
 

 
 

TREPROSTINIL FOR PROTECTION OF LIVER GRAFTS AGAINST ISCHEMIA AND 
REPERFUSION INJURY DURING ORTHOTOPIC LIVER TRANSPLANTATION - A 

TRANSLATIONAL STUDY 
 
 
 
 
 
 
 
 

by 

Nisanne S. Ghonem 

Pharm.D., University of Rhode Island, 2004 

 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of 

School of Pharmacy in partial fulfillment  

of the requirements for the degree of 

Doctor of Philosophy 
 
 
 
 
 
 
 
 
 

University of Pittsburgh 

2010 

 



 

 ii 

UNIVERSITY OF PITTSBURGH 

SCHOOL OF PHARMACY 
 
 
 
 
 
 
 
 

This dissertation was presented 

 
by 

 
 

Nisanne S. Ghonem 
 
 
 

It was defended on 

December 16, 2010 

and approved by 

Stephen C. Strom, Ph. D., Pathology 

Donna B. Stolz, Ph.D., Cell Biology and Physiology 

Wen Xie, M.D., Ph.D., Pharmaceutical Sciences 

Michael Zemaitis, Ph.D., Pharmaceutical Sciences  

Co-Advisor: Noriko Murase, M.D., Transplant Surgery 

Major Advisor: Raman Venkataramanan, Ph.D., Pharmaceutical Sciences 

 

 



 

 iii 

Copyright © by Nisanne S. Ghonem 

2010 



 

 iv 

 

 

Orthotopic liver transplantation (OLT) is the only curative therapy for end-stage liver diseases.  

To overcome organ shortage, organs from extended criteria donors, which would ordinarily be 

discarded, are used sometimes.  These organs provide additional grafts; however, they are more 

susceptible to ischemia-reperfusion (I/R) injury.  I/R injury, an unavoidable process during OLT, 

is a major cause of liver graft non-function and failure, requiring urgent re-transplantation, which 

further depletes the scare organ pool.  To date, no therapy is available to reduce or prevent I/R 

injury.   

Prostaglandins (PG) have well characterized vasodilatory and anti-platelet aggregatory 

actions.  Many PG analogues, including prostacyclin (PGI2), have been evaluated for their ability 

to reduce hepatic I/R injury after OLT.  Poor stability, intolerable side effects, and the inability to 

show a significant difference in primary endpoint have limited their clinical application so far.  

Treprostinil, a relatively new FDA-approved PGI2 analogue, has a higher stability, potency, and 

longer elimination half-life than other PGI2 analogues available.     

The objectives of this dissertation were to examine the efficacy of treprostinil in 

protecting the liver graft against I/R injury during OLT.  Proof of concept of treprostinil 

minimizing hepatic I/R injury was demonstrated in a rat OLT model.  Further analysis showed 
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that I/R injury significantly down-regulated CYP2E1, CYP2C11, and CYP3A mRNA, protein 

expression, and activity, as well as the expression of several hepatic transporters in liver graft 

post-OLT.  Treprostinil improved hepatic expression and activity of CYP450 enzymes and 

transporters.  In particular, Bsep mRNA expression was restored to normal and Mrp2 and P-gp 

protein expression were up-regulated.  In vitro studies confirmed that treprostinil does not inhibit 

or induce the metabolism of immunosuppressive medications.  These findings support co-

administration of treprostinil with cyclosporine A, tacrolimus, sirolimus, or mycophenolic acid to 

adult OLT patients without concern for any drug-drug interaction.  

 This is the first study to examine the efficacy of treprostinil for protection of liver grafts 

against I/R injury during OLT.  A clinical study has been initiated to examine the safety and 

efficacy of perioperative treprostinil administration to adult OLT patients.  Collectively, this 

work makes significant contributions to the field of liver transplantation and, potentially, solid 

organ transplantation. 
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1.0  INTRODUCTION  
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The liver is the largest internal organ in the body and it plays a vital role in maintaining the 

body’s metabolic homeostasis.  More specifically, the liver serves a multitude of functions, with 

essential roles in biosynthesis, metabolism, secretion, detoxification, excretion, and bile 

formation as part of normal physiology.  The liver consists of parenchymal and nonparenchymal 

cells.  Parenchymal cells, i.e. hepatocytes, constitute approximately 80% of the total cell number, 

and the nonparenchymal cells of the sinusoid include the sinusoidal endothelial cells (SECs), the 

Kupffer cell, stellate cell, and the Pit cell [1].  These cells are arranged in a matrix that facilitates 

their cooperative interaction and are capable of synthesizing, extracting, metabolizing, and 

eliminating a variety of molecules. 

 The liver, a highly vascularized organ with a high blood flow, contains different 

vasculatures, including the portal vein, the hepatic artery, the liver sinusoid, and the hepatic vein.  

This liver cellular matrix is perfused by blood at low pressure through uniquely structured 

capillary-size blood vessels, called sinusoids, which are supplied by a unique source of blood, 

consisting of both arterial, coming from the common hepatic artery, and venous, coming from 

the portal vein inflow.  The portal vein flow has already circulated through the gut, pancreas, and 

spleen and is reduced in oxygen and pressure and is enriched in nutrients and toxins absorbed 

from the gut.  The portal vein constitutes 75 – 80% of the liver blood flow and the hepatic artery 

constitutes the remaining 20 – 25% [2].  Arterial blood is well oxygenated at an elevated 

pressure, relative to portal venous blood.  Venous and arterial blood mix together as they enter 

the sinusoids in the liver [2].  
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1.1 ORTHOTOPIC LIVER TRANSPLANTATION 

Since the first liver transplantation was carried out by Thomas E. Starzl in 1963, techniques in 

surgery, immunosuppression, and patient management have improved, making orthotopic liver 

transplantation (OLT) a routine procedure.  Currently, OLT is the only curative treatment 

available for patients with acute and chronic liver failure; however, donor shortage is a major 

factor limiting the number of organs available for transplantation.  In 2009, approximately 6,300 

liver transplantations were performed in the United States, while more than 17,000 patients were 

listed on the United Network for Organ Sharing waiting list [3].  The disparity between the 

number of organs available for liver transplantation and patients in need of livers as well as the 

number of patients who die while waiting for an available organ is shown in Figure 1.  

 

 
 

Figure 1: Number of patients on the waitlist for a liver transplantation in the USA (2000-2009) 
Number of patients waiting for an organ (top line, circles); number of liver transplantations (middle line, squares); 
number of patient deaths while on the donor waiting list (bottom line, triangles).  Reproduced from Organ 
Procurement and Transplantation Network (OPTN)/Scientific Registry of Transplant Recipients (SRTR) Annual 
Report Tables 1.3, 1.6, and 1.7.    
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The current shortage of cadaveric organ donors has forced the expansion of the donor 

pool and has led medical centers to accept marginal donors, i.e. extended criteria donors (ECD), 

including organs from older donors, non-heart beating donors, and grafts which have undergone 

prolonged cold storage in preservation solution [4].  Donor age greater than 70 years old has 

been associated with lower patient and graft survival [5] and an increased likelihood of steatosis 

[6].  Non-heart beating donors are confounded by prolonged warm ischemia before cold 

preservation, which is associated with a high risk of primary graft non-function [7].  The 

duration of cold ischemic storage has been associated with an increase in preservation damage 

resulting in sinusoidal endothelial cell damage and hypercoaguability, leading to a longer post-

operative course and decreased graft survival [8]. 

 In summary, while ECD organs provide the much needed additional grafts, they are also 

more susceptible to I/R injury, resulting in an increase in delayed or primary graft non-function, 

leading to prolonged hospitalization and, consequently, hepatic dysfunction and/or allograft 

failure [4, 9].  Thus, amelioration of I/R injury will improve the short- and long-term transplant 

outcomes; however, no treatment is currently available to prevent or minimize I/R injury. 

1.1.1 Primary non-function 

In liver transplantation, I/R injury is the main cause of both initial poor function and primary 

non-function of the allograft [4].  The incidence of primary non-function (PNF) of the 

transplanted liver, often as a result of I/R injury, is approximately 2 – 23% of OLT [8, 10].  

There is no simple and clear definition of primary non-function (PNF) and it varies from center 

to center.  Characteristic manifestations of PNF include failure of the newly implanted graft to 

make bile, very high and rapidly rising levels of serum aminotransferases, severe coagulopathy 
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which can progress to hypoglycemia, hepatic encephalopathy, and acute renal failure within the 

first 48 hours post-transplantation [11-13].  The causes of PNF can be broadly classified into four 

categories: donor-related factors (discussed above); procurement-related factors, i.e. I/R injury; 

host-related factors, i.e. hyperacute rejection, intercurrent diseases; and technical surgical factors, 

i.e. vascular occlusion or blood loss [14].  Primary non-function of the allograft leads to 

significant morbidity, necessitating re-transplantation [15], thereby further depleting the already 

limited donor organ pool.  Any therapy to reduce the incidence of I/R injury would greatly 

increase the number of available organs for transplantation as well as the clinical outcomes in 

transplant patients.  

1.2 ISCHEMIA AND REPERFUSION INJURY 

Ischemia is defined as a state of no blood flow.  Consequently, an interruption of blood supply 

prevents the delivery of oxygen and nutrients to the ischemic tissue.  When the cause of ischemia 

is relieved, and molecular oxygen is reinstituted through the circulation, the reperfusion rescues 

the ischemic tissue but also enhances the injury caused during the ischemic period by oxidative 

stress and inflammatory-mediated reactions [16-18].  The pathophysiology of liver I/R injury 

includes direct cellular damage as a result of the ischemic insult as well as delayed graft 

dysfunction following reperfusion.   

Clinically, hepatic I/R injury can occur in a setting of elective liver surgery, trauma, 

shock, and liver transplantation.  The surgical procedure of liver transplantation inherently 

involves cold preservation (ischemia) and warm reperfusion of the transplanted graft, resulting in 

varying degrees of hepatic injury.  Ischemia and reperfusion (I/R) injury, an unavoidable process 



 

  9 

in liver transplantation, is a major cause of both initial poor function and primary allograft non-

function, leading to organ dysfunction and early graft failure, carrying a high mortality rate of if 

patients are not re-transplanted immediately . 

  During liver transplantation, to a greater or lesser extent, the surgical procedure exposes 

a liver graft to three different types of ischemia: 1) in-situ warm ischemia, which occurs before 

organ procurement; 2) ex-situ cold ischemia, during graft preservation; and 3) in-situ rewarming 

ischemia, during engraftment [8]. Warm (37 oC) and cold (4 oC) ischemia share some common 

pathways of injury, yet there are important differences between the two and they each possess 

distinct processes and mechanisms of injury, which ultimately result in end-organ failure [19].  

One of the biggest distinctions between the two types of ischemia are the targets of injury; 

hepatocytes are the primary targets of warm ischemia [20, 21], whereas sinusoidal endothelial 

cells [22-24] are predominantly injured during cold ischemia, and are primarily involved in the 

disruption of the microcirculation.  Warm ischemia typically occurs as a result of hepatic trauma, 

including hypovolemic shock, hepatic resection, or inflow occlusion during liver surgery, or 

when the flow of blood has been temporarily stopped, yet the organ remains in the body.  

Alternatively, cold ischemia occurs exclusively during graft preservation when the liver graft is 

stored in cold preservation solution before transplantation.    

At the time of organ harvest, the donor liver is perfused with and stored in University of 

Wisconsin (UW) preservation solution, where it remains ischemic until it is transplanted into the 

recipient.  During cold ischemia, the organ is transiently cooled and deprived of oxygen, which 

initiates a cascade of cellular injuries.  Subsequent injury occurs upon engraftment when the 

graft is subjected to warm reperfusion with normothermic blood, resulting in varying degrees of 

hepatic injury and graft dysfunction, or in worst cases, allograft non-function [25].  The actual 
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injury to the liver graft following ischemia is mainly detected post-reperfusion, once the oxygen 

supply, blood elements, and nutrients are restored and able to interact with hepatocytes and other 

cells present in the liver, leading to liver injury and impaired hepatic function [26, 27].  

Ironically, while the reestablishment of blood flow to the liver represents a vital requirement for 

the recovery of cellular and organ function, reperfusion enhances ischemia-induced tissue and 

cellular damage further, potentially causing significant damage to the cellular architecture and 

function of the liver.  Essentially, I/R injury begins as a disturbance in microcirculatory flow and 

is manifested by platelet, red blood cell, and polymorphonuclear (PMN) adhesion to endothelial 

cells causing sinusoidal congestion, followed by oxidative stress and pro-inflammatory response 

[18, 28, 29].  

The liver is a highly aerobic, oxygen-dependent organ and I/R injury can affect all 

oxygen-dependent liver cells that require an uninterrupted blood supply.  One of the first 

consequences of ischemia is tissue anoxia, which causes a drop in the cellular energy metabolism 

and enzyme function, resulting in adenosine triphosphate (ATP) depletion.  Subsequent failure of 

the ATP-dependent plasma membrane pump (Na+/K+ ATPase) causes the inability to pump 

sodium out, intracellular sodium accumulation, and cellular edema [18, 30, 31].  Failure of the 

membrane ion pump also disrupts cellular homeostasis and causes an efflux of potassium, which 

activates voltage-dependent Ca2+ channels and leads to an influx of Ca2+, thereby further 

disrupting cellular processes and functions [32].  Aerobic cells require mitochondrial oxidative 

phosphorylation for their energy supply and, as such, all aerobically metabolizing tissues and 

cells are potential targets of I/R injury. 

Reactive oxygen species (ROS) and pro-inflammatory cytokines also play an important 

role in liver injury.  A critical result of ischemia is activation of the Kupffer cells, also known as 
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the liver resident macrophages, which are one of the main sources of vascular reactive oxygen 

formation by xanthine oxidase during the initial reperfusion phase [33, 34], and significantly 

contribute to liver dysfunction and cell injury during reperfusion.  In addition, Kupffer cells have 

the capacity to release a wide range of cytokines that critically determine the subsequent 

reactions of other immune cells and hepatocytes, as well as the degree of organ damage [35].  In 

the early stages of reperfusion, increased superoxide and other ROS derived from the activation 

of various sources play a crucial role in tissue damage.  The accumulation of hypoxanthine 

during ischemia allows for a burst of superoxide and hydrogen peroxide production yielding 

hydroxyl radical when oxygen is reintroduced into the blood vessel, during reperfusion and 

causing impaired cellular functions [36].  The energy state at the time of reperfusion is an 

important indicator of cell and graft recovery. 

Initially, all of these processes are reversible so that upon reintroduction of oxygen, cells 

can recover; however, if anoxia is prolonged further, irreversible cellular damage will occur.  

Secondary results of the energy and oxygen disturbance during the ischemic phase are reflected 

by the destruction of cellular and subcellular structures, increased membrane permeability during 

the reperfusion phase, which ultimately culminate in tissue structural alterations and lead to 

cellular dysfunction [29].  

In summary, ischemic injury is a complex, multi-factorial pathophysiological process, in 

which cells undergo a series of metabolic, structural and functional damage.  The process of I/R 

injury to the liver combines interrelated factors that produce a cascade of events, which can 

ultimately lead to graft failure.  The extent of injury to the liver graft following reperfusion 

varies tremendously and largely depends on the duration of cold ischemia, and strongly predicts 

both the short- and long-term clinical outcome. [37].  Numerous efforts have been focused on 
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identifying an agent that is capable of interfering with and or reducing as many of these 

processes as possible with the goal of preventing I/R injury during OLT.  Before discussing 

therapeutic approaches to prevent I/R injury, the importance of liver microcirculation and the 

involvement of platelets and cytokines in the development of I/R injury will be discussed in this 

chapter.  

1.2.1 Liver microcirculation  

Hepatic microcirculation is extremely important to maintain the physiology and function of the 

whole organism.  Specifically, it supplies the liver tissue with oxygen and nutrients, serves as a 

gate for leukocyte entrance in hepatic inflammation, and is responsible for the clearance of 

toxins and foreign bodies from the bloodstream [38].  Hepatic circulation comprises a unique 

system of capillaries called sinusoids, which are lined by fenestrated endothelium with high 

permeability that allows maximum contact between hepatocytes and blood [39].   

The liver sinusoid is a specific capillary network system where a variety of metabolic 

substances are exchanged between hepatic blood flow and hepatic parenchymal cells [40].  

Within the sinusoid, the SEC accounts for approximately 70% of the cell population [17, 40].  

Liver sinusoidal endothelial cells line the inner surface of the sinusoid to form a vital and 

dynamic structure that is essential for vascular homeostasis. The unique morphology of the liver 

SECs permits interactions between lymphocytes and hepatocytes [38].  The sinusoidal cells 

lining the endothelium are responsive to a wide variety of substances and, by contracting or 

swelling, they can selectively regulate the patency of the sinusoidal lumen, thereby altering the 

rate and distribution of blood flow [39].  
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The morphology of SECs is characterized by sieve-like plate structure clustering of the 

open fenestrae in their cytoplasm and no basement membrane along the space of Disse, shown in 

Figure 2.  The SEC porosity and lack of an organized basement membrane are important for 

oxygen diffusion to hepatocytes.  The fenestrae are dynamic structures that contract and dilate in 

response to alterations in sinusoidal blood flow and perfusion pressure, and act as a selective 

sieving carrier to control the extensive exchange of material between the blood and the liver 

cells, which contribute to the homeostatic control of the hepatic microcirculation [38].   

 

 
 

Figure 2: Lumen of rat hepatic sinusoid with the endothelial cell coating by SEM 
SEC, sinusoidal endothelial cell; fenestrations (white, arrows). Original magnification x10,000. 

 

The vascular endothelium-leukocyte interaction represents a central role in the pathogenesis of 

I/R-induced microvascular injury.  Liver SECs are particularly vulnerable to cold ischemic injury 

[41] and during I/R injury, endothelial cells become activated to express an array of surface 

adhesion molecules, which primes the endothelium for further PMN interactions.  This 

interaction is mediated by the expression of endothelial cell adhesion molecules, e.g. intracellular 

adhesion molecules (ICAM) and vascular adhesion molecules (VCAM), on the surfaces of both 

SEC 

1 um 
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vascular endothelial cells and leukocytes which subsequently produce several cell-damaging 

factors, to further promote hepatic injury [42].  The combination of Kupffer cell activation and 

SEC swelling with an increase in vasoconstrictors, e.g. endothelin and thromboxane (TxA2), and 

a decrease in vasodilators, e.g. prostacyclin, leads to sinusoidal narrowing.  Upon reperfusion 

there is increase in neutrophil and platelet adhesion and aggregation in the sinusoids.  The end 

result is a significant reduction of microcirculatory blood flow [31].  A deteriorated hepatic 

microcirculation and subsequent neutrophil emigration and increased vascular permeability are 

responsible in part for tissue injury [43].   

Ischemic injury to the endothelium disrupts the delicate homeostasis in the 

microcirculation and promotes the attraction, activation, adhesion, and migration of 

polymorphonuclear neutrophils, causing local tissue destruction by release of proteases and 

oxygen free radicals.  Eventually, damage to liver SECs leads to the loss of microvascular 

integrity and decreased blood flow.  Increasing blood flow to the liver during reperfusion is 

essential for a good post-operative prognosis [17, 44].  

1.2.2 Platelets 

Platelets are well known for their important role in homeostasis in which the formation of a 

platelet aggregate is the first measure to seal a damaged blood vessel.  Platelets are involved in 

multiple pathological processes, including inflammatory states and regeneration [45].  Platelets 

respond to both local and systemic inflammatory responses and are recruited to the liver where 

they adhere to activated sinusoidal endothelial cells in a liver exposed to cold or warm I/R injury 

[46-48].  Platelets are also attracted to the liver in response to inflammatory stimuli where they 

can translocate to enter the Space of Disse and attach to hepatocytes [45].  The mechanism by 
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which platelets induce organ damage is presumably by inducing apoptosis in SECs, a process 

which is facilitated by the presence of leukocytes and Kupffer cells [47, 49].  In addition, the 

extent of platelet adhesion to the liver endothelium has been shown to correlate with organ 

function in human liver transplantation recipients [50].  Therefore, inhibition of platelet 

aggregation is an important step in reducing hepatic I/R injury. 

1.2.3 Cytokines 

During hepatic I/R injury, which is characterized by an acute inflammatory response, several 

substances, including pro-inflammatory cytokines, are locally released to promote 

vasoconstriction, platelet aggregation, and leukocyte adherence.  Pro-inflammatory cytokines are 

produced at the site of injury and are responsible for initiating and maintaining the inflammatory 

response, resulting in further organ injury [51].  The initial phase of I/R injury involves the 

release of ROS and the inflammatory cascade mediated by a variety of pro-inflammatory 

cytokines, including Tumor Necrosis Factor-α (TNF-α), Interleukin (IL)-1β, IL-6 by Kupffer 

cells [52].  In particular, TNF-α, IL-1β and -6, are known to mediate acute phase changes in 

hepatic protein synthesis at the transcriptional level, which contribute to disturbances in normal 

liver circulation [51, 53].  TNF-α is among the earliest cytokines activated [54] and is a central 

propagating factor [55].  TNF-α works primarily by stimulating many transcription factors, 

including nuclear factor-kappaB (NF-κB), which control and induce the gene expression of 

secondary inflammatory mediators, including IL-1, IL-6, chemokines, and vascular cell adhesion 

molecules [42].  TNF-α and IL-1β are also potent inducers of IL-6, which work together to up-

regulate the expression of adhesion molecules, giving rise to increased leukocyte-sinusoidal 
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endothelial cell interactions, resulting in further tissue injury [56].  IL-6 is an important mediator 

of the hepatic acute-phase response during injury.  Not only does IL-6 induce neutrophil 

activation, but it may also delay the phagocytic disposal of dysfunctional neutrophils, thereby 

prolonging the injurious effects of these cells [57].  Pro-inflammatory mediators work together 

with the expression of adhesion molecules, i.e. ICAM-1, VCAM-1, and P- and E-selectins, to 

further promote liver graft infiltration of neutrophils and further contribute to the progression of 

hepatic injury[42].  

In summary, the primary targets of cold I/R injury are the liver SECs [58].  Damage to 

SECs leads to loss of microvascular integrity and decreased blood flow, while promoting the 

attraction, activation, adhesion, and migration of neutrophils to the endothelium. Platelet 

aggregation, local tissue destruction, up-regulation of inflammatory cytokines, and structural 

alterations in tissue leads to hepatocellular dysfunction [9, 29].  Each one of these factors 

represent a pharmacological target to reduce or prevent hepatic I/R injury.   

1.3 EFFECTS OF INFLAMMATION ON DRUG DISPOSITION 

Inflammation and pro-inflammatory cytokines are known to markedly impair hepatic 

detoxification pathways by suppressing the expression of several hepatic transporters and 

metabolic enzymes, thereby, altering drug disposition.  Considering that the liver is the most 

important site of drug metabolism and clearance, inflammation-mediated changes in the 

activities or expression of drug metabolizing enzymes or hepatic transporters can have major 

implications when the capacity of the liver, such as the case during liver transplantation, to 

handle drugs is severely compromised, leading to altered hepatic clearance of drugs [59].   
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1.3.1 Drug Metabolism Pathways 

The liver is the major organ responsible for the metabolism and clearance of endogenous and 

exogenous compounds in humans, and it expresses numerous drug-metabolizing enzymes, while 

some metabolism also occurs in the gut, lung, kidney, and brain.   

The concentration of a drug in the blood (or plasma) is determined by the process of 

absorption, distribution, metabolism, and excretion.  Metabolism can be broadly classified as 

either phase I (functionalization) or phase II (conjugation) reactions.  Often, but not always, 

these two processes occur sequentially.  Phase I reactions introduce a functional group or 

uncover a chemically reactive group on the parent compound, and the products may either be 

pharmacologically active or inactive and usually represent substrates for Phase II enzymes, 

which act to increase the polarity of a compound, through the process of conjugation, yielding a 

metabolite known as a “conjugate”, that is more readily excreted.  The process of converting a 

drug to a metabolite is often referred to as biotransformation and the four main categories of 

biotransformation include: oxidation, reduction, hydrolysis, and conjugation.  The first three 

comprise Phase I, while the fourth comprises Phase II reactions.     

1.3.1.1 Phase I Metabolism  

Cytochrome P450 (CYP450) enzymes are a superfamily of heme-containing proteins having an 

iron protoporphyrin IX as the prosthetic group.  Their name comes from the spectral absorbance 

peak of their carbon-monoxide-bound species which was determined to be at 450 nm [60].   

Phase I metabolism is dominated by the microsomal mixed-function oxidase (MMFO) 

system which is involved in the metabolism of endogenous compounds (steroid hormones and 

fatty acids) as well as the biotransformation of xenobiotics.  The CYP450-catalysed mixed-
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function oxidation reaction is the most commonly studied drug metabolism reaction [61] and is 

carried out by incorporating one atom of molecular oxygen into the substrate while reducing the 

other atom of oxygen to water, with the corresponding enzymes being categorized as mono-

oxygenases.  Components of the system include cytochrome P450 (CYP450) and NADPH-

CYP450 reductase, where CYP450 are the substrate- and oxygen-binding site of the enzyme 

system and the reductase serves as an electron carrier, transferring electrons from NADPH to the 

CYP450 complex [62].  As a result, xenobiotics can undergo hydroxylations, epoxidations, N-, 

S-, or O-dealkylations, deaminations, or N- or S-oxidations, and oxidative dehalogenations, 

sulphoxide formation, dehydrogenations, and deaminiation of mono-and diamines [63].   

CYP450 isoforms are found in almost all living organisms and are widely distributed, but 

the largest concentration of CYP450s is located in the liver, predominantly in the membrane of 

the endoplasmic reticulum (ER).  Analysis of the human genome has identified 57 human 

CYP450 enzymes involved in the metabolism of xenobiotics [64], which are comprised of four 

major families: CYP1, CYP2, CYP3, and CYP4 of which CYP3A4 is the most abundant and 

constitutes approximately 30% of the hepatic CYPs in human liver [65].  In rat, the CYP1, 

CYP2, and CYP3 families are largely involved in biotransformation of xenobiotics.  Several 

CYP enzymes have orthologous forms in humans and rodents, although there are some 

differences in the expression and catalytic activities between human and rat CYP orthologs [66].  

In rat liver, the mRNA of several members of the CYP3A subfamily, including CYP3A1/23, 

CYP3A2, CYP3A9, and CYP3A18 have been detected [67].  CYP2C11 and CYP2C12 are major 

and constitutlively expressed CYP450 gene products in male and female rat liver, respectively 

[68, 69].  In rat liver, CYP2E1 demonstrates approximately 80% amino acid homology with the 

human form of CYP2E1 [70].  
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1.3.1.2 Phase II Metabolism  

Phase II conjugation leads to the formation of a covalent linkage between a functional group on 

the parent compound (or on a Phase I metabolite) with endogenously derived glucuronic acid, 

sulphate, glutathione, amino acids or acetate to produce a highly polar and water-soluble 

conjugate to that is more readily excreted in the urine or bile.  The uridine diphosphate 

glucuronyltransferases (UGT) superfamily represents an important family of proteins that 

catalyze the transfer of glucuronic acid from UDP-glucuronic acid (UDPGA) to the substrate 

molecule, to enhance water solubility and excretion. The UGTs have been classified into two 

subfamilies, namely UGT1A and 2B, and are located in the ER, which has physiological effects 

in neutralization of reactive intermediates formed by the CYP450 enzyme system.  Major Phase 

II reactions include glucuronidation, sulphation, acetlyation, and conjugation with glutathione or 

amino acids.  The net effect is usually considered to be inactivation or detoxification.   

1.3.2 Drug Transport System 

The liver plays an important role in the enterohepatic circulation of bile acids, as well as the 

detoxification of endogenous and exogenous compounds through biotransformation and biliary 

excretion of these compounds.  Hepatic drug elimination is a highly coordinated event, as drug 

disposition depends not only on the metabolism of a compound but also on the active uptake and 

efflux by specific transport proteins.  Drug transporters are a class of membrane-bound proteins 

involved in the transport of numerous endogenous compounds as well as xenobiotics and their 

metabolites.  Hepatic drug transporters serve a multitude of functions and play a critical role in 

the liver mediating drug uptake into hepatocytes and the translocation of compounds, such as 

bile acids, electrolytes, and xenobiotics, across biological membranes and elimination into bile.  
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Several lipophillic compounds move from the plasma into hepatic cytosol by simple or 

facilitated diffusion; however, numerous transport proteins are available on the sinusoidal 

(basolateral) membrane of the hepatocyte to mediate uptake of amphipathic and polar organic 

compounds.  In addition, hepatic efflux transport proteins located on the apical (canalicular) side 

of the hepatocyte play an important role in the excretion of drugs and metabolites from the 

hepatic cytosol into the bile [71, 72].  Due to their wide tissue distribution and high level of 

expression in the liver, intestine, kidney, placenta, and blood-brain barrier, drug transporters of 

several gene families serve a major role in defining the disposition of many xenobiotics and 

impact the elimination of drugs by mediating the cellular uptake and export of compounds into 

and out of cells responsible for the degradation of compounds, and are categorized as uptake and 

efflux transporters, discussed below.  

1.3.2.1 Uptake Transporters 

A major function of the liver is the uptake of a large number of endogenous organic anionic 

compounds and xenobiotics from the circulation.  Hepatic uptake of xenobiotics, waste products, 

and conjugated bile acid from the sinusoidal (basolateral) plasma membrane of the hepatocyte 

occurs by members of the superfamily of solute carriers (SLC), including the sodium-dependent 

taurocholate co-transporting polypeptide (NTCP, SLC10A) [73], the sodium-independent 

transport proteins including the organic anion transporter polypeptides (OATP, SLCO21A), and 

the organic cation transporter (OCT, SLC22A) families [74].  The substrate specificity for these 

transporters is broad and there is strong overlap between various members of the transporter 

families.  The varied affinities of these transporters for different compounds in portal blood 

provide specific and redundant means for extracting bile salts and other compounds from the 

blood and excreting them from the hepatocytes [75].    
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1.3.2.2 Efflux Transporters  

The bile canalicular membrane of the mammalian hepatocyte contains several primary active 

transporters which couple ATP hydrolysis to facilitate the transport of specific substrates into 

bile canaliculus [76, 77].  The largest family of hepatic drug transporters are comprised of the 

ATP-binding cassette “ABC” transporters [78], and are involved in the cellular efflux of 

xenobiotics and endogenous compounds from the hepatic cytosol into the bile.  

The formation of bile serves two vital functions: 1) it is a major route for the elimination 

of drugs, toxins and waste products, and 2) it ensures the secretion of bile salts, which are crucial 

for lipid emulsification and subsequent lipid absorption in the intestine.  Members of the ABC 

family of transporters include the multi-drug resistance protein (MDR1/P-glycoprotein, P-gp), 

multi-drug resistance associated protein (MRP) members 1-6.  MRP2, encoded by the ABCC2 

gene, is one of the most studied family members as it is involved in the biliary transport of 

glutathione and its conjugates.  An important endogenous substrate for MRP2 is conjugated 

(glucuronidated) bilirubin.  The hepatic canalicular membrane contains P-glycoprotein (P-gp), 

encoded for by the ABCB1 gene, responsible for cellular efflux of numerous clinically relevant 

therapeutic agents.  P-gp is expressed at the apical epithelium of the liver, intestine, kidney and 

blood-brain barrier [79]. The human genome contains a single MDR1 (P-gp), whereas two 

orthologs of human MDR1 exist in rodents, denoted as mdr1a/b (Abcb1a/b).  Other MDR gene 

family members include the liver canalicular bile salt export pump, BSEP/Bsep (or sister of P-

gp, spgp) and the hepatic phospholipid transporter MDR3 (mdr2 in rodents).  BSEP/Bsep pumps 

bile salts out of the hepatocyte, across the canalicular membrane and into bile and is the major 

transporter responsible for hepatic bile acid excretion and generation of bile flow.  The location 

of the aforementioned transporters is illustrated in Figure 3. 



 

  22 

The activity and expression of drug transporters can be regulated by various factors 

including environmental, genetic, oxidative stress and inflammation.  The following section will 

provide an overview of the effect of inflammation on drug disposition.   

 

 

 

Figure 3: Hepatic drug transporters in human and rodent 
Modified from Faber et. al [80] 

1.3.3 Effect of Pro-inflammatory Cytokines on Drug Metabolism and Drug Transport 

During the host response to inflammation, inflammatory mediators, including pro-inflammatory 

cytokines, have been associated with altered content, expression, and activity of CYP450 

enzymes and drug transporters, consequently leading to alterations in the absorption, distribution, 

metabolism, and elimination of several drugs [81-85].  Usually, most CYP450s and drug 

transporters are down-regulated although a few may be refractory or actually up-regulated.  The 

losses in drug metabolism and transport are channeled predominantly through the production of 
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cytokines that ultimately modify the expression and function of specific transcription factors, e.g. 

Nuclear Factor-Kappa B (NF-κB).   

Acute inflammation of the liver typically begins with activation of the Kupffer cells, 

which initiates intracellular signaling cascades and culminates in cell activation.  Cytokines and 

other pro-inflammatory mediators, e.g. ROS, are released and adhesion molecules for leukocytes 

are expressed on the plasma membrane of non-parenchymal cells.  In particular, TNF-α is 

released from KCs early and plays a major role in precipitating downstream events.  

Hepatobiliary transporters are important determinants of drug clearance; they regulate the 

access of drugs to the drug-metabolizing enzymes as well as control drug concentrations in the 

hepatocytes, and are essential for normal bile formation and efficient drug metabolism. 

Alterations in the functionality, protein, and mRNA expression of transporters occur to varying 

degrees by drugs, metabolites, oxidative stress, and cytokines.  During the early post-transplant 

period, these effects can significantly alter drug disposition in this patient population, which has 

major implications when the capacity of the liver, and other organs, to handle drugs is severely 

compromised [81, 86-89].   

In addition, CYP450 activity represents an important marker of liver function in graft 

post-transplantation and decreased levels can influence the clinical response and, in worse cases, 

precipitate hepatic dysfunction or lead to graft non-function and or failure.  Several studies have 

indicated that drug metabolizing abilities post-transplantation are a reliable indicator of liver 

function in vivo [90-93].  In most cases, the decreased CYP activity is accompanied or preceded 

by decreases in hepatic levels of the corresponding P450 mRNAs and proteins (Morgan, 1997).  

Hepatic I/R injury has been shown to lead to damaged hepatocytes and bile duct cells, 

resulting in altered biliary secretion of endogenous compounds and altered pharmacokinetics of 
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drugs in the recipients.  Previous observations in liver transplant patients of a high RIA to HPLC 

ratio for cyclosporine A (RIA measuring parent and metabolite, while HPLC measuring the 

parent drug), indicated that formation of the metabolites was not altered but that biliary transport 

of the formed metabolites was, in grafts which exhibited early poor function post-OLT [94].  It 

was later shown that cyclosporine A is a P-gp substrate [95].  Similarly, ceftriaxone, a third 

generation cephalosporin, is excreted (approximately 40%) into the bile by the MRP2 protein 

and a lower clearance of this drug has been reported following OLT, suggesting hepatic 

dysfunction at the transporter level [96].   

Hepatic I/R injury is frequently associated with cholestasis, where the bile flow is greatly 

diminished and bile constituents begin to accumulate in hepatocytes, which causes an increase in 

oxidative stress and inflammation, and subsequently leads to hepatotoxicity.  Experimental 

studies have shown impaired hepatobiliary transport systems and the development of cholestasis 

as a result of down-regulation of canalicular transporters [97]. The result of reduced drug 

clearance, which accompanies inflammation and reduced blood flow, could be toxic or produce 

sub-therapeutic plasma drug concentrations.  Therefore, an agent that is capable of suppressing 

the pro-inflammatory cascade following reperfusion, while improving hepatic metabolism and 

transport capacity, would significantly improve the liver graft function and improve patient 

outcomes post-OLT. 



 

  25 

1.4 PHARMACOLOGICAL APPROACHES TO PREVENT LIVER I/R INJURY 

Due to the many pathways and factors involved in the development and progression of I/R 

injury, many pharmacological approaches have been explored as therapies to minimize I/R-

induced hepatic injury, including anti-inflammatory, antioxidant, and vasodilatory therapy.  

Activation of Kupffer cells releases a variety of potentially harmful mediators, including 

TNF-α and ROS.  Eliminating Kupffer cells with gadolinium chloride has been shown to 

improve SEC structure and reduce hepatic I/R injury [98].  The role of TNF-α in initiating 

hepatic I/R injury has also been well documented [55, 99, 100].  Approaches to block TNF-α 

signaling pathway upon reperfusion include TNF-α antibodies, pretreatment with pentoxifylline, 

a methylxanthine derivative, which prevents TNF-α synthesis and release in KCs [100], or the 

use of TNF-receptor 1 knockout mice [55, 99, 101]. 

Antioxidant therapy, e.g. Vitamin E, also known by its chemical name α-tocopherol, is an 

important antioxidant which works as a radical scavenger to inhibit ROS generation.  A 

randomized clinical trial in 47 patients undergoing partial liver resection demonstrated that pre-

operative administration of Vitamin E to the recipient reduced liver enzymes (ALT and AST) 

and decreased intensive care unit stays [102].  Treatment with a multivitamin containing two 

antioxidants- α-tocopherol and ascorbate, in patients undergoing major liver surgery failed to 

show a significant difference in lactate levels, which correlated with ischemic times post-

operatively [103].  Allopurinol has also been tested for its inhibition of xanthine oxidase 

pathway, though no significant improvement in patient outcome was achieved [104].  

Agonists of endothelin (ET)-1 have been shown to cause contraction of isolated stellate 

cells in culture and to narrow the lumens of sinusoids in isolated perfused livers and well as 

intact cells [39], thereby, making ET-receptor antagonists targets for attenuation of 
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microcirculation disturbances [105].  To promote vasodilation, nitric oxide [106], carbon 

monoxide [107], and the prostaglandin (PG) class of drugs, including PGI2 [17] have been tested.  

The focus of this dissertation is the use of treprostinil, a PGI2 analogue, for protection of liver 

grafts against I/R injury in orthotopic liver transplantation.  

A summary of the mechanisms involved in hepatic I/R injury and some of the therapeutic 

strategies are illustrated below, in Figure 4.  

 

 

 
Figure 4: Targets of hepatic I/R injury 

Ca2+: calcium; ET: endothelin; HC: hepatocytes; KC: Kupffer cell; PAF: platelet activating factor; Plts: platelets; 
PMNs: polymorphonuclear leukocytes; ROS: reactive oxygen species; SEC: sinusoidal endothelial cell; IL: 
interleukin; modified from Montalvo-Jave et al. [16].  
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1.5 PROSTAGLANDINS IN VASCULAR HOMEOSTASIS  

Prostaglandins (PG) are a family of biologically active polyunsaturated fatty acids derived from 

arachidonic acid that possess a critical responsibility in maintaining vascular homeostasis of 

microcirculation.  The first step in PG synthesis is the liberation of arachidonic acid from 

membrane-bound lipids via the enzymatic actions of Phospholipase A2 and subsequent 

enzymatic metabolism through the action of cyclooxygenase, shown in Figure 5.  Prostaglandins 

contain a cyclopentane ring with two side chains, α and ω, and based on the ring modifications, 

they are classified into types A to I (PGA-PGI), then further classified by the number of double 

bonds (1, 2, or 3) in their side chains [108].  The enzyme responsible for PGI2 synthesis is 

prostacyclin synthase which is localized to the endoplasmic reticulum in endothelial cells and to 

the nuclear and plasma membranes in smooth muscle cells [109, 110].   

Classically, PGI2 mediates its biological effects through binding to cell surface 

prostacyclin receptors (IP), which couple via the stimulatory G protein, leading to activation of 

adenylyl cyclase and an increase in intracellular cyclic adenosine monophosphate (cAMP) 

signaling, which acts as a second messenger to inhibit platelet aggregation, cell proliferation and 

inflammatory mediator release [109, 111, 112].  The IP receptor is located on a variety of cells, 

including platelets, vascular smooth muscle, and endothelial cells, where PGI2 acts locally [113].  

The increase in cAMP leads to activation of protein kinase A and the subsequent 

phosphorylation of specific target proteins in platelets, resulting in anti-platelet activity as well as 

relaxation of vascular smooth muscle [108].  At the endothelial level, prostacyclin exerts anti-

inflammatory and anti-platelet activity and promotes an antithrombotic surface, which is required 

for proper function and maintenance of vascular integrity [114].   
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Prostacyclin is a potent endogenous inhibitor of platelet aggregation, which is reported to 

be 30-40 times more potent than PGE1 [115] and is involved in the complex interactions between 

vessel wall, blood and platelet function.  These actions provide protection against excessive 

vasoconstriction, platelet deposition, and cellular proliferation in the vessel wall [116].  

Interestingly, prostacyclin is extremely unstable and its activity disappears within 15 seconds of 

boiling or within 10 minutes at 22 oC at neutral pH, and in blood at 37 oC it has a half-life of 2-3 

minutes [117, 118].  Alkaline pH increases the stability of PGI2 so that at pH 10.5 (25 oC) it has a 

half-life of 100 hours, whereas at 4 oC, the half-life is reduced to 14.5 minutes [119].  Several 

analogues with improved stability have been developed, and are described in Section 1.5.1.  

 

 

 
Figure 5: Biosynthetic pathway of prostaglandins 

PG: Prostaglandin; TxA2: thromboxane. Modified from Narumiya et al. [108] 
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1.5.1 Prostacyclin Analogues  

Several prostacyclin analogues have received FDA approval for their use in treatment of 

pulmonary arterial hypertension (PAH).  PAH is a rare disease characterized by a progressive 

elevation of pulmonary vascular resistance and pulmonary artery pressure, which often leads to 

right ventricular failure, ultimately resulting in death [120].  While the principle pharmacological 

effects of all prostanoids are similar due to their actions on the IP receptor, there are notable 

differences in the pharmacokinetics and metabolism, with a wide range in half-lives.  Also, the 

modes of application of PGI2 analogues vary from continuous intravenous infusion of 

epoprostenol to inhaled application of iloprost, to oral administration of beraprost, and 

subcutaneous infusion of treprostinil.  In addition, the doses vary, ranging from pg/kg/min to 

ng/kg/min.  As such, there is no set dose and each analogue is titrated to response. 

1.5.1.1 Epoprostenol  

Prostacyclin has been stabilized as a pharmaceutical preparation (epoprostenol) by freeze-drying 

and reconstitution in an alkaline glycine buffer [121].  Intravenous (IV) epoprostenol (Flolan®, 

GlaxoSmithKline, Durham, NC) is approved by the US Food and Drug Administration (FDA) 

for the treatment of PAH associated with the scleroderma spectrum of disease, and the structure 

is shown in Figure 6A [122].  

At neutral blood pH, epoprostenol is rapidly and spontaneously hydrolyzed to 6-keto-

PGF1α [119] and enzymatically metabolized to 6, 15-diketo-13, 14-dihydro-PGF1α [122].  

Neither metabolite has the same degree of biological activity as the parent compound.  Although 

this agent is an effective therapy for PAH, the administration of epoprostenol is complex.  

Epoprostenol requires daily reconstitution under sterile conditions and ice packs to be changed 
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every 12 hours unless the cassette is changed every 8 hr making it a cumbersome and 

inconvenient treatment option in this patient population.  Adverse effects include headaches, jaw 

pain, nausea, diarrhea, hypotension, and leg pain [123].  Long-term epoprostenol infusion is 

associated with problems due to its short half-life (2-3 minutes), which requires continuous IV 

infusion through a permanent catheter into a large central vein with an ambulatory infusion pump 

with all the associated risks which range from local infections, thromboembolic events, or life-

threatening sepsis [116].  Abrupt discontinuation of the infusion, i.e. catheter displacement or 

pump malfunction, can lead to episodes of worsening PAH and hemodynamic decompensation.  

Any interruptions in administration, could be life-threatening, in addition to its significant 

systemic side effects [113].  Due to these limitations, additional PGI2 analogues have been 

developed.  

1.5.1.2 Iloprost  

Iloprost (Ventavis®, Actelion Pharmaceuticals, San Francisco, CA) is an inhaled synthetic 

prostacyclin analogue, that produces potent pulmonary vasodilation and inhibits platelet 

aggregation [124].  In the U.S., iloprost has been approved by the FDA for oral inhalation using 

the I-neb® AAD® (Adaptive Aerosol Delivery) System or Prodose® AAD® Systems and the 

chemical structure is shown in Figure 6B.  In Europe, iloprost has been approved for use with 

two compressed air nebulizers with AAD® Systems (Halolite and Prodose) as well as with two 

ultrasonic nebulizers Ventaneb® and I-Neb®.  The half-life of iloprost is approximately 20-30 

minutes and the bioavailability after inhalation has not been determined [124].  Administration of 

this analogue is not ideal; patients are required to inhale 6-12 doses per day, which still may not 

be sufficient to cover a 24 hr cycle [123].  Adverse effects include flushing, headache, and 



 

  31 

cough.  The long-term efficacy of iloprost is still under investigation and need to be addressed by 

large clinical trials.  

1.5.1.3 Beraprost  

Beraprost is a synthetic prostacyclin analogue that has been developed as an orally active agent.  

Beraprost acts by binding to prostacyclin membrane receptors to inhibit the release of 

intracellular calcium, which causes relaxation of the smooth muscle cells and vasodilation [125].  

The half-life is between 30 – 45 minutes [126] and the chemical structure is shown in Figure 6C.  

Adverse effects include jaw pain, headache, flushing, diarrhea, and palpitations.  A randomized, 

placebo-controlled trial was performed in the US and while the drug showed some benefit after 3 

and 6 months of treatment, no benefit was seen at 9 or 12 months [125].  Based on these data, 

beraprost has not been approved in the US.   

1.5.1.4 Treprostinil  

Treprostinil is a chemically stable PGI2 analogue, shown in Figure 6D.  In 2002, the US FDA 

approved treprostinil (Remodulin®, United Therapeutics, Durham, NC) for treatment of PAH.  

Treprostinil has an elimination half-life of 3-4 hours and it is rapidly and completely absorbed 

after subcutaneous (SC) administration with an absolute bioavailability of 100% and steady-state 

plasma concentrations are reached after approximately 10 hours [113].  Treprostinil is stable in 

sterile water or 0.9% sodium chloride at room temperature, which allows for IV or SC infusion 

without the need for ice packs.  Also, its solubility at physiologic pH enables SC delivery, 

thereby avoiding the potential complications of the epoprostenol IV delivery system.  

For patients with PAH, treprostinil provides an alternative to previous PGI2 analogues 

and has favorable pharmacokinetic and stability characteristics.  The longer stability in the 
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delivery system (up to 48 hours at room temperature) and a longer half-life increases the 

feasibility of rescue upon unintended interruptions or pump malfunctions, as well as the ease of 

dosage preparation. Treprostinil has many advantages over other PGI2 analogues, including a 3-

fold longer half-life and 6-fold increase in cAMP response than other PGI2 analogues [127], 

which make treprostinil an attractive candidate for protection of the liver graft against I/R injury 

during OLT. 
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Figure 6: Chemical structures of prostacyclin analogues 

A) Epoprostenol, B) Iloprost, C) Beraprost, and D) Treprostinil. Modified from Olschewski et al. [128] 
 

During liver transplantation, improving microcirculation through the liver graft during 

reperfusion and inhibiting platelet aggregation and pro-inflammatory cytokines are essential for a 

good post-operative prognosis [129, 130].  PGI2 is mainly synthesized in endothelial cells and 
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regulates various physiological processes occurring at the interface between the blood and 

endothelium [13], which may serve to protect the liver graft against I/R injury during OLT by 

maintaining hepatic blood flow, counteracting the activity of vasoconstrictors and platelet 

aggregation as well as the release of pro-inflammatory cytokines.  Despite extensive research, 

previous PG analogues tested for protection of liver grafts against I/R injury in OLT have been 

limited due to intolerable doses or failure to meet primary endpoints and, to date, have not 

successfully made their way into the clinic.  Treprostinil has the potential to restore therapeutic 

levels of PGI2 in liver SECs, thereby maintain vascular homeostasis, improve hepatic blood flow 

through the sinusoids, reduce platelet aggregation and inflammatory cytokines, and, ultimately, 

serve as a therapeutic option to protect liver grafts against I/R injury during orthotopic liver 

transplantation.   

1.6 CLINICAL EXPERIENCE WITH PROSTACYCLIN ANALOGUES IN LIVER 

TRANSPLANTATION  

Numerous strategies have been investigated as options to improve the ischemic tolerance of the 

liver and to minimize I/R injury in patients undergoing OLT, and the prostaglandin class of drugs 

is one such strategy [131-134].  Animal and human studies have shown a decrease in the ratio of 

PGI2 and TXA2 in I/R injury [135, 136] suggesting a potential therapeutic benefit of this class of 

drugs.  Analogues of PGE1 and PGI2 have been examined for their ability to protect the liver 

from I/R-induced injury due to their role in maintaining hepatic blood flow via dilation of the 

arterial and vascular bed, by inhibiting platelet aggregation [137], cell adhesion molecules, 

neutrophil activation, the generation of reactive oxygen species, leukocyte activation, migration, 
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and adherence, and inhibit the production and expression of pro-inflammatory cytokines [13, 

17].  Considering the many factors involved in I/R injury and the role of PGs in maintaining 

vascular and cellular homeostasis, as well as the primary target of I/R injury being the liver SECs 

[138, 139], PGI2 has a particular relevance in the setting of hepatic I/R injury associated with 

OLT.   

Since the late 1980s, PG analogues, i.e. PGE1 and PGI2, have been tested for their ability 

to reduce I/R-induced liver injury in several animal models [131-133, 137, 140] and in clinical 

liver transplantation [10, 141-149].  A summary of clinical trials investigating the use of PG 

analogues to reduce I/R injury in OLT is provided in Table 1.  Early studies using intravenous 

PGE1 were promising in minimizing primary liver graft non-function; however the clinical 

application of PGE1 and PGI2 has been limited by their inherent instability and very short half-

life, thus requiring intolerable doses in addition to not showing a significant difference in patient 

outcomes compared to placebo or historical control. In order to successfully treat an OLT patient 

with PGI2, it is crucial to understand the shortcomings of previous trials and identify an agent 

capable of overcoming previous limitations.  

Grieg et al. studied 16 patients with PNF.  Six patients were listed for re-transplantation 

and ten patients were started on an infusion of PGE1 within 4-34 hours post-transplantation and 

continued for 4-7 days [10].  The untreated group had a 33% survival rate whereas the PGE1 

treated group had a 90% survival rate.  Secondary findings of a significant decrease in peak 

serum aminotransferases and normalization of clotting factors were also reported.  The authors 

concluded that PGE1 reduced hepatocellular necrosis and improved liver function but 

recommended larger placebo controlled studies to confirm these findings.   
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 In 1992 -1993, UPMC reported inferior results in liver recipients with positive cytotoxic 

crossmatch that occurs in about 20% of liver transplant cases, i.e., the presence in the recipient of 

preexisting antidonor cytotoxic antibodies [150].  Combined treatment with intravenous PGE1 

and high doses of prednisone reduced the number of adverse outcomes [149].  A large number of 

patients who were crossmatch-negative also were treated in this study, and PGE1 treatment 

conferred important benefits in these recipients and it also significantly improved kidney 

function in liver recipients [147].  This finding was later confirmed in an extensive study in 

which patients treated with steroids and PGE1 had only a single case of primary liver graft non-

function (1 in 174 cases) compared to an incidence of 5.9% in historical controls who were 

treated with steroids only, though some patients did not tolerate PGE1 [148].  That same year, in 

1995, Henley et al. reported results from a double-blind, randomized placebo-controlled, single 

center trial of continuous infusion of PGE1 started during the anhepatic phase in 172 patients 

undergoing orthotopic liver transplantation. Although the trial failed to show an effect of 

treatment on patient and graft survival, the study’s primary endpoint, the study did show 

significantly shorter post-transplant ICU and hospitalization stays, reduced needs for renal 

support, and less need for surgical intervention other than re-transplantation in the active 

treatment group [141].    

Results from a subsequent randomized, double-blinded, multicenter trial of PGE1 infusion 

immediately following restoration of portal and arterial flow [142] were similar to those reported 

by Henley [141] and Takaya [147-149], although this study failed to demonstrate a difference 

between the two groups in the primary endpoint- reduction of PNF, peak serum aminotransferase 

and alkaline phosphatase levels were lower, and bile volumes were higher in the PGE1 group.  
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Also, infusion of PGE1 ameliorated post-transplant renal dysfunction, and a reduction in ICU 

days (PGE1: 4.0 ± 3.6 vs. placebo: 10.5 ± 17.1, P<0.01).  

One small placebo controlled study in patients evaluated the effect of a seven day 

infusion of PGI2 [144] immediately following reperfusion on hepatic dysfunction by measuring 

hepatic-splanchnic oxygenation and serum aminotransferase.  One year survival was 100% in 

placebo- and PGI2-treated groups; AST levels were lower in the PGI2 group, compared to 

placebo.  The study also demonstrated an improved hepatic-splanchnic oxygenation assessed by 

hepatic venous oxygen saturation (SvhO2) levels at 24 and 48 hours post-OLT, suggesting that 

treatment with PGI2 improves early microvascular blood flow by augmenting hepatic-splanchnic 

oxygenation.  

The previous studies have focused on treating the transplant recipient post-reperfusion of 

the liver graft.  Knowing that reperfusion exacerbates cold ischemic injury, PGI2 treatment 

commenced prior to reperfusion in the recipient may provide the most beneficial therapy for 

improving graft function.  A randomized trial treated the donor during liver retrieval of 106 

patients undergoing OLT with a 500 µg bolus of epoprostenol (PGI2) or no drug as control 

immediately before cold perfusion [143].  Significant reduction of peak levels of transaminases 

in the PGI2 group was observed, although neither group experienced PNF, and no differences 

between number of hospitalization days in the PGI2 and control group were noted.   

In summary, the prostaglandin-class of drugs, including prostacyclin and its analogues, 

could represent an important advancement toward the goal of reducing transplant related 

morbidity, mortality and associated costs by providing these benefits. Additionally, the reduction 

in serum creatinine and reduced need for post operative dialysis observed in some studies has 

implications in protecting the kidneys from the nephrotoxic affects of the immunosuppressant 
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agents, especially during the early post-operative period.  Routine use of PGE1 and PGI2, 

however, has been limited by its instability, short half life, and failure to show primary endpoint.  

Hepatic I/R injury remains a significant limitation in clinical liver transplantation and the need 

for therapy to reduce I/R injury is imminent, however, no therapy is currently available.  Due to 

its pharmacological properties, treprostinil has the potential to ameliorate I/R injury in human 

liver transplantation.  
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Table 1: Summary of previous clinical studies using PGI2 analogues to prevent I/R injury in OLT 

Author  Year PG analogue RTC Infusion 
timing 

Subjects 
PG/control 

Safety Outcomes 

    Pre Post    
Greig [10] 1989 Alprostadil 

(PGE1) 
No  X 10/6 Not reported Graft and patient 

survival:  80 and 
90% in PGE1 vs. 17 
and 33% in 
placebo, 
respectively. 

Takaya 
[149] 

1992 Alprostadil  Yes   X 14 Not reported  Superior renal 
function; graft 
protection with 
PGE1 

Takaya 
[147] 

1993 PGE1 Yes X X 41 Not reported  Improved renal 
function with PGE1 

Takaya 
[148] 

1995 Alprostadil No X X 174/304 1 death, 1 PNF, 1 
hepatic artery 
thrombosis, 1 
excessive bleed 
intra-op in PGE1 

PNF: 1.1 vs. 5.9% 
in PGE1 vs. 
historical control, 
respectively.  

Henley 
[141] 

1995 Alprostadil Yes X  78/82 2 patients 
withdrawn by 
attending without 
meeting PNF 
criteria 

Reduced ICU and 
hospital stay, renal 
support; Improved 
graft and patient 
survival; renal 
function with PGE1 

Klein 
[142] 

1996 Alprostadil Yes   X 58/60 10 patients 
discontinued (7 
placebo, 3 PGE1); 
death, liver 
failure, other 

Lower incidence of 
renal dysfunction 
and shorter ICU 
days with PGE1. 

Neumann 
[145] 

1999 Epoprostenol 
(PGI2) 

Yes   X 15/15 1 excluded  for 
bleeding, not 
related to PGI2 
infusion 

Improved ΔSO2
1; 

Initial poor 
function in 2 
control, 0 PGI2; 1 
PGI2 re-transplant 

Klein 
[143] 

1999 Epoprostenol  Yes X   53/53 Hypotension 
requiring 
catecholamine 
(30 PGI2, 26 
control) 

Donor with PGI2; 
Significant ALT 
and AST 
reductions (peak 
and AUC) 

RTC: Randomized controlled Trial; Infusion time in relation to transplantation; 1ΔSO2: a measure of hepatic-
splachnic oxygenation 
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1.7 HYPOTHESIS AND STUDY AIMS 

The process of I/R injury to the liver graft during OLT combines interrelated factors that produce 

a cascade of events, which can ultimately lead to hepatic graft failure.  Due to the multiple 

factors that contribute to hepatic I/R injury, conventional approaches that target one of these 

factors have not succeeded in solving this problem.  Considering the many factors involved in 

I/R injury, including increasing blood flow to the liver and inhibition of platelet aggregation and 

pro-inflammatory cytokines, and the role of PGI2 in maintaining cellular homeostasis, an agent, 

such as treprostinil, capable of combating the multiple factors involved in the development of I/R 

injury would have a particular relevance in the setting of I/R injury in OLT.  Such an agent 

would be a tremendous advancement to the field of liver transplantation and, perhaps, in solid 

organ transplantation. 

The ultimate goal for the use of treprostinil in liver transplantation is to protect the liver 

grafts against I/R-associated hepatic injury in adult patients undergoing OLT, and to increase the 

number of suitable grafts available for transplantation and patients who successfully recover 

from OLT.   The first step to fulfill this goal is to examine the hypothesis that treprostinil, based 

on the pharmacological properties, will protect the liver graft against I/R injury during rat OLT.  

This hypothesis is based on the ability of treprostinil, a prostacyclin analogue, to inhibit pro-

inflammatory cytokine expression, increase blood flow to the liver, and preserve homeostasis in 

the liver graft during transplantation, primarily by preserving liver SEC structure during cold 

storage and post-OLT.  We further hypothesized that I/R injury, as an inflammatory response, 

following OLT would significantly down-regulate the expression and activity of CYP450 drug 

metabolizing enzymes and drug transporters and that treprostinil would improve the metabolic 

and functional capacity of the liver graft post-transplantation.  
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To examine these hypotheses, it was first necessary to determine whether or not 

treprostinil was able to protect the liver graft against I/R injury in a rat OLT model, and this is 

discussed in Chapter 2.  The effects of I/R injury and treprostinil on 1) CYP450-mediated 

metabolism and 2) mRNA and protein expression of hepatic drug transporters in liver graft tissue 

post-OLT, has been examined in Chapter 3 and Chapter 4,  respectively.  In vitro studies to 

determine whether or not treprostinil could be safely co-administered without concern for a drug-

drug interaction studies between treprostinil and cyclosporine A, tacrolimus, sirolimus, and 

mycophenolic acid has been carried out in Chapter 5.  The conclusions and future research 

recommendations are discussed in Chapter 6.  Lastly, a Phase I/II clinical study in adult OLT 

patients has been initiated to examine the preliminary safety, efficacy, and pharmacokinetics of a 

two-day peri-operative course of treprostinil in adult patients undergoing OLT, and the protocol 

is presented in Appendix A.   
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2.0  TREPROSTINIL AMELIORATES ISCHEMIA-REPERFUSION INJURY IN RAT 

ORTHOTOPIC LIVER TRANSPLANTATION* 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

*N. Ghonem, J. Yoshida, D.B. Stolz, A. Humar, T.E. Starzl, N. Murase, and R. Venkataramanan. 
Treprostinil, a Prostacyclin Analogue, Ameliorates Ischemia-Reperfusion Injury in Rat 
Orthotopic Liver Transplantation. Submitted to American Journal of Transplantation, October 
2010. 
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2.1 INTRODUCTION 

Liver transplantation is the only therapy available for end-stage liver diseases; however, donor 

shortage is a major factor limiting the number of organs available for liver transplantation.  The 

current shortage of deceased donors has forced the expansion of the donor pool and has led 

centers to accept ECDs, i.e. older, non-heart beating, high steatosis, and those with prolonged 

ischemia.  These organs provide the much-needed additional grafts; however, they are more 

susceptible to I/R injury, which is an unavoidable process during liver transplantation and is a 

major cause of initial liver graft dysfunction [9, 29]. The need for therapy to reduce I/R injury in 

liver transplantation is imminent, unfortunately no treatment is available.  

Since the late 1980s, PG analogues, i.e. PGE1 and PGI2, have been explored as a potential 

therapy to reduce I/R injury in several animal models [131-133, 137, 140] and in clinical liver 

transplantation [10, 141-149], primarily due to their vasodilatory and platelet anti-aggregatory 

effects.  Some studies have shown PG therapy to be useful for prevention of liver injury 

following transplantation; however the clinical utility of PGE1 and PGI2 is limited due to their 

inherent instability, intolerable side effects, a very short half-life, and the inability to show a 

significant difference in primary endpoint.  Treprostinil sodium, a relatively new PGI2 analogue, 

is FDA-approved (Remodulin®) for the treatment of pulmonary arterial hypertension.  

Advantages of treprostinil include a longer elimination half-life and increased potency (three- 

and six-fold, respectively) as well as its stability at room temperature and neutral pH [127]. 

These advantages enable lower doses and correspondingly lower side effects, to achieve 

therapeutic efficacy.  Treprostinil has the potential to minimize I/R-associated hepatic injury in 

liver transplantation due to its cytoprotective effects, including its ability to preserve cellular 

homeostasis and microcirculation within the vasculature.  Use of an agent, such as treprostinil, in 
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the clinic may ultimately increase the number of suitable grafts available for transplantation, and 

improve overall patient outcome.  To the best of our knowledge, no PGI2 analogue has ever been 

tested for its ability to prevent I/R injury in a rat OLT model.  Therefore, the objective of this 

study was to examine the efficacy of treprostinil in protection of the liver grafts against I/R 

injury during rat OLT.  

2.2 MATERIALS AND METHODS 

2.2.1 Animals  

All procedures were performed according to the guidelines of the National Research Council’s 

Guide for the Humane Care and Use of Laboratory Animals and approved by the Institutional 

Animal Care and Use Committee at the University of Pittsburgh.  Male Lewis rats weighing   

200 - 300 g (Harlan Sprague Dawley, Inc, Indianapolis, IN) were maintained in a laminar-flow, 

specific-pathogen–free atmosphere at the University of Pittsburgh with a standard diet and water 

supplied ad libitum.  

2.2.2 Orthotopic Liver Transplantation Model 

The basic techniques of liver harvesting and OLT without hepatic arterial reconstruction were 

performed as previously described [151]. Briefly, rats were anesthetized with isoflurane 

inhalation and a midline incision in the abdominal cavity was made and the liver graft was 

excised and immediately flushed with cold UW solution, stored in UW solution at 4 oC for 18 
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hours, and orthotopically transplanted into recipients.  All surgeries were performed by the same 

surgeon.   

2.2.3 Treprostinil Administration 

Treprostinil (1 mg/ml) and placebo (sodium chloride, metacresol, sodium citrate, water for 

injection) were provided by United Therapeutics, Inc. (Durham, NC).  Treprostinil (100 

ng/kg/min) or placebo was administered to donor and recipient animals subcutaneously via an 

Alzet osmotic pump (Durect Corp., Cupertino, CA).  The surgeon was blinded to treatment. 

2.2.4 Experimental Design  

Donor animals received treprostinil or placebo 24 hours before hepatectomy and the 

corresponding recipient animal received the same treatment.  Recipients were sacrificed at 1, 3, 

6, 24, and 48 hours post-transplantation to examine the early events after I/R injury.  In 

additional sets of experiments, a group of recipients were treated with treprostinil or placebo 

(same dose) for 24 hours before surgery and until the time of sacrifice.  Only liver enzymes 

levels were measured in this additional group.   

2.2.5 Post-operative Care 

Recipients were kept under a heating lamp for approximately 2 hours and were given regular 

food and water ad libitum. The general condition of the rats was checked three times daily.  
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2.2.6 Liver Enzymes Levels 

Blood was collected at 6, 24, and 48 hours post-transplantation.  Serum alanine aminotransferase 

(ALT) and aspartate aminotransferase (AST) levels were measured by standard enzymatic 

methods in the clinical laboratory at UPMC. 

2.2.7 Histopathology 

Liver graft tissues were fixed in 10% buffered formalin, embedded in paraffin, cut into 6 um 

sections, and stained with hematoxylin and eosin (H&E). The percentage of necrotic area was 

estimated by the morphometric analysis of five randomly selected low-power fields (40x) per 

H&E section.  Neutrophils were stained with naphthol AS-D chloroacetate esterase-staining kit 

(Sigma Diagnostics, St. Louis, MO). Positively stained cells were counted in five high-power 

fields (200x) per section. 

2.2.8 RNA Extraction and Real Time RT-PCR Analysis 

Total RNA was extracted from liver tissue (50 – 100 mg) using TRIzol reagent (Invitrogen, 

Carlsbad, CA) according to manufacturer’s instructions.  RNA concentration was determined by 

UV absorbance at 260/280 nm (μQuant Microplate 25 Spectrophotometer) and RNA integrity 

was checked by 0.5% agarose gel electrophoresis stained with ethidium bromide.  Two 

micrograms of total RNA from each sample was used to generate first-strand cDNA by use of 

the First Strand cDNA synthesis kit (Promega, Madison, WI).  A reaction mixture containing 

200 U monkey myeloblastosis virus reverse transcription reaction (MMLV, Promega, Madison, 
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WI)-Reverse transcriptase, 1 mM dNTPs and 25 U RNasein (Promega) was added to the 

previous mixture and incubated at 37 °C for 60 minutes.  DNase-I treated total RNA from each 

sample was mixed with 0.5 µg of Random Hexamers (Promega) heated to 70 °C for 5 minutes 

then cooled to 4 °C.  Hepatic mRNA levels were measured by SYBR® Green PCR Master mix 

using primers purchased from Super Array Biosciences (Frederick, MD), listed in Table 2.  

Samples were analyzed in triplicate and relative gene expression was measured using the 

comparative CT method, using GAPDH as internal control.   

 
Table 2: Real-Time PCR assay IDs for genes detected by SYBR® green gene expression assays 

Gene Symbol Gene Name RefSeq Accession # 

TNF-α Tumor Necrosis Factor (TNF superfamily, member 2) NM_000594.2 

IL-1β Interleukin 1, beta NM_000576.2 

IL-6 Interleukin 6 NM_000600.3 

IL-10 Interleukin 10 NM_000572.2 

IFN-γ Interferon, gamma NM_000619.2 

Serpine1  Serpin peptidase inhibitor, clade E, member 1 NM_012620 

Pecam1 Platelet endothelial cell adhesion molecule 1 NM_031591 

ICAM-1 Intracellular cell adhesion molecule 1 NM_012967 

VCAM-1 Vascular cell adhesion molecule 1 NM_012889 

VEGF-α Vascular endothelial growth factor A NM_031836 

P-Selectin P-Selectin NM_013114 

GAPDH Glyceraldehyde-3-phosphate dehydrogenase NM_017008.3 
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2.2.9 Electron Microscopy 

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis 

were performed on 2.5% gluteraldehyde in PBS perfusion-fixed liver, as previously described 

[152].  After labeling, tissue was dehydrated through graded-ethanol (30-100%), critical point 

dried (Emscope, CPD 750, Ashford, Kent, UK), and overcoated with carbon (108Carbon/A 

Coater, Watford, UK).  Tissues were visualized on a JEM-6335F SEM and a JEM 1210 TEM 

(JEOL, Peabody, MA).    

2.2.10 Hepatic Tissue Blood Flow  

A Laser-Doppler flow meter probe (ALF21N; Advance, Tokyo, Japan) was placed on the surface 

of the medial, left, and right hepatic lobe to measure hepatic-tissue blood flow in liver graft 

before and after transplantation. Measurements were repeated five times and recorded by the 

surgeon without knowledge of the treatment groups.   

2.2.11 Protein Estimation 

The protein concentration was determined according to the procedure of Bradford [153], using 

bovine serum albumin (BSA) as a standard.  The concentration was calculated based on the 

standard curve of known bovine serum albumin (BSA) concentration (0.025 – 0.4 mg/ml).  
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2.2.12 Hepatic Levels of Cyclic AMP  

Cyclic adenosine monophosphate (cAMP) levels were measured using an enzyme-linked 

immunosorbent assay (ELISA; R & D Systems, Frederick, MD) according to the manufacturer’s 

instructions.  Liver tissue was homogenized and assayed in triplicate. The optical density was 

calculated against a standard curve to determine the concentration of cAMP.   

2.2.13 Hepatic Levels of Adenine Nucleotides  

Liver samples were immediately frozen in liquid nitrogen and stored at –80 oC until the 

extraction procedure.  The frozen tissue was weighed (approximately 0.1 gm) and homogenized 

with a Polytron homogenizer (Brinkmann Inc., Westbury, NY) in 1.0 mL of ice-cold 6 % 

perchloric acid containing 0.77 mM ethylenediaminetetraacetic acid (EDTA).  The homogenate 

was centrifuged for 10 minutes at (4 oC) 10,000g (Beckham J25.15 Rotor) and the pH of 

supernatant was adjusted to 5-7 with 69% K2CO3 solution.  Following centrifugation (15 

minutes at 10,000g, 4 oC), the concentration of adenosine triphosphate (ATP), adenosine 

diphosphate (ADP), and adenosine monophosphate (AMP), hypoxanthine, xanthine, inosine, and 

adenosine were measured by high performance liquid chromatography (HPLC) with a Waters 

HPLC 2695 Alliance, Photodiode Array Detector, monitored at 254 nm (Waters, Inc., Milford, 

MA).  Reverse-phase column (E. Merk, Darmstadt, Germany; LiChrospher® 100 RP-18 (5 um), 

4 x 250 mm) was used with a precolumn (Waters; RCSS Guard-PAK) at 27oC.  The mobile 

phase consisted of A, 0.15 M ammonium dihydrogen phosphate buffer, pH 5-7 and B, 

acetonitrile and methanol (50:50) containing 1% triethanolamine.  The concentration  of ATP, 

ADP, and AMP, hypoxanthine, xanthine, inosine, and adenosine were calculated from a standard 
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curve constructed at the same time by means of standard powder (>99% pure) of ATP, ADP, and 

AMP, hypoxanthine, xanthine, inosine, and adenosine dissolved in the appropriate solution for 

each experiment.  Total adenine nucleotides (TAN) = ATP + ADP + AMP.   

2.2.14 Treprostinil Plasma Concentration 

The plasma concentration of treprostinil was measured by an ultra performance liquid 

chromatographic system equipped with a triple quadrupole tandem mass spectrometer (AB/MDS 

Sciex API-5000) detector operated in negative TurboIonSpray® mode.  Treprostinil-d4 was used 

as the internal standard.  Separation of treprostinil from extracted matrix materials was 

performed using a Waters BEH C18 (2.1 x 100 mm, 1.7 μm) column (Waters, Milford, MA) 

operated at 65 °C. The gradient mobile phase system consisted of (A) 0.1% formic acid in water 

and (B) 0.1% formic acid in acetonitrile at a flow rate of 0.775 mL/min.  The C.V. was less than 

2 % for this assay.  

2.2.15 Statistical Analysis 

Data are represented as the mean ± standard error of mean (SEM).  Comparisons between the 

groups were performed using Student’s t test or one-way ANOVA with Tukey’s post-hoc test 

using Prism software version 4.0 (GraphPad, San Diego, CA).  Significance was defined as P-

value < 0.05.  
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2.3 RESULTS 

2.3.1 Clinical Course and Assessment of Tolerability 

Following vascular anastomoses, there was no excessive bleeding in the treprostinil-treated 

group, relative to placebo.  Bile formation was immediate upon reperfusion of the liver graft in 

the treprostinil-treated group.  Treprostinil-treated animals functioned normally and appeared to 

recover sooner after surgery than the placebo-treated animals, which appeared weaker 

throughout the post-OLT period.  No difference in body weight was noted between the two 

treatment groups. 

2.3.2 Hepatic I/R Injury  

In the placebo-treated group, serum ALT and AST levels reached a peak of 2810 ± 202 and 4445 

± 951 IU/L, respectively, at 24 hours post-transplantation (Figure 7A and 7B).  Donor plus 

recipient treatment with treprostinil significantly reduced serum ALT and AST levels to 807 ± 

140 and 1231 ± 112 IU/L, respectively.  In the recipient only placebo-treated group, serum ALT 

and AST levels reached a peak of 2519 ± 239 and 5822 ± 222 IU/L, respectively at 24 hours 

post-reperfusion.  Liver injury was also reduced in the recipient only treprostinil-treatment 

group, albeit to a lesser extent then donor plus recipient treatment, reaching values of 1367 ± 306 

and 1469 ± 296 IU/L, respectively, shown in Figure 8A and 8B. 
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Figure 7: Hepatic injury in donor + recipient groups 
Serum ALT (A) and AST (B) levels at 6, 24, and 48 hrs post-reperfusion. *P < 0.05, **P < 0.01, ***P < 0.001 vs. 
placebo (n=3-4/group).   
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Figure 8:  Hepatic injury in recipient only groups 
Serum (A) ALT and (B) AST levels at 6, 24, and 48 hrs after reperfusion. *P < 0.05, ***P < 0.001 vs. placebo (n=3-
4/group).  
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At 48 hours post-transplantation, the necrotic area in the treprostinil-treated group (0.8 ± 0.03%) 

was significantly reduced, compared to placebo (41.7 ± 10.0%), shown in Figure 9.  Placebo-

treated grafts showed massive necrosis and severe congestion (Figure 10A), which was 

attenuated by treprostinil administration, shown in Figure 10B.  These results indicate that 

treprostinil-treated rats experienced a relatively low degree of hepatic injury, compared to 

placebo-treated rats.  

 

 

Figure 9: Percentage of necrotic area in liver grafts 
Comparison of necrotic area (%) in placebo- and treprostinil-treated animals at 48 hours post-transplantation. 
*P<0.05 vs. placebo (n=3-5/group).  
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Figure 10:  Representative histopathological images of liver grafts 

Necrotic area (arrows) in (A) placebo- and (B) treprostinil-treated animals at 48 hours post-reperfusion. H&E-
stained, original x40.  

 

2.3.3 Neutrophil Accumulation in Hepatic Tissue 

Neutrophil extravasation and accumulation contribute to the progression of I/R injury in liver 

[154].  The number of infiltrating neutrophils into the hepatic sinusoids rapidly increased in the 

liver grafts of placebo-treated animals, shown in Figure 11. In contrast, treprostinil 

administration reduced the number of neutrophils at 1, 3, and 48 hours after reperfusion, 

compared to placebo.  At 48 hours post-transplantation, neutrophils homogenously infiltrated the 

hepatic sinusoids in placebo-treated animals (Figure 12A), whereas treatment with treprostinil 

significantly reduced neutrophil infiltration, shown in Figure 12B.  
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Figure 11: Neutrophils in liver graft 
Comparison of neutrophil infiltration in placebo- and treprostinil-treated group at 1, 3, and 48 hrs post-reperfusion.  
Values are expressed as the number of cells per field of 1 mm2. *P < 0.05 vs. placebo (n=3-4/group). 
 
 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 12: Neutrophil infiltration 
Neutrophil infiltration (arrows) in (A) placebo- and (B) treprostinil-treated animals; original x200. 
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2.3.4 Cytokine Response 

The mRNA levels of pro-inflammatory cytokines peaked at one hour post-transplantation.  

Specifically, the mRNA expression of TNF-α, and IFN- γ were significantly increased in placebo 

group, which were suppressed by treprostinil administration (Figures 13A and 13B, 

respectively). Tissue mRNA levels of IL-6 (Figure 13C) were lower also in the treprostinil-

treated group vs. placebo.  The increase in IL-1β mRNA expression in placebo- and treprostinil-

treated group was minimal (Figure 13D).  This effect may be attributed to the circulation half-life 

of IL-1 of approximately 6 minutes [54], making its detection less likely than other cytokines.  

IL-10 has been shown to exert anti-inflammatory effects by inhibiting the activity of IkB kinase 

complex to prevent NF-kB translocation [155].  Treprostinil increased IL-10 mRNA levels, 

compared to placebo (Figure 13E).  Together, a reduction of pro-inflammatory cytokines and an 

increase in IL-10 expression is likely to have significantly contributed to the protective effect of 

treprostinil.  
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Figure 13: Peak mRNA expression of cytokines 
(A) TNF-α, (B) IFN-γ, C) IL-1β, and D) IL-6 in liver graft at 1 hr; (E) IL-10 in liver graft at 3 hrs post-OLT.  *P < 
0.05, **P < 0.01 vs. placebo (n = 3).  
 

Adhesion molecules and selectins promote leukocyte adhesion and migration, and thrombosis, 

which contribute to the progression of hepatic I/R injury [156].  To determine if treprostinil 

reduced cellular infiltration via blockade of these molecules, the mRNA expression of Serpine1, 

Pecam, ICAM-1, VCAM-1, P-selectin, and VEGF-α were examined at 1 and 3 hr post-OLT, 

shown in Figures 14A-F.  No remarkable differences in serpine1, PECAM, VCAM-1, VEGF-α, 

or P-Selectin expression between the treprostinil and placebo-treated group were observed, 
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which indicate that treprostinil protected the liver graft against I/R injury independent of these 

pathways.  Notable findings in the treprostinil-treated group are reduced ICAM-1 mRNA levels 

at 3 hr post-OLT compared to placebo-treated group, with no significant difference between 

normal liver, shown in Figure 14C.  ICAM-1 is known to play an important role in the adhesion 

and infiltration of leukocytes in the vascular lining and parenchyma [157].  The results suggest 

that reduced ICAM-1 levels in the treprostinil-treated group participated in the reduction of 

hepatic injury in liver grafts.  
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Figure 14: Hepatic mRNA expression of adhesion molecules 
A) Serpine1, B) Pecam, C) ICAM-1, D) VCAM-1, E) VEGF, and F) P-selectin in liver graft at 1 and 3 hr post-OLT. 
#P < 0.05, †P < 0.01 vs. normal liver (n = 3). 

2.3.5 Liver Sinusoidal Endothelial Cells  

Having previously shown that the 18-hour cold ischemic storage induces significant SEC 

damage with many retracted cells [41], we conducted SEM analysis to investigate SEC ultra 

structural changes during the restorative period after OLT.  Figure 15A shows normal liver with 

intact SECs and typical fenestrations (arrows).  In contrast, at 1 hour post-reperfusion, placebo-

treated grafts showed a significant retraction of SECs (Figure 15B).  Furthermore, at 3-6 hours 

post-OLT, large areas of destroyed structural SEC lining with platelet infiltration within the 

sinusoidal surface was visible.  Stolz et al. [41] have shown that SECs recover from I/R-induced 

SEC denudation in approximately 24 -48 hours post-reperfusion.  Interestingly, as early as 1-3 

hours post-reperfusion, treprostinil-treated group showed preserved SECs (Figure 15C).  More 

impressive is that by 6 hours post-reperfusion, the treprostinil-treated group had detectable 

segments of intact liver SECs with show typical fenestration, similar to that of control.   

F E 



 

  60 

 

 

Figure 15: Rat liver SEC analysis by SEM 
(A) Normal liver showing typical fenestration (arrows), (B) placebo- and (C) treprostinil-treated animals at 1, 3, and 
6 hours post-OLT. Data are representative of 3 separate animals. SEC, sinusoidal endothelial cell; P, platelet 
aggregation. 
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Additional morphological and intracellular detail was acquired using TEM analysis of liver graft 

early post-transplantation.  Normal liver with typical fenestration and close association with 

hepatocyte microvilli and space of Disse, shown in Figure 16A.  In placebo-treated animals, at 1 

hour post-reperfusion (Figure 16B), the sinusoidal surface of the placebo group was completely 

devoid of SECs, the space of Disse was greatly reduced, while macrophages and red blood cells 

infiltrated the sinusoidal space.  At 3-6 hours post-reperfusion, the placebo group developed 

sinusoidal congestion, endothelial cell detachment, increased platelet deposition, and hepatocytes 

showed vacuolization. Alternatively, treprostinil administration significantly alleviated these 

structural abnormalities.  Figure 16C shows that as early as 1 hour post-transplantation, liver 

graft from the treprostinil-treated group had preserved SEC fenestration and sinusoidal 

congestion was minimized.  Further, at 3 hours post-OLT, the restored proximity of SECs to 

hepatocyte microvilli and the space of Disse were visible, and a lack of platelet aggregation was 

noted.  By 6 hours post-reperfusion, the structure of SECs resembled that of a normal liver 

sinusoid.  These findings indicate that treprostinil preserved liver graft SEC structure and 

inhibited platelet, red blood cell, and macrophage infiltration into the sinusoid, thereby avoided 

hindrance of blood flow through the liver microvasculature in the early post-OLT period.  These 

findings indicate that treatment with treprostinil restored SEC structure similar to that of a 

normal rat as early as 6 hours post-OLT.    
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Figure 16: Rat Liver SEC analysis by TEM 
(A) normal, (B) placebo- and (C) treprostinil-treated liver grafts at 1, 3, and 6 hours post-OLT.  Data are 
representative of 3 separate animals. SEC, sinusoidal endothelial cell; M, macrophage; P, platelet aggregation; R,  
red blood cells.   
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2.3.6 Hepatic Tissue Blood Flow  

Hepatic tissue blood flow decreased to 56% of the pre-OLT levels and further decreased to 51% 

of the pre-ischemic levels at 3 hours post-reperfusion, in the placebo-treated group, shown in 

Figure 17.  Administration of treprostinil significantly increased pre-OLT hepatic tissue blood 

flow in donor graft to 150% of control.  At time zero, immediately post-reperfusion, hepatic 

tissue blood flow only dropped to ~80% of control in treprostinil-treated grafts.  Continuous 

treatment with treprostinil maintained approximately 70% of control blood flow at 3 hours post-

transplantation.  These results suggest that treprostinil preserved microcirculation through an 

increase in liver graft blood flow post-reperfusion.  

 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 
Figure 17: Hepatic tissue blood flow in placebo- and treprostinil-treated animals 

Blood flow measured by Laser Dopper Flow-Meter immediately before donor graft harvest (Pre-OLT), immediately 
after reperfusion (time zero), and at 3 hours post-transplantation.  Results are expressed as a percentage of the pre-
OLT level in control group.  *P < 0.05, ***P < 0.001 vs. placebo (n = 3-6). 
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2.3.7 Tissue Concentration of Cyclic Adenosine Monophosphate 

To confirm that treprostinil acts as an agonist at cell surface prostanoid receptors (IP), cAMP 

levels were measured in hepatic tissue (Figure 18).  There was no difference in cAMP levels in 

the placebo-treated group compared to normal liver at all time points measured.  Alternatively, in 

the treprostinil-treated group, cAMP levels significantly increased to 353.2 ± 9.7 and 363.1 ± 

23.9 pmol/gm at 1 and 3 hours post-OLT, respectively, compared to normal (178.4 ± 36.7 

pmol/gm).  By 48 hours post-transplantation, the amount of cAMP increased to 438.2 ± 11.8 

pmol/gm in the treprostinil-treated group, compared to 166.4 ± 66.7 pmol/gm in the placebo-

treated group.  These results confirmed that treprostinil is a potent stimulator of the IP receptor.   

 

 

 

 

 

 

 

 

 

 

Figure 18: Hepatic tissue levels of cAMP 
Measured by ELISA. *P < 0.05 vs. placebo; #P < 0.05, †P < 0.01 vs. normal liver (n = 3-6). 
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2.3.8 Tissue Concentration of Adenosine Nucleotides 

The concentration of ATP soon after the onset of reperfusion of ischemic liver has been reported 

to be a good predictor of hepatic function [158].  Therefore, we examined whether an 

improvement of hepatic function after reperfusion by treprostinil was a result of a preserved 

energy metabolism.  Figures 19A-D shows the changes in hepatic tissue levels of adenine 

nucleotides after reperfusion.  The normal value of ATP in hepatic tissue was 6.8 ± 0.3 nmol/mg, 

and is shown in Figure 19A.  In the placebo-treated group, the post-ischemic tissue content of 

ATP was significantly reduced early post-OLT, an effect which lasted at all time points 

thereafter, until sacrifice at 48 hr post-OLT.  Cold storage caused an 80% reduction in ATP at 1 

hour post-reperfusion and levels only recovered to 30% (2.1 ± 0.3 nmol/mg) of normal, which 

resulted in a less than 50% recovery of total adenine nucleotides (10.7 ± 2.3 nmol/mg) at 48 

hours post-transplantation, compared to normal (22.5 ± 1.5 nmol/mg), shown in Figure 19D.  

While the re-synthesis of ATP remained suppressed in the placebo group, ATP levels 

significantly increased in the treprostinil-treated group, reaching nearly 80% (5.4 ± 1.6 nmol/mg) 

of normal by 48 hours post-reperfusion.  Furthermore, at 1 hour post-reperfusion, total adenine 

nucleotide levels in the treprostinil-treated group had fully recovered to 100% of normal values 

(26.5 ± 6.2 vs. 22.5 ± 1.5 nmol/mg, respectively).  These results suggest that treprostinil restored 

energy metabolism in the liver graft early post-OLT.   
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Figure 19: Hepatic tissue levels of adenine nucleotides 

(A) ATP, (B) ADP, (C) AMP, and (D) TAN at 1, 3, and 48 hrs post-OLT. *P < 0.05 vs. placebo; #P < 0.05, †P < 
0.01 vs. normal liver, (n = 3). TAN, total adenine nucleotide 
 
 

Accumulation of hypoxanthine is converted to xanthine by xanthine oxidase, which is 

accompanied by free radical production and capable of cell injury [159].  The increase in hepatic 

tissue levels of hypoxanthine (Figure 20A) and corresponding rise in xanthine (Figure 20B) in 

both the placebo- and treprostinil-treated groups suggested that treprostinil protected hepatic 

grafts from I/R injury independent of the xanthine oxidase pathway.  Alternatively, the preserved 
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hepatic tissue levels of adenosine (Figure 20C) and increased levels of inosine (Figure 20D) in 

the treprostinil-treated groups is likely to have contributed to the resynthesis of ATP, which is 

dependent on available total adenine nucleotides as salvageable precursors for AMP synthesis 

after cold storage [32].  

 

  

 

 

Figure 20: Hepatic tissue levels of purines 
(A) hypoxanthine, (B) xanthine, (C) inosine, and (D) adenosine in liver grafts at 1, 3, and 48 hrs post-OLT. #P < 
0.05, †P < 0.01 vs. normal liver (n=3) 
 
 

A B 

C D 



 

  68 

2.3.9 Treprostinil Plasma Concentration 

Based on therapeutic responses of treprostinil and corresponding plasma concentrations, a 

plasma concentration between 5-10 ng/ml was targeted for this study (Figure 21).  To achieve 

this concentration, the dose of treprostinil (100 ng/kg/min) was selected, which is within the 

range of tolerated doses in previous animal studies (Personal communication - Mike Wade, PhD, 

United Therapeutics, Inc.).  To reach steady-state plasma concentration at the time of 

hepatectomy and transplantation, it was necessary to begin treprostinil administration 

approximately 18 hrs prior to surgery.  Plasma concentrations in the placebo-treated group and 

normal rat plasma were below the limit of quantification (< 0.025 ng/mL).    

 
 

 

Figure 21: Treprostinil plasma concentration 
Plasma samples from treprostinil-treated animals at 1, 3, and 48 hours post-OLT (n = 3). 
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2.4 DISCUSSION 

Previous clinical studies using intravenous PGE1 were promising in minimizing ischemic injury, 

but the sample size was too small [10].  In the early 1990s, Takaya and colleagues [147, 149] 

demonstrated that PGE1 protected the liver graft from antibody-mediated rejection in crossmatch 

positive recipients comparable to negative cross matches and it also significantly improved 

kidney function in liver recipients.  Later, in 1995, Henley et al. [141] initiated PGE1 treatment 

during the anhepatic phase in patients undergoing OLT, but there was no significant effect on the 

primary end-points of patient or graft survival. However, the study showed significantly shorter 

intensive care unit stays and hospitalizations post-transplantation, reduced needs for renal 

support and less need for surgical intervention other than re-transplantation in the treatment 

group.  The same year, Takaya et al. [148] reported successful treatment of adult liver recipients 

for PNF with postoperative PGE1 therapy. Despite improved 1-year graft survival and a lower 

incidence of PNF in the PGE1 group vs. historical control, some patients did not tolerate PGE1.  

Subsequently, Neumann et al. [144] showed that epoprostenol (PGI2) improved early 

microvascular blood flow and that it could be safely administered to adult patients post-

operatively; however the primary endpoint of this study was not met.   

Prostaglandins (PGE1 and PGI2) play a critical role in maintaining vascular homeostasis 

of microcirculation, which contributes to its wide range of protective effects against I/R-induced 

liver injury [2, 17, 138].  Stable PGI2 analogues have been shown to produce vasodilation of 

pulmonary and systemic arterial vascular beds and inhibition of platelet aggregation [127].  In 

addition, PGI2 analogues have been reported to maintain blood flow, inhibit local vascular 

thrombosis, and decrease leukocyte activation by inhibiting TNF-α production and other pro-
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inflammatory cytokines, neutrophil activation and adhesion to the vascular endothelium, and 

counteract the activity of vasoconstrictors and platelet aggregation [17, 139].   

In this study we evaluated the effect of treprostinil, a commercially available PGI2 

analogue, for protection of liver grafts against I/R injury during OLT.  Advantages of treprostinil 

over other PGE1 and PGI2 analogues include its increased stability, as well as longer elimination 

half-life, and increased potency (three- and six-fold, respectively) [127].  The current study 

provided evidence for the multiple factors involved in I/R injury and for the protective effect of 

treprostinil, which included morphological evidence of a preserved SEC structure, preserved 

energy stores, in addition to the class-wide effects of PGs.  Treprostinil has the potential to 

minimize I/R injury during clinical OLT, and ultimately increase the number of suitable grafts 

available for transplantation and improve overall patient outcomes.  

To a greater or lesser extent, the surgical procedure of human liver transplantation 

exposes the liver graft to three different types of ischemia, warm ischemia- before organ 

procurement; cold ischemia- during graft preservation; and rewarming ischemia- during graft 

implantation [8].  Most experimental models in the rodent employ a technique of clamping the 

hepatic artery and or the portal vein to induce hepatic I/R injury.  While this procedure occludes 

hepatic blood flow and induces ischemic damage to the liver, it does not reflect the ischemic 

injury which occurs during graft preservation, when liver grafts are stored in cold UW 

preservation solution, before implantation into the recipient, i.e. in clinical OLT.  The primary 

targets of cold I/R injury are the liver SECs, whereas hepatocytes are the main targets in warm 

ischemia [58].  Damage to SECs leads to loss of microvascular integrity, decreased blood flow, 

and an accumulation of neutrophils in the liver allograft.  Further platelet aggregation, local 
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tissue destruction, up-regulation of inflammatory cytokines, and structural alterations in tissue 

leads to hepatocellular dysfunction [9, 29].  Several mechanisms of ischemic injury share a 

common pathway, however, there are important differences between the warm and cold ischemia 

model, most notably being the targets of cellular injury, which require the OLT model to fully 

characterize I/R injury during clinical OLT.  

SECs have a crucial role in the overall homeostasis with the microvasculature, 

accounting for approximately 70% of the cell population within the liver sinusoid [40] and 

destruction of these cells during I/R injury significantly augments liver graft injury post-

transplantation [29].  Ischemic injury to the endothelium disrupts the delicate homeostasis in the 

microcirculation [29], leading to prominent intra-sinusoidal coagulation, which promotes 

neutrophil activation and adhesion, platelet aggregation, resulting in a reduced hepatic blood 

flow and impeding hepatic microcirculation. Treprostinil-treated animals exhibited an almost 

completely preserved SEC lining, complete with fenestration resembling that of normal, as early 

as six hours post-reperfusion, indicating the effects of treprostinil on leukocyte adherence is part 

of its favorable interactions between leukocytes and endothelial cells.  A result of this interaction 

is the prevention of damage to SECs, which includes attenuation of swelling of sinusoidal lining 

cells and hepatocytes to avoid hindrance of blood flow through the liver microvasculature during 

reperfusion. Improved preservation of the endothelial cell lining, along with a reduced release of 

pro-inflammatory cytokines, will avoid accumulation and activation of granulocytes, thereby 

limiting local concentration of deleterious cytotoxic oxygen free radicals.  Increasing blood flow 

to the liver during reperfusion and inhibition of platelet aggregation and pro-inflammatory 

cytokines are essential for a good post-operative prognosis, and treprostinil appears to have 

accomplished these goals.   
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The initial ischemic injury is a result of tissue deprivation of oxygen, which disturbs the 

intracellular energy metabolism and enzyme function, resulting in a depletion of adenine 

nucleotides leading to cellular edema [160].  Secondary results of the oxygen disturbance and 

progressive degradation of energy metabolism are reflected by the destruction of tissue and 

cellular structures [29].  Cyclic AMP, an important intracellular second messenger in many cell 

types, is reported to produce an efflux of ischemia-induced accumulated intracellular calcium, 

which prevents ATP depletion, stabilizes the hepatocellular membrane, and preserves 

intracellular adenine nucleotides [161].  The reduction of intracellular calcium results in 

vasodilation [161].  Addition of the membrane permeable cAMP analogue, dibutyryl-cAMP, to 

preservation solution resulted in significantly enhanced metabolic activity and secretion function 

demonstrated by cumulative bile production of reperfused liver following 24 hr cold graft 

storage [162].  Traditionally, PGI2 and its analogues exert their biological effects by binding to 

cell surface IP receptors, which couple via the stimulatory G protein to stimulate adenylyl 

cyclase and activate intracellular cAMP [111] to act as a second messenger of PGI2 on vascular 

smooth muscle, platelets, endothelial cells, and neutrophils [161].  The concentration of cAMP 

depends on the balance between its synthesis and degradation in the cytoplasm; this molecule is 

formed by ATP in the reaction catalyzed by adenylyl cyclase, and catabolized by cyclic 

nucleotide phosphodiesterase [163].  Thus, homeostasis within the vasculature is achieved by 

maintaining the PGI2/TxA2 balance, where each substance has opposing effects on cAMP [109], 

thereby regulating various physiological processes occurring at the interface between the blood 

and endothelium.   

Loss of SEC viability, as determined morphologically, was completed after 24 hours or 

longer of ischemic storage [164].  While cold storage times for human transplantation varies 



 

  73 

widely, animal studies focus on storage times of up 18 hrs, with some extended to 24 hrs or 

more.  We employed a rat model with 18 hr of cold ischemic storage to induce significant 

hepatic injury.  Considering the many factors involved in I/R injury and the role of PGI2 in 

maintaining cellular homeostasis, treprostinil has a particular relevance in the setting of I/R 

injury in OLT. Treprostinil therapy could be administered to patients undergoing OLT as a 

clinical strategy against hepatic I/R injury because of its simple method of application prior to, 

during the surgery, and the early post-transplant period.  After demonstrating efficacy in the 

current treatment model (donor plus recipient), additional animals were included to examine the 

efficacy of treprostinil in a treatment model (recipient only) which more closely resembles that 

of the clinical situation.  Results from the recipient only treatment group showed significantly 

reduced hepatocellular injury, supporting the clinical utility of this agent.  Recently, Sakai et al. 

demonstrated that treprostinil could be safely administered at doses >100 ng/kg/min to adult 

patients with pulmonary arterial hypertension, who were not therapeutically controlled by other 

PGI2 analogues.  This conversion enabled two of the patients to successfully undergo OLT [165].  

No hemodynamic issues were observed during surgery, indicating safety of treprostinil 

administration during OLT.  

In conclusion, the process of I/R injury to the liver during OLT combines interrelated 

factors that produce a cascade of events, which can ultimately lead to hepatic graft failure. I/R 

injury remains a significant limitation in clinical liver transplantation.  The significance of this 

study is in demonstrating that treprostinil is an effective approach to ameliorate hepatic I/R 

injury associated with rat OLT.  In addition, the results of this study strongly support clinical 

investigation of treprostinil as a potential therapy for the protection of liver grafts against I/R 

injury during OLT.  This finding is an important advancement to the field of liver transplantation 
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and, potentially, to the field of solid organ transplantation.  Amelioration of hepatic graft injury 

with treprostinil may improve both short- and long-term transplant outcomes.  
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3.0  EFFECT OF ISCHEMIA-REPERFUSION INJURY ON DRUG METABOLISM 

DURING RAT ORTHOTOPIC LIVER TRANSPLANTATION* 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
*N. Ghonem, J. Yoshida, N. Murase, S.C. Strom, and R. Venkataramanan.  Ischemia-reperfusion 
decreases CYP450 Metabolism during Rat Orthotopic Liver Transplantation.  Submitted to Drug 
Metabolism and Disposition, January 2011. 
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3.1 INTRODUCTION 

Ischemia-reperfusion injury, an inflammatory disease-state manifested during OLT, significantly 

contributes to the impaired function of the transplanted liver graft.  Inflammatory mediators, 

including pro-inflammatory cytokines, have been shown to reduce the metabolism of drugs 

primarily by the down-regulation of cytochrome P450 (CYP450) enzymes expression and or 

activity [85].  An alteration in drug metabolism as a result of inflammation or infection has major 

implications when the capacity of the liver, such as the case during liver transplantation, and 

other organs to handle drugs is severely compromised.  Decreased catalytic activities of hepatic 

CYP450 enzymes can cause dose-dependent drug toxicity associated with impaired in vivo drug 

clearance [85, 166, 167].  The resulting outcomes of reduced drug clearance, which accompanies 

inflammation and states of reduced blood flow, could be toxic or sub-therapeutic plasma drug 

concentrations [168].   

The CYP450 enzyme system reflects the liver’s ability to metabolize drugs [169] and 

several studies have indicated that CYP activity is an important indicator of liver graft function 

post-transplantation [90-93].  Experimental animal studies have shown that live bacterial, viral, 

and parasitic infections are each capable of down-regulating the activities and or expression of 

CYP450 enzymes in the liver during inflammation [85, 166, 170].  Several models of 

inflammation, i.e. partial hepatectomy or LPS-stimulation, have also been used to examine the 

effect of inflammation on different subsets of hepatic P450s in vivo [85, 171].  Limited data exist 

on the direct effect(s) of hepatic I/R injury on CYP450 expression and activity in an OLT model, 

following graft storage in cold UW solution.  Therefore, to more closely examine the hepatic 
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injury which occurs during clinical liver transplantation, we performed this study to examine the 

effect of I/R injury on the CYP450 mRNA and protein expression and activity on the major rat 

hepatic CYP450 enzymes and the impact of treatment with treprostinil to prevent I/R injury in a 

rat OLT model.  

3.2 MATERIALS AND METHODS 

3.2.1 Chemicals 

Chlorzoxazone (CZN), 6-hydroxychlorzoxazone (6-OH CZN), nicotinamide adenine 

dinucleotide phosphate-oxidase (NADPH), and testosterone (TST) were purchased from Sigma 

(St. Louis, MO).  2α-, 6β-, and 16α-hydroxytestosterone (2α-, 6β-, and 16α-OH TST, 

respectively) were purchased from Steraloids (Newport, RI).  Midazolam (MDZ) and 1-

hydroxymidazolam (1-OH MDZ) were purchased from Toronto Research Chemistry (Ontario, 

CA).  Methanol and water [high-performance liquid chromatography (HPLC) grade] were 

purchased from Thermo Fisher Scientific (Waltham, MA).  All other chemicals used were of 

HPLC grade or the highest purity available.  

3.2.2 Animals 

All procedures were performed according to the guidelines of the National Research Council’s 

Guide for the Humane Care and Use of Laboratory Animals and approved by the Institutional 

Animal Care and Use Committee at the University of Pittsburgh.  Male Lewis rats weighing 200 
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- 300 g (Harlan Sprague Dawley, Inc, Indianapolis, IN) were maintained in a laminar-flow, 

specific-pathogen–free atmosphere at the University of Pittsburgh with a standard diet and water 

supplied ad libitum.  

3.2.3 Orthotopic Liver Transplantation 

The basic techniques of liver harvesting and OLT without hepatic arterial reconstruction were 

performed as previously described [151]. Briefly, rats were anesthetized with isoflurane 

inhalation and a midline incision was made in the abdominal cavity and the donor liver was 

excised and immediately flushed with cold UW solution, stored in UW solution at 4 oC for 18 

hours, and orthotopically transplanted into recipients.  All surgeries were performed by the same 

surgeon.   

3.2.4 Treprostinil Administration 

Treprostinil (1 mg/ml) and placebo (sodium chloride, metacresol, sodium citrate, water for 

injection) were provided by United Therapeutics, Inc. (Durham, NC).  Treprostinil (100 

ng/kg/min) or placebo was administered to donor and recipient animals subcutaneously via an 

Alzet osmotic pump (Durect Corp., Cupertino, CA).  The surgeon was blinded to treatment. 

3.2.5 Experimental Design  

Donor animals received placebo or treprostinil (100 ng/kg/min) for 24 hours before hepatectomy 

and corresponding recipient animals received placebo or treprostinil for 24 hours before 
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transplantation and until the time of sacrifice, to ensure steady-state concentrations.  Recipients 

were sacrificed at 1, 3, 6, and 48 hours post-transplantation.  

3.2.6 RNA Extraction and Real Time RT-PCR Analysis 

Total RNA was extracted from liver tissue (50 – 100 mg) using TRIzol reagent (Invitrogen, 

Carlsbad, CA) according to manufacturer’s instructions.  RNA concentration was determined by 

UV absorbance at 260/280 nm (μQuant Microplate 25 Spectrophotometer) and RNA integrity 

was checked by 0.5% agarose gel electrophoresis stained with ethidium bromide.  Two 

micrograms of total RNA from each sample was used to generate first-strand cDNA by use of 

the First Strand cDNA synthesis kit (Promega, Madison, WI).  A reaction mixture containing 

200 U monkey myeloblastosis virus reverse transcription reaction (MMLV, Promega, Madison, 

WI)-Reverse transcriptase, 1 mM dNTPs and 25 U RNasein (Promega) was added to the 

previous mixture and incubated at 37 °C for 60 minutes.  DNase-I treated total RNA from each 

sample was mixed with 0.5 µg of Random Hexamers (Promega) heated to 70 °C for 5 minutes 

then cooled to 4 °C.  Hepatic mRNA levels were measured with the TaqMan® system using 

primers purchased from Applied Biosystems, listed in Table 3.  Samples were analyzed in 

triplicate and relative gene expression was measured using the comparative CT method, with 

GAPDH as internal control.   
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Table 3: Real-Time PCR assay IDs for genes detected by TaqMan® gene expression assays 

Gene  Symbol                                        Gene Name RefSeq Accession # 

CYP3A1/3A23 Cytochrome P450, family 3, subfamily a, polypeptide 1/23 NM_013105.2 

CYP3A2 cytochrome P450, family 3, subfamily a, polypeptide 2 NM_153312.2 

CYP3A18 cytochrome P450, family 3, subfamily a, polypeptide 18 NM_145782.1 

CYP2E1 cytochrome P450, family 2, subfamily e, polypeptide 1 NM_031543.1 

CYP2C7 cytochrome P450, family 2, subfamily c, polypeptide 7 NM_017158.1 

CYP2C11 cytochrome P450, family 2, subfamily c, polypeptide 11 NM_019184.2 

CYP2D3 cytochrome P450, family 2, subfamily d, polypeptide 3 NM_173093.1 

GAPDH Glyceraldehyde-3-phosphate dehydrogenase NM_017008.3 

3.2.7 Preparation of Liver Microsomes 

Snap-frozen slices of liver were used to prepare microsomes by a standard differential 

centrifugation procedure with minor modifications [172].  Briefly, liver pieces were 

homogenized with 3 volumes of a homogenization buffer (50 mM Tris-HCl buffer, 1.0% KCl, 

and 1 mM EDTA, pH 7.4) using an electrical homogenizer (Polytron, Brinkmann Instruments, 

Westbury, NY). The crude homogenate was centrifuged (Optima XL-100K ultracentrifuge, 

Beckman Instruments, Palo Alto, CA) at 10,000g for 20 minutes (4 °C). The supernatant was 

further centrifuged at 105,000g for 65 min at 4 °C. The microsomes were reconstituted using a 

manual glass homogenizer (Wheaton, Millville, NJ) with 50 mM Tris-HCl buffer (pH 7.4) 

containing 20% glycerol.  Aliquots were immediately stored at -80 °C until used. The protein 

content of microsomes was determined by the Bradford method [153] using BSA as standard.  
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3.2.8 Western Blot Analysis of Microsomal P450 Protein Expression 

Protein levels of CYP2E1, 2C11, and 3A2 in rat liver microsomes were measured by western 

blot analysis.  Microsomal protein (25 ug) was separated by SDS-polyacrylamide gel 

electrophoresis (10% NuPAGE, Invitrogen, Carlsbad, CA).  The proteins were transferred to a 

PVDF membrane, briefly incubated in Ponceau S (Sigma-Aldrich) to ensure equal protein load 

on membrane and complete transfer, then blocked overnight with TBST containing 5% Non Fat 

Dry Milk (Bio-Rad).  After washing in TBST, membranes were probed with polyclonal rabbit 

anti-rat CYP2E1, CYPC11, or CYP3A2 antibodies (1:10,000; 1:4,000, and 1:5000, respectively; 

Abcam, Cambridge, MA).   Next, the membranes were washed and probed with a secondary 

monoclonal goat anti-rabbit IgG antibody coupled to horseradish peroxidase (1:20,000; Abcam).  

Immunodetection was performed using an ECL detection kit (Thermo Scientific, Rockford, IL).  

The density of the protein bands were quantified using ImageJ software 1.40 (National Institutes 

of Health, Bethesda, MD).  Values were normalized to GAPDH (1:30,000; Abcam).   

3.2.9 Microsomal Incubations 

Conditions for each substrate were optimized by varying the time of incubation, the protein 

concentration, and substrate concentration such that each reaction took place in the linear 

working range.  The incubation included microsomes, MgCl2 (10 mM), and phosphate buffer 

(0.1 mM), pH=7.4.  The samples were pre-incubated in a shaking water bath for 5 min at 37 °C 

before addition of NADPH (1 mM) to initiate the reaction. All reactions were terminated upon 

addition of ice-cold methanol.  Following termination, samples were centrifuged at 3,000 rpm for 
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10 minutes at 4 oC and samples were analyzed immediately.  Normal liver represent samples 

from healthy rats not subjected to OLT.   

3.2.10 Chlorzoxazone Assay  

The formation of 6-OH CZN from CZN was used to measure CYP2E1 activity.  Microsomal 

incubations contained 0.75 mg/ml microsomal protein and 200 uM of CZN.  Samples were 

incubated for 30 minutes at 37 oC in a shaking water bath.  The concentration of 6-OH CZN was 

measured using an Alliance HPLC system (Waters 2695, Milford, MA) with a Photodiode Array 

detector (Waters 2998) set at 297 nm.  The mobile phase consisted of acetonitrile: 0.25% acetate 

(18:82) pH 3.8 at a flow rate of 1.2 ml/min and 6-OH CZN was separated using a Symmetry® 

C18 (4.6 x 250 mm, 5 um) column (Waters).   The formation rate was calculated from a standard 

curve of known concentration of 6-OH CZN (0.15 – 10 ug/ml).  The C.V. was less than 10% for 

this assay. 

3.2.11 Testosterone Assay  

The main male-specific isoform of cytochrome P-450 is 2C11 which gives a high yield of 

oxidized testosterone in positions 2α- and 16α- [173, 174]. Therefore, the formation of 2α- and 

16α-OH TST from TST was used to measure CYP2C11 activity and the formation of 6β-OH 

TST was used to measure CYP3A activity.  Microsomal incubations consisted of 0.5 mg/ml 

microsomal protein and 150 uM TST, final volume 0.25 mL.  Samples were incubated for 20 

minutes at 37 oC in a shaking water bath.  The concentrations of 2α-, 6β-, and 16α-OH TST were 

measured by HPLC-UV.  Compounds were separated using a LiChrospher® 100 C18 (4.6 x 250 
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mm, 5 µm) column (Merck, Gibbstown, NJ).  The mobile phase consisted of 60% methanol in 

water.  The HPLC system consisted of an autosampler (Waters 717, Milford, MA) and solvent 

delivery system (Waters 501) attached to a UV detector (Waters 486), set at 242 nm. The 2α-, 

6β-, and 16α-hydroxylation activities of TST were calculated from a standard curve of known 

concentration (0.2 -10 ug/ml). The C.V. was less than 10% for this assay.    

3.2.12 Midazolam Assay  

Midazolam is predominantly metabolized to 1-OH MDZ by CYP3A1 and CYP3A2 in rats and 

thus it can be used as a biomarker of CYP3A activity in vivo [174].  Microsomal incubations 

contained 0.375 mg/ml microsomal protein and 0.3 uM of MDZ. The samples were incubated for 

20 minutes in a shaking water bath at 37 oC. The mobile phase consisted of (A) 2 mM 

ammonium acetate with 0.1 % formic acid in 5% methanol and (B) 100% methanol at a flow rate 

of 0.3 ml/min.  MDZ and 1-OH MDZ were separated using a Symmetry® C18 (2.1 x 50 mm, 3.5 

um) column (Waters) with a Symmetry® (2.1 x 10 mm, 3.5 um) guard column (Waters). The 

Alliance HPLC (Waters 2695, Milford, MA) was attached to a Quatromicro™ mass 

spectrometer (Waters), operated in positive electrospray ionization.  The selected reaction 

monitoring transitions of m/z 326.05 → 291.05 (collision energy 28 eV, cone voltage 55) for 

MDZ; m/z 341.87 → 323.97 (collision energy 20 eV, cone voltage 37) for 1 -OH MDZ; m/z 

331.09 → 295.97 (collision energy 28 eV, cone voltage 55) for deuterated midazolam were 

monitored. Parameters were optimized to obtain the highest [M+H] ion abundance and were as 

follows: source temperature, 100 °C; capillary voltage, 0.8 kV; desolvation temperature, 500 °C; 

cone gas flow, 50 L/hr; desolvation gas flow, 50 L/hr.  Analytical data were analyzed using 

Masslynx software version 4.1 (Waters).  The formation rate of 1-OH MDZ was calculated by 
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use of a standard curve of known concentration of 1-OH MDZ (1.25 – 25 ng/ml).   The C.V. was 

less than 5% for this assay. 

3.2.13 Statistical Analysis 

Data are represented as the mean ± SEM. One-way ANOVA was performed to determine the 

difference between groups, followed by Bonferroni post-hoc analyses, using Prism software v4.0 

(GraphPad, San Diego, CA).  Differences were considered significant at a P-value < 0.05.  

3.3 RESULTS 

3.3.1 Hepatic I/R Injury 

In Chapter 2, we demonstrated that treprostinil significantly reduced serum ALT and AST levels 

compared to the placebo-treated groups (Figures 7 and 8).  Corresponding areas under the curve 

(AUC) from 0 to 48 hours post-reperfusion of serum ALT and AST were calculated by non-

compartmental analysis using WinNonlin® software (Pharsight, Mountain View, CA).  In both 

the donor + recipient (D+R) and recipient only (R) treatment groups, administration of 

treprostinil resulted in significantly lower AUC values, compared to the placebo-treated group, 

listed in Table 4 and 5, respectively.  The results indicate that treprostinil-treated rats 

experienced significantly less hepatic injury than placebo-treated rats in both treatment groups.  
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Table 4: AUC0 -48 hrs post-reperfusion serum ALT and AST in donor + recipient treatment group 
D+R, donor + recipient treatment;*P < 0.05, ***P < 0.001 vs. placebo (n=3-4). 

 

 

 

 
 

 

 
Table 5: AUC0 -48 hrs post-reperfusion serum ALT and AST in recipient only treatment group  

R, recipient only treatment; **P < 0.01, ***P < 0.001 vs. placebo (n=3-4). 
 

3.3.2 CYP450 mRNA Expression  

The effect of I/R injury on the mRNA expression of CYP enzymes in hepatic tissue at 6 and 48 

hours post-OLT was examined by real time RT-PCR.  At 6 hr post-OLT, differences between the 

placebo- and treprostinil-treated groups were observed and data are shown in Figure 22.  In the 

placebo-treated group, hepatic mRNA expression of CYP2E1 was reduced to 18% of normal.  In 

contrast, treprostinil improved mRNA expression by two-fold, to 38% of normal.  CYP2C11 was 

reduced to 20% of normal compared to 40% in treprostinil-treated group.  CYP3A2 expression 

was reduced to 15% of normal, and treprostinil improved it to 27% of normal.  In addition, 

Group (Treatment) AUC0-48 hr post-OLT (IU*hr/L) 

 ALT AST 

Placebo (D+R) 106,650 ± 7,888 188,470 ± 40,540 

Treprostinil (D+R) 32,650 ± 2,479*** 52,246 ± 5,380* 

Group (Treatment) AUC0-48 hr post-OLT (IU*hr/L) 

 ALT AST 

Placebo (R) 102,165 ± 2,811 197,281 ± 13,710 

Treprostinil  (R) 51,339 ± 10,366** 63,779 ± 2,325*** 
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mRNA expression of CYP3A1/23, 3A18, and 2C7 were also reduced in the placebo group to 37, 

27, and 26%, respectively.  Treprostinil administration improved the mRNA expression of these 

CYP enzymes to 81, 45, and 42%, respectively.  No difference in CYP2D3 mRNA expression 

was observed; levels were reduced to 62% in both the placebo- and treprostinil-treated groups. 

 

 

Figure 22: Hepatic mRNA expression of CYP450 enzymes at 6 hours post-OLT 
*P < 0.05, **P < 0.01, *** P <0.001 vs. normal liver (n=3). 

 

 

The mRNA expression of CYP450 enzymes at 48 hours post-OLT is shown in Figure 23.  The 

suppression of hepatic mRNA expression of CYP2E1 in the placebo-treated group slightly 

improved to 29% of normal, whereas the levels in the treprostinil-treated group further improved 

to 49% of normal.  Interestingly, the mRNA expression CYP2C11 in both the placebo-treated 

group and treprostinil-treated group remained at approximately 30% of normal.  No change in 

CYP3A2 mRNA expression was observed and levels remained at 15 and 22% of normal in 

placebo and treprostinil-treated animals, respectively.  Alternatively, the hepatic mRNA 
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expression of CYP3A1/23 continued to decline to 18% of normal in the placebo-treated group 

while expression was almost doubled in the treprostinil-treated group to 30% of normal.   

 

Figure 23: Hepatic mRNA expression of CYP450 enzymes at 48 hours post-OLT 
*P < 0.05, **P < 0.01, *** P <0.001 vs. normal liver (n=3). 

 

3.3.3 CYP450 Protein Expression  

The effect of I/R injury on the protein expression of CYP2E1, CYP2C11, and CYP3A2 in liver 

graft at 48 hr post-OLT was examined using western blot analysis.  The protein levels of all three 

CYP450 enzymes were significantly decreased in the placebo-treated group, compared to normal 

liver.  Shown in Figure 24, the protein expression of CYP2E1 was reduced to 63% of normal in 

placebo and treprostinil restored expression to 96% of normal.  The protein expression of 

CYP2C11 was significantly reduced to 58% of normal levels, and treprostinil significantly 

improved expression to 67% of normal (Figure 25).  In this model system, CYP3A2 was the 

enzyme most significantly down-regulated by I/R injury, with protein levels reduced to 27% of 

normal in the placebo group, shown in Figure 26.  Treprostinil significantly improved CYP3A2 

protein expression by more than two-fold of placebo, to 62% of normal.  The results indicate that 



 

  88 

the impact of I/R injury on CYP450 protein expression persisted at least up to 48 hr post-OLT 

and treatment with treprostinil attenuated this injury and significantly improved the protein 

expression of CYP2E1, 2C11, and CYP3A2 in liver graft following OLT.   

 

 

 
Figure 24: Hepatic microsomal CYP2E1 protein 

A) Western blot analysis of normal (lanes 1-2), treprostinil-treated (3-5), and placebo-treated (6-8) animals at 48 hr 
post-OLT. (B) Data are expressed as a percentage of normal liver, normalized to GAPDH expression; *P < 0.05 vs. 
normal liver; #P < 0.05 vs. placebo.  
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Figure 25: Hepatic microsomal CYP2C11 protein 
(A) Western blot analysis of normal (lanes 1-2), treprostinil-treated (3-5), and placebo-treated (6-8) animals at 48 hr 
post-OLT. (B) Data are expressed as a percentage of normal liver, normalized to GAPDH expression; ***P < 0.001 
vs. NL; †P < 0.01 vs. placebo. 
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Figure 26: Hepatic microsomal CYP3A2 protein 
(A) Western blot analysis of normal (lanes 1-2), treprostinil-treated (3-5), and placebo-treated (6-8) animals at 48 hr 
post-OLT. (B) Data are expressed as a percentage of normal liver, normalized to GAPDH expression; ***P < 0.001 
vs. normal liver; ‡P < 0.001 vs. placebo.  
 

3.3.4 CYP450 Enzyme Activity in Liver Graft Post-OLT  

The impact of I/R injury on the drug metabolizing activity of CYP2E1, CYP2C11, and CYP3A 

was examined at 1, 3, and 48 hr post-OLT in rat liver microsomes.  The enzymatic activity of 

CYP2E1 was determined using chlorzoxazone as a substrate.  The formation rate of 6-

hydroxychlorzoxazone in normal rat liver was 0.59 ± 0.01 umol/min/mg, shown in Figure 27.  In 

the placebo group, no significant changes in CYP2E1 activity occurred early post-OLT, but at 48 
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hours post-transplantation, CYP2E1 activity in the placebo group was reduced to 35% (0.21 ± 

0.05 umol/min/mg) of normal.  In contrast, treprostinil significantly improved CYP2E1 activity 

at all time points, and at 48 hr post-OLT, CYP2E1 activity was increased by more than two-fold 

that of placebo, to 73% of normal (0.43 ± 0. 11 umol/min/mg). 

 

 

Figure 27: Hepatic CYP2E1 activity 
Formation rate of 6-OH CZN in rat liver microsomes from normal, placebo-treated, and treprostinil-treated group at 
1, 3, and 48 hr post-OLT; *P < 0.05, **P < 0.01 vs. normal liver; #P <0.05 vs. placebo. 
 

 

The major component of microsomal CYPs in male rat liver is CYP2C11 [175].  The enzymatic 

activity of CYP2C11 was determined using two substrates: 2α- and 16α-hydroxytestosterone, for 

which the formation rates in normal liver were 100.4 ± 15.9 and 190.7 ± 31.9 nmol/min/mg 

(Figure 28A and 28B), respectively.  While no significant changes were observed at 1 and 3 hr 

post-OLT, the hydroxylation of testosterone markedly decreased in the placebo group to 16% 

(16.2 ± 7.1 nmol/min/mg) and 25% (47.9 ± 14.6 nmol/min/mg) of normal, respectively, at 48 hr 

post-OLT.  In contrast, treprostinil improved CYP2C11 activity to 56% and 40% of normal (55.8 

± 14.4 and 75.4 ± 28.3 nmol/min/mg, respectively) at 48 hr post-OLT.    
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Figure 28: Hepatic CYP2C11 activity 
Formation rate of (A) 2α-hydroxytestosterone and (B) 16α-hydroxytestosterone in rat liver microsomes from 
normal, placebo-treated, and treprostinil-treated group at 1, 3, and 48 hr post-OLT; *P < 0.05 vs. normal liver. 
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The activity of CYP3A was determined using two substrates, 6β-OH TST and 1-OH MDZ, 

shown in Figures 29A and 29B.  The normal formation rate of 6β-OH TST was 94.5 ± 18.4 

nmol/min/mg, shown in Figure 29A.  Initially, at 1 and 3 hour post-OLT, the formation rate of 

6β-OH TST in both the placebo (202 ± 32.3 and 181.3 ± 48.0 nmol/min/mg, respectively) and 

the treprostinil-treated group (179 ± 15.7 and 195.7 ± 25.7 nmol/min/mg, respectively) slightly 

increased, which could be attributed to substrate specificity.  By 48 hr post-OLT, the activity in 

the placebo group significantly declined to 30% of normal (28.7 ± 7.7 nmol/min/mg).  

Alternatively, the treprostinil-treated group experienced less injury than the placebo group and 

preserved activity to 64% of normal (60.2 ± 12.6 pmol/min/mg).   

The normal formation rate of 1-OH MDZ was 5.5 ± 0.2 pmol/min/mg (Figure 29B).  At 1 

and 3 hours post-OLT, the formation rate of 1-OH MDZ in the placebo group decreased to 49% 

and 62% of normal (2.67 ± 0.17 pmol/min/mg and 3.4 ± 0.29 pmol/min/mg, respectively).  

Similar results were observed in the treprostinil-treated group; at 1 hr post-OLT, the formation 

rate of 1-OH MDZ had decreased to 49% with a slight improvement to 69% of normal at 3 hr 

post-OLT (2.7 ± 0.2 and 3.8 ± 0.3 pmol/min/mg, respectively).  At 48 hr post-OLT, however, the 

formation rate of 1-OH MDZ in the placebo group further decreased to 18% of normal (1.0 ± 0.4 

nmol/min/mg), whereas the activity in the treprostinil-treated group was maintained at 54% of 

normal (3.0  ± 0.5 nmol/min/mg).  The data indicate that I/R injury significantly reduced 

CYP450 activity and that treprostinil significantly improved CYP450 activity in the liver graft 

post-OLT.  
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Figure 29: Hepatic CYP3A2 activity 
Formation rates of (A) 6β-hydroxytestosterone and (B) 1-hydroxymidazolam  in rat liver microsomes of normal, 
placebo-treated, and treprostinil-treated group at 1, 3, and 48 hr post-OLT; *P < 0.05, **P < 0.01, *** P < 0.001 vs. 
normal liver; †P < 0.05 vs. placebo. 
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3.4 DISCUSSION 

During the host response to inflammation, inflammatory mediators, including release of pro-

inflammatory cytokines, have been associated with altered content, expression, and activity of 

CYP450 enzymes, consequently leading to alterations in the metabolism and elimination of 

certain drugs [85].  Several studies have demonstrated that the catalytic activities of many 

hepatic CYP450 enzymes in experimental models of liver inflammation or infection and in man 

are down-regulated, which can cause dose-dependent drug toxicity associated with impaired in 

vivo drug clearance [166, 167].  In most cases, the decreased activity is accompanied or preceded 

by decreased hepatic levels of the corresponding CYP450 mRNA and protein expression [85].  

The losses in drug metabolism are predominantly mediated through the production of pro-

inflammatory cytokines, which ultimately modify the expression and function of specific 

transcription factors.  There is evidence for both transcriptional and post-transcriptional down-

regulation of CYP450 mRNA by inflammatory stimuli [176]. Other proposed mechanisms that 

apply to specific P450s involve post-translational steps including enzyme modification and 

increased degradation [170].  

Administration of LPS is a classic model of bacterial sepsis, perhaps the best 

characterized model to investigate CYP450 down-regulation by inflammation, although different 

concentrations of LPS and cytokines administered in vivo or in vitro can have enzyme-selective 

effects on CYP450 expression [85, 177].  In addition, different models of inflammation or 

infection can result in different rates of drug clearance and or reduced microsomal metabolism of 

drugs [178].  The down-regulation of CYP2C11 following treatment with bacterial LPS, 
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turpentine, or by other inflammatory responses has been shown to primarily occur via decreased 

mRNA expression, which is followed by a similar decrease in its protein levels [85, 179, 180].  

Additional studies have shown that the CYP2C11 promoter contains a binding site for NF-kB, 

and that mutation of the promoter to inhibit NF-kB binding also prevented suppression of 

CYP2C11 transcription by either Il-1 or LPS [175].  Alternatively, CYP2E1 has been shown to 

be most affected by inflammation at the protein level [181, 182], through post-translational 

mechanisms, i.e. protein stabilization, to prevent degradation [70, 183-185]. 

Central to the mechanism of I/R-associated liver injury is the activation of the pro-

inflammatory cascade resulting in formation of pro-inflammatory cytokines.   Serum and hepatic 

mRNA levels of TNF-α, IL-6, and ICAM-1 were significantly up-regulated early post-OLT 

following 18 hr cold liver graft storage [107, 186].   Prostacyclin analogues have been shown to 

inhibit leukocyte activation by inhibiting TNF-α production, neutrophil activation and adhesion 

to endothelial cells [44, 139].  In Chapter 2, we demonstrated that treprostinil reduced 

significantly elevated hepatic tissue mRNA levels of TNF-α, IFN-γ, IL-6, and ICAM-1 early 

post-OLT, as well as increased hepatic blood flow before and immediately post-OLT.  In 

addition, treprostinil has been shown to inhibit the mRNA expression of multiple cytokines 

including IL-6, TNF-α and IL-1β by blocking the translocation of NF-kB in vitro [187].   

In a model of cold graft storage followed by reperfusion using a recirculating method, 

Izuishi et al. [169] examined the effects of prolonged cold graft storage on CYP content, protein 

and activity.  Significant changes were only observed after 48 hours of cold storage, which does 

not translate to the clinical setting.  Alternatively, in a rat model of partial (70%) ischemia, 1 

hour of warm ischemia followed by 3 hours reperfusion resulted in no significant changes in 

CYP2E1 or CYP2C11 protein, whereas CYP2E1, CYP2C11, and CYP3A2 activity decreased by 
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17, 34, and 30% [188-190].  Thirdly, in a porcine model of warm ischemia, after 6 hours of 

partial hepatic occlusion, the activities of CYP2C, CYP2E1, and CYP3A were decreased to 62, 

62, and 31%, respectively; however, CYP3A4 protein expression remained unchanged [191].  It 

is difficult to translate the results from a model of warm I/R injury or a liver graft reperfused ex 

vivo to the clinical setting, as it involves cold ischemia and warm reperfusion, thereby invoking 

different cellular injuries and, consequently, different patterns in host response.  While there are 

a plethora of studies demonstrating the effects of inflammation and infection on CYP enzyme 

regulation, there is a paucity of data that directly examine the effect(s) of I/R injury during OLT, 

which more accurately represents hepatic CYP450 regulation during clinical liver 

transplantation.  Therefore, to more accurately characterize the direct effects of I/R injury during 

OLT on hepatic CYP450 expression and activity, the current study was performed.  We 

hypothesized that I/R injury, an inflammatory disease-state manifested during OLT, would 

significantly impair CYP mRNA, protein, and activity in the liver graft, and that treprostinil 

would improve the expression and activity of CYP450 isoforms post-transplantation by 

inhibiting the inflammatory response and improving hepatic tissue blood flow. 

The finding that CYP2E1 protein expression was reduced to 62% of normal at 48 hr post-

OLT in the placebo group, and that treprostinil administration preserved CYP2E1 protein 

expression to 96% of normal (Figure 25), supports the hypothesis that CYP2E1 protein is 

stabilized, and suggests that treprostinil might interact with different sites on the CYP2E1 protein 

to stabilize or prevent degradation. Treprostinil improved the protein expression and activity of 

all CYP450 enzymes examined. The patterns of mRNA and protein expression and 

corresponding CYP450 activity support the idea that different inflammatory mediators regulate 

P450 expression at different levels and are enzyme-specific.  The discrepancy between our 
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results and those discussed above are most likely due to the difference in I/R models and the 

CYP450 substrates selected. Inhibition of pro-inflammatory cytokines is most likely one of the 

major mechanisms responsible for improved hepatic CYP450 expression and activity in the 

treprostinil group.  Furthermore, activity of CYP450 enzymes are an important indicator of liver 

graft function in vivo [90-93].  Decreased levels can influence the clinical response and, in worse 

cases, precipitate hepatic dysfunction or lead to graft failure.  The results presented herein 

indicate a discrpenacy between protein expression and CYP450 activity, which could possibly be 

the result of an accumulation of non-functional protein.  

The need to ameliorate I/R injury in liver transplantation is imminent; however, no 

treatment is currently available.  An agent that is capable of suppressing the inflammatory 

response as well as improving hepatic blood flow would greatly improve hepatic function in 

clinical liver transplantation.  Treprostinil has the potential to serve as a therapeutic option to 

protect the liver graft against I/R injury in OLT and to greatly improve CYP450 function post-

OLT.   

In conclusion, the results from the current study demonstrated that the activity of the 

major rat CYP450 enzymes were significantly reduced, secondary to reduced CYP450 protein 

and mRNA expression in rat liver graft post-reperfusion. Treprostinil administration significantly 

reduced hepatic I/R injury and improved the CYP450 expression and function in rat liver graft 

tissue post-OLT.    
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4.0  EFFECT OF ISCHEMIA-REPERFUSION INJURY ON HEPATIC DRUG 

TRANSPORTERS DURING RAT ORTHOTOPIC LIVER TRANSPLANTATION
*
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Expression of Hepatic Drug Transporters during Rat Orthotopic Liver Transplantation.  
Submitted to Journal of Pharmacology and Experimental Therapeutics, January 2011. 



 

  100 

4.1 INTRODUCTION  

The liver plays an important role in the detoxification of endogenous and exogenous compounds 

through biotransformation as well as enterohepatic circulation of bile acids and biliary excretion 

of these compounds.  Numerous endogenous compounds and xenobiotics are transported across 

membranes during the process of absorption, distribution, and clearance by transporters that are 

expressed in various organs.    

Hepatic transporters contribute to the translocation of substances across biological 

membranes and play a critical role in the body’s defense mechanism by aiding in the disposition 

and elimination of a variety of physiological substrates, metabolic products, and xenobiotics, to 

prevent the accumulation of potentially harmful compounds.  Hepatic transporters also play a 

significant role in the overall pharmacokinetics of various drugs. Alterations in the expression of 

hepatic drug transporters as a result of inflammation or infection have been reported [81-84, 

192].  In rodents, treatment with endotoxin, or its LPS component released from gram negative 

bacteria, can translocate across the intestinal mucosa into the circulation and has been shown to 

result in a pronounced alteration in the expression of hepatic transporters at the basolateral and 

canalicular membrane, including Ntcp (Slc10a1), Oatp (Slc1a1 and Slc1a2), and Oct (Slc22a1), 

as well as the ABC transporters Mdr1a/P-glycoprotein (Abcb1a), Bsep (Abcb11), and Mrp2 

(Abcb2) [86, 193], which correlated to elevated levels of inflammatory cytokines, including 

TNF-α, IL-1β, -6, and IFN-γ [194].   

Pro-inflammatory cytokines, e.g. TNF-α, IL-1β, and ICAM, are increased in the context 

of I/R injury associated with rat OLT [107, 186].  Limited data are available on the effect(s) of 

I/R injury on the expression of hepatic transporters in a relevant animal OLT model.  To better 

understand and characterize the effects of I/R injury on hepatic drug transport proteins during 
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liver transplantation, it is important to have a model that simulates the clinical conditions, 

including cold ischemic injury followed by warm reperfusion injury.  The purpose of this study 

was to examine the effects of I/R injury and evaluate the protective effect of treprostinil on the 

hepatic expression of uptake and efflux drug transporters in a clinically relevant rat OLT model.  

4.2 MATERIALS AND METHODS 

4.2.1 Animals 

All procedures were performed according to the guidelines of the National Research Council’s 

Guide for the Humane Care and Use of Laboratory Animals and approved by the Institutional 

Animal Care and Use Committee at the University of Pittsburgh.  Male Lewis rats weighing   

200 - 300 g (Harlan Sprague Dawley, Inc, Indianapolis, IN) were maintained in a laminar-flow, 

specific-pathogen–free atmosphere at the University of Pittsburgh with a standard diet and water 

supplied ad libitum.  

4.2.2 Orthotopic Liver Transplantation 

The basic techniques of liver harvesting and OLT without hepatic arterial reconstruction were 

performed as previously described [151]. Briefly, rats were anesthetized with isoflurane 

inhalation and a midline incision was made in the abdominal cavity and the donor liver was 

excised and immediately flushed with cold UW solution, stored in UW solution at 4 oC for 18 
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hours, and orthotopically transplanted into recipients.  All surgeries were performed by the same 

surgeon.   

4.2.3 Treprostinil Administration 

Treprostinil (1 mg/ml) and placebo (sodium chloride, metacresol, sodium citrate, water for 

injection) were provided by United Therapeutics, Inc. (Durham, NC).  Treprostinil (100 

ng/kg/min) or placebo was administered to donor and recipient animals subcutaneously via an 

Alzet osmotic pump (Durect Corp., Cupertino, CA).  The surgeon was blinded to treatment. 

4.2.4 Experimental Design 

Donor animals received placebo or treprostinil (100 ng/kg/min) for 24 hours before hepatectomy 

and corresponding recipient animals received placebo or treprostinil for 24 hours before 

transplantation and until the time of sacrifice, to ensure steady-state concentrations.    Recipients 

were sacrificed at 1, 3, 6, and 48 hours post-transplantation.  

4.2.5 RNA Extraction and Real Time RT-PCR Analysis 

Total RNA was extracted from liver tissue (50 – 100 mg) using TRIzol reagent (Invitrogen, 

Carlsbad, CA) according to manufacturer’s instructions.  RNA concentration was determined by 

UV absorbance at 260/280 nm (μQuant Microplate 25 Spectrophotometer) and RNA integrity 

was checked by 0.5% agarose gel electrophoresis stained with ethidium bromide.  Two 

micrograms of total RNA from each sample was used to generate first-strand cDNA by use of 
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the First Strand cDNA synthesis kit (Promega, Madison, WI).  A reaction mixture containing 

200 U monkey myeloblastosis virus reverse transcription reaction (MMLV, Promega, Madison, 

WI)-Reverse transcriptase, 1 mM dNTPs and 25 U RNasein (Promega) was added to the 

previous mixture and incubated at 37 °C for 60 minutes.  DNase-I treated total RNA from each 

sample was mixed with 0.5 µg of Random Hexamers (Promega) heated to 70 °C for 5 minutes 

then cooled to 4 °C.  Real-time RT-PCR was performed with the SYBR®  Green system using 

primers purchased from Super Array Biosciences (Frederick, MD), listed in Table 6. Samples 

were analyzed in triplicate and relative gene expression was measured using the comparative CT 

method, with GAPDH as internal control.   

 
Table 6: Real-time PCR assay IDs for genes detected by SYBR® gene expression assays 

Gene Symbol Gene Name RefSeq 

Accession# 

Slc10a1 Solute carrier family 10 (sodium/bile acid cotransporter family),  

member 1 

NM_017047.1 

Slco1a1 Solute carrier organic anion transporter family, member 1a1 NM_017111.1 

Slco1a4 Solute carrier organic anion transporter family, member 1a4 NM_131906.1 

Slc22a1 Solute carrier family 22 (organic cation transporter), member 1 NM_012697.1 

Abcb1  ATP-binding cassette, sub-family B (Mdr), member 1 NM_133401.1 

Abcb4 ATP-binding cassette, sub-family B (Mdr), member 2 NM_012690.1 

Abcc2 ATP-binding cassette, sub-family C (Mrp), member 2 NM_012833.1 

Abcc3 ATP-binding cassette, sub-family C (Mrp), member 3 NM_080581.1 

Abcb11 ATP-binding cassette, sub-family B (Mdr), member 11 NM_031760.1 

GAPDH Glyceraldehyde-3-phosphate dehydrogenase NM_017008.3 
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4.2.6 Liver Membrane Isolation 

Snap-frozen slices of liver were used to isolate total liver membranes by a standard differential 

centrifugation procedure with minor modifications [172].  Briefly, liver pieces were 

homogenized with 3 volumes of a homogenization buffer (50 mM Tris-HCl buffer, 1.0% KCl, 

and 1 mM EDTA, pH 7.4) using an electrical homogenizer (Polytron, Brinkmann Instruments, 

Westbury, NY). The crude homogenate was centrifuged (Optima XL-100K ultracentrifuge, 

Beckman Instruments, Palo Alto, CA) at 10,000g for 20 minutes at 4 °C. The supernatant was 

further centrifuged at 105,000g for 65 min at 4 °C. Membrane pellets were resuspended using a 

manual glass homogenizer (Wheaton, Millville, NJ) with 50 mM Tris-HCl buffer (pH 7.4) 

containing 20% glycerol.  Aliquots were immediately stored at -80 °C until used. The protein 

content of microsomes was determined by the Bradford method [153] using BSA as standard.    

4.2.7  Western Blot Analysis   

Protein levels of Mrp2 and P-gp in rat liver membranes were measured by western 

immunoblotting. Liver protein (25 ug) was separated by SDS-polyacrylamide gel electrophoresis 

(10% NuPAGE, Invitrogen, Carlsbad, CA).  The proteins were transferred to a PVDF membrane, 

briefly incubated in Ponceau S (Sigma-Aldrich) to ensure equal protein load on membrane and 

complete transfer, then blocked for 1-2 hours in TBST containing 5% Non Fat Dry Milk (Bio-

Rad).  After appropriate washings, membranes were probed overnight with monoclonal mouse 

anti-rat C-219 (P-gp) and M2 III-6 (Mrp2) antibodies (1:400; Abcam, Cambridge, MA).  Next, 

the membranes were washed and probed with a secondary monoclonal rabbit anti-mouse IgG 

antibody coupled to horseradish peroxidase (1:20,000; Abcam).  Immunodetection was 
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performed using an ECL detection kit (Thermo Scientific, Rockford, IL).  The density of the 

protein bands were quantified using ImageJ software 1.40 (National Institutes of Health, 

Bethesda, MD).  Values were normalized to GAPDH (1:30,000; Abcam) and results are 

expressed as percentage of normal liver.  

4.2.8 Serum Bilirubin 

Blood was collected at 1, 3, 6, 24, and 48 hrs post-OLT and serum bilirubin levels were 

measured by standard enzymatic methods in the clinical laboratory at UPMC (Pittsburgh, PA). 

4.2.9 Statistical Analysis 

Data are presented as the mean ± SEM. Comparisons between the groups were performed by 

one-way ANOVA with Tukey post-hoc test using GraphPad Prism software Version 4.0 (San 

Diego, CA).  Differences were considered significant at a P-value < 0.05.  

4.3 RESULTS 

4.3.1 Hepatic Drug Transporter mRNA Expression  

The effect of I/R injury on the mRNA expression of hepatic drug transporters in rat liver graft 

tissue was studied at 1, 3, 6, and 48 hrs post-OLT.  The mRNA levels of Oatp1a1, Oatp1a4, 

Ntcp, and Oct1 were significantly decreased post-OLT, shown in Figures 30A-D, respectively.  

Specifically, at 48 hr post-OLT, the mRNA levels in the placebo-treated group had decreased to 
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57 ± 14.3%, 8.2 ± 1.2%, 43.1 ± 1.5%, and 35.9 ± 5.0% of normal (Figure 30A-D), respectively.  

While no improvement in Oatp1a1 mRNA expression group was observed (50.3 ± 5.2% of 

normal), treprostinil improved mRNA expression of Oatp1a4, Ntcp, and Oct1 to 24.1 ± 1.6%, 

56.9 ± 6.9%, and 42.1 ± 5.1% of normal, respectively.   

 

   

 

   

Figure 30: Hepatic mRNA expression of hepatic uptake transporters 
(A) Oatp1a1/Slc1a1, (B) Oatp1a/Slc1a4, (C) Ntcp/Slc10a1, and (D) Oct1/Slc22a1 in liver graft tissue at 1, 3, 6, and 
48 hr post-OLT. *P < 0.05, **P < 0.01, and ***P < 0.001 vs. normal (n=3). 
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The mRNA levels of hepatic efflux transporters were also down-regulated in liver grafts post-

OLT.  At 6 hr post-OLT, the mRNA expression of P-gp (Mdr1a) was significantly reduced to 14 

± 5.2% of normal, whereas treprostinil significantly up-regulated P-gp expression to 144 ± 

40.1% of normal at 3 hr post-OLT and improved expression to almost three-fold that of placebo 

(40 ± 14.3%) at 6 hrs post-OLT, shown in Figure 31A.  At 48 hrs post-OLT, no improvement in 

the placebo group was observed (16 ± 7% of normal), whereas treprostinil improved levels to 

approximately two-fold of placebo (30 ± 7.3%).  At 6 hr post-OLT, Mdr2 (Abcb4) and Mrp2 

(Abcc2) levels declined to 31 ± 6.4% and 10 ± 3.1% of normal, respectively, in the placebo-

treated group.  In contrast, treprostinil improved Mdr2 and Mrp2 to 50 ± 7.6% and 20 ± 5.5% of 

normal (Figure 31B and 31C), respectively.  Mrp3 (Abcc3) expression gradually increased in the 

placebo-treated group to a peak of 77 ± 8.5% of normal at 48 hr post-OLT, where treprostinil 

restored Mrp3 expression to normal by 6 hr post-OLT (Figure 31D).  In the placebo-treated 

group, Bsep (Abcb11) levels reached a low of 27 ± 15.2% of normal at 48 hr post-OLT.  

Treprostinil preserved Bsep mRNA expression similar to normal throughout the post-operative 

study period, shown in Figure 31E.  The results indicate that hepatic drug transporters are 

significantly altered post-OLT and suggest that treprostinil may be involved in transcriptional 

regulation or stabilization of some of these transporter proteins.      
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Figure 31: Hepatic mRNA expression of efflux transporters 
(A) P-gp/Mdr1a, (B) Mdr2/Abcb4, (C) Mrp2/Abcc2, (D) Mrp3/AbcC3, and (E) Bsep/AbcC11 at 1, 3, 6, and 48 hr 
post-OLT.  Results are expressed as a percentage of NL, *P < 0.05, **P < 0.01, ***P < 0.001 vs. normal; #P < 0.05 
vs. placebo (n=3).  
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4.3.2 Mrp2 and P-gp Protein Expression in Liver Graft Post-OLT   

To determine whether the changes in mRNA also occurred at the protein level, hepatic 

microsomal expression of Mrp2 and P-gp protein at 48 hr post-OLT were studied since this time 

point demonstrated the most significant changes in mRNA expression in the liver grafts of 

placebo- and treprostinil-treated animals.  In the placebo-treated group, the expression of Mrp2 

and P-gp were 144.1 ± 13.3% and 124.5 ± 3.7% of normal, respectively, shown in Figure 32 and 

33.   Interestingly, in contrast to mRNA down-regulation, in the treprostinil-treated group, Mrp2 

and P-gp protein was up-regulated to 179 ± 7.6% and 159 ± 5.4% of normal, respectively.  Also, 

the appearance of Mrp2 protein bands as doublets (190 and 200 kDa) was observed.  The results 

indicate a discrepancy exists between Mrp2 and P-gp mRNA and protein levels in liver graft as a 

result of I/R injury post-OLT. 
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Figure 32: Hepatic microsomal Mrp2 protein expression 
(A) Western blot analysis of normal (lanes 1-2), treprostinil-treated (3-5), and placebo-treated (6-8) animals at 48 hr 
post-OLT. (B) Data are expressed as a percentage of normal liver, normalized to GAPDH expression; *P < 0.05 vs. 
normal. 

1      2         3       4       5        6       7       8 

200 kDa 
190 kDa 

Mrp2 

GAPDH 36 kDa 

B 

A 



 

  111 

 

 

 

 

       

       

Figure 33: Hepatic microsomal P-gp protein expression 
(A) Western blot analysis of normal (lanes 1-2), treprostinil-treated (3-5), and placebo-treated (6-8) animals at 48 hr 
post-OLT. (B) Data are expressed as a percentage of normal liver, normalized to GAPDH expression; *P < 0.05, 
***P < 0.001 vs. normal; †P < 0.01 vs. placebo.  
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4.3.3 Serum Bilirubin 

Bilirubin is rapidly and selectively taken up into the liver [195, 196], biotransformed upon 

conjugation and secreted into bile across the canalicular membrane of hepatocytes by Mrp2 [197, 

198].  Serving as a marker of hepatic function, serum bilirubin concentrations were measured at 

1, 3, 6, 24, and 48 hrs post-reperfusion in placebo- and treprostinil-treated groups.  Normal rats 

not subjected to OLT served as a baseline value of 0.17 ± 0.06 mg/dl, shown in Figure 34.  In the 

placebo, total serum bilirubin peaked at 3-hr post-OLT (0.38 ± 0.11 mg/dl) and gradually 

returned to baseline by 24 hrs post-OLT.  Alternatively, treprostinil-treated animals had a lower 

peak at 1 hr post-OLT (0.30 ± 0.10 mg/dl) and returned to baseline by 3 hr post-OLT.  These 

results indicate that treprostinil maintained biliary excretion of bilirubin early post-OLT, which 

suggests that treprostinil preserved the hepatobiliary transport processes early post-OLT.  

 

 

Figure 34: Serum bilirubin in placebo- and treprostinil-treated group, compared to normal liver (n=3). 
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4.4 DISCUSSION 

During liver transplantation, I/R injury often leads to damaged hepatocytes and bile duct cells, 

resulting in altered biliary secretion of endogenous compounds and altered pharmacokinetics of 

drugs in the recipients as a consequence of down-regulated hepatic drug transport expression.  

While the role of hepatic transporters continues to evolve, evidence of their role in drug 

disposition after liver transplantation was observed several years ago.  Initial observations of a 

high RIA to HPLC ratio for cyclosporine A (RIA measuring parent and metabolite, while HPLC 

measuring the parent drug), indicated that formation of the metabolites was not altered but that 

biliary transport of the formed metabolites was, in grafts which exhibited early poor function 

post-OLT [94].  It was later shown that cyclosporine A is a P-gp substrate [95].  Similarly, 

ceftriaxone, a third generation antibiotic, is excreted (approximately 40%) into the bile by the 

MRP2 protein and a lower clearance of this drug has been reported following OLT, suggesting 

hepatic dysfunction at the transporter level [96].  Thirdly, the plasma chlorzoxazone metabolic 

ratio (metabolite/parent) in liver transplant recipients was significantly elevated post-

transplantation compared to healthy controls [199].  At the time, the results were attributed to an 

increase in CYP2E1 activity via the induction response by cytokines; however, the multiple 

mechanisms involved in drug disposition including transport proteins are now recognized.  

Several of the immunosuppressive medications that transplant patients take to prevent rejection 

are substrates for various hepatic transport proteins and consequently alterations in protein 

expression could further complicate transplantation outcomes.   

The hepatic excretion of a large variety of endogenous and exogenous compounds from 

hepatocytes into bile is an ATP-dependent process, which is performed primarily by members of 
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the ATP-binding cassette (ABC) protein superfamily, including the Mdr and Mrp subfamilies 

[72].  In Chapter 2, we demonstrated that hepatic tissue levels of ATP were significantly reduced 

in liver grafts post-reperfusion and that administration of treprostinil restored ATP levels in liver 

grafts soon after reperfusion and lasted throughout the post-operative period studied.  Extending 

this finding, we hypothesized that liver graft activity of hepatic uptake and efflux drug 

transporters would be down-regulated after OLT, secondary to reduced tissue ATP.  Given that 

pro-inflammatory cytokine expression is increased after OLT, we hypothesized that expression 

of hepatic transporters would be decreased post-OLT.  Since treprostinil increased hepatic 

concentration of ATP and decreased the mRNA expression of pro-inflammatory cytokines, we 

expected treprostinil to minimize the loss of expression and activity of these hepatic transporters.  

Mrp2 is a 190 kDa glycoprotein located in the canalicular membrane of the hepatocytes 

and several lines of evidence have shown that Mrp2 protein is under post-transcriptional 

regulation, in addition to classical translational regulation [200].  Regulation of Mrp2/MRP2 

function occurs by at least three distinct levels, including endocytic retrieval from the canalicular 

membrane of the hepatocyte, transcriptional, and translational regulation [201].  Glycosylation is 

critical for normal health and development, as it is an important step for proper protein folding, 

stabilization, localization, and function of newly synthesized proteins and it is also a common 

post-translational modification of membrane proteins [202].  Some glycoproteins require 

glycosylation for their trafficking from the ER to the apical membrane of the hepatocyte.  In 

particular, Bsep is reported to require at least two of its four N-linked glycans for proper protein 

stability, intracellular trafficking and functional activity [203].   

P-gp (Mdr1a/b), a 170 kDa glycoprotein, is present at low levels along the canalicular 

membrane in normal rodent liver [72, 204].  While over-expression of P-gp has been shown to 
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confer resistance against a broad variety of natural product drugs [205], up-regulation of these 

proteins during oxidative stress has also been shown to serve as a protective mechanism to 

preserve hepatic efflux as a mechanism to reduce hepatic accumulation of bile salts and down-

stream consequences [192].  The expression of transport proteins is highly variable and subject 

to complex transcriptional regulation, predominately regulated by nuclear hormone receptors.  

Nuclear receptor regulation of hepatic transporter expression by Farnesoid X receptor and 

Pregnane X receptor have been shown to be involved in the regulation of bile acid levels and 

Bsep expression [206].  This particular area of research requires further investigation.   

Following tissue injury, e.g. LPS, the acute phase reaction lasts approximately 24 hrs 

[207] so it was not unusual that Mrp2 and P-gp protein expression in the placebo-treated group 

had returned to normal by 48 hr post-OLT (Figure 32 and 33, respectively).  Interestingly, Mrp2 

and P-gp protein expression in the treprostinil-treated groups rebounded at 48 hr post-OLT. 

Further, immunodetection of a second Mrp2 band at 200 kDa in the treprostinil-treated group is 

indicative of post-translational modification by protein glycosylation, which is consistent with 

previous findings [207, 208].  The discrepancy between mRNA and protein expression of Mrp2 

suggests that treprostinil mediates post-transcriptional and translational regulation of certain 

transporters.  Similar discrepancies between the mRNA and protein expression of Mrp2 [209, 

210] and BSEP [207] have been described, which supports the theory that different ABC 

transporters are mediated by post-transcriptional and translational regulation in vitro and in vivo 

as well as in different species.  

The C219 antibody recognizes an epitope on all classes of P-gp, including Mdr1, Mdr2, 

and Bsep [211].  The up-regulation of P-gp protein expression in the treprostinil-treated group 

may be a cumulative effect of significantly increased P-gp and Mdr2 and preserved Bsep mRNA 
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expression (Figures 31A, 31B, and 31E, respectively). Administration of dibutyryl cAMP has 

been shown to stimulate bile flow [212] and influence sorting of Mrp2 to the apical membrane 

[213].  In Chapter two, we showed that treprostinil administration markedly up-regulated liver 

graft cAMP levels early post-OLT throughout the post-operative period.  Taken together, the 

additive effects of preserved tissue ATP content and Bsep mRNA expression in addition to up-

regulated hepatic mRNA levels of P-gp, tissue cAMP and Mrp2 protein are likely to have 

contributed to improved hepatic transport of serum bilirubin early post-OLT.  Further detailed 

investigation is needed to reveal the mediators that regulate hepatic drug transporter expression 

in liver graft post-OLT. 

An integral component of I/R-associated liver injury during OLT is the activation of the 

pro-inflammatory cascade, resulting in the production of pro-inflammatory cytokines.  These 

cytokines are likely to be involved in the decreased mRNA expression of uptake and efflux 

hepatic transporters.  Inflammation has been linked to reduced Mrp2 mRNA expression and 

increased Mrp3 protein levels, to compensate for diminished Mrp2 transport capacity in response 

to inflammation as a protective mechanism to reduce hepatic accumulation of bile salts and the 

down-stream hepatotoxicity [214, 215].  It is important to note that different bacterial strains of 

LPS as well as different causative inflammatory conditions can elicit different responses in 

cytokine release and consequently different patterns of gene expression [216].  Considering the 

liver is the most important site of drug metabolism and clearance, inflammatory-mediated 

changes in the expression of hepatic transporters can have major implications when the capacity 

of the liver, such as the case during liver transplantation, and other organs to handle drugs is 

severely compromised.  Most animal studies of hepatic I/R injury utilize partial ischemia, i.e. 

70% occlusion [51, 217], or ligation of the hepatic artery [218].  A major limitation of these 
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models is the induction of warm ischemia, which does not reflect cold ischemic injury that takes 

place prior to transplantation, during graft storage, and, therefore, does not fully represent the 

effects of I/R injury on hepatic drug transport processes associated with clinical OLT.   

Treprostinil has been shown to inhibit the secretion and gene expression of many pro-

inflammatory cytokines by blocking the translocation of NF-kB in vitro [187].  Again, in Chapter 

two we showed that treprostinil reduced significantly increased mRNA levels of TNF-α, IFN-γ, 

IL-6, and ICAM-1 in liver graft post-OLT, and increased IL-10 mRNA early post-reperfusion. 

Taken together, the preserved ATP content, reduced pro-inflammatory cytokine and increased 

IL-10 mRNA, as well as increased cAMP levels in liver graft are likely to account for the 

improved response in hepatic drug transport processes in the treprostinil-treated group.  

In summary, this study showed that I/R injury lead to impaired hepatobiliary functions 

and altered the expression of hepatic uptake and efflux transporters in liver grafts after rat OLT 

and these effects were partially alleviated by treprostinil administration.  To the best of our 

knowledge, this is the first study to directly examine the effects of I/R injury on the mRNA and 

protein expression of the major hepatic transporters in a rat OLT model.   
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5.0    EVALUATION OF THE DRUG-DRUG INTERACTION POTENTIAL 

BETWEEN TREPROSTINIL AND IMMUNOSUPPRESSIVE MEDICATIONS
*
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5.1 INTRODUCTION 

Orthotopic liver transplantation (OLT) is the only curative therapy available for patients with 

various end-stage liver diseases.  The surgical procedure subjects the transplanted graft to 

varying periods of cold ischemia and warm reperfusion, which inevitably results in varying 

degrees of hepatic injury and dysfunction [25]. I/R injury is an unavoidable process in OLT and 

it is the major cause of both initial poor function and PNF of the liver, with a high mortality rate, 

if patients are not re-transplanted immediately.  The need to prevent I/R injury is imperative; 

however, no therapy is commercially available.   

In Chapter two, it was demonstrated that treprostinil protected liver grafts against I/R 

injury during rat OLT and treprostinil is now being examined for its safety and efficacy in 

ameliorating I/R injury in adult patients undergoing OLT.  Treprostinil, a stable analogue of 

prostacyclin (PGI2), is approved by the US Food and Drug Administration for the treatment of 

pulmonary arterial hypertension (Remodulin®).  Treprostinil is substantially metabolized by the 

liver, but the precise enzymes responsible are unknown [113].  Results of in vitro cytochrome 

P450 studies performed in expressed enzymes show that treprostinil does not inhibit CYP1A2, 

2C9, 2C19, 2D6, 2E1, or 3A [113], however, whether or not treprostinil induces these enzymes 

has not been evaluated.   

Immunosuppressive drugs such as cyclosporine, tacrolimus, and sirolimus predominantly 

undergo hepatic metabolism via cytochrome P450 (CYP) 3A4 [219].  MMF, an ester prodrug of 

mycophenolic acid (MPA) [220] predominantly undergoes hepatic glucuronidation via UDP-

glucuronosyltransferase (UGT) 1A9 to its glucuronide metabolite (MPAG) and, to a lesser 

extent, by UGT2B7 to its non-active MPA-acyl-glucuronide metabolite (AcMPAG) [221].  In 

addition to immunosuppressants, most solid organ transplant recipients are prescribed additional 
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medications to treat transplant-associated conditions, which occur either secondary to 

transplantation or are underlying conditions, including but not limited to osteoporosis, 

hypertension, bacterial and or fungal infections, ulcers, high cholesterol, and depression, i.e. 

antihypertensive, antibacterial and antifungal agents, anti-ulcer, cholesterol-lowering agents, and 

antidepressant medications [222, 223].  Several of these agents are also metabolized by CYP3A 

and UGTs, therefore, each of these medications have the potential to interact with treprostinil.  

Furthermore, literature reports have shown that some prostaglandin analogues, including PGI2, 

can alter the clearance and or half-life of certain immunosuppressive agents [224, 225].  The risk 

for a DDI must be thoroughly investigated whenever a new drug is added to a regimen in a 

transplant patient since most of the immunosuppressive drugs have a narrow therapeutic index.  

In transplant recipients, supra- or sub-therapeutic blood/plasma concentrations can increase the 

risk of organ rejection, or lead to infection or drug-specific side effects, respectively.  

The objective of this study was to examine in vitro the DDI potential of treprostinil when 

co-administered with CsA, TAC, SRL, or MPA. While treprostinil is not a new molecular entity 

per se, the potential use of treprostinil in OLT would be a new indication and, as such, in 

addition to providing essential data regarding the potential for a DDI, this study also complies 

with the FDA guidelines, which requires in vitro DDI studies be performed prior to a drug 

entering a clinical trial [226].  
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5.2 MATERIALS AND METHODS 

5.2.1 Chemicals   

Treprostinil was supplied by United Therapeutics (Research Triangle Park, NC), Cyclosporine A 

was purchased from USP Pharmacopeia (Rockville, MD).  Tacrolimus (TAC) was supplied by 

Fujisawa (Osaka, Japan), Sirolimus was purchased from LC Laboratories (Woburn, MA) and 32-

desmethoxyrapamycin was a gift from the University of Pittsburgh Medical Center, Pittsburgh, 

PA. Dimethyl sulfoxide (DMSO), mycophenolic acid (MPA), nicotinamide adenine dinucleotide 

phosphate-oxidase (NADPH), uridine 5’diphospho-glucuronic acid (UDPGA), Brij 57, 

rifampicin (RIF), ketoconazole (KTZ), and ascomycin were purchased from Sigma (St. Louis, 

MO). Mycophenolic acid glucuronide (MPAG) was a generous gift from Professor Leslie Shaw 

(University of Pennsylvania, Philadelphia, PA).  Bovine serum albumin (BSA) was purchased 

from Fluka (Buchs, Switzerland, 98% pure). Hepatocyte maintenance medium (HMM) and 

medium supplements, dexamethasone and insulin, were obtained from BioWhittaker 

(Walkersville, MD). Penicillin G/streptomycin was purchased from Gibco Laboratories (Grand 

Island, NY). Falcon 6-well culture plates were purchased from Becton Labware (Franklin Lakes, 

NJ). Reagents for real-time RT-PCR were purchased from Promega (Madison, WI).  Forward 

and reverse primers were purchased from Applied Biosystems (Foster City, CA).  Methanol and 

water [high-performance liquid chromatography (HPLC) grade] were purchased from Thermo 

Fisher Scientific (Waltham, MA). All other chemicals used were of HPLC grade or the highest 

purity available.  
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5.2.2 Evaluation of CsA, TAC, SRL, and MPA inhibition in microsomes 

5.2.2.1 Microsome Preparation  

Microsomes were prepared from five human liver lobes by a standard differential centrifugation 

procedure with minor modifications [172].  Briefly, liver pieces were homogenized with 3 

volumes of a homogenization buffer (50 mM Tris-HCl buffer, 1.0% KCl, and 1 mM EDTA, pH 

7.4) using an electrical homogenizer (Polytron, Brinkmann Instruments, Westbury, NY). The 

crude homogenate was centrifuged (Optima XL-100K ultracentrifuge, Beckman Instruments, 

Palo Alto, CA) at 10,000g for 20 minutes at 4 °C. The supernatant was further centrifuged at 

105,000g for 65 min at 4 °C to sediment the microsomes. The microsomes were reconstituted 

using a manual glass homogenizer (Wheaton, Millville, NJ) in twice their weight of with 50 mM 

Tris-HCl buffer (pH 7.4) containing 20% glycerol. Aliquots were immediately stored at -80 °C 

until used. The protein concentration was determined by Lowry’s method [227] using BSA as 

standard.  

5.2.2.2 Microsome Incubations   

Optimal conditions for microsomal incubations with CsA, TAC, SRL, and MPA were 

determined by performing separate studies for the time of incubation (0-120 minutes) and protein 

concentration (0–2 mg/ml).  To work in the linear range, the time selected for CsA, TAC, and 

MPAG was 30 minutes and for SRL 15 minutes; the protein concentration selected for CSA and 

SRL, TAC, and MPA was 0.3, 0.2, and 0.4 mg/ml, respectively.  The microsomal incubation 

included CsA, TAC, SRL, and MPA, pooled and mixed together from five different human 

livers, MgCl2 (10 mM), and phosphate buffer (0.1 mM), pH=7.4.  The incubation was allowed to 

pre-equilibrate in a shaking water bath for approximately 5 minutes at 37 °C.  Each drug 
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equilibrated in a shaking water bath under the experimental conditions that were determined to 

be linear at 37 oC in the absence or presence of treprostinil.  For CsA, TAC, and SRL 

microsomal reactions, NADPH (1 mM) was added to initiate the reactions.  For MPA 

microsomal reaction, the incubation also included Brij 58 (0.1 mg/mg protein) and UDPGA (1 

mM) to initiate reaction.  The concentration of CsA (5 ug/ml), TAC (200 ng/ml), SRL (200 

ng/ml), MPA (10 ug/ml), and treprostinil (10, 50, and 100 ng/ml) were selected based on 

clinically relevant blood concentrations.  All reactions were terminated upon addition of ice-cold 

methanol.  Following termination, CsA and 32-desmethoxyrapamycin were added as internal 

standard for TAC and SRL, respectively.  Samples were then centrifuged at 3,000 rpm for 10 

minutes at 4 oC and the supernatant was subjected to solid phase extraction (SPE).  Under 

experimental conditions described above, control samples represented regular metabolism, 

omission of co-factor served as negative control.  Co-incubation with ketoconazole (KTZ, 0.5 

uM) served as positive control.   

5.2.3 Solid Phase Extraction (SPE) 

An Oasis HLB C18 cartridge (Waters, Milford, MA) was pre-equilibrated with 1 ml of HPLC 

grade methanol followed by 1 ml of HPLC grade water. The supernatant was passed through the 

column and washed with 40% methanol.  CsA, TAC, and SRL were individually eluted from the 

sample preparation column with dichloromethane. The organic phase was transferred to a new 

tube and the liquid evaporated to dryness under air.  Samples were reconstituted with mobile 

phase and analyzed immediately.   
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5.2.4 Evaluation of CsA, TAC, SRL, and MPA Induction in Human Hepatocytes 

5.2.4.1 Preparation of Human Hepatocytes 

Hepatocytes were prepared from human liver samples obtained from the Liver Tissue Cell 

Distribution System, from the Hepatocyte Transplantation Laboratory at the University of 

Pittsburgh (Pittsburgh, PA).  Donors of human liver tissue had no history of liver disease, but the 

liver was not used for transplantation or the patient underwent liver resection for different 

pathologies.  Informed consent was obtained from all patients for the use of liver tissue for 

research purposes.  Hepatocytes were prepared by a three-step collagenase perfusion technique 

[228].  Cell viability was determined by the trypan blue exclusion method and ranged from 71 to 

92%.  Briefly, equal volumes of trypan blue (0.4%) and cell suspension were mixed and a 

portion of this suspension was then placed on a hemocytometer.  The cells were observed under 

a light microscopy and the numbers of live and dead cells (stained blue), were counted in two 

fields.  Concentration of cells (number of cells / ml) was determined using the following 

formula:  Live cells in two fields x 10,000 = # of cells/ml.  Cells were diluted to final volume of 

1 x 106 cells/mL.  Hepatocytes were plated on Falcon 6-well culture plates at a density of 1.5 x 

106 cells, previously coated with rat tail collagen, and maintained in Hepatocyte Maintenance 

Medium  (HMM; Lonza Walkerville, Inc.) supplemented with 0.1 µM insulin, 0.1 µM 

dexamethasone, 0.05% streptomycin, 0.05% penicillin, 0.05% amphotericin B and 10% bovine 

calf serum.  After cells attached for 4 to 6 h, medium was replaced with serum-free medium 

containing all of the supplements described above (HMM+).  Cells were maintained in culture at 

37 °C in an atmosphere containing 5% CO2 and 95% air.  After 24 h in culture, unattached cells 

were removed by gentle agitation and the medium was changed every 24 hours.    
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5.2.4.2 Hepatocyte Incubations 

After allowing the cells to acclimate for 48 hr after plating, cells were treated with HMM+ 

containing rifampicin (RIF 10 uM), phenobarbital (PB 2 mM), or treprostinil (10, 50, and 100 

ng/ml), all dissolved in DMSO, except for PB (water) for 96 hrs.  The final concentration of 

DMSO (vehicle control) in culture medium was 0.1%.  The cells were observed daily under a 

phase microscope to monitor attachment and cell morphology.  At the end of the incubation 

period, cells were washed with HMM devoid of insulin, dexamethasone, antibiotics and 

amphotericin B.  Following this wash period, media containing CsA (10 ug/ml), TAC (500 

ng/ml), SRL (500 ng/ml), or MPA (10 ug/ml) was applied to the cells and sampled for the time 

of incubation.  At the end of treatment, hepatocytes and the media were collected into 1.5 mL 

Eppendorf tubes.  The samples were sonicated and centrifuged at 3,000rpm for 5 minutes at 4 oC. 

Cyclosporine D, ascomycin, 32-desmethoxyrapamycin were added as internal standard for CsA, 

TAC, and SRL.  Following centrifugation, SPE was applied to the supernatant.  Time zero 

reflects the time at which no metabolism took place and is referred to as the original 

concentration. Control samples reflect regular metabolism when hepatocytes were pretreated 

with vehicle control.  Co-treatment with KTZ served as negative control.  Rifampicin served as 

positive control for CYP3A4- and phenobarbital served as positive control for CYP3A4-, 

UGT1A9- and UGT2B7-mediated metabolism.  To account for donor variability, experiments 

were performed in hepatocytes from at least three different donors.  Characteristics of human 

liver donors are listed in Table 8. 
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Table 7:  Donor information for human livers used to prepare primary culture of human hepatocytes 
 

Donor Sex Age (yrs) Medical History Viability (%) 

HH997 M 43 Brain Death 73 

HH1117 F 68 Brain Death 82 

HH1234 M 56 Anoxia 87 

HH1286 M 50 ICH 90 

HH1336 M 54 ICH 77 

HH1426 F 23 Anoxia 92 

HH1432 F 72 MCC 77 

HH1434 F 71 MCC 88 

HH1454 F 42 Breast adenocarcinoma 80 

HH1456 F 50 MCC 80 

HH1458 M 43 ICH 88 

HH1460 F 46 MCC 85 

HH1464 F 70 HCC, cirrhosis 75 

HH1466 F 68 CC 82 

HH1467 F 52 MCC 89 

HH1469 F 46 Anoxia 88 

HH1492 F 45 MCC 86 

HH1511 F 67 MCC 71 

HH1582 F 25 Encephalopathy 81 

HH1602 M 40 Head trauma 81 

HH1606 M 28 MCC 74 

M, male; F, female; MCC: Metastatic colon cancer; ICH: Intracranial hemorrhage. 

5.2.4.3 Evaluation of the hepatocyte mitochondrial activity   

The MTT assay was performed according to manufacturer’s guidelines (Invitrogen, Carlsbad, 

CA). Cells were treated with DMSO, RIF (10 uM), PB (2 mM), or treprostinil (10, 50, and 100 

ng/ml),  After 72 hours in culture, cells were incubated with the tetrazolium salt [(3-(4,5-

Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazole), MTT] dissolved in culture 
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media for approximately 30 minutes, washed in blank HMM, and treated with isopropyl alcohol.  

The conversion of MTT into aqueous, soluble, formazan by metabolically active cells was 

determined by measuring the absorbance at 490 nm.  

5.2.5 Analytical methodology 

5.2.5.1 Microsomal incubations 

CsA, TAC, and SRL were individually analyzed on an HPLC system that consisted of an 

autosampler (Waters 717, Milford, MA) and a solvent delivery system (Waters 600E), attached 

to a UV detector (Waters 486), set at 214 nm (for CsA and TAC) and 278 nm (for SRL).  The 

mobile phase consisted of 68% (CsA and SRL) and 60% acetonitrile (TAC) in water.  MPA and 

MPAG were analyzed on an Alliance HPLC system (Waters 2695, Milford, MA) attached to a 

photodiode array detector (PDA, Waters 2998) set at 254 nm was used. The mobile phase 

consisted of 76% acetonitrile in water containing 0.05% phosphoric acid.  Each compound was 

separated individually using a Symmetry® C18 (4.6 x 250 mm, 5um) column (Waters). The 

concentration of each compound was determined from a linear standard curve of the known 

concentrations for CsA (0.5 – 5 ug/ml), TAC (0.2 –5 ug/ml), SRL (0.2 – 5 ug/ml), and MPAG 

(0.675 – 10 ug/ml).  The C.V was less than 10% per assay. 

5.2.5.2 Hepatocyte incubations  

CsA and SRL were quantified using the HPLC system described above.  Following SPE, 

samples for CsA and SRL were reconstituted with mobile phase consisting of 68% acetonitrile 

and 85% methanol in water, respectively.  CsA, CYD, SRL, and 32-desmethoxyrapamycin were 

separated using a Symmetry® C18 (4.6 x 250 mm, 5 um) column (Waters).  The concentration 
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of each compound was determined from a linear standard curve of the known concentrations for 

CsA (0.5 – 10 ug/ml) and SRL (0.5 – 15 ug/ml). 

The concentration of TAC was determined using the Acquity® Ultra Performance 

Acquity Liquid Chromatography (Waters) system with Thermo Finnigan TSQ® Quantum Ultra 

triple quadrupole mass spectrometer (Thermo Scientific), operated in positive electrospray 

ionization mode with unit resolutions at both Q1 and Q3 set at 0.70 full width at half maximum.  

The selected reaction monitoring (SRM) transitions of m/z 821.4 → 768.3 (collision energy 10 

eV, scan time 0.01 s) for TAC and m/z 809.4 → 756.0 (collision energy 19 eV, scan time 0.20 s) 

for ascomycin were monitored. Parameters were optimized to obtain the highest [M+H] ion 

abundance and were as follows: capillary temperature, 360 °C; spray voltage, 3000 V. Sheath 

gas, auxiliary gas, and ion sweep gas pressures were set at 43, 37, and 0, respectively. Collision 

gas pressure was set at 1.0 mTorr.  TAC and ascomycin were separated using an Acquity® 

UPLC BEH C18 1.7 um (2.1 µm x 100 mm) column (Waters). Following SPE, samples were 

reconstituted with mobile phase consisting of 60 % acetonitrile in water.  The standard curve was 

linear from 0.15 – 5 ug/ml.  The C.V was less than 5% for this assay.   

The concentration of MPA and MPAG were detected using the HPLC system described 

above.  The mobile phase consisted of (A) 61% NaAc-HA in acetonitrile, pH 4.4, (B) methanol, 

(C) 5% methanol in water, and (D) acetonitrile.  MPA and MPAG were separated using a 

Symmetry® C18 (4.6 x 250 mm, 5um) column (Waters) set at 25 oC.  The standard curve was 

linear from 0.675 – 10 ug/ml.   
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5.2.6 CYP3A4, UGT1A9, and UGT2B7 mRNA expression 

5.2.6.1 RNA Isolation and Quantitation 

Total RNA was extracted from primary culture human hepatocytes using TRIzol reagent 

(Invitrogen, Carlsbad, CA) as described in Chapter 2.  Real-time RT-PCR was performed with 

the TaqMan® system and conditions designated by Assays on Demand, Gene Expression 

Products (Applied Biosystems, Forster City, CA).  The primers were purchased from Applied 

Biosystems, and are listed in Table 9.  The mRNA expression levels were calculated based on 

the threshold cycles using the Applied Biosystems sequence detection system software, version 

2.0 (Applied Biosystems).  Samples were analyzed in triplicate and relative gene expression was 

measured using the comparative CT method, using CYC as internal control.   

 
Table 8: Real-time PCR Assay IDs for genes detected by TaqMan® gene expression 

 

Gene Symbol Gene Name RefSeq Accession # 

CYP3A4 cytochrome P450, family 3, subfamily A, polypeptide 4 NM_017460.3 

UGT1A9 UDP glucuronosyltransferase 1 family, polypeptide A9 NM_021027.2 

UGT2B7 UDP glucuronosyltransferase 2 family, polypeptide B7 NM_001074.2 

CYC peptidylprolyl isomerase A (cyclophilin A) NM_021130.3 

5.2.7 Statistical Analysis 

The data are presented as the mean ± SEM.  One-way ANOVA followed by group comparisons 

using Dunnette’s multiple comparison was performed using Prism software v4.0 (GraphPad, San 

Diego, CA).  Significance was determined when the P-value < 0.05.   
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5.3 RESULTS 

5.3.1 Enzyme Inhibition Potential of Treprostinil 

Pooled human liver microsomes were used to evaluate the inhibitory potential of treprostinil on 

the metabolism of CsA, TAC, SRL, and MPA.  The formation of hydroxycyclosporine (MI) was 

used as a marker of CsA metabolism (Figure 34A).  Co-incubation with KTZ significantly 

inhibited 64% of MI formation.  In contrast, co-incubation with all three concentrations of 

treprostinil did not inhibit MI formation, compared to control.  The loss of tacrolimus was used 

as a marker of metabolism, shown in Figure 34B.  In control samples, 31% of TAC was 

metabolized, compared to 7% when co-incubated with KTZ.  Co-incubation of TAC with each of 

the three concentrations of treprostinil did not change TAC metabolism (32, 34, and 32% of 

original, respectively).  The loss of sirolimus was used as a marker of metabolism, shown in 34C.  

In control samples, 43% of SRL was metabolized, whereas only 5% of SRL was metabolized 

when co-incubated with KTZ.  Co-incubation with treprostinil (10, 50, and 100 ng/ml) resulted 

in 45, 35, and 36% of SRL metabolism, respectively.  The formation of mycophenolic acid 

glucuronide (MPAG) was used as a marker of MPA metabolism, shown in Figure 34D.  

Compared to control, co-incubation with all three concentrations of treprostinil did not inhibit 

MPAG formation.  The results indicate that co-incubation with treprostinil in pooled human liver 

microsomes did not inhibit the metabolism of CsA, TAC, SRL, or MPAG.  
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Figure 35: Inhibitory potential of treprostinil 
Pooled liver microsomes (n=5) co-incubated with treprostinil (10, 50, and 100 ng/ml) and (A) CsA, (B) TAC, (C) 
SRL, and (D) MPAG; (-) NADPH served as negative control for CsA, TAC, or SRL; (-) UDPGA served as negative 
control for MPA.  Control samples represent regular metabolism (samples not co-incubated with treprostinil). *P < 
0.05 and **P < 0.01 vs. control.  
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C D 



 

  132 

5.3.2 Evaluation of Cytotoxicity 

Hepatocytes prepared from four donors (HH1516, HH1582, HH1601, and HH1602) were treated 

with DMSO, RIF (10 uM), PB (2 mM), and treprostinil (10, 50, and 100 ng/ml) for 72 hr to 

determine the effect of treprostinil on hepatocyte mitochondrial activity, using the MTT assay. 

Our lab has previously shown that the concentration of DMSO (0.1%) used for primary culture 

of human hepatocyte experiments does not alter cellular activity compared to cells treated with 

HMM+.  Cellular activity with each of the three concentrations of treprostinil was similar to 

those treated with DMSO, RIF, and PB (Figure 35), which indicated that pre-treatment with 

treprostinil did not alter cellular activity, compared to DMSO-treated cells. 

 

Figure 36: MTT assay 
Rifampicin (RIF 10 uM), phenobarbital (PB, 2 mM), or treprostinil (10, 50, and 100 ng/ml) for 72 hr. 
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5.3.3 Enzyme Induction Potential of Treprostinil 

Primary cultured human hepatocytes were used to examine the induction potential of treprostinil 

on the metabolism of CsA, TAC, SRL, and MPA.  Original samples represent the baseline 

concentration of the immunosuppressant in the system.  Control samples represent regular 

metabolism of the immunosuppressant after pretreatment with DMSO.  Loss of CsA was used as 

a marker of metabolism, shown in Figure 36A.  Under the experimental conditions, 38, 39, and 

61% CsA was metabolized in HH1457, 1464, and 1448, respectively.  Co-treatment with KTZ 

significantly reduced CsA metabolism to 20, 7, and 12%, respectively.  Pretreatment with RIF 

significantly increased CsA metabolism to 56, 60, and 76%, respectively.  Pretreatment with 

treprostinil did not change CsA metabolism.   

  A decrease in TAC concentration was used as a marker of metabolism, shown in Figure 

36B.  In control samples, 19, 69, and 45% of TAC was metabolized in HH1454, HH1492, and 

HH1511, respectively.  Co-treatment with KTZ significantly reduced TAC metabolism to -0.5, 

11, and 6%, respectively.  Pretreatment with RIF significantly increased TAC metabolism to 67, 

85, and 89%, respectively.  Pre-treatment with treprostinil did not increase TAC metabolism, 

compared to control.  A decrease in SRL concentration served as a marker of metabolism, shown 

in Figure 36C.  In control samples, 54, 67, and 65% of SRL was metabolized in HH1426, 

HH1432, and HH1434, respectively.  Co-treatment with KTZ significantly reduced the SRL 

metabolism to 17, 41, and 8%, respectively.  Pretreatment with RIF increased SRL metabolism 

to 82, 83, and 76%, respectively.  Compared to control, pre-treatment with treprostinil did not 

increase SRL metabolism.  The formation of MPAG served as a marker of metabolism (Figure 

36D).  Pretreatment with PB increased MPA metabolism by 163, 234, and 168% in HH1458, 

HH1461, and HH1466, respectively.  Pre-treatment with treprostinil did not increase MPAG 
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formation, compared to control.  Collectively, the results indicate that pretreatment in primary 

culture of human hepatocytes with all three concentrations of treprostinil did not inhibit or 

induce the metabolism of CsA, TAC, SRL, or MPA and is therefore, unlikely to alter the 

metabolism of these drugs when co-administered.   

 

 

 

 
Figure 37: Induction potential of treprostinil 

Primary culture of human hepatocytes pretreated with DMSO (control), RIF (10 uM), PB (2 mM), or treprostinil 
(10, 50, and 100 ng/ml) for 72 hours before treatment with (A) CYA, (B) TAC, (C) SRL, or (D) MPA. Original 
represents baseline concentration. Control represents regular metabolism of the immunosuppressive agent for the 
indicated time without treprostinil pre-treatment. *P < 0.05, ** P <0.01 vs. control (n=3).  
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C D 
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5.3.4 Effect of Treprostinil on mRNA expression 

To determine whether or not treprostinil altered the mRNA expression of CYP3A4, UGT 1A9, 

or UGT2B7, real-time PCR analysis was performed.  Pretreatment with RIF significantly 

induced mRNA expression of CYP3A4 by 9.2 ± 0.9, 13.3 ± 0.5, and 33.6 ± 5.9-fold in HH1464, 

HH1466, and HH1467, respectively (Figure 37A), compared to DMSO-treated cells.  Likewise, 

PB treatment induced CYP3A4 mRNA expression by 5.4 ± 0.3, 17.1 ± 2.8, and 29.7 ± 2.1-fold, 

respectively. Treatment with treprostinil (10, 50, and 100 ng/ml) had no effect on CYP3A4 

mRNA expression, compared to DMSO-treated cells and positive controls.  Treatment with PB 

induced UGT1A9 mRNA expression by 5.2 ± 0.3, 2.8 ± 0.2, and 4.8 ± 0.6-fold in HH1464, 

HH1466, and HH1467, respectively, compared to DMSO-treated cells, shown in Figure 37B.  

Pretreatment with treprostinil (10, 50, and 100 ng/ml) did not significantly increase UGT1A9 

mRNA expression, relative to positive control.  Similarly, PB induced UGT2B7 mRNA 

expression by 3.5 ± 0.5, 1.9 ± 0.1, and 2.0 ± 0.2-fold in HH1464, HH146, and HH1467, 

respectively (Figure 37C).  Treatment with treprostinil (10, 50, and 100 ng/ml) did not 

significantly increase UGT2B7 mRNA expression, relative to the positive control.  The results 

demonstrated that treprostinil is not expected to alter the clearance of CsA, SRL, TAC, or 

MPAG. 
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Figure 38: mRNA expression in hepatocytes 
Hepatocytes from three donors (HH1464, HH1466, and HH1467) were pre-treated with DMSO (vehicle control), 
Rif (10 uM), PB (2 mM), or treprostinil (10, 50, and 100 ng/ml) for 72 hours to measure mRNA levels of (A) 
CYP3A4, (B) UGT1A9, and (C) UGT2B7 * P <0.05 and ** P <0.01 vs. control.  
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5.4 DISCUSSION 

In Chapter two, it has been shown that treprostinil is effective in protecting the liver graft against 

I/R injury during rat OLT.  The ultimate goal of treprostinil therapy in orthotopic liver transplant 

recipients is to ameliorate ischemia-reperfusion injury. Liver transplant patients who are likely to 

receive treprostinil are maintained on immunosuppressant therapy to prevent graft rejection and 

several other drugs that are metabolized by the liver.  It is important to assess in vitro inhibition 

and induction potential of treprostinil in liver transplant patients in order to confirm that it can be 

safely administered in combination with immunosuppressive medications.  Previous reports have 

shown that some prostaglandin analogues altered the clearance or half-life of certain 

immunosuppressive agents [224, 225].  Therefore, we performed this study to address the 

question of whether or not there is potential for a drug-drug interaction between treprostinil and 

the four most commonly administered immunosuppressant medications, including cyclosporine 

A, tacrolimus, sirolimus, and mycophenolic acid.  According to the FDA guidelines for drug-

drug interaction studies, the agent under investigation must increase the metabolism of the 

second drug comparatively to a positive control or induce the metabolism by greater than 40% in 

order to be classified as a causative agent of a drug-drug interaction [226].  Current industrial 

practices to assess drug induction of CYP450 enzymes by examining a change in the area under 

the plasma concentration curve (AUC), maximum concentration, or half-life.   

Drug interactions involving the CYP450 isoforms are generally of two types, namely: 

enzyme inhibition or enzyme induction [229].  The two most common mechanisms by which 

enzyme induction occurs include stabilization of the mRNA or enzyme and increased gene 

transcription, mediated by nuclear receptors [230].  In the present study, the inhibition and 

induction potential of treprostinil in human liver microsomes and hepatocytes co-incubated with 

A 
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CsA, TAC, SRL, CsA, and MPA were evaluated at the level of enzyme activity and gene 

transcription.  The results demonstrated that in pooled human liver microsomes all three 

clinically relevant concentrations of treprostinil tested did not inhibit metabolism of the 

immunosuppressive agents tested.  Likewise, in primary cultures of human hepatocytes we 

showed that all three clinically relevant concentrations treprostinil did not induce the metabolism 

of CsA, TAC, SRL, or MPA.  Collectively, the results from this study demonstrate that clinically 

relevant concentrations of treprostinil are unlikely to alter the clearance of CsA, TAC, SRL, or 

MPA when administered concomitantly.  Some CYP and UGT isoforms are subject to induction 

by xenobiotics via activation of nuclear hormone receptors, with a consequent result of decreased 

exposure of the affected compound leading to therapeutic failure.  Real-time RT-PCR results 

confirmed that treprostinil had no induction potential on CYP3A4 mRNA expression.  The 

ligand-activated nuclear hormone receptor, peroxisome proliferator-activated receptors (PPAR)-

α is a common regulator of the gene expression of UGT1A9 [231] and UGT2B7 [221] and 

various PGI2 analogues, including treprostinil, have been reported to be ligands for the different 

PPARs isoforms [232].  As a PGI2 analogue, we investigated the effects of treprostinil on mRNA 

expression of UGT1A9 and UGT2B7, as these two UGT isoforms have been reported to be the 

dominate UGT isoforms responsible for the metabolism of MPA to its active and inactive 

metabolites, respectively [221, 233, 234].  Interestingly, RT-PCR results indicated that in one 

case of hepatocytes (Figure 377B, HH1466), treatment with treprostinil resulted in a slight 

increase in UGT1A9 mRNA expression but not of UGT2B7, compared to the positive control 

and vehicle control.  However, the increase was minor and was less than 40% of the positive 

control.  Therefore, according to regulatory guidelines, there is no concern for a DDI via this 

pathway.  The observed effects are most likely attributed to the inherent inter-individual 
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variation among human hepatocytes.  The UGT1A9 and 2B7 isoforms are both reported to have 

genetic polymorphisms [235], which may partially explain the observed inter-individual 

variations. Since administration of treprostinil is expected to be acute, i.e. during the 

transplantation procedure and up to 48 hours post-transplantation, and in vitro formation of 

MPAG is not increased greater than 40%, no DDI is expected between treprostinil and the 

immunosuppressive agents tested.   

Taken together, the results demonstrate that treprostinil is unlikely to alter the 

metabolism of the four most widely used immunosuppressant medications when co-

administered, thus supporting continued investigation with treprostinil for its targeted indication 

in orthotopic liver transplantation.   
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6.0  CONCLUSIONS AND FUTURE RESEARCH 

6.1 DISCUSSION AND SUMMARY 

Orthotopic liver transplantation is the only curative therapy for patients with end-stage liver 

diseases; however, there is a tremendous shortage of organs available for transplantation.  This 

shortage has prompted the use of what would otherwise be discarded organs, i.e. extended 

criteria donors (ECDs), in efforts to increase the donor pool.  Although ECDs provide additional 

grafts, they are more susceptible to cold ischemia and reperfusion injury.  The process of I/R 

injury to the liver graft combines interrelated factors that produce a cascade of events, which can 

ultimately lead to hepatic graft failure.  Ischemia-reperfusion injury remains a significant 

limitation in clinical liver transplantation.  Despite extensive research, no therapeutic approach is 

available to alleviate I/R injury during OLT. 

Of the various pharmacological agents that have been explored to minimize I/R injury, 

the prostaglandin class of drugs has been evaluated to the greatest extent.  Prostacyclin, an 

endogenous metabolite of arachidonic acid, has a critical role in maintaining cellular 

homeostasis, largely due to its vasodilatory and anti-platelet aggregatory properties.  Because the 

half-life of prostacyclin is very short (2-3 minutes), several analogues have been developed with 

extended half-lives.  Considering the many factors involved in I/R injury and the role of PGI2 in 

maintaining cellular homeostasis, PGI2 analogues have been evaluated to reduce I/R injury 
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associated with OLT, however, no attempts to date have successfully made their way to the 

clinic.  As such, extensive efforts have continued to identify an approach to minimize I/R injury 

associated with OLT.  Treprostinil sodium, a recently FDA-approved PGI2 analogue 

(Remodulin®), possesses potent pulmonary and systemic and vasodilatory and platelet anti-

aggregatory effects [236] and has a higher potency and the longest elimination half-life than 

other PGI2 analogues currently commercially available [127].  These advantages of treprostinil 

make it an attractive candidate for protection of the liver graft against I/R injury associated with 

OLT.  This dissertation examined the hypothesis that treprostinil would protect the liver graft 

against I/R injury during OLT.  This is the first study in the field of I/R injury during OLT to 

investigate treprostinil as a therapeutic approach to protect the liver graft against I/R injury in 

OLT.  Also, this dissertation provides a deeper understanding of the metabolic changes in the 

liver graft during the post-operative period, and the widespread protective effects of treprostinil.  

The work presented herein has generated several key and novel findings, summarized below.  

 

1. Treprostinil minimizes hepatic I/R injury to the liver graft during OLT.  

  

To examine our hypothesis, the first step was to perform proof of concept studies in an animal 

OLT model following cold graft storage.  The initial evidence that treprostinil reduced hepatic 

injury post-transplantation was noted by a drastic reduction in serum aminotransferases at 6, 24, 

and 48 hrs post-reperfusion.  These findings warranted additional studies be carried out to further 

investigate the extent of protection conferred by treprostinil.  These studies examined the degree 

of I/R-induced hepatic damage by neutrophil infiltration, necrosis, pro-inflammatory cytokines, 

energy status, and SEC structure.  The results demonstrated that administration of treprostinil to 
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donor and recipient animals prior to hepatectomy and transplantation, respectively, significantly 

reduced neutrophil infiltration and hepatic necrosis, as well as hepatic mRNA levels of pro-

inflammatory cytokines early post-reperfusion.  In addition, cold storage of liver grafts resulted 

in a significant reduction in adenosine nucleotide levels in the liver graft of placebo-treated 

animals, compared to normal liver.  In contrast, treprostinil restored ATP levels in liver grafts 

similar to normal following reperfusion.  Furthermore, structural analysis by electron microscopy 

revealed the finding that treprostinil preserved the sinusoidal endothelial cell lining and reduced 

platelet deposition very early post-transplantation compared to placebo. Hepatic tissue blood 

flow was significantly compromised in the placebo-treated group, whereas treprostinil 

maintained blood-flow to near normal values.  To answer the question of whether or not 

treatment administered to the recipient alone would yield protective effects, additional groups of 

recipients only were treated with treprostinil prior to transplantation and until the time of 

sacrifice.  The significant reduction in serum ALT and AST levels post-OLT in the recipient only 

treatment group compared to placebo-treated group further confirmed treprostinil as a viable 

approach to protect liver grafts against I/R injury post-reperfusion.   

For more than two decades, PG analogues have been studied for their ability to reduce 

I/R injury after liver transplantation; however stability issues, side effects, and the inability to 

show significant difference in primary endpoint have limited its clinical application.  This is the 

first study to demonstrate the efficacy of treprostinil in an animal OTL model and to elucidate 

the protective effects of this particular PGI2 analogue on liver grafts against I/R injury following 

OLT.  The findings from Chapter 2 support continued investigation of treprostinil as a 

pharmacological agent to protect the liver graft against I/R injury during clinical OLT.   
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In the clinical study, treprostinil will be administered intravenously to the recipient 

commencing after induction of anesthesia for the transplant surgery, and will continue 

throughout the transplant procedure and for approximately 48 hours after completion of the 

transplantation surgery until termination of the study drug infusion, unless hemodynamic 

changes or tolerability require dose reduction or discontinuation of treprostinil.  Treprostinil 

dosing will follow a standard 3 + 3 Phase 1 dose-escalation study design.  Three patients will be 

enrolled at the first dose of 5 ng/kg/min.  If 0/3 patients experience a dose limiting toxicity 

(DLT), the next 3 patients will be started at 7.5 ng/kg/min, and this procedure will be followed 

with 10, 12.5, and 15 ng/kg/min.  If 1/3 patients experience a DLT then 3 more patients will be 

added at the 5 ng/kg/min dose. If 2/6 patients experience DLT at 5 ng/kg/min, the dose will be 

decreased to 2.5 ng/kg/min, and a maximum of six patients will be treated at this dose level. If 

2/6 patients experience DLT at 2.5 ng/kg/min then the trial arm will be discontinued because of 

excessive toxicity.  If only 1/6 patients experience DLT at 5 ng/kg/min, then dose will be 

escalated to 7.5 ng/kg/min, and dose escalation will be done by 2.5 ng/kg/min.  If <1 out of six 

patients experience DLT at 2.5 ng/kg/min, then 2.5 ng/kg/min will be the maximum tolerated 

dose for the expanded study. Treprostinil undergoes extensive hepatic metabolism [113] and in 

patients with renal insufficiency, the AUC was increased 3-5-fold [236].  Since there will be 

brief periods where patients undergoing liver transplantation are anhepatic, a maximal dose that 

will be used is 15 ng/kg/min using the above scheme.  Also, the dose of treprostinil may be 

temporarily reduced or stopped at any time during the transplant procedure if, in the opinion of 

the investigator, the subject experiences intolerable side effects (e.g. low systemic blood pressure 

or other clinically significant changes in hemodynamics) that may be attributable to study drug.  
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Upon completion of the 48-hour infusion, administration of treprostinil will be terminated.  An 

additional aim of the study is to determine the target dose for use in a larger clinical study.  

 

2. Treprostinil minimizes I/R-mediated changes in the expression and activity of major 

rat CYP450 enzymes.  

 

An integral component of I/R injury is activation of the pro-inflammatory cascade resulting in 

the production of pro-inflammatory cytokines, i.e. TNF-α, IL-1β, and IL-6.  Inflammation is 

known to markedly impair hepatic detoxification pathways, which can alter the disposition of 

certain drugs.  In fact, changes in drug disposition have been linked to alterations in the 

expression of hepatic drug metabolizing enzymes and drug transporters as a result of 

inflammation or infection [81-84, 192].  Therefore, we hypothesized that I/R injury, an 

inflammatory disease-state manifested during OLT, would significantly impair metabolic 

functions of the liver graft, and that treprostinil would alleviate the impaired drug metabolism 

post-transplantation by inhibiting the inflammatory response and improving hepatic tissue blood 

flow.  Continuing with the donor plus recipient treatment model, in Chapter 3 we examined the 

effects of I/R injury and protection of liver grafts against I/R injury by treprostinil on the 

expression and activity of CYP450 enzymes post-OLT.  Results showed a significant decrease in 

the mRNA expression of all CYP isoforms tested in the placebo-treated group with parallel 

reductions in protein expression and microsomal activity post-OLT, compared to normal liver.  

In contrast, administration of treprostinil improved the mRNA expression of CYP2C11, 2E1, and 

3A1/A23, 3A2, and 3A18, compared to placebo and restored CYP2E1 protein expression and 

activity to normal.  Treprostinil also significantly improved protein expression and hepatic 
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activity of CYP2C11 and 3A, compared to the placebo-treated group.  These findings highlight 

the impact of I/R injury on CYP450-mediated drug metabolism in the liver graft post-OLT.  

These data also show the impact of treprostinil and the extent of liver graft protection on several 

of the major rat CYP450 isoforms post-transplantation.  

 

3. Treprostinil reduces I/R-mediated changes in the mRNA and protein expression of 

major drug transporters in the rat.  

Hepatic drug transporters are important determinants of the clearance of endogenous compounds 

and xenobiotics and their expression is variable and subject to complex regulation by drugs, 

metabolites, oxidative stress and pro-inflammatory cytokines.  Consequences of impaired hepatic 

function include altered pharmacokinetics of drugs.  Extending the analysis further, we studied 

the effects of I/R injury and protection by treprostinil on the expression of uptake and efflux 

transporters in liver grafts post-OLT.  Results from Chapter 4 showed that administration of 

treprostinil significantly reduced peak serum bilirubin levels post-OLT, compared to placebo, 

and restored values to normal by 3 hours post-OLT.  In addition to confirming the protective 

effect of treprostinil on hepatic function post-OLT, these results highlight the particular 

improvement on hepatic transport processes.  In the placebo-treated group, the mRNA 

expression Oatp1a1, Oatp1a4, Ntcp, Oct1, Mdr1a (P-gp), Mdr2, Mrp2, and Bsep in liver graft 

were significantly reduced compared to normal expression post-reperfusion.  Treatment with 

treprostinil improved mRNA expression of several transporters as well as up-regulated Mrp2 and 

P-gp protein expression.  Earlier reports indicated that activation of the IP receptor led to 

glycosylation [140].  Knowing that treprostinil activates the IP receptor, these unexpected 

findings of up-regulated Mrp2 and P-gp, in addition, to doublet bands of Mrp2 detected, indicate 
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additional mechanism(s) by which this prostacyclin analogue stabilized CYP and transporter 

protein expression.  Conclusions that can be drawn from this study are that I/R injury associated 

with OLT significantly down-regulated the expression of several hepatic transporters and 

treprostinil improved hepatic transport processes in the liver graft post-OLT.   

4. Treprostinil does not directly alter the metabolism of four most commonly used 

immunosuppressive medications when co-administered.  

Success of solid organ transplantation requires the use of immunosuppressive medications to 

prevent organ rejection in the recipient.  These immunosuppressive agents, including tacrolimus, 

sirolimus, cyclosporine A, and mycophenolate mofetil, have a narrow therapeutic index and 

fluctuations in the blood concentration of these agents could precipitate allograft rejection or 

organ toxicity.  In Chapter 5, we examined the potential for a drug-drug interaction between 

treprostinil and cyclosporine A, tacrolimus, sirolimus, and mycophenolic acid in vitro.  The 

results indicated that treprostinil does not inhibit or induce the metabolism of these drugs, nor 

does it alter the mRNA expression of CYP3A4, UGT1A9, or 2B7.  These results lead to the 

conclusion that treprostinil is unlikely to directly alter the clearance of these immunosuppressive 

medications, when co-administered.  In addition to being clinically relevant, these studies 

comply with the FDA requirements for a new drug approval.    

In conclusion, the significance of this research is the identification of treprostinil, a 

commercially available PGI2 analogue, as a viable approach to protect the liver graft against I/R 

injury associated with OLT.  This finding is an important advancement to the field of liver 

transplantation and, potentially, to the field of solid organ transplantation.  Amelioration of 

hepatic graft injury with treprostinil will likely improve both short- and long-term transplant 
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outcomes.  This is the first study to demonstrate that treprostinil protected the liver graft against 

I/R injury associated with OLT.  Treprostinil has the potential to serve as a therapeutic option to 

protect liver graft against I/R injury in patients undergoing OLT.  The results of this work 

support continuation with the investigation of a clinical Phase I study to examine the efficacy of 

treprostinil in protecting the liver grafts against I/R injury in human OLT.    

6.2 FUTURE RESEARCH RECOMMENDATIONS 

While treatment of donor plus recipient offers the greatest liver graft protection, it is often not 

feasible to treat both the donor and the recipient in the clinical setting.  Therefore, to optimize the 

treatment regimen for human transplantation, the next step is to characterize the extent of 

protection by treprostinil in two additional treatment models: 1) recipient only treatment and 2) 

storage only treatment, and compare the results to those conferred in the current donor plus 

recipient model.  We initiated studies with recipient only treatment model to determine the 

benefit of treprostinil as a more clinically relevant treatment model.  Results confirmed that 

recipient only treatment with treprostinil significantly reduced serum ALT and AST values, 

validating this approach to protect the liver graft against I/R injury in clinical OLT.   

In terms of liver graft protection against I/R injury, the work presented herein 

demonstrates the several ways by which treprostinil protects the liver graft following OLT.  The 

first aim that we set out was to examine was proof of concept.  Specific mechanistic pathways 

remain to be examined in future studies, as outlined below. 
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Methodology and Optimization 

- The ideal treatment model would be to use treprostinil ex vivo added to the liver graft 

during preservation in UW solution, prior to transplantation.  This approach is the simplest and 

least cumbersome during the clinical transplantation procedure.  To examine this treatment 

model, it is first necessary to optimize the concentration of treprostinil applied to the UW 

solution.   

- Lactated Ringers (LR) solution is used to flush the UW preservation solution out of the 

graft immediately prior to engraftment.  Addition of treprostinil to LR represents an additional 

means of enhancing liver graft protection; however, the compatibility of treprostinil in LR 

solution has not been established.  Treprostinil is compatible with normal saline or water for 

injection.  Whether or not this step would yield additional protection has yet to be determined.  

- The ultimate goal for the use of treprostinil in adult orthotopic liver transplantation is 

protect the liver graft against I/R-associated injury, thereby improve patient and graft survival, as 

well as increase the number of suitable grafts for transplantation and patients who successfully 

recover from OLT.  To achieve this goal, survival data are essential to make functional 

conclusions with respect to graft protection offered by treprostinil.  

Mechanistic Experiments 

- Previous reports have shown that treprostinil inhibits the release of pro-inflammatory 

cytokines by inhibiting NF-KB translocation in vitro [187].  An important mechanism of hepatic 

I/R injury is activation of NF-KB and treprostinil’s inhibitory effect on this transcription factor is 

very important and should be examined.   
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- In the current donor plus recipient treatment model, hepatic tissue levels of pro-

inflammatory cytokines were measured at the mRNA level.  Plasma cytokine concentrations 

should be measured to correlate levels with biochemical results. 

Metabolism and Transporter Experiments 

-  Another important finding resulted from studying the impact of I/R injury on the hepatic 

expression and activities of the major rat CYP450 Phase I enzymes.  Extensions of this study 

would be to examine the effects of I/R injury and treprostinil on Phase II enzymes, as this 

pathway is also important for metabolism.   

- To better characterize the time course of the effects of I/R injury and the protection 

offered by treprostinil on hepatic metabolism and transport processes, additional time point post-

OLT, i.e. 12 hr and 24 hrs, should be examined.  Also, studies in rat and human hepatocytes are 

important to compare activity and expression levels between species.   

- Functional assessment of hepatic transporters in an isolated liver perfused system to 

further study the consequences of I/R injury and treatment with treprostinil on the function of 

these transporters and regulation of cellular homeostasis, i.e. bile acid transport and bile flow are 

important.  The current treatment model did not allow for studying bile flow, though this 

function was greatly improved in the treprostinil-treated group (Personal observations, confirmed 

by Dr. Yoshida).  To better understand the implication of up-regulated Mrp2 and P-gp protein 

expression, the effect of I/R injury and treprostinil on Mrp2 and P-gp function in liver graft post-

OLT is worth examining.   
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- It would also be interesting to determine whether or not the protein expression of other 

ABC transporters is preserved in treprostinil-treated group.  For instance, the mRNA expression 

of Bsep was maintained similar to normal in the treprostinil-treated group post-OLT. Finally, the 

implications of the transporter findings raise new questions about the potential use of treprostinil 

for other hepatic disease-states and it is attractive to speculate that treprostinil could have 

addition applications, e.g. cholestasis, which is characterized by impaired Mrp2 function.    
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APPENDIX A 

A.1 IRB PROTOCOL 

PRINCIPAL INVESTIGATOR:  

Abhinav Humar,  M.D. 
Professor of Surgery 
Montefiore Hospital North 725, 3459 Fifth Avenue, Pittsburgh, PA 15213 
Phone: 412-692-4553, Fax: 412-692-4180 

 

CO-INVESTIGATORS:   

University of Pittsburgh  

Department of Pharmaceutical Sciences 
 
1. Raman Venkataramanan, Ph.D; F.C.P.  
Professor of Pharmaceutical Sciences and Pathology  
718 Salk Hall,  
3501 Terrace Street, Pittsburgh, PA 15261 
Phone: 412-648-8547  
 
2. Nisanne Ghonem, Pharm.D., Ph.D. 
731 Salk Hall, 3501 Terrace Street, Pittsburgh, PA 15261 
Phone: 412-648-2377      
 
Department of Pathology 
 
Anthony Demetris, Ph.D. 
E737 UPMC-Montefiore,  
3459 Fifth Avenue, Pittsburgh, PA 15213 
Phone 412-647-7646 
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Thomas Starzl Transplantation Institute Liver Surgeons 

Paulo Fontes, M.D, Mark L. Sturdevent, M.D., Ruy J. Cruz, M.D., Roberto C. Lopez, M.D., and 
Raymond Planinsic M.D.(Liver Transplant Anesthesia Team) 
Montefiore University Hospital,  
3459 Fifth Avenue Pittsburgh, PA 15213  
Phone: 412-692-4553 
 
Starzl Transplantation Institute 

Clinical Research Manager: Sheila Fedorek, RN CCRC  
 
Research Coordinators: Laurie Hope, R.N., Stephanie Kikla, R.N. and Leslie Mitrik, B.S.  

 

TITLE: An Evaluation of the Safety and Preliminary Efficacy of Perioperative Treprostinil 

in Preventing Ischemia and Reperfusion Injury in Adult Orthotopic Liver Transplant 

Recipients 

A.1.1 Study Rationale 

The hypothesis of this study is that treprostinil can be safely administered perioperatively to 

adult patients undergoing OLT, and will ameliorate or prevent I/R-mediated dysfunction of the 

liver graft and thereby reduce morbidity, leading to shorter hospital stays as compared to 

historical controls.    

Treprostinil, as a prostanoid, is expected to facilitate restoration of the blood supply to the 

revascularized graft and provide the well-characterized protective effects of this class of 

compounds in liver transplant patients. Treprostinil has the advantage of having a longer 
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elimination half-life and increased potency than other prostanoids previously tested in this 

patient population.  

A.2 STUDY OBJECTIVES 

A.2.1 Primary Objective:  

To evaluate the safety, pharmacokinetics and preliminary efficacy of a two-day peri-operative 

course of treprostinil in preventing ischemia-reperfusion of the liver graft post-OLT. 

A.3 CLINICAL ASSESSMENTS 

A.3.1 Primary Safety Assessment 

The primary safety assessments include the following hemodynamic measurements in the 

operating room (OR) and in the intensive care unit (ICU):  

• Mean pulmonary arterial pressure (mPAP, mmHg)   

• Transpulmonary gradient (tPG, mmHg) 

• Pulmonary capillary wedge pressure (CPWD, mmHg) 

• Cardiac output (CO, L/min) 

• Cardiac Index (CI, l/min/m2) 

• Left ventricular ejection fraction (LVEF, %) 

 



 

  154 

In addition, heart rate (HR, beats per minute) and Systolic blood pressure (SBP, mmHg) will be 

measured/collected every 6 hrs. The need for ionotropes will be noted for 7 days.  

A.3.2 Pharmacokinetic Assessments 

Pharmacokinetic assessments will also be carried out during the study period by collecting 

multiple blood samples.  To measure treprostinil plasma concentration, up to eighteen 3-mL 

blood samples may be obtained in EDTA-coated tubes just prior to, during, and/or after study 

drug administration The sampling will be done prior to initiation of study drug therapy, at 

approximately 2, 4, 6, 12, 18, 24, 30, 36, 42, 48 hrs during therapy and approximately 0.5, 1, 2, 

4, 6, 8 and 12 hrs after therapy. Samples will be analyzed using a validated UPLC-MS-MS assay. 

Various pharmacokinetic parameters will be calculated as per standard methodology, including 

clearance and half-life.  

A.3.3 Preliminary Efficacy Assessment: 

The primary efficacy assessment will be determined by serum bilirubin concentration (peak and 

AUC) measured during the first seven days after transplantation; the secondary efficacy 

assessments will be determined by several biochemical end points in the first seven days after 

transplantation, including:  

• Biochemical end points: Serum ALT and AST levels in the first seven days after 
transplant (Peak and AUC); Post-transplant renal function, as assessed by serum 
creatinine levels in the first seven days following transplant (Peak and AUC); Blood 
biomarkers of ischemia reperfusion injury; INR. 

• Clinical end point: Primary allograft non-function defined as patient death or re-
transplantation within 30 days due to liver failure; Graft survival at day 30, 90 and 180; 
Subject survival at day 30, 90, and 180.  
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• Intra-operative blood product usage;  

• Biopsy: Post perfusion liver biopsy – histology; biomarkers; Liver biopsy is a safe and 
important diagnostic tool for liver disease. Microscopic examination of a biopsy 
specimen can reveal disease-specific patterns. Histological examination of hepatic 
architecture can more accurately stage the disease or estimate the extent of damage.  
 
The biopsy results will be classified as follows:  
0 = no evidence of reperfusion injury  

1 = mild reperfusion injury 

2 = moderate reperfusion injury  

3 = severe reperfusion injury.  

When possible, the following will also be obtained for subsequent analysis as markers of I/R 

injury and subjects will be followed up to study day 180. 

• Duration of time (days) spent in the ICU during the initial hospitalization. 

• Graft up-regulation of pro-inflammatory cytokines (TNF-α, IL-6); chemokines (IL-8) 
• Ultra-structural analysis and immunohistochemistry (CD31) 

• Intra-operative blood product usage  

• Total costs for initial transplant hospitalization  

A.3.4 Number of Subjects 

The total enrollment will be up to 30 patient-subjects. 

A.3.5 Estimated Study Duration 

The estimated study duration will be approximately 3 years. 
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A.4 EXPERIMENTAL PLAN 

A.4.1 Study Design 

This is a single center, open-label, dose-escalation Phase I study of treprostinil in subjects who 

are undergoing orthotopic liver transplantation for end stage hepatic disease at the Thomas E. 

Starzl Transplantation Institute at the University of Pittsburgh Medical Center, Pittsburgh, PA.  

The study will evaluate the safety and preliminary efficacy of treprostinil in adult OLT patients.  

An appropriately signed informed consent form will be obtained for each study subject once 

transplant candidacy is established and prior to any study-related procedures. Informed consent 

will be confirmed at baseline and the subject will be asked if they wish to proceed with the study 

or wish to withdraw prior to any baseline assessments. Approximately 30 subjects who have 

signed informed consent and who continue to meet entry criteria will be enrolled during pre-

transplantation procedures. Treprostinil dosing will follow a standard 3 + 3 phase 1 design. Three 

patients will be enrolled at the first dose level of 5 ng/kg/min. If 0/3 patients experience a dose-

limiting toxicity (DLT*) then the next 3 patients will be started at 7.5 ng/kg/min. If 1/3 patients 

experience a DLT then 3 more patients will be added at the 5 ng/kg/min dose. If 2/6 patients 

experience DLT at 5 ng/kg/min, the dose will be decreased to 2.5 ng/kg/min, and a maximum of 

six patients will be treated at this dose level. If 2/6 patients experience DLT at 2.5 ng/kg/min 

then the trial arm will be discontinued because of excessive toxicity.  If <1 out of six patients 

experience DLT at 2.5 ng/kg/min, then 2.5 ng/kg/min will be the maximum tolerated dose for the 

expanded study. If only 1/6 patients experience DLT at 5 ng/kg/min, then dose will be escalated 

to 7.5 ng/kg/min, and dose escalation will be done by 2.5 ng/kg/min. The maximal dose that will 

be used is 15 ng/kg/min, using the above scheme. The dose of treprostinil may be temporarily 
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reduced or stopped at any time during the transplant procedure if, in the opinion of the 

investigator, the subject experiences intolerable side effects (e.g. low systemic blood pressure or 

other clinically significant changes in hemodynamics) that may be attributable to study drug. 

However, every effort will be made to maintain the study drug dose at the target dose or 

maximum tolerated dose to provide the best chance of a protective effect at the moment of 

reperfusion of the donor organ. At the completion of the 48-hour infusion, administration of 

treprostinil will be terminated. The Follow-up phase will begin after the completion of study 

drug infusion.  Follow-up phase study assessments will occur at Study Days 3-7, 30, 90, and 180.   

 

*DLT is defined as any of the following:  

1. Volume and vasopressor refractory hypotension (norepinephrine or epinephrine > 0.5 

ug/kg/min, dopamine > 10 ug/kg/min, and/or vasopressin > 4 U/hr), for which no other 

reasonable cause(s) can be found and promptly treated. 

2. Sustained (> 4 minutes) hypotension defined as systolic pressure of < 80 mmHg that is not 

responsive to usual interventions for a liver transplant patient, such as fluid bolus and the use of 

vasopressors.  

3. Persistent, uncontrolled and clinically significant hemorrhage. 

4. Vomiting non-responsive to medical intervention such as use of ondansetron, 

prochlorperazine, promethazine and with no other obvious mechanical causes such as bowel 

obstruction and gastric ileus. 

5. Seizure  
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A.4.2 Schedule of Time and Events 

The time and events schedule for the study is presented in Table 10.   
Table 9: Overall Time and Events Schedule for the Study 

Study Phase Screening Baseline Treatment Follow Up 
Study Day -180 to 0 0 1-2 3 4-7 30 90 180 

Informed Consent/Medical 
History 

X X       

Physical Examination/Vital Signs  X X X    X 
MELD Score X X       
Recipient 
Demographics/Indication for 
Transplant 

X X       

Cadaver Donor Demographics  X       
Cold Ischemia Time (hr)   X      
Donor liver biopsy (Back Table 
biopsy) 

 X       

Cytotoxic Crossmatch  X       
Clinical Laboratories1 X X X X X X X X 
Intra-operative Liver Biopsy   X      
Intra-operative blood usage    X      
Total bilirubin (mg/dl)/AST/ALT2 X X X------- ------ ------ ------ ------ X 
International Normalized Ratio 
(INR) 

X X X------- ------ ------ ------ ------ X 

Study Drug Infusion   X------X      
Graft Survival    X-------- ------ ---- --------- --------- -----X 
Subject Survival   X-------- ------ ---- --------- --------- -----X 
Retransplantation   X-------- ------ ---- --------- --------- ------X 
Initial Hospitalization (days)   X-------- ------ ---- --------- --------- -----X 
Time in Intensive Care Unit 
(days) 

  X-------- ------ ---- --------- --------- ------X 

treprostinil  Plasma Level 
Sample(s)3 

 X X------X -------X     

Concomitant Medications   X------- ------ -------X    
Adverse Events   X------ --- ------X    
Heart rate (HR, bpm)  X X------ ------- -------X    
Systolic blood pressure (SBP, 
mmHg) 

 X X------- ------- ------X    

Left ventricular ejection fraction 
(LVEF,%) 

 X X      

Cardiac Index (CI, l/min/m2)  X X      

Cardiac output (CO, L/min) 
 X X      

Pulmonary capillary wedge 
pressure (CPWD, mmHg) 

  X      

Transpulmonary gradient (tPG, 
mmHg) 

 

 X X      

Need for ionotropes 
  X ------- ------X    

1. Clinical laboratories include all liver function tests carried out as part of the standard of care of the liver 
transplant patients and include ALT, AST, Alkaline phosphatase , gamma glutamyl transpeptidase, bilirubin, 
Prothrombin time , Partial Thromboplastin time, International Normalized Ratio, serum creatinine and BUN. 

2. Additional blood samples may be taken so that bilirubin, AST and ALT data are collected at least once every 6 
hours during the first two days, at least once every 12 hrs on days 3-4, and at least once on days 6 and 7.  
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3. Up to eighteen 3-mL blood samples may be obtained in EDTA tubes just prior to, during, and/or after study 
drug administration to evaluate treprostinil plasma levels. The sampling will be done prior to initiation of study 
drug therapy, at approximately 2, 4, 6, 12, 18, 24, 30, 36, 42, 48 hrs during therapy and approximately 0.5, 1, 2, 
4, 6, 8 and 12 hr.  

A.5 SUBJECT ELIGIBILITY CRITERIA 

Inclusion and exclusion criteria will be assessed during the Screening and Baseline phases prior 

to starting study drug. 

A.5.1 Inclusion Criteria 

Subjects must: 

1. Have signed appropriate informed consent. 

2. Be between 18 years and 65 years of age. 

3. Have been accepted as a liver transplant candidate at the UPMC. 

4. Be receiving a cadaver donor liver transplant, including a donor liver with less than 40% 

macrosteatosis; receiving a donor liver with necrosis score of greater than 10; those receiving 

livers with cold ischemia time greater than 6 hours, but less than 12 hours.  

5. Be treated in accordance with the standard of care protocol(s) currently in effect for liver 
transplant recipients at the UPMC, including immunosuppression and other elements of pre- 
and post-operative care.  
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A.5.2 Exclusion Criteria  

Subjects must not: 

1. Be receiving a living donor liver transplant. 

2. Be receiving a donor liver with a cold ischemia time less than 6 hours or greater than 12 

hours.  

3. Be receiving a donor liver with macrosteatosis greater than 40%. 

4. Be receiving any investigational drug (a drug other than treprostinil administered under an 

IND) or participating in any other investigational study, with the exception of alemtuzamab 

(Campath). 

5. Be receiving any prostanoid to treat portopulmonary hypertension.  

6. Have had a failed liver transplant within the previous 180 days. 

7. Be undergoing multi-organ transplantation (transplantation of organs other than liver at the 

same time as the liver transplantation procedure). 

8. Have fulminant hepatic failure 

9. MELD score of > 35 

10. Hepatitis C positive donor liver  

11. On ionotropes at the time of the study 

12. On renal replacement therapy at the time of study 

13. Be receiving any non-standard immunosuppression protocol or other non-standard treatment 

that could affect interpretation of the study results.  
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14. Those currently receiving treatment for portapulmonary hypertension. 

15. Those with significant cardiovascular disease.  

16. Have any known hypersensitivity to prostaglandins, prostacyclin or treprostinil.  

17. If female, be pregnant or nursing (as confirmed by urine pregnancy test at Baseline).  

18. HIV positive  

A.5.3 Concomitant Medications 

Therapy with investigational agents will be prohibited throughout this study.  No alteration in the 

use of immunosuppression or other standard of care drugs or anesthetics at the center will be 

required.  Analgesics including narcotics may be used during this study if needed to treat pain.  

No clinically important drug interactions with treprostinil have been reported [236].  

A.5.4 DRUGS AND DOSING 

A.5.5 Drug Dosage, Administration, and Schedule 

A single strength of commercially available, FDA-approved, treprostinil (1.0 mg/mL, 

Remodulin®, United Therapeutics Inc.) will be provided in 20-mL multi-dose vials. Study drug 

will be administered intravenously (IV) through a dedicated central venous line or peripherally 

inserted central catheter only (PICC).  
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Briefly, treprostinil will be diluted in sterile saline and administered through a dedicated 

line using a pump capable of accurate delivery at the selected infusion rates (normally in the 

range of 1-2 ml/hour).  A PICC may be placed if an appropriate central line is not available.  IV 

treprostinil may not be administered peripherally except for very short periods (a few hours) 

because of the possibility of thrombophlebitis.   

Assistance for this study also will be available from several staff members at UPMC who 

are familiar with administration of treprostinil because of its use in portopulmonary hypertension 

subjects undergoing liver transplantation. 

Treprostinil, at the pre-determined dose level, will be administered intravenously 

commencing after induction of anesthesia for the transplant surgery and continued throughout 

the transplantation procedure and for approximately 48 hrs after the transplantation surgery, 

unless hemodynamic changes or tolerability requires discontinuation of dosing.  If the prescribed 

dose is not well tolerated, the dose may be reduced and the subject maintained at the maximal 

tolerated dose, based primarily on hemodynamics, which will be carefully monitored throughout 

the surgery and during the remainder of the treatment period. If necessary, treprostinil 

administration may be completely terminated.  Note, in this regard, that gradual termination of 

dosing is recommended in the treprostinil package insert for PAH patients because of the 

possibility of acute worsening of PAH symptoms.  However, rebound applies to acute 

decompensation in PAH patients who had been on long-term treatment; which would not apply 

to the patient population being studied under this clinical protocol.  Blood samples to determine 

treprostinil plasma levels may be obtained prior to and/or during surgery from all subjects.  It 

must be understood that treprostinil blood level data will not be available in time to help with 

dosing decisions for an individual subject.  Once study drug infusion has been terminated, the 
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subject will be monitored for at least 24 hours to ensure there are no untoward effects, e.g. 

changes in vital signs.  

A.5.6 Compliance with Dosing 

Because subjects will be hospitalized during the entire Treatment Phase, no special compliance 

assessments will be conducted.   

Adverse events related to treprostinil administration are summarized below, in Table 11.   

Table 10: Expected Events Attributable to Treprostinil 

Abdominal cramping            Nausea 

Backache Leg pain 

Chest pain Pallor 

         Diarrhea Pre-syncope / Syncope 

Dyspnea Premature ventricular contractions 

Jaw pain Restlessness 

Fatigue Sweating 

Flushing Warmness 

Headache Vomiting 

Hypotension Hypoxia 
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A.5.7 Storage and Handling of Study Drug 

Treprostinil will be stored in accordance with manufacturer instructions at room temperature of 

15 to 30 °C (59 to 86 °F), and will not be frozen or exposed to heat. The Investigational Drug 

Service (IDS) at the University of Pittsburgh Medical Center will maintain a log sheet of all 

study drug as it is received and used during the study. Treprostinil will not be used beyond the 

expiration date assigned by the manufacturer. 

A.6 EXPERIMENTAL PROCEDURES 

A.6.1 Screening Phase  

The study population will be recruited from all adult, age 18-65 years, subjects who meet routine 

candidacy criteria at the center to undergo liver transplantation and otherwise meet study entry 

criteria.  Eligible subjects will be given the opportunity to sign informed consent for the study as 

soon as transplant candidacy is confirmed, which usually occurs weeks or months prior to 

confirmation that an appropriate donor liver has been procured.  Obtainment of informed consent 

prior to donor liver procurement will be implemented, because subjects may only have a 

relatively brief time in which to make decisions between notification of procurement, 

hospitalization, and the transplant procedure. Screening assessments may be conducted after 

informed consent has been obtained and prior to the Baseline Phase.   

 

 



 

  165 

Screening activities include:  

• Informed consent 

• Medical history 

• MELD score 

• Clinical laboratories 

• Recipient demographics (including indication for transplant) 

A.6.2 Baseline Phase 

The baseline phase activities will occur after donor organ procurement and hospitalization of the 

subject prior to the transplantation surgery.  At this time, informed consent will be confirmed and 

the subject will be asked if they wish to proceed with the study or wish to withdraw.  Baseline 

activities include the following:  

• Medical history (if updated from Screening) 

• Physical examination / vital signs 

• MELD score  

• Clinical laboratories 

• Recipient demographics and indication for transplant (if updated from Screening) 

• Cadaver donor demographic 

• Cytotoxic cross match  
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A.6.3 Treatment Phase 

The Treatment Phase will begin at the initiation of treprostinil after induction of anesthesia for 

the transplant surgery.  The Treatment Phase will continue throughout the surgery, and until 

termination of the study drug infusion (approximately 48 hrs post-transplantation) and Day 2 

assessments are completed.   

The first clinical laboratory specimen acquired immediately following the completion of 

the transplant surgery will be considered the postoperative Day 0 sample.  Clinical laboratory 

samples during the Treatment Phase Day 1 and 2 will be drawn at the institution’s routine 

laboratory collection times.  Table 3 describes the schedule for collecting serum bilirubin, ALT 

and AST levels. The various endpoint assessments including, survival, retransplantation, 

hospitalization times, etc. are continuous assessments that will be obtained. Study drug will be 

infused for approximately 48 hours following completion of the transplant surgery.   

 

Treatment Phase activities include:  

• Physical examination / vital signs  

• Clinical laboratories  

• Whenever possible, an intra-operative post reperfusion liver biopsy for histopathology 

• Cold ischemia time (hr) 

• Subject survival 

• Graft survival 

• Retransplantation 
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• Initial hospitalization (days) 

• Time (days) in ICU 

• Study drug infusion 

• Pharmacokinetic samples  

• Adverse events 

A.6.4 Follow-up Phase 

The Follow-Up Phase will begin after termination of study drug infusion and completion of all 

Treatment Phase assessments, and continue until Study Day 180.  The various endpoint 

assessments (survival, retransplantation, hospitalization times, etc.) will be continuous 

assessments and obtained for entry on the case report form (CRF) from routine documentation at 

the center. Transplant recipients may require extended hospitalizations at the transplant center or 

elsewhere during the recovery period, or they may be released within days of the transplant 

surgery in the absence of complications.  Duration of initial hospitalization, ICU stay, and graft 

and subject survival will be recorded on the CRF based on routine transplant center 

documentation (e.g. discharge summaries).   

 Study-specific laboratory assessments required for Days 3-7 will be collected starting at 

the institution’s first routine morning laboratory collection time.  
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A.7 STUDY TERMINATION 

A.7.1 Subject Discontinuation 

A subject may voluntarily withdraw or be withdrawn from the study and/or study drug 

administration by the investigator or treating sub investigators at any time for reasons including, 

but not limited to, the following: 

• The subject wishes to withdraw from further participation. 

• A serious or life-threatening AE occurs or the investigator considers that it is necessary to 

discontinue study drug to protect the safety of the subject. 

• The investigator elects to discontinue the study 

• Changes in personnel or facilities adversely affect performance of the study 

• The reviewing IRB requires termination of the study for safety or compliance reasons. 

 

In the event that a subject discontinues study drug prematurely due to an AE, the subject will be 

followed until either the investigator determines that the AE has resolved, it is no longer 

considered clinically significant, or the subject is lost to further follow-up. If a subject 

discontinues study drug prematurely for any reason, the subject will be encouraged to remain in 

the study and attend the remaining scheduled study assessments. 
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A.8 ADVERSE EVENT REPORTING 

A.8.1 Adverse Event  

An adverse event (AE) is any untoward medical experience occurring to a subject during a 

clinical trial whether or not it is related to the study drug.  An AE may include a current illness, 

injury, or any other concomitant impairment of the subject’s health, as well as abnormal 

laboratory findings if deemed to have clinical significance.  An AE may also include worsening 

of an existing symptom or condition or post-treatment events that occur as a result of protocol-

mandated procedures.  

A.8.2 Serious Adverse Event  

Serious adverse event (SAE) is an AE occurring at any dose that results in any of the following: 

• Death 

• A life-threatening AE 

• Inpatient hospitalization or prolongation of existing hospitalization 

• A persistent or significant disability / incapacity 

• A congenital anomaly / birth defect 

 

In addition, important medical events that may not result in a fatal outcome, be life-threatening, 

or require hospitalization may be considered serious when, based upon appropriate medical 

judgment, they may jeopardize the subject and require medical / surgical intervention to prevent 
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one of the outcomes listed above.  Examples of such medical events include allergic 

bronchospasm requiring intensive treatment in an emergency room or at home, blood dyscrasias 

or convulsions that do not result in hospitalization, or the development of drug dependency or 

drug abuse.   

Life-threatening means that the subject was, in the view of the sponsor-investigator, at 

immediate risk of death from the event as it occurred.  It does not mean that the event, had it 

occurred in a more severe form, might have caused death. 

A.8.3 Expected Adverse Event  

AEs associated with liver transplant surgery outcome include: 

All study subjects will be liver transplant recipients who may be critically ill from underlying 

liver disease and/or associated conditions prior to transplant surgery, and who will be recovering 

from the transplant procedure afterward.  According to the “Consent to Adult Liver Transplant” 

used at UPMC, the risk of some type of complication (major or minor) from liver transplant 

surgery is 45 to 55%, and the death rate from surgery is 4%.  Subjects are likely to be in an ICU 

with or without ventilator support after the surgery, and to be hospitalized for periods ranging 

from days to months.  Expected non-serious and serious AEs in liver transplant recipients 

include a long list of intra-operative complications and sequelae from major surgery and 

transplant, including bleeding, major infection, renal failure with or without hemodialysis, 

cardiovascular problems, reactions to or side effects from immunosuppressive drugs, acute 

rejection of the donor liver, and many other issues.  
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Events that are normally observed in liver transplant recipients are listed in Table 12.  All 

AEs will be captured on the CRF.   

Any event that occurs under circumstances in which it is considered possible that study 

drug may have caused or contributed to the event MUST be reported as an AE, rather than as a 

normal liver transplant event, because of the possible relationship to study drug. Known adverse 

events related to treprostinil are in the package insert [236]. 

AEs known to be associated with treprostinil therapy:  an expected AE for treprostinil is 

defined as any AE that is defined in terms of nature, severity, and frequency in the current 

Investigators’ Brochure (United Therapeutics, Inc.).  These findings should be listed in the CRF 

as AEs. 
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Table 11: Expected Event is Liver Transplant Patients 
 

Category of Event Events 
Blood disorders Hemorrhage / coagulopathy / thrombosis  

Exposure to communicable disease and other risks of 
blood / blood products as listed on liver transplant consent 
form 
Thrombocytopenia 
Leukopenia 
Anemia 
Disseminated intravascular coagulopathy (DIC) 

Cardiac and vascular disorders Hypotension 
 

Gastrointestinal disorders Ascites 
Hepatobiliary disorders Jaundice 

Hepatic failure 
Portal vein thrombosis  
Bile duct stenosis 
Hepatic artery thrombosis  
Hepatic artery stenosis 
Hepatoportal venous flow-hyperperfusion syndrome 

Immune system disorders Liver transplant rejection  
Immunosuppression 

Infections Sepsis 
Septicemia 
Lower respiratory tract infection 
Peritonitis 
Urinary tract infection  
Pneumonia  
Bacteremias 
Wound infection 

Injury, poisoning and procedural 
disorders 

Post procedural bile leak 
Splenic injury  
Injury to structures in the abdomen  
Damage to nerves due to contact or positioning during 
surgery burns (e.g. from cauterization or other electrical 
equipment) 
Scarring 

Nervous system & Psychiatric 
disorders 

Confusional state / agitation / encephalopathy 
Cerebrovascular accident 

Renal disorders Acute renal failure  
Electrolyte disorders 

Respiratory disorders Acute respiratory failure 
Skin disorders Decubitus ulcer [pressure ulcer] 
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A.8.4 Documentation of Adverse Events 

An AE or SAE occurring during the study, and which is felt to be possibly or likely related to 

treprostinil administration, must be documented in the subject’s source documents and on the 

appropriate CRF page.  Information relating to the AE such as onset and cessation date and 

times, intensity, seriousness, relationship to study drug, and outcome is also to be documented in 

the CRF.  Where possible, AEs should be recorded using standard medical terminology.  If 

several signs or symptoms are clearly related to a medically defined diagnosis or syndrome, the 

diagnosis or syndrome should be recorded on the CRF page, not the individual signs and 

symptoms. 

 All AEs must be followed until resolution (or return to normal baseline values), or until 

they are judged by the investigator to no longer be clinically significant, or for at least 4 weeks if 

the AE extends beyond the Day 180 assessments.  

All treprostinil-related SAEs should be followed until resolution, death, or the subject is 

lost to follow up or up to Day 180 assessments if the SAE is still continuing. Supplemental 

measurements and/or evaluations may be necessary to fully investigate the nature and/or 

causality of an AE or SAE.  This may include additional laboratory tests, diagnostic procedures, 

or consultation with other healthcare professionals.  CRF pages should be updated with any new 

or additional information as appropriate. 
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A.8.5 Reporting Responsibilities of the Investigator 

In accordance with guidelines established by the University of Pittsburgh Institutional Review 

Board (IRB), the sponsor-investigator will promptly notify the IRB of all serious and unexpected 

adverse events felt to be related or possibly related to the study drug.   

A.8.6 Safety Reports 

In accordance with FDA regulations, the sponsor-investigator will notify the FDA, other 

competent authorities, and the sub-investigators of any AE that is considered to be reasonably or 

possibly attributable to study drug and is both serious and unexpected.  

A.9 STATISTICS 

A.9.1 Data Collection and Retrieval 

Results of all assessments will be collected in an excel spread sheet for each subject enrolled in 

the study.  

A.9.2 Primary Safety and Preliminary Efficacy Endpoint 

This is a phase I/II study and by nature is descriptive. It follows a typical phase 1 protocol.  
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A.10 SAFETY ANALYSIS 

The safety of treprostinil will be evaluated by analyses of AEs and clinical laboratory 

parameters. They will be summarized according to intensity, seriousness and causality. For all 

safety endpoints, tabular summaries will be provided. Secondary endpoints will be calculated 

and/or analyzed based on data routinely obtained by the Transplant Institute.   

Pharmacokinetic parameters such as clearance, volume of distribution, half-life, terminal 

disposition rate constant will be calculated.  

Preliminary Efficacy: Peak and AUC values for bilirubin, AST and ALT will be 

calculated. The hospital costs, and total hospitalization days, where relevant will also be 

collected. The data collected in this study will be compared to historical data as preliminary 

estimate of efficacy.  

A.10.1 Interim Analyses 

No interim efficacy analysis is planned.    

A.10.2 Data Monitoring Committee 

The protocol will be submitted to the Institutional Review Board (IRB) at the University of 

Pittsburgh. The Starzl Transplantation Institute PRC/DSMB will serve as the data and safety 

monitoring committee. The data collected from each subject will be reviewed by the 

investigators on a patient to patient basis.  
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A.11 PACKAGING AND FORMULATION 

A.11.1 Study Drug Content  

FDA-approved treprostinil (1 mg/mL) will be obtained from United Therapeutics, Inc. who will 

supply the study drug in 20-mL multiple-entry vials 

A.11.2 Study Drug Storage and Handling 

The treprostinil will be stored securely in a controlled-access area at room temperature of 15 to 

30 °C (59 to 86 °F).  It will not be frozen or exposed to heat.   

A.11.3 Study Drug Accountability 

The sponsor-investigator is responsible for study drug accountability and reconciliation overall 

and on a per subject basis.  Drug accountability records will be maintained during the study and 

these records will include:  the amount of study drug received from the manufacturer for this 

study, the amount dispensed to each subject, and the amount of unused drug.  During the 

Treatment Phase site personnel should assess drug dispensed, drug returned, and dosing 

information to confirm drug accountability and compliance.  

A.11.4 Study Documentation and Storage 

Study records will be retained in accordance with FDA and IRB requirements. 
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A.12 REGULATORY AND ETHICAL OBLIGATION 

A.12.1 Regulatory Requirements 

The investigator will obtain the required FDA and ethics committee approval to conduct the 

study.  During the conduct of the study an Annual Report will be compiled by the sponsor-

investigator for submission to the FDA, as required. Any additional local reporting requirements 

as specified by the IRB or other institutional authorities will also be fulfilled during the conduct 

of the study. 

A.12.2 Informed Consent Requirements 

Before a subject is enrolled in the study, the investigator or their designated sub-investigator(s) 

must explain the purpose and nature of the study, including potential benefits and risks and all 

study procedures to the subject.  The subject must sign and date an IRB-approved informed 

consent form prior to the conduct of any study-related activities.  A copy of the signed consent 

form will be given to the subject and the original will be retained in the study site’s records. 

A.12.3 Institutional Review Board 

Prior to study initiation the investigator will obtain approval for the study from the University of 

Pittsburgh IRB.  This IRB operates in accordance with the FDA regulations at 21 CFR Parts 50 

and 56.  If, during the study, it is necessary to amend either the protocol or the informed consent 

form, the investigator is responsible for obtaining IRB approval of these amended documents 
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prior to implementation.  A written summary of the study will be provided by the investigator to 

the IRB following study completion or termination according to the IRB standard procedures.  

Additional updates will also be provided in accordance with the IRB standard procedures. 

A.12.4 Subject Confidentiality 

Every effort will be made to keep medical information confidential.  The FDA and the IRB may 

inspect the medical records of any subject involved in this study.  The investigator may release 

the subject’s case records to the IRB or the FDA or appropriate local regulatory agencies for 

purposes of checking the accuracy of the data and/or regulatory compliance.  A number will be 

assigned to all subjects and any report published will not identify the subjects’ names. 

A.13 PROTOCOL AMENDMENTS AND STUDY TERMINATION 

Protocol Amendments will be submitted prospectively to the FDA for any change to the protocol 

that significantly affects the safety of the subjects.  Other changes to the protocol will be 

submitted as a Protocol Amendment at the time of requisite Annual Reports to the IND 

application.  All changes to the protocol must be prospectively approved by the University of 

Pittsburgh IRB.  No deviations from the IRB-approved protocol are permitted, except as 

necessary to protect the safety of individual research subjects.  Such deviations from the protocol 

will be promptly reported to the IRB.  A final report will be submitted to the IRB and FDA at the 

time of study termination. 
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APPENDIX B 

B.1 CONSENT FORM 

CONSENT TO ACT AS PARTICIPANT IN A RESEARCH STUDY 
 

 
TITLE: AN EVALUATION OF THE SAFETY AND PRELIMINARY EFFICACY OF 

PERIOPERATIVE TREPROSTINIL IN PREVENTING ISCHEMIA AND REPERFUSION 

INJURY IN ADULT ORTHOTOPIC LIVER TRANSPLANT RECIPIENTS 

PRINCIPAL INVESTIGATOR: Dr. Abhinav Humar,  Professor of Surgery 

Montefoire Hospital North 725, 3459 Fifth Avenue, Pittsburgh, PA 15213 

Phone: 412-692-4553, Fax # 412-692-4180 

 

Co-Principal Investigator: Raman Venkataramanan, Ph.D; F.C.P.;  

Professor of Pharmaceutical Sciences and Pathology  

718 Salk Hall, University; of Pittsburgh School of Pharmacy 

3501 Terrace Street, Pittsburgh, PA 15261 

Phone: 412-648-8547 Fax: 412-383-7436 
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Co-investigators:  Thomas Starzl Transplantation Institute Liver Surgeons: 

Paulo Fontes, M.D, Mark Sturdevent, M.D., Ruy J. Cruz, M.D., Mark L. Sturdevant, M.D., 
Roberto C. Lopez, M.D., and Raymond Planinsic M.D.(Liver Transplant Anesthesia Team) 
Montefiore University Hospital,  
3459 Fifth Avenue Pittsburgh, PA 15213  
Phone: 412-692-4553 
 

Co-investogators: Pathology 

Anthony Demetris, E737 UPMC-Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 

Phone 412-647-7646 

Co-investigators: School of Pharmacy 
Nisanne Ghonem, PharmD, PhD: 731 Salk Hall, 3501 Terrace Street, Pittsburgh, PA  
 
Phone: 412-648-2377  
 

Starzl Transplantation Institute: 

Tracy Grogan, Unit Director: UPMC Montefiore South 555, 200 Lothrop Steer, Pittsburgh, PA 

15213. Phone: 412-647-8560 

Clinical Research Manager:  Sheila Fedorek, RN CCRC  
 
Research Coordinators: Laurie Hope, R.N., Stephenie Kikla, R.N. and Leslie Mitrik, B.S.  

 

                           

SOURCE OF SUPPORT: United Therapeutics Corporation (Partial); Thomas Starzl 

Transplantation Institute  
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Why is this research being done? 

 

The liver is subjected to low temperature during transportation from the person who donates the 

liver (the donor) to the person who gets it (the recipient). When the liver is put inside the 

recipient it is warmed up to normal body temperature. Sometimes during these steps the liver 

cells may undergo damage and may not function well. If this happens patients may have to stay 

in the hospital for a longer period of time so that the liver will eventually become better or in 

certain cases the patient may need a second liver transplantation. There are no medical 

treatments approved by the U.S. Food and Drug Administration (FDA) to prevent such problems. 

This purpose of this research study is to find out whether a drug called Treprostinil is useful in 

preventing such problems.  

Treprostinil is a drug that is approved by the FDA (Remodulin®) for the treatment of a 

disease called pulmonary arterial hypertension, or PAH.  PAH is a condition where there is high 

pressure in the blood vessels that supply the lungs. Treprostinil works by widening the blood 

vessels and by preventing blood components from sticking together. Drugs like Treprostinil can 

also protect cells from the kinds of injury described above.  Treprostinil has been given to more 

than 2,000 patients with PAH and has been shown to be safe and effective. Treprostinil has also 

been given safely to patients with a form of PAH called Porto-Pulmonary Hypertension, who had 

some degree of liver problems. At UPMC, two patients with end stage liver disease have 

received Treprostinil (36 and 45 ng/kg/min) during liver transplant, continuing throughout the 

transplant procedure and afterward in the intensive care unit without any treprostinil-related 

problems. However, Treprostinil has not been studied before in patients undergoing liver 

transplant surgery as part of a formal clinical investigation. Results from a recent animal study 
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proved that Treprostinil is effective in reducing liver injury during liver transplantation.  In this 

study we will test to see whether or not Treprostinil decreases damage to liver cells and 

decreases the length of stay in the hospital.    

 

Who is being asked to take part in this research study? 

 

You are being invited to take part in this research study because you are a liver transplant 

candidate and will receive a liver transplantation. Female and male liver transplant patients, 

between the ages of 18 and 65 years of age are being asked to participate in this clinical study.  

This study will take place at the University of Pittsburgh Medical Center, Pittsburgh, PA, and 

will include approximately 30 patients.  

 

How will the study be done? 

 

If you decide to participate in this study, you will undergo a screening visit, a baseline visit that 

is on the day of transplantation, a study treatment phase that will start in the operating room and 

last for 2 days, and follow up phase that will last up to day 7 after you receive the new liver. On 

post-op days 30, 90 and 180 we will only be collecting information on your survival and liver 

status, information if you have been retransplanted, initial hospitalization and time in the 

intensive care unit. This information will be obtained from your hospital and clinic records. 
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Screening Visit 

 

The Screening Phase can occur up to 180 days before your liver transplant surgery following 

your selection as a candidate for liver transplantation. To determine if you meet the criteria for 

participation in this study, the doctor will review and collect information about your medical 

history. You will have a physical examination and your vital signs will be taken. Blood tests will 

be done that are part of the clinic’s standard screening for liver transplant surgery and 

information (age, gender, weight, height, medical history, clinical laboratory test results 

indicative of your liver and kidney function) will be collected for the study from these tests. If 

you meet all the study participation conditions and sign the informed consent, you can enter the 

“Baseline visit”.   

 

Baseline Visit 

 

The baseline visit occurs the day you enter the hospital for the liver transplant surgery. During 

this time, your doctor will make a final decision if you can enter the study. The routine pre-

operative examinations and test will be conducted including a physical exam, medical history 

update, and blood tests to evaluate your liver and kidney function. A urine pregnancy test will be 

performed in women of child bearing potential. If you meet all the study entry conditions, you 

will be enrolled in the study and will receive one of the doses selected by your doctor.  Once the 

Baseline assessments are complete, you will enter the Study Treatment Phase.     
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Treatment Phase 

 

You will begin receiving Treprostinil at the time you receive medications that put you to sleep 

and prepare you for the surgery.  Treprostinil will be given through a central line (a tube placed 

into a large blood vessel in your chest) or peripherally inserted central catheter (usually a longer 

tube inserted in a vein in your arm that will reach the larger vessel) that will only be used for 

Treprostinil.  No other medication (drug) can be given in this line. 

You will continue to receive study drug (Treprostinil) during your surgery and for 2 days 

(48 hours) after your surgery and then the study drug will be stopped.  You will be in the hospital 

and will be closely watched by members of your medical team for any problems during this 

entire time.  On the first day after the transplant, in addition to the routine blood sampling, two 

additional blood samples will be taken to measure the certain liver enzymes such as AST, ALT, 

that tell us how your liver is working.  

  Medical information that is part of the routine care of liver transplant surgery will also 

be collected and includes blood tests to evaluate your liver and kidney function, length of the 

liver transplant surgery, any signs or symptoms of liver injury, time admitted to the intensive 

care unit, time spent needing a machine to assist you with breathing (ventilator) and information 

about the donor liver such as age, gender and weight. You may also be asked questions to find 

out whether you had any unusual problems or symptoms that may be related to the 

administration of study drug.  Blood samples or any other biological material (optional liver 

biopsy) already collected may also be used for assessment of substances in the blood that 

indicate injury to the new liver.  They will not be used for any genetic testing.  
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Follow-Up Phase 

 

The Follow-Up Phase visits for the study will be done during the routine follow-up care that you 

receive after liver transplant surgery. Results from blood tests that measure the function of your 

liver and kidney and physical examinations that are done on day 3 and 7 will be collected.    

In addition, on post-op days 30, 90 and 180 we will only be collecting information on the 

condition of your new liver and if you needed another transplant, if you are still in the hospital or 

intensive care unit following the original surgery, and are you alive and well at these time points. 

This information will be obtained from your hospital and clinic records.  Information regarding 

amount of time you may have spent needing a breathing machine will also be collected.     

Throughout the study, you will be asked to report any unusual problems that you 

experience, regardless of whether or not you feel they are related to, or caused by, the study 

medication. It is very important for you to discuss any difficulties or side effects with your 

doctor. If you have any significant side effects or problems, you should quickly contact your 

doctor. Your doctor will then decide if you should receive other treatment. 

If you decide to participate in the study, your medical records will be reviewed for 

demographic information (age, gender, and race), lab results (done as part of your routine post 

transplant care), medication information, and information about the results of testing and 

procedures that are preformed during the transplant follow-up period for days 1 through 7, as 

described above.   
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Additional Assessments That May Be Conducted During the Treatment and Follow-up Phases 

 

Pharmacokinetic (PK) Samples  

Up to eighteen 3 mL of blood samples will be collected.  The times the blood samples may be 

taken include before the start of study drug, during surgery, and after the study drug is stopped 

(48 hours after the start of infusion), and up to 12 hours after the study drug was stopped.  Theses 

blood samples will not be used for any other testing.  

 

What are the possible risks, side effects, and discomforts of this research study? 

 

There may be certain risks associated with participation in this study. These may include side 

effects of Treprostinil, all of which are not known at this time, the risks associated with a line 

used for giving you the drug and risk associated with blood sampling for measuring Treprostinil 

levels.    

As with any investigational drug there may be adverse events or side effects that are 

currently unknown and it is possible that certain of these unknown risks could be permanent, 

serious and life threatening. 

 

Risks of Treprostinil: Common side effects of Treprostinil may include, but are not limited to, 

flushing of the skin, headache, nausea, vomiting, diarrhea, and jaw pain. If these side effects 

develop and are intolerable, the dose of the study drug may be reduced or stopped until the side 

effects disappear.   
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Likely (>25%): Headache; diarrhea;  

Common (10-25%): Nausea, vomiting, rash, itchiness, jaw pain, flushing (increase in diameter 

of blood vessels), leg or foot pain 

Infrequent (1-10%): Dizziness, edema, skin reaction, line infection,  

Rare:   Decreased blood pressure 

 

Risks of Intravenous infusion of treprostinil: The study drug may be delivered using a tube 

placed into a large vein in the chest called a central venous catheter. This route of delivery can 

cause pain and bruising at the insertion site and there is an increase risk of blood stream 

infections (BSI).  Treprostinil is broken down in the body by the liver. In subjects with liver 

problem, blood levels of Treprostinil may be higher than normal. Treprostinil has not been 

studied in patients with severe liver failure, although it has been administered safely to such 

patients at the University of Pittsburgh Medical Center and elsewhere. In one small study, 

Treprostinil blood levels were found to be 2-4 times higher in patients with some degree of liver 

failure. Infusion of Treprostinil or drugs similar to Treprostinil occasionally has been done 

during liver transplant surgery without causing any serious problems.   However, because there is 

period when the diseased liver has been removed and the new liver has not started to work, there 

is a time during the surgery when Treprostinil blood levels may increase five times or more. This 

could cause your blood pressure to decrease during the surgery. Your blood pressure and vital 

signs will be watched very carefully during your surgery and the dose of study drug could be 

reduced or stopped if there are problems.  However, in spite of these precautions the study drug 

may increase the risk of problems resulting from low blood pressure. The medical team may stop 

the study without your agreement based on medical information available to them.   
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Treprostinil has not been shown to cause cancer or affect fertility or mating performance 

in rats at a dose that is 60 times the highest dose used in this study. In pregnant rats a dose that is 

120 times the maximum dose to be used in this study did not have any evidence of harm to the 

fetus. Because animal studies are not always predictive of what might happen in humans, 

pregnant subjects should not use Treprostinil.   

 

Risks of Reproduction: Being a part of this study while pregnant or breastfeeding may expose 

the unborn child or nursing infant to risks known and unknown. Therefore, pregnant and nursing 

women will not be included in this study. If you are a woman of childbearing potential, a urine 

pregnancy test will be done during baseline visit. It must be negative before you can enter this 

study. While receiving study drug, and for a period of 30 days after that you must agree to use 

two appropriate methods of birth control. Medically acceptable birth control methods include: 

(1) surgical sterilization, (2) approved hormonal contraceptives (such as birth control pills or 

Lupron Depot), (3) barrier methods (such as a condom or diaphragm) used with a spermicide, 

or (4) an intrauterine device (IUD).  

You should not take part in this study if you plan to become pregnant with in a month 

after transplant surgery, are currently pregnant, or you are currently breast feeding. You must 

notify your doctor if you suspect you have become pregnant while participating in this study. 

 

Risks of blood sampling:  The risks associated with blood sampling are minimal as the subjects 

will already have a catheter inserted for other blood sampling. In rare cases when a catheter is 

not already in, a small tube will be inserted in the arm vein for blood collection. 
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What are possible benefits from taking part in this study? 

 

There is no guarantee that you will receive any benefit from participating in this study.  

However, it is hoped that this drug will protect your liver and your stay in the hospital following 

liver transplant surgery will be less and you will spend less time in the intensive care unit. Your 

participation may also help others in the future by what the doctors learn from your involvement 

in this study.   

  

What treatment or procedures are available if I decide not to take part in this research study? 

If you decide not to take part in this research study, you will undergo normal procedures 

associated with the liver transplantation surgery. No other routine treatment will be withheld. 

 

If I agree to take part in this research study, will I be told of any new risks that may be found 

during the course of the study? 

You will be promptly notified if, during the conduct of this research study, any new information 

develops which may cause you to change your mind about continuing to participate in this study. 

 

Will my insurance provider or I be charged for the costs of any procedures performed as part 

of this research study? 

All costs and tests done to treat you before and after your liver transplant should be covered by 

your medical insurance. These are tests that would normally be performed in patients undergoing 

liver transplant surgery.  
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Some of the services you will receive during this are “research only services” that are 

being done only because you are in the study. These services will be paid for by the study and 

will not be billed to your health insurance company or you.  United Therapeutics Corporation 

will cover the costs associated with the following procedures and tests carried out for research 

purposes: study drug cost, pump for infusion, and Treprostinil blood level analysis 

University of Pittsburgh Thomas Starzl Transplantation Institute will cover the costs 

associated with the following procedures and tests carried out for research purposes:  

• Drug administration  

• Post reperfusion liver biopsy (optional) 

• Additional ALT/AST on day 1 and 2 

• Study Day 7 procedures, in the event a patient is to be discharged before day 7.   

• Treprostinil pharmacokinetic sampling will be performed by research technician hired to 

perform this.  

 

Some of the services you will receive during this study are considered to be “routine clinical 

services” that you would have even if you were not in the study.  Examples are the actual liver 

transplant, surgery, hospitalization and all associated care.  These services will be billed to your 

health insurance company or you, if you do not have health insurance.   

 

You will be responsible for paying any deductibles, co-payments or co-insurance that are 

a normal part of your health insurance plan.  If you have the Medicare Advantage Plan you could 

be billed as if you were a Fee-for Service patient. You may also be responsible for the total coast 

of the transplant under a 3rd party Medicare plan.  You may want to get more detailed 
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information about what “routine clinical services” your health insurance is likely to pay for.  You 

may want to talk to a member of the study staff and/or a UPMC financial counselor to get more 

information.   

No compensation will be provided by United Therapeutics Corporation.  This includes no 

financial support for lost wages, disability, pain or discomfort. 

 

Will I be paid if I take part in this research study? 

 

You will not receive any payment for taking part in this clinical study. 

 

Who will pay if I am injured as a result of taking part in this study? 

 

University of Pittsburgh researchers and their associates who provide services at University of 

Pittsburgh Medical Center (UPMC) recognize the importance of your voluntary participation in 

their research studies. These individuals and their staffs will make reasonable efforts to 

minimize, control, and treat any injuries that may arise as a result of this research. If you believe 

that you are injured as a result of the research procedures being performed, please contact 

immediately the Principal Investigator or one of the co-investigators listed on the first page of 

this form. 

Emergency medical treatment for injuries solely and directly related to your participation 

in this research study will be provided to you by UPMC. It is possible that UPMC may bill your 

insurance provider for the costs of this emergency treatment, but none of these costs will be 

charged directly to you. If your research-related injury requires medical care beyond this 
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emergency treatment, you will be responsible for the costs of this follow-up care unless 

otherwise specifically stated below. If you are physically injured by the study drug and you have 

followed the directions of the study personnel, United Therapeutics Corporation will cover the 

medical expenses necessary to treat the injury. United Therapeutics Corporation will provide no 

additional financial compensation. There is no plan for monetary compensation. You do not, 

however, waive any legal rights by signing this form. 

 

Who will know about my participation in this research study? 

 

Any information about you obtained from this research will be kept as confidential (private) as 

possible. All records related to your involvement in this research study will be stored in a locked 

file cabinet. Your identity on these records will be indicated by a case number rather than by 

your name, and the information linking these case numbers with your identity will be kept 

separate from the research records. You will not be identified by name in any publication of the 

research results unless you sign a separate consent form giving your permission (release). 

 

Will this research study involve the use or disclosure of my identifiable medical information? 

 

This research study will involve the recording of current and/or future identifiable medical 

information from your hospital and/or other (e.g., physician office) records. The information that 

will be recorded will be limited to information concerning demographics (age, gender, and race) 

and concurrent conditions and medications you are receiving.  
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This research study will result in identifiable information that will be placed into your 

medical records held at UPMC Presbyterian and Montefiore.   

 

Who will have access to identifiable information related to my participation in this research 

study? 

 

In addition to the investigators listed on the first page of this authorization (consent) form and 

their research staff, the following individuals will or may have access to identifiable information 

(which may include your identifiable medical information) related to your participation in this 

research study:  

Authorized representatives of the University of Pittsburgh Research Conduct and 

Compliance Office may review your identifiable research information (which may include your 

identifiable medical information) for the purpose of monitoring the appropriate conduct of this 

research study. 

Authorized representatives of the United Therapeutics Corporation may review your 

identifiable research information (which may include your identifiable medical information) 

related to your participation in this research study for the purpose of monitoring the accuracy and 

completeness of the research data and for performing required scientific analyses for the research 

data.   While the study sponsor understands the importance of maintaining the confidentiality of 

your identifiable research and medical information, the UPMC and University of Pittsburgh 

cannot guarantee the confidentiality of this information after it has been obtained by the study 

sponsor.  The investigators involved in the conduct of this research study may receive funding 
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form the sponsor to perform the research procedures and to provide the sponsor with identifiable 

research and medical information related to your participation in the study. 

Authorized representatives from the Food and Drug Administration may review and or 

obtain your identifiable (which may include your identifiable medical information) related to 

your participation in this research study for the purposes of monitoring the accuracy and 

completeness of the research data.  While the U.S. Food and Drug Administration understands 

the importance of maintaining the confidentiality of your identifiable research and medical 

information, the UPMC and University of Pittsburgh cannot guarantee the confidentiality of this 

information after it has been obtained by the U. S. Food and Drug Administration. 

Authorized representatives of UPMC hospitals or other affiliated health care providers 

may have access to identifiable information (which may include your identifiable medical 

information) related to your participation in this research study for the purpose of (1) fulfilling 

orders, made by the investigators, for hospital and health care services (e.g., laboratory tests, 

diagnostic procedures) associated with research study participation; (2) addressing correct 

payment for tests and procedures ordered by the investigators; and/or (3) for internal hospital 

operations (i.e. quality assurance). 

In unusual cases, the investigators may be required to release identifiable information 

(which may include your identifiable medical information) related to your participation in this 

research study in response to an order from a court of law.  If the investigators learn that you or 

someone with whom you are involved is in serious danger or potential harm, they will need to 

inform, as required by Pennsylvania law, the appropriate agencies. 
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For how long will the investigators be permitted to use and disclose identifiable information 

related to my participation in this research study? 

 

All the blood samples collected from you will be labeled using an identification number without 

your name. They will be stored in the laboratory of the researchers until all the data is obtained 

from these samples. The investigators may continue to use and disclose, for the purposes 

described above, identifiable information (which may include your identifiable medical 

information) related to your participation in this research study for a minimum of 5 years and for 

as long (indefinite) as it may take to complete this research study. 

The blood samples collected in this study will be kept for an indefinite time period until a 

complete report of the study has been published. The sample with out the identification may be 

utilized in future studies by the investigators. These samples will not be shared with any 

secondary investigators not listed on the current research study. 

 

May I have access to my medical information that results from my participation in this 

research study? 

 

In accordance with UPMC Notices of Privacy Practices document that you have been given, you 

are permitted access to information (including information resulting from your participation in 

this research study) contained within your medical records filed with your health care provider 
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Is my participation in this research study voluntary? 

 

Your participation in this research study, to include the use and disclosure of your identifiable 

information for the purposes described above, is completely voluntary. (Note, however, that if 

you do not provide your consent for the use and disclosure of your identifiable information for 

the purposes described above, you will not be allowed to participate in the research study.)  

Whether or not you provide your consent for participation in this research study will have on 

effect on your current and future care at a University or Pittsburgh or UPMC hospital or 

affiliated health care provider or your current or future relationship with a health care insurance 

provider.  

Your doctor may be an investigator in this research study, and as an investigator, is 

interested both in your medical care and in the conduct of this research. Before entering this 

study or at any time during the research, you may discuss your care with another doctor who is in 

no way associated with this research project. You are not under any obligation to participate in 

any research study offered by your doctor.  

 

May I withdraw, at a future date, my consent for participation in this research study? 

 

You may withdraw, at any time, your consent for participation in this research study, to include 

the use and disclosure of your identifiable information for the purposes described above.  (Note, 

however, that if you withdraw your consent for the use and disclosure of your identifiable 

medical record information for the purposes described above, you will also be withdrawn, in 

general, from further participation in this research study.)  Any identifiable research or medical 
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information recorded for, or resulting from, your participation in this research study prior to the 

date that you formally withdrew your consent may continue to be used and disclosed by the 

investigators for the purposes described above. 

To formally withdraw your consent for participation in this research study you should 

provide a written and dated notice of this decision to the principal investigator of this research 

study at the address listed on the first page of this form. 

If you decide to withdraw form study participation after you have received the study 

drug, you should participate in described monitoring follow-up procedures directed at evaluating 

the safety of the study drug.  

 

If I agree to take part in this research study, can I be removed from the study without my 

consent? 

 

It is possible that you may be removed from the research study by the researchers if, for 

example, your pregnancy test proves to be positive. You may be removed from the study if you 

experience unexpected side effects and in the opinion of the investigators that it is in your best 

interest. The study may also be stopped by the investigators or the sponsor if it felt that it is in 

the best interest of the patients.   
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******************************************************************** 

VOLUNTARY CONSENT 

 

All of the above has been explained to me and all of my current questions have been answered.  I 

understand that I am encouraged to ask questions about any aspect of this research study during 

the course of this study, and that such future questions will be answered by the researchers listed 

on the first page of this form.   

 

Any questions which I have about my rights as a research participant will be answered by 

the Human Subject Protection Advocate of the IRB Office, University of Pittsburgh (1-866-212-

2668). By signing this form, I agree to participate in this research study.  A copy of this consent 

form will be given to me. 

 

� By signing this form, I agree to participate in the additional Pharmacokinetic  

      Sampling  

________________________________   __________________ 

Participant’s Signature     Date 

 

 

 

 

 

 



 

  199 

CERTIFICATION OF INFORMED CONSENT 

I certify that I have explained the nature and purpose of this research study to the above-named 

individual(s), and I have discussed the potential benefits and possible risks of study participation.  

Any questions the individual(s) have about this study have been answered, and we will always be 

available to address future questions as they arise.”  

 

___________________________________  ________________________ 

Printed Name of Person Obtaining Consent  Role in Research Study 

 

_________________________________  ____________ 

Signature of Person Obtaining Consent  Date  

 

ONLY WHEN APPLICABLE FOR PROXY CONSENT: 

The patient is unable to consent because: 

 

I therefore, consent to participation for the patient 

 

_____________________________________              ____________________________ 

Signature                                                                         Date 

_____________________________________             ____________________________ 

Legal Representative                                                     Relationship to Subject 

______________________________________         _____________________________ 

Witness Signature      Date 
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VERIFICATION OF EXPLANATION 

 

I certify that I have carefully explained the purpose and nature of this research to 

____________________________ in appropriate language.  He/She has had an opportunity to 

discuss it with me in detail.  I have answered all of his/she provided affirmative agreement (i.e., 

assent)to participate in this research.   

 

___________________________________              ____________________ 

Printed Name of Person Obtaining Consent  Role in Research Study 

 

_________________________________  ____________ 

Signature of Person Obtaining Consent  Date  

 

 



 

  201 

BIBLIOGRAPHY 

1. Naito, M., G. Hasegawa, Y. Ebe, and T. Yamamoto, Differentiation and function of 
Kupffer cells. Med Electron Microsc, 2004. 37(1): p. 16-28. 

2. Zardi, E.M., D.M. Zardi, A. Dobrina, and A. Afeltra, Prostacyclin in sepsis: a systematic 
review. Prostaglandins Other Lipid Mediat, 2007. 83(1-2): p. 1-24. 

3. http://www.unos.org, U.N.f.O.S., United Network for Organ Sharing. Updated 2010. 
4. Casillas-Ramirez, A., I.B. Mosbah, F. Ramalho, J. Rosello-Catafau, and C. Peralta, Past 

and future approaches to ischemia-reperfusion lesion associated with liver 
transplantation. Life Sci, 2006. 79(20): p. 1881-94. 

5. Busquets, J., X. Xiol, J. Figueras, E. Jaurrieta, J. Torras, E. Ramos, A. Rafecas, J. 
Fabregat, C. Lama, L. Ibanez, L. Llado, and J.M. Ramon, The impact of donor age on 
liver transplantation: influence of donor age on early liver function and on subsequent 
patient and graft survival. Transplantation, 2001. 71(12): p. 1765-71. 

6. Karatzas, T., L. Olson, G. Ciancio, G.W. Burke, 3rd, G. Spires, L. Cravero, R. Taukus, J. 
Cravero, S. Buss-Henry, J.D. Waters, E. Lykaki-Karatzas, A. Demirbas, A. Tsaroucha, J. 
Miller, and A.G. Tzakis, Expanded liver donor age over 60 years for hepatic 
transplantation. Transplant Proc, 1997. 29(7): p. 2830-1. 

7. Reddy, S., M. Zilvetti, J. Brockmann, A. McLaren, and P. Friend, Liver transplantation 
from non-heart-beating donors: current status and future prospects. Liver Transpl, 2004. 
10(10): p. 1223-32. 

8. Clavien, P.A., P.R. Harvey, and S.M. Strasberg, Preservation and reperfusion injuries in 
liver allografts. An overview and synthesis of current studies. Transplantation, 1992. 
53(5): p. 957-78. 

9. Busuttil, R.W. and K. Tanaka, The utility of marginal donors in liver transplantation. 
Liver Transpl, 2003. 9(7): p. 651-63. 

10. Greig PD, W.G., Sinclair SB, Abecassis M, Strasberg SM, Taylor BR, Blendis LM, 
Superina RA, Glynn MF, Langer B, et al., Treatment of primary liver graft nonfunction 
with prostaglandin E1. Transplantation., 1989. 48(3): p. 447-53. 

11. Kornberg, A., U. Schotte, B. Kupper, M. Hommann, and J. Scheele, Impact of selective 
prostaglandin E1 treatment on graft perfusion and function after liver transplantation. 
Hepatogastroenterology, 2004. 51(56): p. 526-31. 

12. Nowak, G., J. Ungerstedt, J. Wernerman, U. Ungerstedt, and B.G. Ericzon, Metabolic 
changes in the liver graft monitored continuously with microdialysis during liver 
transplantation in a pig model. Liver Transpl, 2002. 8(5): p. 424-32. 

13. Quiroga, J. and J. Prieto, Liver cytoprotection by prostaglandins. Pharmacol Ther, 1993. 
58(1): p. 67-91. 

14. Schafer, D.F. and M.F. Sorrell, Prostaglandins in liver transplantation: a promise 
unfulfilled. Gastroenterology, 1996. 111(3): p. 819-20. 

http://www.unos.org/�


 

  202 

15. Schemmer, P., A. Mehrabi, T. Kraus, P. Sauer, C. Gutt, W. Uhl, and M.W. Buchler, New 
aspects on reperfusion injury to liver--impact of organ harvest. Nephrol Dial Transplant, 
2004. 19 Suppl 4: p. iv26-35. 

16. Montalvo-Jave, E.E., T. Escalante-Tattersfield, J.A. Ortega-Salgado, E. Pina, and D.A. 
Geller, Factors in the pathophysiology of the liver ischemia-reperfusion injury. J Surg 
Res, 2008. 147(1): p. 153-9. 

17. Hossain, M.A., H. Wakabayashi, K. Izuishi, K. Okano, S. Yachida, and H. Maeta, The 
role of prostaglandins in liver ischemia-reperfusion injury. Curr Pharm Des, 2006. 
12(23): p. 2935-51. 

18. Bahde, R. and H.U. Spiegel, Hepatic ischaemia-reperfusion injury from bench to 
bedside. Br J Surg. 

19. Rudiger, H.A., R. Graf, and P.A. Clavien, Liver ischemia: apoptosis as a central 
mechanism of injury. J Invest Surg, 2003. 16(3): p. 149-59. 

20. Ramalho, F.S., I. Fernandez-Monteiro, J. Rosello-Catafau, and C. Peralta, Hepatic 
microcirculatory failure. Acta Cir Bras, 2006. 21 Suppl 1: p. 48-53. 

21. Ikeda, T., K. Yanaga, K. Kishikawa, S. Kakizoe, M. Shimada, and K. Sugimachi, 
Ischemic injury in liver transplantation: difference in injury sites between warm and cold 
ischemia in rats. Hepatology, 1992. 16(2): p. 454-61. 

22. Caldwell-Kenkel, J.C., R.T. Currin, Y. Tanaka, R.G. Thurman, and J.J. Lemasters, 
Reperfusion injury to endothelial cells following cold ischemic storage of rat livers. 
Hepatology, 1989. 10(3): p. 292-9. 

23. Holloway, C.M., P.R. Harvey, and S.M. Strasberg, Viability of sinusoidal lining cells in 
cold-preserved rat liver allografts. Transplantation, 1990. 49(1): p. 225-9. 

24. Clavien, P.A., Sinusoidal endothelial cell injury during hepatic preservation and 
reperfusion. Hepatology, 1998. 28(2): p. 281-5. 

25. Takahashi, Y., R.W. Ganster, A. Gambotto, L. Shao, T. Kaizu, T. Wu, G.P. Yagnik, A. 
Nakao, G. Tsoulfas, T. Ishikawa, T. Okuda, D.A. Geller, and N. Murase, Role of NF-
kappaB on liver cold ischemia-reperfusion injury. Am J Physiol Gastrointest Liver 
Physiol, 2002. 283(5): p. G1175-84. 

26. Nieuwenhuijs, V.B., M.T. De Bruijn, R.T. Padbury, and G.J. Barritt, Hepatic ischemia-
reperfusion injury: roles of Ca2+ and other intracellular mediators of impaired bile flow 
and hepatocyte damage. Dig Dis Sci, 2006. 51(6): p. 1087-102. 

27. Selzner, N., H. Rudiger, R. Graf, and P.A. Clavien, Protective strategies against ischemic 
injury of the liver. Gastroenterology, 2003. 125(3): p. 917-36. 

28. Puhl, G., K.D. Schaser, D. Pust, K. Kohler, B. Vollmar, M.D. Menger, P. Neuhaus, and 
U. Settmacher, Initial hepatic microcirculation correlates with early graft function in 
human orthotopic liver transplantation. Liver Transpl, 2005. 11(5): p. 555-63. 

29. Fondevila, C., R.W. Busuttil, and J.W. Kupiec-Weglinski, Hepatic ischemia/reperfusion 
injury--a fresh look. Exp Mol Pathol, 2003. 74(2): p. 86-93. 

30. Kupiec-Weglinski, J.W. and R.W. Busuttil, Ischemia and reperfusion injury in liver 
transplantation. Transplant Proc, 2005. 37(4): p. 1653-6. 

31. Abu-Amara, M., S.Y. Yang, N. Tapuria, B. Fuller, B. Davidson, and A. Seifalian, Liver 
ischemia/reperfusion injury: processes in inflammatory networks--a review. Liver 
Transpl. 16(9): p. 1016-32. 

32. Vajdova, K., R. Graf, and P.A. Clavien, ATP-supplies in the cold-preserved liver: A long-
neglected factor of organ viability. Hepatology, 2002. 36(6): p. 1543-52. 



 

  203 

33. Jaeschke, H., A.P. Bautista, Z. Spolarics, and J.J. Spitzer, Superoxide generation by 
Kupffer cells and priming of neutrophils during reperfusion after hepatic ischemia. Free 
Radic Res Commun, 1991. 15(5): p. 277-84. 

34. Jaeschke, H. and A. Farhood, Neutrophil and Kupffer cell-induced oxidant stress and 
ischemia-reperfusion injury in rat liver. Am J Physiol, 1991. 260(3 Pt 1): p. G355-62. 

35. Tacke, F., T. Luedde, and C. Trautwein, Inflammatory pathways in liver homeostasis and 
liver injury. Clin Rev Allergy Immunol, 2009. 36(1): p. 4-12. 

36. Carden, D.L. and D.N. Granger, Pathophysiology of ischaemia-reperfusion injury. J 
Pathol, 2000. 190(3): p. 255-66. 

37. Furukawa, H., S. Todo, O. Imventarza, A. Casavilla, Y.M. Wu, C. Scotti-Foglieni, B. 
Broznick, J. Bryant, R. Day, and T.E. Starzl, Effect of cold ischemia time on the early 
outcome of human hepatic allografts preserved with UW solution. Transplantation, 1991. 
51(5): p. 1000-4. 

38. Vollmar, B. and M.D. Menger, The hepatic microcirculation: mechanistic contributions 
and therapeutic targets in liver injury and repair. Physiol Rev, 2009. 89(4): p. 1269-339. 

39. McCuskey, R.S., Morphological mechanisms for regulating blood flow through hepatic 
sinusoids. Liver, 2000. 20(1): p. 3-7. 

40. Enomoto, K., Y. Nishikawa, Y. Omori, T. Tokairin, M. Yoshida, N. Ohi, T. Nishimura, 
Y. Yamamoto, and Q. Li, Cell biology and pathology of liver sinusoidal endothelial cells. 
Med Electron Microsc, 2004. 37(4): p. 208-15. 

41. Stolz, D.B., M.A. Ross, A. Ikeda, K. Tomiyama, T. Kaizu, D.A. Geller, and N. Murase, 
Sinusoidal endothelial cell repopulation following ischemia/reperfusion injury in rat liver 
transplantation. Hepatology, 2007. 46(5): p. 1464-75. 

42. Husted, T.L. and A.B. Lentsch, The role of cytokines in pharmacological modulation of 
hepatic ischemia/reperfusion injury. Curr Pharm Des, 2006. 12(23): p. 2867-73. 

43. Vollmar, B., M.D. Menger, J. Glasz, R. Leiderer, and K. Messmer, Impact of leukocyte-
endothelial cell interaction in hepatic ischemia-reperfusion injury. Am J Physiol, 1994. 
267(5 Pt 1): p. G786-93. 

44. Barbiro, E., Y. Zurovsky, and A. Mayevsky, Real time monitoring of rat liver energy 
state during ischemia. Microvasc Res, 1998. 56(3): p. 253-60. 

45. Lisman, T. and R.J. Porte, The role of platelets in liver inflammation and regeneration. 
Semin Thromb Hemost. 36(2): p. 170-4. 

46. Cywes, R., M.A. Packham, L. Tietze, J.R. Sanabria, P.R. Harvey, M.J. Phillips, and S.M. 
Strasberg, Role of platelets in hepatic allograft preservation injury in the rat. 
Hepatology, 1993. 18(3): p. 635-47. 

47. Sindram, D., R.J. Porte, M.R. Hoffman, R.C. Bentley, and P.A. Clavien, Platelets induce 
sinusoidal endothelial cell apoptosis upon reperfusion of the cold ischemic rat liver. 
Gastroenterology, 2000. 118(1): p. 183-91. 

48. Yadav, S.S., D.N. Howell, D.A. Steeber, R.C. Harland, T.F. Tedder, and P.A. Clavien, P-
Selectin mediates reperfusion injury through neutrophil and platelet sequestration in the 
warm ischemic mouse liver. Hepatology, 1999. 29(5): p. 1494-502. 

49. Sindram, D., R.J. Porte, M.R. Hoffman, R.C. Bentley, and P.A. Clavien, Synergism 
between platelets and leukocytes in inducing endothelial cell apoptosis in the cold 
ischemic rat liver: a Kupffer cell-mediated injury. Faseb J, 2001. 15(7): p. 1230-2. 

50. Cywes, R., J.B. Mullen, M.A. Stratis, P.D. Greig, G.A. Levy, P.R. Harvey, and S.M. 
Strasberg, Prediction of the outcome of transplantation in man by platelet adherence in 



 

  204 

donor liver allografts. Evidence of the importance of prepreservation injury. 
Transplantation, 1993. 56(2): p. 316-23. 

51. Tanaka, Y., C. Chen, J.M. Maher, and C.D. Klaassen, Kupffer cell-mediated 
downregulation of hepatic transporter expression in rat hepatic ischemia-reperfusion. 
Transplantation, 2006. 82(2): p. 258-66. 

52. Wanner, G.A., W. Ertel, P. Muller, Y. Hofer, R. Leiderer, M.D. Menger, and K. 
Messmer, Liver ischemia and reperfusion induces a systemic inflammatory response 
through Kupffer cell activation. Shock, 1996. 5(1): p. 34-40. 

53. Cherrington, N.J., A.L. Slitt, J.M. Maher, X.X. Zhang, J. Zhang, W. Huang, Y.J. Wan, 
D.D. Moore, and C.D. Klaassen, Induction of multidrug resistance protein 3 (mrp3) in 
vivo is independent of constitutive androstane receptor. Drug Metab Dispos, 2003. 
31(11): p. 1315-9. 

54. Lin, E., S.E. Calvano, and S.F. Lowry, Inflammatory cytokines and cell response in 
surgery. Surgery, 2000. 127(2): p. 117-26. 

55. Colletti, L.M., D.G. Remick, G.D. Burtch, S.L. Kunkel, R.M. Strieter, and D.A. 
Campbell, Jr., Role of tumor necrosis factor-alpha in the pathophysiologic alterations 
after hepatic ischemia/reperfusion injury in the rat. J Clin Invest, 1990. 85(6): p. 1936-
43. 

56. Serracino-Inglott, F., N.A. Habib, and R.T. Mathie, Hepatic ischemia-reperfusion injury. 
Am J Surg, 2001. 181(2): p. 160-6. 

57. Biffl, W.L., E.E. Moore, F.A. Moore, C.C. Barnett, Jr., V.S. Carl, and V.N. Peterson, 
Interleukin-6 delays neutrophil apoptosis. Arch Surg, 1996. 131(1): p. 24-9; discussion 
29-30. 

58. Smedsrod, B., D. Le Couteur, K. Ikejima, H. Jaeschke, N. Kawada, M. Naito, P. Knolle, 
L. Nagy, H. Senoo, F. Vidal-Vanaclocha, and N. Yamaguchi, Hepatic sinusoidal cells in 
health and disease: update from the 14th International Symposium. Liver Int, 2009. 
29(4): p. 490-501. 

59. Morgan, E.T., Impact of infectious and inflammatory disease on cytochrome P450-
mediated drug metabolism and pharmacokinetics. Clin Pharmacol Ther, 2009. 85(4): p. 
434-8. 

60. Omura, T. and R. Sato, The Carbon Monoxide-Binding Pigment of Liver Microsomes. I. 
Evidence for Its Hemoprotein Nature. J Biol Chem, 1964. 239: p. 2370-8. 

61. Gibson, G. and P. Skett, Introduction to Drug Metabolism. 1986. 
62. Meyer, U.A., Overview of enzymes of drug metabolism. J Pharmacokinet Biopharm, 

1996. 24(5): p. 449-59. 
63. Prakash, C.a.V., A.D.N. Drug Metabolism: Significance and Challenges, Nuclear 

Receptors in Drug Metabolism, ed: Wen Xie, John Wiley & Sons, Inc.   . 2009. 
64. Fisher, C.D., A.J. Lickteig, L.M. Augustine, J. Ranger-Moore, J.P. Jackson, S.S. 

Ferguson, and N.J. Cherrington, Hepatic cytochrome P450 enzyme alterations in humans 
with progressive stages of nonalcoholic fatty liver disease. Drug Metab Dispos, 2009. 
37(10): p. 2087-94. 

65. Nelson, D.R., D.C. Zeldin, S.M. Hoffman, L.J. Maltais, H.M. Wain, and D.W. Nebert, 
Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, 
including nomenclature recommendations for genes, pseudogenes and alternative-splice 
variants. Pharmacogenetics, 2004. 14(1): p. 1-18. 



 

  205 

66. Nedelcheva, V. and I. Gut, P450 in the rat and man: methods of investigation, substrate 
specificities and relevance to cancer. Xenobiotica, 1994. 24(12): p. 1151-75. 

67. Mahnke, A., D. Strotkamp, P.H. Roos, W.G. Hanstein, G.G. Chabot, and P. Nef, 
Expression and inducibility of cytochrome P450 3A9 (CYP3A9) and other members of the 
CYP3A subfamily in rat liver. Arch Biochem Biophys, 1997. 337(1): p. 62-8. 

68. Iber, H., T. Li-Masters, Q. Chen, S. Yu, and E.T. Morgan, Regulation of hepatic 
cytochrome P450 2C11 via cAMP: implications for down-regulation in diabetes, fasting, 
and inflammation. J Pharmacol Exp Ther, 2001. 297(1): p. 174-80. 

69. Morgan, E.T., Suppression of constitutive cytochrome P-450 gene expression in livers of 
rats undergoing an acute phase response to endotoxin. Mol Pharmacol, 1989. 36(5): p. 
699-707. 

70. Gonzalez, F.J., The molecular biology of cytochrome P450s. Pharmacol Rev, 1988. 
40(4): p. 243-88. 

71. Chandra, P. and K.L. Brouwer, The complexities of hepatic drug transport: current 
knowledge and emerging concepts. Pharm Res, 2004. 21(5): p. 719-35. 

72. Muller, M. and P.L. Jansen, Molecular aspects of hepatobiliary transport. Am J Physiol, 
1997. 272(6 Pt 1): p. G1285-303. 

73. Ananthanarayanan, M., O.C. Ng, J.L. Boyer, and F.J. Suchy, Characterization of cloned 
rat liver Na(+)-bile acid cotransporter using peptide and fusion protein antibodies. Am J 
Physiol, 1994. 267(4 Pt 1): p. G637-43. 

74. Zair, Z.M., J.J. Eloranta, B. Stieger, and G.A. Kullak-Ublick, Pharmacogenetics of OATP 
(SLC21/SLCO), OAT and OCT (SLC22) and PEPT (SLC15) transporters in the intestine, 
liver and kidney. Pharmacogenomics, 2008. 9(5): p. 597-624. 

75. Kullak-Ublick, G.A. and P.J. Meier, Mechanisms of cholestasis. Clin Liver Dis, 2000. 
4(2): p. 357-85. 

76. Nishida, T., Z. Gatmaitan, M. Che, and I.M. Arias, Rat liver canalicular membrane 
vesicles contain an ATP-dependent bile acid transport system. Proc Natl Acad Sci U S A, 
1991. 88(15): p. 6590-4. 

77. Nishida, T., C. Hardenbrook, Z. Gatmaitan, and I.M. Arias, ATP-dependent organic 
anion transport system in normal and TR- rat liver canalicular membranes. Am J 
Physiol, 1992. 262(4 Pt 1): p. G629-35. 

78. Scotto, K.W., Transcriptional regulation of ABC drug transporters. Oncogene, 2003. 
22(47): p. 7496-511. 

79. Sukhai, M., A. Yong, J. Kalitsky, and M. Piquette-Miller, Inflammation and interleukin-6 
mediate reductions in the hepatic expression and transcription of the mdr1a and mdr1b 
Genes. Mol Cell Biol Res Commun, 2000. 4(4): p. 248-56. 

80. Faber, K.N., M. Muller, and P.L. Jansen, Drug transport proteins in the liver. Adv Drug 
Deliv Rev, 2003. 55(1): p. 107-24. 

81. Geier, A., M. Wagner, C.G. Dietrich, and M. Trauner, Principles of hepatic organic 
anion transporter regulation during cholestasis, inflammation and liver regeneration. 
Biochim Biophys Acta, 2007. 1773(3): p. 283-308. 

82. Morgan, E.T., K.B. Goralski, M. Piquette-Miller, K.W. Renton, G.R. Robertson, M.R. 
Chaluvadi, K.A. Charles, S.J. Clarke, M. Kacevska, C. Liddle, T.A. Richardson, R. 
Sharma, and C.J. Sinal, Regulation of drug-metabolizing enzymes and transporters in 
infection, inflammation, and cancer. Drug Metab Dispos, 2008. 36(2): p. 205-16. 



 

  206 

83. Petrovic, V., S. Teng, and M. Piquette-Miller, Regulation of drug transporters during 
infection and inflammation. Mol Interv, 2007. 7(2): p. 99-111. 

84. Teng, S. and M. Piquette-Miller, Regulation of transporters by nuclear hormone 
receptors: implications during inflammation. Mol Pharm, 2008. 5(1): p. 67-76. 

85. Morgan, E.T., Regulation of cytochromes P450 during inflammation and infection. Drug 
Metab Rev, 1997. 29(4): p. 1129-88. 

86. Cherrington, N.J., A.L. Slitt, N. Li, and C.D. Klaassen, Lipopolysaccharide-mediated 
regulation of hepatic transporter mRNA levels in rats. Drug Metab Dispos, 2004. 32(7): 
p. 734-41. 

87. Christians, U., T. Strom, Y.L. Zhang, W. Steudel, V. Schmitz, S. Trump, and M. 
Haschke, Active drug transport of immunosuppressants: new insights for 
pharmacokinetics and pharmacodynamics. Ther Drug Monit, 2006. 28(1): p. 39-44. 

88. Kobayashi, N., T. Tani, A. Hisaka, K. Hara, and T. Yasumori, Hepatobiliary transport of 
a nonpeptidic endothelin antagonist, (+)-(5S,6R,7R)-2-butyl-7-[2((2S)-2-carboxypropyl)-
4-methoxyphenyl]-5-(3,4- methylenedioxyphenyl) cyclopentenol[1,2-b]pyridine-6-
carboxylic acid: uptake by isolated rat hepatocytes and canalicular membrane vesicles. 
Pharm Res, 2003. 20(1): p. 89-95. 

89. Maher, J.M., A.L. Slitt, T.N. Callaghan, X. Cheng, C. Cheung, F.J. Gonzalez, and C.D. 
Klaassen, Alterations in transporter expression in liver, kidney, and duodenum after 
targeted disruption of the transcription factor HNF1alpha. Biochem Pharmacol, 2006. 
72(4): p. 512-22. 

90. Adam, R., D. Azoulay, I. Astarcioglu, Y.M. Bao, L. Bonhomme, G. Fredj, and H. 
Bismuth, Reliability of the MEGX test in the selection of liver grafts. Transplant Proc, 
1991. 23(5): p. 2470-1. 

91. Balderson, G.A., J.M. Potter, P.E. Hickman, Y. Chen, S.V. Lynch, and R.W. Strong, 
MEGX as a test of donor liver function. Transplant Proc, 1992. 24(5): p. 1960-1. 

92. Nagel, R.A., L.Y. Dirix, K.M. Hayllar, R. Preisig, J.M. Tredger, and R. Williams, Use of 
quantitative liver function tests--caffeine clearance and galactose elimination capacity--
after orthotopic liver transplantation. J Hepatol, 1990. 10(2): p. 149-57. 

93. Oellerich, M., M. Burdelski, B. Ringe, P. Lamesch, G. Gubernatis, H. Bunzendahl, R. 
Pichlmayr, and H. Herrmann, Lignocaine metabolite formation as a measure of pre-
transplant liver function. Lancet, 1989. 1(8639): p. 640-2. 

94. Venkataramanan, R., Biliary excretion of cyclosporine in liver transplant patients. 
Transplant Proc, 1985. 17(1): p. 286-289. 

95. Saeki, T., K. Ueda, Y. Tanigawara, R. Hori, and T. Komano, Human P-glycoprotein 
transports cyclosporin A and FK506. J Biol Chem, 1993. 268(9): p. 6077-80. 

96. Toth, A., H.Y. Abdallah, R. Venkataramanan, L. Teperman, G. Halsf, M. Rabinovitch, 
G.J. Burckart, and T.E. Starzl, Pharmacokinetics of ceftriaxone in liver-transplant 
recipients. J Clin Pharmacol, 1991. 31(8): p. 722-8. 

97. Tanaka, Y., C. Chen, J.M. Maher, and C.D. Klaassen, Ischemia-reperfusion of rat livers 
decreases liver and increases kidney multidrug resistance associated protein 2 (mrp2). 
Toxicol Sci, 2008. 101(1): p. 171-8. 

98. Niwano, M., S. Arii, K. Monden, S. Ishiguro, T. Nakamura, M. Mizumoto, Y. Takeda, 
M. Fujioka, and M. Imamura, Amelioration of sinusoidal endothelial cell damage by 
Kupffer cell blockade during cold preservation of rat liver. J Surg Res, 1997. 72(1): p. 
36-48. 



 

  207 

99. Colletti, L.M., S.L. Kunkel, A. Walz, M.D. Burdick, R.G. Kunkel, C.A. Wilke, and R.M. 
Strieter, The role of cytokine networks in the local liver injury following hepatic 
ischemia/reperfusion in the rat. Hepatology, 1996. 23(3): p. 506-14. 

100. Rudiger, H.A. and P.A. Clavien, Tumor necrosis factor alpha, but not Fas, mediates 
hepatocellular apoptosis in the murine ischemic liver. Gastroenterology, 2002. 122(1): p. 
202-10. 

101. Wanner, G.A., P.E. Muller, W. Ertel, M. Bauer, M.D. Menger, and K. Messmer, 
Differential effect of anti-TNF-alpha antibody on proinflammatory cytokine release by 
Kupffer cells following liver ischemia and reperfusion. Shock, 1999. 11(6): p. 391-5. 

102. Bartels, M., H.K. Biesalski, K. Engelhart, G. Sendlhofer, P. Rehak, and E. Nagel, Pilot 
study on the effect of parenteral vitamin E on ischemia and reperfusion induced liver 
injury: a double blind, randomized, placebo-controlled trial. Clin Nutr, 2004. 23(6): p. 
1360-70. 

103. Cerwenka, H., H. Bacher, G. Werkgartner, A. El-Shabrawi, F. Quehenberger, H. Hauser, 
and H.J. Mischinger, Antioxidant treatment during liver resection for alleviation of 
ischemia-reperfusion injury. Hepatogastroenterology, 1998. 45(21): p. 777-82. 

104. Vriens, M.R., A. Marinelli, H.I. Harinck, K.H. Zwinderman, and C.J. van de Velde, The 
role of allopurinol in human liver ischemia/reperfusion injury: a prospective randomized 
clinical trial. Hepatogastroenterology, 2002. 49(46): p. 1069-73. 

105. Uhlmann, D., G. Gaebel, B. Armann, S. Ludwig, J. Hess, U.C. Pietsch, M. Fiedler, A. 
Tannapfel, J. Hauss, and H. Witzigmann, Attenuation of proinflammatory gene 
expression and microcirculatory disturbances by endothelin A receptor blockade after 
orthotopic liver transplantation in pigs. Surgery, 2006. 139(1): p. 61-72. 

106. Walsh, K.B., A.H. Toledo, F.A. Rivera-Chavez, F. Lopez-Neblina, and L.H. Toledo-
Pereyra, Inflammatory mediators of liver ischemia-reperfusion injury. Exp Clin 
Transplant, 2009. 7(2): p. 78-93. 

107. Kaizu, T., A. Nakao, A. Tsung, H. Toyokawa, R. Sahai, D.A. Geller, and N. Murase, 
Carbon monoxide inhalation ameliorates cold ischemia/reperfusion injury after rat liver 
transplantation. Surgery, 2005. 138(2): p. 229-35. 

108. Narumiya, S., Y. Sugimoto, and F. Ushikubi, Prostanoid receptors: structures, 
properties, and functions. Physiol Rev, 1999. 79(4): p. 1193-226. 

109. Moncada, S. and J.R. Vane, Prostacyclin: its biosynthesis, actions and clinical potential. 
Philos Trans R Soc Lond B Biol Sci, 1981. 294(1072): p. 305-29. 

110. Wise, H., Multiple signalling options for prostacyclin. Acta Pharmacol Sin, 2003. 24(7): 
p. 625-30. 

111. Falcetti, E., D.M. Flavell, B. Staels, A. Tinker, S.G. Haworth, and L.H. Clapp, IP 
receptor-dependent activation of PPARgamma by stable prostacyclin analogues. 
Biochem Biophys Res Commun, 2007. 360(4): p. 821-7. 

112. Ali, F.Y., K. Egan, G.A. FitzGerald, B. Desvergne, W. Wahli, D. Bishop-Bailey, T.D. 
Warner, and J.A. Mitchell, Role of prostacyclin versus peroxisome proliferator-activated 
receptor beta receptors in prostacyclin sensing by lung fibroblasts. Am J Respir Cell Mol 
Biol, 2006. 34(2): p. 242-6. 

113. Horn, E.M. and R.J. Barst, Treprostinil therapy for pulmonary artery hypertension. 
Expert Opin Investig Drugs, 2002. 11(11): p. 1615-22. 

114. Zardi, E.M., A. Dobrina, A. Amoroso, and A. Afeltra, Prostacyclin in liver disease: a 
potential therapeutic option. Expert Opin Biol Ther, 2007. 7(6): p. 785-90. 



 

  208 

115. Moncada, S., R. Gryglewski, S. Bunting, and J.R. Vane, An enzyme isolated from arteries 
transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet 
aggregation. Nature, 1976. 263(5579): p. 663-5. 

116. Skoro-Sajer, N. and I. Lang, Treprostinil for the treatment of pulmonary hypertension. 
Expert Opin Pharmacother, 2008. 9(8): p. 1415-20. 

117. Dusting, G.J., D.J. Chapple, R. Hughes, S. Moncada, and J.R. Vane, Prostacyclin (PGI2) 
induces coronary vasodilatation in anaesthetised dogs. Cardiovasc Res, 1978. 12(12): p. 
720-30. 

118. Dusting, G.J., S. Moncada, and J.R. Vane, Prostacyclin (PGX) is the endogenous 
metabolite responsible for relaxation of coronary arteries induced by arachindonic acid. 
Prostaglandins, 1977. 13(1): p. 3-15. 

119. Cho, M.J. and M.A. Allen, Chemical stability of prostacyclin (PGI2) in aqueous 
solutions. Prostaglandins, 1978. 15(6): p. 943-54. 

120. Rubin, L.J., Primary pulmonary hypertension. N Engl J Med, 1997. 336(2): p. 111-7. 
121. Vane, J. and R.E. Corin, Prostacyclin: a vascular mediator. Eur J Vasc Endovasc Surg, 

2003. 26(6): p. 571-8. 
122. Flolan® (epoprostenol) Product Information.  Research Triangle Park, N.G.W. 
123. Hoeper, M.M., Drug treatment of pulmonary arterial hypertension: current and future 

agents. Drugs, 2005. 65(10): p. 1337-54. 
124. Ventavis® (iloprost) Inhalation Solution full Prescribing Information. South San 

Francisco, C.A.P.U., Inc. 2010. 
125. Melian, E.B. and K.L. Goa, Beraprost: a review of its pharmacology and therapeutic 

efficacy in the treatment of peripheral arterial disease and pulmonary arterial 
hypertension. Drugs, 2002. 62(1): p. 107-33. 

126. Galie, N., A. Manes, and A. Branzi, The new clinical trials on pharmacological treatment 
in pulmonary arterial hypertension. Eur Respir J, 2002. 20(4): p. 1037-49. 

127. Clapp, L.H., P. Finney, S. Turcato, S. Tran, L.J. Rubin, and A. Tinker, Differential effects 
of stable prostacyclin analogs on smooth muscle proliferation and cyclic AMP 
generation in human pulmonary artery. Am J Respir Cell Mol Biol, 2002. 26(2): p. 194-
201. 

128. Olschewski, H., F. Rose, R. Schermuly, H.A. Ghofrani, B. Enke, A. Olschewski, and W. 
Seeger, Prostacyclin and its analogues in the treatment of pulmonary hypertension. 
Pharmacol Ther, 2004. 102(2): p. 139-53. 

129. Kuroda, T., H. Hirota, Y. Fujio, S. Sugiyama, M. Masaki, Y. Hiramoto, W. Shioyama, K. 
Okamoto, M. Hori, and K. Yamauchi-Takihara, Carbacyclin induces carnitine 
palmitoyltransferase-1 in cardiomyocytes via peroxisome proliferator-activated receptor 
(PPAR) delta independent of the IP receptor signaling pathway. J Mol Cell Cardiol, 
2007. 43(1): p. 54-62. 

130. Peters, J.M., I. Rusyn, M.L. Rose, F.J. Gonzalez, and R.G. Thurman, Peroxisome 
proliferator-activated receptor alpha is restricted to hepatic parenchymal cells, not 
Kupffer cells: implications for the mechanism of action of peroxisome proliferators in 
hepatocarcinogenesis. Carcinogenesis, 2000. 21(4): p. 823-6. 

131. Chen, H.M., M.F. Chen, and M.H. Shyr, Prostacyclin analogue (OP-2507) attenuates 
hepatic microcirculatory derangement, energy depletion, and lipid peroxidation in a rat 
model of reperfusion injury. J Surg Res, 1998. 80(2): p. 333-8. 



 

  209 

132. Goto, S., Y.I. Kim, Y. Kodama, T. Kai, K. Kawano, L. Delriviere, S.V. Lynch, N. 
Kamada, and M. Kobayashi, The effect of a prostaglandin I2 analogue (OP-41483) on 
energy metabolism in liver preservation and its relation to lipid peroxidative reperfusion 
injury in rats. Cryobiology, 1993. 30(5): p. 459-65. 

133. Hafez, T., M. Moussa, I. Nesim, N. Baligh, B. Davidson, and A. Abdul-Hadi, The effect 
of intraportal prostaglandin E1 on adhesion molecule expression, inflammatory 
modulator function, and histology in canine hepatic ischemia/reperfusion injury. J Surg 
Res, 2007. 138(1): p. 88-99. 

134. Itasaka, H., T. Suehiro, S. Wakiyama, K. Yanaga, M. Shimada, and K. Sugimachi, The 
mechanism of hepatic graft protection against reperfusion injury by prostaglandin E1. 
Surg Today, 1999. 29(6): p. 526-32. 

135. Quiroga, J. and J. Prieto, Liver cytoprotection by prostaglandins. Pharmacology & 
Therapeutics, 1993. 58(1): p. 67-92. 

136. Garcia-Valdecasas, J.C., R. Rull, L. Grande, J. Fuster, A. Rimola, A.M. Lacy, F.X. 
Gonzalez, E. Cugat, P. Puig-Parellada, and J. Visa, Prostacyclin, thromboxane, and 
oxygen free radicals and postoperative liver function in human liver transplantation. 
Transplantation, 1995. 60(7): p. 662-7. 

137. Araki, H. and A.M. Lefer, Cytoprotective actions of prostacyclin during hypoxia in the 
isolated perfused cat liver. Am J Physiol, 1980. 238(2): p. H176-81. 

138. Harada, N., K. Okajima, M. Uchiba, and T. Katsuragi, Ischemia/reperfusion-induced 
increase in the hepatic level of prostacyclin is mainly mediated by activation of 
capsaicin-sensitive sensory neurons in rats. J Lab Clin Med, 2002. 139(4): p. 218-26. 

139. Granger, D.N. and P. Kubes, The microcirculation and inflammation: modulation of 
leukocyte-endothelial cell adhesion. J Leukoc Biol, 1994. 55(5): p. 662-75. 

140. Farkas, S., U. Bolder, T. Schlittenbauer, A. Obed, C. Zuelke, M. Anthuber, E.K. Geissler, 
and H.J. Schlitt, Conditioning of liver grafts with prostaglandins improves bile acid 
transport. Transplant Proc, 2005. 37(1): p. 435-8. 

141. Henley, K.S., M.R. Lucey, D.P. Normolle, R.M. Merion, I.D. McLaren, B.A. Crider, 
D.S. Mackie, V.L. Shieck, T.T. Nostrant, K.A. Brown, and et al., A double-blind, 
randomized, placebo-controlled trial of prostaglandin E1 in liver transplantation. 
Hepatology, 1995. 21(2): p. 366-72. 

142. Klein, A.S., J.B. Cofer, T.L. Pruett, P.J. Thuluvath, R. McGory, L. Uber, W.C. 
Stevenson, P. Baliga, and J.F. Burdick, Prostaglandin E1 administration following 
orthotopic liver transplantation: a randomized prospective multicenter trial. 
Gastroenterology, 1996. 111(3): p. 710-5. 

143. Klein, M., J. Geoghegan, R. Wangemann, D. Bockler, K. Schmidt, and J. Scheele, 
Preconditioning of donor livers with prostaglandin I2 before retrieval decreases 
hepatocellular ischemia-reperfusion injury. Transplantation, 1999. 67(8): p. 1128-32. 

144. Neumann, U.P., U. Kaisers, J.M. Langrehr, M. Glanemann, A.R. Muller, M. Lang, A. 
Jorres, U. Settmacher, W.O. Bechstein, and P. Neuhaus, Administration of prostacyclin 
after liver transplantation: a placebo controlled randomized trial. Clin Transplant, 2000. 
14(1): p. 70-4. 

145. Neumann, U.P., U. Kaisers, J.M. Langrehr, M. Glanemann, A.R. Muller, M. Lang, K.P. 
Platz, U. Settmacher, T. Steinmuller, W.O. Bechstein, and P. Neuhaus, Reduction of 
reperfusion injury with prostacyclin I2 after liver transplantation. Transplant Proc, 1999. 
31(1-2): p. 1029-30. 



 

  210 

146. Neumann, U.P., U. Kaisers, J.M. Langrehr, M. Lang, M. Glanemann, R. Raakow, T. 
Steinmuller, U. Settmacher, A.R. Muller, W.O. Bechstein, and P. Neuhaus, Treatment 
with PGE1 in patients after liver transplantation. Transplant Proc, 1998. 30(5): p. 1869-
70. 

147. Takaya, S., O. Bronsther, K. Abu-Elmagd, H. Ramos, J.J. Fung, S. Todo, and T.E. Starzl, 
Use of prostaglandin E1 in crossmatch-negative liver transplant recipients treated with 
FK 506. Transplant Proc, 1993. 25(3): p. 2381-5. 

148. Takaya, S., H. Doyle, S. Todo, W. Irish, J.J. Fung, and T.E. Starzl, Reduction of primary 
nonfunction with prostaglandin E1 after clinical liver transplantation. Transplant Proc, 
1995. 27(2): p. 1862-7. 

149. Takaya, S., Y. Iwaki, and T.E. Starzl, Liver transplantation in positive cytotoxic 
crossmatch cases using FK506, high-dose steroids, and prostaglandin E1. 
Transplantation, 1992. 54(5): p. 927-9. 

150. Takaya, S., O. Bronsther, Y. Iwaki, K. Nakamura, K. Abu-Elmagd, A. Yagihashi, A.J. 
Demetris, M. Kobayashi, S. Todo, A.G. Tzakis, and et al., The adverse impact on liver 
transplantation of using positive cytotoxic crossmatch donors. Transplantation, 1992. 
53(2): p. 400-6. 

151. Kamada, N. and R.Y. Calne, A surgical experience with five hundred thirty liver 
transplants in the rat. Surgery, 1983. 93(1 Pt 1): p. 64-9. 

152. Wack, K.E., M.A. Ross, V. Zegarra, L.R. Sysko, S.C. Watkins, and D.B. Stolz, 
Sinusoidal ultrastructure evaluated during the revascularization of regenerating rat liver. 
Hepatology, 2001. 33(2): p. 363-78. 

153. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram 
quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976. 
72: p. 248-54. 

154. Jaeschke, H., A. Farhood, and C.W. Smith, Neutrophils contribute to 
ischemia/reperfusion injury in rat liver in vivo. Faseb J, 1990. 4(15): p. 3355-9. 

155. Schottelius, A.J., M.W. Mayo, R.B. Sartor, and A.S. Baldwin, Jr., Interleukin-10 
signaling blocks inhibitor of kappaB kinase activity and nuclear factor kappaB DNA 
binding. J Biol Chem, 1999. 274(45): p. 31868-74. 

156. Calvey, C.R. and L.H. Toledo-Pereyra, Selectin inhibitors and their proposed role in 
ischemia and reperfusion. J Invest Surg, 2007. 20(2): p. 71-85. 

157. Nakano, H., M. Kuzume, K. Namatame, M. Yamaguchi, and K. Kumada, Efficacy of 
intraportal injection of anti-ICAM-1 monoclonal antibody against liver cell injury 
following warm ischemia in the rat. Am J Surg, 1995. 170(1): p. 64-6. 

158. Kamiike, W., M. Burdelski, G. Steinhoff, B. Ringe, W. Lauchart, and R. Pichlmayr, 
Adenine nucleotide metabolism and its relation to organ viability in human liver 
transplantation. Transplantation, 1988. 45(1): p. 138-43. 

159. Yokoyama, Y., J.S. Beckman, T.K. Beckman, J.K. Wheat, T.G. Cash, B.A. Freeman, and 
D.A. Parks, Circulating xanthine oxidase: potential mediator of ischemic injury. Am J 
Physiol, 1990. 258(4 Pt 1): p. G564-70. 

160. Belzer, F.O. and J.H. Southard, Principles of solid-organ preservation by cold storage. 
Transplantation, 1988. 45(4): p. 673-6. 

161. Totsuka, E., S. Todo, Y. Zhu, N. Ishizaki, Y. Kawashima, M.B. Jin, A. Urakami, T. 
Shimamura, and T.E. Starzl, Attenuation of ischemic liver injury by prostaglandin E1 



 

  211 

analogue, misoprostol, and prostaglandin I2 analogue, OP-41483. J Am Coll Surg, 
1998. 187(3): p. 276-86. 

162. Akbar, S. and T. Minor, Significance and molecular targets of protein kinase A during 
cAMP-mediated protection of cold stored liver grafts. Cell Mol Life Sci, 2001. 58(11): p. 
1708-14. 

163. Breckenridge, B.M., Cyclic AMP and drug action. Annu Rev Pharmacol, 1970. 10: p. 19-
34. 

164. El-Wahsh, M., B. Fuller, B. Davidson, and K. Rolles, Hepatic cold hypoxia and oxidative 
stress: implications for ICAM-1 expression and modulation by glutathione during 
experimental isolated liver preservation. Cryobiology, 2003. 47(2): p. 165-73. 

165. Sakai, T., R.M. Planinsic, M.A. Mathier, M.E. de Vera, and R. Venkataramanan, Initial 
experience using continuous intravenous treprostinil to manage pulmonary arterial 
hypertension in patients with end-stage liver disease. Transpl Int, 2009. 22(5): p. 554-61. 

166. Renton, K.W., Alteration of drug biotransformation and elimination during infection and 
inflammation. Pharmacol Ther, 2001. 92(2-3): p. 147-63. 

167. Renton, K.W., Regulation of drug metabolism and disposition during inflammation and 
infection. Expert Opin Drug Metab Toxicol, 2005. 1(4): p. 629-40. 

168. Srivastava, G., R. Bhatnagar, R. Viswanathan, and T.A. Venkitasubramanian, 
Microsomal & mitochondrial cytochromes in acutely hypoxic rat lung & liver. Indian J 
Biochem Biophys, 1980. 17(2): p. 130-4. 

169. Izuishi, K., Y. Ichikawa, M.A. Hossain, T. Maeba, H. Maeta, and S. Tanaka, Effects of 
cold preservation and reperfusion on microsomal cytochrome P-450-linked 
monooxygenase system of the rat liver. J Surg Res, 1996. 61(2): p. 361-6. 

170. Aitken, A.E., T.A. Richardson, and E.T. Morgan, Regulation of drug-metabolizing 
enzymes and transporters in inflammation. Annu Rev Pharmacol Toxicol, 2006. 46: p. 
123-49. 

171. Sewer, M.B. and E.T. Morgan, Down-regulation of the expression of three major rat 
liver cytochrome P450S by endotoxin in vivo occurs independently of nitric oxide 
production. J Pharmacol Exp Ther, 1998. 287(1): p. 352-8. 

172. Charpentier, K.P., L.L. von Moltke, J.W. Poku, J.S. Harmatz, R.I. Shader, and D.J. 
Greenblatt, Alprazolam hydroxylation by mouse liver microsomes in vitro: the effect of 
age and phenobarbital induction. Biopharm Drug Dispos, 1997. 18(2): p. 139-49. 

173. Kobliakov, V., N. Popova, and L. Rossi, Regulation of the expression of the sex-specific 
isoforms of cytochrome P-450 in rat liver. Eur J Biochem, 1991. 195(3): p. 585-91. 

174. Kobayashi, K., K. Urashima, N. Shimada, and K. Chiba, Substrate specificity for rat 
cytochrome P450 (CYP) isoforms: screening with cDNA-expressed systems of the rat. 
Biochem Pharmacol, 2002. 63(5): p. 889-96. 

175. Iber, H., Q. Chen, P.Y. Cheng, and E.T. Morgan, Suppression of CYP2C11 gene 
transcription by interleukin-1 mediated by NF-kappaB binding at the transcription start 
site. Arch Biochem Biophys, 2000. 377(1): p. 187-94. 

176. Wright, K. and E.T. Morgan, Transcriptional and post-transcriptional suppression of 
P450IIC11 and P450IIC12 by inflammation. FEBS Lett, 1990. 271(1-2): p. 59-61. 

177. Muntane-Relat, J., J.C. Ourlin, J. Domergue, and P. Maurel, Differential effects of 
cytokines on the inducible expression of CYP1A1, CYP1A2, and CYP3A4 in human 
hepatocytes in primary culture. Hepatology, 1995. 22(4 Pt 1): p. 1143-53. 



 

  212 

178. Iber, H., M.B. Sewer, T.B. Barclay, S.R. Mitchell, T. Li, and E.T. Morgan, Modulation of 
drug metabolism in infectious and inflammatory diseases. Drug Metab Rev, 1999. 31(1): 
p. 29-41. 

179. Iber, H., Q. Chen, M. Sewer, and E.T. Morgan, Regulation of hepatic cytochrome P450 
2C11 by glucocorticoids. Arch Biochem Biophys, 1997. 345(2): p. 305-10. 

180. Shimojo, N., T. Ishizaki, S. Imaoka, Y. Funae, S. Fujii, and K. Okuda, Changes in 
amounts of cytochrome P450 isozymes and levels of catalytic activities in hepatic and 
renal microsomes of rats with streptozocin-induced diabetes. Biochem Pharmacol, 1993. 
46(4): p. 621-7. 

181. Hu, Y., M. Ingelman-Sundberg, and K.O. Lindros, Induction mechanisms of cytochrome 
P450 2E1 in liver: interplay between ethanol treatment and starvation. Biochem 
Pharmacol, 1995. 50(2): p. 155-61. 

182. Lee, S.H. and S.M. Lee, Suppression of hepatic cytochrome p450-mediated drug 
metabolism during the late stage of sepsis in rats. Shock, 2005. 23(2): p. 144-9. 

183. Song, B.J., R.L. Veech, S.S. Park, H.V. Gelboin, and F.J. Gonzalez, Induction of rat 
hepatic N-nitrosodimethylamine demethylase by acetone is due to protein stabilization. J 
Biol Chem, 1989. 264(6): p. 3568-72. 

184. Eliasson, E., I. Johansson, and M. Ingelman-Sundberg, Ligand-dependent maintenance of 
ethanol-inducible cytochrome P-450 in primary rat hepatocyte cell cultures. Biochem 
Biophys Res Commun, 1988. 150(1): p. 436-43. 

185. Johansson, I., G. Ekstrom, B. Scholte, D. Puzycki, H. Jornvall, and M. Ingelman-
Sundberg, Ethanol-, fasting-, and acetone-inducible cytochromes P-450 in rat liver: 
regulation and characteristics of enzymes belonging to the IIB and IIE gene subfamilies. 
Biochemistry, 1988. 27(6): p. 1925-34. 

186. Ikeda, A., S. Ueki, A. Nakao, K. Tomiyama, M.A. Ross, D.B. Stolz, D.A. Geller, and N. 
Murase, Liver graft exposure to carbon monoxide during cold storage protects sinusoidal 
endothelial cells and ameliorates reperfusion injury in rats. Liver Transpl, 2009. 15(11): 
p. 1458-68. 

187. Raychaudhuri, B., A. Malur, T.L. Bonfield, S. Abraham, R.J. Schilz, C.F. Farver, M.S. 
Kavuru, A.C. Arroliga, and M.J. Thomassen, The prostacyclin analogue treprostinil 
blocks NFkappaB nuclear translocation in human alveolar macrophages. J Biol Chem, 
2002. 277(36): p. 33344-8. 

188. Shaik, I.H., J.M. George, T.J. Thekkumkara, and R. Mehvar, Protective effects of diallyl 
sulfide, a garlic constituent, on the warm hepatic ischemia-reperfusion injury in a rat 
model. Pharm Res, 2008. 25(10): p. 2231-42. 

189. Shaik, I.H. and R. Mehvar, Cytochrome P450 induction by phenobarbital exacerbates 
warm hepatic ischemia-reperfusion injury in rat livers. Free Radic Res. 44(4): p. 441-53. 

190. Shaik, I.H. and R. Mehvar, Effects of cytochrome p450 inhibition by cimetidine on the 
warm hepatic ischemia-reperfusion injury in rats. J Surg Res. 159(2): p. 680-8. 

191. Suzuki, S., T. Satoh, H. Yoshino, and E. Kobayashi, Impact of warm ischemic time on 
microsomal P450 isoforms in a porcine model of therapeutic liver resection. Life Sci, 
2004. 76(1): p. 39-46. 

192. Le Vee, M., P. Gripon, B. Stieger, and O. Fardel, Down-regulation of organic anion 
transporter expression in human hepatocytes exposed to the proinflammatory cytokine 
interleukin 1beta. Drug Metab Dispos, 2008. 36(2): p. 217-22. 



 

  213 

193. Vos, T.A., G.J. Hooiveld, H. Koning, S. Childs, D.K. Meijer, H. Moshage, P.L. Jansen, 
and M. Muller, Up-regulation of the multidrug resistance genes, Mrp1 and Mdr1b, and 
down-regulation of the organic anion transporter, Mrp2, and the bile salt transporter, 
Spgp, in endotoxemic rat liver. Hepatology, 1998. 28(6): p. 1637-44. 

194. Luster, M.I., D.R. Germolec, T. Yoshida, F. Kayama, and M. Thompson, Endotoxin-
induced cytokine gene expression and excretion in the liver. Hepatology, 1994. 19(2): p. 
480-8. 

195. Scharschmidt, B.F., J.G. Waggoner, and P.D. Berk, Hepatic organic anion uptake in the 
rat. J Clin Invest, 1975. 56(5): p. 1280-92. 

196. Arias, I.M., L. Johnson, and S. Wolfson, Biliary excretion of injected conjugated and 
unconjugated bilirubin by normal and Gunn rats. Am J Physiol, 1961. 200: p. 1091-4. 

197. Kamisako, T., I. Leier, Y. Cui, J. Konig, U. Buchholz, J. Hummel-Eisenbeiss, and D. 
Keppler, Transport of monoglucuronosyl and bisglucuronosyl bilirubin by recombinant 
human and rat multidrug resistance protein 2. Hepatology, 1999. 30(2): p. 485-90. 

198. Jedlitschky, G., I. Leier, U. Buchholz, J. Hummel-Eisenbeiss, B. Burchell, and D. 
Keppler, ATP-dependent transport of bilirubin glucuronides by the multidrug resistance 
protein MRP1 and its hepatocyte canalicular isoform MRP2. Biochem J, 1997. 327 ( Pt 
1): p. 305-10. 

199. Burckart, G.J., R.F. Frye, P. Kelly, R.A. Branch, A. Jain, J.J. Fung, T.E. Starzl, and R. 
Venkataramanan, Induction of CYP2E1 activity in liver transplant patients as measured 
by chlorzoxazone 6-hydroxylation. Clin Pharmacol Ther, 1998. 63(3): p. 296-302. 

200. Jones, B.R., W. Li, J. Cao, T.A. Hoffman, P.M. Gerk, and M. Vore, The role of protein 
synthesis and degradation in the post-transcriptional regulation of rat multidrug 
resistance-associated protein 2 (Mrp2, Abcc2). Mol Pharmacol, 2005. 68(3): p. 701-10. 

201. Gerk, P.M. and M. Vore, Regulation of expression of the multidrug resistance-associated 
protein 2 (MRP2) and its role in drug disposition. J Pharmacol Exp Ther, 2002. 302(2): 
p. 407-15. 

202. Soroka, C.J., S. Xu, A. Mennone, P. Lam, and J.L. Boyer, N-Glycosylation of the alpha 
subunit does not influence trafficking or functional activity of the human organic solute 
transporter alpha/beta. BMC Cell Biol, 2008. 9: p. 57. 

203. Mochizuki, K., T. Kagawa, A. Numari, M.J. Harris, J. Itoh, N. Watanabe, T. Mine, and 
I.M. Arias, Two N-linked glycans are required to maintain the transport activity of the 
bile salt export pump (ABCB11) in MDCK II cells. Am J Physiol Gastrointest Liver 
Physiol, 2007. 292(3): p. G818-28. 

204. Vos, T.A., J.E. Ros, R. Havinga, H. Moshage, F. Kuipers, P.L. Jansen, and M. Muller, 
Regulation of hepatic transport systems involved in bile secretion during liver 
regeneration in rats. Hepatology, 1999. 29(6): p. 1833-9. 

205. Silverman, J.A. and S.S. Thorgeirsson, Regulation and function of the multidrug 
resistance genes in liver. Prog Liver Dis, 1995. 13: p. 101-23. 

206. Yang, H., T. Plosch, T. Lisman, A.S. Gouw, R.J. Porte, H.J. Verkade, and J.B. Hulscher, 
Inflammation mediated down-regulation of hepatobiliary transporters contributes to 
intrahepatic cholestasis and liver damage in murine biliary atresia. Pediatr Res, 2009. 
66(4): p. 380-5. 

207. Diao, L., N. Li, T.G. Brayman, K.J. Hotz, and Y. Lai, Regulation of MRP2/ABCC2 and 
BSEP/ABCB11 expression in sandwich cultured human and rat hepatocytes exposed to 



 

  214 

inflammatory cytokines TNF-{alpha}, IL-6, and IL-1{beta}. J Biol Chem. 285(41): p. 
31185-92. 

208. Zhang, P., X. Tian, P. Chandra, and K.L. Brouwer, Role of glycosylation in trafficking of 
Mrp2 in sandwich-cultured rat hepatocytes. Mol Pharmacol, 2005. 67(4): p. 1334-41. 

209. Johnson, D.R., G.L. Guo, and C.D. Klaassen, Expression of rat Multidrug Resistance 
Protein 2 (Mrp2) in male and female rats during normal and pregnenolone-16alpha-
carbonitrile (PCN)-induced postnatal ontogeny. Toxicology, 2002. 178(3): p. 209-19. 

210. Johnson, D.R. and C.D. Klaassen, Regulation of rat multidrug resistance protein 2 by 
classes of prototypical microsomal enzyme inducers that activate distinct transcription 
pathways. Toxicol Sci, 2002. 67(2): p. 182-9. 

211. Childs, S., R.L. Yeh, E. Georges, and V. Ling, Identification of a sister gene to P-
glycoprotein. Cancer Res, 1995. 55(10): p. 2029-34. 

212. Hayakawa, T., R. Bruck, O.C. Ng, and J.L. Boyer, DBcAMP stimulates vesicle transport 
and HRP excretion in isolated perfused rat liver. Am J Physiol, 1990. 259(5 Pt 1): p. 
G727-35. 

213. Roelofsen, H., C.J. Soroka, D. Keppler, and J.L. Boyer, Cyclic AMP stimulates sorting of 
the canalicular organic anion transporter (Mrp2/cMoat) to the apical domain in 
hepatocyte couplets. J Cell Sci, 1998. 111 ( Pt 8): p. 1137-45. 

214. Chandra, P., B.M. Johnson, P. Zhang, G.M. Pollack, and K.L. Brouwer, Modulation of 
hepatic canalicular or basolateral transport proteins alters hepatobiliary disposition of a 
model organic anion in the isolated perfused rat liver. Drug Metab Dispos, 2005. 33(8): 
p. 1238-43. 

215. Ogawa, K., H. Suzuki, T. Hirohashi, T. Ishikawa, P.J. Meier, K. Hirose, T. Akizawa, M. 
Yoshioka, and Y. Sugiyama, Characterization of inducible nature of MRP3 in rat liver. 
Am J Physiol Gastrointest Liver Physiol, 2000. 278(3): p. G438-46. 

216. Ueyama, J., M. Nadai, H. Kanazawa, M. Iwase, H. Nakayama, K. Hashimoto, T. Yokoi, 
K. Baba, K. Takagi, K. Takagi, and T. Hasegawa, Endotoxin from various gram-negative 
bacteria has differential effects on function of hepatic cytochrome P450 and drug 
transporters. Eur J Pharmacol, 2005. 510(1-2): p. 127-34. 

217. Accatino, L., M. Pizarro, N. Solis, M. Arrese, and C.S. Koenig, Bile secretory function 
after warm hepatic ischemia-reperfusion injury in the rat. Liver Transpl, 2003. 9(11): p. 
1199-210. 

218. Fouassier, L., M. Beaussier, E. Schiffer, C. Rey, V. Barbu, M. Mergey, D. Wendum, P. 
Callard, J.Y. Scoazec, E. Lasnier, B. Stieger, A. Lienhart, and C. Housset, Hypoxia-
induced changes in the expression of rat hepatobiliary transporter genes. Am J Physiol 
Gastrointest Liver Physiol, 2007. 293(1): p. G25-35. 

219. Kronbach, T., V. Fischer, and U.A. Meyer, Cyclosporine metabolism in human liver: 
identification of a cytochrome P-450III gene family as the major cyclosporine-
metabolizing enzyme explains interactions of cyclosporine with other drugs. Clin 
Pharmacol Ther, 1988. 43(6): p. 630-5. 

220. Elbarbry, F.A. and A.S. Shoker, Therapeutic drug measurement of mycophenolic acid 
derivatives in transplant patients. Clin Biochem, 2007. 40(11): p. 752-64. 

221. Picard, N., D. Ratanasavanh, A. Premaud, Y. Le Meur, and P. Marquet, Identification of 
the UDP-glucuronosyltransferase isoforms involved in mycophenolic acid phase II 
metabolism. Drug Metab Dispos, 2005. 33(1): p. 139-46. 



 

  215 

222. Elbarbry, F.A., T. Marfleet, and A.S. Shoker, Drug-drug interactions with 
immunosuppressive agents: review of the in vitro functional assays and role of 
cytochrome P450 enzymes. Transplantation, 2008. 85(9): p. 1222-9. 

223. Manitpisitkul, W., E. McCann, S. Lee, and M.R. Weir, Drug interactions in transplant 
patients: what everyone should know. Curr Opin Nephrol Hypertens, 2009. 18(5): p. 404-
11. 

224. Carlton, L.D., J.H. Patterson, C.N. Mattson, and V.D. Schmith, The effects of 
epoprostenol on drug disposition. II: A pilot study of the pharmacokinetics of furosemide 
with and without epoprostenol in patients with congestive heart failure. J Clin Pharmacol, 
1996. 36(3): p. 257-64. 

225. Iberer, F., R. Vujicic, S. Rodl, A. Wasler, K. Sabin, A. Koshsorur, T. Allmayer, T. Auer, 
B. Petutschnigg, and K.H. Tscheliessnigg, Effects of prostaglandin E1 therapy on 
cyclosporine A and creatinine levels after orthotopic heart transplantation. Transplant 
Proc, 1994. 26(6): p. 3246-8. 

226. Zhang, L., Y.D. Zhang, P. Zhao, and S.M. Huang, Predicting drug-drug interactions: an 
FDA perspective. Aaps J, 2009. 11(2): p. 300-6. 

227. Lowry, O.H., N.J. Rosebrough, A.L. Farr, and R.J. Randall, Protein measurement with 
the Folin phenol reagent. J Biol Chem, 1951. 193(1): p. 265-75. 

228. Strom, S.C., L.A. Pisarov, K. Dorko, M.T. Thompson, J.D. Schuetz, and E.G. Schuetz, 
Use of human hepatocytes to study P450 gene induction. Methods Enzymol, 1996. 272: 
p. 388-401. 

229. Bibi, Z., Role of cytochrome P450 in drug interactions. Nutr Metab (Lond), 2008. 5: p. 
27. 

230. Sinz, M., G. Wallace, and J. Sahi, Current industrial practices in assessing CYP450 
enzyme induction: preclinical and clinical. Aaps J, 2008. 10(2): p. 391-400. 

231. Barbier, O., L. Villeneuve, V. Bocher, C. Fontaine, I.P. Torra, C. Duhem, V. Kosykh, 
J.C. Fruchart, C. Guillemette, and B. Staels, The UDP-glucuronosyltransferase 1A9 
enzyme is a peroxisome proliferator-activated receptor alpha and gamma target gene. J 
Biol Chem, 2003. 278(16): p. 13975-83. 

232. Forman, B.M., J. Chen, and R.M. Evans, Hypolipidemic drugs, polyunsaturated fatty 
acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha 
and delta. Proc Natl Acad Sci U S A, 1997. 94(9): p. 4312-7. 

233. Bernard, O. and C. Guillemette, The main role of UGT1A9 in the hepatic metabolism of 
mycophenolic acid and the effects of naturally occurring variants. Drug Metab Dispos, 
2004. 32(8): p. 775-8. 

234. Staatz, C.E. and S.E. Tett, Clinical pharmacokinetics and pharmacodynamics of 
mycophenolate in solid organ transplant recipients. Clin Pharmacokinet, 2007. 46(1): p. 
13-58. 

235. Levesque, E., R. Delage, M.O. Benoit-Biancamano, P. Caron, O. Bernard, F. Couture, 
and C. Guillemette, The impact of UGT1A8, UGT1A9, and UGT2B7 genetic 
polymorphisms on the pharmacokinetic profile of mycophenolic acid after a single oral 
dose in healthy volunteers. Clin Pharmacol Ther, 2007. 81(3): p. 392-400. 

236. Remodulin® (treprostinil) Product Information. Research Triangle Park, N.U.T., Inc. 
 
 

 


	TITLE PAGE
	COMMITTEE PAGE�
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABBREVIATIONS
	1.0  INTRODUCTION 
	1.1 ORTHOTOPIC LIVER TRANSPLANTATION
	Figure 1: Number of patients on the waitlist for a liver transplantation in the USA (2000-2009)
	1.1.1 Primary non-function

	1.2 ISCHEMIA AND REPERFUSION INJURY
	1.2.1 Liver microcirculation 
	Figure 2: Lumen of rat hepatic sinusoid with the endothelial cell coating by SEM

	1.2.2 Platelets
	1.2.3 Cytokines

	1.3 EFFECTS OF INFLAMMATION ON DRUG DISPOSITION
	1.3.1 Drug Metabolism Pathways
	1.3.1.1 Phase I Metabolism 
	1.3.1.2 Phase II Metabolism 

	1.3.2 Drug Transport System
	1.3.2.1 Uptake Transporters
	1.3.2.2 Efflux Transporters 
	Figure 3: Hepatic drug transporters in human and rodent


	1.3.3 Effect of Pro-inflammatory Cytokines on Drug Metabolism and Drug Transport

	1.4 PHARMACOLOGICAL APPROACHES TO PREVENT LIVER I/R INJURY
	Figure 4: Targets of hepatic I/R injury

	1.5 PROSTAGLANDINS IN VASCULAR HOMEOSTASIS 
	Figure 5: Biosynthetic pathway of prostaglandins
	1.5.1 Prostacyclin Analogues 
	1.5.1.1 Epoprostenol 
	1.5.1.2 Iloprost 
	1.5.1.3 Beraprost 
	1.5.1.4 Treprostinil 
	Figure 6: Chemical structures of prostacyclin analogues



	1.6 CLINICAL EXPERIENCE WITH PROSTACYCLIN ANALOGUES IN LIVER TRANSPLANTATION 
	Table 1: Summary of previous clinical studies using PGI2 analogues to prevent I/R injury in OLT

	1.7 HYPOTHESIS AND STUDY AIMS

	2.0  TREPROSTINIL AMELIORATES ISCHEMIA-REPERFUSION INJURY IN RAT ORTHOTOPIC LIVER TRANSPLANTATION*
	2.1 INTRODUCTION
	2.2 MATERIALS AND METHODS
	2.2.1 Animals 
	2.2.2 Orthotopic Liver Transplantation Model
	2.2.3 Treprostinil Administration
	2.2.4 Experimental Design 
	2.2.5 Post-operative Care
	2.2.6 Liver Enzymes Levels
	2.2.7 Histopathology
	2.2.8 RNA Extraction and Real Time RT-PCR Analysis
	Table 2: Real-Time PCR assay IDs for genes detected by SYBR® green gene expression assays

	2.2.9 Electron Microscopy
	2.2.10 Hepatic Tissue Blood Flow 
	2.2.11 Protein Estimation
	2.2.12 Hepatic Levels of Cyclic AMP 
	2.2.13 Hepatic Levels of Adenine Nucleotides 
	2.2.14 Treprostinil Plasma Concentration
	2.2.15 Statistical Analysis

	2.3 RESULTS
	2.3.1 Clinical Course and Assessment of Tolerability
	2.3.2 Hepatic I/R Injury 
	Figure 7: Hepatic injury in donor + recipient groups
	Figure 8:  Hepatic injury in recipient only groups
	Figure 9: Percentage of necrotic area in liver grafts
	Figure 10:  Representative histopathological images of liver grafts

	2.3.3 Neutrophil Accumulation in Hepatic Tissue
	Figure 11: Neutrophils in liver graft
	Figure 12: Neutrophil infiltration

	2.3.4 Cytokine Response
	Figure 13: Peak mRNA expression of cytokines
	Figure 14: Hepatic mRNA expression of adhesion molecules

	2.3.5 Liver Sinusoidal Endothelial Cells 
	Figure 15: Rat liver SEC analysis by SEM
	Figure 16: Rat Liver SEC analysis by TEM

	2.3.6 Hepatic Tissue Blood Flow 
	Figure 17: Hepatic tissue blood flow in placebo- and treprostinil-treated animals

	2.3.7 Tissue Concentration of Cyclic Adenosine Monophosphate
	Figure 18: Hepatic tissue levels of cAMP

	2.3.8 Tissue Concentration of Adenosine Nucleotides
	Figure 19: Hepatic tissue levels of adenine nucleotides
	Figure 20: Hepatic tissue levels of purines

	2.3.9 Treprostinil Plasma Concentration
	Figure 21: Treprostinil plasma concentration


	2.4 DISCUSSION

	3.0  EFFECT OF ISCHEMIA-REPERFUSION INJURY ON DRUG METABOLISM DURING RAT ORTHOTOPIC LIVER TRANSPLANTATION*
	3.1 INTRODUCTION
	3.2 MATERIALS AND METHODS
	3.2.1 Chemicals
	3.2.2 Animals
	3.2.3 Orthotopic Liver Transplantation
	3.2.4 Treprostinil Administration
	3.2.5 Experimental Design 
	3.2.6 RNA Extraction and Real Time RT-PCR Analysis
	Table 3: Real-Time PCR assay IDs for genes detected by TaqMan® gene expression assays

	3.2.7 Preparation of Liver Microsomes
	3.2.8 Western Blot Analysis of Microsomal P450 Protein Expression
	3.2.9 Microsomal Incubations
	3.2.10 Chlorzoxazone Assay 
	3.2.11 Testosterone Assay 
	3.2.12 Midazolam Assay 
	3.2.13 Statistical Analysis

	3.3 RESULTS
	3.3.1 Hepatic I/R Injury
	Table 4: AUC0 -48 hrs post-reperfusion serum ALT and AST in donor + recipient treatment group
	Table 5: AUC0 -48 hrs post-reperfusion serum ALT and AST in recipient only treatment group 

	3.3.2 CYP450 mRNA Expression 
	Figure 22: Hepatic mRNA expression of CYP450 enzymes at 6 hours post-OLT
	Figure 23: Hepatic mRNA expression of CYP450 enzymes at 48 hours post-OLT

	3.3.3 CYP450 Protein Expression 
	Figure 24: Hepatic microsomal CYP2E1 protein
	Figure 25: Hepatic microsomal CYP2C11 protein
	Figure 26: Hepatic microsomal CYP3A2 protein

	3.3.4 CYP450 Enzyme Activity in Liver Graft Post-OLT 
	Figure 27: Hepatic CYP2E1 activity
	Figure 28: Hepatic CYP2C11 activity
	Figure 29: Hepatic CYP3A2 activity


	3.4 DISCUSSION

	4.0  EFFECT OF ISCHEMIA-REPERFUSION INJURY ON HEPATIC DRUG TRANSPORTERS DURING RAT ORTHOTOPIC LIVER TRANSPLANTATION*
	4.1 INTRODUCTION 
	4.2 MATERIALS AND METHODS
	4.2.1 Animals
	4.2.2 Orthotopic Liver Transplantation
	4.2.3 Treprostinil Administration
	4.2.4 Experimental Design
	4.2.5 RNA Extraction and Real Time RT-PCR Analysis
	Table 6: Real-time PCR assay IDs for genes detected by SYBR® gene expression assays

	4.2.6 Liver Membrane Isolation
	4.2.7  Western Blot Analysis  
	4.2.8 Serum Bilirubin
	4.2.9 Statistical Analysis

	4.3 RESULTS
	4.3.1 Hepatic Drug Transporter mRNA Expression 
	Figure 30: Hepatic mRNA expression of hepatic uptake transporters
	Figure 31: Hepatic mRNA expression of efflux transporters

	4.3.2 Mrp2 and P-gp Protein Expression in Liver Graft Post-OLT  
	Figure 32: Hepatic microsomal Mrp2 protein expression
	Figure 33: Hepatic microsomal P-gp protein expression

	4.3.3 Serum Bilirubin
	Figure 34: Serum bilirubin in placebo- and treprostinil-treated group, compared to normal liver (n=3).


	4.4 DISCUSSION

	5.0  EVALUATION OF THE DRUG-DRUG INTERACTION POTENTIAL BETWEEN TREPROSTINIL AND IMMUNOSUPPRESSIVE MEDICATIONS*
	5.1 INTRODUCTION
	5.2 MATERIALS AND METHODS
	5.2.1 Chemicals  
	5.2.2 Evaluation of CsA, TAC, SRL, and MPA inhibition in microsomes
	5.2.2.1 Microsome Preparation 
	5.2.2.2 Microsome Incubations  

	5.2.3 Solid Phase Extraction (SPE)
	5.2.4 Evaluation of CsA, TAC, SRL, and MPA Induction in Human Hepatocytes
	5.2.4.1 Preparation of Human Hepatocytes
	5.2.4.2 Hepatocyte Incubations
	Table 7:  Donor information for human livers used to prepare primary culture of human hepatocytes

	5.2.4.3 Evaluation of the hepatocyte mitochondrial activity  

	5.2.5 Analytical methodology
	5.2.5.1 Microsomal incubations
	5.2.5.2 Hepatocyte incubations 

	5.2.6 CYP3A4, UGT1A9, and UGT2B7 mRNA expression
	5.2.6.1 RNA Isolation and Quantitation
	Table 8: Real-time PCR Assay IDs for genes detected by TaqMan® gene expression


	5.2.7 Statistical Analysis

	5.3 RESULTS
	5.3.1 Enzyme Inhibition Potential of Treprostinil
	Figure 35: Inhibitory potential of treprostinil

	5.3.2 Evaluation of Cytotoxicity
	Figure 36: MTT assay

	5.3.3 Enzyme Induction Potential of Treprostinil
	Figure 37: Induction potential of treprostinil

	5.3.4 Effect of Treprostinil on mRNA expression
	Figure 38: mRNA expression in hepatocytes


	5.4 DISCUSSION

	6.0  CONCLUSIONS AND FUTURE RESEARCH
	6.1 DISCUSSION AND SUMMARY
	6.2 FUTURE RESEARCH RECOMMENDATIONS

	APPENDIX A
	Table 9: Overall Time and Events Schedule for the Study
	Table 10: Expected Events Attributable to Treprostinil
	Table 11: Expected Event is Liver Transplant Patients

	APPENDIX B
	BIBLIOGRAPHY



