and overlook the interrelation-

ship between them. For example, role allocation or planning algorithms in [80, 41] preclude

the use of knowledge from other aspects of coordination that may improve the performance

of their algorithms. Results of the role allocation process are not typically used to guide

resource allocations, although intuitively they will improve the decisions. In information

sharing algorithm [102], if an agent knows the tasks that other agents are carrying out, it

can route the related information more efficiently. On the other hand, when agents know

the status of one another, it is much easier to assign related tasks. Unfortunately, no exist-

ing research has shown that interrelationships between different aspects of coordination are

being used to improve their algorithms.

A key innovation in my thesis is based on my observation that different coordination

algorithms are interrelated. The relationships underlying different aspects of coordination

tasks imply that an integrated decision model can be built, based on all of the coordination

tasks, to more efficiently solve the coordination decision problem.
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1.4 RESEARCH OBJECTIVE

Although initial efforts have been made in previous research to design scalable coordination

algorithms, these efforts have not yet been able to accommodate all the challenges. The

hypothesis of my thesis is that local routing of tokens encapsulating discrete elements of

control, based only on decentralized local probability decision models will lead to efficient

scalable coordination within teams comprised of several hundreds of agents. The major

task is to design an algorithm for distributed agents so that they can locally make rational

decisions based on their limited view and incomplete knowledge to maximize team utility.

In my research, coordination controls, including all domain knowledge, tasks, and exclusive

resources are encapsulated into tokens. By utilizing their limited communication bandwidth,

agents target their communication and pass the tokens around to transfer team controls that

are encapsulated in the tokens. The team is benefited when a token is passed to an agent who

can make use of it, but communications incur costs. In the process of passing tokens, efficient

coordination of task assignment, exclusive resources allocation, and sharing knowledge could

be realized, but no single agents has sole responsibility for any shared decision.

The key problem is how agents make correct decisions based on their partial observations

and team knowledge. My proposed algorithm will build each agent’s local decision model

based on all its previous incoming tokens. This model will not require the complete knowledge

of the team. The key idea is that I will make use of the domain relevance between pairs

of coordination controls. Previously received tokens help the receiver to infer whether the

sender will benefit the team if a related token is received. Therefore, each token is used to

improve the routing of other tokens leading to a dramatic performance improvement when

the algorithms work together. By exploring the relationships between different types of

coordination controls, an integrated coordination algorithm will be built, and one aspect of

coordination will enhance the performance of the others.

My initial experiment (described in section 5.2) shows that a little enhancement of pre-

cision in local decision policy will greatly improve the performance of team coordination and

the local communication decision process. Moreover, I will make use of the relationships

between various coordination tasks and build an integrated decision model that is capable
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of performing every aspect of coordination tasks. In my research, I am mainly interested

in three major aspects of coordination: information sharing, task assignment and exclusive

resource allocation. The major advantage of this integrated model is that an improvement

in one aspect of coordination, such as information sharing, will improve the performance of

other aspects of coordination, such as role assignment and resource allocation.

In addition to the token-based coordination algorithm, a logical, static network across

the team limits agents to forwarding tokens to their neighbors in this network. As a result,

an agent directly receives tokens from a small number of neighbors in the network and can

thus build much better models of those agents. In my thesis, I will conduct an investigation

of whether teams that are organized according to social effects [6] enhance the team perfor-

mance. I am interested in four major team organization topologies including random, grid,

small world and scale free network. Specifically, small world and scale free effect have been

verified as efficient for information sharing around large scale teams [102].
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2.0 PROBLEM DESCRIPTION

In this section, I will formally describe the scalable-team coordination problem based on team

oriented plan model. In this model, high-level common goal is decomposed into subgoals.

In my research, I focus on three main coordination algorithms: information sharing, role

assignment, and resource allocation. In this section, My formal model for scalable-team

coordination is described. Then, a detailed example of scalable-team coordination domain

is presented.

2.1 TEAM ORIENTED PLANS

Team Oriented Plans (TOPs) are the abstraction that define team behavior. The TOPs pro-

vide the mapping from team level goals to individual roles that are performed by individual

team members. Suppose the team A has a top level goal, G. The team commits, with the

semantics of STEAM to G [92]. Achieving G requires achieving sub-goals, gi, that are not

known in advance but are functions of the environment. For example, sub-goals of a high

level goal to respond to a disaster could be to extinguish a fire and provide medical attention

to particular injured civilians. To achieve sub-goals, the team follows plan templates repre-

sented in a library. These templates are parameterized while instantiated plans contain the

specific details [69]. For example, when a particular fire in a building is detected by a team

member, the plan will be instantiated because it matches a template for disaster response.

Individual agents may commit the team to a sub-goal, provided that it matches a plan

template. Each sub-goal is addressed with a plan, plani =< gi, recipei, rolesi, eventsi >,

that matches a plan template in the library. The overall team thus has plans P lans(t) =
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{plan1, . . . , plann}. Individual team members will not necessarily know all plans. To max-

imize the responsiveness of the team to changes in the environment, we allow any team

member to commit the team to executing a plan, when it detects that subgoal gi is relevant.

Team members can determine which sub-goals are relevant by the plan templates specified

by the library. Recipei is a description of the way the sub-goal will be achieved[43] including

the execution order of the components in the plan. Rolesi = {role1, role2, role3, ...roler} are

the individual activities that must be performed to execute recipei. eventi is the domain

specific information pertinent to the plan. For convenience, we write perform(r, a) to signify

that agent, a, is working on role, r.

One way to think about TOPs is as active objects in a distributed database. Each

TOP “object” captures the state of a particular team plan. Team members involved in the

execution of that plan need to have up-to-date versions of the TOP “object”, e.g., knowing

which team members are performing which roles and when TOPs are complete. Information

needs to be shared to ensure there is synchronization across the same object held by different

team members. Viewed in this manner, coordination can be thought of as a set of algorithms

to fill in fields on the TOP objects and ensure synchronized objects across the team. For

example, some coordination algorithms are triggered when there are open roles in the TOP

objects and other algorithms are triggered when the post-conditions on the plan are satisfied.

2.2 SCALABLE-TEAM COORDINATION MODEL

The team coordination problem is defined as: there is a scalable multiagent team A =

{a1, a2, . . . , a|A|} and ai represents a specific agent i. They share a top level common goal G.

2.2.1 Teamwork

Based on the joint intentions framework [89] and team oriented plan model explained above,

G can be realized by achieving a set of joint intention sub-goals {g1, g2, ..., gi, ...} in multiple

plans. Each of the joint intention plan j for a sub-goal gi is written as a tuple plani,j =<
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gi, pi,j, qi,j, rewardi >, where

• gi is the subgoal.

• pi,j = {event1i,j , event2i,j , ...} are the preconditions to activate a specific plan j that can

achieve subgoal gi. Please note that we defined gi can be achieved in several ways. For

example, distinction a fire can achieved either by spraying water or fire distinct chemicals.

• qi,j = {role1
i,j, role

2
i,j, ...} denotes all individual activities required to be performed by

single agents after plani,j is activated to realize gi. Each rolei,j =< taski,j, abilityi,j ,

resourcei,j > is represented by its task, i.e., a description of the actual thing to be done;

the capabilities required to perform that task and the resources needed to fill the role.

• rewardi will be credited to team A when the sub-goal gi is achieved.

For example, a plan of fire fighting can be defined as: <(Fire fighting at a location X),

(Notice of a fire alarm at X ∩ Observation of smoke at X), (role1
i,j , role

3
i,j, role

3
i,j), (100)>.

This template requires two conditions before it is initiated: notice of a fire alarm and

observation of smoke. After this plan is initiated, three roles may need to be allocated.

role1
i,j=<(Driving the fire truck), (Skillful in driving truck), (An available fire truck)>,

role2
i,j=<(fighting the fire), (Have training in fire fighting), (Fire fighting equipment)> and

role3
i,j=<(Searching for victims), (None), (Fire fighting equipment)> are three roles in this

template: driving the fire truck, fighting the fire and searching for victims. To perform

role1
i,j, an agent is required to be able to drive and have access to a fire truck (resource).

After all the roles are located, a reward 100 will be credited to the team.

I define INF = {event11,1, event21,1, ..., eventki,j, ...} as the set of all possible domain

events; ROLE = {role1
1,1, role

2
1,1, ..., role

k
i,j, ...} is the set of potential available activities

and RESOURCE = {res1, res2, ...resk, ...} is all available exclusive resources in team A.

The capability of agent ai to perform rolek
i,j is mapped as a quantitative value given

by: Cap(ai, role
k
i,j) → [0, 1], e.g., Cap(ai, (Drivingfiretrunk)) = 0.8. I also write the re-

source requirements for ai to perform rolek
i,j as RequireRes(ai, role

k
i,j) ⊆ RESOURCE (e.g.,

RequireRes(ai, (Drivingfiretrunk)) = {firetrunk}) and the resources that are currently

available for ai as AvailableRes(ai) ⊆ RESOURCE (e.g., AvailableRes(ai) = {hydrant}).

Whether agent ai is able to perform rolek
i,j depends on its capability and available resources.
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Formally, the requirements are:

performing(ai, role
k
i,j) := ((Cap(ai, role

k
i,j) > 0)

∧ (RequireRes(ai, role
k
i,j) ⊆ AvailableRes(ai)))

For any agent ai ∈ A, I have Assign(rolek
i,j) = ai if perform(ai, role

k
i,j) = 1; otherwise,

Assign(rolek
i,j) = Null. Moreover, each resource and task are exclusive to be shared, and

for ∀ai, aj ∈ A I require AvailableRes(ai)∩ AvailableRes(aj) = φ. Similarly, for tasks,

perform(ai, rolek
i,j)∧ perform(aj , role

k
i,j) = false.

Based on this joint intention coordination model, team coordination is defined as: Ξ =

INF ∪ROLE ∪RESOURCE and has been segmented into pieces tc ∈ Ξ, which is either a

domain event, a joint activity or an exclusive resource. By allocating those coordination to

specific agents, for example, by fusing all the preconditions of domain events to a single agent

and allocating roles to capable agents with required resources, a plani,j will be activated and

implemented. Therefore, a subgoal gi will be achieved.

2.2.2 Utility Function

The objective of team coordination is to achieve the top level goal G by performing as

many sub-goals gi as possible. Suppose that in a period of time, domain events sensed

by A are written as Υ ⊆ INF . Only part of PLAN will be activated by Υ, which is

written as P lanV alid ⊆ PLAN . Therefore, ∀plani,j ∈ P lanV alid, plani,j .pi,j ⊂ Υ. Then

Complete(plani,j) = 1 if ∀r ∈ plani,j .qi,j , assign(r) 6= NULL. This equation requires that

all its joint activities be assigned to one of the team members. The objective function is to

get reward from implementing all the roles r ∈ plani,j.qi,j , where plani,j ∈ P lanV alid.

Before I discuss how the reward for each role is defined, I will introduce two important

parameters:

• UsefulInf(r) ⊆ INF defines all the useful domain events which are not required but

are helpful for performing r, e.g., knowing which street has been blocked is helpful for

performing the role of driving a fire trunk.

14



• UsefulRes(r) ⊆ RESOURCE defines all the non-requested but helpful resources to

perform r, for example, a fireproof suit is helpful for fire fighting.

I define the utility to implement a role r as 1:

U(r) =

(Cap(Assign(r), r) + 1)× reward(gi)

× (
|UsefulInf(r) ∩ AvailableInf(Assign(r))|

|UsefulInf(r)|
+ 1)

× (
|UsefulRes(r) ∩AvailableRes(Assign(r))|

|UsefulRes(r)|
+ 1)

In this formula, r ∈ plani,j .qi,j and AvailableInf(Assign(r)) ⊆ INF are all the domain

events previously known by the agent who is performing r. The function shows that the util-

ities of performing a role r depends on the rewards of achieving its sub-goal gi (reward(gi)).

Moreover Higher reward is foreseen if r is assigned to an agent who is more capable of per-

forming that role than others, holds more useful resources, or knows more helpful domain

events. The team coordination objective function is defined as:

maximize(
∑

r∈V alidRoles

U(r)× d|t(r)|)

where V alidRoles =
⋃

plan∈P lanV alid plan.qi,j , d is an discount factor and d|t(r)| is the time

discount factor before r is allocated.

1In my coordination algorithm, the cost of performing a task is ignored and the reward of performing a
task is equal to that of allocating a task.
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2.3 COORDINATING WASMS: AN EXAMPLE

My thesis is a part of the project of Coordinated Wide Area Search Munitions which is

to coordinate large groups of Wide Area Search Munitions (WASMs) [81]. WASMs are a

cross between an unmanned aerial vehicle and a standard munition. The WASM has fuel for

about 30 minutes of flight, after being launched from an aircraft. The WASM cannot land,

hence it will either end up hitting a target or self destructing. The sensors on the WASM

are focused on the ground and include video with automatic target recognition, ladar and

GPS. It is not currently envisioned that WASMs will have an ability to sense other objects in

the air. WASMs will have reliable high bandwidth communication with other WASMs and

with manned aircraft in the environment. These communication channels will be required

to transmit data, including video streams, to human controllers, as well as for the WASM

coordination.

The concept of operations for WASMs are still under development, however, a wide range

of potential missions are emerging as interesting[20, 25]. A driving example for our work

is for teams of WASMs to be launched from AC-130 aircraft supporting special operations

forces on the ground. The AC-130 is a large, lumbering aircraft, vulnerable to attack from

the ground. While it has an impressive array of sensors, those sensors are focused directly

on the small area of ground where the special operations forces are operating making it

vulnerable to attack.

The WASMs will be launched as the AC-130s enter the battle space. They will protect

the flight path of the manned aircraft into the area of operations of the special forces,

destroying ground based threats as required. Once an AC-130 enters a circling pattern

around the special forces operation, the WASMs will set up a perimeter defense, destroying

targets of opportunity both to protect the AC-130 and to support the soldiers on the ground.

Even under ideal conditions there will be only one human operator on board each AC-130

responsible for monitoring and controlling the WASMs. Hence, high levels of autonomous

operation and coordination are required of the WASMs themselves. However, because the

complexity of the battlefield environment and the severe consequences of incorrect decisions,

it is expected that human experience and reasoning will be extremely helpful in assisting the
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Figure 2: A screenshot of the WASM coordination simulation environment. A large group of WASMS
(small spheres) are flying in protection of a single aircraft (large sphere). Various SAM sites (cylinders) are
scattered around the environment. Terrain type is indicated by the color of the ground.

team to archive its goals safely and effectively

Many other operations are possible for WASMs, if issues related to coordinating large

groups can be adequately resolved. Given their relatively low cost compared to Surface-to-

Air Missiles (SAMs), WASMs can be used simply as decoys, finding SAMs and drawing fire.

WASMs can also be used as communication relays for forward operations, forming an ad hoc

network to provide robust, high bandwidth communications for ground forces in a battle

zone. Since a WASM is "expendable", it can be used for reconnaissance in dangerous areas,

providing real-time video for forward operating forces.

While my domain of interest is teams of WASMs, the issues that need to be addressed

have close analogies in a variety of other domains. For example, coordinating resources

for disaster response involves many of the same issues [46], as do intelligent manufacturing

[72] and business processes. The problem of coordination I am dealing with here can be

informally described as determining who does what at which time, and with which shared

resources and information.
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3.0 STATE OF THE ART

In this section, we will survey previous research to the multiagent coordination problem.

Although they cannot be applied directly to solve large-scale multiagent team coordination

when considering some improper assumptions or limitations, some of their ideas are critical

to my research. There are three major groups of existing research: approaches according to

BDI models, centralized coordination models and decentralized coordination models.

3.1 TEAMWORK

3.1.1 Belief-Desire-Intention model

The Belief-Desire-Intention (BDI) Model [73, 13] is the most popular architecture for practi-

cal reasoning agents. It combines basic ideas from human psychology with formal logic and

architecture in the domain of intelligent agent applications. Intelligent agents following the

BDI model are made up of the following three parts: Belief defines an agent’s local knowl-

edge base that represents what the agent "knows"; Desire defines the goal that the agent is

trying to achieve; and Intentions define the agent’s currently adopted plans of how the goal

will be achieved. Plans are predetermined sequences of actions (or sub-goals) that can be

specified as accomplished. Tasks are combinations of actions that achieve certain outcomes

or responses to events and are used by the agent to further its intentions.

In the BDI model, agents act in both reactive and deliberative ways. When an agent

detects a system event, it looks for relevant plans that respond to this type of event; then,

for each relevant plan, the agent examines the appropriateness of the plan to the situation
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in which the agent finds itself; after that, the agent selects and starts executing the most

appropriate plan. Agents also do deliberative planning: what goal to pursue, or alternatively,

what event to react to; how to pursue the desired goal; and when to suspend or abandon the

goal and change to another goal.

The agent may also vary its balance between reactive and deliberative behavior by chang-

ing the amount of time allowed for deciding what to do next. This enables the agent to be

more or less sensitive to changes in the environment, that is, to be more or less "committed"

to its current plan.

BDI is similar to the human decision process, and it is easy to be understood and

implemented. But it also inherits the drawback of human decision where its model is hard

to be quantitatively measured. There are two reasons [67]. The first reason is that the BDI

model is incapable of handling uncertainty and communication cost in the environment of

real domain. For example, Joint Intention theory ignores the communication cost to obtain

the mutual belief [67]. Second, the BDI model ignores the computation complexity for a

decision. Therefore, the BDI model cannot direct individual agents to act toward their joint

goal while maximizing team performance, and the efficiency and complexity of teamwork

cannot be guaranteed. Furthermore, most BDI models, such as STEAM, depend on a precise

and detailed model to make decisions, which is not feasible for scalable coordination.

When the BDI model extends to multiagent teamwork, there are two branches of research:

the Joint Intention model and the Shared Plans model.

3.1.2 Joint Intention Model

In the Joint Intention model, all team members jointly intend a team action if they jointly

commit to complete it and mutually believe that all of them are performing it [89]. There

are three main points in this model [92]:

1. All members mutually believe that a goal is not achieved.

2. All members have committed it as their mutual goal.

3. All members believe that it will be eventually achieved and will hold until it is

achieved.
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GRATE is the first implementation according to joint intention model [43]. This system

utilizes the joint intention model to establish a collaborative protocol and monitor the ex-

ecution of joint activity. The key to the success of this approach, is the explicit, detailed

model that each agent has of the joint activity and of other members of the team. Agents

use these models to reason about actions that will aid the achievement of joint goals.

3.1.3 Shared Plan Model

Unlike Joint Intention model, the Shared Plan model is based on intention attitude, other

than joint mental attitude [89]. Grosz [37] defines a team member’s intention as "directed

towards its collaborator’s action or towards a group’s joint action and is a set of axioms that

guide an agent to take actions, including communicative actions that enable or facilitate its

teammates, subteam or team to perform assigned tasks" [38]. Shared Plans model a goal

that will be realized in a set of social plans. Each of the social plans can be decomposed into

joint activities which are specifically realized by one or several single agents with constraints

of temporal or causal ordering.

Therefore, the Shared Plan model decomposes team activities hierarchically into multiple

levels of actions. Those actions are comprehensive in handling of the partiality of belief and

intention for only single agents or partial individual team members. We call it as sub-

plans [85]. For example, in robot soccer, "winning the game" is a high-level plan for the

intention and belief of all robots. This plan can be realized with two sub-plans: attacking

and defending. Not all team members are required to commit the intention for a sub-plan,

for example, goalkeeper is not required to attack.

3.1.4 STEAM

Tambe combined the Joint Intention model and the Shared Plan model and developed a

general model of teamwork for persistent coordination in an uncertain, complex, and dynamic

environment [89]. Unfortunately, its coordination requires a precise model of each individual

agent.

In this model, joint intention is built within the block of teamwork, and shared plan
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model is used to build hierarchical structures between blocks, such as joint intentions, in-

dividual intentions and beliefs of the teammates. Therefore, in STEAM, the main purpose

of shared plan model is to carry the domain knowledge and the framework of how agents

would act and cooperate with the others. Specifically, there are two separate hierarchies [93]:

Team Organization Hierarchy, which is building subteams and defining role assignments; and

Team Activity Hierarchy, that refines team operations and team plan reactions such as pre-

and post-conditions of a plan. Under the hierarchical structure set up by the shared plan

model, joint intention theory within blocks drives communication to obtain mutual beliefs

and mutual commitments for setting up or voiding of joint intentions. The purpose is to

build a reasoning model of communication that is also used for monitoring team performance

and detecting conflicts. This model is domain independent.

3.1.5 Team-Oriented Programming

Tidhar [95] used the term “team-oriented programming” to describe a conceptual framework

for specifying team behaviors based on mutual beliefs and joint plans, coupled with orga-

nizational structures. His framework also addressed the issue of team selection [95]. Team

selection matches the “skills” required for executing a team plan against agents that have

those skills. Jennings’s GRATE* [42] uses a teamwork module, implementing a model of

cooperation based on the joint intentions framework. Each agent has its own cooperation

level module that negotiates involvement in a joint task and maintains information about

its own and other agents’ involvement in joint goals. The Electric Elves project was the first

human-agent collaboration architecture to include both agents and humans in a complex

environment [18]. COLLAGEN uses a proxy architecture for collaboration between a single

agent and user [76]. While these teams have been successful, they have consisted of at most

20 team members and will not easily scale to larger teams.
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3.2 CENTRALIZED COORDINATION ALGORITHMS

Centralized coordination algorithms by definition require that one agent is a special actor.

It is responsible for the whole decision process and produces the joint policy while the rest of

agents only act as executors [32]. Typical assumptions for centralized control algorithms are:

complete communication with central agent, e.g., message board [15], or central information

agents have complete knowledge of the team [23]. Unlike decentralized approaches, which

seek "satisfied" strategy in trade of uncertainty, centralized coordination approaches focus

on searching for an optimal strategy.

While there is not yet definitive, empirical evidence of the strengths and weaknesses of

each type of architecture, it is generally believed that centralized coordination can lead to

behavior that is closer to optimal, but more distributed coordination is more robust with

failures of communications and individual nodes [14]. The major issue when applying a

centralized coordination approach to scalable coordination is that the communication lim-

itations and computation complexity when a team scales up are ignored, which makes it

unfeasible for our domain.

To find the optimal joint actions in centralized coordination models, there are several

approaches listed below.

3.2.1 Classical Coordination

The traditional model of centralized coordination starts from small team coordination and

is defined as a planning problem. There are three major assumptions: Agents are acting

independently; they have complete knowledge of the world; and their activities are determin-

istic. Therefore, agents have the total knowledge of how an action will affect a state to be

transited to another state without the inferences of the other team members. The solution

of a classical coordination problem can be encoded in a propositional language, e.g., STRIPS

[31]. By defining the relationship between world state, preconditions and execution outcome,

classic coordination algorithms typically perform an operation to search in the action space

of the domain. The objective is to find the sequence of activity for each agent who will
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jointly transition the original team state to the target state with the least cost. Therefore,

by designing search algorithms in a given data structure, such as a plan graph [10], the size of

the team has been extremely limited when the algorithm is applied in complex coordination.

Classical centralized coordination requires a precise model of the world, where uncertainty

in the system has to be ignored. The state space is also extremely limited so that the search

algorithm is computationally feasible to be performed. Moreover, designing as a planning

problem loses the flexibility of coordination, where agents are not capable of reacting quickly

to frequent dynamic environmental changes.

3.2.2 Market-Based Coordination

The market-based approach is very popular in multiagent society for coordination problem

solving [5]. In market-base applications such as TraderBots [26] and Tracer [30], both tasks

and resources are treated as merchandise. One agent acts as auctioneer, and other agents

act as bidders. Agents bid for either single items or combinatorial sets of items in order

to maximize their own utilities. The auctioneer maximizes its own utility by "selling" its

"merchandise". Winner determination algorithms [78] are used to determine the allocation of

tasks and resources by the auctioneer. Because of the central position of the auctioneer, via

seeing the bids, it develops a complete knowledge of how agents will use a task or resource if

allocated to them. Thus, the auctioneer is able to perform assignments that maximize team

utility.

This research turned out to be very efficient for complex task and resource allocations, but

it is not scalable [103]. Moreover, the market-based coordination approaches are not fit for

information sharing or for sensor fusing. Other market-based approaches include negotiation

[28] via contract nets [106], or local optimal approaches, such as cluster or statistic methods

[27].

3.2.3 Hierarchical Coordination

Another group of approaches coordinate agents with a hierarchical organization [109, 24]. In

this multiple-layered architecture, the high-level module is responsible for domain problem
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solving and high-level goal decomposition, while the low-level module is responsible for the

detailed analysis and temple sequencing coordination, which are more likely to be domain-

independent and are easy for code reusing [109]. For example, Beard proposed a three-

levels hierarchical control strategy for a constellation of spacecraft [7]. In the highest level,

agents respond to the high-level issues of mission directives to all spacecraft. The second

level responded to decisions based on agents’ limited information, which was the position of

each spacecraft. The lowest level which is domain-independent implemented simple control

strategies to move each individual spacecraft to avoid collisions.

There are two major bottlenecks when hierarchical coordination strategies are applied to

coordinate a large team. First, hierarchical coordination integrates some kind of centralized

control, and it may not capable in some domains that are featured as ad-hoc. Second, when

the team size increases, more layers are required to be added in the hierarchy, but there is a

trade-off between adding layers and the computational complexity [7].

3.2.4 GPGP/TAEMS

Generalized Partial Global Planning (GPGP) and its associated hierarchical task network

representation, TAEMS (Framework for Task Analysis, Environment Modelling, and Sim-

ulation) was first put forward by Lesser [47]. GPGP approach used the TAEMS tasks

structure with two major innovations: partial global planning (PGP) framework [22] for

domain-independent coordination making; and a dynamic evolving goal tree for agents’ dis-

tributing search for their own coordination policy. The advantage of TAEMS is its capability

in handling uncertainty in the environment with the module called Design-to-Criteria (DCT)

Scheduling [97]. Unlike the GPGP model, which is more suitable for scheduling, TAEMS

can perform dynamic planning or coordination. In DCT, online scheduling uses a heuristic

algorithm to build a plan or schedule to meet agents’ dynamic goal criteria. The key to this

algorithm is to generate optimal MDP policy by heuristically searching the hierarchical task

network or dynamic hierarchical goal tree.

In contrast to STEAM, which is based on the BDI model, GPGP is focused on optimiza-

tion to maximize overall team utility. Unfortunately, GPGP/TAEMS approach requires a
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centralized reasoning framework, which is computationally difficult to using in coordinating

a moderate or scalable team [47].

3.3 DECENTRALIZED COORDINATION ALGORITHMS

In a decentralized coordination model, agents are highly distributed and share knowledge,

but must independently make their individual decisions. This is the basic model for scalable

coordination.

3.3.1 Multiagent Markov Decision Process (MMDP)

In the decision theoretic model, agents in a multiagent team individually or globally generate

their policies based on their own observation and knowledge of the team. The objective is

to yield the best activities to maximize the team performance.

When the MDP model is applied to multiagent coordination, each agent has its own

set of actions, a given common goal has to be solved by cooperation, and all agents have a

common utility function. Boutilier [11] models this problem as a multiagent Markov decision

process (MMDP), which is a tuple: < S, α, {Ai}i∈α, T, R >. Unlike the definition of a single

agent decision process, S is defined as a finite set of team states which merges all states of

single agents in the team. α is the set of agents. A = ×i∈αAi is the set of joint actions. At

any stage of the process each agent will select an individual action to perform. Ai is a finite

set of actions available to agent i. T : S × A1 × A2 × ...An × S → [0, 1] is the transition

function where a team state will be transferred by agents’ joint activities. If only one agent

is responsible for finding the policy of joint action A for all the agents, S → A, this agent is

acting as controller and all the other agents are only executors. It is a centralized approach

[11].

In the decentralized decision process, each agent in the team knows the state of the team

exactly, and it will execute the action according to its own policy, πi : S → Ai. The objective

of decentralized coordination is to search local policies πi to maximize the joint reward. As
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the nature of MDP, agents can fully observe the team state. But an agent’s single activity

depends on how the other agents act. To solve this, MMDP enforced a strict social convention

that is known to all agents in the initial stage. Following this research, Koller put forward a

factored MDP model where the global reward function is represented by a Dynamic Bayesian

Networks and optimal policy can be searched through learning programming along with the

team’s social order [39]. The major difficulty of applying MMDP in scalable teamwork is

that no agents has the complete knowledge of the team state.

3.3.2 Decentralized Partially Observable MDP (DEC-POMDP)

The general decentralized coordination model for scalable teamwork assumes that agents are

widely distributed in an open environment with limited communication. In addition, because

of the nature of the environment, agents are not able to access the complete team states and

only have a partial view of the external environment. Therefore, MMDP’s assumption of

complete knowledge and observation for all agents is not met.

DEC-MDP is generalized from the MMDP model if the agents in the team only perceive

a partial state of the environment [101]. DEC-POMDP is modelled by Bernstein as a tuple

< S, α, {Ai}i∈α, O, Ω, B, R > [74]. In addition to MMDP, Ω is the finite set of observations

from single agents. O : S×Ω→ [0, 1] defines the observation function to map the observation

probabilities that an observation could be made in a given state. bt
i ∈ Bi defines agent i’s

observation history until t where bt
i =< o1

i , ..., o
t
i >. Policy for agent i, πi : Bi → Ai maps

agent’s current beliefs to an action which the agent believes to benefit the team most.

DEC-POMDP requires a tight social convention, because how one agent computes its

expected value function depends on the choices of other agents. For example, in [39], an

exhaustive algorithm for finding the joint utility function of n agents is to recursively find the

optimal joint utility function for n− 1 agents and, for the other agent, to find the individual

activity which maximizes the joint team reward of those n agents. The last agent to generate

its expected utility function knows enough to select its optimal action. This action choice

is propagated through the rest of the agents in reverse order, allowing each agent to select

its optimal action. Unfortunately, this does not hold for scalable coordination when agents
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cannot fully observe the activities of all the other agents.

Although the DEC-POMDP model is more realistic for handling uncertainty in scalable

teamwork, Bernstein provided the mathematical evidence that decentralized decisions to find

the optimal joint policy are NEXT-complete [9]. To find practical solutions, DEC-POMDP

researchers either focused on localized optimizations [62], or restricted the domain where

extra assumptions can be made, such as transition independence or collective observability

[8]. All those solutions cannot be convinced to be a general solution for scalable coordination.

3.3.3 Distributed Constraint Satisfaction

Distributed Constraint Satisfaction Problems (DisCSPs) are another field of research that

has been frequently applied to task assignment, resource allocation, and mobile sensor net-

work [21, 71]. The multiagent team in DisCSP is defined as a constraint network, and

each agent holds its own local constraints. Agents are connected by constraints among vari-

ables of different agents. Yokoo [107] modelled DisCSPs as variables {x1, x2, ..., xn} from

discrete domains {D1, D2, ..., Dn}. Each constraint k is defined according to a predicate

pk(xk1, xk2, ..., xkj), which is a Cartesian product of Dk1 × ... × Dkj . The predicate is true

when assigned value xk1, xk2, ..., xkj satisfies the constraints. To solve a DisCSP, agents have

to find an assignment of values for all variables to satisfy all the constraints. In practice,

agents assign values to their local variables and generate a locally consistent assignment.

By exchanging messages about their setting to local constraints, agents check the value as-

signments for local consistency with one another. By changing the value assignment when

inconsistencies are detected, this process continues until all global constraints are satisfied

[108].

The most trivial solution is to select one agent to have all the variables, domains and con-

straints. This centralized DisCSP problem has been converted into a centralized one which

is not applicable to many domains [107]. Decentralized solutions of DisCSPs have been

split into two branches [56]: Synchronous Backtarcking (SBA) and Synchronous Forward-

Checking (AFC). SBA maintains a single backtrack process at any time. Agents are assumed

to maintain a complete social order for variable assignments. Agents get information about
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assignments to other agents that are ahead of them in the total order. When receiving a

message, agents try to solve their local assignments in an manner that is consistent with

the assignments received and a ’No Good’ message will be sent when any conflict cannot

be solved. In this case, the previous assignments have to be changed, and a new process

will start. On the other hand, AFC maintains multiple concurrent processes with the data

structure of Current Partial Assignement (CPA), which is more suitable for scalable coor-

dination. When each agent gets a CPA, it will perform a local assignment and forward the

update CPA to another agent if the consistency can be solved. Otherwise, it will send the

original CPA back to the agent that it came from.

Several researches on enhancing the solutions of DisCSPs have been done. For example,

a recent research called Concurrent Backtracking combines both methods and runs multiple

backtrack search processes asynchronously [110]. But DisCSPs model still does not fit the

nature of our domain. The major weakness is that DisCSPs are low efficient to be solved

in trading of finding optimality. When requiring social orders, agents in DisCSPs will be

very slow and most of their applications cannot meet real-time control. All constraints are

supposed to be kept unchanged from the initial stage, but in the emergent military domains,

constraints are dynamic and change frequently. For example, if a WASM is killed, all the

other WASMs will have to change their local constraints. Moreover, under uncertainty,

agents cannot fully explore their local variables. For example, a WASM does not know it

cannot follow a planned path to fly until it discovers a hostile SAM missile is deployed on

its way points.

3.3.4 Network Distributed POMDPs

Although DEC-POMDP and DisCSP have been two major approaches to solve distributed

coordination, they have different advantages and disadvantages. DEC-POMDP is good at

real-time control for handling uncertainty, but it is unable to exploit the locality of interaction

[70]. DisCSP is good at exploiting the locality of interaction, but as explained above, it is

incapable of uncertainty. Nair made an initial effort to combine the two approaches in

a way that can take the advantages of both [70]. The constraints around the teams are
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explicitly represented as a network structure. The algorithm called LID-JESP uses dynamic

programming of POMDP based on offline distributed policy generation, and can perform

optimal policy search on the tree-structured agent-interaction graphics. Unfortunately, no

explicit theory or experiment results are shown that this algorithm is capable of coordinating

a team with more than 10 agents.

3.3.5 Swarm Intelligence

Swarm-based approach is a typical heuristic coordination algorithm [77, 2, 16]. It provides

a distributed, highly scalable way to perform coordination. Swarm agents design is inspired

by the examples of collective behavior exhibited by biological systems, such as social insects,

and the swarming, flocking, herding, and shoaling phenomena in vertebrates. Swarm multi-

agent system is self-organizing and can construct collective (or macroscopic) behavior by

emerging from individual (or microscopic) decision making. Swarm algorithms rely directly

on locally sensed stimuli to adjust thresholds and make decisions [2], while in a large team,

agents may use arbitrary information obtained locally or from other agents. This additional

level of flexibility can be leveraged for better performance through synergistic interactions

with the other algorithms that are presented.

3.4 MULTIAGENT COMMUNICATION DECISION PROBLEM

MMDP has the view of a complete team state, while DEC-POMDP assumed that agents’

belief will be updated merely from partial observation. Pynadath [67] and Xuan [105] ar-

gued that when a team undertakes a complex task, agents can make better decisions by

sharing their individual beliefs through communication. Therefore, by sending messages to

teammates with a belief that they did not observed, the team can obtain a higher reward.

When assuming that communication is not free, agents have to make decisions on how to

target their communication to share those individual beliefs. This problem is modelled as

Multiagent Communication Decision Problem. Xuan [105] extended the MMDP so that
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communication is an explicit action in Ai and will improve the joint reward, but a cost will

be occurred when a message is sent. By integrating communication decisions, MMDP can

be more efficient in handling environmental uncertainty.

Goldman [35] developed a practical approximation approach to optimize information

exchange for small teams. In her approach, similarly to the research above, agents make

decisions considering both standard action and communication as the choices of optimal

activity to maximize the global utility function. Her key algorithm is based on myopic

meta-level control of communication [36] that balances the trade-off between the cost of

communication and the value of information to increase the global utility function. Although

this solution allows for online decision making, it also requires an off-line optimal solution

calculation beforehand. This off-line calculation is hard or impossible to carried out when

Goldman’s approach is applied to scalable coordination.

To reduce the communication decision costs in MMDP, Shen [86] proposed a technique to

abstract the raw data by using a distributed Bayesian network. This technique incorporates

a hierarchical action selection approach to define how and when the transition between

abstraction data and raw data will take place in the communication process. This research

is similar to the research presented here in making use of domain knowledge to further

abstract communication for efficient communication decisions. Unfortunately, this approach

requires a decentralized MDP algorithm to be constructed from a Bayesian network. The

purpose is to find a joint communication policy to minimizes the expected communication

cost, but it cannot be applied to large team coordination when agents’ observation of the

team state is incomplete.

Pynadath [67] generalized the DEC-POMDP model by extending a part of communi-

cation action. He called this model COMmunicative Multiagent Team Decision Problem

(COM-MTDP), inspired by economic team theory [40]. The COM-MTDP model is repre-

sented as a tuple < S, α, {Ai}i∈α, Σ, O, Ω, B, R′ >. It differs from DEC-POMDP by having

two additional parts: communication action Σ , which will update individual agent belief;

communication action, by updating agents’ mutual beliefs about important aspects of their

executions, which will improve agents’ performances. Therefore by performing Σ, multiagent

team can get a different reward R′ other than R in DEC-POMDP where communication may
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get extra reward or incur cost.

In general, all the decision theoretic models require that agents make a decision based

on the common utility function, which is either explicitly defined or learned from various

algorithms, such as reinforcement learning. This technique requires that the team goal

can be quantitatively measured. However, scalable-team coordination always involves a

complex and high-level task with uncertainties in the environment, in which a goal cannot

be precisely measured or defined. Therefore, optimal coordination for teamwork in real

domains is impractical. For example, Pynadath agrees that his COM-MTDP model cannot

be used for optimal coordination, although it is helpful for comparing different practical

models and identifying feasible improvement [67].

3.5 TOKEN-BASED COORDINATION

The token-based approach was first introduced from networking design [1]. The basic idea

is to encapsulate one or more types of critical controls into tokens. Tokens can be passed in

parallel, and agents can only access an exclusive control when holding a token in which the

control is embedded. For example, in network design [94], this exclusive control is the access

to the network bandwidth.

3.5.1 Key-Based Coordination

The idea of token-based approach was introduced to multiagent coordination research by

Wagner [88]. He renamed tokens as "keys" and applied them to the coordination of dynamic

readiness and repair service in aircraft simulation. In his research, he used the TAEMS [47]

as the team coordination. A centralized scheduler is required to subset the service team

without any agent serving in one more different function subset. Each piece of coordination

is encapsulated in a key and passed from agent to agent. Agents are organized in a circle.

When an agent is holding a key for its coordination subset, it can declare its intended

action or schedule; evaluate existing proposals by either confirming or denying them; put
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forward its own proposal; and read whether its own proposal has been rejected or accepted.

The coordination of the key algorithm is heuristic, and the author cannot evaluate the

optimality of the coordination decision process. Moreover, the author makes an assumption

that complete communication is available for all agents, and the communication cost is

ignored. But the most important aspect is that the existence of the centralized scheduler

makes this approach difficult to apply to scalable coordination.

3.5.2 Token-Based Approach for Single Coordination Task

Recent research focusing on scalable coordination [64] illustrate that exponential search

spaces, excessive communication demands, localized views, and incomplete information of

agents pose major problems for large-scale systems. Scerri’s initial work on token-based ap-

proaches promises a way to address these challenges [64], and the effectiveness of large-scale,

token-based coordination has also been demonstrated in the Machinetta proxy architecture

[83]. There are two major algorithms for single coordination tasks. LA-DCOP encapsulates

independent tasks into tokens, and tokens are passed around heterogeneous teams with lo-

cal constraints [80]. The key idea of this algorithm is that an agent can accept any task

token that meets its local constraints but may reject or kick out current tokens if any other

incoming token can increase its utility function. In [102], the information sharing algorithm

encapsulates domain information in tokens. By exploring the relevance between pieces of

information in domain knowledge, tokens are more likely to be routed to those teammates

who can make use of the encapsulated information. Both of these algorithms have turned

out to be scalable. However, they did not work together to enhance the team performance.
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4.0 TOKEN-BASED COORDINATION FRAMEWORK

The objective of my research is to put forward a general model of scalable-team coordination

with the major aspects of control distributed over a scalable heterogeneous team. In my

thesis, I focus on three major aspects of coordination: role assignment, resource allocation,

and sharing information. My algorithm is in order to coordinate a few hundred agents. The

success of scalable-team coordination depends on how agents make individual decisions based

on their incomplete knowledge of the team status with limited communication capabilities.

My proposed research will model the general coordination decision problem as a token-

based communication decision problem. The key to this model is how agents target their

communications to send tokens in a way that maximizes team utilities. In this chapter, the

basic framework of token-based coordination is introduced first. There are four parts to this

framework. First, every piece of team control is encapsulated into tokens. Second, the data

structure of tokens according to my scalable teamwork model will be described. Third, I will

describe the token-based team organization that limits each agent’s direct communication

to just a few of its teammates, which is similar to the organization of human society. Agents

can be organized as different social network topologies, which vary in efficiency. Moreover,

corresponding to different activated plans, the terminology of sub-teams will be defined where

agents can be organized as different sub-teams based on the associate network. Fourth, my

initial design of a local decision model built from previously incoming tokens is presented.
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4.1 ENCAPSULATING TOKENS

Based on recent successful token-based algorithms for task allocation and information shar-

ing, my first idea is that all coordination interactions, including sharable information,

assignable tasks, and sharable resources are encapsulated into tokens. The agent holding

the token has exclusive control over whatever that token represents, such that tokens pro-

vide a type of access control. Agents may either keep a token or pass it on to teammates. For

example, an agent holding a resource token has exclusive access to the resource represented

by that token and passes the token on to another agent to transfer access to that resource.

The resulting movement of tokens implements the coordination by distributing information,

resources, and tasks to maximize the team reward with low communication overhead.

4.2 REPRESENTING TOKENS

Following the success of teamwork research, I have designed my scalable teamwork across

the joint intention model and shared plan model. A Token is defined as a data structure of

communication message with required parameters including time stamp, threshold, path,

and initiation ID. It encapsulates everything that can be shared in team A. The structure of

any token ∆j is written as ∆j =< ID, tc, path, threshold, T imeStamp >, where tc ∈ Ξ is a

piece of coordination control, which is a role, an exclusive resource, or a piece of information

according to the definition in Section 2.2.

Due to the nature of tc, ∆j cannot be duplicated or re-sent. When an agent is holding

∆j , it takes over control ∆j .tc. The agent will release ∆j .tc if ∆j is passed. To mark

the uniqueness of coordination in the team, I require ∀∆i, ∆j , if ∆i 6= ∆j , then ∆i.tc 6=

∆j .tc. Specifically, if ∆j.tc ∈ INFO, I call ∆j an information token and, to be clear in my

presentation, write it as ∆I
j ; I call it a role token if ∆j .tc ∈ ROLE and write it as ∆R

j ; and

I call it a resource token if ∆j .tc ∈ RESOURCE and write it as ∆S
j .

∆.path records the sequence of agents where ∆j has been passed. ∆.path is also used as

a stop condition for information and role tokens if |∆.path| > Length. Length is pre-defined
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as the number of agents that ∆ is allowed to be passed to before it is stopped.

Threshold generalizes a threshold for resource and role tokens that can be accepted by

any agent, but is not required for information tokens. An agent may keep a resource if its

desire for that resource is greater than the token’s threshold. Determining this requirement

is beyond the scope of my thesis. While an agent holds a resource token ∆, ∆.threshold

slowly increases. This mechanism ensures that resources can flow through the system rather

than accumulate at a few points. When the resource token is being passed, ∆.threshold is

decreased to avoid a situation in which a token would be passed indefinitely. For example, to

coordinate a team of WASMs, all air spaces are represented as resources. A WASM holding

an air space resource token will be allowed to access the region that the token represented,

but it might be forced to relinquish the token and free the region as its threshold increases.

This would return access to the region that the WASM has already traversed to the general

community. Similarly, a role token ∆ will be accepted by an agent whose capability is greater

than ∆.threshold. If ∆ is not accepted by the current agent, ∆.threshold will be slightly

decreased so that it can be easily accepted by the other agents. This mechanism will avoid

a situation in which a role token might linger infinitely within the network in order to find

a highly capable agent to perform it.

The basic algorithm for token routing is Algorithm 1: At each time point, agent ai will

wait for incoming tokens, which are defined as Tokens(ai) (line 2). For each incoming token

∆j , if the token does not reach its stop condition (line 4), agent ai will decide whether this

token can be accepted (line 5). If it is, ai will keep it (line 6) and will to pass it to one of its

associates called Next (line 9). Otherwise, before passing it, agent ai will add itself in the

token’s path (line 8).

Algorithm 1: Decision process for agent ai to pass incoming tokens.

1: while true do

2: Tokens(ai)← getToken();

3: for all ∆j ∈ Tokens(ai) do

4: if |∆j.path| < Length then
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5: if Acceptable(ai, ∆j) then

6: Keep(∆j)

7: else

8: Append(self, ∆j .path);

9: Next← ChooseNext();

10: PassToken(Next, ∆j);

11: end if

12: end if

13: end for

14: end while

4.3 TEAM ORGANIZATION FOR SCALABLE COORDINATION

To make correct decisions, agents are required to obtain sufficient knowledge of the team state

to support their decisions. This in turn requires the multi-agent team to create overwhelming

messages, which should be avoided in the algorithm. It has been observed that, in a human

group, members typically maintain a small number of acquaintances but can rapidly transmit

information to any member of the group in a series of hops, a phenomenon known as a small

world effect [100]. The most popular manifestation of this phenomenon is the six degrees

of separation concept, articulated by the social psychologist Stanley Milgram [58]. Milgram

concluded that there is a path of acquaintances with a typical length of six between any two

people in the United States. This experiment showed that by using very vague (and often

incorrect) information about other members of the population, people will pass a message

along to someone who is better placed to find the intended recipient until the information

reaches the desired recipient.
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Figure 3: An Example of a sub-set of a typical associate network where each agent only has a small number
of associates.

4.3.1 Associate Network

In my research, a logical network topology across the team limits agents to forwarding

tokens to their neighbors in a network that I call an associate network. As a result, an

agent receives tokens directly only from a small number of neighbors in the network and can

thus build better models of those agents. Based on these characteristics, I can define my

team organization model for large-scale teams. The associate network is an indirect graph

G = (A, N), where A is the team of agents and N is the set of links between any two agents.

Specifically, for ai, aj ∈ A, < ai, aj >∈ N denotes that ai and aj are associates and are able

to exchange tokens directly with each other. n(a) is defined as all of the associates of agent

a. Note that n(a) << |A|. A sub-set of a typical associate network for a large team is shown

as Figure 3. In the figure, each node represents an agent member in the team and, when

pairs of agents are connected by a line, they can directly exchange tokens with each other.

4.3.2 Social Network Topology

As noted by social scientists, communication between people is impacted by network topol-

ogy. In my thesis, agents that pass tokens among a large-scale team adopt the same manners

as a social group composed of human beings.
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Figure 4: Examples of the four social network topologies: Grid, Small World, Random, and Scale-Free.
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The properties of social network structure have been comprehensively studied [63]. Ac-

cording to this research, there are several parameters that are important in understanding

or predicting the behavior of token-passing among large-scale teams. Key factors include

the small world effect, degree distributions, clustering, network correlations, random graph

models, models of network growth and preferential attachment, and dynamical processes

taking place on networks [63]. Most of these factors are interrelated. In my thesis, I specifi-

cally focus on only three properties: average distance, degree distribution, and the average

number of associates.

• Average distance: (commonly studied as “small world effect” [100]). The average distance

l = 1
1
2
n(n+1)

∑

ai,aj∈A,i>j

distance(ai, aj), where n = |A| and distance(ai, aj) represents the

minimum number of agents ai, aj that a token must pass through one agent to another

via associate network. For example, if agent a1and a2 are not associates but share an

associate, distance(a1, a2) = 1.

• Degree distribution (commonly studied as "scale free effect") is the frequency of agents

possessing different numbers of associates. The distribution can be represented as a

histogram where the bins represent a given number of associates and the size of the bin

is how many agents have such a number of associates [3].

• Average associates are the average number of associates that agents have on a team. This

value can be used to infer how many choices agents may have when delivering a message.

Well-known types of social networks can be described using these properties. For example,

a random network has a "flat" degree distribution while a grid network is distinct in that all

nodes have the same degree (e.g, four is the only degree in a two- dimension grid network).

A small world network [3] and a scale-free network [6] are two important types of social

network topologies, and research has shown that each possesses some interesting properties.

Small world networks have a much shorter average distance than regular grid networks. We

hypothesize that the low average distance will improve the efficiency of token-passing because

information can potentially take fewer "hops" to reach a defined destination.

A scale-free network, shown in Figure 4, is a specific kind of network in which the degree

distribution forms a power-law, i.e, some nodes are very connected hubs and connect to other
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Figure 5: Relationship between sub-teams and the associate network

nodes much more than ordinary nodes. The hubs in scale-free networks give the advantages

of centralized networks in which the distribution provides the advantages of centralized

approaches. In the next chapters, I will investigate how different network topologies influence

token movements.

4.3.3 Sub-Teams

Based on the concept of the associate network, we defined Sub− teami, which includes any

agents working on plani and their neighbors in the associate network. The identities of

the agents involved in role allocation are captured with allocate(plani). In the case when

either a conflict or synergy is detected, all but one of the plans must be terminated. The

domain-specific knowledge of a termination of a plan can be defined as termrecipei.

Although individual agents commit the team to a sub-goal, it is a sub-team that will

realize the sub-goal. The sub-teams formation process commences when an individual agent

detects all of the appropriate pre-conditions that match a plan template in the library and
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subsequently instantiates a plan, plani. For each of the rolesi in plani. A role token then

is created to be allocated to the team. Once it has accepted a role r in plani, the agent

becomes a member of the sub-team of plani and makes a temporary commitment to perform

the role represented by the token. Note that agents can accept multiple tokens and therefore

can perform more than one role and belong to multiple sub-teams. Since allocation of team

members to roles may change due to failures or changing circumstances, the members of a

sub-team may also change. One example of this is when a member decides to drop a role for

a more suitable task. This will lead to the best use of team resources because team members

will execute roles that they are most capable of doing.

All sub-team members, both agents performing roles and their informed associates, must

be kept informed of the state of the plan, e.g., they must be informed if the plan becomes

irrelevant. This maximizes cohesion and minimizes wasted effort. Typically |sub− teami| <

20, although it may vary with plan complexity. Notice that, typically, sub− teami ∩ sub−

teamj 6= ∅, where i 6= j.

4.4 LOCALIZED DECISION MODEL

Under the token-based coordination decision framework, I have converted the complex co-

ordination decision problem into a series of communication decision problems that focus on

where to pass tokens. Tokens, when defined within this teamwork framework, have decou-

pled the joint activities of a large team where no single agent has sole responsibility over any

shared decision.

In my thesis, agents use local decision theoretical models to determine when and where

to pass tokens around the associate network. When an agent passes a token to an associate,

that exchange is used to refine both of their local models of the team. This local model is

used in a decision theoretical way to determine whether and where to forward any token that

an agent currently holds in order to maximize the expected utility of the team. Informally,

by using their local decision models, agents infer which team member will either use the

information, resource, or task represented by the token, or is in the best position to know
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who will. Then, tokens will be passed there so that team performance will be benefited most.

By leveraging the idea that tokens are always interrelated, a received token can be used

to decide where to send another token if there is a relationship between these two. For

example, understanding the relationship between "I am hungry" and "pizza" is helpful for

an agent to pass a "pizza" if it previously heard a piece of information about "I am hungry."

Therefore, all available tokens are used to create models of the team, specifically by using the

movement of one token to inform the movement of other tokens. Although previous tokens

reinforce agents to create a more precise model of where to pass ∆, I cannot guarantee that

it will gather all the related tokens. Unlike MDP, which precisely chooses the activity to

maximize the expected reward, my approach to individual agents making decisions is to set

up a probability model. The objective is to guess where to pass the currently held token

based on previously received tokens. Therefore, in the process of building the probability

model based on previous tokens, related tokens are more likely to be routed to the agents

with better models. This process, in turn, will train token routing to be more localized. The

design of how to build and update agents’ local decision models to pass tokens to one of

their associates is addressed in the remaining chapters.
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5.0 TOKEN MOVEMENTS

In this section, I investigate the theory of how tokens will be passed from agent to agent in

an associate network. The baseline of this token movement is a random walk in which an

agent randomly forwards the token to one of its associates. The objective of investigating

the random walk is to verify the feasibility of my token-based approach, which is based on

peer-to-peer communication. The feasibility is derived from the fact that the token does

not need to visit all agents to deliver a coordination element, whether it is information, a

resource, or a role. On the other hand, if tokens are being passed along a very short path,

the control that is encapsulated in a token is unable to reach an agent that can make use of

it.

In the first section, a qualitative analysis of the boundary that a token should move past

or its TTL (time to live) is presented. Specifically, the theory of random walks is applied to

determine a lower bound on the TTL. It is important to note that this analysis is based on

the research of [79], which is not my major contribution, but it is indispensable in showing

the feasibility of my approach.

In the second section, based on theoretical analysis, an initial experiment of random

token movement based on both unbiased and biased probability models is presented. The

results of this experiment show that, although an agent’s local decision model is imprecise,

its bias can be increased a little in order to move tokens into the right direction This greatly

enhances the efficiency of random token movements.

In the third section, we theoretically measure token movements in the Markov Chain.

Based on mathematical analysis, the tokens’ random walk is bounded. Moreover, this anal-

ysis of tokens’ random movement is extended based on the different network topology of the

associate network.
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In the last section, a set of experiments on token movement based on agents’ local

probability models are presented to support my hypothesis.

5.1 RANDOM WALK: BOUNDING TOKEN MOVEMENT

When given a graph and a starting point, a random walk selects one of its neighbors at

random and moves to this neighbor. Then we select a neighbor of this neighbor at random

and move to it, and so on. The "random" sequence of points selected in this way is a random

walk on the graph [51]. If agents on the team randomly pass tokens to their associates in a

given associate network until the tokens are accepted by some specific agent, the movement of

the tokens is a random walk as well. Thus, a random walk is the baseline of our token-based

coordination algorithm. In this section, we investigate the basic token movement based on

a random walk.

The associate network can be described as a connected graph V = (V, E) with n nodes

and m edges. Given an associate network G with n nodes and m edges, a token’s random

walk starts at some node vi of G and, at each step, moves to one of the associates of the

current node. For example, if the token is at node vj, it randomly moves to an associate of

vj with a probability of 1/d(vj), where d(vj) is the number of neighbors of vj in G.

The probability that, at step h, the token is at node vi can be denoted as Ph(vi). The

theory of random walks [51], states that if a walk starts from any node in an undirected con-

nected graph G, Ph(vi) converges to π(vi) = d(vi)/2m, where π(vi) represents the probability

that a token will be at node vi at any particular time.

There are two measures in random walk theory that are helpful for the analysis of random

token movement: hitting time and commute time. The hitting time H(vi, vj) is defined as

the expected number of steps before agent vj is reached by a token that starts from agent

vi. The sum of κ(vi, vj) = H(vi, vj) + H(vj, vi) is called the commute time, which is the

expected number of steps in a random token movement starting at agent vi. After agent vj

is reached, the token returns to agent vi again.

We are interested in two propositions from random walk theory [79]:
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Proposition 1 The commute time of a token starting at agent vi and reaching vj before

returning to vi can be estimated as:

κ(vi, vj) ≥ 2m/d(vi)

Proposition 2 If we choose agent vi uniformly from the stationary distribution over

agents V and vj 6= vi, then we should have H(vi, vj) ≥ (2m/d(vj))− 1.

Let τ be the first time that a token starting at vi returns to vi and that σ is the first

time that it returns to vi after reaching agent vj . [79] determined E(τ) = 2m/d(vi) from

the probability π(vi) = d(vi)/2m. If we define E(σ) = κ(vi, vj), we should have τ ≤ σ.

Therefore, the proposition κ(vi, vj) ≥ 2m/d(vi) holds.

The main idea of this theory is that, if a token can start a random walk from agent vj ,

the random movement will choose an associate of vj uniformly and then reach other agents

before it returns to vj . From Proposition 1, [79] found that, for a given undirected connected

associate network G, if we choose vi uniformly from the set of associates vj , the expectation

of H(vi, vj) is exactly one step less than the commute time from vj to vi. We have known that

the hitting time H(vj, vi) = 1 and that the commute time κ(vj , vi) ≥ 2m/d(vi). Therefore,

H(vi, vj) = κ(vj, vi)− 1 ≥ 2m/d(vj)− 1.

The following proposition holds if we choose vi uniformly from the stationary distribution

over V and vj 6= vi [79]. Note that for an agent vj and a uniformly chosen agent vi, the

hitting time of H(vi, vj) is minimal when vj is an associate of vi. According to Proposition

1, we have H(vi, vj) ≥ κ(vj , vi)− 1 and κ(vi, vj) ≥ 2m/d(vi). Hence, a token’s random walk

from agent vi to agent vj and its subsequent return to vi is bounded.
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5.2 TOKEN MOVEMENT UNDER UNCERTAINTY: PRE-EXPERIMENT

To test potential random token movement within a large-scale team, I ran an experiment

in which 800,000 agents are organized in a three-dimensional lattice [102]. One agent is

randomly chosen as the source of a token, and another is randomly chosen as the sink for

that token. A probability value is attached to each link, giving the chance that passing the

token down that link will get it through the smallest number of links to the sink. In the

experiment results shown in Figure 8, I varied the probability of sending the token down

links that actually lead to an agent requiring the token (as opposed to sending it down links

that moves the token further away) and measured the number of messages (or "hops", one

message per token movement from associate to associate) required to move the token from

the source to the sink. For example, for the "59%" setting, messages are passed along links

that get closer to the sink 59% of the time and to links further from the sink 41% of the

time. Figure 8 shows that the agents only need to move closer to the target slightly more

than 50% of the time to dramatically reduce the number of steps that the token takes to

reach the sink. This result is encouraging because it shows that I do not need to construct

accurate and complex models for information sharing and that only reasonable models are

needed to improve an agent’s guessing. Thus, even relatively inaccurate models of associates

are potentially capable of leading to efficient, targeted token delivery. The key question left

in my thesis research is how to create models that allow the agent to "guess" correctly at

probabilities greater than chance.

5.3 MODEL TOKEN MOVEMENT AS A MARKOV CHAIN

A random walk is a finite Markov chain and it is time-reversible [51]. For a specific token

movement, we can define different states based on a Markov Chain. As the graph 7 shows,

state si defines the state that the token moves to an agent with the shortest distance of i

from the sink agent. Moreover, probability Pi,j defines the probability of the token being

passed from state i to j. Because the token can only move one step for each horizon, Pi,j = 0
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Figure 6: Agents’ likelihood of correctness for where to pass a token can dramatically influence the efficiency
of coordination in an agent team of 800,000 members.

except for j ∈ {i− 1, i, i + 1}. Therefore, for a state si 6= s0, the token may move closer to

the destination (Pi,i−1), stay on the same level (Pi,i), or move far away (Pi,i+1). When the

token reaches state S0, it will be stopped at the destination and the probability P0,0 = 1.

For example, suppose u is the initial probability distribution of the token being in state S.

According to the theory of Markov chains [57], we can calculate the probability that the

token reaches the sink agent after n steps as P n
S = u× P n.

For example, suppose that an associate network has only the maximum distance of four

andthe token initial probability distribution is u = [0.60.30.10]. Furthermore, suppose that

the transaction probability matrix P is:
















0.1 0.9 0 0

0 0.4 0.6 0

0 0 0.4 0.6

0 0 0 1

















After step=10, the probability distribution is [0.00010.00100.00690.9921], which means
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Figure 7: A transition model of tokens’ movement based on Markov Chains, where si represents the state
that the token i leaves far from the destination.

that in more than 99% of cases the token has reached the destination agent.

5.4 TOKEN MOVEMENT OVER DIFFERENT NETWORK TOPOLOGIES

In this section, I investigate the nature of different social networks and their potential in-

fluences on the efficiency of token movement. Figures 8 and 9 show the relative rates

of P (si, si−1) (marked "Close"), P (si, si+1) (marked "Further"), and P (si, si+1) (marked

"Same") for scale-free and random networks. The x-axis shows the distance from a node

to the target node, i.e., the subscript i. Note that the closer to the target, the more likely

it is that random movement will lead further from the target. Conversely, the further from

the target, the more likely it is that random movement will lead the token closer to the

target. The figures show that the closer a token is to the target, the easier it is to move the

token away. Moreover, since the figures show different distributions, their token movement

characteristics are likely to be different.

Figure 8 shows a typical scale-free network. The state probability transition matrix P
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Figure 8: The relative proportions of links in a scale-free network that lead closer to, keep the same distance
from, or move further from some target node, as the distance to the target is varied.

in this network topology is:









































0.02 0.98 0 0 0 0 0 0

0.01 0.1 0.89 0 0 0 0 0

0 0.05 0.25 0.7 0 0 0 0

0 0 0.2 0.35 0.45 0 0 0

0 0 0 0.5 0.25 0.25 0 0

0 0 0 0 0.75 0.1 0.15 0

0 0 0 0 0 0.89 0.01 0.1

0 0 0 0 0 0 0 1









































Figure 9 shows a typical small world network. I can compose the state transition prob-
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Figure 9: The relative proportions of links in a random network that lead closer to, keep the same distance
from, or move further from some target node, as the distance to the target is varied.

ability matrix P as:









































0.01 0.99 0 0 0 0 0 0

0.01 0.03 0.96 0 0 0 0 0

0 0.01 0.24 0.75 0 0 0 0

0 0 0.15 0.5 0.45 0 0 0

0 0 0 0.6 0.25 0.15 0 0

0 0 0 0 0.8 0.05 0.15 0

0 0 0 0 0 0.88 0.02 0.1

0 0 0 0 0 0 0 1









































Suppose that the same token’s initial distribution is u = [0.250.250.150.150.10.050.040.01]

and, after token random movement for 1000 steps, the state probability distribution for a

scale-free network is [0.0000 0.0011 0.0194 0.0675 0.0605 0.0198 0.0030 0.8287], where in

83% of cases this token has reached the destination agent. On the other hand, the state

probability distribution for a random network is [0.0001 0.0054 0.5405 2.8811 1.9608 0.3378

0.0492 0.1004], where in only about 10% cases this token has reached the destination agent.
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5.5 TOKEN MOVEMENTS ON INTELLIGENT AGENT TEAMS

However, in teams, token does not simply move randomly from agent to agent when agents

can build a better decision model. Often the agents will know something (perhaps a

lot) about the characteristics of their network associates. Several sociologists have shown

how information delivery can be very efficient in human teams with simple models of

acquaintances[96, 99]. Xu[102] has effectively illustrated this for multi-agent teams.

To model the fact that such movement is not completely random, but is in fact biased

towards the target location, we use a parameter β to make P (si, si−1) larger and P (si, si+1)

smaller. However, this bias should be stronger as the token moves nearer to the target

location because it is more likely that agents that need the target information know what

is required to intelligently route the information. We can model this by using β(i) = 1
eαi .

Informally, one can think of β as the total learning of the team about the team state and

of α as how much more agents "near" an agent know about it than agents "far" from it do.

Using α and β, the Markov Chain state transitions can be rewritten as:

P̆ (si, si−1) = P (si, si−1) + (1− eβ(i))P (si, si) + (1− e2β(i))P (si, si+1)

P̆ (si, si) = P (si, si)− (1− eβ(i))P (si, si)

P̆ (si, si+1) = P (si, si+1)− (1− e2β(i))P (si, si+1)

Figure 10 shows the effect on the scale-free distribution from Figure 8. When they are

especially close to the target (i.e., the left of the graph), tokens are much more likely to get

closer to the target. Clearly, the result will be the more efficient delivery of tokens when

there is a bias as described above.

Based on this graph, we reconstruct the state transaction probability matrix P as:
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Figure 10: The relative proportions of links that lead closer to, keep the same distance from, or move
further from some target, as the distance to the target is varied. In addition, an α value of 1.5 is used to
bias the links towards moving towards the target node.
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Compared with the scale-free and random networks in random walk, if a token’s initial

distribution is the same as in the last section (i.e., u = [0.250.250.150.150.10.050.040.01], after

1000 movements), we will find that the state probability distribution is [0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 1.0000] and that the token will surely reach the destination.

Moreover, after 100 moves, the state probability distribution is [0.0000 0.0005 0.0078 0.0262

0.0242 0.0094 0.0029 0.9289]. This means that in 92% of cases, the token has reached the

destination agent, which is better than a token’s random moves over 1000 steps in the same
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network topology.

5.6 TOKEN MOVEMENT IN THE LOCAL PROBABILITY MODEL

The key to my intelligent routing algorithm is using previously received tokens to train

agents’ local probability models and agents more likely to forward tokens to an associate

who can make use of a token or knows who does. To verify the feasibility of this algorithm,

I set up an experiment with an agent team consisting of 400 agents. Each agent has, on

average, four associates. One agent is randomly chosen as the source, which a specific target

token ∆i comes from, and another agent is randomly picked as the sink agent where the

token will go. Before the movement of the target token ∆i, the sink agent first sends out

20 tokens (This is called ∆j) relative to ∆i to train the team, and each will move TTL=50.

Then the source agent sends out ∆i with rel(∆i, ∆j) varied, and I measure how many steps

or messages it takes ∆i to reach the sink agent. In my experiments, four different types of

associate network topologies are involved: two-dimensional grid networks, random networks,

small world networks, and scale-free networks. The small world network is based on the grid

network with 8% of the links randomly changed. The key difference between the random

network and the scale-free network is that the former has a "flat" degree distribution and

the scale-free network has a power law distribution. Each point on each graph is based on

the average of 1000 runs in an abstract simulation environment. Although 1000 runs is a

large number of runs on a desktop, the result graphs are not completely smooth because

the variance is high. In all of my experiments, the four different types of associate network

topologies: random, small world, grid and scale free network, are set up along with the varied

parameter test.

5.6.1 Token movement with different relevance

In Figure 11, the average number of steps that it takes to deliver ∆i is shown as I varied the

strength of the relationship between the tokens originally sent out by the sink agent and the
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Figure 11: The number of messages decreases dramatically as the association between ∆j and ∆i increases.

∆i token sent by the source agent between 0.5 to 1. As expected, my algorithm works across

all four associate networks. The stronger the relationship between the originally sent token

and the ∆i token, the more efficient the token movement will be. But, very strong relevance

does not help token movement much more.

5.6.2 Influence of different numbers of previous tokens

Next, I examine in detail how many messages must be sent by the source to make the

delivery from the sink agent efficient. The same settings are used as described above except

that the number of messages that the sink agent sends out is varied and the relationship

between these messages and ∆i, rel(∆i, ∆j) is set at 0.9. Note that only a few messages are

necessary to dramatically impact the number of messages required. This result also shows

that a few messages are sufficient for agents to make a "good estimate" of where to send

messages. But, overwhelming number of related tokens are not helpful much more.
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Figure 12: The number of messages decreases as the relative messages from the sink agent increases.

5.6.3 The influence of network density

In the next experiment, I examined how the number of associates can help to make the token-

based algorithm more efficient. I run experiments with rel(∆i, ∆j) = 0.8 and, in associate

networks, each agent has an average number of associates that ranges from two to eight.

The result in Figure 13 shows that the higher the number of associates, the more messages

are made to deliver ∆i. This demonstrates that token movement cannot be enhanced by

connecting an agent with more associates. Moreover, in my experiment, I did not consider

the limitation of communication breadth for agent members.

5.6.4 Token movement among different sizes of teams

To investigate the influence of team size on token movement performance, as shown in in

Figure 14, I ran experiments using different sizes of teams that ranged from 100 to 550

agents with rel(∆i, ∆j) = 0.7. Its efficiency is measured as the percentage of agents involved
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Figure 13: The number of messages increases slightly if each agent has, on average, more associates in
associate networks.

in token delivery percentage = agents involved infodelivery

Total # of agent team
. The experiment in Figure 14 shows

that, with different sizes of teams, the efficiency of token movement is almost the same. This

indicates that team size is not a factor in efficiency.

5.6.5 Token movement with different network structures

From the above experiments, I find that my algorithm works on each type of associate

network. I also see clues to how these network topologies influence the efficiency of token

movement. I notice that networks with a small average distance 1 (i.e., random, small

world, and scale-free networks) always outperform the regular grid network, which does not

have such a property. Moreover, a scale-free network with power law distribution is clearly

superior to others that do not possess this characteristic. The difference between different

associate topologies is distinct when the previous messages have a strong relationship with

∆i. For example, in Figure 14, when rel(∆i, ∆j) = 1, the number of messages needed to

1The average distance l = 1
1

2
n(n+1)

∑

ai,aj∈A,i>j

distance(ai, aj), where n = |A| and distance(ai, aj) repre-

sents the minimum number of agents ai, aj that a message must pass through in the associate network.
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Figure 14: Token movement becomes slightly better for large-scale teams according to the measure of
percentages.

deliver ∆i in a scale-free network is only one-third as many as are required in a grid network.
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6.0 DECISION THEORETICAL AGENTS

The major issue we leave for the remainder of this paper is how to design the algorithm for

RouteToken(Next, ∆j) (described in Section 4.2) if agent ai does not wish to keep the token.

Based on our joint intention model, tokens must be moved to agents who are appropriate

recipients of that token. e.g., two events of hearing the fire alarm and seeing smoke in the

same building will be delivered to the same agent if one agent can activate the solution of

fire fighting; the role token of driving a fire truck role will be allocated to an agent who is

capable of driving a fire truck and a resource token of a fire truck will then be passed to that

agent.

6.1 MDP MODEL WITH JOINT ACTIVITY

The general model for team coordination is a centralized Markov Decision Process (MDP)

with joint activity. It is a tuple: < A, S, Θ, T, R >. A is the team to be coordinated and, for

each agent ai ∈ A, S is the state space and the specific state in time t is s(t). Θ is the joint

action space of team A. T : S×Θ→ S, is the transition function that describes the resulting

state s(t + 1) ∈ S when executing θ(t) ∈ Θ in s(t). R : S → R defines the instantaneous

reward for being in a specific state.

In this case, s(t) is modeled as how the exclusive coordination Ξ is distributed in A:

s(t) =<< Hold(∆1, t), Hold(∆2, t), Hold(∆3, t), ... >,

< Know(∆I
1, t), Know(∆I

2, t), Know(∆I
3, t), ... >>
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where TOKEN = {∆1, ∆2, ∆3, ...} and INF = {∆I
1.tc, ∆

I
2.tc, ∆

I
3.tc, ...}. s(t) includes two

parts:

• Hold(∆i, t) ∈ A directly describes where a token ∆i is being held by one of its team

members in A at t (e.g., Hold(∆i, t) = aj).

• Know(∆I
i , t) ⊂ A denotes the information token ∆I

i that is known by a few members of

team A (e.g., Know(∆I
i ) = {ai, aj , ak}).

Since the tokens represent resources, roles, and information, s(t) unambiguously defines

who is doing what, with what resources, and with what information. An initial state s(0)

denotes the initial team state–for example, that agents on the team have nothing to do and

that no environmental event is detected.

Team action Θ is a joint activity in which team members jointly move tokens that they

are holding. The joint team action at time-point t is defined as θ(t) ∈ Θ, which represents

all of the actions that team members are doing: θ(t) = ρ1(t)∧ ρ2(t)∧ ...∧ ρ|A|(t), where ρi(t)

is agent ai’s action at time-point t. If an agent holds a token, the actions available to an

agent ai is to keep it or to pass it to any other teammate, ρi(t) = {ρai

i , ρc
i |∀c ∈ A, c 6= ai}.

For convenience, we write θ(t) as θ and ρi(t) as ρi when there is no ambiguity.

R(s(t)) > 0 when at s(t), and a sub-goal gi are achieved. The team will be credited with

an instant reward valued at R(s(t)) =
∑

r∈tisi,j .qi,j
EU(r).

The utility of state S under a policy π is defined as

vπ(s) =
∑

t=0:∞

(dt ×R(s(t))− t× commcost)

where commcost is the communication cost and d < 1 is a pre-defined discount factor. v∗(s)

allows the agent to select actions according to the optimal policy

π∗(s(t)) = argmaxθ∈Θv∗(s(t + 1))

By value iteration, v∗(s(t)) = argmaxθ∈Θ[R(s(t)) − commcost + d × v∗(s(t + 1))]. Policy

π∗ tells the team how to control all of the agents in order to move tokens to maximize the

team’s expected utility.
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We define a matrix V where each element V [s(t), b] = R′(s(t))−commcost+d×v∗(s(t+1))

when χ = move(∆, b). Then V [b] represents the expected utilities vector for α to send token

∆ to b in each different state s(t).

The MDP model with joint activity cannot be applied when the team size greatly in-

creases because agents can neither obtain an exact model of S nor know precisely what the

other teammates’ intentions are. Moreover, the coordination is decentralized. A team mem-

ber must coordinate the token with its own knowledge in parallel, which is, in most cases,

an incomplete map of s(t) at any given time.

In this section, we have presented three steps of approximations. First, large-team coor-

dination is decentralized and we must approximate the joint activity MDP as an individual

activity MDP. Second, we approximate the MDP to a POMDP when the team size greatly

increases or agents cannot obtain complete observation of the team. Third, a major assump-

tion is that, within a large-scale team, free communication is not available between any two

team members. We approximate full individual activity as partial activity such that agents

can only pass tokens directly to a small number of team members.

6.2 DECENTRALIZED MDP FOR TOKEN ROUTING

As the first step, by dividing the monolithic joint activity into a set of actions that individual

agents can perform, we can decentralize the token routing process in which distributed

agents, in parallel, make independent decisions about where to pass the tokens that they

currently hold. Thus, we effectively break a large coordination problem into many smaller

ones. Then the MDP model of a single agent ai making a token routing decision is a tuple:

< ai, S, Θi, T
′, R >. This model can be applied to any other agents on the team.

The major difference between this MDP model and the joint activity model described

in the previous section is that Θ is replaced with Θi. Θi is all of the available individual

activities for agent ai. For each time t, ρi(t) ∈ Θi has been defined in previous sections.

Then, in transition function T ′ : S×Θi → S, the team state S will be transmitted according

to Θi if other than Θ.
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Now the individual optimal policy π∗∗(s(t)) is defined as:

π∗∗(s(t)) = argmaxρi∈Θi
v∗

I (s(t + 1))

. By value iteration,

v∗
I (s(t)) = argmaxρi∈Θi

[R(s(t))− commcost + d× v∗
I (s(t + 1))]

v∗
I (s(t)) is the number of rewards according to an individual optimal policy π∗∗ and will

tell agent ai to choose an action that carries maximum expected rewards for the global

state of the team. In practice, we always choose a relatively small value for d. Although

an agent in this situation can only choose an optimal action in states that are close to

those that carry instant rewards, many states carry few expected rewards. This will be very

helpful for the MDP in terms of quickly finding the optimal activity by only considering a

few potential subsequent states with prominent expected rewards. This is very important

because, in large-scale team coordination, the number of the candidates in subsequent states

is extremely high.

6.3 PARTIAL OBSERVABLE MARKOV DECISION PROCESS

Token-based coordination is a process by which agents attempt to maximize the overall team

reward by moving tokens around the team. If an agent were to know the exact state of the

team, it could use an MDP to determine the expected utility-maximizing way to move tokens.

Unfortunately, it is infeasible for an agent to know the complete state of the team when it

is large or in an ad-hoc environment [67]. But it is illustrative to look at how tokens can be

passed if it were feasible. In this section, we have presented the second step of approximation

in which agents do not have a complete map of the team state s(t) and must make their

decisions according to its local state. This model is defined as < S, L, Θi, Z, O, T ′, R >.

L maintains the local model of agent ai and, at each time-point t, it is defined as lai
(t) =<

tokens(ai), hai
(t) >, where hai

(t) includes all of the tokens that agent ai has previously passed
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if ai ∈ ∆.path, ∆ ∈ hai
. As defined in Section 3, tokens(ai) are all of the tokens currently

held by ai.

The observation function is O : L → Z, where Z maintains a local observation from L.

Each observation at time t is zai
(t) and includes two parts:

zai
(t) =

<< PrevHold(∆1, ∆1.path), P revHold(∆2, ∆2.path), . . . , >,

< PrevKnow(∆I
1, ∆

I
1.path), P revKnow(∆I

2, ∆
I
2.path), . . . >>

In the first part, ∀∆j ∈ hai
(t), PrevHold(∆j, ∆j .path) denotes that ai has observed that

all of the agents in ∆j .path have previously held ∆j. In the second part, ∀∆I
j , ∆I

j .tc ∈ INF

and PrevKnow(∆I
j , ∆

I
j .path) denote that the encapsulated information ∆I

j has been known

by the agents that ∆I
j has previously reached.

We adopt a standard POMDP techniques called Q-MDP [50, 52] and use this technique to

solve the POMDP and thus determine optimal token routing. In this solution, ai’s individual

belief bai
(t) is defined as a set of possible team states bai

(t) ⊆ S. This denotes that the agent

ai believes that the previously possible team state based directly on its observation zai
(t).

The mapping function defined as

zai
(t)→ bai

(t)

is a peer-to-peer function. It will exclude all the s(t) ∈ S that are compatible with zai
(t).

For example, ai observes that ∆j is held by ai. All of the states that denote ai are not

holding ∆j and will be excluded.

For each state s(t) ∈ bai
(t), we supposed, for each agent ai, that we know the per-

ceptual distribution Pr(s(t)|zai
(t)), which describes the likelihood that the team is in the

state s(t) when its observation is zai
(t) and

∑

s(t)∈bai
Pr(s(t)|zai

(t)) = 1. Initially, we have

Pr(zai
(t)|s(t)) = 1

|bai
(t)|

when none of the s(t) ∈ bai
(t) is prominent. Then we can calculate

the expected reward of each observation zai
(t) as:
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R′(zai
(t)) = R′(bai

(t))

=
∑

s(t)∈bai

Pr(s(t))× (v∗
I (s(t)))

=
∑

s(t)∈bai

Pr(s(t)|zai
(t))× (v∗

I (s(t)))

Although the transition function T ′ is the same as the previous MDP for a decentralized

models, the local policy under POMDP π∗
P is to select the action Θi:

argmaxρai
(t)R

′(zai
(t + 1))

= argmaxρai
(t)R

′(bai
(t + 1))

= argmaxρai
(t)

∑

s(t+1)∈bai
(t+1)

Pr(s(t + 1)|zai
(t + 1))× v∗

I (s(t + 1))

This formula is based on the assumption that we can learn online or off-line from the

policy π∗∗ in the previous decentralized MDP model that the optimal team reward v∗
I (s(t))

for each state s(t) and Q-MDP will always choose to pass a token to the team member who

is the most likely maximize the team rewards from agent ai’s local observation.

6.4 POMDP BASED ON ASSOCIATE NETWORK

Although the Q-MDP approach in theory is computable and can solve our POMDP problem,

a major difficulty for system design is that Q-MDP must compute every teammate as a

potential recipient for every incoming token. Moreover, in some application domains where

teams work in hostile environments, free communication is not available to any pair of

agents. One solution is to limit the actions needed to pass a token to only a few teammates.

Therefore, tokens are required to move around the associate network.

63



We rewrite this POMDP model as < S, L, Θ∗
i , Z, O, T ′′, R > where T ′′ : S × Θ∗

i → S.

But the major difference is that the available action ρ∗
ai

(t) ∈ Θ∗
i for each agent ai is changed

to keeping or passing it to one of its associates as

ρ∗
ai

(t) = {ρai

i , ρc
i |∀c ∈ n(ai)}

Then the optimal policy π∗∗
I under this associate network is:

argmaxρ∗ai
(t)R

′(zai
(t + 1))

= argmaxρ∗ai
(t)

∑

s(t+1)∈bai
(t+1)

Pr(s(t + 1)|zai
(t + 1))× (v∗

I (s(t + 1)))

From the formula above, we can find the three things that determine the reward for

passing a token to an associate: agent a’s observation, the probability distribution of the

current state, and the expected reward for that team state.

6.5 APPROXIMATING THE THEORETIC MODEL AS A PROBABILITY

MODEL

Following the idea of Q-MDP based on associate network, agent a makes use of V if we

re-design observation function as O : Za × S → Ωa. Belief state Ωa is a discrete probability

distribution vector over the team state s(t) inferred from the current local state za. For

example, if S = {s1, s2, s3} and Ωa = [0.6, 0.2, 0.2], a estimates that the probability of s(t)

being s1 is 0.6 and being s2 and s3 are 0.2.

To calculate the expected utility vector, EU(Ωa) = Ωa × V . For example, if a has

associate b, c, and d and EU(Ωa) = [5, 10, 6, 4], then EU(Ωa, b) = 10 represents the ex-

pected utility to send ∆ to b according to the Q-MDP. The locally optimal policy π∗∗(Ωa) is

argmaxχ∈Actiona
EU(Ωa, c). This is the action that an agent should take in order to maximize

expected utility, given that the agent has an incomplete view of the team state. As in the

previous example, passing ∆ to b is the best choice because EU(Ωa, b) = 10 is the maximum

value of EU(Ωa).
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If the local policy π∗∗∗ always matches π∗∗, Pa[∆] will be the normalization of EU(Ωa).

∀b ∈ n(a), Pa[∆, b] =
EU(Ωa, b)

∑

c∈N(a)

EU(Ωa, c)

That is, the largest expected utility for sending a token to an associate should result in

the highest probability. Following the previous example, if EU(Ωa) = [5, 10, 6, 4], then for

optimal behavior Pa[∆] = [0.2, 0.4, 0.24, 0.16].

Now we are in a position to see how the receipt of a token affects the locally optimal

policy for routing token ∆ and thus to determine how to compute relevance. Suppose that

the state estimation of agent a just before a token ∆pre arrives is Ωa and, after it arrives,

the state estimation changes to Ω′
a because a gains additional knowledge from the newly

received token. According to Q-MDP, before ∆pre is received, the expected reward of a is

EU(Ωa) = Ωa × V while, after the arrival of ∆pre, EU(Ω′
a) = Ω′

a × V . Moreover, agent a’s

local model will also be updated according to ∆pre. Suppose ∆pre comes from associate b

and Pa[∆, b] is the probability that a will send ∆ to b before ∆pre comes, while P ′
a[∆, b] is the

updated probability after the arrival of ∆pre. According to our assumption that the policy

π∗∗∗ (according to the Pa model) and π∗∗ (according to the POMDP model), the agent will

choose the same action, which is to send ∆ to b. Thus, we have

P ′
a[∆, b]

Pa[∆, b]
=

EU(Ω′
a, b)

EU(Ωa, b)
=

[Ω′
a × V ]b

[Ωa × V ]b

where [Ω′
a × V ]b is the value of the component in vector of [Ω′

a × V ] according to associate

b. It is the same vector as EU(Ω′
a, b).

We can conclude that a received token changes the agent’s estimation of the probability

distribution of the team’s state, which in turn directly influences the decision of where to

send related tokens. If we know a little bit of how the probability distribution changes for

an agent after it has passed a token, we can use this to predict how this agent updates its

distributed decision model; therefore, we can define the relevance between tokens. A heuristic

that captures this relationship will approximate the locally optimal policy and hence lead to

good performance.
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7.0 ROUTING TOKENS

In this section, I provide a heuristic approach for token-based team coordination inspired

by the local POMDP. This approach yields fast, efficient routing decisions without requiring

accurate knowledge of the complete team state.

7.1 LOCAL HEURISTIC APPROACH

Token-based coordination is a process by which agents attempt to maximize the overall

team reward by moving tokens around the team. If an agent were to know the exact state of

the team, it could use an MDP to determine the expected utility-maximizing way to move

tokens. Unfortunately, it is infeasible for an agent to know the complete state. However, in

[67], it is illustrative to consider how tokens would be passed if it were feasible. By dividing

the monolithic joint activity into a set of actions that can be allocated to individual agents,

we can decentralize the token routing process where distributed agents, in parallel, make

independent decisions about where to pass the tokens that they currently hold. Thus, we

effectively break a large coordination problem into many smaller ones.

As explained in the last chapter, knowing the complete team state is only feasible for

small teams. In large teams, agents must make token coordination decisions based on a more

limited view of the team. Thus, the reasoning must be modeled as a Partially Observable

Markov Decision Process (POMDP). Standard POMDP techniques, such as [50] and [52],

could be used to solve the POMDP to determine optimal token routing. However, for faster

routing of tokens, this local POMDP tells the agent the optimal action but the computational

complexity is still too high for practical applications. From the POMDP model, we can gain
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Figure 15: Agent a’s local model for where to send ∆. The probability that a1 is the best to send ∆ to is
0.6 and a will pass ∆ to a1 according to π∗∗∗

important hints about how to take a heuristic approach and build a local decision model.

Following the definition in section 6.5, Pa is the decision that matrix agent a uses to decide

where to move tokens. Each row Pa[∆] in Pa represents a vector that determines the decision

where to pass a token ∆ to one of its associates. Specifically, each value Pa[∆, b]→ [0, 1], b ∈

n(a) represents a’s decision that the probability of passing token ∆ to an associate b would

be the action that maximizes team reward. Our policy π∗∗∗ for this local model is to choose

action χ to argmaxχ∈Actiona
Pa[∆, c] where χ = move(∆, c). Figure 15 shows an example

where Pa[∆] = [0.6, 0.1, 0.3] and agent a has three associates a1, a2, a3. Pa[∆, a1] = 0.6,

Pa[∆, a2] = 0.1, Pa[∆, a3] = 0.3, and π∗∗∗ will choose the action move(∆, a1) to pass ∆ to

a1. The key to this distributed reasoning lies in how the probability model Pa for each agent

a is updated. If the action indicated by Pa matches the optimal policy π∗ from the MDP

model, then the team will act optimally.

Initially, agents do not know where to send tokens, but as tokens are received, a model

can be developed and better routing decisions can be made. That is, the model Pa is based

on accumulated information provided by the receipt of previous tokens. For example, when

an agent sends a role token to an associate that has previously rejected a similar role, the

team is potentially hurt because this associate is likely to reject this role as well. In such a

case, communication bandwidth has been unnecessarily wasted.

From this perspective, Pa can only depend on a’s history of received tokens, Ha. The
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update function Update(Pa[∆], ∆i) for Pa[∆], defines the calculation of the probability vector

for where to send ∆ based on previously received tokens ∆i in Ha. This will be explained in

detail in the next sections.

Algorithm 2 shows the reasoning of agent a when it receives incoming tokens from its

associates via the function getToken(sender) (line 2). For each incoming token ∆, the

function Acceptable(a, ∆) determines whether the token will be kept by a (line 4). When

a resource token is kept, its threshold is raised (line 6). If a decides to pass ∆, it will add

itself to the path of ∆ (line 9) and Update(Pa[∆], ∆i), will update how to send ∆ according

to each previously received token ∆i in a’s history (line 11). If ∆ is a resource or role token,

its threshold will be decreased (line 14). Then a will choose the best associate to pass the

token to according to Pa[∆] (line 16) and record ∆ in its history, Ha (line 18).

Algorithm 2: Decision process for agent a to pass incoming tokens.

1: while true do

2: Tokens(a)← getToken(sender);

3: for all ∆ ∈ Tokens(a) do

4: if Acceptable(a, ∆) then

5: if ∆.type == Res then

6: Increase(∆.threshold);

7: end if

8: else

9: Append(self, ∆.path);

10: for all ∆i ∈ Ha do

11: Update(Pa[∆], ∆i);

12: end for

13: if (∆.type == Res)||(∆.type == Role) then

14: Decrease(∆.threshold);

15: end if

16: associate← Choose(Pa[∆])
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17: Send(associate, ∆);

18: AddtoHistory(∆);

19: end if

20: end for

21: end while

7.2 INFLUENCE DIAGRAM OF TOKEN-BASED APPROACH

In this section, I investigate the local decision model from the perspective of each individual

agent. As explained in Chapter 6, to make the optimal decision, agent has to clear know the

team state in each time. On the other hand, team states have been encapsulated into the

tokens. Any changes of environment when detected will be encapsulated into information

token while any newly created role will be encapsulated into role tokens. When a role token

is accepted, its movement will be stopped. Therefore, any changes of team states will directly

influent the distribution and movement of tokens. If an agents knows all the distributions of

the tokens, it will know the exact team state. In this view point, tokens can be deemed as

a direct projection of the team state. The idea of our token-based coordination is making

use of the token movement to support agents coordination decision. The influence diagram

of how an agent makes a decision is shown in 16.
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Figure 16: Influence diagram for a localized decision model in the token-based approach.

In this model, an agent’s decision-making process can be understood as composed of

two parts: its environment and its own activities. On the other hand, a token’s movement

are also based on these two parts. The coordination decision is to choose the best action
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either move or keep a token to maximize the expected rewards function. The computation

of utility function requires take the complete team states into consideration. In token-based

coordination, the computation of the utility function will be based on the tokens which

is the direct projection of the team state. An advantage of the token-based coordination

is that it successfully factorized the team state. Each piece of token represents a factor

of the team state. Team state has to be mathematically expressed as a whole entity and

computer is hard to be taught which part of the team states will influence the decision of

current activities. When factorized into tokens, expert in domain is easily to tell the causal

relationship between the tokens. In my approach, because of the incapability to observe all

events in the environment, agents use all of their incoming tokens to make decisions.

7.3 LOCALIZED DECISION MODEL

Suppose T (t) is all the tokens around the team in and before time t, then for any agent α

the probability of taking an action a for all its available activities σ can be calculated as:

U(a|s(t)) = U(a|T (t))

=
∑

i∈RESULTsa

Pr(resultia|a, T (t))× U(resulti)

=
∑

i∈RESULTsa

Pr(resultia|a, T ′
i )× U(resulti)

Where T ′
i ⊆ T (t) is only a part of tokens which have causal relationship between resulti

if action a is token. From the equation above, the utility of rewards for agent α taking an

action a depends on the likelihoods of the results are and what is the rewards if the results

comes into true.

By utilizing tokens, influence diagram algorithm factorizes team state to support decision.

But it still requires the complete team states or token distribution which is unfortunately

infeasible for large team coordination. For an agent α, all the tokens it knows is defined as
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Tα(t). For supporting the decision to choose an action a, if Ui∈RESULTsa
T ′

i ⊆ Tα(t), α will

choose the optimal action. If we can route all the tokens for a specific decision to α, it will

act optimal, moreover, current token will be used to route the rest token in turn. Although

we tried to gather all the related tokens to a specific agent, we cannot guarantee. Agents try

to find which neighbor is potentially best to passing a token. This probability is based on the

expected rewards to pass the token to each neighbor based on the incomplete information.

Therefore,

Pr(a|s(t)) = Pr(a|Ta(t)) = U(a|Ta(t))/
∑

a′∈σ U(a′|Ta(t))

If we do not have any preference for any results, U(resulti) will be normalized. Or, we

can simply add an importance factor β. Then, Pr(a|s(t)) only depends on Pr(resultia|a, T ′
i ).

Suppose T ′
i = t1, t2, ...tn,

Pr(resultia|a, T ′
i = Pr(resultia|a, t1 ∪ t2, ... ∪ tn)

= Pr(t1 ∪ t2, ... ∪ tn|a, resultia)× Pr(a|resultia)/Pr(t1 ∪ t2, ... ∪ tn|a)

Pr(t1 ∪ t2, ... ∪ tn|a) = Pr(t1 ∪ t2, ... ∪ tn) is a constant because T ′
i independent with a.

Therefore,

Pr(resultia|a, t1 ∪ t2, ... ∪ tn)

= δ × (
∑

j=1:n

Pr(resultia|a, tj))

We can see that if we know the probability to get a desired results by send current token

at the evidence of currently existing token, agent can make rational decision.

Although Pr(resultia|a, tj) is hard to be calculated, we can defined it with a rational

value in domain. When a token is received, it will be added as an extra evidence how the

optimal action is, which is to send another related token.
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7.4 RELEVANCES BETWEEN TOKENS

As explained in Section 6.4, the object of a decision is argmaxχ∈Actiona
EU(Ωa, b), where b

is one of agent a’s associates. In my localized decision model, this function is no longer a

function related to the entire team state or the external environment, but a function of all

of the history of previously received tokens H(a). Clearly, agent a makes decision based

on P ′
a[∆, b], which is the probability of sending token ∆ to b. From Section 6.5, we have:

P ′
a[∆,b]

Pa[∆,b]
= EU(Ω′

a,b)
EU(Ωa,b)

Now we can approximate P ′
a[∆,b]

Pa[∆,b]
≈ EU(H′

a,b)
EU(Ha,b)

. Where H ′
a = Ha + ∆, I write Ha =

{∆1, ∆2, ..., ∆i, ....}. Not all of the tokens are related to a reward. For example, the

information token "I am hungry" and a resource token "pizza" are related to feeding a

hungry agent, while a role token "editing a thesis" is related to the resource token "lap-

top" to achieve a goal. But we cannot find the relevance between "pizza" and "com-

puter." To simplify, I assume in Ha that only one token ∆i is related to ∆. Therefore,

EU(H ′
a, b) = EU((∆, ∆i), b) + EU(Ha, b) and P ′

a[∆,b]
Pa[∆,b]

≈ EU({∆,∆i},b)+EU(Ha,b)
EU(Ha,b)

.

Since EU(Ha, b) is a constant in this case, P ′
a[∆,b]

Pa[∆,b]
only depends on EU({∆, ∆i}, b), i.e.,

the relationship between ∆ and ∆i. We refer to this as relevance. Deciding where to send one

token based on the receipt of another relies on knowing something about the relationship

between the two tokens. We quantify this relationship as the Relevance and define the

relationship between tokens ∆i and ∆j as Rel(∆i, ∆j) ≈
EU(({∆j ,∆i},b)+EU(Ha,b))

EU(Ha,b)
. When

EU({∆j , ∆i}, b) > 0 and Rel(∆i, ∆j) > 1 indicate that an agent with use for ∆i will often

also have use for ∆j , EU((∆j , ∆i), b) < 0 and Rel(∆i, ∆j) < 1 indicate that an agent ∆i

also has use for it but that it is unlikely to have use for ∆j . If EU({∆j , ∆i}, b) = 0, and

Rel(∆i, ∆j) = 1, then nothing can be inferred. Details about how relevance is computed to

ensure appropriate behavior will be explained in the next section.
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7.5 INTELLIGENT TOKEN ROUTING ALGORITHM

The effectiveness of the token-based approach depends on how well agents maintain their

local models so that tokens are routed to where they lead to the highest gain in expected

rewards. In this section, we describe an algorithm to update the localized decision model

by utilizing previously received tokens. The key is to make use of the relationships between

tokens.

The update function of Pa[∆j ] according to Ha, written as Update(Pa[∆j ], ∆i), where

∆i ∈ Ha, is found by using Bayes’ Rule as follows:

∀b ∈ n(a), ∀∆i ∈ Ha, d = first(n(a), ∆i.path)

Update(Pa[∆j , b], ∆i) =



























Pa[∆j , b]× Rel(∆i, ∆j) if ∆i 6= ∆j , b = d

Pa[∆j , b] if ∆i 6= ∆j , b 6= d

Pa[∆j , b]× ε if ∆i = ∆j , b ∈ ∆j.path ∩ n(a)

Where Update(Pa[∆j , b], ∆i) updates the Pa[∆j , b] in Pa[∆j ] according to ∆i and

first(n(a), ∆i.path) extracts from the recorded path of the token the associate of agent

a that had the token ∆i earliest. The first case in this function is the most important.

The probability that the sender of the previous token ∆i is the best agent to receive the

token ∆j is updated according to Rel(∆i, ∆j). The second case in the equation changes the

probability of sending that token to agents other than the sender in a way that ensures that

the subsequent normalization has the desired effect. Finally, the third case encodes the idea

that a should typically not pass a token back to the agent that sent it. Pa[∆j ] is subsequently

normalized to ensure that
∑

b∈n(a) Pa[∆j , b] = 1.

To see how the updating function works, consider the following example. Suppose agent

a has five associates {a, b, c, d, e} and Pa[∆j ] = [0.1, 0.4, 0.2, 0.2, 0.1]. Moreover, Ha =

{∆i, ∆k}, rel(∆i, ∆j) = 1.2 and rel(∆k, ∆j) = 0.4. ∆i.path = {b, ..}; ∆k.path = {c, ..};

∆j .path = {e, ..}. If a currently holds ∆j , by applying our updating function to Pa[∆j ],

we find the result Pa[∆j ] = [0.12, 0.56, 0.09, 0.23, ε] and ∆j will be most likely passed to

associate b.
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7.6 DEFINING TOKEN RELEVANCE: SIMILARITY

When an agent receives two tokens that are relevant to one another, they are more likely

to be usable in concert to obtain a reward for the team. According to the update func-

tion Update(Pa[∆, b], ∆pre), we should get P ′
a[∆, b] = Rel(∆, ∆pre) × Pa[∆, b]. Thus, the

relationship between Rel and our POMDP model is:

Rel(∆, ∆pre) =
[Ω′

a × V ]b
[Ωa × V ]b

. Therefore, while it is infeasibly complex, the POMDP model can suggest how relevance

should be defined. In this paper, we simply estimate this value based on the similarity

between tokens. Intuitively, if two tokens are similar, receiving one token allows an agent to

update its estimation of the team state and infer where to pass similar tokens. For example,

receiving a role token from a particular associate tells the agent that it is relatively less

likely that similar role tokens will be accepted in the part of the network accessible via that

associate. Receiving an information token with information about Pittsburgh tells the agent

that some agents in that part of the network must currently be in Pittsburgh.

The similarities between tokens come from the coordination they carry, and the cal-

culation depends on the domain knowledge of the applications. We assume that from

∆i.coordination and ∆j.coordination, we can deduce the similarity between two tokens

as sim(∆i, ∆j). sim(∆i, ∆j) > 1 if ∆i and ∆j are a pair of similar tokens. For example, if

two tokens both reference Pittsburgh, we consider them similar because both are involved

with the same location. In the same way, we consider two tokens that require driving a

specific machine as similar because they need the same kind of capacity. Two tokens that

are both pre-conditions for the same plan would also be considered similar.

We distinguish the relationship between the relevance and similarity of two tokens as

positively or negatively related. For two similar tokens ∆i and ∆j , if an agent previously

received a token from an associate and would prefer to send a similar token to that asso-

ciate, similar tokens are positively related to each other and Rel(∆i, ∆j) = sim(∆i, ∆j) .

Otherwise, if this agent is less likely to send a similar token to that associate, similar tokens

are negatively related to each other, so Rel(∆i, ∆j) = 1
sim(∆i,∆j)

.
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The similarity between different types of tokens potentially influences agents’ estimation

in different ways. As we have shown in previous examples, the receipt of role tokens dis-

courages sending similar tokens to agents along the role tokens’ paths because the previous

token senders refused the role token and are incapable of accepting the role; therefore, they

are less likely to be interested in the information, tasks, or resources that similar tokens

carry. Consequently, a previous role token is negatively related to similar tokens. Similarly,

the receipt of an information token will indicate that agents along the information tokens’

paths are more likely to work on tasks related to that information and are interested in other

similar tokens. Hence, a previous information token is positively related to similar tokens.

If the threshold of a resource token ∆i is greater than its initial value (init) upon arrival

to the current agent, this means that the resource has been used by the agents previously

holding ∆i and that those agents are potentially engaged in tasks requiring the resource.

Therefore, if the current agent receives similar tokens, it will be more likely to send them to

the part of the network where the previous token has been passed. In this case, the previous

resource token is positively related to similar tokens. Alternatively, if ∆i.threshold is lower

than its initial value (init), it means that agents passing the token did not need it. In such

a case, the previous resource token is negatively related to similar tokens.

Suppose ∆i is a previously received token. Now we can summarize the calculation of

Rel(∆i, ∆j) according to sim(∆i, ∆j). No matter what ∆j .T ype is, this function only de-

pends on the type of the previously incoming token:

Rel(∆i, ∆j) =







































sim(∆i, ∆j) if ∆i.T ype = inf

sim(∆i, ∆j) if ∆i.T ype = res, ∆i.threshold > init

1
sim(∆i,∆j)

if ∆i.T ype = role

1
sim(∆i,∆j)

if ∆i.T ype = res, ∆i.threshold < init
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8.0 RELATED TOPICS

Although I have systematically explained my design of a team-scalable coordination approach

based on tokens, many open questions remain. Some of them are critical for the feasibility

or efficiency of the multi-agent teams or are important when those systems are supervised

by human operators. In this chapter, I attempt to resolve two major open questions.

First, when the team is coordinated on the basis of agents’ local imprecise decision mod-

els, conflicts or duplications of beliefs are inevitable. Therefore, duplicate or contradictory

plans are created. How can I solve the most potential plan conflicts to minimize their influ-

ences on coordination efficiency?

Second, to enable adjusted autonomy [82], an accurate view of the multi-agent team’s

overall properties, such as the percentages of team members that are busy or the overall

level of remaining fuel of a UAV team, are required. I will explain how the high-level team

status monitoring is feasible with limited communication overhead.

8.1 PLAN DE-CONFLICTION

In this section, I describe how to resolve plan conflicts. When using distributed plan creation,

two problems may occur. Upon detecting the appropriate pre-conditions, different team

members may create identical plans or plans with the same pg but different precipe. For

example, suppose a team oriented plan has two pre-conditions, a and b, and one agent

received a first and b later, while another agent received b and a at the same time. Two

agents are eligible to initiate the plan, but only one is required for the team. We have to

handle the potential conflicts of knowledge, plans, and activities of a team based on agents’
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incomplete knowledge. To reduce the need for plan de-confliction, we need to choose a

rule for plan instantiation to reduce the number of plans created with the same pg. These

instantiation rules include always instantiate, probabilistic and local information [49]. The

choice of the plan instantiation rule will vary with the domain setting.

If two plans, plani and planj , have some conflict or potential synergy, then we require

sub− teami ∩ sub− teamj 6= ∅ to detect it. There must be a common team member on both

sub-teams to maintain mutual beliefs of the plans and hence detect the conflict. A simple

probability calculation reveals that the probability of a non-empty intersection between sub-

teams, i.e., the probability of an overlap between the teams, is:

Pr(overlap) = 1−
(n−k)Cm

nCm

where aCb denotes a combination, n = number of agents, k = size of sub− teami and m =

size of sub− teamj .

Hence, the sizes of the sub-teams are critical to the probability of overlap. For example,

if |sub − teami| = |sub − teamj | = 20 and |A| = 200, then P (overlap) = 0.88, despite

each sub-team involving only 10% of the overall team. Since the constituents of a sub-team

change over time, this is actually a lower bound on the probability that a conflict is detected.

After a conflict is detected, the plan needs to be terminated, and the same follows with

the completion of goals or recipes and irrelevant or unachievable plans. We capture the

domain-specific knowledge that defines these conditions with termprecipe. In exactly the same

way as STEAM, when any a ∈ sub− teami detects any conditions in termprecipe, it is obliged

to ensure that all of the other members of sub − teami also know that the plan should be

terminated. In this way, the team can ensure that plani ⊆ plans(t), i.e., no agent believes

the team is performing any plan that it is not performing.

To understand the functionality of the associate network, simulations were run to see the

effect of having associates on a dynamically changing sub-team. We wanted to demonstrate

that, if the sub-teams have common members (associates), then conflicts between sub-teams

can be detected more easily. Two sub-teams, each composed of one to 20 members, were

formed from a group of 200. For each sub-team size, members were chosen at random

and then checked against the other sub-teams for any common team members. Figure 17a
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Figure 17: Sub-teams (a) The probability of having at least one common agent vs. sub-team size. (b) The
average number of times that agents need to be replaced in order to have at least one common agent.

shows the calculated percentage of team member overlap when the sub-teams are initially

formed during the simulation. This graph matches closely with the calculated Pr(overlap) =

1− (n−k)Cm

nCm
. Since sub-teams are dynamic, in the case that both teams are mutually exclusive,

a team member was chosen at random to replace a current sub-team member. Figure 17b

shows the average number of times that team members needed to be replaced before a

common team member was found.

8.2 PERSPECTIVE AGGREGATION

Some coordination algorithms or activities require that each member of the team builds an

accurate view of the team’s state. For example, the way that an individual agent uses shared

resources, such as communication bandwidth or fuel, should depend on the team’s overall

need for such resources. On the other hand, to enable adjusted autonomy [82], an accurate

view of the multi-agent team’s overall properties, such as the percentage of team members

that are busy or the overall level of remaining fuel of a UAV team, are required.

Technically, we can think of every member of the team as having a local value for some

variable (e.g., their local need for some resource) and needing to know the average value of
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that variable across the whole team (e.g., the average need for some resource). Formally,

each agent has some variable v. The perspective aggregation problem is for each agent to

know v̄ =
∑

a∈A v

|A|
.

One way of building up a perspective across the team is to have a small number of

propagators move from agent to agent, taking the current perspective from one agent and

adding it to the current perspective for the next agent. If there are multiple propagators

simultaneously moving around the team, perspectives build up very quickly. Notice that it is

typically infeasible for a propagator to record precisely which agents it has collected values for

because it would need to record all the agent IDs as it moved from agent to agent. In a large

team, this imposes an unreasonable communication load. However, because the propagator

does not know precisely which agents it has visited, some will be visited repeatedly and their

values counted repeatedly, distorting the average results.

A simple model of how quickly these perspectives build up can be straightforwardly cre-

ated by considering how many other values each agent knows about. Before any propagators

move, each agent knows only their value. Thus, the average number of values known by each

agent Avg(v, 0) is one. When a propagator moves, one of the agents gets to know one new

value, hence Avg(v, 1) = 1+ 1
|A|

. In general, the average number of values known by an agent

after move t of the propagators is Avg(v, t) = Avg(v, t− 1)+ Avg(v,t−l)
|A|

. Because propagators

collect information as they move, Avg(v, t) rapidly grows with t. Figure 18 shows Avg(V, t)

for a team with 500 members. The x-axis shows the number of propagator moves divided

by the number of agents and the y-axis shows Avg(V, t) on a logarithmic scale. The figure

suggests that perspective aggregation is not a communication-intensive task for a team, even

one with relatively few edges.

The average value does not capture two key aspects of the perspective aggregation prob-

lem. First, nodes with higher degrees will be visited more often by a randomly moving

propagator than nodes with lower degree. This effect can be modeled by changing the de-

nominator in Avg(v,t−l)
|A|

to be ρ|A|, i.e., agents with a higher-than-average degree will have

ρ < 1.0 and those with a lower-than-average degree will have ρ > 1.0. Thus, networks with

many nodes with a low degree are likely to perform poorly on this task. Second, clearly many

of the values an agent gets to know will be repeated. The distortion caused to the agent’s
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Figure 18: The average number of samples each agent has (y-axis) after a propagator has moved a fixed
number of steps (x-axis). The y-axis has a logarithmic scale.

perspective by the repeats will be proportional to the relative rates at which repeats occur,

i.e., if some values are repeated many times and others are not, the agent’s perspective will

become very distorted. An agent will likely get to know about another agent’s value more

often if that agent is close to it in the network than if it is far from it. Thus, networks with

higher width are likely to perform poorly on this task.
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9.0 EVALUATION

The evaluation of my proposed token-based algorithm incorporates evidence from a set of

fidelity experiments. I have designed an abstract simulator that runs very fast and allows

us to change as many parameters as possible in order to test the algorithm. The objective

of my experiment is to coordinate a few hundred agents. The multi-agent team sizes in my

experiment range from 50 to 1000.

There are four sections in this evaluation. First, to show the feasibility of my approach,

I compare my integrated token-based coordination algorithm with the baseline of random

token movement and the individual coordination algorithm, which only applies to informa-

tion sharing, role assignment, and resource allocation. Because the complexity of large-scale

multi-agent team coordination, I cannot evaluate my approach in all domains, but four

typical application domains have been selected. Second, I compare my algorithm with the

centralized market-based approach that maximizes team utility. I demonstrate the efficiency

of my approach in terms of the trade-off in communication cost. Third, I investigate the

robustness of my approach with respect to two questions: (1) how well the token-based ap-

proach solves plan confliction and (2) how well the algorithm performs if the definition of

relevance between tokens is imprecise. Fourth, I investigate the influences of social network

topologies on my algorithm.

In all of the experiments listed below, the experiment results are measured in two way:

(1) the multi-agent team earns more rewards in trading of less cost of messages and (2) a

message is defined as one movement of a piece of token.
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Figure 19: CoordSim allows us to test the coordination algorithm by varying many parameters

9.1 ABSTRACT SIMULATION ENVIRONMENT

I have designed an abstract simulator called CoordSim [103]. This simulator is capable of

simulating the major aspects of Coordination, including sensor fusion, plan management,

information sharing, task assignment, and resource allocation. CoordSim abstracts the en-

vironment by simulating only its effects on the team. Uncertain sensor readings are received

randomly by some agent or agents in the team at a parameterizable rate. Agents cannot

receive any domain knowledge unless they sense it themselves or are "told" by a teammate.

The physical resources required for tasks are simulated and allow only one agent to access

them at any given time. There is no cost for transferring resources, and resources cannot be

consumed or lost. I simulate the spatial layout of tasks, which are distributed randomly in

an open environment. In these experiments, all agents move at an equal speed. All agents

are allowed to "think" and "act" at each time-step, although the effects of their "actions"

are abstractly simulated such that they only take one time-step. Communication is imple-

mented via object passing, making it very fast. Reward is simulated as being received by the

82



team when a task is allocated to one of its agents. The agent’s simulated location is at the

task location, and the agent has exclusive access to required resources. The most prominent

advantage of CoordSim is that it allows a large number of parameters to be varied and also

allows statistics to be recorded, such as the number of rewards and token movements. These

variations and recordings help to verify my approach. An interface of this simulator is shown

in Figure 19. There are more than 20 parameters that can be varied, covering the major

aspects of scalable coordination.

Because of the complexity of the scalable-team coordination problem, there are many

parameters that can be varied and tested. Specially, In this thesis, I am mainly interested

in the parameters that contribute most to my algorithm.

• Communication failure describes the probability that the message will be lost.

• When communication cost is high, the team will receive a much lower reward if more

communications are used to reach the same team goal.

• The communication processing rate is the number of messages that an agent can pass

per second. If there are more messages, they have to be sent in the next second. In my

research, each token will be passed one hop with one message sent.

• Real-time control means that a task or a plan has to be carried out in a short period of

time. Therefore, any task token cannot travel very far.

• Task importance describes how the reward is calculated. For example, the goal of a UAV

team is to destroy as many enemy vehicles as possible, and missing one is not a major

concern. For USAR, however, missing one victim means that the team has failed, so

every task and plan must be allocated.

• The team size is the number of agents on the team.

• A heterogeneous team describes the number of capability types among team members.

In USAR, heterogeneous robots always have many different capabilities.

• Team robustness is defined by the failures of team members–for example, if one WASM

is killed or if one robot in USAR stops working.

• The Exclusive Resource Requirement describes the number of required resource types.

• Plan complexity defines the number of pre-conditions to activate each plan.
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Figure 20: Four typical application domains with different features.

9.2 FEASIBILITY OF THE TOKEN-BASED APPROACH

In this section, I will show the experiment results to verify the feasibility of the token-based

approach. Four configurations of the algorithm were compared. In the first configuration,

agents passed tokens randomly if they did not keep them. In the next second and third

configurations, local reasoning model updating is applied to only some types of tokens (e.g.,

information, resource, or role) with no updating of the other types. The fourth configuration

provided integrated coordination using tokens of each type to update agents’ local models

for routing tokens. My hypothesis for these experiments is that the integrated algorithm

will outperform the random and partial coordination algorithm with any size of multi-agent

teams. Moreover, the single algorithm will perform well at different stages. Information

sharing will take effect at the beginning, while role and resource allocation perform in the

latter stages.

Because of the complexity of large-scale multi-agent team coordination, I cannot eval-

uate my approach in all relevant domains, but I have selected four typical application do-

mains. In addition, I have abstracted and varied parameters for these four different domains

according to their typically different features and applications: urban search and rescue

(USAR) [17], controlling WASMs, RoboCup [66], and strategy game/decision support sim-

ulation/scheduling [4]. For example, in USAR, coordination is mainly focused on heteroge-
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neous teams and each team-oriented plan template has only one or two roles that need to

be assigned. I summarize these domains according to the features listed below:

• UAV: Middle team size, middle number of plans, middle number of tasks per plan, low

number of exclusive resources, low number of capability types, and high number of plan

pre-conditions. In this domain, information sharing is the most difficult task.

• USAR: Small team size, middle number of plans, high number of tasks per plan, middle

number of exclusive resources, and high number of capability types. In this domain, task

allocation is the most difficult task.

• RoboCup: Small team size, middle number of plans, middle number of tasks per plan,

low number of exclusive resources, and low number of capability types. In this domain,

resource allocation is the most difficult task.

• Large-team coordination, such as video games or off-line scheduling: large team size,

middle number of plans, middle number of tasks per plan, middle number of exclusive

resources, and middle number of capability types.

Table 20 summarizes the specific settings in CoordSim for these different domains. For

example, in the first domain of coordinating UAVs, I simulated a group of 100 distributed

UAVs searching a hostile area. The network topology was that of a random network where

each UAV had, on average, four associates. Simulating automatic detection rates, 60 pieces

of information were randomly sensed by UAVs and passed around the team. Thirty plan

instances, each with four independent pre-conditions, were given to the team. After a plan

was initiated, tokens for the two roles needed to realize the plan were circulated through

the associate network. To accept a role, an agent must be close to the region that the role

requires and must have access to resource tokens for airspace at the role allocation location.

There were 30 abstracted resources around the team, and each of these was interchangeable

with four other resources. Each UAV needed to obtain one required resource related to its

task before the task could be performed. If a role was successfully executed, which could take

one to ten time-steps, a reward was credited to the team. The reward amount for completing

a role depended on the importance of its plan and the cost for that agent to travel from its

current location to the location where the role needed to be executed (e.g., a UAV must fly
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Figure 21: Experiment results for the domain of *UAV coordination: reward gain and message cost over
different time-steps.

to the location of the enemy tank to destroy it). For each domain, other parameters varied

slightly–for example, depending on the team size, the information sensing rate for each agent

varied from 0.02 to 0.006 and the allowed TTL for each information token from eight to 20.

Please note, in my experiment, because of the nature of the abstracted simulator, it

only involves configurations that reflect characteristics of the listed application domains and

that tests were not conducted in those domains themselves. Additionally when the domains

are referred to, a * will accompany the name to signify similarity rather than identity. For

example, I will refer the UAV test domain as *UAV to identify that my experiment will

perform in an abstracted domain similar with coordinating UAVs.

in this section, for each application domain, two experiments were independently per-

formed. In the first experiment, all of the information is sensed at the initial steps and the

experiment runs for a small number of steps. This experiment verifies my hypothesis that

information tokens are critical during the early stage of plan instantiation, and knowing

who is initiating plans will gather more rewards during these initial steps. But resource and

role tokens are more critical after a plan has been initiated and contribute to more rewards

at later stage. In this experiment, I investigate the number of rewards and the number of
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Figure 22: Experiment results for the domain of *UAV coordination: reward gain, message cost, and plan
incitation over different sizes of teams (50, 100, 200, and 500).
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Figure 23: Experiment results for the domain of *USAR: reward gain and message cost over different
time-steps.
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Figure 24: Experiment results for the domain of *USAR: reward gain, message cost, and plan initiation
over different sizes of teams (50, 100, 200, and 500).
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Figure 25: Experiment results for the domain of *RoboCup: reward gain and message cost over different
time-steps.
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Figure 26: Experiment results for the domain of *RoboCup: reward gain, message cost, and plan initiation
over different sizes of teams (50, 100, 200, and 500).
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Figure 27: Experiment results for the domain of *large-team coordination: reward gain and message cost
over different time-steps.
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Figure 28: Experiment results for the domain of *large-team coordination: reward gain, message cost, and
plan initiation over different sizes of teams (100, 200, 500, and 800).
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messages (one message per token move) after a specific number of time-steps.

In the second experiment, the settings are more realistic. Information is sensed ran-

domly, and experiments last longer. The objective of this experiment is to find whether the

integrated token-based algorithm can earn more rewards with fewer messages. More plans

will be initiated. This experiment runs different sizes of multi-agent teams in four different

domains. All of the experiment results shown below are based on 100 runs.

From Figure 21 to 28 shows the experiment results over the four different application

domains. Clearly, the information-sharing algorithm outperforms the role and resource al-

location algorithm in figure 21 and 27. This is not so prominent in 23 and 25 because

information sharing is not difficult in these two domains. In contrast, resource and role

allocation works better in the later stages. Both of them are uniformly better than ran-

dom with more rewards and a lower cost of messages at any stage, for any team size, and

in any domain. This also demonstrates that my intelligent algorithm works on each single

algorithm. Across these eight graphs, the integrated token routing algorithm outperforms

all of the other algorithms at any stage, for any team size, and in any application domain

by earning more rewards, incurring lower costs for messages, and initiating more plans.

9.3 COMPARING WITH MARKET-BASED COORDINATION

ALGORITHMS

Although in the last section, I have shown that my algorithm is feasible for efficient coordi-

nation within different sizes of team, the difference between this algorithm and the optimal

solution is still unknown. In this section, I make a systematic and scientific comparison

with the coordination algorithm, which approaches optimal performance. In my thesis, I

will compare a market-based approach because it is the most popular centralized approach.

By designing the central auctioneer, this approach is capable of finding a policy that nears

optimal performance.
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9.3.1 Algorithm Design

I will use CoordSim to investigate the relative strengths of three distinct coordination ap-

proaches: auction-based coordination [26], my token-based coordination, and a hybrid of the

two [103]. The hybrid algorithm is developed not to be superior to the other two, but to in-

vestigate a hypothesis about the observed relative strengths of the first two algorithms. The

comparison has two additional objectives: (1) to determine the strengths of each approach

and (2) to find out whether their strengths can be combined into a hybrid approach.

Based on an analysis of previous literature [104, 5], several hypotheses can be formulated

regarding the relative performance of these algorithms. Auctions are focused on maximizing

overall utility by taking into account the bids of all team members [5]. Token-based algo-

rithms are focused on scalability; they minimize communication, sometimes at the expense of

overall utility. Thus, the clearest hypothesis that emerges is that auctions will involve more

communications than token-based algorithms, but will result in better allocation of tasks and

resources. More subtly, the performance advantage of an auction should be most pronounced

when small changes in allocations lead to large differences in performance, as in typically

highly constrained cases. The token-based algorithms should maximize their communication

advantage when the probabilistic models that they rely on are most advantageous, as in

weakly constrained cases.

Unfortunately, the overlap in coordination tasks that can be performed by both tokens

and auctions is limited to role and resource allocations, hence the focus of the comparison

on these capabilities. In my experiments, other tasks required for coordination, such as

initiating joint tasks and sharing information, will always be performed by the token-based

algorithm.

9.3.1.1 Market-Based Algorithm My implementation of the market-based approach

will be based on TraderBots [26] with adaptations when necessary in order to make a com-

parison possible. In this approach, one agent acts as the auctioneer, and both tasks and

resources are treated as merchandise. Agents bid for either single items or combinatorial

sets of items in order to maximize their own utility. The auctioneer maximizes its utility by
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"selling" this "merchandise." In this approach, Sandholm’s winner determination algorithm

[78] is used to determine the auctioneer’s allocation of tasks and resources. Because of the

centralized position of the auctioneer, it develops a complete knowledge of how agents will

use a task or resource if allocated. Thus, the auctioneer can perform assignments to maxi-

mize team utility. Note that several constraints also apply to this approach. To be fair to all

the bidders, the auction must last for a fixed period of time. Agents are allowed to bid for

resources until tasks have been allocated to them. Moreover, to prevent deadlock in resource

allocation, agents are only allowed to bid for resources for their first pending task.

9.3.1.2 Hybrid Algorithm The hybrid algorithm works in the following way. The auc-

tioneer algorithm runs exactly as before, except that, instead of broadcasting announcements

of auctions, "auction tokens" are created. All agents have a probabilistic model of the team

state, just as all agents do in the token-based approach. The auction token is then intel-

ligently routed, via the token-based algorithms, only to the agents that are most likely to

submit the best bids. If an agent can submit a better bid than the lower bound estimated

by the auctioneer (and represented on the token), it does so; otherwise, it passes the token

on. The token stops moving after it has visited only a small number of team members but, if

the intelligent routing works well, it will have visited only the agents able to submit the best

bids. The auctioneer determines the winner of the auction and allocates tasks and resources

as described in the basic auction case. My hypothesis is that the hybrid approach should

reduce communication over the basic auction by targeting only the potential best bidder,

reducing computations by limiting the number of bids that the auctioneer must deal with,

and improving allocations over the token-based algorithm by allowing centralized allocations

to be performed by the auctioneer. However, because of the centralized auctioneer, it will

still use more messages than the token-based approach. Furthermore, because it does not

solicit bids from all agents, it will not find allocations as well as the auction approach.
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9.3.2 Experiment Settings

The basic experiment settings in CoordSim are configured as follows. There are 100 agents

to perform 50 tasks with 50 resources. Each task requires only one resource, which is

interchangeable with four other resources. In the default set-up, there is only one type

of capability required and all agents have a non-zero value for this capability (i.e., all agents

are at least somewhat capable of all tasks). Auctions are held open for 50 time-steps, and

the task and resource tokens are allowed to move until accepted. The information sensing

rate for each agent is 0.01. The initial threshold on a task token is 0.5, meaning that the

task will not be accepted by an agent until its capability to perform the role is greater

than 0.5. We measured two key statistics required to support or refute our hypothesis

about the algorithms. "Reward" is the sum of rewards received by each agent. "Messages"

is the number of times that agents communicated, either between themselves or with the

auctioneer. The "messages" count indicates messages sent to perform sensor fusion, plan

initiation, and information sharing. Simulation runs for 1000 time-steps. The experiment

results below are based on 100 runs.

9.3.3 Heterogeneous Teams

In the first experiment, we examined team performance by varying team composition and the

capabilities required to perform tasks. For example, in an emergency response experiment,

some agents might only be able to fight fires while others might only be able to provide

medical treatment. As capabilities grew more varied, fewer agents are available to perform

particular tasks. In this experiment, we varied the number of capabilities from three to 30.

In the most heterogeneous condition, only three agents on average are capable to performing

a task.

The experimental results in Figure 29 show that, for heterogeneous teams, auction and

hybrid approaches earn fewer rewards as the team becomes more heterogeneous because

there are fewer agents able to compete for the more specialized tasks. The advantages of

the auctioneer’s team-wide maximization of utility decrease as there are progressively fewer

feasible alternative bids. In contrast, rewards for the token-based approach remain almost
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Figure 29: Coordination algorithm comparison: heterogeneous teams

flat with increasing specialization. We propose two reasons. One is that the token-based

approach greedily finds a reasonable solution rather than searching for the optimal solution.

The other reason is that, by passing a higher number of tokens around the network and

making use of the relevance between them, the intelligent routing algorithm gains a better

knowledge of how to route tokens. This results in an increasing number of messages but an

equal number of rewards.

9.3.4 Intensive Tasks Allocation

In the second experiment, we investigated team performance when many tasks needed to be

performed. To increase their number of rewards, teams were required to perform tasks and

allocate resources as rapidly as possible. In this study, we varied the number of tasks of each

plan to be finished between one and ten. All of the available roles to be accomplished by the

team ranged from 50 to 500. After 1000 time-steps, the accumulated reward and message

count were recorded, as shown in Figure 30.

All three approaches performed more tasks in order to receive a higher number of re-

wards. As expected, the auction approach attained a higher number of rewards than the
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Figure 30: Coordination algorithm comparison: intensive tasks allocation

hybrid and token-based approaches. Considering both the number of rewards and messages,

however, the token-based approach performs well by matching more than half of the number

of rewards obtained by the auction at only one-tenth of the communication cost. Moreover,

the hybrid approach makes a good trade-off between earning rewards and keeping the com-

munication cost low as well. The reason that these approaches performed so well with so

little communication overhead is that the intelligent routing algorithm limits communication

to a small number of agents while ensuring that highly capable agents are always informed.

9.3.5 Time-Critical Tasks

In this experiment, similarly to the experiment described in the previous section, I limited

the length of the simulation to 200 but increased all of the available roles to be accomplished

by the team to range from 50 to 500.

Graph 31 shows the experiment results. All three approaches performed more tasks in

order to receive a higher number of rewards. As expected, the auction approach attained a

higher number of rewards than the hybrid and token-based approaches. Considering both

rewards and messages, however, the token-based approach performs best by almost matching
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Figure 31: Coordination algorithm comparison: time-critical tasks

the number of rewards obtained by the hybrid at only a fraction of the communication cost.

The reason is that the auction and hybrid approaches have the constraint of waiting to bid

for the role and resource for a fixed interval. The token-based approach does not have this

constraint. It can allocate the role to a capable agent very quickly.

9.3.6 Competitive Resources

The fourth experiment used 50 tasks, each of which required an average of four resources with

no possibility of interchanging. As available resources increase from five to 50, competition

for them declines and they become less likely to cause a bottleneck.

We hypothesized that, because resource contention in this experiment was high, the cen-

tralized control of the auction and the hybrid approach would often force agents to either bid

for all four resources together or miss the task while the distributed token-based approach

weakened this constraint. Experiment results are shown in 32. With the increase in the

number of available rewards, three approaches receive more rewards while the auction ap-

proach receives the greatest amount of rewards, the token-based approach costs the fewest in

number of messages, and the hybrid approach works best by earning a comparable number

96



5 10 15 20 25 30 35 40 45 50
10

15

20

25

30

35

40

45

50

55

60

65

70
R

ew
ar

d

Number of Resources

 Auction
 Hybrid
 Token

5 10 15 20 25 30 35 40 45 50
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

M
es

sa
ge

s

Number of Resources

 Auction
 Hybrid
 Token

Figure 32: Coordination algorithm comparison: competitive resources

of rewards as the auction approach but incurring only half the cost of its messages.

9.3.7 Interchangeable Resources

In the fourth experiment, there were 50 tasks that each required one resource. The number

of interchangeable resources was varied between two and ten.

Results are shown in Figure 33. Interchangeable resources did help the token-based

approach more because agents are easier to move to the required resources when, most of

the time, they are idly moving around the network. In contrast, the improvement for the

auction-based approach and the hybrid approach is not as noticeable because agents still

need to bid and wait for the winning notice before receiving the required resources.

9.3.8 Auction Length

In the last experiment of this section, the length of time that an auction was required to be

open was varied between ten and 100 time-steps. When the auction lasts longer, all agents

have to wait longer to receive a role or a required resource. On the other hand, the hybrid

approach provides more opportunities to pass auction tokens to inform the right agent to
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Figure 33: Coordination algorithm comparison: interchangeable resources

submit bids and to increase team performance.

Figure 34 shows that, for this experiment, the auction approach obtained a higher number

of rewards for all auction lengths. These rewards, however, came at the cost of a large number

of messages for short auctions. The hybrid approach, by contrast, had a much lower volume

of messages and approached a comparable number of rewards with auction-based approach

very quickly when the auction lasted a long time. This shows us that the intelligent routing

algorithm works on auction tokens, as explained in Section 9.3.3.

9.4 IMPRECISE MODEL OF DECISION

In my approach, I make use of relevant domain knowledge to increase the efficiency of coor-

dination. The efficiency of team coordination depends highly on the definition of relevance;

thus, in this section, I investigate how robust the system is if the relevance is imprecise and

waivering between intervals.

I set up an experiment with the same settings described in Section 9.2. Unlike the

second experiment described in Section 9.2, however, which has a fixed relevance definition,
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Figure 34: Coordination algorithm comparison: auction length
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Figure 35: Effects of imprecise definition on application domain *UAV.
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Figure 36: Effects of imprecise definition on application domain *USAR.
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Figure 37: Effects of imprecise definition on application domain *RoboCup.
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Figure 38: Effects of imprecise definition on application domain *Large-Team Coordination .

the definition of relevance in this experiment is randomly varied between a fixed interval

[−α, +α] (e.g., if α = 0.5, the relevance will be varied between [−0.5, 0.5]). For each domain,

the interval was varied between 0 to 30%. When the interval is zero, the relevance is fixed

and relevance is no longer imprecise.

The experiment results of the effects of an imprecise definition of relevance on each

application domain are presented in figure 35 through 38. In all of the experiment results,

the variance of the number of rewards and the number of messages over different domains

is much lower than the interval of the imprecise definition of relevance. Therefore, we can

demonstrate that the integrated token-based algorithm is robust when there is an imprecise

definition of relevance. Moreover, compared to the other three domains, the third domain

contains the largest variance. I hypothesize that resource allocation is more dependent on a

precise definition of relevance.
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9.5 PLAN DE-CONFLICTION

From the experiment results given in Section 9.2, we can see that the integrated algorithm

creates more plan instantiations than the actual plan templates. Therefore, many conflicted

plans are created. Although I have encoded the mechanism of plan de-confliction and a

conflicted plan does not count toward any reward in Section 9.2, in this section, I present

my experiment results for plan de-confliction.

Table 1: Results of Plan De-conflictions

Domain Team Size #Plan Initiated #Duplicated #Detected %Solved

*UAV 100 43.62 13.62 13.62 100%

*UAV 200 71.06 46.87 46.35 98.8%

*UAV 500 155.9 132.02 130.27 98.7%

*USAR 100 158.28 140.93 140.87 99.9%

*USAR 200 274.2 257.13 254.93 99.1%

*USAR 500 702.18 687.02 675.8 98.4%

*RoboCup 100 149.27 130.86 130.53 99.7%

*RoboCup 200 1414.57 1396.1 1391.7 99.7%

*RoboCup 500 4564.59 4548.58 4470.96 98.3%

*LargeTeam 100 55.14 16.96 16.28 96.0%

*LargeTeam 200 59.4 16.72 15.83 94.7%

*LargeTeam 500 122.68 41.29 37.86 91.7%

Table 1 shows all of the plan de-confliction results over four different application domains

and different team sizes (100, 200, and 500). Because detecting conflict is too easy when a

team is composed of 50 agents, these results have been excluded from this experiment. Of

the remaining results, when team size is less than 200, nearly 99% of plan conflictions is

detected and solved. Even in the largest team composed of 500 agents, more than 90% of

plan confliction is solved. Moreover, if information sharing is not difficult in the domain, such

as the third and fourth domains, the plan de-confliction rate is close to 100%. Therefore,
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our solution of plan de-confliction is efficient.

9.6 EFFECTS OF ASSOCIATE NETWORK TOPOLOGIES

As my initial experiment in Section 5.4 has shown, social network topology may exert an im-

portant influence on the efficiency of my token-based algorithm. In this section, the primary

purpose is to determine how social network topology influences my algorithm. Similarly to

the experiment described in Section 9.2, experiments in this section are based on the same

four domains (i.e., *UAV, *RoboCup, *USAR, and *large-scale coordination). Four social

network topologies will be tested: random network, small world network, grid-based net-

work, and scale-free network. I present two sets of experiments. First, I expand the team

size in each domain from 50 to 500 and determine how social network topology influences

team sizes that range from small to large. Second, I determine whether more associates will

be helpful to my algorithm. In this experiment, all of the teams consist of 100 agents and the

average number of associates for each agent varies from two to ten. To make the influence

of social network effects more easily observable, the probability of information sensing will

be lowered (1% to 2%) and the simulation will run only 50 steps in the first three domain

and 100 steps in the fourth domain. All of the other settings remain the same as described

in Section 9.2.

The first experiment results are shown as 39, 41, 43, and 45. In most domains, because

they possess the property of the small world effect, the random network and the basic small

world network outperform the grid-based network. In some domains, because they possess

the property of the scale-free effect, the scale-free network may outperform the other three

social topologies. The reason is that a few agents can act as hub nodes and obtain more

knowledge of how to pass a given token in the right direction. On the other hand, in some

situations such as that presented in figure 43, the scale-free network produces more messages

and receives fewer rewards. Here, the reason is that the hub nodes maintain many associates

but the average tokens from each associate can be decreased. Therefore, the hub nodes

cannot build a better model based on the previous tokens that they have received.
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The results of the second experiment are shown in 40, 42, 44, and 46. On average, all

of the network topologies increase their performance when agents keep an average of four

associates instead of the average of two. But when the average number of associates increases

further across these domains with the exception of the grid-based network, the other social

network topologies’ performances can become worse. An extreme example of this is a social

network topology that is a complete network. I cannot represent this result in the figures

because, compared with the grid-based network, it will take more than 100 times of messages

to receive only a very small number of rewards. Moreover, in the fourth domain, each run

takes more than two hours. These results reinforced my hypothesis that, when the number

of associates per agent increase, the average number of tokens from each associate can be

decreased and the agents may not maintain better decision models based on previously

received tokens. This is most prominent in the hub nodes in a scale-free network. This

is the reason that, in figure 42, the scale-free network’s performance decreased so quickly.

Conversely, the grid-based network enhances its performance in two ways. First, the average

number of associates is the exact number of associates for each agent; therefore, no agents

can have a large number of associates. Second, with the increasing number of associates,

the average distance in the grid-based network is drastically decreased. In this way, it is

much easier to pass tokens quickly to their destinations. Therefore, we have verified the

importance of the small world effect on the efficiency of the present token-based approach.
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Figure 39: Application domain *UAV: social effects on different team sizes.
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Figure 40: Application domain *UAV: social effects on different number of average associates.
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Figure 41: Application domain *USAR: social effects on different team sizes.
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Figure 42: Application domain *USAR: social effects on different number of average associates.

106



100 200 300 400 500
0

1

2

3

4

5

6

R
ew

ar
d

Team Size

 RandomNetwork
 SmallWorld
 GridNetwork
 ScaleFree

100 200 300 400 500
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

M
es

sa
ge

s

Team Size

 RandomNetwork
 SmallWorld
 GridNetwork
 ScaleFree

Figure 43: Application domain *RoboCup: social effects on different team sizes.
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Figure 44: Application domain *RoboCup: social effects on different number of average associates.
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Figure 45: Application domain *Large-team coordination: social effects on different team sizes.

2 4 6 8 10
0

5

10

15

20

25

30

35

40

45

50

55

R
ew

ar
d

Number of Average Associates

 RandomNetwork
 SmallWorld
 GridNetwork
 ScaleFree

2 4 6 8 10
0

5000

10000

15000

20000

25000

30000

M
es

sa
ge

s

Team Size

 RandomNetwork
 SmallWorld
 GridNetwork
 ScaleFree

Figure 46: Application Domain *large-team coordination: social effects on different number of average
associates.
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10.0 CONCLUSIONS AND FUTURE WORK

In my thesis, I have presented a novel integrated token-based algorithm for scalable team

coordination with several hundreds of agents. In this approach, I integrated three major

types of coordination elements: information, resource and task into tokens, and converted

this coordination problem into a communication decision problem. By utilizing relationships

between tokens, intelligent routing algorithm efficiently routes tokens based on previous

tokens and we were able to use the execution of one type of coordination algorithm to

improve the performance of the others when the relevances between different types of tokens

are defined. Although in this approach, agents’ local decision to route tokens is based on

the imprecise probability model from their previous incoming token, my theoretical analysis

and pre-experiments have shown that this imprecise local decision model can make "good"

decisions in large teams. The key of my research is the designing of intelligent routing

algorithm that previously received tokens will help the receiver to infer whether the sender

could benefit the team if a related token is received. Moreover, I have defined the team

organization as associate network to limit agents’ direct communication to a few of the

others. This team organization model is efficient for token routing because more tokens are

received from each associates and it is helpful for agents to build better models of their

associates.

In chapter 9, I have setup my experiments in an abstracted coordination environment

and verified my approach in three aspects: scalability, robustness and efficiency. To show

the scalability, I applied my approach to different team size from 50 to 1000 and spanned in

different application domains with different characters. By comparing with the baseline of

random token movement and the partial coordination algorithms, I demonstrated that my

integrated token-based algorithm outperformed them at any team size and any domains. By
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comparing with market-based approach which are only focused on maximizing overall utility

at the expense of higher communications, token-algorithms are well focused on scalability

and make the trade off between team performance and communication. In some cases, it

gets comparable team utilities as auction with very limited communication overhead.

Imprecise definitions of relevance between tokens and plan conflictions are two major

factors that influence the robustness of my approach. Efficiency of intelligent routing algo-

rithm highly depends on the definition of relevance. I have demonstrated that my approach

is robust to a high variance of imprecise relevance definition and its variance of utilities and

communication cost are within a fixed interval. By defining the sub-teams for each active

plans, my experiment results have shown most of the duplicated plans, which would badly

influence the team performance, have been successfully solved.

As the third major contribution of my thesis research, I have shown different associate

network topologies makes token-based coordination efficiency different in both theoretical

and experimental measure. The small world effect and scale free effect enhanced the efficiency

of token-based approach by making agents "closer" or introducing some degrees of centralized

control to build better decision model for a few agents to pass tokens. Moreover, complete

connections with any pairs of agents or agents maintaining many associates may deteriorate

the intelligent routing algorithm.

This approach opens the possibility to develop a range of new executing applications

of heterogeneous agents not possible with existing approaches. While the results presented

in my thesis represent a step forward, they also point to significant challenges and exciting

questions. I plan to address some of these issues in the future. Although the effect of the

underlying associate network on the coordination is clearly important from my experiment

results, how to make use the merits of the social network topologies and build intelligent

associate network to foster the efficiency of my token-based algorithm most is a good topic

for my future research.

This work represented a novel attempt at integrating coordination algorithms into a uni-

fied approach and showing how by working together the overall performance can be improved.

However, the individual algorithms were designed without thought to future integration. A

key question is whether knowing that I will be integrating the token algorithms allows us to
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build algorithms that work better with other algorithms. Finally, but critically, until now,

I only demonstrated my algorithm in an abstracted simulator. I will use the token-based

approach in more realistic domains to understand its utility in the real world. Specifically,

my research group are currently developing Machinetta, a real distributed coordination sys-

tem. I am going to integrated my approach into this system and applied in the large scale

coordination applications for rescue response and unmanned aerial vehicle applications. The

objective is to find more challenges in the real domains that critical to my token-based

approach.
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