
 

i 
 

Quantifying Variability in drug disposition, response and public health 

outcomes: The implementation of pharmacometric based modeling and 

simulation approaches 

 

 

 

 

 

by 

Yuyan Jin 

China Pharmaceutical University, B.S., 1999 

China Pharmaceutical University, M.S., 2004 

University of Pittsburgh, PhD, 2010 

 

 

 

 

 

Submitted to the Graduate Faculty of 

School of Pharmacy in partial fulfillment  

of the requirements for the degree of 

Doctor of Philosophy 

 



 

UNIVERSITY OF PITTSBURGH 

SCHOOL OF PHARMACY 

 

 
 
 
 
 
 
 

This dissertation was presented 
 

by 
 

Yuyan Jin 
 
 
 

It was defended on 

Oct 4th, 2010 

and approved by 

Regis R Vollmer, University of Pittsburgh, School of Pharmacy 

Bruce Pollock, University of Toronto, Centre for Addition and Mental Health 

Rajnikanth Madabushi, U.S. Food and Drug Administration, Office of Clinical Pharmacology 

Marc Gastonguay, Metrum Institute 

Bernard Vrijens, Pharmmionic Systems 

Dissertation Advisor, Robert Bies, Indiana University, School of Medicine 

Dissertation Co-Advisor, Randall B. Smith, University of Pittsburgh, School of Pharmacy 

ii 
 



Copyright © by Yuyan Jin 

2010 

iii 
 



Quantifying Variability in drug disposition, response and public 

health outcomes: The implementation of pharmacometric based 

modeling and simulation approaches 

 Yuyan Jin, PhD 

University of Pittsburgh, 2010 

 

ABSTRACT: The aim of the dissertation was to identify the systematic contributors that 

modify the estimated population parameters and that explain sources of variability in 

drug exposure (Chapter 2-4), response, and clinical outcome (Chapter 5-7). The source of 

measurable variability evaluated in the thesis include patient characteristics in chapter 2-

3, patient behavior in chapter 4 (e.g. dosing history), biological system in chapter 5-7, 

and inferior clinical practice in chapter 5-7. The dissertation was predominantly non-

linear mixed effect modeling and Monte Carlo simulation methods in NONMEM® and R. 

Our results in chapter 2-4 showed that incorporating covariate information into 

population PK models identified substantial systematic contributors to the variability in 

drug exposure for both perphenazine and escitalopram. Race and smoking status in the 

past week were identified as two significant covariates affecting clearance of 

perphenazine. CYP 2C19 genotype, age, and weight strongly influenced the CL/F of 

escitalopram. The measurement error associated with an incorrect or incomplete dosing 

history affected the population PK parameter estimation of escitalopram in the non-linear 

mixed effect modeling process. Furthermore, our simulation results in chapter 5-7 

showed that three intervention approaches may lead to lower cardiovascular risk 
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compared to current clinical practice strategy: 1) BP can be calibrated with respect to 

clinic visit times with consideration of PK/PD/dosing regimen. 2) BP-misclassification in 

current clinical practice is around 20~45% depends on clinic visit time. Optimal clinic 

visit time exists. In general, patients should avoid early morning and late afternoon visit 

which lead to the highest BP misclassification. 3) It is important to decrease patients’ BP 

in a timely fashion. Initiating antihypertensive treatment with the higher tolerable dose as 

well as setting a lower goal BP of 120 mm Hg resulted in a significantly lower 

cardiovascular risk. In conclusion, the dissertation identified three potential interventions 

to be considered in the clinical practice or antihypertensive drug labeling for better BP 

management: BP calibration based on clinic visit time; patients should generally have 

post treatment clinic visit times between 11:00 AM ~ 3:00 PM; a high dose strategy for 

antihypertensive drug therapy. 
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1.0  INTRODUCTION 

1.1 OVERVIEW 
 

 
Pharmacometrics (PM), as a rapidly evolving scientific discipline, has received increased 

attention from Food and Drug Administration (FDA), academia, and industry in recent 

years (1-7) Pharmacometrics requires knowledge across multiple disciplines including 

pharmacokinetics (PK), pharmacodynamics (PD), pharmacology, statistics, and computer 

science.  The discipline has been described as Quantitative Pharmacology (QP) (8, 9). 

However, there is no consistent definition for the discipline. The most recent definition of 

the discipline is “the science of quantifying disease, drug, and trial characteristics with 

the goal of influencing drug development and regulatory and therapeutic decisions.”(10). 

It also has been defined as “research focusing on non-linear mixed effects models, which 

describes response-time profiles observed in clinical trials with a focus on determining 

sources of variability within a studied population” (1) and “the science of developing and 

applying mathematical and statistical models to characterize, understand, and predict a 

drug’s pharmacokinetics (PK), pharmacodynamics (PD), and biomarker-outcome 

behavior” (11). Pharmacometrics not only provides opportunities for model based drug 

development but also impacts drug approval, labeling decisions and has the potential to 

clarify clinical practice and public health issues.(2, 3)   

 

Pharmacometrics uses two major techniques: modeling and simulation. 

Population modeling is a robust tool that estimates the central tendency and quantifies the 

potential sources of variability in drug exposure, efficacy measures, and adverse events in 

target populations. Patients in the target population may not have the same level of drug 

exposure or response given the same dose at the same time. The larger the variability in 

drug exposure and response in the intended population, the higher the risk of an efficacy 

and safety issue. An advantage of population modeling techniques is that sources of 

variability can be assessed and quantified. A portion of the variability in the drug 
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exposure and response may be explained by deterministic information, such as patient 

characteristics (e.g. age, gender, genotype, renal function et al.). The contribution to the 

variability that is explained by these factors is often defined as measurable variability. 

Some sources of measureable variability are unknown or unmeasured, and are lumped in 

the random effects of the mixed-effects model.  

 

Simulation has been widely described as one of the most important applications of 

the population models (11-13). It has been used to interpolate situations between the 

original conditions where data were collected and then extended to predict new 

conditions, predicting the range of variability and uncertainty of  relationship (12). The 

simulation approach has also has been increasingly used for the optimization of clinical 

trial designs by performing clinical trial simulation (CTS). Clinical trial simulations may 

also have a role in the public health area. The utility of clinical trial simulations applied 

to public health questions may include identifying potential issues associated with current 

clinical practice and the in-silico evaluation of the impact of potential clinical practice 

strategies on clinical outcomes. The models that have applicability here could include 

population PK/PD models, disease progress model, survival models etc.  

 

As we discussed above that variability in drug exposure and response include 

measurable variability and true random variability. However, some sources of 

measureable variability are lumped in the random variability when an exact source of the 

systematic variability is not identified due to a lack of knowledge or measurement of 

deterministic information.  

 

The major aim of this thesis is to use the modeling and simulation approaches to 

identify the systematic contributors that modify the estimated population parameters and 

that explain sources of variability in drug exposure (Chapter 2-4), response, and clinical 

outcome (Chapter 5-7). The source of measurable variability evaluated in the thesis 

include patient characteristics in chapter 2-3 (e.g. age, genotype et al.), patient behavior 

in chapter 4 (e.g. a patient’s detailed dosing history), biological system in chapter 5-7 

(e.g. natural rhythm of BP variability on a daily basis), and inferior clinical practice in 
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chapter 5-7 (e.g. follow up visit time of patients). Specifically, the thesis accomplishes 

the aime by addressing these following issues:   

 

1) Chapter 2 and 3 aimed to identify the effect of patient characteristics on variability of 

drug disposition using highly sparse sampling measurement for both escitalopram and 

perphenazine.  

2) Chapter 4 aimed to evaluate the effect of measurement error in dosing time on 

population PK parameter estimation using escitalopram as a model drug and the 

SPECTRUM data as a prototype clinical trial, specifically comparing patient reported 

time of last dose and medication event monitoring generated dosage histories.  

3) Chapter 5 aimed to quantify the impact of cuff BP measurement error as well as 

ignoring the circadian rhythm of BP on measured treatment effect of antihypertensive 

agents using a current clinical practice paradigm.  

4) Chapter 6 aimed to quantify the impact of ignoring the timing of patient clinic visit 

times and the cuff BP measurement error on the BP misclassification rate in the current 

clinical practice paradigm.  

5) Chapter 7 aimed to quantify the risk of a cardiovascular disease related event 

associated with current clinical practice strategies as well as alternative strategies in 

patients with hypertension.  

 

1.2 POPULATION ANALYSIS APPROACH 

 

Biological and physiological systems are very complex and thus an ideal model may 

never be identified.  This is made more challenging when one considers the interactions 

of the drug, physiologic and biological system. Despite these challenges, useful models 

can be developed based on the specific question that is being addressed in a particular 

system. The analysis approaches in population modeling include the naïve averaged data 

and pooled data approach, two stage approach, as well as non-linear mixed effect models. 

The naïve averaged data and pooled data approach is commonly used in preclinical 

pharmacokinetics or in getting initial estimates for more complicated non-linear mixed 

effect modeling analysis approach. The naïve pooled or average approaches have some 

significant drawbacks in that the actual shape of the response can be distorted by not 
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considering the within individual correlation and there is no information that can be 

gleaned regarding inter-individual variability in the response measure (11, 14). The two 

stage approach is a widely used approach due to its simplicity compared to non-linear 

mixed effect modeling. The first stage of this method is to estimate individual parameters 

separately without considering the correlation between individual data, and followed by 

the second stage where the population parameters are estimated by summarizing 

parameters across individuals. This carries forward the uncertainty in the within 

individual determinations along with the nature of selecting an appropriate summary 

statistic that reflects the nature of both the central tendency of the 

group/sample/population along with the variability of that group. The two stage method 

has been reported to overestimate random variability from some simulation studies (15). 

We will not discuss these approaches in greater detail here.  

  

1.2.1 Non-linear mixed effect models 

 

In pharmacometrics, we are frequently interested in developing mathematical models to 

describe the relationship of drug exposure over time, drug response over time, and 

disease progression over time as well as the relationship between drug exposure and drug 

response. These relationships are more likely to be nonlinear, hence involve in non-linear 

modeling. Non-linear mixed effect modeling approaches estimate the central tendency of 

these relationships as well as the random variability (i.e. inter-individual variability, inter 

occasion variability, inter-study variability, residual variability) simultaneously. 

Compared to the previously described methods, the approach can overcome the 

challenges from the data structure itself.  These include issues such as correlation and 

imbalance of data, sparse data, various dosing history across different individuals (11, 

16). Although other methods (e.g. Bayesian approach) can be used to for the type of 

problem, the frequent adaptation of the non-linear mixed effect modeling is the most 

commonly used analysis approach in pharmacometrics. 

 

Nonlinear mixed effects modeling or nonlinear mixed effects modeling with full 

Bayesian MCMC uses maximum likelihood or other types of estimation to guide the 

identification of parameter values. The overall goal of the method is to identify the set of 
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parameters that maximizes the probability of the observed data given a specified model. 

The identification of parameter values can be achieve using multiple approaches 

including: 1) a parametric approach where the distribution of the random effect 

parameters is assumed a-priori to arise from a particular distribution (commonly normal 

or log-normal distribution); 2) a nonparametric approach requires assumption about the 

residual variance (structure and magnitude) and no assumptions are made about the 

distribution shape of other parameters; 3) a semi-parametric approach where the 

distribution of parameters are restricted over certain range but not all possible 

distributions. Each approach has unique advantages and disadvantages (11, 17, 18). The 

parametric approach is the most commonly used for population parameter estimation (11, 

14-16, 19, 20).  

 
1.3 MODEL DEVELOPMENT 

 
 
Population modeling encompasses three elements. These are: 1) structural model that 

describes the central tendency of data; 2) the stochastic model which qualifies and 

quantifies the unexplained variability of parameters in models along particular hierarchies 

and; 3) the covariate model which describes the influence of patient characteristics on 

model parameters.   

 

1.3.1 Structure model development 

 

The structural model describes the central tendency of the observed data. Some general 

PK/PD models have been commonly used. PK models include the one compartment 

model, two compartment model, and three compartment model in combination with 

various elimination patterns (e.g. First order linear elimination, nonlinear elimination et 

al.) and absorption patterns (e.g. Zero order, first order, mixed first and zero order et al.). 

General PD models include the Emax model, the effect compartment model, the indirect 

response model etc (12, 21).  

 

1.3.2 Stochastic model development 
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One of the foci of population modeling is to quantify the variability in the population 

model parameters. The stochastic model, that quantifies multiple levels of the variability 

of parameters in models, often includes inter-individual variability and (intra-individual) 

residual variability. Inter-individual variability is generally incorporated in the typical 

value for the population by an exponential, additive, or proportional function. Intra-

individual variability may include inter-occasion variability and other residual variability.  

Residual variability is commonly modeled using additive, proportional, and combination 

of additive and proportional error structures. Misspecification of the stochastic model 

may lead to structural model misspecification, a biased estimation in population mean 

parameter, and poor simulation properties (11, 22, 23).  

 

1.3.3 Covariate model development 

 

As described previously, population modeling commonly focuses on explaining and 

understanding sources of variability in the observed data. A portion of the variability in 

the drug exposure and response can often be explained by available deterministic 

information, such as patients’ characteristics (e.g. age, gender, genotype, renal function et 

al.). Covariate model development is the process of identifying and estimating the effects 

of covariates, hence potentially contributing to the right dose and labeling decision in 

particular for special population. Well developed covariate models also improve 

predictive performance of the model in simulation applications.  

 

Covariate model development should focus on physiologically meaningful and 

clinically useful covariates. In addition, the data reduction step is a step to evaluate and 

examine covariate data before incorporating them into models. The concept was adopted 

from other fields and was first used in pharmacometrics by Dr. Marc Gastonguay (12, 24-

26). The data reduction step helps to avoid false positive results, hence providing  more 

interpretable covariate models (12). Each covariate should bring independent and unique 

information into model. Special attention should be taken when simultaneously including 

covariates that are highly correlated. Commonly used covariate screening methods 

include stepwise forward addition, stepwise backward elimination, stepwise forward 
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incorporation/backward elimination, and full model approaches (27). We will not discuss 

them in greater detail here (12, 28).  

 

1.4 MODEL DIAGNOSTICS AND QUALIFICATION 

 

No model will be a perfect reflection of a true system, therefore we are restricted to 

evaluation of the model predicated or conditioned on a particular purpose. Model 

qualification strategies are discussed below. 

 

1.4.1 Model performance 

 

Goodness-of-fit (GOF) is a basic internal evaluation of a model. GOF plots include 

population predictions (PRED) versus Observed data (also called dependent variable: 

DV) or time, residual (RES)/ weighted residual (WRES)/ conditional weighted residual 

(CWRES) versus PRED, individual predictions (IPRED) versus DV or time. These 

diagnostic plots provide information about the data set, bias in the structural model or 

stochastic models.  

 

The visual predictive check (VPC) and posterior predictive check (PPC) are other 

ways to check the model performance. The PPC uses the Monte Carlo Simulation 

technique to simulate the model predicted posterior distribution of the data and compares 

the distribution of a simulated metric with the original metric from the observed data.  

PPC is one of most robust approaches for model qualification (12, 29-31). The visual 

predictive check also uses the Monte Carlo simulation technique to simulate the model 

output (e.g. concentration vs time, concentration vs effect, disease marker vs time et al.) 

and provides the basis for the creation of prediction intervals of the model that can be 

superimposed on the observed data. Visual predictive check assumes that uncertainty in 

estimated parameters is small relative to other sources of variability; hence the 

uncertainty in estimated parameters is not included in the simulation. Typically, one 

evaluates a 90% prediction interval and examines whether or not 90% of the data lie 

within this band.   
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1.4.2 Precision of parameter estimates 

 

Precision of the estimated model parameters are reported as standard errors (SE) or 

confidence intervals (CI). The SE or CI of the estimated model parameters can be 

obtained from default method of the software (i.e. Fisher information matrix method in 

NONMEM) or from bootstrapping methods. Bootstrapping methods randomly resample 

from the entire dataset, and refit the developed model providing for the examination of 

the parameter estimation sensitivity to these perturbations. Hence bootstrapping is a more 

robust method to evaluate the precision of the estimated model parameters (32, 33).   

 

1.4.3 Assumption checking  

 

The randomization test (this can also be known as the permutation test – especially in 

other fields) is commonly used to evaluate the assumption about chi square χ2 distribution 

of ∆ -2logL between nested models in covariate model development (12). A 

randomization test for significant covariates in the final model can be conducted by 

creating multiple new data sets (usually > 1000) that are identical to original dataset 

except for re-randomization of the association of the covariate so that the Null 

Hypothesis will be true under randomization. The delta objective function values (OFV) 

from the original null OFVs can be calculated by running the final model with these new 

data sets.  Thus, a critical statistic for a given alpha level that is unique to the original 

data set and model can be calibrated. The randomization test was used to evaluate 

significant covariates in our perphenazine paper.   

 

Other model qualification methods also include sensitivity analysis, data splitting 

methods and cross validation methods. Sensitivity analysis is discussed later in this 

thesis.   

 
1.5 CLINICAL TRIAL SIMULATION (CTS) 

 
Simulation has been widely described as one of the most important applications of the 

nonlinear mixed effects of Bayesian population modeling approach (12). It has been 

widely used to interpolate situations between the original conditions where data were 
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collected and then extended to predict new conditions and predict the range of variability 

and uncertainty of predicted relationship(12). Model qualification techniques for 

simulation models have also been developed with a much higher standard of 

performance.  These primarily utilize the  posterior predictive check and VPC approaches 

to model qualification (12).  

 

Deterministic and Monte Carlo Simulation are two types of simulation 

approaches. The former simulates from the fixed parameter and is interested in response 

in population mean or in a specific individual (12). Monte Carlo simulation incorporates 

random variability in population parameters and can also incorporate uncertainty in 

parameter estimates across the random and fixed effect elements of a model. The random 

variability can be from various probability distributions across multiple levels (12).     

 

Clinical trial simulation (CTS) utilizes the Monte Carlo simulation approach to 

simulate clinical trials.  Clinical trial simulation was recently defined as “the generation 

of a response for a virtual subject by approximating the trial design, human behavior, 

disease progress and drug behavior using mathematical models and numerical 

methods”(13). CTS has also has been increasingly used for optimization of clinical trial 

design. CTS allow one to predict and compare the clinical outcomes of competing trial 

designs, various human behaviors, and disease or drug related factors.  

 

Models involved in CTS include: 1) input-output models: commonly referred to 

mathematical models of drug behavior and disease progress, such as population PK/PD 

models, disease progress models. 2) Covariate distribution models: defining virtual 

patients’ characteristics and the correlation among these factors as well as how they occur 

in different patient or target subject groups. 3) Protocol deviations and execution models: 

patient adherence model, dropout model, censoring models etc. 

 

As discussed previously, models are associated with uncertainty in parameter 

estimates. Sensitivity analysis provides for the evaluation of the impact of the posterior 

parameter distributions on simulated trial results (25, 26). Sensitivity analysis influences 

future study design and labeling decision makings by accounting for uncertainty of the 
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model itself. Sensitivity analysis includes local sensitivity analysis and global sensitivity 

analysis. Local sensitivity analysis tests certain parameter at fixed point estimates, while 

global sensitivity analysis simultaneously accounts for the uncertainty distributions in all 

parameters. Hence global sensitivity analysis a more robust method as the interaction of 

parameter elements is considered (25, 26, 34).  

 

1.6 AIMS 

 

The major aim of this thesis is to use the modeling and simulation approaches to identify 

the systematic contributors that modify the estimated population parameters and that 

explain sources of variability in drug exposure (Chapter 2-4), response, and clinical 

outcome (Chapter 5-7). The source of measurable variability evaluated in the thesis 

include patient characteristics in chapter 2-3 (e.g. age, genotype et al.), patient behavior 

in chapter 4 (i.e. a patient’s detailed dosing history), biological system in chapter 5-7 (i.e. 

natural rhythm of BP variability on a daily basis), and inferior clinical practice in chapter 

5-7 (i.e. follow up visit time of patients). Specifically, the thesis accomplishes the aim by 

addressing these following issues: 1) Chapter 2-3: The effect of patient characteristics on 

variability of drug disposition using highly sparse sampling measurement for both 

escitalopram and perphenazine. 2) Chapter 4: The effect of measurement error in dosing 

time on population PK parameter estimation using escitalopram as a model drug and the 

SPECTRUM data as a prototype clinical trial, specifically comparing patient reported 

time of last dose and medication event monitoring generated dosage histories. 3) Chapter 

5: The impact of cuff BP measurement error as well as ignoring the circadian rhythm of 

BP on measured treatment effect of antihypertensive agents using a current clinical 

practice paradigm. 4) Chapter 6: The impact of ignoring the timing of patient clinic visit 

times and the cuff BP measurement error on the BP misclassification rate in the current 

clinical practice paradigm. 5) Chapter 7: The risk of a cardiovascular disease related 

event associated with current clinical practice strategies as well as alternative strategies in 

patients with hypertension.  

 

Specific aims for each study are: 

Chapter 1: Introduction 
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Chapter 2: Population pharmacokinetics of perphenazine in schizophrenia patients from 

CATIE: Impact of race and smoking  

● To characterize PK for perphenazine in patients with schizophrenia using population 

analysis 

● To identify and estimate potential covariates contributing to variability in perphenazine 

exposure using highly sparse sampling measurement and determine its clinical 

significance 

● To examine the robustness of those comparisons using a randomization test approach  

 

Chapter 3: Effect of age, weight, and CYP2C19 genotype on escitalopram exposure 

● To describe PK of escitalopram in patients treated for major depression in a cross-

national, US-Italian clinical trial 

● To identify the potential contributors for the difference in susceptibility to toxicity in 

the Pisa versus the Pittsburgh based patients 

 

Chapter 4: the effect of reporting methods for dosing times on the estimation of 

pharmacokinetic parameters of escitalopram 

● To compare population PK models of escitalopram developed from dosage times 

recorded by a medication event monitoring system (MEMS) versus those ascertained 

from patient report of time of last dose. 

 

Chapter 5: Use of Monte Carlo simulation approaches to evaluate the clinical 

implications of discordance between measured and true BP 

● To evaluate the discordance in BP between the cuff measurements at casual clinic visits 

in current clinical practice and the true underlying BP.  

● To identify the impact of the cuff BP measurement time on the discordance 

 

Chapter 6: Evaluation of JNC VII BP treatment group misclassification with cuff BP 

measurement by trial simulation 

● To quantify the BP misclassification rate using a casual clinic visit time in current 

clinical practice.  
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● To evaluate the influence of the BP measurement time and dosing time on the BP 

treatment group misclassification rate.   

● To evaluate the influence of various levels of BP measurement error on the BP 

misclassification rate including the number of measurements per visit and last digit 

rounding effects. 

 

Chapter 7: The impact of clinical practice strategies on the risk of cardiovascular disease 

(CVD) in patients with hypertension: a simulation study 

● To evaluate CVD risk to patients that are treated using different clinical practice 

strategies for BP management in patients with hypertension using Monte Carlo 

Simulation approaches 
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2.1 ABSTRACT 

 

The goal of the study was to characterize population pharmacokinetics (PPK) for 

perphenazine in patients with schizophrenia from the Clinical Antipsychotic Trials of 

Intervention Effectiveness (CATIE). Patients (n = 156) received 8-32 mg of perphenazine 

daily for 14 to 600 days for a total of 421 plasma concentrations measurements. 

Nonlinear mixed-effects modeling was used to determine PPK characteristics of 

perphenazine. One- and two-compartment models with various random effect 

implementations and mixture distributions were evaluated. Objective function values and 

goodness of fit plots were used as model selection criteria. Age, weight, sex, race, 

smoking, and concomitant medications were evaluated as covariates.  A one-

compartmental linear model with proportional error best described the data. The 

population mean clearance and volume of distribution for perphenazine were 483 L/h and 

18,200 L , respectively. Race and smoking status had significant impacts on perphenazine 
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clearance estimates. In addition, the estimated population mean clearance was 48% 

higher in nonsmoking African Americans than in nonsmoking other races (512 L/h versus 

346 L/h). Active smokers eliminated perphenazine 159 L/h faster than nonsmokers in 

each race. Clearances for smoking African Americans versus smokers in other races were 

671 L/h versus 505 L/h, respectively. Keywords: Perphenazine, Population 

Pharmacokinetics, Clinical Antipsychotic Trials for Intervention Effectiveness (CATIE), 

Race and Smoke, Schizophrenia 

 

2.2 INTRODUCTION 

 

Schizophrenia affects about 1.1 percent of the U.S. population age 18 and older each year 

(http://www.nimh.nih.gov/health/publications/schizophrenia/complete-

publication.shtml).  Current pharmacologic treatment for schizophrenia includes the first 

generation antipsychotics (FGA) and second generation antipsychotics (SGA).  The 

NIMH funded Clinical Antipsychotic Trials for Intervention Effectiveness (CATIE) 

Schizophrenia Trial was the first systematically designed clinical trial that studied 

treatment selections for schizophrenia.  The CATIE schizophrenia trial compared relative 

effectiveness of SGA to a typical representative of the FGA, perphenazine (35).  

Although SGAs are more commonly used clinically than FGAs, the results of the study 

showed that perphenazine, a conventional FGA, had similar efficacy to most of the SGAs 

including quetiapine, risperidone, and ziprasidone.  Olanzapine appeared to have better 

efficacy than perphenazine, but it caused greater weight gain and glucose/lipid 

metabolism derangements (36, 37).  In addition, the CATIE studies also found that 

perphenazine was more cost effective when compared with second-generation 

antipsychotics without significant differences in measured outcome (38). Similar to other 

phenothiazine antipsychotics, perphenazine is thought to produce its antipsychotic effect 

by binding to dopamine receptors.(39) After intravenous dosing, perphenazine is 

extensively metabolized by CYP2D6 in the liver (40).  The total body clearance of 

perphenazine is around 100 L/h with a volume of distribution from 10 to 34 L/kg (41).  

The half-life of perphenazine is approximately 9.5 hrs with an oral bioavailability of 20% 

(41).   
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So far, limited data on the population pharmacokinetics (PPK) of perphenazine is 

available in the literature (42). PPK analysis is a robust tool for obtaining valuable 

pharmacokinetic (PK) information from large clinical trials under conditions of sparse 

concentration sampling (43, 44). The effect of potential covariates on drug exposure can 

also be evaluated in PPK analysis by incorporating patient specific information into the 

modeling process. Data from the CATIE schizophrenia trial provided the opportunity to 

determine PPK parameters for perphenazine in a typical schizophrenic patient population 

and evaluate the effect of potential covariates (i.e. age, body weight, sex, smoking status, 

and concomitant medications et al.) on perphenazine drug exposure. 

The goal of this study was to characterize PPK for perphenazine in patients with 

schizophrenia from the Clinical Antipsychotic Trials of Intervention Effectiveness 

(CATIE) schizophrenia trial and to identify the potential contributors to variability in 

perphenazine exposure. 

 

2.3 SUBJECTS AND METHODS 

 

2.3.1 Subjects and Samples  

The details of the study design of CATIE schizophrenia trial have been published 

elsewhere (36, 45). The study was conducted at multiple sites in the US.  Patients 

diagnosed with schizophrenia were recruited into the study. Patients prescribed 

perphenazine (n = 156) received 8-32 mg of medication daily for 14 to 600 days. One 

blood sample per patient per visit was collected during patient clinical visits with up to 

six visits total.  The last dose time before each blood sample was recorded as reported by 

the patient and the sample time noted exactly by the phlebotomist. This analysis excluded 

data that had undetectable perphenazine concentrations in a sample, unreported dose 

magnitude, or a missing time for the dose and/or blood sample.  A total of 421 plasma 

concentration measurements meeting the aforementioned criteria were available for 

model development. The PK sampling for each patient was sparse with an average of 2.7 

perphenazine concentration measurements per patient.  

2.3.2 Patient characteristics  



 

Patient demographics are summarized in Table 1. Patients in the study included 115 

males and 41 females between the ages of 18-65. The average age of the subjects was 40 

years with an average body weight of 88.9 kg. The patient population was predominantly 

Caucasian (65% (n=102)), with 29% (n=46) black/African American, 4% (n=6) Asian, 

and 1% (n=2) two/more races. In addition, 67% (n=104) of the subjects were active 

smokers. 

2.3.3 Determination of Perphenazine Concentrations 

Perphenazine was measured by reverse phase high performance liquid chromatography 

(HPLC) using electrochemical detection with settings of detector 1: +0.20V, detector 2: 

+0.73V, and the guard cell: +0.75V. This method was developed by the Clinical 

Pharmacology Lab at the University of Pittsburgh (46). Plasma was extracted using liquid 

- liquid extraction (ethyl acetate - n-hexane (4:2), v/v) and back extracted using 0.025M 

potassium phosphate; pH 2.4 separation was completed using a Nucleosil C18, 5 micron, 

120 X 4.6mm I.D. with a flow rate of 1ml/min at room temperature. The assay was linear 

in the range from 0.5 - 25 ng/ml with inter-assay variability (C.V.) of 4.1-10.0% and 

reproducibility (C.V.) of 3.37-9.13%. The limit of quantitation for perphenazine was 0.5 

ng/ml for this assay (46).   

 

2.3.4  Population Pharmacokinetic Analysis 

PPK analysis of perphenazine was performed using NONMEM® (version 5.1.1, Icon, 

Hanover, MD). The initial modeling focused on developing a base model where a model 

structure was identified without incorporating any covariates. One and two-compartment 

linear mammillary PK models with first-order absorption and elimination were evaluated 

using ADVAN2 TRANS2 and ADVAN4 TRANS4 during model development, 

respectively. Inter-individual variability was included in the base model as a random 

effect and to be log-normally distributed. The individual estimates of PK parameters 

( ) was a function of the both the population estimates (PTV) and random 

variables (ηP).  The parameter Pj was the estimated PK parameter value for the jth 

individual, PTV was the estimated value for the population, and ηP described the 

PePP TVj
η×=
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difference between Pj and PTV, which was assumed to be a normally distributed with a 

mean of zero and variance of ωP
2 (47, 48). The absorption rate constant (Ka) was fixed to 

1.6 hr-1 based on literature reported t1/2 and tmax values (40, 41) because of difficulty 

directly estimating this parameter within this dataset. The residual error was comprised 

of, but not limited to, intra-individual variability, experimental errors, process noise, and 

model misspecifications, if any. Additive ( ), proportional ( ) 

and combined error structures ( ' ) were tested, where  is the jth 

observed perphenazine concentration in the ith individual,  is the corresponding model 

prediction, and  (or ) is a random variable assumed normally distributed with a 

mean of zero and a variance of σ1
2 (or σ2

2).   
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Patient demographic information, such as patient age, weight, race etc., may 

explain some of the variability in the perphenazine PK parameter estimates. In the study, 

both continuous covariates (e.g., age, weight) and discrete covariates (e.g., sex, race, 

smoking status, and concomitant medications) were tested.  The effect of continuous 

covariates on PK clearance estimates was evaluated using the following model structures:   

Cov
CL MedTVCL

θ
θ (*=  (centered power model) 

/* CovCL MedTVCL θ=  (centered exponential model) 

(CL MedTVCL += θθ  (linear model) 

CovTVCL CL θθ +=  (linear model) 

eTVCLCL
η

*=  

where TVCL is the population estimate for clearance; Cov representes the subject 

specific value of continuous covariate; MedCov is the median value of the Cov. θCL and 

θCov are estimated fixed effect parameters; ηj is the random variable describing the 

difference of the estimated CL for jth subject from the typical population value. 

Categorical variables were assigned to each of race (Black/African American=1, 

other races=2).  The coding example of incorporating the effect of race on CL estimate 

was shown as following:  

17 
 



IF (RACE.EQ.1) TVCL=θCL1;  
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IF (RAC

 smoking status, 

and concomitant medica n were tested using the following structures:  

e.  Other parameters (eg, TVCL, ηj, and θCL) were the same as previously 

describ

essing of NONMEM® outputs were 

perform

E.EQ.2) TVCL=θCL2  

where θCL1 and θCL2 are typical values of CL for Black/African American and 

other races, respectively.  The effect of discrete covariates such as sex,

tio

CovCL Cov θθ *+   

For male and female patients, sex was assigned to be 0 and 1, respectively.  For 

smoking status, nonsmoker and smoker were assigned to be 0 and 1, respectively.  If 

patients had a concomitantly administered medication, the Cov was assigned to be 1 for 

that medication, otherwise Cov was 0.  θCov was the estimated fixed effect parameter for 

the covariat

TVCL =

ed.  

A Bayesian approach (MAP or Empirical) conditioned on the population 

characteristics was used to estimate individual specific parameters.  Both the base and 

final model were estimated using the first-order conditional estimation (FOCE) with 

interaction method.  Continuous covariates (e.g. age, weight et al.) and discrete covariates 

(e.g. sex, race, smoking status, and concomitant medications et al.) were incorporated 

into each parameter by forward incorporation and  backward elimination method.  The 

covariate was retained in the model if the objective function value (OFV) decreased by 

3.84 when adding one additional fixed effect parameter into model (χ2 p < 0.05 df = 1).  

Goodness of fit plots were used as additional model selection criteria. These were 

generated using R® (version 2.6.2).  Post-proc

ed using SPSS (version 14.0).   

Bootstrapping and visual predictive check were used for model evaluation. 

Confidence intervals for the final parameter estimates were calculated from 

bootstrapping. A randomization test for significant covariates in the final model was 

performed using a method as implemented by Holford (49, 50).  This was done by 

creating 1000 new data sets that were generated identically except for re-randomization 

of the association of the covariate so that the Null Hypothesis will be true under 

randomization. The delta OFVs from the original null OFVs were calculated by running 
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g to original data set as well as P values 

ere identified (significance criteria of P<0.05). 

 

2.4  RESULTS 

.4.1 Population pharmacokinetic modeling 

FVs for race and 

oking status are presented in Figures 2a & Figure 2b, respectively. 

 

L/h) 

lear perphenazine 94% faster than non-smoking non-African Americans (346 L/h). 

 

the final model with these 1000 randomized new data sets. The delta OFVs were sorted 

and the quantiles for the delta OFVs correspondin

w

 

2

 

A one-compartment model with linear elimination and proportional error best described 

the perphenazine PK in this patient population.  Race and smoking status during the last 

week were significant covariates affecting clearance.  The process of final model 

development is summarized in Table 3.  Diagnostic plots for the final model are listed in 

APPENDIX I. The final model was evaluated by bootstrapping as well as visual 

predictive check plots. Please refer APPENDIX II for predictive check plots.  The 

randomization test showed that both race and smoking status were statistically significant 

factors that affected perphenazine. A histogram showing the delta O

sm

The PK parameter estimates for the final model are listed in the Table 2.  The 

population mean clearance and volume of distribution for perphenazine in the base model 

were 483 L/h  and 18,200 L, respectively, without incorporating any covariates. Race and 

Smoking status were identified as two significant covariates for clearance of 

perphenazine. Patients who smoked in the past week eliminated the drug 159 L/h faster 

than nonsmokers, corresponding to a 33% increase in clearance compared to the whole 

population (483 L/h). Estimated population clearances for nonsmoking non-African 

Americans, smoking non-African Americans, nonsmoking African American, and 

smoking African Americans were 346 L/h, 505 L/h (346+159 L/h), 512 L/h, and 671 L/h 

(512+159 L/h), respectively. Estimated population mean clearance of perphenazine was 

48% higher in nonsmoking African Americans than nonsmoker in other races. The 

combined effect of these two covariates is that smoking African Americans (671

c
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Post-processing of empirical Bayesian estimates for individual parameters are 

listed in Table 4. An independent-samples t-test showed a significant difference in the 

empirical Bayes estimated CL/F of perphenazine between African Americans (n=46) and 

other races (n=110) (P<0.05) (Figure 1a), active smokers (n=104) and non-smokers 

(n=52) (p<0.01) (Figure 1b), and smoking African Americans (n=38) and non-smoking 

non-African Americans (n=44) (p<0.001) (Figure 1c). 

 

The analysis of the study showed that sex, age, weight were not significant 

covariates affecting the PK of perphenazine. The number of subjects on concomitant 

medications was less or equal to six for any medication and none of concomitant 

medications were identified as significant covariates for perphenazine clearance. (See 

APPENDIX III for detail)  

 

2.5  DISCUSSION 

In this study, we successfully captured the exposure characteristics for perphenazine in 

schizophrenic patients using a PPK approach.  Before incorporating any significant 

covariates, the population mean clearance and volume of distribution for perphenazine 

were 483 L/h and 18,200 L, respectively.  Estimated sub-population clearances for non-

African American non-smokers, non-African American smokers, African American 

nonsmoker, and African American smokers were 346 L/h, 505 L/h, 512 L/h, and 671 L/h, 

respectively.  Hansen and his colleague reported the clearance of perphenazine at 

approximately 100 L/h with the volume of distribution of 10 to 34 L/kg after intravenous 

administration.  The bioavailability of perphenazine is around 20% (41), hence the oral 

clearance should be around 500 L/h with a oral volume of distribution of 3,500-11,900 L 

based on their study.  The population kinetics study conducted by Jerling (42) showed 

that population mean value for oral clearance and volume of distribution was 520 L/h and 

16,140 L.  Hence, the population estimated PK parameters in this study using highly 

sparse sampling data are consistent with other literature reported values.  

Smoking status in the most recent week was also identified as a statistically 

significant contributor to the variability in estimated perphenazine clearance in 

schizophrenia patients.  Patients who smoked in the past week had a mean clearance of 



21 
 

748 L/h compared to 453 L/h for nonsmokers.  An in-vitro metabolism study conducted 

by Olessen and his colleague (51) showed that besides CYP2D6, other enzymes such as 

CYP1A2, 3A4, and 2C19 are involved in the N-dealkylation of perphenazine. In addition, 

smoking has been identified as a potent inducer of hepatic CYP1A1, 1A2, and 2E1 (52). 

Hence, metabolism of CYP1A2 substrate can be induced in smokers (52).  It is possible 

that perphenazine is metabolized by CYP1A2 clinically, which induced clearance of 

perphenazine at active smoker. The number of patients with schizophrenia who smoke is 

very high. (53, 54) One study reported the prevalence to be 88%(55), nearly three times 

the rate in the general population. Bigos and colleagues(47) has reported that 66% of 

patients with schizophrenia who attended CATIE olanzapine study were active smokers. 

In our study, 67% of schizophrenia patients were active smokers. Due to the fact that 

many patients with schizophrenia smoke, it is important to pay more attention to the 

effect of smoking on perphenazine pharmacokinetics.  

Racial differences in clearance have been identified in a few antipsychotic agents 

which are CYP2D6 substrates, such as olanzapine(47), risperidone(56), and 

paroxetine(48). In these studies, African Americans cleared these drugs faster than 

Caucasians.  In this study, the population mean clearance of perphenazine was 48% 

higher in African Americans than that in other races in patients with schizophrenia. Feng 

et al. found that race was a significant covariate for both paroxetine and risperidone 

clearance, but the race effect on clearance was no longer significant when CYP2D6 

genotype was incorporated for paroxetine or when a 3-component mixture model for 

clearance was used for risperidone. Perphenazine is primarily metabolized by CYP2D6 

located in the liver (40). Jerling and his colleague (42) also reported that CYP2D6 

genotype was a significant covariate on estimated oral clearance of perphenazine. So it is 

possible that CYP2D6 genotype is confounding factor for the racial difference in 

perphenazine clearance. There is evidence supporting racial differences in CYP2D6 

polymorphism expression frequencies between African Americans and Caucasians. 

Specifically, Caucasians showed approximately 3-fold higher frequencies for the non-

functional allele CYP2D6*4 (57) compared to African Americans. These results suggest 

that observed race differences in clearance of perphenazine might due to racial 
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differences in CYP2D6 polymorphism frequencies between African Americans and 

others. 

Racial differences in adherence to prescribed perphenazine regimen between 

African Americans and other races may be another possible contributor to differences in 

perphenazine clearance. Lower adherence to antipsychotic treatment has been reported by 

other studies.(58)  Some examples have demonstrated that African Americans are less 

likely to be adherent to antihypertensive medications (59, 60) and inhaled corticosteroids 

(61) than Caucasians. Hence, both differences in the frequency of CYP2D6 

polymorphism expression and adherence patterns to prescribed perphenazine regimen 

might contribute to racial differences in perphenazine clearance observed in this study. 

Further studies are required to identify the mechanisms contributing to the observed 

differences in perphenazine clearance across race. Racial information alone is not 

currently recommended for adjusting perphenazine dosage regimens in patients with 

schizophrenia.  

To further explore the clinical significance of the difference in estimated 

clearance of perphenazine among these subpopulations, a response or tolerability analysis 

between these subpopulations should be performed. Due to lack of response data, we 

compared the administered dose across each of the subpopulations (Table 5).  This 

evaluation was based on the assumption that physicians titrated the dose upward to 

achieve desired effects or titrated downward to avoid side effects and that these effects 

were concentration related. The average dose administered to active smokers was 

significantly higher than in patients who were not active smokers. In addition, the dose 

administered to African American was slightly higher than that to Caucasian patients, but 

this difference was not statistically significant. Therefore, until the mechanisms 

associated with the observed racial difference in perphenazine clearance are better 

understood, smoking status seems to be a more clinically significant factor for dose 

adjustment. 

 

Similar to olanzapine (47) and risperidone (56, 62) in the CATIE trial, there were 

very large variabilities in perphenazine exposure.  Jerling et al. (42) also reported wide 

variability for the PK of perphenazine. This wide variability in drug exposure, which may 
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result from sociologic (e.g. adherence etc.) or biological factors (CYP 2D6 polymorphism 

expression rates), poses a clinical challenge in schizophrenia treatment and may be one of 

the reasons for the high discontinuation rate observed in CATIE study.  Another potential 

contributor to the large degree of exposure variability observed for perphenazine in this 

study relates to the nature of the dosage input information and assumptions. The PPK 

models were developed based on patient reported last dosing time along with the 

assumption of steady state and full adherence. In a study of escitalopram (63), it was 

shown that inaccurate dosing history and patient adherence information affected 

estimation of absorption rate, volume of distribution, but not the clearance parameters for 

escitalopram.  

 

In conclusion, race and smoking status in the past week were identified as two 

significant covariates affecting clearance.  The dosage regimen of perphenazine in these 

populations may need to be adjusted clinically based on patients smoking status. 
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2.6  TABLES 

 

Table1:  Patient demographics 

Demographics CATIE-Perphenazine 
Sample size 156 
Number of observations 421 
Number of observations per subject 2.70 
Age, mean years ± SD  (range)  40.3 ± 10.6 (18-65) 
Weight, mean kg ± SD  (range)  88.9 ± 23.0 (49.4-195.0) 
Gender, n (%)  
         Male 115 (74%) 
         Female  41 (26%) 
Race, n (%)  
         Caucasian 102 (65%) 
         African American 46 (29%) 
         Asian 6 (4%) 
         Two or more races 2 (1%) 
Smoking status, n (%)  
         Active smoker 104 (67%) 
         Nonsmoker  52 (33%) 

 
Table 2: Pharmacokinetic parameter estimates for perphenazine 

Parameters Parameter Estimates 95% CI 
CLAA_nonsmoker (l/h)  512 385~646.4 

ClnonAA_nonsmoker (l/h)  346 270~434.7 
Smoke on CL (l/h) 159 63.5~267.4 

V (l)  19300 13865~65795 
Ka (h-1) (fixed) 1.6 N/A 

ωcl % 79.30% 68.1%~87.4% 
ωv % 78.50% 20%~122% 
ωka % 336.10% 0.35%~518% 
ωcl-v % 100.00% 29% ~ 170% 
σ1 % 37.40% 33.3%~41.0% 

 
CL, clearance; CLAA_nonsmoker, clearance for nonsmoking African American; 
ClnonAA_nonsmoker, clearance for nonsmoking non-African American; Smoke on CL, effect 
of smoking status on clearance, which was assumed to be independent on race; V, 
volume of distribution; ω, coefficient of variation of inter-individual variability; σ1, coefficient 
of variation of residual error (proportional); N/A, not available; 95% confidence interval 
(95%CI) was calculated from boots trapping step (re-sampling times=1000).  
Table 3: Population Pharmacokinetic model development steps for perphenazine 
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Table 3. Population Pharmacokinetic model development steps for perphenazine 
 
Covariate  Model -2LL D-2LL P value 

One compartment model 559.11   
base model  Two compartment model  557.861 -1.249 > 0.05 
1-1 (CL)     
Age (centered power model) M1 558.589 -0.521 > 0.05 
Weight (centered power 
model) M2 557.037 -2.073 > 0.05 
Sex  M3 558.349 -0.761 > 0.05 
Race M4 553.352 -5.758 < 0.05 
Smoking status M5 545.87 -13.24 < 0.001 
1-2 (V)    
Age (centered power model) M6 555.758 -3.352 > 0.05 
Weight (centered power 
model) M7 558.973 -0.137 > 0.05 
Sex M8 556.941 -2.169 > 0.05 
2     
Smoking 
status(CL)+Race(CL) M9 540.681 -5.189 < 0.05 

 
*Abbreviations:  -2LL, objective function value; Δ-2LL, difference in objective function  
values between two models, -2LL values in CL (Smoking status) and CL (Race) were 
compared with base model; -2LL values in CL (Smoking status, Race) was compared with 
model CL (Smoking Status). Δ-2LL of 3.84 units was considered significant (χ2 df=1 
p<0.05). The function structure of incorporating covariate was described in the methods section. 
Race: African American vs. other races; Smoke: subjects who smoked in the past week vs. 
subjects who did not smoke in the past week.  
 
 
 
Table 4: Post processed perphenazine clearance by population 
 

Population Mean Clearance 
(L/hr) 

Standard 
Deviation 

P 
value 

Race   <0.05 
           African American (n=46) 775.90 513.52  
           Other Races  

(n=110) 597.05 477.98  

Smoking Status   <0.01 
           Active Smoker  

(n=104) 748.24 513.76  

           Non-Smoker  
(n=52) 452.87 385.93  

Race & Smoking Status   <0.001 
           Smoking African American  

 (n=38) 833.90 536.95  

 Non-Smoking Non African American 
(n=44� 444.23 406.64   
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Table 5: Prescribed daily dose by population 
 

Population 
Mean of Prescribed 

Daily Dose ( mg ) P value 
Race  >0.05 
       African American (n=46) 25.04 ( ± 7.47)  
       Other Races (n=110) 23.63 ( ± 7.77)  
Smoking Status  <0.05 
       Active Smoker (n=104) 25.33 ( ± 7.39)  
       Non-Smoker (n=52) 21.62 ( ± 7.71)  
Race & Smoking Status   <0.05 
       Smoking African American (n=38) 25.55 ( ± 7.36)  
       Non-Smoking Non African American (n=44） 21.27 ( ± 7.70)   

 



2.7  FIGURES 
 
Figure 1: Perphenazine clearance by subpopulation 
 
Figure 1a: Perphenazine clearance by smoking status 
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Figure 1b. Perphenazine clearance by race 
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Figure 1c: Combined effect of smoking and race on perphenazine clearance   
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Figure 2: Randomization Test 
 
Figure 2a: Randomization Test for Race (Histogram of Delta Objective Function Values)   
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Original Objective Function Value decreases was -5.189, P=0.031.  
 
Figure 2b: Randomization Test for Smoking (Histogram of Delta Objective Function 
Values)   
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Original Objective Function Value decreases was -12.771, P=0.000 
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2.8  APPENDIX FOR CHAPTER TWO 

 

I: Goodness of fit plots of the perphenazine final model 
 
1) Goodness of fit plots of final PK model in normal scale 
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2) Goodness of fit plots of final PK model in nature log scale 
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II:  Predictive check plots for mostly administered dose levels (16mg QD/BID, 24mg 
QD) by race and smoking status in the study. Steady state of perphenazine concentration 
was assumed in the simulation. Solid lines were mean prediction. Dashed lines were 95% 
CI for the mean. Open points were observed perphenazine concentrations since most 
recent dosing time.  
 
1) 16mg QD by race and smoking status 
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2) 16mg BID by race and smoking status 
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3) 24mg QD by race and smoking status 
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III: Effect of the concomitant medications on clearance of perphenazine  
 

Covariate  -2LL D-2LL P value 
Base model  559.11   
Base + Paroxetine (n=4) 556.421 -2.689 > 0.05 
Base + Ranitidine (n=6) 555.85 -2.011 > 0.05 
Base + Haloperidol (n=4) 556.127 -2.983 > 0.05 

 

None of concomitant medications were identified as significant covariates for 

perphenazine clearance.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

31 
 



32 
 

3.0  THIRD CHAPTER  

 

Effect of age, weight and CYP2C19 genotype on escitalopram exposure 

 
Yuyan Jin1,  Bruce G. Pollock2,3,4, Ellen Frank2, Giovanni B. Cassano5,Paola Rucci2, Daniel J. Müller4, 

James L. Kennedy4, Rocco Nicola Forgione5, Margaret Kirshner2, Gail Kepple2, Andrea Fagiolini6, David 

J. Kupfer2, Robert R. Bies1,2. 
1Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA; 2Department of 

Psychiatry, University of Pittsburgh, Pittsburgh, PA; 3Rotman Research Institute, , University of Toronto, 

Ontario, CA; 4Neurogenetics Section, Centre for Addiction and Mental Health, University of Toronto, 

Toronto, Ontario, CA; 5 Department of Psychiatry, Neurobiology, Pharmacology and Biotechnology, 

University of Pisa, Italy; 6Department of Neuroscience, University of Siena, Siena, Italy. 

 
3.1 ABSTRACT 

 

Objective: The purpose of this study was to characterize escitalopram population 

pharmacokinetics (PK) in patients treated for major depression in a cross-national, U.S.-

Italian clinical trial.  

Methods: Data from the two sites participating in this trial, conducted at Pittsburgh 

(USA) and Pisa (Italy) were utilized. Patients received 5, 10, 15, or 20 mg of 

escitalopram daily for a minimum of 32 weeks. Nonlinear mixed-effects modeling 

(NONMEM) was used to model the PK characteristics of escitalopram . One and two 

compartment models with various random effect implementations were evaluated during 

model development. Objective function values (OFV) and goodness of fit plots were used 

as model selection criteria. CYP2C19 genotype, age, weight, BMI, sex, race, and clinical 

site were evaluated as possible covariates.  

Results: 320 plasma concentrations from 105 Pittsburgh patients and 153 plasma 

concentrations from 67 Pisa patients were available for the PK model development. A 

one-compartmental model with linear elimination and proportional error best described 

the data. Apparent clearance (CL/F) and volume of distribution (V/F) for escitalopram 

without including any covariates in the patient population were 23.5 L/h and 884 L, 

respectively.  CYP2C19 genotype, weight and age had a significant effect on CL/F, and 

patient BMI affected estimated V/F. Pisa, Italy patients had significantly lower clearances 
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than Pittsburgh patients that disappeared after controlling for patient CYP2C19 genotype, 

age, and weight. Post-processed individual empirical Bayes estimates on clearance for the 

172 patients show that patients without allele CYP2C19*2 or *3 (n=82) cleared 

escitalopram 33.7% faster than patients with heterogeneous or homogeneous *2 or *3 

(*17/*2, *17/*3, *1/*2, *1/*3, *2/*2, *2/*3, and *3/*3,n=46). CL/F significantly 

decreased with increasing patient age. Patients younger than 30 years (n=45) cleared 

escitalopram 20.7% and 42.7% faster than patients aged 30-50 years (n=84) and greater 

than 50 years of age (n=43), respectively.  

Conclusions: CYP2C19 genotype, age, and weight strongly influenced the CL/F of 

escitalopram. Patients with heterogeneous or homogeneous CYP2C19*2 or *3 genotype 

had significantly lower clearances than patients with other genotypes. CL/F significantly 

decreased with either increasing age or decreasing body weight. These variables may 

affect patient tolerance of this antidepressant and, consistent with the NIH emphasis on 

personalized treatment, may provide important information in the effort to tailor 

treatments to patients’ individual needs . 

Keywords: Escitalopram, NONMEM, Pharmacokinetics, SPECTRUM study, CYP2C19 

gene, pharmacogenetics 
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3.2 INTRODUCTION 

 

Mood and anxiety disorders have been listed among the world’s ten most disabling 

illnesses by the World Health Organization (64, 65). Escitalopram, the S-enantiomer of 

antidepressant citalopram, is one of the most commonly prescribed selective serotonin 

reuptake inhibitors (SSRI) (64).  It selectively binds to the primary reuptake inhibitory 

site of the serotonin transporter to produce its activity against both depression(66-68) and 

anxiety disorders (64, 69, 70). Escitalopram is highly selective for the serotonin 

transporter and approximately 30-fold more potent than R-citalopram (71). Escitalopram 

has been shown to have efficacy and safety advantages over citalopram (72-75). After 

oral administration, maximum plasma concentrations are reached in about 4 hours. The 

half life of escitalopram is 27-32 hours. Therefore, it is commonly given once daily (76, 

77).  

 

The study “Depression: The Search for Treatment-relevant Phenotypes” was a 

clinical trial conducted to determine the mediators and moderators of treatment response 

in major depression(http://clinicaltrials.gov/ct/show/NCT00073697) (78). This study was 

conducted at two sites, Pittsburgh (USA) and Pisa (Italy). During the study, a significant 

number of Pisa participants experienced intolerable side effects at the starting dosages.  

This was not seen in the Pittsburgh patients. One explanation could be systematic 

differences in the disposition (pharmacokinetics) of escitalopram in the Pisa compared to 

the Pittsburgh patients. More specifically, if Pisa patients cleared the escitalopram more 

slowly than Pittsburgh patients, this difference would lead to higher drug exposure in Pisa 

patients at the same dosage level.  The resulting higher concentrations may result in side 

effects. The sampling protocol in this study provides the basis for determining individual 

specific exposures that can then be evaluated across the two study sites. 

 

Population pharmacokinetic (PPK) analysis is a robust tool for obtaining 

pharmacokinetic information, including inter-individual variability in exposure, from 

large clinical trials with sparse sampling (43, 44). The effect of potential covariates on 

drug exposure can also be evaluated using this approach. Data from this study provides 

the basis for determining the population PK characteristics of escitalopram in this patient 
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population. This includes the evaluation of the impact of patient specific factors on 

escitalopram disposition including the CYP2C19 genotype predicted metabolizer 

phenotype.  A better understanding of the effect of such factors has the potential to play a 

key role in personalizing the treatment of depression.  In clinical practice, first 

antidepressant prescriptions are more commonly not refilled than otherwise (79), most 

probably because many patients have difficulty tolerating the side effects of these 

medications. Yet, information about the effects of a small number of variables on 

clearance could lead to more patient-specific prescribing practices and, in turn, to much 

better treatment adherence.  

 

Other population PK analyses using these types of data have been published for 

citalopram (80). In these reports, age and weight significantly affected the clearance (80). 

Limited information on the population pharmacokinetics of escitalopram is available in 

the literature (81-83).  A 50% reduction in elimination rate of escitalopram in elderly 

patients (≥65 years old) compared to younger healthy volunteers has been reported (82) 

(www.cipralex.com/images/cipralex/smpc.pdf; www.lexapro.com). Sex had no clinically 

significant effect on escitalopram disposition healthy volunteers (77, 82).  A population 

pharmacokinetic study in 24 patients with varying liver function showed a correlation of 

escitalopram clearance with CYP2C19 functional activity as measured by mephenytoin 

S/R excretion ratio.  This study also demonstrated a relationship between body weight 

and the apparent volume of distribution for escitalopram (83). A classical 

pharmacokinetic study in healthy scandinavian subjects showed a 21% reduction 

reduction in the AUC0-12 (84).  No systematic PPK analysis of escitalopram has been 

published in patients with major depression.  This study provides the opportunity to do so 

and to evaluate how patient specific characteristics (such as CYP2C19 phenotype, race, 

age, weight/BMI, clinical trial location and sex) may affect the PK of escitalopram. 

 

The goal of this study was to develop a robust population pharmacokinetic model 

describing escitalopram that evaluated patient-specific characteristics and the potential 

contribution of these factors to the observed variability in escitalopram exposure and 

potentially explain the difference in susceptibility to toxicity in the Pisa versus the 

Pittsburgh based patients. 
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3.3  SUBJECTS AND METHODS 

 

3.3.1 Subjects and Concentration sampling  

Escitalopram PK data were drawn from the study 

(http://clinicaltrials.gov/ct/show/NCT00073697, Depression: The search for treatment-

relevant phenotypes) (78).  This study was conducted at two treatment sites, Pittsburgh 

and Pisa, Italy.  Participants were randomly assigned to a treatment sequence that began 

with interpersonal psychotherapy (IPT) or pharmacotherapy alone. Participants assigned 

to IPT who did not evidence a response at week 6 or a remission at week 12 had 

escitalopram added to their treatment. A total of 172 patients, aged 20-65 years old, were 

recruited in the study and randomly allocated to escitalopram alone or received 

escitalopram as an adjuctive treatment (105 patients from Pittsburgh and 67 patients from 

Pisa). All patients were in an episode of non-psychotic major depression defined by the 

DSM-IV diagnosis and were not receiving any other anti-depressant treatments.  A daily 

dose of 5, 10, 15, or 20 mg of escitalopram was prescribed to patients for a minimum of 

32 weeks. Blood samples (10 ml) for the determination of escitalopram drug 

concentrations were collected at weeks 4, 12, 24 and 36.  320 blood samples from 105 

Pittsburgh subjects and 153 blood samples from 67 Pisa subjects were available for data 

analysis. The actual sample times and dates of all blood draws were recorded.  Seventy-

three of the Pittsburgh patients were also monitored using the Medication Event 

Monitoring System (MEMS) to provide dosage history timing information.  All other 

patients provided a time of last dose. 

3.3.2 Determination of Escitalopram Concentrations 

Blood samples (10 ml) were collected by venipuncture using a tourniquet and a 21g 

needle placed into lavender top Vacutainer tubes containing 15 % EDTA. The blood was 

placed in a refrigerated tabletop centrifuge (5°C) and processed for 10 minutes at 1500g. 

The plasma layer was transferred into 5 ml polypropylene tubes and frozen at -70°C until 

analyzed. 
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The escitalopram concentration analysis method was developed by the Geriatric 

Psychopharmacology Laboratory at the University of Pittsburgh. Escitalopram was 

measured by reverse-phase high performance liquid chromatography (HPLC) using 

ultraviolet detection at a wavelength of 210 nm.  Plasma was extracted using liquid-liquid 

extraction (ethyl acetate in heptane; 2:8, v/v) and back-extracted into 0.025 M potassium 

phosphate, pH 2.4. Separation was completed using a Nucleosil-100 C18 5 um HPLC 

column (Phenomemex, Torrance, CA), 120mm x 4.6 mm i.d. with a flow rate of 1.0 

ml/minute.  The assay was linear in the range of 2.5-500 ng/ml with an inter-assay 

variability (C.V.) of 2.9-3.93% for escitalopram. 

3.3.3 Determination of Patient CYP2C19 Genotype 

Genomic DNA was extracted from venous blood samples using the phenol chloroform 

method (n= 99), as well as the QIAamp 96 DNA Blood Kit (n =  

125). 

 

A total of four SNPs namely, CYP2C19*2 (rs4244285), *3(rs4986893), 

*17rs12248560) and a Tag SNP of *2, rs6583954 were genotyped across the CYP2C19 

gene. Genotyping was performed by TaqMan assay for allelic discrimination using the 

Applied Biosystem Prism 7900HT instrument and analysed using the allelic 

discrimination end-point analysis mode of the Sequence Detection software package 

version 2.2 (SDS 2.2). Metabolizing status has been assigned according to the study by 

Rudberg et al(85).  

 

Subjects were classified according to the methods described by Rudberg et al (85) 

specifically: Rapid metabolizers (RM) if they were homozygous for *17 allele; Extensive 

metabolizers (EM) if they were either homozygous for the wildtype allele *1/*1 or were 

*1/*17; Intermediate metabolizers (IM) if they carried any of *1/*2, *1/*3, *17/*2 or 

*17/*3 genotypes; Poor metabolizers (PM) if they were homozygous for either *2 or *3 

alleles. 

 

3.3.4 Population Pharmacokinetic Analysis 

 



3.3.4.1 Base model development 

Nonlinear mixed effects modeling for escitalopram PPK was performed using 

NONMEM® (version 5.1.1, Icon, Hanover, MD).  A base model without any covariates 

was developed initially. One and two-compartment linear mammillary PK models with 

first order absorption and elimination was evaluated using ADVAN2 TRANS2 and 

ADVAN4 TRANS4 during model development, respectively. The base model also 

included a statistical model where the between subject variability (BSV) and within 

subject variability (WSV) was described. The BSV describes the unexplained random 

variability in individual values of structural model parameters.  It was assumed that the 

BSV of the PK parameters was log-normally distributed.  The relationship between a PK 

parameter (P) and its variance could therefore be expressed as shown below(47, 48): 

PePP TVj
η×=  

Where, Pj was the value of PK parameter for the jth individual, PTV was the typical 

value of P for the population, and ηP denoted the difference between Pj and PTV, 

independently, which was identically distributed with a mean of zero and variance of ωP
2. 

 

The residual variability was comprised of, but not limited to, within subject 

variability, experimental errors, process noise and /or model misspecification.  This 

variability was modeled using additive, proportional and combined error structures as 

described below(47, 48): 

Additive error:  ijijij yy ε+= ˆ

Proportional error:  )1(ˆ ijijij yy ε+=

Combined additive and proportional error: '  )1(ˆ ijijijij yy εε ++=

Where  was the jth observation in the ith individual,  was the corresponding 

model prediction, and  (or ) was a normally distributed random error with a mean 

of zero and a variance of σ2. 

ijy ijŷ

ijε 'ijε
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Both population characteristics and individual specific parameters were 

determined in this analysis. Model parameters for both the base model and the final 

model were estimated by the first-order conditional estimation (FOCE) with interaction 

method. 

3.3.4.2 Final model development 

 

The final model was developed by incorporating the effect of subject specific covariates 

on PK parameter estimates. Both continuous covariates (e.g., age, weight, and BMI) and 

discrete covariates (e.g., CYP2C19 genotype, clinical trial location, sex, and race) were 

tested.  

 

The effect of continuous covariates (e.g., age, weight, and BMI) on PK parameter 

estimates was tested using three possible model structures.  The following example 

illustrates the implementation of these model structures for continuous covariate on CL:   

Cov
CL MedCovTVCL

θ
θ )/(* cov=  (Centered power model); 

or   (Centered exponential model); ))/(*exp(* CovCovCL MedCovTVCL θθ=

or  (linear model); )(* CovCovCL MedCovTVCL −+= θθ

jeTVCLCL
η

*=  

TVCL was the typical value of CL in the population; ηj was the random effect describing 

the difference of the jth subject from the typical population value; Cov represents the 

subject specific value of the continuous covariate; MedCov was the median of Cov. θCL 

and θCov were estimated fixed effect parameters. 

The effect of a discrete binary covariate (clinical trial location and sex) on PK 

parameter estimates was tested as well; the following example illustrates an example of 

the effect of sex on CL(47, 48):  

SexCL SexTVCL θθ *+=  

jeTVCLCL
η

*=  
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For male patients, sex was equal to 0, while for female patients sex was equal to 

1. θSex was an estimated fixed effect parameter for covariate sex, representing the 

numerical differences in the typical CL value between females and males. Other 

parameters (eg, TVCL, ηj, θCL, and θSex) are described previously.  

Categorical variables (2C19 genotype and race) with more than two categories 

were assigned to each of subgroup (i.e. RM/EM=1, IM/PM=2, missing=3). An example 

of incorporating effect of genotype on CL estimate was shown in the following 

expressions: (47, 48): 

IF (GENE.EQ.1) TVCL=θCL1  

IF (GENE.EQ.2) TVCL=θCL2  

IF (GENE.EQ.3) TVCL=θCL3  

jeTVCLCL
η

*=  

Where θCL1, θCL2, and θCL3 were typical values of CL for 2C19 RM/EM, IM/PM, and 

missing subpopulations, respectively.  

The possible relationship between individual Bayesian estimates for each 

parameter and the covariates was initially assessed by a graphical method using R® 

(version 2.6.2). Continuous covariates (e.g., age, weight, and BMI) and discrete 

covariates (e.g., CYP2C19 genotype, clinical trial location, sex, and race) were 

incorporated into each parameter in a stepwise fashion. The covariate was retained in the 

model if the objective function value (OFV) was decreased by 3.84 when adding one 

additional fixed effect parameter into model (χ2 p < 0.05 df = 1). Goodness of fit plots 

were used as additional model selection criteria. Additional post-processing of 

NONMEM® outputs were performed using SPSS (version 14.0).   

 

3.4 RESULTS 

 

3.4.1 Patient characteristics  
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Patient demographics are summarized in Table 1. The average age of the subjects was 

39.52 years with an average of body weight of 76.25 kg and average BMI of 27.  The 

majority of subjects were white (n=161, 93%) with minority black/African American 

(n=8, 5%) and Asian subjects (n=3, 2%). The histogram distribution plot of the 

escitalopram sampling times after most recent dose is shown in Figure 1a. These 

sampling times were distributed in a broad time range. The distribution of sampling times 

provide more information to estimate population PK parameters of escitalopram 

compared to many population studies which only have trough sample available (86). The 

mean time after dose for concentration sampling the Pittsburgh patients was 11.99 hours 

and in the Pisa patients was 11.76 hours.  Both groups had a large standard deviation 

around these times, specifically 11.4h for Pittsburgh and 11.8h for Pisa. Histograms of 

patient age, weight, and BMI are shown in Figure 1 panels b-d. 

 

All markers were in Hardy-Weinberg equilibrium as confirmed by Pedstats 

software1. DNA samples from 128 patients out of 172 were available for genotyping. 

Allele *3 has not been detected in our samples. According to the methods described by 

Rudberg et al.(85), we identified 5 RM (4 Pittsburgh vs 1 Pisa), 77 EM (54 Pittsburgh vs 

23 Pisa), 43 IM (28 Pittsburgh vs 15 Pisa), and 3 PM (3 Pittsburgh vs 0 Pisa). CYP2C19 

frequency for RM, EM, IM, and PM were 3.9%, 60.2%, 33.6%, and 2.3%, respectively, 

among all detected samples.  The frequency of RM, EM, IM, and PM were 4.5%, 60.7%, 

31.5%, 3.4%  for the Pittsburgh site and 2.6%, 59.0%, 38.5%, 0% for the Pisa site, 

respectively. No DNA samples were available for genotyping for 44 patients out of 172 

total. Among these 44 patients, 16 were from Pittsburgh and 28 were from Pisa.   

 

3.4.2 Population pharmacokinetic modeling 

 

A one-compartment model with linear elimination and proportional residual error best 

described the escitalopram pharmacokinetics in this patient population. Oral clearance 

(CL/F) and volume of distribution (V/F) in the patient population for escitalopram were 

23.5 L/h and 884 L in base model without incorporating any patient specific covariates, 

respectively. Patient CYP2C19 genotype, age, and weight had a significant impact on 

CL/F estimates, and patient BMI significantly affects V/F estimates.  
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Clinical trial location was a significant covariate for CL/F in the initial 

univariate forward analysis. However, the effect of clinical site in CL/F disappeared after 

controlling for patient CYP2C19 genotype, age, and weight effects on CL/F. The process 

of final model development is summarized in Table 2.  Figure 2 shows diagnostic plots 

for the final model. The scatter plots of the observed versus predicted population 

concentrations and observed versus predicted individual concentrations were distributed 

symmetrically around the line of unity. The weighted residuals were distributed 

symmetrically around zero.  No systematic shift in residuals was evident from the plots of 

weighted residual versus predicted population concentrations and weighted residual 

versus time after dose.  

 

Estimates for the full set of population PK parameters along with the standard 

errors for final model are listed in Table 3. Patient genotype was initially included as a 

model covariate on CL/F five categories: RM (n=5) vs EM (n=77) vs IM (n=43) vs PM 

(n=3) vs missing (n=44).  This was followed with a three category analysis by pooling 

RM and EM into one subpopulation (n=83), and IM and PM into one 

subpopulation(n=46). Both models showed that the CYP2C19 genotype is a significant 

covariate affecting escitalopram clearance estimates. However, breaking genotype into 

five categories did not improve model fit compared to the three category model. 

Estimated population CL/F (arising from the posterior mode of the marginal likelihood 

distribution for this parameter) for CYP2C19 RM/EM (n=83) and IM/PM (n=46) and the 

individuals missing genetic information (n=44) were 26 , 19.8 , and 21.5  L/Hr, 

respectively.  

 

CL/F significantly decreased in a centered power function model as patient age 

increased. The age relationships are shown as: CL/F= CL0*(age/40)-0.336 L/hr. The 

clearance also increased with increasing weight with the following relationship:  

CL/F=CL0*(Wgt/76) 0.333. 

 

Post-processed individual empirical Bayes estimates on CL/F for the 172 patients 

in different subpopulations are summarized in Table 4. RM/EM cleared escitalopram 
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33.7% faster than IM/PM subpopulation with mean CL/F (± SD) values of 29.73 ± 13.13 

and 22.23 ± 11.04, respectively (P<0.005). A one way ANOVA revealed a significant 

difference (P<0.005) in the empirical Bayesian estimated CL/F of escitalopram across 

three age groups (20~30, 30~50, 50~65 years of age with mean CL/F (± SD) values of 

31.03 (±14.88) L/h, 25.71(±11.31) L/h, and 21.74 (±9.89), respectively). Patients younger 

than 30 years (n=45) cleared escitalopram 20.7% and 42.7% faster than patients aged 30-

50 years (n=84) and 51 years of age or older (n=43), respectively. Pittsburgh patients 

(n=105) cleared escitalopram 28% (P<0.001) faster than patients from Pisa, Italy (n=67) 

with mean CL/F (± SD) values of 28.55 ± 13.54 and 22.28 ± 9.32, respectively 

(P<0.001).The scatter plots of the empirical Bayes estimates for CL/F (n=172) by 2C19 

genotype, clinical trial location, age, weight are shown in figure 3. Patient BMI, Sex, and 

Race were not significant covariates affecting CL/F.  

 

Estimated V/F increased in a power function relationship (V/F=V0*(BMI/27)1.11) 

with patient BMI with estimated exponent of 1.11.  Patient body weight, age, and clinical 

location did not significantly affect V/F estimates.  

 

3.5 DISCUSSION 

 

In this study, we successfully captured population and individual level exposure 

information for escitalopram in patients with major depression using sparsely sampled 

data. This study showed that apparent clearance of escitalopram varies nearly 10-fold in 

patients (n=172) with major depression, ranging from 6.24 to 67.10 L/h. CYP2C19 

genotype, age, and weight were identified as significant contributors to the variability in 

escitalopram clearance in this patient population.  This extends previous findings that 

showed a correlation with functional capacity of the CYP2C19 enzyme using 

Mephenytoin S/R enantiomer excretion ratios as a correlate of population clearance and 

weight as a correlate of population weight (83).  This study also establishes a population 

pharmacokinetic model that incorporates data for many more subjects (n=172) than 

previous models (n=24) (83). 
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Recently, Rudberg et al (85) showed the impact of the 2C19*17 polymorphisms 

on escitalopram concentrations in Norwegian psychiatric patients.  In these patients, 

individuals homozygous for the CYP2C19 *17/*17 alleles showed a 42% reduction in 

observed concentrations.  In our study, however, no difference in clearance between 

CYP2C19 *17/*17 alleles (RM,n=5) and *17/*1, *1/*1 alleles (EM, n=77), and no 

difference between heterozygous *2 allele (IM, n=43) and homozygous *2 allele (PM, 

n=4) were identified. This may be attributed to the small number of patient with *17/*17 

and homozygous *2/*2 alleles. However, this study showed that RM/EM cleared 

escitalopram 33.7% faster than IM/PM subpopulation with mean CL/F (± SD) values of 

29.73 ± 13.13 and 22.23 ± 11.04, respectively (P<0.005).  

 

A significantly lower escitalopram elimination rate (50%) in elderly patients (≥65 

years old) compared to younger healthy volunteers was reported previously (82) 

(www.cipralex.com/images/cipralex/smpc.pdf; www.lexapro.com). This finding is 

confirmed in our study and extended as a continuous relationship across age.  This is 

consistent with reports that CYP 2C19 activity decreases with increasing age (87) and is 

now more specifically quantified in the case of escitalopram. The CL/F significantly 

decreased in a centered power function model as patient age increased. Patients younger 

than 30 years cleared escitalopram 20.7%, and 42.7%faster than patients 30~50, and >50 

years, respectively.  Hence, the dose of escitalopram may need to be adjusted clinically 

based on patient age, especially for those over 50.  This change in clearance and therefore 

exposure may be of particular concern in patients with panic symptoms as these 

individuals may be more sensitive to concentration-related side effects.  A concentration 

related amygdala activation with acute administration of citalopram may be related to 

panic and anxiety symptomatology (88). 

 

Elderly patients are at highest risk of completed suicides in the first month of 

treatment when therapy is not fully tailored and excessive exposure may occur (89).  

Long-term excessive exposure in the elderly may lead to an increased risk of 

hyponatremia (90), GI bleed secondary to platelet-related effects (91, 92), an increased 

risk of falls and fragility fractures (93) as well as bradycardia (94). 
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Clinical trial location was a significant covariate in the initial univariate forward 

analysis (Table 2). There may be several contributors to this systematic difference in 

elimination across site. In our study, correlation between clinical trial location (Pittsburgh 

vs Pisa) and 2C19 genotype was not significant. The frequencies of RM/EM and IM/PM 

were 65.2%, 34.8% for Pittsburgh site and 61.5%, 38.5% for Pisa site, respectively. 

Hence, patients from Pittsburgh are virtually indistinguishable from Pisa patients on the 

basis of genotype frequencies. 

 

However, the weights and BMI values were significantly different (approximately 

14 kg heavier and 3.3 BMI points larger in Pittsburgh) for the two sites.  When genotype, 

age, and weight were incorporated as a covariate affecting clearance, the site factor no 

longer had a significant impact on clearance (the inclusion of clinical site after 

incorporating genotype, age, and weight together only improved the model fit by 3.32 

objective function points (p>0.05)). This is in contrast to earlier analyses where genotype 

information was not available and weight was not a significant covariate on clearance 

(data not shown).  Post-processed individual empirical Bayes estimates on CL/F, which 

includes the effect of genotype, age, and weight differences between locations, shows 

that Pittsburgh patients cleared escitalopram 28% faster than patients from Pisa, Italy. 

The resulting difference in exposure for a given dose may partially explain the difference 

in tolerability for escitalopram between Pittsburgh and Pisa patients.  In this case, at a 

given dose, patients in Pisa were more likely to experience a higher concentration 

exposure. However, the difference was accounted for by differences in CYP2C19 

genotype, age, and body weight.  Therefore, the dosage regimen for a patient may need to 

be adjusted on the basis of genotype predicted phenotype, age and weight.  

 

Sex has not been reported to exert clinically significant effect on PK parameters 

of escitalopram in healthy volunteers (77, 82).  This was confirmed in the population PK 

analysis described herein.  Similarly, race did not have a statistically significant effect on 

the PK parameter estimation.  However, 93% of patients in this study were white, 5% 

were Black/African American and 2% were Asian.  It is possible that the relatively small 

percentage of African Americans and Asians in this study prevented the detection of any 

systematic difference across race.  
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In conclusion, apparent clearance (CL/F) and volume of distribution (V/F) for 

escitalopram in the patient population were 23.5 L/h and 884 L, respectively.  This is 

consistent with preliminary population analyses reported by Areberg (83). CYP 2C19 

genotype, age, and weight strongly influenced the CL/F of escitalopram.  Patients with 

CYP2C19 RM/EM cleared escitalopram significantly faster than those with 2C19 IM/PM 

and older patients had a significantly lower apparent clearance compared with younger 

patients. Patients with higher body weights cleared escitalopram faster compared to those 

with lower body weights.  Incorporating age weight and genotype into the population PK 

model accounted for the majority of the variability in escitalopram exposure in this study. 

Therefore, establishing a patient’s metabolizer genotype and incorporating age, weight 

and BMI into this assessment can better guide therapeutic decision-making with respect 

to the dosing strategy for escitalopram and potentially minimize excessively high 

exposure to this SSRI.  What is of particular note for community practice is that two of 

these variables (age and weight) are routinely collected and require no specialized 

equipment or laboratory tests.  Thus, physicians can readily take these variables into 

account when determining appropriate starting dose and upward titration schedules. 
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3.6 TABLES 
 
Table1:  Patient demographics 
 

Demographics Pittsburgh Patients Pisa Patients All patients 

Number of Subjects 105 67 172 

Number of Observations 320 153 473 

Number of Observations for each subject 3.048 2.2836 2.75 
CYP2C19 genotype    

       Rapid metabolizers (RM, *17/*17) 4 1 5 
       Extensive Metabolizers  
       (EM, *17/*1,*1/*1) 54 23 77 

       Intermediate Metabolizers 
       (IM, *1/*2, *1/*3, *17/*2, *17/*3) 28 15 43 

       Poor Metabolizers 
      (PM, *2/*2, *3/*3, *2/*3) 3 0 3 

       Missing 16 28 44 

Age, Mean Years ± SD (range) 38.84 ± 12.05 (20.4-64.67) 40.58 ± 11.20 (21-65) 39.52 ± 11.73 (20.41 - 65) 

Weight, mean  kg ± SD (range) 81.6 ± 20  ( 31.9 - 139.7) 67.8 ± 15.2 (40-116) 76.25 ± 19.45 ( 31.9-139.7) 

BMI, mean lbs/in2 ± SD (range)  28.20 ± 6.78 (15.55 - 48.26) 24.94 ± 4.52 (16.63-37.41) 26.93 ± 6.20 (15.55 - 48.26) 
Sex, n (%)    
       Male 47 (45) 7 (10) 54 (31) 
       Female 58 (55) 60 (90) 118 (69) 
Race, n (%)    

       White 94 (89) 67 (100) 161 (93) 

       Black/African American 8 (8) 0 (0) 8 (5) 

       Asian 3 (3) 0 (0) 3 (2) 

 
 
 
 
 
 
 
 
 



Table 2: Population pharmacokinetic model development for escitalopram 

 

Covariate  Model -2LL Δ -2LL P value 

1   Base 
model 2729.78     

Univariate Forward Selection         
CYP2C19 Genotype M1 2721.40 -8.38 < 0.05 
Age (Centered Power Model) M2 2724.24 -5.54 < 0.05 
Weight (Centered Power Model) M3 2725.15 -4.64 < 0.05 
BMI (Centered Power Model) M4 2729.30 -0.49 > 0.05 
Sex  M5 2748.44 18.66 > 0.05 
Race M6 2726.60 -3.18 > 0.05 

1~1 (CL) 

Site (Pittsburgh vs. Pisa) M7 2719.78 -10.01 < 0.05 
Weight (Centered Power Model) M8 2729.08 -0.70 > 0.05 
BMI (Centered Power Model) M9 2725.93 -3.85 < 0.05 
Age (exponential model) M10 2729.69 -0.09 > 0.05 

1~2 (V) 

Site (Pittsburgh vs. Pisa) M11 2728.42 -1.36 > 0.05 
Stepwise Backward Elimination         

CL(Genotype+Age+Wgt)+V(BMI) M12 2707.11     
Eliminate Weight from CL M13 2711.23 4.13 < 0.05 
Eliminate Age from CL M14 2712.83 5.72 < 0.05 
Eliminate Genotype from CL M15 2715.02 7.91 < 0.05 

2~1 

Eliminate BMI from V M17 2712.65 5.54 < 0.05 
3~1 CL(Genotype+Age+Wgt+Site)+V(BMI) M18 2703.79 -3.32 > 0.05 
Final model  CL(Genotype+Age+Wgt)+V(BMI) M12 2707.11     
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Table 3: Escitalopram pharmacokinetic parameter from final model 
 

Parameters Final Model Estimates SE% 

CL for 2C19 Rapid and Extensive (L/Hr)  26 7.20% 

CL for 2C19 IM and PM (L/Hr)  19.8 8.50% 

CL for 2C19 missing (L/Hr) 21.5 7.80% 

Age on Clearance CL1=CL0*(Age/40) -0.336 42.00% 

Weight on Clearance CL2=CL1*(Wgt/76) 0.333 54.10% 
V (L)  947 10.20% 

BMI on V V*(BMI/27) 1.11 49.50% 

Ka (hr-1)  0.8 N/A 

ωcl %  48.5% 15.10% 

ωv %  62.0% 40.30% 

ωKa %  78.9% 87.00% 

ωcl,v %  9.4% N/A 

ωcl,Ka %  47.8% N/A 

ωV,Ka %  81.3% N/A 

σ1 %  28.9% 8.80% 
 
 
CL, clearance; V, volume of distribution; SE, standard error; ω, coefficient of variation of inter-
individual variability; σ, coefficient of variation of residual error 
 
 
Table 4: Post-processed individual empirical Bayes estimates on clearance 
 

Population Mean Clearance 
(L/Hr) 

Standard Deviation 
(L/Hr) 

P 
value 

Genotype information   <0.005 
    Rapid and Extensive (n=82) 29.73 13.13  
    IM and PM (n=46) 22.23 11.04  
    Missing (n=44) 23.41 10.65  
Age   <0.005 
    < 30 years old (n=45) 31.03 14.88  
    30~50 years old (n=84) 25.71 11.31  
    50~65 years old (n=43) 21.74 9.89  
Clinical Trial Location   <0.001 
    Pittsburgh patients (n=105) 28.55 13.54  
    Pisa patients (n=67) 22.28 9.32   

 
 



3.7  FIGURES 
 
Figure 1a: Frequency histogram showing the distribution of the sampling time after most 
recent doses (hrs) 
Figure 1b: Frequency histogram of patient age 
Figure 1c: Frequency histogram of patient body weight 
Figure 1d: Frequency histogram of patient BMI 
 

__ 
Figure 1b 
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Figure 2: Diagnostic plots of final PK model. (A) Population predicted vs observed 
concentrations (B) Individual predicted vs observed concentrations (C) Weighted 
residuals versus concentration (D) weighted residuals versus time. 
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Figure 3: Escitalopram clearance by  (A)CYP2C19 genotype, (B) clinical trial location, 
(C) age and (D) 

weight
Figure 3
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4.1 ABSTRACT 

 

The objective of this study was to compare population pharmacokinetic (PPK) models of 

escitalopram developed from dosage times recorded by a medication event monitoring 

system (MEMS) versus the reported times from patients with diagnosed depression. 73 

patients were prescribed doses of 10, 15 or 20 mg of escitalopram daily.  Sparse blood 

samples were collected at weeks 4, 12, 24 and 36 with 185 blood samples obtained from 

the 73 patients.  NONMEM was used to develop a PPK model based on dosing records 

obtained from MEMS prior to each blood sample time.  A separate PPK analysis using 

NONMEM was performed for the same population using the patient reported last dosing 

time and assuming a steady state condition as the model input.  Objective function values 

(OFV) and goodness of fit plots were used as model selection criteria.  The absolute 

mean difference in the last dosing time between MEMS and patient reported times was 

4.48± 10.12 hrs.  A one compartment model with first-order absorption and elimination 

was sufficient for describing the data.  Estimated oral clearance (CL/F) to escitalopram 

was statistically insensitive to reported dosing methods, (MEMS vs. patient reported: 

25.5 (7.0%) vs. 26.9 (6.6%) L/hr).  However, different dosing report methods resulted in 

significantly different estimates on the volume of distribution (V/F) (MEMS vs. Patient 

reported: 1000 (17.3%) vs. 767 (17.5%) L) and the absorption rate constant Ka (MEMS 

vs. Patient reported: 0.74 (45.7%) vs. 0.51 (35.4%) hr-1) for escitalopram.  Furthermore, 

the parameters estimated from the MEMS method were similar to literature reported 

values for V/F (~1100L) and Ka (~ 0.8-0.9 hr-1) arising from traditional PK approaches. 

 
53 

 



54 
 

Keywords: medication event monitoring system (MEMS), population pharmacokinetics, 
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4.2  INTRODUCTION 
 

 
Population pharmacokinetic (PPK) analysis is a robust tool for obtaining valuable 

pharmacokinetic information from large clinical trials, where protocols may be limited to 

sparse drug concentration sampling (43).  However, it is difficult to obtain accurate 

dosing times from these clinical trials, as most dosages are not taken under direct 

observation.  This is especially true for outpatients with chronic disease (95-97).  

Population PK model input comprised of the patient reported last dosing time and a 

steady state assumption is the most commonly used approach in PPK analysis with sparse 

sampling (95-98).  Unfortunately, a significant drawback to this approach is the steady 

state assumption which neglects partial adherence of outpatients to prescribed medication 

regimens, dosing frequency, and the timing of doses (96, 97).  In fact, only an average of 

43-78% adherence has been reported for outpatients with chronic treatment (99).  As 

such, the assumption of a steady state condition during PPK modeling may not be 

appropriate for data sets containing patients with partial adherence.  

 

One method for obtaining accurate outpatient dosing records is the medication 

event monitoring system (MEMS), an electronic system which has been commercially 

available since 1989 (99).  MEMS detects medication bottle opening and closing over 

time and records these events (95). It is one of the most effective indirect methods for 

accurately determining the patient adherence (95, 97, 99, 100).  MEMS generated 

information provides an alternative method for model development, providing detailed 

dosing records and allowing the assumption of a steady state condition to be avoided (95, 

98).  This approach has been successfully employed for PPK analysis with a lopinavir 

study providing for the recreation of the entire concentration versus time profile over the 

entire treatment duration (98).  

 

Escitalopram, the S-enantiomer of antidepressant citalopram, is a commonly 

prescribed selective serotonin reuptake inhibitors (SSRI) (74, 101).  It selectively binds to 

the primary reuptake inhibitory site of the serotonin transporter to produce its 

antidepressant effects (68, 71).  Escitalopram has activity against both depression (66-68, 

72, 101) and anxiety disorders (69, 70, 101).  After oral administration, maximum plasma 
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concentrations of escitalopram are reached in about 4 hours (74, 76, 77) with a half-life 

of 27-32 hours (74, 76, 77).  Therefore, it is commonly given as a once daily dose (76, 

77).  

 

The goal of this study was to compare the PPK parameter estimates using input 

profiles based on dosage history times recorded by the MEMS versus input profiles based 

on the last patient reported dosage time and assuming a steady state condition. Two 

separate PPK models for escitalopram were developed based on these separate sets of 

recorded dosing times with a subsequent comparison of PPK model parameters.  In 

addition, due to difficulties commonly encountered during model development for orally 

administered drug, two separate model parameterizations were evaluated involving either 

a fixed or estimated oral compartment absorption rate (Ka). 

 

4.3 SUBJECTS AND METHODS 

 

4.3.1 Subjects and Sampling 

Escitalopram PK data was obtained from the Pittsburgh patients in a large randomized 

clinical trial (Clinical Trials Gov Identifier: NCT00073697) conducted at two 

international treatment sites, including the University of Pittsburgh and the University of 

Pisa, Italy (http://clinicaltrials.gov/ct/show/NCT00073697).  In summary, 73 patients, 

aged 18-66 years old were recruited.  The patients were in an episode of non-psychotic 

major depression defined by the DSM-IV diagnosis and were not receiving any other 

anti-depressant treatments.  A daily dose of 10, 15, or 20 mg of escitalopram was 

prescribed to patients over 69-441 days.  Blood samples (10 ml) for the determination of 

escitalopram drug concentrations were collected at weeks 4, 12, 24 and 36, and a total of 

185 samples were available for the data analysis.  The actual sample times and dates of 

all blood draws were recorded along with the date and time of the patient reported time 

for the last dose.  Concurrently, the entire dosing history was monitored using the MEMS 

system. 

4.3.2 Determination of escitalopram Concentrations 
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Blood samples (10 ml) were collected by venipuncture using a tourniquet and a 21g 

needle into lavender top Vacutainer tubes containing 15 % EDTA. The blood was placed 

in a refrigerated tabletop centrifuge (5°C) and processed for 10 minutes at 1500g. The 

plasma layer was transferred into 5 ml polypropylene tubes and frozen at -70°C until 

analyzed.     

Escitalopram was measured by reverse-phase high performance liquid 

chromatography (HPLC) using ultraviolet detection at a wavelength of 210 nm.  This 

method was developed by the Geriatric Psychopharmacology Laboratory at the 

University of Pittsburgh.  Plasma is extracted using liquid-liquid extraction (ethyl acetate 

in heptane; 2:8, v/v) and back-extracted into 0.025 M potassium phosphate, pH 2.4.  

Separation is completed using a Nucleosil-100 C18 5 um HPLC column, 120mm x 4.6 

mm i.d. with a flow rate of 1.0 ml/minute.  The assay is linear in the range of 2.5-500 

ng/ml with an inter-assay variability (C.V.) of 2.9-3.93% and accuracy (C.V.) of 1.8-

3.9%. The  limit of quantitation for escitalopram 2.5 ng/ml for this assay.  

 

4.3.3 Data Analysis 

 

Dosing discrepancies between MEMS recorded and patient reported last dosing time 

were calculated as the MEMS recorded time minus the patient reported time as shown in 

the Equation 1:   

Time interval = MEMS recorded last dose time – Patient reported last dose time 

(Equation 1). 

Positive values indicate the MEMS recorded times were later than patient reported times, 

while a negative value reflects that the patient reported times were later. The absolute 

time interval between the two recording methods was also calculated by taking the 

absolute value of Equation 1.  

 

Nonlinear mixed-effects modeling was used to develop PPK models in 

NONMEM® (version 5.1.1).  The PPK models consisted of a PK structure model and a 

statistical model where between subject and within subject variability were described. To 

consider multiple dosing effects on each observed escitalopram concentration, the PPK 



model was developed based on the ten day dosing history recorded by MEMS prior to 

each observed concentration.  The ten day dosing records involved in the analysis were 

longer than five times the literature reported half-life (27-32 hr) of escitalopram, and 

doses given before these dosing records should not affect the measured escitalopram 

concentration (76, 77).  A PPK analysis using NONMEM was also evaluated in the same 

population using the patient reported last dosing time with the assumption of a steady 

state condition.  One and two-compartment linear mammillary PK models with first-order 

absorption and elimination were evaluated during model development.  Model 

parameters were estimated using the first-order conditional estimation (FOCE) with 

interaction method.  Objective function values and goodness of fit plots were used as 

model selection criteria.  Diagnostic plots and post-processing of NONMEM® outputs 

were performed using R® (version 2.6.2) and SPSS® (version 14.0).   

 

4.4 RESULTS 

 

4.4.1 Population reported last dosing time  

 

185 blood samples from 73 patients were available for data analysis with study statistics 

summarized in Table 1.  A discrepancy in the last dosing time between the two reported 

dosing methods was observed. The mean and standard deviation of the absolute time 

intervals in the last dosing time between the two different reported dosing methods was 

4.48± 10.12 hrs.  However, the time intervals (MEMS reported last dosing time minus 

the patient reported) were almost symmetrically distributed with a median value and 

standard deviation of 0.133 + 11.073 hrs.  A histogram plot of time intervals calculated 

from the clinical trial is shown in Figure 1. 

 

4.4.2 Population pharmacokinetics analysis 

 

 The proportion of blood samples collected during selected time intervals based on 

MEMS or patient reported last dosing times are shown in Table 2.  Within the first four 

hours after the most recent dose, a total of 36.76% (68 observations) and 29.19% (54 

observations) of the blood samples were collected based on the MEMS and patients 
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reported dosing times, respectively.  A frequency histogram further illustrates this 

sampling distribution for escitalopram concentration measurements after the most recent 

dose for MEMS (Figure 2a) and patient self reported dosage times (Figure 2b), 

respectively.  

 

Although PPK with sparse sampling are typically modeled with a fixed Ka value, 

initial modeling attempts focused on estimating Ka in addition to the other PK 

parameters. Numerical convergence was achieved when modeling concentration data 

based on either patient reported last dosing time as the model input with a steady state 

condition assumption or MEMS dosing history as the model input.  A one compartment 

model with first order absorption and elimination accurately described the data.  

Goodness of fit plots for models developed from the MEMS records (Figure 3) and from 

patient reported last dosing time (figure 4) demonstrate that the models adequately 

described the data.  The scatter plots of the observed versus predicted population 

concentrations and observed versus predicted individual concentrations were distributed 

symmetrically around the line of unity.  The weighted residuals were also distributed 

symmetrically around zero with certain variance.  Estimates for the full set of population 

PK parameters along with the standard errors from both models are listed in Table 2.  

Estimated oral clearance, volume of distribution, and absorption rate for escitalopram 

were 25.5L/hr (SE: 7.0%), 1000 L (SE: 17.3%), and 0.74 hr-1(SE: 45.7%), respectively, 

for the model developed from MEMS records, and 26.9 L/hr (SE: 6.6%) , 767 L (SE: 

17.5%) , and 0.511 hr-1 (SE: 35.4%) for the model developed from the patient reported 

last dose times.  Population clearance, volume of distribution and absorption differed by 

5%, 23.3%, and 31% using the MEMS dosage inputs versus the patient reported last 

dosing time and a steady state assumption.  Parameters estimated from MEMS methods 

were similar to the literature reported volume of distribution (~1100 L) and absorption 

rate (~0.8 - 0.9 hr-1) following oral administration (76, 77). 

 

Post-processing results for individual parameter estimates are listed in Table 3.  A 

paired t-test showed that there was no significant difference in the estimated oral 

clearance of escitalopram between models in these 73 patients for the empirical Bayes 

estimates of the clearance parameter.  However, different reported dosing methods 
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resulted in significantly different model estimates for the volume of distribution 

(P<0.001) and absorption rate (P<0.001) for escitalopram at the level of the individual 

empirical Bayes estimates. 

 

The population PK model was also assessed by fixing Ka to the literature reported 

value of 0.8 hr-1 (76, 77).  Goodness of fit plots for models developed from the MEMS 

records and patient reported dose time are presented in Figure 5 and Figure 6, 

respectively.  PPK parameters estimates along with their standard errors are listed in 

Table 4.  Post-processing of individual parameter estimates from NONMEM output is 

shown in the Table 5.  As before, there was no significant difference in estimated 

clearance using different dosing reporting methods during model development.  

However, estimates on volume of distribution were still sensitive (P<0.001) to the 

reported dosing methods even with the Ka value fixed to the literature value in both 

models.    

 

4.5 DISCUSSION 

 

In this study, we successfully performed a PPK analysis for orally administered 

escitalopram using two different reported dosing methods as the input to the model.  The 

inputs considered were either the MEMS generated dosing histories or the patient 

reported last dosing time.  This approach is analogous to that described by Vrijens et al. 

during a PPK analysis of the drug lopinavir (98).  

 

It is well known that accurately estimating the Ka value is a challenge in PPK 

analysis, especially when data sampling is sparse(62, 80).  In this study, however, 

36.76% (68 observations) and 29.19% (54 observations) of the blood samples were 

collected before the maximal concentration following the most recent MEMS recorded 

and patient reported dose, respectively.  Hence, initial modeling attempts included the 

estimation of a Ka value in addition to the other PK parameters.  Numerical convergence 

was achieved for both models.  There were 5%, 23.3%, and 31% differences in the 

estimated population clearance, volume of distribution, and absorption rate, respectively, 

between the two models.  Also, the estimated oral clearance of escitalopram was 
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statistically insensitive to model inputs based on either the MEMS (25.5 L/hr) or patient 

reported dosing times (26.9 L/hr).  Different reported dosing methods resulted in 

significantly different estimates for the volume of distribution and absorption rate 

constant for escitalopram both at the population level (MEMS vs. patient reported: V/F 

1000 L vs. 767 L; Ka 0.74 vs. 0.51 hr-1) and at post-processed individual level (MEMS 

vs. patient reported: V/F 1005.31 L vs. 764.98 L; Ka 0.76 vs. 0.51 hr-1).  Furthermore, 

estimates from the MEMS model were closer to the literature reported V/F (~1100L) and 

Ka (~0.8-0.9 hr-1)  (76, 77).  Knowing the dosing history from the MEMS, Ka was more 

accurately predicted even when concentration data were sparse, and the estimated Ka 

population value from MEMS model was almost equivalent to that reported in the 

literature (76, 77).  Hence, it is likely that inaccurate patient reported dosing times in 

addition to sparse sampling are the primary difficulties for obtaining accurate Ka values 

from study data.  

 

A study conducted by Vrijens et al. (98) attempted to model liponavir 

concentration data using these two reported dosing report methods.  These results showed 

that model convergence was not achieved using patient reported last dosing time 

assuming steady state conditions for the model input.  In contrast, numerical convergence 

was achieved when the MEMS dosing history was used as the model input.  In our study, 

numerical convergence was achieved for both reported dosing history and model 

structures, and clearance could be reasonably estimated in all cases This was likely due to 

the longer half life of the escitalopram (27 ~ 32 hours) compared to shorter half life of 

lopinavir (5 ~ 6 hours).(102)   As a few hour deviation in recorded dosing time may have 

a relatively small effect on clearance estimation for a drug with a longer half-life.  PPK 

parameters were correctly predicted previously for a longer half-life drug, citalopram 

(t1/2: 30hr), using patient reported last dosing time with a steady state assumption 

modeling approach (80).  In contrast, both a higher bias and imprecision in predicted 

clearance were reported when utilizing a similar analysis for the shorter half-life drug, 

risperidone (t1/2: 6-7 hrs) (62).  In this study, the absolute time interval in the reported last 

dosing time between the two patient dosing histories was 4.48 hrs, which only accounted 

for 13~16% of half-life of the escitalopram.   
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The investigators anticipated that the findings would be consistent with Vrijens et 

al (98) with respect to convergence problems and biased PK parameter estimates. It was 

surprising that the results contradicted their findings with adequate convergence of the 

model and little bias in the clearance estimation at both the individual and population 

level for escitalopram given the patient reported time of last dose.  This may be 

accounted for in differences in study design, patient population or the long half-life of 

escitalopram.  In particular, it may be that the patients, knowing they were being 

monitored, provided more accurate times of last dose information than otherwise would 

have been collected (103). 

 

In this study, the use of MEMS dosage histories versus the patient reported time 

of last dose, helped with the determination of absorption (Ka) and distribution (Vd), but 

clearance determination was virtually unaffected.  Despite this, patterns of drug exposure 

may be critical in evaluating response, non-response, and toxicity.  These patterns cannot 

be generated or recreated using the time of last dose information.  Exposures calculated 

in this manner may not only have incorrect PK parameter values but only provide an 

average exposure over a period of time.  This pattern of exposure and response issue is 

not addressed in this study. The necessity of MEMS monitoring may be determined by 

the drug half-life and the nature of the concentration effect relationship and the sensitivity 

of this relationship to patterns of exposure that are not captured in the PPK analysis using 

reported time of last dose. 
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4.6 TABLES 

Table 1. Patient democratic information 
 

Demographics  Mean + SD 
Number of Subjects 73 

Number of Observations 185 
Age (years) 39.47 + 11.35 
Weight (lb) 81.83 + 43.81 

Male: 32 Sex Female: 41 
Caucasian: 67 

African american: 2 
Asian: 1 

American Indian & African 
American: 1 

American Indian & Caucasian: 1 

Race 

Unknown :1  
 
Table 2. Sampling time distribution following the last dosing time based on either MEMS 
records or patient reported times. 
 

Cumulative percent samplings during the elapsed time Sampling time after the most 
recent dose (hr) MEMS  Patient reported 

4 36.76% 29.19% 
8 48.65% 43.24% 
12 60.00% 57.84% 
16 74.59% 72.43% 
20 84.86% 85.95% 
28 91.89% 94.05% 
100 100.00% 100.00% 

 
Table 3. PPK model parameters without fixing Ka using either MEMS or patient reported 
dosing records as the input. 

Parameters MEMS records Patient reported dosing time 

OFV 1029.148 1031.989 

CL (L/hr) (SE %) 25.5 (7.0%) 26.9 (6.6%) 
V (L) (SE %) 1000 (17.3%) 767 (17.5%) 

Ka (hr-1) (SE %) 0.74 (45.7%) 0.511 (35.4%) 
ωcl % (SE %) 53.5% (14.7%) 48.3% (26.7%) 
ωv % (SE %) 64.3% (43.7%) 18.7% (517.1%) 
ωKa % (SE %) 88.9% (106.8%) 62.6% (225.8%) 
σ1 % (SE %) 15.2% (105.2%) 23.7% (19.9%) 
σ2 (SE %) 3.61 (108.5%) 2.92 (72.0%) 
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Table 4. Individual empirical Bayes estimates on PK parameters without fixing Ka value 
using either MEMS or patient reported dosing records as the input. 
 

 MEMS records Patients reported dosing time Estimated 
Parameters N mean + SD mean + SD P value 

CL (L/hr) 73  27.84 + 12.42  29.18 + 12.38 0.080  
V (L) 73  1005.31 + 348.53 764.98 + 24.12 < 0.001 

Ka (hr-1) 73  0.76 + 0.23 0.51 + 0.08 < 0.001 
 
Table 5. PPK model parameters with a fixed Ka using either MEMS or patient reported 
dosing records as the input. 

Parameters MEMS records Patient reported dosing time 

OFV 1029.190 1033.881 
CL (L/hr) (SE %) 25.5 (7.1%) 27 (6.4%) 

V (L) (SE %) 1020 (15.5%) 855 (15.3%) 

Ka (hr-1) (SE %) 0.8 (0.0%) 0.8 (0.0%) 

ωcl % (SE %) 53.6% (14.7%) 47.4% (26.2%) 

ωv % (SE %) 64.5% (44.7%) 0% (fixed) 

ωKa % (SE %) 93.1% (64.8%) 97.5 % (153.7%) 
σ1 % (SE %) 15.5% (115.8%) 23.9% (19.7%) 
σ2 (SE %) 3.55 (118.3%) 3.02 (65.7%) 

 
Table 6. Individual empirical Bayes estimates on PK parameters with a fixed Ka value 
using either MEMS or patient reported dosing records as the input. 
 

 MEMS records Patients reported dosing time Estimated 
Parameters N Mean + SD Mean + SD P value 

CL (L/hr) 73  27.88 + 12.42  29.15 + 12.00 0.095  
V (L) 73  1017.45 + 353.63 855.28 + 0.00 < 0.0001 

Ka (hr-1) 73  0.81 + 0.26 0.78 + 0.20 0.227 
 
 
 



4.7 FIGURES  
 
 
Figure 1:   Time interval (hrs) between the last dose time recorded by MEMS and the 
patients (median + SD: 0.133 + 11.073hrs).  
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Figure 2: Frequency histogram showing the sampling distribution for escitalopram 
sampling measurements based on a) MEMS records and b) patient reported dosing times. 
The x-axis is broken into 4-hour bins, and the y-axis is the number of blood samplings 
during that time range. 
Figure 2a.  

 
Figure 2b.  
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Figure 3. Goodness of fit plots for the PPK model using MEMS recorded dosing time as 
the model input and estimating Ka in addition to the other PK parameters 

 
 
Figure 4. Goodness of fit plots for the PPK model using the patient reported last dosing 
time as the model input and estimating Ka in addition to the other PK parameters 
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Figure 5. Goodness of fit plots for the  PPK model using MEMS recorded  dosing time as 
the model input and Ka fixed to 0.8 hr-1 

 
Figure 6. Goodness of fit plots for the PPK model using the patient reported last dosing 

time as the model input and Ka fixed to 0.8 hr-

1

68 
 



69 
 

5.0  FIFTH CHAPTER 
 

 
Use of Monte Carlo Simulation Approaches to Evaluate the Clinical Implications 

of Discordance between Measure and True Blood Pressure 

 
Authors: Yuyan Jin1,2, Robert Bies3, Norman Stockbridge1, Jogarao Gobburu1, Marc Gastonguay4, 

Rajnikanth Madabushi1  
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5.1 ABSTRACT 

 

Treatment decisions for hypertension using sphygmomanometer in current clinical 

practice do not account for the timing of BP measurement. The study aimed to evaluate 

the clinical implications of discordance between measure and true BP in current clinic 

practice and to propose a BP calibration system to decrease the impact of timing of BP 

measurement on the discordance. A clinical trial simulation case study was performed 

using in-silico Monte Carlo Simulation. The time-course of BP without and with 

treatment effect of antihypertensive were simulated from baseline BP model as well as 

pharmacokinetics and pharmacodynamics models. Virtual subjects’ characteristics were 

from FDA internal database. Baseline BP model was qualified by virtual predictive check 

and global sensitivity analysis. Our results showed that the discordance between measure 

and true treatment effect of antihypertensive was over 5 and 10 mm Hg in 57.4% and 

26.3% of patients in a typical clinic visit, respectively. Cuff BP measurement time need 

to be adjusted based on baseline clinic visit time as well as dosing regimen specific 

PK/PD considerations to better identify true treatment effect. BP could be calibrated 

based on patients’ baseline and after treatment visit times to decrease the discordance in 

case timing of measurement is adjustable. Keywords: Hypertension, 

Sphygmomanometer, Circadian Rhythm, Modeling and Simulation, Blood Pressure 

Calibration 
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5.2 INTRODUCTION 

 
Despite the fact that over 70 antihypertensive agents from various classes are available in 

the market and millions of Americans are treated for hypertension, the cardiovascular 

morbidity and mortality associated with hypertension remains a leading cause of overall 

morbidity and mortality (104, 105). The National Health and Nutrition Examination 

Survey (NHANES) found that only 36.8% and 50.1% percent of hypertensive patients 

have their blood pressure (BP) well-controlled (below 140/90 mmHg) in 2003-2004 and 

2007-2008, respectively, in the United States (104, 105). Multiple epidemiologic studies 

have demonstrated that this lack of response has significant public health ramifications 

with respect to cardiovascular related morbidity and mortality (106). Understanding the 

reasons for poor BP control is an important public health issue.   

 

The seventh report of the Joint National Committee on Prevention, Detection, 

Evaluation, and Treatment of High Blood Pressure (JNC 7) has suggested that improper 

BP measurement, non-adherence to antihypertensive dosing regimen, inadequate doses, 

and inappropriate combination therapy may contribute to the lack of response (106, 107).  
 

BP measured using sphygmomanometer (cuff BP) during routine clinic visits are 

most commonly used for identifying hypertension and making treatment decision in 

current clinic practice. It is widely known that cuff BP measurement is associated with 

significant noise (108-118). The cuff BP measurement is affected by white-coat effect 

and alert reaction. This measurement approach is also potentially affected by many 

factors including type of measurement device, cuff size, patient position, and training 

level of personnel (108-118). This problem has been studied in detail and various 

guidelines have been developed to address the issue (119, 120). In the current manuscript 

we are not addressing this issue, however, we are cognizant of the contribution of this 

error towards BP measurement and account for this in our research. 

 

One of the important aspects of improper BP measurement that is not widely 

studied is the timing of the BP measurement. It is widely known that inherent circadian 

rhythm of BP exists on a daily basis (121, 122). Morning BP surge and BP declines from 
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day to night are also well known due to availability on the observations of 24-h 

ambulatory BP monitoring (ABPM) (123). Hence, BP is a time specific measurement.  In 

addition, it has been shown (121) that time course of BP reduction upon ingestion of 

certain antihypertensive agents changes with actual dosing history of patients.  Hence, 

actual dosing time may be an additional confounder to clock-time dependent BP 

readings.  

 

Treatment decisions are made based on cuff BP measurement during routine 

clinic visits in current clinical practice.  This does not account for the confounding factors 

such as measurement time with respect to the circadian rhythm of BP, as well as dose 

administration time, and cuff measurement errors.  Thus, the widespread use of cuff BP 

measurement to detect elevated BP and manage ongoing hypertension without controlling 

for these confounding factors may contribute to inadequate clinical management.  

 

In this paper we utilize in-silico Monte Carlo Simulation methods to characterize 

the impact of the above mentioned factors. Monto Carlo Simulation has been widely used 

to predict potential trial results by incorporating trial design and numerical models, which 

may include drug behavior model, human execution behavior model, and disease 

progress model etc.(13). In the simulation, we define the routine clinic visits without 

controlling for the above mentioned confounding factors as casual clinic visits. Both true 

BP and cuff measurements at either casual or specified clinic visits were simulated in the 

study. The first aim is to evaluate the discordance in BP between the cuff measurements 

at casual clinic visits in the current clinical practice and the true underlying BP. The 

second aim is to identify the impact of the cuff BP measurement time on the discordance.  

For both the aims, we explored the impact of cuff measurement errors.  

 
5.3 METHODS 

 

5.3.1 Virtual Subjects characteristics and sample size  

 

The mean of 24-h systolic BP of virtual subjects were necessary to anchor the simulation 

of 24-h BP profile of virtual subjects for the evaluation of the study aims. The Virtual 



subjects’ characteristics were obtained from the internal database of Food and Drug 

Administration (FDA). The mean of 24-h systolic BP of virtual subjects were adapted 

from ABPM measurements of 3840 patients with essential hypertension by pooling 

information of several New Drug Applications (Figure 1).  

 

5.3.2 Simulation of baseline BP profile 

 

The population baseline BP model developed by Hempel and colleagues (121) was 

qualified and adopted for the simulation of long term baseline BP. A brief description of 

the model is presented here: 

 

A 24-h ABPM data on multiple occasions were available to support the modeling 

of circadian changes in hypertensive patients in the Hempel’s paper (121). The inter-

individual variability was estimated for the rhythm-adjusted 24-h mean, amplitude of the 

cosine terms, and clock time.  The inter-occasion variability was estimated for the 

rhythm-adjusted 24-h mean and clock time. Baseline BP profiles were described using a 

function with two cosine terms: 
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where θ denotes the fixed-effect parameters and κ and η denote the random-effect 

parameters. In equation 1, Bsl(t) is BP as a function of time, t is clock time, θ1, is rhythm-

adjusted 24-h mean, η1 is inter-individual variability on baseline, κ1d is inter-occasion 

variability in rhythm-adjusted 24-h mean, d indicates different study days, θ2i is 

amplitude of the cosine terms, η2 is inter-individual variability in the amplitudes, θ2i+1 is 

parameter for phase shift of the cosine terms, η3 is inter-individual variability on clock 

time, and κ2d is inter-occasion variability on clock time. 

 

The baseline model was qualified by visual predictive check using time stamped 

two days ABPM data from 225 subjects derived from hospital before anchoring our 

simulation in the study.  In addition, global sensitivity analysis was performed to evaluate 

impact of uncertainty distribution in the parameter estimates of the baseline model on the 

results of our analysis. Uncertainty distribution for the variance-covariance matrix of the 
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parameter estimate in baseline BP model were assumed to be multivariate normal 

distributions based on standard errors (SE%) associated with the estimates of the 

population parameters. Around 1000 sets of population parameters were simulated from 

these distributions. These 1000 sets of population parameters were used to for 1000 

replicate clinical trials, therefore 1000 sets of analysis endpoints were obtained. Finally, 

analysis endpoints from these 1000 clinical trials were plotted versus the uncertainty in 

each of the model parameters over 95%CI range to evaluate the impact of uncertainty of 

parameter estimates on our results. Uncertainly in cuff measurement error was also 

incorporated in global sensitivity analysis. The Standard deviation of BP measurement 

error associated with devices and personnel was assumed to be a uniform distribution 

between 3 and 7 mm Hg (25, 26).  

 

The estimated values of the baseline BP model parameters were adapted from the 

original paper except of θ1, η1 two parameters. As we mentioned above (in Virtual 

Subjects characteristics and sample size section), the rhythm adjusted 24-h mean BP of 

virtual subjects was directly sampled from internal database of FDA to anchor the 

simulations to represent distribution of rhythm adjusted 24-h mean in the US population.  

A continuous one month (720 h) baseline BP (Figure 2a) was simulated using 

Monte Carlo Simulation implemented in R® (version 2.9.1). 

 

5.3.3 Simulation of BP profile with one month antihypertensive treatment 

 

The time-course of treatment effect described for moxonidine by Hemple and his colleges 

was adapted for the Monte Carlo Simulation of antihypertensive treatment effect (121). A 

brief description of the pharmacokinetic/pharmacodynamic (PK/PD) model of 

moxonidine is described below: 

 

The baseline BP model described in the above section was extended to 

incorporate the effect of moxonidine (121). The drug effect on BP was described as a 

function of moxonidine concentrations in the effect compartment to account for the delay 

in the drug effect. Inter-individual variability for the maximum effect and the 

concentrations required for 50% of the maximum effect were estimated.   



74 
 

 

A moxonidine dose of 0.3 mg once daily (8:00 AM) was used as initial dose 

regimen for all virtual subjects. Perfect adherence was assumed in the simulation. True 

BP profiles with moxonidine treatment were simulated by superimposing the moxonidine 

response to the baseline BP profiles generated in the above section (Figure 2).  

 

5.3.4 Simulation strategy for cuff BP measurements  

 

Casual clinic visit times of virtual subjects for cuff measurements after one month 

moxonidine treatment were assumed to follow a uniform distribution during the office 

working hours (8:00 AM~6:00 PM). For every virtual subject, two casual clinic visit 

times to assess cuff measurement were simulated on day 30 of moxonidine treatment. 

True point BP values at each of the corresponding clinic visit times were captured from 

the simulated long term true BP profile. A placebo effect was randomly generated for the 

virtual subjects with a mean reduction in BP of 4 mm Hg and a standard deviation of 2 

mm Hg (124). Cuff BP measurement error was assumed to be normally distributed with a 

mean of zero and standard deviation of 5 mm Hg  based on literature survey (108, 110, 

113, 116, 117). The observed cuff BP measurement at each casual clinic visit was 

generated by combining the true point BP and randomly generated cuff BP measurement 

errors (Figure 3).  

 

In addition to casual clinic visits, an office hours (8:00 AM ~ 6:00 PM) 

simulation for cuff measurements under the same dosing regimen for all virtual subjects 

was performed to explore an optimal clock time for the cuff measurement with respect to 

an 8:00 AM dosing time. Cuff measurements at these visits were simulated in accordance 

to the method described above. 

 

5.3.5 Evaluation of the discordance between measured BP and its true value  

 

True BP decreases (ΔBP) and cuff measured ΔBP at clinic visit times from baseline in 

virtual patients after one month of moxonidine treatment were compared. True BPs of 

each virtual subject at both baseline and after treatment were defined as the mean values 
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of BP profiles during office hours (8:00 AM ~ 6:00 PM) before and after treatment, 

respectively. True ΔBPs were defined as the difference between the true mean BP after 

one month treatment and initial baseline for each subject during the same office hours 

(8:00 AM ~ 6:00 PM).  

 

The cuff measured ΔBP at casual clinic visit time was calculated by subtracting 

the observed cuff BP at casual clinic visit time from that in the initial baseline for each 

virtual patient. The ability of the cuff measures to reflect the true ΔBP from baseline were 

evaluated at both the population and individual level. Population means of cuff measured 

ΔBP at casual clinic visit time among 3840 virtual subjects were compared to the true 

ΔBP to evaluate the accuracy of cuff BP measures in identifying drug response at 

population level. Paired comparison between cuff measured ΔBP at casual clinic visit 

time and true ΔBP was also performed within the same individual. The percentage of 

subjects who had a difference greater than 5 and 10 mm Hg were calculated.  

 

Optimal clinic visit times for cuff BP measurements were also identified by 

comparing cuff measured ΔBP at specified visit times (8:00 AM ~ 6:00 PM) to the true 

ΔBP as described above.  

 

5.3.6 BP calibration with respect to clinic visit times at both baseline and after 

treatment 

 

Whether the BP could be calibrated with respect to clinic visit times before and after 

treatment if patients were not able to visit clinic at optimized clinic visit time was 

evaluated. The population mean BP profile at baseline and with moxonidine treatment 

during office hours (8:00 AM ~ 6:00 PM) was calculated. The population mean of the 

calculated BP decreases from baseline at various clinic visit times after moxonidine 

treatment were generated.  

 

A similar analysis was performed for other anti-hypertensives (i.e. drugs which 

have delayed effect or exhibit concentrations at steady state much higher than their EC50) 

that do not change the BP circadian rhythm.  
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5.3.7 Analysis platform 

 

NONMEM® (Version VI, University of California at San Francisco, CA) was used to 

simulate moxonidine concentrations in the plasma and effect compartments for virtual 

subjects. Simulation of the BP profiles, graphics and post-processing of NONMEM® 

outputs, visual predictive evaluation, and global sensitivity analysis were performed in 

R® (version 2.9.1). 1000 replicates of the monte carlo simulation was performed to 

generate prediction intervals (PI) of the simulation endpoints accounting for the 

uncertainty in parameter estimates from baseline BP profile model.  

 
5.4 RESULTS 

 

A demographic of the virtual subjects and the distribution of their systolic BP were 

shown in Table 1 and Figure 1 respectively. The mean systolic BP was assumed to 

represent the baseline of rhythm adjusted 24-h mean for virtual subjects. The mean 

systolic BP at baseline in this sub-population was 144.3 mm. 

 

Visual predictive check performed in the study using actual ABPM data from 225 

subjects showed that baseline BP model normalized to that from Hempel and his 

colleagues (121) were able to reasonably describe circadian rhythm of BP profile over 

clock times. (Refer to appendix for additional information).  

 

A 30 day 24-h time course of systolic BP accounting for circadian patterns, inter-

occasion and inter-individual variability were simulated for 3840 virtual subjects using 

the baseline model and the moxonidine PK/PD model. The time course for population 

mean (with 95% PI) of the baseline and antihypertensive treatment effect are shown in 

Figure 2.  In the simulations, 0.3 mg moxonidine once daily dosing regimen administered 

at 8:00 AM was followed.  It can be seen, the BP decreased significantly from baseline 

after drug ingestion, and gradually returned to baseline before the next dose was taken.   
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The true mean treatment effect (± SD) in the population with moxonidine after 30 

days treatment for this population was 11.8 ± 10.9 mm Hg (Table 2). The mean treatment 

effect (± SD) as assessed by cuff measures at randomly selected clinic visit times (8:00 

AM to 6:00 PM) were 11.72 ± 12.4 without cuff measurement error and 11.60 ± 14.3 

with cuff measurement error (error ~ N(0,5 mm Hg)) respectively in the population as 

shown in Table 2.   

 

Paired comparison of cuff measured ΔBP to true values within the same 

individual indicated that the difference between true ΔBP and measured ΔBP was over 5 

and 10 mm Hg in 57.4% and 26.3% of patients with the cuff measurement error and in 

28.8% and 9.2% of patients without cuff measurement error (circadian rhythm only), 

respectively (table2).  

 

In addition, BP measured at two different clinic visit times on the same day 

(Random visit 1 VS Random visit 2) was not consistent within the same individual. 

Approximately 26.8% (95% PI: 23.4%~31.9%) and 57.1% (95% PI: 54.5%~60.8%) of 

the patients deviated for the ±10 mm Hg and ±5 mm Hg categories respectively (not 

shown in table).  

 

The same baseline and after treatment visit were specified to the same clock time 

for virtual subjects during office hours (from 8:00 AM to 6:00 PM).  The discordance 

between the true ΔBP and the cuff measured ΔBP at the specified clinic visit times at 

both population and individual levels is shown in table 3. Population mean in cuff 

measured ΔBP from baseline systematically over- or under-estimated the true ΔBP 

depending on the clock time of cuff BP measurement.  

 

When the true treatment effect was 11.8 ± 10.9 mm Hg, the effect with cuff BP 

measurements ranged from 6.1 ± 13.9 to 13.2 ± 13.2 mm Hg. Cuff BP measured at 10:00 

AM or 4:00 PM most correctly evaluated mean response of moxonidine at the population 

level with 8AM once daily dosing regimen.  
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The ability of the cuff measured ΔBP at specified clinic visit time (8:00 AM to 

6:00 PM) to reflect the true ΔBP at the individual level varied with the time of cuff BP 

measurement as well (Table 3). In general, cuff measured ΔBP deviated from the true 

value significantly within the same individual. Cuff measurement at certain clock time 

did perform better than other times. Specifically, morning time before 9:00 AM was 

identified to be the worst time frame to evaluate actual ΔBP at the level of an individual 

patient for monxonidine with 8AM once daily dose of 0.3 mg. However, significant bias 

from actual ΔBP was still observed for BP measured during the other time frame, which 

was more than 10 mm Hg in 18% of patients and 5 mm Hg in 51% of patients.  

The potential for BP calibration based on patients’ clinic visit times at both 

baseline and with 0.3 mg 8:00 AM once daily dose of moxonidine treatment are shown in 

Figures 5a and 5b. The population mean of systolic BP at each specified clock time visit 

for both baseline and after 0.3 mg moxonidine treatment are summarized in Figure 5a. 

Figure 5b illustrates BP calibration at four representative baseline measurement times 

with a fixed dosing time of 8:00 AM. Given an 8:00 AM baseline BP measurement, 

12:00 PM after treatment visit may best measure true ∆BP (11.8 mm Hg) from baseline. 

If 9:00 AM is the after treatment visit time, a measured cuff BP at 9:00 AM could be 

calibrated to 4:00 PM measurement by adding 3 mm Hg. Antihypertensives that exhibit 

concentrations at steady state that are much higher than their and have a smaller effect on 

the circadian rhythm of the BP profile, the BP measurements at various baseline and after 

treatment visit times can be calibrated as shown in Figure 6. 

 

Global sensitivity analysis showed that our analysis endpoints were robust across 

the uncertainty in all parameters reported in Hempel’s paper except of amplitude 

parameter for first cosine term and the random effect parameter for the inter-individual 

variability on clock time (h). For example, percent of patients whose measured BP 

deviated from true values (ie: for the ±10 mm Hg categories: 13.7% ~ 8% without 

measurement error and 30% ~ 24% with measurement error) were negatively correlated 

to amplitude parameter for the first cosine term (95%CI: -0.087 ~ -0.048). The inter-

individual variability on clock time (variance 95%CI: 3.59~28.47 h) were positively 

correlated to percent of patients whose measured BP deviated from true values (ie: for the 
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±10 mm Hg categories: 7% ~15% without measurement error and 24.5% ~ 30% with 

measurement error). Hence improved estimates on these two population parameters may 

improve precision of the analysis endpoint. Global sensitivity analysis also showed that 

percent of patients whose measured BP deviated from true values (for the ±10 mm Hg 

categories: 15.5% ~ 38.3% with measurement error) is highly associated with the 

standard deviation of BP measurement error (3 ~ 7 mm Hg) (refer to appendix for 

additional information). 

 

5.5 DISCUSSION 

 

The simulation results indicate that cuff measured ΔBP systematically over or under-

estimates the actual ΔBP upon administration of moxonidine 0.3 mg once daily for one 

month in virtual patients with hypertension.  This deviation varies depending on the time 

of day when the BP is measured relative to the dosage administration time. The deviation 

of cuff measured ΔBP from true ΔBP has been demonstrated in three ways. First, with 

casual clinic visit times, the difference between true ΔBP and measured ΔBP was over 5 

and 10 mm Hg in 56.9% and 26.3% of patients, respectively, using a paired comparison 

within the same individual. Second, measurement of BP at specific clinic visit times 

(10:00 AM ~ 4:00 PM) resulted in better estimation of the true ΔBP from baseline. 

However, significant bias from actual ΔBP was still observed for the BP measured ΔBP 

during this time frame.  The deviation was more than 10 mm Hg in 18% of patients and 5 

mm Hg in 50% of patients (table3). Finally, the results indicate that BP could be 

calibrated based on patients’ clinic visit times at both baseline and after treatment. The 

calibration scale varies with respect to PK/PD properties of the antihypertensive.  

A fundamental question in clinical practice is whether cuff measured ΔBP can 

correctly evaluate true ΔBP at the level of an individual patient. The analysis conducted 

in this paper demonstrated that cuff measured ΔBP deviates from the true value 

significantly at the individual level and it is sensitive to the time of cuff BP measurement. 

An optimal time frame for baseline and time after dosage administration exists that 

improves the accuracy of the cuff measured ΔBP. Optimizing the clinic visit time based 
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on dosage administration time and baseline improved the accuracy of the cuff measured 

ΔBP.  

 

In clinical practice, clinic visits during optimal time frame may not be feasible for 

many patients. The analysis suggests a useful BP calibration scale for physicians to 

decrease the effect of clinic visit times by considering internal circadian rhythm of patient 

specific  BP profile before and after treatment.  

 

The BP reduction upon ingestion of an antihypertensive agent depends on the 

PK/PD properties of that agent. The optimal time frame and BP calibration scales for cuff 

SBP measurement in this study may not be applicable to all antihypertensives and may 

vary with PK/PD of the medication and dosing regimen prescribed. Clinical visit time 

selection and BP calibration must account for the dosing times and the PK/PD properties 

of the antihypertensive(s) used.  

Changing to an optimal time frame improved accuracy of cuff measured ΔBP to a 

limited extent.  It did not, however, completely correct the measurement bias. These 

issues may lead to misclassification of the patient’s hypertension, and therefore incorrect 

treatment decision making at the individual patient level. 

 

The population baseline BP model developed by Hempel and colleagues (121) 

was qualified and adopted for the simulation of long term baseline BP in our simulation. 

Several other models were also available in the literature to describe the daily based 

variability of BP. Some models focused on the BP deference between daytime and 

nighttime BP such as the square wave fit model (125), some model focused on the transit 

phase between day time and night-time BP changes such as double logistic model (123, 

126, 127). The limitation of these models is the lack of description of the important 

features regarding BP fluctuations. In addition, between individual variability as well as 

inter-occasion variability within individuals are rarely estimated.  Cosinor models and 

fourier analysis with different number of harmonics etc. (121, 122, 128) focused on 

describing the 24-h BP curve. With more than one cosine term, cosinor and fourier 

models share a similar description to circadian BP changes. The baseline BP profiles 
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were described in this work use a function with two cosine terms. This model quantifies 

the time-course of the baseline BP in hypertensive patients accounting for variability 

between and within patients. The advantage of the model is the estimation of the inter-

individual variability for the rhythm-adjusted 24-h mean, amplitude of the cosine terms, 

and clock time as well as the inter-occasion variability for the rhythm-adjusted 24-h mean 

and clock time. Visual predictive checks performed in the study using actual ABPM data 

from 225 subjects showed that the baseline BP model were able to reasonably describe 

circadian rhythm of BP profile over clock times (refer to appendix for additional 

information).  

 

In this study, the mean BP during office hours (8:00 AM ~ 6:00 PM) was selected 

as the true BP for the virtual patients’ BP.  The time window selected reasonably 

accounts for the time of the BP measurement that drives the treatment decision making in 

current clinic practice. This BP measurement at a given time (during the office-hours) is 

assumed to represent the individual’s average. In addition, cardiovascular risk models 

published were developed based on BP measurement during the day time window.  This 

allows the extension of the simulations to explore potential public health outcomes.   

 

In conclusion, cuff BP measurement time may need to be adjusted based on 

baseline clinic visit time as well as dosing regimen specific PK/PD considerations to 

better identify true ΔBP in each virtual subject in current clinic practice. BP could be 

calibrated based on patients’ baseline and after treatment visit times to better appreciate 

circadian rhythm of BP profile. Changing clinic visit time decreases the measurement 

bias from internal circadian rhythm of BP, hence improves accuracy of cuff measured 

ΔBP to certain extent. It does not, however, completely correct the measurement bias due 

to existence of random cuff measurement error from other recourse such as device, cuff 

size, and training levels of personnel. 
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5.6  TABLES 
 
 
Table 1. Summary of extracted data from FDA internal database 

 N (%) 24-h mean of SBP 
mean (range) 

AGE 
mean (range) 

Male 
 

2121 
(55.2%) 

144.3 
(120.2 ~ 199.7) 

56 
(21~84) 

Female 1719 
(44.8%) 

144.2 
(120.2 ~ 201.1) 

57 
(23~86) 

All 3840 144.3 
(120.2~201.1) 

56 
(21 ~ 86) 

 
 
Table 2. Difference in BP decreases from baseline: True ΔBP VS. Cuff measured ΔBP at 
random clinic visit times  

Population mean ΔBP Percent of subjects with measured ΔBP 
deviating from the true 

Mean ± SD (mm Hg) Deviation =  Measured ΔBP  - True ΔBP  - 

  |Deviation|  >= 10  
mm Hg 

|Deviation|  >= 5  mm 
Hg 

True ΔBP from baseline 11.76 ± 10.9  -  - 
With measurement 

error 11.72 ±  12.4 26.3% 
(22.2%~32.2%) 

56.9% 
(53.5%~61.3%) 

Cuff measured 
ΔBP from baseline 

at random visit 
time 

Without 
measurement error 11.60 ± 14.3 9.2% 

(4.5% ~ 17.6%) 
28.4% 

(18.2%~39.6%) 
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Table 3. Difference in BP decreases from baseline: True ΔBP VS. Cuff measured ΔBP at 
specified clinic visit times  
 

Percent of subjects with measured ΔBP deviating 
from the true  Population mean 

ΔBP  Deviation =  Measured ΔBP  - True ΔBP  - 

Mean ± SD ( mm Hg) |Deviation|  >= 10  mm 
Hg 

|Deviation|  >= 5  mm 
Hg 

True ΔBP from baseline 11.8 ± 10.9     

8:00 AM 6.1 ± 13.9 41.2%  
(38.8%~44.3%) 

67.5% 
(65.9%~69.8%) 

9:00 AM 10.5 ± 13.5 23.2%  
(20.7%~26.7%) 

54.6% 
(52.3%~57.5%) 

10:00 AM 12.2 ± 13.6 19.8%  
(18.0%~22.8%) 

51.8% 
(49.8%~54.4%) 

11:00 AM 12.9 ± 13.2 19.3%  
(17.6%~22.2%) 

51.3% 
(49.3%~54.2%) 

12:00 PM 13.2 ± 13.2 19.0%  
(17.4%~21.7%) 

51.1% 
(49.3%~54.1%) 

1:00 PM 13.0 ± 13.3 18.6%  
(17.2%~22.0%) 

50.7% 
(49.0%~53.3%) 

2:00 PM 12.6 ± 13.3 18.2%  
(16.6%~21.6%) 

50.6% 
(48.5%~52.9%) 

3:00 PM 12.3 ± 13.2 18.4%  
(16.5%~21.4%) 

50.4% 
(48.4%~53.4%) 

4:00 PM 11.9 ± 13.2 18.6%  
(16.8%~22.0%) 

50.8% 
(49.0%~53.9%) 

5:00 PM 11.2 ± 13.3 19.8%  
(17.9%~23.2%) 

51.7% 
(49.9%~54.6%) 

Cuff measured ΔBP 
from baseline at certain 

clock time 

6:00 PM 10.8. ± 13.4 21.9%  
(19.5%~25.6%) 

53.5% 
(51.2%~56.1%) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5.7 FIGURES 
 
Figure 1: Histogram of 24-h mean systolic blood pressure for virtual subjects (n=3840) 
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Figure 2: Simulated 24-h BP profiles for baseline and with treatment of 0.3 mg QD 
moxonidine  
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Black line is the population mean BP at baseline. Black dashed line is its 95% prediction interval. Red line 
is the population mean BP after one month treatment with moxonidine. Red dashed line is its 95% 
prediction interval.  
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Figure 3: Scenario of observed cuff BP measurement generation (0.3 mg 8:00 AM QD 
moxonidine)  
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Black dashed lines are baseline BP before taking moxonidine. Green solid lines represent SBP after 0.3mg 
QD moxonidine. Dashed vertical lines represent two randomly selected clinic visit time between 8:00 AM 
to 5 PM. Open triangle are true SBP at randomly selected clinic visit time. Black solid dots represent 
observed cuff BP measurement at patients’ clinic visit time. 
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Figure 4a: Population mean of true BP at specified clinic visit time for both baseline and 
day 30 of moxonidine treatment.  
Figure 4b: BP calibration at specified clinic visit time for moxonidine.  
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Figure 4b.  
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Figure 5a: Population mean of true BP at specified clinic visit time for both baseline and 
day 30 of treatment for anti-hypertensives which do not change the circadian rhythm of 
BP).  
Figure 5b: BP calibration at specified clinic visit time for anti-hypertensvies which do not 
change the circadian rhythm of BP 
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Figure 5b. 
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2.8  APPENDIX FOR CHAPTER FIVE 
 

Figure 1: Visual predictive check for baseline model with observed ABPM data. 
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Figure 2: Global sensitivity analysis 
  
Figure 2a: Fixed effect parameters vs. Percent of patients with |deviation| > 10 mm Hg   
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Figure 2b: Inter-individual variability vs. Percent of patients with |deviation| > 10 mm Hg   
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Figure 2c: Inter-occasion variability vs. Percent of patients with |deviation| > 10 mm Hg   

40 60 80 100 120

0.
10

0.
20

0.
30

0.
40

Inter-occasion variability in baseline BP (Variance: mm Hg^

%
 s

ub
je

ct
s 

w
ith

 |d
ev

ia
tio

n|
>1

0 
m

m
 H

g

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
10

0.
20

0.
30

0.
40

Inter-occasion variability on clock time (Variance: Hr^2)

%
 s

ub
je

ct
s 

w
ith

 |d
ev

ia
tio

n|
>1

0 
m

m
 H

g

 
Figure 2d: Standard Deviation of BP measurement error vs. Percent of patients with 
|deviation| > 10 mm Hg   

3 4 5 6 7

0.
10

0.
20

0.
30

0.
40

SD of BP measurement error (mm Hg)

%
 s

ub
je

ct
s 

w
ith

 |d
ev

ia
tio

n|
>1

0 
m

m
 H

g

 

89 
 



90 
 

Table 1: Uncertainty distribution in the parameter estimates of the baseline model on 
analysis endpoints.  
 

Population Parameters 95% CI 

|dev| > 10 mm Hg 
(without 

measurement error) 

|dev| > 10 mm Hg 
(with measurement 

error) 
24-h mean BP (mm Hg) 145.5 ~ 157.1 9.5% ~ 11.3% 26% ~ 27.5% 
Amplitude, first cosine term  (-)0.087~ (-) 0.048 8% ~ 13.7% 24% ~ 30% 
amplitude, second cosine term 0.011 ~ 0.046 10% ~ 12.5% 26% ~ 29% 
phase shift, second cosine term (-)9.13 ~ (-)8.50 9.5% ~ 12% 26% ~ 29% 
inter-individual variability in mean 
BP (variance) 0.002~ 0.015 10% ~ 11.5% 26.5% ~ 27.8% 
inter-individual variability on 
amplitude of 1st and 2nd cosine 
term (variance) 0.11 ~ 0.82 9.5% ~ 13% 26% ~ 29.5% 
inter-individual variability on 
clock time (h) (variance: hr^2) 3.59 ~ 28.47 7% ~15% 24.5% ~ 30% 
inter-occasion variability in baseline 
(variance: mm Hg^2) 39.24 ~ 97.91 10.50% 27% 
inter-occasion variability on clock 
time (h) (variance: hr^2) 1.12 ~ 2.64 10.50% 27% 
SD of measurement error (mm Hg) 3 ~ 7    15.5% ~ 38.3% 
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6.0  SIXTH CHAPTER  

 

Quantifying Blood Pressure Misclassification Resulting from Cuff Blood 

Pressure Measurements:  A Clinical Trial Simulation Case Study 
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6.1 INTRODUCTION 

 
Hypertension is a major risk factor for cardiovascular disease (106). The recent National 

Health and Nutrition Examination Survey (NHANES 2007-2008) found that the control 

rate of hypertension in Americans increased to 50% compared to 37% in 2003-2004. 

However, half of adults in the US with hypertension still do not have their blood pressure 

(BP) adequately controlled (104, 105) .  

 

Inappropriate treatment decisions, such as inadequate dosing and inappropriate 

combination therapy, may contribute to the poor BP control rate as suggested in the 

Seventh Report of the Joint National Committee (JNC 7)(107). To address the ongoing 

hypertension crisis in American adults the JNC 7 has updated BP classification thresholds 

and corresponding drug therapies for proper BP management.   

 

BP measurements obtained using a sphygmomanometer are commonly used for 

BP classification, and by association, identifying hypertension and making dosing 

decisions in current clinical practice as suggested in JNC guidelines (107). Compounding 

these dosing decisions is that BP measurements associated with using a 

sphygmomanometer are prone to measurement errors due to the device and intra-subject 

variability (119, 120). Some studies have reported the measurement error induced BP 
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misclassification (110-112). However, one of the important confounding factors not 

considered in these BP misclassification studies is the impact of BP measurement timing 

on BP classification. Daily fluctuations in BP may be difficult to distinguish from 

hypertension when measurements are obtained at different times throughout the day 

(122). In addition, BP reduction upon ingestion of an antihypertensive agent depends on 

the concentration of the antihypertensive agent. The concentration, in turn, depends on 

the patient dosing history.  This relationship between dosing and clinic visit time is not 

accounted for in current clinical practice or the JNC guidelines.  This introduces an 

assumption that cuff BP measurements are estimates of true mean BP (110). Biological 

variability combined with anti-hypertensive drug response notwithstanding the 

contribution of BP changes secondary to the time of day when BP is measured. 

Therefore, the timing of a clinic visit may affect the classification of a measured BP. 

This, in turn, affects the treatment decision undertaken for the patient.  

 

Despite the availability of BP measurement guidelines (119, 120), many studies 

have suggested that these guidelines are not fully translated into clinical practice (113-

116).  BP treatment decisions are often based on a single measurement (115). The 

observers’ ‘rounding’ to 0 or 5 as the last digit for a BP measurement is another source of 

measurement error (113). However, the quantitative implication of these practices on BP 

misclassification (e.g. incorrect treatment decisions) has not been adequately studied.  

 

In our previous study, we evaluated the discordance between sphygmomanometer 

measured BP versus the true mean BP.  This previous study accounted for confounding 

factors such as internal circadian rhythm of BP, antihypertensive treatment effect on the 

BP profile, clinic visit times as well as BP measurement error. The potential for BP 

calibration across different clinic times to capture true treatment effect of anti-

hypertensive(s) using these factors was also explored (129). However, the impact of BP 

measurement discordance on BP misclassification is unknown. If patients’ true BP is near 

a treatment decision making threshold, this may have a greater sensitivity to 

misclassification based on the measurement error.  This sensitivity to misclassification 

may result in a suboptimal treatment decision, such as under-treatment for high risk 

patients or providing unnecessary medicine to false positive hypertensive patients.  
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In this study, we extended the previous analysis to incorporate BP treatment 

misclassification rate. We aimed to evaluate a general BP misclassification rate using a 

casual clinic visit time similar to that in current clinical practice. Second, we evaluated 

the influence of the BP measurement time and dosing time on the BP misclassification 

rate.  This provided the basis for examining whether or not there was an optimal clinic 

visit time accounting for PK/PD characteristics. Finally, we evaluated the influence of 

various levels of BP measurement error on the BP misclassification rate including 

number of measurements per visit and rounding the last digit from a BP measurement.  

 

6.2 METHODS 

 
6.2.1 Virtual Subjects characteristics and sample size  

 

The Virtual subjects’ characteristics were obtained from the internal database of Food 

and Drug Administration (FDA). The mean 24-h systolic BP of each virtual subject was 

required to anchor the simulation of 24-h BP profile of virtual subjects for the evaluation 

of the study aims. The mean of 24-h systolic BP of virtual subjects were adapted from the 

ambulatory blood pressure monitoring (ABPM) measurements of 3840 patients with 

essential hypertension by pooling information from several New Drug Applications.  

 

The analysis results were also evaluated by sampling systolic BP distribution 

from the NHANES III Adult Database 

(http://www.cdc.gov/nchs/tutorials/Nhanes/Downloads/intro_III.htm). Subjects with a 

systolic BP greater than 140 mm Hg were considered hypertensive. The systolic BPs 

from the NHANES database comprised the mean of three point estimates of BP. We 

utilized these BPs assuming they reflected the rhythm adjusted 24-h mean BP of virtual 

subjects to anchor the simulations of continuous BP profile.  

 

6.2.2 Simulation of baseline BP profile and BP profile with one month 

antihypertensive treatment 
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The population baseline BP model developed by Hempel and colleagues was qualified 

and adopted for the simulation of long term baseline BP (121, 129). The detailed 

description of the model was presented in Hempel’s paper and our previous paper (121, 

129). Briefly, the baseline model in Hempel et al. was developed to describe BP circadian 

rhythm using 24-h ABPM data on multiple occasions. Circadian BP was described using 

two cosine terms with inter-individual variability for the rhythm-adjusted 24-h mean, 

amplitude of the cosine terms, and clock time, and inter-occasion variability for the 

rhythm-adjusted 24-h mean and clock time. The estimated values of the baseline BP 

model parameters were adapted from the original paper with the exception of rhythm 

adjusted population mean BP (θ1) and it inter-individual variability (η1). The rhythm 

adjusted 24-h mean BPs of virtual subjects was directly sampled from internal database 

of FDA and the NHANES database to anchor the simulations and provide a 

representative distribution of rhythm adjusted 24-h mean in the US population.  

 

The BP model was previously qualified using observed ambulatory blood 

pressure monitoring (ABPM).(129) A global sensitivity analysis was performed after 

generating our analysis endpoints to quantitatively evaluate the impact of uncertainty in 

parameters distribution estimates from the baseline model on the results of our analysis 

using the methods described previously (25, 26, 34, 129).  

 

Two types of antihypertensive agents were simulated in our study: 1) a type I 

antihypertensive agents that induce a change in the shape of the BP circadian rhythm 

(e.g., Moxonidine, clonidine) and 2) a type II antihypertensive agent that shifts the 

baseline BP circadian rhythm with no changes to the shape (e.g. drugs with delayed effect 

or with an EC50 much lower than drug concentrations at steady state).   

 

A continuous BP profile with treatment effects for these two types of 

antihypertensive agents were simulated as follows:  

 

1) Moxonidine was used as a prototype for the first type of antihypertensive 

agents. The time-course of treatment effect described for moxonidine by Hemple (121) 

was adapted for the Monte Carlo simulation of an antihypertensive treatment effect. One 
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month of continuous true BP profiles with a 0.3 mg QD dose of moxonidine treatment 

were simulated by superimposing the moxonidine response on simulated baseline BP 

profiles as described above. Various dosing times (e.g., 8:00 AM, 12:00 PM, and 8:00 

PM) were also explored to evaluate the effect of dosing time on the analysis results. 

 

2) For agents that do not change circadian rhythm of BP, the BP profile was 

shifted down relative to the baseline BP profile.  The drug response was assumed to 

follow normal distribution ~ N(11.8 mm Hg, 10.9 mm Hg) (a similar treatment effect to 

the 0.3 mg (QD) moxonidine combined with the placebo effect).  

 

The simulated duration of treatment for both antihypertensive treatments was one 

month (720 hr). Perfect adherence was assumed in the both simulations. 

 

6.2.3 Simulation strategy for BP measurements  

 

Casual visit times were defined as the random clinic visit time during office hours and 

assumed to follow a uniform distribution (8:00 AM~6:00 PM). For each virtual subject, 

two casual clinic visit times to assess cuff measurements were simulated on day 30 of 

treatment. The cuff BP measurements were simulated as described previously (129). True 

point BP values at each of the corresponding clinic visit times were captured from the 

simulated BP profile. The cuff BP measurement error was assumed to be normally 

distributed with a mean of zero and standard deviation of 5 mm Hg (113, 124). The 

observed cuff BP measurement at each casual clinic visit was generated by combining the 

true BP value at clinic visit time with randomly generated cuff BP measurement errors. 

 

In addition to casual clinic visits, clinic visit times were also constrained to a 

specific clock time during office hours (8:00 AM ~ 6:00 PM) for all virtual subjects.  

This was done to explore whether there was an optimal clinic visit time for the cuff 

measurement. Cuff measurements at these visits were simulated as described above.  

 

6.2.4 Evaluation of BP misclassification 
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The true BP for each virtual subject was defined as the mean value of the BP profiles 

during office hours (8:00 AM ~ 6:00 PM). Both the true and casual cuff BP 

measurements were categorized into four stages based on the JNC 7 guidelines.  These 

stages were: i) normal (BP<120/80); ii) pre-hypertension (120/80-139/89); iii) stage 1 

hypertension (140/90-159/99); and iv) stage 2 hypertension (≥160/100). A binary 

outcome was assigned based on thief the categorical assignment from the virtual 

observed response was consistent with true JNC hypertension category (i.e., whether 

there was a correct category assignment). The percentage of patients with a misclassified 

JNC hypertension category was calculated for each clinic visit. The percent of patients 

with BP classifications that were inconsistent with two casual clinic visit times on the 

same day was also evaluated. Misclassification rates based on clinic visits at specified 

clock times were evaluated to identify whether there was the optimal clinic visit time. 

The misclassification rate of the ABPM method was also calculated by comparing the 

mean ABPM measurement to the true mean BP with the method described above.  

 

The sensitivity of the analysis results to various dosing times, personal 

preferences for rounding to 0 or 5 as the last digit of measured BP, and taking one 

additional measurement at each casual clinic visit was also evaluated.  

 

6.2.5 Analysis platform 

 

NONMEM® (Version VI, University of California at San Francisco, CA) was used to 

simulate moxonidine concentrations in the plasma and effect compartments for virtual 

subjects. Simulation of the blood pressure profiles, graphics, post-processing of 

NONMEM® outputs, model qualification, and global sensitivity analysis was performed 

in R® (version 2.9.1). The 95% PI for the analysis results was estimated by simulating 

1000 replicates accounting for posterior parameter distribution of the baseline BP model. 

  

 

6.3 RESULTS 
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The mean (range) of the 24-h mean systolic BP for virtual subjects (n=3840) was 144.3 

(120.2–201.1 mm Hg). A histogram of the systolic BP distribution has been shown in the 

previous paper (129). The average age of the virtual subjects was 56 years (21~86 years) 

with 55% of male and 45% of female.  

 

A 30 day, 24-h time course of systolic BP accounting for circadian patterns, inter-

occasion and inter-individual variability were simulated for 3840 virtual subjects using 

the baseline model and the moxonidine PK/PD model. In these simulations, a dosage 

regimen of 0.3 mg moxonidine once daily orally was used with administration times of 

8:00 AM, 12:00 PM, and 8:00 PM.   

 

Approximately, 24% of patients’ BP was misclassified based on their true BPs 

using an 8:00 AM 0.3 mg once daily dosing regimen of moxonidine. The percent of 

misclassification varies with different dosing regimens for anti-hypertensive agents based 

on how the circadian rhythm of the BP profile is affected. The percentage of patients with 

BP misclassifications was 32.0% and 23.5% using 12:00 PM and 8:00 PM dosing times 

respectively.  This is shown in table 1. Anti-hypertensives that did not change the 

circadian rhythm of the BP profile demonstrated a misclassification rate of 22.8%, similar 

to the morning or evening dose of moxonidine (Table 1).  

 

For the simulations, if virtual subjects went to the clinic at two different times 

within the same day, the treatment decisions were not always consistent. As shown at 

Table 2, the percentage of patients with an inconsistent BP classification was 33.5%, 

40.2%, 32.0%, and 30.9%, respectively, for moxonidine with an 8:00 AM, 12:00 PM, 

8:00 PM QD dosing regimen, and type II anti-hypertensives.  

 

That percent of patients with BP misclassification from cuff measure varies with 

different clock times is observed for both types of anti-hypertensive agents (Figure 1). 

The impact of clinic visit time on the BP misclassification depends on the type of agent 

(type I vs type II) as well as the dosing time (moxonidine 8:00 AM vs 12:00 PM vs 8:00 

PM QD dosing).  The medications that changed the shape of the BP profiles within the 

time window (8:00 AM – 6:00 PM) had the greatest effect on misclassification. Cuff 
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measurements at specific clock times performed better than randomly selected times. 

Early morning (8:00 AM – 10:00 AM) or late afternoon (2:00 PM – 6:00 PM) was 

identified as the time intervals most likely to result in BP misclassification.  

Approximately 40% of patients were misclassified to an incorrect BP treatment group 

with a 8:00 AM clinic visit using an 8:00 AM QD dosing regimen or 6:00 PM clinic visit 

using a 12:00 PM QD dosing regimen. The best clinic visit time frame was between 

12:00 PM – 2:00 PM for moxonidine in conjunction with an 8:00 AM or 8:00 PM QD 

dosing regimen for both type I and type II antihypertensive agents. Twenty percent of 

patients, however, were still misclassified to an incorrect BP group. The moxonidine 

12:00 PM QD dosing regimen had highest percentage misclassification.  The best clinic 

visit time for this dosing regimen was 1:00 PM where the percent of patients with BP 

misclassification was around 22% (Figure 1). 

 

The percentage of patients with BP misclassifications decreased to 20.2% if two 

BP measurements were taken per casual clinic visit time (separated by 12 minutes) with 

an 8:00 AM QD dosing of moxonidine (Table 3). One additional BP measurement at a 

casual clinic visit corrected the misclassification in 4% of patients. If the last digits of the 

measured BP was rounded to a 0 or a 5, the misclassification rate of the measured BP was 

increased to 26.1%  for one BP measurement per casual visit and 20.8% for two BP 

measurements per casual visit. The terminal digit rounding with one measurement 

resulted in an increase in BP misclassification of 2 % (24.4% vs. 26.1%). BP 

misclassification increases for both cases, but the increase was not statistically 

significant.  The relationship between percent of patients with BP misclassification using 

one or two measurements with or without rounding error for specified clinic visit times is 

shown in Figure 2.  

 

The entire analysis was repeated using systolic BP distribution obtained from 

NHANES adult data. Mean (range) of the 24-h mean systolic BP for virtual subjects 

(n=3840) at baseline was 155.9 mm Hg (140~238 mm Hg). The results were similar (not 

shown) and not statistically different from that presented above from FDA database.   
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As shown in Figure 3, a global sensitivity analysis found that BP misclassification 

rate (19.5%–38.7%) was linearly correlated to the standard deviation of BP measurement 

error (3–10 mm Hg). Global sensitivity analysis also showed that the BP 

misclassification rates in our analysis were robust across the uncertainty in all parameters 

reported in Hempel’s paper except for the amplitude of the first cosine term and the 

random effects parameter for the inter-individual variability on clock time (h) (refer to 

appendix for additional information). The percentage of patients with BP 

misclassification (26%–23%) were negatively correlated with the amplitude of the first 

cosine term (95%CI: -0.087 – -0.048). The inter-individual variability on clock time 

(variance 95%CI: 3.59–28.47 h) was positively correlated with the percent of patients 

with BP misclassification (23%–26.5%). Therefore, robust estimates of these two 

population parameters are important in understanding the BP misclassification rate.  

 
6.4 DISCUSSION 

 
In this study we extended a prior analysis to BP treatment group misclassification 

accounting for confounding factors such as internal circadian rhythm of BP, 

antihypertensive treatment effect on the BP profile, clinic visit times, and BP 

measurement error.  The simulation results indicate that on average 25% of patients were 

misclassified to an incorrect BP category for a casual clinic visit (random visit time 

within office hours from 8:00 AM to 6:00 PM). The BP misclassification depends on 

PK/PD characteristics (type of anti-hypertensive) as well as dosing time of the type I drug 

(Table 1).  

 

Clinic visit time (i.e. between 8:00 AM to 6:00 PM) was found to impact BP 

misclassification rate, ranging from 20%–40% depending on the time of day of the 

measurement (Figure 1). Previously estimated BP misclassification rates at a casual clinic 

visit time were a mathematical average of the BP misclassifications at each clock time 

from 8:00 AM to 6:00 PM.  
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The BP misclassification rates between 11:00 AM to 3:00 PM were lower than 

that in other time frames for both types of drugs. The BP misclassification can be as high 

as 40% at early morning (8:00 AM – 10:00 AM) or late afternoon (16:00 PM – 18:00 

PM) visits depending on PK/PD characteristics as well as dosing regimen. However, the 

BP misclassification rate remained around 19% even at optimal clinic visit times. This is 

because even after accounting for intrinsic factors (e.g. circadian rhythms) contributing to 

BP measurement error, there is still bias due to cuff measurement error arising from the 

device, cuff size, and training levels of personnel. 

 

Two types of antihypertensive agents were tested in this study: 1) type I: agents 

that change the circadian rhythm and 2) type II: agents that shifts the entire BP profile 

downward. It is worth noting that the dosing time does not change the BP 

misclassification rate for type II anti-hypertensive drugs as administration does not 

change the circadian rhythm of BP. These drugs could have delayed effect or their 

concentrations at steady state are much higher than their own EC50 (typically seen in 

ACEs inhibitors and ARBs.) 

 

In this study, we tested our results in two populations: hypertensive patients from 

NDAs in the internal database of FDA and NHANES Adult Database (BPs >=140 mm 

Hg).  Baseline BP distributions from the two population likely represent the US adult 

population to the best of our knowledge.  Our simulation showed that our analysis results 

from FDA data base could be extended to the NHANES population.   

 

BP misclassification increases by 5% with only one BP measurement is obtained 

compared to two measurements per clinic visit. The BP misclassification rate with two 

measurements may be slightly under-estimated. In our study, we considered the 

measurement error from all sources as a random error. However, Cuff measurement error 

includes the device error from lack of calibration, impropriate cuff size, and observer’s 

error from uncertainty in interpreting the korotkoff sounds, (108, 113, 130) position of 

the patients etc. This device error may be a systematic error if both measurements were 

taken by the same sphygmomanometer device, although it may be considered as a 
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random error for generalization of results. Ignoring the correlation between the two 

measurements may underestimate the BP misclassification rate.  

 

In conclusion, it is likely that a significant percentage of hypertensive patients 

have been misclassified to an incorrect BP treatment category as a result of issues relating 

to current clinical practice and cuff BP measurement. The BP misclassification depends 

on the time of day when the BP is measured, PK/PD properties of antihypertensive, and 

dosing regimen. In general, early morning (8:00 AM – 10:00 AM) or late afternoon 

(16:00 PM – 18:00 PM) was identified to be the worst time frame for clinic visit and 

provided highest BP misclassification rate for all scenarios. One additional measurement 

per clinic visit would decrease the BP misclassification rate especially when last digit 

preference to 0 or 5 for BP measurements exists.  
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6.5 TABLES 

 
Table 1. Percent of patients with BP misclassification: Cuff measured BP at casual clinic 
visit times. BP measurement error was assumed as normally distributed with mean zero 
and standard error of 5 mm Hg. 
 

Percent of patients with BP misclassification (measured BP vs. true 
BP) 

Drugs altering the BP profile: moxonidine 

 8:00 AM QD 12:00 PM QD 8:00 PM QD 

Drugs that do 
not alter the BP 

profile 

Random Visit 
vs. True Value 

24.4% 
(22.5% – 
27.3%) 

32.0% 
(29.3%–
34.8%) 

23.5% 
(20.9% – 
27.1%) 

22.8% 
(19.8%–
26.0%) 

 
 
Table 2. Percent of patients with inconsistent BP classification: Cuff measured BPs at 
two casual clinic visit times within the same day. BP measurement error was assumed as 
normally distributed with mean zero and standard error of 5 mm Hg. 
 

Percent of patients with inconsistent BP classification  
(Casual visit 1 vs. Casual visit 2) 

Drugs altering the BP profile: moxonidine  
8:00 AM QD 

dose 
12:00 PM QD 

dose 
8:00 PM QD 

dose 

Drugs that do 
not alter the BP 

profile 
Random Visit 
1 vs. Random 

Visit 2 

33.5% 
(30.9% – 
36.0%) 

40.2% 
(37.7% – 
42.8%) 

32.0% 
(29.4% – 
35.6%) 

30.9%  
(28.0%–34.7%) 

 
 
Table 3. The impact of one versus two BP measurements with and without rounding error 
on BP misclassification.  Moxonidine doses were taken at 8:00 AM QD and office visits 
were randomly selected during clinical office hours (i.e. 8 AM – 6 PM).   

Percent of patients with BP misclassification (95%PI) 
 Without Rounding Error With Rounding Error 

One Measure 
24.4% 

(22.5% – 27.3%) 
26.1%  

(24.2%-28.9%) 

Two Measures 
20.2%  

(17.6%-23.5%) 
20.8%  

(18.5%-24.1%) 
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6.6 FIGURES 
 
 
Figure 1. Percent of patients whose BP was misclassified based on cuff measurements at 
specified clock time visit.  Moxonidine doses were administered at 8:00 AM QD for all 
patients.   
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Figure 2. Percent of patients with BP misclassification based on single vs multiple BP 
measurements and measurement rounding error for different clock time visits.  
Moxonidine doses were administered at 8:00 AM QD for all patients.   
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Figure 3. Fraction of patients with BP misclassifications based on BP cuff measurement 
error. Moxonidine doses were administered at 8:00 AM QD for all patients.   
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6.7   APPENDIX FOR CHAPTER SIX 

 

Figure 1: Global sensitivity analysis 
  
Figure 1a: Fixed effect parameters vs. Percent of patients with BP misclassification   
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Figure 1b: Inter-individual variability vs. Percent of patients with BP misclassification   
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Figure 1c: Inter-occasion variability vs. Percent of patients with BP misclassification   
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Figure 1d: Standard Deviation of BP measurement error vs. Percent of patients with BP 
misclassification 
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7.0  SEVENTH CHAPTER  

 
Impact of various clinical practice strategies on cardiovascular risk for the 

treatment of hypertension: a clinical trial simulation study 
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7.1 INTRODUCTION 

 

Cardiovascular disease (CVD) events associated with elevated blood pressures remain a 

leading cause of overall mobility and mortality (131, 132). It is well known that elevated 

blood pressure contributes significantly to the risk of cardiovascular disease (CVD) (106, 

107, 133). It has been shown that BP reduction significantly decreases the risk of CVD 

(107, 134). Therefore, the goal of controlling BP in patients with hypertension is to lower 

their CVD risk. However, the proportion of patients with BP under control is still below 

the Healthy People 2010 Goal of 50%.  

 

The seventh report of the Joint National Committee on Prevention, Detection, 

Evaluation, and Treatment of High Blood Pressure (JNC 7) guideline suggests a target 

BP of less than 140/90 mmHg. The JNC 7 guideline suggests titrating dose upward to the 

highest tolerable dose before adding other class of drugs to achieve the BP goal and the 

use of combination anti-hypertensive therapy when BP is more than 20 mm Hg above 

this goal BP.  However, the JNC 7 provides little detail to guide a specific clinical 

practice strategy, specifically regarding dose titration strategy (107, 135). The Institute 

for Clinical Systems Improvement 2008 guideline titled “Hypertension diagnosis and 

treatment” suggested that “The lowest recommended dose of the chosen drug should be 

used initially. If tolerated, the dose can be increased or additional medications added to 

achieve goal blood pressure.” (136). Similarly, the 2003 European Society of 
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Hypertension/European Society of Cardiology (ESH/ESC) guidelines suggested initiating 

with low dose for both single and combination therapy.    

 

However, studies have suggested that more than two third of patients with 

hypertension will need more than two antihypertensive drugs to reach a goal BP of < 

140/90 mmHg (137).  Initiating treatment with a low dose of antihypertensive will likely 

delay the time to reach the goal BP while dosages are titrated upward and a second class 

of antihypertensive agent are added to the regimen.   In addition, there are at least two 

other factors that can further delay the time to achieve the BP target. These include the 

measurement error associated with clinic based cuff BP measurements and neglecting the 

circadian nature of BP within individuals over the course of a day.  Both of these factors 

can lead to a significant errors in classifying patient risk level, leading to an incorrect 

treatment decision in 20–40% of clinic visits (138).  

 

A specific scenario could occur as follows: a patient has a clinic visit 

measurement of BP <140/90 that underestimates their true BP of >140/90.  In this case, it 

is very likely that patients will not be titrated to a higher dose level or have an additional 

antihypertensive included in their dosing regimen at the clinic visit. This will expose the 

patient to an increased risk of a cardiovascular event until the next follow up visit, which 

may not occur until 3- to 6-months later. In addition, follow up visits may not be 

guaranteed for each patient for personal or economic reasons. In cases where additional 

clinic visits do not occur for these false negative patients, one could posit that this 

proportion of patients may never achieve an appropriate goal BP. Hence, the strategy of 

initiating treatment from low dose may lower the risk for side effects of the 

antihypertensive, such as orthostatic hypotension.  This increase in safety may potentially 

be offset by increased CVD risk in the time necessary to properly control a patient’s BP.  

 

It has been widely discussed that increased risk of CVD associated with elevated 

BP exists even below the current goal BP of 140/90. The CV risk doubles with BP 

elevations of 20/10 mm Hg in systolic/diastolic BP starting from 115/75 mm Hg for 

patients 40–70 years (134).  A study conducted by Vasan and his colleague (139) showed 

that individuals with a high normal BP have a risk-factor adjusted hazard ratio of 2.5 in 
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women and 1.6 in men for a CVD event.  It also has been reported that non-hypertensive 

subjects with a systolic BP of 130-139 mm Hg (or a diastolic BP 85-89 mm Hg) have an 

increased risk of CVD (134, 139). Hence, there is a potential benefit for patients with 

hypertension if a lower goal BP than the current one of 140/90 mm Hg is targeted. 

However, the impact of a clinical practice strategy targeting a lower BP on risk of CVD 

patients with hypertension has not been studied.  

 

Our previous study evaluated BP measurement discordance and BP treatment 

group misclassification rates associated with the current clinical practice. In this study, 

we extend our previous studies to CVD event risk using the survival model proposed by 

Framingham et al. (106).  

 

The study aimed to identify a better strategy that further decreases the CV risk in 

US population compared to the current clinical practice.  The clinical outcomes of 

various clinical practice strategies, including initiating hypertensive treatment with high 

dose and setting a lower goal BP of 120 mm Hg was estimated .  In addition, we 

compared the risk of CVD in patients with hypertension across the various proposed 

clinical strategies.  

 

7.2 METHODS 

 

7.2.1 Virtual Subjects characteristics and sample size  

 

Mean systolic BP over 24-h from virtual subjects was used to anchor the simulated 24-h 

BP profiles of virtual subjects for the current study. The virtual subjects’ characteristics 

(n=877) included 24-h mean systolic BP, age, sex, total cholesterol, HDL cholesterol, 

smoking status, diabetes status, and treatment for hypertension.  These characteristics 

were obtained from the internal database of Food and Drug Administration (FDA) by 

pooling information of several New Drug Applications without disturbing the 

relationship between the risk factors within individuals.  
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The same analysis was repeated by sampling systolic BPs from the population 

distribution along with other CV risk factor covariates (age, sex, total cholesterol, HDL 

cholesterol, smoking status, diabetes status, and treatment for hypertension) from the 

NHANES III Adult Database 

(http://www.cdc.gov/nchs/tutorials/Nhanes/Downloads/intro_III.htm). Subjects with a 

systolic BP higher than 140 mm Hg (>130 mm Hg for patients with diabetes) were 

considered hypertensive. These systolic BPs from NHANES database were calculated as 

the mean of three BP measurements. We utilized these BPs are the rhythm adjusted 24-h 

mean BP of virtual subjects to anchor the simulations of continuous BP profile.  

 

7.2.2 Simulation of the baseline BP profile 

 

The population baseline BP model developed by Hempel and colleagues (107, 121) was 

qualified and adopted for the simulation of long term baseline BP. The detailed 

description of the model was presented previously (107, 121, 129, 138). Briefly, the 

baseline BP model was developed to describe BP circadian rhythm using 24-h ABPM 

data over multiple occasions. Daily BP fluctuations were described using a function with 

two cosine terms including inter-individual variability for the rhythm-adjusted 24-h 

mean, amplitude of the cosine terms, and clock time and inter-occasion variability for the 

rhythm-adjusted 24-h mean and clock time. The published parameter values for the 

baseline BP model parameters were adapted from the original paper with the exception of 

rhythm adjusted population mean BP (θ1) and it inter-individual variability (η1). The 

rhythm adjusted 24-h mean BPs for virtual subjects was directly sampled from internal 

database of FDA and the NHANES database.  

 

A global sensitivity analysis was performed after generating our analysis 

endpoints to quantitatively evaluate impact of uncertainty distribution in the parameter 

estimates of the baseline model on the results of our analysis(25, 26, 34).  

 

7.2.3 Simulation of the BP profile with antihypertensive treatment 

 



Patients were eligible for virtual treatment with up to four antihypertensive drugs A, B, 

C, and D simultaneously. To simplify the simulation, three dose levels were assumed for 

each drug: low, medium, and high. The dose response relationship of the four drugs A, B, 

C, and D with respect to various dose levels are described in Table 1 (140-142). It was 

assumed that A, B, C, and D were from different classes of antihypertensive agents, 

hence having different mechanisms of action.  Therefore, the drug responses were 

considered to be additive when combination therapy was used.  

 

7.2.4 Cox model for estimation of general CV risk 

 

A cardiovascular risk model published in 2008 by Framingham et al. was adopted for CV 

risk calculation (106). The general formula of  10 year CV risk is that 

)exp(
1

0
)(1 ii

pp

i ii XXtSp ββ ∑∑−=
−

, where S0(t) is the baseline survival at follow-up 

time t (here t=10 years;), ßi is the estimated regression coefficient (log hazard ratio), Xi is 

the log-transformed value of the ith risk factor, Xi (bar) is the corresponding mean, and p 

denotes the number of risk factors.  

The CV risk for patients was calculated at time zero and after six month of 

treatment with different simulated clinical practice strategies. The CV risk of patients 

after 6 month of treatments was compared among these strategies. Parameter values of 

the regression coefficients were directly adopted from the publication (106).  

 

7.2.5 Clinical practice strategies for BP control  

 

Virtual patients were treated for hypertension using the four strategies detailed below. 

Differences in CV risk for virtual patients with different clinical practice strategies were 

evaluated using Monte Carlo Simulation.  The duration of the virtual clinical study was 

six months; the CV risk for each patient was calculated before the study as well as six 

months post treatment:  

 

Strategy I: The goal BP was 140 mm Hg (130 mm Hg for patients with diabetes). 

Virtual patients were initially started on the lowest dose of a single antihypertensive or 

112 
 



113 
 

the lowest dose of combination therapy if their baseline BP was >20 mm Hg above the 

target BP (≥ 160 mm Hg or ≥150 mm Hg for patients with diabetes). Patients returned for 

follow-up and dose/medication adjustments at monthly intervals. Dose and medications 

were adjusted based on cuff measurement at a casual clinic visit during office hours. 

Each drug has three dose levels: low, medium, and high. Dose of initial drugs were 

titrated upward to the highest dose before adding other class of drugs to achieve the BP 

goal.  The maximum numbers of drugs for a patient were four drugs from different 

classes. If a patient’s measured BP at any follow up visit reached goal BP, the dose of 

antihypertensive(s) was assumed to be adequate and maintained for 6 months. A systolic 

BP <90 mm Hg was selected as the cut off value for unacceptable hypotension. If this 

threshold was reached, the dose of the antihypertensive agent(s) was decreased.  The 

dosage was further decreased when measured BP at subsequent follow up visits were <90 

mm Hg. The total simulated time period for treatment was 6 months. 

 

Strategy II: Virtual patients were initially started on the highest dose of single 

antihypertensive therapy if their baseline BP was <160 mm Hg and on the highest dose of 

combination therapy if their baseline BP was ≥ 160 mm Hg. The dosage was also 

adjusted based on monthly cuff measurement at a casual clinic visit during office hours. 

A drug from another class at the highest tolerable dose was added if measured BP at the 

follow up clinic visit was still above the target BP of 140 mm Hg.  

 

Strategy III: Equivalent to strategy I but with a target BP of 120 mm Hg instead of 

140 mm Hg.  

 

Strategy IV: Equivalent to strategy II but with a target BP of 120 mm Hg instead 

of 140 mm Hg.   

 

Cuff BPs measured at casual clinic visit times (random time between 8:00~6:00 

PM) were used for virtual treatment decision making. The cuff BP values were generated 

as previously described [Jin].  The true point BP value at each of the corresponding clinic 

visit time was captured from the simulated BP profile. The cuff BP measurement error 

was assumed to be normally distributed with a mean of zero and standard deviation of 5 
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mm Hg (113-115, 117). The observed cuff BP measurement at each casual clinic visit 

was generated by combining the true BP value at clinic visit time with a randomly 

generated cuff BP measurement error. 

 

7.2.6 Analysis platform 

 

NONMEM® (Version VI, University of California at San Francisco, CA) was used to 

simulate moxonidine concentrations in the plasma and effect compartments for virtual 

subjects. Simulation of the blood pressure profiles, graphics and post-processing of 

NONMEM® outputs, and global sensitivity analysis was performed in R® (version 2.9.1). 

The 95% prediction intervals (PI) for the analysis results were determined by running 

1000 simulation replicates accounting for the posterior parameter distributions 

(uncertainty) in the model of baseline BP profile.  

 

7.3 RESULTS 

 

A total of 877 virtual subjects were included in this clinical trial simulation. 

Demographics of the virtual subjects are shown in Table 1. The mean systolic BP was 

assumed to represent the baseline of the rhythm adjusted 24-h BP mean for virtual 

subjects.  

 

The estimated 10 year CV risk at baseline was 18.1%. The estimated 10 year CV 

risk after 6 months of treatment decreased to 14.9%, 13.3%, 14.2%, and 12.1% for 

strategies I, II, III, and IV, respectively. The absolute risk reductions (ARR) from 

baseline after 6 months of treatment with strategies I, II, III, and IV were 3.2%, 4.8%, 

3.9%, and 6.0%, respectively. The impact of the ARR on the 10 year cardiovascular 

event risk corresponds to preventing 1 CV event for every 31, 20, 26, and 17 patients 

using current clinical practice strategies, strategy II (high dose strategy), strategy III (low 

dose strategy targeting 120 mm Hg), and strategy IV (high dose strategy targeting 140 

mm Hg), respectively.   
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Implementing these strategies in 10000 hypertensive patients over one year would 

result in a reduction of 32 CVD events with the current clinical practice strategy, 48 with 

the high dose strategy, 39 with the low dose strategy and 120 mm Hg goal BP, and 60 

with high dose strategy and 120 mm Hg goal BP.  These results are illustrated in Figure 

1.  

 

Therefore, initiating treatment with the high dose strategy would result in a 

reduction of 50% more CVD events compared to that with current clinical practice. The 

120 mm Hg as target BP strategy would lead to a reduction of 22% more CV events and 

the high dose strategy with the 120mmHg target BP would result in 87.5% more CV 

events compared to that with current clinical practice.  

 

Global sensitivity analysis showed that the posterior parameter distributions 

reported in Hempel’s paper had no systematic impact on our estimated clinical outcomes.  

Estimated risks of CVD given various clinical practice strategies were robust across the 

uncertainty in all parameters reported.  

 

7.4 DISCUSSION 

 

In this study, results from previous BP discordance and BP misclassification studies 

(138) are extended to evaluate the impact on the CV risk. The simulation results indicate 

that different clinical practice strategies result in different CVD risk for patients with 

hypertension. Initiating treatment with the highest tolerable antihypertensive dose or 

setting the target BP to 120 mm Hg would lower CVD risk for hypertensive patients 

better than the current clinical practice strategy.  

 

The high dose strategy, in particular, showed the potential benefits for 

aggressively treating elevated BP. Patients might eventually reach the same adequate 

dose level or number of antihypertensive agents for both the low dose strategy (current 

clinical practice strategy) and high dose strategy as long as the goal BP was the same and 

the correct dosage adjustment was made at each follow up visit. Nevertheless, our results 

showed that the delayed time for patients to achieve a target blood pressure level resulted 
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in significant additional CV risk. Treating 10,000 hypertensive patients for one year 

would result in a reduction of 32 CVD events with current clinical practice strategy and 

48 with the high dose strategy. Therefore, initiating treatment with a high dose of the 

antihypertensive agents is predicted to be 50% more effective at reducing CVD events a 

year compared to current clinical practice. This result emphasizes the importance of 

rapidly achieving a goal BP. In addition, high dose strategies would likely decrease the 

number of follow up visits and reduce the work load in clinical practice. This strategy has 

greater potential for antihypertensive drugs that have a high degree of tolerability at 

higher dosages and that do not exhibit serious dose related adverse drug events, such as 

angiotensin-converting enzyme (ACE) inhibitors or angiotensin-receptor blockers (ARB). 

However, particular caution in dosing should be followed for patients with high risk of 

orthostatic hypotension, such as patients with diabetes, autonomic dysfunction, and some 

geriatrics (107). 

 

This study demonstrates the beneficial effect of setting a lower target BP 120 mm 

Hg on CVD risk. Treating 10,000 hypertensive patients for one year would result in a 

reduction of 32 CVD events with current clinical practice strategy, 48 with high dose 

strategy, 39 with low dose strategy and 120 mm Hg goal BP, and 60 with low dose 

strategy and 120 mm Hg goal BP. Hence setting a lower goal BP alone led to an 

additional 22% (39 vs. 32) and 25% (60 vs 48) reduction in CVD events a year for 

strategy III (low dose targeting 120 mm Hg) and strategy IV (high dose targeting 120 mm 

Hg), respectively.  Setting a lower BP target would likely have greater benefit for patients 

who achieve the target BP of 140 mm Hg with one or two antihypertensive agents as 

these patients have the potential to increase their dose or include additional agents to 

further decrease their BP.   

 

A CVD risk model that predicts future CVD events has received increasing 

attention recently (133). Several CVD risk functions have been developed (106, 143-

147). We adopted the CVD risk function proposed by the Framingham Heart Study 

(106). The CVD risk model not only estimates the general risk of experiencing all CVD 

events but also the risk of individual components such as stroke, coronary heart disease, 

cerebrovascular, peripheral arterial disease, and heart failure etc. The goal of this study 
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was to evaluate the effect of clinical practice strategies on risk of all CVD events, hence 

the general risk function was used in the simulation.   

 

In conclusion, achieving a goal BP in a timely fashion by initiating hypertension 

treatment with highest tolerable dose for both monotherapy and combination therapy 

demonstrates potential for significant reduction in CVD event risk. This strategy should 

be considered for antihypertensive agents that have neither significant safety issues nor 

dose related side effects.  Finally, setting target BP to 120 mm Hg would provide an 

additional reduction in CVD risk in patients with hypertension.  
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7.5  TABLES 
 
 
Table 1: Summary statistics for virtual subject risk factors used in the simulation  
 

Characteristics All (n=877) 
Women 
(n=330) Men (n-=547) 

Systolic BP, 24-h mean 
(range), mm Hg 

151.2 
(130.6~187.5)

151.5 
(130.7~187.5)

151.1  
(130.6~187.4) 

Age, mean (range),y 
 55.9 

 (23~82) 
56.3  

(28~80) 
55.8  

(23~82) 

Total-C, mean (range), mg/dL 
204.1  

(80.0~340.3) 
210.0 

(104.4~340.3)
200.6  

(80.0 ~ 328.7) 

HDL-C, mean (range), mg/dL 
53.9  

(22.8~135.3) 
58.1  

(22.8~119.9) 
51.4  

(22.8 ~ 135.3) 
Smoking, n (%) 15.6% 11.5% 18.1% 
Diabetes, n (%) 14.4% 14.8% 14.1% 

 
 
Table 2. Dose response relationship of antihypertensive drugs assumed in our simulation 
 

Drug response in mm Hg (ΔBP) 
 First drug: 

A B C D 

Low dose 6 ± 12 5 ± 12 5 ± 
12 5 ± 12 

Med dose 
(additional response from low 
dose) 

3 ± 2 2 ± 2 2 ± 
12 2 ± 2 

High dose 
(additional response from 
Medium dose) 

2 ± 2 2 ± 2 2 ± 
12 2 ± 2 
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Table 3. CV risk at baseline and after six months of treatment using four different BP 
maintenance strategies. 
 

N=877 subjects  

CVD risk  
(95% Prediction 

Interval) 

Absolute Risk 
Reduction 

(ARR) 

Numb
er 

Neede
d to 

Treat 
(NNT) 

Baseline  
18.1% 

(17.6%~18.6%)     

Strategy I: Low Dose Strategy 
14.9% 

(14.6%~15.3%) 3.2% 31 

Strategy II: High Dose Strategy 
13.3% 

(12.9%~13.6%) 4.8% 21 
Strategy III: Low Dose Strategy 
with goal BP of 120 mm Hg  

14.2% 
(13.7%~14.6%) 3.9% 26 

Strategy II:  High Dose Strategy 
with goal BP of 120 mm Hg  

12.1% 
(11.7%~12.5%) 6.0% 17 

 
 



7.6 FIGURES 
 
 
 
Figure 1. CV events prevented using four different BP maintenance strategies  
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7.7  APPENDIX FOR CHAPTER SEVEN 

 
Figure 1: Global sensitivity analysis 
  
Figure 1a: Fixed effect parameters vs. Cardiovascular Disease (CV) Risk    
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Figure 1b: Inter-individual variability vs. Cardiovascular Disease (CV) Risk    
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Figure 1c: Inter-occasion variability vs. Cardiovascular Disease (CV) Risk    
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Figure 1d: Standard Deviation of BP measurement error vs. Cardiovascular Disease (CV) 
Risk    
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8.0   CONCLUSIONS 
 

The major aim of this thesis is to use the modeling and simulation approach to identify  

systematic contributors to variability in estimated population parameters and the sources 

of variability in drug exposure, response, clinical practice and patient outcome. The thesis 

aimed to apply pharmacometrics to the public health area identifying potential issues 

associated with current clinical practice and patient outcome.  This approach was also 

used to evaluate the impact of various alternative clinical practice strategies on clinical 

outcomes.  

 

Population PK models were developed for both perphenazine and escitalopram. 

Our results showed that incorporating covariate information into population PK models 

identified substantial systematic contributors to variability in drug exposure for both of 

these drugs Race and smoking status in the past week were identified as two significant 

covariates affecting clearance of perphenazine. The data for perphenazine were very 

sparse, so the covariate relationships were confirmed using a randomization test 

procedure to reduce the possibility of an excessive type I error rate. The dosage regimen 

of perphenazine in these populations may need to be adjusted clinically based on patients 

smoking status.  Perphenazine is primarily metabolized by CYP2D6 located in the liver. 

Therefore,t is possible that CYP2D6 genotype is confounding factor for the racial 

difference in perphenazine clearance. Further studies are required to identify the 

mechanisms contributing to the observed differences in perphenazine clearance across 

race. Racial information alone is not currently recommended for adjusting perphenazine 

dosage regimens in patients with schizophrenia. 

 

CYP 2C19 genotype, age, and weight strongly influenced the CL/F of 

escitalopram. Patients with CYP2C19 RM/EM (*17 /*17, *1/*1, or *1/*17) cleared 

escitalopram significantly faster than those with CYP2C19 IM/PM (heterozygous or 

homozygous *2 or *3) genotype.  Older patients taking escitalopram had a significantly 

lower apparent clearance compared with younger patients. Patients with higher body 

weights cleared escitalopram faster compared to those with lower body weights. 

Incorporating age, weight, and genotype into the population PK model accounted for 
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exposure differences between Pisa (Italy) patients and patients from Pittsburgh. 

Establishing a patient’s metabolizer genotype and incorporating age, weight and BMI 

into this assessment can better guide therapeutic decision-making with respect to the 

dosing strategy for escitalopram and potentially minimize excessively high exposures to 

this SSRI. Off particular note for community practice is that two of these variables (age 

and weight) are routinely collected and require no specialized equipment or laboratory 

test. Thus, physicians can readily take these variables into account when determining 

appropriate starting doses and dosage titration schedules.  

 

A population PK analysis was performed for orally administered escitalopram 

using two different reported dosing methods as the the dosage history input to the model. 

Our results showed that the measurement error associated with an incorrect or incomplete 

dosing history affected the population PK parameter estimation in the non-linear mixed 

effect modeling process. The dosing report methods considered were either the MEMS 

generated dosing histories or the patient reported last dosing time. Our results suggested 

that the necessity of MEMS monitoring may be determined by the drug half-life, the 

nature of the concentration effect relationship, and the sensitivity of this relationship to 

patterns of exposure.  These patterns of exposure are not captured in the population PK 

analysis using reported time of last dose. The use of MEMS dosage histories versus the 

patient reported time of last dose, stabilized the estimation of absorption (Ka) and 

distribution (Vd), but clearance determination was virtually unaffected. Despite this, 

patterns of drug exposure may be critical in evaluating response, non-response, and 

toxicity. These patterns cannot be generated or recreated using the time of last dose 

information.  Exposures calculated in this manner also provide an average exposure over 

a period of time. The pattern of the exposure and the response to treatment are not 

addressed in this study.  

 

The measurement error associated with typical clinic based cuff BP measurements 

had significant effect on estimated drug response, hence clinical outcomes. Significant 

contributors to this variability included the cuff BP measurement errors and the fact that 

the circadian changes in BP were not accounted for.  These effects may be addressed with 

the following strategies:  
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1) Cuff BP measurement time may need to be adjusted based on baseline clinic 

visit time as well as dosing regimen specific PK/PD considerations to better identify the 

true ΔBP in each virtual subject using the current clinical practice paradigm. The BP 

could be calibrated based on patients’ baseline and treatment visit times to better correct 

for the circadian rhythm of BP profile.  Optimizing the clinic visit time decreases the 

measurement bias contributed by the circadian rhythm of BP, improving the accuracy of 

the cuff measured ΔBP to certain extent. It does not, however, completely correct the 

measurement bias due to existence of random cuff measurement error.  This cuff error 

may be contributed by the device, cuff size, and training levels of personnel. 

 

2) It is likely that a significant percentage of hypertensive patients have been 

misclassified to an incorrect BP treatment category as a result of issues relating to 

circadian variability in BP and the cuff measurement error and how this is amplified by 

current clinical practice strategies. The BP misclassification rate in the current clinical 

practice is around 20~40% depending on the time of day when the BP is measured, 

PK/PD properties of antihypertensive, and the dosing regimen. In general, early morning 

(8:00 AM – 10:00 AM) or late afternoon (16:00 PM ~ 18:00 PM) were identified to be 

the worst time frames for clinic visits and provided the highest BP misclassification rate. 

One additional measurement per clinic visit would decrease the BP misclassification rate 

by 4% (absolute decrease).  This effect was exacerbated when the effect of a last digit 

preference to round the blood pressure measurement to the nearest 0 or 5 for BP 

measurements exists.  

 

3) Achieving a goal BP in a timely fashion by initiating hypertension treatment 

with highest tolerable dose for both mono-therapy or combination therapy shows the 

potential for significant reduction in CVD event risk. This strategy should be considered 

for antihypertensive agents that have neither significant safety issues nor dose related side 

effects. Setting the goal BP to 120 mm Hg would provide an additional reduction in risk 

of CVD for patients with hypertension. 
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Our simulation results show that three intervention approaches may lead to lower 

cardiovascular risk compared to current clinical practice strategy: 

 

In conclusion, the thesis showed, using Monte Carlo simulation techniques, three 

potential interventions to be considered in the clinical practice or antihypertensive drug 

labeling for better BP management, hence lower CVD risk in US adult population. These 

interventions were: BP calibration based on clinic visit time while considering drug 

specific PK/PD characteristics; patients should generally have post treatment clinic visit 

times between 11:00 AM ~ 3:00 PM; a high dose strategy for antihypertensive drug 

therapy; and setting a lower goal BP.  The reduction in CVD risk was predicted to be 

substantial and these interventions should be entertained when considering changes to 

standard clinical practice in this area. 



127 
 

APPENDIX A: CODE FOR FIFTH CHAPTER  
 
 
 
Generate 1000 sets of population parameters for baseline BP model 
 
Dir <- "C:/YuYanJin/code/" # working direction 
library(MIfuns) # load library 
 
# parameter values from: Clin Pharmacol Ther, 1998. 64(6):p. 622-35 
ThetaMean <-c(151,-0.067,0.029,-8.820)  
ThetaCovar <- diag(c(8.8488,0.0001,0.00008,0.02465)) 
OmegaModeList <- list(diag(c(0.0029,0.184,6.35)),diag(c(56.7,1.5876))) 
OmegaDfList <-c(10,40)# parameters are from 10 subjects, 4 occasions per subject, totally around 40 
occasions 
SigmaModeList <- 0.005 
SigmaDfList <- 3000 # number of oberscations available 
set.seed(123) 
parameters <- CreateParametersForSimulation(nsim=1000, 
ThetaMean=ThetaMean,ThetaCovar=ThetaCovar, 
OmegaModeList=OmegaModeList,OmegaDfList=OmegaDfList, 
SigmaModeList=SigmaModeList,SigmaDfList=SigmaDfList) 
write.table(parameters,file=paste(Dir,"p.csv",sep=""),quote=F,sep=",",row.names=F) 
 
1.2 Generate PK simulation dataset  
 
set.seed(234) 
Dir <- "C:/JINYU/" 
 
dose.daily <- 300 # ug 
dose.interval <- 24 # QD dosing regimen 
ni <- length(id <- 1:3840) # 3840 subjects for simulation 
month <- 1  # PK simulation period is one month 
time1 <- seq(0,24,by=0.2) # day 30,one data point every twelve mins 
tempt1 <- (month*30-1)*24 
tempt2 <- month*30*24 
time2 <- seq(tempt1,tempt2,by=0.2)# day 30,one data point every twelve mins 
time <- c(time1,time2) 
TIME <- rep(time,times=ni) 
length(time) 
ID <- rep(id, each=length(time)) 
d <- data.frame(ID,TIME) 
d$CONC <- rep(0,times=length(d$TIME)) 
d$AMT <- ifelse(d$TIME==8, dose.daily, 0) # dosing time: 8:00 AM 
d$II <- ifelse(d$TIME==8, dose.interval, 0) 
 
addl <- month*30*24/dose.interval-1 # number of additional dose   
d$ADDL <- ifelse(d$TIME==8,addl, 0) 
d$MDV <- ifelse(d$TIME==8,1,0) 
mean.clcr <- 100 # population mean creatinine clearance is 100 ml/min  
sd.clcr <- 20 # standard deviation of creatinine clearance 20ml/min  
clcr <- rnorm(ni, mean= mean.clcr,sd=sd.clcr) 
d$CLCR <- rep(clcr,each=length(time))  
d$CLCR <- round(d$CLCR, digits=3) 
names(d) <- c("CID","TIME","DV","AMT","II","ADDL","MDV","CLCR") 
 
write.table(d,file=paste(Dir,"pkdata300.csv",sep=""),sep=",",quote=F,col.names=T,row.names=F,na='.') 
 
1.3 NONMEM code for simulation of moxonidine concentration 
 
$PROBLEM Moxoniding concentration simulation 
$DATA pkdata300.csv IGNORE=C 
$INPUT ID TIME DV=CONC AMT II ADDL MDV CLCR 
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$SUBROUTINE ADVAN6 TOL=5 
$MODEL 
COMP(DOSE,DEFDOSE) 
COMP(CENTRAL,DEFOBS) 
COMP(EFFECT) 
$PK  
  TVCL=THETA(1)*(1+THETA(4)*(CLCR-90)) 
  CL=TVCL*EXP(ETA(1))  
  V2=THETA(2) ;  
  KA=THETA(3)*EXP(ETA(2)) ;  
  K20=CL/V2  ; 
  KE0=THETA(5)*EXP(ETA(3));  
  S2=V2; 
 $DES 
DADT(1) = -KA*A(1) 
DADT(2) =  KA*A(1) - K20*A(2) 
CP=A(2)/V2 
DADT(3) = KE0*(CP-A(3)) 
$ERROR 
CE=A(3);  
IPRED=F ;  
Y=F+ERR(1)*F ;  
$SIM (225 NEW) (012345678 UNIFORM) SUB=1 ONLYSIM 
$THETA 
(0,35) 
(0,132) 
(0,2.30) 
(0,0.00671) 
(0,0.198) 
$OMEGA 
0.018225 
0.9801 
1.00 
$SIGMA 
0 FIX; 
$TABLE NOPRINT ONEHEADER FILE=1.tab 
ID AMT TIME DV CLCR MDV CE CL V2 KA K20 KE0  
 
1.4 R code for figure 2  
 
library(MIfuns) 
Dir <- "C:/YuYanJin/code/" # working direction 
 
# Calculate percentage of patients with |measured delta BP - true delta BP| >= 10 or 5 mm Hg 
percentile <- function (x){ 
            d1 <- length(x[x>=10])/length(x) 
            d2 <- length(x[x<=-10])/length(x) 
            d3 <- length(x[x>=5])/length(x) 
            d4 <- length(x[x<=-5])/length(x) 
            d5 <- d1+d2 
            d6 <- d3+d4 
            d <-c(d5,d6) 
            return (d) 
} 
 
## imput 1000 sets of population parameters in baseline BP model 
p <- read.table(file=paste(Dir,"p.csv",sep=""),as.is=T,header=T,skip=0,sep=",")  
## import simulated moxonidine concentration from NONMEM output  
pk <- read.table(file=paste(Dir,"1.tab",sep=""),as.is=T,header=T,skip=1) 
pk <- pk[,c('ID','TIME','CONC','CE')] 
 
## import 24-h mean SBP values without any treatment from three NDAs accross four study 
theta1 <- read.table(file=paste(Dir,"m24sbp.csv",sep=""),as.is=T,header=T,skip=0,sep=",") 
theta1 <- theta1[,c("SBP")] 
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ni <- length(id<-1:length(theta1))     # total number of subjects 
month <- 1     # time period of the simulation 
sderror <- 5   # standard deviation of Cuff BP measurement error 
set.seed(234) # set a seed  
seeds <- round(runif(1000, min=1, max=20000)) # generate 1000 seeds for 1000 clinical trials 
 
n <- 1          # sequence of runs 
nsim <- 1000       # replicates per run 
nsim1 <- (n-1)*nsim+1    # starting replicate (clinical trial) in the specific run 
nsim2 <- n*nsim          # ending replicate (clinical trial) in the specific run 
resp <- NULL 
 
# k represent kth clinical trial 
for (k in nsim1:nsim2){ 
seed <- seeds[k] 
set.seed(seed) 
 
## baseline BP model from "Clin Pharmacol Ther,1998.64(6):p.622-35"  
## taking kth row from file p.csv as population parameter values in baseline BP model 
mu1 <- c(0,0,0) 
Omega1 <- matrix(c(p[k,5],p[k,6],p[k,8],p[k,6],p[k,7],p[k,9],p[k,8],p[k,9],p[k,10]),3,3) # variance covariance 
matrix for interindividual variability 
iiv <- mvrnorm(n = ni, mu1, Omega1, empirical = FALSE)   # generate individual level inter-individual 
variability values 
 
mu2 <- c(0,0) 
Omega2 <- matrix(c(p[k,11],p[k,12],p[k,12],p[k,13]),2,2) # variance covariance matrix for interoccasion 
variability 
iov <- mvrnorm(n = ni*2, mu2, Omega2, empirical = FALSE) # generate individual level inter-occasion 
variability, two occasions per individual (day one and day 30)  
 
THETA2 <- p[k,2]  ### population mean for amplitude of first cosine term   
THETA3 <- 0       ### phase shift in first cosine term  
THETA4 <- p[k,3]  ### population mean for amplitude of second cosine term  
THETA5 <- p[k,4]  ### phase shift in second cosine term  
 
eta2 <- iiv[,2]   ### vector: interindividual variability in amplitude of first cosine term(THETA2) 
eta4 <- iiv[,2]   ### vector: interindividual variability in amplitude of second cosine term(THETA4) 
eta.t <- iiv[,3] ### vector: interindividual variability on clock time (hr) 
 
eta.k1d <- iov[,1]  ### vector: interoccasion variability in baseline (mm Hg) 
eta.k2d <- iov[,2]  ### vector: interoccasion variability on clock time (hr) 
 
theta2 <- THETA2*(1+eta2) ### generate individual values (n=3840)in amplitude of first cosine term  
theta3 <- THETA3                      ### no variability in phase shift in first cosine term 
theta4 <- THETA4*(1+eta4) ### generate individual values (n=3840)in amplitude of second cosine term  
theta5 <- THETA5                      ### no variability in phase shift in second cosine term 
 
temp.id <- NULL 
temp.time <- NULL 
temp.bsl <- NULL 
occ <- month*30  
 
for (i in 1:ni){ 
       # simulate BP cirdadian rhythm for day one    
       t <- seq(0,24,by=0.2) 
            t.length <- length(t) 
  cos1 <- theta2[i]*cos(pi*(t + eta.t[i] + eta.k2d[i])/12-theta3) 
  cos2 <- theta4[i]*cos(2*pi*(t + eta.t[i] + eta.k2d[i])/12-theta5) 
  BSL <- eta.k1d[i]+theta1[i]*(1+cos1+cos2)  
  temp.id <- c(temp.id,rep(i,times=t.length)) 
  temp.time <- c(temp.time,t) 
  temp.bsl <- c(temp.bsl,BSL) 
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       # simulation BP circadian rhythm for day 30th  
       cos1 <- theta2[i]*cos(pi*(t + eta.t[i] + eta.k2d[ni+i])/12-theta3) 
  cos2 <- theta4[i]*cos(2*pi*(t + eta.t[i] + eta.k2d[ni+i])/12-theta5) 
  BSL <- eta.k1d[ni+i]+theta1[i]*(1+cos1+cos2)  
  t.new <- (occ-1)*24 + t 
  temp.id <- c(temp.id,rep(i,times=t.length)) 
  temp.time <- c(temp.time,t.new) 
  temp.bsl <- c(temp.bsl,BSL) 
} 
temp.bsl <- signif(temp.bsl,digits=5) 
data <- data.frame(temp.id,temp.time,temp.bsl) 
names(data) <- c("ID","TIME","BSL") 
BSL <- data 
 
## merge baseline BP and PK concentration into one file  
bpk <- merge ( x=pk, y=data, by.x=c("ID","TIME"), by.y=c("ID","TIME"), all=T) 
bpk <- bpk[order(bpk$ID,bpk$TIME),] 
 
### PD parameters from Table IV in "Clin Pharmacol Ther,1998.64(6):p.622-35"  
## emax and its interindividual variability   
EMAX <- 0.167 # population mean of Emax 
ETA.EMAX <- 0.502 # population parameter of inter individual variability in Emax 
emax <- signif(EMAX*exp(rnorm(ni,0,ETA.EMAX)),digits=4) # simulate individual values of Emax 
## ec50 and its interindividual variability   
EC50 <- 0.945 
ETA.EC50 <- 1.3 
ec50 <- signif(EC50*exp(rnorm(ni,0,ETA.EC50)),digits=4) 
 
## merge individual PD parameter values with simulated PK data and baseline BP 
 
bpk$EMAX <- rep(emax, each=length(bpk$TIME[bpk$ID==1])) 
bpk$EC50 <- rep(ec50, each=length(bpk$TIME[bpk$ID==1])) 
 
## simulate one month BP values with moxonidine treatment based on PD model 
bpk$BP <- bpk$BSL*(1-bpk$EMAX*bpk$CE/(bpk$EC50+bpk$CE)) 
bpk$CE <- round(bpk$CE,digits=4) 
bpk$BP <- signif(bpk$BP,digits=4) 
 
## add placebo effect ~ N(4,2) 
d1 <- bpk 
pb <- rnorm(ni,mean=4, sd=2) # simulate placebo effects 
d2 <- data.frame(id,pb) 
names(d2) <- c("ID","PB") 
d <- merge(d1,d2,by=("ID"),all=T) 
d <- transform(d,SBP=BP-PB) 
d <- d[,c("ID","TIME","BSL","SBP")] 
dd1 <- aggregate(list(BSL.median=d$BSL),by=list(TIME=d$TIME),median) # calculate population mean of 
Baseline SBP (day one) at kth clinical trial 
dd2 <- aggregate(list(SBP.median=d$SBP),by=list(TIME=d$TIME),median) # calculate population mean of 
post treatment SBP (day 30th) at kth clinical trial 
dd <- merge(dd1,dd2,by=("TIME"),all=T) 
dd$REP <- k 
resp <- rbind(resp,dd)# add kth clinical trial results with all previous trials results 
} 
 
resp <- data.frame(resp) 
write.table(resp, 
file=paste(Dir,"sbp","_",nsim1,"_",nsim2,"_data2",".csv",sep=""),quote=F,sep=",",row.names=F) 
 
1.5 R code for figure 4 
 
library(MIfuns) 
Dir <- "C:/YuYanJin/code/" # working direction 
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reapply <- function(x,INDEX,FUN,...){ 
           y <- tapply(x,INDEX) 
           z <- tapply(x,INDEX,FUN,...) 
           z[y] 
} 
 
## imput 1000 sets of population parameters  
p <- read.table(file=paste(Dir,"p.csv",sep=""),as.is=T,header=T,skip=0,sep=",")  
 
## import simulated concentration NONMEM output  
pk <- read.table(file=paste(Dir,"1.tab",sep=""),as.is=T,header=T,skip=1) 
pk <- pk[,c('ID','TIME','CONC','CE')] 
 
## import SBP baseline values from three NDAs accross four study 
theta1 <- read.table(file=paste(Dir,"m24sbp.csv",sep=""),as.is=T,header=T,skip=0,sep=",") 
theta1 <- theta1[,c("SBP")] 
 
ni <- length(id<-1:length(theta1))     # total number of subjects 
month <- 1     # time period of the simulation 
sderror <- 5   # standard deviation of Cuff BP measurement error 
 
set.seed(234) 
seeds <- round(runif(1000, min=1, max=20000)) 
n <- 1          # sequence of runs 
nsim <- 1000       # replicates per run 
nsim1 <- (n-1)*nsim+1    # starting replicates in the specific run 
nsim2 <- n*nsim          # ending replicates in the specific run 
bp.bsl <- NULL 
dev <- NULL 
 
for (k in nsim1:nsim2){ 
seed <- seeds[k] 
set.seed(seed) 
# parameter from table III data set 2 in "Clin Pharmacol Ther,1998.64(6):p.622-35"  
 
mu1 <- c(0,0,0) 
Omega1 <- matrix(c(p[k,5],p[k,6],p[k,8],p[k,6],p[k,7],p[k,9],p[k,8],p[k,9],p[k,10]),3,3) 
mu2 <- c(0,0) 
Omega2 <- matrix(c(p[k,11],p[k,12],p[k,12],p[k,13]),2,2) 
iiv <- mvrnorm(n = ni, mu1, Omega1, empirical = FALSE) 
iov <- mvrnorm(n = ni*2, mu2, Omega2, empirical = FALSE) #one occasion for each individual 
 
THETA2 <- p[k,2]  ### population mean for amplitude of first cosine term   
THETA3 <- 0       ### phase shift in first cosine term  
THETA4 <- p[k,3]  ### population mean for amplitude of second cosine term  
THETA5 <- p[k,4]  ### phase shift in second cosine term  
 
eta2 <- iiv[,2]   ### interindividual variability in amplitude of first cosine term(THETA2) 
eta4 <- iiv[,2]   ### interindividual variability in amplitude of second cosine term(THETA4) 
eta.t <- iiv[,3] ### interindividual variability on clock time (hr) 
eta.k1d <- iov[,1]  ### interoccasion variability in baseline (mm Hg) 
eta.k2d <- iov[,2]  ### interoccasion variability on clock time (hr) 
theta2 <- THETA2*(1+eta2) ### generate individual values (n=3642)in amplitude of first cosine term  
theta3 <- THETA3                      ### no variability in phase shift in first cosine term 
theta4 <- THETA4*(1+eta4) ### generate individual values (n=3642)in amplitude of second cosine term  
theta5 <- THETA5                      ### no variability in phase shift in second cosine term 
 
temp.id <- NULL 
temp.time <- NULL 
temp.bsl <- NULL 
occ <- month*30 
 
# generate one month baseline BP profile from equation 3 in "Clin Pharmacol Ther,1998.64(6):p.622-35"  
for (i in 1:ni){   
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       t <- seq(0,24,by=0.2)         
  t.length <- length(t) 
  cos1 <- theta2[i]*cos(pi*(t + eta.t[i] + eta.k2d[i])/12-theta3) 
  cos2 <- theta4[i]*cos(2*pi*(t + eta.t[i] + eta.k2d[i])/12-theta5) 
  BSL <- eta.k1d[i]+theta1[i]*(1+cos1+cos2)  
  temp.id <- c(temp.id,rep(i,times=t.length)) 
  temp.time <- c(temp.time,t) 
  temp.bsl <- c(temp.bsl,BSL)   
       cos1 <- theta2[i]*cos(pi*(t + eta.t[i] + eta.k2d[ni+i])/12-theta3) 
  cos2 <- theta4[i]*cos(2*pi*(t + eta.t[i] + eta.k2d[ni+i])/12-theta5) 
  BSL <- eta.k1d[ni+i]+theta1[i]*(1+cos1+cos2)  
  t.new <- (occ-1)*24 + t 
  temp.id <- c(temp.id,rep(i,times=t.length)) 
  temp.time <- c(temp.time,t.new) 
  temp.bsl <- c(temp.bsl,BSL) 
} 
temp.bsl <- signif(temp.bsl,digits=5) 
data <- data.frame(temp.id,temp.time,temp.bsl) 
names(data) <- c("ID","TIME","BSL") 
BSL <- data 
 
## merge baseline BP and PK concentration into one file  
bpk <- merge ( x=pk, y=data, by.x=c("ID","TIME"), by.y=c("ID","TIME"), all=T) 
bpk <- bpk[order(bpk$ID,bpk$TIME),] 
 
## PD parameters from Table IV in "Clin Pharmacol Ther,1998.64(6):p.622-35"  
## emax and its interindividual variability   
EMAX <- 0.167  
ETA.EMAX <- 0.502 
emax <- signif(EMAX*exp(rnorm(ni,0,ETA.EMAX)),digits=4) 
## ec50 and its interindividual variability   
EC50 <- 0.945 
ETA.EC50 <- 1.3 
ec50 <- signif(EC50*exp(rnorm(ni,0,ETA.EC50)),digits=4) 
## merge individual PD parameter values with simulated PK data and baseline BP 
bpk$EMAX <- rep(emax, each=length(bpk$TIME[bpk$ID==1])) 
bpk$EC50 <- rep(ec50, each=length(bpk$TIME[bpk$ID==1])) 
## simulate one month BP values with moxonidine treatment from equation 5 
bpk$BP <- bpk$BSL*(1-bpk$EMAX*bpk$CE/(bpk$EC50+bpk$CE)) 
## export PKPD simulation results    
bpk$CE <- round(bpk$CE,digits=4) 
bpk$BP <- signif(bpk$BP,digits=4) 
### add placebo effect ###  
pb <- rnorm(ni,mean=4, sd=2) 
pb <- data.frame(id,pb) 
names(pb) <- c("ID","PB") 
bpk.pb <- merge(bpk,pb,by="ID",all=T) 
bpk.pb <- transform(bpk.pb, BP.pb=BP-PB) 
bpk <- bpk.pb 
 
d <- bpk[, c("ID","TIME","BSL","BP.pb")] 
names(d) <- c("ID","TIME","BSL","BP") 
temp.table <- NULL 
### figure4a 
 
bp1 <- NULL 
bsl1 <- NULL 
## extract baseline SBP from 8AM to 6PM for each subject  
for (m in 1:ni){ 
  for (n in 8:18){ 
      temp.bsl1 <- d$BSL[d$ID==m & d$TIME==n] 
      temp.bsl2 <- c(n,m,temp.bsl1) 
      bsl1 <- rbind(bsl1,temp.bsl2) 
} 
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} 
bsl1 <- data.frame(bsl1) 
names(bsl1)<- c("TIME","ID","BSL") 
bsl1 <- transform(bsl1,BSL.mean=reapply(BSL,INDEX=TIME,FUN=mean)) # calculate baseline population 
mean SBP at each clock time during 8AM~6PM 
bsl2 <- bsl1[,c("TIME","BSL.mean")] 
bsl2 <- unique(bsl2) 
 
# extract post treatment SBP from 8AM to 6PM for each subject   
for (m in 1:ni){ 
  for (n in 704:714){ 
      temp.bp1 <- d$BP[d$ID==m & d$TIME==n] 
      temp.bp2 <- c(n,m,temp.bp1) 
      bp1 <- rbind(bp1,temp.bp2) 
} 
} 
bp1 <- data.frame(bp1) 
names(bp1)<- c("TIME","ID","SBP") 
bp1 <- transform(bp1,BP.mean=reapply(SBP,INDEX=TIME,FUN=mean),TIME=TIME-696) # calculate post 
treatment population mean SBP at each clock time during 8AM~6PM 
bp2 <- bp1[,c("TIME","BP.mean")] 
bp2 <- unique(bp2) 
 
temp.bp.bsl<- cbind(rep(k,length(bp2$TIME)),merge(bp2,bsl2,by="TIME",all=T))# merge baseline and post 
treatment SBP 
names(temp.bp.bsl) <- c("REP","TIME","BP.mean","BSL.mean") 
bp.bsl <- rbind(bp.bsl,temp.bp.bsl) # row bind kth trial results with all previous trial results 
 
### figure4b  
 
dd <- temp.bp.bsl 
temp.dev1 <- NULL 
temp.dev2 <- NULL 
 
# calculate SBP decreases from baseline at each clock time  
# z represents baseline (before treatment) clinic visit time  
 
for (z in 8:18){ 
   temp.dev1 <- rep(dd$BSL.mean[dd$TIME==z],length(dd$TIME))- dd$BP.mean 
   temp.dev2 <- cbind(temp.dev2,temp.dev1)  
} 
temp.dev3 <- data.frame(rep(k,length(dd$TIME)),8:18,temp.dev2) 
 
# column "TIME" represents post treatment clinic visit times from 8AM~6PM 
# column "BSL8": measured SBP decreases from baseline at various follow up visit time if baseline visit was 
at 8AM 
# column "BSL18": measured SBP decreases from baseline at various follow up visit time if baseline visit 
was at 6PM 
names (temp.dev3) <- c("REP","TIME","BSL8","BSL9","BSL10","BSL11","BSL12", 
                 "BSL13","BSL14","BSL15","BSL16","BSL17","BSL18") 
 dev <- rbind(dev,temp.dev3) # conbine kth clinical trial results with all previous trial results 
} 
 
bp.bsl <- data.frame(bp.bsl) 
dev <- data.frame(dev) 
write.table(bp.bsl, file=paste(Dir,"bp.bsl","_",nsim1,"_",nsim2,".csv",sep=""),quote=F,sep=",",row.names=F) 
write.table(dev,file=paste(Dir,"dev","_",nsim1,"_",nsim2,".csv",sep=""),quote=F,sep=",",row.names=F) 
 
1.6 R code for figure 5 
 
## the code is almost same as figure4.R (see denote in figure4.R) 
library(MIfuns) 
Dir <- "W:/final_sa/aim1/figure5/" 
ni <- length(id<-1:3840) 
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month <- 1 
 
reapply <- function(x,INDEX,FUN,...){ 
           y <- tapply(x,INDEX) 
           z <- tapply(x,INDEX,FUN,...) 
           z[y] 
} 
 
p <- read.table(file=paste(Dir,"p.csv",sep=""),as.is=T,header=T,skip=0,sep=",") 
set.seed(234) 
seeds <- round(runif(1000, min=1, max=20000)) 
 
n <- 1 
nsim <- 1000 
nsim1 <- (n-1)*nsim+1 
nsim2 <- n*nsim 
bp.bsl <- NULL 
dev <- NULL 
theta1 <- read.table(file=paste(Dir,"m24sbp.csv",sep=""),as.is=T,header=T,skip=0,sep=",") 
theta1 <- theta1[,c("SBP")] 
 
for (k in nsim1:nsim2){ 
seed <- seeds[k] 
set.seed(seed) 
## model from "Clin Pharmacol Ther,1998.64(6):p.622-35"  
mu1 <- c(0,0,0) 
Omega1 <- matrix(c(p[k,5],p[k,6],p[k,8],p[k,6],p[k,7],p[k,9],p[k,8],p[k,9],p[k,10]),3,3) 
mu2 <- c(0,0) 
Omega2 <- matrix(c(p[k,11],p[k,12],p[k,12],p[k,13]),2,2) 
iiv <- mvrnorm(n = ni, mu1, Omega1, empirical = FALSE) 
iov <- mvrnorm(n = ni*2, mu2, Omega2, empirical = FALSE) #one occasion for each individual 
 
THETA2 <- p[k,2]  ### population mean for amplitude of first cosine term   
THETA3 <- 0       ### phase shift in first cosine term  
THETA4 <- p[k,3]  ### population mean for amplitude of second cosine term  
THETA5 <- p[k,4]  ### phase shift in second cosine term  
 
eta1 <- iiv[,1] 
eta2 <- iiv[,2]   ### interindividual variability in amplitude of first cosine term(THETA2) 
eta4 <- iiv[,2]   ### interindividual variability in amplitude of second cosine term(THETA4) 
eta.t <- iiv[,3] ### interindividual variability on clock time (hr) 
eta.k1d <- iov[,1]  ### interoccasion variability in baseline (mm Hg) 
eta.k2d <- iov[,2]  ### interoccasion variability on clock time (hr) 
theta2 <- THETA2*(1+eta2) ### generate individual values (n=3642)in amplitude of first cosine term  
theta3 <- THETA3                      ### no variability in phase shift in first cosine term 
theta4 <- THETA4*(1+eta4) ### generate individual values (n=3642)in amplitude of second cosine term  
theta5 <- THETA5                      ### no variability in phase shift in second cosine term 
 
temp.id <- NULL 
temp.time <- NULL 
temp.bsl <- NULL 
occ <- month*30 
 
for (i in 1:ni){ 
        t <- seq(0,24,by=0.2) 
          t.length <- length(t) 
  cos1 <- theta2[i]*cos(pi*(t + eta.t[i] + eta.k2d[i])/12-theta3) 
  cos2 <- theta4[i]*cos(2*pi*(t + eta.t[i] + eta.k2d[i])/12-theta5) 
  BSL <- eta.k1d[i]+theta1[i]*(1+cos1+cos2)  
  temp.id <- c(temp.id,rep(i,times=t.length)) 
  temp.time <- c(temp.time,t) 
  temp.bsl <- c(temp.bsl,BSL) 
      cos1 <- theta2[i]*cos(pi*(t + eta.t[i] + eta.k2d[ni+i])/12-theta3) 
  cos2 <- theta4[i]*cos(2*pi*(t + eta.t[i] + eta.k2d[ni+i])/12-theta5) 
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  BSL <- eta.k1d[ni+i]+theta1[i]*(1+cos1+cos2)  
  t.new <- (occ-1)*24 + t 
  temp.id <- c(temp.id,rep(i,times=t.length)) 
  temp.time <- c(temp.time,t.new) 
  temp.bsl <- c(temp.bsl,BSL) 
} 
temp.bsl <- signif(temp.bsl,digits=5) 
data <- data.frame(temp.id,temp.time,temp.bsl) 
names(data) <- c("ID","TIME","BSL") 
BSL <- data 
 
sft <- rnorm(ni,mean=11.8, sd=10.9) 
sft1 <- data.frame(id,sft) 
names(sft1) <- c("ID","RESP") 
data.sft <- merge(data,sft1,by="ID",all=T) 
data.sft <- transform(data.sft, BP=BSL-RESP) 
bpk <- data.sft 
bpk <- bpk[,c("ID","TIME","BSL","BP")] 
names(bpk) <- c("ID","TIME","BSL","BP") 
d <- bpk 
 
bp1 <- NULL 
bsl1 <- NULL 
for (m in 1:ni){ 
  for (n in 704:714){ 
      temp.bp1 <- d$BP[d$ID==m & d$TIME==n] 
      temp.bp2 <- c(n,m,temp.bp1) 
      bp1 <- rbind(bp1,temp.bp2) 
} 
} 
 
for (m in 1:ni){ 
  for (n in 8:18){ 
      temp.bsl1 <- d$BSL[d$ID==m & d$TIME==n] 
      temp.bsl2 <- c(n,m,temp.bsl1) 
      bsl1 <- rbind(bsl1,temp.bsl2) 
} 
} 
 
bp1 <- data.frame(bp1) 
bsl1 <- data.frame(bsl1) 
names(bp1)<- c("TIME","ID","SBP") 
names(bsl1)<- c("TIME","ID","BSL") 
  
bp1 <- transform(bp1,BP.mean=reapply(SBP,INDEX=TIME,FUN=mean),TIME=TIME-696) 
bp2 <- bp1[,c("TIME","BP.mean")] 
bp2 <- unique(bp2) 
 
bsl1 <- transform(bsl1,BSL.mean=reapply(BSL,INDEX=TIME,FUN=mean)) 
bsl2 <- bsl1[,c("TIME","BSL.mean")] 
bsl2 <- unique(bsl2) 
 
temp.bp.bsl<- cbind(rep(k,length(bp2$TIME)),merge(bp2,bsl2,by="TIME",all=T)) 
names(temp.bp.bsl) <- c("REP","TIME","BP.mean","BSL.mean") 
 
bp.bsl <- rbind(bp.bsl,temp.bp.bsl) 
dd <- temp.bp.bsl 
 
temp.dev1 <- NULL 
temp.dev2 <- NULL 
for (z in 8:18){ 
   temp.dev1 <- rep(dd$BSL.mean[dd$TIME==z],length(dd$TIME))- dd$BP.mean 
   temp.dev2 <- cbind(temp.dev2,temp.dev1)  
} 
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temp.dev3 <- data.frame(rep(k,length(dd$TIME)),8:18,temp.dev2) 
names (temp.dev3) <- c("REP","TIME","BSL8","BSL9","BSL10","BSL11","BSL12", 
                 "BSL13","BSL14","BSL15","BSL16","BSL17","BSL18") 
dev <- rbind(dev,temp.dev3) 
} 
 
bp.bsl <- data.frame(bp.bsl) 
dev <- data.frame(dev) 
write.table(bp.bsl, file=paste(Dir,"bp.bsl","_",nsim1,"_",nsim2,".csv",sep=""),quote=F,sep=",",row.names=F) 
write.table(dev,file=paste(Dir,"dev","_",nsim1,"_",nsim2,".csv",sep=""),quote=F,sep=",",row.names=F) 
 
1.7 R code for table 2 and table 3 
 
library(MIfuns) 
Dir <- "C:/YuYanJin/code/" # working direction 
reapply <- function(x,INDEX,FUN,...){ 
           y <- tapply(x,INDEX) 
           z <- tapply(x,INDEX,FUN,...) 
           z[y] 
} 
# Calculate percentage of patients with |measured delta BP - true delta BP| >= 10 or 5 mm Hg 
percentile <- function (x){ 
            d1 <- length(x[x>=10])/length(x) 
            d2 <- length(x[x<=-10])/length(x) 
            d3 <- length(x[x>=5])/length(x) 
            d4 <- length(x[x<=-5])/length(x) 
            d5 <- d1+d2 
            d6 <- d3+d4 
            d <-c(d5,d6) 
            return (d) 
} 
 
# imput 1000 sets of population parameters  
p <- read.table(file=paste(Dir,"p.csv",sep=""),as.is=T,header=T,skip=0,sep=",")  
# import simulated concentration from NONMEM output  
pk <- read.table(file=paste(Dir,"1.tab",sep=""),as.is=T,header=T,skip=1) 
pk <- pk[,c('ID','TIME','CONC','CE')] 
# import SBP baseline values from three NDAs accross four study 
theta1 <- read.table(file=paste(Dir,"m24sbp.csv",sep=""),as.is=T,header=T,skip=0,sep=",") 
theta1 <- theta1[,c("SBP")] 
ni <- length(id<-1:length(theta1))     # total number of subjects 
month <- 1     # time period of the simulation 
sderror <- 5   # standard deviation of Cuff BP measurement error 
set.seed(234) 
seeds <- round(runif(1000, min=1, max=20000)) 
 
n <- 1          # sequence of runs 
nsim <- 1000       # replicates per run 
nsim1 <- (n-1)*nsim+1    # starting replicates in the specific run 
nsim2 <- n*nsim          # ending replicates in the specific run 
 
table2 <- NULL 
table3 <- NULL 
 
# kth replicate of clinical trial 
for (k in nsim1:nsim2){ 
seed <- seeds[k] 
set.seed(seed) 
## model from "Clin Pharmacol Ther,1998.64(6):p.622-35"  
mu1 <- c(0,0,0) 
Omega1 <- matrix(c(p[k,5],p[k,6],p[k,8],p[k,6],p[k,7],p[k,9],p[k,8],p[k,9],p[k,10]),3,3) 
mu2 <- c(0,0) 
Omega2 <- matrix(c(p[k,11],p[k,12],p[k,12],p[k,13]),2,2) 
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iiv <- mvrnorm(n = ni, mu1, Omega1, empirical = FALSE)   # inter-individual variability  
iov <- mvrnorm(n = ni*2, mu2, Omega2, empirical = FALSE) # inter-occasion variability two occasion (day 
one and day 30) for each individual 
 
THETA2 <- p[k,2]  ### population mean for amplitude of first cosine term   
THETA3 <- 0       ### phase shift in first cosine term  
THETA4 <- p[k,3]  ### population mean for amplitude of second cosine term  
THETA5 <- p[k,4]  ### phase shift in second cosine term  
 
eta2 <- iiv[,2]   ### interindividual variability in amplitude of first cosine term(THETA2) 
eta4 <- iiv[,2]   ### interindividual variability in amplitude of second cosine term(THETA4) 
eta.t <- iiv[,3] ### interindividual variability on clock time (hr) 
eta.k1d <- iov[,1]  ### interoccasion variability in baseline (mm Hg) 
eta.k2d <- iov[,2]  ### interoccasion variability on clock time (hr) 
theta2 <- THETA2*(1+eta2) ### generate individual values (n=3642)in amplitude of first cosine term  
theta3 <- THETA3                      ### no variability in phase shift in first cosine term 
theta4 <- THETA4*(1+eta4) ### generate individual values (n=3642)in amplitude of second cosine term  
theta5 <- THETA5                      ### no variability in phase shift in second cosine term 
 
temp.id <- NULL 
temp.time <- NULL 
temp.bsl <- NULL 
occ <- month*30 
 
for (i in 1:ni){           
       t <- seq(0,24,by=0.2)         
  t.length <- length(t) 
  cos1 <- theta2[i]*cos(pi*(t + eta.t[i] + eta.k2d[i])/12-theta3) 
  cos2 <- theta4[i]*cos(2*pi*(t + eta.t[i] + eta.k2d[i])/12-theta5) 
  BSL <- eta.k1d[i]+theta1[i]*(1+cos1+cos2)  
  temp.id <- c(temp.id,rep(i,times=t.length)) 
  temp.time <- c(temp.time,t) 
  temp.bsl <- c(temp.bsl,BSL)   
       cos1 <- theta2[i]*cos(pi*(t + eta.t[i] + eta.k2d[ni+i])/12-theta3) 
  cos2 <- theta4[i]*cos(2*pi*(t + eta.t[i] + eta.k2d[ni+i])/12-theta5) 
  BSL <- eta.k1d[ni+i]+theta1[i]*(1+cos1+cos2)  
  t.new <- (occ-1)*24 + t 
  temp.id <- c(temp.id,rep(i,times=t.length)) 
  temp.time <- c(temp.time,t.new) 
  temp.bsl <- c(temp.bsl,BSL) 
} 
temp.bsl <- signif(temp.bsl,digits=5) 
data <- data.frame(temp.id,temp.time,temp.bsl) 
names(data) <- c("ID","TIME","BSL") 
BSL <- data 
# merge baseline BP and PK concentration into one file  
bpk <- merge ( x=pk, y=data, by.x=c("ID","TIME"), by.y=c("ID","TIME"), all=T) 
bpk <- bpk[order(bpk$ID,bpk$TIME),] 
 
### PD parameters from Table IV in "Clin Pharmacol Ther,1998.64(6):p.622-35"  
## emax and its interindividual variability   
EMAX <- 0.167  
ETA.EMAX <- 0.502 
emax <- signif(EMAX*exp(rnorm(ni,0,ETA.EMAX)),digits=4) 
## ec50 and its interindividual variability   
EC50 <- 0.945 
ETA.EC50 <- 1.3 
ec50 <- signif(EC50*exp(rnorm(ni,0,ETA.EC50)),digits=4) 
## merge individual PD parameter values with simulated PK data and baseline BP 
bpk$EMAX <- rep(emax, each=length(bpk$TIME[bpk$ID==1])) 
bpk$EC50 <- rep(ec50, each=length(bpk$TIME[bpk$ID==1])) 
## simulate one month BP values with moxonidine treatment from equation 5 
bpk$BP <- bpk$BSL*(1-bpk$EMAX*bpk$CE/(bpk$EC50+bpk$CE)) 
bpk$CE <- round(bpk$CE,digits=4) 
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bpk$BP <- signif(bpk$BP,digits=4) 
### add placebo effect ~ N(4,2)   
pb <- rnorm(ni,mean=4, sd=2) 
pb <- data.frame(id,pb) 
names(pb) <- c("ID","PB") 
bpk.pb <- merge(bpk,pb,by="ID",all=T) 
bpk.pb <- transform(bpk.pb, BP.pb=BP-PB) 
bpk <- bpk.pb 
bpk <- bpk[,c("ID","TIME","BSL","BP.pb")] 
names(bpk) <- c("ID","TIME","BSL","BP") 
### calculate office hour mean SBP at baseline  
d <- bpk 
d1 <- d[d$TIME>=8,] 
dd <- d1[d1$TIME<=18,] 
dd <- transform(dd,bsl=reapply(BSL,INDEX=ID,FUN=mean)) 
dd <- dd[,c("ID","bsl")] 
dd <- unique(dd) 
dd1 <- dd 
### calculate office hour mean SBP at day30 BP  
d <- bpk 
d1 <- d[d$TIME>=704,] 
dd <- d1[d1$TIME<=714,] 
dd <- transform(dd,mbp=reapply(BP,INDEX=ID,FUN=mean)) 
dd <- dd[,c("ID","mbp")] 
dd <- unique(dd) 
dd2 <- dd 
## true BP change with drug effect ### 
d <- merge(dd1,dd2,by="ID",all=T) 
d <- transform(d, delta=bsl-mbp) 
d <- d[order(d$ID),] 
 
### calculate cuff measured BP changes from baseline at random clinic visit time ##  
# generate random clinic visit times  
visittime1 <- round(runif(ni, min=8, max=18)) # random clinic visit time at baseline 
visittime2 <- round(runif(ni, min=704, max=714)) # first random clinic visit time on day 30th 
visittime3 <- round(runif(ni, min=704, max=714)) # second random clinic visit time on day 30th 
 
# extract true BP at the clinic visit time based on PKPD simulation results  
temp.true1 <- NULL 
temp.true2 <- NULL 
temp.true3 <- NULL 
 
for (m in 1:ni){ 
 true1 <- bpk$BSL[bpk$ID==m & bpk$TIME==visittime1[m]]  
 temp.true1 <- c(temp.true1,true1) 
 true2 <- bpk$BP[bpk$ID==m & bpk$TIME==visittime2[m]]  
 temp.true2 <- c(temp.true2,true2) 
      true3 <- bpk$BP[bpk$ID==m & bpk$TIME==visittime3[m]]  
 temp.true3 <- c(temp.true3,true3) 
} 
 
true.obs <- data.frame(1:ni,temp.true1,temp.true2,temp.true3) 
names(true.obs) <- c("ID","truebsl","truebp1","truebp2") 
# generate cuff measurement error ~ N(0,5)  
true.obs$errorBP1 <- rnorm(ni,sd=sderror) 
true.obs$errorBP2 <- rnorm(ni,sd=sderror) 
true.obs$errorBP3 <- rnorm(ni,sd=sderror) 
# generate observed cuff BP at clinic visit times  
true.obs <- transform(true.obs, 
cuffbsl=truebsl+errorBP1, 
cuffbp1=truebp1+errorBP2, 
cuffbp2=truebp2+errorBP3) 
## calculate cuff measured BP decrease from baseline  
true.obs <- transform(true.obs,cuff5delt=cuffbsl-cuffbp1,cuff0delt=truebsl-truebp1) 
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## merge measured BP decrease with true BP decrease from baseline ##  
bp <- merge(true.obs,d,by="ID",all=T) 
bp <- transform(bp,dev5=cuff5delt-delta,dev0=cuff0delt-delta,dev12=cuffbp1-cuffbp2) 
## percent of patients with deviation greater than 5 mm Hg or 10 mm Hg  
temp.table2 <- c(k,mean(bp$delta),sd(bp$delta),mean(bp$cuff0delt),sd(bp$cuff0delt), 
            mean(bp$cuff5delt),sd(bp$cuff5delt),percentile(bp$dev0),percentile(bp$dev5),percentile(bp$dev12)) 
table2 <- rbind(table2,temp.table2) 
 
## TABLE 3 
 
# calculate cuff measured BP changes from baseline at matched clinic visit times for both baseline and after 
30 days treatment ##  
 
for (q in 8:18) 
{ spetime <- 24*29+q 
  temp.true<- NULL 
  true.obs <- NULL 
  temp.bsl <- NULL 
  for (j in 1:ni){ 
 true <- bpk$BP[bpk$ID==j & bpk$TIME==spetime]  
 temp.true <- c(temp.true,true) 
      bsl <- bpk$BSL[bpk$ID==j & bpk$TIME==q]  
      temp.bsl <- c(temp.bsl,bsl) 
      } 
  true.obs <- data.frame(1:ni,temp.true,temp.bsl) 
  names(true.obs) <- c("ID","true","bsl") 
  true.obs$errorBP1 <- rnorm(ni,sd=sderror)## generate cuff measurement error with SD  
  true.obs$errorBP2 <- rnorm(ni,sd=sderror)## generate cuff measurement error with SD  
 
  true.obs <- transform(true.obs,cuffbsl=bsl+errorBP1,cuffbp=true+errorBP2) ## generate observed cuff BP 
at clinic visit times  
   
  true.obs <- transform(true.obs,cuff0delt=bsl-true, cuff5delt=cuffbsl-cuffbp) 
  true.obs$time <- q 
  dd <- merge(true.obs,d,by="ID",all=T) 
  dd <- dd[,c("ID","time","delta","cuff0delt","cuff5delt")] 
  dd <- transform(dd,dev0=cuff0delt-delta,dev5=cuff5delt-delta,ddev=cuff5delt-cuff0delt) 
r <- 
c(k,q,mean(dd$delta),sd(dd$delta),mean(dd$cuff0delt),sd(dd$cuff0delt),mean(dd$cuff5delt),sd(dd$cuff5delt)
,percentile(dd$dev0),percentile(dd$dev5),percentile(dd$ddev)) 
table3 <- rbind(table3,r) 
} 
} 
write.table(table2, file=paste(Dir,"table2","_",nsim1,"_",nsim2,".csv",sep=""),quote=F,sep=",",row.names=F) 
write.table(table3, file=paste(Dir,"table3","_",nsim1,"_",nsim2,".csv",sep=""),quote=F,sep=",",row.names=F) 
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APPENDIX B: CODE FOR SIXTH CHAPTER  
 

 
2.1 R code for figures (type I antihypertensive agents: moxonidine)  
 
library(MIfuns) 
Dir <- "C:/yuyan/code/" 
ni <- length(id<-1:3840) 
month <- 1 
 
#functions 
reapply <- function(x,INDEX,FUN,...){ 
           y <- tapply(x,INDEX) 
           z <- tapply(x,INDEX,FUN,...) 
           z[y] 
} 
# write a function which will divide continous BP into four different BP groups based on JNC guidline  
JNC_BP <- function(x) { 
             y<- ifelse(x<120 & x>=0,1, 
                   ifelse(x<140&x>=120,2, 
                     ifelse(x<160 & x>=140,3,4))) 
             return(y) 
          } 
# round observed BP to nearest 5 or 10  
nround5 <- function(x) { 
             temp <- round(x,0) 
             unit <- temp/10 
             temp1 <- floor(unit)*10+5 
             temp1[(unit-floor(unit)) <=0.2] <- floor(unit[(unit-floor(unit))<=0.2])*10 
             temp1[(unit-floor(unit)) >=0.8] <- ceiling(unit[(unit-floor(unit))>=0.8])*10 
             return(temp1) 
} 
# Calculate % of patients whose difference in measured BP and true BP were greater than 10 or 5 mm Hg 
percentile <- function (x){ 
            d1 <- length(x[x>=10])/length(x) 
            d2 <- length(x[x<=-10])/length(x) 
            d3 <- length(x[x>=5])/length(x) 
            d4 <- length(x[x<=-5])/length(x) 
            d5 <- d1+d2 
            d6 <- d3+d4 
            d <-c(d5,d6) 
            return (d) 
} 
 
p <- read.table(file=paste(Dir,"p.csv",sep=""),as.is=T,header=T,skip=0,sep=",") 
pk <- read.table(file=paste(Dir,"1.tab",sep=""),as.is=T,header=T,skip=1) 
pk <- pk[,c('ID','TIME','CONC','CE')] 
set.seed(234) 
seeds <- round(runif(1000, min=1, max=20000)) 
n <- 1 
nsim <- 1000 
nsim1 <- (n-1)*nsim+1 
nsim2 <- n*nsim 
fig1 <- NULL 
fig2 <- NULL 
 
theta1 <- read.table(file=paste(Dir,"m24sbp.csv",sep=""),as.is=T,header=T,skip=0,sep=",") 
theta1 <- theta1[,c("SBP")] 
 
for (k in nsim1:nsim2){ 
seed <- seeds[k] 
set.seed(seed) 
sderror <- 5 
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## parameter from table III data set 2 in "Clin Pharmacol Ther,1998.64(6):p.622-35"  
mu1 <- c(0,0,0) 
Omega1 <- matrix(c(p[k,5],p[k,6],p[k,8],p[k,6],p[k,7],p[k,9],p[k,8],p[k,9],p[k,10]),3,3) 
mu2 <- c(0,0) 
Omega2 <- matrix(c(p[k,11],p[k,12],p[k,12],p[k,13]),2,2) 
iiv <- mvrnorm(n = ni, mu1, Omega1, empirical = FALSE) 
iov <- mvrnorm(n = 2*ni, mu2, Omega2, empirical = FALSE) #one occasion for each individual 
 
THETA2 <- p[k,2]  ### population mean for amplitude of first cosine term   
THETA3 <- 0       ### phase shift in first cosine term  
THETA4 <- p[k,3]  ### population mean for amplitude of second cosine term  
THETA5 <- p[k,4]  ### phase shift in second cosine term  
 
eta2 <- iiv[,2]   ### interindividual variability in amplitude of first cosine term(THETA2) 
eta4 <- iiv[,2]   ### interindividual variability in amplitude of second cosine term(THETA4) 
eta.t <- iiv[,3] ### interindividual variability on clock time (hr) 
eta.k1d <- iov[,1]  ### interoccasion variability in baseline (mm Hg) 
eta.k2d <- iov[,2]  ### interoccasion variability on clock time (hr) 
theta2 <- THETA2*(1+eta2) ### generate individual values (n=3642)in amplitude of first cosine term  
theta3 <- THETA3                ### no variability in phase shift in first cosine term 
theta4 <- THETA4*(1+eta4) ### generate individual values (n=3642)in amplitude of second cosine term  
theta5 <- THETA5                ### no variability in phase shift in second cosine term 
 
temp.id <- NULL 
temp.time <- NULL 
temp.bsl <- NULL 
occ <- month*30 
 
# generate one month baseline BP profile from equation 3 in "Clin Pharmacol Ther,1998.64(6):p.622-35"  
for (i in 1:ni){ 
       t <- seq(0,24,by=0.2)         
  t.length <- length(t) 
  cos1 <- theta2[i]*cos(pi*(t + eta.t[i] + eta.k2d[i])/12-theta3) 
  cos2 <- theta4[i]*cos(2*pi*(t + eta.t[i] + eta.k2d[i])/12-theta5) 
  BSL <- eta.k1d[i]+theta1[i]*(1+cos1+cos2)  
  temp.id <- c(temp.id,rep(i,times=t.length)) 
  temp.time <- c(temp.time,t) 
  temp.bsl <- c(temp.bsl,BSL)   
       cos1 <- theta2[i]*cos(pi*(t + eta.t[i] + eta.k2d[ni+i])/12-theta3) 
  cos2 <- theta4[i]*cos(2*pi*(t + eta.t[i] + eta.k2d[ni+i])/12-theta5) 
  BSL <- eta.k1d[ni+i]+theta1[i]*(1+cos1+cos2)  
  t.new <- (occ-1)*24 + t 
  temp.id <- c(temp.id,rep(i,times=t.length)) 
  temp.time <- c(temp.time,t.new) 
  temp.bsl <- c(temp.bsl,BSL) 
} 
temp.bsl <- signif(temp.bsl,digits=5) 
data <- data.frame(temp.id,temp.time,temp.bsl) 
names(data) <- c("ID","TIME","BSL") 
BSL <- data 
 
## merge baseline BP and PK concentration into one file  
bpk <- merge ( x=pk, y=data, by.x=c("ID","TIME"), by.y=c("ID","TIME"), all=T) 
bpk <- bpk[order(bpk$ID,bpk$TIME),] 
## PD parameters from Table IV in "Clin Pharmacol Ther,1998.64(6):p.622-35"  
## emax and its interindividual variability   
EMAX <- 0.167  
ETA.EMAX <- 0.502 
emax <- signif(EMAX*exp(rnorm(ni,0,ETA.EMAX)),digits=4) 
 
## ec50 and its interindividual variability   
EC50 <- 0.945 
ETA.EC50 <- 1.3 
ec50 <- signif(EC50*exp(rnorm(ni,0,ETA.EC50)),digits=4) 
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## merge individual PD parameter values with simulated PK data and baseline BP 
bpk$EMAX <- rep(emax, each=length(bpk$TIME[bpk$ID==1])) 
bpk$EC50 <- rep(ec50, each=length(bpk$TIME[bpk$ID==1])) 
## simulate one month BP values with moxonidine treatment from equation 5 
bpk$BP <- bpk$BSL*(1-bpk$EMAX*bpk$CE/(bpk$EC50+bpk$CE)) 
## export PKPD simulation results    
bpk$CE <- round(bpk$CE,digits=4) 
bpk$BP <- signif(bpk$BP,digits=4) 
## add placebo effect ###  
pb <- rnorm(ni,mean=4, sd=2) 
pb <- data.frame(id,pb) 
names(pb) <- c("ID","PB") 
bpk.pb <- merge(bpk,pb,by="ID",all=T) 
bpk.pb <- transform(bpk.pb, BP.pb=BP-PB) 
bpk <- bpk.pb 
bpk <- bpk[,c("ID","TIME","BSL","BP.pb")] 
names(bpk) <- c("ID","TIME","BSL","BP") 
 
## calculate office hour mean at day0 baseline  
d <- bpk 
d1 <- d[d$TIME>=8,] 
d2 <- d1[d1$TIME<=18,] 
dd <- d2 
dd <- transform(dd,bsl=reapply(BSL,INDEX=ID,FUN=mean)) 
dd <- dd[,c("ID","bsl")] 
dd <- unique(dd) 
dd1 <- dd 
 
### calculate office hour mean at day30 BP  
d <- bpk 
d1 <- d[d$TIME>=704,] 
d2 <- d1[d1$TIME<=714,] 
dd <- d2 
dd <- transform(dd,mbp=reapply(BP,INDEX=ID,FUN=mean)) 
dd <- dd[,c("ID","mbp")] 
dd <- unique(dd) 
dd2 <- dd 
 
## true BP change with drug effect  
d <- merge(dd1,dd2,by="ID",all=T) 
d <- transform(d, delta=bsl-mbp) 
d <- d[order(d$ID),] 
 
## precise clinic visit time to each clock time/ one measurement per visit  
 
## generate two random clinic visits for each patients on day 30th ### 
for (q in 8:18){ 
visittime <- 24*29+q 
 
## extract true BPs at the clinic visits from PKPD simulation results 
temp.true <- NULL 
for (i in 1:ni){ 
 true <- bpk$BP[bpk$ID==i & bpk$TIME==visittime]  
 temp.true <- c(temp.true,true) 
} 
 
## generate a data frame with information of ID, visit time, true BP  
true.obs <- data.frame(1:ni,visittime, temp.true) 
names(true.obs) <- c("ID","VISITTIME","TRU")  
## generate a data frame with information of ID, visit time, true BP ## 
true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,d,by="ID",all=T) 
names(true.obs) <- c("ID","VISITTIME","TRU","BSL","TBP","DEL") 
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true.obs$errorBP<- rnorm(ni,sd=sderror) 
true.obs <- transform(true.obs,OBS1=TRU+errorBP,OBS2=nround5(TRU+errorBP)) 
true.obs <- transform( true.obs, T=JNC_BP(TBP),B1=JNC_BP(OBS1),B2=JNC_BP(OBS2)) 
 
## compare consistancy of true BPs and "observed" BPs at two visits ## 
true.obs$CONSIS1 <- ifelse(true.obs$T==true.obs$B1,0,1) 
true.obs$CONSIS2 <- ifelse(true.obs$T==true.obs$B2,0,1) 
## calculate the inconsistant decision making between two visits ### 
P1 <- length(true.obs$CONSIS1[true.obs$CONSIS1==1])/length(true.obs$CONSIS1) 
P2 <- length(true.obs$CONSIS2[true.obs$CONSIS2==1])/length(true.obs$CONSIS2) 
## conbine results into one file ## 
P<- c(k,q,P1,P2) 
fig1 <- rbind(fig1,P) 
} 
 
# precise clinic visit time to each clock time/ two measurements per visit  
for (q in 8:18){ 
visittime <- rep(24*29+q,ni) 
# generate random clinic visit time on day 30th between 8AM-6PM ##   
# visittime <- runif(ni, min=24*29+8, max=24*29+18) 
ms1 <- visittime 
ms2 <- ms1 + 0.2 # measure #2 occurs 12 mins after measure 1 
 
# extract true BP at the clinic visit time based on PKPD simulation results  
temp.true1 <- NULL 
temp.true2 <- NULL 
for (i in 1:ni){ 
 true1 <- bpk$BP[bpk$ID==i & bpk$TIME==ms1[i]]  
 temp.true1 <- c(temp.true1,true1) 
 true2 <- bpk$BP[bpk$ID==i & bpk$TIME==ms2[i]]  
 temp.true2 <- c(temp.true2,true2) 
} 
true.obs1 <- data.frame(1:ni,ms1,temp.true1) 
true.obs2 <- data.frame(1:ni,ms2,temp.true2) 
names(true.obs1) <- c("ID","TIME","TRU") 
names(true.obs2) <- c("ID","TIME","TRU") 
true.obs <- rbind(true.obs1,true.obs2) 
true.obs <- true.obs[order(true.obs$ID,true.obs$TIME),] 
 
## generate cuff measurement error with various SD  
true.obs$errorBP <- rnorm(2*ni,sd=sderror) 
## generate observed cuff BP at clinic visit times  
true.obs <- transform(true.obs,OBS1=TRU+errorBP,OBS2=TRU+errorBP) 
 
true.obs <- transform( 
     true.obs, 
     avebp1=reapply(OBS1,INDEX=ID,FUN=mean), 
     avebp2=reapply(OBS2,INDEX=ID,FUN=mean) 
) 
 
true.obs <- true.obs[,c("ID","avebp1","avebp2")] 
true.obs <- unique(true.obs) 
true.obs <- merge(true.obs,d,by="ID",all=T) 
names(true.obs) <- c("ID","OBS1","OBS2","BSL","TBP","DEL") 
true.obs <- transform(true.obs,B1=JNC_BP(OBS1),B2=JNC_BP(OBS2),T=JNC_BP(TBP)) 
 
## compare "observed" BP with "true" BP at various measurement error   
 
true.obs$CONSIS1 <- ifelse(true.obs$B1==true.obs$T,0,1) 
true.obs$CONSIS2 <- ifelse(true.obs$B2==true.obs$T,0,1) 
### calculate the percent of patients with BP misclassification  
P1 <- length(true.obs$CONSIS1[true.obs$CONSIS1==1])/length(true.obs$CONSIS1) 
P2 <- length(true.obs$CONSIS2[true.obs$CONSIS2==1])/length(true.obs$CONSIS2) 
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P <- c(k,q,P1,P2) 
fig2 <- rbind(fig2,P) 
} 
} 
 
fig1 <- data.frame(fig1) 
fig2 <- data.frame(fig2) 
write.table(fig1, 
file=paste(Dir,"aim22_one","_",nsim1,"_",nsim2,".csv",sep=""),quote=F,sep=",",row.names=F) 
write.table(fig2, 
file=paste(Dir,"aim22_two","_",nsim1,"_",nsim2,".csv",sep=""),quote=F,sep=",",row.names=F) 
 
2.2 R code for tables (type I antihypertensive agents: moxonidine) 
 
library(MIfuns) 
Dir <- "C:/Yuyan/code/" 
 
ni <- length(id<-1:3840) 
month <- 1 
 
# functions  
reapply <- function(x,INDEX,FUN,...){ 
           y <- tapply(x,INDEX) 
           z <- tapply(x,INDEX,FUN,...) 
           z[y] 
} 
## write a function which will divide continous BP into four different BP groups based on JNC guidline  
JNC_BP <- function(x) { 
             y<- ifelse(x<120 & x>=0,1, 
                   ifelse(x<140&x>=120,2, 
                     ifelse(x<160 & x>=140,3,4))) 
             return(y) 
          } 
# round observed BP to nearest 5 or 10  
nround5 <- function(x) { 
             temp <- round(x,0) 
             unit <- temp/10 
             temp1 <- floor(unit)*10+5 
             temp1[(unit-floor(unit)) <=0.2] <- floor(unit[(unit-floor(unit))<=0.2])*10 
             temp1[(unit-floor(unit)) >=0.8] <- ceiling(unit[(unit-floor(unit))>=0.8])*10 
             return(temp1) 
} 
# Calculate percentage of patients whose difference in measured BP and true BP were greater than 10 or 5 
mm Hg 
percentile <- function (x){ 
            d1 <- length(x[x>=10])/length(x) 
            d2 <- length(x[x<=-10])/length(x) 
            d3 <- length(x[x>=5])/length(x) 
            d4 <- length(x[x<=-5])/length(x) 
            d5 <- d1+d2 
            d6 <- d3+d4 
            d <-c(d5,d6) 
            return (d) 
} 
 
p <- read.table(file=paste(Dir,"p.csv",sep=""),as.is=T,header=T,skip=0,sep=",") 
 
## import simulation results from NONMEM output  
pk <- read.table(file=paste(Dir,"1.tab",sep=""),as.is=T,header=T,skip=1) 
pk <- pk[,c('ID','TIME','CONC','CE')] 
 
set.seed(234) 
seeds <- round(runif(1000, min=1, max=20000)) 
n <- 1 
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nsim <- 1000 
nsim1 <- (n-1)*nsim+1 
nsim2 <- n*nsim 
 
table1 <- NULL 
table2 <- NULL 
 
theta1 <- read.table(file=paste(Dir,"m24sbp.csv",sep=""),as.is=T,header=T,skip=0,sep=",") 
theta1 <- theta1[,c("SBP")] 
 
for (k in nsim1:nsim2){ 
seed <- seeds[k] 
set.seed(seed) 
sderror <- 5 
 
# parameter from table III data set 2 in "Clin Pharmacol Ther,1998.64(6):p.622-35"  
mu1 <- c(0,0,0) 
Omega1 <- matrix(c(p[k,5],p[k,6],p[k,8],p[k,6],p[k,7],p[k,9],p[k,8],p[k,9],p[k,10]),3,3) 
mu2 <- c(0,0) 
Omega2 <- matrix(c(p[k,11],p[k,12],p[k,12],p[k,13]),2,2) 
iiv <- mvrnorm(n = ni, mu1, Omega1, empirical = FALSE) 
iov <- mvrnorm(n = 2*ni, mu2, Omega2, empirical = FALSE) #one occasion for each individual 
 
THETA2 <- p[k,2]  ### population mean for amplitude of first cosine term   
THETA3 <- 0       ### phase shift in first cosine term  
THETA4 <- p[k,3]  ### population mean for amplitude of second cosine term  
THETA5 <- p[k,4]  ### phase shift in second cosine term  
eta2 <- iiv[,2]   ### interindividual variability in amplitude of first cosine term(THETA2) 
eta4 <- iiv[,2]   ### interindividual variability in amplitude of second cosine term(THETA4) 
eta.t <- iiv[,3] ### interindividual variability on clock time (hr) 
eta.k1d <- iov[,1]  ### interoccasion variability in baseline (mm Hg) 
eta.k2d <- iov[,2]  ### interoccasion variability on clock time (hr) 
theta2 <- THETA2*(1+eta2) ### generate individual values (n=3642)in amplitude of first cosine term  
theta3 <- THETA3                      ### no variability in phase shift in first cosine term 
theta4 <- THETA4*(1+eta4) ### generate individual values (n=3642)in amplitude of second cosine term  
theta5 <- THETA5                      ### no variability in phase shift in second cosine term 
temp.id <- NULL 
temp.time <- NULL 
temp.bsl <- NULL 
occ <- month*30 
 
# generate one month baseline BP profile from equation 3 in "Clin Pharmacol Ther,1998.64(6):p.622-35"  
for (i in 1:ni){             
        t <- seq(0,24,by=0.2)         
  t.length <- length(t) 
  cos1 <- theta2[i]*cos(pi*(t + eta.t[i] + eta.k2d[i])/12-theta3) 
  cos2 <- theta4[i]*cos(2*pi*(t + eta.t[i] + eta.k2d[i])/12-theta5) 
  BSL <- eta.k1d[i]+theta1[i]*(1+cos1+cos2)  
  temp.id <- c(temp.id,rep(i,times=t.length)) 
  temp.time <- c(temp.time,t) 
  temp.bsl <- c(temp.bsl,BSL)   
       cos1 <- theta2[i]*cos(pi*(t + eta.t[i] + eta.k2d[ni+i])/12-theta3) 
  cos2 <- theta4[i]*cos(2*pi*(t + eta.t[i] + eta.k2d[ni+i])/12-theta5) 
  BSL <- eta.k1d[ni+i]+theta1[i]*(1+cos1+cos2)  
  t.new <- (occ-1)*24 + t 
  temp.id <- c(temp.id,rep(i,times=t.length)) 
  temp.time <- c(temp.time,t.new) 
  temp.bsl <- c(temp.bsl,BSL) 
} 
temp.bsl <- signif(temp.bsl,digits=5) 
data <- data.frame(temp.id,temp.time,temp.bsl) 
names(data) <- c("ID","TIME","BSL") 
BSL <- data 
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## merge baseline BP and PK concentration into one file  
bpk <- merge ( x=pk, y=data, by.x=c("ID","TIME"), by.y=c("ID","TIME"), all=T) 
bpk <- bpk[order(bpk$ID,bpk$TIME),] 
## PD parameters from Table IV in "Clin Pharmacol Ther,1998.64(6):p.622-35"  
## emax and its interindividual variability   
EMAX <- 0.167  
ETA.EMAX <- 0.502 
emax <- signif(EMAX*exp(rnorm(ni,0,ETA.EMAX)),digits=4) 
## ec50 and its interindividual variability   
EC50 <- 0.945 
ETA.EC50 <- 1.3 
ec50 <- signif(EC50*exp(rnorm(ni,0,ETA.EC50)),digits=4) 
 
## merge individual PD parameter values with simulated PK data and baseline BP 
bpk$EMAX <- rep(emax, each=length(bpk$TIME[bpk$ID==1])) 
bpk$EC50 <- rep(ec50, each=length(bpk$TIME[bpk$ID==1])) 
## simulate one month BP values with moxonidine treatment from equation 5 
bpk$BP <- bpk$BSL*(1-bpk$EMAX*bpk$CE/(bpk$EC50+bpk$CE)) 
## export PKPD simulation results    
bpk$CE <- round(bpk$CE,digits=4) 
bpk$BP <- signif(bpk$BP,digits=4) 
 
## add placebo effect ###  
pb <- rnorm(ni,mean=4, sd=2) 
pb <- data.frame(id,pb) 
names(pb) <- c("ID","PB") 
bpk.pb <- merge(bpk,pb,by="ID",all=T) 
bpk.pb <- transform(bpk.pb, BP.pb=BP-PB) 
bpk <- bpk.pb 
bpk <- bpk[,c("ID","TIME","BSL","BP.pb")] 
names(bpk) <- c("ID","TIME","BSL","BP") 
 
## calculate office hour mean at day0 baseline  
d <- bpk 
d1 <- d[d$TIME>=8,] 
dd <- d1[d1$TIME<=18,] 
dd <- transform(dd,bsl=reapply(BSL,INDEX=ID,FUN=mean)) 
dd <- dd[,c("ID","bsl")] 
dd <- unique(dd) 
dd1 <- dd 
 
## calculate office hour mean at day30 BP 
d <- bpk 
d1 <- d[d$TIME>=704,] 
dd <- d1[d1$TIME<=714,] 
dd <- transform(dd,mbp=reapply(BP,INDEX=ID,FUN=mean)) 
dd <- dd[,c("ID","mbp")] 
dd <- unique(dd) 
dd2 <- dd 
 
## true BP change with drug effect  
d <- merge(dd1,dd2,by="ID",all=T) 
d <- transform(d, delta=bsl-mbp) 
d <- d[order(d$ID),] 
 
## generate two random clinic visits for each patients on day 30th  
visittime1 <- runif(ni, min=24*29+8, max=24*29+18) 
visittime1 <- round(visittime1) 
visittime2 <- runif(ni, min=24*29+8, max=24*29+18) 
visittime2 <- round(visittime2) 
 
## extract true BPs at the clinic visits from PKPD simulation results  
temp.true1 <- NULL 
for (i in 1:ni){ 
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 true <- bpk$BP[bpk$ID==i & bpk$TIME==visittime1[i]]  
 temp.true1 <- c(temp.true1,true) 
} 
temp.true2 <- NULL 
for (i in 1:ni){ 
 true <- bpk$BP[bpk$ID==i & bpk$TIME==visittime2[i]]  
 temp.true2 <- c(temp.true2,true) 
} 
 
## generate a data frame with information of ID, visit time, true BP  
true.obs <- data.frame(1:ni,visittime1, temp.true1, visittime2, temp.true2) 
names(true.obs) <- c("ID","VISITTIME1","TRU1","VISITTIME2","TRU2")  
true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,d,by="ID",all=T) 
names(true.obs) <- c("ID","VISITTIME1","TRU1","VISITTIME2","TRU2","BSL","TBP","DEL") 
## simulate measurement error for each individual visit assuming sd of measure error =5  
true.obs$errorBP1 <- rnorm(ni,sd=sderror) 
true.obs$errorBP2 <- rnorm(ni,sd=sderror) 
true.obs <- 
transform(true.obs,OBS1=TRU1+errorBP1,OBS2=TRU2+errorBP2,OBS3=nround5(TRU1+errorBP1),OBS4
=nround5(TRU2+errorBP2)) 
 
## divide observed BP and "true" BP at clinic visits into BP groups  
true.obs <- transform( 
true.obs,T=JNC_BP(TBP),B1=JNC_BP(OBS1),B2=JNC_BP(OBS2),B3=JNC_BP(OBS3),B4=JNC_BP(OBS
4)) 
 
## compare consistancy of true BPs and "observed" BPs at two visits  
true.obs$CONSIS1 <- ifelse(true.obs$T==true.obs$B1,0,1) 
true.obs$CONSIS2 <- ifelse(true.obs$T==true.obs$B3,0,1) 
true.obs$CONSIS3 <- ifelse(true.obs$B1==true.obs$B2,0,1) 
true.obs$CONSIS4 <- ifelse(true.obs$B3==true.obs$B4,0,1) 
 
## calculate the BP misclassification rate  
P1 <- length(true.obs$CONSIS1[true.obs$CONSIS1==1])/length(true.obs$CONSIS1) 
P2 <- length(true.obs$CONSIS2[true.obs$CONSIS2==1])/length(true.obs$CONSIS2) 
P3 <- length(true.obs$CONSIS3[true.obs$CONSIS3==1])/length(true.obs$CONSIS3) 
P4 <- length(true.obs$CONSIS4[true.obs$CONSIS4==1])/length(true.obs$CONSIS4) 
P <- c(k,P1,P2,P3,P4) 
table1 <- rbind(table1,P) 
 
## generate random clinic visit time on day 30th between 8AM-6PM 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
ms1 <- round(visittime) 
ms2 <- ms1 + 0.2 # measure #2 occurs 12 mins after measure 1 
 
## extract true BP at the clinic visit time based on PKPD simulation results  
temp.true1 <- NULL 
temp.true2 <- NULL 
 
for (i in 1:ni){ 
 true1 <- bpk$BP[bpk$ID==i & bpk$TIME==ms1[i]]  
 temp.true1 <- c(temp.true1,true1) 
 true2 <- bpk$BP[bpk$ID==i & bpk$TIME==ms2[i]]  
 temp.true2 <- c(temp.true2,true2) 
} 
 
true.obs1 <- data.frame(1:ni,ms1,temp.true1) 
true.obs2 <- data.frame(1:ni,ms2,temp.true2) 
names(true.obs1) <- c("ID","TIME","TRU") 
names(true.obs2) <- c("ID","TIME","TRU") 
true.obs <- rbind(true.obs1,true.obs2) 
true.obs <- true.obs[order(true.obs$ID,true.obs$TIME),] 
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## generate cuff measurement error with various SD ### 
true.obs$errorBP <- rnorm(2*ni,mean=0,sd=sderror) 
 
## generate observed cuff BP at clinic visit times  
true.obs <- transform(true.obs,OBS1=TRU+errorBP,OBS2=nround5(TRU+errorBP)) 
true.obs <- transform( 
     true.obs, 
     avebp1=reapply(OBS1,INDEX=ID,FUN=mean), 
     avebp2=reapply(OBS2,INDEX=ID,FUN=mean) 
) 
 
## divide observed BP and "true" BP at clinic visit into BP groups    ###  
true.obs <- true.obs[,c("ID","avebp1","avebp2")] 
true.obs <- unique(true.obs) 
true.obs <- merge(true.obs,d,by="ID",all=T) 
names(true.obs) <- c("ID","OBS1","OBS2","BSL","TBP","DEL") 
true.obs <- transform(true.obs,B1=JNC_BP(OBS1),B2=JNC_BP(OBS2),T=JNC_BP(TBP)) 
## compare "observed" BP with "true" BP at various measurement error   
true.obs$CONSIS1 <- ifelse(true.obs$B1==true.obs$T,0,1) 
true.obs$CONSIS2 <- ifelse(true.obs$B2==true.obs$T,0,1) 
## calculate the percent of patients with BP misclassification 
P1 <- length(true.obs$CONSIS1[true.obs$CONSIS1==1])/length(true.obs$CONSIS1) 
P2 <- length(true.obs$CONSIS2[true.obs$CONSIS2==1])/length(true.obs$CONSIS2) 
P <- c(k,P1,P2) 
table2 <- rbind(table2,P) 
} 
table1 <- data.frame(table1) 
table2 <- data.frame(table2) 
write.table(table1, 
file=paste(Dir,"aim21_one","_",nsim1,"_",nsim2,".csv",sep=""),quote=F,sep=",",row.names=F) 
write.table(table2, 
file=paste(Dir,"aim21_two","_",nsim1,"_",nsim2,".csv",sep=""),quote=F,sep=",",row.names=F) 
 
2.3 R code for both figures and tables (type II antihypertensive agents)  
 
library(MIfuns) 
Dir <- "Z:/yuyan/aim2_CI/" 
ni <- length(id<-1:3840) 
month <- 1 
 
# functions  
reapply <- function(x,INDEX,FUN,...){ 
           y <- tapply(x,INDEX) 
           z <- tapply(x,INDEX,FUN,...) 
           z[y] 
} 
 
# write a function which will divide continous BP into four different BP groups based on JNC guidline 
JNC_BP <- function(x) { 
             y<- ifelse(x<120 & x>=0,1, 
                   ifelse(x<140&x>=120,2, 
                     ifelse(x<160 & x>=140,3,4))) 
             return(y) 
          } 
# round observed BP to nearest 5 or 10  
nround5 <- function(x) { 
             temp <- round(x,0) 
             unit <- temp/10 
             temp1 <- floor(unit)*10+5 
             temp1[(unit-floor(unit)) <=0.2] <- floor(unit[(unit-floor(unit))<=0.2])*10 
             temp1[(unit-floor(unit)) >=0.8] <- ceiling(unit[(unit-floor(unit))>=0.8])*10 
             return(temp1) 
} 
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# Calculate percentage of patients whose difference in measured BP and true BP were greater than 10 or 5 
mm Hg 
percentile <- function (x){ 
            d1 <- length(x[x>=10])/length(x) 
            d2 <- length(x[x<=-10])/length(x) 
            d3 <- length(x[x>=5])/length(x) 
            d4 <- length(x[x<=-5])/length(x) 
            d5 <- d1+d2 
            d6 <- d3+d4 
            d <-c(d5,d6) 
            return (d) 
} 
p <- read.table(file=paste(Dir,"p.csv",sep=""),as.is=T,header=T,skip=0,sep=",") 
set.seed(234) 
seeds <- round(runif(1000, min=1, max=20000)) 
 
n <- 1 
nsim <- 1000 
nsim1 <- (n-1)*nsim+1 
nsim2 <- n*nsim 
table1 <- NULL 
fig1 <- NULL 
theta1 <- read.table(file=paste(Dir,"m24sbp.csv",sep=""),as.is=T,header=T,skip=0,sep=",") 
theta1 <- theta1[,c("SBP")] 
 
for (k in nsim1:nsim2){ 
seed <- seeds[k] 
set.seed(seed) 
sderror <-5 
 
## parameter from table III data set 2 in "Clin Pharmacol Ther,1998.64(6):p.622-35"  
 
mu1 <- c(0,0,0) 
Omega1 <- matrix(c(p[k,5],p[k,6],p[k,8],p[k,6],p[k,7],p[k,9],p[k,8],p[k,9],p[k,10]),3,3) 
mu2 <- c(0,0) 
Omega2 <- matrix(c(p[k,11],p[k,12],p[k,12],p[k,13]),2,2) 
iiv <- mvrnorm(n = ni, mu1, Omega1, empirical = FALSE) 
iov <- mvrnorm(n = 2*ni, mu2, Omega2, empirical = FALSE) #one occasion for each individual 
 
THETA2 <- p[k,2]  ### population mean for amplitude of first cosine term   
THETA3 <- 0       ### phase shift in first cosine term  
THETA4 <- p[k,3]  ### population mean for amplitude of second cosine term  
THETA5 <- p[k,4]  ### phase shift in second cosine term  
 
eta2 <- iiv[,2]   ### interindividual variability in amplitude of first cosine term(THETA2) 
eta4 <- iiv[,2]   ### interindividual variability in amplitude of second cosine term(THETA4) 
eta.t <- iiv[,3] ### interindividual variability on clock time (hr) 
eta.k1d <- iov[,1]  ### interoccasion variability in baseline (mm Hg) 
eta.k2d <- iov[,2]  ### interoccasion variability on clock time (hr) 
theta2 <- THETA2*(1+eta2) ### generate individual values (n=3642)in amplitude of first cosine term  
theta3 <- THETA3                      ### no variability in phase shift in first cosine term 
theta4 <- THETA4*(1+eta4) ### generate individual values (n=3642)in amplitude of second cosine term  
theta5 <- THETA5                      ### no variability in phase shift in second cosine term 
 
temp.id <- NULL 
temp.time <- NULL 
temp.bsl <- NULL 
occ <- month*30 
 
### generate one month baseline BP profile from equation 3 in "Clin Pharmacol Ther,1998.64(6):p.622-35"  
for (i in 1:ni){ 
       t <- seq(0,24,by=0.2)         
  t.length <- length(t) 
  cos1 <- theta2[i]*cos(pi*(t + eta.t[i] + eta.k2d[i])/12-theta3) 
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  cos2 <- theta4[i]*cos(2*pi*(t + eta.t[i] + eta.k2d[i])/12-theta5) 
  BSL <- eta.k1d[i]+theta1[i]*(1+cos1+cos2)  
  temp.id <- c(temp.id,rep(i,times=t.length)) 
  temp.time <- c(temp.time,t) 
  temp.bsl <- c(temp.bsl,BSL)   
       cos1 <- theta2[i]*cos(pi*(t + eta.t[i] + eta.k2d[ni+i])/12-theta3) 
  cos2 <- theta4[i]*cos(2*pi*(t + eta.t[i] + eta.k2d[ni+i])/12-theta5) 
  BSL <- eta.k1d[ni+i]+theta1[i]*(1+cos1+cos2)  
  t.new <- (occ-1)*24 + t 
  temp.id <- c(temp.id,rep(i,times=t.length)) 
  temp.time <- c(temp.time,t.new) 
  temp.bsl <- c(temp.bsl,BSL) 
} 
 
temp.bsl <- signif(temp.bsl,digits=5) 
data <- data.frame(temp.id,temp.time,temp.bsl) 
names(data) <- c("ID","TIME","BSL") 
BSL <- data 
 
## assuming drug response is normally distributed ~ N(11.8,10.9) 
sft <- rnorm(ni,mean=11.8, sd=10.9) 
sft1 <- data.frame(id,sft) 
names(sft1) <- c("ID","RESP") 
data.sft <- merge(data,sft1,by="ID",all=T) 
data.sft <- transform(data.sft, BP=BSL-RESP) 
bpk <- data.sft 
bpk <- bpk[,c("ID","TIME","BSL","BP")] 
names(bpk) <- c("ID","TIME","BSL","BP") 
 
## calculate office hour mean at day0 baseline  
d <- bpk 
d1 <- d[d$TIME>=8,] 
d2 <- d1[d1$TIME<=18,] 
dd <- d2 
dd <- transform(dd,bsl=reapply(BSL,INDEX=ID,FUN=mean)) 
dd <- dd[,c("ID","bsl")] 
dd <- unique(dd) 
dd1 <- dd 
 
## calculate office hour mean at day30 BP 
d <- bpk 
d1 <- d[d$TIME>=704,] 
d2 <- d1[d1$TIME<=714,] 
dd <- d2 
dd <- transform(dd,mbp=reapply(BP,INDEX=ID,FUN=mean)) 
dd <- dd[,c("ID","mbp")] 
dd <- unique(dd) 
dd2 <- dd 
 
## true BP change with drug effect  
d <- merge(dd1,dd2,by="ID",all=T) 
d <- transform(d, delta=bsl-mbp) 
d <- d[order(d$ID),] 
 
## generate two random clinic visits for each patients on day 30th  
visittime1 <- runif(ni, min=24*29+8, max=24*29+18) 
visittime1 <- round(visittime1) 
visittime2 <- runif(ni, min=24*29+8, max=24*29+18) 
visittime2 <- round(visittime2) 
 
## extract true BPs at the clinic visits from PKPD simulation results  
temp.true1 <- NULL 
for (i in 1:ni){ 
 true <- bpk$BP[bpk$ID==i & bpk$TIME==visittime1[i]]  
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 temp.true1 <- c(temp.true1,true) 
} 
temp.true2 <- NULL 
for (i in 1:ni){ 
 true <- bpk$BP[bpk$ID==i & bpk$TIME==visittime2[i]]  
 temp.true2 <- c(temp.true2,true) 
} 
 
## generate a data frame with information of ID, visit time, true BP  
true.obs <- data.frame(1:ni,visittime1, temp.true1, visittime2, temp.true2) 
names(true.obs) <- c("ID","VISITTIME1","TRU1","VISITTIME2","TRU2")  
true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,d,by="ID",all=T) 
names(true.obs) <- c("ID","VISITTIME1","TRU1","VISITTIME2","TRU2","BSL","TBP","DEL") 
 
## simulate measurement error for each individual visit assuming sd of measure error =5  
true.obs$errorBP1 <- rnorm(ni,sd=sderror) 
true.obs$errorBP2 <- rnorm(ni,sd=sderror) 
true.obs <- 
transform(true.obs,OBS1=TRU1+errorBP1,OBS2=TRU2+errorBP2,OBS3=nround5(TRU1+errorBP1),OBS4
=nround5(TRU2+errorBP2)) 
## divide observed BP and "true" BP at clinic visits into BP groups  
true.obs <- transform( 
true.obs,T=JNC_BP(TBP),B1=JNC_BP(OBS1),B2=JNC_BP(OBS2),B3=JNC_BP(OBS3),B4=JNC_BP(OBS
4)) 
 
## compare consistancy of true BPs and "observed" BPs at two visits 
true.obs$CONSIS1 <- ifelse(true.obs$T==true.obs$B1,0,1) 
true.obs$CONSIS2 <- ifelse(true.obs$T==true.obs$B3,0,1) 
true.obs$CONSIS3 <- ifelse(true.obs$B1==true.obs$B2,0,1) 
true.obs$CONSIS4 <- ifelse(true.obs$B3==true.obs$B4,0,1) 
 
## calculate the BP misclassification rate 
P1 <- length(true.obs$CONSIS1[true.obs$CONSIS1==1])/length(true.obs$CONSIS1) 
P2 <- length(true.obs$CONSIS2[true.obs$CONSIS2==1])/length(true.obs$CONSIS2) 
P3 <- length(true.obs$CONSIS3[true.obs$CONSIS3==1])/length(true.obs$CONSIS3) 
P4 <- length(true.obs$CONSIS4[true.obs$CONSIS4==1])/length(true.obs$CONSIS4) 
P <- c(k,P1,P2,P3,P4) 
table1 <- rbind(table1,P) 
 
for (q in 8:18){ 
visittime <- 24*29+q 
# extract true BPs at the clinic visits from PKPD simulation results  
temp.true <- NULL 
for (i in 1:ni){ 
 true <- bpk$BP[bpk$ID==i & bpk$TIME==visittime]  
 temp.true <- c(temp.true,true) 
} 
 
## generate a data frame with information of ID, visit time, true BP  
true.obs <- data.frame(1:ni,visittime, temp.true) 
names(true.obs) <- c("ID","VISITTIME","TRU")  
 
## generate a data frame with information of ID, visit time, true BP  
true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,d,by="ID",all=T) 
names(true.obs) <- c("ID","VISITTIME","TRU","BSL","TBP","DEL") 
 
## simulate measurement error for each individual visit assuming sd of measure error =5  
sderror <- 5 
true.obs$errorBP<- rnorm(ni,sd=sderror) 
true.obs <- transform(true.obs,OBS1=TRU+errorBP,OBS2=nround5(TRU+errorBP)) 
 
## divide observed BP and "true" BP at clinic visits into BP groups    
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true.obs <- transform( true.obs, T=JNC_BP(TBP),B1=JNC_BP(OBS1),B2=JNC_BP(OBS2)) 
 
## compare consistancy of true BPs and "observed" BPs  
true.obs$CONSIS1 <- ifelse(true.obs$T==true.obs$B1,0,1) 
true.obs$CONSIS2 <- ifelse(true.obs$T==true.obs$B2,0,1) 
 
## calculate BP misclassfication rate  
P1 <- length(true.obs$CONSIS1[true.obs$CONSIS1==1])/length(true.obs$CONSIS1) 
P2 <- length(true.obs$CONSIS2[true.obs$CONSIS2==1])/length(true.obs$CONSIS2) 
 
## conbine results into one file  
P<- c(k,q,P1,P2) 
fig1 <- rbind(fig1,P) 
} 
} 
table1 <- data.frame(table1) 
fig1 <- data.frame(fig1) 
 
write.table(table1, 
file=paste(Dir,"type_II_table","_",nsim1,"_",nsim2,".csv",sep=""),quote=F,sep=",",row.names=F) 
write.table(fig1, file=paste(Dir,"type_II_fig","_",nsim1,"_",nsim2,".csv",sep=""),quote=F,sep=",",row.names=F) 
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APPENDIX C: CODE FOR SEVENTH CHAPTER 
 
 
3.1 Strategy I 
 
library(MIfuns) 
Dir <- "/home/jiny/final_sa/aim3_CI/I/" # working direction 
cvr <- read.table(file=paste(Dir,"cvr.csv",sep=""),sep=",",header=T,skip=0) # import virtual subject 
characteristics 
# function will be used later 
reapply <- function(x,INDEX,FUN,...){ 
           y <- tapply(x,INDEX) 
           z <- tapply(x,INDEX,FUN,...) 
           z[y] 
} 
theta1 <- cvr[,c("SBP")] 
p <- read.table(file=paste(Dir,"p.csv",sep=""),as.is=T,header=T,skip=0,sep=",") 
set.seed(234) 
seeds <- round(runif(1000, min=1, max=20000)) 
n <- 1 
nsim <- 1000 
nsim1 <- (n-1)*nsim+1 
nsim2 <- n*nsim 
 
table <- NULL 
table90 <- NULL 
 
for (k in nsim1:nsim2){ 
seed <- seeds[k] 
set.seed(seed) 
sderror <- 5 
ni <- length(id <- 1:length(cvr$ID)) #  number of subjects for simulation 
m6 <- NULL 
m7 <- NULL 
# Model from "Clin Pharmacol Ther,1998.64(6):p.622-35"  
mu1 <- c(0,0,0) 
Omega1 <- matrix(c(p[k,5],p[k,6],p[k,8],p[k,6],p[k,7],p[k,9],p[k,8],p[k,9],p[k,10]),3,3) 
mu2 <- c(0,0) 
Omega2 <- matrix(c(p[k,11],p[k,12],p[k,12],p[k,13]),2,2) 
iiv <- mvrnorm(n = ni, mu1, Omega1, empirical = FALSE) 
iov <- mvrnorm(n = ni*2, mu2, Omega2, empirical = FALSE) #one occasion for each individual 
THETA2 <- p[k,2]  ### population mean for amplitude of first cosine term   
THETA3 <- 0       ### phase shift in first cosine term  
THETA4 <- p[k,3]  ### population mean for amplitude of second cosine term  
THETA5 <- p[k,4]  ### phase shift in second cosine term  
eta2 <- iiv[,2]   ### interindividual variability in amplitude of first cosine term(THETA2) 
eta4 <- iiv[,2]   ### interindividual variability in amplitude of second cosine term(THETA4) 
eta.t <- iiv[,3] ### interindividual variability on clock time (hr) 
eta.k1d <- iov[,1]  ### interoccasion variability in baseline (mm Hg) 
eta.k2d <- iov[,2]  ### interoccasion variability on clock time (hr) 
theta2 <- THETA2*(1+eta2) ### generate individual values (n=3642)in amplitude of first cosine term  
theta3 <- THETA3                      ### no variability in phase shift in first cosine term 
theta4 <- THETA4*(1+eta4) ### generate individual values (n=3642)in amplitude of second cosine term  
theta5 <- THETA5                      ### no variability in phase shift in second cosine term 
temp.id <- NULL 
temp.time <- NULL 
temp.bsl <- NULL 
month <- 1  # PK simulation period is one month 
occ <- month*30 
 
# generate one month baseline BP profile from equation 3 in "Clin Pharmacol Ther,1998.64(6):p.622-35" ##  
for (i in 1:ni){ 
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       t <- seq(0,24,by=0.2)         
  t.length <- length(t) 
  cos1 <- theta2[i]*cos(pi*(t + eta.t[i] + eta.k2d[i])/12-theta3) 
  cos2 <- theta4[i]*cos(2*pi*(t + eta.t[i] + eta.k2d[i])/12-theta5) 
  BSL <- eta.k1d[i]+theta1[i]*(1+cos1+cos2)  
  temp.id <- c(temp.id,rep(i,times=t.length)) 
  temp.time <- c(temp.time,t) 
  temp.bsl <- c(temp.bsl,BSL)   
       cos1 <- theta2[i]*cos(pi*(t + eta.t[i] + eta.k2d[ni+i])/12-theta3) 
  cos2 <- theta4[i]*cos(2*pi*(t + eta.t[i] + eta.k2d[ni+i])/12-theta5) 
  BSL <- eta.k1d[ni+i]+theta1[i]*(1+cos1+cos2)  
  t.new <- (occ-1)*24 + t 
  temp.id <- c(temp.id,rep(i,times=t.length)) 
  temp.time <- c(temp.time,t.new) 
  temp.bsl <- c(temp.bsl,BSL) 
} 
temp.bsl <- signif(temp.bsl,digits=5) 
data <- data.frame(temp.id,temp.time,temp.bsl) 
names(data) <- c("ID","TIME","BSL") 
BSL <- data 
 
# generates dose-response   
d <- data.frame(ID=id,al=rnorm(ni,6,12),am=rnorm(ni,3,2),ah=rnorm(ni,2,2), 
                      al2=rnorm(ni,6,12),am2=rnorm(ni,3,2),ah2=rnorm(ni,2,2), 
                      al3=rnorm(ni,6,12),am3=rnorm(ni,3,2),ah3=rnorm(ni,2,2), 
                       bl=rnorm(ni,5,12),bm=rnorm(ni,2,2),bh=rnorm(ni,2,2), 
                       cl=rnorm(ni,5,12),cm=rnorm(ni,2,2),ch=rnorm(ni,2,2), 
                       dl=rnorm(ni,5,12),dm=rnorm(ni,2,2),dh=rnorm(ni,2,2)) 
res <- merge(cvr,merge(d,BSL,by="ID",all=T),by="ID",all=T) 
 
# A low  
d <- res 
d$BP <- ifelse(d$FLAG==1,d$BSL-d$al,d$BSL-d$al-d$bl) 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
errorBP <- rnorm(ni,sd=sderror) 
temp.obs <- NULL 
temp.true <- NULL 
for (i in 1:ni){ 
 true <- d$BP[d$ID==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.true <- c(temp.true,true) 
 temp.obs <- c(temp.obs, obs) 
} 
true.obs <- data.frame(1:ni,visittime, temp.true, temp.obs) 
names(true.obs) <- c("ID","VISITTIME","TRU","OBS")  
true.obs <- merge(true.obs,cvr,by="ID",all=T) 
true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=1,MONTH=1) 
true.obs$class <- ifelse(true.obs$OBS>=140 & true.obs$DIAB==0,2, 
                      ifelse(true.obs$OBS>=130 & true.obs$DIAB==1,2, 
                          ifelse(true.obs$OBS<90,3,1))) 
#1:control;  2:not control;  3:dose is too  
l11 <- true.obs[true.obs$class==1,] 
l12 <- true.obs[true.obs$class==2,] 
l13 <- true.obs[true.obs$class==3,] 
m6 <- NULL 
if (length(l11$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l11[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
} 
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## l13 
if (length(l13$ID)>0){ 
d <- res 
d$BP <- ifelse(d$FLAG==1,d$BSL-d$al2,d$BSL-d$al) 
d <- merge(d,l13,by.x=c("ID"),by.y=c("ID"),all.y=T) 
d <- d[order(d$ID,d$TIME),] 
ni <- length(id <- l13$ID)  
d$flag <- rep(1:ni,each=242) 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
sderror <- 5 
errorBP <- rnorm(ni,sd=sderror) 
temp.obs <- NULL 
for (i in 1:ni){ 
 true <- d$BP[d$flag==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.obs <- c(temp.obs, obs) 
} 
true.obs <- data.frame(id,visittime, temp.obs) 
names(true.obs) <- c("ID","VISITTIME","OBS")  
true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=2,MONTH=2) 
true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,cvr,by=c("ID"),all.x=T) 
true.obs$class <- ifelse(true.obs$OBS>=140 & true.obs$DIAB==0,2, 
                      ifelse(true.obs$OBS>=130 & true.obs$DIAB==1,2, 
                          ifelse(true.obs$OBS<90,3,1))) 
#1:control;  2:not control;  3:dose is too  
l13_1 <- true.obs[true.obs$class==1,] 
l13_2 <- true.obs[true.obs$class==2,] 
l13_3 <- true.obs[true.obs$class==3,] 
 
if(length(l13_1$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l13_1[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
} 
 
m7 <- NULL 
if (length(l13_2$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l13_2[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m1 <- transform(m1,MONTH=1) 
m7 <- rbind(m7,m1) 
} 
 
# l13_3 
if (length(l13_3$ID)>0){ 
d <- res 
d$BP <- ifelse(d$FLAG==1,d$BSL-d$al3,d$BSL-d$al2) 
d <- merge(d,l13_3,by.x=c("ID"),by.y=c("ID"),all.y=T) 
d <- d[order(d$ID,d$TIME),] 
ni <- length(id <- l13_3$ID)  
d$flag <- rep(1:ni,each=242) 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
sderror <- 5 
errorBP <- rnorm(ni,sd=sderror) 
temp.obs <- NULL 
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for (i in 1:ni){ 
 true <- d$BP[d$flag==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.obs <- c(temp.obs, obs) 
} 
true.obs <- data.frame(id,visittime, temp.obs) 
names(true.obs) <- c("ID","VISITTIME","OBS")  
true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=2,MONTH=2) 
true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,cvr,by=c("ID"),all.x=T) 
true.obs$class <- ifelse(true.obs$OBS>=140 & true.obs$DIAB==0,2, 
                      ifelse(true.obs$OBS>=130 & true.obs$DIAB==1,2, 
                          ifelse(true.obs$OBS<90,3,1))) 
#1:control;  2:not control;  3:dose is too  
l13_3_1 <- true.obs[true.obs$class==1,] 
l13_3_2 <- true.obs[true.obs$class==2,] 
l13_3_3 <- true.obs[true.obs$class==3,] 
 
if (length(l13_3_1$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l13_3_1[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
} 
 
if (length(l13_3_2$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l13_3_2[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m1 <- transform(m1,MONTH=1) 
m7 <- rbind(m7,m1) 
} 
 
## l13_3_3 
if (length(l13_3_3$ID)>0){ 
d <- res 
d$BP <- ifelse(d$FLAG==1,d$BSL,d$BSL-d$al3) 
d <- merge(d,l13_3_3,by.x=c("ID"),by.y=c("ID"),all.y=T) 
d <- d[order(d$ID,d$TIME),] 
ni <- length(id <- l13_3_3$ID)  
d$flag <- rep(1:ni,each=242) 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
sderror <- 5 
errorBP <- rnorm(ni,sd=sderror) 
temp.obs <- NULL 
for (i in 1:ni){ 
 true <- d$BP[d$flag==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.obs <- c(temp.obs, obs) 
} 
true.obs <- data.frame(id,visittime, temp.obs) 
names(true.obs) <- c("ID","VISITTIME","OBS")  
 
true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=2,MONTH=2) 
true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,cvr,by=c("ID"),all.x=T) 
true.obs$class <- ifelse(true.obs$OBS>=140 & true.obs$DIAB==0,2, 
                      ifelse(true.obs$OBS>=130 & true.obs$DIAB==1,2, 
                          ifelse(true.obs$OBS<90,3,1))) 
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#1:control;  2:not control;  3:dose is too  
l13_3_3_1 <- true.obs[true.obs$class==1,] 
l13_3_3_2 <- true.obs[true.obs$class==2,] 
l13_3_3_3 <- true.obs[true.obs$class==3,] 
 
if (length(l13_3_3_1$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l13_3_3_1[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
} 
 
if (length(l13_3_3_2$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l13_3_3_2[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m1 <- transform(m1,MONTH=1) 
m7 <- rbind(m7,m1) 
} 
 
if (length(l13_3_3_3$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l13_3_3_3[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m1 <- transform(m1,MONTH=1) 
m7 <- rbind(m7,m1) 
} 
} 
} 
} 
 
## level 12 month 2  
d <- res 
d$BP <- ifelse(d$FLAG==1,d$BSL-d$al-d$am,d$BSL-d$al-d$bl-d$am) 
d <- merge(d,l12,by.x=c("ID"),by.y=c("ID"),all.y=T) 
d <- d[order(d$ID,d$TIME),] 
ni <- length(id <- l12$ID)  
d$flag <- rep(1:ni,each=242) 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
errorBP <- rnorm(ni,sd=sderror) 
temp.obs <- NULL 
for (i in 1:ni){ 
 true <- d$BP[d$flag==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.obs <- c(temp.obs, obs) 
} 
true.obs <- data.frame(id,visittime, temp.obs) 
names(true.obs) <- c("ID","VISITTIME","OBS")  
true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=2,MONTH=2) 
true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,cvr,by=c("ID"),all.x=T) 
true.obs$class <- ifelse(true.obs$OBS>=140 & true.obs$DIAB==0,2, 
                      ifelse(true.obs$OBS>=130 & true.obs$DIAB==1,2, 
                          ifelse(true.obs$OBS<90,3,1))) 
#1:control;  2:not control;  3:dose is too  
l21 <- true.obs[true.obs$class==1,] 
l22 <- true.obs[true.obs$class==2,] 
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l23 <- true.obs[true.obs$class==3,] 
 
m1 <- merge(d[,c("ID","TIME","BP")],l21[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
 
if (length(l23$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l23[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m1 <- transform(m1,MONTH=2) 
m7 <- rbind(m7,m1) 
} 
## l22  
d <- res 
d$BP <- ifelse(d$FLAG==1,d$BSL-d$al-d$am-d$ah,d$BSL-d$al-d$bl-d$am-d$ah) 
d <- merge(d,l22,by.x=c("ID"),by.y=c("ID"),all.y=T) 
d <- d[order(d$ID,d$TIME),] 
ni <- length(id <- l22$ID)  
d$flag <- rep(1:ni,each=242) 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
errorBP <- rnorm(ni,sd=sderror) 
temp.obs <- NULL 
for (i in 1:ni){ 
 true <- d$BP[d$flag==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.obs <- c(temp.obs, obs) 
} 
true.obs <- data.frame(id,visittime, temp.obs) 
names(true.obs) <- c("ID","VISITTIME","OBS")  
true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=2,MONTH=2) 
true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,cvr,by=c("ID"),all.x=T) 
true.obs$class <- ifelse(true.obs$OBS>=140 & true.obs$DIAB==0,2, 
                      ifelse(true.obs$OBS>=130 & true.obs$DIAB==1,2, 
                          ifelse(true.obs$OBS<90,3,1))) 
#1:control;  2:not control;  3:dose is too  
l31 <- true.obs[true.obs$class==1,] 
l32 <- true.obs[true.obs$class==2,] 
l33 <- true.obs[true.obs$class==3,] 
 
m1 <- merge(d[,c("ID","TIME","BP")],l31[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
 
if (length(l33$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l33[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m1 <- transform(m1,MONTH=3) 
m7 <- rbind(m7,m1) 
} 
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##l32 
d <- res 
d$BP <- ifelse(d$FLAG==1,d$BSL-d$al-d$am-d$ah-d$bl,d$BSL-d$al-d$bl-d$am-d$ah-d$bm) 
d <- merge(d,l32,by.x=c("ID"),by.y=c("ID"),all.y=T) 
d <- d[order(d$ID,d$TIME),] 
ni <- length(id <- l32$ID)  
d$flag <- rep(1:ni,each=242) 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
errorBP <- rnorm(ni,sd=sderror) 
temp.obs <- NULL 
for (i in 1:ni){ 
 true <- d$BP[d$flag==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.obs <- c(temp.obs, obs) 
} 
true.obs <- data.frame(id,visittime, temp.obs) 
names(true.obs) <- c("ID","VISITTIME","OBS")  
true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=2,MONTH=2) 
true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,cvr,by=c("ID"),all.x=T) 
true.obs$class <- ifelse(true.obs$OBS>=140 & true.obs$DIAB==0,2, 
                      ifelse(true.obs$OBS>=130 & true.obs$DIAB==1,2, 
                          ifelse(true.obs$OBS<90,3,1))) 
#1:control;  2:not control;  3:dose is too  
l41 <- true.obs[true.obs$class==1,] 
l42 <- true.obs[true.obs$class==2,] 
l43 <- true.obs[true.obs$class==3,] 
m1 <- merge(d[,c("ID","TIME","BP")],l41[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
 
if (length(l43$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l43[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m1 <- transform(m1,MONTH=4) 
m7 <- rbind(m7,m1) 
} 
 
## l42 
d <- res 
d$BP <- ifelse(d$FLAG==1,d$BSL-d$al-d$am-d$ah-d$bl-d$bm,d$BSL-d$al-d$bl-d$am-d$ah-d$bm-d$bh) 
d <- merge(d,l42,by.x=c("ID"),by.y=c("ID"),all.y=T) 
d <- d[order(d$ID,d$TIME),] 
ni <- length(id <- l42$ID)  
d$flag <- rep(1:ni,each=242) 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
errorBP <- rnorm(ni,sd=sderror) 
temp.obs <- NULL 
for (i in 1:ni){ 
 true <- d$BP[d$flag==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.obs <- c(temp.obs, obs) 
} 
true.obs <- data.frame(id,visittime, temp.obs) 
names(true.obs) <- c("ID","VISITTIME","OBS")  
true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=2,MONTH=2) 
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true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,cvr,by=c("ID"),all.x=T) 
true.obs$class <- ifelse(true.obs$OBS>=140 & true.obs$DIAB==0,2, 
                      ifelse(true.obs$OBS>=130 & true.obs$DIAB==1,2, 
                          ifelse(true.obs$OBS<90,3,1))) 
#1:control;  2:not control;  3:dose is too  
l51 <- true.obs[true.obs$class==1,] 
l52 <- true.obs[true.obs$class==2,] 
l53 <- true.obs[true.obs$class==3,] 
 
m1 <- merge(d[,c("ID","TIME","BP")],l51[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
  
if (length(l53$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l53[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m1 <- transform(m1,MONTH=5) 
m7 <- rbind(m7,m1) 
} 
## l52 
d <- res 
d$BP <- ifelse(d$FLAG==1,d$BSL-d$al-d$am-d$ah-d$bl-d$bm-d$bh,d$BSL-d$al-d$bl-d$am-d$ah-d$bm-
d$bh-d$cl) 
d <- merge(d,l52,by.x=c("ID"),by.y=c("ID"),all.y=T) 
d <- d[order(d$ID,d$TIME),] 
ni <- length(id <- l52$ID)  
d$flag <- rep(1:ni,each=242) 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
errorBP <- rnorm(ni,sd=sderror) 
temp.obs <- NULL 
for (i in 1:ni){ 
 true <- d$BP[d$flag==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.obs <- c(temp.obs, obs) 
} 
true.obs <- data.frame(id,visittime, temp.obs) 
names(true.obs) <- c("ID","VISITTIME","OBS")  
true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=2,MONTH=2) 
true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,cvr,by=c("ID"),all.x=T) 
true.obs$class <- ifelse(true.obs$OBS>=140 & true.obs$DIAB==0,2, 
                      ifelse(true.obs$OBS>=130 & true.obs$DIAB==1,2, 
                          ifelse(true.obs$OBS<90,3,1))) 
#1:control;  2:not control;  3:dose is too  
l61 <- true.obs[true.obs$class==1,] 
l62 <- true.obs[true.obs$class==2,] 
l63 <- true.obs[true.obs$class==3,] 
 
m1 <- merge(d[,c("ID","TIME","BP")],l61[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
 
m1 <- merge(d[,c("ID","TIME","BP")],l62[,c("ID","MONTH")],by="ID",all.y=T) 



161 
 

m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
 
if (length(l63$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l63[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m1 <- transform(m1,MONTH=6) 
m7 <- rbind(m7,m1) 
} 
 
if (length(m7$ID)>0){ 
m7 <- transform(m7, REP=k) 
table90 <- rbind(table90,m7) 
} 
 
## CALCULATE CV RISK AT BASELINE  
 
t1 <- res[res$TIME<=18,] 
t1 <- t1[t1$TIME>=8,] 
t1 <- transform(t1,MBP=reapply(BSL,INDEX=ID,FUN=mean),HYP=0) 
risk1 <- t1[,c("ID","MBP","SEX","AGE","TCH","HDL","DIAB","HYP","SMK","SBP")] 
risk1 <- unique(risk1) 
d<- risk1 
d$x <- ifelse(d$SEX==1& d$HYP==0, 3.06117*log(d$AGE)+1.12370*log(d$TCH)-
0.93263*log(d$HDL)+1.93303*log(d$MBP)+0.65451*d$SMK+0.57367*d$DIAB, 
        ifelse(d$SEX==1& d$HYP==1, 3.06117*log(d$AGE)+1.12370*log(d$TCH)-
0.93263*log(d$HDL)+1.99881*log(d$MBP)+0.65451*d$SMK+0.57367*d$DIAB, 
        ifelse(d$SEX==2& d$HYP==0, 2.32888*log(d$AGE)+1.20904*log(d$TCH)-
0.70833*log(d$HDL)+2.76157*log(d$MBP)+0.52873*d$SMK+0.69154*d$DIAB, 
        2.32888*log(d$AGE)+1.20904*log(d$TCH)-
0.70833*log(d$HDL)+2.82263*log(d$MBP)+0.52873*d$SMK+0.69154*d$DIAB))) 
d$p <- ifelse(d$SEX==1, 1-0.88936^exp(d$x-23.9802), 
           1-0.95012^exp(d$x-26.1931)) 
risk1 <- d 
 
## CALCULATE CV RISK MONTH 6 POST TREATMENT  
 
cvr$MBP <- NULL 
t2 <- merge(m6,cvr,by="ID",all.x=T) 
t2 <- transform(t2,HYP=0) 
d <-t2 
 
d$x <- ifelse(d$SEX==1& d$HYP==0, 3.06117*log(d$AGE)+1.12370*log(d$TCH)-
0.93263*log(d$HDL)+1.93303*log(d$MBP)+0.65451*d$SMK+0.57367*d$DIAB, 
        ifelse(d$SEX==1& d$HYP==1, 3.06117*log(d$AGE)+1.12370*log(d$TCH)-
0.93263*log(d$HDL)+1.99881*log(d$MBP)+0.65451*d$SMK+0.57367*d$DIAB, 
        ifelse(d$SEX==2& d$HYP==0, 2.32888*log(d$AGE)+1.20904*log(d$TCH)-
0.70833*log(d$HDL)+2.76157*log(d$MBP)+0.52873*d$SMK+0.69154*d$DIAB, 
        2.32888*log(d$AGE)+1.20904*log(d$TCH)-
0.70833*log(d$HDL)+2.82263*log(d$MBP)+0.52873*d$SMK+0.69154*d$DIAB))) 
 
d$p <- ifelse(d$SEX==1, 1-0.88936^exp(d$x-23.9802), 
           1-0.95012^exp(d$x-26.1931)) 
risk2 <- d 
table <- rbind(table,c(k,mean(risk1$p),mean(risk2$p))) 
} 
table <- data.frame(table) 
names(table) <- c("REP","risk0","risk6_I") 
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table90 <- data.frame(table90) 
write.table(table, file=paste(Dir,"risk_I","_",nsim1,"_",nsim2,".csv",sep=""),quote=F,sep=",",row.names=F) 
write.table(table90, file=paste(Dir,"IDs 
toxi","_",nsim1,"_",nsim2,".csv",sep=""),quote=F,sep=",",row.names=F) 
 
3.2 Strategy II 
 
library(MIfuns) 
Dir <- "W:/final_sa/aim3_CI/II/" 
cvr <- read.table(file=paste(Dir,"cvr.csv",sep=""),sep=",",header=T,skip=0) 
reapply <- function(x,INDEX,FUN,...){ 
           y <- tapply(x,INDEX) 
           z <- tapply(x,INDEX,FUN,...) 
           z[y] 
} 
month <- 1  # PK simulation period is one month 
theta1 <- cvr[,c("SBP")] 
# ONE MONTH BASELINE BP PROFILE SIMULATION  
p <- read.table(file=paste(Dir,"p.csv",sep=""),as.is=T,header=T,skip=0,sep=",") 
set.seed(234) 
seeds <- round(runif(1000, min=1, max=20000)) 
# the part need to be changed  
n <- 1 
nsim <- 1000 
nsim1 <- (n-1)*nsim+1 
nsim2 <- n*nsim 
table <- NULL 
table90 <- NULL 
for (k in nsim1:nsim2){ 
seed <- seeds[k] 
set.seed(seed) 
sderror <- 5 
ni <- length(id <- 1:length(cvr$ID)) #  subjects for simulation 
m6 <- NULL 
m7 <- NULL 
#### Model from "Clin Pharmacol Ther,1998.64(6):p.622-35"  
mu1 <- c(0,0,0) 
Omega1 <- matrix(c(p[k,5],p[k,6],p[k,8],p[k,6],p[k,7],p[k,9],p[k,8],p[k,9],p[k,10]),3,3) 
mu2 <- c(0,0) 
Omega2 <- matrix(c(p[k,11],p[k,12],p[k,12],p[k,13]),2,2) 
iiv <- mvrnorm(n = ni, mu1, Omega1, empirical = FALSE) 
iov <- mvrnorm(n = ni*2, mu2, Omega2, empirical = FALSE) #one occasion for each individual 
THETA2 <- p[k,2]  ### population mean for amplitude of first cosine term   
THETA3 <- 0       ### phase shift in first cosine term  
THETA4 <- p[k,3]  ### population mean for amplitude of second cosine term  
THETA5 <- p[k,4]  ### phase shift in second cosine term  
eta2 <- iiv[,2]   ### interindividual variability in amplitude of first cosine term(THETA2) 
eta4 <- iiv[,2]   ### interindividual variability in amplitude of second cosine term(THETA4) 
eta.t <- iiv[,3] ### interindividual variability on clock time (hr) 
eta.k1d <- iov[,1]  ### interoccasion variability in baseline (mm Hg) 
eta.k2d <- iov[,2]  ### interoccasion variability on clock time (hr) 
theta2 <- THETA2*(1+eta2) ### generate individual values (n=3642)in amplitude of first cosine term  
theta3 <- THETA3                      ### no variability in phase shift in first cosine term 
theta4 <- THETA4*(1+eta4) ### generate individual values (n=3642)in amplitude of second cosine term  
theta5 <- THETA5                      ### no variability in phase shift in second cosine term 
temp.id <- NULL 
temp.time <- NULL 
temp.bsl <- NULL 
occ <- month*30 
 
## generate one month baseline BP profile from equation 3 in "Clin Pharmacol Ther,1998.64(6):p.622-35"  
for (i in 1:ni){             
       t <- seq(0,24,by=0.2)         
  t.length <- length(t) 
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  cos1 <- theta2[i]*cos(pi*(t + eta.t[i] + eta.k2d[i])/12-theta3) 
  cos2 <- theta4[i]*cos(2*pi*(t + eta.t[i] + eta.k2d[i])/12-theta5) 
  BSL <- eta.k1d[i]+theta1[i]*(1+cos1+cos2)  
  temp.id <- c(temp.id,rep(i,times=t.length)) 
  temp.time <- c(temp.time,t) 
  temp.bsl <- c(temp.bsl,BSL)   
       cos1 <- theta2[i]*cos(pi*(t + eta.t[i] + eta.k2d[ni+i])/12-theta3) 
  cos2 <- theta4[i]*cos(2*pi*(t + eta.t[i] + eta.k2d[ni+i])/12-theta5) 
  BSL <- eta.k1d[ni+i]+theta1[i]*(1+cos1+cos2)  
  t.new <- (occ-1)*24 + t 
  temp.id <- c(temp.id,rep(i,times=t.length)) 
  temp.time <- c(temp.time,t.new) 
  temp.bsl <- c(temp.bsl,BSL) 
} 
temp.bsl <- signif(temp.bsl,digits=5) 
data <- data.frame(temp.id,temp.time,temp.bsl) 
names(data) <- c("ID","TIME","BSL") 
BSL <- data 
## generate dose response relationship   
d <- data.frame(ID=id,al=rnorm(ni,6,12),am=rnorm(ni,3,2),ah=rnorm(ni,2,2), 
                      al2=rnorm(ni,6,12),am2=rnorm(ni,3,2),ah2=rnorm(ni,2,2), 
                      al3=rnorm(ni,6,12),am3=rnorm(ni,3,2),ah3=rnorm(ni,2,2), 
                       bl=rnorm(ni,5,12),bm=rnorm(ni,2,2),bh=rnorm(ni,2,2), 
                       cl=rnorm(ni,5,12),cm=rnorm(ni,2,2),ch=rnorm(ni,2,2), 
                       dl=rnorm(ni,5,12),dm=rnorm(ni,2,2),dh=rnorm(ni,2,2)) 
res <- merge(cvr,merge(d,BSL,by="ID",all=T),by="ID",all=T) 
#### A low  
d <- res 
d$BP <- ifelse(d$FLAG==1,d$BSL-d$al-d$am-d$ah,d$BSL-d$al-d$am-d$ah-d$bl-d$bm-d$bh) 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
errorBP <- rnorm(ni,sd=sderror) 
temp.obs <- NULL 
temp.true <- NULL 
for (i in 1:ni){ 
 true <- d$BP[d$ID==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.true <- c(temp.true,true) 
 temp.obs <- c(temp.obs, obs) 
} 
true.obs <- data.frame(1:ni,visittime, temp.true, temp.obs) 
names(true.obs) <- c("ID","VISITTIME","TRU","OBS")  
true.obs <- merge(true.obs,cvr,by="ID",all=T) 
 
true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=1,MONTH=1) 
true.obs$class <- ifelse(true.obs$OBS>=140 & true.obs$DIAB==0,2, 
                      ifelse(true.obs$OBS>=130 & true.obs$DIAB==1,2, 
                          ifelse(true.obs$OBS<90,3,1))) 
#1:control;  2:not control;  3:dose is too  
l11 <- true.obs[true.obs$class==1,] 
l12 <- true.obs[true.obs$class==2,] 
l13 <- true.obs[true.obs$class==3,] 
m6 <- NULL 
if (length(l11$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l11[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
} 
## l13 
if (length(l13$ID)>0){ 
d <- res 
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d$BP <- ifelse(d$FLAG==1,d$BSL-d$al-d$am,d$BSL-d$al-d$am-d$bl-d$bm) 
d <- merge(d,l13,by.x=c("ID"),by.y=c("ID"),all.y=T) 
d <- d[order(d$ID,d$TIME),] 
ni <- length(id <- l13$ID)  
d$flag <- rep(1:ni,each=242) 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
sderror <- 5 
errorBP <- rnorm(ni,sd=sderror) 
temp.obs <- NULL 
for (i in 1:ni){ 
 true <- d$BP[d$flag==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.obs <- c(temp.obs, obs) 
} 
true.obs <- data.frame(id,visittime, temp.obs) 
names(true.obs) <- c("ID","VISITTIME","OBS")  
true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=2,MONTH=2) 
true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,cvr,by=c("ID"),all.x=T) 
true.obs$class <- ifelse(true.obs$OBS>=140 & true.obs$DIAB==0,2, 
                      ifelse(true.obs$OBS>=130 & true.obs$DIAB==1,2, 
                          ifelse(true.obs$OBS<90,3,1))) 
#1:control;  2:not control;  3:dose is too  
l13_1 <- true.obs[true.obs$class==1,] 
l13_2 <- true.obs[true.obs$class==2,] 
l13_3 <- true.obs[true.obs$class==3,] 
 
if(length(l13_1$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l13_1[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
} 
 
m7 <- NULL 
if (length(l13_2$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l13_2[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m1 <- transform(m1,MONTH=1) 
m7 <- rbind(m7,m1) 
} 
## l13_3 
if (length(l13_3$ID)>0){ 
d <- res 
d$BP <- ifelse(d$FLAG==1,d$BSL-d$al,d$BSL-d$al-d$bl) 
d <- merge(d,l13_3,by.x=c("ID"),by.y=c("ID"),all.y=T) 
d <- d[order(d$ID,d$TIME),] 
ni <- length(id <- l13_3$ID)  
d$flag <- rep(1:ni,each=242) 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
sderror <- 5 
errorBP <- rnorm(ni,sd=sderror) 
temp.obs <- NULL 
for (i in 1:ni){ 
 true <- d$BP[d$flag==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.obs <- c(temp.obs, obs) 
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} 
true.obs <- data.frame(id,visittime, temp.obs) 
names(true.obs) <- c("ID","VISITTIME","OBS")  
true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=2,MONTH=2) 
true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,cvr,by=c("ID"),all.x=T) 
true.obs$class <- ifelse(true.obs$OBS>=140 & true.obs$DIAB==0,2, 
                      ifelse(true.obs$OBS>=130 & true.obs$DIAB==1,2, 
                          ifelse(true.obs$OBS<90,3,1))) 
#1:control;  2:not control;  3:dose is too  
l13_3_1 <- true.obs[true.obs$class==1,] 
l13_3_2 <- true.obs[true.obs$class==2,] 
l13_3_3 <- true.obs[true.obs$class==3,] 
 
if (length(l13_3_1$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l13_3_1[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
} 
if (length(l13_3_2$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l13_3_2[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m1 <- transform(m1,MONTH=1) 
m7 <- rbind(m7,m1) 
} 
## l13_3_3 
if (length(l13_3_3$ID)>0){ 
d <- res 
d$BP <- ifelse(d$FLAG==1,d$BSL-d$al2,d$BSL-d$al) 
d <- merge(d,l13_3_3,by.x=c("ID"),by.y=c("ID"),all.y=T) 
d <- d[order(d$ID,d$TIME),] 
ni <- length(id <- l13_3_3$ID)  
d$flag <- rep(1:ni,each=242) 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
sderror <- 5 
errorBP <- rnorm(ni,sd=sderror) 
temp.obs <- NULL 
for (i in 1:ni){ 
 true <- d$BP[d$flag==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.obs <- c(temp.obs, obs) 
} 
true.obs <- data.frame(id,visittime, temp.obs) 
names(true.obs) <- c("ID","VISITTIME","OBS")  
true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=2,MONTH=2) 
true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,cvr,by=c("ID"),all.x=T) 
true.obs$class <- ifelse(true.obs$OBS>=140 & true.obs$DIAB==0,2, 
                      ifelse(true.obs$OBS>=130 & true.obs$DIAB==1,2, 
                          ifelse(true.obs$OBS<90,3,1))) 
#1:control;  2:not control;  3:dose is too  
l13_3_3_1 <- true.obs[true.obs$class==1,] 
l13_3_3_2 <- true.obs[true.obs$class==2,] 
l13_3_3_3 <- true.obs[true.obs$class==3,] 
if (length(l13_3_3_1$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l13_3_3_1[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
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m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
} 
 
if (length(l13_3_3_2$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l13_3_3_2[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m1 <- transform(m1,MONTH=1) 
m7 <- rbind(m7,m1) 
} 
 
if (length(l13_3_3_3$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l13_3_3_3[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m1 <- transform(m1,MONTH=1) 
m7 <- rbind(m7,m1) 
} 
} 
} 
} 
### level 12 month 2  
d <- res 
d$BP <- ifelse(d$FLAG==1,d$BSL-d$al-d$am-d$ah-d$bl-d$bm-d$bh,d$BSL-d$al-d$am-d$ah-d$bl-d$bm-
d$bh-d$cl-d$cm-d$ch) 
d <- merge(d,l12,by.x=c("ID"),by.y=c("ID"),all.y=T) 
d <- d[order(d$ID,d$TIME),] 
ni <- length(id <- l12$ID)  
d$flag <- rep(1:ni,each=242) 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
sderror <- 5 
errorBP <- rnorm(ni,sd=sderror) 
temp.obs <- NULL 
for (i in 1:ni){ 
 true <- d$BP[d$flag==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.obs <- c(temp.obs, obs) 
} 
true.obs <- data.frame(id,visittime, temp.obs) 
names(true.obs) <- c("ID","VISITTIME","OBS")  
true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=2,MONTH=2) 
true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,cvr,by=c("ID"),all.x=T) 
true.obs$class <- ifelse(true.obs$OBS>=140 & true.obs$DIAB==0,2, 
                      ifelse(true.obs$OBS>=130 & true.obs$DIAB==1,2, 
                          ifelse(true.obs$OBS<90,3,1))) 
#1:control;  2:not control;  3:dose is too  
l21 <- true.obs[true.obs$class==1,] 
l22 <- true.obs[true.obs$class==2,] 
l23 <- true.obs[true.obs$class==3,] 
if (length(l21$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l21[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
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m6 <- rbind(m6,m1) 
} 
if (length(l23$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l23[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m1 <- transform(m1,MONTH=2) 
m7 <- rbind(m7,m1) 
} 
### l22  
d <- res 
d$BP <- ifelse(d$FLAG==1,d$BSL-d$al-d$am-d$ah-d$bl-d$bm-d$bh-d$cl-d$cm-d$ch, 
               d$BSL-d$al-d$am-d$ah-d$bl-d$bm-d$bh-d$cl-d$cm-d$ch-d$dl-d$dm-d$dh) 
d <- merge(d,l22,by.x=c("ID"),by.y=c("ID"),all.y=T) 
d <- d[order(d$ID,d$TIME),] 
ni <- length(id <- l22$ID)  
d$flag <- rep(1:ni,each=242) 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
errorBP <- rnorm(ni,sd=sderror) 
temp.obs <- NULL 
for (i in 1:ni){ 
 true <- d$BP[d$flag==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.obs <- c(temp.obs, obs) 
} 
true.obs <- data.frame(id,visittime, temp.obs) 
names(true.obs) <- c("ID","VISITTIME","OBS")  
true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=2,MONTH=2) 
true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,cvr,by=c("ID"),all.x=T) 
true.obs$class <- ifelse(true.obs$OBS>=140 & true.obs$DIAB==0,2, 
                      ifelse(true.obs$OBS>=130 & true.obs$DIAB==1,2, 
                          ifelse(true.obs$OBS<90,3,1))) 
#1:control;  2:not control;  3:dose is too  
l31 <- true.obs[true.obs$class==1,] 
l32 <- true.obs[true.obs$class==2,] 
l33 <- true.obs[true.obs$class==3,] 
if (length(l31$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l31[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
} 
if (length(l33$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l33[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m1 <- transform(m1,MONTH=3) 
m7 <- rbind(m7,m1) 
} 
##l32 
d <- res 
d$BP <- d$BSL-d$al-d$am-d$ah-d$bl-d$bm-d$bh-d$cl-d$cm-d$ch-d$dl-d$dm-d$dh 
d <- merge(d,l32,by.x=c("ID"),by.y=c("ID"),all.y=T) 
d <- d[order(d$ID,d$TIME),] 
ni <- length(id <- l32$ID)  
d$flag <- rep(1:ni,each=242) 
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visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
errorBP <- rnorm(ni,sd=sderror) 
temp.obs <- NULL 
for (i in 1:ni){ 
 true <- d$BP[d$flag==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.obs <- c(temp.obs, obs) 
} 
true.obs <- data.frame(id,visittime, temp.obs) 
names(true.obs) <- c("ID","VISITTIME","OBS")  
true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=2,MONTH=2) 
true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,cvr,by=c("ID"),all.x=T) 
true.obs$class <- ifelse(true.obs$OBS>=140 & true.obs$DIAB==0,2, 
                      ifelse(true.obs$OBS>=130 & true.obs$DIAB==1,2, 
                          ifelse(true.obs$OBS<90,3,1))) 
#1:control;  2:not control;  3:dose is too  
l41 <- true.obs[true.obs$class==1,] 
l42 <- true.obs[true.obs$class==2,] 
l43 <- true.obs[true.obs$class==3,] 
if (length(l41$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l41[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
} 
if (length(l42$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l42[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
} 
if (length(l43$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l43[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m1 <- transform(m1,MONTH=4) 
m7 <- rbind(m7,m1) 
} 
if (length(m7$ID)>0){ 
m7 <- transform(m7, REP=k) 
table90 <- rbind(table90,m7) 
} 
#### CALCULATE CV RISK AT MONTH 6  
cvr$MBP <- NULL 
t2 <- merge(m6,cvr,by="ID",all.x=T) 
t2 <- transform(t2,HYP=0) 
d <-t2 
d$x <- ifelse(d$SEX==1& d$HYP==0, 3.06117*log(d$AGE)+1.12370*log(d$TCH)-
0.93263*log(d$HDL)+1.93303*log(d$MBP)+0.65451*d$SMK+0.57367*d$DIAB, 
        ifelse(d$SEX==1& d$HYP==1, 3.06117*log(d$AGE)+1.12370*log(d$TCH)-
0.93263*log(d$HDL)+1.99881*log(d$MBP)+0.65451*d$SMK+0.57367*d$DIAB, 
        ifelse(d$SEX==2& d$HYP==0, 2.32888*log(d$AGE)+1.20904*log(d$TCH)-
0.70833*log(d$HDL)+2.76157*log(d$MBP)+0.52873*d$SMK+0.69154*d$DIAB, 
        2.32888*log(d$AGE)+1.20904*log(d$TCH)-
0.70833*log(d$HDL)+2.82263*log(d$MBP)+0.52873*d$SMK+0.69154*d$DIAB))) 
d$p <- ifelse(d$SEX==1, 1-0.88936^exp(d$x-23.9802), 
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           1-0.95012^exp(d$x-26.1931)) 
risk2 <- d 
table <- rbind(table,c(k,mean(risk2$p))) 
} 
table <- data.frame(table) 
names(table) <- c("REP","risk6_II") 
table90 <- data.frame(table90) 
write.table(table, file=paste(Dir,"risk_II","_",nsim1,"_",nsim2,".csv",sep=""),quote=F,sep=",",row.names=F) 
write.table(table90, file=paste(Dir,"IDs 
toxi","_II_",nsim1,"_",nsim2,".csv",sep=""),quote=F,sep=",",row.names=F) 
 
3.3 Strategy III 
 
library(MIfuns) 
Dir <- "W:/final_sa/aim3_CI/III/" 
cvr <- read.table(file=paste(Dir,"cvr.csv",sep=""),sep=",",header=T,skip=0) 
## functions 
reapply <- function(x,INDEX,FUN,...){ 
           y <- tapply(x,INDEX) 
           z <- tapply(x,INDEX,FUN,...) 
           z[y] 
} 
month <- 1  # PK simulation period is one month 
theta1 <- cvr[,c("SBP")] 
## ONE MONTH BASELINE BP PROFILE SIMULATION  
p <- read.table(file=paste(Dir,"p.csv",sep=""),as.is=T,header=T,skip=0,sep=",") 
set.seed(234) 
seeds <- round(runif(1000, min=1, max=20000)) 
# the part need to be changed ## 
n <- 1 
nsim <- 1000 
nsim1 <- (n-1)*nsim+1 
nsim2 <- n*nsim 
table <- NULL 
table90 <- NULL 
for (k in nsim1:nsim2){ 
seed <- seeds[k] 
set.seed(seed) 
sderror <- 5 
ni <- length(id <- 1:length(cvr$ID)) #  subjects for simulation 
m6 <- NULL 
m7 <- NULL 
## Model from "Clin Pharmacol Ther,1998.64(6):p.622-35"  
mu1 <- c(0,0,0) 
Omega1 <- matrix(c(p[k,5],p[k,6],p[k,8],p[k,6],p[k,7],p[k,9],p[k,8],p[k,9],p[k,10]),3,3) 
mu2 <- c(0,0) 
Omega2 <- matrix(c(p[k,11],p[k,12],p[k,12],p[k,13]),2,2) 
iiv <- mvrnorm(n = ni, mu1, Omega1, empirical = FALSE) 
iov <- mvrnorm(n = ni*2, mu2, Omega2, empirical = FALSE) #one occasion for each individual 
THETA2 <- p[k,2]  ### population mean for amplitude of first cosine term   
THETA3 <- 0       ### phase shift in first cosine term  
THETA4 <- p[k,3]  ### population mean for amplitude of second cosine term  
THETA5 <- p[k,4]  ### phase shift in second cosine term  
eta2 <- iiv[,2]   ### interindividual variability in amplitude of first cosine term(THETA2) 
eta4 <- iiv[,2]   ### interindividual variability in amplitude of second cosine term(THETA4) 
eta.t <- iiv[,3] ### interindividual variability on clock time (hr) 
eta.k1d <- iov[,1]  ### interoccasion variability in baseline (mm Hg) 
eta.k2d <- iov[,2]  ### interoccasion variability on clock time (hr) 
theta2 <- THETA2*(1+eta2) ### generate individual values (n=3642)in amplitude of first cosine term  
theta3 <- THETA3                      ### no variability in phase shift in first cosine term 
theta4 <- THETA4*(1+eta4) ### generate individual values (n=3642)in amplitude of second cosine term  
theta5 <- THETA5                      ### no variability in phase shift in second cosine term 
temp.id <- NULL 
temp.time <- NULL 
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temp.bsl <- NULL 
occ <- month*30 
## generate one month baseline BP profile from equation 3 in "Clin Pharmacol Ther,1998.64(6):p.622-35" 
for (i in 1:ni){       
       t <- seq(0,24,by=0.2)         
  t.length <- length(t) 
  cos1 <- theta2[i]*cos(pi*(t + eta.t[i] + eta.k2d[i])/12-theta3) 
  cos2 <- theta4[i]*cos(2*pi*(t + eta.t[i] + eta.k2d[i])/12-theta5) 
  BSL <- eta.k1d[i]+theta1[i]*(1+cos1+cos2)  
  temp.id <- c(temp.id,rep(i,times=t.length)) 
  temp.time <- c(temp.time,t) 
  temp.bsl <- c(temp.bsl,BSL)   
       cos1 <- theta2[i]*cos(pi*(t + eta.t[i] + eta.k2d[ni+i])/12-theta3) 
  cos2 <- theta4[i]*cos(2*pi*(t + eta.t[i] + eta.k2d[ni+i])/12-theta5) 
  BSL <- eta.k1d[ni+i]+theta1[i]*(1+cos1+cos2)  
  t.new <- (occ-1)*24 + t 
  temp.id <- c(temp.id,rep(i,times=t.length)) 
  temp.time <- c(temp.time,t.new) 
  temp.bsl <- c(temp.bsl,BSL) 
} 
temp.bsl <- signif(temp.bsl,digits=5) 
data <- data.frame(temp.id,temp.time,temp.bsl) 
names(data) <- c("ID","TIME","BSL") 
BSL <- data 
d <- data.frame(ID=id,al=rnorm(ni,6,12),am=rnorm(ni,3,2),ah=rnorm(ni,2,2), 
                      al2=rnorm(ni,6,12),am2=rnorm(ni,3,2),ah2=rnorm(ni,2,2), 
                      al3=rnorm(ni,6,12),am3=rnorm(ni,3,2),ah3=rnorm(ni,2,2), 
                       bl=rnorm(ni,5,12),bm=rnorm(ni,2,2),bh=rnorm(ni,2,2), 
                       cl=rnorm(ni,5,12),cm=rnorm(ni,2,2),ch=rnorm(ni,2,2), 
                       dl=rnorm(ni,5,12),dm=rnorm(ni,2,2),dh=rnorm(ni,2,2)) 
res <- merge(cvr,merge(d,BSL,by="ID",all=T),by="ID",all=T) 
#### A low  
d <- res 
d$BP <- ifelse(d$FLAG==1,d$BSL-d$al,d$BSL-d$al-d$bl) 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
errorBP <- rnorm(ni,sd=sderror) 
temp.obs <- NULL 
temp.true <- NULL 
for (i in 1:ni){ 
 true <- d$BP[d$ID==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.true <- c(temp.true,true) 
 temp.obs <- c(temp.obs, obs) 
} 
true.obs <- data.frame(1:ni,visittime, temp.true, temp.obs) 
names(true.obs) <- c("ID","VISITTIME","TRU","OBS")  
true.obs <- merge(true.obs,cvr,by="ID",all=T) 
true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=1,MONTH=1) 
true.obs$class <- ifelse(true.obs$OBS>=120,2, 
                       ifelse(true.obs$OBS<90,3,1)) 
#1:control;  2:not control;  3:dose is too  
l11 <- true.obs[true.obs$class==1,] 
l12 <- true.obs[true.obs$class==2,] 
l13 <- true.obs[true.obs$class==3,] 
if (length(l11$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l11[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
} 
## l13 
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if (length(l13$ID)>0){ 
d <- res 
d$BP <- ifelse(d$FLAG==1,d$BSL-d$al2,d$BSL-d$al) 
d <- merge(d,l13,by.x=c("ID"),by.y=c("ID"),all.y=T) 
d <- d[order(d$ID,d$TIME),] 
ni <- length(id <- l13$ID)  
d$flag <- rep(1:ni,each=242) 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
errorBP <- rnorm(ni,sd=sderror) 
temp.obs <- NULL 
for (i in 1:ni){ 
 true <- d$BP[d$flag==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.obs <- c(temp.obs, obs) 
} 
true.obs <- data.frame(id,visittime, temp.obs) 
names(true.obs) <- c("ID","VISITTIME","OBS")  
true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=2,MONTH=2) 
true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,cvr,by=c("ID"),all.x=T) 
true.obs$class <- ifelse(true.obs$OBS>=120,2, 
                     ifelse(true.obs$OBS<90,3,1)) 
#1:control;  2:not control;  3:dose is too  
l13_1 <- true.obs[true.obs$class==1,] 
l13_2 <- true.obs[true.obs$class==2,] 
l13_3 <- true.obs[true.obs$class==3,] 
if(length(l13_1$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l13_1[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
} 
 
if (length(l13_2$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l13_2[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m1 <- transform(m1,MONTH=1) 
m7 <- rbind(m7,m1) 
} 
## l13_3 
if (length(l13_3$ID)>0){ 
d <- res 
d$BP <- ifelse(d$FLAG==1,d$BSL-d$al3,d$BSL-d$al2) 
d <- merge(d,l13_3,by.x=c("ID"),by.y=c("ID"),all.y=T) 
d <- d[order(d$ID,d$TIME),] 
ni <- length(id <- l13_3$ID)  
d$flag <- rep(1:ni,each=242) 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
sderror <- 5 
errorBP <- rnorm(ni,sd=sderror) 
temp.obs <- NULL 
for (i in 1:ni){ 
 true <- d$BP[d$flag==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.obs <- c(temp.obs, obs) 
} 
true.obs <- data.frame(id,visittime, temp.obs) 
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names(true.obs) <- c("ID","VISITTIME","OBS")  
true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=2,MONTH=2) 
true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,cvr,by=c("ID"),all.x=T) 
true.obs$class <- ifelse(true.obs$OBS>=120,2, 
                        ifelse(true.obs$OBS<90,3,1)) 
#1:control;  2:not control;  3:dose is too  
l13_3_1 <- true.obs[true.obs$class==1,] 
l13_3_2 <- true.obs[true.obs$class==2,] 
l13_3_3 <- true.obs[true.obs$class==3,] 
dim(l13_3_1) 
dim(l13_3_2)  
dim(l13_3_3) 
if (length(l13_3_1$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l13_3_1[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
} 
if (length(l13_3_2$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l13_3_2[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m1 <- transform(m1,MONTH=1) 
m7 <- rbind(m7,m1) 
} 
## l13_3_3 
if (length(l13_3_3$ID)>0){ 
d <- res 
d$BP <- ifelse(d$FLAG==1,d$BSL,d$BSL-d$al3) 
d <- merge(d,l13_3_3,by.x=c("ID"),by.y=c("ID"),all.y=T) 
d <- d[order(d$ID,d$TIME),] 
ni <- length(id <- l13_3_3$ID)  
d$flag <- rep(1:ni,each=242) 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
sderror <- 5 
errorBP <- rnorm(ni,sd=sderror) 
temp.obs <- NULL 
for (i in 1:ni){ 
 true <- d$BP[d$flag==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.obs <- c(temp.obs, obs) 
} 
true.obs <- data.frame(id,visittime, temp.obs) 
names(true.obs) <- c("ID","VISITTIME","OBS")  
true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=2,MONTH=2) 
true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,cvr,by=c("ID"),all.x=T) 
true.obs$class <- ifelse(true.obs$OBS>=120,2, 
                       ifelse(true.obs$OBS<90,3,1)) 
#1:control;  2:not control;  3:dose is too  
l13_3_3_1 <- true.obs[true.obs$class==1,] 
l13_3_3_2 <- true.obs[true.obs$class==2,] 
l13_3_3_3 <- true.obs[true.obs$class==3,] 
if (length(l13_3_3_1$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l13_3_3_1[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
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m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
} 
if (length(l13_3_3_2$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l13_3_3_2[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m1 <- transform(m1,MONTH=1) 
m7 <- rbind(m7,m1) 
} 
if (length(l13_3_3_3$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l13_3_3_3[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m1 <- transform(m1,MONTH=1) 
m7 <- rbind(m7,m1) 
} 
} 
} 
} 
### level 12 month 2  
d <- res 
d$BP <- ifelse(d$FLAG==1,d$BSL-d$al-d$am,d$BSL-d$al-d$bl-d$am) 
d <- merge(d,l12,by.x=c("ID"),by.y=c("ID"),all.y=T) 
d <- d[order(d$ID,d$TIME),] 
ni <- length(id <- l12$ID)  
d$flag <- rep(1:ni,each=242) 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
errorBP <- rnorm(ni,sd=sderror) 
temp.obs <- NULL 
for (i in 1:ni){ 
 true <- d$BP[d$flag==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.obs <- c(temp.obs, obs) 
} 
true.obs <- data.frame(id,visittime, temp.obs) 
names(true.obs) <- c("ID","VISITTIME","OBS")  
true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=2,MONTH=2) 
true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,cvr,by=c("ID"),all.x=T) 
true.obs$class <- ifelse(true.obs$OBS>=120 ,2, 
                         ifelse(true.obs$OBS<90,3,1)) 
#1:control;  2:not control;  3:dose is too  
l21 <- true.obs[true.obs$class==1,] 
l22 <- true.obs[true.obs$class==2,] 
l23 <- true.obs[true.obs$class==3,] 
if (length(l21$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l21[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
} 
if (length(l23$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l23[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
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m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m1 <- transform(m1,MONTH=2) 
m7 <- rbind(m7,m1) 
} 
### l22  
d <- res 
d$BP <- ifelse(d$FLAG==1,d$BSL-d$al-d$am-d$ah,d$BSL-d$al-d$bl-d$am-d$ah) 
d <- merge(d,l22,by.x=c("ID"),by.y=c("ID"),all.y=T) 
d <- d[order(d$ID,d$TIME),] 
ni <- length(id <- l22$ID)  
d$flag <- rep(1:ni,each=242) 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
errorBP <- rnorm(ni,sd=sderror) 
temp.obs <- NULL 
for (i in 1:ni){ 
 true <- d$BP[d$flag==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.obs <- c(temp.obs, obs) 
} 
true.obs <- data.frame(id,visittime, temp.obs) 
names(true.obs) <- c("ID","VISITTIME","OBS")  
true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=2,MONTH=2) 
true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,cvr,by=c("ID"),all.x=T) 
true.obs$class <- ifelse(true.obs$OBS>=120,2, 
                          ifelse(true.obs$OBS<90,3,1)) 
#1:control;  2:not control;  3:dose is too  
l31 <- true.obs[true.obs$class==1,] 
l32 <- true.obs[true.obs$class==2,] 
l33 <- true.obs[true.obs$class==3,] 
m1 <- merge(d[,c("ID","TIME","BP")],l31[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
if (length(l33$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l33[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m1 <- transform(m1,MONTH=3) 
m7 <- rbind(m7,m1) 
} 
###l32 
d <- res 
d$BP <- ifelse(d$FLAG==1,d$BSL-d$al-d$am-d$ah-d$bl,d$BSL-d$al-d$bl-d$am-d$ah-d$bm) 
d <- merge(d,l32,by.x=c("ID"),by.y=c("ID"),all.y=T) 
d <- d[order(d$ID,d$TIME),] 
ni <- length(id <- l32$ID)  
d$flag <- rep(1:ni,each=242) 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
errorBP <- rnorm(ni,sd=sderror) 
temp.obs <- NULL 
for (i in 1:ni){ 
 true <- d$BP[d$flag==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.obs <- c(temp.obs, obs) 
} 
true.obs <- data.frame(id,visittime, temp.obs) 
names(true.obs) <- c("ID","VISITTIME","OBS")  
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true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=2,MONTH=2) 
true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,cvr,by=c("ID"),all.x=T) 
true.obs$class <- ifelse(true.obs$OBS>=120,2, 
                      ifelse(true.obs$OBS<90,3,1)) 
#1:control;  2:not control;  3:dose is too  
l41 <- true.obs[true.obs$class==1,] 
l42 <- true.obs[true.obs$class==2,] 
l43 <- true.obs[true.obs$class==3,] 
m1 <- merge(d[,c("ID","TIME","BP")],l41[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
 
if (length(l43$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l43[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m1 <- transform(m1,MONTH=4) 
m7 <- rbind(m7,m1) 
} 
### l42 
d <- res 
d$BP <- ifelse(d$FLAG==1,d$BSL-d$al-d$am-d$ah-d$bl-d$bm,d$BSL-d$al-d$bl-d$am-d$ah-d$bm-d$bh) 
d <- merge(d,l42,by.x=c("ID"),by.y=c("ID"),all.y=T) 
d <- d[order(d$ID,d$TIME),] 
ni <- length(id <- l42$ID)  
d$flag <- rep(1:ni,each=242) 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
errorBP <- rnorm(ni,sd=sderror) 
temp.obs <- NULL 
for (i in 1:ni){ 
 true <- d$BP[d$flag==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.obs <- c(temp.obs, obs) 
} 
true.obs <- data.frame(id,visittime, temp.obs) 
names(true.obs) <- c("ID","VISITTIME","OBS")  
true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=2,MONTH=2) 
true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,cvr,by=c("ID"),all.x=T) 
true.obs$class <- ifelse(true.obs$OBS>=120,2, 
                          ifelse(true.obs$OBS<90,3,1)) 
#1:control;  2:not control;  3:dose is too  
l51 <- true.obs[true.obs$class==1,] 
l52 <- true.obs[true.obs$class==2,] 
l53 <- true.obs[true.obs$class==3,] 
m1 <- merge(d[,c("ID","TIME","BP")],l51[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
if (length(l53$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l53[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
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m1 <- transform(m1,MONTH=5) 
m7 <- rbind(m7,m1) 
} 
## l52 
d <- res 
d$BP <- ifelse(d$FLAG==1,d$BSL-d$al-d$am-d$ah-d$bl-d$bm-d$bh,d$BSL-d$al-d$bl-d$am-d$ah-d$bm-
d$bh-d$cl) 
d <- merge(d,l52,by.x=c("ID"),by.y=c("ID"),all.y=T) 
d <- d[order(d$ID,d$TIME),] 
ni <- length(id <- l52$ID)  
d$flag <- rep(1:ni,each=242) 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
errorBP <- rnorm(ni,sd=sderror) 
temp.obs <- NULL 
for (i in 1:ni){ 
 true <- d$BP[d$flag==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.obs <- c(temp.obs, obs) 
} 
true.obs <- data.frame(id,visittime, temp.obs) 
names(true.obs) <- c("ID","VISITTIME","OBS")  
true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=2,MONTH=2) 
true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,cvr,by=c("ID"),all.x=T) 
true.obs$class <- ifelse(true.obs$OBS>=120,2, 
                          ifelse(true.obs$OBS<90,3,1)) 
#1:control;  2:not control;  3:dose is too  
l61 <- true.obs[true.obs$class==1,] 
l62 <- true.obs[true.obs$class==2,] 
l63 <- true.obs[true.obs$class==3,] 
m1 <- merge(d[,c("ID","TIME","BP")],l61[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
m1 <- merge(d[,c("ID","TIME","BP")],l62[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
if (length(l63$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l63[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m1 <- transform(m1,MONTH=6) 
m7 <- rbind(m7,m1) 
} 
if (length(m7$ID)>0){ 
m7 <- transform(m7, REP=k) 
table90 <- rbind(table90,m7) 
} 
#### CALCULATE CV RISK AT MONTH 6  
cvr$MBP <- NULL 
t2 <- merge(m6,cvr,by="ID",all.x=T) 
t2 <- transform(t2,HYP=0) 
d <-t2 
d$x <- ifelse(d$SEX==1& d$HYP==0, 3.06117*log(d$AGE)+1.12370*log(d$TCH)-
0.93263*log(d$HDL)+1.93303*log(d$MBP)+0.65451*d$SMK+0.57367*d$DIAB, 



177 
 

        ifelse(d$SEX==1& d$HYP==1, 3.06117*log(d$AGE)+1.12370*log(d$TCH)-
0.93263*log(d$HDL)+1.99881*log(d$MBP)+0.65451*d$SMK+0.57367*d$DIAB, 
        ifelse(d$SEX==2& d$HYP==0, 2.32888*log(d$AGE)+1.20904*log(d$TCH)-
0.70833*log(d$HDL)+2.76157*log(d$MBP)+0.52873*d$SMK+0.69154*d$DIAB, 
        2.32888*log(d$AGE)+1.20904*log(d$TCH)-
0.70833*log(d$HDL)+2.82263*log(d$MBP)+0.52873*d$SMK+0.69154*d$DIAB))) 
d$p <- ifelse(d$SEX==1, 1-0.88936^exp(d$x-23.9802), 
           1-0.95012^exp(d$x-26.1931)) 
risk3 <- d 
table <- rbind(table,c(k,mean(risk3$p))) 
} 
table <- data.frame(table) 
names(table) <- c("REP","risk3_III") 
table90 <- data.frame(table90) 
write.table(table, file=paste(Dir,"risk_III","_",nsim1,"_",nsim2,".csv",sep=""),quote=F,sep=",",row.names=F) 
write.table(table90, file=paste(Dir,"IDs 
toxi_III","_",nsim1,"_",nsim2,".csv",sep=""),quote=F,sep=",",row.names=F) 
3.4 Strategy IV 
 
library(MIfuns) 
Dir <- "W:/final_sa/aim3_CI/IV/" 
cvr <- read.table(file=paste(Dir,"cvr.csv",sep=""),sep=",",header=T,skip=0) 
## function 
reapply <- function(x,INDEX,FUN,...){ 
           y <- tapply(x,INDEX) 
           z <- tapply(x,INDEX,FUN,...) 
           z[y] 
} 
month <- 1  # PK simulation period is one month 
theta1 <- cvr[,c("SBP")] 
p <- read.table(file=paste(Dir,"p.csv",sep=""),as.is=T,header=T,skip=0,sep=",") 
set.seed(234) 
seeds <- round(runif(1000, min=1, max=20000)) 
n <- 1 
nsim <- 1000 
nsim1 <- (n-1)*nsim+1 
nsim2 <- n*nsim 
table <- NULL 
table90 <- NULL 
for (k in nsim1:nsim2){ 
seed <- seeds[k] 
set.seed(seed) 
sderror <- 5 
ni <- length(id <- 1:length(cvr$ID)) #  subjects for simulation 
m6 <- NULL 
m7 <- NULL 
## baseline model from "Clin Pharmacol Ther,1998.64(6):p.622-35"  
mu1 <- c(0,0,0) 
Omega1 <- matrix(c(p[k,5],p[k,6],p[k,8],p[k,6],p[k,7],p[k,9],p[k,8],p[k,9],p[k,10]),3,3) 
mu2 <- c(0,0) 
Omega2 <- matrix(c(p[k,11],p[k,12],p[k,12],p[k,13]),2,2) 
iiv <- mvrnorm(n = ni, mu1, Omega1, empirical = FALSE) 
iov <- mvrnorm(n = ni*2, mu2, Omega2, empirical = FALSE) #one occasion for each individual 
THETA2 <- p[k,2]  ### population mean for amplitude of first cosine term   
THETA3 <- 0       ### phase shift in first cosine term  
THETA4 <- p[k,3]  ### population mean for amplitude of second cosine term  
THETA5 <- p[k,4]  ### phase shift in second cosine term  
eta2 <- iiv[,2]   ### interindividual variability in amplitude of first cosine term(THETA2) 
eta4 <- iiv[,2]   ### interindividual variability in amplitude of second cosine term(THETA4) 
eta.t <- iiv[,3] ### interindividual variability on clock time (hr) 
eta.k1d <- iov[,1]  ### interoccasion variability in baseline (mm Hg) 
eta.k2d <- iov[,2]  ### interoccasion variability on clock time (hr) 
theta2 <- THETA2*(1+eta2) ### generate individual values (n=3642)in amplitude of first cosine term  
theta3 <- THETA3                      ### no variability in phase shift in first cosine term 
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theta4 <- THETA4*(1+eta4) ### generate individual values (n=3642)in amplitude of second cosine term  
theta5 <- THETA5                      ### no variability in phase shift in second cosine term 
temp.id <- NULL 
temp.time <- NULL 
temp.bsl <- NULL 
occ <- month*30 
# generate one month baseline BP profile from equation 3 in "Clin Pharmacol Ther,1998.64(6):p.622-35" ##  
for (i in 1:ni){ 
             t <- seq(0,24,by=0.2) 
          t.length <- length(t) 
  cos1 <- theta2[i]*cos(pi*(t + eta.t[i] + eta.k2d[i])/12-theta3) 
  cos2 <- theta4[i]*cos(2*pi*(t + eta.t[i] + eta.k2d[i])/12-theta5) 
  BSL <- eta.k1d[i]+theta1[i]*(1+cos1+cos2)  
  temp.id <- c(temp.id,rep(i,times=t.length)) 
  temp.time <- c(temp.time,t) 
  temp.bsl <- c(temp.bsl,BSL)  
       cos1 <- theta2[i]*cos(pi*(t + eta.t[i] + eta.k2d[ni+i])/12-theta3) 
  cos2 <- theta4[i]*cos(2*pi*(t + eta.t[i] + eta.k2d[ni+i])/12-theta5) 
  BSL <- eta.k1d[ni+i]+theta1[i]*(1+cos1+cos2)  
  t.new <- (occ-1)*24 + t 
  temp.id <- c(temp.id,rep(i,times=t.length)) 
  temp.time <- c(temp.time,t.new) 
  temp.bsl <- c(temp.bsl,BSL) 
} 
temp.bsl <- signif(temp.bsl,digits=5) 
data <- data.frame(temp.id,temp.time,temp.bsl) 
names(data) <- c("ID","TIME","BSL") 
BSL <- data 
d <- data.frame(ID=id,al=rnorm(ni,6,12),am=rnorm(ni,3,2),ah=rnorm(ni,2,2), 
                      al2=rnorm(ni,6,12),am2=rnorm(ni,3,2),ah2=rnorm(ni,2,2), 
                      al3=rnorm(ni,6,12),am3=rnorm(ni,3,2),ah3=rnorm(ni,2,2), 
                       bl=rnorm(ni,5,12),bm=rnorm(ni,2,2),bh=rnorm(ni,2,2), 
                       cl=rnorm(ni,5,12),cm=rnorm(ni,2,2),ch=rnorm(ni,2,2), 
                       dl=rnorm(ni,5,12),dm=rnorm(ni,2,2),dh=rnorm(ni,2,2)) 
res <- merge(cvr,merge(d,BSL,by="ID",all=T),by="ID",all=T) 
#### A low  
d <- res 
d$BP <- ifelse(d$FLAG==1,d$BSL-d$al-d$am-d$ah,d$BSL-d$al-d$am-d$ah-d$bl-d$bm-d$bh) 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
errorBP <- rnorm(ni,sd=sderror) 
temp.obs <- NULL 
temp.true <- NULL 
for (i in 1:ni){ 
 true <- d$BP[d$ID==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.true <- c(temp.true,true) 
 temp.obs <- c(temp.obs, obs) 
} 
true.obs <- data.frame(1:ni,visittime, temp.true, temp.obs) 
names(true.obs) <- c("ID","VISITTIME","TRU","OBS")  
true.obs <- merge(true.obs,cvr,by="ID",all=T) 
true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=1,MONTH=1) 
true.obs$class <- ifelse(true.obs$OBS>=120,2, 
                        ifelse(true.obs$OBS<90,3,1)) 
#1:control;  2:not control;  3:dose is too  
l11 <- true.obs[true.obs$class==1,] 
l12 <- true.obs[true.obs$class==2,] 
l13 <- true.obs[true.obs$class==3,] 
m6 <- NULL 
if (length(l11$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l11[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
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m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
} 
### l13 
if (length(l13$ID)>0){ 
d <- res 
d$BP <- ifelse(d$FLAG==1,d$BSL-d$al-d$am,d$BSL-d$al-d$am-d$bl-d$bm) 
d <- merge(d,l13,by.x=c("ID"),by.y=c("ID"),all.y=T) 
d <- d[order(d$ID,d$TIME),] 
ni <- length(id <- l13$ID)  
d$flag <- rep(1:ni,each=242) 
 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
errorBP <- rnorm(ni,sd=sderror) 
temp.obs <- NULL 
for (i in 1:ni){ 
 true <- d$BP[d$flag==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.obs <- c(temp.obs, obs) 
} 
true.obs <- data.frame(id,visittime, temp.obs) 
names(true.obs) <- c("ID","VISITTIME","OBS")  
true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=2,MONTH=2) 
true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,cvr,by=c("ID"),all.x=T) 
true.obs$class <- ifelse(true.obs$OBS>=120,2, 
                        ifelse(true.obs$OBS<90,3,1)) 
#1:control;  2:not control;  3:dose is too  
l13_1 <- true.obs[true.obs$class==1,] 
l13_2 <- true.obs[true.obs$class==2,] 
l13_3 <- true.obs[true.obs$class==3,] 
if(length(l13_1$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l13_1[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
} 
m7 <- NULL 
if (length(l13_2$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l13_2[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m1 <- transform(m1,MONTH=1) 
m7 <- rbind(m7,m1) 
} 
# l13_3 
if (length(l13_3$ID)>0){ 
d <- res 
d$BP <- ifelse(d$FLAG==1,d$BSL-d$al,d$BSL-d$al-d$bl) 
d <- merge(d,l13_3,by.x=c("ID"),by.y=c("ID"),all.y=T) 
d <- d[order(d$ID,d$TIME),] 
ni <- length(id <- l13_3$ID)  
d$flag <- rep(1:ni,each=242) 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
errorBP <- rnorm(ni,sd=sderror) 
temp.obs <- NULL 
for (i in 1:ni){ 
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 true <- d$BP[d$flag==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.obs <- c(temp.obs, obs) 
} 
true.obs <- data.frame(id,visittime, temp.obs) 
names(true.obs) <- c("ID","VISITTIME","OBS")  
true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=2,MONTH=2) 
true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,cvr,by=c("ID"),all.x=T) 
true.obs$class <- ifelse(true.obs$OBS>=120,2, 
                        ifelse(true.obs$OBS<90,3,1)) 
#1:control;  2:not control;  3:dose is too  
l13_3_1 <- true.obs[true.obs$class==1,] 
l13_3_2 <- true.obs[true.obs$class==2,] 
l13_3_3 <- true.obs[true.obs$class==3,] 
if (length(l13_3_1$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l13_3_1[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
} 
if (length(l13_3_2$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l13_3_2[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m1 <- transform(m1,MONTH=1) 
m7 <- rbind(m7,m1) 
} 
## l13_3_3 
if (length(l13_3_3$ID)>0){ 
d <- res 
d$BP <- ifelse(d$FLAG==1,d$BSL-d$al2,d$BSL-d$al) 
d <- merge(d,l13_3_3,by.x=c("ID"),by.y=c("ID"),all.y=T) 
d <- d[order(d$ID,d$TIME),] 
ni <- length(id <- l13_3_3$ID)  
d$flag <- rep(1:ni,each=242) 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
errorBP <- rnorm(ni,sd=sderror) 
temp.obs <- NULL 
for (i in 1:ni){ 
 true <- d$BP[d$flag==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.obs <- c(temp.obs, obs) 
} 
true.obs <- data.frame(id,visittime, temp.obs) 
names(true.obs) <- c("ID","VISITTIME","OBS")  
true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=2,MONTH=2) 
true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,cvr,by=c("ID"),all.x=T) 
true.obs$class <- ifelse(true.obs$OBS>=120,2, 
                      ifelse(true.obs$OBS<90,3,1)) 
#1:control;  2:not control;  3:dose is too  
l13_3_3_1 <- true.obs[true.obs$class==1,] 
l13_3_3_2 <- true.obs[true.obs$class==2,] 
l13_3_3_3 <- true.obs[true.obs$class==3,] 
 
if (length(l13_3_3_1$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l13_3_3_1[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
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m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
} 
 
if (length(l13_3_3_2$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l13_3_3_2[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m1 <- transform(m1,MONTH=1) 
m7 <- rbind(m7,m1) 
} 
if (length(l13_3_3_3$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l13_3_3_3[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m1 <- transform(m1,MONTH=1) 
m7 <- rbind(m7,m1) 
} 
} 
} 
} 
#### level 12 month 2  
d <- res 
d$BP <- ifelse(d$FLAG==1,d$BSL-d$al-d$am-d$ah-d$bl-d$bm-d$bh,d$BSL-d$al-d$am-d$ah-d$bl-d$bm-
d$bh-d$cl-d$cm-d$ch) 
d <- merge(d,l12,by.x=c("ID"),by.y=c("ID"),all.y=T) 
d <- d[order(d$ID,d$TIME),] 
ni <- length(id <- l12$ID)  
d$flag <- rep(1:ni,each=242) 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
errorBP <- rnorm(ni,sd=sderror) 
temp.obs <- NULL 
for (i in 1:ni){ 
 true <- d$BP[d$flag==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.obs <- c(temp.obs, obs) 
} 
true.obs <- data.frame(id,visittime, temp.obs) 
names(true.obs) <- c("ID","VISITTIME","OBS")  
true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=2,MONTH=2) 
true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,cvr,by=c("ID"),all.x=T) 
true.obs$class <- ifelse(true.obs$OBS>=120,2, 
                       ifelse(true.obs$OBS<90,3,1)) 
#1:control;  2:not control;  3:dose is too  
l21 <- true.obs[true.obs$class==1,] 
l22 <- true.obs[true.obs$class==2,] 
l23 <- true.obs[true.obs$class==3,] 
if (length(l21$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l21[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
} 
if (length(l23$ID)>0){ 
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d <- res 
d$BP <- ifelse(d$FLAG==1,d$BSL-d$al-d$am-d$bl-d$bm,d$BSL-d$al-d$am-d$ah-d$bl-d$bm-d$cl-d$cm) 
d <- merge(d,l23,by.x=c("ID"),by.y=c("ID"),all.y=T) 
d <- d[order(d$ID,d$TIME),] 
ni <- length(id <- l23$ID)  
d$flag <- rep(1:ni,each=242) 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
errorBP <- rnorm(ni,sd=sderror) 
temp.obs <- NULL 
for (i in 1:ni){ 
 true <- d$BP[d$flag==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.obs <- c(temp.obs, obs) 
} 
true.obs <- data.frame(id,visittime, temp.obs) 
names(true.obs) <- c("ID","VISITTIME","OBS")  
true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=2,MONTH=2) 
true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,cvr,by=c("ID"),all.x=T) 
true.obs$class <- ifelse(true.obs$OBS>=120,2, 
                       ifelse(true.obs$OBS<90,3,1)) 
#1:control;  2:not control;  3:dose is too  
l23_1 <- true.obs[true.obs$class==1,] 
l23_2 <- true.obs[true.obs$class==2,] 
l23_3 <- true.obs[true.obs$class==3,] 
if (length(l23_1$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l23_1[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
} 
if (length(l23_2$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l23_2[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m1 <- transform(m1,MONTH=1) 
m7 <- rbind(m7,m1) 
} 
if (length(l23_3$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l23_3[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m1 <- transform(m1,MONTH=1) 
m7 <- rbind(m7,m1) 
} 
} 
### l22  
d <- res 
d$BP <- ifelse(d$FLAG==1,d$BSL-d$al-d$am-d$ah-d$bl-d$bm-d$bh-d$cl-d$cm-d$ch, 
               d$BSL-d$al-d$am-d$ah-d$bl-d$bm-d$bh-d$cl-d$cm-d$ch-d$dl-d$dm-d$dh) 
d <- merge(d,l22,by.x=c("ID"),by.y=c("ID"),all.y=T) 
d <- d[order(d$ID,d$TIME),] 
ni <- length(id <- l22$ID)  
d$flag <- rep(1:ni,each=242) 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
errorBP <- rnorm(ni,sd=sderror) 
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temp.obs <- NULL 
for (i in 1:ni){ 
 true <- d$BP[d$flag==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.obs <- c(temp.obs, obs) 
} 
true.obs <- data.frame(id,visittime, temp.obs) 
names(true.obs) <- c("ID","VISITTIME","OBS")  
true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=2,MONTH=2) 
true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,cvr,by=c("ID"),all.x=T) 
true.obs$class <- ifelse(true.obs$OBS>=120,2, 
                      ifelse(true.obs$OBS<90,3,1)) 
#1:control;  2:not control;  3:dose is too  
l31 <- true.obs[true.obs$class==1,] 
l32 <- true.obs[true.obs$class==2,] 
l33 <- true.obs[true.obs$class==3,] 
if (length(l31$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l31[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
} 
if (length(l33$ID)>0){ 
d <- res 
d$BP <- ifelse(d$FLAG==1,d$BSL-d$al-d$am-d$ah-d$bl-d$bm-d$cl-d$cm, 
               d$BSL-d$al-d$am-d$ah-d$bl-d$bm-d$bh-d$cl-d$cm-d$dl-d$dm) 
d <- merge(d,l33,by.x=c("ID"),by.y=c("ID"),all.y=T) 
d <- d[order(d$ID,d$TIME),] 
ni <- length(id <- l33$ID)  
d$flag <- rep(1:ni,each=242) 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
errorBP <- rnorm(ni,sd=sderror) 
temp.obs <- NULL 
for (i in 1:ni){ 
 true <- d$BP[d$flag==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.obs <- c(temp.obs, obs) 
} 
true.obs <- data.frame(id,visittime, temp.obs) 
names(true.obs) <- c("ID","VISITTIME","OBS")  
true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=2,MONTH=2) 
true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,cvr,by=c("ID"),all.x=T) 
true.obs$class <- ifelse(true.obs$OBS>=120,2, 
                       ifelse(true.obs$OBS<90,3,1)) 
#1:control;  2:not control;  3:dose is too  
l33_1 <- true.obs[true.obs$class==1,] 
l33_2 <- true.obs[true.obs$class==2,] 
l33_3 <- true.obs[true.obs$class==3,] 
if (length(l33_1$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l33_1[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
} 
if (length(l33_2$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l33_2[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
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m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m1 <- transform(m1,MONTH=1) 
m7 <- rbind(m7,m1) 
} 
if (length(l33_3$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l33_3[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m1 <- transform(m1,MONTH=1) 
m7 <- rbind(m7,m1) 
} 
} 
###l32 
d <- res 
d$BP <- d$BSL-d$al-d$am-d$ah-d$bl-d$bm-d$bh-d$cl-d$cm-d$ch-d$dl-d$dm-d$dh 
d <- merge(d,l32,by.x=c("ID"),by.y=c("ID"),all.y=T) 
d <- d[order(d$ID,d$TIME),] 
ni <- length(id <- l32$ID)  
d$flag <- rep(1:ni,each=242) 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
errorBP <- rnorm(ni,sd=sderror) 
temp.obs <- NULL 
for (i in 1:ni){ 
 true <- d$BP[d$flag==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.obs <- c(temp.obs, obs) 
} 
true.obs <- data.frame(id,visittime, temp.obs) 
names(true.obs) <- c("ID","VISITTIME","OBS")  
true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=2,MONTH=2) 
true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,cvr,by=c("ID"),all.x=T) 
true.obs$class <- ifelse(true.obs$OBS>=120,2, 
                      ifelse(true.obs$OBS<90,3,1)) 
#1:control;  2:not control;  3:dose is too  
l41 <- true.obs[true.obs$class==1,] 
l42 <- true.obs[true.obs$class==2,] 
l43 <- true.obs[true.obs$class==3,] 
if (length(l41$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l41[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
} 
if (length(l42$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l42[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
} 
if (length(l43$ID)>0){ 
d <- res 
d$BP <- d$BSL-d$al-d$am-d$ah-d$bl-d$bm-d$bh-d$cl-d$cm-d$dl-d$dm 
d <- merge(d,l43,by.x=c("ID"),by.y=c("ID"),all.y=T) 
d <- d[order(d$ID,d$TIME),] 
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ni <- length(id <- l43$ID)  
d$flag <- rep(1:ni,each=242) 
visittime <- runif(ni, min=24*29+8, max=24*29+18) 
visittime <- round(visittime) 
errorBP <- rnorm(ni,sd=sderror) 
temp.obs <- NULL 
for (i in 1:ni){ 
 true <- d$BP[d$flag==i & d$TIME==visittime[i]]  
 obs <- true + errorBP[i] 
 temp.obs <- c(temp.obs, obs) 
} 
true.obs <- data.frame(id,visittime, temp.obs) 
names(true.obs) <- c("ID","VISITTIME","OBS")  
true.obs <- transform(true.obs,CTIME=VISITTIME-696,VISIT=2,MONTH=2) 
true.obs <- true.obs[order(true.obs$ID),] 
true.obs <- merge(true.obs,cvr,by=c("ID"),all.x=T) 
true.obs$class <- ifelse(true.obs$OBS>=120,2, 
                       ifelse(true.obs$OBS<90,3,1)) 
#1:control;  2:not control;  3:dose is too  
l43_1 <- true.obs[true.obs$class==1,] 
l43_2 <- true.obs[true.obs$class==2,] 
l43_3 <- true.obs[true.obs$class==3,] 
 
if (length(l43_1$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l43_1[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m6 <- rbind(m6,m1) 
} 
if (length(l43_2$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l43_2[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m1 <- transform(m1,MONTH=1) 
m7 <- rbind(m7,m1) 
} 
if (length(l43_3$ID)>0){ 
m1 <- merge(d[,c("ID","TIME","BP")],l43_3[,c("ID","MONTH")],by="ID",all.y=T) 
m1 <- m1[order(m1$ID,m1$TIME),] 
m1 <- m1[m1$TIME>=704 & m1$TIME<=714,] 
m1 <- transform(m1,MBP=reapply(BP,INDEX=ID,FUN=mean)) 
m1 <- unique(m1[,c("ID","MBP","MONTH")]) 
m1 <- transform(m1,MONTH=1) 
m7 <- rbind(m7,m1) 
} 
} 
if (length(m7$ID)>0){ 
m7 <- transform(m7, REP=k) 
table90 <- rbind(table90,m7) 
} 
######### CALCULATE CV RISK AT MONTH 6 
cvr$MBP <- NULL 
t2 <- merge(m6,cvr,by="ID",all.x=T) 
t2 <- transform(t2,HYP=0) 
d <-t2 
d$x <- ifelse(d$SEX==1& d$HYP==0, 3.06117*log(d$AGE)+1.12370*log(d$TCH)-
0.93263*log(d$HDL)+1.93303*log(d$MBP)+0.65451*d$SMK+0.57367*d$DIAB, 
        ifelse(d$SEX==1& d$HYP==1, 3.06117*log(d$AGE)+1.12370*log(d$TCH)-
0.93263*log(d$HDL)+1.99881*log(d$MBP)+0.65451*d$SMK+0.57367*d$DIAB, 
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        ifelse(d$SEX==2& d$HYP==0, 2.32888*log(d$AGE)+1.20904*log(d$TCH)-
0.70833*log(d$HDL)+2.76157*log(d$MBP)+0.52873*d$SMK+0.69154*d$DIAB, 
        2.32888*log(d$AGE)+1.20904*log(d$TCH)-
0.70833*log(d$HDL)+2.82263*log(d$MBP)+0.52873*d$SMK+0.69154*d$DIAB))) 
d$p <- ifelse(d$SEX==1, 1-0.88936^exp(d$x-23.9802), 
           1-0.95012^exp(d$x-26.1931)) 
risk2 <- d 
table <- rbind(table,c(k,mean(risk2$p))) 
} 
table <- data.frame(table) 
names(table) <- c("REP","risk6_II") 
table90 <- data.frame(table90) 
write.table(table, file=paste(Dir,"risk_II","_",nsim1,"_",nsim2,".csv",sep=""),quote=F,sep=",",row.names=F) 
write.table(table90, file=paste(Dir,"IDs 
toxi","_II_",nsim1,"_",nsim2,".csv",sep=""),quote=F,sep=",",row.names=F) 
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