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Working memory, the ability to temporarily retain information which will be used to guide

subsequent behavior, is a central component of our cognitive abilities. Almost 40 years ago,

electrophysiological experiments in monkeys established that persistent activity may be the

neuronal substrate of working memory. Many computational models have been proposed

in order to explain persistent activity, with recurrent connections playing a prominent role

in many of these. No model, however, has captured all the important features in working

memory networks. This work presents three related models which seek to understand some

of these features. In particular, the first model explores the formation of firing rate patterns

during the delay period of working memory tasks; the second model explores the dynamics

of working memory networks with reduced inhibition, and their possible role in epilepsy;

the third model explores the formation of temporal sequences and closed loops of activity.

The three models assume the existence of densely connected neural populations (such as

minicolumns), which respond similarly to the same stimuli. Another common feature is the

role of dynamic synapses: the first two models rely on synaptic facilitation, whereas the

third uses temporally asymmetric Hebbian plasticity.
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1.0 INTRODUCTION

The most quoted passage in Neuroscience, is perhaps the following one:

When an axon of cell A is near enough to excite B and repeatedly or persistently takes
part in firing it, some growth process or metabolic change takes place in one or both cells
such that A’s efficiency, as one of the cells firing B, is increased.

These lines, written by Donald Hebb in 1949 [93], were a postulate in a theory which at-

tempted to link neurophysiology and behavior. In that theory, cells firing together would

associate into groups wherein neural activity could reverberate, remaining active for short

periods of time. Those groups of neurons, called cell assemblies, would constitute the basis

of mental representation, and the sequential activation of cell assemblies would be the basis

of thinking [40]. These ideas continue to inspire neuroscientists. The concept of cell assem-

blies is still imprecise, but researchers often used the correlated activity between neurons

to modulate synaptic strength, creating populations of strongly connected cells which can

maintain reverberating activity. The terms Hebbian plasticity or Hebbian learning are used

to refer to these types of mechanisms for synaptic modification. The first direct evidence for

Hebbian plasticity surfaced in 1973 [18] in area CA1 of the hippocampus. It was significant

that this mechanism —which is now known as long-term potentiation, or LTP— was found

in an area shown to be closely connected to spatial learning and episodic memory, and this

motivated various studies to reveal its properties [137]. Hippocampal LTP is only one of the

various forms of long-term synaptic plasticity existing in the mammalian brain. Moreover,

most synapses that can be strengthened by some form of LTP can also be weakened by one

or more forms of an opposite mechanism, called long-term synaptic depression (LTD). A

key concept that has emerged is that excitatory synapses can be bidirectionally modified by

different patterns of activity [37].
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The ideas of Hebbian plasticity and cell assemblies seem to agree with various anatomi-

cal [179,211] and physiological [104] studies, and they give basis to the idea of using roughly

homogeneous neuronal populations in several models. In addition to the densely connected

neural populations which can emerge from neural activity and Hebbian learning, the cerebral

cortex of mammals has been found to present a modular organization, since columns and

minicolumns form accross the cortical layers of developing animals [146]. Thus, neuronal

populations with strong connections and similar response properties can have both ontoge-

netic and epigenetic origins. This creates a strong justification for the exploration of cortical

dynamics when groups of densely interconnected populations are assumed to exist, which is

the main theme of the present work.

One important type of cortical dynamics which has a direct link to behavior is the persis-

tent activity associated with working memory. Lesions in the dorsolateral prefrontal cortex

of primates impair performance in working memory tasks [16, 157], and in the 1970s it was

found that in tasks where the memory of a stimulus had to be maintained during a de-

lay period, neurons in prefrontal cortex and thalamus would maintain elevated firing rates,

presumably retaining the information required for future actions [70]. Further electrophysio-

logical measurements supported this finding [64,65,139,164], and together with lesion, local

inactivation [99, 168], and imaging studies [43], consolidated the role of persistent activity

—particularly by prefrontal cortex neurons— in studies of working memory.

Many modelling studies have focused in replicating the persistent activity observed dur-

ing working memory tasks [51]. Among those studies, one dominant mechanism has been the

sustained activity through recurrent connections in a cell assembly. A large part of the stud-

ies implementing this mechanism have been inspired by the Hopfield model [95], which can

learn patterns through an abstract form of Hebbian learning, and can retrieve them despite

noisy and incomplete cues, displaying the fault tolerance and generalization characteristic

of human memory. The Hopfield model also showed an isomorphism with spin glass sys-

tems, firing up the imagination of many physicists. This might have contributed to the large

amount of work poured into models similar to Hopfield’s, called attractor networks [6, 163].

While attractor networks replicated the qualitative characteristics of prefrontal cortex neu-

rons during delayed response tasks (namely, firing rates that were higher or lower during

2



the delay period), they missed several quantitative features of real neurons, including their

firing rates, and the temporal variations that they would present during the delay periods.

These temporal variations became important with the growing realization that they could

be the indicators of interactions between prefrontal cortex and other brain areas involved in

bridging perception to behavioral outputs [35, 63, 73,171].

Chapter 2 of this work presents a model network [200] which reproduces the activation

patterns observed during the delay period of working memory tasks [171]. There are three

main ideas which allow this model to mimic the variability found in the activity of real

neurons. The first idea is to assume strongly connected neuronal populations, as has been

mentioned above. The second idea is that populations from one region (such as prefrontal

or parietal cortex) send long-range connections to populations in other regions, and these

connections can have either an excitatory or an inhibitory effect [35]. The third idea is

to include calcium-mediated presynaptic facilitation in the long-range connections. Various

forms of facilitation, such as augmentation and post-tetanic potentiation are usually observed

when trains of stimulation appear at high frequencies (10-200 Hz). They often involve an

increase in the probability of transmitter release due to an accumulation of intracellular

calcium in the presynaptic cell [37, Pg 19]. In delayed-response working memory tasks,

the presentation of the stimulus to be remembered elicits high-frequency activity in the cells

which presumably encode it during the delay period; we hypothesize that this activity results

in presynaptic facilitation through a buildup in intracellular calcium, resulting in a transient

memory trace encoded in the synaptic state, which allows a richer set of dynamics, as shall

be shown (a similar assumption is presented in [142]).

The main technical hurdle treated in chapter 2 is to find a parameter set which shows

activity patterns similar to those in experimental recordings. The approach taken is to first

reduce the (800-dimensional) spiking model into a mean-field model with only 3 variables.

This mean-field model is further reduced into 2 dimensions by assuming a steady state in

the calcium dynamics. The resultant 2-dimensional system is not only amenable to phase-

plane analysis, but has fixed points whose structure follows that of the 3-dimensional mean

field model, which in turn is a good description of the mean activity in a homogeneous

network of spiking neurons. By analyzing the 2-dimensional model parameters are found

3



where its nullclines create a bottleneck, whose effect is to generate mean-field activity which

decays slowly after being increased by the high firing rates when the stimulus is presented.

By adjusting the strength of the connections between different populations, each individual

population may or may not present a bifurcation beyond this bottleneck, which allows for a

variety of activation patterns, closely resembling those found in experimental measurements.

The model in chapter 2 only requires two different populations in order to replicate

the activation patterns of real neurons, and up to four populations were modeled. It is to

be expected that in the brain the number of distinct populations would be much higher,

and this could have a significant impact on the dynamics of the network. In chapter 3 we

present an extension of the model used in chapter 2, with a larger number of populations,

but simplified dynamics (calcium is no longer modeled explicitly), and populations which

have coupled inhibitory and excitatory subpopulations.

The larger working memory network used in chapter 3 brings interesting consequences

related to the possible source of pathological states in the brain. Epileptic seizures consist of

periods with increased network excitation and variable propagation, with looping impulses

being a critical factor in generating the hyperexcitability and the recruitment [107,123,190–

192]. On the other hand, working memory networks bring selective persistent activation,

presumably through reentrant connections. The main hypothesis being explored in chapter

3 is that the uncontrolled activity observed in epileptic seizures can originate from the loss

of selectivity in working memory networks due to some process affecting their excitability.

Furthermore, the dynamics of the working memory network in the pathological regime are

such that inputs with a characteristic temporal structure can result in generalized oscillations,

in a manner similar to the onset of reflex epilepsy.

In order to explain the dynamics observed in the model of chapter 3 in the pathological

regime, we once more used the homogeneity in the network in order to obtain models with

reduced dimensionality. We studied a model with two populations using bifurcation analysis.

The attractor structure observed from this analysis provides valuable insights about the

behavior of the full model, as the two population network has dynamics matching those of

the 20-population one. To further understand how this attractor structure is formed we

investigated the dynamics of a single population (which represents the symmetric solution
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of the coupled populations), using the method of averaging and numerical analysis.

The model in chaper 3 presents isotropic all-to-all connectivity among different popula-

tions. While this is convenient for symmetry reductions, an asymmetric connectivity scheme

might be required to produce activity patterns with localized spatiotemporal patterns. If

cortical connections were homogeneous, they could not produce the intricate computations

spanning from perception to behavior. We therefore created a new model where the connec-

tivity between populations can be shaped by inputs external to the network. In particular,

this model uses temporally asymmetric Hebbian plasticity in order to learn to reproduce

input sequences. This model is the subject matter of chapter 4.

Temporally asymmetric Hebbian plasticity occurs when synaptic strength can be up- or

down-regulated depending on the timing of pre and postsynaptic action potentials. One such

mechanism was found experimentaly in 1997 [134], and is known as Spike Timing Dependent

Plasticity (STDP). The study of STDP and its effects is full of unsettled issues. The cellular

mechanisms of STDP are not entirely understood, nor are the effects of more complex spike

trains, or the modulation by other inputs [30]. Accordingly, there are various phenomeno-

logical models of STDP [145], and the particular model used can affect the distribution of

synaptic strengths which is obtained [84,167,178].

The mechanism of STDP is suggestive for the autonomous formation of sequential activ-

ity, and some studies have suggested how feed-forward structures could be created through

it in biologically plausible networks [57, 78, 103, 109, 128]. One thing to notice from these

studies is that some assumption is needed in order to allow the stable autonomous formation

of sequential structure. In [103], sequences can appear beyond chance level when driven by

background activity, but this requires assuming a particular distribution of the axonal delays.

The network in reference [109] can autonomously create synfire-chain structures, but this re-

quires activation and silencing of synapses, as well as pruning the weak outgoing connections

of neurons that have formed enough strong synapses. The model in [128] presents tempo-

rally and spatially sparse activity which circulates through the whole network in response to

a stimulus, and this is achieved through a particular learning rule (presynaptic-dependent

scaling) which tends to induce a target postsynaptic activity in all neurons. The study in [78]

assumes that the changes in synaptic strength are slow enough so that their evolution can
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be described by firing rates and their correlations, and then describes how input correlations

can create a sequential structure in a plastic network. Finally, in [57] it is shown how STDP

can create sequential activity of individual neurons; to overcome the lack of robustness in a

sequence where only one neuron carries the activity at a time, neurons respond with bursts

when driven beyond threshold, and heterosynaptic competition ensures that each neuron

only has one main target after the learning phase.

The model presented in chapter 4 is not exempt from assumptions. In particular, it is

assumed that there are neuronal populations present, and that there is temporally asym-

metric Hebbian learning between them. Assuming the existence of neural populations is not

controversial, but it is unusual to claim that the average of the connection strengths from one

population to another depends on the relative timing of increments in their mean activity.

The biological plausibility of the model hinges on the justification of this last assumption,

and that is the reason why the first part of chapter 4 consists of a quick computational study

which uses networks of integrate-and-fire neurons to illustrate how temporally asymmetric

Hebbian learning could be achieved at the population level. The suggested mechanism for

this takes advantage of the synchrony induced by the strong connectivity inside each pop-

ulation, and will be described in more detail further ahead. The second part of chapter 4

presents a firing-rate model in which populations can reproduce the order in which they were

activated by an input with the right spatiotemporal characteristics.
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2.0 WORKING MEMORY CELLS’ BEHAVIOR MAY BE EXPLAINED BY

CROSS-REGIONAL NETWORKS WITH SYNAPTIC FACILITATION

2.1 INTRODUCTION

Persistent elevation in firing rates of cortical neurons during retention of memoranda has

been suggested to represent the neuronal correlate of working memory [64, 65, 70]. This

activity in so called memory cells (as observed in microelectrode recordings of neurons in

the cortex of primates during the performance of delay tasks) exhibits a number of different

general patterns. One pattern consists of cells whose elevated firing rate persists, on average

across trials of the delay task, at the same rate for the entire period during which information

of the memorandum is maintained in working memory. This type of dynamics represents

the canonical bistable activity which has been a major focus of theoretical and computation

modeling. A second elevated firing rate pattern consists of cells whose rate either decreases

or increases throughout the memory period of a delay task. In decreasing-rate memory cells,

the elevated activity is attuned to the memorandum (cue) of the task, and firing rate decays

as the delay progresses towards the response of the task. In increasing-rate or ramping cells,

elevated activity is motor- or response-coupled, and firing rate accelerates as the response

of a task approaches. These rate-changing pattern cells and their respective networks have

been suggested to represent two mutually complementary and interactive representations en-

gaged in the transfer of information of cross-temporal contingencies from memory to action

in working memory. Cells exhibiting these pattern types have been found to occur anatom-

ically intermixed in the cortex [160], with cue- and response-coupled cells appearing to be

more common than fixed delay rate cells [171]. In addition to these persistently elevated

firing rate patterns, neurons which presumably are constituent members of working memory
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networks exhibit analogous inhibited (below baseline rate) firing patterns. Finally, many

cells exhibit firing rate changes correlated with different working memory task events such

as the presentation of memoranda (cue period) and/or the response of the delay task, but

maintain baseline firing rates throughout the delay period during which the memorandum

is retained in active short-term memory.

While the mechanism(s) by which the patterns of activity are initiated and maintained

in working memory are undetermined, a number of plausible hypothesis have been proposed.

With respect to persistent elevated-rate patterns, prevailing ideas which have emerged from

computational and theoretical studies are that the activity arises as stable states in recurrent

attractor networks [6–11,26,38,50,120,203] and/or inherent cellular dynamics [29,44,45,52,

59, 126, 133, 205]. These studies have had success in reproducing general bistable memory

behavior. For example with respect to network studies, successful working memory behavior

has been attained as defined by achieving persistent increased firing rates of cue-specific

subpopulations of units in networks during the putative memorandum retention period of

simulating delay tasks. A difficulty typically encountered however, is obtaining memory

behavior, as defined within the specific range of frequency rates, statistics, and with the

variability as observed in real neuronal populations of cortical working memory networks

across the range of different persistent patterned behaviors. Neurons exhibiting each of the

different persistent activity pattern types with some overall average frequency do so only

as an average across multiple trials of a working memory task. Individual cells exhibit

a significant amount of variability however, both in terms of firing frequency within and

between trials of working memory tasks and may even exhibit different patterned behaviors

from trial to trial [171]. Thus while cells exhibit one of the given patterns described above

with some overall average firing frequency across many trials (as observed for example in

an average peristimulus time histogram), they exhibit different average firing rates and/or

pattern behaviors from trial to trial of the working memory task.

A potential source of these and other difficulties [170], is that they are examined within

the framework of static synaptic structures. Specifically, the networks have fixed architec-

tures, and are trained such that the strength of the connections between units (the weight

matrices) produce desired memory behavior. Once memory behavior is achieved, the weight
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matrix is held constant. However, the simplification of fixed synaptic strengths may not be

physiologically reasonable in light of the highly dynamic structure of the cortex. Cortical

networks, and their constituent neurons, receive constant input from both external and in-

ternal sources, with learning and plasticity occurring concurrently with behavior. From a

functional standpoint, fixed connection strengths necessarily limits the number of activities

a network can perform, which could be undesirable given the plasticity of cortical function.

Further, the ubiquity of cortical working memory [66] suggests that its associated activity

might not occur in fixed, dedicated networks, but rather may arise from processes present

in networks performing a variety of different functions [69].

Functional architecture is a second consideration of potentially fundamental importance

to the dynamics of working memory networks. Typically, efforts have focused on studying

working memory within the framework of local modules or networks that exist at various

specific or general locations in the cortex. However, while working memory and/or working

memorycorrelated neuronal activity may be maintainable within local networks (or even

cellularly), considerable evidence from neurophysiological and imaging studies have shown

that working memory involves widely distributed cortical networks across multiple cortical

areas [69]. Such a widely distributed architecture, which, if not fundamentally necessary for

producing the firing rate patterns observed in working memory network cells, is probably

active in the modulation of that activity. This modulation might entail not only producing

the specific range of firing rates, but also the range of pattern types.

Recent work has indicated that working memory networks incorporate dynamic synapses.

One study [206] revealed that connections between pyramidal cells in the prefrontal cortex

exhibit facilitation, while others have demonstrated that neocortical synapses undergo sub-

stantial synaptic plasticity following synaptic activity [33,34]. Particularly, it has been found

that cells in certain cortical regions exhibit increased responses to sequences of theta burst

stimulation, both from burst to burst within a given burst sequence, as well as across succes-

sive sequences. Work by Hempel et al., [94], and Galaretta and Henstrin [76] indicated that

cortical synapses can exhibit augmentation (from 15 to 60 percent) that correlates with the

frequency and duration of tetanic stimulation —similar to that frequently observed during

the presentation of memoranda in working memory tasks.
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Several computational efforts have attempted to address various aspects of the issues de-

scribed above. For example, one study demonstrated that persistent activation with realistic

frequencies might be achieved if working memory corresponds to attractor states other than

the low firing-rate background state, and have proposed mechanisms by which such states

might be stabilized [122]. Other work has emphasized the potential role of dynamic synapses

in working memory processes, examining the effects of dynamic synaptic augmentation and

rapid Hebbian plasticity in a recurrent network framework [170]. This work indicated that

synaptic augmentation can reduce the amount of prior structure required for persistent acti-

vation to take place, while rapid Hebbian plasticity could enable persistent activity to take

place within firing rate ranges observed in real cortical neurons. More recent studies have

demonstrated that combinations of synaptic depression and facilitation might extend the at-

tractor neural network framework to represent time-dependent stimuli [13]. Further efforts

have indicated that calcium media synaptic facilitation could produce bistable persistent

activation with firing rate increases typically observed in real cortical cells [142].

While working memory models have mostly concentrated on bistable persistent acti-

vation, some efforts have also addressed the issue of cue- or response-coupled patterns of

activity that steadily increase and decrease during delay periods. For example, graded ac-

tivity in recurrent networks with slow synapses has been modeled [205], while another recent

study examined such activity in uniform recurrent networks with stochastic bimodal neurons

without NMDA-receptor-mediated slow recurrent synapses [153]. This work has indicated

that graded memory activity could be very difficult to produce within a single population

or local module. Still other studies have examined the ability of networks to produce ramp-

ing behavior by maximizing the time the systems trajectory spends around a saddle in the

systems phase space [49]. Other work, while not necessarily producing working memory

cells with firing rate statistics of real cells, has examined networks that produce the types of

general patterns observed in working memory [176,214]. A distributed network architecture

may be crucial in understanding and producing those patterns of activity.

In this work we examine a cortical model of working memory incorporating dynamic

synapses both within a local and a distributed cortical framework. We investigate the mech-

anism of dynamic synaptic facilitation in the generation of all of the different patterns of
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persistent activity associated with working memory and the effect of a distributed corti-

cal architecture on the dynamics of working memory patterns. We first examine a firing

rate model incorporating dynamic synapses representing a working memory network resid-

ing locally in a given cortical area. We analyze the statistics and firing-rate-patterns of this

network during simulated working memory and compare the results with that of real cor-

tical neurons recorded from parietal and prefrontal cortex of monkeys performing working

memory tasks. A reduction of this model to a 2-dimensional system enables an analysis to

completely characterize the states of the system. We then examined a distributed firing rate

model consisting of 2 and 4 locally interconnected networks, analyzing the possible states

as a function of different long-range connectivity schemes and strengths. The expansion

of the architecture to multiple networks allows the incorporation of possible heterogeneity.

We compare the output of these models (local and global architecture) with the activity of

the database of real cortical neurons recorded extracellularly from the prefrontal and pari-

etal cortex of primates performing working memory tasks. The model expands on previous

work examining the ability of population models with dynamic synapses to produce bistable

memory states, or rate changing states (either cue dependent during the stimulus period –i.e.

Barak and Tsodyks [13]– or exclusively rate changing during the delay [49]) to produce all

different patterns (including inhibitory patterns) recorded during the delay period, and that

these patterns can change their temporal features to accommodate a continuum of delay

periods, as well as possessing relative rate changes and statistics as recorded in real cortical

neurons. We also demonstrate that different patterns can occur in a distributed network

concomitantly in a complimentary fashion as observed in the cortex. From the mean field

firing rate model, a spiking network model is obtained whose populations mean firing rate

corresponds to that of the firing rate model. This enables direct comparison of the activity

with real cortical neurons. We examined the effect on unit activity with this spiking network

with a distributed architecture consisting of up to four local networks connected by long

range projections. The patterns and statistics of these spiking networks are analyzed and

directly compared with the range of activities and firing statistics observed in the database of

real cortical neurons. Finally we quantify the variability in spiking unit activity as observed

in real cortical networks, and demonstrate from a nonlinear analysis how this activity arises.

11



The results are compared to that observed in the real cortical cell populations. The results

of this work demonstrates that all of the firing patterns correlated with working memory

are inherently generated in distributed networks incorporating dynamic synapses, and these

exhibit variability and firing rate statistics in agreement with what is observed in the cortex.

2.2 METHODS

We start with a firing rate model of a local network (Figure 2.1A). While the population

might correspond to a network anywhere in the cortex, for convenience for comparison with

the real cortical data, we might associate it with a working memory network in prefrontal

or parietal cortex. The network equation describing the synaptic activity of the population

is given by
ds

dt
=

smin − s

τs
+ F (Cws+ I(t)− θ) (2.1)

where s denotes synaptic activity. The second term in 2.1 corresponds to the firing rate of

the population with the function F(X) given by

F (X) =
1

πτm

√

X

1− e−bX
(2.2)

in which τm is the membrane time constant, and b is a parameter inversely proportional to

the noise. This form of the firing rate function mimics the firing rate of a class I neuron in the

presence of noise (∼ 1/b) [54]. The parameter C in equation 2.1 is the strength of feedback

connections in the population, τs is the decay constant for synaptic activity, w corresponds

to the synaptic facilitation, and θ is the threshold. I(t) corresponds to an external current

which increases during memorandum (cue) presentation in the simulated working memory

task. Dynamic synaptic facilitation (w) is incorporated in the model according to

dw

dt
=

wmin − w

τw
+ γ(wmax − w)

( Ca

Ca0

)e

(2.3)

where τw is the decay constant, γ is a proportionality constant controlling the amount of

facilitation as a function of intra-cellular calcium, and Ca is the calcium concentration. Ca0
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is a reference parameter controlling the level of intracellular calcium at which facilitation

begins to increase. The calcium concentration dynamics are given by

dCa

dt
=

Camin − Ca

τCa

+ F (Cws+ I(t)− θ) (2.4)

where τCa is the decay constant, and F (x) is of the form given in equation 2.2. The above

local architecture of the model is expanded to a distributed one, first through the addition of

a second population, coupled to the first by recurrent long-range projections (Figure 2.1B).

This allows the introduction of heterogeneity into the network as well as representing the first

step towards investigating the effect of a distributed architecture on the dynamics and states

of working memory. The system dynamics are described by the coupled network equations

describing the synaptic activity

dsi
dt

=
si,min − si

τs
+ F

( 2
∑

j=1

Cjiwjsj + I(t)− θi

)

(2.5)

where i = 1, 2 corresponding to the two populations. The two populations can be considered

to reside in different cortical areas (i.e. prefrontal and parietal cortex) or two populations

within the same area. For convenience of description we can consider the populations to

represent networks in different cortical areas, which for purposes of association with the real

cortical data we take as prefrontal cortex (population 1) and parietal cortex (population

2). In these equations then, C12 represents the strength of the projections from prefrontal

cortex to the parietal cortex population, and C21 is the connection strength from the parietal

population to the prefrontal population, while C11 and C22 are the connections strengths

within the prefrontal and parietal populations respectively. Synaptic facilitation is given by

equation 2.3 and Calcium dynamics satisfy equations similar to 2.4 which are:

dCai
dt

=
Cai,min − Cai

τCa

+ F

( 2
∑

j=1

Cjiwjsj + I(t)− θi

)

(2.6)

The distributed architecture is further extended to one consisting of four populations (Figure

2.1C), by recurrently connecting two of the 2-population models above such that every

population has projections to every other population. The system dynamics are given by:

dsi
dt

=
si,min − si

τs
+ F

( 4
∑

j=1

Cjiwjsj + I(t)− θi

)

(2.7)
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where i=1, 2, 3, 4 correspond to the 4 populations, and with analogous extensions of equa-

tion 2.6 controlling the calcium dynamics. In this network each pair of populations (i.e.

populations 1 and 2, and populations 3 and 4) are more strongly coupled to each other than

they are to populations of the other pair. The network can be considered now to represent

two local networks consisting of 2 populations each, residing within different cortical areas

(i.e. prefrontal and parietal cortex). Thus the effects of heterogeneity may be examined,

in addition to the effect of a distributed architecture on working memory dynamics and

states. Particularly it allows the examination of the effect of heterogeneity and a distributed

architecture on the occurrence of “complementary” working memory behaviors indicated by

experiments to be simultaneously present in networks in the cortex.

We begin the analysis first from the single population model. The single population

possesses 3-dimensional dynamics in the variables for synaptic activity (s), facilitation (w),

and calcium concentration (Ca). A reduction of this model to 2 dimensions is achieved by

assuming steady state calcium (dCa/dt = 0) allowing the system to be rigorously analyzed.

While assuming steady state calcium does not have an immediate justification from a neu-

rophysiological standpoint, it produces a system with the same attractor structure as the

3-dimensional system and thus allows the rigorous analysis. We carried out analysis of the

dynamics and the stability of states of the model using XPPAUT [55]. For the 2-dimensional

reduced model we examined the phase portraits (Figure 2.2), from which the fixed points

of the system and their stability were determined. Through this analysis, a range of bio-

logically plausible parameters were determined which generate persistent working memory

pattern types with statistics in the range typical of real cortical neurons (Table 1). These

network parameters were then used in the full 3-dimensional model with dynamic calcium.

For the 3-dimensional model, the fixed points of the system were first examined to determine

coincidence with the 2-D model. Simulated working memory tasks were then run, varying the

magnitude of the facilitation, self connectivity, and the magnitude of the input current. The

firing rate patterns and frequencies exhibited by the model were compared to the types of

patterns and frequencies observed in the database of parietal and prefrontal neurons recorded

from monkeys during performance of working memory tasks in other studies [19,73,213]. A

simulated trial of a working memory task followed approximately the same generic sequence
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Figure 2.1: Schematic diagrams of network architecture of the single population, two population,
and four population models. A) Singlepopulation firing rate model. In the single-population model the
network receives input froman external current I(t) during the cue period of a simulated working memory task.
The synaptic activity S(t), and consequently the firing rate increases from the input of the external current,
resulting in a dynamic increase in its effective self connectivity C11 as a result of a concomitant dynamic change
in synaptic facilitationW1. B) 2-population distributed model. In the distributed 2-population model, 2 local
networks, 1 and 2 are connected recurrently by long-range projections C12 and C21 whose strength is weaker
than the populations self connectivity C11 and C22. Both populations receive input from an external current I(t)
during the cue period of simulated workingmemory task. This results in changes in their respective population
firing frequencies along with changes in their effective long-range projections and self couplings through dynamic
facilitation. In the spiking unit version of the model, populations 1 and 2 consist of networks of 100 (or 1000)
spiking units each with all-to-all connectivity. C) 4-population model. In the 4-population model, four local
networks (1, 2, 3, and 4) all receive input from an external current I(t) during the cue period of the simulated
working memory task. Each local population receives input from self connectivity, and weaker input from the
long-range projections from the other populations. Long-range projections between the population pair 1 and 2,
and between the pair 3 and 4 (i.e. C12, C21, C34, and C43) are stronger than the connection strength between
populations 1 and 3 or 4, or between 2 and 3 or 4. In the spiking unit version of the model with 200 units, each
population corresponds to a network of 50 spiking units with all to all connectivity. In the spiking unit version
of the model with 2000 units, each population corresponds to a network of 500 units with all to all connectivity.
The strength of the connections is scaled such that the total strength of connectivity to units is the same as the
200 unit network.
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as that for which the single neuron database was acquired. The simulated task consisted

of a 20-second baseline period (during which the population was in a baseline firing fixed

point), followed by a 300-ms sample cue period corresponding to the period during which a

memorandum was presented. After the cue period, a 12 second delay period followed. We

did not consider in this study a behavior/motor response period following the delay, but

rather restricted our analysis to the network behavior during these first 3 temporal aspects

of the working memory task. To analyze the firing rate patterns and firing rate statistics of

the model, peristimulus time (PSTH) histograms were generated and analyzed over a range

of values of the self connectivity and facilitation. In addition, the phase diagram of different

possible pattern states occurring over a range of values of the self connectivity and maximum

synaptic facilitation were examined. For the single population model, PSTH histograms and

phase diagrams were also generated for different values of dynamic synaptic depression and

self connectivity, and the resulting patterns and firing rates were analyzed. Synaptic depres-

sion was incorporated by allowing the parameter for maximum facilitation (wmax) to range

over values less than the value of the baseline facilitation (wmin) in equation 2.3.

For the distributed 2-population model, the parameters used were within the ranges de-

termined and used in the single population model, and simulated working memory trials were

conducted following the same course as that used for the single population model. Firing

rate patterns and statistics of both populations were analyzed over a range of the inter-

population connectivity values. PSTH histograms were generated to analyze the firing rate

patterns and statistics. Phase diagrams of the firing rate patterns occurring in each popula-

tion were generated as a function of the inter-population connectivity strength. An analysis

of the behavior of the entire network was carried out through an examination of the possible

pattern types occurring concomitantly in the two populations. This analysis was carried out

by examining overlapping patterns in the phase diagrams of the two populations. For the

distributed 4-population model, the parameters for each population were within small ranges

of those determined and used in the preceding single- and 2-population models. Simulated

working memory trials were conducted following the same previous course as well. Firing

rate patterns and statistics occurring in all four populations were analyzed and compared to

the activity of the real parietal and prefrontal neurons. Phase diagrams were generated of
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Figure 2.2: Phase portraits and bifurcation diagrams of the single population reduced model
obtained for different values of the self connectivity C11 and the maximum facilitation wmax

The reduced 2-dimensional model is obtained at steady state calcium concentration (dCa/dt = 0). Shown in the
phaseplane are the nullclines for Facilitation (w) and synaptic activity (s). A) Nullclines with self connectivity
C11 = 4.8. The stable nodes of the system are where the nullclines cross. Here there is a single fixed point (solid
black dot) corresponding to the baseline state. The trajectory of the system during a working memory task is
indicated by the black line with an arrow. During the sample period, the applied current I(t) raises the synaptic
activity, and firing rate, with a concomitant rise in the facilitation (approximately 33% increase). After a 300 ms
cue period, I(t) becomes 0, and synaptic activity rapidly decreases towards the facilitation (w) nullcline, and the
bottleneck. Because of the bottleneck, the trajectory then returns very slowly along the path of the facilitation
nullcline towards the stable baseline state. In the present example, the synaptic activity and consequently the
firing rate is still above the stable baseline rate at the end of the 10-second delay period, as indicated by the
termination of the trajectory line. The system therefore maintains an increase from its baseline firing rate for the
duration of the delay period. A continuum of elevated delay rates occur for different values of the parameters.
B) w and s nullclines of the single population network with C11 = 5. Note there are now 3 fixed points where
the nullclines cross: 2 attracting (black dots) and one saddle (white dot). C) Possible system trajectories of
the network in (B) with C11 = 5. The saddle separatrix is indicated by the blue line. Two different possible
trajectories of the system are shown which result from varying the magnitude of the external current I(t). For
I(t) = 0.5 the trajectory does not cross the saddle separatrix and stays in the basin of attraction of the baseline
state. In this case, given sufficient time the system returns to the baseline stable state. The resulting pattern of
behavior is that of cuecoupled or decaying memory cells. For I(t) = 0.75 the trajectory cross the saddle separatrix,
entering the baseline of attraction of the higher firing rate stable state. The system for this trajectory is shown
to be in the higher firing rate state by the end of the delay period. The resulting pattern of behavior is that of
response-coupled or ramping cells. In both cases the bottleneck can be adjusted such that the rate at which the
system returns to the baseline state, or approaches the higher firing state can be arbitrarily slow, resulting in a
continuum of different average firing frequencies during the delay, and apparent bistability at frequencies between
the two stable fixed points. D) Phase portrait with C11 = 5.2. The system again possesses a single stable state
at a higher rate than in (A). E) Bifurcation diagram of steady state synaptic activity as a function of maximum
facilitation (Wmax). Curves shown are for Wmax equal to 0.925, 1, and 1.25 (producing synaptic facilitation
in the 3060% range). Solid lines indicate stable fixed points, hashed lines are unstable fixed points. Note that
3 fixed points are present over a wide range of the facilitation. F) Bifurcation diagram for the parameters of
maximum facilitation wmax and the threshold θ. The curves correspond to the limit points at different values of
these parameters. The two branches of the limit points meet at a cusp point. For the region interior to the two
curves there are three rest states and bistability, and outside them there is a single rest state and monostability.
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Table 1: Model parameter values obtained from analysis of the reduced 2-dimensional network. These parameters
are used in all of the local and distributed networks.

Network Parameters

Mean wmax 1

Std. Dev. wmax 0.02

wmin 0.6

γ 8

τw 2

τs 0.05

τCa 0.5

β 0.5

smin 0.3

e 6

Ca0 82

Camin 8

amp 0.2

θ 1.2

τm 0.03
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Table 2: The mean values of connection strength between populations in the 2- population models. These values
were used in the firing rate model, and also represent the mean connectivity strengths between units of different
populations in the spiking model. The standard deviations for each of the mean connection strengths are given
in parenthesis.

Mean connectivity, 2 populations

from A from B

to A 0.05 (0.01) -0.00134 (0.001)

to B -0.0145 (0.04) -0.057 (0.005)

the different firing rate patterns occurring in the populations as a function of different inter-

population connectivities. An analysis of the behavior of the entire network was carried out

through an examination of the possible different pattern types occurring concomitantly in the

different populations. This analysis was carried out through an examination of overlapping

states in the phase diagrams of the four populations. Resulting behaviors were compared

with that of the 2-population model. Having determined the dynamics through the study of

the firing rate models, spiking models were generated to make direct comparison with the

single unit data. Spiking model versions of the 2- and 4-population firing rate models were

generated by replacing the populations activities first with networks of 200 spiking units

exhibiting the same overall mean firing rates. The network consisted of spiking neurons with

all-to-all connectivity and random strengths. Connections between populations were both

excitatory and inhibitory. Specifically, mean connectivity values were chosen from regions of

the phase diagrams of the mean field model in which the range of memory cell pattern types

were robustly exhibited. These connectivity values were then used as the values for setting

the mean of the connectivity in the spiking model. Distributed spiking networks consisting

of two populations of 100 units each, and four populations of 50 units each were generated

with the average inter-area connectivity chosen to match the mean field model values within

ranges of the standard deviation (Tables 2 and 3).

The spiking activity of the single units was modeled as theta neurons [54,96]. Unit firing

frequency as a function of the injected current (F-I curve) can be obtained analytically in

the theta model. This F-I curve is a square root function which provides a correspondence

between the firing rate model and the theta model. The F-I curve for the theta model is
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Table 3: The mean values of connection strength between populations in the 4- population models. These values
were used in the firing rate model, and also represent the mean connectivity strengths between units of different
populations in the spiking model. The standard deviations for each of the mean connection strengths are given
in parenthesis.

Mean connectivity, 4 populations

from A from B from C from D

to A 0.101 (0.004) 20.0012 (0.003) 20.0014 (0.001) 0.0005 (0.001)

to B 20.0462 (0.003) 0.1405 (0.003) 0.0011 (0.0001) 0.0002 (0.003)

to C 20.0003 (0.003) 20.0001 (0.003) 0.1025 (0.004) 20.0034 (0.004)

to D 0.0003 (0.003) 0 (0.001) 20.036 -0.036 (0.003) 0.132 (0.003)

described by

f(I) =
1

π

√
I

whereas the curve for the mean field firing rate model is

f(I) =
1

πτm

√

I − θ

1− e−b(I−θ)

thus obtaining the correspondence between the mean field and spiking models (as the pa-

rameter b goes to infinity the above expression becomes the F-I curve for the theta model

with an additional threshold). The membrane potential dynamics of a unit in the spiking

model is given by the equation

dxj

τm
=

(

(

1− cos(xj)
)

+
(

200
∑

k=1

Ckjwksk + I(t) + amp σj − θj

)

(

1 + cos(xj)
)

)

(2.8)

where I(t) is an external current occurring during the presentation of memoranda, and amp

is the amplitude of the Wiener noise. The synaptic activity of a unit sj in equation 2.8

increases with each afferent spike according to

dsj
dt

=
smin − sj

τs
+ β

∑

m

δ(t− tmj ) (2.9)
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where β corresponds to the increase in synaptic activity from a single afferent spike, tjm is

the time of incidence of the mth afferent spike on the jth neuron, and τs is the decay constant.

The dynamics of the synaptic facilitation wj in equation 2.8 is given by

dwj

dt
=

wmin − wj

τw
+ γ(wmax − wj)

(

Caj
Ca0

)e

(2.10)

where Ca corresponds to the intracellular calcium concentration which modulates the change

in facilitation and increases with each spike according to

dCaj
dt

=
1

τCa

(

−Caj + ε
∑

m

δ(t− tmj )
)

(2.11)

The 2-population spiking network consisted of two “local” networks of 100 neurons each

with all-to-all connectivity, and with average weaker recurrent connectivity between popu-

lations than within the populations. The activation properties of each individual network

reflect that of the single populations of the firing rate models.

For the 2- and 4-population spiking networks, working memory task simulations were

conducted similarly to those for the firing rate model, and the firing rate patterns and

statistics were analyzed. During the baseline period of the simulated working memory task,

facilitation in the models was kept low such that the firing rate of the populations was

near the baseline fixed-point attractor state inherent in the model (as determined from the

phaseplane analysis of the firing rate model). After 20 seconds, the baseline period ended and

an external current I(t) was applied for 300 ms. The external current raises the firing rate of

many units in the populations, simulating the activity observed during presentation of the

memorandum in working memory tasks. The current input and increased firing rate triggers

dynamic facilitation through equations 2.9,2.10,2.11. After the cue period, the delay period

begins. For the spiking model simulations, unit activity was analyzed over an 11-second

delay period which is proportional to the delay period of the working memory tasks during

which the parietal and prefrontal cells of the database were recorded. PSTH histograms of

units were generated to analyze the patterns and firing rate statistics of the units. Average

PSTH histograms were generated for each unit over 10 simulated working memory task

trials. Pattern types appearing in the average PSTH histograms were determined and the

distribution of patterns in the network were compared to the distribution of patterns observed
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in the parietal and prefrontal neuron populations of the database. Variability in working

memory patterns occurring across trials for each unit was analyzed and compared between

the 2- and 4- population networks and the neuronal populations.

To examine the effect of network size on patterns exhibited in the networks across trials

and their variability, we generated 2- and 4-population networks consisting of 2000 spiking

units. For these networks the distribution of pattern types exhibited on each of 20 simulated

working memory task trials was obtained and the average distribution across all 20 trials

was determined. These distributions were compared to the distributions obtained with the

200 unit networks as well as that observed in the parietal and prefrontal neuron populations

of the database. Variability in firing rate within trials was determined through an analysis of

the coefficient of variation (CV) of the ISIs during the baseline and delay periods. Variability

in working memory patterns occurring across trials for each unit was analyzed and compared

to that observed in the 2- and 4-population networks of 200 units.

The database with which the different models activity is compared consists of 812 neurons

recorded extracellularly from the parietal cortex (Brodmann areas 2, 3, 5, 7) and prefrontal

cortex (areas 6, 8, 9 and 46) of monkeys performing working memory tasks. In parietal cortex,

521 cells were recorded from monkeys during performance of a haptic delayed matching-

tosample task [213], and in prefrontal cortex, 291 neurons were recorded from monkeys during

the performance of a cross-modal audiovisual delayed-response task [19, 73]. The analysis

of this database and the compilation of its statistics in terms of firing rates, patterns and

statistics have been presented elsewhere [171].

2.3 RESULTS

2.3.1 Single Population Model

The reduced single-population model is 2-dimensional (in the variables s and w for synaptic

activity and facilitation respectively) and thus phaseplane and numerical analysis was carried

out. The nullclines of the system (Figure 2.2) correspond to the curves along which the
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synaptic activity and facilitation are constant (ds/dt = dw/dt = 0). The steady states of

the system are defined by the points at which these 2 curves intersect. For sufficiently low

self connectivity strengths (or low maximum facilitation), only one such point is present,

corresponding to the baseline firing rate of the population (Figure 2.2A). Stability analysis

reveals this is an attracting fixed point. Thus transient perturbations from the external

current during the sample period (resulting in increased synaptic activity, firing rates and

facilitation) ultimately relax back to this state. As the self connection strength (or amount of

facilitation for a given input current) is increased, the W-nullcline intersects the S-nullcline

at 3 points (Figure 2.2B). Stability analysis reveals that 2 of these nodes are attracting fixed

points, and one is a saddle node. The presence of a stable state corresponding to baseline,

and a second stable state corresponding to an above baseline firing rate, enables bistable

behavior, although the difference in firing rates associated with these states is much larger

than typically observed in cortical data over much of the parameter space. For example,

in the subpopulation of memory cells recorded from the parietal cortex, 90.1% of the cells

exhibited increases from baseline to delay of less than 10 Hz, and 69.9% of frequency changes

were less than 5 Hz. In the subpopulation of memory cells recorded from prefrontal cortex

100% exhibited increases of less than 10 Hz, and 95.2% were less than 4 Hz. Persistent

elevated firing rates within these ranges typically observed in cortical data is inherently

prevalent in the model without incorporating many of the previous mechanisms providing

solutions for acquiring that behavior (see for example Latham and Nirenberg, [122]; Barak

and Tsodyks [13]; Mongillo et al., [142]). An essential feature of the model allowing this

behavior is the presence of a bottleneck which appears in the phaseplane near the s and

w nullclines corresponding to regions of greatly diminished rates of change for the dynamic

variables. Further, a bottleneck is present over a broad range of the parameter space, and its

presence is not dependent on fine tuning of parameters. The bottleneck comes about because

the equations of the system are a continuous map approaching zero when the nullclines are

close to each other in phase space. Thus as shown in Figure 2.2, the values of ds/dt and

dw/dt are reduced in those areas. There are two factors in the decay rate which include

the bottleneck and the value of the time constants. While the presence of a bottleneck is

not a result of the difference in time constants (but rather the shape of the nullclines), in
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the present system the shape of the nullclines has a dependence on the value of the time

constants, and thus the slower rate change in w than s contributes both in terms of the

bottlenecks existence via nullcline shape, as well as acting to slow decay of its own accord.

Thus both contribute to the slower decay. Because of the bottleneck however, the “effective

time constant” or rate of decay is much slower than would be predicted from the actual time

constants. When the firing rate is elevated above baseline by an external current during the

cue period, facilitation also increases. The trajectory in the phaseplane is such that passing

through the bottleneck, the return of the system to the baseline stable state (or procession

to the higher firing rate attractor state) is “impeded”. Thus while not in a stable state, the

system remains in a state of elevated (above baseline) firing frequency for an extended period

of time, which can be virtually indefinite. Over a wide range of values of the parameter space,

the decay to one of the stable states of the system is sufficiently slow such that no significant

change in elevated firing rate is observed for the duration of the putative memory period.

From the frame of reference of the memory task, this activity appears as bistable. In contrast

to actual bistability of the model however, the difference in firing rates between baseline and

delay periods for this apparent bistability can adopt a continuum of values within the range

typically observed in real cortical cells (i.e. differences between baseline and delay rate less

than 100% of baseline or typically < 5 Hz). This is also true of both the decaying memory

cell and ramping cell behavior (the ramping up behaviors may occur in cells inhibited by cells

ramping down, or by entering the basin of attraction of the higher fixed point). The range

of facilitation values over which the different firing rate behaviors occur is affected by the

value of maximum facilitation parameter. This parameter (and the threshold θ) significantly

determines the fixed points of the system (where the facilitation nullcline intersects the

synaptic activity nullcline). While this parameter is varied over a large percentile range (i.e.

several hundred percent), the resulting change in actual facilitation realized by the network

is within the range of 10% to 60%–within the range of reported increases (for example see

Hempel et al. [94]).

We next analyze the stability of the attractor states of the network as a function of

the threshold parameter (Figure 2.2E,F). The bifurcation diagram reveals that the 3 fixed

points of the system (two stable nodes and one saddle point) are present over a wide range
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of this parameter. For parameter values where the trajectory remains below the stable

manifold (within the basis of attraction of the baseline node), the system ultimately returns

to that attractor state. For parameter values in which the trajectory travels above the stable

manifold (into the basin of attraction of the stable node corresponding to the higher firing

rate), the system approaches that second stable state.

Having determined the states of the 2-dimensional system, we next use the parameters

of this 2-dimensional network (Table 1) in the 3-dimensional model with dynamic calcium.

An analysis of the attractor states reveals that the 3-dimensional system retains the same

attractors as the 2-dimensional system. Figure 2.3 shows PSTH histograms of the model

during the simulated working memory task. These histograms show that the activity patterns

observed in the trajectories of the phase portraits of the 2-dimensional model are present.

Particularly this analysis shows that the network inherently exhibits the range of excitatory

and inhibitory patterns correlated with working memory for different values of facilitation

and self-connectivity. For values of facilitation (or input strength and/or duration) such

that the trajectory of the system stays below the separatrix in the basin of attraction of

the baseline attractor state, the population can exhibit persistent activity which decays

towards baseline throughout the delay (Figure 2.3A). The achievable increases in firing rate

from baseline to delay can take on low values (i.e.<5 Hz) and can adopt any rate within a

continuum. The rate of decay of the persistent activation towards baseline is also variable

along a continuum. For a range of trajectories and parameter values, the decay in firing rate

during the delay can become slower and slower, to the point that the population approaches

for all intents and purposes bistable behavior (Figure 2.3B). Once again, the increase in

firing frequency during the delay can occur along a continuum. For sufficiently low values

of facilitation, the population exhibits a non-responsive pattern (Figure 2.3C). That is the

trajectory returns to baseline firing rates immediately following the cue. Thus the population

responds to working memory events (i.e. the cue), but exhibits baseline rates throughout

the delay. As facilitation increases (or the input strength/duration increases) such that the

trajectory proceeds beyond the separatrix, the pattern becomes that of a ramping increase of

firing rate during the delay period (Figure 2.3D). For sufficiently large values of facilitation,

the system quickly adopts the higher firing rate attractor state, thus exhibiting bistability
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(with differences between baseline and delay period >10 Hz for most parameter values).

Dynamic synaptic depression can be introduced into the network rather than facilitation for

values of maximum facilitation (wmax) that are less the background value (wmin) in equation

2.3. For sufficiently small values of synaptic depression, as was the case for facilitation, the

network exhibits the non-responsive pattern. As synaptic depression is increased the network

exhibits the inhibitory pattern which is the mirror image of decaying memory cells (Figure

2.3E). As was the case for the excitatory memory cells, the decay back to the baseline state of

the inhibitory pattern can be slowed to the point where the population exhibits an apparent

fixed rate inhibition pattern (Figure 2.3F).

Figure 2.4 shows the phase diagram of the firing rate patterns of this model as a function

of facilitation strength and self connectivity strength. It can be seen that the different

excitatory patterns observed in the cortical data are produced (decaying memory, bistable

memory, and ramping cells) over a wide range of parameters. As is the case in the cortical

data, the non-responsive pattern behavior is the most prominent pattern type across the

parameter space. For the case of synaptic depression, the decaying inhibition pattern occurs

prominently over a range of parameters in addition to the non-responsive pattern. Notice

that the properties of this phase diagram could change depending on other parameters, and

on the properties of the stimulus.

The mechanism for the behaviors illustrated can be understood from the stability analysis

and examination of the phaseplane (Figure 2.2). In all cases the firing rate begins at the lower

attractor state with low values of facilitation. The input of current increases the synaptic

activity s, and therefore firing rate and subsequently the facilitation w increases. If the self

connectivity, facilitation or magnitude of the external current is sufficiently low such that

the trajectory of the system does not cross the saddle separatrix, the trajectory is such that

s quickly decreases until it approaches its nullcline. Here the trajectory proceeds such that

it approaches the baseline stable attractor along the path of that nullcline. However, the

bottleneck through which the trajectory proceeds slows the rate of return to the baseline

state. The bottleneck can slow that rate such that the trajectory is impeded to the point that

firing rate appears bistable with respect to the duration of the memory period of the task.

As self- connection strength, synaptic facilitation or external current magnitude is raised
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Figure 2.3: PSTH histograms of the single population firing rate model during the simulated
working memory task. Different patterns correlated with working memory are obtained for different values
of the facilitation (or depression) and the magnitude of the input current during the cue period. A) Decaying
memory cell behavior. The baseline frequency is approximately 6 Hz, and at the beginning of the delay period the
firing rate is approximately 9 Hz. The firing rate has returned to the baseline level by the end of the delay period.
Average increase in firing rate from baseline to delay period is approximately 1.5 Hz. B) Apparent bistable memory
cell behavior. The delay firing rate does not correspond to a stable state, but the decay towards the baseline state
is sufficiently slow so that no significant decrease in firing rate occurs by the end of the period. The baseline firing
rate is approximately 6 Hz, and the delay period firing rate is approximately 10 Hz. C) Nonresponsive pattern
behavior. The population responds during the presentation of the cue, but immediately returns to and maintains
the baseline firing rate during the delay. D) Ramping response-coupled cell behavior. The baseline frequency is
approximately 6 Hz, and at the beginning of the delay period the firing rate is approximately 9 Hz. The firing rate
adopts the rate of the higher fixed point attractor by the end of the delay period. Average increase in firing rate
from baseline to delay period is approximately 6.5 Hz. E) Decaying inhibited pattern. In this example the value
of maximum facilitation is less than the background facilitation, resulting in dynamic synaptic depression. The
baseline frequency is approximately 6 Hz, and at the beginning of the delay period the firing rate has decreased to
approximately 2.5 Hz. The firing rate has returned to the baseline rate by the end of the delay period, mirroring
the decaying memory cell activity observed in (A). Average decrease in firing rate from baseline to delay period is
approximately 1.75 Hz. F) Apparent stable inhibition. The delay firing rate does not correspond to a stable state,
but the decay towards the baseline state is sufficiently slow so that no significant decrease in firing rate occurs by
the end of the period. The baseline rate is approximately 4.5 Hz, and the delay period firing rate is approximately
1 Hz. Every pattern observed in the cortical database as reported in [5] is observed with the exception of delay
inhibition that increases throughout the delay period.
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Figure 2.4: Phase Diagram of different patterns exhibited by the single population model as
a function of the maximum facilitation parameter and self-connectivity. Left: Patterns exhibited
with dynamic synaptic facilitation. Actual facilitation is less than the maximum facilitation parameter and falls
within a physiological reasonable range (1060%). Right: Patterns exhibited with dynamic synaptic depression
which takes place when values of Wmax are less than the baseline level (Wmin). Pattern activity was determined
by examining the firing rate activity during 3 periods of the working memory task: the first 5 seconds of the delay
period (D1) immediately following the cue, the second 5 seconds of the delay period (D2), and the last 5 seconds
of the baseline period (B) immediately preceding the cue period. Significant differences were taken to be present
if the absolute difference between any two periods was greater or equal to 0.5 Hz, which is approximately the
lower limit of significant differences observed in the real cortical parietal and prefrontal cells. Fixed rate memory
cell behavior consisted of activity in which the absolute difference in average firing rate between D1 and D2 was
less the 0.5 Hz, while both those periods exhibited an average firing rate greater or equal to 0.5 Hz above the
baseline rate. Ramping cue-coupled cell behavior consisted of activity in which D2 exhibited an average firing rate
greater or equal to 0.5 Hz above that of D1, and the firing rate of D1 was greater or equal to that of B. Decaying
memory cell behavior consisted of activity in which D1 exhibited an average firing rate greater or equal to 0.5 Hz
above both B and D1. Nonresponsive cell behavior consisted of activity in which the difference between any of
the periods (B, D1, and D2) was less than 0.5 Hz. Decaying inhibition cell behavior consisted of activity in which
the average firing rate during D1 was at least 0.5 Hz less than that exhibited during B and D2.
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beyond a critical point such that the systems trajectory goes beyond the saddle separatrix

in the phaseplane, the system approaches the second stable state which corresponds to an

above baseline firing rateresulting in ramping or response-coupled cell pattern behavior.

Once again the rate of this increase is affected by the bottleneck, and may be arbitrarily

slowed such that the firing rate appears bistable with respect to duration of the memory

period of the task. This phenomenon exists for a broad range of parameter values. Thus the

inherent bistability in these cases is critical in modulating patterned memory behavior, but

does not in many cases in and of itself represent the memory states. Rather the activation

of the network itself could represent active working memory.

2.3.2 2-Populaton Firing Rate Model

We next analyze the behavior of a 2-population network, recurrently connecting two of the

single populations. This model is 6-dimensional and thus cannot be easily reduced and

analyzed as was the case for the single population model. We analyze the patterns and

statistics through the PSTH histograms (Figure 2.5) and the phase diagrams (Figure 2.6)

of pattern types as a function of the strength and sign (i.e. excitatory or inhibitory) for the

net effect of the inter-population projections. The phase diagrams enabled the examination

of possible concomitant activities in the different networks.

Inhibition, in addition to excitation, is incorporated in the mean field 2-population model

via the inter-area projections between populations. While long-range projections in the

cortex are excitatory, inhibition is examined as well according to the assumption that the

majority of the long-range projections may project either to inhibitory or excitatory interneu-

rons. Thus the net effect of these projections can be excitatory or inhibitory. We analyze

the behavior of the network for different possible interpopulation connectivity schemes (i.e.

excitatory-inhibitory (E-I), and inhibitory-inhibitory (I-I) ). Slightly different values for self

feedback connections strengths within the two populations were chosen.

As was the case for the single-population model the PSTH histograms reveal that the 2-

population model exhibits the excitatory patterns of memory and decaying-rate or ramping

cells with a continuum of rate differences. The inclusion of inhibitory connections results
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Figure 2.5: PSTH histograms of activity exhibited by the 2-population firing rate model at
different values of the inter-area connectivity. All general patterns in the cortical data as reported in [5]
are exhibited by the network, with frequencies in the range of the real data. Firing pattern behaviors shown are
A) decaying memory cell, B) Stable memory cell, C) Set cell D) Decaying inhibition cell, E) Stable inhibition cell,
and F) ramping inhibition cell.

in the presence of parameter ranges in which all of the inhibitory patterns (mirroring the

excitatory ones) occur. These inhibitory patterns can occur purely as a function of inhibitory

inter-population connectivity, without incorporating dynamic synaptic depression as was the

case for the single population. In addition the inhibitory pattern of increasing inhibition

throughout the delay (mirroring the excitatory ramping cells) which was absent in the single

population model, now can occur (Figure 2.5F).

In the phase diagrams of the 2-populations (Figure 2.6A) it can be seen that all of the

patterns of memory behavior occur over broad ranges of the parameters, and thus without

fine tuning, in both populations. As in the single population model, the non-responsive

type is the most prominently occurring pattern across the parameters, followed by decaying

memory cells and ramping cells. Less commonly occurring types are fixed rate memory cells

and the inhibitory mirror images of the excitatory patterns. While all the patterns occur

over a broad range of parameters, the specific patterns present over given ranges varied

considerably between populations. Thus many specific complementary patterned activities

occurred simultaneously in both populations only over small ranges of the parameters, and

thus some degree of fine tuning is necessary to achieve particular overall network behaviors.
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Figure 2.6: Phase diagrams of the patterns exhibited by the 2- and 4-population firing rate
models. The phase diagrams were created using the same procedure carried out for the generation of the phase
diagram of the single-population model. A) Phase diagrams of the activities of the 2-population model as a
function of the inter-population connectivity. Left: Phase diagram of population 1. Right: Phase diagram of
population 2. The self connectivity of population 2 (0.9) is slightly less than population 1 (1.0) so that the
phase diagrams of the two populations are not identical. Excitatory-Inhibitory (E-I) and Inhibitory-Inhibitory
(I-I) connectivity architectures between the populations are examined. The pattern category other corresponds
to decaying or ramping cell behavior in which the average firing rate of one period of the delayD1 or D2is
significantly less than the baseline (i.e. at least 0.5 Hz less than the firing rate during the period B), while the
other is significantly greater (i.e. at least 0.5 Hz greater than the firing rate during the period B). Note that all
of the pattern types (excitatory, inhibitory and nonresponsive) are obtained over a wide range of the parameters.
B) The overlapping simultaneously occurring patterns in the 2 population network across the range of inter-
population connectivity values. The figure shows the 1 and 2 populations (left and right phase diagrams of panel
A to the left) phase diagrams superimposed on each other. The 1-population states are shown as solid, and the
corresponding 2-population states are shown in outline. Discrete regions of the overlapping phase diagrams reveal
simultaneously occurring network behaviors observed in cortex during working memory. Included is simultaneous
occurrence of decaying memory behavior in both populations (red-red overlap), and stable memory behavior in one
population and ramping cell behavior in the other (blue-green overlap). Also common network behaviors observed
are the simultaneous occurrence of the excitatory patterns in one population and the nonresponsive pattern in
the other. Inhibitory patterns tend to occur in one population primarily with ramping cell behavior in the other.
C) Phase diagrams of the activities of the 4-population model as a function of the inter-population connectivity.
Upper left: Phase diagram of population 1. Upper right: Phase diagram of population 2. Lower Right: Phase
diagram of population 3. Lower Right: Phase diagram of population 4. All the pattern types are exhibited by the
network. However, the populations partition themselves such that they exhibit almost exclusively either excitatory
or inhibitory memory patterns across the values of interpopulation connectivity. D) Simultaneously occurring
patterns in populations 1 and 2, and in populations 3 and 4. E) Simultaneously occurring patterns in populations
1 and 3. The figure shows 1 and 3 (excitatory) populations phase diagrams superimposed on each other. Over
a significant range of the parameters, memory cell behavior and ramping cell behavior co-occur (red and green
overlap). The existence of such simultaneous population behavior has been indicated in prefrontal cortex. Memory
cell behavior is also seen to simultaneously occur in multiple populations across a wide continuous range of the
parameter space (red-red and redblue overlap).
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For example, as can be seen in the overlapping phase diagrams (Figure 2.6B), attaining

memory cell behavior simultaneously in both cortical locations, or attaining complemen-

tary cue-coupled/ response-coupled behavior, requires the connectivity of the network to be

restricted to relatively small specific ranges of inter-population connectivity values.

2.3.3 4-Population Firing Rate Model

We next consider the effect on the states of the network when the model is extended to 4 pop-

ulations. In the 4-population model all of the patterned activities continue to be present over

a continuum range of increases and decreases in firing frequencies. However the distributed

architecture results in a “specialization” of pattern activity within specific populations. As

can be seen in the phase diagrams (Figures 2.6C,D) each local network (populations 1–4)

exhibits the non-responsive pattern and almost exclusively either the excitatory or inhibitory

memory patterns across the range of connectivity strengths. A result of this specialization

or partitioning of pattern types between the local networks is that, in contrast to the 2-

population model, simultaneous complementary pattern behaviors occur far more robustly

across wide parameter ranges. Thus for example attaining memory cell behavior simultane-

ously in multiple cortical areas, or attaining complementary cue-coupled/response-coupled

patterned behavior does not require fine tuning to a small restricted range of connectivity

values (Figure 2.6E).

2.3.4 Spiking Unit Network: 2-Population Model

We next examine the statistics and dynamics of the spiking version of the distributed mean-

field models. In the spiking network version of the 2-population mean field model we first

replace the populations with two networks of 100 spiking units each, whose activity averaged

across units approaches the activity of the populations in the mean field model (Figure

2.7). We first analyze the range of memory pattern types in the spiking networks during

simulated working memory tasks. Average PSTH histograms over 20 simulated trials of a

working memory task were generated and examined for each unit in the network (Figure

2.8). The pattern types and statistics in these units can be directly compared to those
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Figure 2.7: PSTH histogram of the single-population firing rate model (left) and the corre-
sponding average spiking unit activity in a network of 50 units obtained from the spiking
model (right). Note the general pattern is the same in both networks.

occurring in the database of real parietal and prefrontal cells. The results show that within

the populations, the range of excitatory and inhibitory patterns occur, in addition to the non-

responsive pattern. The average baseline frequencies, delay frequencies and deltas (changes

in frequency from baseline to delay period) exhibited by the units for each pattern fall within

ranges observed in the real parietal and prefrontal cells (Table 4). Figure 2.9A (left) shows

the distribution of patterns types exhibited by all 200 units of the 2-population spiking

network. The most commonly occurring pattern was the non-responsive pattern, followed

by the excitatory patterns, and finally the inhibitory patterns. This relative distribution

of pattern types is consistent with what is observed in both parietal and prefrontal cell

populations (Figures 2.9B left and right). This distribution also correlates with the areas of

the parameter space over which each of the patterns occurred in the phase diagrams of the

2-population model.

As is the case in real cortical cells, the specific pattern exhibited by a unit in the spiking

network in any given trial can vary from the predominant pattern observed in the average

PSTH histogram [171]. That is, the pattern that a unit (or real cortical cell) is classified

as exhibiting, as determined from the average PSTH pattern, might not be exhibited on

some subset of trials. This includes exhibiting different excitatory patterns from trial to

trial in delay activated pattern cells, different inhibitory patterns from trial to trial in delay

inhibited pattern cells, or even pattern types contrary to the average pattern. For example,

the parietal delay activated cells exhibited delay inhibited patterns on 13.2% of the trials,
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Table 4: Pattern numbers correspond to the following patterns: 1) Response-coupled ramping cell, 2) fixed rate
memory cell, 3) cue-coupled (decaying) memory cell, 4) response-coupled ramping cell with no frequency difference
between baseline and period D1, 5) Nonresponsive cells, 6) Decaying inhibition cells with no frequency difference
between baseline and period D1, 7) decaying inhibited cells, 8) fixed rate delay inhibited cells, and 9) ramping
inhibited cells. The approximate averages for each of these pattern types in the real parietal and prefrontal cell
database, as determined in [5] are also indicated. Note the frequencies exhibited by the models are similar to
those observed in the real cortical cells.

Average firing frequencies (Hz) and Delta values.

Pattern 1 2 3 4 5 6 7 8 9

Baseline 2-Population Model 5.6 6.5 6.9 3.9 4.9 9.7 3.9 5.2 4.6

Baselne 4-Population Model 7.4 6.9 6.3 11.9 5.5 10.7 5.1 5.1 4.9

Baseline Parietal Neurons 14 16 14 17.5 12 11 17 15.0 10.5

Baseline Prefrontal Neurons 9.5 7.5 8 27 8.0 7.0 9.0 12.0 7.0

Delay 2-Population Model 7.0 8.9 8.7 3.8 5.0 10.2 2.8 2.7 3.1

Delay 4-Population Model 9.4 9.9 7.8 11.5 5.7 10.8 4.6 2.7 3.3

Delay Parietal Neurons 21.5 25 21 18 12.5 11 12.5 7.5 7.0

Delay Prefrontal Neurons 12.5 11.5 10.5 27.5 8.0 7.5 6.5 8.0 5.5

Delta 2-Population Model 1.4 2.4 1.8 20.1 0.1 0.5 21.1 22.5 21.5

Delta 4-Population Model 2.0 3.0 1.5 20.4 0.2 0.1 21.5 22.4 21.6

Delta Parietal Neurons 7.5 9.0 7.0 0.5 0.5 0.0 24.5 27.5 23.5

Delta Prefrontal Neurons 3.0 4.0 2.5 0.5 0.0 0.5 22.5 24.0 21.5
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Figure 2.8: Average histograms from example units of the 2-population spiking model show-
ing the excitatory and inhibitory working memory patterns, and average histograms from
representative single neuron recordings from the database of prefrontal and parietal neurons
exhibiting the same general patterns. PSTH histograms of spiking model units are shown in the left
columns and real neuron histograms in the right columns. The gap between baseline and delay periods corre-
sponds to the cue period (firing rate not shown). Histograms of the model units were averaged over 10 simulated
trials of the working memory task. Patterns exhibited are A) Stable fixed rate memory (i.e. bistable) cell behavior,
B) ramping cell behavior, C) decaying memory cell behavior, D) fixed rate inhibition cell behavior, E) ramping
inhibition, and F) decaying inhibition.

and parietal delay inhibited cells exhibited delay activated patterns on 15.6% of the trials.

Prefrontal delay activated cells exhibited delay inhibited firing patterns on 16.1% of the trials,

and prefrontal delay inhibited cells exhibited delay activated patterns on 20.1% of the trials.

Figure 2.9C (left) indicates for each unit in the 2- population network the percentage of the

total number of simulated trials in which its pattern behavior differed from its dominant

pattern type appearing in its average PSTH histogram (different excitatory or inhibitory

pattern and/or contrary delay activity). We see that units in the network, on average, exhibit

pattern activity different than their classified pattern type on approximately 52.5% of the

trials, with that variability being approximately the same in both local networks. Individual

units exhibited different patterns over a range from 20% to 70% of the trials. This variability

is comparable to that observed in many real neurons during working memory tasks.
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2.3.5 Spiking Unit Network: 4-Population Model

We next examine the range of statistic and memory pattern types occurring in the activity

of units in a spiking network with four populations of 50 neurons each. In the spiking

network we replace the four populations of the mean field model with four networks of

50 spiking units each whose activity averaged across units is the same as the activity of

the populations of the mean field model. We first analyze the range of memory pattern

types in the spiking networks during simulated working memory tasks. Average PSTH

histograms over 20 simulated trials of a working memory task were generated and examined

for each unit in the network. As was the case in the 2-network spiking model, the range of

excitatory and inhibitory patterns, in addition to the nonresponsive pattern are exhibited

by the units in the network. The specific baseline frequencies, delay frequencies and deltas

(changes in frequency from baseline to delay period) exhibited by the units for each pattern

fall within the ranges observed in the real parietal and prefrontal cells (Table 4). Figure

2.9A (right) shows the distribution of patterns types exhibited by all 200 units of the 4-

population spiking network. The relative prominence of different pattern types is similar to

that of the 2 population spiking model, with the most commonly occurring pattern being

the nonresponsive pattern, followed by the excitatory patterns, and finally the inhibitory

patterns. Once again this is consistent with the relative percentages of each pattern type

observed for the real parietal and prefrontal neurons.

As was the case in the 2-population spiking model, the specific pattern exhibited by a

unit in the 4-population spiking network in any given trial of the simulated working memory

task can vary from the predominant pattern observed in the average PSTH histogram (Fig-

ure 2.10). Figure 2.9C (right) indicates for each unit in the network the percentage of the

total number of trials in which its pattern behavior differed from its dominant pattern type.

We see that units in the network, on average, exhibit pattern activity different than their

average classified pattern type approximately 54% of the trials, with individual units exhibit-

ing different patterns over a range of 25% to 70% of trials. This variability is very similar to

that observed in the 2-population spiking model, and once again is within the range observed

in the real cortical neurons. However, in contrast to the 2-population network, variability is
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not uniformly distributed across populations. In the 4 population network there is a greater

degree of partitioning of the activity of the networks into those primarily exhibiting non-

responsive and excitatory patterns, and non-responsive and inhibitory patterns. Populations

of units of primarily excitatory or the non-responsive memory pattern types exhibit their

predominant pattern much more reliably than those populations of units of primarily in-

hibitory and non-responsive pattern types. Thus the more distributed architecture resulted

in increased reliability in persistently active populations.

2.3.6 Spiking Unit Network’s Variability Scaling With Population Size

We next examine the dependence of pattern type, firing rate statistics and variability as a

function of population size. To do this we produced a 2- and 4-population spiking model as

above consisting of 2000 units. We first analyze the range of memory pattern types in the

spiking networks during simulated working memory tasks. Average PSTH histograms over 20

simulated trials of a working memory task were generated and examined for each unit in the

network. As was the case in the 2- and 4 population spiking networks consisting of 200 units,

the range of excitatory and inhibitory patterns, in addition to the non-responsive pattern are

exhibited by the units in the network (Figure 2.11). The specific baseline frequencies, delay

frequencies and deltas (changes in frequency from baseline to delay period) exhibited by the

units for each pattern fall within the ranges observed in the real parietal and prefrontal cells.

Figure 2.12 shows the distribution of patterns types exhibited by all 2000 units of the 2- and

4-population spiking networks. The relative percentage of excitatory and inhibitory patterns

is similar to that observed in the 200 unit networks with excitatory patterns being slightly

more prominent than inhibitory patterns.

The firing rate model produces a trajectory in the phase plane which corresponds to

a specific pattern type. Depending on the connections and other parameters, the stimulus

causes the trajectory to remain above or below the separatrix of the phase space. In terms of

the spiking model the firing rate model trajectory corresponds to the mean of the trajectory of

all units. Depending on how close to the separatrix that mean trajectory is after the stimulus,

fluctuations about the mean from various sources of stochasticity in the spiking model will
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Figure 2.9: Distributions of units exhibiting the different pattern types in the spiking models
and variability in pattern expressed from trial to trial in the units of those models. A) Distri-
bution of pattern types exhibited by units in the 2- and 4-population spiking models (left and right respectively).
Distributions correspond to the average number of units exhibiting each pattern type over 20 trials of the simu-
lated working memory task. Pattern numbers correspond to the same patterns as labeled in table 4. Specifically
1) Ramping cells 2) fixed rate memory cells, 3) Decaying memory cells 4) ramping set cell with no frequency
difference between D1 and baseline, 5) nonresponsive cell 6) ramping inhibited cell with no frequency difference
between D1 and baseline, 7) decaying inhibition cell, 8) fixed rate delay inhibited cell, and 9) ramping delay inhib-
ited cell B) Distribution of the percentage of parietal (left) and prefrontal (right) cells exhibiting each pattern type
during the performance of unimodal and cross-modal working memory tasks. Note that the distribution of the
real cells and the units in the spiking model are similar with nonresponsive cells being most common, excitatory
memory cells (decaying, fixed rate, and ramping) being the next most common, and inhibitory patterns (decaying,
fixed rate, and ramping) being the least common. Also patterns 4 and 6 (ramping excitatory and inhibitory cells
with no frequency differences between D1 and baseline) occur infrequently in both the models and real cells. C)
Consistency of pattern type expressed across trials for each of the 200 units in the 2-population spiking model
(left) and the 4 population spiking model (right). Each unit was classified as displaying one of the pattern types
in its average PSTH histogram (across 20 trials). The ordinate indicates the percentage of trials in which the
dominant pattern (the pattern occurring most often across trials and is typically that which is observed in the
averaged PSTH histogram) of the average was actually exhibited by the unit. In the 2-population graph, units
1100 are all members of one population, while units 101200 are part of the other population. In the 4-population
graph, units 150, 51100, 101150, and 151200 are the members of populations 1 through 4 respectively. Note
that the overall average variability in pattern expression is the same in the 2- and 4-population models, with the
classified pattern type of each unit being displayed in approximately 47% of the trials, and an approximate range
of 30–70% of trials showing different patterns on any given trial. However, while the variability is distributed
evenly across both populations in the 2-population model, in the 4-population model the variability is significantly
greater in units in those populations exhibiting primarily inhibitory patterns (populations 2 and 4).
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Figure 2.10: Raster plots of 10 trials (left) for an excitatory (A) and an inhibitory (B) unit from
the 4-population 2000 unit spiking network. Note that different pattern types occur on different trials.
Figures A and B (right) show an expanded version of 4 of the 10 trials from both units to highlight different patterns
exhibited. From top to bottom of the expanded trials, the excitatory unit shows a decaying rate, nonresponsive,
increasing rate, and persistent stable firing rate pattern, and the inhibitory unit shows decaying inhibition, stable
inhibition, increasing rate excitation, and increasing inhibition. C) Rasters from 4 trials selected from a real
neuron recorded from the prefrontal cortex during presentation of the same memorandum of the cross-modal task
exhibiting stable persistent activation during the delay in the average PSTH. Although the cells exhibits stable
persistent activation on average, on specific trials the cell exhibits the decaying rate activation pattern.

Figure 2.11: Average PSTH histograms of 16 units randomly chosen from the 2000 unit 4-
population spiking model. Note that the entire range of pattern types continue to be exhibited (excitatory
and inhibitory stable, decaying, and ramping delays and nonresponsive) with firing statistics similar to real neurons.

39



result in a probability that units will make transitions to trajectories corresponding to pattern

types different than that of the mean trajectory. The resulting pattern types will have a

distribution reflecting this. Conversely the closer the system is to one of the stable attractors

of the system, the less probable it is for a given level of noise that the system trajectory will

depart from the pattern of the mean trajectory.

There are 3 primary sources of variability in the spiking model networks, not present in

the mean field model that produce fluctuations resulting in units behavior departing from

the single pattern type of the mean trajectory: 1) heterogeneity in the connections between

units, 2) heterogeneity in the maximum facilitation, and 3) the noise present in all the units

activity. Increasing population size reduces the source of noise resulting from heterogeneous

connections, and thus reduces the overall amplitude of fluctuations. Figure 2.13 shows the

reliability with which units in the 2000 unit 2- and 4-population spiking models exhibit there

dominant patterns. It can be seen that neurons exhibit their dominant pattern more reliably

than in the 200 unit network. However, increasing population size cannot eliminate type

variability across trials particularly when the system is near the separatrix. It can be seen

from Figure 2.13 that the average reliability of units expressing a single pattern type across

the overall network is greater for the 2000 unit networks than the 200 unit networks (75%

vs. 47% respectively in the 4 population model). However, individual units still exhibit high

variability in the pattern type exhibited from trial to trial ranging between exhibiting the

dominant pattern type 100% of the time to approximately as low as 45% of trials. Thus

while reliability in firing can be achieved by increasing population size and averaging across

units of a population, this does not eliminate transitions by units from the mean pattern

type or from their dominant pattern type from trial to trial.

A reduction in the source of variability due to noise present in all neurons during sim-

ulationi.e. the Wiener noisecan be achieved by averaging across trials. Figure 2.12A and

2.12B (bottom) shows the distribution of the average histograms obtained for the units in

the 200 and 2000 unit population models across 20 trials. It can be seen that this averaging

produces a distributions which primarily consist of patterns corresponding to the canoni-

cal bistable persistent activity (activation and inhibition). While this type of averaging is

not physiologically relevant in the sense that populations carry out working memory each
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Figure 2.12: Distributions of patterns exhibited across 20 trials of the simulated task. A) top:
Distribution of pattern occurrence for the 2- population, 2000-unit spiking network. The distribution is similar to
that observed for the 200 unit networks and the parietal and prefrontal neuronal populations. Bottom: Distribution
of patterns exhibited in the average (across 20 trials) PSTH histograms for the 2-population, 2000-unit spiking
network. Note that the distribution of average PSTH exhibits the bistable excitatory and inhibitory patterns more
prominently than actually exhibited from trial to trial by the units. B) top: Distribution of pattern occurrence for
the 4-population, 2000-unit spiking network. The distribution shows similar relative occurrences of the persistent
excitatory and inhibitory patterns (stable, ramping, decaying) as all previous networks and real neuronal data.
Relative changes in specific pattern occurrences (i.e. decrease in the prevalence of the nonresponsive patter)
result from each populations activity approaching that of its corresponding mean firing rate model single pattern
with increasing size. Thus a larger number of populations would be needed (i.e. greater than 4) to maintain the
relative occurrence of all patterns and thus to maintain an invariant distribution. Bottom: Distribution of patterns
exhibited in the average (across 20 trials) PSTH histograms for the 4-population, 2000-unit spiking network. Note
that the average PSTHs exhibited are essentially all the bistable excitatory and inhibitory patterns. Thus analysis
of average patterns across trials might falsely indicate that these are the only patterns of relevance occurring.
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trial, and not as an average across trials, it does represent the typical averaging carried out

to characterize cell behavior in studies of working memory (i.e. average PSTH histograms

across trials determine cell pattern type).

An analysis of the intra-trial variance of firing rate in the model units revealed high

variability in the distribution of ISIs during both baseline and delay periods of the model

(Figure 2.14A). The CV of ISIs in the majority of units ranged in the baseline across all

pattern types between 0.4 and 1 with a mode of approximately 0.6. During the delay period

the distribution of intra-trial ISI CVs was bimodal with peaks at approximately 0.45 and

0.75 and most units falling within the range of 0.4 and 1 as in the baseline. These ranges

of the CV overlap significantly with that observed in the real prefrontal and parietal cell

populations, although their overall means are lower. Focusing on the stable excitation and

inhibitory patterned activity, units exhibited decreasing average CV from baseline to the

delay period in stable excitatory pattern units, and increasing average CV from baseline to

the delay period in stable inhibitory pattern units (Figure 2.14B). In the real parietal and

prefrontal cell populations, stable excitatory and inhibitory cells exhibit high CV in their

ISIs during both baseline and delay, with the CV decreasing from baseline to delay in stable

excitation cells and increasing in stable inhibitory cells. In parietal cortex, the CV of the

ISIs in cells exhibiting stable persistent excitation significantly decreased (p<0.001 paired

t-test) from and average of 1.17 during the baseline to 1.02 in the delay. In prefrontal cortex

the CV in those cells decreased insignificantly from an average of 1.03 to 1.0. In parietal

cells exhibiting stable persistent inhibition in parietal cortex, the CV of the ISIs increased

insignificantly from 1.19 to 1.2, while in prefrontal cortex the CV increased insignificantly

from 1.02 to 1.03 on average.

2.4 DISCUSSION

The results of this study demonstrated that recurrent networks with dynamic synapses in-

herently produce the different persistent firing rate patterns observed in real cortical neurons

during working memory. The persistent patterns produced are robust with respect to vari-
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Figure 2.13: Reliability of units in the 2000 unit networks for exhibiting from trial to trial
the pattern indicated by each units average PSTH histogram. A) Reliability of each unit in the
2-population, 2000 unit network. The average reliability (percentage of trials exhibiting the pattern observed in
the average PSTH histogram) ranges from approximately 40100% of trials, with an average of approximately
47%. This is similar to that observed for the 200 unit 2- and 4- population spiking models. B) Reliability of each
unit in the 4-population, 2000 unit network. The average reliability is significantly higher across all 2000 units
(approximately 75%) although the range of variability of individual units is similar to that observed in each of the
previous networks. These reliability values are similar to that observed in the real cortical data of parietal and
prefrontal cells.
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Figure 2.14: Analysis of spiking variability. A)Distributions of the coefficient of variation of the interspike
intervals for units of the 2000 unit spiking model during the baseline and delay. Distributions correspond to cells
exhibiting all patterned delay behaviors. High variability in ISI firing occurs during baseline and delay periods.
Delay CVs show a bimodal distribution across all pattern types, as some modify their behavior after the stimulus,
and some remain unresponsive. B) Mean baseline and delay ISI CV for stable persistent excitation delay cells
(left) and stable persistent inhibition delay cells (right). The coefficient of variation decreases from baseline to
delay in excited delay cells and increases in inhibited delay cells in agreement with the behavior observed in the
database of prefrontal and parietal cells.
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ations of the parameters in the network. That is, the different patterns occur over a wide

range of values of the parameter space, and given patterns do not occur only for a very nar-

row set of parameter values. Further, the statistics of those patterns fall within the ranges of

variation observed in firing rate pattern behavior of real cortical neurons. For example the

changes in firing rate from baseline to the delay period can take values along an apparent

continuum with absolute changes in firing rate of less than 100% of the baseline rate. For

the majority of persistently activated cells recorded from parietal and prefrontal cortex of

primates during working memory this corresponds to changes in firing rate of less than 10

Hz. The present network demonstrates a mechanism beyond previous solutions for achiev-

ing these realistic low delay firing rates [1, 13, 80, 122, 142, 165, 166]. While the expression

of any particular delay frequency or rate of ramping or decay of firing rate of the units can

be dependent on the particular parameters, the occurrence of any of the working memory

patterns takes place across wide continuous ranges of network parameters and inputs, and

thus do not involve fine tuning and are stable with respect to noise in the input.

Bistable firing rates are one of the possible activities of the model. However, the present

work has focused on the range of working memory-correlated patterns of firing rate and

their simultaneous, complementary occurrences in the working memory network as opposed

to only fixed states that the networks or their neuronal constituents may adopt. The spiking

networks exhibited all of the general patterns correlated with working memory that are

observed in the database of microelectrode recordings of parietal and prefrontal cortical

neurons. In addition, the statistics and firing rates of the units fall within the ranges observed

in real cells, with the occurrence of the different pattern types similar in proportion to

that observed in the cortical populations. In terms of the behavior of individual neurons,

bistable activity is typically only observed as an average over many trials of a working

memory task. Across trials, cells exhibit different average frequencies, and even within

individual trials, cells exhibit significant variability in firing rather than a single stable rate

[14, 161,165,171]. This is indicated from a high coefficient of variation in both baseline and

delay periods in units exhibiting stable delay excitation and inhibition patterns. This is in

agreement with database of real parietal and prefrontal stable delay units as well as previous

neurophysiological studies in which CVs of within trial ISIs were around 1.0. Changes in CV
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from baseline to delay period for the model units further agreed with that observed in the

parietal and prefrontal database with the CV decreasing for stable excitatory pattern cells,

and increasing for stable inhibitory pattern cells. High variability in ISIs has been observed in

previous neurophysiological studies [14,161,165,171], although in some cases the change from

baseline to delay observed has been different than that of the present cell populations. This

may result from the frequencies or types of persistent patterned activity observed in those

studies during the delays (e.g. bursting behavior). In addition to variability within trials of

stable persistent activity cells, from trial to trial, neuron activity may adopt specific memory

correlated patterns different from the most prominent one that emerges in the average across

many trials. This not only includes changing between the different persistent excitatory

patterns from trial to trial, but even changing between persistent activation and inhibited

patterns. Thus while a population of cells may exhibit a particular pattern with consistency,

individual cells of that population do not. In the 2- population spiking model with 200

units variability in firing pattern across trials was the same for both populations, with the

majority of units exhibiting changes from their most prominent pattern type (including

changing between persistent excitation and inhibited patterns) in 40% to 60% of the trials.

In the 4-population spiking model, while the overall variability was essentially the same as

in the 2-population model, the variability in pattern across trials depended on the types

of patterns prominently exhibited by the particular populations. In populations exhibiting

excitatory patterns the majority of units displayed a different pattern on 35% to 45% of

the trials, and in populations exhibiting inhibited patterns, the majority of units displayed

different patterns on 40% to 60% of the trials. Thus a more distributed architecture resulted

in a more reliable occurrence of excitatory memory pattern types within units, in addition

to a more stable concomitant occurrence of complimentary pattern types. Working memory

therefore appeared to be more stable in the more widely distributed network. The reliability

of exhibiting a given pattern across trials increases only partially with the size of the network.

Looking at the 4-population network with an order of magnitude more unit results in a

network that still exhibits the range of pattern types with relative proportions similar to

that seen in the smaller network and in real cortical neurons. Although overall, the average

percent of trials that units exhibit their most dominant pattern type increases (i.e. 75%
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compared to approximately 47%), many units continue to exhibit their dominant pattern

on less than a majority of the trials. The reason for this is that increasing population

size decreases fluctuations due primarily to stochasticity in the connections between units,

which of course does not drop to zero. In addition other sources of stochasticity remain

such as noise in unit activity, and stochasticity in the facilitation. Thus given a particular

stimulus, units trajectories in the phase plane will pass with some proximity to the boundary

(separatrix) between the fixed bistable states of the system, and given the closeness to

the separatrix and the amount of stochasticity, will have a significant chance on any given

trial of crossing over to a trajectory corresponding to a different pattern than the mean

trajectory of the population, or that which occurs most often for a particular unit. As a

result, there is a relatively invariant distribution of pattern occurrence that changes modestly

with increasing population size. It is interesting to note that artificially reducing the other

sources of stochasticity by for example averaging across trials, that one produces pattern

distributions exhibiting essentially only bistable patterns. That is if we look at the average

PSTH activity of the networks across trials they tend to be either stable activation cells,

or stable inhibition cells. While this type of reduction of stochasticity is not physiologically

meaningful since working memory takes place trial to trial and cannot require averaging over

many trials, data from unit recording experiments typically report unit activity as average

(across trials) PSTH histograms. Thus the prevalence of bistability may be overestimated.

Rather in real cortical data as well as in the model we see the variability as in the model.

While the firing pattern varies from trial to trial in cells, there are also significant vari-

ations from trial to trial in the delay frequencies for any particular patterns exhibited. The

concept of a network with fixed connectivity and bistability between units is not indicated

by such activity, and thus a dynamic connectivity is reasonable to consider. The idea of

bistable activity corresponding to fixed attractor states may apply at the level of a popula-

tion of neurons, and could be the essential neuronal correlate of working memory. However,

the majority of persistent activity patterns observed consists of cells whose firing rates decay

or accelerate during working memory (cue-coupled or response-coupled), and these popu-

lations should be taken into account in addition to bistability. In the present model, as

stated above, bistable attractor states are present and could correspond to working memory.
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Here however, a second additional role is suggested for these states in terms of modulating

the firing rate activity, resulting in decaying and ramping firing patterns. That is, without

necessarily representing memory states in and of themselves, the attractor states allow the

network, which represents working memory and its complementary functions, to become ac-

tive and behave with the necessary dynamics to mediate cross-temporal contingencies. The

key component, resulting here from facilitation and observable in the phase plane, is the pres-

ence of the bottleneck through which the trajectories of the system pass. The bottleneck

modulates the rate at which the trajectories approach the stable attractors, thus creating

the patterned activities within the actual range of frequencies observed in the cortex. This

mechanism might be present and modulate activity through other components of the network

in addition to facilitation. For example Durstewitz [49] has previously demonstrated that a

bottleneck or “ghost” of a line attractor could be achieved at a neuronal level through inter-

actions between firing rate output and calcium gated ion channels, generating the climbing

firing rate activity of set cells. Therefore, while the bistability (or multiple attractor states)

could represent working memory, it plays the additional role of influencing the dynamics

of the system such that the resulting trajectories correspond to different classes of working

memory behavior (i.e. cue-coupled or response-coupled delay period patterns). The lower

attractor state of the system, as is usual, is identified with baseline firing rates. Trajectories

of the system not crossing the saddle separatrix remain in the basin of attraction of this

attractor and ultimately return to baseline firing rates, adopting one of the classes of persis-

tent activation associated with memory storage. In contrast, trajectories crossing the saddle

separatrix approach the stable state corresponding to a higher firing frequency. Depending

on the rate at which the system approaches the higher state, the firing pattern adopted is

either bistable memory behavior (rapid or very slow approach), or ramping cell behavior

associated with preparation for a behavioral or motor response. From these considerations

it might be predicted that ramping cells and fixed rate memory cells in working memory

should exhibit higher average firing rate changes from baseline than decaying-rate memory

cells. An examination of the firing rate changes of prefrontal and parietal cells indicates

that this is indeed the case. In parietal cortex, fixed rate memory cells exhibit an average

difference between baseline and delay periods of approximately 9 Hz, set cells 7 Hz, and
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decaying rate memory cells 6 Hz. In prefrontal cortex the same trend is observed with stable

rate memory cells exhibiting the greatest mean change in firing rate from baseline to delay

period (approximately 4.3 Hz), followed by set cells (3 Hz) and decaying rate memory cells

(2 Hz). The fact that the fixed rate memory cells exhibit the largest average change in firing

rate from baseline to delay is consistent with some percentage of those cells activity corre-

sponding to the high firing rate bistable state in addition to those exhibiting only apparent

bistability.

The dynamic synaptic facilitation is the component of this model which creates the bot-

tleneck in the phase plane, and gives it its unique characteristics. Specifically it is facilitation

which determines the amount of persistent activation, which, since it can adopt a continuous

range of values, enables the change in firing rate from baseline to memory period to fall along

a continuum. The bottleneck determines the rate at which the firing rates decay towards the

baseline attractor (or increases towards the higher firing rate attractor) to adopt the con-

tinuum of firing rate values. The decay rate can be sufficiently slow such that no decay or

acceleration of firing is observed for the duration of a memory period. Thus the result is an

apparent or virtual bistability, which for all intents and purposes can be extended for as long

as working memory is defined by the parameters of a working memory task. The fact that

the rate at which persistent activation waxes or wanes is highly adjustable is consistent with

the behavior of cells in the cortex during working memory. It has been observed in working

memory experiments [67, 69, 110] that the rate of decay and/or the rate of acceleration of

persistent activation adjust to the duration of the memory period. The dynamic synapses

make this phenomenon easy to incorporate. Adjusting the maximum of facilitation or other

parameters, changes the bottleneck so that the rate of decay (or ramping) can become longer

or shorter along a continuum.

Another prediction from the dynamics of the model is that the rate of persistent activa-

tion correlates with baseline rate. In the majority of delay activated cells, the magnitude of

firing rate increases are less than 100% of baseline, with the magnitude of the delay period

firing rate change increasing nonmonotonically with baseline rate increases. The largest mag-

nitude increases in delay period frequency are in those cells with the largest baseline firing

rates, while the largest percentage changes are those with low baseline rates. This is natu-
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rally incorporated in the present model. The range of rates over which the population can

exhibit memory cell behavior is bounded by the saddle separatrix. Once facilitation pushes

the systems trajectory beyond the separatrix, further increasing facilitation (or judiciously

adjusting other parameters) does not result in further continuous increases in persistent ac-

tivation delay rates, but rather a change in the activation pattern itself. The parameters of

the model can be adjusted however, raising the frequency of the baseline state and incre-

menting the entire range of frequencies within its basin of attraction. Thus both baseline

and delay rates increase in a correlated fashion, and due to the nonlinearity of the nullcline

of the synaptic activity, the proportional increase in frequency is nonmonotonic.

The specific simultaneous patterns which may be exhibited in the populations are de-

pendent on the relative strength of the interpopulation connection strength, the intra-

population connection strength, and whether the inter-population connectivities are mu-

tually net inhibitory, or a combination of excitatory and inhibitory. The phase diagram

of the 2-population firing rate model reveals a number of behavioral trends. For an ex-

citatoryinhibitory connectivity between populations, the networks can exhibit a range of

concomitant activities which includes memory cell activity in both populations, and simul-

taneous cue-coupled/ response-coupled behavior. In contrast, with a mutually inhibitory

connectivity between populations these particular behaviors are absent, and simultaneously

occurring fixed-rate-memory/response- coupled behavior is present over only an extremely

narrow range of the parameters. Thus memory being maintained simultaneously in both

cortical areas occurs in the 2-population model only within the E-I connectivity scheme.

During working memory, the simultaneous presence of memory cells in prefrontal cortex

and another cortical area important to the sensory modality of the memorandum has been

indicated by numerous studies. In addition to prefrontal cortex, memory cells have been ob-

served for example in posterior association cortex including inferotemporal cortex [74, 140],

and posterior parietal cortex [79, 114], and their simultaneous presence in multiple cortical

areas have been indicated in imaging studies [35,116,140,180]. The overlapping presence of

cue-coupled and response-coupled cells have also been confirmed and have been implicated

in working memory networks [116]. It is suggested that these populations would cooperate

and be engaged in the transfer of information from a perceptual network to a motor network.
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The two populations would cooperate to enable the processing of information from one net-

work to the other with translation from perception into action. As the network becomes

more distributed, increasing to four populations, simultaneous memory cell behavior and

cue-coupled/ response-coupled behaviors becomes more robust with these concomitant be-

haviors occurring over a wide continuous range of the parameters as can be observed by the

increased areas of those respective behaviors over larger continuous ranges of the parameters

in the phase diagrams (Figure 2.6). While the specific connectivity between populations in

different cortical areas in working memory networks is unknown, it is suggestive to consider

the possible effects on each populations activity in the model when another is shut down

as in reversible lesion studies. For example in the 4-population model, termination of the

activity two populations changes the phase diagrams to that of the 2-population model.

Depending on the specific local parameters (i.e. the connectivity between populations), the

effect can be a net increase in persistent activity, a decrease, or elimination of such activity

to a non-responsive pattern. Studies of reversible lesions in which one cortical area is cooled

while recording cell activity in another has shown that some cells increase their firing rate

during the delay, while other will show decreases or become non-responsive [35, 71, 72]. A

question is whether the net effect of one cortical area on the other is excitatory or inhibitory

as might as determined by more cells increasing persistent activation or decreasing it. While

no definitive results exist, from these studies the data indicate that more neurons increase

their activity in prefrontal cortex as a result of cooling posterior association cortices, while

more neurons decrease their activity in posterior association cortex as a result of cooling

prefrontal cortex. This could be indicative of an effective E-I coupling between cortical ar-

eas. Looking at the potential changes in the phase diagrams of the models going from the

4- population model (with connectivity of both the E-I and I-I type) to 2 populations, such

behavior is the general trend over the majority of the parameter space. Further lesion studies

or microstimulation studies may elucidate the functional connectivity of global network in

light of the model.

In addition to a distributed architecture affecting the stability of memory pattern behav-

ior and modulating activity enabling the occurrence of complimentary patterned behaviors,

certain working memory pattern behaviors apparently are exclusively a function of a dis-
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tributed architecture rather than the facilitation mechanism alone. Particularly the ramping

delay inhibition pattern which is observed in the cortical data was present only in the dis-

tributed versions of the model. Another phenomenon is the existence of large regions of

the parameter space in which one population exhibits the non-responsive pattern, while the

other population exhibits memory cell behavior (fixed-rate, decaying, or ramping). In the

database of real cells, the majority of neurons from parietal and prefrontal cortex exhibit the

non-responsive pattern of behavior. Interspersed within these populations of nonresponsive

cells are neurons that exhibit the other patterns. From the models we see that the non-

responsive pattern is a common part of a working memory network coexisting with the other

patterned behaviors. Studies of patterns in spike sequence of such cells [21–23] have indi-

cated that while not exhibiting significant differences between baseline and delay firing rates,

such cells can exhibit differences in the patterning of the spike sequence in these periods;

indicating participation in the working memory network. The fact that the non-responsive

pattern arises as a prominent one in the models, overlapping with the range of memory pat-

tern behaviors suggests that these populations may play a role in the dynamics of working

memory networks.

It should be noted that the present analysis supplements the general attractor picture

rather than replacing, or invalidating it. Cells with apparent bistable activity with high firing

rates above baseline, while apparently rare in the cortex [171], may still be a fundamental

neuronal substrate of working memory. In the present model not only is this activity present,

but also the myriad other patterns with firing statistics and variability similar to those which

constitute much of the activity correlated with working memory are accounted for.
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3.0 FROM WORKING MEMORY TO EPILEPSY: DYNAMICS OF

FACILITATION AND INHIBITION IN A CORTICAL NETWORK

3.1 INTRODUCTION

While the mechanisms of working memory are unknown, typically in most models these

states correspond to stable attractors and dynamics arising in those recurrent networks

[6–11, 13, 26, 38, 50, 203]. It is assumed that derangement of these ubiquitous recurrent

cortical networks play a fundamental role in various neuropatholgies. Particularly, it has

long been recognized that recurrent impulses are a critical factor in generating hyperex-

citability and recruitment which are the essential features characterizing seizures and epilep-

sies [107,123,190–192]. Epileptic seizures represent temporary episodic periods of increased

network excitation with variable propagation. It is suggestive to assume that the type of

pathological activity observed in seizures/epilepsies is a function of inherent dynamics of

recurrent working memory networks. Working memory has provided the archetype of persis-

tently active states. Neuronal working memory networks remain active after the presentation

of a cue (memorandum) during a delay period [64,70]. These persistent states may be main-

tained through a relative balance of excitation and inhibition [87,175], or through asynchrony,

and terminated through synchronization [85]. Numerous studies have demonstrated deficits

in working memory function in epileptic subjects [4, 42, 83, 115,193].

With the exception of neurological disorders due to malnutrition, epilepsy is the most

prominent disorder in the world effecting approximately 1% of the population. It is estimated

that there is a 10% lifetime risk of exhibiting a single seizure, approximately one third

of which will develop epilepsy. Epilepsy/seizures can arise in a number of varied forms,

with potentially similar or varied underlying mechanisms. While epileptic seizures involves
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paroxysmal bursting of neurons in a local circuit, the clinical manifestations of seizures

result mostly from spread of activity from local circuits to involve adjacent and remote brain

regions. While in working memory, widespread populations are activated in normal cognitive

function, and perhaps are related to binding, in seizure activity the recruitment of cortical

networks and populations occur in a nondiscriminant pathological fashion. How different

brain regions or populations are recruited is not well understood and it is not known how

to stop ongoing seizure propagation or prevent seizure activity. Further, little is known as

to how seizures either begin or cease [188]. While it has been a long-standing belief that

a connection between hyperactivity and hypersynchrony is fundamental in seizures, it has

recently been shown that hypersynchrony is unnecessary to produce seizure-like bursting

[151, 195]. There is much evidence suggesting that seizures described as a straightforward

increase in synchronization between neurons may be too simplistic. Computational and

experimental models have shown however that low levels of excitatory coupling may be a

prerequisite for some types of seizure onset [56,159,196]. The coexistence of models involving

both increases and decreases in excitation points not to a disagreement, but to the complexity

of seizure causality.

Synapses between neurons are known to undergo changes in their strength and dynamics.

In working memory function, dynamic synapses (i.e. through synaptic facilitation) in recur-

rent networks can result in the normally observed persistent activation [13,200](Chapter 2).

A reasonable postulate widely proposed is that the development of epilepsy and seizures

results from a shift in the balance between excitation and inhibition towards excitation

[46, 75, 150]. Further a critical role is believed to be played by recurrent synaptic excita-

tion in epileptogenesis [107, 123, 190–192]. For example synchronized bursting is favored by

strong recurrent excitation between principal neurons and by disinhibition (review in [190]).

It has been recognized increasingly that epileptic seizures are a dynamic disease caused by

a change in the state of the brain dynamical system [169]. Different types of seizures have

been viewed as bifurcations between distinct types of non-linear dynamics [207]. Nonlinear

dynamics can advance our understanding [121, 162] of the spatial and temporal behavior of

seizures. Seizures may be triggered by some change in network parameters and/or inputs not

evident to an observer [129]. In so-called reflex epilepsies, seizures are precipitated by some
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particular influx of afferent impulses, and may be induced by a wide range of external stim-

uli of different modalities such as photic stimulation, geometric patterns, music or computer

video games [92,189], or internal cognitive processes, such as mathematical calculation. In a

normal cortex, such external or internal stimuli might cause a transient, harmless modifica-

tion of cortical activity, while in a predisposed brain they can induce massive synchronous

discharges leading eventually to a seizure. It has been assumed that the stimulus leads to a

dynamical change of the underlying attractor that facilitates the transition to the ictal phase

(bifurcation). It has been proposed for example that in neuronal networks in the brain [162]

the onset of seizures occur via a transition from stable linear dynamics via linear instability

to non-linear behavior.

In humans, short electrical stimulation applied during cortical mappings is able to pro-

duce repetitive or periodic excitatory discharges in the cortex. In patients with epilepsy

those discharges can progress to produce clincial seizures. However, in some cases a second

electrical stimulation may stop those discharges. The fact that external electrical stimula-

tion may terminate that activity in some cases raises the possibility of a method for seizure

control. Uncertainties and variability in the ability of electrical stimulation to terminate the

pathological discharge activity though, implies that theoretical and model systems might

be useful to understand the mechanism of action of these techniques. In contrast to the

generation and termination of seizures via invasive electrical stimulation, seizures may be

generated and prevented or terminated through external stimulation. In particular, while

stimulation with particular music is known to induce seizures in predisposed individuals,

other music has been reported to prevent or terminate epileptiform activity [100,174,194].

The potential modulation of termination seizure activity by brain stimulation is attract-

ing considerable attention. Recently there has been growing interest in neural stimulation

to reduce seizure frequency. Approaches include for example vagal nerve and thalamic stim-

ulation, and event-driven stimulation to terminate repetitive bursting. Modeling the effects

of certain characteristics in the stimulation of working memory networks, such as specific

spatiotemporal patterns, could yield efficient and minimally invasive approaches for treat-

ment of epileptic patients. A related issue to initiation and/or termination of seizures is

the mechanisms and dynamics by which a seizure recruits cortical areas and spreads within
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the cortex. Nonlinear dynamics can advance our understanding of the spatial and temporal

behavior of seizures [121,162]. Combining the concepts of neurphysiology of neural networks

with the mathematics of nonlinear systems can help lead to an understanding of these mech-

anisms since neural networks are nonlinear systems with complex dynamics. This essential

aspect must be accounted for in order to understand how neural network can have bistable

memory states (or multi-stable states) and exhibit bifurcation between those states.

In this work we present a model of a working memory network and explore its non-

linear dynamic behavior in normal and seizure/epileptic states. Particularly we examine

how the network can transition from normal working memory behavior dynamics to those

characteristic of seizure activitiesparticularly widespread recruitment of populations with

varying degrees of synchronous oscillatory behavior. We propose that facilitation and inher-

ent network parameters can bias neuronal activity to that of recruitment and seizure. We

demonstrate that seizure behavior can be elicited in the model through input with specific

temporal and/or spatial characteristics, simulating reflex epilepsies. Finally, we show that

seizure activity may be also be terminated by input to the network with specific temporal

characteristics. We start the paper by introducing a network of N = 20 populations, each

of which consists of three variables representing the activity of the excitatory and inhibitory

neurons and the degree of facilitation of the excitatory synapses. We show the “normal”

behavior for this network which consists of the selection and maintenance of a salient input.

We then alter the strength of lateral excitatory to inhibitory connections to mimic pathology

and find a variety of disruptive states. In order to better understand these, we study a two

population model using bifurcation analysis. We find the attractors and then characterize

the basins of attraction for each of the stable states by varying the frequency and strength

of transient stimuli. We look at a single population and use the method of averaging to

clarify why there are so many attractors. Finally, we explore possible mechanisms for the

termination of seizures using the results from the previous sections.
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3.2 METHODS

We build on a previously defined model for working memory in a neural network based on

the interactions between inhibitory and excitatory neurons as well as synaptic facilitation.

The network involves coupling several modules each of which is a three-dimensional system

of the form:

τu
du

dt
= −u+ f(aee(1 + kw)u− aiev − θe + cep(t)) (3.1)

τv
du

dt
= −v + f(aeiu− aiiv − θi + cip(t)) (3.2)

τw
dw

dt
= −w + f(γ(u− θw))[wmax − w]. (3.3)

In this model, u represents the firing rate of the population of excitatory neurons and v

the firing rate of the population of inhibitory neurons. The main nonlinearity is f(x) =

1/(1+exp(−x)). Coupling parameters, ajk are all non-negative. w represents a slow activity-

dependent facilitation of the connection strength. That is, as u fires enough above the thresh-

old, θw, then w slowly moves toward wmax. The parameter k characterizes the importance

of the facilitation. The function p(t) represents external input to the system.

The simplest network involves coupling a pair of these models. Coupling is allowed only

through the excitatory cell. As this pair represents a local cortical network, coupling between

networks is mediated primarily through long excitatory connections which can project to

either excitatory or inhibitory neurons. Thus, the u equation has a term of the form dee(1+

kŵ)û added to the inside of the nonlinearity f , and the v equation, a term of the form

deiû. In absence of the facilitation, the (u, v)−system is the classic Wilson-Cowan equation.

Facilitation allows there to be a number of different coexistent stable states.

In much of the paper, we study the larger network of N = 20 modules with coupling from

the excitatory cells to other excitatory cells and to inhibitory cells. There is only facilitation

of the excitatory-excitatory cells. For the one- and two population models, we chose the

following parameters:a1ee = 12.3, aie = 10.1, aei = 11, aii = 7, dee = 0.7, dei = 3.5, k = 0.7,

θe = 2.4, θi = 2.8, θw = 0.5, γ = 5, wmax = 0.7, and τu = 0.02, τv = 0.04, τw = 2. The stimulas

has the form:

p(t) = exp[−20(1− cos(2πt/P0))]
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where P0 is the period. (All time units are in seconds.) It is applied generally for 2-3 seconds

and with varying strengths to the inhibitory and excitatory populations. For the networks

consisting of 20 populations, all parameters are randomly varied between 2 and 5% around

the above values.

3.3 RESULTS

The idea of working memory is that a network can maintain a local area of sustained neural

activity after a stimulus is removed. Almost all models of this phenomena involve selective

bistability between a quiet resting state and a state of sustained activity. Essentially, if a

specific stimulus arises, then the population of neurons that best responds to that stimulus

will turn on and supress other populations of neurons. Recurrent excitatory connections (and

in our model, the synaptic facilitation) enable the stimulated population to stay on after the

stimulus is removed so that the network can “remember” which population was stimulated.

This kind of memory is also called short-term memory. In this and the ensuing parts of the

paper, we want to show that (i) there can be temporal sensitivities to these networks and (ii)

explore how damage to the inhibition (specifically the excitatory to inhibitory connections,

dei, aei) can destroy the working memory properties in dynamically interesting and possibly

clinically relevant means. To do this, we start with a network model and show a number

of complex features as the network is “damaged” through the weakening of the dei, aei con-

nections. We then turn to a two population model and use numerical bifurcation theory

to understand the various attractors. Then we use a single population and the method of

averaging to explain some parts of the bifurcation diagram.

Our main assumption is that damage of the inhibition is responsible for the general

phenomena of reflex epilepsy, and that in this low-inhibition regime periodic stimuli can

cause the onset of seizures. Thus, in general, p(t) will be a periodic stimulus with some

narrow range of frequencies.
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Figure 3.1: Behavior of the 20 population network with normal (dei = 3.5) inhibition. All cells are given a mild
background stimulus and the first k cells are given a strong stimulus. Time (seconds) is indicated on the vertical
axis and the population numbers are given on the horizontal axis. The excited populations are indicated above
each graph. Blue indicates baseline firing rate, light blue indicates slightly higher than baseline firing rates, and
red indicates activated (above baseline) firing.

3.3.1 Normal Parameters

We have tuned our model in such a way that a single population can stay excited after a

stimulus. This property is implemented by assuming broad excitatory to inhibitory coupling

(E-I) and strong local inhibition I − E in the network. Intuitively, if the population of

excitatory cells is turned on, then that will also excite the inhibitory cells of other populations

which will keep these populations suppressed. Since there are also excitatory to excitatory

(E-E) connections and strong local E-I connections, how is it possible to maintain activity

in only one population? This is done through the slow facilitation. If a single population

is strongly stimulated, then the facilitation for that population will build up and allow

it to remain high once the stimulus is removed. The other populations which have not

been directly stimulated, will become excited but not sufficiently to remain permanently on,

especially in light of the strong inhibition.

In each of the following simulations, a periodic stimulus is given with a particular fre-

quency to all the populations in the network and the first k populations in the network

are given a larger version of the same stimulus. The stimulus lasts for 5 seconds and the
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Figure 3.2: Behavior of the 20 population network with diminished (dei = 1.59) inhibition. All cells are given a
mild background stimulus and the first k cells are given a strong stimulus.

simulation lasts for 35 seconds. Figure 3.1 shows the behavior of the normal network which

undergoes winner-take-all working memory behavior as long as the number of stimulated

populations is sufficiently small. The first five panels (k = 0, 1, 2, 4, 8) show that a single

winner emerges when less than about half the network is stimulated. When only a single

population is stimulated, that population will emerge as winner. However, when multiple

populations are stimulated, the heterogeneity in the network (due to small random changes

in the parameters) breaks the symmetry and a particular winner emerges (in this case popu-

lation three). However, if more than about half the populations are stimulated (for example,

12/20), then the feedback inhibition is sufficient to prevent any population from emerging as

the winner. Thus, the long-range recurrent inhibition acts to constrain the network in such

a way as to prevent more than one stimulus to be selected.

3.3.2 Pathology

3.3.2.1 All E-I disrupted Our main hypothesis is that reflex epilepsy is a consequence

of the breakdown of feedback inhibition. There are several ways to disrupt inhibition: change

the thresholds (θi), the E-I connecions (dei, aei) or the I-E connections (aie). In this paper,

we alter E-I connections but manipulating I-E produces a similar effect (simulations not
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Figure 3.3: Behavior of the 20 population network with diminished (dei = 2) inhibition. Here, all cells are
stimulated with different periodic stimuli. Lower panels are an expanded view of upper panels.

shown). Figure 3.2 shows that a strong reduction in the E-I connections (from 3.5 to 1.59)

causes a loss of selectivity to the network. The resting background state remains stable to

small enough perturbations and if a single population is activated (k = 1), then that memory

can be maintained. However, if more than one population is excited, multiple populations

maintain activity and selectivity is lost. An interesting transient in which populations begin

to oscillate before settling to a steady state solution can be seen in several of the simulations.

Figure 3.3 shows what happens when the inhibition is not quite as reduced, (2/3.5 instead

of 1.59/3.5). A distinctive frequency dependence on the stimulus emerges. Here all the

populations are stimulated at three different frequencies leading to three different steady

state behaviors. At 5 Hz (period is 0.2 seconds), the populations break into clusters which

are separated by a half cycle. The number of clusters in each group can vary; an expanded

view is shown in the lower panel. At a lower frequency of 3.3 Hz, synchronous oscillations

emerge. Each population fires at the same frequency. Finally, at 2.5 Hz stimulus, there is

again WTA behavior, however, the emerging patterns have nothing to do with the stimulus.

3.3.2.2 Partial Disinhibition A more biologically likely scenario would be that only

some local areas are pathological. That is, the disinhibition is “broken” for a finite number
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of populations. Figure 3.4 shows some simulations of the 20 population model when 1,2,or

5 populations have reduced E-I connections. A single damaged population (A) allows for

selective memory and competition as long as the damaged population is not among those

stimulated. If it is stimulated, then it always is selected (compare the A, 1,2 versus 4).

Panel (B) shows that background stimulation is enough to keep the damaged population

active at all times after the stimulus, and this is sufficient to suppress any selectivity of

more strongly excited populations. Indeed the simulation shows that the constant activity

of the damaged population prevents the selection of the first or second populations when

they are strongly activated. Figure 3.4C shows a similar result for damage to populations

4 and 5. Interestingly in this and also to some extent in 3.4A, the selected population does

not go to a fixed point but rather oscillates. Finally, with five damaged populations, 3.4D

shows that it can be difficult to get an undamaged population to stay activated due to the

strong surround inhibition which comes from the higher activity of the damaged population.

Because the damaged population has less inhibition, it is more active and able to suppress

the other popluations, even though, it is not highly activated (light blue rather than red).

3.4 TWO-POPULATION MODEL

In order to gain some insight into how damage reduces selectivity and produces a variety of

pathological responses, we turn to a two population model of identical groups and such the

we reduce the cross inhibition. We first treat the E-I coupling as a parameter and find the

attractors for the network using numerical bifurcation methods. Then we attempt to explain

how stimuli effect a switch from rest to a specific attractor.

3.4.1 Attractors

Figure 3.5 shows a sketch of the bifurcation diagram for the two population model as a

function of the parameter, dei which is the cross population E-I connection strength. No

particular stimulus is used to produce this diagram, so we can consider that p(t) = 0. We
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Figure 3.4: The effects of localized damage on the network. Each panel shows a simulation for thirty seconds
after five seconds of stimulus (arrows) and the first k populations (k = 0, 1, 2, 4, 8, 12). In panel B, in addition
to local stimulation, there is also background stimulation. (A) Population 4 is damaged and once stimulated
will always “win”. (B) With background, the damaged population is always active even with weak (background)
stimulation. (C) Similar to (A) but populations 4,5 are damaged and can both stay on when stimulated. (D) As
in A,C, but 5 damaged populations.
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Figure 3.5: Schematic of the dynamics of a two-population network as the cross E− I strength is reduced. Solid
thin lines correspond to stable fixed points (red/blue) and solid thick lines correspond to stable periodic behavior
(green/cyan). Black filled circles are important bifurcations. Details are in the text.
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now describe the attractors and how they are connected and where they exist. We start on

the dark blue curve at the asterisk and move to the left. This starting point represents a

state in which both populations are at rest, in their low state. As the dei decreases, there is a

Hopf bifurcation (a) and this state loses stability. Thus, the network cannot remain quiescent

below da ≈ 1.713. As we continue along this unstable symmetric branch, there is a pitchfork

bifurcation (b) which spawns an asymmetric pair of unstable equilibria. Continuing along

this branch, there is a fold bifurcation (c) which stabilizes the symmetric state in which both

populations are turned on. This state persists for all dei < dc ≈ 3.62. The effect of reducing

the competition is that we enable the state in which both equilibria are turned on to be stable.

We now pick up the pitchfork bifurcation at b. This pair of unstable branches representing

an asymmetric case in which one population is more active than the other, undergoes a

fold bifurcation at d and gives rise to winner-take-all dynamics. For dei > dd ≈ 1.162 the

network has a state in which one population is on and the other off. This corresponds to

the normal state in which there is memory of the initial stimulus. A symmetric unstable

branch of periodic orbits emerges from the Hopf bifurcation at a which undergoes a period-

doubling bifurcation g. As we continue along the symmetric unstable branch of periodic

orbits (green dashed) there is a fold of limit cycles (e) and the symmetric synchronous

oscillation is stabilized (thick dark green curve). This solution remains until there is another

fold (f) leading to an unstable synchronous solution (dashed green curve). Stable synchronous

oscillations exist for a limited range 2.077 ≈ df < dei < de ≈ 2.889. Turning our attention to

the period doubling bifurcation (g) this branch of unstable asymmetric solutions (dashed,

cyan) undergoes a fold bifurcation at h and another fold at i such that there are stable

anti-phase (alternating) oscillations for 1.85 ≈ di < dei < dh ≈ 3.17. It is rather remarkable

that all these branches are connected. In the “normal” network, we imagine that dei > dc

so that the only attractors are the quiescent state and the two fixed points corresponding to

WTA behavior. The most pathological state occurs for dei < dd where only the completely

excited state exists. These patterns correspond to the patterns of activity seen in the 20

population model. Symmetric solutions correspond to homogenous behavior such as the

synchronous oscillations seen in figure 3.3. The anti-phase oscillations are analogues of the

clustered states see in figure 3.3 and the WTA behavior corresponds to the normal network
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states such as seen in figure 3.1.

3.4.2 Basins of Attraction

In this section we apply a variety of stimuli to the network when dei is fixed at a value of

2.6 where all six attractors are stable. We will apply periodic stimuli at different frequencies

with different amplitudes to see if it is possible to switch to the active states from the

quiescent state. There are many possible stimulus parameters to vary, so we will start with

the following. We stimulate for 2 or 3 seconds at a variety of different frequencies and with

different amplitude ratios between the two populations. Specifically, we set the excitation

to a value of 1 in population one (called the preferred stimulus or population) and vary the

strength of the stimulus in population two between 0 and 1 (the nonpreferred case).

Figure 3.6 shows the phase-diagram of the steady state behavior as a function of the

period (in seconds along the horizontal axis) and the magnitude of the non-preferred stimulus

along the vertical axis. The behavior and transitions appear to be very complex. For example

with a 2 second stimulus (A) at about 4 Hz, as the non-preferred stimulus increases, there

is winner-take-all behavior, anti-phase oscillations, and synchronous oscillations. The three

second stimulus (B) shows qualitatively similar behavior but there is a much larger set

of initial data leading to synchronous oscillations. Whereas shorter stimuli require nearly

identical preferred and non-preferred inputs, with a longer duration, the basin for synchrony

is quite large. With the longer duration stimuli, synchrony takes over much of the territory

of the anti-phase oscillations, while the anti-phase oscillations invade the rest state territory.

Presumably, the latter effect is due to the longer stimulus allowing a greater buildup of the

facilitation, w, thus making some active state more likely. In figure 3.7, we show an expanded

parameter scan within the green rectangle in figure 3.6A. Based on this we suspect that the

basins of these attractors are very complicated with riddled fractal structure. It seems that

there is never a direct transition from synchrony to anti-phase. The WTA behavior always

seems to separate these two attractors. The complex behavior shown here is a consequence

of the pathology introduced in the network. In the “normal” network, we find (not shown)

that for all two second stimuli (periods between 0.05 and 0.5 seconds), the network goes to
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Figure 3.6: Steady state behavior of the pathological network (E − I cross connections reduced t0 2.6) as
a function the period of the stimulus (in seconds) and the strength of the non-preferred stimulus (preferred
strength is 1). Four colors correspond to four different states: Return to rest (brown), winner-take-all (white),
synchronous oscillations (orange), and anti-phase oscillations (red). The horizontal axis corresponds to the period
of the stimulus, the vertical axis to the magnitude of the non-preferred stimulus. (A) two second stimulus; (B)
three second stimulus.
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Figure 3.7: Expanded view of green rectangle in figure 3.6A. Riddled basin for input stimuli in a narrow range of
periods and relative amplitudes. Parameters are the same as in figure 3.6A in the region shown with the green
box.

the usual winner-take-all behavior with the preferred population always winning.

The steady state behavior is very difficult to predict by looking at the time series of the

populations. Figure 3.8 shows the dynamics of the facilitation, w1, w2 and the excitatory

activity, u1, u2 of the two populations. In figure 3.8, we show these variables for a short period

of time centered around the end of the stimulus. In all cases, the non-preferred stimulus is 0.8

and the preferred is 1.0. We choose three different nearby periods for the stimulus such that

there is either return to rest, anti-phase oscillations, or winner-take-all. Figure 3.8A shows

the facilitation in the three cases. The red/orange curves correspond to a period of 0.1075

seconds and both populations return to rest. There simply is not enough buildup of w1,2 to

maintain them. The excitatory activity is shown in 3.8B. The green/olive curves correspond

to a stimulus period (0.10875 sec) in which there is WTA behavior with the preferred (green)

population winning. Note that because the non-preferred stimulus amplitude is smaller, the

green curve is above the olive curve. The blue/cyan pair shows the preferred/nonpreferred

when the system ends in the anti-phase state (period 0.11). Both curves are slightly higher

than the green/olive combination due to the slightly higher frequency of stimulus. We

first contrast the rest with the anti-phase case. The facilitation of the second nonpreferred

population (cyan) is quite a bit less than that of the preferred population in the rest case

(red) and yet the nonpreferred population stays active after the stimulus. The reason for

this is that the preferred adaptation variable (blue) is sufficiently high to turn on and the

recurrent E-E connections between the two populations give the second population a boost.
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Indeed, just lowering this parameter (dee) from 0.7 to 0.6, pushes both populations to rest.

The distinction between WTA and anti-phase behavior is far less clear. Figure 3.8C,D

shows that the activities of the two populations (green is preferred, red is nonpreferred) are

almost identical after the stimulus finishes and the first two cycles look like an anti-phase

oscillation. The difference between the adaptation variables at the endpoint of the stimulus

is essentially the same. Thus, there seems to be little qualitatively different between the

transition to WTA and to anti-phase. This feature provides a potential explanation for the

complex fractal nature of the basins of attraction shown in figures 3.6 and 3.7.

The two population model shows very sensitive dependence on perturbations even though

each of the attracting states is very robust. It is only possible to reach the upper state in

which both populations are firing at a steady state when the stimuli to both populations are

very strong and nearly symmetric.

3.5 ONE POPULATION

Three of the behaviors described in the previous section can be understood by looking an

the one-population model which is only a three-dimensional dynamical system. Furthermore,

in fact, it is two fast variables (u, v) and one slow variable (w, the facilitation) so that we

can apply standard fast-slow decomposition methods. In the two-populations (and in the

N population model), one can consider the following three cases: all at rest, synchronous

oscillations, and all turned on. In each of these three cases, all populations are identical, so

we are left with a three-dimensional system:

τu
du

dt
= −u+ f((aee + dee)(1 + kw)u− aiev − θe) (3.4)

τv
dv

dt
= −v + f((aei + dei)u− aiiv − θi) (3.5)

τw
dw

dt
= −w + f(γ(u− θw))[wmax − w]. (3.6)

Here we retain the coupling parameters dee, dei in order to emphasize that these equations

represent the symmetric solutions of the coupled populations.
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Figure 3.8: Behavior of the two-population network at the termination of a two second stimulus with different
periods and with the non-preferred amplitude of 0.8. (A) the facilitation variables, w1, w2 at three different periods
leading to three different states: green/olive (period,0.10875) WTA with green (preferred) winning; blue/cyan
(period 0.11) antiphase-oscillations; red/orange (period 0.1075) both die. (B) preferred (green), nonpreferred
(red), and stimulus (black) when in the rest state basin; (C) Same as (B) with WTA (low amplitude in the
oscillations of the nonpreferred population); (D) same as (B) when anti-phase oscillation occurs.

Figure 3.9: (A) Bifurcation diagram for the single population model as the cross inhibition, dei varies. Green
curve is quiescent rest state, blue curve is the excited state, and red is a branch of periodic oscillations. Vertical
line corresponds to dei = 2.6. (B,C,D) represent phase-planes of the u − v system with w frozen at the steady
state or average value along the line in (A). (B) w held at the value on the green curve, (C) red curve, and (D)
blue curve.
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Figure 3.9 shows the bifurcation diagram for the three-dimensional model when dei, the

cross E-I coupling, varies. For large values, the only symmetric solution which exists is the

quiescent state. As dei decreases, there is a fold and the upper symmetric state (all-on)

appears and remains stable for all lower values of dei. At dei ≈ 1.713 the lower quiescent

state loses stability at a subcritical Hopf bifurcation and then loses existence at a fold. The

subcritical branch of periodics turns around at dei ≈ 2.89 and becomes a stable branch

of periodic solutions. This branch again loses stability at a fold at dei ≈ 2.08. Thus for

2.08 < dei < 2.89 there is a stable periodic solution, two stable fixed points, two unstable

periodic orbits and an unstable fixed point. w varies slowly due to its long time constant

and even on periodic branches, it varies only over a small range of values. We fix dei = 2.6

and hold w at its steady state or average values corresponding to the three stable behaviors

shown in the bifurcation diagram. Figures 3.9B,C,D show the phase-plane dynamics for the

u − v system with w frozen. In each case, there is a unique stable attractor corresponding

to the three states in the bifurcation diagram.

Treating, w as a parameter, we can write, u(t) = U(t;w) where U is the solution along

the bifurcation diagram in figure 3.9A. Along the blue and green branches, U is independent

of time and along the red branch, it is periodic. The slow w dynamics evolve according to

equation (3.3). Since τw is large, we replace u by the steady state, U(t;w) and obtain:

τw
dw

dt
= −w + f(γ(U(t;w)− θw))[wmax − w].

We note that along the equilibrium branch, U(t;w) is a function of w only, so the right-hand

side is only a function of w. Along the periodic branch, we can average and again obtain a

function of w. Thus, we reduce the w dynamics to an equation of the form:

τw
dw

dt
= −w + 〈f(γ(U(t;w)− θw))[wmax − w]〉 := −w +G(w). (3.7)

Thus, we can plot the average, G(w) evaluated along branches of the solutions to the fast

(u, v)−dynamics with w as a parameter. Figure 3.10 shows G(w) versus w for several values

of dei along with the identity line, y = w. Intersections ofG(w) with w correspond to solutions

to the full three-dimensional system which are either equilibria or periodic solutions. For

example, with the normal value of dei = 3.5, there are two stable solutions, one in which

70



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.1  0.2  0.3  0.4  0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.1  0.2  0.3  0.4  0.5
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.1  0.2  0.3  0.4  0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.1  0.2  0.3  0.4  0.5

w w

w w

B

C D

G(w)

A
G(w)

G(w)G(w)

Figure 3.10: The curves depict G(w) as a function of w. (See equation (3.7.) Blue curves are stable equilibria to
the fast dynamics and red thick curves are stable periodic solutions. Grey circles correspond to stable solutions
and black circles to unstable. Each diagram is for a different value of dei. (A) dei = 3.5, (B) dei = 2.6, (C)
dei = 2, dei = 1.

the network is quiescent and one in which the population is excited (lower and upper grey

circles, respectively). As dei is lowered, the curve of values, G(w) rises vertically and the

middle branch (red) of stable periodic orbits intersects the diagonal line. This “fixed point”

represents a stable branch of periodic solutions to the full model and a synchronous oscillatory

solution to the full two- (or more generally, N−) population system. As can be seen from

figure 3.10B, where dei = 2.6, there are 6 fixed points corresponding to the two stable resting

states (left- and right-most fixed points) and the synchronous orbit. Consider again figure

3.9. The vertical line corresponds to dei = 2.6. There are two unstable periodic orbits, one

stable periodic orbit, two stable equilibria and one unstable equilibrium just as would be

predicted from the slow-fast decomposition in figure 3.10B. As dei is raised further to 2, the

branch of periodics is lifted above the diagonal and the stable lower equilibrium point is

shifted towards and onto the unstable equilibrium of the fast dynamics (see figure 3.10C).

The only stable solution to the three variable model is the upper active state. Finally, for

dei = 1, the only equilibrium, stable or otherwise, is the upper state.

We can also use this separation of time scales to understand the dependence on frequency

of the stimulation. In particular, we can see why very fast and very slow stimuli are ineffective

in exciting the network. Figure 3.11A shows the evolution of the facilitation, w for 4 different
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Figure 3.11: (A) The evolution of w during periodic stimuli lasting 10 seconds. Period of the stimulus is shown
next to each curve. (B-C) Evolution of u(t) during stimuli (red curves show the periodic stimulus) for a period
of 0.1,0.2, and 0.3 seconds.

periods of input lasting a total of 10 seconds each for somewhat reduced inhibition (dei = 3).

Only the stimulus with period 0.3 seconds is sufficient to push the network into an excited

state. In this reduced inhibition case, the fast subsystem (holding w at its resting value)

is an excitable medium; there is a stable rest state but amplification before return to rest.

Once the population is excited, however, it needs time for the inhibition to wear off before it

is excited again. Thus, if the frequency of the stimulus is too high, the population can either

never fire again or fire only on a fraction of the cycles (cf figures 3.11B,C). However at a low

enough frequency, the excitatory population fires at every cycle (figure 3.11D) allowing the

facilitation to build up and effect the switch into an excited state. For lower frequencies, 1:1

locking still occurs and the excitatory population fires on every cycle, but, the time between

firing is such that the w can never reach a sufficient level to push the medium into an excited

state. Thus, for intermediate frequencies, we can push the network into an excited state.
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3.6 SEIZURE TERMINATION

A working memory network would be of no use if the persistent activity of its populations

could not be terminated. It is therefore pertinent to study how the states which are reached

after the stimulation of the network can be reverted back to the baseline state using a

second stimulus. We study termination in three general cases: first during normal network

behavior, when inhibition hasn’t been disrupted and there are only one or two populations

active simultaneously. The second case we study is when inhibition has been disrupted so

that there are multiple populations displaying high activity, and the third case addresses the

termination of oscillatory behavior. These last two could also offer some insight into possible

mechanisms for the termination of ictal activity.

In the case with normal inhibition there are several ways to revert the state back to

baseline. The most straightforward one consists of exciting all the populations so that lateral

inhibition shuts down the active one (Figure 3.12). This method of terminating the activity

is fragile, since any reduction in the inhibition will render it ineffective, and it requires the

activation of nearly all populations. Moreover, there is again frequency sensitivity, with

some frequencies of the stimulus being better suited to turn down the activity. Increasing

the duration of the stimulus is a way to enlarge the range of frequencies that can turn down

the activity. Combining selective stimulation of the inhibitory component of the active

population with the stimulation of the rest of the populations largely reduces the number

of populations which need to be stimulated, and allows termination with a broader set of

frequencies (Figure 3.12).

In the case where we have a large number of populations active simultaneously (following

a breakdown of inhibition), it is no longer possible to turn down the activity by exciting all

populations (this may result in more populations becoming active). In fact, when the inhibi-

tion has been reduced to the point where exciting one population may recruit several others,

the direct stimulation of the inhibitory component of the active populations is not sufficient

to turn them off; a direct inhibitory stimulus to the excitatory component of the active

populations is required in order to terminate the activity (Figure 3.13). Terminating the

activity one population at a time requires less inhibition than the simultaneous termination
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Figure 3.12: Terminating the activity of a single active population under full inhibition(dei = 5.4). Panel (A)
shows the effect of stimulating the first k populations. Notice how the active population (number 10) only goes
back to baseline when 19 or 20 populations are stimulated. Panel (B) shows the same network with the same initial
state, but in this case the inhibitory component of population 10 is stimulated along with the first 8 populations.
In both cases the frequency of the stimulus is 3.3 Hz.
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of all activity. As in the prior case, the result of the stimulation is frequency dependent.

Unlike the case where we have a large group of active populations, both synchronous and

antiphase oscillatory behavior can be turned off by a purely excitatory stimulus applied to

a subset of the populations (Figure 3.14). Depending on the amount of inhibition present

and on the strength of the stimulus the network state may evolve into one with many active

populations. That is, the transition from oscillations may not necessarily take the system

back to rest. This phenomenon can be understood using the fast-slow decomposition in the

one population model of section 5. When a subset of the populations is excited, lateral

inhibition to the rest of the populations is created along with the excitation. If the net effect

is inhibitory, the average value of the variable u during the limit cycle to will drop down

(Figure 3.9B,C), and if it is excitatory the average value of u will increase. The change in

the average value of u will cause the variable w to respectively decrease or increase, and that

change will lead it away from the basin of attraction of the oscillatory regime (Figure 3.10B).

Once a few populations stop oscillating the generalized oscillations are no longer stable, and

each population falls into one of the stable attractors left, usually baseline or high activity.

In addition to terminating oscillating behavior once it has been initiated, it is interesting

to observe that the onset of oscillations can be prevented by applying a strong excitatory

stimulus to some of the populations along with the stimulus which would otherwise cause

all the populations to oscillate, as can be observed in Figure 3.15. This phenomenon is not

puzzling if we once again consider the fast-slow analysis of section 5, and notice how the

appearance of stable oscillations (Figure 3.10 ) requires a balance in the average values of

the u variables: stimuli which are too strong or too weak cannot lead the system into stable

oscillations.

3.7 DISCUSSION

This work presents a physiologically-based model of working memory yielding a potential

generalized description of epilepsy or seizure-like behavior. The basic premise is that seizures

result from inherent states in working memory networks that come about through disinhi-
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Figure 3.13: A network with low inhibition (dei = 1.59) and many excited populations may be reset to baseline
using inhibitory inputs to the excited populations. Panel A shows a 10 Hz inhibitory stimulus being applied to
0,1,2,4,12, and 20 populations, starting with the leftmost one. Panel B is similar, but the stimulus has a frequency
of 3.3 Hz. Note that in the top panel whenever a population is inhibited it goes to baseline, whereas in the bottom
panel this only happens when the number of populations inhibited is small.
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Figure 3.14: Oscillations can be terminated through the application of an excitatory stimulus to the excitatory
and inhibitory components of a set of populations. The left panel shows the stimulus being applied to 0,1,2,4,12,
and 20 populations in a network initially displaying synchronous oscillatory behavior. The right panel shows the
same stimuli being applied to a network initially displaying antiphase oscillations. In both cases the frequency of
the stimuls is 3.3 Hz and the inhibition is dei = 2.
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Figure 3.15: The onset of oscillations can be prevented when a certain number of populations receive a larger
excitation than the rest in a case of low inhibition (dei = 2). In panel (A) there are 0,1,2,4,12, or 20 populations
receiving the larger stimulus which tends to prevent synchronous oscillations (notice how the system goes into
synchronous oscillations when no populations receive the large stimulus). In this case the stimulus frequency is
3.3 Hz. Panel (B) is analogous to panel (A), but the stimulus frequency is 5 Hz, which tends to drive the network
into antiphase oscillations.
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bition in the neuronal populations (either inherent imbalances between excitatory and in-

hibitory synapses or damage) resulting in a loss of population selectivity and potentially,

concomitantly, a loss in stability of fixed point attractors. A critical component of the

working memory network is dynamic synapses through facilitation which in normal working

memory regions of parameter space enables the stable selective activation - to a particular

input stimulus – of a given population. Changes in model parameters however, specifically

reduction in inter-population inhibition, produce a series of bifurcations such that both nor-

mal and pathological states coexist for the same network parameter settings and external

input (or internal perturbations) can trigger transitions from normal working memory to

seizure-like behavior. Specifically here we consider a model indicative of a common type of

reflex epilepsy, in which rhythmic stimulus input to hyper-excitable cortex produces seizures.

The network was not designed or fined-tuned to exhibit seizure-like or ictal activity,

but rather such states and behaviors are inherent over wide ranges of the parameter space

of the normal working memory network. The network exhibits working memory behavior

with sufficient lateral inhibition strength between populations. Following a typical working

memory paradigm, there is a baseline period during which the network populations reside

in a stable attractor and exhibit resting-state firing-rate levels. During presentation of a

stimulus– which is to be held active in short term memory–there is an external input (rep-

resenting the stimulus) to the networks populations that subsequently causes an increase

in firing frequency. After this, the external input is terminated, and a delay period ensues

in which the information about the stimulus must be retained ultimately for use in some

subsequent behavioral or motor response. During this delay period, a specific population (or

subset of populations) representing the stimulus information being held maintains persis-

tent activation (above-baseline elevated firing rate). The network exhibits specificity in two

ways. First only a given population becomes activated (i.e. winner-take-all) as a result of

the afferent memorandum stimulus. Second, whether or not the population becomes active

is a function of the particular frequency of the input. Thus specific frequencies of inputs

represent a memorandum, and a particular population responds to that input preferentially

and becomes persistently activated, while the activity of other populations remain at base-

line levels. Further this working memory activity of the network reproduces the persistent
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patterned behaviors and firing statistics observed in real cortical cell populations recorded

during the performance of working memory tasks. These results are presented elsewhere [200]

(Chapter 2). The canonical working memory activity can be seen to be present from the

schematic of the bifurcation diagram of the 2-population model for sufficiently high values

of the lateral inhibition. As inhibition is reduced, while working memory behavior is still

present, multiple potentially pathological states that the network may adopt as a result of

specific stimuli become possible through a series of bifurcations.

Epilepsy has previously been suggested to be a dynamical disease and previous work

has suggested dynamical processes leading to seizure generation including deformation of

system attractors induced by changes of network parameters that lead from normal to ictal

activity, bifurcations in a system possessing both normal and pathological states coexistent

for the same parameter setting such that external input or internal perturbations trigger

sharp transitions from normal to epileptic behavior, and a mixture of both scenarios with

gradual parameter variations facilitating the transition from normal to an ictal state [129].

In the present work, we concentrate on the second of these (the coexistence of normal and

pathological states). However all 3 of these routes to seizures are present in the model. Par-

ticularly facilitation in the model can create changes in the relative excitation and inhibition

of the model which results in a deformation of the attractor structure.

We consider pathological activity in this work, specifically seizure activity, to be a loss of

selectivity. That is, the ability of a specific subset of populations to become activated by a

given stimulus input breaks down, and multiple populations are recruited by the stimulus in a

nonlinear fashion. This is the general and perhaps the most common trait of all seizures and

types of epilepsy. In the network we see that the recruitment of populations in pathological

activity is such that different stimuli induce a loss of selectivity, with the number of popu-

lations activated (the degree of spread of the seizure) increasing in a nonmonotonic fashion.

While synchronous activity of multiple populations has been implicated in normal cognitive

function, it can be a double edged sword when that activation spreads. The dynamics under

which normal binding and pathological recruitment and loss of selectivity occurs is as yet

not understood. The elucidation of these mechanisms can lead to a better understanding

of how seizures propagate and might be controlled. The specific dynamics exhibited by the
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activated pathological network are such that they can exhibit a range of population activ-

ities which include fixed firing rates, synchronous oscillations, and anti-phase oscillations.

Such varied states are typical of seizure in different types of epilepsies, or indeed might be

observed within a given seizure [58]. In the present model, the populations of the working

memory networks can transition to all of these varied behaviors.

In the model, recruitment can occur along a range of different paths exhibiting dif-

ferent dynamics. As can be seen from the schematic of the bifurcation diagram of two

interconnected populations (Figure 3.5)–which generalizes to many populations–as inhibi-

tion is decreased the stable fixed firing rest state undergoes a Hopf bifurcation that after a

pitchfork bifurcation ultimately (after a further fold bifurcation) results in winner-take-all

working memory behavior. Thus normal working memory behavior is still possible in the

deranged network. This is indeed the case in human epilepsy in which seizures do not occur

the majority of the time. However, it is also possible from the Hopf bifurcation, for the net-

work to proceed to a state in which all the populations of the network are active exhibiting

synchronous or anti-phase oscillations. Thus the ultimate seizure state may involve hyper-

synchronicity, weak synchronicity, or periodic behavior depending on the specific network

parameters.

A vital component of the present model is that transitions to specific states can be

a function of the periodicity of the external stimulus. The dependence of transitions to a

seizure-activity attractor on frequency relates to a model of reflex epilepsy. That is epilepsies

involve seizures resulting from exposure to a particular external or internal stimulus (often

periodic). Facilitation and dynamic synapses which have been implicated in working memory,

here play a central role in which resonance with a given external stimuli causes pathological

activity [142, 200]. This has been suggested to be important in working memory networks.

Structural changes and particular inputs can cause the dynamic synapse mechanisms to play

a fundamental role in changing the state from one attractor to another (acting as a switch),

going from normal to pathological activity. The fact that such a high percentage of people

exhibit a seizure in their lifetime without developing epilepsy may indicate that this is an

inherent feature. More permanent parameter changes caused, for example, through learning

or trauma might bias activity towards the pathological region of the state space.
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An understanding that all of these behaviors can be inherent in working memory net-

works and how they are related might lead to potential therapeutic interventions. In the

model of reflex epilepsy presented here, we see that while pathological activity is induced by

specific stimuli, we also see that specific inputs are capable of terminating seizure activity

once initiated, or prevent seizures from occurring depending on the specific dynamics of the

seizure. In the case of termination of seizure activity once initiated, this may have relevance

to the mechanisms involved in recent attempts to control seizures through electrical stimula-

tion of the cortex [17,118,143,198,199]. In figure 3.14 we show that a general excitation of the

populations, when the specific dynamics of seizure activity involves oscillations (synchronous

or asynchronous), results in the termination of the seizure. Specifically from the schematic of

the bifurcation diagram, we see that the general stimulation induces a transition from the sta-

ble synchronous oscillation state to the baseline state through modulation of the facilitation.

Thus electrical stimulation may be most efficacious in treating seizures with that particular

type of dynamics. In the case of prevention of seizure activity, recently evidence has been

accumulating indicating that stimulation of the cortex with specifically patterned sensory

input (i.e. particular music) can reduce or eliminate pathological interictal activity with a

resulting reduction or even elimination of seizures in particular cases [100,101,119,174,194].

The mechanism for this intervention might be related to the dynamics examined in Figure

3.15. Here we see that the excitation of multiple populations by inputs of specific frequencies

prevents the transition of the network to a pathological state. This models the activity of

the musical stimulus which has been demonstrated to strongly excite a widely distributed

population of neurons associated with working memory networks [20, 147]. Recent evidence

has indicated that long term exposure may result in a long-term shifting of the attractors

away from pathological states.
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4.0 A MODEL FOR COMPLEX SEQUENCE LEARNING AND

REPRODUCTION IN NEURAL POPULATIONS

4.1 INTRODUCTION

If neuronal activity had no temporal structure, functions like movement and prediction

would be severely impaired. This has motivated various studies of how the brain processes

temporal information [31,32,112]. In addition, several researchers have reported a sequential

structure in the activity of mammalian neocortex, both at the level of individual neurons

[27,102,148,155,158,186], and local field potentials [130,131,186,187], showing that sequences

can happen both at the level of single neurons, and of neuronal populations. How this

sequential structure is acquired remains an open problem.

The treatment of temporal sequences of neural activity appeared early in neural network

literature (e.g. [5, 28]), and a variety of models have been proposed to explain sequential

activity in the realm of biological modeling, as well as intelligent systems [181]. Different

models have been used for the interrelated tasks of prediction, generation, and recognition of

sequences, as well as sequential decision making. The first model networks which learned and

reproduced sequences would usually work in discrete time, use neural elements with discrete

states, impose a particular connectivity pattern, or would require some form of supervised

learning ( [53,86,108,113,141,173,177]), and the models with the greatest capabilities usually

have one or more of these features (e.g. [48,202,210,212]). Models with increased biological

plausibility have been introduced [57, 89, 103, 109, 128], but some challenges remain unre-

solved. Perhaps the most pervasive problem concerns robust autonomous learning, with

dynamics that permit the reproduction of complex sequences. Examples like the forma-

tion of trajectories in hippocampus [148] and the learning of structure in birdsong [24] also
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suggest the importance of external cues shaping the sequence.

The reproduction of a simple sequence is a phenomenon which can be regarded as the

propagation of a neuronal signal. It is known that signals which propagate over individ-

ual neurons tend to be unreliable due to the stochastic regime in which neurons operate.

Thus most models for propagation of activity distribute their signals over groups of neurons

which operate redundantly in order to increase their robustness. Depending on whether the

neurons in each group fire synchronously or asynchronously, we will have a synfire chain

model [3,36,47], or a firing-rate propagation model [197,201]. Several models for sequential

activity have used synfire chain dynamics (e.g. [89, 109]); the precision they show in their

spike timing seems promising when thinking about the autonomous formation of propagation

pathways using spike-timing-dependent plasticity (STDP), and they can create associations

between groups which may be germane for compositionality [48]. STDP is an attractive

choice for the autonomous formation of sequences, and there have been recent results in how

this may be achieved in single neurons [57, 103] and synfire chains [109]. These studies did

not concern themselves with how complex sequences could be learned and reproduced or

how external inputs could quickly form or modify sequences. The reproduction of a complex

sequence is only possible when the sequence’s context is maintained by some form of short-

term memory. The common ways to maintain the context in memory are delays (as in [86]),

context units (as in [108]), or the state of a high-dimensional system (as in [183]). Persistent

activity is not usually used as an option to maintain a sequence’s context, despite being re-

garded as the neuronal substrate of working memory [63, 70, 164]. Persistent activity would

indeed be difficult to combine with STDP learning of complex sequences, and a network oper-

ating either in the synfire regime or with single neuron propagation. In this paper we provide

a model which combines learning and reproduction of complex sequences through tempo-

rally asymmetric Hebbian learning, maintaining the context information through persistent

activity. We achieve this by assuming the existence of densely connected populations with

projections experiencing temporally asymmetric Hebbian plasticity; this simple assumption

has important consequences in the creation of excitation pathways, with signals traveling

from one population to another (a somewhat similar assumption is presented in [2]).

In the first part of the paper we show the feasibility of having temporally asymmetric
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Hebbian learning at the population level. By combining synchronous and asynchronous

dynamics in a single learning mechanism we show that this type of plasticity is biologically

plausible when applied to the mean synaptic weight of the connections from one population

to another. Next we present a firing-rate model capable of storing and reproducing complex

input sequences of small order. We describe the dynamics of our model, and the role of its

distinct elements. The transition of the activity among distinct populations is enabled by

the interplay of excitation and inhibition, which causes slow frequency excitatory activity

and higher frequency inhibitory activity with gamma oscillations in the mean firing rate [88].

As in synfire models, we find that correlated firing among different populations may lead

to new connections forming between them; in our model, however, the level of inhibition

controls whether or not different populations can associate. We also show that by forming

closed-loop sequences the activity can be maintained until an exterior stimulus turns it

off (by synchronizing all populations) or initiates another sequence (which by competition

will terminate the activity in the first sequence). This constitutes a possible substrate for

working memory, and for the generation of arbitrary rhythms, which relates our work to

these biological functions.

4.2 RESULTS

4.2.1 Temporally Asymmetric Hebbian Learning on Asynchronous Populations

An important component of the model presented in this paper is a temporally asymmetric

Hebbian plasticity rule which changes the connectivity among populations depending on

the timing of changes in their mean firing rate. Such a rule could be justified if given

a pair of small neuronal populations A and B, interconnected with synapses following an

antisymmetric STDP rule, we could have that an increase in the firing rate of A followed

by an increase in the firing rate of B would lead to an increase in the mean strength of

connections from neurons in A towards neurons in B, and a decrease in the mean strength

of connections from neurons in B towards neurons in A. Existing studies on populations
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of neurons with STDP connections indicate that the distribution of synaptic weights in a

spiking network with additive STDP tends to become bimodal [84, 167, 178]. We prefer to

use a weight-dependent STDP rule to avoid the hard nonlinearity at saturation and to better

adjust to experimental data [145]. Weight-dependent STDP rules tend to produce unimodal

distributions unless the right correlations exist between presynaptic and postsynaptic activity

[84, 167]. A basic characteristic of these studies was the use of initial homogeneous random

connections. For the spiking model in this section we instead assume the existence of densely

connected neuronal populations; neurons in different populations communicate using STDP

connections. This breaks the homogeneity in the network, and helps to avoid problems such

as synfire explosions and the difficulties in creating excitation pathways with synchronous

inputs and STDP plasticity ( [144]; Kunkel et al. 2010, submitted). In order to create

connections between populations we stimulated them with Poisson spike trains, and found

that by using the right timing in our inputs we could strengthen the the projections from the

first stimulated population to the second stimulated population, and weaken the opposite

projections (as will be described below). It should be remarked that the model with spiking

neurons only intended to show the feasibility of temporally asymmetric Hebbian plasticity

at the population level; it is not concerned with sequential activity and is not meant to have

the same dynamics as the firing rate model in this paper.

Figure 4.1: Architecture of the model networks. A) The spiking model consists of four excitatory
populations (circles labeled Ei) and one inhibitory population. Arrowheads denote excitatory connections, and
dots inhibitory connections. B) The firing rate model consists of N excitatory units (blue circles, labeled xi), and
M inhibitory units (red circles, labeled yi). The excitatory units have weak all-to-all connectivity. The probability
of xi sending a projection to yj is 0.5, which is also the probability of yj sending a projection to xi.

We used a simple model network of conductance-based integrate and fire neurons (figure

4.1A) to test our ideas. The network consisted of four populations, three excitatory (100 neu-

rons each), and one inhibitory (80 neurons). The neurons in each population randomly sent
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projections towards half of the neurons in each of the other populations. The excitatory-to-

excitatory connections used STDP synapses with a power law exponent µ = 0.1, as described

in [84]. Each neuron received 20000 independent Poisson spike trains, 16000 excitatory with

a mean firing rate of 4 Hz, and 4000 inhibitory with a mean firing rate of 5 Hz. The neurons

in each population had static all-to-all connectivity between them; inhibitory populations

had no connections between themselves. Since the excitatory neurons had no constant inputs

and were driven by independent Poisson trains, increasing the connection strength within a

population could increase its coherence. The strength of the connections within each popu-

lation was not enough to cause synchronization given the normal Poisson background input,

but stronger asynchronous input could increase the coherence in the population to the point

where most neurons would fire together (see figure 4.2A-D). This increase in synchrony was

beneficial when creating connections between populations, as it would allow a presynaptic

population to emit spike volleys which could drive many postsynaptic neurons beyond thresh-

old, in a manner similar to a synfire chain model. The intermediate inhibitory population

was included in order to maintain the architecture of the firing rate model to be presented

below, but it also had a beneficial function in maintaining the stability of the asynchronous

firing, and reducing the positive correlation between the excitatory populations.

As a first foray into the dynamics of our spiking model, we tested whether asynchronous

stimulation of population 1 could strengthen its projections towards the other two excitatory

populations (2 and 3 ). The idea was that by increasing the firing rate in 1, the neurons

in this population would cause neurons in 2 and 3 to fire, thus strengthening their STDP

connections. The problem was that the neurons in 1 firing asynchronously would not provide

enough excitation to drive the neurons in 2 and 3 beyond threshold. We overcame this in

two ways. The first was to alter the balance between excitation and inhibition so that the

distribution of voltages remained near threshold in the postsynaptic populations. Indeed,

signals can propagate their firing rates when the subthreshold voltages of the underlying

network have a distribution that is broad and close to threshold [197, 201]. The second

solution was to have strong enough connections within the populations, so that they would

fire synchronously when an additional stimulus was applied to them. The coexistence of

synchronous and asynchronous dynamics, as well as the balance between excitation and
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inhibition [25] ensured that upon stimulation of population 1, its outgoing projections became

stronger, and its incoming excitatory projections became weaker. These results are shown

in figure 4.2. An interesting additional consequence was that both targets of population 1

could strengthen their reciprocal excitatory connections, thus creating an ensemble target

population (figure 4.2H).

Figure 4.2: Formation of unidirectional excitation pathways and population ensembles. A,B,C,D)
Spike rasters of the three excitatory populations and the inhibitory population. Independent Poisson stimuli are
applied to population 1 from t = 2000 ms to t = 2300 ms, which causes synchronous activity. The activity in
population 1 spreads to the other 3 populations, causing significant changes in the mean synaptic weight between
populations. E) Voltage trace of the first neuron in population 1. F) Mean synaptic weight of the connections
between populations 1 and 2. The formation of a unidirectional excitation pathway is observed here. G) Mean
synaptic weight of the connections between populations 1 and 3. H) Mean synaptic weight of the connections
between populations 2 and 3. These two populations experience a bidirectional strengthening of their connections.

The mechanism described so far may not be well suited for the formation of sequential

activity among the populations, unless we are capable of selectively changing the balance

between the excitation and inhibition of the background input. The reason for this is that the

connections being formed are not specific, but arise from the stimulated population towards

all the targets with mean voltages near threshold. We can specify a target by changing
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the balance in its inputs so that its mean voltage is near threshold, and each transition

in a sequence would be formed by a strong stimulus towards the presynaptic population

combined with a shift in the excitation and inhibition of the postsynaptic population. If we

use a weight-dependent STDP rule, the stability of the changes in the synaptic weights will

depend on the firing rate of both populations, which also depends on the balance between

excitation and inhibition.

In the last paragraph we mentioned that the stability of the changes in the synaptic

weights depends on the firing rate of both populations. Indeed, when two populations

are connected with weight-dependent STDP connections following a rule as in [84], and

unstructured (Poisson) firing driving the activity, there is a tendency for the mean of the

weights to drift towards the value where potentiation and depression are equally scaled (in

our case, one half of the maximum weight). The intuition behind this is that when a weight

is below this value, potentiation is stronger than depression, and vice versa. Thus, assuming

no correlations between the firing of both populations, the mean of their connections will

drift towards this fixed point. Having one population excite another breaks the symmetry in

the connections, but if the change is small the connections will drift back towards the fixed

point, at a rate that will become faster at higher firing rates. By reducing the firing rates

we can have changes in connectivity that last for longer periods. On the other hand, if the

symmetry in the connections is broken by a large enough alteration, this might introduce

correlations in the activity of the populations, and these correlations might reinforce the

weight asymmetry. This idea will be used below.

We now present another mechanism that does not require selective modulation of the

background input in order to increase connections along a specific pathway, or to increase

their permanence. Synchronous activity is used to form connections, and asynchronous

activity is used to consolidate them. We use the same model as before, but we reduce the

initial value of the STDP connections between the excitatory populations. The effect of this

is that the activity in an excitatory population will not have a large effect in the activity

of the other excitatory populations. As seen in figure 4.3, we apply an external Poisson

stimulus to population 1 for 300 ms, and another Poisson stimulus (duration 225 ms) to

population 2 25 ms before the end of the first stimulus. This resulted in a fast decrease in
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the mean value of the synaptic weights in the 2 to 1 connections, and a gradual increase in

the 1 to 2 connections. The fast changes in connectivity were due to synchronous activity in

population 1 followed by synchronous activity in population 2, all due to the external inputs.

The gradual changes came because once the 2 to 1 connections were decreased and the 1

to 2 connections increased, the probability of neurons in population 1 activating neurons in

population 2 was larger than the probability of neurons in 2 activating neurons in 1, so that

asynchronous activity increased the initial asymmetry in the connections. As can be seen in

figure 4.3, the activity in 1 and 2 had little effect on population 3, which accounts for the

small size of the variations in the connections involving this population. The overall effect of

the activity in 1 and 2 was to increase the connections towards population 3, and decrease

its outgoing connections, just as in the previous simulations, but on a smaller scale.

The simulation just described shows that by timing our inputs correctly we can selectively

strengthen activation pathways among the populations. The possible consequences of a

mechanism like this will be analyzed in the remainder of this paper using a firing rate model

to describe the dynamics of a larger set of populations.

4.2.2 Overview of the Firing Rate Model

In order to analyze the behavior of multiple asynchronous neuronal populations intercon-

nected with temporally asymmetric Hebbian plasticity, we describe the activity of each

population by a single variable related to its mean firing rate. We refer to these model

populations as units. Our full firing rate model contains 80 excitatory units and 16 in-

hibitory units (figure 4.1B). The excitatory units use an equation similar to those in the

Wilson-Cowan model [208], while the inhibitory units follow a simpler, almost linear behav-

ior. We used heterogeneous parameter values for all our equations, which are described in

detail in the Methods section. A possible interpretation of our model is that it describes

the activity in a single cortical column, with each unit representing the average activity in a

minicolumn [146].

Excitatory units are intrinsically affected by firing-rate adaptation and noise. The inputs

they receive can be divided in four categories: recurrent self-connectivity, inputs from other
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Figure 4.3: Temporally asymmetric Hebbian plasticity at the population level. A,B,C,D) Spike
rasters for the four populations. Independent Poisson spike trains are applied to the neurons in population 1

from t = 1500 ms to t = 1800 ms, and to the neurons in population 2 from t = 1775 ms to t = 2000 ms.
The activity in the first two populations had little effect in population 3, but elicited synchronous activity in
the inhibitory population. E) Voltage trace of the first neuron in population 1. F) Mean synaptic weight of
the connections between populations 1 and 2. A unidirectional connection starts to form during the stimulus
period, and consolidates through the spontaneous activity. G) Mean synaptic weight of the connections between
populations 1 and 3. H) Mean synaptic weight of the connections between populations 2 and 3.

excitatory units, inputs from inhibitory units, and external stimuli. The matrix of excitatory

to excitatory (E-E) connections had all-to-all connectivity, and connections were usually

initialized randomly with small values that had little effect on the dynamics. The excitatory-

to-inhibitory (E-I) and inhibitory-to-excitatory (I-E) connections were randomly generated,

so that given one excitatory unit e and one inhibitory unit i, the probability of e sending a

projection to i was pie = 0.5, and the probability of i sending a projection to e was pei = 0.5.

The excitatory units of a network whose connections are at the initial state do not have the

ability to activate persistently or generate sequential behavior, and in the absence of external

input there is only the spontaneous activity arising from the noise, which is not enough to
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modify the connectivity. Since our goal is to store and reproduce sequences that come from

an external input, it would be disadvantageous to have connections arising spontaneously

from noise.

E-E connections experience synaptic plasticity. Our plasticity rule is inspired by the

one found in [111], and resembles the temporally asymmetric Hebbian plasticity mechanism

described for the spiking model above. The idea behind this plasticity rule is to strengthen

the connection from unit A to unit B if A is active shortly before B becomes active, and

to weaken that connection if B is active shortly before A becomes active. We added var-

ious modifications to the rule in [111], the most important of which is to reduce synaptic

potentiation in populations where incoming activity is already high. This permits us to

store complex sequences without an unstable growth of connections. Another modification

is the introduction of a term which implements either heterosynaptic competition or a slow

reduction of synaptic weights of intermediate strength. This term is not required by the

model in order to store and retrieve sequences, but it makes it unlikely for long simulations

to end with too many strong connections, a condition which can lead to instability. The

implementation of this additional term is described in the Methods section.

It has been observed that temporally asymmetric Hebbian learning leads to synchroniza-

tion [97, 111, 182]. This is also true in our model, which means that sequences that repeat

continuously tend to synchronize their components. In order to avoid this effect we included

a delay in the excitatory to excitatory connections. Such a delay could correspond to trans-

mission delay down the axons of the activated presynaptic population, or to delay due to

neurotransmitter diffusion and reception in the synaptic cleft.

Once E-E connections have been formed our system has dynamics similar to a “k-winners-

take-all” network due to the interaction between the excitatory and inhibitory populations.

In our case, however, asymmetric projections and firing-rate adaptation causes one of those

k winners to turn off, giving a new unit the opportunity to turn on. This periodic replace-

ment of active units allows the network to reproduce sequences which are stored in the E-E

connection matrix. More details are provided below.
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4.2.3 Storage and Retrieval of Sequences

Our model has two main traits which enable it to reproduce a complex sequence of degree

k: each k consecutive components in the sequence send weighted projections to the k+1-th

component, and the dynamics permit the activation of k components simultaneously (figure

4.4). When the first k components of the sequence have become activated in sequential order

(and remain active), the k + 1-th element is unambiguously receiving the most excitation,

which ensures that it becomes activated, briefly bringing the number of active units to k+1.

Having k+1 units active simultaneously increases the excitation to inhibitory units, increas-

ing their firing rate and the inhibition they send back to excitatory units. This increased

inhibition causes one of the k + 1 excitatory units to return to baseline. The unit returning

to baseline is the one which has been active for the longest, because it has accumulated the

most synaptic adaptation. Through this process the next component becomes active and the

first component returns to baseline, with a transition rate that depends on the time constants

of the model and the delay in their connections. The time between the onsets of contiguous

components in a sequence is about 20 milliseconds in our implementation of the model. The

periodic onset of new active units in the excitatory population causes inhibitory units to

oscillate due the convergent E-I projections. The frequency of these oscillations is around

50 Hz, inside the gamma range. The result is that excitatory units have low firing rates, but

the population activity has oscillations in the gamma range, as is found experimentally [88].

The number k of simultaneously active units is controlled by the level of inhibition (the value

of E-I and I-E connections), with lower inhibition permitting larger values of k.

The connections required to encode a sequence can be created by activating the compo-

nents in the correct order a few times using an external input. The input, however, may have

no effect on the connections if there is no overlap between successively activated components.

In order to create a complex sequence of degree k, the input must be such that k units are

active simultaneously, roughly imitating the way that the sequence would look when acti-

vated intrinsically. This requirement is a direct result of the plasticity rule (described in the

Methods section), and permits the formation of simple sequences which intersect, but can

nevertheless be activated unambiguously. This result is illustrated in figures 4.5, 4.6 and 4.7.
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Figure 4.4: Sequence encoding and reproduction. A) Each circle represents an excitatory unit, and the
arrows represent their projections. There are two simple sequences intersecting at unit 4, and each unit sends
projections to the next two units in its corresponding sequence. Using dynamics that allow at least 2 units to be
simultaneously active either sequence can be activated without ambiguity after reaching unit 4. B) The sequence
1-2-3-4-5 being generated with a maximum of 3 simultaneously active units, and a minimum of 2. Each column
shows how the activity of the corresponding unit evolves through time, with blue representing a baseline value,
and red representing a high frequency value. The dashed lines highlight two regions with 3 simultaneously active
units.

Figure 4.5 shows the formation of a closed-loop sequence encompassing units 10 through

20, following four presentations of an input sequence. Figure 4.5A shows the activity of all

excitatory and inhibitory units as the sequential input is presented after 200 milliseconds of

simulated time, starting from the stable baseline state. The plasticity rule used reduction of

intermediate-value weights (explained later on in this paper). It can be seen that after four

repetitions the input sequence begins to be intrinsically generated by the network, with small

deformations due to noise and parameter heterogeneity. The fidelity of reproduction can be

altered by the input overlap and by its transition speed. The E-I and I-E connections have a

magnitude which permits this intrinsically generated sequence to have at least 3 components

active simultaneously, which permits the generation of complex sequences with degree 2, as

well as intersections of simple sequences. Figure 4.5B partially shows the connection matrix

for excitatory units after the simulation in figure 4.5A was stopped. The encoding of the se-

quence is clear, with each unit receiving connections from roughly 4 of the units preceding it.

The connection matrix reaches stable values (slightly affected by noise fluctuations) despite

the plasticity being active all the time, thanks to the delay in the connections. Although it

is possible to encode sequences with no closed loops, in the rest of the paper we will present
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examples using closed-loop sequences, which permit persistent activity and better illustrate

the properties of the model.

Figure 4.5: Creation of a closed-loop simple sequence. A) This panel shows the activity of all units as an
input is being presented to the network. The leftmost 80 columns represent the activity of the excitatory units,
and the 16 columns to the right of the black line represent the activity of the inhibitory units. A sequential input
is repeated 4 times starting at 200 milliseconds, transitioning from unit 10 towards unit 20, always maintaining
an overlap of two units; blue arrows indicate the start and the end of the input-driven activity. The sequence
continues to be generated intrinsically after the input is over due to the excitatory connections that were formed,
maintaining an overlap of 3 or 4 units. B) E-E connections for the first 30 excitatory units. Notice that each unit
sends projections to (roughly) the next 4 units in the sequence. C) Continuation of the simulation shown in panel
A. In this panel the activity is stopped by synchronous periodic pulses to all excitatory units, which increases the
activity in the inhibitory units. D) Excitatory connections matrix after the simulation in panel C.

The activity generated in figure 4.5A persists due to the recurrent nature of the connec-

tions in a closed-loop sequence. This type of reentrant activity in a localized population is

at the core of many models of working memory [51,204]. The persistent activity needs to be

terminated at some point, and to do this we use the strategy in [85], which consists of using

a stimulus to synchronize the excitatory neurons. The reason why synchronization termi-

nates the activity in [85] is because all neurons firing at once causes all recurrent inputs to

arrive during the refractory periods, so that the majority of neurons remain silent after this

burst of activity. Although we don’t implement refractory periods, synchronization stops

the activity in our model for qualitatively similar reasons: when all excitatory units fire

synchronously the inhibitory units have a sharp increase in their activity, and this shuts off

all the excitatory units simultaneously, leaving the system in a baseline state. In figure 4.5C

the same closed-loop sequence formed in figure 4.5A is being stopped by applying a burst

of synchronous pulses to all excitatory units with a period of 20 milliseconds. Figure 4.5D

shows the matrix of excitatory connections after the activity was stopped by the synchronous
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pulses of figure 4.5C. Notice how the synchronous pulses did not destroy the encoding of the

sequence.

In order to show the ability of the model to store and reproduce multiple simple se-

quences that may intersect, the simulation shown in figure 4.5 was continued to store four

additional sequences. The procedure to store those sequences consisted of presenting the in-

put sequence five times, and once the sequence was being generated intrinsically all activity

was stopped using synchronous input. After the activity was stopped, the next sequence

would be presented. The four sequences stored were all closed-loop simple sequences involv-

ing units 20 through 30, 30 through 40, 40 through 50, and 50 through 60. Notice that

units 20,30,40, and 50 were each part of 2 sequences. At this point one final sequence was

added, as shown in figure 4.6. Panel A of figure 4.6 shows the sequence from unit 50 to unit

60 being generated intrinsically until a sequential input with 3 simultaneously active units

begins to be applied. Due to the competitive dynamics of the network, the input extin-

guishes all other activity and stores a sequence going from unit 60 to unit 70, but not before

some tenuous connections are formed, from the units of the sequence from 50 to 60, towards

the units of the sequence from 60 to 70. These connections appear as a lighter region in

the lower right section of panel B. The reduction of intermediate-value weights implemented

in the plasticity rule slowly erases the connections resulting from the transitions between

stored sequences. In order to illustrate how the activity may be switched from one sequence

to another we continued the simulation in panel A of figure 4.6. Panel C shows the input

sequence 20-21-22-23-24-25 being applied with no overlap, which results in a switch between

active sequences. Panel D shows the excitatory connections after this switch, which show

essentially no change.

One point that merits attention is how storing new sequences can modify previously

stored ones. The sequences already in the connection matrix are not altered when the

sequence being stored does not intersect them. In fact, a newly stored sequence will only

affect previously stored sequences when it contains the temporal inverse of a subsequence

already present in the connection matrix. We illustrate this result in figure 4.7 using an

extreme case where a newly stored sequence completely replaces a previously stored sequence.

The simulation in figure 4.7A starts with 6 sequences already stored. Those 6 sequences are
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Figure 4.6: Transition between sequences. A) The sequence from 50 to 60 is being generated intrinsically
at the top, but it stops when an input sequence is applied at 200 msec. The input sequence (from unit 60 to
unit 70) is repeated five times, and then it repeats intrinsically. Blue arrows indicate the start and the end of the
input. B) The matrix of excitatory connections following the simulation shown in panel A. Six simple closed-loop
sequences are stored in this matrix. There are tenuous connections from the 50 through 60 sequence towards the
60 through 70 sequence; they were formed because the 50 through 60 sequence was not stopped before applying
the stimulus which encoded the 60 through 70 sequence. C) Once the 60 through 70 sequence is being generated
intrinsically, a sequential input with no overlap was presented from unit 20 to unit 25. This switched the activity
from the 60 through 70 sequence to the 20 through 30 sequence. Blue arrows indicate the start and the end of
the input. D) The connection matrix after the simulation shown in panel C. Notice that the differences in the
connection matrices in panels B and D are minimal.

the ones created in the simulations of figures 4.5 and 4.6. An input sequence going from unit

30 towards unit 20 is applied 5 times. This input sequence is the inverse of the sequence

going from unit 20 to unit 30, which was already stored in the connections matrix. As seen in

the ensuing activity, and in the connections of figure 4.7B, the incoming sequence replaced

the previously stored one (compare with figure 4.6B). No traces of the previously stored

sequence were left in the connection matrix because the new sequence, being the inverse of

the old sequence, weakened its connections each time it repeated. We can see that given two

units, the temporally asymmetric plasticity rule can create transitions between them in only

one direction, which reduces the set of sequences that can be possibly stored in this manner.

This is a consequence of one aspect in the plasticity rule: “If unit A activates before unit B,

reduce the connections from B to A.” This aspects finds its implementation in the second

term of equation (4.4) of the Methods section.

Not all sequential input has to modify the matrix of excitatory connections. When the

input presents no overlap it tends to create no significant connections. By having no overlap,
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Figure 4.7: Input with overlap may modify existing connections. A) The input sequence going from
unit 30 to unit 20 is presented 5 times with an overlap of 3 simultaneously active units. After the input stops
the sequence is generated intrinsically. Blue arrows indicate the start and the end of the input. B) The matrix
of excitatory connections after the simulation in panel A. The sequence from 20 to 30 has been replaced with its
temporal inverse from 30 to 20 (but neighboring sequences are not modified). The red arrow indicates the region
of the connection matrix where the change took place. C) The input sequence going from unit 30 to unit 20 is
presented 5 times with no overlap. The time between onsets of contiguous units in the input sequence is similar
to that of the input in panel A. lue arrows indicate the start and the endo of the input. D) Excitatory connections
after the simulation in panel C. The connections for the 20 through 30 sequence were only minimally modified.

we mean that the input only activates one unit at a time, instead of activating several units

simultaneously. Panels C and D of figure 4.7 show that input with no overlap does not

modify the connections in the same manner as input with overlap. The simulation in figure

4.7C starts just like the one in figure 4.7A, but it has different input. The inputs in 4.7A and

4.7C have similar time between the onsets of contiguous units in the sequence, but in 4.7C

units are activated one at a time. As can be seen in figure 4.7D, the matrix of excitatory

connections was barely modified, in contrast to figure 4.7B. One instance where input with

no overlap may modify the connection matrix is when there is a sequence currently active

while the input is presented. In this case some projections may be formed between the

active sequence and the input; reductions in the level of inhibition make this scenario more

likely. Notice also, that the input sequences with the most overlap are the ones most likely

to extinguish any other ongoing activity, causing them to be stored without any associations

to other local sequences. Associations to sequences which do not have the same inhibitory

pool are still possible.

The next result we describe is the formation of a complex sequence. It was pointed out
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above that with the parameter set being used the intrinsically generated sequences had at

least 3 simultaneous units. This indicates that we should be able to store and reproduce a

complex sequences of degree 2. Figure 4.8 shows the formation of such a sequence, in which

the subsequence 11-12 repeats in each loop. The sequence encoded is 10-11-12-13-...-34-11-

12-35-36-...-54-55-10, and it is so long in order to make it stable as it loops continuously

under the effect of plasticity. Consider a shorter sequence, say 10-11-12-13-...-20-11-12-

21-22-23-24-25-10. In this sequence unit 12 happens before unit 17, but it also happens

after it in the same loop. When unit 12 is activated, the plasticity rule can increment the

connections to roughly 6 of the subsequent units (this number can be larger or shorter due

to heterogeneity), so the connection from 12 to 17 would be increased and the one from 17

to 12 would be reduced. After unit 17 is active, however, unit 12 becomes active again, so

the connection from 17 to 12 is increased, and the connection from 12 to 17 is reduced. The

dynamics of the network ensure that only one of these transitions (from 12 to 17 or from

17 to 12) becomes dominant; thus, when there is not enough time between reappearances

of a unit the sequence becomes unstable. When plasticity is turned off shorter complex

sequences can be generated, as long as they are already encoded in the connection matrix.

The repeated activation of unit 14 in figure 4.8A is due to heterogeneity.

4.2.4 Properties of the Model

There are several elements of the model whose purpose is not readily apparent, but never-

theless allow it to function as we have described so far. We will mention the most important

ones and justify their inclusion. In particular, we will discuss the firing rate adaptation, the

thresholds for potentiation, the delay in excitatory connections, and several terms in the

plasticity equation. We will then finalize our presentation of results by mentioning the role

played by the level of inhibition.

The function of firing rate adaptation in this model is twofold: it improves the fidelity

with which the input is stored and reproduced, and it is a safeguard against unstable patterns

where units remain permanently active. In order to improve the fidelity of input storage,

adaptation promotes that the units which have been active for the longest times are the ones
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Figure 4.8: Formation of a complex sequence. A) Five repetitions of an input sequence with 3 simultaneously
active units produce the intrinsic activation of the sequence, in a network with no previously stored patterns. Blue
arrows indicate the start and end of the input. B) The resulting connection matrix. Notice the extra connections
of units 11 and 12 (red arrows).

that shut off when a new unit is activated. In this way the sequence is reproduced in the

right order, and the projections that form towards newly activated units come from their

immediate predecessors (not from units that have been active for a long time). This function

of the adaptation is particularly useful because of the heterogeneity in the parameters. When

the parameters are homogeneous the system can store the order of properly timed input

stimuli almost perfectly (and without error if noise is removed). As the level of heterogeneity

increases, however, there will be variations in the excitability and plasticity level of individual

units, which can scramble the sequential order in the input sequence (an example of this is

the activity of the 20 through 30 sequence in figure 4.6C,D). The presence of adaptation

reduces this effect.

The threshold θinc for synaptic potentiation is a parameter in the plasticity equation

(equation (4.4) in the Methods section) which stops potentiation when the activity causing it

is not strong or temporally precise enough. This threshold is required to keep the spontaneous

activity from randomly increasing connections, which can lead to instability. If the threshold
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were to be eliminated, the excitatory connection weights would randomly increase to the

point of causing synchronous oscillations.

Another parameter we introduced is the delay in the excitatory connections. As men-

tioned above, we included this delay in order to avoid the synchronization of the units in

a sequence, which usually leads to termination of the activity. As the delay is eliminated,

continuous activation of a sequence tends to synchronize its components to the point where

transitions happen so fast that some or all sequence elements stop activating. This syn-

chronization is dependent on the plasticity, and is in agreement with other studies involving

temporally asymmetric Hebbian rules [97, 111,182].

Perhaps the most unusual part of our model is the plasticity rule, as expressed in equa-

tion (4.4) of the Methods section. The right-hand side of equation (4.4) has three terms,

implementing potentiation, depression, and slow weight reduction, respectively. The first

term contains four factors; the first three bound the increase in the connections, whereas the

fourth ensures that increases occur when unit k activates before unit j. The factor (α+ cjk)

has the effect that when the connection cjk has a small value it increases slowly, since α is

very small. This implies that if cjk is to increase from a small baseline value into a large

value, several repetitions of the sequence k-j must occur. Since a connection doesn’t become

strong after one single activation of the units k and j with the right timing, sequences arising

from spontaneous activity are less likely than sequences arising from repeated inputs. The

factor (s− cjk) ensures that no individual connection strengths become larger than the value

s. This is an insufficient protection against instability, since too many connection strengths

attaining their maximum value will lead to activity that cannot be stopped. This is indeed

what happens in simulations where the only limit to potentiation is the factor (s − cjk).

We need to limit the growth of individual connection strengths based on a global constraint

which takes into account the value other connection strengths. One common option is to

limit the sum of the strengths in the connections towards the same unit, as would be done by

the factor (S−∑N
r=1 cjr). This factor can be an effective guard against instability, but it has

the undesirable property of not permitting the formation of sequences which intersect. In

simulations using this factor, forming a sequence results in all its units developing the max-

imum amount of connections, all from their preceding units in the sequence. If we wanted
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to form a sequence containing a unit already in another sequence, connections towards that

unit could not be formed, since it already would have all its allowed connections. A robust

way of overcoming this challenge is to limit the growth of connection strengths towards a

unit j based on the current incoming excitation, so that new connections can always be

made towards a unit as long as it is not being strongly activated. This idea is instantiated

by using the factor
[

S −
∑N

r=1 cjrxr(t − ∆jr)
]

+
, which both limits the unstable growth of

connections, and permits connections towards units which are already part of one or more

sequences. The notation [...]+ indicates that the factor is zero when the quantity inside the

brackets is negative; in this way we ensure that the first term of the plasticity rule only

implements increases in connectivity. Notice that this factor involves the excitation arising

from other excitatory units, but not from external inputs, which means that when an input

induces a novel pattern of activity the factor will not limit the growth in the connections.

The factor [Hinc − Hdec]+ and the rest of the plasticity rule are described in the Methods

section.

We will now address the term Ψ in the plasticity equation. As mentioned in the

Methods section, Ψ may represent one of two expressions, corresponding to either reduc-

tion of intermediate-value weights, or heterosynaptic competition. Heterosynaptic competi-

tion can maintain stability when dozens of sequences are stored, whereas the reduction of

intermediate-value weights can prevent the formation of spurious sequences arising from ran-

dom inputs. One simple example to illustrate the usefulness of heterosynaptic competition

is a simulation where 100 sequences (each containing between 8 and 19 randomly chosen

elements) are stored by presenting each one four times in succession. When the simulation

was run with ε = 0 (effectively removing the Ψ term), the network lost the stability of

its baseline state, so that there was a repeating sequence which could not be stopped by

synchronizing the excitatory units. On the other hand, when the simulation was run with

ε = 0.07 and heterosynaptic competition, the network still retained a stable baseline state

at the end. Heterosynaptic competition also has a functional effect on sequence formation,

since what it does is to reduce the strength of any connection which is not taking part in

stimulating an active unit. This means that when a unit u is part of two sequences A and

B, and the sequence B is being repeated continuously, the projections from the units in A

102



towards u will be weakened. Therefore, under heterosynaptic competition, sequences that

are not often activated will tend to loose the units they share with other more active se-

quences. Heterosynaptic competition thus tends to separate sequences so that they don’t

intersect. When the example of figure 4.6 is executed with heterosynaptic competition, units

20,30,40,50, and 60 tend to be removed from one of the sequences, so that we end up with

6 sequences that don’t intersect. This is not observed when we use the other version of

Ψ, whose effect is to reduce the connection strengths with a value between α = 0.01 and

µ = 0.6. This reduction of intermediate-value weights will not affect connections whose

value is larger than µ, but it may reduce connections whose value is starting to increase.

This rule implies, therefore, that in order to reach a large value, a connection must increase

rapidly. In order for a connection from a unit a to a unit b to reach a large value, we need

several repetitions of the sequence a-b, which are unlikely to occur in close succession if the

activity comes from random fluctuations. The reduction of intermediate-value weights is

thus well suited to avoid the creation of spurious sequences when random fluctuations are

present. If we elicit 100 random input patterns (each made by choosing 6 random units 15

times), then the reduction of intermediate-value weights prevents the formation of repeating

sequences, which can be observed when the simulation is run with ε = 0. Reduction of

intermediate-value weights can also remove the weak connections which are formed between

sequences when the activity is switched directly from one to another (e.g. figure 4.6B). On

the other hand, reduction of intermediate-value weights may not prevent instability when

a large number of sequences are stored by repeated presentation, and the time constant of

plasticity is relatively short. The reduction of intermediate-value weights does not affect

sequences which have been already formed, so the stability when storing a large number

of sequences depends on the balance between the potentiation and the depression terms

in the plasticity rule. In the example where 100 sequences are stored, using reduction of

intermediate-value weights instead of heterosynaptic competition may result in the network

losing the stability of the baseline state. The goal of storing a large number of sequences for

long periods, and the goal of maintaining a stable network may be at odds due to the limited

storage capacity in the system. Heterosynaptic competition can maintain stability at the

price of modifying existing sequences, whereas reduction of intermediate-value weights does
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not modify established sequences, but storing more and more sequences will eventually make

the system unstable, unless there is a bias making depression stronger than potentiation in

the plasticity equation.

One last property of the model that we will address is the effect of variable inhibition.

The effect of reducing the inhibition is to permit more simultaneously active excitatory units

(given equal excitatory connection strengths). This does not by itself impede the storage

and retrieval of sequences and may allow the reproduction of complex sequences of higher

degree. Having more units active simultaneously does have several effects on the dynamics

of the network. For example, two or more sequences may activate simultaneously, creating

connections between themselves. Another possible effect is that inputs which extinguished

ongoing activity under normal inhibition, will not do so under reduced inhibition; this can

lead to new connections between input induced activity and sequences intrinsically generated.

We discuss these and other effects in a separate paper (Verduzco-Flores et al., submitted),

where we explore their possible pathological implications.

4.3 DISCUSSION

We have illustrated the feasibility of temporally asymmetric Hebbian plasticity at the level

of asynchronous neuronal populations, and then presented a biologically plausible model

for learning and retrieval of sequences at the population level. Our model uses temporally

asymmetric Hebbian plasticity in order to learn input sequences, and can reproduce sequences

when the plasticity is active because increments in connection strength are modulated by

the incoming excitation. Different levels of input overlap can be used to activate, associate,

or store sequences. An important property of the model is that it can reproduce complex

sequences, and handles intersections of simple sequences without ambiguity.
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4.3.1 Forming Connections in Asynchronous Populations

The simulations we presented for the spiking model are not meant to illustrate the formation

of excitation pathways in random networks with asynchronous inputs. Our model assumes

pre-existing populations with dense internal connectivity, such as minicolumns, which seem

likely to occur when considering the local connectivity properties of cortex [179]; the possi-

ble ontogenetic and epigenetic origins of such populations is beyond the scope of this paper.

The existence of neuronal populations greatly simplifies the autonomous formation of uni-

directional excitation pathways, and we present two mechanisms which may achieve this.

Both mechanisms take advantage of two traits which facilitate the formation of excitation

pathways: background inputs which maintain the membrane voltages near threshold, and a

connectivity within populations that allows them to operate asynchronously, and yet increase

their synchrony in the presence of strong asynchronous inputs. This increase in synchrony

is beneficial when using STDP to create excitation pathways, since it permits the emission

of spike volleys in a manner similar to synfire chains, increasing the changes in the mean

synaptic weights across populations. Depending on how strongly the synaptic weights are

modified by the induced activity they may drift back towards a fixed point, or changes might

consolidate through the spontaneous activity, with a speed that is dependent on the firing

rate of all the involved populations. This is not an exhaustive description of the dynam-

ics in populations that communicate with STDP synapses, but it suffices to establish the

plausibility of the temporally asymmetric Hebbian plasticity used in the firing rate model.

4.3.2 Which Sequences Can Be Stored and Reproduced?

There are limitations on the types of sequences that can be reproduced by the firing rate

model.

An obvious first limitation is in sequences where components remain active for different

periods of time. In our model each unit remains active roughly the same time, and they

cannot activate two or more times consecutively.

Another limitation is that complex sequences whose degree is larger than the number of

simultaneously active units may be generated erroneously. Also, sequences which have closed
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loops whose length is smaller than the number of simultaneously active units can become

unstable.

The most prevalent limitation, however, appears when units repeat their activity too

soon and their incoming connections are decreased because the plasticity rule can’t decide

which unit came before, and which after. This led to abnormal results described elsewhere

(Verduzco-Flores et al., submitted), and is a natural consequence of bringing together tem-

porally asymmetric Hebbian plasticity, persistent activity, and sequences with closed loops.

Having more than one sequence stored in the connection matrix can also lead to problems,

as not all sequences are compatible with each other. The clearest case is when two sequences

share one subsequence. If that subsequence has a length equal to, or larger than the number

of simultaneously active units, then the sequences can not be reproduced unambiguously.

Also, not all sequences can be stored together by the plasticity rule. As seen in figure 4.6,

storing the temporal inverse of a previously stored sequence tends to erase it.

Although the model appears beset by limitations, these can be overcome in a simple

manner by having two different layers of excitatory neurons uncoupled by inhibition. Our

model represents an area comparable to a cortical column; excitatory layers with uncoupled

inhibitory pools correspond to interconnected columns. With a second layer of excitatory

neurons, several units activating consecutively in the first layer can project to a single unit

in the second layer, which would maintain the unit in the second layer active for longer

periods of time, overcoming the limitation on equal activation times, and permitting the

creation of arbitrary rhythms. Indeed, two layers of neurons are sufficient to reproduce any

type of sequence, as long as we have a long enough sequence in the first layer, and the right

connections towards the second layer. The two layers require uncoupled inhibition, and

might represent cortical areas which are not contiguous. Once the first layer has continuous

sequential activity, the autonomous formation of connections from the first to the second layer

can be achieved when the second layer is activated by an external input and a temporally

asymmetric Hebbian rule is applied. Taking this idea further, the second layer could present

oscillations or transitions at frequencies similar to the frequency of transitions in the first

layer, and the plasticity between them could be modulated by their coherence [62]. The

formation of this type of connections in order to reproduce any arbitrary sequence, and
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to create a grammar (the possible combinations of sequences in both layers) is a possible

direction for future research.

4.3.3 Inhibition, Overlap, and Binding

In our firing rate model, the level of inhibition controls the maximum number of simultane-

ously active units. Units in different sequences may form connections if they activate one

after the other, but this is impossible if the level of inhibition permits only one sequence

active at a time. Reducing the inhibition permits simultaneous activation of different se-

quences, and provides an opportunity for their binding. A modulation in the level of local

inhibition could happen through interneuron targeting cells [61, 135].

Given a constant level of inhibition (and a maximum number of simultaneously active

units), there may be a degree of overlap in the input that will permit the coexistence of input

induced activity and currently ongoing activity. Input with no overlap creates no sequences,

and input with large overlap extinguishes ongoing activity, but for sufficiently low inhibition

there will be a critical value of overlap which allows to create a sequence that associates

with the sequences present at the time. This constitutes a possible secondary mechanism to

control the binding between populations.

Large variations in the level of inhibition can also compromise the function of the network

and produce a range of pathological dynamics. These alterations are described in a separate

paper (Verduzco-Flores et al., submitted).

4.3.4 Working Memory and Oscillations

Previous work has speculated on the relation between sequential activity and working mem-

ory [127,184]. The general idea is that the persistent activity associated with working mem-

ory consists of the repeated activation of particular sequences. A mechanism to reactivate

sequences during extended delay periods is thus required. The model in [184] uses back-

ground noise to activate sequences whose connections have been temporarily potentiated.

On the other hand, [127] uses a combination of afterdepolarization and subthreshold oscilla-

tions. In the present model, having a closed-loop sequence permits reactivation, creating a
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working memory mechanism similar to the one in [98], but with spatial structure imposed by

the connection matrix. Such a mechanism entails oscillations associated with two periods: a

short one for the time of transition between contiguous elements in the sequence, and a larger

one for the repetition of the whole sequence. In our implementation of the model, the faster

oscillations occur in the gamma range (close to 50 Hz), whereas the slower oscillations have

a period equal to the period of the faster oscillations times the number of units in the loop-

ing sequence. This is reminiscent of the model in [127] in which the theta frequency serves

as a reference frame for the order of memory items activated successively with the gamma

frequency. Substantial evidence for such a mechanism has been found in the hippocampus,

and its presence in various areas of cortex appears plausible [105,124]. The model in [127] is

an example of temporal segmentation by phase coding. Temporal segmentation refers to the

ability to hold several items in short-term memory by activating them repeatedly at differ-

ent points in time; in contrast, spatial segmentation assumes that individual memory items

are represented by separate groups of neurons [105]. Assuming that different units encode

different memory items our model is capable of temporal segmentation when a closed-loop

sequence is being repeated. If that sequence contains between 5 and 12 units then we will

have transitions in the gamma frequency range, and repetitions in the theta range.

Alternatively, if the memory item is represented by the full sequence then we can have

a type of “combinatorial” segmentation, in which items could be combined as long as their

corresponding sequences could be activated unambiguously in unison. This can happen in

our model when the inhibition is reduced to allow more than one sequence simultaneously

active, although plasticity would have to be reduced to avoid the sequences “fusing” together.

The main requirement to obtain persistent activity from closed-loops is that the sequence

(or at least its first element) repeats during the learning phase. If each unit represented a

distinct memory item in working memory, this would not be simply explained. In the case

where memory items are encoded by sequences this becomes more plausible, since each

representation could have formed after years of experience, wherein closed loops had the

opportunity to appear (slower, long-lasting changes in synaptic strength could be involved).

In either case, the activity of neuronal groups would experience fluctuations in firing rate

during the delay period of working memory tasks. These fluctuations would correspond to
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the activation of the group where the neuron is contained, and could be observerd at the

level of local field potentials. Oscillatory activity during the delay period of working memory

tasks has been reported both in the gamma [156], delta-theta [149], and beta [185] ranges.

The study in [39] did not find oscillatory activity in prefrontal cortex, but this was done at

the level of single neurons, and was imprecise for frequencies below 5 Hz.

4.4 METHODS

4.4.1 The Spiking Model

All neurons used integrate-and-fire dynamics with conductance-based synapses. Postsynaptic

potentials were modeled by alpha functions. Populations 1, 2, and 3 consisted of 100 neurons

each, with homogeneous parameters. The inhibitory population consisted of 80 neurons.

Each neuron had connections to all the neurons in its corresponding population, and to

half of the neurons in the other two populations; the connections between populations were

randomly chosen. A more detailed description of the model is provided in tables 5-10, as

suggested in [152]. All simulations were implemented in NEST [77], and source code is

available in the appendix.

4.4.2 The Firing Rate Model

The dynamics of the network can be described by 5 equations. Equation (4.1) determines

the activity of the excitatory units.

τeẋj(t) = −xj(t)+f

(

aeexj(t) + C

N
∑

k=1

cjkxk(t−∆jk)− aei

M
∑

k=1

υjkyj − dzj + eηj − θe + Ij

)

,

(4.1)

where f(x) = 1/(1 + exp(−x)). This equation involves four variables. xj(t) is the activity

of the j-th excitatory unit at time t. cjk is the strength of the connection from excitatory

unit k to excitatory unit j. yk is the activity of inhibitory unit k. zj is the adaptation of

excitatory unit j. These variables correspond to 4 of the 5 equations describing the model.
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Table 5: Spiking Model Summary.

Populations Four: three excitatory, one inhibitory; external input

Topology —

Connectivity All-to-all within populations, random divergent across populations

Neuron Model Conductance-based leaky integrate-and-fire

Channel Models —

Synapse Model Alpha functions

Plasticity STDP on excitatory connections between different populations

Input Independent fixed-rate Poisson spike trains to all neurons

Measurements Spike times for all neurons, voltage trace for one neuron

Table 6: Populations in the spiking model.

Name Elements Size

E1,2,3 IAF neurons 100

I IAF neurons 80

P Independent Poisson generators 380

O1 Independent Poisson generators 500

O2 Independent Poisson generators 500
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Table 7: Connectivity of the spiking model.

Name Source Target Pattern

EEint Ex Ex All-to-all for x=1,2,3. Weight weepsc, delay wd. No au-

tapses or multapses

EEext Ex Ey(y 6= x) 50 targets randomly selected for each source neuron, no

multapses. Weight eeepsc, delay eed

EI Ex I 40 targets randomly selected from I population for each

source neuron, no multapses. Weight eiepsc, delay eid

IE I Ex 50 targets randomly selected for each source neuron, no

multapses. Weight ieepsc, delay ied

PE P Ex, I 16000 excitatory Poisson inputs for each target neuron,

each one with static rate rex

PI P Ex, I 4000 inhibitory Poisson inputs for each target neuron,

each one with static rate rin

O1 O1 E1 Each target neuron receives input from all generators in

O1, each one with static rate ro1

O2 O2 E2 Each target neuron receives input from all generators in

O2, each one with static rate ro2

111



Table 8: Neuron and synapse models in the spiking network.

Name IAF neuron

Type Conductance-based leaky integrate and fire, alpha-function active

conductances

Subthreshold dynamics

CmV̇ = gL(EL − V ) + gE(Eex − V ) + gI(Ein − V ) if t > t∗,

Vreset otherwise.

gE = κe

∑

i,j wi

(

e
−

t−t
j
i

τ1e − e
−

t−t
j
i

τ2e

)

where tji is the j-th spike of the

i-th neuron satisfying t ≤ tji ; κe, τ1e, τ2e are such that an event of

weight 1.0 results in a peak conductance of wi nS at t = τsynE + tji ;

wi is the weight of the connection from neuron i.

gI = κi

∑

i,j wi

(

e
−

t−t
j
i

τ1i −e
−

t−t
j
i

τ2i

)

where tji is the j-th spike of the i-th

neuron satisfying t ≤ tji ; κi, τ1i, τ2i are such that an event of weight

1.0 results in a peak conductance of wi nS at t = τsynI + tji ; wi is

the weight of the connection from neuron i.

Spiking

If V (t−) < θ ∧ V (t+) ≥ θ

1. set t∗ = t

2. emit spike with time stamp t∗

Plasticity

∆w =











λf−(w)×K(∆t) if ∆t ≤ 0,

λf+(w)×K(∆t) if ∆t > 0.

f+(w) = (wmax − w)µ and f−(w) = αwµ.

K(∆t) = exp(−|∆t|/τ).

Table 9: Measurements taken for the spiking network.

Time of each spike, and identity of the neuron emitting it. Voltage trace for

first indexed neuron.
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Table 10: Parameter values for the spiking model.

Name Value Name Value Name Value

Cm 250 pF EL -70 mV Eex 0 mV

Ein -85 mV Vreset -60 mV θ -55 mV

τsynE 0.2 ms τsynI 1.2 ms τ 20 ms

µ 0.1 α 1 λ 0.1

wmax 2 nS weepsc 1.5 nS wd 1 ms

eeepsc 0.2/1 nS eed 1 ms eiepsc 1 nS

eid 2 ms ieepsc -2 nS ied 2 ms

rex 4 Hz rin 5 Hz ro1/o2 15 Hz

The term ηj represents an Ornstein-Uhlenbeck process: η̇j = −ηj/τη + ξ, where ξ is a white

noise process, which is implemented at each step of the simulation by multiplying the square

root of the time step by a random number drawn from a normal distribution with zero mean

and unit variance.

The constants in equation (4.1) are the following. τe is the time constant for excitatory

units. aee is the recurrent connectivity for excitatory units. C is the general excitability from

excitatory inputs. N is the number of excitatory units. ∆jk is the delay in the connection

from unit k to unit j. aei is the general excitability from inhibitory inputs. M number of

inhibitory units. υjk is the connection strength from inhibitory unit k to excitatory unit j.

e is the noise amplitude. θe is the excitatory threshold. Ij is the external input to excitatory

unit j.

The entries υjk in the matrix of inhibitory to excitatory connections were generated randomly

so that υjk = 1 with probability pei, and υjk = 0 with probability 1 − pei. Once the entries

of the matrix υ were generated, its rows were normalized so that they summed to 1.

Equation (4.2) describes the synaptic adaptation of the j-th unit:

żj =
−zj
τz

+b(1−zj)f

(

aeexj(t) + C
N
∑

k=1

cjkxk(t−∆jk)− aei

M
∑

k=1

υjkyk − dzj + eηj − θe + Ij

)

.

(4.2)
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This equation only introduces two new constants. τz controls the rate of decay for the

adaptation, whereas b controls its rate of growth. The function f and its argument are

identical to those in equation (4.1), and are just the firing rate of that population.

Equation (4.3) describes the activity of inhibitory units:

ẏj =
−yj
τi

+ aie

[

N
∑

k=1

Qjkxk − θi

]

+

+ iIj. (4.3)

The parameter aie can adjust how strong the excitatory to inhibitory connections are. The

notation [x]+ is equivalent to max(x, 0), returning zero when x is negative, and x otherwise.

The matrix Q of E-I connections was generated similarly to the matrix υ in equation 1, but

using the probability pie instead of pei. θi is a threshold to activate inhibitory units, and iIj

is the external stimulus to inhibitory unit j.

Equation (4.4) implements plasticity in the E-E connections, and there are two almost inter-

changeable versions of it. The first one incorporates reduction of weights with intermediate

strength, whereas the second version uses heterosynaptic competition instead.

τc ˙cjk = (α+ cjk)(s− cjk)

[

S−
N
∑

r=1

cjrxr(t−∆jr)

]

+

[

Hinc−Hdec

]

+
−S cjk

[

Hdec−Hinc

]

+
−Ψ,

(4.4)

where Hinc = H(xjwk − θinc) and Hdec = H(xkwj − θdec), with H(x) = 1/(1 + exp(−qx)) a

sharp sigmoidal. The version with reduction of intermediate-value weights uses Ψ = ε
[

(cjk−
α)(µ−cjk)

]

+
, while the version with heterosynaptic competition uses Ψ = εcjkxj(t) (1− xk(t−∆jk)).

There are three terms on the right hand side of equation (4.4). The first term imple-

ments timing-dependent increments in the connection strength, while the second term cre-

ates timing-dependent decrements. The term Ψ has slower dynamics which do not depend

on the timing of the inputs. Before describing the terms in equation (4.4) we introduce the

last equation:

τwẇj = −wj + fw(xj − θw), (4.5)
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where fw(x) = 1/(1 + exp(−γx)). wj increases towards a fixed point when xj is above the

threshold θw, and otherwise decays exponentially with time constant τw, which makes wj

akin to a fast memory trace of the activity xj.

Returning to equation (4.4), the first term in the equation contains four factors. The parame-

ter α is a very small value, and the factor (α+cjk) reduces the rate at which weak connections

increase their strength, which benefits stability. The parameter s is the maximum value of

individual connection strengths, and the factor (s− cjk) ensures that no connection strength

increases beyond this value. The parameter S is a limit on how much incoming activity the

unit j can receive before the strengths of incoming connections stop increasing. The factor
[

S −∑N
r=1 cjrxr(t − ∆jr)

]

+
stops any increments when the excitation received by unit j

reaches the value S. The value Hinc is near 1 when unit k is active shortly before unit j

becomes active, or when both units are active; otherwise Hinc is near zero. Conversely, Hdec

is near 1 when unit j is active shortly before unit k activates, or when both units are active;

otherwise Hinc is near zero. This implies that the factor [Hinc−Hdec]+ is roughly 1 when unit

k is active shortly before unit j activates, and 0 otherwise. To understand how the terms

Hinc and Hdec operate, it is useful to consider the values of xjwk and xkwj. When unit k has

been active for a minimum period of time, the value of wk increases near a fixed point. If at

this moment unit j becomes active, the term xjwk will have a relatively large value, but the

term xkwj will be very small, because wj has not increased yet. This will cause Hinc to be

near 1, while Hdec is near zero, and at this point [Hinc −Hdec]+ is close to 1. If both units

remain active, or if unit k becomes inactive while unit j is still active, then [Hinc − Hdec]+

will go back to a low value. This explains how this factor can implement timing-dependent

increases in connectivity. The second term in equation (4.4) works in a similar manner to

the first term. The factor S scales decreases in connection strength so that they are of sim-

ilar magnitude to increases. The factor cjk ensures that we create no negative connection

strengths. The factor [Hdec−Hinc]+ implements timing-dependent decreases in connectivity.

The term Ψ slowly decreases the strength of certain connections, so that long simulations

are unlikely to result in connection matrices with many large values, especially towards units

which are activated continuously. When Ψ = ε
[

(cjk − α)(µ− cjk)
]

+
, the connections whose

values are between α and µ are reduced. When Ψ = εcjkxj(t) (1− xk(t−∆jk)), connections
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towards unit j which take no part in activating it when xj has an elevated value are reduced;

this implements a form of heterosynaptic competition.

4.4.3 Firing Rate Model Implementation

The model was implemented in Matlab using the Euler-Maruyama approximation. Each unit

in the model had its own parameter values. Equations (4.1)(4.2) and (4.5) each represent

N equations, and each one of those N equations has a distinct value for its parameters

which came from a base value plus a random number sampled from a normal distribution

whose standard deviation was 4% of the base value. Table 11 shows the base value for all

parameters. In equation (4.3) each parameter represents M distinct values. For equation

(4.4) each parameter represents N values, corresponding to the unit which received the

connection, except for the delay which hasN2 distinct values. All the parameters in equations

(4.3) and (4.4) were also generated with heterogeneous values. The time step used for

simulations corresponds to 0.5 milliseconds. Source code is available in the appendix.

4.4.4 Parameter Search

A heuristic approximation was used to find the parameters in the firing rate model. In short,

for excitatory units the self-excitation and the inhibition were chosen so that a population

could not reach a higher attractor by itself, but it could when receiving the input of other

populations. Adaptation was strong enough to stop the activity, but slow enough to let it rise.

E-I and I-E connections were adjusted to permit 2 or 3 populations active simultaneously.

The time constant in the wj variables was set to allow a plasticity window around 40 msec.

The threshold for synaptic potentiation was set so that the spontaneous activity generated

by the noise could not change the connectivity. The time constant of the plasticity was set

so that 4 or 5 repetitions of a properly timed input sequence would be enough to create a

strong change in the connections.
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4.4.5 Input Patterns

Under normal conditions, simple and complex sequences were created using 5 repetitions

of a stimulus with amplitude I = 12, overlap of 3 simultaneous units, and a 12 millisec-

ond difference between the onset of consecutive units. Looping sequences would usually be

stopped by stimulating all excitatory units simultaneously using pulses of amplitude I = 10

and a frequency of 50 Hz for 200 milliseconds. The demonstration where an input with no

overlap caused no change in the connections used an amplitude I = 15 and a 12 millisecond

difference between consecutive onsets.

Table 11: Standard parameter values for the simulations with 3 to 4 simultaneously active units. The units for
all time constants are tens of milliseconds.

Parameter values for the firing rate model

Parameter Value Parameter Value Parameter Value

aee 8 α 0.01 τz 7

aei 15 γ 5 τη 0.5

aie 15 θe 3.8 τw 5

b 0.05 θi 0.2 µ 0.6

C 3 θw 0.5 ∆ 2

d 11 θdec 0.3 N 80

e 1 θinc 0.3 M 16

h 0.01 ε 0.13 S 4

q 30 τe 1 pie 0.5

r 0.3 τc 7 pei 0.5

s 1.2 τi 0.5
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5.0 DISCUSSION

Chapters 2,3, and 4 presented 3 models describing the dynamics of working memory net-

works. In chapter 2 it was shown that dynamic synapses and interconnected populations are

sufficient to explain the various activity patterns exhibited by real neurons during the delay

period of a working memory task. Chapter 3 takes once more the ideas of dynamic synapses

and interconnected populations, this time to show that a network with those characteristics,

in addition to functioning as a substrate for working memory, can also respond differently to

specific temporal patterns in the input. In particular, a network with reduced inhibition can

exhibit synchronized oscillations (which may involve two groups with antiphase behavior),

and it can present simultaneous, uncontrolled activity from several populations. The fact

that these behaviors can arise in response to inputs with a particular frequency suggests

that this could be one mechanism for the onset of reflex epilepsy. Chapter 4 goes beyond

the model in chapter 3 by adding structure in the excitatory connections, and dynamics

which ensure that the activity transitions between populations. The interaction between

excitatory and inhibitory populations is crucial for this effect, bringing oscillations at the

gamma frequency, with low firing rates in the excitatory populations.

The work in chapter 2 follows a common trend in models of working memory, which

consists of finding a neural network that replicates some of the experimentally observed

characteristics of real neurons. The first characteristic to be emphasized was the persistent

activity. This turned out to fit well with the paradigm of attractor networks, which became

a candidate explanation for the behavior observed in cells. It was then noticed that attractor

network models had firing rates which did not agree with real neurons. Moreover, variability

in attractor networks decreased when units were persistently active, but this was not the

case in real neurons. The next generation of working memory models used inhibitory in-
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terneurons, as well as balance between excitation and inhibition in order to adjust the firing

rates and the variance of the interspike intervals [15]. In addition, mechanisms other than

recurrent connections were proposed in order to generate the required behavior [44,60,133].

But only recently have researchers started to replicate the patterns observed in individual

cortical neurons during a single trial of a delayed response task. Replicating these patterns

is important, because they may be a link between modeling of detailed activation properties,

and models in which the activated neurons perform a function which is relevant for behavior.

Working memory networks, and the prefrontal cortex itself, are but one part of a brain

that seamlessly integrates the activity in all its components. Computational models which

replicate some statistical aspects of experimental observations are a dead end if their activ-

ity is not somehow related to behavior, and that requires the integration of the model in

the larger brain network. Currently, this is done mainly by pointing out the information

produced by the model, and assuming that the rest of the brain is capable of using it to

produce adequate behavior. In the case of chapter 2, the changes in firing rates during the

delay period are assumed to encode the identity of a presented stimulus, and probably the

time elapsed since its presentation (as indicated by the ramping cells). A problem with

this approach is that it is unknown how much information is required, and what type of

encoding is appropriate, which will determine what aspect of the activity is worth repro-

ducing. Furthermore, different models may produce similar statistics, and it is up to the

experimentalists to inquire which are the right physiological mechanisms. The process of

guessing what information is represented, how it is encoded, and verifying the physiological

mechanisms is a slow one. In order to improve it, neuroscientists can add further constraints

on a model by making it part of a larger conceptual model with interacting specialized net-

works. The researchers who have worked for many years with working memory cells have

created theories of how they interact with other brain areas [63, 68], and this promises to

open a new level of sophistication in the next generation of models. There are thoughtful

hypotheses about the main functions of dorsolateral prefrontal cortex in primates, which

contains the largest proportion of working memory cells [63, 138, 154]. Likewise, conceptual

models for other structures such as the hippocampus and the basal ganglia have developed

over time. [81,82,90,91,125,132,172]. The study of working memory networks might benefit
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from the type of computational studies which seek to include complementary systems [12].

The model in chapter 2 takes a modest step in this direction by showing that interactions

between the prefrontal and parietal cortices may be responsible for the observed activity

patterns during delayed-response tasks. We do not explicitly attach a functional meaning to

this interaction, but this has been done previously [160]. Briefly, prefrontal neurons might

help to integrate perceptions from parietal cortex across time; these perceptions are mostly

related to spatial planning and representation. The fact that the interaction between the

two areas is consistent with the firing rate patterns observed experimentally, encourages

furhter studies about how they influence one another. Perhaps in the future the simulta-

neous recording of a large number of cells could provide physiological evidence on how the

stimulation in one area modulates the response in the other.

The model in chapter 3 does not attempt to further probe into the functional interac-

tions of working memory networks, but on their dysfunctional dynamics. Mnemonic activity

is characterized by persistent activity, and the loss of selectivity in these networks is tan-

tamount to ictal activity. The particular dynamics of multiple interconnected populations

with dynamic synapses provide temporal sensitivities, with particular input frequencies being

able to resonate with intrinsic limit cycles, giving rise to oscillations. Reflex epilepsy is often

triggered by intense periodic stimuli [41, 209], such as strobing lights. Our model could be

considered to represent this phenomenon, which would make decreased inhibition a culprit

of reflex epilepsy. Additionally, our model suggests the type of stimulation required to stop

pathological activity, and stresses the importance of activating the inhibitory populations for

this effect. One way of achieving this is the activation of all the network, which, depending

on the level of inhibition, may return the dynamics to baseline. This approach, however,

could backfire in the case when the inhibition has been decreased beyond a certain point.

Optogenetic stimulation methods which exclusively target interneurons [136] may one day be

incorporated into the deep brain stimulation for the treatment of intractable epilepsy [106].

Chapter 4 takes a more ambitious approach than chapter 3, seeking to understand spa-

tial, as well as temporal patterns. A simplistic conception of what the brain does is the

mapping of spatiotemporal patterns in sensory cortex into spatiotemporal patterns in motor

cortex. There is in this sense a great promise when studying how spatiotemporal patterns are
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encoded in the cortex. Nevertheless, one lesson from chapter 4 is that this encoding and the

subsequent reproduction are not straightforward. Shortly after the experimental discovery

of STDP it was expected that the generation of sequences would be a natural consequence of

this form of plasticity. The ensuing computational models which formed sequences through

STDP ran into stability issues, and isolation of the excitation pathways [117,144]. Ever since,

the models which achieve sequential behavior are characterized by the assumptions required

in order to overcome these difficulties. In our case, our assumptions were the existence of

neural populations with static internal connections, and inter-population connections experi-

encing temporally asymmetric Hebian plasticity. Even then, the our model required further

refinement. Populations in a sequence tended to synchronize, so axonal and synaptic delays

were included. The network would form unstable connections if the incoming input towards

a population was not limited, but it would not encode intersecting sequences if there was

a hard limit on the increase of incoming connections. Thus we limited the strengthening

of connections by the current activity. Another complication was that over time too many

connections would be stored, leading to instability. In response to this we included a form of

heterosynaptic competition, which had a tendency to force units into having a single target

for their projections. Creating a network which reproduces the order of afferent excitation

has many technical difficulties, and it will be interesting to see which new mechanisms and

assumptions arise in the future in order to overcome them.

121



APPENDIX

SOURCE CODE

A.1 SOURCE CODE FOR CHAPTER 1

A.1.1 average9-e.ode

# s im i l a r to average9 . ode , but the exponent o f Ca/Ca0 i s

# now a parameter . The de f au l t parameter va lues are those

# from avnul l s−e4−2s t a t e . ode . s e t .

# The parameters

par g=5, bthr=1, theta =4.7 , taum=0.03

par wmin=0.2 , wmax=1.5 , gamma=5, tw=4

par t s =0.05 , beta =0.5 , smin=0.25

par tCa=0.5 , eps =1.37 , Ca0=50, Camin=15, e=4

par i 0 =2, ton=10, wid=0.5

C = 1/( p i ∗taum)

# The equat ions

s ’ = ( smin−s ) / t s + beta∗v

w’ = (wmin−w)/tw + gamma∗(wmax−w) ∗(Ca/Ca0) ˆe

Ca’= (Camin−Ca) /tCa + eps∗v

b = g∗ s∗w + i ( t ) − bthr

v = C∗(b/(1−exp(−b∗ theta ) ) ) ˆ(1/2)

aux f=v

i ( t )=i0 ∗heav ( t−ton )∗heav ( ton+wid−t )

# The i n i t i a l c ond i t i on s

i n i t w=0.1

i n i t s=0.1

i n i t Ca=15

# The s imu la t i on parameters

@ t o t a l =200 , dt=0.003

@ maxstor=2000000

done

A.1.2 average10-e.ode

# This f i l e has two f i r i n g −ra t e networks i n t e r a c t i n g with each other .

# The parameters come from avnul l s−e4−2s t a t e . ode . s e t
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# PARAMETERS

par bthr=1, theta =4.7 , taum=0.03

par wmin=0.2 , wmax=1.5 , gamma=5, tw=4

par t s =0.05 , beta =0.5 , smin=0.25

par tCa=0.5 , eps =1.37 , Ca0=50, Camin=15, e=4

par i 0 =2, ton=10, wid=0.5

par gAA=5, gBB=5.1 , gAB=−0.1, gBA=0

C = 1/( p i ∗taum)

# EQUATIONS

sA ’ = ( smin−sA) / t s + beta∗vA

wA’ = (wmin−wA)/tw + gamma∗(wmax−wA) ∗(CaA/Ca0) ˆe

CaA’= (Camin−CaA)/tCa + eps∗vA

sB ’ = ( smin−sB) / t s + beta∗vB

wB’ = (wmin−wB)/tw + gamma∗(wmax−wB) ∗(CaB/Ca0) ˆe

CaB’= (Camin−CaB) /tCa + eps∗vB

bA = gAA∗sA∗wA + i ( t ) − bthr + gBA∗sB∗wB

vA = C∗(bA/(1−exp(−bA∗ theta ) ) ) ˆ(1/2)

bB = gBB∗sB∗wB + i ( t ) − bthr + gAB∗sA∗wA

vB = C∗(bB/(1−exp(−bB∗ theta ) ) ) ˆ(1/2)

aux fB=vB

aux fA=vA

i ( t )=i0 ∗heav ( t−ton )∗heav ( ton+wid−t )

# INITIAL CONDITIONS

i n i t wA=0.2

i n i t sA=0.2

i n i t CaA=15

i n i t wB=0.2

i n i t sB=0.2

i n i t CaB=15

# SIMULATIONS PARAMETERS

@ to t a l =120 , dt=0.003

@ maxstor=2000000 , t rans=40

done

A.1.3 avnulls.ode

f ( x )=sq r t (x/(1−exp(−b∗x ) ) ) /( p i ∗tm)

par b=3

s ’=( smin−s ) / t s+as∗nu

w’=(wmin−w)/tw+gam∗(wmax−w) ∗( ca/ car ) ˆ2

#ca ’=( camin−ca ) / tca+ac∗nu

nu=f ( kbar∗ s∗w−thr+i ( t ) )

ca=camin+ac∗nu∗ tca

par kbar=7.6

par as =.95 , ac=1.6

par gam=6.6 ,wmax=.8 , car =110 ,tw=10, t s =.06 , smin=.1 , tca =.5 , camin=7

par wmin=.07 ,tm=.03

par i 0 =0, ton=10,wid=1

par thr =1.4 ,amp=.3

i ( t )=i0 ∗heav ( t−ton )∗heav ( ton+wid−t )

aux f r=nu

done

A.1.4 runner1.m

% runner1 .m per forms s imu l a t i o n s w i th nc1 .m and d i s p l a y s t h e r e s u l t s .

% I t i s a mod i f i e d v e r s i o n o f runner3 .m in th e newsp ike d i r e c t o r y .

clear a l l ;

close a l l ;

global i n i t AA AB AC AD BA BB BC BD CA CB CC CD DA DB DC DD % the ma t r i c e s

global wmaxA wmaxB wmaxC wmaxD

global mAA stdAA mAB stdAB mAC stdAC mAD stdAD % the means and SD

’ s
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global mBA stdBA mBB stdBB mBC stdBC mBD stdBD

global mCA stdCA mCB stdCB mCC stdCC mCD stdCD

global mDA stdDA mDB stdDB mDC stdDC mDD stdDD

global mwmA stdwmA mwmB stdwmB mwmC stdwmC mwmD stdwmD

global wmin gamma tw t s as smin tCa Car aCa Camin amp th taum e % the c e l l ’ s parameters

global numA numB numC numD

% number o f c e l l s in each r e g i on

% INITIALIZING VARIABLES

%mwmA=1; stdwmA=0.01; mwmB=1; stdwmB=0.01; % avnu l l s−e6−2s t a t e 1 / average10−ex6−2s t a t e 1 parameters

%mwmC=1; stdwmC=0.01; mwmD=1; stdwmD=0.01;

%wmin=0.6; gamma=6; tw=2; t s =0.05; as =0.5 ; smin =0.3; e=6;

%tCa=0.5; Car=65; aCa=6; Camin=10; amp=0.2; t h =1.2 ; taum=.03;

mwmA=1; stdwmA=0.02; mwmB=1; stdwmB=0.02; % avnu l l s−e6−2s t a t e 2 / average10−ex6−2s t a t e 2 parameters

mwmC=1; stdwmC=0.02; mwmD=1; stdwmD=0.02;

wmin=0.6; gamma=8; tw=2; t s =0.05; as =0.5; smin=0.3; e=6;

tCa=0.5; Car=82; aCa=8; Camin=8; amp=0.2; th =1.2; taum=.03;

%mwmA=1; stdwmA=0.02; mwmB=1; stdwmB=0.02; % average10−ex6−2s t a t e 2−s l ow parameters

%mwmC=1; stdwmC=0.02; mwmD=1; stdwmD=0.02;

%wmin=0.6; gamma=8; tw=4; t s =0.1 ; as =0.5 ; smin =0.3; e=6;

%tCa=1; Car=93; aCa=8; Camin=8; amp=0.2; t h =1.2 ; taum=.06;

%mwmA=1; stdwmA=0.02; mwmB=1; stdwmB=0.02; % average10−ex6−2s t a t e 2−f a s t parameters

%mwmC=1; stdwmC=0.02; mwmD=1; stdwmD=0.02;

%wmin=0.6; gamma=8; tw=1; t s =0.025; as =0.5 ; smin =0.3; e=6;

%tCa=.25; Car=74; aCa=8; Camin=8; amp=0.2; t h =1.2 ; taum=.015;

%mwmA=1; stdwmA=0.01; mwmB=1; stdwmB=0.01; % avnu l l s−e6−2s t a t e 3 / average10−ex6−2s t a t e 3 parameters

%mwmC=1; stdwmC=0.01; mwmD=1; stdwmD=0.01;

%wmin=0.5; gamma=8; tw=2; t s =0.05; as =0.48; smin =0.35; e=6;

%tCa=0.5; Car=81; aCa=8; Camin=8; amp=0.2; t h =1.2 ; taum=.03;

% TWO NETWORK PARAMETERS (200 NEURONS) FROM average10−ex6−2s t a t e 1

%mAA=0.05; stdAA=0.01; mAB=0.05; stdAB=0.01; mAC=−0.01; stdAC

=0.005; mAD=−0.01; stdAD=0.005;

%mBA=0.05; stdBA=0.01; mBB=0.05; stdBB=0.01; mBC=−0.01; stdBC

=0.005; mBD=−0.01; stdBD=0.005;

%mCA=−0.0015; stdCA=0.01; mCB=−0.0015; stdCB=0.01; mCC=0.055; stdCC

=0.005; mCD=0.055; stdCD=0.005;

%mDA=−0.0015; stdDA=0.01; mDB=−0.0015; stdDB=0.01; mDC=0.055; stdDC

=0.005; mDD=0.055; stdDD=0.005;

% TWO NETWORK PARAMETERS (200 NEURONS) FROM average10−ex6−2s t a t e 2 −−− FUDGED

%mAA=0.05; stdAA=0.02; mAB=0.05; stdAB=0.02; mAC=−0.016; stdAC

=0.004; mAD=−0.016; stdAD=0.005;

%mBA=0.05; stdBA=0.02; mBB=0.05; stdBB=0.02; mBC=−0.016; stdBC

=0.004; mBD=−0.016; stdBD=0.005;

%mCA=−0.0012; stdCA=0.002; mCB=−0.0012; stdCB=0.002; mCC=0.059; stdCC

=0.005; mCD=0.059; stdCD=0.005;

%mDA=−0.0012; stdDA=0.002; mDB=−0.0012; stdDB=0.002; mDC=0.059; stdDC

=0.005; mDD=0.059; stdDD=0.005;

% TWO NETWORK PARAMETERS (200 NEURONS) FROM average10−ex6−2s t a t e 2 −−− f o r 3−7 network w i th i 0 =2.4

%mAA=0.05; stdAA=0.01; mAB=0.05; stdAB=0.01; mAC=−0.0317; stdAC

=0.005; mAD=−0.0317; stdAD=0.005;

%mBA=0.05; stdBA=0.01; mBB=0.05; stdBB=0.01; mBC=−0.0317; stdBC

=0.005; mBD=−0.0317; stdBD=0.005;

%mCA=−0.0014; stdCA=0.001; mCB=−0.0014; stdCB=0.001; mCC=0.0802; stdCC

=0.005; mCD=0.0802; stdCD=0.005;

%mDA=−0.0014; stdDA=0.001; mDB=−0.0014; stdDB=0.001; mDC=0.0802; stdDC

=0.005; mDD=0.0802; stdDD=0.005;

% TWO NETWORK PARAMETERS (200 NEURONS) FROM average10−ex6−2s t a t e 2 −−− f o r 1−9 network w i th i 0 =2.4

%mAA=0.054; stdAA=0.005; mAB=0.054; stdAB=0.005; mAC=−0.017; stdAC

=0.005; mAD=−0.017; stdAD=0.005;

%mBA=0.054; stdBA=0.005; mBB=0.054; stdBB=0.005; mBC=−0.017; stdBC

=0.005; mBD=−0.017; stdBD=0.005;

%mCA=−0.0053; stdCA=0.001; mCB=−0.0053; stdCB=0.001; mCC=0.0654; stdCC

=0.005; mCD=0.0654; stdCD=0.005;

%mDA=−0.0053; stdDA=0.001; mDB=−0.0053; stdDB=0.001; mDC=0.0654; stdDC

=0.005; mDD=0.0654; stdDD=0.005;

% TWO NETWORK PARAMETERS (200 NEURONS) FROM average10−ex6−2s t a t e 3

%mAA=0.055; stdAA=0.05; mAB=0.055; stdAB=0.05; mAC=−0.019; stdAC

=0.01; mAD=−0.019; stdAD=0.01;

%mBA=0.055; stdBA=0.05; mBB=0.055; stdBB=0.05; mBC=−0.019; stdBC

=0.01; mBD=−0.019; stdBD=0.01;
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%mCA=−0.0103; stdCA=0.05; mCB=−0.0103; stdCB=0.05; mCC=0.061; stdCC

=0.03; mCD=0.061; stdCD=0.03;

%mDA=−0.0103; stdDA=0.05; mDB=−0.0103; stdDB=0.05; mDC=0.061; stdDC

=0.03; mDD=0.061; stdDD=0.03;

% TWO NETWORK PARAMETERS (200 NEURONS) FROM average10−ex6−2s t a t e 3

%mAA=0.061; stdAA=0.05; mAB=0.061; stdAB=0.05; mAC=−0.02; stdAC

=0.03; mAD=−0.02; stdAD=0.03;

%mBA=0.061; stdBA=0.05; mBB=0.061; stdBB=0.05; mBC=−0.02; stdBC

=0.03; mBD=−0.02; stdBD=0.03;

%mCA=−0.018; stdCA=0.03; mCB=−0.018; stdCB=0.03; mCC=0.061; stdCC

=0.04; mCD=0.061; stdCD=0.04;

%mDA=−0.018; stdDA=0.03; mDB=−0.018; stdDB=0.03; mDC=0.061; stdDC

=0.04; mDD=0.061; stdDD=0.04;

% FOUR NETWORK PARAMETERS (200 NEURONS) FROM average10−ex6−2s t a t e 2 −−− f o r 3−7,1−9 ne tworks w i th i 0 =1.6

%mAA=0.101; stdAA=0.004; mAB=−0.0462; stdAB=0.003; mAC=−0.0003; stdAC

=0.003; mAD=0.0003; stdAD=0.001;

%mBA=−0.0012; stdBA=0.003; mBB=0.1405; stdBB=0.003; mBC=−0.0001; stdBC

=0.003; mBD=−0.0; stdBD=0.001;

%mCA=−0.0014; stdCA=0.001; mCB=0.0011; stdCB=0.0001; mCC=0.1025; stdCC

=0.004; mCD=−0.036; stdCD=0.003;

%mDA=0.0005; stdDA=0.001; mDB=0.0002; stdDB=0.003; mDC=−0.0034; stdDC

=0.004; mDD=0.132; stdDD=0.003;

% FOUR NETWORK PARAMETERS (200 NEURONS) FROM average10−ex6−2s t a t e 2−s l ow −−−

% fo r 3−7,1−9 ne tworks w i th i 0=6

%mAA=0.101; stdAA=0.004; mAB=−0.06; stdAB=0.003; mAC=−0.0005; stdAC

=0.003; mAD=0.009; stdAD=0.001;

%mBA=−0.00; stdBA=0.003; mBB=0.155; stdBB=0.003; mBC=−0.001; stdBC

=0.003; mBD=−0.001; stdBD=0.001;

%mCA=−0.005; stdCA=0.001; mCB=0.002; stdCB=0.0001; mCC=0.105; stdCC

=0.004; mCD=−0.054; stdCD=0.003;

%mDA=0.005; stdDA=0.001; mDB=−0.0002; stdDB=0.003; mDC=−0.002; stdDC

=0.004; mDD=0.147; stdDD=0.001;

% FOUR NETWORK PARAMETERS (200 NEURONS) FROM average10−ex6−2s t a t e 2−f a s t −−−

% fo r 3−7,1−9 ne tworks w i th i 0 =1.5

%mAA=0.1; stdAA=0.003; mAB=−0.042; stdAB=0.003; mAC=−0.000; stdAC=0.003;

mAD=0.00; stdAD=0.001;

%mBA=−0.001; stdBA=0.003; mBB=0.13; stdBB=0.003; mBC=−0.001; stdBC

=0.003; mBD=−0.001; stdBD=0.001;

%mCA=−0.005; stdCA=0.001; mCB=0.002; stdCB=0.0001; mCC=0.1065; stdCC

=0.006; mCD=−0.035; stdCD=0.003;

%mDA=0.005; stdDA=0.001; mDB=−0.0002; stdDB=0.003; mDC=−0.008; stdDC

=0.004; mDD=0.13; stdDD=0.001;

% TWO NETWORK PARAMETERS (2000 NEURONS) FROM average10−ex6−2s t a t e 2 −−− FUDGED

%mAA=0.005; stdAA=0.001; mAB=0.005; stdAB=0.001; mAC=−0.00145; stdAC=0.0004; mAD

=−0.00145; stdAD=0.005;

%mBA=0.005; stdBA=0.001; mBB=0.005; stdBB=0.001; mBC=−0.00145; stdBC=0.0004; mBD

=−0.00145; stdBD=0.005;

%mCA=−0.000134; stdCA=0.0001; mCB=−0.000134; stdCB=0.0001; mCC=0.0057; stdCC=0.0005; mCD

=0.0057; stdCD=0.005;

%mDA=−0.000134; stdDA=0.0001; mDB=−0.000134; stdDB=0.0001; mDC=0.0057; stdDC=0.0005; mDD

=0.0057; stdDD=0.005;

% FOUR NETWORK PARAMETERS (200 NEURONS) FROM average10−ex6−2s t a t e 2 −−− f o r 3−7,1−9 ne tworks w i th i 0 =2.4

mAA=0.0101; stdAA=0.0004; mAB=−0.00462; stdAB=0.0003; mAC=−0.00003; stdAC=0.0003; mAD

=0.00003; stdAD=0.001;

mBA=−0.00012; stdBA=0.0003; mBB=0.01405; stdBB=0.0003; mBC=−0.00001; stdBC=0.0003; mBD=−0.0;

stdBD=0.001;

mCA=−0.00014; stdCA=0.0001; mCB=0.00011; stdCB=0.00001; mCC=0.01025; stdCC=0.0004; mCD

=−0.0036; stdCD=0.003;

mDA=0.00005; stdDA=0.0001; mDB=0.00002; stdDB=0.0003; mDC=−0.00034; stdDC=0.0004; mDD

=0.0132; stdDD=0.003;

numA=500; numB=500; numC=500; numD=500;

i 0 =2.4; ton=20; wid=0.3; % cur r en t i n j e c t i o n parameters

time=32; % running t ime o f t h e s imu l a t i o n in seconds .

De f au l t i s 32 .

% RUNNING THE SIMULATION

[X]=nc1 ( time , i0 , ton , wid ) ;

[ c e l l s i t e r vars ]= s ize (X) ;

disp ( ’ nc1  d o n e ’ ) ;

% PLOTTING THE CELL ARRAY
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close a l l ;

%f i g u r e ;

%r =[0.2∗ ones (1 ,32) l i n s p a c e (0 ,1 , 96 ) ] ;

%g =[0.3∗ ones (1 ,16) l i n s p a c e (0 ,1 , 48 ) l i n s p a c e (1 ,0 , 48 ) 0 .3∗ ones (1 ,16) ] ;

%b=[ l i n s p a c e (1 ,0 , 96 ) 0 .2∗ ones (1 ,32) ] ;

%map=[ r ; g ; b ] ’ ;

%colormap (map) ;

%image (X( : , : , 3 ) ∗128/max(max(X( : , : , 3 ) ) ) ) ;

%c o l o r b a r ( ’ v e r t ’ ) ;

% PLOTTING SOME FACILITATION GRAPHS

f igure ;

hold on ;

plot ( l inspace (0 , time , i t e r ) ,X( 1 , : , 3 ) ) ;

plot ( l inspace (0 , time , i t e r ) ,X(numA+1 , : ,3) , ’ r ’ ) ;

plot ( l inspace (0 , time , i t e r ) ,X(numA+numB+1 , : ,3) , ’ c ’ ) ;

plot ( l inspace (0 , time , i t e r ) ,X(numA+numB+numC+1 , : ,3) , ’ k ’ ) ;

% CREATING A MATRIX OF FREQUENCY HISTOGRAMS

disp ( ’ C r e a t i n g  f r e q u e n c y  h i s t o g r a m s ’ ) ;

pause (1 ) ;

fH i s t=zeros ( c e l l s , f loor ( time ) ) ;

bin = f loor ( i t e r / time ) ; % how many i t e r a t i o n s in each second

r e f t ime = ce i l ( bin /200) ; % r e f r a c t o r y t ime o f about 5 ms

for c e l l =1: c e l l s

i t =0;

count=re f t ime +1;

for sec=1: f loor ( time )

for i =1: bin

i t=i t +1;

i f X( c e l l , i t , 1 ) >= 2.9 && count > r e f t ime

fH i s t ( c e l l , sec )=fH i s t ( c e l l , sec )+1;

count = 0 ;

else

count = count+1;

end

end

end

end

%f i g u r e ;

%map=[ l i n s p a c e (0 ,1 ,128) ; l i n s p a c e (0 ,1 ,128) ; l i n s p a c e (0 ,1 ,128) ] ’ ;

%colormap (map) ;

%image ( fH i s t ∗128/max(max( fH i s t ) ) ) ;

%c o l o r b a r ( ’ v e r t ’ ) ;

f igure ;

mfactor = f loor ( (numA+numB+numC+numD) /16) ;

for i =1:16

subplot (4 , 4 , i ) ;

bar ( fH i s t ( mfactor∗ i , : ) ) ;

end

% CREATING A HISTOGRAM OF NEURON TYPES FOR EACH AREA

type=histAnaP ( fH i s t ) ;

f igure ;

for i =1:11

typeHist ( i )=sum( type ( 1 :numA)==i ) ;

end

subplot (2 , 2 , 1 ) ;

bar ( typeHist ) ;

for i =1:11

typeHist ( i )=sum( type (numA+1:numA+numB)==i ) ;

end

subplot (2 , 2 , 2 ) ;

bar ( typeHist ) ;

for i =1:11

typeHist ( i )=sum( type (numA+numB+1:numA+numB+numC)==i ) ;

end

subplot (2 , 2 , 3 ) ;

bar ( typeHist ) ;

for i =1:11

typeHist ( i )=sum( type (numA+numB+numC+1:numA+numB+numC+numD)==i ) ;

end

subplot (2 , 2 , 4 ) ;

bar ( typeHist ) ;

% CREATING A PLOT OF AVERAGE FREQUENCY

av fH i s t=sum( fH i s t ) / c e l l s ;
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f igure ;

bar ( av fH i s t ) ;

% CREATING A HISTOGRAM OF NEURON TYPES FOR THE WHOLE NETWORK

f igure ;

for i =1:11

typeHist ( i )=sum( type ( 1 : c e l l s )==i ) ;

end

bar ( typeHist ) ;

A.1.5 nc1.m

function [X]=nc1 ( time , i0 , ton , wid )

%[X]=nc1 ( time , i0 , ton , wid ) per forms th e s imu l a t i o n o f newsp6−ne t c oup l e 1 . ode from time ze ro to

% time ’ time ’ , w i t h t h e s t imu l u s b e i n g o f amp l i t ude ’ i0 ’ , w id th ’ wid ’ , and onse t t ime ’ ton ’ .

% The 3−D array X w i l l c on ta in t h e v a l u e s o f a l l t h e s t a t e v a r i a b l e s f o r each one o f t h e

% i t e r a t i o n s . The second index o f X i n d i c a t e s t h e i t e r a t i o n , whereas t h e o t h e r two i n d i c e s

% i n d i c a t e t h e v a r i a b l e as :

% | x1 s1 w1 Ca1 |

% X( : , j , : ) = | x2 s2 w2 Ca2 |

% | . . . . |

% | xn sn wn Can |

% nc1 f i r s t f i n d s a s t a b l e i n i t i a l s t a t e by c a l l i n g t h e f u n c t i o n n c 1 e u l e r I and

% s imu l a t i n g f o r ˜30 seconds ; then th e f u n c t i o n nc1eu l e r i s used w i th t h e o b t a i n ed i n i t i a l v a l u e s

% and the same parameters .

% nc1 .m i s a mod i f i e d v e r s i o n o f ns9 .m in th e newsp ike d i r e c t o r y

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

dt =0.003;

MAX ITER=100000;

global i n i t AA AB AC AD BA BB BC BD CA CB CC CD DA DB DC DD % the ma t r i c e s

global wmaxA wmaxB wmaxC wmaxD

global mAA stdAA mAB stdAB mAC stdAC mAD stdAD % the means and SD

’ s

global mBA stdBA mBB stdBB mBC stdBC mBD stdBD

global mCA stdCA mCB stdCB mCC stdCC mCD stdCD

global mDA stdDA mDB stdDB mDC stdDC mDD stdDD

global mwmA stdwmA mwmB stdwmB mwmC stdwmC mwmD stdwmD

global wmin gamma tw t s as smin tCa Car aCa Camin amp th taum e % the c e l l ’ s parameters

global numA numB numC numD

% number o f c e l l s in each r e g i on

% GENERATING THE INITIAL VALUES

i n i t=repmat ([−pi /2 0 .2 0 .2 20 ] ,numA+numB+numC+numD, 1 ) ; % make sure t h e s e are be low the low f i x e d po i n t

numI=ce i l (40/ dt ) ;

i f numI > MAX ITER

disp ( ’ Too  m a n y  i t e r a t i o n s  for  the  i n i t i a l  v a l u e  run . ’ ) ;

return

end

I = zeros (1 , numI) ;

n c1 eu l e r I (numI , dt , I ) ;

disp ( ’ n c 1 e u l e r I  d o n e ’ ) ;

% GENERATING THE INPUT VECTOR

clear I ;

numI=ce i l ( time/dt ) ;

i f numI > MAX ITER

disp ( ’ Too  m a n y  i t e r a t i o n s . ’ ) ;

return

end

t=0;

for i =1:numI

i f t < ton

I ( i )=0;

e l s e i f t < ton+wid

I ( i )=i0 ;

else

I ( i )=0;

end

t=t+dt ;

end

% CALLING THE nc1eu l e r f u n c t i o n

X = nc1eu l e r (numI , dt , I ) ;
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disp ( ’ n c 1 e u l e r  d o n e ’ ) ;

A.1.6 nc1euler.m

function [X]= nc1eu l e r (numI , dt , I )

% [X]= nc1eu l e r (numI , dt , I ) r eads a g l o b a l v a r i a b l e ’ i n i t ’ which i s a matr i x o f i n i t i a l va l ue s , r e c e i v e s a

% number o f i t e r a t i o n s ’numI ’ , and a s t e p s i z e ’ dt ’ . These arguments are used to app l y t h e forward Eu ler

% method to t h e e q ua t i o n s in newsp6−ne t c oup l e 1 . ode , c r e a t i n g t h e matr i x X which con t a i n s

% the va l u e o f each o f t h e f ou r v a r i a b l e s a t each o f t h e num s t e p s f o r each o f t h e neurons . The number

% o f neurons in r e g i on s A,B,C,D come from parameters , and th e t o t a l number o f neurons must agree w i th

% the s i z e o f i n i t .

% The argument I i s a row v e c t o r o f l e n g t h numI . I t s p e c i f i e s t h e cu r r en t i n j e c t i o n in each neuron

% f o r each i t e r a t i o n .

% The format o f i n i t i s : | x1 s1 w1 Ca1 |

% | x2 s2 w2 Ca2 |

% | . . . . |

% | xn sn wn Can |

% X i s a 3−d array . I t ’ s f i r s t and t h i r d i n d i c e s po i n t to t h e s t a t e v a r i a b l e s as in i n i t , a t t h e t ime

% i n d i c a t e d by t h e second index .

% nc1eu l e r .m i s a mod i f i e d v e r s i o n o f n s 9 eu l e r .m in th e newsp ike d i r e c t o r y .

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

global i n i t AA AB AC AD BA BB BC BD CA CB CC CD DA DB DC DD % the ma t r i c e s

global wmaxA wmaxB wmaxC wmaxD

global mAA stdAA mAB stdAB mAC stdAC mAD stdAD % the means and SD

’ s

global mBA stdBA mBB stdBB mBC stdBC mBD stdBD

global mCA stdCA mCB stdCB mCC stdCC mCD stdCD

global mDA stdDA mDB stdDB mDC stdDC mDD stdDD

global mwmA stdwmA mwmB stdwmB mwmC stdwmC mwmD stdwmD

global wmin gamma tw t s as smin tCa Car aCa Camin amp th taum e % the c e l l ’ s parameters

global numA numB numC numD

% number o f c e l l s in each r e g i on

ampW = amp/ sqrt ( dt ) ; % s c a l i n g t h e amp l i t ude to c r e a t e Wiener no i s e

numAB=numA+numB;

numABC=numA+numB+numC;

numABCD=numA+numB+numC+numD;

% INITIALIZING X

X=zeros (numABCD, numI+1 ,4) ;

X( : , 1 , : )=i n i t ;

% MAIN CYCLE

for i =2:numI+1

xA=X(1 :numA, i −1 ,1) ; xB=X(numA+1:numAB, i −1 ,1) ;

xC=X(numAB+1:numABC, i −1 ,1) ; xD=X(numABC+1:numABCD, i −1 ,1) ;

sA=X(1 :numA, i −1 ,2) ; sB=X(numA+1:numAB, i −1 ,2) ;

sC=X(numAB+1:numABC, i −1 ,2) ; sD=X(numABC+1:numABCD, i −1 ,2) ;

wA=X(1 :numA, i −1 ,3) ; wB=X(numA+1:numAB, i −1 ,3) ;

wC=X(numAB+1:numABC, i −1 ,3) ; wD=X(numABC+1:numABCD, i −1 ,3) ;

CaA=X(1 :numA, i −1 ,4) ; CaB=X(numA+1:numAB, i −1 ,4) ;

CaC=X(numAB+1:numABC, i −1 ,4) ; CaD=X(numABC+1:numABCD, i −1 ,4) ;

pA=sA .∗wA; pB=sB .∗wB; pC=sC .∗wC; pD=sD .∗wD;

KAA=AA∗pA; KAB=AB∗pA; KAC=AC∗pA; KAD=AD∗pA;

KBA=BA∗pB ; KBB=BB∗pB ; KBC=BC∗pB ; KBD=BD∗pB ;

KCA=CA∗pC; KCB=CB∗pC; KCC=CC∗pC; KCD=CD∗pC;

KDA=DA∗pD; KDB=DB∗pD; KDC=DC∗pD; KDD=DD∗pD;

nsA=randn (numA, 1 ) ;

nsB=randn (numB, 1 ) ;

nsC=randn (numC, 1 ) ;

nsD=randn (numD, 1 ) ;

X( 1 :numA, i , 1 )= X( 1 :numA, i −1 ,1) + dt∗((1−cos (xA) ) + (KAA + KBA + KCA + KDA + I ( i −1) + ampW∗nsA − th )

.∗(1+ cos (xA) ) ) /taum ;

X( 1 :numA, i , 2 )= X( 1 :numA, i −1 ,2) + dt ∗( smin−sA) / t s ;

X( 1 :numA, i , 3 )= X( 1 :numA, i −1 ,3) + dt ∗( (wmin−wA)/tw + gamma∗(wmaxA−wA) .∗ ( (CaA/Car ) . ˆ e ) ) ;

X( 1 :numA, i , 4 )= X( 1 :numA, i −1 ,4) + dt ∗(Camin−CaA)/tCa ;
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X(numA+1:numAB, i , 1 )= X(numA+1:numAB, i −1 ,1) + dt∗((1−cos (xB) ) + (KAB+ KBB + KCB + KDB + I ( i −1) + ampW∗

nsB − th ) .∗(1+ cos (xB) ) ) /taum ;

X(numA+1:numAB, i , 2 )= X(numA+1:numAB, i −1 ,2) + dt ∗( smin−sB) / t s ;

X(numA+1:numAB, i , 3 )= X(numA+1:numAB, i −1 ,3) + dt ∗( (wmin−wB)/tw + gamma∗(wmaxB−wB) .∗ ( (CaB/Car ) . ˆ e ) ) ;

X(numA+1:numAB, i , 4 )= X(numA+1:numAB, i −1 ,4) + dt ∗(Camin−CaB) /tCa ;

X(numAB+1:numABC, i , 1 )= X(numAB+1:numABC, i −1 ,1) + dt∗((1−cos (xC) ) + (KAC+ KBC + KCC + KDC + I ( i −1) +

ampW∗nsC − th ) .∗(1+ cos (xC) ) ) /taum ;

X(numAB+1:numABC, i , 2 )= X(numAB+1:numABC, i −1 ,2) + dt ∗( smin−sC) / t s ;

X(numAB+1:numABC, i , 3 )= X(numAB+1:numABC, i −1 ,3) + dt ∗( (wmin−wC)/tw + gamma∗(wmaxC−wC) .∗ ( (CaC/Car ) . ˆ e )

) ;

X(numAB+1:numABC, i , 4 )= X(numAB+1:numABC, i −1 ,4) + dt ∗(Camin−CaC)/tCa ;

X(numABC+1:numABCD, i , 1 )= X(numABC+1:numABCD, i −1 ,1) + dt∗((1−cos (xD) ) + (KAD+ KBD + KCD + KDD + I ( i −1) +

ampW∗nsD − th ) .∗(1+ cos (xD) ) ) /taum ;

X(numABC+1:numABCD, i , 2 )= X(numABC+1:numABCD, i −1 ,2) + dt ∗( smin−sD) / t s ;

X(numABC+1:numABCD, i , 3 )= X(numABC+1:numABCD, i −1 ,3) + dt ∗( (wmin−wD)/tw + gamma∗(wmaxD−wD) .∗ ( (CaD/Car )

. ˆ e ) ) ;

X(numABC+1:numABCD, i , 4 )= X(numABC+1:numABCD, i −1 ,4) + dt ∗(Camin−CaD)/tCa ;

for j =1:numABCD

i f X( j , i , 1 ) >= pi

X( j , i , 1 ) = −pi ;

X( j , i , 2 ) = X( j , i , 2 )+as ;

X( j , i , 4 ) = X( j , i , 4 )+aCa ;

end

end

end

A.1.7 histAnaP.m

function [ type ]=histAnaP ( fH i s t )

% [ type ]=histAnaP ( fH i s t ) r e c e i v e s as i t s argument a matr i x o f f r e qu ency h i s tograms , as

% the one g ene ra t ed in runner1 .m, and r e t u rn s a v e c t o r ’ type ’ . The va l u e t ype ( i )

% s p e c i f i e s t h e f i r i n g c l a s s o f neuron i u s ing c r i t e r i a s im i l a r to Sha f i e t a l .

% This v e r s i o n o f h i s tAna d e f i n e s t h e minimum s i g n i f i c a t i v e change as a f u n c t i o n

% o f t h e b a s e l i n e f r e qu ency .

Bs=13; Be=19; % ba s e l i n e i n t e r v a l s t a r t and end

D1s=21; D1e=26; % f i r s t d e l a y i n t e r v a l

D2s=26; D2e=31; % second de l a y i n t e r v a l

s =0.8; % The minimum s i g n i f i c a t i v e change l ow e s t v a l u e

p=0.64; % min . s i g . change = p∗ s q r t ( b a s e l i n e f r e q )

[ c e l l s s e c s ]= s ize ( fH i s t ) ;

f r e q s=zeros ( c e l l s , 3 ) ; % t h i s s t o r e s t h e f r e q u e n c i e s a t each i n t e r v a l

changes=zeros ( c e l l s , 3 ) ; % s t o r e s t h e changes : B−D1 , B−D2 , D1−D2

for c e l l =1: c e l l s

f r e q s ( c e l l , 1 )=sum( fH i s t ( c e l l , ( Bs+1) : Be) ) /(Be−Bs) ;

f r e q s ( c e l l , 2 )=sum( fH i s t ( c e l l , ( D1s+1) : D1e) ) /(D1e−D1s ) ;

f r e q s ( c e l l , 3 )=sum( fH i s t ( c e l l , ( D2s+1) : D2e) ) /(D2e−D2s ) ;

end

msc=max( s , p∗sqrt ( f r e q s ( : , 1 ) ) ) ;

changes ( : , 1 ) =( f r e q s ( : , 1 ) < ( f r e q s ( : , 2 )−msc) ) − ( f r e q s ( : , 1 ) > ( f r e q s ( : , 2 )+msc ) ) ;

changes ( : , 2 ) =( f r e q s ( : , 1 ) < ( f r e q s ( : , 3 )−msc) ) − ( f r e q s ( : , 1 ) > ( f r e q s ( : , 3 )+msc ) ) ;

changes ( : , 3 ) =( f r e q s ( : , 2 ) < ( f r e q s ( : , 3 )−msc) ) − ( f r e q s ( : , 2 ) > ( f r e q s ( : , 3 )+msc ) ) ;

for c e l l =1: c e l l s

switch changes ( c e l l , 1 )

case 1 ,

switch changes ( c e l l , 2 )

case 1 ,

switch changes ( c e l l , 3 )

case 1 , type ( c e l l )=1;

case 0 , type ( c e l l )=2;

case −1, type ( c e l l )=3;

end

case 0 ,

type ( c e l l )=3;

case −1,

type ( c e l l ) =10;
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end

case 0 ,

switch changes ( c e l l , 2 )

case 1 ,

type ( c e l l )=1;

case 0 ,

switch changes ( c e l l , 3 )

case 1 ,

type ( c e l l )=4;

case 0 ,

type ( c e l l )=5;

case −1,

type ( c e l l )=6;

end

case −1,

type ( c e l l )=9;

end

case −1,

switch changes ( c e l l , 2 )

case 1 ,

type ( c e l l ) =11;

case 0 ,

type ( c e l l )=7;

case −1,

switch changes ( c e l l , 3 )

case 0 ,

type ( c e l l )=8;

case −1,

type ( c e l l )=9;

case 1 ,

type ( c e l l )=7;

end

end

end

end

A.2 SOURCE CODE FOR CHAPTER 2

A.2.1 bigrunM5d.m

% This f i l e i s used to run s imu l a t i o n s u s ing M5dvar .m. I t produces f i v e

% f i g u r e s , each one o f them wi th nine d i f f e r e n t s u b p l o t s . The nine

% s u b p l o t s corre spond to d i f f e r e n t v a l u e s o f exc ( number o f e x c i t e d

% neurons ) , and th e f i v e f i g u r e s corre spond to d i f f e r e n t v a l u e s o f per .

% With t h e s e f i g u r e s I can r e a d i l y c a r a c t e r i z e t h e b e ha v i o r f o r a g i v en

% va l u e o f p o pu l a t i o n i n h i b i t i o n , when us ing t h e r i g h t i npu t we i g h t s .

clear a l l ;

close a l l ;

global Cee Cei % the i n t e r p o p u l a t i o n connec t i on ma t r i c e s

global ce c i % the inpu t we i g h t s

global aee a i e a e i a i i k te t i utau vtau eps uth wmax gamma % popu l a t i o n parameters

global Y0 % i n i t i a l c o n d i t i o n s

global beta per ton tst im ; % st imu lu s ’ parameters

% 1) CREATING/LOADING THE PARAMETERS

%setM5dpars ; % t h i s c r e a t e s t h e parameters when you don ’ t have a s e t t o l oad

load a2aI20E06h2six−aee ;

POPS=length (Y0) /3 ;

%load Y0−a synchOsc i l ;

%rs t conn ( 5 . 4 , 0 . 6 ,POPS) ; % chang ing t h e v a l u e s o f I and E ( i . e . Cee and Cei )

%rstLOCcei ( 2 , [ 4 ] ) ; % dropp ing l o c a l i n h i b i t o n in t h e p o pu l a t i o n s in t h e v e c t o r

%r s t a i e ( 9 . 2 , 1 :POPS) ; % o r i g i n a l l y 10 .1

per i od s = [ . 2 . 3 ] ; % The v a l u e s o f per we ’ l l use

exces = [0 1 2 4 8 1 2 ] ; % The v a l u e s o f exc we ’ l l use

np=length ( pe r i od s ) ;

ne=length ( exces ) ;

% 2) SIMULATION CYCLES

beta = 20 ; per =0.3; ton=10; tst im=5;

t o t a l =35;
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a l lYs=c e l l (np , ne ) ; % I use a c e l l a rray because Y w i l l vary in s i z e

for i =1:np

per=per i od s ( i )

for j =1:ne

exc=exces ( j )

ce=[repmat ( 1 . 0 , 1 , exc ) , repmat ( 0 . 5 , 1 ,POPS−exc ) ] ;

c i =[repmat ( 0 . 1 , 1 , exc ) , repmat ( 0 . 1 , 1 ,POPS−exc ) ] ;

[T, a l lYs { i , j } ] = ode45 ( ’ M 5 d v a r ’ , [ 0 , t o t a l ] ,Y0) ;

end

end

disp ( ’ S i m u l a t i o n s  f i n i s h e d .  S t a r t i n g  p l o t s ’ ) ;

pause (1 ) ;

% 3) PLOTTING THE RESULTS

r=[zeros (1 ,24) l inspace (0 , 1 , 16 ) ones (1 ,12) l inspace ( 1 , 0 . 3 , 1 2 ) ] ;

g=[zeros (1 , 8 ) l inspace (0 , 1 , 16 ) ones (1 ,16) l inspace (1 , 0 , 16 ) zeros (1 , 8 ) ] ;

b=[ l inspace ( 0 . 6 , 1 , 8 ) ones (1 ,16) l inspace (1 , 0 , 16 ) l inspace ( 0 . 3 , 0 , 2 4 ) ] ;

map=[ r ; g ; b ] ’ ;

sq=ce i l ( sqrt ( ne ) ) ;

for i =1:np

f igure ( ’ N a m e ’ , [ ’ per = ’ num2str( pe r i od s ( i ) ) ] , ’ N u m b e r T i t l e ’ , ’ off ’ ) ;

t i t l e ( [ ’ per  =  ’ num2str( pe r i od s ( i ) ) ] ) ;

colormap (map) ;

colorbar ( ’ v e r t ’ ) ;

for j =1:ne

subplot (2 , 3 , j ) ;

%su b p l o t ( sq , sq , j ) ;

set (gca , ’ F o n t S i z e ’ , 2 0 . 0 ) ;

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% This code changes t h e s c a l e o f t h e image so t h a t i t shows t ime

% in s t e a d o f i t e r a t i o n s . Comment i t f o r f a s t e r per formance .

L=length ( a l lYs { i , j } ( : , 1 ) ) ;

bucklen=2∗L ;

bucket=zeros ( bucklen ,POPS) ;

l inearT=l inspace (0 , t o ta l , bucklen ) ;

indexT=1;

for K=1: bucklen

i f T( indexT ) < l i nearT (K)

while T( indexT ) < l i nearT (K) && indexT < L

indexT=indexT+1;

end

end

bucket (K, : ) = a l lYs { i , j }( indexT , 1 : 3 : 3 ∗POPS) ;

end

dt=1/bucklen ;

image ( [ 0 , 2 0 ] , [ 0+ dt , to ta l−dt ] , bucket ∗128) ; %/max(max( bu c k e t ) ) ) ;

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%image ( a l lY s { i , j } ( : , 1 : 3 : 3∗POPS) ∗128) ; %/max(max( a l lY s { i , j } ( : , 1 : 3 : 3 ∗POPS) ) ) ) ;

t i t l e ( [ ’ k = ’ num2str( exces ( j ) ) ] ) ;

%t i t l e ( [ ’ per=’ num2str ( p e r i o d s ( i ) ) ] ) ;

end

end

A.2.2 M5dvar.m

function [F ] = M5dvar4 (T,Y)

% [F]=M5dvar4 (T,Y) r e c e i v e s a t ime v a r i a b l e T, and a column v e c t o r Y. M5dvar4 implements e q ua t i on s

% l i k e t h o s e in t h e M5d . ode f i l e , bu t t h e number o f p o p u l a t i o n s can vary acco rd ing to t h e s i z e o f

% the v e c t o r Y, whose l e n g t h i s t h r e e t imes t h e number o f p o p u l a t i o n s .

% The connec t i on s be tween p o pu l a t i o n s are de termined by t h e ma t r i c e s Cei and Cee , which are g l o b a l

% v a r i a b l e s . We assume t h a t t h e on l y connec t i on s be tween p o pu l a t i o n s are e x c i t a t o r y to i n h i b i t o r y ,

% and e x c i t a t o r y to e x c i t a t o r y . The va l u e Cei ( i , j ) i s t h e we i gh t o f t h e connec t i on from e x c i t a t o r y

% popu l a t i o n j to i n h i b i t o r y p opu l a t i o n i . S im i l a r l y f o r Cee ( i , j ) .

% The inpu t we i g h t s come from the g l o b a l v e c t o r s ce and c i .

% A l l t h e parameters are v e c t o r s , so t h a t each popu l a t i o n can have unique v a l u e s .

global Cee Cei % the i n t e r p o p u l a t i o n connec t i on ma t r i c e s

global ce c i % the inpu t we i g h t s

global aee a i e a e i a i i k te t i utau vtau eps uth wmax gamma % popu l a t i o n parameters
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i f mod( length (Y) ,3) ˜= 0

error ( ’ I n c o r r e c t  i n p u t  f u n c t i o n  Y  to  M 5 d v a r ’ ) ;

end

n = length (Y) /3 ; % number o f p o p u l a t i o n s

F = zeros (3∗n , 1 ) ; % So we g e t a column v e c t o r and not a row v e c t o r

P = p(T) ;

for i =1:3 : (3∗n)

I=f loor ( i /3)+1; % the number o f t h e p opu l a t i o n co r r e s pond ing to t h i s c y c l e

F( i ) = (−Y( i ) + f ( aee ( I )∗(1+k( I )∗Y( i +2) )∗Y( i ) − a i e ( I )∗Y( i +1) + Cee ( I , : ) ∗(Y( 1 : 3 : ( 3 ∗ n) ) .∗(1+(k ’ ) .∗Y

(3 : 3 : ( 3 ∗ n) ) ) ) − te ( I ) + ce ( I )∗P) ) /utau ( I ) ;

F( i +1) = (−Y( i +1) + f ( a e i ( I )∗Y( i ) − a i i ( I )∗Y( i +1) + Cei ( I , : ) ∗Y(1 : 3 : ( 3 ∗ n) ) − t i ( I ) + c i ( I )∗P) ) /vtau ( I ) ;

F( i +2) = eps ( I )∗(−Y( i +2) + f (gamma( I ) ∗(Y( i )−uth ( I ) ) ) ∗(wmax( I )−Y( i +2) ) ) ;

end

% COMMENTS

% f and p are f u n c t i o n s in t h e same d i r e c t o r y as t h i s f i l e ; p ’ s paramaters are g l o b a l v a r i a b l e s

% which shou l d be i n i t i a l i z e d b e f o r e u s ing t h e f u n c t i o n .

% Since I i n c l u d e d a e i and aee in t h e F equa t i ons , t h e main d i a g ona l o f Cee and Cei s hou l d be z e ro .

A.2.3 f.m

function [ y]= f (x )

% [ y ]= f ( x ) implements t h e s tandard s i gmo i d a l n o n l i n e a r i t y y=1/(1+exp(−x ) )

% in a v e c t o r f a s h i o n .

y = 1./(1+exp(−x ) ) ;

A.2.4 p.m

function [ y]=p( t )

% [ y ]=p ( t ) implements t h e s c a l a r i npu t f u n c t i o n in M5d . ode . I t r e q u i r e s f o r a l l i t s parameters

% to be g l o b a l v a r i a b l e s a l r e a d y i n i t i a l i z e d .

global beta per ton tst im ;

%y = exp(− b e t a ∗(1− cos (2∗ p i ∗ t / per ) ) )∗(1+ s i gn ( t−ton ) )∗(1+ s i gn ( ton+ts t im−t ) ) /4 ;

y = exp(−beta∗(1−cos (2∗pi∗ t / per ) ) )∗ heav i s i d e ( t−ton )∗ heav i s i d e ( ton+tstim−t ) ;

A.2.5 greatrunM5d.m

% greatrunM5d .m per forms s e v e r a l bigrunM5d .m s imu l a t i on s , and keeps a l l t h e

% r e s u l t i n g f i g u r e s open . The s imu l a t i o n s d i f f e r in t h e i r v a l u e s o f I and E

% (mean i n h i b i t i o n and e x c i t a t i o n ) , as w e l l as v a l u e s o f a i e . S ince

% bigrunM5d .m doesn ’ t t a k e any arguments , and s i n c e i t c l o s e s e ve ry window

% on each run , greatrunM5d .m c a l l s i n s t e a d t h e f u n c t i o n

% g r e a t h e l p e r ( I ,E, i e ) , which i s a mod i f i e d v e r s i o n o f bigrunM5d .m.

% The number o f s imu l a t i o n s per formed by greatrunM5d w i l l depend on the

% l e n g t h o f t h e v e c t o r s I , E, ie , pe r i od s , and e x c e s . The l a t t e r two are in

% g r e a t h e l p e r .m. Usua l l y , t h i s w i l l r e s u l t in p e r i o d s ∗ I∗E∗ i e windows , w i th

% ’ per i od s ’ s imu l a t i o n s in each one . These s imu l a t i o n s a lmos t f u l l y

% c h a r a c t e r i z e a parameter s e t . The on l y uncons ide red a s p e c t s are t h e

% e f f e c t o f d i f f e r e n t background and e x c i t a t i o n amp l i tudes , and th e e f f e c t o f

% r e s e t t i n g t h e connec t i ons ’ h e t e r o g e n e i t y in each run o f g r e a t h e l p e r .m.

clear a l l ;

close a l l ;

I =[3.4 3 .2 3 2 .8 2 . 5 ] ;

E= [ 0 . 6 ] ;

i e =[10.2 10 .1 9 .6 9 .4 9 . 2 ] ;

for i =1: length ( I )

for e=1: length (E)

for a=1: length ( i e )
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disp ( [ ’ I = ’ num2str( I ( i ) ) ’  E = ’ num2str(E( e ) ) ’  aie = ’ num2str( i e ( a ) ) ] ) ;

g r e a th e l p e r ( I ( i ) ,E( e ) , i e ( a ) ) ;

end

end

end

A.2.6 greathelper.m

function g r ea th e l p e r ( I ,E, i e )

% g r e a t h e l p e r ( I ,E, i e ) i s j u s t l i k e bigrunM5d , bu t i t doesn ’ t c l o s e any windows

% b e f o r e i t s t a r t s , and i t now r e c e i v e s t h e mean i n h i b i t i o n , e x c i t a t i o n ,

% and a i e arguments . This f u n c t i o n i s used by greatrunM5d .m.

%g l o b a l Cee Cei % the i n t e r p o p u l a t i o n connec t i on ma t r i c e s

global ce c i % the inpu t we i g h t s

%g l o b a l aee a i e a e i a i i k t e t i utau v tau eps uth wmax gamma % popu l a t i o n parameters

global Y0 % i n i t i a l c o n d i t i o n s

global beta per ton tst im ; % st imu lu s ’ parameters

% 1) CREATING/LOADING THE PARAMETERS

%setM5dpars ; % t h i s c r e a t e s t h e parameters when you don ’ t have a s e t t o l oad

load a2aI35E06h2six−aee ;

POPS=length (Y0) /3 ;

%rs t conn ( I ,E,POPS) ; % chang ing t h e v a l u e s o f I and E ( i . e . Cee and Cei )

r s t a i e ( ie , 1 :POPS) ; % o r i g i n a l l y 10 .1

per i od s = [ . 1 5 . 2 .25 . 3 . 4 ] ; % The v a l u e s o f per we ’ l l use

exces = [0 1 6 8 12 1 6 ] ;

np=length ( pe r i od s ) ;

ne=length ( exces ) ;

ceb = 0 .4 − (E−0.7) + ( I−2)/10 + ( ie −10.1) /2 ; % h e u r i s t i c v a l u e s o f e x c i t a t i o n

c e f = 1 .5 − (2/5)∗(3− I ) − (3/5) ∗(E− .7) + ( ie −10.1) ;

%ceb =0.08;

%c e f =0.5 ;

% 2) SIMULATION CYCLES

beta = 20 ; per =0.3; ton=10; tst im=5;

t o t a l =35;

a l lYs=c e l l (np , ne ) ; % I use a c e l l a rray because Y w i l l vary in s i z e

for i =1:np

per=per i od s ( i ) ;

for j =1:ne

exc=exces ( j ) ;

ce=[repmat ( ce f , 1 , exc ) , repmat ( ceb , 1 ,POPS−exc ) ] ;

c i =[repmat ( 0 . 1 , 1 , exc ) , repmat ( 0 . 1 , 1 ,POPS−exc ) ] ;

[T, a l lYs { i , j } ] = ode45 ( ’ M 5 d v a r ’ , [ 0 , t o t a l ] ,Y0) ;

end

end

%d i s p ( ’ S imu l a t i on s f i n i s h e d . S t a r t i n g p l o t s ’ ) ;

%pause (1 ) ;

% 3) PLOTTING THE RESULTS

%r=[ l i n s p a c e (0 ,1 , 64 ) ones (1 ,64) ] ;

%g=[ l i n s p a c e ( 1 , 0 . 2 , 6 4 ) l i n s p a c e ( 0 . 2 , 1 , 6 4 ) ] ;

%b=[ ones (1 ,64) l i n s p a c e ( 1 , 0 . 3 , 3 2 ) l i n s p a c e ( 0 . 3 , 0 . 8 , 3 2 ) ] ;

%map=[ r ; g ; b ] ’ ;

sq=ce i l ( sqrt ( ne ) ) ;

for i =1:np

f igure ( ’ N a m e ’ , [ ’ per = ’ num2str( pe r i od s ( i ) ) ’  I = ’ num2str( I ) ’  E = ’ num2str(E) , ’  aie = ’ num2str( i e ) ] , ’

N u m b e r T i t l e ’ , ’ off ’ ) ;

%colormap (map) ;

for j =1:ne

subplot ( sq , sq , j ) ;

image ( a l lYs { i , j } ( : , 1 : 3 : 3 ∗POPS) ∗128) ; %/max(max( a l lY s { i , j } ( : , 1 : 3 : 3 ∗POPS) ) ) ) ;

t i t l e ( [ ’ exc = ’ num2str( exces ( j ) ) ] ) ;

end

colorbar ( ’ v e r t ’ ) ;

end
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A.3 SOURCE CODE FOR CHAPTER 3

A.3.1 fourPops2.sli

/∗ fourPops2 . s l i

S imulates four popu lat ions o f IAF neurons

to i n v e s t i g a t e populat ion−l e v e l

tempora l ly asymmetric Hebbian l e a rn i ng

The only d i f f e r e n c e with fourPops1 i s that in

t h i s v e r s i on the connect ions are not r e t r i e v e d

a f t e r each chunk o f s imu la t i on

∗/

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Set t ing parameters

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

t i c

200 . /chunk Set % time bin to wr i t e synapt i c weights to f i l e

15000.0 ms / t s im Set % s imula t i on time ( mul t ip l e o f chunk )

−65.0 mV /V res Set % r e s e t vo l tage f o r a l l neurons

100 /N1 Set % S i ze o f populat ion 1

100 /N2 Set % S i ze o f populat ion 2

100 /N3 Set % S i ze o f populat ion 3

80 /N4 Set % S i ze o f populat ion 4 ( the i nh i b i t o r y populat ion )

% i f you change the number o f neurons , you must change the name

% of the f i l e s in nestFourPops1 .m

%%%%%%%% input r a t e s %%%%%%%%%%

16000 /n ex Set % s i z e o f the ex c i t a t o r y popu lat ions

4000 / n in Set % s i z e o f the i n h i b i t o r y popu lat ions

500 /n ex1 Set % s i z e o f extra Exc . Pop . to populat ion 1

500 /n ex2 Set % s i z e o f extra Exc . Pop . to populat ion 2

4 .0 Hz / r ex Set % mean ra t e o f the ex c i t a t o r y popu lat ions

5 .0 Hz / r i n Set % rate o f the i n h i b i t o r y popu lat ions

15 .0 Hz / r ex1 Set % rate o f extra Exc . Pop . to populat ion 1

15 .0 Hz / r ex2 Set % rate o f extra Exc . Pop . to populat ion 2

n ex r ex mul / p1e ra t e Set % rate o f Exc . input f o r populat ion 1

n in r i n mul / p 1 i r a t e Set % rate o f Inh . input f o r populat ion 1

n ex r ex mul / p2e ra t e Set % rate o f Exc . input f o r populat ion 2

n in r i n mul / p 2 i r a t e Set % rate o f Inh . input f o r populat ion 2

n ex r ex mul / p3e ra t e Set % rate o f Exc . input f o r populat ion 3

n in r i n mul / p 3 i r a t e Set % rate o f Inh . input f o r populat ion 3

n ex r ex mul / p4e ra t e Set % rate o f Exc . input f o r populat ion 4

n in r i n mul / p 4 i r a t e Set % rate o f Inh . input f o r populat ion 4

n ex1 r ex1 mul / p1o rate Set % rate o f extra input to populat ion 1

n ex2 r ex2 mul / p2o rate Set % rate o f extra input to populat ion 2

n ex r ex 0 .8 sub mul / pxe ra te Set % post−stim Exc . ra t e f o r a l l

n in r i n 0 .8 sub mul / px i r a t e Set % post−stim Inh . ra t e f o r a l l

%%%%%%%%% input t iming %%%%%%%%%%

1.0 / s t a r t 1 Set % s t a r t time f o r Poisson input at populat ion 1

1 .0 / s t a r t 2 Set % s t a r t time f o r Poisson input at populat ion 2

1 .0 / s t a r t 3 Set % s t a r t time f o r Poisson input at populat ion 3

1 .0 / s t a r t 4 Set % s t a r t time f o r Poisson input at populat ion 4

2000 . / s t a r t 1o Set % s t a r t time f o r 2nd Poisson input at Pop 1

t s im / s t a r t 2o Set % s t a r t time f o r 2nd Poisson input at Pop 2

t s im /end1 Set % end time f o r Poisson input at populat ion 1

t s im /end2 Set % end time f o r Poisson input at populat ion 2

t s im /end3 Set % end time f o r Poisson input at populat ion 3

t s im /end4 Set % end time f o r Poisson input at populat ion 4

2300 . /end1o Set % end time f o r 2nd Poisson input at Pop 1

2000 . /end2o Set % end time f o r 2nd Poisson input at Pop 2

t s im / s t a r t x Set % s t a r t time f o r post−stim Poisson input

t s im /endx Set % end time f o r post−stim Poisson input

%%%%%%%%% synapt i c weights and de lays %%%%%%%%%%

1. pA / ee ep s c Set % weight f o r Exc . Conn . between popu lat ions

1 .0 pA / e i e p s c Set % weight f o r E−I connect ions

−2.0 pA / i e e p s c Set % weight f o r I−E connect ions

1 .5 pA /we epsc Set % weight f o r connect ions with in Exc . popu lat ions

0 .0 pA /wi epsc Set % weight f o r connect ions with in Inh . popu lat ions
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0 .5 pA / p1e epsc Set % peak amp f o r Exc . synapses at populat ion 1

−0.5 pA / p1 i ep s c Set % peak amp f o r Inh . synapses at populat ion 1

0 .5 pA / p2e epsc Set % peak amp f o r Exc . synapses at populat ion 2

−0.5 pA / p2 i ep s c Set % peak amp f o r Inh . synapses at populat ion 2

0 .5 pA / p3e epsc Set % peak amp f o r Exc . synapses at populat ion 3

−0.5 pA / p3 i ep s c Set % peak amp f o r Inh . synapses at populat ion 3

0 .5 pA / p4e epsc Set % peak amp f o r Exc . synapses at populat ion 4

−0.5 pA / p4 i ep s c Set % peak amp f o r Inh . synapses at populat ion 4

0 .5 pA /p1o epsc Set % peak amp f o r 2nd . Exc . synapses at populat ion 1

0 .5 pA /p2o epsc Set % peak amp f o r 2nd . Exc . synapses at populat ion 2

1 .0 ms /d Set % de f au l t synapt i c de lay

1 .0 ms /wd Set % synapt i c de lay with in popu lat ions

1 .0 ms /eed Set % synapt i c de lay in E−E connect ions

2 .0 ms / e id Set % synapt i c de lay in E−I connect ions

2 .0 ms / i ed Set % synapt i c de lay in I−E connect ions

%%%%%%%%% other synapt i c parameters %%%%%%%%%

0.1 /mu plu Set % po t en t i a t i on exponent

0 .1 /mu min Set % depre s s i on exponent

0 .5 / w in i t Set % i n i t i a l va lue o f connect ions a c c r o s s neurons

2 .0 /Wmax Set % maximum connect ion weight

0 .1 /lambda Set % change per sp ike

1 .0 / alpha Set % r a t i o o f i n h i b i t o r y to ex c i t a t o r y changes

1 .2 / tau in Set % time constant f o r i n h i b i t o r y alpha func t i on

0 .2 / tau ex Set % time constant f o r e x c i t a t o r y alpha func t i on

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Create 4 neuronal popu lat ions

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

/ subnet Create /sub1 Set % populat ion 1

/ subnet Create /sub2 Set % populat ion 2

/ subnet Create /sub3 Set % populat ion 3

/ subnet Create /sub4 Set % populat ion 4

/ i a f c ond a lpha << /V rese t V res % c a l i b r a t i n g

/ tau syn in tau in / tau syn ex tau ex >> SetDe fau l t s % alpha func t i on s

sub1 ChangeSubnet % Pop . 1 i s cur rent working subnet

/ i a f c ond a lpha N1 Create ; % c r ea t i ng N1 IAF neurons in Pop . 1

/pop1 sub1 GetNodes de f % pop1 i s an array with a l l pop1 neurons ’ IDs

sub2 ChangeSubnet % Pop . 2 i s cur rent working subnet

/ i a f c ond a lpha N2 Create ; % c r ea t i ng N2 IAF neurons in Pop . 2

/pop2 sub2 GetNodes de f % pop2 i s an array with a l l pop2 neurons ’ IDs

sub3 ChangeSubnet % Pop . 3 i s cur rent working subnet

/ i a f c ond a lpha N3 Create ; % c r ea t i ng N3 IAF neurons in Pop . 3

/pop3 sub3 GetNodes de f % pop3 i s an array with a l l pop3 neurons ’ IDs

sub4 ChangeSubnet % Pop . 4 i s cur rent working subnet

/ i a f c ond a lpha N4 Create ; % c r ea t i ng N4 IAF neurons in Pop . 4

/pop4 sub4 GetNodes de f % pop4 i s an array with a l l pop4 neurons ’ IDs

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Connect the popu lat ions among themse lves

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%%%%%%%% a l l−to−a l l c onec t i on s with in popu lat ions %%%%%%%%%

sub1 pop1 [ we epsc ] [wd ] DivergentConnect % connect ing pop1

sub2 pop2 [ we epsc ] [wd ] DivergentConnect % connect ing pop2

sub3 pop3 [ we epsc ] [wd ] DivergentConnect % connect ing pop3

sub4 pop4 [ wi epsc ] [wd ] DivergentConnect % connect ing pop4

%%%%%%%% random connect ions a c c r o s s popu lat ions %%%%%%%%%

%% se t t i n g the po t en t i a t i on exponents f o r stdp connect ions

/ stdp synapse << /mu minus mu min /mu plus mu plu

/Wmax Wmax /weight w in i t /lambda lambda /alpha alpha >> SetDe fau l t s

%% fo rb idd ing autapses and multapses

/RandomDivergentConnect

<< / a l l ow autapse s f a l s e / a l l ow multapses f a l s e >> SetOptions

/∗

For some reason RandomDivergentConnect won ’ t accept ar rays with

a s i n g l e element when s p e c i f y i n g weights and de lays . Thus I ’m

c r ea t i ng the next ar rays .

∗/

N1 2 div /CX1 Set % number o f connect ions towards Pop . 1

N2 2 div /CX2 Set % number o f connect ions towards Pop . 2
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N3 2 div /CX3 Set % number o f connect ions towards Pop . 3

N4 2 div /CX4 Set % number o f connect ions towards Pop . 4

CX1 { e e ep s c } repeat CX1 a r r ay s t o r e /dubyasX1 Set

CX2 { e e ep s c } repeat CX2 a r r ay s t o r e /dubyasX2 Set

CX3 { e e ep s c } repeat CX3 a r r ay s t o r e /dubyasX3 Set

CX4 { e i e p s c } repeat CX4 a r r ay s t o r e /dubyasEI Set

CX1 { i e e p s c } repeat CX1 a r r ay s t o r e /dubyasIE1 Set

CX2 { i e e p s c } repeat CX2 a r r ay s t o r e /dubyasIE2 Set

CX3 { i e e p s c } repeat CX3 a r r ay s t o r e /dubyasIE3 Set

CX1 {eed} repeat CX1 a r r ay s t o r e /DlaysX1 Set

CX2 {eed} repeat CX2 a r r ay s t o r e /DlaysX2 Set

CX3 {eed} repeat CX3 a r r ay s t o r e /DlaysX3 Set

CX4 { e id } repeat CX4 a r r ay s t o r e /DlaysEI Set

CX1 { i ed } repeat CX1 a r r ay s t o r e /DlaysIE1 Set

CX2 { i ed } repeat CX2 a r r ay s t o r e /DlaysIE2 Set

CX3 { i ed } repeat CX3 a r r ay s t o r e /DlaysIE3 Set

%% Here ’ s the ac tua l connect ing ac ro s s popu lat ions

sub1 CX2 pop2 dubyasX2 DlaysX2 / stdp synapse RandomDivergentConnect % 1−>2

sub1 CX3 pop3 dubyasX3 DlaysX3 / stdp synapse RandomDivergentConnect % 1−>3

sub1 CX4 pop4 dubyasEI DlaysEI / s t a t i c s ynap s e RandomDivergentConnect % 1−>4

sub2 CX1 pop1 dubyasX1 DlaysX1 / stdp synapse RandomDivergentConnect % 2−>1

sub2 CX3 pop3 dubyasX3 DlaysX3 / stdp synapse RandomDivergentConnect % 2−>3

sub2 CX4 pop4 dubyasEI DlaysEI / s t a t i c s ynap s e RandomDivergentConnect % 2−>4

sub3 CX1 pop1 dubyasX1 DlaysX1 / stdp synapse RandomDivergentConnect % 3−>1

sub3 CX2 pop2 dubyasX2 DlaysX2 / stdp synapse RandomDivergentConnect % 3−>2

sub3 CX4 pop4 dubyasEI DlaysEI / s t a t i c s ynap s e RandomDivergentConnect % 3−>4

sub4 CX1 pop1 dubyasIE1 DlaysIE1 / s t a t i c s ynap s e RandomDivergentConnect % 4−>1

sub4 CX2 pop2 dubyasIE2 DlaysIE2 / s t a t i c s ynap s e RandomDivergentConnect % 4−>2

sub4 CX3 pop3 dubyasIE3 DlaysIE3 / s t a t i c s ynap s e RandomDivergentConnect % 4−>3

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Create inputs and de t e c t o r s

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

/ po i s s on gene ra t o r Create / po i s son1e Set

/ po i s s on gene ra t o r Create / po i s s on1 i Set

/ po i s s on gene ra t o r Create / po i s son2e Set

/ po i s s on gene ra t o r Create / po i s s on2 i Set

/ po i s s on gene ra t o r Create / po i s son3e Set

/ po i s s on gene ra t o r Create / po i s s on3 i Set

/ po i s s on gene ra t o r Create / po i s son4e Set

/ po i s s on gene ra t o r Create / po i s s on4 i Set

/ po i s s on gene ra t o r Create / po i s son1o Set

/ po i s s on gene ra t o r Create / po i s son2o Set

/ po i s s on gene ra t o r Create / po i s sonxe Set

/ po i s s on gene ra t o r Create / po i s s onx i Set

po i s son1e << / ra t e p1e ra t e / s t a r t s t a r t 1 / stop end1 >> SetStatus

po i s s on1 i << / ra t e p 1 i r a t e / s t a r t s t a r t 1 / stop end1 >> SetStatus

po i s son2e << / ra t e p2e ra t e / s t a r t s t a r t 2 / stop end2 >> SetStatus

po i s s on2 i << / ra t e p 2 i r a t e / s t a r t s t a r t 2 / stop end2 >> SetStatus

po i s son3e << / ra t e p3e ra t e / s t a r t s t a r t 3 / stop end3 >> SetStatus

po i s s on3 i << / ra t e p 3 i r a t e / s t a r t s t a r t 3 / stop end3 >> SetStatus

po i s son4e << / ra t e p4e ra t e / s t a r t s t a r t 4 / stop end4 >> SetStatus

po i s s on4 i << / ra t e p 4 i r a t e / s t a r t s t a r t 4 / stop end4 >> SetStatus

po i s son1o << / ra t e p1o rate / s t a r t s t a r t 1o / stop end1o >> SetStatus

po i s son2o << / ra t e p2o rate / s t a r t s t a r t 2o / stop end2o >> SetStatus

po i s sonxe << / ra t e pxe ra te / s t a r t s t a r t x / stop endx >> SetStatus

po i s s onx i << / ra t e px i r a t e / s t a r t s t a r t x / stop endx >> SetStatus

/ s p i k e d e t e c t o r Create / sp ike s1 Set

/ s p i k e d e t e c t o r Create / sp ike s2 Set

/ s p i k e d e t e c t o r Create / sp ike s3 Set

/ s p i k e d e t e c t o r Create / sp ike s4 Set

/ vo l tmeter Create / vo l t1 Set

/ vo l tmeter Create / vo l t2 Set

/ vo l tmeter Create / vo l t3 Set

/ vo l tmeter Create / vo l t4 Set

%%%%%%%%% sending r eco rd s to output f i l e s %%%%%%%%%

sp ike s1 << / t o f i l e t rue /to memory f a l s e / l a b e l ( sp i k e s1 )

/ c l o s e o n r e s e t f a l s e >> SetStatus % Cuz the Sim . s tops and s t a r t s again

sp ike s2 << / t o f i l e t rue /to memory f a l s e / l a b e l ( sp i k e s2 )

/ c l o s e o n r e s e t f a l s e >> SetStatus

sp ike s3 << / t o f i l e t rue /to memory f a l s e / l a b e l ( sp i k e s3 )

/ c l o s e o n r e s e t f a l s e >> SetStatus

sp ike s4 << / t o f i l e t rue /to memory f a l s e / l a b e l ( sp i k e s4 )

/ c l o s e o n r e s e t f a l s e >> SetStatus

vo l t1 << / t o f i l e t rue /to memory f a l s e / l a b e l ( vo l t1 )
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/ c l o s e o n r e s e t f a l s e >> SetStatus

vo l t2 << / t o f i l e t rue /to memory f a l s e / l a b e l ( vo l t2 )

/ c l o s e o n r e s e t f a l s e >> SetStatus

vo l t3 << / t o f i l e t rue /to memory f a l s e / l a b e l ( vo l t3 )

/ c l o s e o n r e s e t f a l s e >> SetStatus

vo l t4 << / t o f i l e t rue /to memory f a l s e / l a b e l ( vo l t4 )

/ c l o s e o n r e s e t f a l s e >> SetStatus

% next l i n e ensures that e x i s t i n g output f i l e s are ove rwr i t t en

0 << / o v e r w r i t e f i l e s t rue >> SetStatus

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Connect inputs and de t e c t o r s to popu lat ions

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

pop1 sp ike s1 ConvergentConnect % connect ing to sp ike r e c o rd e r s

pop2 sp ike s2 ConvergentConnect

pop3 sp ike s3 ConvergentConnect

pop4 sp ike s4 ConvergentConnect

po i s son1e pop1 [ p1e epsc ] [ d ] DivergentConnect

po i s s on1 i pop1 [ p1 i ep s c ] [ d ] DivergentConnect

po i s son2e pop2 [ p2e epsc ] [ d ] DivergentConnect

po i s s on2 i pop2 [ p2 i ep s c ] [ d ] DivergentConnect

po i s son3e pop3 [ p3e epsc ] [ d ] DivergentConnect

po i s s on3 i pop3 [ p3 i ep s c ] [ d ] DivergentConnect

po i s son4e pop4 [ p4e epsc ] [ d ] DivergentConnect

po i s s on4 i pop4 [ p4 i ep s c ] [ d ] DivergentConnect

po i s son1o pop1 [ p1o epsc ] [ d ] DivergentConnect

po i s son2o pop2 [ p2o epsc ] [ d ] DivergentConnect

po i s sonxe pop1 [ p1e epsc ] [ d ] DivergentConnect

po i s s onx i pop1 [ p1 i ep s c ] [ d ] DivergentConnect

po i s sonxe pop2 [ p2e epsc ] [ d ] DivergentConnect

po i s s onx i pop2 [ p2 i ep s c ] [ d ] DivergentConnect

po i s sonxe pop3 [ p3e epsc ] [ d ] DivergentConnect

po i s s onx i pop3 [ p3 i ep s c ] [ d ] DivergentConnect

po i s sonxe pop4 [ p4e epsc ] [ d ] DivergentConnect

po i s s onx i pop4 [ p4 i ep s c ] [ d ] DivergentConnect

vo l t1 pop1 0 get Connect % the vo l tmete r s are connected

vo l t2 pop2 0 get Connect % to the f i r s t neuron in Pops .

vo l t3 pop3 0 get Connect

vo l t4 pop4 0 get Connect

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Functions to obta in synapt i c weights

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[ ] /Wendy12 Set % Al l the connect ion weights from pop1 to pop2

[ ] /Wendy13 Set % Al l the connect ion weights from pop1 to pop3

[ ] /Wendy21 Set % Al l the connect ion weights from pop2 to pop1

[ ] /Wendy23 Set % Al l the connect ion weights from pop2 to pop3

[ ] /Wendy31 Set % Al l the connect ion weights from pop3 to pop1

[ ] /Wendy32 Set % Al l the connect ion weights from pop3 to pop2

pop1 GetMax /max1 Set % l a s t element in pop1

pop2 GetMax /max2 Set % l a s t element in pop2

[ ] /P1PX Set % Al l STDP connect ions a r i s i n g from pop1

pop1 % The next procedure i n i t i a l i z e s P1PX

{

/ top Set << / source top / synapse type / stdp synapse >>

FindConnections

P1PX j o i n /P1PX Set

} f o r a l l

[ ] /P2PX Set % Al l STDP connect ions a r i s i n g from pop2

pop2

{

/ top Set << / source top / synapse type / stdp synapse >>

FindConnections

P2PX j o i n /P2PX Set

} f o r a l l

[ ] /P3PX Set % Al l STDP connect ions a r i s i n g from pop3

pop3

{

/ top Set << / source top / synapse type / stdp synapse >>

FindConnections

P3PX j o i n /P3PX Set

} f o r a l l
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%% Updates the Wendy12 and Wendy13 ar rays

/UpdateW1x

{

[ ] /Wendy12 Set

[ ] /Wendy13 Set

P1PX

{

% next l i n e puts the weight and ta rg e t on the stack

GetStatus [ [ / weight / ta rg e t ] ] get ar ray load ;

max2 l eq % i f t a r g e t i s sma l l e r or equal to max2

{ Wendy12 exch append /Wendy12 Set }

{ Wendy13 exch append /Wendy13 Set } % e l s e case

i f e l s e

} f o r a l l

} bind de f

/UpdateW2x

{

[ ] /Wendy21 Set

[ ] /Wendy23 Set

P2PX

{ % next l i n e puts the weight and ta rg e t on the stack

GetStatus [ [ / weight / ta rg e t ] ] get ar ray load ;

max1 l eq % i f t a r g e t i s sma l l e r or equal to max1

{ Wendy21 exch append /Wendy21 Set }

{ Wendy23 exch append /Wendy23 Set } % e l s e case

i f e l s e

} f o r a l l

} bind de f

/UpdateW3x

{

[ ] /Wendy31 Set

[ ] /Wendy32 Set

P3PX

{ % next l i n e puts the weight and ta rg e t on the stack

GetStatus [ [ / weight / ta rg e t ] ] get ar ray load ;

max1 l eq % i f t a r g e t i s sma l l e r or equal to max1

{ Wendy31 exch append /Wendy31 Set }

{ Wendy32 exch append /Wendy32 Set } % e l s e case

i f e l s e

} f o r a l l

} bind de f

toc

( Build time = ) =only =

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Simulate and record synapt i c weights

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

t i c

MWARNING se t v e r b o s i t y % so i t doesn ’ t d i sp l ay s t u f f each Sim .

pc locks F i r s t 1 a r r ay s t o r e / seed Set % seed comes from c lock

0 << / rng s e ed s seed >> SetStatus % seed ing the RNG

(P3P2 . dat ) ofstream ; % stream atop stack ( un l e s s can ’ t open )

(P3P1 . dat ) ofstream ; % stream atop stack ( un l e s s can ’ t open )

(P2P3 . dat ) ofstream ; % stream atop stack ( un l e s s can ’ t open )

(P2P1 . dat ) ofstream ; % stream atop stack ( un l e s s can ’ t open )

(P1P3 . dat ) ofstream ; % stream atop stack ( un l e s s can ’ t open )

(P1P2 . dat ) ofstream ; % stream atop stack ( un l e s s can ’ t open )

0 . / s im t Set % i n i t a l i z i n g a time counter

t s im chunk div cv i % number o f t imes to repeat the s imu la t i on

{

chunk Simulate

s im t chunk add / s im t Set % s im t = s im t + chunk

UpdateW1x % updating weight ar rays

UpdateW2x

UpdateW3x

s im t <− ( ) <− Wendy12 Mean <− endl % wr i t i ng mean weight
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6 1 r o l l % r o l l i n g streams in stack

s im t <− ( ) <− Wendy13 Mean <− endl % wr i t i ng mean weight

6 1 r o l l % r o l l i n g streams in stack

s im t <− ( ) <− Wendy21 Mean <− endl % wr i t i ng mean weight

6 1 r o l l % r o l l i n g streams in stack

s im t <− ( ) <− Wendy23 Mean <− endl % wr i t i ng mean weight

6 1 r o l l % r o l l i n g streams in stack

s im t <− ( ) <− Wendy31 Mean <− endl % wr i t i ng mean weight

6 1 r o l l % r o l l i n g streams in stack

s im t <− ( ) <− Wendy32 Mean <− endl % wr i t i ng mean weight

6 1 r o l l % r o l l i n g streams in stack

} repeat

c l o s e c l o s e c l o s e % c l o s i n g weights ’ f i l e streams

c l o s e c l o s e c l o s e

toc

( Simulat ion Time = ) =only =

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Display the average f i r i n g r a t e s during s t imu la t i on

% ( t h i s code may f a i l depending on the r e l evan t i n t e r v a l s )

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

cout % putt ing the standard output in stack

( f i r i n g ra t e 1 : ) <− endl % pr i n t i n g text

sp ike s1 GetStatus

/ n events get % putt ing the number o f sp i k e s in stack

1000.0 N1 div mul t s im div % 1000∗n/( t s im ∗N1)

%1000.0 N1 div mul end1 s t a r t 1 sub div % 1000∗n/( ( end−s t a r t )∗N1)

%1000.0 N1 div mul endx s t a r t x sub div % 1000∗n/( ( end−s t a r t )∗N1)

<− endl % send r e s u l t to outuput stream

( f i r i n g ra t e 2 : ) <− endl % pr i n t i n g text

sp ike s2 GetStatus

/ n events get % putt ing the number o f sp i k e s in stack

1000.0 N2 div mul t s im div % 1000∗n/( t s im ∗N2)

%1000.0 N2 div mul end2 s t a r t 2 sub div % 1000∗n/( ( end−s t a r t )∗N2)

%1000.0 N2 div mul endx s t a r t x sub div % 1000∗n/( ( end−s t a r t )∗N2)

<− endl % send r e s u l t to outuput stream

( f i r i n g ra t e 3 : ) <− endl % pr i n t i n g text

sp ike s3 GetStatus

/ n events get % putt ing the number o f sp i k e s in stack

1000.0 N3 div mul t s im div % 1000∗n/( t s im ∗N3)

<− endl % send r e s u l t to outuput stream

( f i r i n g ra t e 4 : ) <− endl % pr i n t i n g text

sp ike s4 GetStatus

/ n events get % putt ing the number o f sp i k e s in stack

1000.0 N4 div mul t s im div % 1000∗n/( t s im ∗N4)

<− endl ; % send r e s u l t to outuput stream and pop i t

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Cal l a Matlab proce s s to v i s u a l i z e r e s u l t s

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(matlab < nestFourPops1 .m) 0 system ; ;

A.3.2 nestFourPops1.m

% fun c t i o n nestFourPops1 .m

% nestFourPops1 l o a d s t h e r e s u l t s from s imu l a t i o n s o f t h e fourPops1 . s l i

% program and d i s p l a y s t h e r e s u l t s . Make sure t h i s i s run in t h e same

% d i r e c t o r y where fourPops1 . s l i w r i t e s i t s r e c o r d i n g s .

close a l l ;

clear a l l ;

sp1 = load ( ’ spikes1 -397 -0. gdf ’ ) ;

sp2 = load ( ’ spikes2 -398 -0. gdf ’ ) ;

sp3 = load ( ’ spikes3 -399 -0. gdf ’ ) ;

sp4 = load ( ’ spikes4 -400 -0. gdf ’ ) ;

vo l t1 = load ( ’ volt1 -401 -0. dat ’ ) ;

vo l t2 = load ( ’ volt2 -402 -0. dat ’ ) ;

vo l t3 = load ( ’ volt3 -403 -0. dat ’ ) ;

vo l t4 = load ( ’ volt4 -404 -0. dat ’ ) ;
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P1P2 = load ( ’ P 1 P 2 . dat ’ ) ;

P1P3 = load ( ’ P 1 P 3 . dat ’ ) ;

P2P1 = load ( ’ P 2 P 1 . dat ’ ) ;

P2P3 = load ( ’ P 2 P 3 . dat ’ ) ;

P3P1 = load ( ’ P 3 P 1 . dat ’ ) ;

P3P2 = load ( ’ P 3 P 2 . dat ’ ) ;

f igure ;

set (gca , ’ F o n t S i z e ’ , 32) ;

%t i t l e ( ’ Vo l t age t r a c e f o r a Pop . 1 neuron ’ , ’ FontSize ’ , 3 4 , ’ FontName ’ , ’ Ar ia l ’ ) ;

plot ( vo l t1 ) ;

xlabel ( ’ t i m e  [ ms ] ’ , ’ F o n t S i z e ’ , 34 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

ylabel ( ’ V o l t a g e  [ mV ] ’ , ’ F o n t S i z e ’ , 34 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

hold on

%p l o t ( v o l t 2 , ’ r ’ ) ;

f igure ;

plot ( volt4 , ’ c ’ ) ;

t i t l e ( ’ I n h i b i t o r y  n e u r o n ’ ) ;

[ r1 c1 ] = s ize ( sp1 ) ;

[ r2 c2 ] = s ize ( sp2 ) ;

[ r3 c3 ] = s ize ( sp3 ) ;

[ r4 c4 ] = s ize ( sp4 ) ;

i f c1 > 1

f igure ;

sp1 ( : , 1 ) = sp1 ( : , 1 ) −4;

ras4NEST( sp1 ) ;

set (gca , ’ F o n t S i z e ’ , 32) ;

xlabel ( ’ t i m e  [ ms ] ’ , ’ F o n t S i z e ’ , 34 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

ylabel ( ’ N e u r o n ’ , ’ F o n t S i z e ’ , 34 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

t i t l e ( ’ E x c i t a t o r y  P o p u l a t i o n  1 ’ , ’ F o n t S i z e ’ , 34 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

else

disp ( ’ No  s p i k e s  in  f i r s t  r a s t e r ’ ) ;

end

i f c2 > 1

f igure ;

sp2 ( : , 1 ) = sp2 ( : , 1 ) −104;

ras4NEST( sp2 ) ;

set (gca , ’ F o n t S i z e ’ , 32) ;

xlabel ( ’ t i m e  [ ms ] ’ , ’ F o n t S i z e ’ , 34 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

ylabel ( ’ N e u r o n ’ , ’ F o n t S i z e ’ , 34 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

t i t l e ( ’ E x c i t a t o r y  P o p u l a t i o n  2 ’ , ’ F o n t S i z e ’ , 34 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

else

disp ( ’ No  s p i k e s  in  s e c o n d  r a s t e r ’ ) ;

end

i f c3 > 1

f igure ;

sp3 ( : , 1 ) = sp3 ( : , 1 ) −204;

ras4NEST( sp3 ) ;

set (gca , ’ F o n t S i z e ’ , 32) ;

xlabel ( ’ t i m e  [ ms ] ’ , ’ F o n t S i z e ’ , 34 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

ylabel ( ’ N e u r o n ’ , ’ F o n t S i z e ’ , 34 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

t i t l e ( ’ E x c i t a t o r y  P o p u l a t i o n  3 ’ , ’ F o n t S i z e ’ , 34 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

else

disp ( ’ No  s p i k e s  in  t h i r d  r a s t e r ’ ) ;

end

i f c4 > 1

f igure ;

sp4 ( : , 1 ) = sp4 ( : , 1 ) −304;

ras4NEST( sp4 ) ;

set (gca , ’ F o n t S i z e ’ , 32) ;

xlabel ( ’ t i m e  [ ms ] ’ , ’ F o n t S i z e ’ , 34 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

ylabel ( ’ N e u r o n ’ , ’ F o n t S i z e ’ , 34 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

t i t l e ( ’ I n h i b i t o r y  P o p u l a t i o n ’ , ’ F o n t S i z e ’ , 34 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

else

disp ( ’ No  s p i k e s  in  f o u r t h  r a s t e r ’ ) ;

end

figure ;

H=plot (P1P2 ( : , 1 ) ,P1P2 ( : , 2 ) ,P2P1 ( : , 1 ) ,P2P1 ( : , 2 ) , ’ L i n e W i d t h ’ , 3 ) ;

set (gca , ’ F o n t S i z e ’ , 32) ;

ylima=get (gca , ’ Y L i m ’ ) ;

xlabel ( ’ t i m e  [ ms ] ’ , ’ F o n t S i z e ’ , 34 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

ylabel ( ’ w e i g h t ’ , ’ F o n t S i z e ’ , 34 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

legend (H, ’ 1  to  2 ’ , ’ 2  to  1 ’ ) ;

%t i t l e ( ’Mean s ynap t i c we i gh t from Pop . 1 to Pop . 2 ’ , ’ FontSize ’ , 3 4 , ’ FontName ’ , ’ Ar ia l ’ ) ;
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f igure ;

H=plot (P1P3 ( : , 1 ) ,P1P3 ( : , 2 ) ,P3P1 ( : , 1 ) ,P3P1 ( : , 2 ) , ’ L i n e W i d t h ’ , 3 ) ;

set (gca , ’ F o n t S i z e ’ , 32) ;

xlabel ( ’ t i m e  [ ms ] ’ , ’ F o n t S i z e ’ , 34 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

ylabel ( ’ w e i g h t ’ , ’ F o n t S i z e ’ , 34 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

legend (H, ’ 1  to  3 ’ , ’ 3  to  1 ’ ) ;

yl im ( ylima ) ;

%t i t l e ( ’Mean s ynap t i c we i gh t from Pop . 1 to Pop . 3 ’ , ’ FontSize ’ , 3 4 , ’ FontName ’ , ’ Ar ia l ’ ) ;

f igure ;

H=plot (P2P3 ( : , 1 ) ,P2P3 ( : , 2 ) ,P3P2 ( : , 1 ) ,P3P2 ( : , 2 ) , ’ L i n e W i d t h ’ , 3 ) ;

set (gca , ’ F o n t S i z e ’ , 32) ;

legend (H, ’ 2  to  3 ’ , ’ 3  to  2 ’ ) ;

xlabel ( ’ t i m e  [ ms ] ’ , ’ F o n t S i z e ’ , 34 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

ylabel ( ’ w e i g h t ’ , ’ F o n t S i z e ’ , 34 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

yl im ( ylima ) ;

%t i t l e ( ’Mean s ynap t i c we i gh t from Pop . 2 to Pop . 3 ’ , ’ FontSize ’ , 3 4 , ’ FontName ’ , ’ Ar ia l ’ ) ;

menu( ’ W i n d o w s  w i l l  die  w h e n  you  p r e s s  s o m e t h i n g ’ , ’ OK ’ , ’ ok ’ , ’ Ok ’ , ’ oK ’ ) ;

A.3.3 ras4NEST.m

function ras4NEST(T)

% ras4NEST(T) r e c e i v e s a matr i x T wi th n rows and 2 columns . For each row ,

% the f i r s t column i s t h e number o f a neuron , and th e second column i s t h e

% time a t which i t s p i k e d . ras4NEST(T) produces t h e co r r e s pond ing r a s t e r

% p l o t .

% The inpu t to t h i s p l o t t i n g f u n c t i o n are t h e ou tpu t f i l e s produced by t h e

% s p i k e d e t e c t o r d e v i c e s in NEST.

X=repmat (T( : , 2 ) ’ , 2 , 1 ) ;

Y=[(T( : , 1 ) −1) ’ ;T( : , 1 ) ’ ] ;

plot (X,Y, ’ k ’ )

A.3.4 TestSeq23gen2.m

% TestSeq23gen2 .m

% This v e r s i o n o f Tes tSeq23gen has d i f f e r e n t , more g e n e r a l i z e d menu

% opt i ons , which are b e t t e r s u i t e d to s t udy p a t h o l o g i c a l reg imes .

clear a l l ;

close a l l ;

home ;

global aee a e i a i e alpha eps b c d e h s S r q mid de l s d e l gamma the th i thw thdec th inc tc te t i tv tw

tz tn N M tmax I Tin Tout V f r e q CIE lEI dt rsqdt inpFun

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ INITIALIZE PARAMETERS ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

sim = @euler23 ; % use eu l e r 23d f o r h e t e ro g eneou s d e l a y s

% PARAMETER VALUES

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

aee=8; a e i =15; a i e =15; b=0.05; c=3; d=11; e=1; h=0.01; S=4; gamma=5;

r =0.3; s =1.2; q=30; mid=0.6; the =3.8; t h i =0.2; thw=0.5; thdec =0.3; th inc =0.3;

s d e l =2; alpha =0.01; eps=0.1; tc =7; te =1; t i =0.5; tv=40e9 ; tz =7; tn =0.5; tw=5;

N=80; M=16; % number o f e x c i t a t o r y and i n h i b i t o r y u n i t s r e s p e c t i v e l y

PEI=0.5; PIE=0.5; % p r o b a b i l i t y o f EI and IE connec t i on s

dt =0.05; % s t e p s i z e f o r Eu ler method

r sqdt=1/sqrt ( dt ) ; % used to avo id e x t r a computa t ions

% MAKING PARAMETERS HETEROGENEOUS

std=0.04; % 0.04

aee=aee+std∗aee∗randn (N, 1 ) ; % fo r a i e and ae i t h e h e t e r o g e n e i t y comes from the connec t i on matr i x

b=b+std∗b∗randn (N, 1 ) ; d=d+std∗d∗randn (N, 1 ) ; e=e+std∗e∗randn (N, 1 ) ;

gamma=gamma+std∗gamma∗randn (N, 1 ) ; h=h+std∗h∗randn (N, 1 ) ; s=s+std∗ s∗randn (N, 1 ) ;

S=S+std∗S∗randn (N, 1 ) ; r=r+std∗ r∗randn (N, 1 ) ; q=q+std∗q∗randn (N, 1 ) ; de l=sde l+std∗ sd e l ∗randn (N∗N, 1 ) ;
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tn=tn+std∗ tn∗randn (N, 1 ) ; tz=tz+std∗ tz ∗randn (N, 1 ) ; te=te+std∗ te ∗randn (N, 1 ) ;

tw=tw+std∗tw∗randn (N, 1 ) ; tc=tc+std∗ tc ∗randn (N, 1 ) ; tv=tv+std∗ tv∗randn (N, 1 ) ;

the=the+std∗ the∗randn (N, 1 ) ; t h i=th i+std∗ t h i ∗randn (M, 1 ) ; thw=thw+std∗thw∗randn (N, 1 ) ;

thdec=thdec+std∗ thdec∗randn (N, 1 ) ; th inc=th inc+std∗ th inc ∗randn (N, 1 ) ;

alpha=alpha+std∗alpha∗randn (N, 1 ) ; eps=eps+std∗eps∗rand (N, 1 ) ; mid=mid+std∗mid∗randn (N, 1 ) ;

thdec=repmat ( thdec ’ ,N, 1 ) ; thdec=reshape ( thdec ,N∗N, 1 ) ; % STDP seems to be a p o s t s y n a p t i c a f f a i r

th inc=repmat ( thinc ’ ,N, 1 ) ; th inc=reshape ( thinc ,N∗N, 1 ) ;

tc=repmat ( tc ’ ,N, 1 ) ; tc=reshape ( tc ,N∗N, 1 ) ;

tv=repmat ( tv ’ ,M, 1 ) ; tv=reshape ( tv ,N∗M,1 ) ;

h=repmat (h , 1 ,M) ; h=reshape (h ’ ,N∗M,1 ) ;

S=repmat (S ’ ,N, 1 ) ; S=reshape (S ,N∗N, 1 ) ;

s=repmat ( s ’ ,N, 1 ) ; s=reshape ( s ,N∗N, 1 ) ;

q=repmat (q ’ ,N, 1 ) ; q=reshape (q ,N∗N, 1 ) ;

r=repmat ( r , 1 ,M) ; r=reshape ( r ’ ,N∗M,1 ) ;

eps=repmat (eps ’ ,N, 1 ) ; eps=reshape (eps ,N∗N, 1 ) ;

alpha=repmat ( alpha ’ ,N, 1 ) ; alpha=reshape ( alpha ,N∗N, 1 ) ;

mid=repmat (mid ’ ,N, 1 ) ; mid=reshape (mid ,N∗N, 1 ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% INITIAL STATE, INITIAL CONNECTIONS

%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

X0=zeros (N∗(N+M+4)+M, 1 ) ;

X0 ( 1 :N)=0.2∗rand (N, 1 ) ;

X00=zeros (N∗(N+M+4)+M, 1 ) ;

X00 ( 1 :N)=0.2∗rand (N, 1 ) ;

CEE = abs (0 .05∗ rand (N) ) ;

%CEE = createCEE1 (N, [ 2 0 : 3 0 , 2 0 ] )+createCEE2 (N, [ 4 0 : 5 0 , 4 0 ] ) ;

CEI = createCEI2 (N,M, PEI) ; % c r e a t e s a matr i x w i th no h e t e r o g e n e i t y

lEI = reshape (CEI ’ ,M∗N, 1 ) ; % form o f CEI used in seqF20

CIE = createCIE1 (N,M, PIE) ;

CF = CEE; % so we can s e l e c t case 5 in t h e f i r s t l oop r e p e t i t i o n

X0(4∗N+M+1:N∗(N+4)+M) = reshape (CEE’ ,N∗N, 1 ) ; % i n i t i a l E−E connec t i on s

X0(N∗(N+4)+M+1:N∗(N+M+4)+M) = reshape (CEI ’ ,N∗M,1 ) ; % i n i t i a l I−E connec t i on s

X00(4∗N+M+1:N∗(N+4)+M) = X0(4∗N+M+1:N∗(N+4)+M) ; % same E−E connec t i on s

X00(N∗(N+4)+M+1:N∗(N+M+4)+M) = X0(N∗(N+4)+M+1:N∗(N+M+4)+M) ; % same I−E connec t i on s

%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

% MODIFICATIONS TO STANDARD PARAMETERS

%˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

%load T23A1 % d e f a u l t parameters , 6 i n t e r s e c t i n g s imp l e l o o p s

%load T23A2CS2 % d e f a u l t pars , complex sequence order 2

%%load T23B1MS % 4 i n t e r s e c t i n g s imp l e l oops , t hdec =0.6 .

load /home/z/Documents/athena/paper3/ f i g u r e s /A1

%load randSimpars

%load t e s t 2 3 g e n

%eps =0; % no h e t e r o s y n a p t i c c ompe t i t i on

%e = 0 ; % no no i s e

%t h i n c =0.1 ;

%a i e =15; a e i =15;

%r=0; % e l im i n a t i n g homeos t a t i c i n h i b i t i o n

%t v=40e9 ; % no homeos t a t i c i n h i b i t i o n

%t c=10e10 ; % no e x c i t a t o r y p l a s t i c i t y

% CEI = reshape ( lEI ,M,N) ’ ;

% CEI ( 5 0 : 7 0 , : ) = 0.5∗CEI ( 5 0 : 7 0 , : ) ; % l o c a l l y r educ ing t h e I−E connec t i on s

% lEI = reshape (CEI ’ ,M∗N, 1 ) ; % form o f CEI used in seqF20

% X0(N∗(N+4)+M+1:N∗(N+M+4)+M) = lEI ;

%˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ MAIN SEQUENCE ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%() ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

go = 1 ; % f l a g used to s t op t h e sequence

while go

disp ( ’ P r e s s  1  to  a p p l y  a  s t i m u l u s ’ )

disp ( ’ P r e s s  2  to  run  a  s i m u l a t i o n  w i t h  no  i n p u t ’ )

disp ( ’ P r e s s  3  to  c l e a r  all  w i n d o w s ’ )

disp ( ’ P r e s s  4  to  d i s p l a y  a v e r a g e  i n c o m i n g  c o n n e c t i o n s ’ )

disp ( ’ P r e s s  5  to  s a v e  s t a t e  and  p a r a m e t e r s  in  t e s t 2 3 g e n ’ )

disp ( ’ P r e s s  6  to  l o a d  t e s t 2 3 g e n ’ )

disp ( ’ P r e s s  7  to  s w i t c h  b e t w e e n  h o m o g e n e o u s  and  h e t e r o g e n e o u s  d e l a y s ’ )

disp ( ’ P r e s s  8  to  s t o p  t h i s  p r o g r a m ’ )

cas = [ ] ;

while isempty ( cas )

cas = input ( ’ G i m m e  c h o i c e :  ’ ) ;
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end

disp ( ’ ’ )

switch cas

case 1 % app l y a s t imu l u s

%+++++++++++++++++ SETTING THE STIMULUS +++++++++++++++++

syn = input ( ’ P r e s s  1  for  s y n c h r o n o u s  s t i m u l u s ,  a n y t h i n g  e l s e  for  s e q u e n t i a l :  ’ ) ;

i f isempty ( syn ) | | syn ˜= 1 % s e q u e n t i a l s t imu l u s

inpSeq = input ( ’ E n t e r  the  i n p u t  v e c t o r  ( c o l u m n !) :  ’ ) ;

r eps = input ( ’ E n t e r  the  n u m b e r  of  r e p e t i t i o n s :  ’ ) ;

dur = input ( ’ E n t e r  the  d u r a t i o n  of  e a c h  i n p u t  s t e p  [ D e f a u l t  3 . 6 ] :  ’ ) ;

i f isempty ( dur )

dur = 3 . 6 ;

end

I = input ( ’ E n t e r  i n p u t  a m p l i t u d e  [ D e f a u l t  1 2 ] :  ’ ) ;

i f isempty ( I )

I = 12 ;

end

ovr = input ( ’ E n t e r  the  d e g r e e  of  o v e r l a p  [ D e f a u l t  3]:  ’ ) ;

i f isempty ( ovr )

ovr = 3 ;

end

switch ovr

case 1

V=repmat ( inpSeq , reps , 1 ) ;

inpFun = @I8 ;

Tin=20; Tout=Tin + ce i l ( dur∗ length (V) ) ;

case 2

l en = length ( inpSeq ) ;

V = zeros ( len , 2 ) ;

V( : , 1 ) = inpSeq ;

V( 1 : end−1 ,2) = inpSeq ( 2 : end) ;

V(end , 2 ) = V(1 ,1 ) ;

V = repmat (V, reps , 1 ) ;

inpFun = @I9 ;

Tin=20; Tout=Tin + ce i l ( ( dur /2)∗ length (V) ) ;

o therwi se % degree o f o v e r l a p 3 i s t h e d e f a u l t case

l en = length ( inpSeq ) ;

V = zeros ( len , 3 ) ;

V( : , 1 ) = inpSeq ;

V( 1 : end−1 ,2) = inpSeq ( 2 : end) ;

V( 1 : end−2 ,3) = inpSeq ( 3 : end) ;

V(end , 2 ) = V(1 ,1 ) ;

V(end , 3 ) = V(2 ,1 ) ; V(end−1 ,3) = V(1 ,1 ) ;

V = repmat (V, reps , 1 ) ;

inpFun = @I9 ;

Tin =20; Tout=Tin + ce i l ( ( dur /3)∗ length (V) ) ;

end

else % synchronous s t im l u s

I = input ( ’ E n t e r  i n p u t  a m p l i t u d e  [ D e f a u l t  1 2 ] :  ’ ) ;

i f isempty ( I )

I = 15 ;

end

per = input ( ’ E n t e r  the  p e r i o d  of  the  s t i m u l u s :  ’ ) ;

Tstim = input ( ’ E n t e r  the  d u r a t i o n  of  the  s t i m u l u s :  ’ ) ;

V = input ( [ ’ E n t e r  the  i n p u t  v e c t o r  [ d e f a u l t  (1: ’ num2str(N) ’ ) ]:  ’ ] ) ;

i f isempty (V)

V = (1 :N) ’ ;

end

f r e q=2∗pi/per ;

Tin=100; Tout=Tin + Tstim ;

inpFun = @I7 ; % I7 implements s imu l t aneous p u l s e s

end

%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

%====================== SIMULATING =======================

tmax = 2∗Tout ; tmax=540;

[Y] = sim ( [ 0 tmax ] , X0 , X00) ;

%==========================================================

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ DISPLAYING RESULTS ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

CF=Y(4∗N+M+1:N∗(N+4)+M, end) ; CF=reshape (CF,N,N) ’ ;

f igure ;

colormap ( f l ipud (hot ) ) ;

%h=imagesc ( [ 1 2∗N+M] , [ 0 tmax ] , Y( [ 1 : 2∗N,4∗N+1:4∗N+M] , : ) ’ ) ;

h=imagesc ( [ 1 N+M] , [ 0 10∗tmax ] , Y( [ 1 :N,4∗N+1:4∗N+M] , : ) ’ ) ;

set (gca , ’ F o n t S i z e ’ , 32) ;

set (gca , ’ x T i c k ’ , ( 1 0 : 1 0 : 9 0 ) ) ;

set (gca , ’ x T i c k L a b e l ’ ,{ ’ 10 ’ ; ’ 20 ’ ; ’ 30 ’ ; ’ 40 ’ ; ’ 50 ’ ; ’ 60 ’ ; ’ 70 ’ ; ’ 80 ’ ; ’ 10 ’}) ;

xlabel ( ’ u n i t  n u m b e r ’ , ’ F o n t S i z e ’ , 34 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

ylabel ( ’ t i m e  [ ms ] ’ , ’ F o n t S i z e ’ , 34 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

%t i t l e ( ’ E x c i t a t o r y and i n h i b i t o r y a c t i v i t y ’ , ’ Fon t s i z e ’ , 3 2 ) ;
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colorbar ( ’ v e r t ’ ) ;

set (gca , ’ F o n t S i z e ’ , 32) ;

hold on

plot ( [ 8 0 . 5 8 0 . 5 ] , [ 0 10∗tmax ] , ’ b ’ , ’ L i n e W i d t h ’ , 6 ) ;

f igure ;

colormap ( f l ipud (pink ) ) ;

imagesc (CF) ;

axis equal ;

set (gca , ’ F o n t S i z e ’ , 32) ;

%t i t l e ( ’E−E connec t i ons ’ , ’ Fon t s i z e ’ , 3 2 ) ;

xlabel ( ’ s e n d i n g  u n i t ’ , ’ F o n t S i z e ’ , 34 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

ylabel ( ’ r e c e i v i n g  u n i t ’ , ’ F o n t S i z e ’ , 34 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

colorbar ( ’ v e r t ’ ) ;

set (gca , ’ F o n t S i z e ’ , 32) ;

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%<><><><><><><><><><> SAVING STATE <><><><><><><><><><>

r ep ly = input ( ’ P r e s s  Y / y  to  s a v e  s t a t e :  ’ , ’ s ’ ) ;

i f ˜isempty ( r ep ly )

i f r ep ly == ’ Y ’ | | r ep ly == ’ y ’

X0=Y( : , end) ;

X00=Y( : , end−ce i l ( s d e l /dt ) ) ;

end

end

%<><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

home

case 2 % s imu l a t i n g w i th no inpu t

%====================== SIMULATING =======================

tmax = input ( ’ E n t e r  t i m e  to  s i m u l a t e  ( do  not  e x c e e d  1 2 0 0 )  [ D e f a u l t  4 0 0 ] :  ’ ) ;

i f isempty ( tmax)

tmax = 400 ;

end

I =0; V= [ 1 3 ; 1 4 ] ’ ; Tin=10; Tout=12; inpFun=@I6 ;

[Y] = sim ( [ 0 tmax ] , X0 , X00) ;

%==========================================================

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ DISPLAYING RESULTS ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

CF=Y(4∗N+M+1:N∗(N+4)+M, end) ; CF=reshape (CF,N,N) ’ ;

f igure ;

colormap ( f l ipud (hot ) ) ;

%h=imagesc ( [ 1 2∗N+M] , [ 0 tmax ] , Y( [ 1 : 2∗N,4∗N+1:4∗N+M] , : ) ’ ) ;

h=imagesc ( [ 1 N+M] , [ 0 10∗tmax ] , Y( [ 1 :N,4∗N+1:4∗N+M] , : ) ’ ) ;

set (gca , ’ F o n t S i z e ’ , 32) ;

set (gca , ’ x T i c k ’ , ( 1 0 : 1 0 : 9 0 ) ) ;

set (gca , ’ x T i c k L a b e l ’ ,{ ’ 10 ’ ; ’ 20 ’ ; ’ 30 ’ ; ’ 40 ’ ; ’ 50 ’ ; ’ 60 ’ ; ’ 70 ’ ; ’ 80 ’ ; ’ 10 ’}) ;

xlabel ( ’ u n i t  n u m b e r ’ , ’ F o n t S i z e ’ , 34 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

ylabel ( ’ t i m e  [ m ] ’ , ’ F o n t S i z e ’ , 34 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

%t i t l e ( ’ E x c i t a t o r y and i n h i b i t o r y a c t i v i t y ’ , ’ Fon t s i z e ’ , 3 2 ) ;

colorbar ( ’ v e r t ’ ) ;

set (gca , ’ F o n t S i z e ’ , 32) ;

hold on

plot ( [ 8 0 . 5 8 0 . 5 ] , [ 0 10∗tmax ] , ’ b ’ , ’ L i n e W i d t h ’ , 6 ) ;

f igure ;

colormap ( f l ipud (pink ) ) ;

imagesc (CF) ;

axis equal ;

set (gca , ’ F o n t S i z e ’ , 32) ;

%t i t l e ( ’E−E connec t i ons ’ , ’ Fon t s i z e ’ , 3 2 ) ;

xlabel ( ’ s e n d i n g  u n i t ’ , ’ F o n t S i z e ’ , 34 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

ylabel ( ’ r e c e i v i n g  u n i t ’ , ’ F o n t S i z e ’ , 34 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

colorbar ( ’ v e r t ’ ) ;

set (gca , ’ F o n t S i z e ’ , 32) ;

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%<><><><><><><><><><> SAVING STATE <><><><><><><><><><>

r ep ly = input ( ’ P r e s s  Y / y  to  s a v e  s t a t e :  ’ , ’ s ’ ) ;

i f ˜isempty ( r ep ly )

i f r ep ly == ’ Y ’ | | r ep ly == ’ y ’

X0=Y( : , end) ;

X00=Y( : , end−ce i l ( s d e l /dt ) ) ;

end

end

%<><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

home

case 3 % c l o s i n g a l l windows

close a l l ;

home

case 4 % d i s p l a y i n g average incoming cone c t i on s
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home

low = input ( ’ f i r s t  e l e m e n t  of  s e q u e n c e :  ’ ) ;

high = input ( ’ l a s t  e l e m e n t  of  s e q u e n c e  ( b i g g e r  t h a n  f i r s t ) :  ’ ) ;

avgConn1 = sum(sum(CF( low : high , : ) ) ) /( high−low+1) ;

avgConn2 = sum(sum(CF) ) /N;

disp ( [ ’ A T I C  f r o m  ’ , num2str( low ) , ’  to  ’ , num2str( high ) , ’ :  ’ ,num2str( avgConn1 ) ] ) ;

disp ( [ ’ A T I C  for  all  u n i t s :  ’ , num2str( avgConn2 ) ] ) ;

case 5 % sav in g s t a t e and parameters

save t e s t23gen X0 X00 aee a e i a i e alpha eps b c d e h s S r q mid de l s d e l gamma the th i

thw thdec th inc tc te t i tv tw tz tn N M CIE lEI dt rsqdt

home

disp ( ’ P a r a m e t e r s  s a v e d  to  t e s t 2 3 g e n ’ )

case 6 % load i n g t e s t 2 3 g e n

load t e s t23gen

home

disp ( ’ T e s t 2 3 g e n  l o a d e d ’ ) ;

case 7 % sw i t c h i n g between homogeneous/ he t e ro g eneou s d e l a y s

% home

i f strcmp ( f unc2 s t r ( sim ) , ’ e u l e r 2 3 ’ )

sim = @euler23d ;

disp ( ’ S w i t c h i n g  to  h e t e r o g e n e o u s  d e l a y s ’ )

else

sim = @euler23 ;

disp ( ’ S w i t c h i n g  to  h o m o g e n e o u s  d e l a y s ’ )

end

case 8 % ending l oop

go = 0 ;

otherwi se

disp ( ’ Bad  i n p u t ... ’ )

pause (1 )

end

%c l e a r Y; % sometimes you want to ana l y z e Y a f t e r t h e s imu l a t i o n

end

%() ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

A.3.5 euler23.m

function [Y]= eu l e r23 ( tspan ,X0 , X00)

% [Y]= eu l e r 2 3 ( tspan ,X0 , X00) . This f u n c t i o n w i l l s imu l a t e t h e model in

% seq23 .m us ing t h e forward Eu ler method s t a r t i n g from the i n i t i a l

% c on d i t i o n s X0 , and assuming t h a t a t ’ de l ’ t ime un i t s b e f o r e X0 the s t a t e

% o f t h e sys tem was X00 . The s t a t e s be tween X00 and X0 are o b t a i n ed th rough

% l i n e a r i n t e r p o l a t i o n .

% The s imu l a t i o n w i l l range in t ime from tspan (1) u n t i l t span (2) .

% eu l e r 23d implements a v e r s i o n o f t h i s f u n c t i o n capa b l e o f hand l i n g

% he t e ro g eneou s d e l a y s .

global s d e l dt

NSTEPS = ce i l ( ( tspan (2)−tspan (1) ) /dt ) ; % t o t a l number o f s imu l a t i o n s t e p s

nSTEPS = ce i l ( s d e l /dt ) ; % number o f s imu l a t i o n s t e p s u s ing i n t e r p o l a t e d v a l u e s

Y=zeros ( length (X0) ,NSTEPS) ;

Y( : , 1 )=X0 ;

% the nex t l i n e i s t h e l i n e a r i n t e r p o l a t i o n from X00 to X0

Y00 = repmat (X00 , 1 ,nSTEPS) + repmat (X0−X00 , 1 ,nSTEPS) .∗ repmat ( l inspace (0 , 1 ,nSTEPS) , length (X0) ,1) ;

t=tspan (1) ;

for i =2:nSTEPS

Y( : , i ) = Y( : , i −1) + dt∗ seqF23 ( t ,Y( : , i −1) ,Y00 ( : , i ) ) ;

t=t+dt ;

end

clear Y00 ; % r e l e a s i n g some memory

for i=nSTEPS+1:NSTEPS

Y( : , i ) = Y( : , i −1) + dt∗ seqF23 ( t ,Y( : , i −1) ,Y( : , i−nSTEPS) ) ;

t=t+dt ;

end
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A.3.6 euler23d.m

function [Y]= eu le r23d ( tspan ,X0 , X00)

% [Y]= eu l e r 23d ( tspan ,X0 , X00) . This f u n c t i o n w i l l s imu l a t e t h e model in

% seq23 .m us ing t h e forward Eu ler method s t a r t i n g from the i n i t i a l

% c on d i t i o n s X0 , and assuming t h a t a t ’ de l ’ t ime un i t s b e f o r e X0 the s t a t e

% o f t h e sys tem was X00 .

%

% Not i ce t h a t each connec t i on has i t s own de lay , so d e l i s a N∗N ve c t o r .

% Since we have N∗N p o s s i b l y d i f f e r e n t de l ay s , t o b e g i n s imu l a t i n g we would

% need N∗N a c t i v i t y va l ue s , each one co r r e s pond ing to a d i f f e r e n t d e l a y .

% The argument X00 we r e c e i v e , however , i s a s i n g l e i n i t i a l i n i t i a l

% s t a t e o f s i z e N∗(N+M+4)+M, so what we do i s to c r e a t e a matr i x Y00

% wi th N∗(N+M+4)+M rows and c e i l (max( d e l / d t ) ) columns . Y00 ( : , end )=X0 , and

% Y00 ( : , 1 ) i s t h e s t a t e o f t h e sys tem at max( d e l ) t ime un i t s b e f o r e t h e

% s t a r t o f t h e s imu l a t i o n . The s t a t e s be tween Y00 ( : , 1 ) and Y00 ( : end ) w i l l

% be o b t a i n ed from l i n e a r i n t e r p o l a t i o n . S ince most d e l a y s are a lmos t

% i d e n t i c a l , we s im p l i f y t h i n g s and make Y00 ( : , 1 )=X00 .

%

% The s imu l a t i o n w i l l range in t ime from tspan (1) u n t i l t span (2) .

global de l dt N

NSTEPS = ce i l ( ( tspan (2)−tspan (1) ) /dt ) ; % t o t a l number o f s imu l a t i o n s t e p s

STEPS = max(1 , ce i l ( de l /dt ) ) ; % number o f s t e p s f o r each one o f t h e d e l a y s

maxSTEPS = max(STEPS) ; % maximum number o f s t e p s be tween de l a y ed and cu r r en t v a l u e s

minSTEPS = min(STEPS) ; % minimum number o f s t e p s be tween de l a y ed and cu r r en t v a l u e s

Y=zeros ( length (X0) ,NSTEPS) ; % This matr i x w i l l c on ta in t h e s imu l a t i o n data

Y( : , 1 )=X0 ;

% the nex t l i n e c r e a t e maxSTEPS l i n e a r i n t e r p o l a t i o n s from X00 to X0 .

Y00 = repmat (X00 , 1 ,maxSTEPS) + repmat (X0−X00 , 1 ,maxSTEPS) .∗ repmat ( l inspace (0 , 1 ,maxSTEPS) , length (X0) ,1) ;

% In order to c a l c u l a t e t h e nex t s t ep , you on l y need N∗N pr i o r a c t i v i t y

% va l u e s . The va l u e which m u l t i p l i e s connec t i on C( j , k ) in t h e dynamic

% equa t i on s i s t h e k−t h a c t i v i t y w i th t h e ( j , k ) d e l a y . The ( j , k ) d e l a y i s

% d e l (N∗( j −1)+k ) , and th e co r r e s pond ing a c t i v i t y i s

% Y00( k ,maxSTEPS+i−STEPS(N∗( j −1)+k ) ) . What we are s end ing i n t o seqF23d i s

% a v e c t o r Xdel w i th N∗N e l emen t s :

% Xdel ( 1 :N) = Xk( t − d e l ( k ) ) , f o r k=1:N; <−− i n pu t s to f i r s t un i t

% Xdel (N+1:2∗N) = Xk( t − d e l (N+k ) ) , k=1:N; <−− i n pu t s to second un i t

% Xdel ( ( j −1)∗N: j ∗N) = Xk( t − d e l (N∗( j −1)+k ) , k=1:N; <−− i n pu t s to un i t j

% Not i ce t h a t Xdel ( ( j −1)∗N: j ∗N) =

% diag (Y00 ( 1 :N,maxSTEPS+i−STEPS(N∗( j −1)+1:N) ) )

% Xdel c o n s i s t s o f t h e s e d i a g ona l s conca t ena t ed i n t o a column v e c t o r .

% In order to o b t a i n Xdel in a s i n g l e l i n e we use l i n e a r i n d e x i n g o f t h e

% EY00 matrix , which con t a i n s t h e N a c t i v i t y v a l u e s a t t h e N∗N de l a y s .

% The index v e c t o r i s comp l i ca t ed , bu t you on l y have to o b t a i n i t once .

% Not i ce t h a t t h e index v e c t o r doesn ’ t work i f we use Y00 i n s t e a d o f EY00 .

base = 0 :N∗N: (N−1)∗N∗N; % the index w i l l jump through square ma t r i c e s

base = reshape ( repmat ( base ,N, 1 ) ,N∗N, 1 ) ;

prog = 1 :N+1:N∗N; % the index w i l l g e t t h e main d i a g ona l

prog = repmat ( prog , 1 ,N) ’ ;

index = base+prog ; % the index i s ready

Xdel = zeros (N∗N, 1 ) ;

t=tspan (1) ;

for i =2:minSTEPS

EY00 = Y00 ( 1 :N,maxSTEPS+i−STEPS) ;

Xdel = EY00( index ) ;

Y( : , i ) = Y( : , i −1) + dt∗seqF23d ( t ,Y( : , i −1) , Xdel ) ;

t=t+dt ;

end

for i=minSTEPS+1:maxSTEPS % This segment i s shor t , so I j u s t use f o r l o o p s

for j =1:N

for k=1:N

uni t = ( j −1)∗N+k ;

i f STEPS( uni t ) >= i % de l a y sends you back to Y00

Xdel ( un i t ) = Y00( j ,maxSTEPS+i−STEPS( uni t ) ) ;

else

Xdel ( un i t ) = Y( i−STEPS( uni t ) ) ;

end
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end

end

Y( : , i ) = Y( : , i −1) + dt∗seqF23d ( t ,Y( : , i −1) , Xdel ) ;

t=t+dt ;

end

clear Y00 % r e l e a s i n g some memory

for i=maxSTEPS+1:NSTEPS

% A fo r l oop i s my in surance i f t h e l i n e a r i n d e x i n g doesn ’ t work

% f o r j =1:N

% Xdel ( ( j −1)∗N: j ∗N) = Y( j , i−STEPS( ( j −1)∗N+(1:N) ) ) ;

% end

EY00 = Y(1 :N, i−STEPS) ;

Xdel = EY00( index ) ;

Y( : , i ) = Y( : , i −1) + dt∗seqF23d ( t ,Y( : , i −1) , Xdel ) ;

t=t+dt ;

end

A.3.7 seqF23.m

function [Y] = seqF23 (T,X, Xdel )

% [Y] = seqF23 (T,X, Xdel ) implements t h e dynamics o f t h e model in seq23 .m.

% A l l t h e parameters are pas sed as g l o b a l v a r i a b l e s .

% The argument T i s t ime ( a s c a l a r ) ; X i s t h e cu r r en t s t a t e vec to r , and

% Xdel i s t h e s t a t e v e c t o r a t t ime T−s d e l .

% The s t a t e v e c t o r s which are r e c e i v e d have N∗(N+M+4)+M v a r i a b l e s :

% [ x ( 1 :N) ; w( 1 :N) ; z ( 1 :N) ; n ( 1 :N) ; y ( 1 :M) ; C( 1 :N∗N) ; V( 1 :N∗M) ]

% where x ( i ) = f i r i n g r a t e o f e x c i t a t o r y un i t i

% w( i ) = memory o f t h e a c t i v i t y in e x c i t a t o r y un i t i

% z ( i ) = adap t a t i on o f e x c i t a t o r y un i t i

% n( i ) = no i s e in e x c i t a t o r y un i t i

% y ( i ) = f i r i n g r a t e o f i n h i b i t o r y un i t i

% C( i ) = e x c i t a t o r y connec t i on matr i x re shaped as a column .

% C( 1 :N)=CEE(1 , 1 :N) ; C(N+1:2∗N)=CEE(2 , 1 :N) ; . . .

% V( i ) = i n h i b i t o r y to e x c i t a t o r y connec t i on s re shaped as a column .

% V(1 :M)=CEI ( 1 , 1 :M) ; V(M+1:2∗M)=CEI ( 2 , 1 :M) ; . . .

global aee a e i a i e alpha eps b c d e h s S r q mid gamma the th i thw thdec th inc tc te t i tv tz tn tw N M

lEI CIE rsqdt inpFun

%−−−− EXTRACTING THE VARIABLES FROM THE INPUT VECTORS −−−−

Y = zeros (N∗(N+M+4)+M, 1 ) ;

E = X(1 :N) ; % e x c i t a t o r y un i t s

W = X(N+1:2∗N) ; % a c t i v i t y memory

Z = X(2∗N+1:3∗N) ; % adap t a t i on

H = X(3∗N+1:4∗N) ; % no i s e

y = X(4∗N+1:4∗N+M) ; % i n h i b i t o r y u n i t s

Edel = Xdel ( 1 :N) ; % de l a y ed e x c i t a t i o n

C = reshape (X(4∗N+M+1:N∗(N+4)+M) ,N,N) ’ ; % e x c i t a t o r y connec t i on s

V = reshape (X(N∗(N+4)+M+1:end) ,M,N) ’ ; % I−E connec t i on s

I = inpFun (T) ; % inpFun i s a hand l e to t h e i npu t f u n c t i o n ( I7−I9 )

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% ++++++++++++++ IMPLEMENTING THE DYNAMICS ++++++++++++++

Cin = C∗Edel ;

argx = aee .∗E + c∗Cin − d .∗Z − ae i ∗V∗y − the + e .∗H + I ( 1 :N) ;

argy = max( a i e ∗CIE∗E − t h i + I (N+1) , zeros (M, 1 ) ) ;

fx = ones (N, 1 ) ./(1+exp(−argx ) ) ; fw = ones (N, 1 ) ./(1+exp(−gamma.∗ (E−thw) ) ) ;

Y( 1 :N) = (−E + fx ) . / te ; % e x c i t a t o r y un i t s

Y(N+1:2∗N) = (−W + fw ) . / tw ; % a c t i v i t y memory

Y(2∗N+1:3∗N) = −Z ./ tz + b.∗(1−Z) .∗ fx ; % adap t a t i on

Y(3∗N+1:4∗N) = −H./ tn + rsqdt ∗randn (N, 1 ) ; % no i s e

Y(4∗N+1:4∗N+M) = −y/ t i + argy ; % i n h i b i t o r y u n i t s

% nex t comes t h e E−E s ynap t i c p l a s t i c i t y

Erep=repmat (E’ ,N, 1 ) ; Erep=reshape ( Erep ,N∗N, 1 ) ;

Eprog=repmat (E,N, 1 ) ;

Wrep=repmat (W’ ,N, 1 ) ; Wrep=reshape (Wrep ,N∗N, 1 ) ;

Wprog=repmat (W,N, 1 ) ;

repCin=repmat (Cin ’ ,N, 1 ) ; repCin=reshape ( repCin ,N∗N, 1 ) ;

repEdel=repmat ( Edel ’ ,N, 1 ) ; repEdel=reshape ( repEdel ,N∗N, 1 ) ;

base1=4∗N+M+1; base2=N∗(N+4)+M;

Hinc=ones (N∗N, 1 ) . / ( ones (N∗N, 1 )+exp(−q .∗ ( Erep .∗Wprog−th inc ) ) ) ;

Hdec=ones (N∗N, 1 ) . / ( ones (N∗N, 1 )+exp(−q .∗ ( Eprog .∗Wrep−thdec ) ) ) ;
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poten=(alpha+X( base1 : base2 ) ) .∗ ( s−X( base1 : base2 ) ) .∗max( zeros (N∗N, 1 ) , ( S − repCin ) ) .∗max( zeros (N∗N, 1 ) , ( Hinc−

Hdec ) ) ;

dep1=S .∗X( base1 : base2 ) .∗max( zeros (N∗N, 1 ) , (Hdec−Hinc ) ) ;

%he t e r o=eps .∗X( base1 : base2 ) .∗ Erep .∗(1− repEde l ) ; % h e t e r o s y n a p t i c compet ion

i n t e r=eps .∗max( zeros (N∗N, 1 ) , (X( base1 : base2 )−alpha ) .∗ (mid−X( base1 : base2 ) ) ) ; %reduc t i on o f i n t e rmed i a t e

we i g h t s

%Y( base1 : base2 ) = ( poten − dep1 − h e t e r o ) . / t c ; % e x c i t a t o r y p l a s t i c i t y

Y( base1 : base2 ) = ( poten − dep1 − i n t e r ) . / tc ; % e x c i t a t o r y p l a s t i c i t y

Y( base1 + (N+1) ∗ ( 0 :N−1) ) = zeros (N, 1 ) ; % making C( i , i ) = 0

% and f i n a l l y t h e I−E p l a s t i c i t y

ErepM=repmat (E, 1 ,M) ; ErepM=reshape (ErepM ’ ,N∗M,1 ) ;

Y( base2+1:end) = (X( base2+1:end) .∗ ( lEI + r .∗ErepM − X( base2+1:end) ) .∗max( (ErepM − h) , zeros (N∗M,1 ) ) ) . / tv ;

%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

A.3.8 seqF23d.m

function [Y] = seqF23d (T,X, Xdel )

% [Y] = seqF23d (T,X, Xdel ) implements t h e dynamics o f t h e model in seq23 .m.

% A l l t h e parameters are pas sed as g l o b a l v a r i a b l e s .

% The argument T i s t ime ( a s c a l a r ) ; X i s t h e cu r r en t s t a t e vec to r , and

% Xdel has t h e N∗N de l a y ed a c t i v i t i e s r e q u i r e d to compute t h i s f u n c t i o n . A

% d e s c r i p t i o n o f Xdel can be found in eu l e r 23d .m.

% The s t a t e v e c t o r which i s r e c e i v e d has N∗(N+M+4)+M v a r i a b l e s :

% [ x ( 1 :N) ; w( 1 :N) ; z ( 1 :N) ; n ( 1 :N) ; y ( 1 :M) ; C( 1 :N∗N) ; V( 1 :N∗M) ]

% where x ( i ) = f i r i n g r a t e o f e x c i t a t o r y un i t i

% w( i ) = memory o f t h e a c t i v i t y in e x c i t a t o r y un i t i

% z ( i ) = adap t a t i on o f e x c i t a t o r y un i t i

% n( i ) = no i s e in e x c i t a t o r y un i t i

% y ( i ) = f i r i n g r a t e o f i n h i b i t o r y un i t i

% C( i ) = e x c i t a t o r y connec t i on matr i x re shaped as a column .

% C( 1 :N)=CEE(1 , 1 :N) ; C(N+1:2∗N)=CEE(2 , 1 :N) ; . . .

% V( i ) = i n h i b i t o r y to e x c i t a t o r y connec t i on s re shaped as a column .

% V(1 :M)=CEI ( 1 , 1 :M) ; V(M+1:2∗M)=CEI ( 2 , 1 :M) ; . . .

%

% Un l i k e seqF23 .m, t h i s v e r s i o n d e a l s w i th h e t e ro g eneou s d e l a y s . S ince we

% have N∗N e x c i t a t o r y connec t i ons , t h e r e are N∗N d i f f e r e n t de l ay s , and

% t h e r e f o r e Xdel c on t a i n s t h e N∗N pr e v i o u s s t a t e s r e q u i r e d to compute t h e

% nex t one . Xdel ( 1 , 1 :N) are t h e s t a t e s r e q u i r e d by t h e d e l a y s o f

% connec t i on s C( 1 :N) , namely , t h e connec t i on s incoming to neuron 1 .

% Xdel ( 2 , 1 :N) are t h e a c t i v i t i e s whose co r r e s pond ing d e l a y s are t h o s e o f

% the connec t i on s CEE(2 , 1 :N) , e t c .

global aee a e i a i e alpha eps b c d e h s S r q mid gamma the th i thw thdec th inc tc te t i tv tz tn tw N M

lEI CIE rsqdt inpFun

%−−−− EXTRACTING THE VARIABLES FROM THE INPUT VECTORS −−−−

Y = zeros (N∗(N+M+4)+M, 1 ) ;

E = X(1 :N) ; % e x c i t a t o r y un i t s

W = X(N+1:2∗N) ; % a c t i v i t y memory

Z = X(2∗N+1:3∗N) ; % adap t a t i on

H = X(3∗N+1:4∗N) ; % no i s e

y = X(4∗N+1:4∗N+M) ; % i n h i b i t o r y u n i t s

C = reshape (X(4∗N+M+1:N∗(N+4)+M) ,N,N) ; % tran spo s e o f t h e e x c i t a t o r y connec t i on matr i x

V = reshape (X(N∗(N+4)+M+1:end) ,M,N) ’ ; % I−E connec t i on s

D = reshape (Xdel ,N,N) ; % de l a y matrix , ready f o r do t m u l t i p l i c a t i o n wi th C

I = inpFun (T) ; % inpFun i s a hand l e to t h e i npu t f u n c t i o n ( I7−I9 )

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%

% ++++++++++++++ IMPLEMENTING THE DYNAMICS ++++++++++++++

Cin = sum(C.∗D) ’ ;

argx = aee .∗E + c∗Cin − d .∗Z − ae i ∗V∗y − the + e .∗H + I ( 1 :N) ;

argy = max( a i e ∗CIE∗E − t h i + I (N+1) , zeros (M, 1 ) ) ;

fx = ones (N, 1 ) ./(1+exp(−argx ) ) ; fw = ones (N, 1 ) ./(1+exp(−gamma.∗ (E−thw) ) ) ;

Y( 1 :N) = (−E + fx ) . / te ; % e x c i t a t o r y un i t s

Y(N+1:2∗N) = (−W + fw ) . / tw ; % a c t i v i t y memory

Y(2∗N+1:3∗N) = −Z ./ tz + b.∗(1−Z) .∗ fx ; % adap t a t i on

Y(3∗N+1:4∗N) = −H./ tn + rsqdt ∗randn (N, 1 ) ; % no i s e

Y(4∗N+1:4∗N+M) = −y/ t i + argy ; % i n h i b i t o r y u n i t s

% nex t comes t h e E−E s ynap t i c p l a s t i c i t y

Erep=repmat (E’ ,N, 1 ) ; Erep=reshape ( Erep ,N∗N, 1 ) ;
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Eprog=repmat (E,N, 1 ) ;

Wrep=repmat (W’ ,N, 1 ) ; Wrep=reshape (Wrep ,N∗N, 1 ) ;

Wprog=repmat (W,N, 1 ) ;

repCin = repmat (Cin ’ ,N, 1 ) ; repCin = reshape ( repCin ,N∗N, 1 ) ;

base1=4∗N+M+1; base2=N∗(N+4)+M;

Hinc=ones (N∗N, 1 ) . / ( ones (N∗N, 1 )+exp(−q .∗ ( Erep .∗Wprog−th inc ) ) ) ;

Hdec=ones (N∗N, 1 ) . / ( ones (N∗N, 1 )+exp(−q .∗ ( Eprog .∗Wrep−thdec ) ) ) ;

poten=(alpha+X( base1 : base2 ) ) .∗ ( s−X( base1 : base2 ) ) .∗max( zeros (N∗N, 1 ) , ( S − repCin ) ) .∗max( zeros (N∗N, 1 ) , ( Hinc−

Hdec ) ) ;

dep1=S .∗X( base1 : base2 ) .∗max( zeros (N∗N, 1 ) , (Hdec−Hinc ) ) ;

%he t e r o=eps .∗X( base1 : base2 ) .∗ Erep .∗(1−Xdel ) ;

i n t e r=eps .∗max( zeros (N∗N, 1 ) , (X( base1 : base2 )−alpha ) .∗ (mid−X( base1 : base2 ) ) ) ; %reduc t i on o f i n t e rmed i a t e

we i g h t s

%Y( base1 : base2 ) = ( poten − dep1 − h e t e r o ) . / t c ; % e x c i t a t o r y p l a s t i c i t y

Y( base1 : base2 ) = ( poten − dep1 − i n t e r ) . / tc ; % e x c i t a t o r y p l a s t i c i t y

Y( base1 + (N+1) ∗ ( 0 :N−1) ) = zeros (N, 1 ) ; % making C( i , i ) = 0

% and f i n a l l y t h e I−E p l a s t i c i t y

ErepM=repmat (E, 1 ,M) ; ErepM=reshape (ErepM ’ ,N∗M,1 ) ;

Y( base2+1:end) = (X( base2+1:end) .∗ ( lEI + r .∗ErepM − X( base2+1:end) ) .∗max( (ErepM − h) , zeros (N∗M,1 ) ) ) . / tv ;

%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

A.3.9 I7.m

function [ In ] = I7 ( t )

% [ In ] = I7 ( t ) . This f u n c t i o n i s used to p r o v i d e s t r u c t u r e d inpu t to

% the seq17 .m model . I7 ( t ) i s c a l l e d in t h e seqF17 .m f i l e .

% The inpu t p ro v i d ed c o n s i s t s o f p e r i o d i c p u l s e s to a l l t h e u n i t s i n d i c a t e d

% in th e v e c t o r V. The f r e qu ency i s in t h e g l o b a l v a r i a b l e f r e q , and w i l l

% s t a r t and s t op acco rd ing to t h e v a l u e o f t h e v a r i a b l e s Tin and Tout .

% The f i r s t N e l emen t s o f In corre spond to t h e e x c i t a t o r y un i t s . The l a s t

% e lement co r r e sponds to t h e i n h i b i t o r y un i t .

global Tin Tout N I V f r e q

In = zeros (N+1 ,1) ;

i f Tin <= t && t < Tout

t = t − Tin ;

In (V) = I ∗exp(−3∗(1−cos ( f r e q ∗ t ) ) ) ;

end

A.3.10 I8.m

function [ In ] = I8 ( t )

% [ In ] = I8 ( t ) . This f u n c t i o n i s used to p r o v i d e s t r u c t u r e d inpu t to

% the seq19 .m model . I8 ( t ) i s c a l l e d in t h e seqF19 .m f i l e .

% The inpu t p ro v i d ed a c t i v a t e s t h e u n i t s in a sequence . The sequence w i l l

% f o l l o w the order o f t h e v e c t o r V ( a g l o b a l v a r i a b l e ) , and w i l l l a s t from

% Tin u n t i l Tout ( a l s o g l o b a l v a r i a b l e s ) . Un l i k e I6 .m, t h e sequence may be

% have r ep ea t e d e l emen t s .

% The f i r s t n e l emen t s o f In corre spond to t h e e x c i t a t o r y un i t s . The l a s t

% e lement co r r e sponds to t h e i n h i b i t o r y un i t . There i s an a d d i t i o n a l l i n e

% which a lways adds i npu t to t h e i n h i b i t o r y un i t . I t seems to be u s e f u l

% when mod i f y ing e x i s t i n g p a t t e r n s .

global Tin Tout N I V

In = zeros (N+1 ,1) ;

M = length (V) ;

%s t e p s = ( Tout − Tin ) /M;

i f Tin < t && t <= Tout

t = t − Tin ;

In (V( ce i l (M∗ t /(Tout−Tin ) ) ) ) = I ;

In (N+1) = I /40 ; % ad d i t i o n a l i n h i b i t i o n

end
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A.3.11 I9.m

function [ In ] = I9 ( t )

% [ In ] = I9 ( t ) . This f u n c t i o n i s used to p r o v i d e s t r u c t u r e d inpu t to

% the seq20 .m model . I9 ( t ) i s c a l l e d in t h e seqF20 .m f i l e .

% The inpu t p ro v i d ed a c t i v a t e s v e c t o r s o f u n i t s in a sequence . The

% sequence o f v e c t o r s c o n s i s t s o f t h e rows in matr i x V ( a g l o b a l v a r i a b l e ) ,

% and i t w i l l s t a r t a t Tin , f i n i s h a t Tout , and g i v e each v e c t o r an e qua l

% amount o f t ime as t h e inpu t .

% The f i r s t n e l emen t s o f In corre spond to t h e e x c i t a t o r y un i t s . The l a s t

% e lement co r r e sponds to t h e i n h i b i t o r y un i t . There i s an a d d i t i o n a l l i n e

% which a lways adds i npu t to t h e i n h i b i t o r y un i t . I t seems to be u s e f u l

% when mod i f y ing e x i s t i n g p a t t e r n s .

global Tin Tout N I V

In = zeros (N+1 ,1) ;

[ r c ] = s ize (V) ;

%s t e p s = ( Tout − Tin ) /M;

i f Tin < t && t <= Tout

t = t − Tin ;

In (V( ce i l ( r∗ t /(Tout−Tin ) ) , : ) ) = I ;

%In (N+1) = I /35 ; % a d d i t i o n a l i n h i b i t i o n

end

A.3.12 createCEI2.m

function [ CEI]=createCEI2 (n ,m, pe i )

% [CEI]= createCEI2 (n ,m, p e i ) c r e a t e s t h e matr i x o f i n h i b i t o r y to e x c i t a t o r y

% p r o j e c t i o n s in t h e seq20 model . n i s t h e number o f e x c i t a t o r y un i t s , m i s

% the number o f i n h i b i t o r y un i t s , and pe i i s t h e p r o b a b i l i t y t h a t a g i v en

% i n h i b i t o r y un i t w i l l p r o j e c t t o any g i v en e x c i t a t o r y un i t .

CEI = rand (n ,m) < pe i ;

% norma l i z i n g row sums to 1

CEI = CEI . / ( repmat (sum(CEI , 2 ) ,1 ,m)+1e−5) ;

% making he t e ro g eneou s connec t i on s − not used

%CEI = abs (CEI + (0 .05/m)∗ randn (n ,m) ) ;

A.3.13 createCIE1.m

function [ CIE]=createCIE1 (n ,m, p i e )

% [CIE]= createCIE1 (n ,m, p i e ) c r e a t e s t h e matr i x o f i n h i b i t o r y to e x c i t a t o r y

% p r o j e c t i o n s in t h e seq18 model . n i s t h e number o f e x c i t a t o r y un i t s , m i s

% the number o f i n h i b i t o r y un i t s , and p i e i s t h e p r o b a b i l i t y t h a t a g i v en

% e x c i t a t o r y un i t w i l l p r o j e c t t o any g i v en i n h i b i t o r y un i t .

CIE = rand (m, n) < p ie ;

% norma l i z i n g row sums to 1

CIE = CIE . / ( repmat (sum(CIE , 2 ) ,1 , n )+1e−5) ;

% making he t e ro g eneou s connec t i on s

CIE = abs (CIE + (0 .05/ n)∗randn (m, n) ) ;

A.3.14 randSim1.m

% randSim1 .m

% This program r e p e a t e d l y runs s imu l a t i o n s where t h e i npu t c o n s i s t s o f

% random sequence s . See t h e 6/13/10 en t r y in l o g . t x t .
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clear a l l ;

close a l l ;

home ;

global aee a e i a i e alpha eps b c d e h s S r q mid de l s d e l gamma the th i thw thdec th inc tc te t i tv tw

tz tn N M tmax I Tin Tout V f r e q CIE lEI dt rsqdt inpFun

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ INITIALIZE PARAMETERS ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% PARAMETER VALUES

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

aee=8; a e i =15; a i e =15; b=0.05; c=3; d=11; e=1; h=0.01; S=4; gamma=5;

r =0.3; s =1.2; q=30; mid=0.7; the =3.8; t h i =0.2; thw=0.5; thdec =0.3; th inc =0.3;

s d e l =2; alpha =0.01; eps=0.15; tc =7; te =1; t i =0.5; tv=40e9 ; tz =7; tn =0.5; tw=5;

N=80; M=16; % number o f e x c i t a t o r y and i n h i b i t o r y u n i t s r e s p e c t i v e l y

PEI=0.5; PIE=0.5; % p r o b a b i l i t y o f EI and IE connec t i on s

dt =0.05; % s t e p s i z e f o r Eu ler method

r sqdt=1/sqrt ( dt ) ; % used to avo id e x t r a computa t ions

% MAKING PARAMETERS HETEROGENEOUS

std=0.04; % 0.04

aee=aee+std∗aee∗randn (N, 1 ) ; % fo r a i e and ae i t h e h e t e r o g e n e i t y comes from the connec t i on matr i x

b=b+std∗b∗randn (N, 1 ) ; d=d+std∗d∗randn (N, 1 ) ; e=e+std∗e∗randn (N, 1 ) ;

gamma=gamma+std∗gamma∗randn (N, 1 ) ; h=h+std∗h∗randn (N, 1 ) ; s=s+std∗ s∗randn (N, 1 ) ;

S=S+std∗S∗randn (N, 1 ) ; r=r+std∗ r∗randn (N, 1 ) ; q=q+std∗q∗randn (N, 1 ) ; de l=sde l+std∗ sd e l ∗randn (N∗N, 1 ) ;

tn=tn+std∗ tn∗randn (N, 1 ) ; tz=tz+std∗ tz ∗randn (N, 1 ) ; te=te+std∗ te ∗randn (N, 1 ) ;

tw=tw+std∗tw∗randn (N, 1 ) ; tc=tc+std∗ tc ∗randn (N, 1 ) ; tv=tv+std∗ tv∗randn (N, 1 ) ;

the=the+std∗ the∗randn (N, 1 ) ; t h i=th i+std∗ t h i ∗randn (M, 1 ) ; thw=thw+std∗thw∗randn (N, 1 ) ;

thdec=thdec+std∗ thdec∗randn (N, 1 ) ; th inc=th inc+std∗ th inc ∗randn (N, 1 ) ;

alpha=alpha+std∗alpha∗randn (N, 1 ) ; eps=eps+std∗eps∗rand (N, 1 ) ; mid=mid+std∗mid∗randn (N, 1 ) ;

thdec=repmat ( thdec ’ ,N, 1 ) ; thdec=reshape ( thdec ,N∗N, 1 ) ; % STDP seems to be a p o s t s y n a p t i c a f f a i r

th inc=repmat ( thinc ’ ,N, 1 ) ; th inc=reshape ( thinc ,N∗N, 1 ) ;

tc=repmat ( tc ’ ,N, 1 ) ; tc=reshape ( tc ,N∗N, 1 ) ;

tv=repmat ( tv ’ ,M, 1 ) ; tv=reshape ( tv ,N∗M,1 ) ;

h=repmat (h , 1 ,M) ; h=reshape (h ’ ,N∗M,1 ) ;

S=repmat (S ’ ,N, 1 ) ; S=reshape (S ,N∗N, 1 ) ;

s=repmat ( s ’ ,N, 1 ) ; s=reshape ( s ,N∗N, 1 ) ;

q=repmat (q ’ ,N, 1 ) ; q=reshape (q ,N∗N, 1 ) ;

r=repmat ( r , 1 ,M) ; r=reshape ( r ’ ,N∗M,1 ) ;

eps=repmat (eps ’ ,N, 1 ) ; eps=reshape (eps ,N∗N, 1 ) ;

alpha=repmat ( alpha ’ ,N, 1 ) ; alpha=reshape ( alpha ,N∗N, 1 ) ;

mid=repmat (mid ’ ,N, 1 ) ; mid=reshape (mid ,N∗N, 1 ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% INITIAL STATE, INITIAL CONNECTIONS

%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

X0=zeros (N∗(N+M+4)+M, 1 ) ;

X0 ( 1 :N)=0.2∗rand (N, 1 ) ;

X00=zeros (N∗(N+M+4)+M, 1 ) ;

X00 ( 1 :N)=0.2∗rand (N, 1 ) ;

CEE = abs (0 .05∗ rand (N) ) ;

%CEE = createCEE1 (N, [ 2 0 : 3 0 , 2 0 ] )+createCEE2 (N, [ 4 0 : 5 0 , 4 0 ] ) ;

CEI = createCEI2 (N,M, PEI) ; % c r e a t e s a matr i x w i th no h e t e r o g e n e i t y

lEI = reshape (CEI ’ ,M∗N, 1 ) ; % form o f CEI used in seqF20

CIE = createCIE1 (N,M, PIE) ;

CF = CEE; % so we can s e l e c t case 5 in t h e f i r s t l oop r e p e t i t i o n

X0(4∗N+M+1:N∗(N+4)+M) = reshape (CEE’ ,N∗N, 1 ) ; % i n i t i a l E−E connec t i on s

X0(N∗(N+4)+M+1:N∗(N+M+4)+M) = reshape (CEI ’ ,N∗M,1 ) ; % i n i t i a l I−E connec t i on s

X00(4∗N+M+1:N∗(N+4)+M) = X0(4∗N+M+1:N∗(N+4)+M) ; % same E−E connec t i on s

X00(N∗(N+4)+M+1:N∗(N+M+4)+M) = X0(N∗(N+4)+M+1:N∗(N+M+4)+M) ; % same I−E connec t i on s

%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

% MODIFICATIONS TO STANDARD PARAMETERS

%˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

%load T23A1 % d e f a u l t parameters , 6 i n t e r s e c t i n g s imp l e l o o p s

%load T23A2CS2 % d e f a u l t pars , complex sequence order 2

%%load T23B1MS % 4 i n t e r s e c t i n g s imp l e l oops , t hdec =0.6 .

%load /home/ z /Documents/ athena / paper3 / f i g u r e s /A1

%load randSim1pars ;

%eps =0;

%t h i n c =0.1 ;

%a i e =10; a e i =10;

%r=0; % e l im i n a t i n g homeos t a t i c i n h i b i t i o n

%t v=40e9 ; %t c=10e10 ;
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% CEI = reshape ( lEI ,M,N) ’ ;

% CEI ( 5 0 : 7 0 , : ) = 0.5∗CEI ( 5 0 : 7 0 , : ) ; % l o c a l l y r educ ing t h e I−E connec t i on s

% lEI = reshape (CEI ’ ,M∗N, 1 ) ; % form o f CEI used in seqF20

% X0(N∗(N+4)+M+1:N∗(N+M+4)+M) = lEI ;

%˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ MAIN SEQUENCE ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%() ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

SIMS = 100 ; % Number o f s e quence s to form

inpFun = @I9 ; % inpu t f u n c t i o n

sim = @euler23 ; % use eu l e r 23d f o r h e t e ro g eneou s d e l a y s

I = 12 ; % amp l i t ude o f t h e i npu t

for k = 1 :SIMS

disp ( [ ’ P e r f o r m i n g  s i m u l a t i o n  ’ num2str( k ) ] ) ;

%++++++++++++++++++ GENERATING THE INPUT VECTOR ++++++++++++++++++++++

l en = 7 + ce i l (12∗rand ) ; % l e n g t h o f i npu t sequence

inpSeq = 1 + f loor (N∗rand ( len , 1 ) ) ; % inpu t sequence

reps = 4 ; % how many t imes t h e sequence w i l l be p r e s en t e d

dur = 5 ; % dura t i on o f a c t i v a t i o n p e r i o d s

V = zeros ( len , 3 ) ;

V( : , 1 ) = inpSeq ;

V( 1 : end−1 ,2) = inpSeq ( 2 : end) ;

V( 1 : end−2 ,3) = inpSeq ( 3 : end) ;

V(end , 2 ) = V(1 ,1 ) ;

V(end , 3 ) = V(2 ,1 ) ; V(end−1 ,3) = V(1 ,1 ) ;

V = repmat (V, reps , 1 ) ;

Tin = 50 ; Tout = Tin + dur∗ reps ∗ l en /3 ;

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

%====================== SIMULATING =======================

tmax = 2∗Tout ;

[Y] = sim ( [ 0 tmax ] , X0 , X00) ;

%==========================================================

%<><><><><><><><><><> SAVING STATE <><><><><><><><><><>

X0=Y( : , end) ;

X00=Y( : , end−ce i l ( s d e l /dt ) ) ;

%<><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

i f mod(k , 5 0 ) == 0

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ DISPLAYING RESULTS ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

CF=Y(4∗N+M+1:N∗(N+4)+M, end) ; CF=reshape (CF,N,N) ’ ;

f igure ;

%h=imagesc ( [ 1 2∗N+M] , [ 0 tmax ] , Y( [ 1 : 2∗N,4∗N+1:4∗N+M] , : ) ’ ) ;

h=imagesc ( [ 1 N+M] , [ 0 10∗tmax ] , Y( [ 1 :N,4∗N+1:4∗N+M] , : ) ’ ) ;

set (gca , ’ F o n t S i z e ’ , 30) ;

set (gca , ’ x T i c k ’ , ( 1 0 : 1 0 : 9 0 ) ) ;

set (gca , ’ x T i c k L a b e l ’ ,{ ’ 10 ’ ; ’ 20 ’ ; ’ 30 ’ ; ’ 40 ’ ; ’ 50 ’ ; ’ 60 ’ ; ’ 70 ’ ; ’ 80 ’ ; ’ 10 ’}) ;

xlabel ( ’ u n i t  n u m b e r ’ , ’ F o n t S i z e ’ , 32 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

ylabel ( ’ t i m e  [ m s e c ] ’ , ’ F o n t S i z e ’ , 32 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

%t i t l e ( ’ E x c i t a t o r y and i n h i b i t o r y a c t i v i t y ’ , ’ Fon t s i z e ’ , 3 2 ) ;

colorbar ( ’ v e r t ’ ) ;

set (gca , ’ F o n t S i z e ’ , 30) ;

hold on

plot ( [ 8 0 . 5 8 0 . 5 ] , [ 0 10∗tmax ] , ’ k ’ , ’ L i n e W i d t h ’ , 5 ) ;

f igure ;

imagesc (CF) ;

set (gca , ’ F o n t S i z e ’ , 30) ;

%t i t l e ( ’E−E connec t i ons ’ , ’ Fon t s i z e ’ , 3 2 ) ;

xlabel ( ’ s e n d i n g  u n i t ’ , ’ F o n t S i z e ’ , 32 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

ylabel ( ’ r e c e i v i n g  u n i t ’ , ’ F o n t S i z e ’ , 32 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

colorbar ( ’ v e r t ’ ) ;

set (gca , ’ F o n t S i z e ’ , 30) ;

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

end

end

% sav in g s t a t e and parameters

save randSimpars X0 X00 aee a e i a i e alpha eps b c d e h s S r q mid de l s d e l gamma the th i thw thdec th inc

tc te t i tv tw tz tn N M CIE lEI dt rsqdt

disp ( ’ P a r a m e t e r s  s a v e d  to  r a n d S i m p a r s ’ )
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A.3.15 randSim2.m

% randSim2 .m

% This program r e p e a t e d l y runs s imu l a t i o n s where t h e i npu t c o n s i s t s o f

% random sequence s . See t h e 7/19/10 en t r y in l o g . t x t .

clear a l l ;

close a l l ;

home ;

global aee a e i a i e alpha eps b c d e h s S r q mid de l s d e l gamma the th i thw thdec th inc tc te t i tv tw

tz tn N M tmax I Tin Tout V f r e q CIE lEI dt rsqdt inpFun

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ INITIALIZE PARAMETERS ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% PARAMETER VALUES

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

aee=8; a e i =15; a i e =15; b=0.05; c=3; d=11; e=1; h=0.01; S=4; gamma=5;

r =0.3; s =1.2; q=30; mid=0.6; the =3.8; t h i =0.2; thw=0.5; thdec =0.3; th inc =0.3;

s d e l =2; alpha =0.01; eps=0.07; tc =7; te =1; t i =0.5; tv=40e9 ; tz =7; tn =0.5; tw=5;

N=80; M=16; % number o f e x c i t a t o r y and i n h i b i t o r y u n i t s r e s p e c t i v e l y

PEI=0.5; PIE=0.5; % p r o b a b i l i t y o f EI and IE connec t i on s

dt =0.05; % s t e p s i z e f o r Eu ler method

r sqdt=1/sqrt ( dt ) ; % used to avo id e x t r a computa t ions

% MAKING PARAMETERS HETEROGENEOUS

std=0.04; % 0.04

aee=aee+std∗aee∗randn (N, 1 ) ; % fo r a i e and ae i t h e h e t e r o g e n e i t y comes from the connec t i on matr i x

b=b+std∗b∗randn (N, 1 ) ; d=d+std∗d∗randn (N, 1 ) ; e=e+std∗e∗randn (N, 1 ) ;

gamma=gamma+std∗gamma∗randn (N, 1 ) ; h=h+std∗h∗randn (N, 1 ) ; s=s+std∗ s∗randn (N, 1 ) ;

S=S+std∗S∗randn (N, 1 ) ; r=r+std∗ r∗randn (N, 1 ) ; q=q+std∗q∗randn (N, 1 ) ; de l=sde l+std∗ sd e l ∗randn (N∗N, 1 ) ;

tn=tn+std∗ tn∗randn (N, 1 ) ; tz=tz+std∗ tz ∗randn (N, 1 ) ; te=te+std∗ te ∗randn (N, 1 ) ;

tw=tw+std∗tw∗randn (N, 1 ) ; tc=tc+std∗ tc ∗randn (N, 1 ) ; tv=tv+std∗ tv∗randn (N, 1 ) ;

the=the+std∗ the∗randn (N, 1 ) ; t h i=th i+std∗ t h i ∗randn (M, 1 ) ; thw=thw+std∗thw∗randn (N, 1 ) ;

thdec=thdec+std∗ thdec∗randn (N, 1 ) ; th inc=th inc+std∗ th inc ∗randn (N, 1 ) ;

alpha=alpha+std∗alpha∗randn (N, 1 ) ; eps=eps+std∗eps∗rand (N, 1 ) ; mid=mid+std∗mid∗randn (N, 1 ) ;

thdec=repmat ( thdec ’ ,N, 1 ) ; thdec=reshape ( thdec ,N∗N, 1 ) ; % STDP seems to be a p o s t s y n a p t i c a f f a i r

th inc=repmat ( thinc ’ ,N, 1 ) ; th inc=reshape ( thinc ,N∗N, 1 ) ;

tc=repmat ( tc ’ ,N, 1 ) ; tc=reshape ( tc ,N∗N, 1 ) ;

tv=repmat ( tv ’ ,M, 1 ) ; tv=reshape ( tv ,N∗M,1 ) ;

h=repmat (h , 1 ,M) ; h=reshape (h ’ ,N∗M,1 ) ;

S=repmat (S ’ ,N, 1 ) ; S=reshape (S ,N∗N, 1 ) ;

s=repmat ( s ’ ,N, 1 ) ; s=reshape ( s ,N∗N, 1 ) ;

q=repmat (q ’ ,N, 1 ) ; q=reshape (q ,N∗N, 1 ) ;

r=repmat ( r , 1 ,M) ; r=reshape ( r ’ ,N∗M,1 ) ;

eps=repmat (eps ’ ,N, 1 ) ; eps=reshape (eps ,N∗N, 1 ) ;

alpha=repmat ( alpha ’ ,N, 1 ) ; alpha=reshape ( alpha ,N∗N, 1 ) ;

mid=repmat (mid ’ ,N, 1 ) ; mid=reshape (mid ,N∗N, 1 ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% INITIAL STATE, INITIAL CONNECTIONS

%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

X0=zeros (N∗(N+M+4)+M, 1 ) ;

X0 ( 1 :N)=0.2∗rand (N, 1 ) ;

X00=zeros (N∗(N+M+4)+M, 1 ) ;

X00 ( 1 :N)=0.2∗rand (N, 1 ) ;

CEE = abs (0 .05∗ rand (N) ) ;

%CEE = createCEE1 (N, [ 2 0 : 3 0 , 2 0 ] )+createCEE2 (N, [ 4 0 : 5 0 , 4 0 ] ) ;

CEI = createCEI2 (N,M, PEI) ; % c r e a t e s a matr i x w i th no h e t e r o g e n e i t y

lEI = reshape (CEI ’ ,M∗N, 1 ) ; % form o f CEI used in seqF20

CIE = createCIE1 (N,M, PIE) ;

CF = CEE; % so we can s e l e c t case 5 in t h e f i r s t l oop r e p e t i t i o n

X0(4∗N+M+1:N∗(N+4)+M) = reshape (CEE’ ,N∗N, 1 ) ; % i n i t i a l E−E connec t i on s

X0(N∗(N+4)+M+1:N∗(N+M+4)+M) = reshape (CEI ’ ,N∗M,1 ) ; % i n i t i a l I−E connec t i on s

X00(4∗N+M+1:N∗(N+4)+M) = X0(4∗N+M+1:N∗(N+4)+M) ; % same E−E connec t i on s

X00(N∗(N+4)+M+1:N∗(N+M+4)+M) = X0(N∗(N+4)+M+1:N∗(N+M+4)+M) ; % same I−E connec t i on s

%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

% MODIFICATIONS TO STANDARD PARAMETERS

%˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

%load T23A1 % d e f a u l t parameters , 6 i n t e r s e c t i n g s imp l e l o o p s

%load T23A2CS2 % d e f a u l t pars , complex sequence order 2

%%load T23B1MS % 4 i n t e r s e c t i n g s imp l e l oops , t hdec =0.6 .

153



%load /home/ z /Documents/ athena / paper3 / f i g u r e s /A1

load randSimpars ;

%eps =0;

%t h i n c =0.1 ;

%a i e =10; a e i =10;

%r=0; % e l im i n a t i n g homeos t a t i c i n h i b i t i o n

%t v=40e9 ; %t c=10e10 ;

% CEI = reshape ( lEI ,M,N) ’ ;

% CEI ( 5 0 : 7 0 , : ) = 0.5∗CEI ( 5 0 : 7 0 , : ) ; % l o c a l l y r educ ing t h e I−E connec t i on s

% lEI = reshape (CEI ’ ,M∗N, 1 ) ; % form o f CEI used in seqF20

% X0(N∗(N+4)+M+1:N∗(N+M+4)+M) = lEI ;

%˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ MAIN SEQUENCE ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%() ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

SIMS = 100 ; % Number o f s e quence s to form

inpFun = @I9 ; % inpu t f u n c t i o n

sim = @euler23 ; % use eu l e r 23d f o r h e t e ro g eneou s d e l a y s

I = 12 ; % amp l i t ude o f t h e i npu t

for k = 1 :SIMS

disp ( [ ’ P e r f o r m i n g  s i m u l a t i o n  ’ num2str( k ) ] ) ;

%++++++++++++++++++ GENERATING THE INPUT VECTOR ++++++++++++++++++++++

l en = 15 ; % l e n g t h o f i npu t sequence

wid = 6 ; % wid th o f i npu t sequence

dur = 5 ;

V = ce i l (80∗rand ( len , wid ) ) ; % inpu t sequence

Tin = 80 ;

Tout = Tin + len ∗dur ;

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

%====================== SIMULATING =======================

tmax = 2∗Tout ;

[Y] = sim ( [ 0 tmax ] , X0 , X00) ;

%==========================================================

%<><><><><><><><><><> SAVING STATE <><><><><><><><><><>

X0=Y( : , end) ;

X00=Y( : , end−ce i l ( s d e l /dt ) ) ;

%<><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

i f mod(k , 5 0 ) == 0

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ DISPLAYING RESULTS ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

CF=Y(4∗N+M+1:N∗(N+4)+M, end) ; CF=reshape (CF,N,N) ’ ;

f igure ;

%h=imagesc ( [ 1 2∗N+M] , [ 0 tmax ] , Y( [ 1 : 2∗N,4∗N+1:4∗N+M] , : ) ’ ) ;

h=imagesc ( [ 1 N+M] , [ 0 10∗tmax ] , Y( [ 1 :N,4∗N+1:4∗N+M] , : ) ’ ) ;

set (gca , ’ F o n t S i z e ’ , 30) ;

set (gca , ’ x T i c k ’ , ( 1 0 : 1 0 : 9 0 ) ) ;

set (gca , ’ x T i c k L a b e l ’ ,{ ’ 10 ’ ; ’ 20 ’ ; ’ 30 ’ ; ’ 40 ’ ; ’ 50 ’ ; ’ 60 ’ ; ’ 70 ’ ; ’ 80 ’ ; ’ 10 ’}) ;

xlabel ( ’ u n i t  n u m b e r ’ , ’ F o n t S i z e ’ , 32 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

ylabel ( ’ t i m e  [ m s e c ] ’ , ’ F o n t S i z e ’ , 32 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

%t i t l e ( ’ E x c i t a t o r y and i n h i b i t o r y a c t i v i t y ’ , ’ Fon t s i z e ’ , 3 2 ) ;

colorbar ( ’ v e r t ’ ) ;

set (gca , ’ F o n t S i z e ’ , 30) ;

hold on

plot ( [ 8 0 . 5 8 0 . 5 ] , [ 0 10∗tmax ] , ’ k ’ , ’ L i n e W i d t h ’ , 5 ) ;

f igure ;

imagesc (CF) ;

set (gca , ’ F o n t S i z e ’ , 30) ;

%t i t l e ( ’E−E connec t i ons ’ , ’ Fon t s i z e ’ , 3 2 ) ;

xlabel ( ’ s e n d i n g  u n i t ’ , ’ F o n t S i z e ’ , 32 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

ylabel ( ’ r e c e i v i n g  u n i t ’ , ’ F o n t S i z e ’ , 32 , ’ F o n t N a m e ’ , ’ A r i a l ’ ) ;

colorbar ( ’ v e r t ’ ) ;

set (gca , ’ F o n t S i z e ’ , 30) ;

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

end

end

% sav in g s t a t e and parameters

save randSimpars X0 X00 aee a e i a i e alpha eps b c d e h s S r q mid de l s d e l gamma the th i thw thdec th inc

tc te t i tv tw tz tn N M CIE lEI dt rsqdt

disp ( ’ P a r a m e t e r s  s a v e d  to  r a n d S i m p a r s ’ )
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