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The advent of the multimedia applications has triggered widespread interest in QoS supports.
Two Internet-based QoS frameworks have been proposed: Integrated Services (IntServ) and
Differentiated Services (DiffServ). IntServ supports service guarantees on a per-flow basis. The
framework, however, is not scalable due to the fact that routers have to maintain a large amount
of state information for each supported flow. DiffServ was proposed as an alternate solution to
address the lack of scalability of the IntServ framework. DiffServ uses class-based service
differentiation to achieve aggregate support for QoS requirements. This approach eliminates the
need to maintain per-flow states on a hop-by-hop basis and reduces considerably the overhead
routers incur in forwarding traffic.

Both IntServ and DiffServ frameworks focus on packet scheduling. As such, they decouple
routing from QoS provisioning. This typically results in inefficient routes, thereby limiting the
ability of the network to support QoS requirements and to manage resources efficiently. The goal
of this thesis is to address this shortcoming. We propose a scalable QoS routing framework to
identify and select paths that are very likely to meet the QoS requirements of the underlying
applications. The tenet of our approach is based on seamlessly integrating routing into the
DiffServ framework to extend its ability to support QoS requirements. Scalability is achieved
using selective probing and clustering to reduce signaling and routers overhead.

The major contributions of this thesis are as follows: First, we propose a scalable routing
architecture that supports QoS requirements. The architecture seamlessly integrates the QoS
traffic requirements of the underlying applications into a DiffServ framework. Second, we
propose a new delay-based clustering method, referred to as d-median. The proposed clustering
method groups Internet nodes into clusters, whereby nodes in the same cluster exhibit equivalent
delay characteristics. Each cluster is represented by anchor node. Anchors use selective probing
to estimate QoS parameters and select appropriate paths for traffic forwarding.

A thorough study to evaluate the performance of the proposed d-median clustering
algorithm is conducted. The results of the study show that, for power-law graphs such as the
Internet, the d-median clustering based approach outperforms the set covering method commonly
proposed in the literature. The study shows that the widely used clustering methods, such as set
covering or k-median, are inadequate to capture the balance between cluster sizes and the
number of clusters. The results of the study also show that the proposed clustering method,
applied to power-law graphs, is robust to changes in size and delay distribution of the network.
Finally, the results suggest that the delay bound input parameter of the d-median scheme should
be no less than 1 and no more than 4 times of the average delay per one hop of the network. This
is mostly due to the weak hierarchy of the Internet resulting from its power-law structure and the
prevalence of the small-world property.
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1.0 INTRODUCTION

The purpose of this chapter is to give the reader the background and the concept of the thesis.
We begin this chapter by introducing the characteristics of the emerging class of multimedia
applications and their diverse requirements on the networking resources. This invokes the
demand of evolving the Internet beyond its one-class, best-effort service. We then state the
research problem of this thesis and describe briefly the approach used to address this problem.
Later, we provide some important results. Finally, we describe the organization of the rest of the

thesis.

1.1  Background

The Internet is now unmistakably the most prominent communication infrastructure, carrying an
ever broadening range of applications and protocols. The traditional best-effort service of the
Internet is inadequate in supporting diverse characteristics and different Quality-of-Service (Q0S)
requirements of the new emerging applications. These applications, loosely referred to as
multimedia applications, exchange information often characterized by real-time performance
specifications and a wide range of bandwidth requirements. Examples of such applications
include high-definition television, distance learning, remote video conferencing, video-on-
demand services, retail sales and computer-based interactive game play. Multimedia support
encompasses different requirements at different levels ranging from storage, retrieval and
processing of multimedia information to its transmission and display. Depending upon the

application and media type, such requirements may involve stringent temporal constraints.



Different multimedia applications are sensitive to different factors and possess a variety of
service constraints, including bandwidth, delay bounds and loss bounds.

The recent advances in communication and processing system designs have made it possible
to support such diverse requirements in a single, integrated environment [STALO02], forming a
heterogeneous network. However, delivering certain level of QoS for every application
simultaneously is difficult, taking into account the different in characteristic of the traffic. For
example, the burstiness traffic may harm the low jitter requirement of some multimedia traffic at
the aggregate points. The end-to-end flow control and congestion control of the higher layer
protocols, e.g. the TCP’s, are insufficient to cope with the problem. Therefore, the network must
play an important role in delivering different QoS requirements to each class of traffic through
variety of techniques, including admission control, constraint based routing, scheduling, queuing
discipline, and discard policy. It’s important to note that the service differentiation and QoS are
essential even when the network does not reach the congestion point.

While IP-based Internet network had difficulties in providing such diverse QoS
requirements, there was an effort, through the collaboration of the vendors and the service
providers, in developing an entirely new network scheme, which aims to support vast variety of
applications, including the emerging multimedia applications. This network, developed as part of
the work on broadband ISDN in early 90’s, is called Asynchronous Transfer Mode (ATM),
featuring connection-oriented logical connections, fixed-size cells, and service categories. ATM
exercises the concept of virtual connection in providing different treatment to each connection.
The small fixed-size datagram, called cell, is proposed to reduce the effect of bursty traffic.
Maybe, the most important concept of ATM is the differentiation of the service categories.
Service categories are used by the end system to identify the type of service required and tell an
ATM network to handle each traffic flow accordingly. Service categories of the ATM include
Constant Bit Rate (CBR), Real-Time Variable Bit Rate (rt-VBR), Non-Real-Time Variable Bit
Rate (nrt-VBR), Available Bit Rate (ABR), Unspecified Bit Rate (UBR), and Guaranteed Frame
Rate (GFR) [ATM99]. Similar service categories are also redefined in other QoS-enabling

frameworks and protocols as we will see later.



1.2 The existing QoS frameworks for the Internet

Despite the fact that ATM provides rich support for QoS, reliance on ATM means either
constructing a second networking infrastructure for multimedia traffic or replacing the existing
IP-based configuration with ATM, both of which are costly alternatives [STALO02]. Thus,
developing the frameworks for supporting QoS on TCP/IP architecture is more impulsive. It is
easy to see that traditional one-class, best-effort of the Internet is no longer considered efficient
to support such diverse requirements. For several years, many efforts have been attempted to
provide the suitable service for each type of traffic, while maximizing the utilization of the
network resources for IP-based network; however, only the limited successes were achieved.
Recently, Internet Engineering Task Force (IETF) has proposed two traffic management
frameworks: Integrated Services (IntServ) and Differentiated Services (DiffServ).

Integrated Services (IntServ) [BRAD94] combines the concept of service categories and the
Resource Reservation Protocol (RSVP). It introduces the concept of connection to the IP-based
network and allocates the resources for each connection accordingly. Service categories in
IntServ are divided into Guaranteed Services, Controlled load Service, and Best Effort. IntServ is
a connection-oriented framework, i.e. applications that support IntServ must establish the
connections in the initial phase. RSVP signaling protocol is used for reserving the resources
along the path when the connection is established. The intermediate nodes must provide some
form of admission control and support RSVP signaling. Each node along the path must maintain
the soft per-flow state of each connection. Hence, the complexities and overheads are introduced
to the intermediate nodes. This is not scalable since the number of per-flow states maintained by
each node would have an exponential growth, as the number of nodes in the network increases.
Furthermore, the applications requesting for services must support RSVP signaling to establish
the connection. This is called application dependency.

While the complexities and signaling overhead due to the maintenance of state information
at router make IntServ impractical to deploy, the seemingly more successful QoS framework for
IP-based network is Differentiated Services (DiffServ) [NICH98], [BLAK98], [DAVI102], and
[HEIN99]. DiffServ architecture defines two types of nodes: DS boundary nodes and DS interior
nodes. The DS boundary nodes are responsible for classifying the traffic into different classes by
marking the Differentiated Service Code Point (DSCP) of each packet, and performing some



traffic conditioning functions, if necessary. The service categories in DiffServ are called Per-hop
behaviors (PHBs). Each PHB is associated with one or more DSCP. So far, three PHBs have
been standardized; Expedited Forwarding (EF), Assured Forwarding (AF), and Best Effort (BE).
The DS interior nodes simply forward each packet according to its PHB. The DSCP actually
indicates the priority of each packet. The service discrimination is done by examining the DSCP
of each packet. Therefore, DiffServ can be viewed as a priority based QoS framework.

The connectionless characteristic makes DiffServ more scalable than IntServ because there
is no per-flow state to be maintained and network is no longer required to support any form of
resource reservations or admission controls. Furthermore, no signaling is required to be initiated
from applications, which makes the framework application independent. Besides, the
complexities of traffic classification and conditioning are pushed to the network edge. In next
section, we will consider the case where decoupling of routing and QoS support may lead to

inefficient resource management.

1.3  Motivations and goals

In DiffServ framework, the packet prioritization and PHB service discrimination only take into
account after the routing decision has been made. While the ordinary routing decision is made
based on minimizing a single metric, QoS requirements of the traffic may consist of multiple
constraints, which may or may not include the constraint used by routing algorithm. The route
assigned to the traffic may not be best suit its QoS requirements; therefore, there may exist
alternate routes that have the resources conformed to such QoS requirements, but are not
indicated by the single-metric routing algorithm. To make this claim solid, consider the
following example. An OSPF routing protocol may be configured to minimize the delay between
any source-destination pairs in a certain network. Suppose an AF PHB packet, which is
described by some delay bound and low drop precedence, i.e. low loss rate, is finding its way
through the network. The default minimum-delay route is then assigned to this packet, where it
would be aggregated with other types of traffics that share the same destination. The low drop



precedence requirements would take into account after it is queued at the output interface of the
routers. In this case, the low loss rate routes with acceptable delay bound may exist but do not
indicated by the routing protocol. In addition, the application may suffer from service
degradation if the minimum-delay route is a lossy path due to the error in transmission media
rather than queuing drop, where low drop precedence has nothing to do with.

To address this shortcoming, routing and QoS support must be coupled to achieve better
resource usage. The routing algorithm must take into account the traffic requirements of various
flows and resources available along the paths in the network. Such routing algorithm is referred
to as a multi-constrained path algorithm or QoS routing algorithm, as to distinguish from the
traditional single-metric, one-class best-effort routing algorithm. The QoS routing problem can
be formally defined as the problem that consists in finding an optimal-cost path or set of feasible
cost paths from source to destination(s) subject to one or more constraints on the path. We
propose the use of QoS routing for aiding DiffServ framework in suggesting the appropriate path
for a better network resource utilization.

We might expect that the overall functionality of QoS routing is more complex than
traditional best-effort routing. The following is the list of the desired characteristics of the QoS

routing framework:

e Scalability: QoS routing framework must exhibit low signal and processing overheads
and must be stateless, eliminating the need of maintenance of per-flow information.
Connectionless mode of operation must be assumed; no resource reservation or the
concept of establishing connection is allowed. Consequently, the routing must be
application independent and transparent to the higher layer; no direct signaling from the
application is needed to trigger the routing process.

e Efficiency: the framework should provide better resources management through coupling
of routing decision and QoS support. As we mention earlier, using service differentiation
based on appropriate scheduling policies may lead to inefficient resource management
since different traffic may be routed along the same best-effort path. QoS routing
framework must exercise the efficient usage of resources while taking into account the

multiple QoS requirements of traffic for route selection.



e Robustness: other than the loop-freeness property of the routing protocol, dynamic

variation of the load should not cause path oscillation.

The above requirements serve as a guideline for developing our QoS routing framework. The
traditional routing mechanisms, such OSPF and BGP, employ only single cost metric and thus
routing based on multiple constraints is not achievable. Either enhanced version of an existing
routing protocols or a new one is required. There has been many proposed works in the literature
for this issue (see chapter 2.0). For example, the QoS routing mechanism extension to OSPF
[APOS99b] offers the route selection based on two metrics; namely, available bandwidth and
hop-count. In essence, the route selection is done in such a way that minimum hop-count path is
selected from a set of feasible available bandwidth paths. The rule for selecting among these
paths is meant to balance load as well as maximize the likelihood that the required bandwidth is
indeed available. In general, there is a trade-off between the protocol overhead of frequent
updates and the accuracy of the path selection results. For large scale network, the frequent
updates make the protocol neither practical nor feasible to deliver the routing decision. The
scalable generalized QoS routing framework is yet to be discovered. This leads to our

fundamental research question:
“Is it possible to develop a scalable and robust routing architecture to support QoS
requirements of the current emerging multimedia applications in Internet

environments?”’

We propose the treatment to the above question in the next section.

1.4 The proposed methodology

Scalability and efficiency of the QoS routing architecture may be achieve by introducing the

concept of network clustering and selective probing scheme. Network clustering is done in order



to reduce the number of nodes that will participate in the routing process, specifically, the
metrics acquisition process. Nodes that share the same class of equivalence are grouped together
and form a cluster. Class of equivalence can be defined in terms of any metrics. In this thesis we
focus only on the delay metric such that the nodes are said to share the same class of equivalence
if, and only if, the delay variations among them are bounded to some value, usually specified by
parameter d.. A cluster itself can be viewed as a logical node, called meta-node. The network
topology of the meta-nodes is called a meta-graph, which, in turn, is derived from the physical

connectivity of the clusters. The concept of meta-nodes and meta-graph is shown in Figure 1-1.

The selective probing scheme is introduced to reduce the routing signaling overhead. Once
the network is clustered and the meta-graph is derived, the metrics acquisition process can be
done among meta-nodes, in per-cluster basis, in contrast to per-node basis. For each cluster, or
meta-node, we locate a representative node that will represent other nodes, in its own cluster, in
terms of QoS metrics. The metrics acquisition is done by sending the probe signal to the
representative node of the cluster of interest to acquire its QoS metrics information. Then, the
QoS metrics of the rest of the nodes in the cluster can be inferred from this probed information.
Our assumption is that: there is a correlation between QoS metrics. Specifically, we assume that
the nodes that share delay-based class of equivalence also have some similarities in the measures
of other metrics, e.g. jitter, loss rate, available bandwidth.

Once the metrics information has been acquired from the meta-nodes and metric estimation
has been done for the rest of the nodes in the network, the path selection algorithm can be run to
attain the appropriate paths that satisfy the QoS requirements of the underlying applications.
Figure 1-2 summarizes the overall process of network clustering and selective probing scheme.
Note that the cycle of metrics acquisition, metric estimation, and path selection can be done
periodically or upon request. Network will also need to be re-clustered to update the meta-graph
topology, however, in a larger unit of time. The concepts of clustering and selective probing will

be revealed in more details in chapter 4.0.
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Figure 1-2: The clustering and selective probing framework

Once the network of »n nodes is clustered into & clusters, the routing signaling overhead is
reduced by the factor of n / k. For scalability, we need the number of clusters k£ to be small.
However, having a smaller number of clusters means the clusters must yield the larger average
size, which results in higher error in metrics estimation. Remember that the accuracy of this
metric acquisition scheme depends on how close nodes are correlated in terms of delay. Our
study focuses on the methods that efficiently cluster the network in order to reduce the routing
signaling overhead while minimize the metrics estimation error. We propose the new clustering
approach and evaluate its performance in chapter 3.0. The results show that our approach
outperforms the currently used approach, at least based on our set of performance parameters.

Since we focus on the QoS routing for the wide area network, we exploit the power-law and
small-world properties of the Internet in simulating various instances of graphs that represents
the Internet. Detail of the power laws of the Internet and the small-world phenomena will be

discussed in chapter 2.0.



1.5  Major contributions of the thesis

The thesis has the following contributions:

1. Selective probing architecture: we propose the concept of metrics probing for scalable
QoS routing framework. So far, there is no obvious method to do such selective probing
scheme. A few works in the literature claimed the term selective probing. None of them
has shown intensive studies on the problem. For example, methods of selective probing
introduced as a part of works in [CHEN98a], [LEEOO] and [LEEO1] are, basically,
flooding the routing packets selectively to explore the feasible paths. Their meaning of
the term selective probing is different than ours in the sense that their selective is done on
paths, while ours is done on nodes. Furthermore, to the best of our knowledge, no work
has been considered the problem of clustering the network for the purpose of scalable
routing information retrieval. Therefore, this work will concentrate on the problem of
optimally locating clusters and their representative nodes for the selective probing QoS
routing architecture.

2. Clustering methods and core routers selection: we propose and evaluate the method of
delay-based clustering and selecting the representative node, a core router, for each
cluster. The delay-based clustering scheme can appropriately be used with various tasks
other than routing, such as network infrastructures placement problems, content
distribution network (CDN) resources management, and network distance estimation for
overlay network.

3. QoS metrics estimation: we provide a simple method of QoS metrics estimation for
large scale network, which aims to reduce the signaling and processing overheads of the

routing protocol.

In this research, we evaluate mathematical models currently used for clustering and propose a
new model that is more suitable for our selective probing architecture. Then we implement and
evaluate our new model along with the existing models. Results indicate that the proposed model
outperforms the existing models. The experimental results and observations make us give useful

suggestions on parameters settings for the algorithm.
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1.6 Thesis organization

This thesis is organized as follows. The background related to our work is given in chapter 2.0.
We will discuss three areas, namely; QoS routing, power laws of the Internet and discrete
location models. A brief review on the related works is also given at the end of the chapter.
Chapter 3.0 focuses on the problem of clustering the network, including some experimental
results and analyses. Chapter 4.0 describes the framework for selective probing scheme. We

conclude our work in chapter 5.0.
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20 BACKGROUND AND RELATED WORKS

In this chapter, we review some fundamental backgrounds required for our selective probing
scheme. We start with an overview on QoS routing and introduction to the power laws of the
Internet and the relating issues on the Internet topology generators. Then, we consider four well-
known discrete location models that are used for clustering, which is the focused area of this

research. Finally, we review the works in the literature relating to our work.

2.1 QoS Routing

To meet the QoS requirements of multimedia applications, the stateless, priority-based DiffServ
framework has been proposed. However, as it has been discussed in the previous chapter, using
DiffServ solely, without any collaboration with routing, may lead to inefficient resource
utilization. Moreover, traffic may be routed through a path which cannot satisfy the application’s
QoS requirements, even when such a path exists in the network. To address this shortcoming, we
propose an efficient QoS-aware routing framework in support of the DiffServ framework to
achieve better resource utilization.

In general, routing (QoS-based or not) involves two entities: routing protocols and routing
algorithms. Routing protocols capture the network state information (e.g. available resources)
and disseminate it throughout the network, while routing algorithms use this information to
compute appropriate paths. (For example, Dijkstra’s is a routing algorithm, while OSPF is a
routing protocol.) While current best-effort routing simply performs these tasks based on a
single, relatively static measure, QoS routing takes into account both the traffic’s requirements
and the availability of network resources. As a result, QoS routing has to deal with the

12



challenging issues that are not presented in the best-effort routing, including scalable
dissemination of dynamic (state-dependent) information, state aggregation, and computation of
constrained paths [KUIPO02].

QoS routing must extend the current routing paradigm in several ways. It must support
traffic using different classes of services, or some other means of service differentiation, and
multiple paths between nodes pairs will have to be calculated [CRAW98]. For the Internet, the
development of efficient QoS routing algorithms and protocols is still an open issue that needs to
be investigated further. Recently, there have been many proposals for QoS-based frameworks
(e.g. IntServ, DiffServ, constraint-based MPLS), QoS routing algorithms (mostly heuristics, see
[KUIPO02]) and QoS routing protocols (e.g. Q-OSPF [GUER97], [APOS99b], PNNI [ATMO02]).
In this section, we introduce the concepts of QoS routing algorithm and QoS routing protocol

and discuss works related to these concepts.

2.1.1 QoS routing algorithms

Before we give the definition of the QoS routing, we first point out that the QoS measures can
either be additive (e.g. delay and jitter), multiplicative (e.g. packet loss rate), or min/max (e.g.
available bandwidth and policy flags) [WANG95]. For additive measures, the path weight of
such measure is the sum of QoS measure over links along the path. The multiplicative measures
can be transformed into additive measures by using logarithm. The min/max measures can easily
be treated by topology filtering, which is done by omitting all the paths that do not satisfy the
QoS requirements. Without loss of generality, we assume all QoS measures to be additive.

In general, the network topology can be mathematically represented by a graph, denoted by
a function G(N, E), where routers are represented by nodes (N) and links are represented by the
edges (E) of graph. The problem of QoS routing in Wide Area Networks can be formally defined
as a Multi-Constrained Path (MCP) problem, as follows [KUIPO3]:

Definition 2.1: Multi-Constrained Path (MCP) problem. Consider a network G(N, E).
Each link (u, v) € E is specified by a link weight vector with components m additive QoS
weights wi(u, v) > 0, i = 1,...,m. Given m constants L;, i = 1,..., m, the problem is to find

a path P from a source node S to a destination node d such that
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wi(P) = Zwl. (u,v) <L, fori=1,...,m.

(u,v)eP

A path that satisfies the above condition is said to be feasible. Note that there may be multiple
feasible paths between s and d. A modified (and more difficult) version of the MCP problem is to
retrieve the shortest “length” path among the set of feasible paths. This problem is known as the
multi-constrained optimal path (MCOP) problem, and is attained by adding second condition on
the path P in Definition 2.1:

I(P)<1(Q)

for any feasible path O between source and destination, where /(*) is a path length (or cost)
function. A solution to the MCOP problem is also a solution to the MCP problem, but not
necessarily vice versa. Considerable works in the literature have focused on a special case of the
MCOP problem known as the restrict shortest path (RSP) problem, where the goal is to find the
least cost path among those that satisfy only one constraint denoted by d, which bounds the
permissible delay of a path. For further details, see [KUIP02].

The problem of QoS routing has been investigated extensively. The work described in
[JAFF84] is among the first to propose an algorithm for finding paths that satisfy multiple
constraints. The MCP problem and its variations are known to be NP-complete [GARE79] was
the first to list the MCP as being NP-complete but did not provide a proof. [WANG96] provided
the proof for the case where the number of constraints m > 2. This suggests that the MCP
problem is intractable for large-scale networks. Therefore, many heuristics and approximation
algorithms have been proposed for this problem. The routing algorithms referred in the
following context are essentially the approximation algorithms or heuristics.

[MA97] provided a comparison of four routing algorithms, which are widest-shortest path
proposed by [GUER97], shortest-widest path proposed by [WANG96], shortest-distance path
proposed by [MA96] and dynamic-alternative path. A comprehensive survey on QoS routing
algorithms was given by [CHEN98b]. But they focused on network models in virtual circuit

mode. A more recent overview on constraint-based path selection algorithms was given by
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[KUIP02]. This work discussed a collection of QoS routing algorithms for both MCP problems
and RSP/MCOP problems. [SOBR02] reviewed the algebra used in QoS path computation.
[KORKO03b] and [SIACO03] proposed general approximation algorithms for QoS routing.

The inaccuracy of the routing information has been raised into consideration since it may
lead to faulty path selection. In the context of QoS routing, traffic may be routed to the path with
inadequate available resources, even if the path that satisfies the traffic’s QoS requirements
exists. Due to the presence of uncertain network state information, inaccuracy of the routing
information is likely to be occurred. The impact of the inaccurate routing information on the QoS
routing were studied in [GUER99], [KORKO03a], and [CHEN98c]. The inaccuracy of the routing
information may be mitigated by frequent updates, which increase the routing overheads and
complexities. Therefore, the accuracy of the routing information is a tradeoff to scalability.

The scalable routing information retrieval may be accomplished by employing hierarchical
routing scheme. The well-known hierarchical routing architecture is the Private Network-
Network Interface, (PNNI) [ATMO02], used in ATM network. In context of conventional
datagram operation routing, the works by [LUIO0] and [LEEO3] have addressed the hierarchical
routing with QoS supports.

Nevertheless, most of the works were done in the context of a connection-oriented model,
which requires the network to maintain states information of each connection. Very small portion
of works in the literature assume connectionless model, for example, the work proposed by
[WANGO02], which discussed about a differentiated hop-by-hop routing algorithm based on the
DiffServ framework. In this work, the connectionless model must be assumed since we are
working within the Internet framework with a goal to be compatible with DiffServ QoS

framework for scalability.

2.1.2 QoS routing protocols

In contrast to the extensive study in QoS routing algorithms, the research on QoS routing
protocols has a comparably very small number of works. Some QoS routing protocols are
coupled with specific QoS routing algorithms (such as the proprietary resource discovery or
resource reservation protocols). However, none has addressed the mechanism of the protocol in

details. Most of the QoS routing protocols were proposed in a form of an extension to the
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existing routing protocol, such as OSPF [MOY94], e.g., [APOS99a], [APOS99b], and
[GUER97], and BGP [REKH95], e.g., [XIAOO02]. The extensions to the existing protocol have
many benefits. First, it guarantees the compatibility with the existing protocol. Second, the new
protocol can be quickly adapted in practice. Lastly, it is easier to design since it does not require
redesigning the entire protocol.

Designing a QoS routing protocol raises two major concerns which are difficult to achieve
simultaneously, accuracy and scalability. Issues related to the accuracy of the routing
information have been addressed in the previous section. The scalability is brought into
consideration since the network is dynamic and multiple metrics are collected from the network.
Measurements for some of these metrics may require further overhead. For example, metrics
such as delay or delay jitter may require periodic probing and appropriate averaging techniques
over time for a single measure, which introduces some packet and time overheads in network. At
this point, we must address again that scalability is a very important issue for a large-scale
network.

Our work is an attempt to deal with the tradeoff between scalability and accuracy. We
propose the QoS routing protocol in an alternative way. For scalability, we cluster the network of
n nodes into & clusters, where k£ << n, and probe for the QoS measures from the center of each
cluster. The QoS measures of the rest of the nodes in the network can then be estimated from the
knowledge of the QoS measures of these & center nodes. The number of QoS routing queries is
then reduced from a factor of » to only a factor of 4. The scalability of the scheme is then
determined by the ratio of £ and n. The accuracy of the QoS measures estimation can be achieved
by minimizing the diameter of clusters, which may be represented by delay. However, since the
two quantities are tradeoffs, we must find the clustering method that yields the optimal point
between accuracy and scalability.

Optimal clustering the Internet, which topology is unknown and dynamic, is a hard task.
However, recent researches have indicated that the topology of the Internet is not totally
randomized. Aside from its constantly changes in topology, some properties of the Internet hold
from time to time. These properties are known as power laws of the Internet, which we will

discuss in the next section.
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2.2 Power laws of the Internet

2.2.1 The power laws

Power laws have been first discovered by a Harvard linguistic professor, George K. Zipf, who
introduced the Zipf law [ZIPF32], which states that the frequency of use of the nth-most-
frequently-used word in any natural language is approximately inversely proportional to n.
Essentially, the law above can be written in a form of exponential equation, with a constant
exponent value, depending on the given natural language. This constant exponent captures the
static property of the given language, no matter how the language changes. This property is later
commonly observed in many kinds of dynamic natural phenomena, including the Internet
topology.

In 1999, [FALO99] introduced three power laws for the topology of the Internet. Power
laws are the expressions of the form y oc x“, where an exponential a is a constant, x and y are the
measures of interest, and o stands for “proportional to.” The observations showed that some of
those exponents do not change significantly over time. The importance of the discovery of the
existence of power laws is the fact that there is some exponent for each graph instance.
Specifically, the graph of the Internet topology has its own unique set of such exponents. Power
laws can be viewed as a set of quantitative statistical models that precisely capture the highly
skewed, heavy-tailed, distributions of the topological graph properties of the Internet. The

following is a summary of three power laws for AS-level Internet topology:

Power-law 1 (Rank Exponent): Given a graph, the degree d, of a node v is proportional

to the rank of the node r, to the power of a constant ¥

R
d, ocr,

Where rank of the node r, is obtained by sorting nodes in decreasing order of degree d,.
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Power-law 2 (Degree Exponent): Given a graph, the CCDF D, of a degree d is
proportional to the degree to the power of a constant D

D, cd”

Power-law 3 (Eigen Exponent): Given a graph, the eigenvalues A; are proportional to

the order i to the power of a constant &

Where the eigenvalues of a graph are the eigenvalues of its adjacency matrix and i is the order of
A; in the decreasing sequence of eigenvalues.

Power laws above were the revised studies by [SIGAOQ3], as for the AS-level Internet
topology. There are many interesting results from the studies of the power laws. We will discuss
some of them. The rank exponent for the Internet has been observed to be around -0.81, the
degree exponent is around -1.12 and the eigenvalue exponent is around -0.47. There are also
some observations on the relationships of these exponents. Theoretically, the relationship
between rank exponent and degree exponent is equal to % = I/D. The eigenvalue exponent is
approximately half of the degree exponent, i.e. D = 2¢.

Furthermore, [FALO99] have developed useful formulas for estimating the effective
diameter, the average neighborhood size, and the number of edges of the Internet. The effective
diameter, intuitively, is the number of hops that two nodes are located within, with high
probability. The average neighborhood size is the average number of nodes within some given
hopcounts. The estimated number of edges is calculated from number of nodes in the network
and rank exponent, %.

The second power law indicates that the nodes with lower degree outnumber the nodes with
higher degree. This implies that the lower degree nodes, especially the 1-degree nodes, are
attached to the higher degree nodes with many-to-one relationship. The connectivity of the
Internet topology is then not totally randomized, but exhibits some form of cluster. This
assumption has been supported by the work of [BU02], which observed that the Internet

topology also exhibits the small-world phenomena. The small-world phenomena, also known as
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six degrees of separation, has been shown to exhibit in many self-organizing networking
systems, including the power grid of the western United States, the collaboration graph of film
actors, and the Internet topology. Essentially, the connection topology of a small-world network
is neither completely regular nor completely random, but it lies somewhere between these two
extremes. The work by [WATT98] addresses two important structural properties that capture the
characteristic of these small-world graphs, which are characteristic path length and clustering
coefficient.

[TAURO1] studied the power laws and topological connectivity, and developed a simple
graphical conceptual model for the better understanding on the Internet topology, called jellyfish
model. This conceptual model exhibits the loose hierarchy of the Internet.

2.2.2 The power-law based topology generators

The discovery of the power laws of the Internet brought a revision of the graph generation
models in the networking community. Realizing that the Internet topology has some specific
properties addressed by power laws, [FALO99] suggested that the power laws can be used, as
one of the criteria, for validating the generated Internet graphs.

There are two kinds of graph generation tools: Structural and degree-based generators. The
structural generators are based on the idea that the Internet is hierarchical. The example of these
generators is the famous GT-ITM (Georgia Tech Internetwork Topology Models) [CALV9I7],
[ZEGU96], which is now integrated in the NS-2 package [NS2]. This type of generators has been
disproved by the time of the discovery of the power laws because the degree distribution
produced by the structural generators is not power-law. The degree-based generator is more
promising to deliver the power-law graph. The degree-based generators, such as [BARA99],
[MEDIOO0], [MEDIO1], [WINIO3], [BU02] and [MAGOO02], among others, try to match the
Internet’s degree distribution, without any concern on the Internet’s hierarchical structure.
Nowadays, it’s widely accepted that the degree-based generators are significantly superior to
structural generators for the large-scale network, say larger than 1,000 nodes. The hierarchy
presented in the measured networks is looser and less strict than those generated from the

structural generators, and this is well captured by the hierarchical structure in degree-based
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generators. This may explain why these generators better match the measured topologies. The
detailed discussion on the two types of network topology generators can be found in [TANGO02].

[BUO2] are among the first who adopted the use of the characteristic path length and
clustering coefficient of small-world phenomena [WATT98] into the Internet topology generator.
They observed that the previous algorithms have difficulty in generating topologies that have
these values matched to the real Internet topology. The work concluded by proposing an
improved algorithm that does a better job matching the two quantities than previous generators.

As we have discussed so far, the validation of the Internet graph takes into account only the
topological connectivity issue. Today’s Internet topology generators pay no attention to the
weights on the graph, which may be used to represent either delay or bandwidth of links on the
Internet. This is because the weight information on the Internet is dynamic and is difficult to
obtain. However, our work requires the weight to be presented on the generated graphs. In the
following section, we will address this difficulty and propose the sensitivity analysis as our study
method.

2.2.3 Difficulties in using the power-law graphs

The study of power laws yields the statistical models that can be used to decide the conformance
of the generated graph to the real Internet topology. Power laws can be viewed as the properties,
among others, of a class of graphs. However, power laws focus only on the number of nodes and
the connectivity properties of the graph, without any consideration on the weights of the edges of
the graph. Consequently, most of the graphs generated by the power-law based network topology
generators can provide neither the information about delay nor bandwidth on the links. The delay
and bandwidth distributions of the real Internet are needed to be investigated further, in order to
emulate the Internet graph more completely. This is a hard issue since even the captured routing
information, i.e. from BGP, usually does not provide this information.

The measured Internet topology is provided by [CAIDA]. Recent measurement reveals that
the Internet consists of approximately 200,000 Autonomous Systems (ASs) and power laws still
hold. However, only the connectivity information is captured, no information on the weights
(delay, bandwidth, etc.) on the links is supplied. Furthermore, the exceedingly large real Internet

topology is impractical to use in the early stage of our study. The techniques for summarizing the
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input data must be further developed before we can apply our selective probing scheme.
Therefore, the smaller synthesized power-law Internet topology is preferred.

In our work, we use INET 3.0, an AS-level internet topology generator that obeys both
power laws and small-world phenomena. The conceptual idea and analysis on the validation of
the INET 3.0 are described in [WINIO3]. Like other internet topology generator, INET 3.0 only
provides the connectivity information; the generated topologies do not have any information
pertaining to the weights of the edges of graph. Besides, as for today, we do not have a measured
Internet topology map with links labeled by bandwidth or delay. That is, we do not know the
exact delay distribution of the Internet. Rather, we do the sensitivity analysis on the delay
distribution. For each graph generated from INET 3.0, we associate it with one of the four well-
known distributions, which are uniformed, normal, exponential and power-law (or heavy-tailed)

delay distributions.

2.3 Discrete location models

As described earlier, the efficiency of the selective probing scheme depends on how the network
is clustered. Given a graph G(n, ¢), we need to partition it into k£ clusters, where £ < n. Each
cluster is a delay-based class of equivalence. That is, let i be the center of cluster C, node j is a
member of cluster C if and only if d(i, j) < d., where d(*) is a delay function denotes the delay
between node i to node j, sometimes written as dj;, and d. is the maximum allowable delay
bound. In our selective probing scheme, node i that represents the center of a cluster is called
anchor (and is referred as facility in discrete location models). d. is a coverage distance of a
cluster. For delay-based clustering, d. is a pre-defined maximum delay bound of a cluster and is
referred to as a radius of a cluster, provided that anchor is a center of a cluster. (We avoid using
the term cluster size since it may lead to the meaning of number of nodes in cluster.)

By partitioning the network into clusters, the distance of any two nodes in the network can
be estimated by the distance between their respective anchors, assuming the distances within
clusters are negligible. Basically, the radius d. of each cluster should be as small as possible to
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minimize the error from the estimation. On the other hand, the small number of clusters % is also
desired for scalability since it reflects the number of routing entries that need to be maintained at
each node.

However, the radius d. has an inverse relationship to the number of clusters . That is, if the
radius d. of clusters is reduced, more number of clusters £ must be located, and vice versa.
Therefore, we need to balance the clusters’ radiuses and number of clusters, in order to minimize
the estimation error, while maintaining scalability. Since the two criteria cannot be minimized
simultaneously, we need the optimal solution of one criterion given that another criterion is a
constraint. The term ‘optimal’ is defined in a mathematical sense so that the quantifiable

objectives must be defined and algorithms for solving them must be identified.

Figure 2-1: The clustered networks with (a) k = 6, (b) k = 12.

Finding the suitable mathematical models is then one of the key questions to our research.
Before proceeding to the mathematical models, we would like to briefly describe the
characteristics of the problem of clustering involving in the selective probing scheme, as follows.
(1) The clustering should be done so that the nodes within the same cluster share the same delay-
based class of equivalence. (2) Distance between a pair of anchors determines the estimated
delay of any pair of nodes located in the respective clusters. (3) The average radius of the
clusters and the number of clusters have an inverse relationship. (4) Given a mathematical model
for the clustering problem, the solving algorithms must take either number of cluster £ or radius
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d. as an input, and return the other as an output. In addition, the algorithms must determine the
optimal location of the clusters. Figure 2-1 illustrates the basic idea of clustering a graph using
two different value of £. In Figure 2-1(a), k is 6 and Figure 2-1(b), k is 12. We can see that the
average radius of Figure 2-1(«) is larger than Figure 2-1(b).

2.3.1 Four discrete location models

The discrete location theory has long been a key subject of study in Operation Research.
Location theory involves with the location decisions using mathematically formulated location
models. The common scenario is to locate the facilities, i.e. bank branches, retail stores, fire
stations, or ambulances, onto the network of roads, which is represented by graph. In this section,
we introduce four discrete location models for finding desirable or optimal facility locations.
Each model differently defines quantifiable objective function that reflects the term ‘optimal’ in
various means. Generally, the location models have been developed to address a number of
questions including [DASK?95]:

How many facilities should be sited?

o &

Where should each facility be located?

o

How large should each facility be?

o

How should demand for the facilities’ services be allocated to the facilities?

The fourth question comes into concern when we consider the capacitated version of the models,
where each facility has explicit capacity limit. However, we will be interested in only the
uncapacitated version, hence; this question can be ignored.

All the discrete location models that we will discuss later can be formulated as integer linear
programming problems. As such, one naive way to solve these problems is to relax the integer
requirement on the decision variables, solve the resulting integer linear programming problem
and then employ a branch-and-bound strategy to force integrality of the variables that must be
integer. Unfortunately, each problem has been proved NP-hard. That is, the problems cannot be

solved deterministically within polynomial time of the input length, unless P = NP. Solving the
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integer linear programming problems directly is infeasible. The more efficient approach is using
the approximation algorithms or heuristics.

In following, we review the four discrete location models: set covering, k-center, k-median,
and facility location models. For each problem model, the problem is formulated in the standard
form of integer linear programming. Then we review the approximation algorithms proposed in

the literature. The detail of an approximation algorithms are given at the end of each section.

2.3.1.1  The Set Covering Problem
The set covering is perhaps the simplest model known and used in discrete location models. The

objective of the set covering problem is to find a minimum cost set of facilities from among a
finite set of candidate facilities so that every demand node is covered by at least one facility. This

can be mathematically formulated in the typical integer linear programming problem as follows:

MINIMIZE D x,

ieF

SUBJECTTO: vj: Sax >1
ieF

Vi: x, {01}

Vi,j: a,; e{01}

x; 1S a decision variable and has value (set to 1) if and only if a facility i in F, where F is a set of
facilities, is located (or selected). The objective function minimizes the total cost of the facilities
that are selected. This is a special case, where all of the facility costs are identical, sometimes
called unweighted or unicost set covering problem. Hence, the problem is reduced to minimizing
the number of selected facilities. Also note that, this is an uncapacitated version since all
facilities are assumed having unlimited capacity.

a; 1s a connectivity matrix and has value (set to 1) if and only if facility i covers node ;.
Distance between nodes i and j denotes by d;;. Given a coverage distance d., facility i is said to
cover node j (a; = 1) if and only if d; < d., otherwise a;; = 0. The distance d;; can be calculated
from the input graph using one of the distance metric functions, e.g. shortest path or Euclidean
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distance metrics. The coverage distance d. is exogenously defined. Therefore, the first constraint
ensures each node j must be covered by at least one facility. The second and third constraints
indicate that x; and a;; are Boolean.

Solving the integer linear programming directly is infeasible because the set covering
problem on a general graph is NP-complete [GARE79]. [DASK95] outlined three techniques for
reducing the size of the problem, i.e. reducing the size of connectivity matrix a;, which are
column reduction rule, row reduction rule, and second row reduction rule. However, these rules
cannot guarantee the amount of reduction. In some cases, the problem size cannot be reduced.
After applied the rules, the problem is then solved by relaxing the integrality constraints to the
nonnegativity constraints. To ensure the all-integer solution, an additional technique will
generally be required. The common approach is to use branch-and-bound. Further details in
techniques for solving integer linear programming are briefly described in [DASK95].

The more efficient approaches are the approximation algorithms that run in polynomial time
and deliver solutions that are close to optimal. The efficiency is a tradeoff between running time
and approximation factor. The approximation factor gives a lower bound of an approximated
ratio of the algorithm’s solution over the optimal solution. A small constant approximation factor
is desirable; the approximation factor of 1 implies that the algorithm always returns the optimal
solution.

Despite the extensive studies on the set covering problem, the best approximation algorithm
known is greedy-based, which yields an approximation factor of /n n. [JOHN74] was among the
first who gave the greedy algorithms for the set covering problem, which yield an approximation
factor of /n n. [GROS97] conducted a comparative study of nine different approximation
algorithms for the set covering problem, including several greedy variants, fractional relaxations,
randomized algorithms and a neural network-based algorithm. The study was done on a set of
random-generated problem sets, where the optimal solutions were known [ORLIB]. The greedy-
based algorithms (both randomized and deterministic variants) yielded the best results. A
constant approximation factor algorithm has not yet been found in the literature. [LUND94]
showed hardness of approximation within a ratio of (log, n) /2~ 0.72 In n. [FEIG98] proved that
the best achievable approximation factor is (1 — o(1)) In n. [ALONO3] recently studied the online

set covering problem, where the input elements are given one-by-one.
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The greedy algorithm for set covering problem outlined by [JOHN74], requiring running

time proportional to »° and approximation factor of Iz n, where # is an input length, is as follows:

1. SUB:=@; LEFT = F; UNCOV = | JS,
SeF

2. while UNCOV # @ do
Choose S e LEFT, which minimizes the ratio |S-UNCOV'| /|S n UNCOV;
SUB :=SUB U {S};
UNCOV := UNCOV - S ;
LEFT:= LEFT—{S};

end while
3. return SUB.

The algorithm is presented using the set notations. F is set of clusters, which can be overlapped.
S e Fis a cluster consisting of nodes. At each iteration, the algorithm adds a cluster S that least

overlaps the existing solution and returns when every node is covered.

2.3.1.2  The k-center Problem
In the set covering model, a proper coverage distance d. must be exogenously pre-specified

before hand. Solving the set covering problem gives us the locations and the number of clusters
that are required to cover all the nodes in the network. Alternatively, in this section, we introduce
a model that minimizes the coverage distance d. such that each node is covered within the
endogenously determined distance by one of the facilities. The model is called k-center problem,
where £ is the maximum allowable number of facilities that can be located. The model is known
as a minimax problem, since it minimizes the maximum distance between a node and the nearest
facility.

k-center problem is further divided into two sub problems: (1) the problem in which the
facility can be located anywhere on the network (i.e., on the nodes and on the links of the
network) and (2) the problem in which facilities can be located only on the nodes of the network.
The former is known as the absolute center problem and the latter is known as vertex center
problem. Note that, only the absolute center problem can guarantee to give optimal solution. To
see this, consider the network in Figure 2-2. For the absolute 1-center problem, locating single
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facility in the middle of the link is optimal and the maximum distance from either node to the
facility is only //2. On the other hand, in the case of vertex 1-center problem, the facility must be
located on either node and the maximum distance from the other node to the facility is /.
However, since we are dealing with the data network, we will be interested in only the vertex &-

center problem.

H——0

Figure 2-2: Example network for absolute and vertex 1-center problems.

The integer linear programming version of vertex k-center problem is formulated as follows:

MINIMIZE d.
SUBJECT TO: VjeC: d,>%.d,x,

ieF
VieF,jeC: y,—x,20
Zyigk
ieF
VieF: v, {01}
VieF,jeC: x, {01}

The objective function is the minimax problem; it minimizes d., the maximum distance between
a node and the nearest facility. £ is a set of facilities and C is a set of all nodes in network. d;
denotes the distance between facility i and node ;. y; and x;; are the decision variables. y; equals to
1 if and only if a facility 7 is located (or selected). x; equals to 1 if and only if node j is served by
the facility i. The first constraint ensures that d. must be greater than or equal to the distance
between any node ; and the facility i to which it is assigned. The second constraint states that
node ;j cannot be assigned to a facility i unless a facility i is located. The third constraint

stipulates that at most & facilities can be located.
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k-center problem can be viewed as a dual to the set covering problem. It takes the number of
clusters as an input and tries to minimize the maximum coverage distance of the clusters, while
the set covering problem takes the maximum coverage distance as an input and tries to minimize
the number of clusters.

Vertex k-center problems on a tree can be solved deterministically within polynomial time.
However, the vertex k-center problem on a general graph is NP-complete [GARE79]. For the
approximation algorithm, [DASK95] suggests the binary search technique for solving the -
center problem. The procedure works as follows. Select initial lower and upper bounds on the
value of the vertex k-center objective function. Solve the set covering problem using the average
of the lower and upper bounds on the objective function as the coverage distance (rounding the
average down to the largest integer less than or equal to the average). If the number of facilities
needed to cover all nodes at the distance (the objective of the set covering model) is less than or
equal to %, reset the upper bound on the value of k-center objective function to the coverage
distance that was just used; if the number of facilities needed is greater than &, reset the lower
bound to the coverage distance that was just used plus 1. If the lower and upper bound are equal,
stop; if not, solve the set covering with a coverage distance equal to the average of the lower and
upper bounds (rounded as before) and continue the process. Basically, the algorithm guesses the
value of the k-center objective function by solving multiple set covering problems. Further
details and discussions on the topic of k-center problem can be found in [DASK95].

2.3.1.3  The k-median Problem
The two discrete location models discussed so far, the covering and center problems, assume that

a node receives complete benefits from a facility if it is within the coverage distance and no
benefits if the distance between the node and the nearest facility exceeds the coverage distance.
In many cases, however, the cost associated with a node / facility pair increases gradually with
the distance between the node and the nearest facility. For example, in our delay-based selective
probing scheme, the distance represents delay and the accuracy of the delay estimation depends
on the delay between the node and its anchor. The cost function associated with the delay
between node / anchor pair is called a connection cost. The connection cost increases as delay

increases. Generally, cost function is a linear function of delay. For the problems that are
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sensitive to the Quality of Service, the cost functions should be included into the consideration
when the location decision is made.
In this section, we introduce k-median problems. The k-median problem locates & facilities

onto the network so that the total connection cost is minimized. This problem may be formulated

as follows:
MINIMIZE D eyx,
ieF,jeC. '
SUBJECT TO: VjeC: D ox, 21

ieF

VieF,jeC: y,—x,20
zyigk
ieF

VieF,jeC: X {01}

VieF: v, €{01}

F'is a set of facilities and C is a set of all nodes in network. c;; denotes the linear cost function of
connecting node ; to the (opened) facility i, called connection cost. y; and x;; are the decision
variables. y; equals to 1 if and only if a facility 7 is located (or selected). x;; equals to 1 if and only
if node ; is served by the facility i. We will consider the metric version of this problem, that is,
the assignment costs are non-negative, symmetric, and satisfy the triangle inequality: that is, ¢; =
cjiand ¢ + cjx 2 cir.

The problem is to locate the facilities such that the total connection cost is minimized. The
first constraint ensures that each node is connected to at least one facility (if exactly one facility
is allowed to be connected to, the inequality must be replaced by the equal mark), and the second
ensures that this facility must be open. The third constraint keeps the number of facilities lower
than or equal to .

k-median and k-center are similar in that both problems take the number of clusters & as an
input. Furthermore, the second and the third constraints of the two problems are identical.
Nevertheless, it is important to emphasize a major different between k-center and k-median

objective function. k-center problem minimizes the maximum cluster size while k-median
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minimizes total connection cost, that is, the total distances within clusters. At this point, we
might say that &-median is a stronger optimization model since it concerns all the distances that
connect each node to the nearest facility, while k-center problem concerns only on the maximum
cluster size. The average distance between a node and the nearest facility of k-median model is
lower than or equal to that of £-center model.

The k-median formulation given above assumes that facilities are located on nodes, which
can be compared to a vertex k-center problem. This can lead to suboptimal solutions, as we have
discussed earlier. However, [HAKI65] has shown that for the k-median problem, at least one
optimal solution consists of locating & facilities on the network’s nodes. A brief proof can be
found in [DASK95].

Solving k-median on a tree can be done deterministically in polynomial time. [GOLD71]
gave an O(n), a linear time, algorithm for solving /-median problem on a tree. [KARI79]
provided an O@’k’) algorithm for finding k& medians on a tree with » nodes. The problem
becomes NP-complete on a general graph [GARE79]. Numerous approximation algorithms have

been proposed for many years. The breakthrough was made by [CHAR99a] who gave a 6% -

approximation algorithm, the first constant factor approximation algorithm for the A-median
problem. The algorithm, however, has a prohibitive running time since it is based on LP-
rounding, which means it needs to solve large integer linear programs. [JAIN99] improved to
factor of 6, using the Primal-Dual technique. In the very same year, [CHAR99b] gave a 4-
approximation algorithm, based on the idea of [JAIN99], combining with greedy augmentation,
cost scaling, and LP-based algorithm. The algorithm runs in O(n’) time. Recently, [ARYAO01]
proposed a local search heuristic with multiple swaps that yields the factor of 3+2/p, and running
time O(n”), where p is the number of facilities that are allowed to be swapped in each round. The

local search algorithm in [ARYAOQ1] is outlined as follows:

1. S:=an arbitrary feasible solution.
2. While there exists an operation swap(S) such that,

cost(swap(S)) < (I - ¢ )cost(S), do
p(k,n)

S & swap(S);
end while
3. Return S.
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Here € > 0 is a constant, £ = |F] is the number of facilities, » = |C]| is the number of nodes and p(%,
n) is a polynomial in £ and n. The cost function cost(S) returns the value of the objective function
of k-median problem. A swap(S) is affected by closing a facility s € S and opening a facility s’ ¢

S. Mathematically, the operation swap(S) is defined as,
swap(S) =S—-s+s’ forseSands’ ¢ S.

An operation swap(S) is called admissible for S if cost(swap(S)) < (I - &/ p(k, n))cost(S). During
each admissible swap(S), the cost of the current solution decreases by a factor of at least &/ p(k,
n). At any execution of the step 2 of the algorithm, there will be a most a polynomial number of
swap(S) to be checked for admissibility, i.e., there are k x (n - k) = nk — k’ operations to be

checked. If S” denotes an optimum solution and S, denotes the initial solution, then the number

of swap that the algorithm does is at most log(cost(So)/cost(S"))/log . The proof can

1t
1-¢/ p(k,n)
be found in [ARYAO1]. As log(cost(Sy)) is polynomial in the input size and performing each
swap takes a polynomial time, this algorithm terminates in polynomial time.

An arbitrary feasible solution, Sy, in step 1 of the algorithm can be randomized. However, a
small cost(Sg) is desirable since it will reduce the number of swap operations and, thus, reduce
running time of the algorithm.

[DASK95] outlined two classes of approximation algorithms for general discrete location
problems: construction algorithms and improvement algorithms. For example, finding an
arbitrary feasible solution, Sy, in step 1 of the algorithm above can be done by using one of the
construction algorithms in which the solution is built from scratch. Step 2 is considered an
improvement algorithm in which the solution is based on the improvement of the previous
solution. [DASK95] provided a construction algorithm, called myopic algorithm, which can be
described as follows:
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1. @
2. ile |S| < kdo
find the location 7 that minimizes
Z’_zg}'ﬂc Vle Fandl ¢ S;
S=Sul
end while
3. Return S

The solution, S, is a set of located (or selected) facilities. The algorithm above terminates when
the number of located facilities reaches . ¢; is a cost (or distance) of connecting node ; to the
facility i. The min function ensures that the smallest c;; is selected. That is, node j connects to the
nearest facility i € S U 1. The algorithm tries every facility / ¢ S and adds facility 7, which yields
the smallest Z;, to the solution S.

Despite the fact that the solution may not be optimal, this algorithm is appealing for its
simplicity. Besides, this method of construction the solution gives us the knowledge of the
solution to the /-median through (k-1)-median. Hence, we can stop at any number £, if the
solution satisfied our criteria, e.g. the target coverage distance is reached. This is a significant
feature as we will see later. It is easy to see that the myopic approach presented above is a greedy
adding algorithm. The location that yields the smallest objective value is added to the set of
solution at each round. Also, the located facility cannot be removed or exchanged later with
other facility. The algorithm runs in O¢kn’) time, a polynomial time. However, there is no
approximation factor guaranteed.

2.3.1.4  The Uncapacitated Facility Location Problem
The three discrete location models discussed earlier require either the number of facilities to be

located or the maximum allowable coverage distance as an input. For example, A&-median and -
center problems take the number of facilities, 4, as an input, while set covering problem takes
coverage distance, d., as an input. To illustrate the necessity of these inputs, consider Figure 2-3.
The figure shows, in the case of 88-node k-median problem [DASK95], the average distance as a
function of the number of facilities that are located. The figure suggests that we should locate as
many facilities as possible, in order to reduce the average distance between a demand node and
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the nearest facility. Therefore, the number of facilities must be limited at some point; otherwise

all the facilities will be located.
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Figure 2-3: Average distance versus number of facilities for the 88-node k-median problem.

In this section, we introduce the uncapacitated facility location problem (UFLP), which neither
parameter k nor d, is required as an input. Other than the connection cost (a.k.a. service cost), the
model incorporates the cost of locating facilities into the objective function. The cost of locating
facilities is sometimes called facility opening cost. The uncapacitated facility location problem
minimizes the total cost — the sum of the connection cost and the facility opening cost. The
connection cost and the facility opening cost must be in the same unit; usually, the monetary unit
is used. For example, if we were to locate bank branches, the facility opening cost is the cost of
building each bank branch, and the connection cost is the cost per mile that each customer has to
pay for traveling to the nearest bank branch. In this problem we wish to locate bank branches so
that all customers are covered within the smallest transportation cost, yet minimum budget is
spent for building bank branches.

The uncapacitated facility location problem determines both the number of facilities to be
located and the maximum coverage distance endogenously. This can be described by Figure 2-4.
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Figure 2-4 replicates Figure 2-3 but adds a constant fixed cost for each facility that is located. In
addition, the vertical axis is changed to cost assuming that the cost is in the same scale as
average distance, i.e. multiply by 1. The sum of facility opening cost and connection cost yields
total cost. As the number of located facilities increases, the total cost initially declines because of
the reduction in connection cost. At some point, the facility opening cost dominates the
connection cost and causes total cost increases as we add more facilities. For the problem in
Figure 2-4, the optimal number of facilities is 10 and optimal cost is around 200.
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Figure 2-4: Cost versus number of facilities for the 88-node UFLP.

The uncapacitated facility location problem can be mathematically defined as follows. Let F be a
set of facilities, and C be a set of cities (i.e., nodes in the networks). For every facility i € F, a
nonnegative number f; is given as an opening cost. Furthermore, for every facility i € F and city ;
e C, we have a connection cost c¢; between facility 7 and city j. The objective is to open a subset
of the facilities in F, and connect each city to an open facility so that the total cost is minimized.
We, again, consider the metric version of this problem. The term uncapacitated means each
facility has unlimited capacity for serving the cities. Note that the 4-median problem can be
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viewed as a special case of uncapacitated facility location problem, where all facility opening
costs are set to zero and maximum of k facilities are allowed to be opened.
The metric uncapacitated facility location problem can be modeled as an integer linear

program as follows [JAIN99]:

MINIMIZE Deyx, 1y,
ieF,jeC ieF
SUBJECT TO: VjeC: Dox,; =1

ieF
VieF,jeC: y,—x,20
VieF,jeC: x, {01}

VieF: v, €{01}

In this program, y; is a decision variable denoting whether facility i is open, and x; is a decision
variable denoting whether city j is connected to the facility i. The first constraint ensures that
each city is connected to at least one facility, and the second constraint ensures that this facility
must be open. The program can be relaxed to the canonical form by replacing the third and
fourth constraints by the nonnegativity constraints. Also note that, sometimes, the first constraint
can be expressed in the form of equality to ensure that each city connects to only one facility
(e.g. see [MIRC90]).

The facility location problem and its variations have been proved NP-complete [GARE79].
Particularly, the uncapacitated facility location is NP-hard. The proof can be found in [MIRC90].
Number of approximation algorithms has been proposed in the literature.

[KUEH63] was one of the earliest to introduce the fundamental heuristics for solving
general discrete location problems. Their approach consists of two routines. The first routine is
used to establish an initial solution by opening facilities sequentially in an order that maximizes
the decrease of the objective function value at each step. It stops when opening a new facility
would increase the value. This routine is known as the greedy improvement heuristic because of
its appetite for maximum improvement at each step. This is equivalent to the construction
algorithms discussed earlier. Their second routine is referred as an interchange heuristic. It

considers interchanging an open facility with a closed facility. Such a pairwise interchange is
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performed if it improves the current feasible solution and the procedure stops when a solution
cannot be further improved by such interchanges. This is similar to the local search technique
with swaps proposed by [ARYAOQ1] for solving k-median problems. The interchange heuristics
are considered the improvement algorithms discussed earlier. The greedy improvement and
interchange heuristics are the basis of numerous approximation algorithms.

The first approximation algorithm for the facility location problem, a greedy algorithm
achieving a guarantee factor of O(log n) proposed by [HOCH82], dates back to 1982, more than
20 years ago. Recent works have shown dramatic improvements. The first constant factor
approximation algorithm for this problem was given by [SHMO97]. [JAIN99] gave a primal-
dual algorithm, achieving approximation factor of 3 and running time of O(m log m), where m is
the number of edges presented in the underlying graph. (We will refer to this as the JV
algorithm.) The importance of the JV algorithm is that it is fundamental to the many succeeding
algorithms. It was also adapted for solving several related problems such as the fault-tolerant and
outlier versions (see [JAINOO] and [CHARO01]). [JAINO2] and [JAINO3] improved the JV
algorithm and yielded the approximation factor of 1.61, running time of O¢»’). [THORO03] gave a
quick randomized algorithm that yielded, with high probability, approximation factor of 1.62 in
O(n + m) time. Here O means that we suppress logarithmic factors. These two results are very
close to the best possible approximation factor in that [GUHA98] have shown that we cannot get
an approximation factor below 1.463 in polynomial time unless NP < DTIME[n®" "¢ "],
[MAHDO2] combined the idea of [JAINO3] with the cost scaling technique, achieving
approximation factor of 1.52, which is the best approximation factor known for this problem.

The algorithm in [JAINO3] is vital to understand since it is the fundamental to the recently
best known algorithms in both term of running time [THORO03] and accuracy [MAHDO02]. The
algorithm can be described as follows. The network consists of facilities i € F and citiesj € C.
U is a set of unconnected cities. The algorithm introduces a notation of time, so that each event
can be associated with the time at which it happened. The algorithm starts at time 0. At this time,
each city is defined to be unconnected (U := C), all facilities are unopened, and contribution ¢; is
set to O for every ;.

At every moment, each city j offers some money from its contribution to each unopened
facility i. The amount of this offer is computed as follows: If ; is unconnected, the offer is equal

to max(e; — ¢, 0) (i.e., if the contribution of j is more than the cost that it has to pay to get
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connected to i, it offers to pay this extra amount to i); If j is already connected to some other
facility i’, then its offer to facility i is equal to max(c;; — c;;, 0) (i.e., the amount that j offers to
pay to i is equal to the amount j would save by switching its facility from i’ to 7).

While U # @, increase the time, and simultaneously, for every city ; € U, increase the
parameter ¢; at the same rate, until one of the following events occurs (if two events occur at the

same time, we process them in an arbitrary order).

(a) For some unopened facility i, the total offer that it receives from cities is equal to the cost
of opening i. In this case, we open facility i, and for every city ; (connected or
unconnected) which has a nonzero offer to i, we connect ;j to i. The amount that ; had
offered to i is now called the contribution of j toward 7, and j is no longer allowed to
decrease this contribution.

(b) For some unconnected city j, and some open facility i, &; = ¢;. In this case, connect city j

to facility i and remove j from U.

Note that the above algorithm makes greedy choices in deciding which facilities to open and

once it opens a facility, it does not alter this decision. In this sense, it is also a greedy algorithm.

2.3.2 Discussion on the discrete location mode

Recently, the discrete location problems have been extensively studied from the perspective of
approximation algorithms. As we have seen, the approximation factor of k-median problem has

been developed from the first constant factor of 64 to 3 + 2/p within a few years. Likewise, in

facility location problem, the best known approximation factor is 1.52, improved from the first
constant factor of 3, recently. However, from the practitioners’ point of view, these
approximation factors allow too high error. For example, approximation factor of 1.52 means the
error can be as high as 52% from the optimal, in the worst case.

Fortunately, in practice, the algorithms work much better than the guaranteed approximation
ratios. [GROS97] studied several algorithms and showed that a simple greedy algorithm gives
satisfied results for solving the set covering problems. For UFLP, [JAINO2] and [JAINO3]
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implemented their works on several randomly generated test cases and found that the solution
given by their algorithms was at most a factor of 1.05 away from the lower bound obtained by
solving the integer linear programming relaxation (which is assumed to be an optimum) of the
problem. For the case of k-median problem, we tested a simple greedy algorithm against 40
problems from [ORLIB], where the optimal solutions are known. The worst case error is less
than 5% from optimum. The detailed analysis on the performance of the algorithms in practice
and the experimental results are given in the next chapter.
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Figure 2-5: Summary of the four discrete location models.

The characteristics of the four discrete location models are summarized in Figure 2-5. The
objective of the discrete location models is to optimally cluster the network. Hence, the outputs
of every model are the clusters and their locations. The set covering problem takes the coverage
distance, d., as an input and tries to minimize the number of clusters, k. Conversely, the k-center
problem takes & as an input and tries to minimize d.. Set covering model guarantees that the
maximum diameter of the clusters is not larger than the coverage distance d.. Similarly, k-center
model guarantees that the total number of clusters is not more than . It’s easy to see that the two

problems are dual to each other. The duality is in the sense that, given a graph and a constant ..,
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we obtain & from solving set covering problem. This %, applying to £-center problem, yields the
exact d.. And, the both solutions give the same clustering results. Since the two models are
equivalent and selecting between models is analogous to selecting types of inputs. At this point,
we suggest using the set covering model for our selective probing scheme since the coverage
distance d. makes more sense to the network administrator than the number of cluster £.

k-median, on the other hand, cannot guarantee the maximum cluster size. The solution to the
k-median problem tends to have more varied cluster sizes, compared to the solution of set
covering or k-center problem. This is because the objective function of k-median focuses on
minimizing the distances within clusters, regardless of the cluster size. The benefit of this
approach, however, is that the average distance from a node to the nearest facility (anchor) is
minimized, which is desirable.

UFLP seems to be the most appealing model since no input parameter is needed. UFLP,
however, requires the facility opening cost to be specified in the same scale of the connection
cost. Usually, in general facility location problems such as locating bank branches, the monetary
unit are used, e.g. using the cost of building bank branch as a facility opening cost, and
customer’s transportation cost as a connection cost. In our selective probing scheme, however,
the connection cost is presented by delay. Therefore, it’s difficult to specify the corresponding
facility opening costs. To illustrate the problem, consider again Figure 2-4. If a constant facility
opening cost is used for every facility, the higher cost determines a steeper slope. Thus, changing
facility opening cost affects the total cost. Therefore, the optimal solution of UFLP depends on a
constant assigned as the facility opening cost.

Despite of the fact that the practical use of UFLP is prohibited for our selective probing
scheme, it can be adapted to solve k-median problem. Clearly, if the facility opening cost = 0, the
algorithm will open all facilities, and if the facility opening cost is very high, it will open only
one facility. We then perform a binary search on the opening costs for the instance of UFLP that
yields minimum objective value and opens the number of facilities less than or equal to 4. The
technique is similar to the one presented in [JAIN99]. We have tried [JAINO3] algorithm (for
UFLP) solving the same problem set as for k-median [ORLIB], using the above technique.
Unfortunately, the solutions can be deviated as high as 40% from the optimum, in the worst case.
Details on the experimental results will be elaborated in the next chapter. We conclude that
UFLP is not suitable for our selective probing scheme.
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2.4 Relevant works

The discrete location models are the central of studies in operational research. [MIRC90] and
[DASK95] provided good surveys on the applications to the discrete location models. Recently,
they are used in network design problems such as placement of routers and caches [LI199],
[GUHAOO0] and web server replications in a content distribution network (CDN) [JAMIOO],
[QIUO1]. Discrete location models are also presented in a network distance monitoring and
estimation systems such as the work proposed by [CHENO2].

[QIUO01] described how to locate web server replicas in the content distribution networks by
solving the k-median problem. This work is very similar to ours in the sense that it used the
discrete location models to find the near optimal solution (using variation of greedy
approximation algorithms) of locating web server replicas. Essentially, the work focuses on
comparing the performance of a set of algorithms. The performance of an algorithm determines
by the ratio of the cost of the solution found by the algorithm to the cost determined by the
optimal solution. The algorithms used in this work are tree-based, greedy, random, hot spot
algorithm. The tree-based algorithm, as the name suggests, works well only on a tree and not a
general graph. The greedy algorithm is similar to ours. The random algorithm randomly chooses
k web server replicas. The hot spot algorithm attempts to place & web server replicas near the
clients generating the greatest load. Beside the fact that these algorithms have no approximation
factor guaranteed, they are poorly invented and this make the comparison uninteresting.

[CHENO2] proposed the overlay network distance monitoring and estimation system called
the Internet Iso-bar. This work divides an overlay network into clusters and estimates the
distance (delay) between any pair of nodes by inferring using both distance between clusters and
distance within clusters. The Internet Iso-bar uses set covering model and the greedy

approximation algorithm suggested by [GROS97], which is similar to ours.
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25 Conclusion

In this chapter, we have discussed the overview of the QoS routing algorithm and protocol. The
QoS routing is essential for supporting multimedia applications; however, it turns out to be an
intractable problem. Therefore, many heuristics and approximation algorithms have been
proposed in the literature. The QoS routing protocol, on the other hand, has to deal with the
tradeoff between scalability and accuracy. We proposed the clustering technique and selective
probing to address this tradeoff.

We then discussed the power laws of the Internet and small-world phenomena that capture
the static properties of the Internet topology. These properties have been used by the new
Internet topology generators for generating the more realistic models. However, the weights
information on the links of the generated graphs is missing and is impossible to obtain. We
overcome this by proposing the sensitivity analysis for our study.

For the clustering technique, four discrete location models have been discussed, which are
set covering model, k-center model, A-median model, and uncapacitated facility location model.
These models are in the form of optimization problems, which differ in both objective functions
and constraints. Every model has been proved intractable; and the approximation algorithms
were given. We concluded that among the discrete location models discussed so far, only set
covering is suitable for our work.

Next chapter, we will propose a dual to &-median problem, called d-median problem. Then
the evaluation of both the set covering and d-median models is given. We will investigate and
compare their behavior when used them to cluster the Internet. We also try to find the practical

range of the input parameters for each model.
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3.0 THE d-MEDIAN CLUSTERING APPROACH: DESIGN AND ANALYSIS

In this chapter, we start with introducing the d-median clustering method. Then, we study in
depth the behavior of the two clustering methods; the set covering and d-median, on the
synthesized power-law graphs. We will investigate the behavior of the two approaches and
analyze the properties that are beneficial to our selective probing scheme. In particular, we will
be focusing on the d-median clustering method, which outperforms set covering method in many
cases, as we will see later.

The rest of this chapter is organized as follows. We start by defining the d-median clustering
method. Then we proceed to evaluation methodology, which gives the definitions and scopes of
the variables, parameters and environments of the experiments. We describe the two greedy
algorithms in details by examples and define the performance parameters, which we will use as
the tools for our study. Then, we show the experimental results and analysis. Finally, we
conclude the chapter.

3.1  The d-median clustering method

As it has been discussed in the last chapter that £-median has a desirable property in that it tries
to minimize the delay (distance) between every node and its nearest anchor. However, the model
cannot guarantee the maximum delay bound from an anchor to the farthest node in its cluster.
We need an alternative model that behaves like k-median, yet guarantees the maximum delay
bound. In other words, the model must combine the advantages of both set covering and -
median approaches. Such model can be achieved by modifying the constraints of 4-median
problem so that the maximum delay of each cluster is bounded. This model takes the coverage
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distance (maximum delay bound), d., as an input and determines the number of clusters, &. We
call this model d-median approach.

The d-median approach tries to locate minimum number of anchors such that the sum of the
connection cost is minimize and the maximum delay of every cluster does not exceed the delay

bound input, d.. The d-median problem may be formulated in a form of optimization problem as

follows:
MINIMIZE DX,
ieF,jeC.
SUBJECT TO: VjeC: D ox, 21

ieF
VieF,jeC: y -x;,20
VieC: D, >c.x,
VieF,jeC: xije{O,l}

VieF: v, {01}

Again, F'is a set of anchors and C is a set of all nodes in network. c; denotes the connecting cost
of node j and anchor i. y; and x;; are the decision variables. y; equals to 1 if and only if an anchor i
is located (or selected). x;; equals to 1 if and only if node ; is served by the anchor i. Basically,
the objective functions of d-median and k-median are identical. The only difference is the third
constraint, where it says that the coverage distance of each cluster must not exceed d., which
bound maximum delay within the clusters to d..

We can also modify the greedy construction algorithm of .-median for the case of d-median

as follows:
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1. S=0
2. While there exist node 7, which connection cost to the
nearest facility exceeds d., do
find the location 7 that minimizes

7= ;,TSTIC?/ Ve Fandl ¢ S
S=Sul

end while

3. Return S.

The algorithm greedily selects the anchor that yields the smallest total connection cost, one-by-
one. The min function ensures that every node connects to its nearest anchor. The algorithm
repeats until every node in the network has been assigned the anchor with the connection cost
that does not exceed the delay bound input, d.. The solution to the algorithm, S, is a set of
selected anchors. Each anchor and their members then form a cluster. The running time of this
algorithm is O(n’).

3.2 Evaluation methodology

Performance evaluation of the d-median and set covering clustering methods is done by
observing their clustering results on the various synthetic Internet topologies. Since the Internet
grows larger every day and the delay distribution of the links in the Internet is not yet known, we
perform the sensitivity analysis on the network sizes and the delay distributions. The sensitivity
analysis is done based on the hypothesis that size and delay distribution of the Internet do not
affect the behavior of clustering methods, as long as the topology conforms to power laws.
Furthermore, from the sensitivity analysis on the power-law graph, we will try to decide the
suitable range of the delay bound input (or coverage distance) for the two clustering methods.
Although the delay bound is usually decided by applications or administrators, it is beneficial to
know roughly the range of efficient delay bound because a too-large delay bound causes high
amount of estimation errors and the too-small delay bound causes the scheme not scalable.
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In brief, our objectives of the study are as follows. First, we study the behavior of set
covering and d-median clustering method on the power-law graphs. Second, we perform the
sensitivity analysis on the network sizes and delay distributions, given that the network is power-
law graph. Finally, we investigate the potential range of the delay bound inputs.

In this section, we will first discuss about the Internet topology generation. Then, we give
the details on the two clustering methods and provide two examples on their greedy algorithms.

Finally we define the performance metrics that will be used to evaluate their performance.

3.2.1 The Internet topology

As we have pointed out in chapter 2.0 that the measured Internet topology is impractical for this
early stage of study, unless the technique for summarizing the input data is developed; the
synthesized power-law graphs are preferable, as long as the Internet topology conforms to power
laws. Among many Internet topology generators existing in the literature, we choose INET 3.0.
The features of INET 3.0 have been summarized in [WINI03]. Many metrics were developed for
validating the topology generator, including degree distributions, derived from power laws of the
Internet [FALO99], and the characteristic path length, derived from the small-world phenomena
[WATT98]. Still, the two criteria that INET 3.0 has not yet satisfied are the maximum clique size
and the clustering coefficient.

Neither INET 3.0 generated graphs nor the measured Internet topology supplies with the
knowledge of the bandwidth or delay on the links; only the connectivity information is
presented. However, in our delay-based selective probing scheme, the knowledge of the delays
on the links is required. We cannot presume any statistical distribution for representing the delay
on the Internet links. Therefore, we conduct the sensitivity analysis among four well-known
statistical distributions; namely, uniformed distribution, normal distribution, exponential
distribution and power-law (heavy-tailed) distribution.

The observation in the early stage of the study of the power laws of the Internet showed that
there exist 3,037 nodes in the Internet AS-level topology, as of in the year 1997. Therefore, the
size of our generated network topologies must not be smaller than 3,037 nodes. In addition, we
also do the sensitivity analysis on the size of the network using four network size instances;
3,037 nodes, 3,500 nodes, 4,000 nodes and 4,500 nodes. Although, today’s Internet topology
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[CAIDA] consists of more than 200,000 nodes, power laws still hold. Thus, our experiments are
done on the same class of graphs to the real Internet topology, the power-law graphs, but in the

smaller size.

3.2.2 Clustering methods

This work focuses on the methods of clustering the network so that the QoS measurement can be
done efficiently. Among four discrete location problems discussed in chapter 2.0, we will be
using only the set covering problem and the £-median problem for our selective probing scheme.
Moreover, the k-median problem has been developed so that the delay can be used as an input,
called d-median problem.

Although the best known approximation factors for discrete location algorithms allow the
solutions to deviate as high as 60% to 400% from the optimum, the experiments showed that the
errors are quite small in practice, using simple greedy-based algorithms. A simple greedy-based
approximation algorithm for the set covering problem was tested by [GROS97] against 60
random problems from [ORLIB], comparing with other algorithms. The performance of the
greedy-based algorithms outperforms other algorithms in both terms of running time and
accuracy. On average, the greedy-based algorithms deviate merely 5% from optimum.

For k-median problem, we run a simple greedy construction algorithm against 40 test cases
from [ORLIB]. The results are shown in Table 3-1. The average deviation from the optimum is
very low, 1.51%, while the worst case error is only 4.3%. As we have addressed earlier, the
UFLP cannot be used directly unless the appropriate facility opening costs are known
beforehand. Table 3-1 also shows the results of using UFLP for solving 4-median problem by
performing a binary search on the opening costs for the instance of UFLP that yields minimum
objective value and opens the number of facilities less than or equal to . The running time of the
algorithm is higher than solving k-median problem using greedy algorithm since it requires
solving many instances of UFLP during the binary search. Besides, both average deviation from
the optimum and the worst case error are very high, which are 6.82% and 39.36%, respectively.
In conclusion, the direct and indirect usages of UFLP are considered unsuitable for our selective
probing scheme. We will be considering only the set covering problem and 4-median problem in

our work:; whereas the modified version of k~-median called d-median will be used.
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Table 3-1: Relative error of greedy k-median and greedy UFLP algorithms.

Problem |n k %k/n | OPT k-MEDIAN UFLP

Instances SOL SOL | %ERROR | SOL | %ERROR
pmed01 100 5 5.00 5819 | 5891 1.24 | 5891 1.24
pmed02 100 10 10.00 4093 | 4118 0.61| 4128 0.86
pmed03 100 10 10.00 4250 | 4399 3.51| 4331 1.91
pmed04 100 20 20.00 3034 | 3088 1.78 | 3215 5.97
pmed05 100 33 33.00 1355 | 1378 1.70 | 1779 31.29
pmed06 200 5 2.50 7824 | 8027 259 | 7897 0.93
pmed07 200 10 5.00 5631 | 5646 0.27 | 5646 0.27
pmed08 200 20 10.00 4445 | 4472 0.61 | 4475 0.67
pmed09 200 40 20.00 2734 | 2841 3.91| 2978 8.92
pmed10 200 67 33.50 1255 | 1295 3.19 | 1749 39.36
pmed11 300 5 1.67 7696 | 7721 0.32| 7714 0.23
pmed12 300 10 3.33 6634 | 6651 0.26 | 6659 0.38
pmed13 300 30 10.00 4374 | 4467 2.13 | 4538 3.75
pmed14 300 60 20.00 2968 | 3013 152 | 3225 8.66
pmed15 300 100 33.33 1729 | 1761 1.85| 2168 25.39
pmed16 400 5 1.25 8162 | 8232 0.86 | 8266 1.27
pmed17 400 10 2.50 6999 | 7019 0.29 | 7061 0.89
pmed18 400 40 10.00 4809 | 4873 1.33 | 4987 3.70
pmed19 400 80 20.00 2845 | 2899 1.90 | 3009 5.76
pmed20 400 133 33.25 1789 | 1866 430 | 2237 25.04
pmed21 500 5 1.00 9138 | 9138 0.00 | 9138 0.00
pmed22 500 10 2.00 8579 | 8670 1.06 | 8723 1.68
pmed23 500 50 10.00 4619 | 4694 1.62 | 4757 2.99
pmed24 500 100 20.00 2961 | 3009 1.62 | 3163 6.82
pmed25 500 167 33.40 1828 | 1896 3.72 | 2348 28.45
pmed26 600 5 0.83 9917 | 10093 1.77 | 10095 1.79
pmed27 600 10 1.67 8307 | 8364 0.69 | 8410 1.24
pmed28 600 60 10.00 4498 | 4579 1.80 | 4759 5.80
pmed29 600 120 20.00 3033 | 3104 2.34 | 3308 9.07
pmed30 600 200 33.33 1989 | 2037 241 | 2572 29.31
pmed31 700 5 0.71 | 10086 | 10086 0.00 | 10086 0.00
pmed32 700 10 1.43 9297 | 9331 0.37 | 9326 0.31
pmed33 700 70 10.00 4700 | 4798 2.09 | 4791 1.94
pmed34 700 140 20.00 3013 | 3097 2.79 | 3271 8.56
pmed35 800 5 0.63 | 10400 | 10406 0.06 | 10406 0.06
pmed36 800 10 1.25 9934 | 9954 0.20 | 9999 0.65
pmed37 800 80 10.00 5057 | 5118 1.21 | 5216 3.14
pmed38 900 5 0.56 | 11060 | 11153 0.84 | 11086 0.24
pmed39 900 10 1.11 9423 | 9451 0.30 | 9449 0.28
pmed40 900 90 10.00 5128 | 5190 1.21| 5335 4.04
AVG 1.51 6.82
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Note that, in our selective probing scheme, the perfect solution is not necessarily required,
although the near optimal solution is desired to minimize the number of cluster k. The
experiments on the performance of the greedy algorithms on the set of random problems indicate
that greedy algorithms perform sufficiently well in practice. Additionally, the simplicity of the
greedy-based algorithms has the advantage in the fast running time, which is preferable for the
large scale network.

From the experimental results, we observe that the error from the approximation algorithms
tends to be higher when the ratio 4/n (clusters per total nodes) is large. We plot the relationship
between error and the ratio &/n in Figure 3-1. This suggests that the approximation algorithms are
likely to perform well when & << n. We will see later that the ratio &/» we obtain in our selective
probing scheme is very small, e.g., 0.005 — 0.15, which implies that the clustering results are

near optimal in most cases.
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Figure 3-1: The ratio k/n versus relative error.
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3.2.3 The greedy algorithms

In this section, we describe in details the greedy algorithms for the set covering and d-median

problem that will be evaluated in this work.

3.2.3.1  Greedy set covering algorithm
For set covering problem, the greedy algorithm is straightforward as outlined earlier. Each node

is treated as a potential facility and the nodes within its coverage distance are the members of the
cluster. At each round, the algorithm greedily adds a cluster that covers most of the nodes in the
network to the set of solution. In the case of tie, the cluster with the smallest connection cost and
the highest out-degree facility is selected, respectively. The smallest connection cost cluster is
chosen in favor of minimizing the total connection cost, as in the case of £-median problem. The
out-degree reflects the importance of the node. Then, the nodes in the selected cluster, i.e., the
facility and its members are marked covered. The algorithm stops when the all the nodes in
network are marked covered.

To illustrate the greedy set covering algorithm, consider the network in Figure 3-2 (adapted
from [DASK95]). The labels on the links represent delay. The network consists of 12 nodes and
21 links with the delay ranging from 12 to 30. The Figure 3-2 gives the distance matrix, which
may be found by using Floyd’s algorithm for the shortest paths from all sources to all

destinations. In the case of undirected graph, we obtain a symmetric distance matrix.
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Figure 3-2: An example network for greedy set covering problem.

Suppose the coverage distance d. is 20. For each node, we count the number of its members,
including itself, that located within the coverage distance. We find that / covers the most number
of the nodes in the network, 5 nodes, namely C, F, I, K and L. Node / and its members form a
cluster and are marked covered, excluding them from further calculation. We then consider the
rest of the nodes in the network and find that 4, G and H tie in the number of nodes covered,
each covers 3 nodes. Comparing between the connection costs, the cluster of node / yields the
smallest connection costs of 27, H-G and H-E. Node H and its members, again, form a cluster
and marked covered. The algorithm continues in this manner until all the nodes in the network
are marked covered. Figure 3-3 illustrates the resulting clusters of the network in Figure 3-2. The
algorithm partitions the network into 5 clusters with the largest cluster containing 5 nodes and
the smallest clusters containing 1 node. Each cluster guarantees that every node in the cluster is

not farther from its anchor than the coverage distance of 20.
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Table 3-2: Distance matrix of the network in figure 3-2.

Nodes TOTAL
A B C D E F G H I J K L

0 15 37 55 24 60 18 33 48 40 58 67 |455
15 0 22 40 38 52 33 48 42 55 61 61 |467
37 22 0 18 16 30 41 28 20 58 39 39 |348
55 40 18 O 34 12 59 46 24 62 43 34 | 427
24 38 16 34 O 36 25 12 24 47 37 43 | 336
60 52 30 12 36 O 57 42 12 50 31 22 |404
18 33 41 59 25 57 O 15 45 22 40 61 |416
33 48 28 46 12 42 15 O 30 37 25 46 |362
48 42 20 24 24 12 45 30 O 38 19 19 |321
40 55 58 62 47 50 22 37 38 O 19 40 | 468
58 61 39 43 37 31 40 25 19 19 O 21 | 393
67 61 39 34 43 22 61 46 19 40 21 O 453

Facilities

SRRSO

Figure 3-3: The clustering result of the network in figure 3-2 using set covering clustering method.

3.2.3.2  Greedy d-median algorithm
The greedy d-median algorithm is very similar to the greedy set covering algorithm outlined in

the previous section. Again, we will illustrate the algorithm by using the example from the
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network in Figure 3-2. The coverage distance is still 20. Starting from the distance matrix in
Table 3-2, by summing the entries in each, we obtain the total connection cost for 7-median
problems. The smallest total connection cost is 321, when node 7 is selected as a facility. The
average distance is 321/12 or 26.75. (Note that there are 12 nodes in the network.) The farthest
distance is 48 from A to /, which still exceeds the coverage distance d. of 20. The algorithm

continues.

Table 3-3: Selecting the second median.

Nodes TOTAL
A B C D E F G H J K L

0 15 20 24 24 12 18 30 38 19 19 | 219
15 0 20 24 24 12 33 30 38 19 19 | 234
37 22 0 18 16 12 41 28 38 19 19 | 250
48 40 18 O 24 12 45 30 38 19 19 | 293
24 38 16 24 O 12 25 12 38 19 19 | 227
48 42 20 12 24 O 45 30 38 19 19 | 297
18 33 20 24 24 12 O 15 22 19 19 | 206
33 42 20 24 12 12 15 O 37 19 19 |233
48 42 20 24 24 12 45 30 38 19 19 |321
40 42 20 24 24 12 22 30 0 19 19 | 252
48 42 20 24 24 12 40 25 19 0 19 | 273
48 42 20 24 24 12 45 30 38 19 0 302

Facilities

MRS SDQTEmTA DA
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Once node [/ is selected, we locate the second median by updating each entry of the distance
matrix by calculating min{dy;, d;}. In other words, node j connects to facility / if the connection
cost is lower than connecting to the current facility i. Table 3-3 shows the resulting update. The
second facility that we will select is node G since it yields the minimum connection cost of 206.
Now, the farthest distance reduces to 33 from B to G, and the average distance reduces to 17.17.
Since the farthest distance still exceeds the coverage distance, we need to add more facility to
our solution. We again update the distance matrix by calculating min{dg; dj, d;} for each node /
candidate location pair (i, j), and find that the third facility is located at node C, which yields the
minimum connection cost of 161. Table 3-4 shows the update. Now the farthest distance is 22
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and the average distance is 13.42. The algorithm proceeds in this manner until the distance from
any node to the nearest facility are lower than or equal to 20.

Table 3-4: Selecting the third median.

Nodes TOTAL
A B cC D E F G H I J K L
A 0 15 20 24 24 12 O 15 0 22 19 19 |170
B 15 0 20 24 24 12 O 15 0 22 19 19 | 170
cC 18 22 0 18 16 12 O 15 0 22 19 19 |161
D |18 33 18 O 24 12 O 15 0 22 19 19 |180
v |E |18 33 16 24 0 12 0 12 0 22 19 19 |175
X |F |18 33 20 12 24 O 0 15 0 22 19 19 |182
'g G |18 33 20 24 24 12 O 15 0 22 19 19 | 206
~ |H |18 33 20 24 12 12 O 0 0 22 19 19 |179
1 18 33 20 24 24 12 O 15 0 22 19 19 | 206
J 18 33 20 24 24 12 O 15 0 0 19 19 |[184
K |18 33 20 24 24 12 O 15 0 19 0 19 | 184
L 18 33 20 24 24 12 O 15 0 22 19 0 187

In our example, the greedy d-median algorithm stops after five facilities were selected: 7, G, C, A
and K, respectively. The farthest distance is 19 and the average distance is 9.5. Figure 3-4 shows

the clustering result of the greedy d-median algorithm.
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Figure 3-4: The clustering result of the network in figure 3-2 using d-median clustering method.

3.2.4 Performance metrics

In the study of the behavior of the two clustering methods, the performance metrics of interest
are the average cluster size, the number of clusters, the number of effective clusters, the total
connection cost, and the average radius of clusters. The following are the descriptions of each
performance metrics. The average cluster size and the number of clusters are straightforward as
the names suggest; the average number of nodes in the clusters and total number of resulting
clusters, respectively. However, from our experience, using solely the total number of clusters
may be illusive since there may exist many one-node clusters in power-law graph. Therefore, we
introduce the number of effective clusters; i.e., the total number of clusters that contain more
than one node. Both number of clusters and number of effective clusters are shown in the
percentage of clusters to total number of nodes in the network. The total connection cost is
calculated from summing the delays (shortest distances) from every node to its nearest anchor.
The average radius of clusters is the average of the delay from anchor to the farthest node in the

cluster. Table 3-5 summarizes the descriptions of these parameters.
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Table 3-5: Summary of the performance parameters.

Performance parameters Descriptions

Average cluster size Average number of nodes in clusters
Number of clusters (%) Total number of clusters

Number of effective clusters (%) Total number of clusters consisting > 1 nodes
Total connection cost The summation of delays in all clusters
Average radius of clusters Average of the largest delay of every clusters

For example, the clustering result illustrates the Figure 3-4, the average cluster size is 2.4, total
number of clusters is 5, total number of effective clusters is 5, total cost is 114, and the average

radius of clusters is 17.2.

3.3  Results and analysis

The experiments were done as follows. For each edge delay distribution and each network size,
we run the greedy set covering algorithm and greedy d-median algorithm using various delay
bound input. Then, we observe the five performance parameters by plotting the results, shown in
appendix A. The performance parameters are indicated in vertical axis of the graphs. A set of
graphs consists of four sub-graphs; each corresponds to one of four different edge delay
distributions on links of the underlying network. The four network sizes are also shown in each
sub-graph. The delay bound input is shown in the normalized unit of the mean of the edge delay
distribution. That is, the delay bound is displayed in the unit of the multiple of average delay of
one hop.

Sensitivity analysis on the network size: It is easy to see from the resemblance of the plots

that the changing in network size does not impact the behavior of the clustering methods. To
confirm this fact, we find the correlation coefficients among the plots. The ranges of correlation

coefficients are listed in the Table B-1 in appendix B. We can see that the correlation coefficients
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are very high in every case, which support our hypothesis that the network size does not affect
the behavior of clustering methods, given that the networks are power-law graphs. This suggests
that no matter how large the Internet grows, our results are still valid.

Sensitivity analysis on edge delay distribution: On the other hand, the sensitivity analysis on

edge delay distributions is more subtle to see. Again, we find the ranges of correlation
coefficients and show in Table B-2. We observe that the correlation coefficients are not as high
as those we found when we do the sensitivity analysis on network size. The correlation
coefficients are notably low, as 0.3, when we consider the effective number of clusters, which
implies that there is no correlation at all. However, the overall correlation is strong enough to
distinguish the performance between set covering and d-median. The following are some
observations we found. (1) No matter what edge delay distribution is used, set covering always
yields the larger average cluster size. (2) The knee points of the plots of d-median always occur
at the lower delay bound in the plot of the number of clusters. (3) Both set covering and d-
median plots have the peaks in the plot of the number of effective clusters. However, d-median
always has a larger number of effective clusters. (4) The set covering usually yields a larger total
cost. d-median may have a higher total cost when the delay bound is smaller than 2 unit, but with
very little amount. In every case, we can observe the knee points follows by the stable range (the
change of the total cost is very small as the delay bound increases) in the plot of d-median on
total cost. (5) The average radius of clusters obtaining from set covering is usually higher and
more divergent.

These facts will be investigated further as we proceed. Even if the correlation coefficients
cannot visibly ensure the similarity of the clustering results among different delay distribution,
we can somehow capture the essential properties of the clustering methods that do not vary as the
delay distribution changed. At this point, we conclude that the change in edge delay distribution
does not affect much the behavior of the clustering method, especially, the d-median.

The practical delay bound (upper bound): Consider the plot of average cluster size, we can

see that for both set covering and d-median, the average cluster size saturates at some point, i.e.,
when the cluster size equals to network size. At this point, the delay bound is so large that single
cluster dominates the network. The evidence is also shown in the plot of number of clusters. At

the point of saturate, the number of clusters decreases to one or two. In every case, the saturate
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point falls around 4 units of delay bounds. Therefore, we suggest that the delay bound should not
larger than 4 times of the average delay of one hop.
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Figure 3-5: Average cluster sizes of 4,500-node networks

Number of clusters: Consider the plots of the number of clusters in Figure 3-6 (which shows

only the network size of 4,500 nodes). The number of clusters decreases as the delay bound
increases. This is due to the fact that the larger coverage-area clusters cover more nodes so that
the number of total clusters is reduced. In every plot, we can see that the number of clusters
rapidly decreases as delay bound increases in the beginning. At some point, the decreasing rate
reduces. We call this point a knee point. The knee point is more obvious in the plot of d-median
than in set covering. After the knee point, increasing the delay bound does not reduce much the

number of clusters or we can say the number of clusters becomes stable.
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Figure 3-6: Number of clusters of 4,500-node networks

In general, we need the number of clusters to be as small as possible for scalability of the
selective probing scheme. The number of clusters reflects the number of entries in the routing
table and amount of the routing overheads. Also, we need the small delay bound to reduce the
error from the estimation. Hence, the knee point seems to be an optimal point that balances both
number of clusters and delay bound. We propose that the knee point should be treated as a lower
bound of the delay bound input. From our observation on four different edge delay distribution,
the knee point falls in the range from 1 to 2 times of the average delay of one hop. Therefore, for
efficiency, the delay bound input should be, at least, larger than the average delay of the links in
the network.

Note that the knee points of the plots of d-median are easier to see and always yield smaller

number of clusters and smaller delay bound, at the same time, compared to those of set covering.
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Actually, in most cases, the plots of d-median usually locate at the inner side, nearer to both axes
than the plot of set covering. Consequently, we can say that 4-median clustering method is more
preferable than set covering since it usually yields smaller number of clusters for the given delay
bound input.

Number of effective clusters: In power-law graph, large number of nodes is densely located

while the rest are located sparsely. Sometimes, clustering the nodes in the remote area causes the
resulting clusters containing only one node. The one-node clusters may not be efficient for our
selective probing scheme. Many times, we find that increasing the delay bound a little bit, these
one-node clusters can be merged with other clusters. However, if the one-node clusters are
located very far from other nodes in the network, we should allow these one-node clusters to
keep the error from the estimation small.

Now, we look at another performance parameter called number of effective clusters. The
number of effective clusters gives the number of clusters that contains more than one node. From
the plot in appendix A, we can see the peaks in both plots of d-median and set covering. Starting
with a too small delay bound input, the number of effective clusters is very small since most of
the clusters cover only one node. As the delay bound input increases, the number of effective
clusters increases, while the total number of clusters decreases. This is because the larger bound
covers more nodes. At some point, the number of effective clusters starts to decrease since the
bound is larger and less number of clusters is required to cover the entire network. Note that the
plots skew to the right, i.e., they are steeper when the delay bound is small. The peaks of the two
methods fall in the range from 0.5 to 1.5 unit of delay bound. We suggest that the delay bound
input should be higher than the peak points. At this point, the delay bound input seems to be
large enough to eliminate all the unnecessary one-node clusters. However, we cannot say that the
peaks are the optimal point for the delay bound input since every point on the plot shows the
optimum for the corresponding delay bound input.

Furthermore, we can see that the number of effective clusters obtained from d-median is
always higher than set covering’s in every case. We also plot the ratio of the number of effective
clusters over total number of clusters for the network size of 4500 nodes in Figure 3-7. The ratio
of the d-median is apparently higher than set cover’s. This, again, indicates that d-median

clustering method is more efficient than set covering.
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Figure 3-7: Ratio of the number of effective clusters per the total number of clusters

Total cost: Total cost indicates sum of the delay occur in the clustering result. In general,
small total cost is desirable. The objective function of d-median tries to minimize this total cost.
Therefore, given a same delay bound input, the total cost of d-median should be less than or
equal to the total cost obtaining from set covering. Our observation from the plots in appendix A
confirms this fact in most cases. However, in rare cases, we also see some points that d-median
yields the larger total costs. This might cause from the error of the approximation algorithms.

The total cost divided by number of nodes in network yields average cost per node, i.e., the
average delay between a node and its nearest anchor. Figure 3-8 shows the average cost for the
network size of 4500 nodes. The unit of the average cost is the same unit as the delay bound. We
can see the knee points in both plots of total cost and average cost. Note that the knee points here
locate exactly the same point as in the plot of number of clusters. This implies that the knee point
is the point where the clustering results become stable; the cost and the number of clusters are

not much changed as the delay bound increases. The slope after the knee point is quite flat. We
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suggest that the practical delay bound should be in the range starting from knee point to 4 units
(4 times of the average delay of one hop).
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Figure 3-8: Average cost of 4,500-node networks

Consider again the average delay from a node to its nearest anchor in Figure 3-8. Given an
appropriate delay bound input, d-median yields average delay around (and tending to be lower
than) 1 hop. This reflects the loosely hierarchical nature of the Internet topology. However,
average delay is around 2 hops in the case of set covering.

Radius: Although the average delay from a node to its nearest anchor is around 1-2 hops, the
maximum delay, called a radius of a cluster, is more interesting since it indicates the worst case
error that may occur from delay estimation of our selective probing scheme. The delay bound
input implicitly defines the radius of the clusters. Ideally, the plot of the delay bound input and
the radius of a cluster should be linear. Appendix A shows our results. The performance of d-

median and set covering are quite indistinguishable in most cases. However, we find that the
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Coefficient of Variation (CV) of the radius obtaining from d-median clustering method is smaller
than those of set covering. The CV of the radius obtaining from d-median is in the range of 0.05-
0.44, while the CV of the radius obtaining from set covering is in the range of 0.04-1.07. The
smaller CV means that the clusters have about the same radius, which is useful for the network
administrator or applications to approximate the error from estimation correctly. Hence, this is
once again an evidence for supporting that d-median clustering method is preferable to set

covering.

3.4 Conclusion

In this chapter, we study the behavior of set covering and d-median clustering methods over
various Internet-like network instances, through many performance metrics. Nevertheless, the
sensitivity analysis shows that networks sizes and delay distributions have minimum or very
small effect to the clustering results. The study also found that d-median outperforms set
covering in most cases. d-median clustering method usually yields smaller number of clusters but
larger number of effective clusters than set covering. d-median usually yields the smaller total
cost and average cost, compared to set covering. In addition, the cluster sizes obtaining from d-
median have smaller deviation than those obtaining from set covering.

We also tried to define the range of practical delay bound input. First, we suggest that the
upper bound should be around 4 times of the average delay per link in the network, where the
network is likely to be dominated by a single cluster. The lower bound should be approximately
around 1 to 2 times of the averaged delay per link. This is derived from the knees of the plots of
number of clusters and the plots of total cost. Providing the delay bound input in this range, the
clustering results do not change much as delay bound increases. This may be looked as an error
tolerance property of the clustering method. Finally, we conclude that our proposed d-median

clustering method is better suited for power-law graphs than any other clustering methods.
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40 SELECTIVE PROBING FRAMEWORK

Last chapter, we partition the network into delay based classes of equivalence called clusters
using one of the clustering methods: set covering or d-median. Both clustering methods require
the complete knowledge of the underlying network graph in a form of distance matrix. In
addition, they require maximum coverage distance or maximum delay bound for every cluster as
an input. We have tried the two clustering methods with many Internet-like generated graphs,
which are varied in sizes and delay distributions on links. The clustering results show that the
effects from these factors are negligible. We also observed that practical delay bound input
should be around 1 to 4 times of average delay per link in the network. Finally, we found that d-
median clustering method often performs better than set covering and we suggested the use of d-
median for our selective probing scheme.

Once the network is clustered, QoS metrics of any node can be retrieved in scalable way.
This chapter describes the techniques of clustering-based QoS metrics estimation, focusing on
delay metric. We also explain the selective probing framework which exploits these estimation

techniques.

4.1  The clustering-based metrics estimation service

Once we applied one of the clustering methods to the network, each cluster is represented by an
anchor node. These anchors play an important role in QoS metrics estimation. A considerably
small number of anchors, about 9%-16% from the total number of nodes or less, makes it
possible to actively and continuously probe for QoS metrics among themselves. The QoS
measurements of the rest of the nodes in the network can be directly inferred from its anchor’s.
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In this work, we focus particularly on delay measurement apart from other measurements, e.g.,
number of hops, loss rate, delay jitter, bandwidth, policy flags, etc. Generally, the delay
measurement mentioned here may be obtained from ICMP round-trip time (RTT) or TCP initial
connection time.

We estimate delay between any pair of nodes i and j, associating with anchors ; and a;,
respectively. If they belong to the same cluster, i.e., a; = a;, the estimated delay equals to the
radius of the cluster. Otherwise, the estimated delay equals to measured delay between «; and a;.
The former is called Intra-cluster estimation and the latter is called Inter-cluster estimation.

The simplest way is to use the last measured delay directly as addressed above. However, a
transient conditions change in the network may cause the measured delay to be either too high or
too low. And, by the time we use the measured delay information, it is usually no longer valid
due to the highly dynamic nature of the Internet. Accordingly, for preciseness, we need to
estimate the current round-trip delay based on their past measurements. One approach is by
taking an average of the past £ measured round-trip times. The simple averaging method can be

expressed as follows:

1 k+1

> RTT (i)

ARTT(k+1)=——
k+13

Where RTT(i) is the round-trip time observed for the ith observation, and ARTT(k) is the average

round-trip time for the first £ observations. This expression can be rewritten as follows:
k 1
ARTT (k +1) =—— ARTT (k) + —— RTT (k +1)
k+1 k+1

With this formulation, it is not necessary to recalculate the entire summation each time.
Typically, however, we would like to give greater weight to more recent instances because they
are more likely to reflect future behavior. A common approach, specified in [INFO81] for

estimating the round-trip time for TCP, can be defined as follows:

SRTT(k +1) = x SRTT (k) + (L— &) x RTT (k +1)
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Where SRTT(k) is called the smoothed round-trip time estimate. « is a constant and 0 < a < 1.
Generally, is in the range of 0.8 to 0.9.

In contrast to arithmetic mean defined above, the usage of geometric mean is found to be
practical in [CHENO2] where the delay distribution is assumed to be heavy-tailed. The geometric
mean of & values is obtained by multiplying the values together and taking the ith root of the

product. This can be expressed as follows:

k b
GRTT = [H RTT(i)J

The engineering problems, such as how often should an anchor probe for the metrics from other
anchors, or how large the window size & should be in above formulas, are yet to be investigated.
Further study on the supporting protocol must clarify these problems. Nevertheless, we suggest
that the clustering task should be done by a dedicated server and distributing the results to the
anchors. The clustering calculation, from our experience, is a resource consuming task.
Therefore, we also suggest that the calculation and results distribution should be done
periodically, in the time scale of days or weeks rather than minutes or hours.

4.2 Selective probing QoS routing framework

From the clustering result and the knowledge of the underlying topology, we can build a virtual
topology, where nodes represent by clusters and links represent the physical connections
between clusters. We call this a meta-topology or meta-graph. Essentially, a meta-graph is a
network of anchors since each anchor represents a cluster. Figure 4-1 shows a meta-graph

deriving from the network in Figure 2-1 (b). Note that, this introduces the concept of hierarchical

topology.
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Figure 4-1: Deriving a meta-graph from the physical topology.
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Once the network is clustered and meta-graph is inferred, selective probing is then performed to
obtain the metrics information of the graph. The metrics estimation service described in the
previous section can be used to maintain this information. Simple single-constrained routing
algorithms, such as Dijkstra’s or Bellman-Ford, or even the QoS routing algorithms that take into
account multiple constraints can efficiently run on this higher hierarchy topology. The result may
consist of single or multiple feasible paths. The advantage of this scheme is that there is no
resource reservation mechanism required, which makes selective probing framework stateless
and scalable. The framework can be properly used to enhance and extend DiffServ ability to
support QoS in suggesting paths.

The objective of QoS routing is to find the feasible paths that conform to the multiple
constraints requested by applications, i.e., the multi-constrained problem (MCP). One way to do
so is by running multiple topology filtering procedures, each time with different metric. The
topology filtering procedure propagates itself through the meta-graph, filtering out the paths that
do not meet the given constraints. Essentially, the procedure for finding the feasible paths on the

meta-graph can be summarized as follows:

Meta-graph path selection procedure

e Cluster the network using d-median clustering method to build a meta-
graph.

e Selectively probe the anchors and estimate delay and other metrics using
the averaging techniques discussed in previous chapter.

o Perform topology filtering procedure to find the feasible paths.

e Perform the shortest paths on the filtered topology to find the shortest
path based on selected metric.

To further illustrate the basic operations of the procedure above, we consider again the meta-
graph depicted in Figure 4-1. Through the example, we will detail the topology filtering
procedure. We assume that the source is denoted by S and destination is denoted by D, as shown
in Figure 4-2. The label, (Delay, Bandwidth), on the links denotes the estimated delay and
estimated bandwidth, respectively. Suppose an application requests a path with the following

three constraints:
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1. hop-counts must be less than 20 hops,
2. bandwidth must be larger than or equal to 1 Mbps, and

3. total delay must be less than 500 ms.

B—

(400ms, 768K)

(300ms,
SM)

= 155.5M-"

=~ L (50ms, (220ms

g \ 100M) \ 1.5M)
S \

o |

Nt (R il —— .
N 10ms>-LOM,
S (10ms20M)
g (160n {110ms g
S 15M) N/ 20M) (350ms, 64K)
S g

Figure 4-2: Topology filtering — number of hops.

By running the topology filtering procedure with the first constraint, we can filter some routes
that do not lead to the destination within the given hop-counts. The feasible paths are highlighted
in Figure 4-2. We then run the topology filtering procedure for the second time with the second
constraint. This time, we filter out the paths that contain a 64Kbps link, located at the bottom
right of the meta-graph. The feasible paths are shown in Figure 4-3. Finally, we run the topology
filtering for the last time with the third constraint. The paths that the sum of delays exceeds 500
ms are eliminated from the set of feasible paths. At this point, we obtain three feasible paths

denoted by arrows in Figure 4-4. Any of these paths can be used as a solution.

68



H

(400ms, 768K)

(300ms,
SM)

D
- (70ms, 100M)___
’ 160ms, 100M) s
1 =y (80ms,
= 155.5M :
~i o L (50ms, (220ms,
4| \ 100M)
St (120ms, -4
o~
T S
S
S (10msN0M)
S
~N
g (160nis.._ A110ms,
S LsM) w7 20M) (350ms, 64K)

Figure 4-3: Topology filtering — bandwidth.

However, if we want the optimal solution selecting from these feasible solution, the problem is
changed to a multi-constrained optimal path (MCOP) problem and we need to specify the
principal constraint that describes the word optimal. For example, see Figure 4-4, if we want the
optimal path in the sense of end-to-end delay, we just simply run the shortest path on the filtered
meta-graph. The optimal solution will be the path denoted by the arrow in the middle. On the
other hand, if the path with largest bandwidth is desired, the uppermost arrow path will be the

optimal solution.
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Figure 4-4: Topology filtering — delay.

The solution on the meta-graph shows the feasible paths that help suggesting the routing decision
on the physical topology. Routers or nodes can exploit this information by forwarding the
corresponding packets according to the suggested direction. Whereby, the physical route within
the cluster is decided by local routing algorithm. The feasible paths are treated as preferred paths,
which router may or may not follow. The solution path on a meta-graph can be used for overlay
routing.

The QoS routing scheme described above is given as an example. Further details on the
protocol implementation and the use of the solution are yet to be studied. One important note is

that, at least, all the anchors must support our selective probing scheme, in order to corporate

with each other.

4.3 Conclusion

In this chapter, we review the techniques used for the QoS metrics estimation of the clustered

network. Specifically, we focus on the delay metric measurement and discuss some well-known
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averaging techniques for delay. Then we give the concept of meta-graph used in our selective
probing scheme and provide the example for the path selection calculation, using topology
filtering. The QoS routing done on the meta-graph is used for suggesting the packet forwarding

direction, which aids DiffServ ability to support QoS.
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5.0 CONTRIBUTIONS AND FUTURE WORKS

5.1  Summary of contributions

In this work, we tried to develop a routing architecture that supports QoS in a more scalable way.
For this, we proposed a clustering-based selective probing framework that partitions the nodes in
the network into delay-based classes of equivalence, and abstracts the physical topology into a
form of meta-graph. Scalability is the major concern of this work. Selective probing is done in a
favor of balancing between routing overheads and routing information accuracy. The

contributions of this work are summarized as follows:

1. It proposed the selective probing routing architecture which aimed to support QoS
routing in a scalable way.

2. It reviewed four mathematical models of the clustering methods and their corresponding
approximation algorithms.

3. It proposed d-median clustering method and its approximation algorithm.

4. 1t evaluated the behaviors of set covering and d-median clustering methods over the
Internet-like power-law generated graphs.

5. It observed that the sizes of networks and the delay distributions on the graphs have none
or least effect to both clustering methods. This validates the use of the clustering methods
on the real Internet topology.

6. It observed that d-median outperforms set covering clustering method, at least from our
set of performance metrics.

7. It suggested the practical input range for d-median clustering method.
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5.2 Future works

Numerous open issues regarding the selective probing QoS routing scheme are yet to be

investigated. Our work can be improved in several ways, including the following issues:

As we have seen that both set covering and d-median clustering method require nxn
distance matrix as an input, we need the method to reduce the input size so that the
algorithm can run more efficiently for the large scale networks.

The approximation algorithm for d-median clustering method may be investigated in
more details and improved so that it yields the better approximation factor. The
approximation algorithm proposed here has no guaranteed approximation factor. The
algorithm is needed to be improved to be more precise while minimizes the time
complexity.

In this work, we gave the concept of the selective probing routing architecture. We
focused only on the methods of clustering the network. However, the details of the entire
protocol are yet to be defined. For example, the types of metrics collected, the path

selection methods, and frequency of probing, are needed to be specified.

Based on our work, the future works can be diverse into many areas, including:

Our QoS routing framework is done on the basis of unicast. To support the multicast
multimedia applications, future work may try to develop the multicast QoS routing
version, which aims to find the algorithm that establishes the QoS based multicast tree.

The clustering methods discussed and developed in this work may be applied, as a
fundamental component, in the area of sensor network. For sensor network, the
strategically aggregated clustering may be used for the purposes of information
aggregation or power reduction. Method of aggregation is still the active area of research.
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Future work can investigate into the area of security. It may address the issue for the case
of inter-domain routing security management. For example, when the probing signal is
crossing the administrative domains (ASs), there should be some mechanisms to validate
both the probing and QoS routing information in terms of confidentiality, integrity, and

authentication.
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APPENDIX A

EXPERIMENTAL RESULTS

The following shows the observations of the five performance parameters: Average cluster size,
Number of clusters, Number of effective clusters, Total cost, and Average radius and are listed on
the vertical axes. Each performance parameter consists of four sub-plots. Each sub-plot denotes
one of the edge delay distributions of the underlying graph. The edge delay distributions used in
this work are Uniformed, Normal, Exponential, and Heavy-tailed. Furthermore, each sub-plot
shows the performance of the set covering and d-median clustering methods in four different
network sizes, which are 3,037 nodes, 3,500 nodes, 4,500 nodes, and 4,500 nodes.

The two clustering methods take the delay bound as an input. We intended to generalize the
unit of the delay into the normalized form. The delay bound inputs are shown in the unit of the
multiple of the average delay per one hop. That is, we find the average delay of the links in the
network and use it as a unit of delay bound input. The observations are done by varying the delay
bound inputs from very small to very large. Then, we observe simultaneously the clustering

results, through the five performance parameters, of the two clustering methods.
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APPENDIX B

SENSITIVITY ANALYSES

We perform the sensitivity analysis on network sizes and edge delay distributions by finding the
coefficients of correlation among the plots. The coefficients of correlation are shown in the range

of minimum and maximum, which give us the idea how similar the plots are.
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Table B-1: Sensitivity analysis on network sizes

Performance  delay Clustering methods ~ Ranges of correlation coefficients
metrics distributions
® Uniformed Set covering 0.9560-0.9930
‘B D-median 0.8376-0.9877
o Normal Set covering 0.9014-0.9831
3 D-median 0.9297-0.9954
o Exponential Set covering 0.9719-0.9976
& D-median 0.9026-0.9837
g Heavy-tailed  Set covering 0.9946-0.9996
< D-median 0.9555-0.9981
o~ Uniformed Set covering 0.9991-0.9999
2 D-median 0.9996-0.9999
= Normal Set covering 0.9995-0.9999
- D-median 0.9996-0.9999
= Exponential Set covering 0.9996-0.9999
< D-median 0.9998-0.9999
E Heavy-tailed  Set covering 0.9997-1.0000
D-median 0.9999-1.0000
© Uniformed Set covering 0.9929-0.9976
5 D-median 0.9864-0.9976
£ o Normal Set covering 0.9948-0.9985
>3 D-median 0.9892-0.9939
° 3 Exponential Set covering 0.9949-0.9983
3 ° D-median 0.9892-0.9965
£ Heavy-tailed  Set covering 0.9970-0.9996
< D-median 0.9972-0.9998
I Uniformed Set covering 0.9768-0.9993
o D-median 0.9847-0.9975
9 Normal Set covering 0.9902-0.9994
3 D-median 0.9779-0.9957
g Exponential Set covering 0.9847-0.9938
© D-median 0.9857-0.9963
g Heavy-tailed  Set covering 0.9941-1.0000
— D-median 0.9954-0.9995
- Uniformed Set covering 0.9748-0.9904
° D-median 0.9324-0.9915
._g » Normal Set covering 0.9645-0.9944
S 2 D-median 0.9494-0.9934
> = Exponential Set covering 0.9800-0.9987
s D-median 0.9696-0.9939
5: Heavy-tailed  Set covering 0.9919-0.9976
D-median 0.9939-0.9996
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Table B-2: Sensitivity analysis on delay distributions

Performance  Network size  Clustering methods ~ Ranges of correlation coefficients
metrics
® 3037 Set covering 0.9153-0.9981
‘D D-median 0.9223-0.9978
o 3500 Set covering 0.9483-0.9954
3 D-median 0.9314-0.9827
3 4000 Set covering 0.8855-0.9888
& D-median 0.7872-0.9856
g 4500 Set covering 0.9078-0.9975
< D-median 0.9020-0.9929
n 3037 Set covering 0.9725-0.9977
2 D-median 0.9445-0.9935
= 3500 Set covering 0.9730-0.9970
- D-median 0.9418-0.9932
= 4000 Set covering 0.9764-0.9973
g D-median 0.9426-0.9932
e 4500 Set covering 0.9690-0.9975
D-median 0.9428-0.9932
o 3037 Set covering 0.3786-0.9770
5 D-median 0.6962-0.9858
£ o 3500 Set covering 0.3935-0.9783
23z D-median 0.7124-0.9752
° 3 4000 Set covering 0.3813-0.9788
g ° D-median 0.7064-0.9288
g 4500 Set covering 0.3382-0.9757
< D-median 0.6916-0.9799
z 3037 Set covering 0.9692-0.9941
o D-median 0.9640-0.9942
9o 3500 Set covering 0.8750-0.9978
3 D-median 0.9616-0.9956
g 4000 Set covering 0.9728-0.9923
© D-median 0.9569-0.9888
g 4500 Set covering 0.9714-0.9973
— D-median 0.9748-0.9958
- 3037 Set covering 0.9590-0.9915
° D-median 0.9387-0.9932
._g » 3500 Set covering 0.9858-0.9977
cg D-median 0.9603-0.9925
> = 4000 Set covering 0.9627-0.9843
s D-median 0.9827-0.9968
5: 4500 Set covering 0.9592-0.9955
D-median 0.9827-0.9968
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