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ABSTRACT 

The role of sequence in determining the properties of oligomers and polymers is poorly 

understood despite Nature’s formidable examples of libraries of macromolecules whose function 

is determined by monomer order.  A series of oligomers and copolymers bearing poly(para-

phenylene-vinylene) sequences was prepared and the dependence of both optoelectronic and 

thermal properties on monomer order was determined. The optoelectronic properties of three 

series (dimers, trimers, and tetramers) of oligo(phenylene-vinylenes) OPVs were found to 

depend on the sequence of donor and acceptor units. These oligomers were prepared using a 

simple and robust homologation based on Horner-Wadsworth-Emmons (HWE) reactions. 

Increased donor content was important, and the best sequences (highest absorption and emission 

maxima, earliest first oxidation potentials, and smallest HOMO-LUMO gaps) contained two 

adjacent donors without having two adjacent acceptors. Sequences with low donor content or 

donors with acceptors spaced between them exhibited less desirable properties. The thermal 
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properties of these OPVs are also sequence dependent. The observed trends suggest design 

principles that could be utilized to prepare specific longer oligomers with attractive properties.  

Sequenced OPVs were also prepared by a novel iterative olefin cross-metathesis (CM) 

strategy.  The synthesis relies on assembly of orthogonal monomers in a selective CM reaction. 

The key coupling step proceeded in fair to good yields, and OPVs with 2-5 phenyl units with 

alternating substitution patterns were prepared. The orthogonal end groups were exploited to 

prepare donor-acceptor complexes and repeating sequence copolymers. Olefin metathesis was 

also exploited to prepare fully-substituted symmetric OPVs.  

Rod-coil copolymers containing well-defined phenylene-vinylene chromophores 

separated by flexible linkers of precise length have been prepared by acyclic diene metathesis 

(ADMET) or by HWE polycondensation.  The ADMET polymerizations proceeded in good to 

quantitative yields with moderate molecular weights. The HWE polycondensation route allowed 

us to prepare rod-coil polymers with varying oxygen content and placement in the linkers in 

good to excellent yields with high molecular weights. The physical properties of these 

copolymers varied significantly with composition.  
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1.0  INTRODUCTION 

1.1 SEQUENCE IN POLYMER CHEMISTRY 

There is a growing sense that sequence is important for macromolecular materials.1-3 The 

ability to prepare precisely sequenced copolymers would provide an opportunity to access novel 

architectures and create materials with properties that can be exquisitely fine-tuned. Synthetic 

polymer chemistry is far behind Nature2 in this endeavor. By using sequences of just four 

monomers, Nature can encode the genome of trillions of species. Nature also demonstrates 

mastery of converting sequence into structure and function through the synthesis of hundreds of 

thousands of precisely sequenced peptides from a library of more than 20 monomers. The 

primary structures of these peptides encode the ultimate secondary, tertiary, and quaternary 

structures of the resulting proteins, which creates a specific function.  

Sequence control in polymers has not been a main focus in synthetic polymer chemistry.2 

Research in the last two decades has instead focused on the development of novel 

macromolecular architectures and topologies, i.e. macrostructure.3, 4 Sequence control, i.e. 

microstructure, primarily remains limited to alternating, random, diblock, and segmented 

multiblock copolymers (Figure 1). However, several synthetic approaches exist that have been 

utilized to prepare sequenced polymers: template assisted synthesis, control of monomer addition 
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by kinetics or catalyst manipulation, step growth polymerization of orthogonal monomers, and 

polymerization of sequenced segmers.  

 

Figure 1. Examples of polymer microstructures – filled and open circles represent different monomers. 

Sequenced natural and artificial biopolymers can be prepared using a template process, 

similar to the method that Nature uses.5 Synthetic step- and chain-growth polymers can also be 

prepared from templates.6 In a recent example, Sawamoto and coworkers developed a templated 

macroinitiator with recognition sites for anionic7 and cationic8 monomers. However, the template 

approach is limited in that the template generally needs to be as complex as the desired 

complexity in the polymer. 

Control over polymerization kinetics, particularly the relative rates of 

homopolymerization vs. copolymerization (reactivity ratios), can influence sequence in chain 

growth polymers (Scheme 1). In particular, predominantly alternating copolymers are possible 

for the special case when both reactivity ratios are approximately zero, e.g. styrene and maleic 

anhyride.9, 10 This approach has been utilized by Pfeifer and Lutz11, 12 to prepare polystyrenes 

with regularly spaced functionalized maleimides, though these polymers do not display precise 
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sequence control so much as precision insertion of maleimides in living polystyrene. A recent 

example from Satoh, et al.,13 demonstrates that sequenced copolymers of maleimide and 

limonene are possible using reversible addition-fragmentation transfer (RAFT) polymerization. 

The addition of a perfluoroalcohol promotes the formation of an AAB copolymer (maleimide-

maleimide-limonene) even when the feed ratio of monomers contains 50% limonene.  

 

Scheme 1. Sequenced radical polymerizations. 

Kinetic control of monomer insertion can also be achieved using selective catalysis. 

Primarily this approach has been used to prepare homopolymers of controlled stereosequence, an 

important subset of sequenced polymers given the dependence of properties on tacticity. The 

control of tacticity of polyolefins using Zeigler-Natta type catalysts14 represents some of the 

earliest work in the preparation of sequenced materials. In the last two decades, this approach has 

been extended to ring-opening polymerization (ROP) of lactones to produce polyesters.15 

Particularly noteworthy are the efforts of the Coates and coworkers in the development of 

catalysts that generate syndiotactic,16 heterotactic,17 and stereo-complexed18, 19 poly(lactic acid) 

(PLA). Thomas and coworkers have extended this methodology to produced syndiotactic poly(3-
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hydroxybutyrate)20 and alternating copolymers of different enantiopure -lactones of opposite 

configuration.21 

Sequence can be controlled in step-growth polymerization by using monomers with 

orthogonal or variable reactivity. High polymers with simple sequences can be prepared through 

the reaction of AA and BB type monomers.22  More complex sequences require partial protection 

or deactivation of the monomer and are usually limited to the preparation of oligomers. The vast 

number of solid phase syntheses of linear and dendritic monodisperse sequenced synthetic 

biopolymers and ―unnatural‖ biopolymers follow this motif.23  Alternatively, sequenced 

copolymers could be rapidly assembled by iterative alternation of orthogonal chemistry, i.e. AB 

+ CD, without protecting groups, although this approach is rarer. In an impressive recent 

example, Malkoch, Hawker, and coworkers used alternating thiol-ene reactions and Cu catalyzed 

Huisgen 1,3-dipolar cycloadditions to prepare a 6th generation dendrimer in just over six hours 

total reaction time.24  

The approach to producing sequenced polymers which gives the greatest control is the 

polymerization of sequenced segmers—monomers in which the desired sequence is 

preassembled—to produce repeating sequence copolymers (RSCs). This approach has been used 

to assemble short peptide sequences through native ligation to produce longer peptides.25 

Similarly, the Huisgen cycloaddition26 and other ―click‖ reactions27 have become popular for the 

rapid assembly of short oligomers into more complex sequenced materials. The group of 

Wagener has also employed this strategy to produce sequenced analogues of polyolefins by 

acyclic-diene metathesis (ADMET) polymerizations of sequenced ,-diolefins.28-30  Another 

approach to sequenced polyolefin analogues was recently reported by Satoh, et al.31 They 
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prepared short segmers containing the equivalent of styrene and acrylate units and polymerized 

them by a Cu catalyzed step-growth radical polymerization.  

Research in the Meyer group has recently focused on using the segmer approach to 

systematically prepare sequenced copolymers with the aim of investigating the effects of 

sequence on properties (Scheme 2). Ward and Meyer reported the synthesis of polyaniline 

containing regularly spaced o-phenylene units,32 with the goal of improving the processibility of 

the material. Copenhafer, Walters, and Meyer have systematically prepared a series of rod-coil 

fluorene RSCs by ADMET to examine the effects of sequence on optical and thermal 

properties.33 Stayshich and Meyer have prepared sequenced and stereosequenced poly(lactic-co-

glycolic acid)s (PLGAs) based on segmers of up to six repeat units.34, 35 The sequenced PLGAs 

demonstrated a profound dependence of NMR chemical shifts on both the monomer sequence 

and the stereosequence of the PLGAs. The work on PLGA is being extended to the preparation 

of polymers containing -hydroxycaproic acid36 and functional monomers,37 and the effects of 

sequence on hydrolysis rate and bulk mechanical properties are also under investigation. 
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Scheme 2. Examples of RSCs prepared by the Meyer group. 

1.2 CONJUGATED POLYMERS AS PHOTOVOLTAIC MATERIALS 

Conjugated polymers represent an important class of materials since their optoelectronic and 

thermal properties make them ideal candidates for organic light-emitting diodes (OLEDs)38 and 

organic photovoltaic cells (OPVCs),39 with the former application being more well developed. 

In a polymer-fullerene bulk heterojunction (BHJ) solar cell a composite blend containing 

a conjugated polymer donor, such a polythiophene or poly(p-phenylene-vinylene) (PPV), and a 

fullerene accepter, such as phenyl-C61-butyric acid methyl ester (PCBM) is layered between a 

transparent electrode, such as poly(ethylenedioxythiophene) (PEDOT)-polystyrene sulfonate 

(PSS) coated on indium tin oxide (ITO) and a metal electrode (usually aluminum) (Figure 2).40 

Upon irradiation, an electron is promoted from the valence band (HOMO) to the conductance 

band (LUMO) of the polymer (Figure 3). This exciton migrates to the polymer-fullerene 
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interface, where electron transfer to the fullerene creates a charge transfer state. Finally, the 

electrons and holes are transported to the electrodes to generate a current.  

 

Figure 2. Top: Structures of PCBM, PEDOT, and PSS. Bottom: Construction of a BHJ photovoltaic cell. 
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Figure 3. Mechanism of current generation in a polymer/PCBM photovoltaic cell. 
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Fullerene derivatives are generally accepted as the optimal acceptor material in a BHJ 

solar cell because they have low lying LUMOs (~4.2 eV) and high electron mobilities (~1 cm2 V-

1 s-1).40 Thus, all efforts to improve the performance of OPVCs focus on the polymer donor. 

Bredas, et al,41 noted in 2004 that the majority of synthetic efforts were empirical in nature and 

not based on well-defined design principles. A review of recent syntheses by Cheng, et al,39 in 

2009 suggests the state of the art to be no different now. Nevertheless, power conversion 

efficiencies (PCEs) as high as 7% have been achieved.42, 43 The predominant approach to 

developing materials for OPVCs is bandgap engineering, the practice of decreasing the bandgap 

of the polymer to harvest more of the solar spectrum. Initially put forth by Havinga, et al,44 the 

alternation of electron-donating (D) and electron-accepting (A) units can lead to very low band 

gaps. The donor-acceptor approach has become popular39, 45-52 in both the preparation of 

alternating and random copolymers. 

Achievement of the lowest possible bandgap is a limited approach, especially given that 

Chen and Cao45 recently demonstrated no statistical correlation between HOMO-LUMO gap, 

Eg and PCE. PCE, , is calculated as  = Pmax/Pin  100% = (|Jmax|Vmax)/IL  100%,53
 where Pmax 

is the maximum output power, Pin is the input power, Jmax is the current density at maximum 

power, Vmax is the voltage at maximum power, and IL is the irradiance of the source. PCE can be 

reformulated in terms of the short-circuit current density (|JSC|), the current density when the 

voltage across the device is zero, and the open-circuit voltage (VOC), the voltage across the 

device when the current density is zero:  = (FF|JSC|VOC)/IL  100%, where FF is the fill factor, 

defined as FF = (|Jmax|Vmax)/(|JSC|VOC). It is generally well accepted39-42, 45, 47, 53-56 that |JSC| has a 

negative correlation with the bandgap, Eg, of the polymer, while VOC has a positive correlation 
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with the energy offset, Eoff, between the HOMO of the polymer donor and the LUMO of the 

fullerene acceptor (Figure 4).  

 

Figure 4. Definitions of relevant energy differences relative to frontier orbitals of the polymer donor and PCBM. 

The sense then is that there is an optimal combination of bandgap and offset energy that 

should yield high PCE. Scharber, et al,56 developed a model predicting PCE based on the 

bandgap of the polymer donor and the energy difference, Ed, between the LUMO of the 

polymer and the LUMO of the fullerene (Ed = Eg – Eoff ). They predict a region of high PCE 

(>10%) centered at Ed = 0.3 eV and Eg = 1.5 eV, which corresponds to a donor HOMO of       

–5.5 eV and LUMO of –4.0 eV if PCBM is the acceptor. Rand, et al,54 have examined the 

relationship between Eg and Eoff using Marcus theory to model the J–V profile of several 

OPVC materials. They find that |JSC| has a maximum centered at Eg = 1.4 eV and Eoff = 0.8 

eV, while VOC has a maximum centered at Eg = 1.8 eV and Eoff = 1.6 eV. Combining these 

findings, they predict a region of high PCE (>7%) centered atEg = 1.5 eV and Eoff = 1.1 eV, 

which corresponds to a donor HOMO of –5.4 eV and LUMO of –3.9 eV when PCBM is taken to 

be the accepter. In addition to predicting a Eg and Eoff that will maximize |JSC|VOC, these 

models conveniently place the LUMO energy of the polymer the required 0.3 eV above the 

LUMO of PCBM to ensure a driving force for the formation of a charge transfer state.39, 40 

Recently Zhou, et al,51 have proposed that copolymers containing weakly electron-donating and 
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strongly electron-accepting units can realize these ideal energy levels. Figure 5 illustrates the 

ideal energy levels of a conjugated polymer compared to PCBM. 

 

Figure 5. Optimal frontier molecular orbital energy levels for an ideal polymer donor compared to PCBM. 

Other important parameters include the shape of the absorption spectrum and the 

extinction coefficient, to ensure a better absorption of the solar spectrum,47, 48 and hole mobility, 

h, to maximize charge transport over recombination.45, 47 These properties are dependent on the 

same -conjugation that controls the HOMO and LUMO levels, but in a less obvious way. 

Likely, they influence the fill factor parameter, which has not been rigorously studied. Hole 

mobility is an especially troubling parameter in that it is also dependent of the methods of film 

casting and device fabrication as well as polymer morphology.41, 57, 58 

Given the clear frontier molecular orbital requirements, the use of theory, as advocated 

by Bredas, et al,41 should refine and focus the search for the optimal polymer donor. However, 

with the exception of Bredas and collaborators,59-67 there are few examples of theory guiding 

synthesis. In one example, Blouin, et al,68 used density functional theory (DFT) to predict the 

frontier orbitals of carbazole containing polymers. They found that the calculated energy levels 

correlated well with the experimental measurements, but their PCEs did not fit with Scharber’s 

model due to lower than expected hole mobilities. In another example, Mondal, et al,61 found 
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that removing thiophene spacers from a thienopyrazene-alt-fluorene copolymer increased Eg by 

lowering the HOMO energy, as predicted using DFT calculations, which also increased |JSC|, 

VOC, and PCE. 

1.3 SEQUENCED CONJUGATED POLYMERS AS THE NEXT PARADIGM IN 

PHOTOVOLTAIC MATERIALS 

The effects of sequence in conjugated polymers are easy to underestimate. The frontier 

molecular orbitals of donor-acceptor polymers are commonly depicted as localized orbitals:51 the 

HOMO of the polymer derives principally from the HOMO of the donor and the LUMO of the 

polymer derives principally from the acceptor (Figure 6a). If this is the case, only the type and 

number of donors and accepters will determine the HOMO-LUMO gap of the polymer; the 

relative arrangement of donors and acceptors in a polymer should not matter. However, this 

model is overly simplistic. It only applies at the limit of no electronic communication between 

the donors and acceptors along the polymer chain, which is unlikely. If the donors and acceptors 

are in conjugation, then the frontier orbitals of the donors and acceptors should mix to form new 

frontier orbitals for the polymer39 (Figure 6b). In this model, the relative placement, or sequence, 

of donors and acceptors along the polymer chain must affect the ways in which the frontier 

orbitals of the monomers can mix to form the new frontier orbitals of the polymer. 
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Figure 6. a) Localized orbital model for frontier molecular orbitals of donor-acceptor polymers. b) Orbital mixing 
model for frontier molecular orbitals of donor-acceptor polymers. 

Sequence is thus the logical tool to provide the fine tuning necessary to optimize the 

energy levels of conjugated polymers for OPVCs. However, the majority of polymers used in 

OPVCs are alternating copolymers or random copolymers, and more complex sequences are 

rarely prepared. In particular, the fortuitously good properties of a random copolymer may be 

attributable to a statistically small number of ideal sequences in the chain. In the most significant 

example, Beaujuge, et al,48 recently reported on the absorption behavior of copolymers as a 

function of the exact number of electron-donating units between each electron-accepting units, 

finding that sequence drastically affects the shape of the absorption spectrum and the extinction 

coefficients. However, the effects of having multiple electron-accepters together, as must happen 

in a random copolymer, have not been examined.  

The group of Bao has also examined sequence, comparing the properties of alternating61 

and random62 copolymers containing or lacking thiophene spacer units. They found that 

removing the thiophene spacers increased Eg for the alternating copolymer, but decreased Eg 

for the random copolymers. The loss of the thiophene from the random polymers also led to a 

lower hole mobility. Studies detailing the systematic change of electron-acceptor unit, e.g. 

reports by Blouin, et al,68 and Mondal, et al,63 also represent limited sequence modification.  
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An interesting subset of sequence investigations consists of those that focus on the 

position of the alkyl side-chains. Side-chains, which are added to increase solubility and 

processibility and occasionally to impart other functionality,69 are often overlooked as an 

influence on optoelectronic properties. Side-chain placement can create small perturbations of 

the energy levels of the conjugated backbone.70 Additionally, the side-chains influence planarity 

of the polymer and the interchain packing, which can have dramatic effects on the optoelectronic 

properties and the hole mobility of the polymer.  

Recent reports have examined the effects of side-chain placement on the optoelectronic 

and photovoltaic properties of alternating copolymers. Zhou, et al,52 and Biniek, et al,49 prepared 

alternating copolymers containing benzothiadiazole as an electron-accepter unit and electron-

donor units based on thiophene (Figure 7, Table 1). Zhou, et al, found that placement of an alkyl 

group on the -position (PBDT-4DTBT) of their thiophene spacer led to the highest PCE, 

enough though this polymer had less optimal energy levels than the unsubstituted polymer 

(PBDT-DTBT). Nevertheless, PBDT-4DTBT exhibited slightly higher VOC, |JSC|, and FF and a 

noticeably higher hole mobility than PBDT-DTBT. Placement of the alkyl group on the -

position (PBDT-3DTBT) of the thiophene spacer or on the benzothiadiazole unit (PBDT-

DTsolBT) led to higher bandgaps, lower |JSC|, lower FF, and dramatically reduced PCE, even 

though PBDT-3DTBT exhibited the best Eoff and VOC. Biniek, et al, reported no difference 

between PTBzT2-C12 and PTBzT2-C12 however, PTBzT2-CEH exhibited the highest hole 

mobility, |JSC|, and PCE. Zhou and Biniek attribute the differences in photovoltaic behavior to 

differences in planarity caused by the substitution patterns. Calculations performed by both 

groups using DFT (B3LYP/6-311+G*) indicate that substitution on the benzothiadiazole or at the 

-position on the thiophene spacer induces large deviations from planarity, while substitution at 
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the -position on the thiophene spacer does not. However, this explanation is clearly insufficient, 

as PBDT-DTBT is predicted to be more planar than PBDT-4DTBT, and there was no significant 

difference between PTBzT2-C12 and PTBzT2-C12Both Zhou and Biniek note that their best 

materials (PBDT-4DTBT and PTBzT2-CEHrespectively), were more soluble, and thus easier 

to process. The increased processibility would have led to better films, which would explain the 

marked increase in hole mobility. 

 

Figure 7. a) Polymers from ref. 52. b) Polymers from ref. 49.  

Table 1. Optoelectronic and photovoltaic parameters of polymers from refs. 52 and 49. 

Polymer Eg
a /  

eV 
Eoff

b / 

eV 
h

c / 
cm2 V-1 s-1 

VOC / 
V 

|JSC| / 
mA cm-2 

FF / 
% 

PCE / 
% Ref. 

PBDT-DTBT 1.63 1.07 3.94  10-6 0.55 3.53 36.8 0.72 52 

PBDT-4DTBT 1.69 1.01 9.20  10-6 0.75 5.92 41.3 1.83 52 

PBDT-3DTBT 1.97 1.18 N.D. 0.89 0.94 24.7 0.01 52 

PDBT-DTsolBT 2.35 1.49 N.D. 0.43 0.12 26.4 0.21 52 

PTBzT2-C12 1.88 1.0 1  10-4 0.67 2.17 32 0.46 49 

PTBzT2-C12 1.56 0.7 1  10-5 0.55 1.88 41 0.42 49 

PTBzT2-CEH 1.56 0.7 1  10-3 0.55 5.67 40 1.24 49 
a Optical Bandgap determined at the onset of thin film absorption; b Eoff = LUMO (PCBM) – HOMO (polymer);  
c Hole mobility 
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Egbe, et al,71 prepared alternating copolymers containing diethynyl anthracene units and 

phenylene-vinylene units with variable substitutions on the phenylenes (Figure 8, Table 2). Their 

best polymer, AnE-PV-ab, exhibited the best energy level match to the optimal values and the 

best |JSC|, FF, and PCE. Egbe, et al, attribute the poorer performance of their other polymers to 

smaller  stacking distances (380 pm vs. 386 pm for AnE-PV-ab). However, they note that 

some  stacking is necessary; the two polymers that showed no inclination to stack, AnE-PV-

ba and AnE-PV-bb, have the lowest PCEs. Nevertheless, these two polymers have the highest 

hole mobilities. In fact, from the work of Biniek, et al,49 and of Egbe, et al,71 the polymers with 

the highest hole mobilities contained disorder inducing 2-ethylhexyl groups. 

 

Figure 8. Polymers from ref. 76. 
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Table 2. Optoelectronic and photovoltaic parameters of polymers from ref. 71. 

Polymer Eg
a /  

eV 
Eoff

b / 

eV 
h

c / 
cm2 V-1 s-1 

VOC / 
V 

|JSC| / 
mA cm-2 

FF / 
% 

PCE / 
% 

d
d / 

pm 

AnE-PV-ab 1.80 0.97 2.57  10-5 0.69 7.14 55.7 3.14 386 

AnE-PV-ad 1.91 0.95 1.69  10-5 0.68 6.75 48.4 2.22 380 

AnE-PV-ae 1.98 0.94 3.39  10-5 0.62 4.97 39.8 1.23 380 

AnE-PV-ba 1.95 0.96 4.52  10-4 0.93 3.44 34.7 1.11 —e 

AnE-PV-bb 2.02 0.99 1.53  10-4 0.83 4.22 34.8 1.22 —e 

AnE-PV-cc 1.84 0.95 9.22  10-5 0.91 5.86 36.9 1.90 379 

a Optical Bandgap determined at the onset of thin film absorption; bEoff = LUMO(PCBM) – HOMO(polymer);  
c Hole mobility; d stacking distance; e Polymers showed no inclination to stack 

1.4 OLIGO(PHENYLENE-VINYLENE)S AS PROBES OF THE EFFECTS OF 

SEQUENCE ON OPTOELECTRONIC PROPERTIES 

We are interested in extending the study of optoelectronic properties of conjugated materials as a 

function of sequence to more complicated sequences than have been previously reported. We 

have chosen oligo(phenylene-vinylene)s (OPVs) as our model system for this research. 

Poly(phenylene-vinylene)s (PPVs) are among the popular materials40 for photovoltaic 

applications. OPVs are also one of the few conjugated materials that can be prepared without 

palladium catalysts.72-74 Residual palladium has been found by Krebs, et al,75 to dramatically 

decrease both VOC and JSC.  

Several syntheses of sequenced OPVs have been reported (Scheme 3). In one of the 

earliest syntheses of conjugated oligomers, Maddux, Li, and Yu 76 prepared OPVs with 

alternating substitution patterns from AC and BD type stilbenes (A reacts with B; C reacts with 

D) using alternating Heck and Horner-Wadsworth-Emmons (HWE) reactions. Tour and 
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coworkers expanded the syntheses of OPVs using fluorous mixture synthesis to prepare more 

complex syntheses.77 Other syntheses of OPVs include the work of Jørgensen and Krebs72, 73 to 

incorporate various heterocycles using only the Horner-Wadsworth-Emmons reaction, and the 

use of protected styryl boronates in iterative Suzuki reactions by Iwadate and Suginome.78  

  

Scheme 3. Syntheses of sequenced oligo(phenylene-vinylenes) by a) Maddux, et al,76 b) Jørgensen and Krebs,72 c) 
Jian and Tour,77  and Iwadate, and Suginome.78 

We have chosen to refer to our OPVs as dimers, trimers, tetramers, etc. based on the 

number of phenylene units in the oligomer, despite the oligomers containing less than the 

requisite number of complete (viz. a phenylene unit and a vinylene unit) repeat units. Thus 

monomers are substituted phenylenes, dimers are substituted stilbenes, trimers are 

distyrylbenzenes, etc. (Figure 9). The convention of referring to these oligomers as 1½-mers, 

2½-mers, 3½-mers, etc. is awkward and ambiguous. We derive our nomenclature from the well-
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established convention, which has also been used by Jian and Tour77 for their OPVs, based on 

the number of monomers, which are all substituted phenylenes, used to prepare the oligomer. 

 

Figure 9. Examples of OPV oligomer nomenclature. 

Herein we describe our synthesis of sequenced OPVs using HWE chemistry (Chapter 2). 

These OPVs display sequence-dependent optoelectronic and thermal properties. We were able to 

derive principles from these studies that could be used to guide further synthesis.  

We also report on our progress toward sequenced OPVs using olefin cross metathesis 

(CM) (Chapter 3). The methodology lends itself to the preparation of alternating OPVs. The 
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preparation of more complex sequences suffers from a lack of stereoselectivity in the CM 

reaction. Examination of this reaction by NMR suggests that optimization could be possible. 

Finally, we report our progress on the preparation of well-defined phenylene-vinylene 

rod-coil copolymers by HWE or ADMET polycondensations (Chapter 4). The physical 

properties of the copolymers depend strongly on the content and placement of oxygen atoms in 

the flexible linker between the phenylene-vinylene chromophores. The optical properties, 

however, are independent of the linker composition. 
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2.0  SYNTHESIS OF SEQUENCED OLIGO(PHENYLENE-VINYLENE)S USING 

HORNER-WADSWORTH-EMMONS HOMOLOGATION – THE EFFECTS OF 

SEQUENCE ON OPTOELECTRONIC AND THERMAL PROPERTIES 

2.1 OVERVIEW 

In order to develop design principles based upon sequence for OPVs, we have prepared 

three series of OPVs containing two different phenylene substitutions: all four possible dimers, 

six out of eight trimers (the homotrimers were omitted), and the set of six constitutionally 

isomeric tetramers containing two substituted phenylene rings and two unsubstituted rings 

(Figure 10). We have utilized an operationally simple iterative approach to these OPVs using 

HWE chemistry. We report the sequence-dependent optoelectronic and thermal properties of 

these OPVs, and we use these sequence-property relationships to derive principles to guide 

further synthesis.  
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Figure 10. Sequenced OPVs prepared. 

The sequences that we are examining are simple variations of substitution. On each 

phenylene unit an electron donating alkoxy group is either present or absent. Based on the 

reports by Zhou, et al,52 and Biniek, et al,49 we believe that sequence differences as simple as 

ours should produce variations in the optoelectronic properties. The phenylene units with alkoxy 

substituents will serves as the donors (D) in our sequences. The unsubstituted units will be 

designated as acceptors (A), since they are weakly electron-accepting by comparison. Our 

nomenclature refers to each material by its sequence of donors and acceptors, with the 

appropriate end groups indicated. Examples are shown in Figures 10 & 11. 
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Figure 11. Further examples of OPV nomenclature.   

2.2 SYNTHETIC APPROACH 

Our approach to preparation of OPVs using HWE chemistry was inspired by the work of 

Maddux, et al,76 of Jian and Tour,79 and of Jørgensen and Krebs.72 Maddux’s approach utilized 

orthogonally reactive stilbene monomers: one with a vinyl group and a formyl group and a 

second with an aryl iodide and a phosphonate. The monomers were assembled into oligomers via 

alternating HWE and Heck reactions. Jian and Tour expanded on this approach by using fluorous 

mixture synthesis to prepare more complex sequences. The approach by Jørgensen and Krebs 

likewise uses a stilbene monomer with orthogonally reactive groups, in this case a phosphonate 

and a protected aldehyde. The oligomers were assembled by HWE reactions followed by 

deprotection of the acetal.  

These approaches have limitations. In the work of Maddux, et al, and of Jørgensen and 

Krebs, the length of the oligomers was increased by two phenylene units each step. As a 

consequence, the substation pattern is limited. In both approaches, only an alternating 

substitution pattern was achieved. Jian and Tour increased their oligomer lengths one phenylene 
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unit at a time, and were thus able to produce more complex sequences, but their monomer set did 

not allow them to place the same substituents at all positions. 

We desired to fully control substitution pattern at each phenylene unit, which required us 

to develop a new synthesis of OPVs. Our synthetic strategy involves the use of partially masked 

AB-type phenylene monomers; ether substituted (P-D-PG) or unsubstituted (P-A-PG). These 

monomers are coupled with a p-bromobenzaldehyde, also either substituted (Br-D-CHO) or 

unsubstituted (Br-A-CHO) to produce dimers. The dimers are deprotected to unmask the 

aldehydes, which are reacted with another AB monomer to produce trimers, and so on. In this 

way we are able to prepare any substitution pattern on any length oligomer. This assembly 

approach is depicted in Scheme 4. 

 

Scheme 4. Synthetic approach to OPVs 
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We examined two versions of this approach: one in which the aldehyde was protected as 

an acetal and one in which the aldehyde was masked as a nitrile precursor. The ―deprotection‖ 

step in the nitrile version is a DIBAL-H reduction, which converts nitriles to aldehydes after 

aqueous workup. Each approach requires only a small set of monomers to prepare all possible 

sequences: two benzaldehydes and two phosphonates (Figure 12). The nitrile approach proved to 

be the better of the two methods; we were unable to achieve high E-selectivity in the HWE 

reactions of the acetal monomers.  

 

Figure 12. a) Benzaldehyde monomers common to both the acetal and nitrile approaches. b) Phosphonate 
monomers for the acetal approach. c) Phosphonate monomers for the nitrile approach. 

2.3 RESULTS 

2.3.1 Monomer synthesis 

The two common bromobenzaldehyde monomers were either purchased (Br-A-CHO) or 

prepared in good yields using well established chemistry (Br-D-CHO). Donor benzaldehyde Br-

D-CHO was prepared in three steps from hydroquinone in 48% overall yield (Scheme 5). 

Hydroquinone was alkylated with 1-bromohexane and KOH in a water/toluene biphasic system 

using TBAB as a phase transfer catalyst. The addition of 1 equivalent of Na2S2O3 increased the 

yield from 20-30% to 91-97%. Ether 1 was brominated with Br2 in refluxing methanol in a 75% 

yield. Finally, dibromide 2 was lithiated with nBuLi in Et2O at 0 oC, followed by quenching with 
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DMF to give benzaldehyde Br-D-CHO in 66% yield. Common bromobenzaldehyde monomer 

Br-A-CHO is commercially available 4-bromobenzaldehyde.  

 

Scheme 5. Synthesis of Br-D-CHO 

The two phosphonate monomers required for the acetal approach were prepared using 

well-established chemistry. Acetal monomer P-A-acetal was prepared from 4-

bromobenzaldehyde in five steps with 43% overall yield (Scheme 6). The aldehyde was initially 

protected as the neopentylene acetal 3 in 88% yield. Lithiation with nBuLi in THF, followed by 

quenching with DMF gave an aldehyde which was immediately reduced with NaBH4 in THF to 

give benzyl alcohol 4 in 51% yield over 2 steps. Bromination with CBr4 and PPh3 in THF gave 

benzyl bromide 5 in 99% yield. Bromide 5 was converted to phosphonate P-A-acetal with 

P(OCH3)3 in refluxing PhMe in 96% yield. 
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Scheme 6. Synthesis of P-A-acetal.  

Acetal monomer P-D-acetal was prepared from 2-methylhydroquinone in five steps in 

36% overall yield (Scheme 7). 2-Methylhydroquinone was alkylated in 86% yield with 1-

bromohexane, KOH, and Na2S2O3 in a water/toluene biphasic mixture with TBAB as a phase 

transfer catalyst. Ether 6 was brominated with NBS and AIBN in CCl4 to give a 3:2 mixture of 

benzyl bromide to aryl bromide regioisomers. In other solvents, only the aryl bromide was 

formed. The two regioisomers were difficult to separate, so the mixture of isomers was subjected 

to an Arbusov reaction with P(OCH3)3 in refluxing PhMe to give phosphonate 7 in 47% over 2 

steps. The unreacted aryl bromide is easily separated from the more polar phosphonate. 

Phosphonate 7 was formylated with CHCl2OCH3 and AlCl3 in DCM in 89% yield followed by 

conversion to the acetal, P-D-acetal, with neopentylene glycol and TsOH in refluxing toluene in 

97% yield.  
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Scheme 7. Synthesis of P-D-acetal. 

The two phosphonate monomers for the nitrile approach were also prepared using well 

established chemistry. Nitrile monomer P-A-CN was prepared in two steps from p-tolunitrile in 

35% yield (Scheme 8). p-Tolunitrile was brominated with NBS in DCE, followed by an Arbusov 

reaction with P(OCH3)3 in PhMe to give monomer P-A-CN in 35% yield over 2 steps. Nitrile 

monomer P-D-CN was prepared from ether 6 in 5 steps, with an overall yield of 34% (Scheme 

8). Ether 6 was brominated with NBS in DCE to give bromide 9 in 69% yield, followed by 

lithiation with nBuLi in Et2O and quenching with DMF to give benzaldehyde 10 in 99% yield. A 

modified Hofmann rearrangement80 gave benzonitrile 11 in 78% yield. Bromination with NBS in 

DCE, followed by an Arbusov reaction with P(OCH3)3 in PhMe gave nitrile monomer P-D-CN 

in 63% yield over 2 steps. 
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Scheme 8. Synthesis of nitrile monomers P-A-CN and P-D-CN. 

2.3.2 HWE optimization 

HWE couplings of nitrile-functionalized monomers gave better stereoselectivity and yields than 

those observed for those monomers bearing acetal-protected aldehydes. The addition of LiCl 

further improved stereoselectivity. Our first attempt involved the coupling between 

benzaldehyde Br-D-CHO and acetal monomer Br-D-acetal using KOtBu in THF (Table 3, entry 

1). The reaction gave the dimer in quantitative yield. However, 1H NMR showed the product to 
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be a 2:1 mixture of the E and Z isomers, which we were unable to separate. We were perplexed 

at this result, given that the stereoselectivity of the HWE reaction has not been well addressed in 

the synthesis of OPVs,70, 72, 73, 76, 77 leading us to anticipate high E selectivity. The 

stereoselectivity of the HWE reaction has been well studied, and the presence of Li+ in the 

reaction mixture has been shown to increase E selectivity.81, 82 The addition of LiCl to the HWE 

reaction between aldehyde Br-D-CHO and acetal monomer Br-D-acetal (Table HWE, entry 2) 

increased the selectivity to 4:1 E:Z at the expense of conversion. 

Table 3. HWE optimization 

 
# R Additive Yield E:Za 

1 
 

None 100% 2:1 

2 
 

LiCl 55% (85% BRSM) 4:1 

3 H None 98% 5:1 

4 H LiCl 60% 6:1 

5 CN None 70% 5:1 

6 CN LiCl 100% 10:1 
a Estimated from 1H NMR spectroscopy 

We examined the effects of the structure of the phosphonate on the E:Z ratio (Table 

HWE). The HWE reaction of phosphonate 91 with benzaldehyde Br-D-CHO (entry 3) gave 5:1 

E:Z in 98% yield. The addition of LiCl (entry 4) only marginally increased the E:Z ratio at the 

expense of yield. The HWE reaction between phosphonate P-D-CN and benzaldehyde Br-D-

CHO (entry 5) also gave 5:1 E:Z, but with a lower yield compared to the other phosphonates. 
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The addition of LiCl (entry 6) increased the E:Z ratio to 10:1 and the yield to 100%. Based on 

these results, we abandoned the acetal approach and focused on the nitrile approach.  

2.3.3 Oligomer synthesis by the nitrile approach  

OPVs were prepared in an iterative fashion from either Br-A-CHO or Br-D-CHO by successive 

HWE reactions with either P-A-CN or Br-D-CN followed by reductions with DIBAL-H. For 

example, the synthesis Br-ADDA-CN (Scheme 9) began with the HWE reaction of Br-A-CHO 

and P-D-CN to give Br-AD-CN in 92% yield, followed by a DIBAL-H reduction to give Br-

AD-CHO in 95%. The next HWE reaction with P-D-CN gave Br-ADD-CN in 86% yield, 

followed by DIBAL-H reduction to give Br-ADD-CHO in 82% yield. Finally, the HWE 

reaction of Br-ADD-CHO with P-A-CN gave Br-ADDA-CN in 89% yield. The other oligomers 

were synthesized similarly (Table 4). Yields were generally good to excellent. Use of 1.5 

equivalents of the phosphonate monomer ensured high conversion of the aldehyde, which 

facilitated separation. We attribute the conspicuously low yield of Br-AA-CN to the limited 

solubility of this dimer. The tetramers were not reduced to the aldehydes as they were our 

desired final product in this study. 
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Scheme 9.  Representative synthesis of OPVs - synthesis of Br-AD-CN, Br-ADD-CN, and Br-ADDA-CN 
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Table 4. Oligomers prepared by HWE oligomerization 

 
 Br-X-CHO P-Y-CN Br-XY-CN Br-XY-CHO 
 Br-A-CHO P-A-CN Br-AA-CN (55%) Br-AA-CHO (93%) 
 Br-A-CHO P-D-CN Br-AD-CN (92%) Br-AD-CHO (95%) 
 Br-D-CHO P-A-CN Br-DA-CN (96%) Br-DA-CHO (92%) 
 Br-D-CHO P-D-CN Br-DD-CN (99%) Br-DD-CHO (94%) 
 Br-AA-CHO P-D-CN Br-AAD-CN (84%) Br-AAD-CHO (82%) 
 Br-AD-CHO P-A-CN Br-ADA-CN (92%) Br-ADA-CHO (81%) 
 Br-AD-CHO P-D-CN Br-ADD-CN (86%) Br-ADD-CHO (82%) 
 Br-DA-CHO P-A-CN Br-DAA-CN (99%) Br-DAA-CHO (91%) 
 Br-DA-CHO P-D-CN Br-DAD-CN (95%) Br-DAD-CHO (85%) 
 Br-DD-CHO P-A-CN Br-DDA-CN (86%) Br-DDA-CHO (90%) 
 Br-AAD-CHO P-D-CN Br-AADD-CN (97%) — 
 Br-ADA-CHO P-D-CN Br-ADAD-CN (88%) — 
 Br-ADD-CHO P-A-CN Br-ADDA-CN (89%) — 
 Br-DAA-CHO P-D-CN Br-DAAD-CN (89%) — 
 Br-DAD-CHO P-A-CN Br-DADA-CN (100%) — 
 Br-DDA-CHO P-A-CN Br-DDAA-CN (100%) — 

2.3.4 Optical spectroscopy  

We examined the effects of sequence on the optical properties of our OPVs, which are of prime 

importance to photovoltaic applications. Absorption spectra of the nitrile-terminated OPVs were 

obtained in CHCl3 (~10-5 M), and emission spectra were obtained in CHCl3 (~10-5 M) and as 

films drop cast from CHCl3 onto quartz slides (Table 5). The absorption and emission maxima 
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generally increase with oligomer length, with the exception of Br-DAAD-CN. Within the dimer 

series, the absorption and emission maxima increase with increasing donor content, although Br-

AD-CN and Br-DA-CN are slightly different. The trimers do not show an obvious trend in their 

absorption and emission maxima based on donor/acceptor content. The tetramers all have the 

same donor/acceptor content, so no analysis based on content is possible. The trimers and 

tetramers exhibit higher molar absorptivities than the dimers. The emission maxima of the films 

are redshifted compared to the solution values, with the conspicuous exception of Br-DA-CN. 

Full absorption and emission spectra can be found in Appendix A. 

Table 5. Optical properties of the OPVs 

OPV max
abs a  / nm  

b
 

/ 103 cm-1
 M-1


max

em a  / nm max
em c  / nm  g

optd
  / eV 

Br-AA-CN 327 54.5 379 463 3.44 

Br-AD-CN 316, 364 29.4, 24.9 418 443, 469 2.99 

Br-DA-CN 309, 362 28.1, 29.2 450 460 2.97 

Br-DD-CN 303, 380 16.9, 26.6 450 519 2.89 

Br-AAD-CN 385 93.2 433, 461 507 2.86 

Br-ADA-CN 334, 406 37.9, 50.2 477 514 2.65 

Br-DAA-CN 383  73.2 476 497 2.84 

Br-ADD-CN 329, 412 34.0, 53.8 478 524 2.63 

Br-DAD-CN 396 72.4 474 504 2.77 

Br-DDA-CN 333, 412 29.4, 53.9 488 522 2.62 

Br-AADD-CN 360, 425 47.9, 83.7 492 547 2.55 

Br-ADAD-CN 422 73.9 499 549 2.58 

Br-ADDA-CN 337, 437 35.3, 78.3 511 541, 568 2.47 

Br-DAAD-CN 408 93.3 485 512 2.72 

Br-DADA-CN 425 89.9 492 534 2.56 

Br-DDAA-CN 366, 424 41.4, 86.2 515 553 2.56 
a ~10-5 M in CHCl3; b calculated at max

abs ;  c Thin film; d  g
opt determined at the onset of the absorption spectrum 
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The HOMO-LUMO gaps of the nitrile-terminated OPVs were estimated from the onset 

of absorption spectra. The HOMO-LUMO gaps decreased as oligomer length increased, with the 

exception of Br-DAAD-CN. Only the dimers exhibited variation based on composition, with the 

HOMO-LUMO gaps decreasing with increasing donor content. 

Many of our oligomers exhibited two absorption bands, as do many donor-acceptor 

polymers.48 The absorption profile (shape of the absorption spectrum) of a conjugated material 

will define how much of the solar spectrum can be absorbed. The absorption spectra of each 

series of oligomers (dimers, trimers, and tetramers) are presented below (Figures 13, 14, and 15). 

 

Figure 13. Overlaid absorption spectra of OPV dimers. 

Three dimers show two distinct absorbance bands: Br-AD-CN, Br-DA-CN, and Br-DD-

CN (Figure 13). The position and relative intensity of the two bands appears to be dependent on 
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donor composition. The bands of Br-DD-CN are more widely spaced than those of Br-AD-CN 

and Br-DA-CN. The high energy band of Br-DD-CN is noticeably smaller than the low energy 

band, while the bands of Br-AD-CN and Br-DA-CN are similar in intensity.  Br-AA-CN 

exhibits only a single absorbance band, but its molar absorptivity at the absorbance maximum is 

twice that of the other three dimers.  

 

Figure 14. Overlaid absorption spectra of OPV trimers. 

Three trimers show two distinct absorbance bands: Br-ADA-CN, Br-DDA-CN, and Br-

ADD-CN (Figure 14) In all three trimers, the low energy band is larger. Two trimers, Br-AAD-

CN and Br-DAD-CN, appear to have the remnants of a second absorbance band as a shoulder on 

the high energy side. Br-DAA-CN only shows one absorbance band. The three trimers without 

two distinct absorbance bands have higher molar absorptivities at their absorbance maxima.  
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Figure 15. Overlaid absorption spectra of OPV tetramers. 

Three tetramers exhibit a small second high energy absorbance band: Br-AADD-CN, Br-

ADDA-CN, and Br-DDAA-CN (Figure 15). Two tetramers, Br-ADAD-CN and Br-DADA-CN, 

exhibit a small high energy shoulder. Br-DAAD-CN only has one distinct absorbance band. All 

six tetramers have similar molar absorptivities at their absorbance maxima.  

2.3.5 Electrochemistry 

Electrochemical data, particularly oxidation and reduction potentials, are necessary to estimate 

the relative HOMO and LUMO energies of the OPVs. Cyclic voltammograms (CVs) and 

differential pulse voltammograms (DPVs) of the nitrile-terminated OPVs were obtained in 
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Bu4NPF6/CH3CN by Dr. Percy Calvo-Marzal. The peak oxidation and reduction potentials vs. 

Ag/Ag+ obtained from DPV are presented here for comparison to the optical spectroscopy data 

(Table 6). Only the distinct peaks are listed. Several oligomers, notably the tetramers, also 

displayed indistinct peaks that could not be assigned. The voltammograms can be found in 

Appendix A. 

All oligomers exhibited reversible oxidation and reduction processes in their CVs over 

three cycles. DPVs showed distinct transitions for all oligomers except Br-ADDA-CN, due to its 

limited solubility in CH3CN. Only the one oxidation peak is distinct for Br-ADDA-CN. 

However, a strong correlation between the optical and electrochemical HOMO-LUMO gaps 

allowed the estimation of the position of the first oxidation peak for Br-ADDA-CN at 0.63 V, 

and a strong correlation between first oxidation potential and calculated HOMO energies allowed 

for the estimation of Br-ADDA-CN at 0.55 eV (vide infra).  All oligomers exhibited multiple 

oxidation processes except Br-AA-CN. Most oligomers exhibited two reduction transitions. Br-

DADA-CN, Br-ADAD-CN, and Br-ADDA-CN each exhibited a single reduction transition, 

while Br-DD-CN and Br-DDAA-CN exhibited three reduction transitions. 
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Table 6. Electrochemical Properties of OPVs from DPV 

OPV  ox
  a  / V  red

  a  / V  g
ecb

  / eV 

Br-AA-CN 1.36 –1.94, –2.07 3.30 

Br-AD-CN 1.12, 1.26, 1.41 –1.91, –2.04 3.03 

Br-DA-CN 0.95, 1.05, 1.26 –1.91, –2.04 2.86 

Br-DD-CN 0.91, 1.03, 1.26, 1.41 –1.90, –1.98, –2.12 2.81 

Br-AAD-CN 0.92, 1.13, 1.29, 1.41 –1.94, –2.15 2.86 

Br-ADA-CN 0.74, 1.12, 1.42, 1.54 –1.91, –2.11 2.65 

Br-DAA-CN 0.85, 1.08, 1.42, 1.56 –1.92, –2.16 2.77 

Br-ADD-CN 0.71, 0.79, 0.91, 1.12, 1.40 –1.93, –2.04 2.64 

Br-DAD-CN 0.83, 1.13, 1.28, 1.43 –1.91, –2.15 2.74 

Br-DDA-CN 0.57, 0.71, 0.95, 1.13, 1.24 –1.89, –2.05 2.46 

Br-AADD-CN 0.72, 1.11, 1.30 –1.77, –1.90 2.49 

Br-ADAD-CN 0.63, 1.14, 1.42 –1.92 2.55 

Br-ADDA-CN (0.55c), (0.63d),  1.14 –1.91 (2.46c) 

Br-DAAD-CN 0.70, 1.18 –1.90, –2.03 2.60 

Br-DADA-CN 0.65, 0.96, 1.11, 1.45 –1.89 2.54 

Br-DDAA-CN 0.61, 0.81, 1.00, 1.12, 1.23 –1.80, –1.90, –2.04 2.41 
a Potential vs. Ag/Ag+, 240 M in 0.1 M Bu4NPF6 in CH3CN - only distinct peaks are listed; b  g

ec =  –e( red
   – 

 ox
  );  

c Estimated based on correlation to HOMO energies calculated using DFT (B3LYP/6-31G*); d Estimated based on 
correlation to optical spectroscopy 

The position of the first oxidation peaks generally decreased with oligomer length, with 

the exception of Br-DDA-CN exhibiting a lower first oxidation peak than all six tetramers. Only 

the dimers exhibited composition dependent behavior, with the potential of the first oxidation 

peak decreasing with donor content. The number of observable oxidation peaks also increased 

for the dimers with increasing donor content. The position and number of the oxidation peaks is 

not dependent on composition in the trimers and tetramers. The position of the reduction peaks 
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shows little variation over all 16 OPVs, with only Br-AADD-CN and Br-DDAA-CN showing a 

first reduction peak lower than the others.  

The HOMO-LUMO gaps of the OPVs were estimated based on the energy different 

between the first oxidation (HOMO) and first reduction (LUMO) peaks. The HOMO-LUMO 

gaps generally decrease with increasing oligomer length, with the exception of Br-DDA-CN, 

which has the second smallest optical HOMO-LUMO gap. The HOMO-LUMO gaps of the 

dimers decrease with increasing donor content. 

2.3.6 DFT calculations 

The optoelectronic properties of these OPVs were modeled using Gaussian 09 by Casey 

Campbell and Professor Geoff Hutchison at the University of Pittsburgh. The HOMO and 

LUMO energies were predicted using DFT with the B3LYP hybrid functional and the 6-31G* 

basis set with the Polarizable Continuum Model for acetonitrile. The results of these predictions 

are included for comparison (Table 7).  
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Table 7. Frontier orbital energy levels predicted using DFT (B3LYP/6-31G*).  

OPV EHOMO  
/ eV 

ELUMO  
/ eV 

Eg
a  

/ eV 
Br-AA-CN -5.914 -0.613 5.301 

Br-AD-CN -5.631 -0.580 5.051 

Br-DA-CN -5.526 -0.623 4.903 

Br-DD-CN -5.404 -0.591 4.813 

Br-AAD-CN -5.354 -1.335 4.020 

Br-ADA-CN -5.200 -1.330 3.870 

Br-DAA-CN -5.395 -1.316 4.080 

Br-ADD-CN -5.134 -1.254 3.880 

Br-DAD-CN -5.201 -1.329 3.872 

Br-DDA-CN -5.115 -1.313 3.802 

Br-AADD-CN -5.029 -1.686 3.343 

Br-ADAD-CN -5.013 -1.724 3.289 

Br-ADDA-CN -5.101 -1.650 3.451 

Br-DAAD-CN -5.164 -1.675 3.489 

Br-DADA-CN -5.063 -1.687 3.376 

Br-DDAA-CN -5.090 -1.709 3.381 
a Eg = ELUMO – EHOMO 

2.3.7 Thermal properties 

Thermal properties, most importantly melting point, are important for device performance. The 

thermal properties of the oligomers were investigated using differential scanning calorimetry 

(DSC) with a 10 oC/min scan rate (Table 8). Melting transition temperatures (Tms) were noted as 

endotherms on the heating curves. Crystallization transition temperatures (Tcs) were noted as 

exotherms on both heating and cooling cycles. The DSC traces can be found in Appendix A.  
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Table 8. Thermal properties of OPVs 

OPV Tm / oC  c
  a / oC  c

C b / oC 

Br-AA-CN 197.3 —d 151.3, 167.0 

Br-AD-CN 74.7c — — 

Br-DA-CN 83.2 66.8 30.6 

Br-DD-CN 96.3 — 68.8 

Br-AAD-CN 104.6 — 41.6 

Br-ADA-CN 184.9 — 79.5, 85.3, 92.7 

Br-DAA-CN 125.1c — — 

Br-ADD-CN 114.2 81.2 43.2 

Br-DAD-CN 104.5 — 77.8 

Br-DDA-CN 109.2 46.0 — 

Br-AADD-CN 144.0 — 113.8, 121.4 

Br-ADAD-CN 122.8 85.0 41.7 

Br-ADDA-CN 190.9 — 123.9 

Br-DAAD-CN 119.4 81.2 — 

Br-DADA-CN 93.8 75.4 — 

Br-DDAA-CN 110.8, 116.3 — 57.5 
a Exothermic transition observed on second heating scan; b Exothermic transition observed on second cooling scan;  
c Transition observed in first scan only; d Not observed. 

All oligomers exhibited endothermic transitions upon heating (Tms). The symmetrical 

oligomers with unsubstituted units on the outsides (Br-AA-CN, Br-ADA-CN, and Br-ADDA-

CN) have the highest melting points. In the dimers and trimers there is no clear dependence of 

the melting temperatures on composition. 

All oligomers except Br-AD-CN and Br-DAA-CN exhibited exothermic transitions (Tcs) 

either upon the cooling cycles or the second heating cycles or both. If an exothermic transition 

was observed in both the heating and cooling cycles, the transition on the heating cycle occurred 

at a higher temperature than the transition on the cooling cycle. In general, the symmetric 
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oligomers have higher crystallization temperatures than the less symmetric oligomers. The 

dimers and trimers do not exhibit any clear dependence of the crystallization temperature on 

composition.  

2.4 DISCUSSION 

2.4.1 Optoelectronic properties 

The optoelectronic properties of the OPVs, which are of primary importance for photovoltaic 

applications, are sequence dependent. In general having two adjacent donors contributes to the 

oligomers exhibiting low energy absorption and emission maxima, early first oxidation 

potentials, and smaller HOMO-LUMO gaps. Having two adjacent acceptors leads to higher 

energy absorption and emission maxima, later first oxidation potentials, and larger HOMO-

LUMO gaps, although this effect can be attenuated or negated if there are also two adjacent 

donors in a tetramer. The oligomers with alternating sequences tend to have intermediate 

properties. In the pairs of dissymmetric oligomers with reverse sequence (e.g. Br-DAA-CN and 

Br-AAD-CN), the oligomer which has the sequence beginning with the donor tends to have 

lower energy absorption and emission maxima, earlier first oxidation potentials, and smaller 

HOMO-LUMO gaps than the oligomer with an accepter first sequence. These principles suggest 

that longer oligomers with optimal properties could be chosen by design, rather than selected 

empirically after exhaustive synthesis. 

Before discussing the properties in detail, we need to define two relationships between 

sequences. Two oligomers with reverse sequences are a pair of oligomers which contain the 
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same content of donors and acceptors but in exactly reverse order, e.g. Br-DDA-CN and Br-

ADD-CN. Two oligomers with inverse sequences are a pair of oligomers in which each acceptor 

in the sequence is systematically switched with a donor and each donor switched with an 

acceptor, e.g. Br-DDA-CN and Br-AAD-CN. Symmetric oligomers, such as Br-ADA-CN, are 

their own reverse. For the even oligomers, the inverse and reverse sequences may be identical, 

e.g. Br-ADAD-CN and Br-DADA-CN are both inverse and reverse sequences. 

2.4.1.1 Sequence dependence of optoelectronic properties 

The absorption and emission maxima and the first oxidation potentials are sequence 

dependent within each series of OPVs. Selected data from Tables 5 and 6 have been reordered in 

Table 9 to highlight the sequence dependent trends. There is some dependence of these 

properties on oligomer length and donor content, but significant overlap in the ranges observed 

for these properties, especially between the trimers and tetramers and between the two sets of 

trimers, (Figures 16 and 17) indicates that oligomer length and content are not the sole predictors 

of the properties of OPVs. Indeed, the range of optoelectronic properties exhibited by the 

tetramers (absorption maxima: 29 nm; solution emission maxima: 30 nm; film emission maxima: 

41 nm; and first oxidation potential: 0.17 V) clearly demonstrates that sequence is important. 

Conversely, the first reduction potentials show little variation with oligomer length, donor 

content, or sequence. The first reduction potentials of all 16 OPVs fall within a 0.17 V range, 

with the first reduction potentials of all but two OPVs falling in a 0.05 V range between -1.89 V 

and -1.94 V.  
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Figure 16. Ranges of max data from optical spectroscopy. 

 

Figure 17. Ranges of the first oxidation potential of the OPVs. 

The optoelectronic properties of the dimers depend on both sequence and donor-acceptor 

content (Table 9, earlier optical and electrochemical data tabulated together to facilitate 

comparison). In general, the first oxidation potentials decrease and the first reduction potentials 

and absorption and emission maxima increase with increasing donor content. The differences 

between Br-AD-CN and Br-DA-CN highlight the sequence dependence of certain properties. 

Br-DA-CN exhibits a higher emission maximum and an earlier first oxidation peak than Br-AD-

CN. The first reduction potentials and absorption maxima are not sequence dependent for the 

dimers. The small difference in absorption maxima between Br-DA-CN and Br-AD-CN is 

attributable to the error in the measurement. 
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Table 9. Optoelectronic properties of the OPVs ordered by increasing absorption maximum and sorted by oligomer 
length 

OPV max
abs a  

/ nm 
max

em b 
/ nm  

max
em c  

/ nm 
 ox

  d  
/ V

 red
  e 

/ V 

Br-AA-CN 327 379 463 1.36 -1.94 

Br-DA-CN 362 450 460 0.95 -1.91 

Br-AD-CN 364 418 443 1.12 -1.91 

Br-DD-CN 380 450 519 0.91 -1.90 

Br-DAA-CN 383 476 507 0.85 -1.92 

Br-AAD-CN 385 433 497 0.92 -1.94 

Br-DAD-CN 396 474 504 0.83 -1.91 

Br-ADA-CN 406 477 514 0.74 -1.91 

Br-ADD-CN 412 478 522 0.71 -1.93 

Br-DDA-CN 412 488 524 0.57 -1.89 

Br-DAAD-CN 408 485 512 0.70 -1.90 

Br-ADAD-CN 422 499 549 0.63 -1.92 

Br-DDAA-CN 424 515 553 0.61 -1.80 

Br-DADA-CN 425 492 534 0.65 -1.89 

Br-AADD-CN 425 492 547 0.72 -1.77 

Br-ADDA-CN 437 511 541 (0.55)f -1.91 
a Lower energy absorption band; d (~10-5 M in CHCl3); c thin film; d First oxidation peak; e First reduction peak;  
f Estimated based on correlation to HOMO energies calculated by DFT (B3LYP/613G*)  

The sequence dependence of the optoelectronic properties is more evident in the trimer 

series (Table 9). The oligomers with dissymmetric sequences do exhibit properties that vary with 

donor-acceptor content. For example, Br-ADD-CN and Br-DDA-CN exhibit higher absorption 

and emission maxima and lower first oxidation peaks than Br-AAD-CN and Br-DAA-CN. 

However, this dependence on content is reversed in the two OPVs with symmetric sequences: 

Br-ADA-CN has a higher absorption maximum and a lower first oxidation peak than Br-DAD-

CN. The pairs of dissymmetric trimers that have identical donor-acceptor content exhibit do 
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show sequence dependence in some properties. Trimers Br-DAA-CN and Br-DDA-CN have 

earlier first oxidation potentials and higher emission maxima than their reverse sequences Br-

AAD-CN and Br-ADD-CN, respectively. However, there is no significant difference in 

absorption maximum between Br-AAD-CN and Br-DAA-CN or between Br-ADD-CN and Br-

DDA-CN. 

All variation in the optoelectronic properties of the tetramers is dependent on sequence 

since all six tetramers are constitutionally isomeric, i.e. there is no variation of donor-acceptor 

content. The greatest sequence effects are evident for the tetramers with symmetric sequences. 

Similar to the trend observed for the trimers, the symmetric sequence with acceptors on the 

outside (Br-ADDA-CN) has the higher absorption and emission maxima and the earlier first 

oxidation peak that the inverse sequence with donors on the outside (Br-DAAD-CN). However, 

the dissymmetric sequences only show significant sequence dependence in the first reduction 

potentials, a property that has generally been independent of sequence. The two blocky 

sequences Br-AADD-CN and Br-DDAA-CN first oxidation potentials at -1.77 and -1.80 V, 

respectively, when all other OPVs have first reduction potentials between -1.89 V and -1.94 V. 

There is no significant difference in the absorption maxima of the four dissymmetric sequences: 

Br-ADAD-CN, Br-DADA-CN, Br-AADD-CN, and Br-DDAA-CN. These four OPVs also 

have similar solution emission maxima, except for Br-DDAA-CN, which has a higher maximum 

than the others. The film emission maxima vary, but there is no pattern to the variation. BR-

ADAD-CN has a higher film emission maximum than Br-DADA-CN, but Br-AADD-CN has a 

lower film emission maximum than Br-DDAA-CN. The first oxidation potentials are also 

similar, with the exception of Br-AADD-CN having a noticeably later first oxidation. 
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While donor-acceptor content matters, the position of the donors and acceptors in the 

sequence is equally important. Sequences with two adjacent donors (e.g. Br-ADDA-CN, Br-

ADD-CN, and Br-DDA-CN) tend to have higher absorption and emission maxima and earlier 

first oxidation potentials. Sequences with two adjacent acceptors (e.g. Br-DAAD-CN, Br-AAD-

CN, and Br-DAA-CN) tend to have lower absorption and emission maxima. Alternating 

sequences (e.g. Br-ADAD-CN, Br-DADA-CN, Br-ADA-CN, and Br-DAD-CN) and those 

sequences containing both two adjacent donors and two adjacent acceptors (Br-AADD-CN, and 

Br-DDAA-CN) have intermediate properties with a few exceptions. For the dimers and trimers, 

the donor-first dissymmetric sequences exhibited higher emission maxima and earlier first 

oxidation potentials than the corresponding acceptor-first reverse sequences. This trend was not 

observed for the tetramers.  

2.4.1.2 Sequence dependence of HOMO-LUMO gap 

The HOMO-LUMO gaps, Egs, of our OPVs are sequence dependent. The optical and 

electrochemical Egs from tables 5 and 6 have been reordered in Table 10 to highlight the 

sequence dependent trends. The electrochemical HOMO-LUMO gaps of the oligomers correlate 

strongly with the optical HOMO-LUMO gaps (R2 = 0.925, Figure 18). From this correlation, the 

electrochemical Eg of Br-ADDA-CN (which could not be assigned due to indistinct oxidation 

peaks) is estimated to be 2.54 eV, which would place the first oxidation peak at 0.63 V.  
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Figure 18. Correlation of optical and electrochemical HOMO-LUMO gaps of the oligomers.  

The HOMO-LUMO gaps show moderate sequence dependence, with the observed trends 

mirroring those for the dependence of the absorption and emission maxima and first oxidation 

potentials on sequence (Table 10). Donor content is important. In each series, the smallest Egs 

were observed for the OPVs containing two adjacent donors and lacking two adjacent acceptors 

(Br-DD-CN, Br-ADD-CN, Br-DDA-CN, and Br-ADDA-CN). The symmetric trimers disrupt 

the donor-dependent trend, with Br-ADA-CN Eg than Br-DAD-CN. The OPVs with the largest 

Egs in each series were those sequences containing two acceptors without two adjacent donors 

(Br-AA-CN, Br-AAD-CN, Br-DAA-CN, and Br-DAAD-CN). The alternating sequences (Br-

AD-CN, Br-DA-CN, Br-ADA-CN, Br-DAD-CN, Br-ADAD-CN, and Br-DADA-CN) and the 

blocky tetramers containing both two adjacent donors and two adjacent acceptors (Br-AADD-

CN and Br-DDAA-CN) displayed intermediate Egs. It is worth noting that the range of Egs 

for the tetramers (optical: 0.25 eV; electrochemical: 0.19 eV) is comparable to the difference in 

Eg between the polymers exhibiting the best and worst power conversion efficiencies in several 

recent reports.49, 68, 71 
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Table 10. Eg data ordered by decreasing optical Eg and sorted by oligomer length 
 

Oligomer  g
opta / eV  g

ecb / eV 

Br-AA-CN 3.44 3.30 

Br-AD-CN 2.99 3.03 

Br-DA-CN 2.97 2.86 

Br-DD-CN 2.89 2.81 

Br-AAD-CN 2.86 2.86 

Br-DAA-CN 2.84 2.77 

Br-DAD-CN 2.77 2.74 

Br-ADA-CN 2.65 2.65 

Br-ADD-CN 2.63 2.64 

Br-DDA-CN 2.62 2.46 

Br-DAAD-CN 2.72 2.60 

Br-ADAD-CN 2.58 2.55 

Br-DADA-CN 2.56 2.54 

Br-DDAA-CN 2.56 2.41 

Br-AADD-CN 2.55 2.49 

Br-ADDA-CN 2.47 (2.46)c 

a  g
optdetermined at the onset of the absorption. b  g

ec =  –e( red
   –  ox

  );  c Estimated based on correlation to 
HOMO energies calculated using DFT (B3LYP/6-31G*). 

In general, the optical and electrochemical HOMO-LUMO gaps were similar. The 

dissymmetric sequences, however, display interesting sequence dependent differences between 

their optical and electrochemical Egs. The optical Egs for each dissymmetric sequence and its 

reverse sequence are with 0.02 eV of each other. However, with one exception, the oligomer 

with the donor-first sequence has a lower electrochemical Eg by 70-160 meV than its optical 

Eg, while the acceptor-first reverse sequence has similar optical and electrochemical Egs. Only 

Br-DADA-CN does not show this decrease from its optical Eg to its electrochemical Eg. The 
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difference in behavior for the optical and electrochemical Egs is likely dependent on the 

solvent: optical spectroscopy was performed in chloroform and electrochemistry was performed 

in acetonitrile.  

2.4.1.3 Design principles and predictions 

The sequence dependent trends suggest two principles for the design of OPVs desired 

optoelectronic properties. First, for series of oligomers with identical donor-acceptor content, the 

lowest Egs and highest absorption and emission maxima occur in the sequences that maximize 

adjacent donors while minimizing adjacent acceptors. For example, we predict that two 

hexamers, Br-AADDDA-CN and Br-ADDDAA-CN, out of the set of hexamers containing three 

donors and three acceptors will likely exhibit the lowest Egs and the highest absorption and 

emission maxima. The two sequences that maximize adjacent acceptors while minimizing 

adjacent donors, Br-DDAAAD-CN and Br-DAAADD-CN should have the highest Egs and the 

lowest absorption and emission maxima. The blocky hexamers (Br-AAADDD-CN and Br-

DDDAAA-CN), the perfectly alternating hexamers (Br-ADADAD-CN and Br-DADADA-CN), 

and the pseudorandom hexamers (Br-AADADD-CN, Br-AADDAD-CN, Br-ADADDA-CN, 

Br-ADDAAD-CN, Br-ADDADA-CN, Br-DDADAA-CN, Br-DDAADA-CN, Br-DADAAD-

CN, Br-DAADDA-CN, and Br-DAADAD-CN) will have intermediate properties. 

Second, increasing the adjacent donor content leads to lower HOMO-LUMO gaps and 

first oxidation potentials and higher absorption and emission maxima. For example, we predict 

that the two tetramers with three adjacent donors and one acceptor (Br-ADDD-CN and Br-

DDDA-CN) will have lower Egs and higher absorption and emission maxima than the six 

tetramers we have already prepared. These two molecules should have similar properties, 
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although Br-DDDA-CN may have a lower electrochemical Eg and a higher emission maximum 

than Br-ADDD-CN. Similarly, we predict that the two tetramers with three adjacent acceptors 

and one donor (Br-AAAD-CN and Br-DAAA-CN) will have higher Egs and lower absorption 

and emission maxima than the six tetramers we have prepared.  

2.4.1.4 Comparison of experimental and theoretical data  

Successful modeling of the frontier orbital energies of sequenced materials could guide 

synthetic efforts, especially if the model correlates well to empirical trends. Our OPVs display 

strong correlation between the first oxidation potentials (electrochemical HOMO) and the 

HOMO energies predicted by DFT (Figure 19, top left). The strong correlation between 

predicted HOMO energies and first oxidation potentials was used to estimate the first oxidation 

potential of Br-ADDA-CN (which was indistinct). The first oxidation potential of Br-ADDA-

CN was thus estimated as 0.55 V.  
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Figure 19. Correlations between predicted and experimental properties. Top left: correlation between predicted 
HOMO energies and first oxidation potentials. Top right: correlation between predicted LUMO energies and first 
reduction potentials. Middle left: correlation between predicted Eg and optical Eg. Middle right: correlation 
between predicted Eg and electrochemical Eg. Bottom left: correlation between predicted HOMO energies and 
optical Eg. Bottom right: Correlation between predicted HOMO energies and electrochemical Eg. 
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There is no correlation between first reduction potential (electrochemical LUMO) and 

predicted LUMO energies (Figure 19, top right). The predicted LUMO energies show a larger 

variation than is observed. This lack of correlation weakens the correlation between the predicted 

and experimental Egs (Figure 19, middle). However, the experimental Egs depend mostly on 

the first oxidation potential, since the first reduction potentials do not vary significantly. Thus, 

predicted HOMO energies have a stronger correlation with the experimental Egs than the 

predicted Egs (Figure 19, bottom). 

2.4.1.5 Absorption Profile 

Several of our OPVs exhibit two absorption bands. Beaujuge, et al, have also examined 

the dual absorption band phenomenon in donor-accepter polymers with distinct sequences.48 

They found that increasing the donor content caused the two bands to coalesce: the lower energy 

band decreased in intensity, the high energy band increased in intensity, and the two bands 

moved closer together. Beaujuge, et al, discuss three possible explanations for the behavior of 

the dual absorption bands in donor-acceptor polymers: the presence of separate donor-rich and 

acceptor-rich chromophores on the chain, the formation of intramolecular charge-transfer states 

between the donors and acceptors, and the presence of the low-lying acceptor LUMO between 

the valence and conductance bands of the conjugated polymer. Decreasing population of the 

acceptor LUMO, and thus the low-lying state (be it a localized acceptor LUMO, charge-transfer 

state, etc.), as donor content increases leads to the decreasing intensity of the low energy band 

and the coalescence of the two bands. 

For our OPVs, the presence or absence of two absorption bands, and the relative 

intensities of the bands, is strongly dependent on sequence and not on donor-acceptor content. 
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This behavior is especially noticeable in the trimers (Figure 20). Three trimers (Br-ADA-CN, 

Br-ADD-CN, and Br-DDA-CN) exhibit two absorption bands, and Br-AAD-CN exhibits the 

remnants of a high energy band as a shoulder. The relative intensity of the high energy band 

increases with decreasing donor content: Br-DDA-CN to Br-ADD-CN to Br-ADA-CN to Br-

AAD-CN.  Again, in the dimers, the most donor-rich sequence (Br-DD-CN) has the least intense 

high energy band, while in Br-AD-CN, the intensity of the high energy band exceeds that of the 

low energy band. For the tetramers, the order of increasing intensity of the high energy band or 

shoulder (Br-ADAD-CN, Br-DADA-CN, Br-ADDA-CN, Br-DDAA-CN, and Br-AADD-CN 

is entirely sequence dependent.  

 

Figure 20. Normalized absorption spectra of the OPV trimers. 

The charge transfer explanation is the most reasonable of the explanations offered by 

Beaujuge because it is the only explanation that does not rely on localized orbitals. Given that 
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HOMO is delocalized. Also, since we are studying short, well-defined oligomers, it is unlikely 

that the electronics of the donors and acceptors are isolated enough to create multiple 

chromophores in molecules with just two, three, or four repeat units. Beaujuge suggests that 

strong acceptors are necessary for the formation of a charge transfer state. However, the 

promotion of an electron from the HOMO to the LUMO of any conjugated molecule necessarily 

creates charge separation: an extra electron in the LUMO (negative) and a hole in the HOMO 

(positive). We hypothesize that the presence of two absorption bands derives from the 

accessibility of two different charge-separated excited states, which is controlled by sequence. 

Predictions 

2.4.2 Thermal properties 

The thermal properties of the OPVS are also sequence dependent, but there are fewer predictive 

principles that can be derived from this variation. A high melting point is beneficial for 

photovoltaic applications so that the material is solid over a large temperature range. Generally, 

the symmetric sequences with acceptors on the outside have the highest melting points on 

heating and crystallization points on cooling. There are no other significant patterns to the data. 

However, the significant variation in the melting and crystallization transitions within each set of 

oligomers demonstrates that sequence is important. The data from Table 8 has been reordered to 

list the OPVs in order of increasing melting point by oligomer length (Table 11).  
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Table 11. Thermal properties of the OPVs ordered by increasing melting point and sorted by oligomer length. 

OPV Tm / oC  c
  a / oC  c

C b / oC 

Br-AD-CN 74.7c —d — 

Br-DA-CN 83.2 66.8 30.6 

Br-DD-CN 96.3 — 68.8 

Br-AA-CN 197.3 — 151.3, 167.0 

Br-DAD-CN 104.5 — 77.8 

Br-AAD-CN 104.6 — 41.6 

Br-DDA-CN 109.2 46.0 — 

Br-ADD-CN 114.2 81.2 43.2 

Br-DAA-CN 125.1c — — 

Br-ADA-CN 184.9 — 79.5, 85.3, 92.7 

Br-DADA-CN 93.8 75.4 — 

Br-DDAA-CN 110.8, 116.3 — 57.5 

Br-DAAD-CN 119.4 81.2 — 

Br-ADAD-CN 122.8 85.0 41.7 

Br-AADD-CN 144.0 — 113.8, 121.4 

Br-ADDA-CN 190.9 — 123.9 
a Exothermic transition observed on second heating scan; b Exothermic transition observed on second cooling scan;  
c Transition observed in first scan only; d Not observed. 

Figure 21 shows the range of melting points as a function of oligomer composition and 

length. From the graph, it is clear that there can be exceptional variation in the melting points of 

oligomers with the same composition, but different sequence. This effect is pronounced in the 

A2D trimers, with a melting point span of 80 oC, and in the A2D2 tetramers, with a melting point 

span of 97 oC. The AD2 trimers, with a melting point span of only 10 oC, do not show any 

sequence-specific behavior in their melting points. Other than the symmetric oligomers with 

acceptors on the outside (Br-AA-CN, Br-ADA-CN, Br-ADDA-CN) having the highest melting 

points, there is no obvious correlation between sequence and melting point.  
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Figure 21. Range of melting points as a function of oligomer composition and length. 

The crystallization data show some sequence dependence in a predictive way. In 

particular, the presence of a crystallization transition on heating seems to be sequence dependent. 

The trimers that exhibit a crystallization transition upon heating both contain two adjacent 

donors. However, the three tetramers that exhibit a crystallization morphology change upon 

heating are those three that lack two adjacent donors. Other than the symmetric oligomers with 

acceptors on the outside (Br-AA-CN, Br-ADA-CN, Br-ADDA-CN) exhibiting the highest 

crystallization points on cooling, there is no pattern to the crystallization transitions on cooling.  

2.4.3 HWE optimization 

Stereoselectivity in the HWE relies on equilibration between the E and Z 

oxaphosphatanes (Scheme 10). We believe that acetal group in monomer P-D-acetal, which is 

slightly electron-donating, increases the nucleophilicity of the phosphonate anion by 

destabilizing the negative charge, which increases the rate of the addition step and makes the 

addition less reversible. Equilibrium is likely not established before the reaction proceeds to the 

irreversible elimination step, limiting the selectivity. The electron-withdrawing nitrile stabilizes 

the phosphonate anion, decreasing nucleophilicity and the rate of addition, while increasing the 

reversibility of the addition, all of which favor the formation of equilibrium and the formation of 

the thermodynamically more stable E product. Despite the reported positive influence of Li+ on 
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the stereoselectivity, a mechanistic explanation has not been proposed.81, 82  We hypothesize that 

Li+ promotes a favorable arrangement leading to the E oxaphosphatane, similar to the 

Zimmerman-Traxler transition state proposed for the aldol reaction (Scheme 11). 

 

Scheme 10. Pathways leading to Z and E stilbenes in a HWE reaction. 

 

Scheme 11. Proposed role of Li+ in the stereoselectivity of the HWE reaction. 
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2.5 CONCLUSIONS 

The optoelectronic properties of three series (dimers, trimers, and tetramers) of oligo(phenylene-

vinylenes) OPVs depend on the sequence of donor and acceptor units. Increased donor content is 

important, and the best sequences (highest absorption and emission maxima, earliest first 

oxidation potentials, and smallest HOMO-LUMO gaps) maximize the number of adjacent donors 

while minimizing adjacent acceptors. Sequences with low donor content or donors with 

acceptors spaced between them exhibited less desirable properties. The observed trends suggest 

design principles that could be utilized to prepare specific longer oligomers with attractive 

properties. In particular, the emission maxima and first oxidation potentials, of these OPVs show 

strong dependence on sequence. The absorption maxima and HOMO-LUMO gaps show 

moderate sequence dependence, and the first reduction potentials show minimal sequence 

dependence. The thermal properties of these OPVs are also sequence dependent. These 

oligomers can be rapidly prepared using a simple and robust homologation centered on Horner-

Wadsworth-Emmons (HWE) reactions. 

2.6 EXPERIMENTAL SECTION 

2.6.1 General methods 

Materials. Anhydrous DMF, nBuLi (1.6 M in hexanes), and DIBAL-H (1.0 M in hexanes) were 

purchased from Aldrich and dispensed using air-sensitive techniques. Benzoyl peroxide, AIBN, 

and NBS were stored at -20 oC. KOtBu was stored in a desiccator over anhydrous CaSO4. LiCl 
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was dried at 120 oC for at least 24 h. Anhydrous diethyl ether for lithiation reactions was opened 

immediately prior to use. When necessary, THF was dried by passing over a column of activated 

alumina. Reagent grade THF was used for most reactions; notably the HWE reactions used 

reagent grade THF. DCM for reactions was dried by refluxing with CaH2.  All other reagents and 

solvents were used as received. Column chromatography was carried out on standard grade silica 

gel (60 Å pore size, 40-63 m particle size), which was purchased and used as received. 

Hexanes, dichloromethane, and ethyl acetate used for column chromatography were purchased 

and used as received. 

NMR Spectroscopy. 1H (300 and 400 MHz) and 13C (75 and 100 MHz) NMR spectra were 

recorded on Bruker spectrometers. Chemical shifts were referenced to residual 1H or 13C signals 

in deuterated solvents (7.27 and 77.0 ppm, respectively, for CHCl3 and 5.32 and 54.0 ppm, 

respectively, for CH2Cl2).  

Mass Spectrometry. HRMS were recorded on EI-quadrupole or ESI-TOF instruments in the 

Mass Spectrometry Facility of the University of Pittsburgh. 

Optical Spectroscopy. UV/VIS absorption spectra were recorded in CHCl3 on a Perkin Elmer 

Lambda 9 UV/VIS/NIR spectrometer. Solution (CHCl3) and film emission spectra were recorded 

on a Varian Cary Eclipse fluorimeter. Films were drop cast on quartz slides from CHCl3.  

Thermal Analysis. DSC was performed on a Perkin Elmer Pyris 6 with a heating and cooling 

rate of 10 oC/min.  

Electrochemistry. DPV and CV were performed on a CH Electrochemistry workstation (in 

acetonitrile with Bu4NPF6 as the supporting electrolyte using a glassy carbon working electrode, 

a Ag/Ag+ reference electrode, and a Pt wire counter electrode. 
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2.6.2 Monomer synthesis 

 

1,4-Bishexyloxybenzene (1). KOH (40.0 g, 713 mmol), and Na2S2O3·5H2O (86.0 g, 346 mmol) 

were dissolved in water (200 mL) in a 1 L round-bottom flask with stirring. The flask was cooled 

on an ice bath. Then, hydroquinone (38.0 g, 345 mmol) and TBAB (5.0 g, 16 mmol) were added. 

The mixture was stirred until most of the solid had dissolved. Then, 1-bromohexane (100 mL, 

712 mmol) and toluene (100 mL) were added, and the flask was equipped with a water-cooled 

condenser. The mixture was brought to rt, and then refluxed with vigorous stirring for 24 – 48 h 

(until complete by TLC analysis). Once complete, the mixture was allowed to cool to rt. The 

aqueous layer was extracted once with toluene (100 mL). The combined organic layers were 

washed with water (200 mL) and brine (200 mL) and dried over MgSO4. The solvent was 

removed under reduced pressure until the residue solidified. The residue was recrystallized from 

methanol to give the title compound as white flaky crystals (78.1 g – 93.0 g, 81 – 97%). MP 42.0 

– 43.0 oC. 1H NMR (CDCl3, 300 MHz),  0.93 (6H, t, J = 6.8 Hz, CH3), 1.25-1.40 (8H, mult) 

1.40-1.50 (4H, mult), 1.78 (4H, tt, J = 6.6, 6.8 Hz), 3.92 (4H, t, 75 J = 6.6 Hz, OCH2), 6.85 (4H, 

s, ArH) ppm. 13C NMR (CDCl3, 75 MHz)  14.0 (CH3), 22.6 (CH2), 25.7 (CH2), 29.4 (CH2), 

31.6 (CH2), 68.6 (OCH2), 115.3 (Ar CH), 153.2 (ArO quat) ppm. MS(EI) 278 (M+, base), 255, 

207, 194, 151, 123, 111, 109, 93, 85, 81, 65, 57 m/z. HRMS calcd for C18H30O2: 278.2246 g/mol. 

Found: 278.2244 g/mol. 
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1,4-dibromo-2,5-bis(hexyloxy)benzene (2, vi35). Bromine (70.0 mL, 1.36 mol) was added 

dropwise to methanol (650 mL) in a round-bottom flask cooled on ice. 1 (75.0 g, 269 mmol) was 

added and the mixture was refluxed for 48 h. The reaction mixture was extracted with hexanes 

(4x 250 mL). The combined organic layers were washed with 20% aq. NaHSO3 (2x 200 mL), 

water (200 mL), and brine (200 mL). The solution was dried over MgSO4, and the solvent was 

removed in vacuo. The residue was recrystallized (9:1 methanol:CH2Cl2) to give the title 

compound as a white solid (88.5 g, 75%). 1H NMR (CDCl3, 300 MHz)  0.93 (6H, t, J = 6.8 Hz), 

1.30-1.40 (8H, mult), 1.40-1.55 (4H, mult), 1.81 (4H, tt J = 6.8, 6.4 Hz), 3.95 (4H, t, J = 6.4 Hz), 

7.09 (2H, s) ppm. 13C NMR (CDCl3) 14.00 (CH3), 22.56 (CH2), 25.59 (CH2), 29.06 (CH2), 

31.46 (CH2), 70.26 (OCH2), 111.09 (ArBr quat), 118.41 (Ar  CH), 150.04 (ArO quat) ppm.  

 

 

4-bromo-2,5-bis(hexyloxy)benzaldehyde (Br-D-CHO, vi39). Based on the methods of Peng,83 

two batches of 2 (34.9 g, 80.0 mmol each) were each dissolved in Et2O (150 mL) and cooled to 0 

oC under N2. nBuLi (1.6 M in hexanes, 50 mL, 80 mmol) diluted with 100 mL Et2O was added to 

each batch dropwise over 30 min. Then, anhydrous DMF (10.0 mL, 130 mmol) in Et2O (35 mL) 

was added rapidly to each batch. The mixtures were removed from the cold bath and stirred at 

room temperature for 2 h. The reactions were quenched into water (300 mL). The aqueous layers 
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were extracted thrice with ether (100 mL). The organic layers were washed with brine (100 mL) 

and dried over MgSO4. The solvent was removed in vacuo. The residues of both batches were 

combined and recrystallized from hexanes and then methanol to give the title compound as a 

while solid (40.5 g, 66%). 1H NMR (CDCl3, 300 MHz)  0.80-0.95 (6H,mult), 1.30-1.40 (8H, 

mult), 1.40-1.55 (4H, mult), 1.75-1.90 (mult, 4H), 4.00 (2H, t, J = 6.4 Hz), 4.02 (2H, t, J = 6.4 

Hz), 7.22 (1H, s), 7.30 (1H, s), 10.41 (1H, s) ppm. 13CNMR (CDCl3) 13.95 (CH3), 13.97 

(CH3), 22.51 (CH2), 22.53 (CH2), 25.57 (CH2), 25.62 (CH2), 28.94 (CH2), 28.98 (CH2), 31.42 

(CH2), 69.76 (OCH2), 69.76 (OCH2), 110.52 (Ar CH), 118.39 (Ar CH), 120.89 (ArBr quat), 

124.20 (Ar quat), 149.80 (ArO quat), 155.71 (ArO quat), 188.86 (CHO) ppm. 

 

 

2-(4-bromophenyl)-5,5-dimethyl-1,3-dioxane (3, v70a,b). Neopentylene glycol (15.0 g, 144 

mmol), 4-bromobenzaldehyde (20.35 g, 110 mmol), and TsOH (0.80 g, 5.7 mmol) were refluxed 

in PhMe (400 mL) with a Dean-Stark trap for 3 h. The reaction mixture was washed with H2O 

(100 mL) and brine (100 mL) and dried over MgSO4. The solvent was removed in vacuo. The 

crude product was recrystallized from hexanes to give white needles (25.36 g, 88%). 1H NMR 

(CDCl3, 300 MHz)  0.81 (3H, s, axial CH3), 1.29 (3H, s, equatorial CH3), 3.65 (2H, d, J = 11.0 

Hz, axial CH), 3.78 (2H, d, J = 11.0 Hz, equatorial CH), 5.36 (1H, s, ArCH(O)2), 7.40 (2H, d, J 

= 8.4 Hz, p-C6H4), 7.52 (2H, d, J = 8.4 Hz, p-C6H4) ppm. 13C NMR (CDCl3, 75 MHz)  21.8 

(axial CH3), 22.9 (equatorial CH3), 30.1 (quat), 77.5 (OCH2), 100.8 (ArCH(O)2), 122.8 (ArBr 

quat), 127.9 (Ar CH), 131.3 (Ar CH), 135.7 (Ar quat) ppm. 
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2-(4-(hydroxymethyl)phenyl)-5,5-dimethyl-1,3-dioxane (4, v73a). 3 (25.0 g, 92.2 mmol) was 

dissolved in dry THF (500 mL), and cooled to -78 oC. nBuLi (1.6 M in hexanes, 65.0 mL, 104 

mmol) was added dropwise over 15 min. The reaction mixture was stirred at -78 oC for 1 h. DMF 

(10.0 mL, 129 mmol) was added rapidly. The mixture was stirred at rt for 1 h and quenched with 

brine (100 mL). The organic layer was dried over MgSO4, and the solvent was removed in 

vacuo. The crude product was redissolved in THF (200 mL) and cooled to 0 oC. NaBH4 (5.23 g, 

138 mmol) was added portionwise over 15 min. The reaction was stirred at rt overnight and then 

quenched into water (200 mL). The mixture was extracted with ethyl acetate (4x 100 mL). The 

combined organic layers were washed with H2O (100 mL) and brine (100 mL) and dried over 

MgSO4. The solvent was removed in vacuo. The crude product was recrystallized from hexanes 

to give a white crystalline solid (10.43 g, 51% over 2 steps). NMR (CDCl3, 300 MHz)  0.81 

(3H, s, axial CH3), 1.30 (3H, s, equatorial CH3), 2.18 (1H, t, J = 5.6 Hz, OH), 3.65 (2H, d, J = 

11.0 Hz, axial CH), 3.77 (2H, d, J = 11.0 Hz, equatorial CH), 4.62 (2H, d, J = 5.6 Hz, ArCH2O), 

5.39 (1H, s, ArCH(O)2), 7.38 (2H, d, J = 8.0 Hz, p-C6H4), 7.48 (2H, d, J = 8.0 Hz, p-C6H4) ppm. 

13C NMR (CDCl3, 75 MHz)  21.8 (axial CH3), 23.0 (equatorial CH3), 30.1 (quat), 64.7 

(ArCH2O), 77.6 (OCH2), 101.5 (ArCH(O)2), 126.2 (Ar CH), 126.6 (Ar CH), 137.7 (Ar quat) 

141.6 (Ar quat) ppm. 
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2-(4-(bromomethyl)phenyl)-5,5-dimethyl-1,3-dioxane (5, v95a). 4 (7.5 g, 32.3 mmol) was 

dissolved in dry THF (200 mL) under N2 and cooled to 0 oC. Then CBr4 (16.06 g, 48.4 mmol) 

and PPh3 (12.69 g, 48.4 mmol) were added and the mixture was allowed to come to rt overnight 

with stirring. The reaction mixture was poured into H2O (250 mL) and extracted wit Et2O (4x 

100 mL). The organic layers were washed with brine (100 mL) and dried over MgSO4. The 

solvent was removed in vacuo. The crude product was purified by column chromatography 

(silica gel, 1:1 hexanes:DCM) to give the title compound as a white solid (9.1 g, 99%). NMR 

(CDCl3, 300 MHz)  0.81 (3H, s, axial CH3), 1.29 (3H, s, equatorial CH3),  3.66 (2H, d, J = 11.0 

Hz, axial CH), 3.78 (2H, d, J = 11.0 Hz, equatorial CH), 4.49 (2H, s, ArCH2Br), 5.49 (1H, s, 

ArCH(O)2), 7.41 (2H, d, J = 8.0 Hz, p-C6H4), 7.50 (2H, d, J = 8.0 Hz, p-C6H4) ppm. 13C NMR 

(CDCl3, 75 MHz)  21.8 (axial CH3), 23.0 (equatorial CH3), 30.2 (quat), 33.1 (ArCH2Br), 77.6 

(OCH2), 101.1 (ArCH(O)2), 126.6 (Ar CH), 129.0 (Ar CH), 138.3 (Ar quat) 138.7 (Ar quat) 

ppm. 

 

 

2-(4-(dimethoxyphosphorylmethyl)phenyl)-5,5-dimethyl-1,3-dioxane (P-A-acetal, v97a). 5 

(9.0 g, 31.6 mmol) and P(OCH3)3 (13 mL, 110 mmol) were refluxed in PhMe (100 mL) 

overnight. The volatiles were removed in vacuo to give the title compound as a waxy white solid 

(9.50 g, 96%). 1H NMR (CDCl3, 400 MHz)  0.76 (3H, s, axial CH3), 1.25 (3H, s, equatorial 

CH3), 3.13 (2H, d 2JH-P = 21.6 Hz), 3.61 (2H, d, 2JH-H = 11.6 Hz, axial CH), 3.61 (6H, d, 3JH-P = 
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10.8 Hz), 3.71 (2H, d, 2JH-H = 11.6 Hz, equatorial CH), 5.33 (1H, s, ArCH(O)2), 7.41 (2H, d, 3JH-

H = 8.0 Hz, p-C6H4), 7.50 (2H, d, 3JH-H = 8.0 Hz, p-C6H4) ppm. 13C NMR (CDCl3, 75 MHz)  

21.7 (axial CH3), 22.9 (equatorial CH3), 30.0 (quat), 32.5 (d, 1JC-P = 137 Hz, ArCH2P), 52.7 (d, 

2JC-P = 6 Hz), 77.5 (OCH2), 101.3 (ArCH(O)2), 126.3 (d, 4JC-P = 3 Hz, Ar CH), 129.4 (d, 3JC-P = 

13, Hz Ar CH), 131.7 (d, 2JC-P = 10 Hz ,Ar quat) 137.2 (d, 6JC-P = 4 Hz Ar quat) ppm. 

 

 

2-methyl-1,4-bis(hexyloxy)benzene (6, iv89). KOH (40.0 g, 713 mmol) and Na2S2O3 (86.0 g, 

346 mmol) were dissolved in water (200 mL) in a 1 L round-bottom flask and cooled on ice. 2-

Methylhydroquinone (42.8 g, 345 mmol), TBAB (5.0 g, 16 mmol), 1-bromohexane (100 mL, 

712 mmol), and PhMe (100 mL) were added in that order. The mixture was refluxed with 

vigorous stirring for 40 h. The aqueous layer was extracted with PhMe (2x 100 mL). The 

combined organic layers were washed with water (100 mL) and brine (100 mL) and dried over 

MgSO4. The solvent was removed in vacuo. The residue was purified by column 

chromatography (silica gel, 17:3 hexanes:CH2Cl2) to give the title compound as a yellow liquid 

(86.3 g, 86%). 1H NMR (CDCl3) 0.90-1.00 (6H, mult), 1.30-1.45 (8H, mult), 1.45-1.60 (4H, 

mult), 1.75-1.90 (4H, mult), 3.94 (2H, t, J = 6.4 Hz), 3.95 (2H, t, J = 6.4 Hz), 6.71 (1H, dd, J = 

9.0 Hz, 3.0 Hz), 6.77 (1H, d, J =9.0 Hz), 6.79 (1H, d, J = 3.0 Hz) ppm. 13C NMR (CDCl3) 

13.99 (CH3), 16.34 (CH3), 22.60 (CH2), 25.75 (CH2), 25.83 (CH2), 29.39 (CH2), 29.45 (CH2), 

31.59 (CH2), 31.61 (CH2), 68.41 (OCH2), 68.68 (OCH2), 111.46 (Ar CH), 112.11 (Ar CH), 

117.56 (Ar CH), 128 (Ar quat), 151.39 (ArO quat), 152.78 (ArO quat) ppm. MS(EI): 292 (M+), 
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234, 221, 208, 165, 150, 124 (base), 107, 95, 84, 77, 67, 55 m/z. HRMS calcd for C19H32O2: 

292.2402 g/mol. Found: 292.2406 g/mol. 

 

 

1,4-bis(hexyloxy)-2-(dimethoxyphosphorylmethyl)benzene (7, vi37a). 6 (109.7 g, 375 mmol) 

was dissolved in CCl4 (500 mL). NBS (33.7 g, 189 mmol) and AIBN (3.48 g, 37.8 mmol) were 

added, and the mixture was refluxed for 1.5 h. More NBS (33.7 g, 189 mmol) and AIBN (3.48 g, 

37.8 mmol) were added, and the mixture was refluxed for another 1.5 h. The mixture was 

returned to rt and the succinimide was removed by filtration. The mixture was washed with H2O 

(100 mL) and brine (100 mL) and dried over MgSO4. The MgSO4 was removed by filtration 

through a silica plug, which was washed with 3:1 hexanes:DCM. The combined filtrates were 

reduced in vacuo to give a mixture of regioisomers (3:2 benzyl:aryl bromide) (132 g, 95%). This 

mixture was dissolved in PhMe (250 mL). P(OCH3)3 (100 mL, 848 mmol) was added and the 

mixture was refluxed for 24 h. The volatiles were removed in vacuo. The crude product was 

purified by column chromatography (silica gel, 9:1 DCM:acetone) to give the title compound as 

a viscous yellow liquid (71.0 g, 47% over 2 steps). 1H NMR (CDCl3, 300 MHz) 0.80-0.90 (6H, 

mult), 1.15-1.45 (14H, mult), 1.60-1.75 (4H, mult), 3.18 (2H, d, 2JH-P = 21.6 Hz), 3.61 (6H, d, 

3JH-P = 11.7 Hz) 3.81 (2H, d, 3JH-H = 6.6 Hz), 3.86 (2H, d, 3JH-H = 6.9 Hz), 6.66 (1H, d, 3JH-H =  

8.7 Hz), 6.71 (1H, d, 3JH-H = 9.0 Hz), 6.84 (1H, s) ppm. 
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2-(2,5-bis(hexyloxy)-4-(dimethoxyphosphorylmethyl)benzaldehyde (8, vi40a). 7 (65.0 g, 162 

mmol) was dissolved in 1.5 L of dry DCM in a 3-neck round-bottom flask under N2 and cooled 

to 0 oC. AlCl3 (43.3 g, 324 mmol) was added portionwise with vigorous stirring over15 min. The 

dark green mixture was stirred at 0 oC for another 15 min. A solution of CHCl2OCH3 (29 mL, 

327 mmol) in dry DCM (300 mL) was added dropwise. The mixture was allowed to come to rt 

overnight with stirring. The dark red mixture was quenched by adding 1000 g of ice rapidly with 

vigorous stirring. The aqueous layer was extracted with DCM (4x 200 mL). The combined 

organic layer divided into two portions and washed with H2O (300 mL) and brine (300 mL). The 

organic layers were dried over MgSO4, and the solvent was removed in vacuo. The crude 

product was purified by column chromatography (silica gel, 19:1 DCM:acetone) to give  2,5-

bis(hexyloxy)-4-(dimethoxyphosphorylmethyl)benzaldehyde as 62.3 g of an orange liquid 

(89%). 1H NMR (CDCl3, 300 MHz)  0.80-0.90 (6H, mult), 1.20-1.50 (14H, mult), 1.65-1.80 

(4H, mult), 3.23 (2H, d, 2JH-P = 22.5 Hz), 3.62 (6H, d, 3JH-P = 10.8 Hz), 3.91 (2H, t, 3JH-H = 6.5 

Hz), 3.97 (2H, t, 3JH-H = 6.5 Hz), 6.97 (1H, d, 4JH-P = 2.7 Hz), 7.21 (1H, s), 10.36 (1H, s) ppm. 

13C NMR (CDCl3, 75 MHz)  13.8 (CH3), 22.3 (CH2), 22.4 (CH2), 25.5 (CH2), 25.2 and 27.1 (d, 

1JC-P = 142.5 Hz PCH2), 28.9 (CH2), 29.0 (CH2), 31.3 (CH2), 52.5 (d, 2JC-P = 6.5 Hz POCH3), 

68.6 (OCH2), 68.9 (OCH2), 108.9 (d, 4JC-P = 2.9 Hz, Ar CH), 115.9 (d, 3JC-P = 5.6 Hz, Ar CH), 

123.7 (d, 5JC-P = 3.5 Hz, Ar quat), 128.8 (d, 2JC-P = 9.5 Hz, Ar quat), 150.4 (d, 3JC-P = 7.1 Hz, 

ArO quat), 155.6 (d, 4JC-P = 3.7 Hz, ArO quat), 189.0 (d, 6JC-P = 1.1 Hz, CHO) ppm.  
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2-(2,5-bis(hexyloxy)-4-(dimethoxyphosphorylmethyl)phenyl)-5,5-dimethyl-1,3-dioxane  

(P-D-acetal, vi41a). 8 (62.3 g, 144 mmol) was dissolved in PhMe (500 mL). Neopentylene 

glycol (22.5 g, 145 mmol) and TsOH (1.0 g, 7.13 mmol) were added and the mixture was 

refluxed for 24 h. The mixture was washed with H2O (100 mL) and brine (100 mL) and dried 

over MgSO4. The solvent was removed in vacuo. The crude product was purified by column 

chromatography (silica gel, 9:1 DCM:acetone) to give the title compound as an orange liquid 

(72.3 g, 97%). 1H NMR (CDCl3, 300 MHz)  0.75 (3H, s, axial CH3), 0.88-0.91 (6H, mult), 

1.25-1.40 (11H, mult), 1.42-1.50 (4H, mult), 1.72-1.78 (4H, mult), 3.23 (2H, d, 2JH-P = 22.5 Hz), 

3.62 (6H, d, 3JH-P = 10.8 Hz), 3.63 (2H, d, 2JH-H = 11.1 Hz, axial CH), 3.73 (2H, d, 2JH-H = 11.1 

Hz, equatorial CH), 3.92 (2H, t, 3JH-H = 6.3 Hz, OCH2), 3.97 (2H, t, 3JH-H = 6.3 Hz, OCH2), 6.89 

(1H, d, 4JH-P = 2.7 Hz), 7.13 (1H, s) ppm. 13C NMR (CDCl3, 75 MHz)  13.9 (CH3), 14.0 (CH3), 

21.8 (CH3), 22.50 (CH2), 22.54 (CH2), 23.1 (CH3), 25.6 (CH2), 25.7 (CH2), 25.1 (d, 1JC-P = 138.1 

Hz, ArCH2P), 29.2 (CH2), 29.3 (CH2), 30.2 (quat), 31.5 (CH2), 52.5 (d, 2JC-P = 6.6 Hz, POCH3), 

68.8 (OCH2), 69.4 (OCH2), 77.8 (OCH2), 97.0 (ArCHO2), 110.3 (d, 4JC-P = 3.0 Hz, Ar CH), 

115.8 (d, 3JC-P = 5.1 Hz, Ar CH), 121.2 (d, 4JC-P = 9.5 Hz, Ar quat), 126.5 (d, 5JC-P = 4.1.0 Hz, Ar 

quat), 149.7 (d, 4JC-P = 3.7 Hz, ArO quat), 150.8 (d, 3JC-P = 7.3 Hz, ArO quat) ppm. MS (ESI): 

537 (M+Na, base), 515, 497 m/z. HRMS calcd for C27H47O7P+Na: 537.2957 g/mol. Found: 

537.2954 g/mol. 

 



 71 

 

4-(dimethoxyphosphorylmethyl)benzonitrile (P-A-CN, vi98 + vi99). p-Tolunitrile (25.0 mL, 

209 mmol) was added to 1,2-dicloroethane (400 mL) in a round-bottom flask with stirring. NBS 

(18.8 g, 105 mmol), and benzoyl peroxide (2.55 g, 10.5 mmol) were added, and the mixture was 

refluxed until the orange color disappeared (1.5 h). NBS (18.8 g, 105 mmol), and benzoyl 

peroxide (2.55 g, 10.5 mmol) were added, and the mixture was refluxed for a second 1.5 h. The 

reaction mixture was allowed to stand overnight. The succinimide precipitate was removed by 

filtration. The filtrate was washed successively with water (200 mL), sat. aq. NaHCO3 (200 mL), 

and brine (200 mL). The organic solution was dried over MgSO4, and the solvent was removed 

in vacuo. The crude product was dissolved in toluene (100 mL). Trimethyl phosphite (60.0 mL, 

508 mmol) was added, and the mixture was refluxed overnight. The solvent was removed in 

vacuo, and the crude product was purified by column chromatography (silica gel, 4:1 

CH2Cl2:acetone) and then by recrystallization (1:1 ethyl acetate:hexanes) to give the title 

compound as an off-white crystalline solid (16.7 g, 35% over 2 steps). MP 79.0-81.0 oC. 1H 

NMR (CDCl3)  3.17 (2H, d, 2JH-P = 22.4), 3.66 (6H, d, 3JH-P = 11.2 Hz), 7.37 (2H, dd, JH-H = 8.4 

Hz, JH-P = 2.0 Hz), 7.58 (d, 2H, JH-H = 8.0 Hz) ppm. 13CNMR (CDCl3, 300 MHz)  32.92 (d, 1JC-

P = 137 Hz, CH2), 52.82 (d, 2JC-P = 7 Hz, OCH3), 110.84 (d, 5JC-P = 3 Hz, Ar quat), 118.45 (d, 

6JC-P = 2 Hz, CN), 130.31 (d, 3JC-P = 6 Hz, Ar CH), 132.14 (d, 4 JC-P = 3 Hz, Ar CH), 137.02 (d, 

2JC-P = 10 Hz, Ar quat) ppm. MS (EI) 225 (M+), 129, 116, 109 (base) m/z. HRMS calcd for 

C10H12NO3P: 225.0556 g/mol. Found: 225.0555 g/mol. 
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1-bromo-2,5-bis(hexyloxy)-4-methylbenzene (9, vi104). 6 (37.5 g, 128 mmol) was dissolved in 

1,2-dichloroethane (375 mL). NBS (23.0 g, 129 mmol) and benzoyl peroxide (1.56 g, 6.44 

mmol) were added and the mixture was refluxed for 5h. Hexanes (100 mL) was added to 

precipitate succinimide. The filtrate was washed with water (3x 100 mL), sat. aq. NaHCO3 (100 

mL), and brine (100 mL). The solution was dried over MgSO4, and the solvent was removed in 

vacuo. The residue was recrystallized from methanol to give the title compound as a white solid 

(33.0 g, 69%). 1H NMR (CDCl3) 0.90-1.00 (6H, mult), 1.30-1.40 (8H, mult), 1.45-155 (4H, 

mult), 1.75-1.90 (4H, mult), 2.19 (3H, s), 3.90 (2H, t, J = 6.4 Hz), 3.96 (2H, t, J = 6.4 Hz), 6.76 

(1H, s), 6.99 (1H, s) ppm. 13C NMR (CDCl3, 300 MHz) 13.98 (CH3), 14.00 (CH3), 16.22 

(CH3), 22.58 (CH2), 25.65 (CH2), 25.74 (CH2), 29.26 (CH2), 29.29 (CH2), 31.52 (CH2), 68.84 

(OCH2), 70.28 (OCH2), 108.88 (ArBr quat), 116.28 (Ar CH), 116.90 (Ar CH), 126.28 (Ar quat), 

149.15 (ArO quat), 151.72 (ArO quat) ppm. MS (EI): 372 (M+2), 370 (M+), 288, 286, 204, 202 

(base), 164, 124, 94, 84, 77, 69 m/z. HRMS calcd for C19H31O2Br: 370.1507 g/mol. Found: 

370.1500 g/mol. 

 

 

2,5-bis(hexyloxy)-4-methylbenzaldehyde (10, vii19). 9 (30.0 g, 80.1 mmol) was dissolved in 

Et2O (150 mL) and cooled to 0 oC under N2. nBuLi (1.6 M in hexanes, 55 mL, 88 mmol) diluted 
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with 100 mL Et2O was added dropwise over 30 min. Then, DMF (10.0 mL, 130 mmol) in Et2O 

(35 mL) was added rapidly. The mixture was removed from the cold bath and stirred at room 

temperature for 2 h. The reaction was quenched into water (300 mL). The aqueous layer was 

extracted with ether (3x 100 mL). The organic layers were washed with brine (100 mL) and 

dried over MgSO4. The solvent was removed in vacuo. The residue was purified by column 

chromatography (silica gel, 19:1 hexanes:EtOAc) to give the title compound as an off-white 

solid (25.7 g, 99%). 1H NMR (CDCl3, 300 MHz) 0.85-0.95 (6H, mult), 1.30-1.40 (8H, mult), 

1.40-150 (4H, mult), 1.75-1.85 (4H, mult), 2.27 (3H, s), 3.94 (2H, t, J = 6.4 Hz), 4.01 (2H, t, J = 

6.4 Hz), 6.79 (1H, s), 7.22 (1H, s), 10.41 (1H, s) ppm. 13C NMR (CDCl3) 13.95 (CH3), 17.21 

(CH3), 22.53 (CH2), 22.55 (CH2), 25.69 (CH2), 25.72 (CH2), 29.16 (CH2), 31.47 (CH2), 31.49 

(CH2), 68.40 (OCH2), 69.10 (OCH2), 108.19 (Ar CH), 115.58 (Ar CH), 122.96 (Ar quat), 136.71 

(Ar quat), 151.32 (ArO quat), 156.12 (ArO quat), 189.31 (CHO) ppm. MS (EI): 320 (M+), 292, 

236, 152 (base), 124, 91, 84 m/z. HRMS calcd for C20H32O3: 320.2351 g/mol. Found: 320.2349 

g/mol. 

 

 

2,5-bis(hexyloxy)-4-methylbenzonitrile (11, vii23). Based on the methods of Olah,80 10 (23.3 

g, 73.6 mmol) and hydroxylamine hydrochloride (6.57 g, 94.5 mmol) were added to formic acid 

(100 mL) in a round-bottom flask and refluxed for 1 h. The dark mixture was poured into ice 

water (200 mL). The aqueous mixture was extracted thrice with ether (50 mL). The combined 

organic layers were washed with brine (50 mL) and dried over MgSO4. The solvent was removed 
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in vacuo, and the residue was purified by column chromatography (silica gel, 99:1 

hexanes:EtOAc) to give the title compound as an orange liquid (17.1 g, 78%). 1H NMR (CDCl3, 

300 MHz) 0.85-0.95 (6H, mult), 1.30-1.40 (8H, mult), 1.40-150 (4H, mult), 1.75-1.85 (4H, 

mult), 2.24 (3H, s), 3.87 (2H, t, J = 6.4 Hz), 3.98 (2H, t, J = 6.4 Hz), 6.75 (1H, s), 6.88 (1H, s) 

ppm. 13C NMR (CDCl3) 13.87 (CH3), 16.99 (CH3), 22.43 (CH2), 22.46 (CH2), 25.43 (CH2), 

25.62 (CH2), 28.94 (CH2), 29.03 (CH2), 31.38 (CH2), 31.40 (CH2), 68.63 (OCH2), 69.44 (OCH2), 

98.53 (CN quat), 114.41 (Ar CH), 115.33 (Ar CH), 116.83 (Ar quat), 134.64 (Ar quat), 150.76 

(ArO quat), 154.97 (ArO quat) ppm. 

 

 

2,5-bis(hexyloxy)-4-(dimethoxyphosphorylmethyl)benzonitrile (P-D-CN, vii26 + vii27). 11 

(13.8 g, 43.5 mmol) was dissolved in 1,2-dichloroethane (70 mL). NBS (3.90 g, 43.8 mmol), and 

benzoyl peroxide (0.540 g, 4.45 mmol) were added, and the mixture was refluxed until the 

orange color disappeared (2 h). NBS (3.90 g, 43.8 mmol), and benzoyl peroxide (0.540 g, 4.45 

mmol) were added, and the mixture was refluxed for a second 2 h. The reaction mixture was 

allowed to stand overnight. The reaction mixture was filtered through a plug of silica and the 

solvent was removed in vacuo. The crude product was dissolved in PhMe (30 mL). Trimethyl 

phosphate (16.0 mL, 136 mmol) was added, and the mixture was refluxed overnight. The solvent 

was removed in vacuo, and the crude product was purified by column chromatography (silica 

gel, 1:1 hexanes:EtOAc) to give the title compound as a viscous orange liquid (11.7 g, 63% over 

2 steps). 1H NMR (CDCl3, 300 MHz) 0.80-0.90 (6H, mult), 1.25-1.35 (8H, mult), 1.40-150 
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(4H, mult), 1.70-1.80 (4H, mult), 3.24 (2H, d, 2JH-P =22.4 Hz), 3.66 (6H, d 3JH-P = 11.2 Hz), 3.89 

(2H, t, J = 6.4 Hz), 3.98 (2H, t, J = 6.4 Hz), 6.94 (1H, s), 6.96 (1H, d 4JH-P = 2.8 Hz) ppm. 13C 

NMR (CDCl3) 13.83 (CH3), 22.37 (CH2), 22.41 (CH2), 25.35 (CH2), 25.50 (CH2), 26.14 (d, 

1JC-P = 138 Hz, CH2) 28.78 (CH2), 28.97 (CH2), 31.33 (CH2), 31.34 (CH2), 52.69 (d, 2JC-P = 7 

Hz, OCH3) 69.08 (OCH2), 69.45 (OCH2), 100.24 (d, 6JC-P = 3 Hz, CN quat), 115.36 (d, 4JC-P = 3 

Hz, Ar CH), 115.33 (d, 3JC-P = 5 Hz, Ar CH), 116.31 (d, 5JC-P = 2 Hz, Ar quat), 127.36 (d, 2JC-P = 

9 Hz, Ar quat), 150.06 (d, 3JC-P = 7 Hz, ArO quat), 154.75 (d, 4JC-P = 3 Hz, ArO quat) ppm. 

2.6.3 HWE optimization 

General procedure for HWE optimization (TABLE 3). Aldehyde (1 eq) and 

benzylphosphonate (1.5 eq), with or without and LiCl (2.3 eq), were dissolved in THF (12 mL 

per mmol aldehyde) and cooled to 0 oC under N2. KOtBu (2.3 eq) was added portionwise over 5 

minutes, and the reactions were allowed to come to rt overnight with stirring. The reaction 

mixtures were poured into saturated aqueous NH4Cl (2.5 mL per mL THF). The aqueous layers 

were extracted thrice with EtOAc (equal volume). The combined organic layers were dried over 

MgSO4, and the solvent was removed in vacuo. The residues were purified by column 

chromatography. The E/Z ratio was determined by 1H NMR spectroscopy. 

 

 

2-(4-(4-bromo-2,5-bis(hexyloxy)styryl)-2,5-bis(hexyloxy)phenyl)-5,5-dimethyl-1,3-dioxane, 

(Table 3 Line 1, vi85). According to the general HWE optimization procedure (Table 3), Br-D-
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CHO (0.20 g, 0.519 mmol) and P-D-acetal (0.40 g, 0.777 mmol) were dissolved in THF (5 mL) 

and cooled to 0 oC under N2. KOtBu (125 mg, 1.11 mmol) was added portionwise over 5 minutes, 

and the reactions were allowed to come to rt overnight with stirring. After workup, column 

chromatography (silica gel, 3:1 hexanes:DCM) gave the title compound as yellow solid (401 mg, 

100%). E/Z ratio by 1H NMR: 2:1. 

 

 

2-(4-(4-bromo-2,5-bis(hexyloxy)styryl)-2,5-bis(hexyloxy)phenyl)-5,5-dimethyl-1,3-dioxane, 

(Table 3 Line 2, vi85). According to the general HWE optimization procedure (Table 3), Br-D-

CHO (0.20 g, 0.519 mmol), 7 (0.40 g, 0.777 mmol), and LiCl (50 mg, 1.18 mmol) were 

dissolved in THF (10 mL) and cooled to 0 oC under N2. KOtBu (125 mg, 1.11 mmol) was added 

portionwise over 5 minutes, and the reactions were allowed to come to rt overnight with stirring. 

After workup, column chromatography (silica gel, 3:1 hexanes:DCM) gave the title compound as 

yellow solid (221 mg, 55%). E/Z ratio by 1H NMR: 4:1.  

 

 

1-(4-bromo-2,5-bis(hexyloxy)styryl)-2,5-bis(hexyloxy)benzene, (Table 3 Line 3, vi92). 

According to the general HWE optimization procedure (Table 3), Br-D-CHO (0.20 g, 0.519 

mmol) and 7 (0.311 g, 0.777 mmol) were dissolved in THF (5 mL) and cooled to 0 oC under N2. 

KOtBu (125 mg, 1.11 mmol) was added portionwise over 5 minutes, and the reactions were 
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allowed to come to rt overnight with stirring. After workup, column chromatography (silica gel, 

3:1 hexanes:DCM) gave the title compound as yellow solid (338 mg, 98%). E/Z ratio by 1H 

NMR: 83:17. 

  

 

1-(4-bromo-2,5-bis(hexyloxy)styryl)-2,5-bis(hexyloxy)benzene, (Table 3 Line 4, vi92). 

According to the general HWE optimization procedure (Table 3), Br-D-CHO (0.20 g, 0.519 

mmol), 7 (0.311 g, 0.777 mmol), and LiCl (50 mg, 1.18 mmol) were dissolved in THF (5 mL) 

and cooled to 0 oC under N2. KOtBu (125 mg, 1.11 mmol) was added portionwise over 5 minutes, 

and the reactions were allowed to come to rt overnight with stirring. After workup, column 

chromatography (silica gel, 3:1 hexanes:DCM) gave the title compound as yellow solid (338 mg, 

98%). E/Z ratio by 1H NMR: 87:13. 

 

 

4-(4-bromo-2,5-bis(hexyloxy)styryl)-2,5-bis(hexyloxy)benzonitrile, (Table 3 Line 5, vi95). 

According to the general HWE optimization procedure (Table 3), Br-D-CHO (0.150 g, 0.389 

mmol) and P-D-CN (0.250 g, 0.587 mmol) were dissolved in THF (5 mL) and cooled to 0 oC 

under N2. KOtBu (100 mg, 0.891 mmol) was added portionwise over 5 minutes, and the 

reactions were allowed to come to rt overnight with stirring. After workup, column 
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chromatography (silica gel, 3:1 hexanes:DCM) gave the title compound as yellow solid (187 mg, 

70%). E/Z ratio by 1H NMR: 5:1. 

  

 

4-(4-bromo-2,5-bis(hexyloxy)styryl)-2,5-bis(hexyloxy)benzonitrile, (Table 3 Line 6, vi95). 

According to the general HWE optimization procedure (Table 3), Br-D-CHO (0.150 g, 0.389 

mmol), P-D-CN (0.250 g, 0.587 mmol), and LiCl (38 mg, 0.896 mmol) were dissolved in THF 

(5 mL) and cooled to 0 oC under N2. KOtBu (100 mg, 0.891 mmol) was added portionwise over 5 

minutes, and the reactions were allowed to come to rt overnight with stirring. After workup, 

column chromatography (silica gel, 3:1 hexanes:DCM) gave the title compound as yellow solid 

(297 mg, 100%). E/Z ratio by 1H NMR: 10:1. 

 

2.6.4 Synthesis of oligomers 

General HWE procedure. Aldehyde (Br-A-CHO, Br-D-CHO, or OPV-CHO) (1 eq.), 4-

cyanobenzylphosponate (P-A-CN or P-D-CN) (1.5 eq), and LiCl (2.3 eq) were dissolved in THF 

(12 mL per mmol aldehyde) and cooled to 0 oC under N2. KOtBu (2.3 eq) was added portionwise 

over 5 minutes, and the reactions were allowed to come to rt overnight with stirring. The reaction 

mixtures were poured into saturated aqueous NH4Cl (2.5 mL per mL THF). The aqueous layers 

were extracted thrice with EtOAc (equal volume). The combined organic layers were dried over 
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MgSO4, and the solvent was removed in vacuo. The residues were purified by column 

chromatography. 

 

General DIBAL-H reduction procedure. OPV nitriles (1 eq.) were dissolved in dry DCM (5 

mL per mmol nitrile) and cooled to 0 OC. DIBAL-H (1.0M in hexanes, 1.1 eq) was added 

dropwise. The reaction mixtures were stirred at 0 oC for 1 h. Wet silica (0.4 mL H2O and 1.3 g 

SiO2 per mmol nitrile) was added and the mixture was stirred at 0 oC for 1 h. Then, K2CO3 (0.5 g 

per mmol nitrile) and MgSO4 (0.5 g per mmol nitrile) were added. The mixtures were filtered 

and the solids washed with DCM. The combined filtrate and washes were reduced in vacuo, and 

the residues were purified by column chromatography, except as noted. 

 

 

4-(4-bromostyryl)benzonitrile (Br-AA-CN, vii36). According to the general HWE procedure, 

Br-A-CHO (611 mg, 3.30 mmol), P-A-CN (1.115 g, 4.95 mmol), and LiCl (321 mg, 7.57 

mmol) were dissolved in THF (40 mL) and cooled to 0 oC under N2. KOtBu (850 mg, 7.57 mmol) 

was added portionwise over 5 minutes, and the reaction was allowed to come to rt overnight with 

stirring. After workup, column chromatography (silica gel, 1:1 hexanes:DCM) gave the title 

compound as a white solid (517.3 mg, 55%). 1H NMR (CD2Cl2, 400 MHz)  7.11 (1H, d, J = 

16.4 Hz, trans CH=CH), 7.18 (1H, d, J = 16.4 Hz, trans CH=CH), 7.42 (2H, d, J = 8.8 Hz, p-

C6H4), 7.52 (2H, d, J = 8.8 Hz, p-C6H4), 7.59 (2H, d, J = 8.4 Hz, p-C6H4), 7.65 (2H, d, J = 8.4 

Hz, p-C6H4) ppm. 13C NMR (CD2Cl2, 100 MHz)  111.39 (Ar quat), 119.41 (CN), 122.81 (ArBr 

quat), 127.45 (Ar CH), 127.99 (vinylene CH), 128.92 (Ar CH), 131.39 (vinylene CH), 132.46 

(Ar CH), 133.06 (Ar CH), 135.97 (Ar quat), 141.96 (Ar quat) ppm. MS (EI) 285 (M+2), 283 
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(M+), 204, 203 (base), 177, 176, 151, 127, 103 m/z. HRMS calcd for C15H10NBr 282.9995 

g/mol. Found: 282.9997 g/mol. 

 

 

4-(4-bromostyryl)-2,5-bishexyloxybenzonitrile (Br-AD-CN, vii39). According to the general 

HWE procedure, Br-A-CHO (611 mg, 3.30 mmol), P-D-CN (2.106 g, 4.95 mmol), and LiCl 

(321 mg, 7.57 mmol) were dissolved in THF (40 mL) and cooled to 0 oC under N2. KOtBu (850 

mg, 7.57 mmol) was added portionwise over 5 minutes, and the reaction was allowed to come to 

rt overnight with stirring. After workup, column chromatography (silica gel, 9:1 hexanes:CHCl3) 

gave the title compound as a pale yellow solid (1.414 g, 92%). 1H NMR (CD2Cl2, 400 MHz)  

0.85-1.00 (6H, mult), 1.30-1.45 (8H, mult), 1.45-1.55 (4H, mult), 1.70-1.80 (4H, mult), 3.97 

(2H, t, J = 6.4 Hz, OCH2), 4.09 (2H, t, J = 6.4 Hz, OCH2), 7.04 (1H, s), 7.158 (1H, s), 7.18 (1H, 

d, J = 17.2 Hz, trans CH=CH), 7.43 (2H, d, J = 8.0 Hz, p-C6H4), 7.44 (1H, d, J = 17.2 Hz, trans 

CH=CH), 7.51 (2H, d, J = 8.0 Hz, p-C6H4) ppm. 13C NMR (CD2Cl2, 100 MHz)  14.36 (CH3), 

14.37 (CH3), 23.15 (CH2), 23.18 (CH2), 26.11 (CH2), 26.36 (CH2), 29.61 (CH2), 29.68 (CH2), 

32.07 (CH2), 32.10 (CH2), 70.11 (OCH2), 70.24 (OCH2), 101.18 (Ar quat), 110.76 (Ar CH), 

117.04 (Ar CH), 117.15 (CN), 122.50 (ArBr quat), 123.60 (vinylene CH), 128.87 (Ar CH), 

132.34 (vinylene CH), 132.43 (Ar CH), 132.81 (Ar quat), 136.69 (Ar quat), 150.79 (ArO quat), 

155.66 (ArO quat) ppm.  
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4-(4-bromo-2,5-bishexyloxystyryl)benzonitrile (Br-DA-CN, vii35). According to the general 

HWE procedure, Br-D-CHO (1.272 g, 3.30 mmol), P-A-CN (1.115 g, 4.95 mmol), and LiCl 

(321 mg, 7.57 mmol) were dissolved in THF (40 mL) and cooled to 0 oC under N2. KOtBu (850 

mg, 7.57 mmol) was added portionwise over 5 minutes, and the reaction was allowed to come to 

rt overnight with stirring. After workup, column chromatography (silica gel, 4:1 hexanes:DCM) 

gave the title compound as a pale yellow solid (1.480 g, 96%). 1H NMR (CD2Cl2, 400 MHz)  

0.85-1.00 (6H, mult), 1.30-1.45 (8H, mult), 1.45-1.55 (4H, mult), 1.70-1.80 (4H, mult), 3.97 

(2H, t, J = 6.4 Hz, OCH2), 4.03 (2H, t, J = 6.4 Hz, OCH2), 7.13 (1H, s), 7.13 (1H, s), 7.16 (1H, d, 

J = 16.4 Hz, trans CH=CH), 7.52 (1H, d, J = 16.4 Hz, trans CH=CH), 7.60 (2H, d, J = 8.4 Hz, p-

C6H4), 7.64 (2H, d, J = 8.4 Hz, p-C6H4) ppm. 13C NMR (CD2Cl2, 100 MHz)  14.36 (CH3), 

14.39 (CH3), 23.18 (CH2), 26.24 (CH2), 26.39 (CH2), 29.76 (CH2), 29.81 (CH2), 32.11 (CH2), 

70.18 (OCH2), 70.72 (OCH2), 111.04 (ArBr quat), 112.12 (Ar CH), 113.40 (Ar quat) 118.35 (Ar 

CH), 119.35 (CN), 125.93 (Ar quat), 127.15 (vinylene CH), 127.36 (Ar CH), 127.88 (vinylene 

CH), 133.03 (Ar CH), 142.75 (Ar quat), 150.34 (ArO quat), 151.95 (ArO quat) ppm. 
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4-(4-bromo-2,5-bishexyloxystyryl)-2,5-bishexyloxybenzonitrile (Br-DD-CN, vii42). 

According to the general HWE procedure, Br-D-CHO (1.272 g, 3.30 mmol), P-D-CN (2.106 g, 

4.95 mmol), and LiCl (321 mg, 7.57 mmol) were dissolved in THF (40 mL) and cooled to 0 oC 

under N2. KOtBu (850 mg, 7.57 mmol) was added portionwise over 5 minutes, and the reaction 

was allowed to come to rt overnight with stirring. After workup, column chromatography (silica 

gel, 4:1 hexanes:DCM) gave the title compound as a bright yellow solid (2.240 g, 96%). 1H 

NMR (CD2Cl2, 400 MHz)  0.85-1.00 (12H, mult), 1.30-1.45 (16H, mult), 1.45-1.55 (8H, mult), 

1.70-1.80 (8H, mult), 3.97 (4H, t, J = 6.4 Hz, OCH2), 4.02 (2H, t, J = 6.4 Hz, OCH2), 4.10 (2H, t, 

J = 6.4 Hz, OCH2), 7.04 (1H, s), 7.13 (1H, s), 7.15 (1H, s), 7.18 (1H, s), 7.45 (1H, d, J = 16.8 

Hz, trans CH=CH), 7.51 (1H, d, J = 16.8 Hz, trans CH=CH) ppm. 13C NMR (CD2Cl2, 100 MHz) 

 14.38 (CH3), 14.397 (CH3), 23.16 (CH2), 23.19 (CH2), 23.21 (CH2), 26.13 (CH2), 26.26 (CH2), 

26.37 (CH2), 29.64 (CH2), 29.72 (CH2), 29.79 (CH2), 29.84 (CH2), 32.09 (CH2), 32.13 (CH2), 

70.04 (OCH2), 70.11 (OCH2), 70.18 (OCH2), 70.69 (OCH2), 100.82 (Ar quat), 110.73 (Ar CH), 

112.26 (Ar CH), 113.06 (ArBr quat), 116.97 (Ar CH), 117.25 (CN), 118.28 (Ar CH), 123.56 

(vinylene CH), 126.69 (Ar quat), 127.16 (vinylene CH), 133.66 (Ar quat), 150.34 (ArO quat), 

150.73 (ArO quat), 151.89 (ArO quat), 155.70 (ArO quat) ppm. MS (EI): 685 (M+2, base), 683 

(M+), 605, 349, 347, 267, 205, 85 m/z. HRMS calcd for C39H58NO4Br: 683.3549 g/mol. Found: 

683.3540 g/mol. 
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4-(4-bromostyryl)benzaldehyde (Br-AA-CHO, vii48). According to the general DIBAL-H 

procedure, Br-AA-CN (448 mg, 1.80 mmol) was dissolved in DCM (10 mL) and cooled to 0 OC. 

DIBAL-H (1.0M in hexanes, 1.9 mL, 1.9 mmol) was added dropwise. After workup, the solvent 

was removed in vacuo to give the title compound as a white solid (423 mg, 93%). 1H NMR 

(CD2Cl2, 400 MHz)  7.17 (1H, d, J = 16.4 Hz, trans CH=CH), 7.24 (1H, d, J = 16.4 Hz, trans 

CH=CH), 7.45 (2H, d, J = 8.4 Hz, p-C6H4), 7.53 (2H, d, J = 8.4 Hz, p-C6H4), 7.68 (2H, d, J = 8.4 

Hz, p-C6H4), 7.87 (2H, d, J = 8.4 Hz, p-C6H4), 9.99 (1H, s, CHO) ppm. 13C NMR (CD2Cl2, 100 

MHz)  122.62 (ArBr quat), 127.52 (vinylene CH), 128.61 (Ar CH), 128.93 (vinylene CH), 

130.63 (vinylene CH), 131.20 (Ar CH), 132.47 (Ar CH), 136.20 (Ar quat), 136.20 (Ar quat), 

143.49 (Ar quat), 191.97 (CHO) ppm. MS (EI) 288 (M+2), 286 (M+), 178 (base), 152, 131, 107, 

102, 89, 84, 76, 57 m/z. HRMS calcd for C15H11BrO: 285.9984 g/mol. Found: 285.9993 g/mol. 

 

 

4-(4-bromostyryl)-2,5-bishexyloxybenzaldehyde (Br-AD-CHO, vii50). According to the 

general DIBAL-H procedure, Br-AD-CN (2.154 g, 4.446 mmol) was dissolved in DCM (25 mL) 

and cooled to 0 OC. DIBAL-H (1.0M in hexanes, 4.5 mL, 4.5 mmol) was added dropwise. After 

workup, column chromatography (silica gel, 3:2 hexanes:DCM) gave the title compound as a 

yellow oil that crystallized on standing (2.095 g, 95%). 1H NMR (CD2Cl2, 400 MHz)  0.85-1.00 

(6H, mult), 1.30-1.45 (8H, mult), 1.45-1.55 (4H, mult), 1.70-1.80 (4H, mult), 4.02 (2H, t, J = 6.4 

Hz, OCH2), 4.12 (2H, t, J = 6.4 Hz, OCH2), 7.20 (1H, s), 7.30 (1H, s), 7.22 (1H, d, J = 16.4 Hz, 

trans CH=CH), 7.44 (2H, d, J = 8.4 Hz, p-C6H4), 7.49 (1H, d, J = 16.4 Hz, trans CH=CH), 7.51 
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(2H, d, J = 8.4 Hz, p-C6H4), 10.43 (1h, s, CHO) ppm. 13C NMR (CD2Cl2, 100 MHz)  14.37 

(CH3), 23.17 (CH2), 23.19 (CH2), 26.32 (CH2), 26.42 (CH2), 29.76 (CH2), 29.78 (CH2), 32.13 

(CH2), 32.14 (CH2), 69.75 (OCH2), 69.85 (OCH2), 110.50 (Ar CH), 111.26 (Ar CH), 122.38 

(ArBr quat), 124.14 (vinylene CH), 125.06 (Ar quat), 128.86 (Ar CH), 131.28 (vinylene CH), 

132.40 (Ar CH), 134.13 (Ar quat), 136.89 (Ar quat), 151.33 (ArO quat), 156.68 (ArO quat), 

189.25 (CHO) ppm. MS (EI): 488 (M+2), 486 (M+, base), 402, 374, 320, 318, 234, 206, 181, 

165, 152, 119 m/z. HRMS calcd for C27H35O3Br: 486.1770 g/mol. Found: 486.1763 g/mol. 

 

 

4-(4-bromo-2,5-bishexyloxystyryl)benzaldehyde (Br-DA-CHO, vi59). According to the 

general DIBAL-H procedure, Br-DA-CN (2.560 g, 5.28 mmol) was dissolved in DCM (30 mL) 

and cooled to 0 OC. DIBAL-H (1.0M in hexanes, 5.3 mL, 5.3 mmol) was added dropwise. After 

workup, column chromatography (silica gel, 3:2 hexanes:DCM) gave the title compound as a 

yellow solid (2.420 g, 94%). 1H NMR (CD2Cl2, 400 MHz)  0.85-1.00 (6H, mult), 1.30-1.45 

(8H, mult), 1.45-1.55 (4H, mult), 1.70-1.80 (4H, mult), 3.98 (2H, t, J = 6.4 Hz, OCH2), 4.04 (2H, 

t, J = 6.4 Hz, OCH2), 7.13 (1H, s), 7.16 (1H, s), 7.21 (1H, d, J = 16.4 Hz, trans CH=CH), 7.57 

(1H, d, J = 16.4 Hz, trans CH=CH), 7.68 (2H, d, J = 8.4 Hz, p-C6H4), 7.86 (2H, d, J = 8.4 Hz, p-

C6H4), 9.98 (1H, s, CHO) ppm. 13C NMR (CD2Cl2, 100 MHz)  14.37 (CH3), 14.39 (CH3), 23.19 

(CH2), 26.25 (CH2), 26.41 (CH2), 29.79 (CH2), 29.83 (CH2), 32.13 (CH2), 70.20 (OCH2), 70.73 

(OCH2), 112.10 (Ar CH), 113.25 (ArBr quat), 118.36 (Ar CH), 126.19 (Ar quat), 126.93 
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(vinylene CH), 127.41 (Ar CH), 128.46 (vinylene CH), 130.62 (Ar CH), 135.96 (Ar quat), 

144.27 (Ar quat), 150.35 (ArO quat), 151.95 (ArO quat), 191.95 (CHO) ppm. 

 

 

4-(4-bromo-2,5-bishexyloxystyryl)-2,5-bishexyloxybenzaldehyde (Br-DD-CHO, vii57). 

According to the general DIBAL-H procedure, Br-DD-CN (2.00 g, 2.92 mmol) was dissolved in 

DCM (20 mL) and cooled to 0 OC. DIBAL-H (1.0M in hexanes, 3.0 mL, 3.0 mmol) was added 

dropwise. After workup, column chromatography (silica gel, 4:1 hexanes:DCM) gave the title 

compound as a yellow solid (1.843 g, 92%). 1H NMR (CD2Cl2, 400 MHz)  0.85-1.00 (12H, 

mult), 1.30-1.45 (16H, mult), 1.45-1.55 (8H, mult), 1.70-1.80 (8H, mult), 3.98 (2H, t, J = 6.4 Hz, 

OCH2), 4.03 (2H, t, J = 6.4 Hz, OCH2), 4.04 (2H, t, J = 6.4 Hz, OCH2), 4.11 (2H, t, J = 6.4 Hz, 

OCH2), 7.13 (1H, s), 7.17 (1H, s), 7.23 (1H, s), 7.30 (1H, s), 7.50 (1H, d, J = 16.8 Hz, trans 

CH=CH), 7.58 (1H, d, J = 16.8 Hz, trans CH=CH), 10.43 (1H, s, CHO) ppm. 13C NMR (CD2Cl2, 

100 MHz)  14.40 (CH3), 23.19 (CH2), 23.24 (CH2), 26.28 (CH2), 26.35 (CH2), 26.40 (CH2), 

29.42 (CH2), 29.81 (CH2), 29.83 (CH2), 29.85 (CH2), 32.14 (CH2), 32.17 (CH2), 32.18 (CH2), 

69.68 (OCH2), 69.78 (OCH2), 70.13 (OCH2), 70.68 (OCH2), 110.41 (Ar CH), 111.17 (Ar CH), 

112.19 (Ar CH), 112.94 (ArBr quat), 118.29 (Ar CH), 124.05 (vinylene CH), 124.84 (Ar quat), 

126.92 (Ar quat), 127.07 (vinylene CH), 135.02 (Ar quat), 150.35 (ArO quat), 151.28 (ArO 

quat), 151.89 (ArO quat), 156.75 (ArO quat), 189.25 (CHO) ppm. MS (ESI): 711 (M+Na+2, 

base), 709 (M+Na), 631, 527, 365 m/z. HRMS calcd for C39H59O5Br+Na: 709.3444 g/mol. 

Found: 709.3455 g/mol. 
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4-(4-(4-bromostyryl)styryl)-2,5-bishexyloxybenzonitrile (Br-AAD-CN, vii52). According to 

the general HWE procedure, Br-AA-CHO (700 mg, 2.44 mmol), P-D-CN (1.557 g, 3.66 mmol), 

and LiCl (237 mg, 5.59 mmol) were dissolved in THF (30 mL) and cooled to 0 oC under N2. 

KOtBu (627 mg, 5.59 mmol) was added portionwise over 5 minutes, and the reaction was 

allowed to come to rt overnight with stirring. After workup, column chromatography (silica gel, 

7:3 hexanes:DCM) gave the title compound as a yellow solid (1.166 g, 84%). 1H NMR (CD2Cl2, 

400 MHz)  0.93 (6H, t, J = 7.0 Hz), 1.30-1.40 (8H, mult), 1.50-1.60 (4H, mult), 1.86 (4H, pent, 

J = 7.3 Hz), 3.98 (2H, t, J = 6.4 Hz, OCH2), 4.11 (2H, t, J = 6.4 Hz, OCH2), 7.05 (1H, s), 7.09 

(1H, d, J = 16.4 Hz, trans CH=CH), 7.14 (1H, d, J = 16.4 Hz, trans CH=CH), 7.19 (1H, s), 7.25 

(1H, d, J = 16.4 Hz, trans CH=CH), 7.42 (2H, d, J = 8.8 Hz, p-C6H4), 7.48 (1H, d, J = 16.4 Hz, 

trans CH=CH), 7.50 (2H, d, J = 8.8 Hz, p-C6H4), 7.53 (2H, d, J = 8.8 Hz, p-C6H4), 7.56 (2H, d, J 

= 8.8 Hz, p-C6H4) ppm. 13C NMR (CD2Cl2, 100 MHz)  14.38 (CH3), 23.16 (CH2), 23.18 (CH2),  

26.13 (CH2), 26.39 (CH2), 29.64 (CH2), 29.73 (CH2), 32.09 (CH2), 32.13 (CH2), 70.15 (OCH2), 

70.27 (OCH2), 100.95 (ArCN quat), 110.66 (Ar CH), 117.07 (Ar CH), 117.23 (CN), 121.89 

(ArBr quat), 122.83 (vinylene CH), 127.52 (Ar CH), 127.81 (Ar CH), 128.13 (vinylene CH), 

128.60 (Ar CH), 129.35 (vinylene CH), 132.16 (vinylene CH), 132.36 (Ar CH), 133.22 (Ar 

quat), 136.86 (Ar quat), 137.28 (Ar quat), 137.59 (Ar quat), 150.80 (ArO quat), 155.72 (ArO 

quat) ppm. MS (ES): 587 (M+2), 585 (M+), 419, 420, 251, 228, 181, 169, 131, 119, 100, 69 

(base), 55 m/z. HRMS calcd for C35H40NO2Br: 585.2242 g/mol. Found: 585.2240 g/mol. 
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4-(4-(4-bromostyryl)-2,5-bishexyloxystyryl)-2,5-bishexyloxybenzonitrile (Br-ADD-CN, 

vii53). According to the general HWE procedure, Br-AD-CHO (850 mg, 1.74 mmol), P-D-CN 

(1.11 g, 2.61 mmol), and LiCl (170 mg, 4.01 mmol) were dissolved in THF (25 mL) and cooled 

to 0 oC under N2. KOtBu (450 mg, 4.01 mmol) was added portionwise over 5 minutes, and the 

reaction was allowed to come to rt overnight with stirring. After workup, column 

chromatography (silica gel, 4:1 hexanes:DCM) gave the title compound as a yellow solid (1.181 

g, 86%). %). 1H NMR (CD2Cl2, 400 MHz)  0.85-0.95 (12H, mult), 1.30-1.45 (16H, mult), 1.45-

1.60 (8H, mult), 1.80-1.95 (8H, mult), 3.98 (2H, t, J = 6.4 Hz, OCH2), 4.05 (2H, t, J = 6.4 Hz, 

OCH2), 4.07 (2H, t, J = 6.4 Hz, OCH2), 4.10 (2H, t, J = 6.4 Hz, OCH2), 7.04 (1H, s), 7.13 (1H, d, 

J = 16.4 Hz, trans CH=CH), 7.14 (1H, s), 7.15 (1H, s), 7.20 (1H, s), 7.42 (2H, d, J = 8.4 Hz, p-

C6H4), 7.46-7.51 (4H, mult)  7.59 (1H d, J = 16.8 Hz, trans CH=CH) ppm. 13C NMR (CD2Cl2, 

100 MHz)  14.37 (CH3), 14.39 (CH3), 23.16 (CH2), 23.23 (CH2), 23.25 (CH2), 26.15 (CH2), 

26.39 (CH2), 26.48 (CH2), 26.54 (CH2), 29.66 (CH2), 29.75 (CH2), 30.00 (CH2), 32.10 (CH2), 

32.16 (CH2), 32.16 (CH2), 69.96 (OCH2), 70.02 (OCH2), 70.08 (OCH2), 70.19 (OCH2), 100.64 

(ArCN quat), 110.59 (Ar CH), 110.91 (Ar CH), 111.31 (Ar CH), 117.07 (Ar CH), 117.32 (CN), 

121.62 (ArBr quat), 122.99 (vinylene CH), 124.59 (vinylene CH), 127.22 (Ar quat), 127.50 

(vinylene CH), 127.70 (Ar quat), 128.33 (vinylene CH), 128.56 (Ar CH), 132.31 (Ar CH) 133.97 

(Ar quat), 137.50 (Ar quat), 150.74 (ArO quat), 151.66 (ArO quat), 151.94 (ArO quat), 155.72 

(ArO quat) ppm. MS (ESI): 810 (M+Na+2, base), 808 (M+Na), 788, 786, 776, 685 (base)\m/z. 

HRMS calcd for C47H64NO4Br+Na: 808.3916 g/mol. Found: 808.3965 g/mol. 
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4-(4-(4-bromostyryl)-2,5-bishexyloxystyryl)benzonitrile (Br-ADA-CN, vii54). According to 

the general HWE procedure, Br-AD-CHO (850 mg, 1.74 mmol), P-A-CN (588 mg, 2.61 mmol), 

and LiCl (170 mg, 4.01 mmol) were dissolved in THF (25 mL) and cooled to 0 oC under N2. 

KOtBu (450 mg, 4.01 mmol) was added portionwise over 5 minutes, and the reaction was 

allowed to come to rt overnight with stirring. After workup, column chromatography (silica gel, 

2:3 hexanes:DCM) gave the title compound as a yellow solid (950 mg, 92%). 1H NMR (CD2Cl2, 

400 MHz)  0.93 (6H, t, J = 7.0 Hz), 1.30-1.45 (8H, mult), 1.45-1.60 (4H, mult), 1.86 (4H, pent, 

J = 6.7 Hz), 4.06 (2H, t, J = 6.4 Hz, OCH2), 4.07 (2H, t, J = 6.4 Hz, OCH2), 7.13 (1H, d, J = 16.4 

Hz, trans CH=CH), 7.135 (1H, s), 7.138 (1H, s), 7.18 (1H, d, J = 16.4 Hz, trans CH=CH), 7.42 

(2H, d, J = 8.4 Hz, p-C6H4), 7.48 (1H, d, J = 16.4 Hz, trans CH=CH), 7.50 (2H, d, J = 8.4 Hz, p-

C6H4), 7.61 (1H, d, J = 16.4 Hz, trans CH=CH), 7.61 (2H, d, J = 8.8 Hz, p-C6H4), 7.65 (2H, d, J 

= 8.8 Hz, p-C6H4) ppm. 13C NMR (CD2Cl2, 100 MHz)  14.39 (CH3), 23.23 (CH2), 26.51 (CH2), 

29.98 (CH2), 32.20 (CH2), 70.02 (OCH2), 70.06 (OCH2), 110.83 (ArCN quat), 110.95 (Ar CH), 

111.23 (Ar CH), 119.61 (CN), 121.66 (ArBr quat), 124.55 (vinylene CH), 126.44 (Ar quat), 

127.57 (Ar CH), 127.39 (vinylene CH), 127.57 (vinylene CH), 127.98 (Ar quat) 128.48 

(vinylene CH), 128.58 (Ar CH), 132.30 (vinylene CH), 133.02 (Ar CH), 137.45 (Ar quat), 

143.03 (Ar quat), 151.64 (ArO quat), 152.02 (ArO quat) ppm. MS (ES): 587 (M+2), 585 (M+), 

485, 483, 419, 417, 401, 317, 315, 290, 235, 206, 169, 152, 131, 116, 85, 69, 55 (base) m/z. 

HRMS calcd for C35H40NO2Br: 585.2242 g/mol. Found: 585.2237 g/mol. 
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4-(4-(4-bromo-2,5-bishexyloxystyryl)styryl)benzonitrile (Br-DAA-CN, vii62). According to 

the general HWE procedure, Br-DA-CHO (1.10 g, 2.26 mmol), P-A-CN (761 mg, 3.38 mmol), 

and LiCl (220 mg, 4.01 mmol) were dissolved in THF (40 mL) and cooled to 0 oC under N2. 

KOtBu (583 mg, 5.19 mmol) was added portionwise over 5 minutes, and the reaction was 

allowed to come to rt overnight with stirring. After workup, column chromatography (silica gel, 

2:3 hexanes:DCM) gave the title compound as a yellow solid (1.305 g, 99%). 1H NMR (CD2Cl2, 

400 MHz)  0.93 (6H, t, J = 6.4 Hz), 1.30-1.45 (8H, mult), 1.50-1.60 (4H, mult), 1.83 (2H, pent, 

J = 6.8 Hz), 1.85 (2H, pent, J = 6.8 Hz), 3.97 (2H, t, J = 6.4 Hz, OCH2), 4.04 (2H, t, J = 6.4 Hz, 

OCH2), 7.12 (1H, s), 7.14 (1H, d, J = 16.0 Hz, trans CH=CH), 7.16 (1H, s), 7.16 (1H, d, J = 16.4 

Hz, trans CH=CH), 7.25 (1H, d, J = 16.0 Hz, trans CH=CH), 7.46 (1H, d, J = 16.4 Hz, trans 

CH=CH), 7.55 (4H, br s, p-C6H4), 7.61 (2H, d, J = 8.8 Hz, p-C6H4), 7.65 (2H, d, J = 8.8 Hz, p-

C6H4) ppm. 13C NMR (CD2Cl2, 100 MHz)  14.39 (CH3), 23.21 (CH2), 26.26 (CH2), 26.42 

(CH2), 29.84 (CH2), 29.86 (CH2), 32.14 (CH2), 32.15 (CH2), 70.22 (OCH2), 70.74 (OCH2), 

110.10 (ArCN quat), 110.93 (Ar CH), 112.41 (ArBr quat), 118.35 (Ar CH), 119.52 (CN), 123.97 

(vinylene CH), 126.87 (Ar quat), 127.06 (vinylene CH), 127.38 (Ar CH), 127.47 (Ar CH),  

127.85 (Ar CH), 129.15 (vinylene CH), 132.34 (vinylene CH), 133.06 (Ar CH), 136.27 (Ar 

quat), 138.62 (Ar quat), 142.40 (Ar quat), 150.38 (ArO quat), 151.73 (ArO quat) ppm. MS (ESI): 

610 (M+Na+2), 608 (M+Na), 527, 365 (base)\m/z. HRMS calcd for C35H40NO2Br+Na: 

608.2140 g/mol. Found: 608.2094 g/mol. 
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4-(4-(4-bromo-2,5-bishexyloxystyryl)styryl)-2,5-bishexyloxystyrylbenzonitrile (Br-DAD-

CN, vii61). According to the general HWE procedure, Br-DA-CHO (1.10 g, 2.26 mmol), P-D-

CN (1.44 g, 3.38 mmol), and LiCl (220 mg, 4.01 mmol) were dissolved in THF (30 mL) and 

cooled to 0 oC under N2. KOtBu (583 mg, 5.19 mmol) was added portionwise over 5 minutes, and 

the reaction was allowed to come to rt overnight with stirring. After workup, column 

chromatography (silica gel, 7:3 hexanes:DCM) gave the title compound as a yellow solid (1.687 

g, 95%). 1H NMR (CD2Cl2, 400 MHz)  0.85-0.95 (12H, mult), 1.30-1.45 (16H, mult), 1.45-1.60 

(8H, mult), 1.80-1.95 (8H, mult), 3.97 (2H, t, J = 6.4 Hz, OCH2), 3.98 (2H, t, J = 6.4 Hz, OCH2), 

4.04 (2H, t, J = 6.4 Hz, OCH2), 4.11 (2H, t, J = 6.4 Hz, OCH2), 7.04 (1H, s), 7.12 (1H, s), 7.16  

(1H, d, J = 16.4 Hz, trans CH=CH), 7.16(1H, s), 7.19 (1H, s), 7.25 (1H, d, J = 16.4 Hz, trans 

CH=CH), 7.46 (1H, d, J = 16.4 Hz, trans CH=CH), 7.48 (1H, d, J = 16.4 Hz, trans CH=CH), 

7.55 (4H, br s, p-C6H4) ppm. 13C NMR (CD2Cl2, 100 MHz)  14.39 (CH3), 23.18 (CH2), 23.21 

(CH2), 26.14 (CH2), 26.27 (CH2), 26.41 (CH2), 26.44 (CH2), 29.66 (CH2), 29.74 (CH2), 29.86 

(CH2), 29.87 (CH2), 32.11 (CH2), 32.15 (CH2), 32.17 (CH2), 70.15 (OCH2), 70.23 (OCH2), 70.26 

(OCH2), 70.75 (OCH2), 100.88 (ArCN quat), 110.60 (Ar CH), 111.89 (Ar CH), 112.35 (ArBr 

quat), 117.05 (Ar CH), 117.25 (CN), 118.35 (Ar CH), 122.60 (vinylene CH), 123.77 (vinylene 

CH), 126.92 (Ar quat), 127.45 (Ar CH), 127.79 (Ar CH), 129.21 (vinylene CH), 133.27 

(vinylene CH) 133.27 (Ar quat), 136.99 (Ar quat), 138.36 (Ar quat), 150.38 (ArO quat), 150.78 

(ArO quat), 151.72 (ArO quat), 155.73 (ArO quat) ppm. MS (ESI): 810 (M+Na+2), 808 
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(M+Na), 788, 786, 711, 709, 691, 527 (base)\m/z. HRMS calcd for C47H64NO4Br+Na: 808.3916 

g/mol. Found: 808.4011 g/mol. 

 

 

4-(4-(4-bromo-2,5-bishexyloxystyryl)-2,5-bishexyloxystyrylstyryl)benzonitrile (Br-DDA-

CN, vii60). According to the general HWE procedure, Br-DD-CHO (1.64 g, 2.39 mmol), P-A-

CN (807 mg, 3.58 mmol), were dissolved in THF (30 mL) and cooled to 0 oC under N2. KOtBu 

(618 mg, 5.50 mmol) was added portionwise over 5 minutes, and the reaction was allowed to 

come to rt overnight with stirring. After workup, column chromatography (silica gel, 1:1 

hexanes:DCM) gave the title compound as a yellow solid (1.610 g, 86%). 1H NMR (CD2Cl2, 400 

MHz)  0.85-0.95 (12H, mult), 1.30-1.45 (16H, mult), 1.45-1.60 (8H, mult), 1.80-1.95 (8H, 

mult), 3.98 (2H, t, J = 6.4 Hz, OCH2), 4.04 (2H, t, J = 6.4 Hz, OCH2), 4.06 (2H, t, J = 6.4 Hz, 

OCH2), 4.07 (2H, t, J = 6.4 Hz, OCH2), 7.11 (1H, s), 7.14 (1H, s), 7.17 (1H, s), 7.18 (1H, d, J = 

16.4 Hz, trans CH=CH), 7.18 (1H, s), 7.45 (1H, d, J = 16.8 Hz, trans CH=CH), 7.50 (1H, d, J = 

16.8 Hz, trans CH=CH), 7.62 (1H, d, J = 16.4 Hz, trans CH=CH), 7.62 (2H, d, J = 8.8 Hz, p-

C6H4), 7.65 (2H, d, J = 8.8 Hz, p-C6H4)  ppm. 13C NMR (CD2Cl2, 100 MHz)  14.40 (CH3), 

14.42 (CH3), 14.43 (CH3), 23.20 (CH2), 23.24 (CH2), 23.26 (CH2), 26.29 (CH2), 26.42 (CH2), 

26.50 (CH2), 26.54 (CH2), 29.88 (CH2), 30.00 (CH2), 30.02 (CH2), 32.15 (CH2), 32.19 (CH2), 

32.21 (CH2), 32.24 (CH2), 69.97 (OCH2), 70.00 (OCH2), 70.15 (OCH2), 70.69 (OCH2), 110.78 

(Ar CH), 110.95 (Ar CH), 111.17 (ArCN quat), 111.95 (Ar CH), 112.13 (ArBr quat), 118.28 (Ar 

CH), 119.62 (CN), 124.15 (vinylene CH), 124.42 (vinylene CH), 126.14 (Ar quat), 127.21 
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(vinylene CH), 127.30 (Ar CH), 127.55 (Ar quat), 127.64 (vinylene CH),  128.81 (Ar quat), 

133.03 (Ar CH), 143.10 (Ar quat), 150.37 (ArO quat), 151.58 (ArO quat), 151.68 (ArO quat), 

152.05 (ArO quat) ppm. MS (ESI): 810 (M+Na+2), 808 (M+Na), 788, 786, 711, 709, 691, 527 

(base)\m/z. HRMS calcd for C47H64NO4Br+Na: 808.3916 g/mol. Found: 808.4011 g/mol. MS 

(ESI): 810 (M+Na+2), 808 (M+Na), 786, 776, 707, 527, 365 (base)\m/z. HRMS calcd for 

C47H64NO4Br+Na: 808.3916 g/mol. Found: 808.3856 g/mol. 

 

 

4-(4-(4-bromostyryl)styryl)-2,5-bishexyloxybenzaldehyde (Br-AAD-CHO, vii69). According 

to the general DIBAL-H procedure, Br-AAD-CN (375 mg, 0.635 mmol) was dissolved in DCM 

(5 mL) and cooled to 0 OC. DIBAL-H (1.0M in hexanes, 0.75 mL, 0.75 mmol) was added 

dropwise. After workup, column chromatography (silica gel, 7:3 hexanes:DCM) gave the title 

compound as a yellow solid (308 mg, 82%). 1H NMR (CD2Cl2, 400 MHz)  0.93 (6H, t, J = 7.0 

Hz), 1.30-1.40 (8H, mult), 1.50-1.60 (4H, mult), 1.86 (4H, pent, J = 7.1 Hz), 4.04 (2H, t, J = 6.4 

Hz, OCH2), 4.12 (2H, t, J = 6.4 Hz, OCH2), 7.09 (1H, d, J = 16.4 Hz, trans CH=CH), 7.14 (1H, 

d, J = 16.4 Hz, trans CH=CH), 7.22 (1H, s), 7.28 (1H, d, J = 16.4 Hz, trans CH=CH), 7.30 (1H, 

s), 7.41 (2H, d, J = 8.8 Hz, p-C6H4), 7.50 (2H, d, J = 8.8 Hz, p-C6H4), 7.53 (1H, d, J = 16.4 Hz, 

trans CH=CH), 7.54 (2H, d, J = 8.8 Hz, p-C6H4), 7.57 (2H, d, J = 8.4 Hz, p-C6H4), 10.44 (1H, s, 

CHO) ppm. 13C NMR (CD2Cl2, 100 MHz)  14.39 (CH3), 23.16 (CH2), 23.18 (CH2),  23.21 

(CH2),  26.33 (CH2), 26.44 (CH2), 29.79 (CH2), 32.13 (CH2), 32.17 (CH2), 69.76 (OCH2), 69.84 

(OCH2), 110.47 (Ar CH), 111.07 (Ar CH), 121.85 (ArBr quat), 123.35 (vinylene CH), 124.89 
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(Ar quat), 127.51 (Ar CH), 127.79 (Ar CH), 128.03 (vinylene CH), 128.58 (Ar CH), 129.37 

(vinylene CH), 132.11 (vinylene CH), 132.34 (Ar CH), 133.53 (Ar quat), 136.87 (Ar quat), 

137.47 (Ar quat), 151.32 (ArO quat), 156.73 (ArO quat) 189.24 (CHO) ppm. MS (ES): 590 

(M+2), 588 (M+), 420, 288, 286, 178 (base), 152, 131, 102, 90, 77, 69, 55 m/z. HRMS calcd for 

C35H41O3Br: 588.2239 g/mol. Found: 588.2239 g/mol. 

 

 

4-(4-(4-bromostyryl)-2,5-bishexyloxystyryl)-2,5-bishexyloxybenzaldehyde (Br-ADD-CHO, 

vii68). According to the general DIBAL-H procedure, Br-ADD-CN (500 mg, 0.635 mmol) was 

dissolved in DCM (5 mL) and cooled to 0 OC. DIBAL-H (1.0M in hexanes, 0.75 mL, 0.75 

mmol) was added dropwise. After workup, column chromatography (silica gel, 7:3 

hexanes:DCM) gave the title compound as  a yellow solid (409 mg, 82%). 1H NMR (CD2Cl2, 

400 MHz)  0.85-0.95 (12H, mult), 1.30-1.45 (16H, mult), 1.45-1.60 (8H, mult), 1.80-1.95 (8H, 

mult), 4.05 (2H, t, J = 6.4 Hz, OCH2), 4.06 (2H, t, J = 6.4 Hz, OCH2), 4.07 (2H, t, J = 6.4 Hz, 

OCH2), 7.04 (1H, s), 4.14 (2H, t, J = 6.4 Hz, OCH2), 7.13 (1H, d, J = 16.4 Hz, trans CH=CH), 

7.15 (1H, s), 7.17 (1H, s), 7.25 (1H, s), 7.30 (1H, s), 7.43 (2H, d, J = 8.4 Hz, p-C6H4), 7.50 (2H, 

d, J = 8.4 Hz, p-C6H4), 7.50 (1H d, J = 16.4 Hz, trans CH=CH), 7.53 (1H d, J = 16.8 Hz, trans 

CH=CH), 7.63 (1H d, J = 16.8 Hz, trans CH=CH), 10.43 (1H, s, CHO) ppm. 13C NMR (CD2Cl2, 

100 MHz)  14.38 (CH3), 14.41 (CH3), 23.18 (CH2), 23.24 (CH2), 23.26 (CH2), 26.35 (CH2), 

26.44 (CH2), 26.50 (CH2), 26.53 (CH2), 29.81 (CH2), 30.00 (CH2), 32.14 (CH2), 32.19 (CH2), 

32.20 (CH2), 32.23 (CH2), 69.70 (OCH2), 69.78 (OCH2), 69.96 (OCH2), 69.99 (OCH2), 110.40 
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(Ar CH), 110.90 (Ar CH), 110.99 (Ar CH), 111.22 (Ar CH), 121.59 (ArBr quat), 123.49 

(vinylene CH), 124.61 (vinylene CH), 124.72 (Ar quat), 127.43 (Ar quat), 127.43 (vinylene CH), 

127.57 (Ar quat), 128.24 (vinylene CH), 128.55 (Ar CH), 132.30 (Ar CH) 135.31 (Ar quat), 

137.51 (Ar quat), 151.27 (ArO quat), 151.67 (ArO quat), 151.92 (ArO quat), 156.79 (ArO quat), 

189.25 (CHO) ppm. 

 

 

4-(4-(4-bromostyryl)-2,5-bishexyloxystyryl)benzaldehyde (Br-ADA-CHO, vii70). According 

to the general DIBAL-H procedure, Br-ADA-CN (375 mg, 0.635 mmol) was dissolved in DCM 

(5 mL) and cooled to 0 OC. DIBAL-H (1.0M in hexanes, 0.75 mL, 0.75 mmol) was added 

dropwise. After workup, column chromatography (silica gel, 2:3 hexanes:DCM) gave the title 

compound as a yellow solid (302 mg, 81%). 1H NMR (CD2Cl2, 400 MHz)  0.94 (6H, t, J = 6.8 

Hz), 1.30-1.45 (8H, mult), 1.45-1.60 (4H, mult), 1.80-1.95 (4H, mult), 4.06 (2H, t, J = 6.4 Hz, 

OCH2), 4.07 (2H, t, J = 6.4 Hz, OCH2), 7.13 (1H, d, J = 16.4 Hz, trans CH=CH), 7.14 (1H, s), 

7.15 (1H, s), 7.23 (1H, d, J = 16.8 Hz, trans CH=CH), 7.42 (2H, d, J = 8.4 Hz, p-C6H4), 7.49 

(1H, d, J = 16.4 Hz, trans CH=CH), 7.50 (2H, d, J = 8.4 Hz, p-C6H4), 7.60 (1H, d, J = 16.8 Hz, 

trans CH=CH), 7.69 (2H, d, J = 8.4 Hz, p-C6H4), 7.86 (2H, d, J = 8.4 Hz, p-C6H4), 9.98 (CHO) 

ppm. 13C NMR (CD2Cl2, 100 MHz)  14.41 (CH3), 23.24 (CH2), 26.53 (CH2), 30.00 (CH2), 

32.21 (CH2), 70.04 (OCH2), 110.93 (Ar CH), 111.16 (Ar CH), 121.63 (ArBr quat), 124.57 

(vinylene CH), 126.69 (Ar quat), 127.36 (Ar CH), 127.36 (vinylene CH), 127.84 (Ar quat), 

127.96 (vinylene CH), 128.38 (vinylene CH), 128.57 (Ar CH), 130.62 (Ar CH), 132.30 (Ar CH), 
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135.83 (Ar quat), 137.47 (Ar quat) 144.56 (Ar quat), 151.65 (ArO quat), 152.00 (ArO quat), 

191.94 (CHO) ppm. MS (ES): 590 (M+2), 588 (M+), 504, 476, 420, 422, 340, 265, 149, 131, 

127, 91, 85, 69 (base) m/z. HRMS calcd for C35H41O3Br: 588.2239 g/mol. Found: 588.2231 

g/mol. 

 

 

4-(4-(4-bromo-2,5-bishexyloxystyryl)styryl)benzaldehyde (Br-DAA-CHO, vii71). According 

to the general DIBAL-H procedure, Br-DAA-CN (375 mg, 0.635 mmol) was dissolved in DCM 

(5 mL) and cooled to 0 OC. DIBAL-H (1.0M in hexanes, 0.75 mL, 0.75 mmol) was added 

dropwise. After workup, column chromatography (silica gel, 7:3 hexanes:DCM) gave the title 

compound as a yellow solid (348 mg, 93%). 1H NMR (CD2Cl2, 400 MHz)  0.95 (6H, t, J = 6.0 

Hz), 1.30-1.45 (8H, mult), 1.50-1.60 (4H, mult), 1.83 (2H, pent, J = 6.8 Hz), 1.85 (2H, pent, J = 

6.8 Hz), 3.97 (2H, t, J = 6.4 Hz, OCH2), 4.04 (2H, t, J = 6.4 Hz, OCH2), 7.12 (1H, s), 7.16 (1H, 

d, J = 16.8 Hz, trans CH=CH), 7.16 (1H, s), 7.19 (1H, d, J = 16.4 Hz, trans CH=CH), 7.29 (1H, 

d, J = 16.4 Hz, trans CH=CH), 7.46 (1H, d, J = 16.8 Hz, trans CH=CH), 7.56 (4H, br s, p-C6H4), 

7.68 (2H, d, J = 8.4 Hz, p-C6H4), 7.87 (2H, d, J = 8.4 Hz, p-C6H4), 9.98 (1H, s, CHO) ppm. 13C 

NMR (CD2Cl2, 100 MHz)  14.40 (CH3), 23.20 (CH2), 23.22 (CH2), 26.26 (CH2), 26.42 (CH2), 

29.84 (CH2), 29.86 (CH2), 32.14 (CH2), 32.15 (CH2), 70.20 (OCH2), 70.72 (OCH2), 111.88 (Ar 

CH), 112.35 (ArBr quat), 118.32 (Ar CH), 123.87 (vinylene CH), 126.87 (Ar quat), 127.41 (Ar 

CH), 127.46 (Ar CH), 127.63 (vinylene CH), 127.83 (Ar CH), 129.18 (vinylene CH), 130.63 (Ar 

CH), 132.34 (vinylene CH), 135.98 (Ar quat), 136.49 (Ar quat), 138.49 (Ar quat),143.89 (Ar 
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quat), 150.35 (ArO quat), 151.70 (ArO quat), 191.92 (CHO) ppm. MS (ES): 590 (M+2), 588 

(M+), 422, 420, 221, 181, 131, 119, 100, 85, 69 (base) m/z. HRMS calcd for C35H41O3Br: 

588.2239 g/mol. Found: 588.2230 g/mol. 

 

 

4-(4-(4-bromo-2,5-bishexyloxystyryl)styryl)-2,5-bishexyloxystyrylbenzaldehyde (Br-DAD-

CHO, vii67). According to the general DIBAL-H procedure, Br-DAD-CN (500 mg, 0.635 

mmol) was dissolved in DCM (5 mL) and cooled to 0 OC. DIBAL-H (1.0M in hexanes, 0.75 mL, 

0.75 mmol) was added dropwise. After workup, column chromatography (silica gel, 2:3 

hexanes:DCM) gave the title compound as a yellow solid (426 mg, 85%). 1H NMR (CD2Cl2, 400 

MHz)  0.85-0.95 (12H, mult), 1.30-1.45 (16H, mult), 1.45-1.60 (8H, mult), 1.80-1.95 (8H, 

mult), 3.97 (2H, t, J = 6.4 Hz, OCH2), 4.04 (4H, t, J = 6.4 Hz, OCH2), 4.12 (2H, t, J = 6.4 Hz, 

OCH2), 7.12 (1H, s), 7.16 (1H, s), 7.17 (1H, d, J = 16.4 Hz, trans CH=CH), 7.23 (1H, s), 7.29 

(1H, d, J = 16.4 Hz, trans CH=CH), 7.31 (1H, s), 7.46 (1H, d, J = 16.4 Hz, trans CH=CH), 7.53 

(1H, d, J = 16.4 Hz, trans CH=CH), 7.56 (4H, br s, p-C6H4), 10.44 ppm (1H, s, CHO) ppm. 13C 

NMR (CD2Cl2, 100 MHz)  14.41 (CH3), 23.23 (CH2), 26.29 (CH2), 26.36 (CH2), 26.45 (CH2), 

26.47 (CH2), 29.83 (CH2), 29.87 (CH2), 32.16 (CH2), 32.18 (CH2), 32.20 (CH2), 69.78 (OCH2), 

69.85 (OCH2), 70.22 (OCH2), 70.73 (OCH2), 110.49 (Ar CH), 111.03 (Ar CH), 111.97 (Ar CH), 

112.32 (ArBr quat), 118.35 (Ar CH), 123.16 (vinylene CH), 123.70 (vinylene CH), 124.88 (Ar 

quat) 126.95 (Ar quat), 127.44 (Ar CH), 127.78 (Ar CH), 129.25 (vinylene CH), 133.20 

(vinylene CH) 134.61 (Ar quat), 137.21 (Ar quat), 138.26 (Ar quat), 150.38 (ArO quat), 151.33 
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(ArO quat), 151.71 (ArO quat), 156.76 (ArO quat), 189.22 (CHO) ppm. MS (ESI): 813 

(M+Na+2), 811 (M+Na), 527, 365 (base)\m/z. HRMS calcd for C47H64NO4Br+Na: 811.3913 

g/mol. Found: 811.3898 g/mol. 

 

 

4-(4-(4-bromo-2,5-bishexyloxystyryl)-2,5-bishexyloxystyrylstyryl)benzaldehyde (Br-DDA-

CHO, vii66). According to the general DIBAL-H procedure, Br-DDA-CN (500 mg, 0.635 

mmol) was dissolved in DCM (5 mL) and cooled to 0 OC. DIBAL-H (1.0M in hexanes, 0.75 mL, 

0.75 mmol) was added dropwise. After workup, column chromatography (silica gel, 7:3 

hexanes:DCM) gave the title compound as a yellow solid (490 mg, 98%). %). 1H NMR (CD2Cl2, 

400 MHz)  0.85-0.95 (12H, mult), 1.30-1.45 (16H, mult), 1.45-1.60 (8H, mult), 1.80-1.95 (8H, 

mult), 3.98 (2H, t, J = 6.4 Hz, OCH2), 4.04 (2H, t, J = 6.4 Hz, OCH2), 4.07 (2H, t, J = 6.4 Hz, 

OCH2), 4.08 (2H, t, J = 6.4 Hz, OCH2), 7.11 (1H, s), 7.16 (1H, s), 7.17 (1H, s), 7.18 (1H, s), 7.24 

(1H, d, J = 16.4 Hz, trans CH=CH), 7.45 (1H, d, J = 16.8 Hz, trans CH=CH), 7.50 (1H, d, J = 

16.8 Hz, trans CH=CH), 7.67 (1H, d, J = 16.4 Hz, trans CH=CH), 7.69 (2H, d, J = 8.0 Hz, p-

C6H4), 7.86 (2H, d, J = 8.0 Hz, p-C6H4), 9.98 (1H, s, CHO) ppm. 13C NMR (CD2Cl2, 100 MHz) 

 14.42 (CH3), 23.20 (CH2), 23.24 (CH2), 23.26 (CH2), 26.28 (CH2), 26.41 (CH2), 26.50 (CH2), 

26.55 (CH2), 29.87 (CH2), 30.02 (CH2), 32.15 (CH2), 32.18 (CH2), 32.22 (CH2), 32.23 (CH2), 

70.00 (OCH2), 70.16 (OCH2), 70.69 (OCH2), 110.97 (Ar CH), 111.15 (Ar CH), 111.94 (Ar CH), 

112.10 (ArBr quat), 118.29 (Ar CH), 124.07 (vinylene CH), 124.45 (vinylene CH), 126.41 (Ar 

quat), 127.43 (vinylene CH), 127.34 (Ar CH), 127.59 (Ar quat), 127.81 (vinylene CH),  128.68 
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(Ar quat), 130.63 (Ar CH), 144.63 (Ar quat), 150.37 (ArO quat), 151.59 (ArO quat), 151.67 

(ArO quat), 152.05 (ArO quat), 191.94 (CHO) ppm. MS (ESI): 813 (M+Na+2), 811 (M+Na), 

776, 711, 709, 691, 527, 365 (base) m/z. HRMS calcd for C47H65O5Br+Na: 811.3913 g/mol. 

Found: 811.3935 g/mol. 

 

 

4-(4-(4-(4-bromostyryl)styryl)-2,5-bishexyloxystyryl)-2,5-bishexyloxybenzonitrile (Br-

AADD-CN, vii75). According to the general HWE procedure, Br-AAD-CHO (200 mg, 0.341 

mmol), P-D-CN (220 mg, 0.517 mmol), and LiCl (34.0 mg, 0.802 mmol) were dissolved in THF 

(5 mL) and cooled to 0 oC under N2. KOtBu (88.0 mg, 0.784 mmol) was added portionwise over 

5 minutes, and the reaction was allowed to come to rt overnight with stirring. After workup, 

column chromatography (silica gel, 13:7 hexanes:DCM) gave the title compound as an orange 

solid (293 mg, 97%). 1H NMR (CD2Cl2, 400 MHz)  0.85-1.00 (12H, mult), 1.30-1.45 (16H, 

mult), 1.45-1.60 (8H, mult), 1.80-1.95 (8H, mult), 3.99 (2H, t, J = 6.4 Hz, OCH2), 4.06 (2H, t, J 

= 6.4 Hz, OCH2), 4.08 (2H, t, J = 6.4 Hz, OCH2), 4.11 (2H, t, J = 6.4 Hz, OCH2), 7.04 (1H, s), 

7.08 (1H, d, J = 16.4 Hz, trans CH=CH), 7.14 (1H, d, J = 16.4 Hz, trans CH=CH), 7.16 (1H, s), 

7.17 (1H, s), 7.20 (1H, d, J = 16.4 Hz, trans CH=CH), 7.21 (1H, s) 7.42 (2H, d, J = 8.4 Hz, p-

C6H4), 7.47-7.57 (8H, mult), 7.60 (1H, d, J = 16.4 Hz, trans CH=CH) ppm. 13C NMR (CD2Cl2, 

100 MHz)  14.38 (CH3), 14.42 (CH3), 23.17 (CH2), 23.23 (CH2), 23.25 (CH2), 23.27 (CH2), 

26.15 (CH2), 26.39 (CH2), 26.50 (CH2), 26.55 (CH2), 29.66 (CH2), 29.76 (CH2), 30.01 (CH2), 

30.03 (CH2), 32.10 (CH2), 32.17 (CH2), 32.23 (CH2), 69.92 (OCH2), 70.01 (OCH2), 70.05 
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(OCH2), 70.16 (OCH2), 100.56 (ArCN, quat), 110.51 (Ar CH), 110.74 (Ar CH), 111.28 (Ar CH), 

116.95 (Ar CH), 117.34 (CN), 121.73 (ArBr quat), 122.82 (vinylene CH), 123.84 (vinylene CH), 

126.98 (Ar quat), 127.43 (Ar CH), 128.43 (Ar CH), 128.52 (vinylene CH), 127.63 (vinylene 

CH), 128.05 (Ar quat), 128.05 (Ar CH), 128.55 (vinylene CH), 129.51 (vinylene CH), 132.32 

(Ar CH), 133.98 (Ar quat), 136.83 (Ar quat), 136.97 (Ar quat), 138.11 (Ar quat), 150.72 (ArO 

quat), 151.63 (ArO quat), 151.96 (ArO quat), 155.72 (ArO quat) ppm. 

 

 

4-(4-(4-(4-bromostyryl)-2,5-bishexyloxystyryl)-2,5-bishexyloxystyryl)benzonitrile (Br-

ADDA-CN, vii74). According to the general HWE procedure, Br-ADD-CHO (300 mg, 0.380 

mmol), P-A-CN (130 mg, 0.577 mmol), and LiCl (37.0 mg, 0.873 mmol) were dissolved in THF 

(40 mL) and cooled to 0 oC under N2. KOtBu (98.0 mg, 0.873 mmol) was added portionwise over 

5 minutes, and the reaction was allowed to come to rt overnight with stirring. After workup, 

column chromatography (silica gel, 4:1 hexanes:DCM) gave the title compound as an orange 

solid (300 mg, 89%). 1H NMR (CD2Cl2, 400 MHz)  0.85-1.00 (12H, mult), 1.30-1.45 (16H, 

mult), 1.45-1.60 (8H, mult), 1.80-1.95 (8H, mult), 4.05-4.10 (8H, mult), 7.11-7.19 (6H, mult), 

7.42 (2H, d, J = 8.4 Hz, p-C6H4), 7.48-7.52 (5H, mult), 7.61-7.66 (5H, mult) ppm. 13C NMR 

(CD2Cl2, 100 MHz)  13.83 (CH3), 13.87 (CH3), 22.67 (CH2), 22.70 (CH2), 25.95 (CH2), 25.98 

(CH2), 29.44 (CH2), 29.47 (CH2), 31.65 (CH2), 31.68 (CH2), 69.38 (OCH2), 69.42 (OCH2), 69.46 

(OCH2), 110.18 (ArCN, quat), 110.21 (Ar CH), 110.32 (Ar CH), 110.36 (Ar CH), 110.35 (Ar 

CH), 119.07 (CN), 120.91 (ArBr quat), 123.33 (vinylene CH), 123.93 (vinylene CH), 126.73 (Ar 
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CH quat), 126.83 (Ar quat), 126.99 (vinylene CH), 127.41 (Ar quat), 127.53 (Ar quat), 127.96 

(vinylene CH), 128.01 (vinylene CH), 128.51 (Ar quat), 131.71 (Ar CH), 132.47 (Ar CH), 

136.88 (Ar quat), 137.04 (Ar quat), 151.07 (ArO quat), 151.16 (ArO quat), 151.45 (ArO quat), 

151.51 (ArO quat) ppm. 

 

 

4-(4-(4-(4-bromostyryl)-2,5-bishexyloxystyryl)styryl)-2,5-bishexyloxybenzonitrile (Br-

ADAD-CN, vii76). According to the general HWE procedure, Br-ADA-CHO (200 mg, 0.341 

mmol), P-D-CN (220 mg, 0.517 mmol), and LiCl (34.0 mg, 0.802 mmol) were dissolved in THF 

(5 mL) and cooled to 0 oC under N2. KOtBu (88.0 mg, 0.784 mmol) was added portionwise over 

5 minutes, and the reaction was allowed to come to rt overnight with stirring. After workup, 

column chromatography (silica gel, 2:3 hexanes:DCM) gave the title compound as an orange 

solid (268 mg, 88%). 1H NMR (CD2Cl2, 400 MHz)  0.85-1.00 (12H, mult), 1.30-1.45 (16H, 

mult), 1.45-1.60 (8H, mult), 1.80-1.95 (8H, mult), 3.99 (2H, t, J = 6.4 Hz, OCH2), 4.07 (4H, t, J 

= 6.4 Hz, OCH2), 4.11 (2H, t, J = 6.4 Hz, OCH2), 7.05 (1H, s), 7.05 (1H, d, J = 16.4 Hz, trans 

CH=CH), 7.15 (1H, s), 7.16 (1H, s), 7.19 (1H, s), 7.19 (1H, d, J = 16.4 Hz, trans CH=CH), 7.26 

(1H, d, J = 16.4 Hz, trans CH=CH), 7.42 (2H, d, J = 8.4 Hz, p-C6H4), 7.48 (1H, d, J = 16.4 Hz, 

trans CH=CH), 7.49 (1H, d, J = 16.4 Hz, trans CH=CH), 7.49 (2H, d, J = 8.4 Hz, p-C6H4),  7.50 

(1H, d, J = 16.4 Hz, trans CH=CH), 7.56 (4H, br s, p-C6H4),   ppm. 13C NMR (CD2Cl2, 100 

MHz)  14.39 (CH3), 14.41 (CH3), 23.17 (CH2), 23.20 (CH2), 23.25 (CH2), 26.13 (CH2), 26.40 

(CH2), 26.54 (CH2), 29.64 (CH2), 29.74 (CH2), 30.02 (CH2), 30.04 (CH2), 32.10 (CH2), 32.15 
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(CH2), 32.22 (CH2), 32.23 (CH2), 70.04 (OCH2), 70.05 (OCH2), 70.13 (OCH2), 70.23 (OCH2), 

100.81 (ArCN, quat), 110.54 (Ar CH), 110.85 (Ar CH), 110.97 (Ar CH), 117.03 (Ar CH), 

117.27 (CN), 121.50 (ArBr quat), 122.47 (vinylene CH), 124.17 (vinylene CH), 124.67 

(vinylene CH), 127.05 (Ar quat), 127.41 (Ar CH), 127.78 (Ar CH), 127.96 (vinylene CH), 

128.52 (Ar CH), 128.75 (vinylene CH), 132.27 (Ar CH, 133.29 (Ar quat), 136.83 (Ar quat), 

137.57 (Ar quat), 138.60 (Ar quat), 150.76 (ArO quat), 151.71 (ArO quat), 151.72 (ArO quat), 

155.71 (ArO quat) ppm. 

 

 

4-(4-(4-(4-bromo-2,5-bishexyloxystyryl)styryl)styryl)-2,5-bishexyloxybenzonitrile (Br-

DAAD-CN, vii77). According to the general HWE procedure, Br-DAA-CHO (200 mg, 0.341 

mmol), P-D-CN (220 mg, 0.517 mmol), and LiCl (34.0 mg, 0.802 mmol) were dissolved in THF 

(5 mL) and cooled to 0 oC under N2. KOtBu (88.0 mg, 0784 mmol) was added portionwise over 5 

minutes, and the reaction was allowed to come to rt overnight with stirring. After workup, 

column chromatography (silica gel, 7:3 hexanes:DCM) gave the title compound as an orange 

solid (270 mg, 89%). 1H NMR (CD2Cl2, 400 MHz)  0.85-1.00 (12H, mult), 1.30-1.45 (16H, 

mult), 1.45-1.60 (8H, mult), 1.80-1.95 (8H, mult), 3.97 (2H, t, J = 6.4 Hz, OCH2), 3.99 (2H, t, J 

= 6.4 Hz, OCH2), 4.04 (2H, t, J = 6.4 Hz, OCH2), 4.11 (2H, t, J = 6.4 Hz, OCH2), 7.04 (1H, s), 

7.11 (1H, s), 7.16 (1H, d, J = 16.4 Hz, trans CH=CH), 7.16 (1H, s), 7.17 (2H, br s, trans 

CH=CH), 7.19 (1H, s), 7.25 (1H, d, J = 16.4 Hz, trans CH=CH), 7.44 (1H, d, J = 16.4 Hz, trans 

CH=CH), 7.48 (1H, d, J = 16.4 Hz, trans CH=CH), 7.54 (4H, br s, p-C6H4), 7.56 (4H, br s, p-
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C6H4) ppm. 13C NMR (CD2Cl2, 100 MHz)  14.40 (CH3), 23.17 (CH2), 23.21 (CH2), 23.22 

(CH2), 26.13 (CH2), 26.27 (CH2), 26.40 (CH2), 26.43 (CH2), 29.65 (CH2), 29.73 (CH2), 29.85 

(CH2), 29.86 (CH2), 32.10 (CH2), 32.15 (CH2), 32.17 (CH2), 70.13 (OCH2), 70.22 (OCH2), 70.24 

(OCH2), 70.72 (OCH2), 100.85 (ArCN, quat), 110.59 (Ar CH), 111.85 (Ar CH), 112.21 (ArBr 

quat), 117.02 (Ar CH), 117.26 (CN), 118.32 (Ar CH), 122.63 (vinylene CH), 122.43 (vinylene 

CH), 127.05 (Ar quat), 127.44 (Ar CH), 127.80 (Ar CH), 128.43 (vinylene CH), 129.04 

(vinylene CH), 129.32 (vinylene CH), 132.21 (vinylene CH), 133.24 (Ar quat), 137.02 (Ar quat), 

137.16 (Ar quat), 137.81 (Ar quat), 137.98 (Ar quat), 150.36 (ArO quat), 150.77 (ArO quat), 

151.67 (ArO quat), 155.71 (ArO quat) ppm. 

 

 

4-(4-(4-(4-bromo-2,5-bishexyloxystyryl)styryl)-2,5-bishexyloxystyryl)benzonitrile (Br-

DADA-CN, vii73). According to the general HWE procedure, Br-DAD-CHO (300 mg, 0.380 

mmol), P-A-CN (130 mg, 0.577 mmol), and LiCl (37.0 mg, 0.873 mmol) were dissolved in THF 

(5 mL) and cooled to 0 oC under N2. KOtBu (98.0 mg, 0.873 mmol) was added portionwise over 

5 minutes, and the reaction was allowed to come to rt overnight with stirring. After workup, 

column chromatography (silica gel, 1:1 hexanes:DCM) gave the title compound as an orange 

solid (337 mg, 100%).  1H NMR (CD2Cl2, 400 MHz)  0.85-1.00 (12H, mult), 1.30-1.45 (16H, 

mult), 1.45-1.60 (8H, mult), 1.80-1.95 (8H, mult), 3.97 (2H, t, J = 6.4 Hz, OCH2), 4.04 (2H, t, J 

= 6.4 Hz, OCH2), 4.07 (2H, t, J = 6.4 Hz, OCH2), 4.08 (2H, t, J = 6.4 Hz, OCH2), 7.11 (1H, s), 

7.14 (1H, s), 7.16 (1H, d, J = 16.4 Hz, trans CH=CH), 7.17 (1H, s), 7.18 (1H, d, J = 16.4 Hz, 
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trans CH=CH), 7.18 (1H, s), 7.20 (1H, d, J = 16.4 Hz, trans CH=CH), 7.44 (1H, d, J = 16.4 Hz, 

trans CH=CH), 7.53 (1H, d, J = 16.4 Hz, trans CH=CH), 7.55 (4H, br s, p-C6H4), 7.62 (2H, s, J 

= 8.8 Hz, p-C6H4), 7.62 (1H, d, J = 16.4 Hz, trans CH=CH), 7.65 (2H, s, J = 8.8 Hz, p-C6H4) 

ppm. 13C NMR (CD2Cl2, 100 MHz)  14.40 (CH3), 23.21 (CH2), 23.25 (CH2), 26.27 (CH2), 

26.43 (CH2), 26.53 (CH2), 26.54 (CH2), 29.86 (CH2), 29.99 (CH2), 30.03 (CH2), 32.14 (CH2), 

32.17 (CH2), 32.21 (CH2), 32.23 (CH2), 70.00 (OCH2), 70.08 (OCH2), 70.22 (OCH2), 70.71 

(OCH2), 110.75 (Ar CH), 111.21 (Ar CH), 111.81 (Ar CH), 112.15 (ArBr quat, ArCN quat), 

118.33 (Ar CH), 119.62 (CN), 123.28 (vinylene CH), 123.57 (vinylene CH), 126.16 (Ar quat), 

127.03 (Ar quat), 127.21 (vinylene CH), 127.30 (Ar CH), 127.40 (Ar CH), 127.43 (Ar CH), 

127.61 (vinylene CH), 128.41 (Ar quat), 129.36 (vinylene CH), 133.02 (Ar CH), 137.62 (Ar 

quat), 137.77 (Ar quat), 150.36 (ArO quat), 151.60 (ArO quat), 151.66 (ArO quat), 152.06 (ArO 

quat) ppm. 

 

 

4-(4-(4-(4-bromo-2,5-bishexyloxystyryl)-2,5-bishexyloxystyryl)styryl)benzonitrile (Br-

DDAA-CN, vii72). According to the general HWE procedure, Br-DDA-CHO (300 mg, 0.380 

mmol), P-A-CN (130 mg, 0.577 mmol), and LiCl (37.0 mg, 0.873 mmol) were dissolved in THF 

(5 mL) and cooled to 0 oC under N2. KOtBu (98.0 mg, 0.873 mmol) was added portionwise over 

5 minutes, and the reaction was allowed to come to rt overnight with stirring. After workup, 

column chromatography (silica gel, 1:1 hexanes:DCM) gave the title compound as an orange 

solid (338 mg, 100%). 1H NMR (CD2Cl2, 400 MHz)  0.85-1.00 (12H, mult), 1.30-1.45 (16H, 
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mult), 1.45-1.60 (8H, mult), 1.80-1.95 (8H, mult), 3.97 (2H, t, J = 6.4 Hz, OCH2), 4.04 (2H, t, J 

= 6.4 Hz, OCH2), 4.07 (4H, t, J = 6.4 Hz, OCH2), 7.11 (1H, s), 7.14 (1H, d, J = 16.0 Hz, trans 

CH=CH), 7.16 (2H, br s), 7.18 (1H, d, J = 16.4 Hz, trans CH=CH), 7.18 (1H, s), 7.25 (1H, d, J = 

16.0 Hz, trans CH=CH), 7.44 (1H, d, J = 16.8 Hz, trans CH=CH), 7.50 (1H, d, J = 16.8 Hz, 

trans CH=CH), 7.54 (1H, d, J = 16.4 Hz, trans CH=CH), 7.56 (4H, br s, p-C6H4), 7.61 (2H, s, J 

= 8.4 Hz, p-C6H4), 7.65 (2H, s, J = 8.4 Hz, p-C6H4) ppm. 13C NMR (CD2Cl2, 100 MHz)  14.40 

(CH3), 14.42 (CH3), 14.43 (CH3), 23.20 (CH2), 23.23 (CH2), 23.25 (CH2), 23.26 (CH2), 26.28 

(CH2), 26.41 (CH2), 26.50 (CH2), 26.55 (CH2), 29.86 (CH2), 30.04 (CH2), 32.14 (CH2), 32.18 

(CH2), 32.24 (CH2), 70.00 (OCH2), 69.96 (OCH2), 69.97 (OCH2), 70.13 (OCH2), 70.65 (OCH2), 

110.83 (Ar CH), 110.96 (Ar CH), 111.03 (ArCN quat), 111.85 (Ar CH), 111.93 (ArBr quat), 

118.25 (Ar CH), 119.53 (CN), 123.61 (vinylene CH), 124.42 (vinylene CH), 124.52 (vinylene 

CH), 126.91 (vinylene CH),  127.07 (Ar quat), 127.36 (Ar CH), 127.41 (Ar CH), 127.66 (Ar 

quat), 127.85 (Ar CH), 127.89 (Ar quat), 128.51 (vinylene CH), 132.38 (vinylene CH), 136.06 

(Ar quat), 138.92 (Ar quat), 142.43 (Ar quat), 150.33 (ArO quat), 151.62 (ArO quat), 151.73 

(ArO quat) ppm. 
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3.0  SYNTHESIS OF HETEROTELECHELIC AND SYMMETRIC 

OLIGO(PHENYLENE-VINYLENE)S USING OLEFIN METATHESIS 

 
Portions of this chapter (primarily sections 3.1.1, 3.2.2, 3.2.3, and 3.2.4) have been reproduced 

with permission from Norris, B. N.; Pan, T.; Meyer, T. Y., "Iterative synthesis of heterotelechelic 

oligo(phenylene-vinylene)s by olefin cross-metathesis" Org. Lett. 2010, 12 (23), 5514-5517.84 

Copyright © 2010 American Chemical Society. 

3.1 OVERVIEW 

We present two approaches for the synthesis of OPVs using olefin metathesis – a 

homologation approach that yields heterotelechelic, alternating oligomers and a dimerization 

approach that yields symmetric, fully-substituted oligomers. This work represents the first use of 

olefin metathesis to produce well defined OPVs. Previous metathesis approached to produce 

OPVs, particularly the work of Thorn-Csányi and coworkers,85-88 have instead used abortive 

ADMET processes to produce oligomers, which were then separated.  

Olefin metathesis provides an attractive approach to the synthesis of OPVs due to its 1) 

simplicity: the coupling of vinyl groups to give internal olefins avoids the need for complex 

functionality in the monomer, 2) generality: the Grubbs II catalyst is highly tolerant; and 3) 



 106 

utility: the resultant oligomers exhibit reactive endgroups that can be elaborated into more 

complex materials. Further functionalization of OPVs permits the physical and electronic 

properties of the material to be adjusted to meet the needs of various applications.89, 90  

 

3.1.1 Homologation approach 

Our strategy for the synthesis of heterotelechelic OPVs involves the sequential coupling of 

phenyl monomers (Scheme 12). End-to-end homologation allows for the creation of oligomers of 

any desired length. The key step is a cross-metathesis (CM) reaction between olefin-terminated 

growing oligomers and a vinylbenzaldehyde. The aldehyde endgroup of the n+1 oligomer 

product can then be converted into a metathesis-ready vinyl moiety or exploited for further 

functionalization. 

 

Scheme 12. Homologation approach to OPVs by CM 

In order to promote CM over homometathesis, we exploit the known reactivity difference 

between ortho-substituted and ortho-unsubstituted styrenes.91 Styrenes lacking ortho-

substituents, which are Type I olefins with the Grubbs II catalyst, undergo rapid and reversible 

homodimerization (Scheme 13), and the homodimer is capable of engaging in further metathesis. 

Styrenes with ortho-substituents, which are Type II olefins, are slow to homodimerize and the 
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coupling reaction, which produces a Type IV olefin, is nearly irreversible. The reaction of a Type 

I olefin with a Type II olefin is driven toward the desired CM product, which, in our case is a 

Type IV olefin and unreactive towards further metathesis.  

 

Scheme 13. Olefin metathesis outcomes of Type I and Type II vinylbenzaldehydes 

Alternation between Type I and Type II vinylbenzaldehydes allows for stepwise growth 

of the oligomer (Scheme 14). An OPV terminated with a Type I olefin can undergo selective 

homologation with a Type II monomer, 2,5-bis(hexyloxy)-4-vinylbenzaldehyde, A. This new 

OPV will be terminated with a Type II olefin and can undergo homologation with a Type I 

monomer, 4-vinylbenzaldehyde, B, to give another OPV terminated with a Type I olefin, and so 
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on. Since all of the CM products are internal olefins of Type IV, scrambling of extant vinylene 

groups is suppressed. The only caveat to this approach is that we can only produce alternating 

OPVs. More complex sequences would require the CM of two Type II olefins to extend the 

chain. 

 

Scheme 14. Synthetic approaching to alternating OPVs by metathesis homologation 

This approach is not unlike past approaches that utilize orthogonally reactive or 

orthogonally protected monomers to produce dissymmetric oligomers,72, 73, 76-78 which have been 

highlighted in Chapter 1. 

3.1.2  Dimerization approach 

Our strategy for the preparation of symmetric, fully substituted OPVs involves the dimerization 

of a Type II olefin by homometathesis to produce an oligomer, which is then desymmetrized. 

This newly dissymmetric oligomer can then be dimerized to produce a new, longer, oligomer 

(Scheme 15). This approach is limited in that it can only produce symmetric oligomers. 

However, since we are using homometathesis, there is no selectivity issue and we can prepare 

the fully substituted oligomers. 
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Scheme 15. Dimerization approach to OPVs using metathesis 

3.2 RESULTS AND DISCUSSION 

3.2.1 Monomer synthesis 

Type II vinylbenzaldehyde 12 and its precursor 2,5-bis(hexyloxy)-4-iodostyrene 13 are common 

monomers for both metathesis approaches (Figure 22). These compounds were prepared from 

hydroquinone using well known chemistry. 4-Vinylbenzaldehdye 14, required for the 

homologation approach, was prepared as previously reported.92  

 

Figure 22. Common metathesis monomers 

Monomer 13 was prepared from hydroquinone in 4 steps with an overall yield of 67% 

(Scheme 16). Monomer 12 was prepared in one step from monomer 13. Hydroquinone was 

alkylated with 1-bromohexane and KOH in a water/toluene biphasic system using TBAB as a 
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phase transfer catalyst. The addition of 1 equivalent of Na2S2O3 increased the yield from 20-30% 

to 91-97%. Ether 1 was then iodated with ICl in MeOH to give diiodo arene 15, which was 

lithiated with nBuLi in Et2O83 and quenched with DMF to give benzaldehyde 16. Lithiation of 15 

in THF, followed by quenching with DMF, led to low yields due to preferential formation of the 

dialdehyde, even when nBuLi is the limiting reagent. We hypothesized that the increased Lewis 

basicity of THF over Et2O increases the dissociation of the nBuLi clusters in THF relative to 

Et2O, increasing the reactivity of nBuLi, even at lower temperatures. Benzaldehyde 16 was 

converted to styrene 13 using a Wittig reaction with Ph3P=CH2. Styrene 13 was converted to 

vinylbenzaldehyde 12 by lithiation with nBuLi in Et2O and quenching with DMF. All reactions 

proceed with good to excellent yields. The conversion of hydroquinone to 13 was regularly 

performed on a 30+ gram scale and the conversion of 13 to 12 was regularly performed on a 10+ 

gram scale. 

 

Scheme 16. Synthesis of monomers 12 and 13 
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3.2.2 Synthesis of heterotelechelic OPVs using cross-metathesis  

A series of heterotelechelic OPVs was prepared by cross-metathesis. The first homologation 

involved CM between styrene 13 (Type II) and monomer 14 (Type I) to give aldehyde 

terminated OPV1a in 71-81% yield (Scheme 17). This CM requires very low catalyst loading 

(7.5  10-3
 eq.) and can be performed on multigram scales. The use of a two-fold excess of 

monomer 14 improved the yield of the crosscoupled product. The homologation is E-specific; 

the 1H NMR spectrum bears no peaks between  6.5 and 7.0, the characteristic range for Z-

phenylene-vinylenes.93 The homologation was completed by a Wittig olefination with 

Ph3P=CH2, which gave vinyl terminated OPV1b in a 96% yield. 

Subsequent homologations followed an alternating pattern. Each CM reaction used three 

equivalents or less of the vinylbenzaldehyde, 0.01 equivalents or less of Grubbs II catalyst, 

proceeded in moderate to good yields, and was E-specific. The Wittig reactions all proceeded in 

good to excellent yields. The excess vinylbenzaldehyde, especially monomer 12, complicated the 

isolation and purification of the oligomers, leading to lower isolated yields of OPV2a and 

OPV4a compared to those of OPV1a and OPV3a. The OPVs are soluble in a wide range of 

organic solvents, including hexane, dichloromethane, chloroform, ethyl acetate, acetone, toluene, 

tetrahydrofuran, and isopropanol.  
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3.2.3 Modification of heterotelechelic OPVs 

To highlight the ability of our heterotelechelic OPVs to serve as modular platforms for 

orthogonal functionalization by we elaborated upon OPV2a (Scheme 18). Phenylboronic acid 

was coupled to the bromo endgroup of OPV2a using a Suzuki coupling to produce donor-

acceptor chromophore OPV2c, which was further functionalized at the aldehyde endgroup by  an 

aldol condensation with 4’-nitroacetophenone to give OPV2d. Both reactions are simple, robust, 

and proceed in excellent yields. To the best of our knowledge, this is the first example of an aldol 

reaction being utilized to functionalize OPVs. 

 

Scheme 18. Synthesis of donor-acceptor chromophores by orthogonal functionalization of OPV2a 

Heterotelechelic OPVs can also be used to prepare head-to-tail sequenced polymers. As 

an initial demonstration of the types of complex copolymers that could be prepared from 

heterotelechelic OPVs, we have converted OPV2b to OPV2e and onward to copolymer 

p(OPV2e) (Scheme 19), using a Suzuki-Miyaura coupling followed by acyclic diene metathesis 
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(ADMET) polymerization, chemistry amenable to producing a family of such RSCs.33 We 

believe P(OPV2e) should exhibit a high degree of head-to-tail regioregularity because OPV2e is 

an AB monomer containing a Type II styrenyl olefin (head) and a Type I aliphatic olefin (tail). 

Selective metathesis has previously been used to prepare AABB alternating copolymers,94, 95 but, 

to the best of our knowledge, there is only one example of a head-to-tail polymer prepared in this 

fashion.94 The incorporation of a flexible unit into the backbone of a highly conjugated structure 

can lead to improved solubilities, interesting liquid crystal behavior and/or modulated physical 

properties,33 and the inherent dissymmetry of the AB copolymer could lead to enhanced 

optoelectronic properties.96 

OPV2e was polymerized using Grubbs II catalyst in CHCl3. The polymerization was 

monitored using 1H NMR spectroscopy by observing the disappearance of the signals for the 

aliphatic alkenyl group (HA, ~5.2, HB, ~5.1, and HC,  ~5.9) and the styrenyl group (HD, 

~5.3, and HE, ~5.8) and the appearance of the signals for the tail-to-tail (HG ~5.5) and head-

to-tail (HH~6.7 and HI~ 6.3) connections. We estimated the % head-to- tail based on 

conversion of styrenyl groups to head-to-tail groups (Figure 23, Table 12). After 24 h, no OPV2e 

remains, having been converted first to the tail-to-tail intermediate followed by further 

metathesis to give head-to-tail connections. At longer reaction times there is decrease in % head-

to-tail couplings which can be attributed to head-to-head couplings, which are improbable but 

accumulate slowly.   
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Scheme 19. Synthesis of head-to-tail copolymer 

 

Figure 23. 1H NMR spectra of the head-to-tail polymerization as a function of time. A) At 0 h (OPV2e); B) After 
24 h; C) After 48 h; D) After 96 h. Labels (HA-H) refer to labeled protons in Scheme 5. Head-head protons (~7.2) 
are not assignable due to overlap. 
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Table 12. Head-to-Tail polymerization of OPV2e 

Time / 
h 

Conversion 
of 

headgroupsa 

Conversion 
of 

tailgroupsb 

head-to-
tailc 

head-to-
headd tail-to-taile 

24 50% 100% 50% 0% 50% 

48 80% 100% 60% 20% 20% 

96 90% 100% 72% 18% 10% 
a Based on the integration of HD; b Based on the integration of HA and HB, and HC; c Based on the integration of HH;  
d Based on difference between integration of HD and HH; e Based on the integration of HG. 

We also attempted to prepare head-to-tail polymers from styrene 13 and OPV1b, but 

were unsuccessful. We were able to convert styrene 13 into ADMET monomer 17 and OPV1b 

into monomer OPV1c (Scheme 20) using Suzuki couplings. However, after ADMET 

polymerization, we were only able to isolate insoluble gels. 

 

Scheme 20. Synthesis of ADMET monomers from styrene 13 and OPV1b. 

3.2.4 Optical spectroscopy 

The optoelectronic properties of the OPVs depend on the oligomer length and on the 

endgroup (aldehyde vs. vinyl). Within each series (OPVa and OPVb), the absorption and 

emission maxima and molar extinction coefficients increase with increasing conjugation, while 

the HOMO-LUMO gap, Eg, decreases (Table 13). The absorption and emission spectra of the 
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OPVa series are red-shifted relative to the OPVb series, and the HOMO-LUMO gaps of the 

OPVa series are smaller than those of the OPVb series. These effects are most pronounced in 

the OPV1 oligomers and become progressively smaller with increasing conjugation. The 

extinction coefficients of the OPVb series are higher than those of the OPVa series, with the 

difference most pronounced in the OPV2 and OPV4 oligomers. 

Table 13. Optoelectronic properties of the OPVsa 

OPV max
abs  / nm max

em  / nm 
b
/  M

-1 
cm

-1 
Eg

c
 /  eV 

OPV1a 376 492 29,100 2.89 

OPV2a 411 503 35,300 2.69 

OPV3a 427 519 82,800 2.51 

OPV4a 443 548 77,500 2.48 

OPV1b 360 423 40,500 3.06 

OPV2b 399 473 70,900 2.76 

OPV3b 419 480 94,400 2.58 

OPV4b 437 496 118,000 2.52 

OPV2c 417 542 62,100 2.63 

OPV2d 456 530 62,500 2.31 
a Obtained in CHCl3 (~10-5 M); b Calculated at absorption maximum c HOMO-LUMO gap estimated as the onset of 
absorption. 

Modified trimers OPV2c and OPV2d exhibited modulated optical properties in 

comparison to OPV2a and OPV2b. The absorption and emission maxima of OPV2c and 

OPV2d are redshifted relative to OPV2a and OPV2b. The HOMO-LUMO gaps of the modified 

OPVs are lower than those of OPV2a and OPV2b. The molar absorption coefficients of the 

modified OPVs are intermediate between those of OPV2a and OPV2b. Interestingly, OPV2d 

exhibited a much weaker emission than any other OPV. 
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3.2.5 Progress toward more complex sequences by CM 

Our attempts to prepare more complex sequences by the homologation approach were not 

successful. Preparation of more complex sequences would require CM between two type II 

olefins, which is predicted to generate a statistical mixture of homo- and cross-metathesis 

products.91 We were able to optimize conditions that led to moderate isolable yields of CM 

product, but the E-selectivity was low, and we were unable to efficiently separate the isomers. 

Our model reaction for this study was the CM between styrene 13 and vinylbenzaldehyde 

12 (both Type II olefins), which can produce three possible products (Scheme 21): the desired 

cross-metathesis product, stilbene 19, and the undesired homometathesis products, stilbenes 18 

and 20. The initial optimization study was completed by Tianqi Pan. We determined that a 1:2 

ratio of styrene 13 to vinylbenzaldehyde 12 gave the best conversion to desired stilbene 19 

(Scheme 22). Addition of vinylbenzaldehyde 12 slowly by syringe pump allowed us to achieve 

isolated yields as high as 69%. However, 1H NMR spectroscopy revealed that the E selectivity 

was low. The highest E selectivity achieved was 2:1 E:Z. The mixture can be recrystallized from 

MeOH to give exclusively E-19, although the recovery of E-19 from the mixture was as low as 

18%.  
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Scheme 21. Possible products in a CM reaction between two Type II olefins. 

 

Scheme 22. Optimized Type II + Type II CM reaction. 

We conducted a series of NMR experiments to investigate the potential to increase the 

E:Z selectivity of our cross metathesis reaction. Ritter, et al,97 have noted that that E selectivity 

in cross metatheses between two Type I olefins increases as a function of conversion to cross 

metathesis product. They attribute this increase to secondary metathesis leading to a 

thermodynamic control of the E:Z ratio. To assess the selectivity of the CM between styrenes 12 

and 13, we followed the progress of our optimal conditions in CDCl3 periodically by 1H NMR 

over 45 hours. Figure 24 illustrates the resonances in the 1H NMR spectra that were followed. 

Concentrations were determined relative to DMF ( 8.0 ppm) as an internal standard. Distinct 
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vinyl peaks are observable for both 12 ( ~5.4 and ~5.9) and 13 ( ~5.25 and 5.75). 

Characteristic aryl singlets are observable for E-19 ( ~7.5) and E-20 ( ~7.6). Stilbene 18 

exhibits no distinct peaks. Since styrene 13 is converted only to stilbene 18 or to stilbene 19, the 

concentration of stilbene 18 can be estimated based on the difference between total conversion of 

styrene 13 and the concentration of stilbene 19. Although the ethylene resonance ( ~5.4) can 

also be quantified by integration, it represents only dissolved ethylene and does not include 

vapor phase ethylene in the NMR tube headspace. Interestingly, at no time was a significant peak 

for Z-stilbenes ( ~6.7 – 6.8) observed. 

 

Figure 24. 1H NMR spectra of CM between styrene 13 and vinylbenzaldehyde 12 after 30 min and 5 h. Labels refer 
to compound numbers. 
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We also followed the rate of the reaction between styrenes 12 and 13 to form stilbenes 

18, 19, and 20. A plot of relative concentration of the reaction components (initial concentration 

of styrene 12 is set to 1.0) as a function of time (Figure 25) shows that the reaction rate begins to 

decrease after three hours and significantly levels off after five hours. No significant change in 

composition was observed after five hours. 

 

Figure 25. Relative concentrations of the components of the CM reaction (From 1H NMR) between styrene 3 and 
vinylbenzaldehyde 1 as a function of time. 

The lack of significant concentration of Z isomers was unexpected. We attribute this 

observation to the presence of ethylene, which would increase the reversibility of initial reactions 

between the styrene substrates and the ruthenium alkylidene catalyst. This reversibility promotes 

equilibrium, which will favor the thermodynamic products, the E stilbenes. Conventional scale 

reactions are performed in an open system to encourage ethylene loss and thereby increase yield.  

In this closed system, in contrast, the reaction is slower and does not proceed past 60% 

completion. 
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We performed a second NMR experiment to rule out secondary metathesis, which should 

be unlikely with Type II olefins, as a factor in the E selectivity of our CM reaction. A 9:1 

mixture of stilbene E-19 to styrene 13 with Grubbs II was heated in CDCl3 for 24 h. No 

secondary metathesis products were observable by 1H NMR.  

The results of the NMR studies are encouraging. The E selectivity increases dramatically 

in the presence of ethylene, but reaction rate and conversion decrease. Conditions that maintain a 

low level of ethylene, but prevent it from accumulating, might lead to high conversion and high 

E selectivity.  

3.2.6 Synthesis of symmetric OPVs using homometathesis 

The dimerization approach allowed us to prepare symmetric OPVs up to four phenylene units in 

length. However, the low solubility of the symmetric OPVs prevented us from progressing 

farther. The synthesis of the symmetric OPVs began with the dimerization of styrene 13 to give 

stilbene 18. This reaction proceeds in 84-88% yields using less than 0.01 equiv of Grubbs II in 

refluxing toluene on 10-20 gram scales (Scheme 23). The reaction also proceeds in moderate 

yields (72-79%) with shorter reaction times (24 h) if the Grubbs II catalyst is generated in situ 

from Grubbs I, bis(mesityl)imidazolium chloride, and potassium t-pentoxide. 1H NMR 

spectroscopy reveals stilbene 18 to be 100% E.  
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Scheme 23. Preparation of OPVs by metathesis dimerization 

Desymmeterization of stilbene 18 is required to produce vinylstilbene 21, which can be 

dimerized by homometathesis to give a tetrameric OPV (Scheme 23). Despite the success of 

Et2O as a solvent for the desymmeterization of 15, lithiation of stilbene 18 in Et2O led to 

decomposition. Lithiation with nBuLi in THF, followed by quenching with DMF gives stilbene 

19 in 40-59% yield, although the reaction is unreliable. The low solubility of 18 in THF at 

subambient temperatures leads to low conversion after short reaction times, while decomposition 

occurs at longer reaction times and higher temperatures. The best yield (59%) was achieved by 

lithiation at -40 oC for one hour, following by quenching with DMF. Stilbene 19 was then 

converted to vinylstilbene 21 in quantitative yield by a Wittig reaction with Ph3P=CH2. Finally, 

homometathesis of 22 using 0.01 equiv Grubbs II in refluxing toluene gave tetramer OPV3 in 

67% yield. The limited solubility of OPV3, presumably due to its symmetry, halted the 

dimerization approach after just two dimerizations. 
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3.3 CONCLUSIONS 

We have developed two approaches to well-defined oligo(phenylene-vinylene)s using CM. The 

iterative homologation approach was more successful, allowing us to prepare heterotelechelic, 

alternating OPVs up to five phenylene units in length. The CM reactions proceed in moderate to 

good yields and are E specific. This approach, however, suffers from long reaction times and 

potentially difficult separations. The dimerization approach, which could yield longer oligomers 

more rapidly, is less attractive due to the low solubility of the symmetric OPVs. 

We have also investigated the possibility of producing more complex sequences by the 

iterative approach. We developed conditions for CM reaction between two Type II olefins with 

the potential for moderate yields of the CM product without using a large excess of one 

substrate. NMR studies show that the stereoselectivity may be controllable with the presence of a 

small amount of ethylene – just enough to enforce the equilibrium which promotes high E 

selectivity, but not so much as to drastically retard the rate of the reaction. 

3.4 EXPERIMENTAL SECTION 

3.4.1 General methods 

Materials. Anhydrous DMF was purchased from Aldrich and dispensed using air-sensitive 

techniques. Anhydrous diethyl ether was purchased from Fisher and opened immediately prior to 

use. KOtBu was stored in a desiccator over CaSO4. 4-Vinylbenzaldehyde, 14,92 and 9-(hex-5-en-

1-yl)-9-borabicyclo[3.3.1]nonane98 were prepared according to literature procedures. All other 
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reagents and solvents were purchased and used as received. Column chromatography was carried 

out on standard grade silica gel (60 Å pore size, 40-63 m particle size), which was purchased 

and used as received. Hexanes, dichloromethane, and ethyl acetate used for column 

chromatography were purchased and used as received. 

Instrumentation. 1H (300 and 400 MHz) and 13C (75 and 100 MHz) NMR spectra were 

recorded on Bruker spectrometers. Chemical shifts were referenced to residual 1H or 13C signals 

in deuterated solvents (7.27 and 77.0 ppm, respectively, for CHCl3 and 5.32 and 54.0 ppm, 

respectively, for CH2Cl2).  UV/VIS absorption spectra were recorded on a Perkin Elmer Lambda 

9 UV/VIS/NIR spectrometer. Emission spectra were recorded on a Varian Cary Eclipse 

fluorimeter. HRMS were recorded on a Fison VG Autospec in the Mass Spectral Facility of the 

University of Pittsburgh. Elemental analysis was performed independently by Atlantic 

Microlabs.  

3.4.2 Monomer synthesis 

 
1,4-Bishexyloxy-2,5-diiodobenzene (15). Methanol (600 mL) was added to a 2 L round-bottom 

flask equipped with a magnetic stirbar and cooled on an ice bath. Iodine monochloride (80 mL, 

1.60 mol) was added slowly with rapid stirring. Then, 1 (84.0 g, 302 mmol) was added. The 

mixture was returned to rt, and then refluxed for 24 h. The mixture was cooled to rt, and sodium 

metabisulfite was added portionwise with vigorous stirring until the dark color is gone. The 

reaction mixture is then portioned between hexanes and water (500 mL each). The aqueous layer 
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was extracted with hexanes (3x 300 mL). The combined organic layers were washed with water 

(2x 300 mL) and brine (1x 300 mL), and dried over MgSO4. The solvent was removed under 

reduced pressure. The residue was recrystallized from a mixture of methanol and 

dichloromethane by evaporation of the dichloromethane to give the title compound as of off-

white orthorhombic crystals (145.7 g, 91%). 1H NMR (CDCl3, 300 MHz)  0.92 (6H, t, J = 6.8 

Hz, CH3), 1.33 – 1.39 (8H, mult), 1.40-1.60 (4H, mult), 1.80 (4H, tt, J =6.5, 6.8 Hz), 3.93 (4H, t, 

J = 6.5 Hz, OCH2) 7.18 (2H, s, ArH) ppm. 13C NMR (CDCl3, 75 MHz)  14.0 (CH3), 22.6 

(CH2), 25.7 (CH2), 29.1 (CH2), 31.4 (CH2), 70.3 (OCH2), 86.3 (ArI quat), 122.7 (Ar CH), 152.8 

(ArO quat) ppm. MS (EI) 530 (M+), 446, 361, 270, 248, 236, 189, 149, 135, 108, 85, 55 (base) 

m/z. HRMS calcd for C18H28I2O2: 530.0179 g/mol. Found: 530.0175 g/mol. 

 

 

2,5-Bishexyloxy-4-iodobenzaldehyde (16). Based on the methods of Peng, et al,83 5 (42.4 g, 

80.0 mmol) was dissolved in anhydrous diethyl ether (150 mL) under N2 in an oven-dried 1 L 3-

neck rbf equipped with a magnetic stirbar, a gas adapter, an addition funnel containing nBuLi 

(1.6 M in hexanes, 50 mL, 80 mmol) dissolved in anhydrous diethyl ether (100 mL), and a 

second addition funnel containing anhydrous DMF (10 mL, 130mmol) dissolved in anhydrous 

diethyl ether (35 mL). The rbf was cooled to 0 oC on an ice bath. The nBuLi solution was added 

dropwise over 45 min (~2-3 drops/sec) with stirring. Once addition of nBuLi was complete, the 

DMF solution was added at a rapid dropwise rate. The mixture was stirred at room temperature 

for 2 h. The reaction was quenched into 400 mL of water cooled on an ice bath. The aqueous 

layer was extracted three times with diethyl ether (100 mL). The combined organic layers were 
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washed three times with water (100 mL) and once with brine (100 mL). The organic layer was 

dried over MgSO4, and the solvent was removed under reduced pressure. The residue was 

recrystallized by dissolution into 100 mL of hexanes and cooling to -20 oC. The title compound 

was isolated as pale yellow crystals (28.8 g, 83%). max = 356 nm.   1H NMR (CDCl3, 300 MHz) 

 0.94 (6H, t, J = 7.0 Hz, CH3), 1.34 – 1.37 (8H, mult), 1.50 (4H, mult), 1.82 (4H, mult), 4.00 

(2H, t, J = 6.6 Hz, OCH2), 4.02 (2H, t, J = 6.6 Hz, OCH2), 7.19 (1H, s), 7.46 (1H, s), 10.43 (1H, 

s, CHO) ppm. 13C NMR (CDCl3, 75 MHz)  13.99 (CH3), 14.02 (CH3), 22.54 (CH2), 22.56 

(CH2), 25.65 (CH2), 26.69 (CH2), 28.96 (CH2), 29.03 (CH2), 31.44 (CH2), 69.43 (OCH2), 69.88 

(OCH2), 86.97 (ArI quat), 108.80 (Ar CH), 124.50 (Ar CH), 125.11 (Ar quat), 152.11 (ArO 

quat), 155.76 (Ar quat), 189.25 (CHO) ppm. MS (EI) 432 (M+), 348, 264 (base), 138, 84 m/z. 

HRMS calcd for C19H29IO3: 432.1161g/mol. Found: 432.1152 g/mol.   

 

 

2,5-Bishexyloxy-4-iodostyrene (13). KOtBu (30.0 g, 267 mmol) was added portionwise to a 

slurry of Ph3PCH3Br (100 g, 280 mmol) in THF (600 mL) at 0 oC under N2 in an oven-dried 2 L 

2-neck rbf equipped with a gas adapter and a septum. The resulting yellow suspension was 

stirred at rt for 30 min. The flask was cooled to 0 oC, and a solution of 6 (50 g, 116 mmol) in 

THF (600 mL) was added dropwise via cannula. The mixture was stirred overnight at rt. The 

reaction mixture was quenched with 100 mL saturated aqueous NH4Cl. Approximately 800 mL 

of solvent were removed by vacuum distillation at room temperature. The remaining mixture was 

proportioned between hexanes (200 mL) and saturated NH4Cl (200 mL). The aqueous layer was 
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extracted with hexanes (200 mL). The combined organic layers were washed twice with water 

(200 mL) and once with brine (200 mL) and dried over MgSO4. The solvent was removed under 

reduced pressure. The residue was purified by column chromatography (silica gel, 9:1 

hexanes:CH2Cl2) to give the title compound as a pale yellow amorphous solid (45.2 g, 91%). 

max = 328 nm. 1H NMR (CDCl3, 300 MHz)  0.90-1.10 (6H, mult, CH3), 1.43-1.49 (8H, mult), 

1.50-1.65 (4H, mult), 1.88-2.00 (4H, mult), 4.02 (2H, t, J = 6.5 Hz, OCH2), 4.07 (2H, t, J = 6.5 

Hz, OCH2), 5.37 (1H, dd, J = 11.1, 1.2 Hz, ArCH=CH2), 5.84 (1H, dd, J = 17.7, 1.2 Hz, 

ArCH=CH2), 7.02 (1H, s), 7.08 (1H, dd, J = 17.7, 11.1 Hz, ArCH=CH2), 7.35 (1H, s) ppm. 13C 

NMR (CDCl3, 75 MHz)  14.00 (CH3), 14.03 (CH3), 22.55 (CH2), 22.57 (CH2), 25.72 (CH2), 

25.74 (CH2), 29.21 (CH2), 29.23 (CH2), 31.50 (CH2), 69.37 (OCH2), 70.12 (OCH2), 85.97 (ArI 

quat), 110.03 (Ar CH), 114.65 (vinyl CH2), 123.41 (Ar CH), 127.66 (Ar quat), 131.28 (vinyl 

CH), 151.04 (ArO quat), 152.06 (ArO quat) ppm. MS (EI) 430 (base, M+), 362, 346, 262, ,13, 

143, 107, 77, 55  m/z. HRMS calcd for C30H31IO2 430.1369 g/mol. Found 430.1367 g/mol. 

 

 

2,5-Bishexyloxy-4-vinylbenzaldehyde (12). 3 (10 g, 23.2 mmol) was dissolved in anhydrous 

diethyl ether (40 mL) under N2 in an oven dried 3-neck 250 mL rbf equipped with a gas adapter, 

an addition funnel containing nBuLi (1.6 M in hexanes, 15 mL, 24 mmol) dissolved in anhydrous 

diethyl ether (30 mL), and a second addition funnel containing anhydrous DMF (3 mL, 39 

mmol) dissolved in anhydrous diethyl ether (10 mL). The flask was cooled to 0 oC, and the 

nBuLi solution was added dropwise (~1 drop/s). Once addition of nBuLi was complete, the DMF 
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solution was added rapidly. The mixture was stirred at rt for 2 h and quenched into 100 mL of 

water cooled on an ice bath. The aqueous layer was extracted three times with ether (50 mL). 

The combined organic layers were washed three times with water (100 mL) and once with brine 

(100 mL). The solution was dried over MgSO4, and the solvent was removed under reduced 

pressure. The residue was purified by column chromatography (silica gel, 99:1 hexanes:ethyl 

acetate) to give the title compound as a yellow amorphous solid (5.97 g, 77%). max = 288, 375 

nm. 1H NMR (CDCl3, 300 MHz)  0.90-1.10 (6H, mult, CH3), 1.32-1.38 (8H, mult), 1.40-1.50 

(4H, mult), 1.75-1.84 (4H, mult), 3.96 (2H, t, J = 6.5 Hz, OCH2), 4.04 (2H, t, J = 6.5 Hz, OCH2), 

5.41 (1H, d, J = 11.1 Hz, ArCH=CH2), 5.85 (1H, d, J = 17.7 Hz, ArCH=CH2), 7.05 (1H, s), 7.06 

(1H, dd, J = 17.7, 11.1 Hz, ArCH=CH2), 7.27 (1H, s), 10.43 (1H, s, CHO) ppm. 13C NMR 

(CDCl3, 75 MHz)  13.92 (CH3), 22.50 (CH2), 25.68 (CH2), 29.09 (CH2), 29.10 (CH2), 31.45 

(CH2), 31.46 (CH2), 68.80 (OCH2), 69.01 (OCH2), 109.78 (CH), 110.62 (CH), 117.37 (vinyl 

CH2), 124.36 (quat), 131.24 (vinyl CH), 134.22 (quat), 150.38 (ArO quat), 155.98 (ArO quat), 

189.07 (CHO) ppm. MS (EI) 332 (M+), 248, 164 (base), 135, 107, 91, 68 m/z. HRMS calcd for 

C21H32O3: 332.2351 g/mol. Found 332.2349 g/mol. 

3.4.3 Synthesis of OPVs by iterative cross metathesis 

General Cross Metathesis Procedure: Cross metathesis substrates (ratios of reagents are 

outlined in individual entries below) were dissolved in CHCl3 (0.3 M olefin concentration) 

Grubbs catalyst II (0.0075 eq) was added, and the flask was equipped with a water-cooled 

condenser. The mixture was refluxed under N2 for 24-48 h until TLC indicated the reaction is 

complete. If the reaction was not complete after 24 h, more Grubbs catalyst II (0.0075 
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equivalents) was added. Upon completion, the solvent was removed under reduced pressure, and 

the residue is purified by column chromatography (silica gel, hexanes:EtOAc or hexanes:DCM). 

 

General Wittig Procedure: KOtBu (2.4 eq) was added portionwise to a slurry of Ph3PCH3Br 

(2.5 eq) in THF (6 mL per g phosphonium salt) under N2 at 0 oC in a flame-dried Schlenk flask. 

The yellow mixture was stirred for 30 min at rt and then returned to 0 oC. Aldehyde (1.0 eq) in 

THF (equal volume) was added dropwise, and the mixture was stirred at rt for 2-3 h until TLC 

indicated the reaction was complete. The reaction was quenched into saturated aqueous NH4Cl 

(0.5 mL per mL THF). The aqueous layer was extracted twice with EtOAc (equal volume). The 

combined organic layers were washed with brine (0.25 mL per mL organic solution), and dried 

over MgSO4. The solvent was removed under reduced pressure, and the residue was purified by 

column chromatography (silica gel, hexanes:CH2Cl2).  

 

 

4-(2,5-bis(hexyloxy)-4-iodostyryl)benzaldehyde (OPV1a). Following the general CM 

procedure, 7 (4.30 g, 9.99 mmol) and 2 (2.0 M in benzene, 10 mL, 20 mmol), and Grubbs 

catalyst II (200 mg, 0.236 mmol) were dissolved in CHCl3 (100 mL) and refluxed for 40 h. 

Column chromatography (silica gel, 49:1 – 19:1 hexanes:ethyl acetate) gave the title compound 

as a fluorescent, yellow, amorphous solid (4.00 g, 75%). max = 376 nm. 1H NMR (CDCl3, 300 

MHz)  0.80-1.00 (6H, mult, CH3), 1.26-1.43 (8H, mult), 1.45-1.60 (4H, mult), 1.80-1.90 (4H, 

mult), 3.98 (2H, t, J = 6.6 Hz OCH2), 4.03 (2H, t, J = 6.6 Hz, OCH2), 7.03 (1H, s), 7.32 (1H, s), 
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7.18 and 7.55 (2H, 2d, J = 16.5 Hz, trans CH=CH)), 7.66 and 7.88 (4H, 2 d, J = 8.1 Hz, p-C6H4), 

10.00 (1H, s, CHO) ppm. 13C NMR (CDCl3, 75 MHz)  14.00 (CH3), 14.05 (CH3), 22.60 (CH2), 

25.77 (CH2), 25.82 (CH2), 29.23 (CH2), 31.51 (CH2), 69.57 (OCH2), 70.23 (OCH2), 87.24 (ArI 

quat), 110.09 (CH), 123.71 (CH), 126.55 (quat), 126.73 (CH), 126.88 (CH), 127.96 (CH), 130.21 

(CH), 135.22 (quat), 143.77 (quat), 151.60 (quat), 152.22 (quat), 191.59 (CHO) ppm. MS (EI) 

534 (M+), 432, 393, 366, 322, 264, 208, 179, 153 (base), 125, 115, 91, 77 m/z. HRMS calcd for 

C27H35IO3: 534.1631 g/mol. Found: 534.1631 g/mol. 

 

 

4-(2,5-bis(hexyloxy)-4-iodostyryl)styrene (OPV1b). Following the general Wittig procedure, 

KOtBu (1.83 g, 16.3 mmol) was added to Ph3PCH3Br (5.85 g, 16.4 mmol) in THF (30 mL). Then 

OPV1a (3.50 g, 6.54 mmol) in THF (30 mL) was added and stirred for 2 h. Column 

chromatography (silica gel, 4:1 hexanes:CH2Cl2) gave the title compound as a fluorescent, 

yellow, amorphous solid (3.34 g, 96%).max = 360 nm.  1H NMR (CD2Cl2, 300 MHz)  0.90-

1.10 (6H, mult, CH3), 1.30-1.45 (8H, mult), 1.45-1.60 (4H, mult), 1.75-1.90 (4H, mult), 3.96 

(2H, t, J = 6.5 Hz, OCH2), 4.02 (2H, t, J = 6.5 Hz, OCH2), 5.26 (1H, dd, J = 10.8, 1.2 Hz, 

ArCH=CH2), 5.79 (1H, dd, J = 17.4, 1.2 Hz, ArCH=CH2), 6.74 (1H, dd, J = 17.4, 10.8 Hz, 

ArCH=CH2), 7.06 (1H, s), 7.31 (1H, s), 7.16 and 7.42 (2H, 2 d, J = 16.4 Hz, trans CH=CH), 

7.42 and 7.50 (4H, 2 d, J = 8.3 Hz, p-C6H4) ppm. 13C NMR (CD2Cl2, 75 MHz)  14.39 (CH3), 

14.42 (CH3), 23.21 (CH2), 26.36 (CH2), 26.42 (CH2), 29.85 (CH2), 32,12 (CH2), 32.15 (CH2), 

70.26 (OCH2), 70.72 (OCH2), 86.14 (ArI quat), 110.30 (CH), 114.10 (CH2), 123.50 (CH), 124.25 
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(CH), 127.07 (CH), 127.23 (CH), 127.99 (quat), 129.44 (CH), 136.96 (CH), 137.49 (quat), 

137.78 (quat), 151.93 (ArO quat), 152.82 (ArO quat) ppm. MS (EI) 532 (base, M+), 448, 364, 

236, 117 m/z. HRMS calcd for C28H37IO2 532.1838 g/mol. Found 532.1834 g/mol. 

 

 

4-(4-(2,5-bis(hexyloxy)-4-iodostyryl)-styryl)-2,5-bis(hexyloxy)benzaldehyde (OPV2a). 

Following the general CM procedure, OPV1b (100 mg, 0.187 mmol), 1 (250 mg, 0.752 mmol), 

and Grubbs II catalyst (10 mg, 11.8 mol) were dissolved in CHCl3 (2 mL) in a 5 mL rbf and 

refluxed for 40 h. Column chromatography (silica gel, 7:3 hexanes:CH2Cl2) gave the title 

compound as a fluorescent, yellow-orange, amorphous solid (112.2 mg, 72%). max = 411 nm. 1H 

NMR (CD2Cl2, 300 MHz)  0.85-1.00 (12H, mult, CH3), 1.30-1.45 (16H, mult), 1.45-1.60 (8H, 

mult), 1.75-1.90 (8H, mult), 3.97 (2H, t, J = 6.3 Hz, OCH2), 4.03 (2H, t, J = 6.3 Hz, OCH2), 4.05 

(2H, t, J = 6.3 Hz, OCH2), 4.13 (2H, t, J = 6.3 Hz, OCH2), 7.07 (1H, s), 7.18 (1H, d, J =16.5 Hz, 

trans CH=CH), 7.27 (1H, s), 7.29 (1H, d, J =16.5 Hz, trans CH=CH), 7.31 (1H, s), 7.32 (1H, s), 

7.46 (1H, d, J =16.5 Hz, trans CH=CH), 7.53 (1H, d, J =16.5 Hz, trans CH=CH), 7.56 (4H, br s, 

p-C6H4), 10.44 (1H, s, CHO) ppm. 13C NMR (CD2Cl2)  14.42 (CH3), 23.20 (CH2), 23.23 (CH2), 

26.35 (CH2), 26.38 (CH2), 26.45 (CH2), 29.81 (CH2), 29.87 (CH2), 29.89 (CH2), 32.14 (CH2), 

32.15 (CH2), 32.18 (CH2), 69.74 (OCH2), 69.81 (OCH2), 70.23 (OCH2), 70.71 (OCH2), 86.32 

(ArI quat), 110.23 (CH), 110.44 (CH), 110.97 (CH), 123.13 (CH), 123.80 (CH), 124.22 (CH), 

124.83 (quat), 127.46 (CH), 127.77 (CH), 127.88 (quat), 129.28 (CH), 132.17 (CH), 134.57 

(quat), 137.21 (quat), 138.21 (quat), 151.29 (ArO quat), 151.96 (ArO quat), 152.81 (ArO quat), 
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156.73 (ArO quat), 189.21 (CHO) ppm. MS (EI) 836 (M+, base), 734 m/z. HRMS calcd for 

C47H65IO5: 836.3877 g/mol. Found: 836.3899 g/mol. 

 

 

4-(4-(2,5-bis(hexyloxy)-4-iodostyryl)-styryl)-2,5-bis(hexyloxy)styrene (OPV2b). Following 

the general Wittig procedure, KOtBu (0.55 g, 4.95 mmol), was added to Ph3PCH3Br (1.77 g, 4.95 

mmol) in THF (10 mL). Then OPV2a (1.17 g, 1.39 mmol) in THF (25 mL) was added and 

stirred for 3 h. Column chromatography (silica gel, 1:1 hexanes:CH2Cl2) gave the title compound 

as a fluorescent, yellow, tacky solid (1.04 g, 90%). max = 399 nm. 1H NMR (CD2Cl2, 300 MHz) 

 0.85-1.00 (12H, mult, CH3), 1.30-1.45 (16H, mult), 1.45-1.60 (8H, mult), 1.75-1.90 (8H, mult), 

3.97 (2H, t, J = 6.4 Hz, OCH2), 4.03 (2H, t, J = 6.4 Hz, OCH2), 4.04 (2H, t, J = 6.4 Hz, OCH2), 

4.12 (2H, t,  J = 6.4 Hz, OCH2), 5.27 (1H, d, J = 11.4 Hz, ArCH=CH2), 5.78 (1H, d, J = 17.7 Hz, 

ArCH=CH2), 7.05 (1H, s), 7.07 (1H, dd, J = 17.7, 11.4 Hz, ArCH=CH2), 7.08 (1H, s), 7.16 (1H, 

d, J = 16.5 trans CH=CH), 7.18 (1H, d, J = 16.5 Hz, trans CH=CH), 7.32 (1H, s), 7.44 (1H, d, J 

= 16.5 CH=CH), 7.52 (1H, d, J = 16.5, trans CH=CH), 7.54 (4H, br s,  p-C6H4) ppm. 13C NMR 

(CD2Cl2, 75 MHz)  14.41 (CH3), 23.22 (CH2), 23.24 (CH2), 26.37 (CH2), 26.42 (CH2), 26.44 

(CH2), 26.52 (CH2), 29.86 (CH2), 29.89 (CH2), 30.02 (CH2), 32.13 (CH2), 32.17 (CH2), 32.21 

(CH2), 32.23 (CH2), 69.86 (OCH2), 70.05 (OCH2), 70.28 (OCH2), 70.74 (OCH2), 86.10 (ArI 

quat), 110.26 (CH), 110.68 (CH), 111.06 (CH), 114.38 (CH2), 123.30 (CH), 123.81 (CH), 124.27 

(CH), 127.34 (CH), 127.40 (CH), 127.54 (quat), 128.07 (quat), 128.75 (CH), 129.49 (CH), 

132.04 (CH), 137.41 (quat), 137.95 (quat), 151.35 (ArO quat), 151.54 (ArO quat), 151.94 (ArO 
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quat), 152.84 (ArO quat) ppm. MS (EI) 834 (M+), 711, 589, 497, 417, 369, 306, 278, 254, 212, 

155 (base), 138, 128 m/z. HRMS calcd for C48H67IO4: 834.4084 g/mol. Found: 834.4077 g/mol. 

 

 

4-(4-(4-(2,5-bis(hexyloxy)-4-iodostyryl)-styryl)-2,5-bis(hexyloxy)styryl)benzaldehyde 

(OPV3a). Following the general CM procedure, OPV2b (890 mg, 1.06 mmol), 2 (2.0 M in 

benzene, 1.6 mL, 3.2 mmol), and Grubbs II catalyst (25 mg, 29.4 mol) were dissolved in CHCl3 

(20 mL) in a 50 mL rbf and refluxed for 48 h. Column chromatography (silica gel, 3:2 

hexanes:CH2Cl2) gave the title compound as a fluorescent, orange, amorphous solid (888 mg, 

89%). max = 427 nm. 1H NMR (CD2Cl2, 300 MHz)  0.85-1.00 (12H, mult –CH3), 1.20-1.50 

(16H, mult), 1.50-1.70 (8H, mult), 1.80-2.00 (8H, mult), 3.97 (3H, t, J = 6.4 Hz), 4.03 (3H, t, J = 

6.4 Hz), 4.08 (3H, t, J = 6.4 Hz), 4.09 (3H, t, J = 6.4 Hz), 7.07 (1H, s), 7.17 (1H, s), 7.18 (1H, s), 

7.18 (1H, d, J = 16.2 Hz, trans CH=CH), 7.20 (1H, d, J = 16.2 Hz, trans CH=CH), 7.23 (1H, d, J 

= 16.2 Hz, trans CH=CH), 7.32 (1H, s), 7.45 (1H, d, J = 16.5 Hz, trans CH=CH), 7.54 (1H, d, J 

= 16.2 Hz, trans CH=CH), 7.56 (4H, br s, p-C6H4), 7.68 (1H, d, J = 16.5 Hz, trans CH=CH), 

7.69 and 7.86 (4H, 2 d, J = 7.9 Hz, p-C6H4), 9.98 (1H, s,  –CHO) ppm. 13C NMR (CD2Cl2, 75 

MHz)  14.42 (CH3), 23.21 (CH2), 23.25 (CH2), 26.35 (CH2), 26.43 (CH2), 26.53 (CH2), 29.84 

(CH2), 29.99 (CH2), 30.03 (CH2), 30.26 (CH2), 32.11 (CH2), 32.16 (CH2), 32.21 (CH2), 69.97 

(OCH2), 70.03 (OCH2), 70.22 (OCH2), 70.69 (OCH2), 86.13 (ArI quat), 110.18 (CH), 110.69 

(CH), 111.11 (CH), 123.36 (CH), 123.58 (CH), 124.20 (CH), 126.39 (quat), 127.32 (CH), 127.40 

(CH), 127.76 (CH), 127.82 (CH), 127.97 (quat), 128.24 (quat), 129.26 (CH), 129.41 (CH), 
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130.62 (CH),  135.75 (quat), 135.94 (quat), 137.54 (quat), 137.80 (quat), 144.59 (quat), 151.58 

(ArO quat), 151.91 (ArO quat), 152.01 (ArO quat), 152.78 (ArO quat), 191.96 (CHO) ppm. MS 

(EI) 938 (M+), 836, 381, 181, 131 (base) m/z. HRMS calcd for C55H71IO5: 938.4346 g/mol. 

Found 938.4302 g/mol 

 

 

4-(4-(4-(2,5-bis(hexyloxy)-4-iodostyryl)-styryl)-2,5-bis(hexyloxy)styryl)styrene (OPV3b). 

Following the general Wittig procedure, KOtBu (53 mg, 472 mol), was added to Ph3PCH3Br 

(170 mg,476 mol) in THF (2 mL). Then OPV3a (180 mg, 192 mol) in THF (10 mL) was 

added and stirred for 3 h. Column chromatography (silica gel, 1:1 hexanes:CH2Cl2) gave the title 

compound as a fluorescent, orange solid (160 mg, 89%). max = 419 nm. 1H NMR (CD2Cl2, 300 

MHz)  0.85-1.00 (12H, mult, CH3), 1.20-1.50 (16H, mult), 1.50-1.70 (8H, mult), 1.80-2.00 (8H, 

mult), 3.97 (t2H, t, J = 6.5 Hz, OCH2), 4.04 (2H, t, J = 6.5 Hz, OCH2), 4.07 (2H, t, J = 6.5 Hz, 

OCH2), 4.09 (2H, t, J = 6.5 Hz, OCH2), 5.28 (1H, d, J = 10.8 Hz, ArCH=CH2), 5.81 (1H, d, J = 

17.7 Hz, ArCH=CH2), 6.78 (1H, dd, J = 10.8, 17.7 Hz, ArCH=CH2), 7.09 (1H, s), 7.10-7.20 

(5H, mult), 7.33 (1H, s), 7.40-7.60 (11H, mult) ppm. 13C NMR (CD2Cl2, 75 MHz)  14.46 

(CH3), 23.25 (CH2), 23.29 (CH2), 26.39 (CH2), 26.46 (CH2), 26.57 (CH2), 29.89 (CH2), 29.91 

(CH2), 30.08 (CH2), 30.31 (CH2), 32.16 (CH2), 32.20 (CH2), 32.27 (CH2), 70.04 (OCH2), 70.25 

(OCH2), 70.72 (OCH2), 86.12 (ArI quat), 110.23 (CH), 110.80 (CH), 110.85 (CH), 113.96 

(CH2), 123.31 (CH), 123.79 (CH), 123.85 (CH), 124.23 (CH), 127.08 (CH), 127.18 (CH), 127.32 

(quat), 127.36 (CH), 127.43 (CH), 128.06 (quat), 128.77 (CH), 129.48 (CH), 137.02 (CH), 
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137.29 (quat), 137.43 (quat),137.98 (quat),138.14 (quat), 151.69 (ArO quat), 151.95 (ArO quat), 

152.83 (ArO quat) ppm. MS (EI) 936 (M+), 834, 813, 634 (base), 466, 338, 254, 219, 128 m/z. 

HRMS calcd for C56H73IO4: 936.4554 g/mol. Found 936.4519 g/mol. 

 

 

4-(4-(4-(4-(2,5-bis(hexyloxy)-4-iodostyryl)-styryl)-2,5-bis(hexyloxy)styryl)styryl)-2,5-

bis(hexyloxy)benzaldehyde (OPV4a). Following the general CM procedure, OPV3b (200 mg, 

213 mol), 1 (250 mg, 752 mol), were dissolved in CHCl3 (20 mL), and Grubbs II catalyst (20 

mg, 23.5 mol) were dissolved in CHCl3 (2 mL) in a 50 mL rbf and refluxed for 40 h. Column 

chromatography (silica gel, 7:3 hexanes:CH2Cl2) gave the title compound as a fluorescent, 

orange, amorphous solid (181.7 mg, 69%). max = 443 nm. 1H NMR (CD2Cl2, 400 MHz)  0.85-

1.00 (18H, mult, CH3), 1.20-1.50 (24H, mult), 1.50-1.70 (12H, mult), 1.80-2.00 (12H, mult), 

3.97 (2H, t, J = 6.4 Hz, OCH2), 4.03 (2H, t, J = 6.4 Hz, OCH2), 4.05 (2H, t, J = 6.4 Hz, OCH2), 

4.09 (4H, t, J = 6.4 Hz, OCH2), 4.13 (H, t, J = 6.4 Hz, OCH2), 7.08 (1H, s), 7.15-7.22 (5H, mult), 

7.24 (1H, s), 7.28-7.32 (3H, mult), 7.44 (1H, d, J = 16.8 Hz, trans CH=CH), 7.52-7.57 (11H, 

mult), 10.44 (1H, s, CHO) ppm. 13C NMR (CD2Cl2, 100 MHz)  14.40 (CH3), 14.42 (CH3), 

23.19 (CH2), 23.22 (CH2), 23.26 (CH2), 26.34 (CH2), 26.37 (CH2), 26.44 (CH2), 26.46 (CH2), 

26.56 (CH2), 29.81 (CH2), 29.86 (CH2), 29.89 (CH2), 30.06 (CH2), 30.27 (CH2), 32.13 (CH2), 

32.14 (CH2), 32.17 (CH2), 32.25 (CH2), 69.79 (OCH2), 69.86 (OCH2), 70.07 (OCH2), 70.28 

(OCH2), 70.74 (OCH2), 86.12 (ArI, quat), 110.26 (CH), 110.49 (CH), 110.83 (CH), 110.87 (CH), 

111.02 (CH), 123.01 (CH), 123.32 (CH), 123.75 (CH), 124.15 (CH), 124.28 (CH), 124.84 (quat), 
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127.24 (quat), 127.37 (CH), 127.40 (CH), 127.40 (CH), 127.42 (CH), 127.47 (quat), 127.78 

(CH), 128.07 (quat), 128.66 (CH), 128.85 (CH), 129.49 (CH), 132.27 (CH), 134.68 (quat), 

137.01 (quat), 137.45 (quat), 137.95 (quat), 138.56 (quat), 151.32 (ArO quat), 151.70 (ArO 

quat), 151.75 (ArO quat), 151.95 (ArO, quat), 152.84 (ArO, quat), 156.78 (ArO quat),189.26 

(CHO) ppm. Analysis calcd for C75H101IO7: C, 72.56; H, 8.20; I, 10.22; O, 9.02. Found: C, 

72.67; H, 8.48. 

 

 

4-(4-(4-(4-(2,5-bis(hexyloxy)-4-iodostyryl)-styryl)-2,5-bis(hexyloxy)styryl)styryl)-2,5-

bis(hexyloxy)styrene (OPV4b). Following the general Wittig procedure, KOtBu (26 mg, 232 

mol), was added to Ph3PCH3Br (83 mg, 323 mol) in THF (1 mL). Then OPV4a (115 mg, 92.6 

mol) in THF (5 mL) was added and stirred for 3 h. Column chromatography (silica gel, 3:1 

hexanes:CH2Cl2) gave the title compound as a fluorescent, orange solid (93.3 mg, 81%). max = 

437 nm. 1H NMR (CD2Cl2, 400 MHz)  0.85-1.00 (18H, mult, CH3), 1.20-1.50 (24H, mult), 

1.50-1.70 (12H, mult), 1.80-2.00 (12H, mult), 3.97 (2H, t, J = 6.4 Hz, OCH2), 4.04 (6H, t, J = 6.4 

Hz, OCH2), 4.10 (4H, t, J = 6.4 Hz, OCH2), 5.29 (1H, dd, J = 11.2, 1.2 Hz, ArCH=CH2), 5.80 

(1H, dd, J = 17.6, 1.2 Hz, ArCH=CH2), 7.05-7.10 (3H, mult), 7.13-7.22 (7H, mult), 7.33 (1H, s), 

7.46 (1H, d, J = 16.4 Hz, trans CH=CH), 7.51-7.58 (11H, mult) ppm. 13C NMR (CD2Cl2, 100 

MHz) 14.46 (CH3), 23.24 (CH2), 23.29 (CH2), 26.39 (CH2), 26.45 (CH2), 26.47 (CH2), 26.56 

(CH2), 26.58 (CH2), 29.89 (CH2), 29.92 (CH2), 30.05 (CH2), 30.07 (CH2), 30.10 (CH2), 30.30 

(CH2), 32.16 (CH2), 32.20 (CH2), 32.24 (CH2), 32.26 (CH2), 32.28 (CH2), 69.86 (OCH2), 70.06 
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(OCH2), 70.26 (OCH2), 70.73 (OCH2), 86.12 (ArI quat), 110.24 (CH), 110.67 (CH), 110.82 

(CH), 111.06 (CH), 114.36 (CH2), 123.31 (CH), 123.65  (CH), 123.68 (CH), 123.81 (CH), 

124.24 (CH), 127.31 (quat), 127.36 (CH), 127.41 (CH), 127.43 (CH), 127.50 (quat), 128.74 

(CH), 128.82 (CH), 129.49 (CH), 132.08 (CH), 137.43 (quat), 137.76 (quat), 138.00 (quat), 

151.37 (ArO quat), 151.54 (ArO quat), 151.70 (ArO quat), 151.72 (ArO quat), 151.96 (ArO 

quat), 152.84 (ArO quat) ppm. Analysis calcd for C76H103IO6: C, 73.64; H, 8.38; I, 10.24; O, 

7.74. Found: C, 73.66; H, 8.55. 

3.4.4 Synthesis of modified OPVs 

 

4-(4-(2,5-bis(hexyloxy)-4-(4-methoxyphenyl)styryl)-styryl)-2,5-bis(hexyloxy)benzaldehyde 

(OPV2c). In a nitrogen filled glovebox, OPV2a (100 mg, 119 mol), 4-methoxyphenylboronic 

acid (35 mg, 230 mol), Pd(PPh3)4 (10 mg, 8.7 mol), and TBAB (5 mg, 14 mol) were 

dissolved in PhMe (5 mL) in a flame-dried Schlenk flask. The flask was fitted with a septum and 

removed from the glovebox. The flask was charged with 2.0 M K2CO3
 (aq) (5 mL) that had been 

sparged with N2 for 10 min. The mixture was stirred at 80 oC under N2 for 20 h. After cooling to 

rt, the layers were separated, and the aqueous layer was extracted with EtOAc (3x 5 mL). The 

combined organic layers were dried over MgSO4 and reduced in vacuo. The residue was purified 

by silica gel chromatography (1:1 hexanes:DCM) to give the title compound as an orange 

amorphous solid (100 mg, 100%). max 418 nm.  1H NMR (CD2Cl2, 400 MHz)  0.85-1.00 (12H, 

mult), 1.30-1.50 (18H, mult), 1.50-1.60 (6H, mult), 1.75 (2H, pent, J = 6.8 Hz), 1.80-1.90 (6H, 
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mult), 3.86 (3H, s), 3.99 (2H, t, J =6.4 Hz), 4.05 (2H, t, J =6.4 Hz), 4.06 (2H, t, J =6.4 Hz), 4.14 

(2H, t, J =6.4 Hz), 6.93 (1H, s), 6.97 (2H, d, J = 8.8 Hz, p-C6H4), 7.22 (1H, d, J = 16.4 Hz, trans 

CH=CH), 7.24 (1H,s ), 7.32 (1H, d, J = 16.4 Hz, trans CH=CH), 7.33 (2H, br s, p-C6H4), 7.55 

(1H, d, J = 16.4 Hz, trans CH=CH), 7.56 (2H, d, J = 8.8 Hz, p-C6H4), 7.57 (1H, s), 7.59 (1H, s), 

7.59 (2H, br s, p-C6H4), 7.59 (1H, d, J = 16.4 Hz, trans CH=CH), 10.46 (1H, s, CHO) ppm. 13C 

NMR (CD2Cl2, 100 MHz)  14.43 (CH3), 14.45 (CH3), 23.23 (CH2), 23.26 (CH2), 23.28 (CH2), 

26.38 (CH2), 26.42 (CH2), 26.50 (CH2), 26.56 (CH2), 29.85 (CH2), 29.98 (CH2), 30.09 (CH2), 

32.14 (CH2), 32.19 (CH2), 32.23 (CH2), 32.26 (CH2), 55.78 (OCH3), 69.77 (OCH2), 69.83 

(OCH2), 69.94 (OCH2), 70.13 (OCH2), 110.47 (CH), 110.99 (CH), 111.43 (CH), 113.88 (CH), 

115.83 (CH), 122.98 (CH), 124.26 (CH), 124.83 (quat), 126.10 (quat), 127.38 (CH), 127.79 

(CH), 128.46 (CH), 131.12 (CH), 131.35 (quat), 131.56 (quat), 132.30 (CH), 134.70 (quat), 

136.95 (quat), 138.66 (quat), 150.81 (ArO quat), 151.32 (ArO quat), 151.75 (ArO quat), 156.78 

(ArO quat), 159.43 (ArO quat), 189.24 (CHO) ppm. MS (EI) 817 (M+, base), 715, 636, 514 m/z. 

HRMS calcd for C54H72O6: 816.5329 g/mol. Found: 816.5320 g/mol. 

 

 

3-(4-(4-(2,5-bis(hexyloxy)-4-(4-methoxyphenyl)styryl)-styryl)-2,5-bis(hexyloxy)phenyl)-1-(4-

nitrophenyl)-2-propen-1-one (OPV2d). p-Nitroacetophenone (40 mg, 242 mol), OPV2c (50 

mg, 61.2 mol), and TsOH (10 mg, 52.6 mol) were dissolved in benzene (10 mL) and refluxed 

in a Dean-Stark apparatus for 24 h. The deep red solution was concentrated in vacuo and the 

residue was purified by silica gel chromatography (1:1 hexanes:DCM) to give the title compound 
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as a red amorphous solid (56.6 mg, 96%). max 456 nm. 1H NMR (CD2Cl2, 400 MHz)  0.85-1.00 

(12H, mult, CH3), 1.30-1.50 (18H, mult), 1.50-1.60 (6H, mult), 1.73 (2H, pent, J =6.8 Hz), 1.80-

1.95 (6H, mult), 3.85 (3H, s OCH3), 3.97 (2H, t, J =6.4 Hz, OCH2), 4.04 (2H, t, J =6.4 Hz, 

OCH2), 4.07 (2H, t, J =6.4 Hz, OCH2), 4.13 (2H, t, J =6.4 Hz, OCH2), 6.91 (1H, s), 6.95 (2H, d, 

J = 8.4 Hz, p-C6H4), 7.16-7.22 (mult, 4H), 7.28 (1H, d, J = 16.8 Hz, trans CH=CH), 7.52-7.57 

(8H, mult), 7.67 (1H, d, J = 15.6 Hz, trans CH=CH), 8.05 (1H, d, J =16.0 Hz, trans CH=CH), 

8.13 (2H, d, J = 8.8 Hz, p-C6H4), 8.33 (2H, d, J = 8.8 Hz, p-C6H4) ppm. 13C NMR (CD2Cl2, 100 

MHz)  14.38 (CH3), 14.41 (CH3), 23.19 (CH2), 23.24 (CH2), 26.37 (CH2), 26.51 (CH2), 26.54 

(CH2), 29.94 (CH2), 29.95 (CH2), 29.98 (CH2), 30.05 (CH2), 30.26 (CH2), 32.09 (CH2), 32.21 

(CH2), 55.87 (OCH3), 69.75 (OCH2), 69.91 (OCH2), 70.09 (OCH2), 70.13 (OCH2), 110.32 (CH), 

111.37 (CH), 113.85 (CH), 114.14 (CH), 115.84 (CH), 122.40 (CH), 123.02 (CH), 123.64 (quat), 

124.07 (CH), 124.24 (CH), 126.09 (quat), 127.34 (CH), 127.62 (CH), 128.47 (CH), 129.87 (CH), 

130.98 (CH), 131.09 (CH), 131.30 (quat), 131.49 (quat), 131.49 (quat), 137.15 (quat), 138.39 

(quat), 142.52 (CH), 144.27 (quat), 150.42 (ArO quat), 150.78 (ArO quat), 151.30 (ArO quat), 

151.69 (ArO quat), 154.01 (ArNO2 quat), 159.39 (ArO quat), 189.92 (C=O, quat) ppm. HRMS 

calcd for C62H77NO8+Na: 986.5547 g/mol. Found: 986.5554 g/mol. 

 

 

4-(4-(2,5-bis(hexyloxy)-4-(hex-5-enyl)styryl)-styryl)-2,5-bis(hexyloxy)styrene (OPV2e). In a 

nitrogen filled glovebox, OPV2b (250 mg, 299 mol), 9-(hex-5-en-1-yl)-9-BBN (183 mg, 896 

mol), PdCl2(PPh3)2 (15 mg, 21 mol), and TBAB (7.5 mg, 23 mol), were dissolved in PhMe 
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(5 mL) in a Schlenk flask. The flask was removed from the glove box, and charged with 2.0 M 

aq K2CO3 (5 mL) that had been sparged with N2 for 10 minutes. The mixture was stirred at 45 oC 

under N2 for 20 h. After cooling, the layers were separated, and the aqueous layer was extracted 

thrice with EtOAc. The combined organic layers were dried over MgSO4 and reduced in vacuo. 

The residue was purified via silica gel chromatography (49:1 hexanes:ethyl acetate) to give the 

title compound as an amorphous yellow solid (158.8 mg, 67%).max 397 nm. 1H NMR (CDCl3, 

400 MHz)  0.95-1.05 (12H, mult), 1.35-1.50 (18H, mult), 1.50-1.70 (14H, mult), 1.80-1.95 (8H, 

mult), 2.16 (2H, q, J = 7.2 Hz, CH2CH=CH2), 2.68 (2H, t, J = 7.6 Hz, ArCH2), 4.00-4.10 (8H, 

mult, OCH2), 5.01 (1H, dd, J = 10.0, 2.0 Hz, CH2CH=CH2), 5.07 (1H, dd, J = 17.2, 2.0 Hz, 

CH2CH=CH2), 5.32 (1H, dd, J = 11.2, 1.2 Hz, ArCH=CH2), 5.81 (1H, dd, J = 17.6, 1.2 Hz, 

ArCH=CH2), 5.89 (1H, ddt, J = 17.2 10.0, 7.2 Hz, CH2CH=CH2), 6.77 (1H, s), 7.08 (1H, s), 7.12 

(1H, s), 7.13 (1H, dd, J = 17.6, 11.2 Hz, ArCH=CH2), 7.16 (1H, d, J =16.4 Hz, trans CH=CH), 

7.16 (1H, s), 7.18 (1H, d, J =17.2 Hz, trans CH=CH), 7.55 (1H, d, J =17.2 Hz, trans CH=CH), 

7.56 (1H, d, J = 16.4 Hz, trans CH=CH) 7.57 (4H, br s, p-C6H4) ppm. 13C NMR (CDCl3, 100 

MHz)  14.02 (CH3), 22.60 (CH2), 22.63 (CH2), 25.83 (CH2), 25.93 (CH2), 28.81 (CH2), 29.42 

(CH2), 29.43 (CH2), 29.50 (CH2), 29.61 (CH2), 30.36 (CH2), 31.58 (CH2), 31.61 (CH2), 33.68 

(CH2), 68.57 (OCH2), 69.26 (OCH2), 69.46 (OCH2), 69.65 (OCH2), 109.08 (CH), 110.21 (CH), 

110.64 (CH), 113.87 (CH2), 114.20 (CH2), 115.29 (CH2), 123.01 (CH2), 123.59 (CH2), 124.53 

(quat), 126.62 (CH), 126.72 (CH), 126.91 (quat), 127.04 (quat), 127.35 (CH), 128.39 (CH), 

131.59 (CH), 132.29 (quat), 136.83 (quat), 137.35 (quat), 138.98 (CH), 150.57 (ArO quat), 

150.77 (ArO quat), 150.90 (ArO, quat), 151.22 (ArO, quat) ppm. HRMS calcd for C54H78O4+K: 

829.5537 g/mol. Found 829.5574 g/mol. 
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Poly(OPV2e). OPV2e (150 mg, 0.189 mmol) and Grubbs II catalyst (3.0 mg, 3.5 mol) were 

refluxed in CHCl3 (10 mL) under N2. After 24 h, the solvent was removed in vacuo and a 1H 

NMR was taken of the reaction mixture. Another portion of Grubbs II catalyst was added (3.0 

mg, 3.5 mol) along with more CHCl3 (10 mL). The reaction was monitored in the same way 

after 48 h and 96 h. After 96 h, the reaction mixture was quenched with ethyl vinyl ether (1 mL) 

and precipitated into methanol. The resulting polymer was an orange tacky material (139.0 mg, 

96%). max = 399 nm. Molecular weight determination by SEC: Mn = 4.47 kDa, Mw = 13.1 kDa, 

PDI = 2.93. 1H NMR (400 MHz, CD2Cl2)  0.80-1.00 (17H, mult), 1.20-1.60 (37.5H, mult), 

1.80-2.00 (8H, mult), 2.20-2.35 (0.9H, mult), 2.35-2.50 (0.4H, mult), 2.60-2.75 (1.3H, mult), 

3.90-4.20 (8H, mult), 5.27 (0.06H, d, J =12.8 Hz), 5.40-5.70 (0.53H, mult), 5.78 (0.06H, d, J = 

17.2 Hz), 6.20-6.50 (0.6H, mult), 6.60-6.85 (1.6H, mult), 6.90-7.30 (4.7H, mult), 7.40-7.80 

(5.6H, mult) ppm. 13C NMR (100 MHz, CD2Cl2)  14.45, 23.28, 26.38, 26.49, 26.52, 26.58, 

29.85, 29.98, 30.13, 30.30, 32.18, 32.25, 32.28, 32.55, 61.18, 63.66, 64.59, 65.68, 69.21, 69.31, 

69.84, 69.91, 69.95, 70.04, 70.09, 70.16, 70.19, 70.22, 70.24, 109.58, 109.66, 109.67, 110.56, 

110.87, 110.92, 111.08, 111.19, 112.12, 114.41, 115.82, 115.85, 115.91, 123.94, 123.96, 124.05, 

124.10, 124.15, 124.88, 124.91, 124.95, 125.19, 126.43, 126.43, 126.45, 126.47, 126.56, 126.59, 

127.03, 127.23, 127.27, 127.35, 127.78, 127.81, 127.92, 128.04, 128.06, 128.36, 128.39, 128.79, 

128.82, 128.94, 129.03, 129.10, 129.25, 129.96, 130.20, 130.23, 130.30, 130.33, 130.58, 130.64, 

131.80, 132.11, 132.34, 132.38, 133.07, 134.80, 136.79, 137.59, 137.92, 138.02, 138.57, 150.98, 

151.01, 151.27, 151.36, 151.32, 151.69, 151.72, 151.76, 151.92, 151.96, 156.83, 189.23, 192.21 

ppm. 
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2,5-bis(hexyloxy)-4-(hex-5-enyl)styrene (17, bnnvii3a). In a nitrogen filled glovebox, 3 (86.8 

mg, 202 mol), 9-(hex-5-en-1-yl)-9-BBN (123 mg, 603 mol), PdCl2(PPh3)2 (10 mg, 14 mol), 

and TBAB (5 mg, 14 mol), were dissolved in PhMe (5 mL) in a Schlenk flask. The flask was 

removed from the glove box, and charged with 2.0 M aq K2CO3 (5 mL) that had been sparged 

with N2 for 10 minutes. The mixture was stirred at 45 oC under N2 for 24 h. After cooling, the 

layers were separated, and the aqueous layer was extracted thrice with EtOAc. The combined 

organic layers were dried over MgSO4 and reduced in vacuo. The residue was purified via silica 

gel chromatography (19:1 hexanes:ethyl acetate) to give the title compound as a pale yellow oil 

(77.3 mg, 99%).1H NMR (CDCl3, 300 MHz)  0.85-1.00 (6H, mult), 1.25-1.70 (16H, mult), 

1.80-1.95 (4H, mult), 2.12 (2H, q, J = 7.2 Hz, CH2CH=CH2), 2.62 (2H, t, J = 7.5 Hz, ArCH2), 

3.95 (2H, t, J = 6.3 Hz OCH2), 3.96 (2H, t, J = 6.4 Hz OCH2), 4.96 (1H, d, J = 10.2 Hz, 

CH2CH=CH2), 5.02 (1H, d, J = 17.1 Hz, CH2CH=CH2), 5.22 (1H, d, J = 12.0 Hz, ArCH=CH2), 

5.70 (1H, d, J = 17.7 Hz, ArCH=CH2), 5.85 (1H, ddt, J = 17.1 10.2, 7.2 Hz, CH2CH=CH2), 6.70 

(1H, s), 6.97 (1H, s), 7.06 (1H, dd, J = 17.7, 12.0 Hz, ArCH=CH2), ppm. 13C NMR (CDCl3, 75 

MHz)  14.02 (CH3), 22.60 (CH2), 22.63 (CH2), 25.82 (CH2), 25.88 (CH2), 29.48 (CH2), 29.64 

(CH2), 30.30 (CH2), 31.57 (CH2), 31.60 (CH2), 33.68 (CH2), 68.58 (OCH2), 69.46 (CH2), 109.26 

(Ar CH), 112.90 (vinyl CH2), 114.20 (vinyl CH2), 115.09 (vinyl CH), 124.72 (Ar quat), 131.75 

(Ar CH), 132.29 (Ar quat), 139.02 (vinyl CH), 150.21 (ArO quat), 151.07 (ArO quat) ppm. 
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4-(2,5-bis(hexyloxy)-4-(hex-5-enyl)styryl)-styrene (OPV1c, bnnvii16a). In a nitrogen filled 

glovebox, OPV1b (425 mg, 795 mol), 9-(hex-5-en-1-yl)-9-BBN (550 mg, 2.69 mmol), 

PdCl2(PPh3)2 (50 mg, 71 mol), and TBAB (25 mg, 77 mol), were dissolved in PhMe (25 mL) 

in a Schlenk flask. The flask was removed from the glove box, and charged with 2.0 M aq 

K2CO3 (25 mL) that had been sparged with N2 for 10 minutes. The mixture was stirred at 45 oC 

under N2 for 20 h. After cooling, the layers were separated, and the aqueous layer was extracted 

thrice with EtOAc. The combined organic layers were dried over MgSO4 and reduced in vacuo. 

The residue was purified via silica gel chromatography (9:1 hexanes:CH2Cl2) to give the title 

compound as an amorphous yellow solid (308 mg, 88%). 1H NMR (CDCl3, 400 MHz)  0.95 

3.4.5 Progress toward more complex sequences 

 

Optimized Type II + Type II cross metathesis (iv70 or iv68). 12 (166 mg, 0.499 mmol) and 

Grubbs II (6.4 mg, 7.54 mol) were dissolved in PhMe (2 mL) and heated to 90 oC under N2 

with stirring. 13 (167 mg, 0.248 mmol) in PhMe (1 mL) was added over 2 h by syringe pump. 

After 24 h, the solvent was removed in vacuo and the residue purified by column 

chromatography (silica gel, 3:2 hexanes:DCM) to give the CM product as 106 mg of an 

amorphous yellow solid (69%) that is 2:1 E:Z by 1H NMR.  
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Following Type II + Type II cross-metathesis by NMR (iv90). 12 (83 mg, 0.250 mmol), 13 

(53 mg, 0.123 mmol), and Grubbs II (6.4 mg, 7.5 mol) were dissolved in CDCl3 (1 mL). DMF 

(20 L, 0.259 mmol) was added as an internal standard. The mixture was transferred to an NMR 

tube sealed with a J Young valve and heated at 75 oC. Within 10 minutes, the solution changed 

color from purple to green, signaling the initial reaction of styrene 12 or 13 with Grubbs II, and 

ethylene bubbles were observed. 1H NMR spectra were taken at 30 min, 3 h, 5 h, 21 h, and 45 h.  
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3.4.6 Synthesis of OPVs by dimerization 

 

2,2’,5,5’-tetrakis(hexyloxy)-4,4’-diiodo-E-stilbene (18, iv36a). 13 (21.0 g, 48.8 mmol) and 

Grubbs II (0.10 g, 0.12 mmol), were refluxed in PhMe (100 mL) for 4 d. Small amounts of 

additional Grubbs II (ca. 5 mg) were added after each day of reflux. The solvent was removed in 

vacuo, and the crude product was purified by column chromatography (silica gel, 4:1 

DCM:hexanes) to give the title compound as a pale yellow solid (17.8 g, 88%). Alternatively, 

N,N-bis(mesityl)imidazolium chloride (170 mg, 0.50 mmol) was added to a Schlenk flask under 

N2 with PhMe (5 mL). Potassium pentoxide (1.7 M in PhMe, 0.3 mL, 0.51 mmol) was added and 

the mixture was stirred at rt for 1 h. Grubbs I (380 mg, 0.46 mmol) was added and the mixture 

was stirred at rt for 1.5 h. 13 (20.0 g, 46.4 mmol) was added with more PhMe (100 mL) and the 

mixture was refluxed for 48 h. The solvent was removed in vacuo, and the crude product was 

purified by column chromatography (silica gel, 4:1 DCM:hexanes) to give the title compound as 

a pale yellow solid (13.4 g, 72%). 1H NMR (CD2Cl2, 300 MHz)  0.80-0.90 (12H, mult), 1.35-

1.45 (16H, mult), 1.45-1.60 (8H, mult), 1.83 (8H, pent, J = 6.9 Hz), 3.96 (4H, t, J = 6.3 Hz), 4.02 

(4H, t, J = 6.3 Hz), 7.06 (2H, s), 7.32 (2H, s), 7.42 (2H, s) ppm. 13C NMR (CD2Cl2, 74 MHz)  

14.22 (CH3), 23.02 (CH2), 23.04 (CH2), 26.20 (CH2), 26.22 (CH2), 29.70 (CH2), 31.94 (CH2), 

31.99 (CH2), 70.04 (OCH2), 70.55 (OCH2), 85.97 (ArI quat), 110.33 (Ar CH), 124.07 (Ar CH), 

124.24 (vinylene CH), 128.24 (Ar quat), 151.78 (ArO quat), 152. 68 (ArO quat) ppm. 



 147 

 

4-(2,5-bis(hexyloxy)-4-iodostyryl)-2,5-bis(hexyloxy)benzaldehyde (19, iv49a). 18 (1.0 g, 1.2 

mmol) was dissolved in THF (30 mL) and cooled to -40 oC under N2. nBuLi (1.6 M in hexanes, 

0.75 mL, 1.2 mmol) was added and the mixture was stirred at -40 oC for 1 h. DMF (0.15 mL) 

was added and the reaction mixture was stirred at rt for 1 h. The reaction mixture was poured 

into a mixture of 50 mL ice and 50 mL brine. The organic layer was dried over MgSO4, and the 

solvent was removed in vacuo. The crude product was purified by column chromatography 

(silica gel, 1:1 DCM:hexanes) to give the title compound as a yellow solid (518 mg, 59%). 1H 

NMR (CD2Cl2, 300 MHz)  0.80-0.90 (12H, mult), 1.35-1.45 (16H, mult), 1.45-1.60 (8H, mult), 

1.83 (8H, pent, J = 6.9 Hz), 3.98 (2H, t, J = 6.3 Hz), 4.02 (2H, t, J = 6.3 Hz), 4.04 (2H, t, J = 6.3 

Hz), 4.12 (2H, t, J = 6.3 Hz), 7.07 (1H, s), 7.23 (1H, s), 7.31 (1H, s), 7.33 (1H, s), 7.53 (2H, br 

s), 10.44 (1H, s, CHO) ppm. 13C NMR (CD2Cl2, 74 MHz)  14.21 (CH3), 23.00 (CH2), 23.02 

(CH2), 23.05 (CH2), 26.17 (CH2), 26.20 (CH2), 26.23 (CH2), 26.25 (CH2), 29.64 (CH2), 29.69 

(CH2), 31.94 (CH2), 31.96 (CH2), 32.00 (CH2), 69.56 (OCH2), 69.67 (OCH2), 70.05 (OCH2), 

70.58 (OCH2), 86.92 (ArI quat), 110.33 (Ar CH), 110.51 (Ar CH), 111.08 (Ar CH), 123.98 (Ar 

CH), 124.13 (vinylene CH), 124.76 (Ar quat) 126.06 (vinylene CH), 127.79 (Ar quat), 134.85 

(Ar quat), 151.16 (ArO quat), 152. 01 (ArO quat), 152.70 (ArO quat), 156.59 (ArO quat), 189.07 

(CHO) ppm. 
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4-(2,5-bis(hexyloxy)-4-iodostyryl)-2,5-bis(hexyloxy)styrene (21, iv50a). KOtBu (550 mg, 4.90 

mmol) was added portionwise to a slurry of Ph3PCH3Br (1.85 g, 5.18 mmol) in THF (10 mL) 

under N2 at 0 oC in a flame-dried Schlenk flask. The yellow mixture was stirred for 30 min at rt 

and then returned to 0 oC. 19 (1.50 g, 2.05 mmol) in THF (10 mL) was added dropwise, and the 

mixture was stirred at rt overnight. The reaction was quenched into saturated aqueous NH4Cl (20 

mL). The aqueous layer was extracted twice with EtOAc (20 mL). The combined organic layers 

were washed with brine (20 mL), and dried over MgSO4. The solvent was removed in vacuo, and 

the residue was purified by column chromatography (silica gel, 9:1 hexanes:DCM) to give the 

title compound as a yellow solid (1.50 g, 100%). 1H NMR (CD2Cl2, 300 MHz)  0.80-0.90 (12H, 

mult), 1.35-1.45 (16H, mult), 1.45-1.60 (8H, mult), 1.83 (8H, pent, J = 6.9 Hz), 3.97 (2H, t, J = 

6.3 Hz), 4.00-4.10 (6H, mult 7.07 (1H, s), 5.26 (1H, dd, J = 12.6, 1.5 Hz), 5.77 (1H, dd, J = 17.7, 

1.5 Hz), 7.04 (1H, s), 7.07 (1H, dd, J = 17.7, 12.6 Hz), 7.08 (1H, s), 7.12 (1H, s), 7.31 (1H, s), 

7.40 (1H, d, J = 16.5 Hz), 7.50 (1H, d, J = 16.5 Hz)  ppm. 

 

 

4,4’-bis(4-(2,5-bis(hexyloxy)-4-iodostyryl))-2,2’,5,5’-tetrakis(hexyloxy)stilbene (OPV3, 

iv55a). 21 (1.00 g, 1.36 mmol) and Grubbs II (12 mg, 13.6 mol) were refluxed in PhMe (5 mL) 

for 24 h. The hot reaction mixture was precipitated into MeOH (50 mL). The product was 
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isolated by filtration to give the title compound as a red solid (654 mg, 67%). NMR spectra were 

not collected due to low solubility. 
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4.0  SYNTHESIS AND CHARACTERIZATION OF MISCELLANEOUS ROD-COIL 

POLY(PHENYLENE-VINYLENE) REPEAT-SEQUENCE COPOLYMERS 

4.1 INTRODUCTION 

We explored the preparation of well-defined, segmented, rod-coil copolymers containing 

phenylene-vinylene segments separated by nonconjugated flexible linker segments in which all 

segments were of precisely controlled length. We desired to probe the effects of sequence on the 

optical and thermal properties of theses copolymers by systematically varying the lengths of the 

conjugated and nonconjugated segments as well as varying the composition of the nonconjugated 

segments. We intended this work to serve as a complement to our analogous studies on fluorene-

containing rod-coil copolymers.33 

Well-defined rod-coil copolymers containing phenylene-vinylene segments have been 

previously reported. The introduction of a nonconjugated flexible spacer into the backbone of 

phenylene-vinylene has many benefits:99 increasing solubility, modulating physical properties, 

and isolating the chromophore to control optical properties. Karasz and coworkers have prepared 

many copolymers of this type by Heck100 or Wittig101 polymerizations in which the phenylene-

vinylene chromophore was assembled in the polymerization (Scheme 24). They reported that the 

optical properties of their polymers did not significant change with the length of the linker100, 101 

or if an oligo(ethylene oxide) linker was used instead of an alkyl linker.102 However, these 
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studies do not represent systematic treatment of sequence effects, especially on the thermal 

properties of the copolymers. 

 

Scheme 24. Synthesis of rod-coil phenylene-vinylene copolymers from refs 100 and 101. 

Our initial goal was to study the effect of chromophore length on the optical and thermal 

properties of phenylene-vinylene rod-coil copolymers. We prepared six copolymers containing 

trimeric phenylene-vinylene cores with varying linker lengths, but we were unable to prepare 

polymers containing longer phenylene-vinylene units. Our approach to these materials was to 

synthesize and polymerize a segmer containing the intact phenylene-vinylene chromophore and 

the precursors to the flexible linkers. This approach is in contrast to the more common method of 

assembling the chromophore in the polymerization. This convergent approach would allow us 

easy access to chromophores of different lengths, while avoiding the potential of imperfect 

chromophores in our polymers. We chose to use HWE reactions between bisphosphonate cores 

and aldehyde arms terminated in long chain aliphatic -olefins to assemble the segmers (Figure 

26). These segmers could then be polymerized using a tandem ADMET/hydrogenation process 

developed by Wagener and coworkers.29, 103  
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Figure 26. Schematic representation of the ADMET preparation of rod-coil phenylene-vinylene copolymers. 

We were also interested in assessing the effects of linker composition on the thermal 

properties of phenylene-vinylene containing rod-coil copolymers. To investigate the effects of 

oxygen content and placement in the linker on the thermal properties of the polymer, we inverted 

our synthesis, assembling the linker first, followed by formation of the chromophore during a 

condensation polymerization (Scheme 25). We chose three linkers: decimethylene, (CH2)10, 1,8-

octanedioxy, O(CH2)8O, and triethylene glcyoxy, O(CH2CH2O)3. Since these three linkers have 

the same number of backbone atoms (10), the only variable is the number and placement of the 

oxygen atoms. Additionally, the HWE polymerization provided higher MW polymers while 

being more robust and operationally simpler than the ADMET polymerization. This approach 

also allowed us to prepare polymers containing mixtures of linkers in different ratios to further 
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probe the effects of linker composition on the properties of the polymers. This investigation is 

still in its preliminary stages. 

 

Scheme 25 HWE preparation of rod-coil phenylene-vinylene copolymers. 

4.2 RESULTS AND DISCUSSION 

4.2.1 Rod-coil copolymers prepared by ADMET 

Six segmers were assembled by HWE reactions in moderate to good yields. The segmers were 

polymerized by an ADMET polymerization with Grubbs I in good to quantitative yields. The 

polymers displayed modest number average molecular weights (Mns) of 13-30 kDa and low 

polydispersity indices (PDIs) of 1.66-2.05, as determined by size exclusion chromatography 

(SEC) to relative to polystyrene standards. The tandem ADMET/hydrogenation procedure was 
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complex and required long reaction times, but we were unable to find replacement hydrogenation 

conditions that did not also result in partial reduction of the vinylene groups in the chromophore. 

We investigated thermal and optical properties of the two copolymers that retained the 

greatest chromophore fidelity after hydrogenation. The melting transition temperatures (Tms) 

varied significantly with linker content. The polymer with oxygen atoms in the linker exhibited a 

significantly higher Tm than the polymer with a linker containing only methylenes. The optical 

properties of the polymers were identical to those of the segmer precursors and did not vary 

significantly based on the linker composition.  

4.2.1.1 Segmer synthesis 

We have prepared six segmers based around a trimeric OPV core by the HWE reaction of 

bisphosphonate 22 and six different benzaldehydes, 23 – 28 (Scheme 26). The reactions 

proceeded in moderate to good yields. The segmers contained small cis impurities by 1H NMR.  

These six segmers (29 – 34) contain the precursors for six different linkers: decimethylene, 

(CH2)10 (29), tetradecimethylene, (CH2)14 (30), octadecimethylene, (CH2)18 (31), 1,8-octanedioxy, 

O(CH2)8O (32), 1,12-dodecanedioxy, O(CH2)12O (33), and 1,16-hexadecanedioxy, O(CH2)16O 

(34). Attempts to prepare pentameric segmers were unsuccessful due to the low solubility of the 

pentamers inhibiting isolation and purification. 
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Scheme 26. Synthesis of ADMET segmers 

The syntheses of all segmers require bisphosphonate 22, which was prepared from 

hydroquinone ether 1 in 60% yield over 2 steps (Scheme 27). Ether 1 was chloromethylated with 

concentrated HCl and paraformaldehyde in acetic anhydride in quantitative yield. The 

chloromethyl compound 35 was converted into the bisphosphonate via an Arbusov reaction with 

P(OMe)3 in refluxing toluene in 60% yield. These reactions were regularly performed on 25+ g 

scales. 

 

Scheme 27. Synthesis of bisphosphonate 22. 

The aldehyde components were prepared in one or two steps using conventional 

chemistry. Three of the benzaldehydes (23, 24, and 25) were prepared from 4-

bromobenzaldehyde by Suzuki reactions with 9-(alk--enyl)-9-borabicyclonanes (Scheme 28). 

Yields were typically around 65-70%, although we were able to optimize the yield of 23. The 
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other three benzaldehydes (26, 27, and 28) were prepared from 4-hydroxybenzaldehyde and the 

tosylates of alk--en-1-ols (Scheme 29). Conversion of the alcohols to tosylates proceeded in 

excellent yields, and the alkylations of 4-hydroxybenzaldehyde proceeded in moderate yields. 

 

Scheme 28. Synthesis of aldehydes 23, 24, and 25. 

 

Scheme 29. Synthesis of aldehydes 26, 27, and 28. 

4.2.1.2 ADMET polymerization and hydrogenation 

We polymerized two segmers, 29 and 32, using the tandem ADMET/hydrogenation procedure. 

Segmers 29 and 32 were polymerized in PhMe/Ph2O under vacuum at 50 oC (Scheme 30). The 

resulting polymers were hydrogenated immediately using residual Grubbs I catalyst in PhMe 

under 140 psi H2 at 80 oC, with SiO2 added as a solid support. Long hydrogenation times, 24-48 

hours, were required to fully reduce the aliphatic olefin. After precipitation, the polymers were 

isolated in good yields. The polymers displayed modest Mns (13-15 kDa) with low PDIs (1.7-

1.8).  
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Scheme 30. Synthesis of ADMET polymers p29 and p32. Mns and PDIs determined by SEC in THF relative to 
polystyrene standards. 

Given the long hydrogenation times necessary in the tandem ADMET/hydrogenation 

methodology, we chose to isolate the remainder of our polymers after the ADMET step in the 

interest of investigating alternative methods of hydrogenation. Segmers 30, 31, and 34 were 

polymerized by Grubbs I in refluxing DCM (Scheme 31). ADMET polymerization in refluxing 

DCM proved an improvement over the PhMe/Ph2O procedure. First, it was operationally 

simpler. Second, the ADMET polymers p30, p31, and p34 were isolated in quantitative yield, 

with higher Mns (22 – 30 kDa) and similar PDIs when compared to p29 and p32. 
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Scheme 31. Synthesis of ADMET polymers p30, p31, and p34. Mns and PDIs determined by SEC in THF relative 
to polystyrene standards. 

We examined three alternative procedures to reduce the aliphatic olefins in the flexible 

segments of p30, p31, and p34. However, we were unable to prevent partial reduction of the 

vinylene olefins in the chromophore. Reduction of p31 and p34 by RuHCl(CO)(PCy3)2 and 

SiO2, which mimics the hydrogenation conditions using residual Grubbs I, under 180 psi H2 in 

PhMe at 80 oC was selective for the aliphatic olefin. However, by the time the aliphatic olefin 

was completely reduced (48 h), 25% of the vinylene olefins were also reduced. Reduction of p34 

by Pd/C under 1 atm of H2 in THF was unselective. After 10 min, equal proportions of all olefins 

were reduced. Reduction of p31 by Raney Ni under 1 atm of H2 in THF was selective for the 

vinylene olefins in the chromophore. After 15 min, partial reduction of the vinylene olefins was 

observed with minimal aliphatic olefin reduction. 
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4.2.1.3 Thermal and optical properties of p29 and p32 

We investigated the thermal and optical properties of p29 and p32, the two copolymers 

with the greatest chromophore fidelity after hydrogenation. The oxygen atoms in the linker of 

p32 dramatically increase the Tm of p32 over that of p29. However, there is no significant 

difference in the optical properties of the two polymers. These two polymers represent an 

interesting subset of the ADMET polymers since they are identical except for two positions in 

their linkers. The chromophores in p29 are linked by decimethylene groups, -(CH2)10-, while the 

chromophores in p32 are linked by 1,8-octanedioxy groups, -O(CH2)8O-.  

We report the surprising result that replacing two methylene units with oxygen atoms in 

the flexible linker of our rod-coil copolymers dramatically increases the Tm of the polymer. Both 

copolymers p29 and p30 exhibit two Tms, but the transitions for p32 are 60-70 oC higher than 

those of p29 (Figure 27). Additionally, p32 exhibits a crystallization transition on cooling, while 

p29 does not. These differences in thermal properties cannot be attributed to molecular weight 

differences; both polymers have similar Mns. The presence of the oxygen atoms must enhance 

the crystallinity of the polymer. 

 

Figure 27. Differential scanning calorimograms of p29 and p32. 
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The optical properties of the copolymers are not affected by the presence or absence of 

oxygen atoms in the linker. Copolymers p29 and p32 have nearly identical absorption maxima, 

emission maxima, and optical Egs (Table 14). The only difference is in molar absorptivity; the 

molar absorptivity of p29 is nearly twice that of p32. The segmer precursors, 29 and 32 also 

have nearly identical optical properties, including molar absorptivity.  

Table 14. Optical properties of 29, p29, 32, and p32.a 

Compound max
abs / nm max

em  / nm 
b
/  M

-1 cm-1 
Eg

c
 /  eV 

29 392 446, 468 59,500 2.79 

p29 391 445, 469 78,400 2.79 

32 395 446, 471 56,100 2.78 

p32 393 447, 475 40,700 2.76 
a Obtained in DCM (~10-6 M); b Calculated at absorption maximum c HOMO-LUMO gap estimated as the onset of 
absorption. 

The absorption and emission maxima and HOMO-LUMO gap do not change after 

polymerization, indicating the success of our methodology. By assembling the chromophore 

before the polymerization, we ensure that the polymer chains do not contain incomplete 

chromophores, which would detract from the optical properties. Additionally, the linkers isolate 

any potential defects, preventing them from detracting from the optical properties.  

4.2.1.4 Conclusions 

We have examined an ADMET/hydrogenation route for the preparation of well-defined 

phenylene-vinylene rod-coil copolymers. The ADMET polymerization produced modest 

molecular weight polymers in good to quantitative yields. The tandem ADMET/hydrogenation 

procedure, while operationally more complex, yielded polymers without noticeable chromophore 
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reduction. Alternative hydrogenation procedures were not selective for the aliphatic olefins in the 

linkers.  

The two copolymers with the greatest chromophore fidelity, p29 and p32, exhibited 

interesting thermal and optical properties. The Tms of p32, the copolymer with oxygen atoms in 

the linker, were 60-70 oC higher than those of p29, the copolymer with only methylenes in its 

linker. However, the optical properties of the two copolymers were nearly identical. The 

similarity between the optical properties of the polymers and their segmer precursors indicates 

that the chromophore fidelity is maintained in the polymerization. 

4.2.2 Rod-coil copolymers prepared by HWE polycondensation 

We have prepared a series of rod-coil copolymers containing varying oxygen content and 

placement in the linker. The polymers display a wide range of thermal properties based on the 

linker composition. The thermal properties of the random copolymers are intermediate between 

the thermal properties of the respective homopolymers and display a linear relationship with 

respect to composition. 

4.2.2.1 Polymer synthesis 

The three dialdehyde linkers were prepared in one or two steps from commercially 

available compounds (Scheme 32). 1,9-Decadiene was converted to dialdehyde D by first 

hydroboration with 9-BBN to produce a 1,10-decane-diborane followed by a Suzuki reaction 

with 4-bromobenzaldehyde in 63% yield over 2 steps. 1,8-Dibromooctane and 4-

hydroxybenzaldehyde were converted to dialdehyde O by an SN2 reaction with K2CO3 and 

catalytic KI in refluxing MeCN in 90% yield. Triethylene glycol was converted into the 
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bis(tosylate) using TsCl and KOH in DCM in 95%. The bis(tosylate) was then reacted with 4-

hydroxybenzaldehyde and K2CO3 in refluxing MeCN to give dialdehyde T in 98% yield. 

 

Scheme 32. Synthesis of dialdehyde linkers. 

One series of copolymers was prepared by HWE polycondensations between dialdehydes 

O and T and bis(phosphonate) 22. Varying ratios of dialdehydes O and T were condensed with 

one equivalent of bis(phosphonate) 22 (based on total dialdehyde). The polymerizations 

proceeded in good to excellent yields, with Mns ranging from 36.5 kDa to 57.8 kDa (Table 15). 

The PDIs (1.28 – 1.42) were low for polycondensations. Polymers containing dialdehyde D have 

not yet been prepared. 
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Table 15. Yields and properties of rod-coil copolymers 

 
Polymer x:y Yield Mn

a
 / kDa Mw

a
 / kDa PDIa Tg

b / oC Tm
b / oC 

PV-O 10:0 89% 48.7 69.0 1.42 40 141 

PV-O9T1 9:1 92% 51.8 71.1 1.38 39 134 

PV-O5T5 5:5 81% 57.8 74.0 1.28 36 109 

PV-O1T9 1:9 82% 41.1 53.7 1.31 32 N.O.c 

PV-T 0:10 94% 36.5 49.3 1.35 31 62 
a Determined by SEC relative to polystyrene standards; b Determined by DSC, 10 oC/min scan rate; c not observed 

4.2.2.2 Thermal properties 

The thermal properties of the copolymers vary with oxygen content in the linker. The Tm 

of PV-O is nearly 80 oC higher than that of PV-T, even though PV-T contains more oxygen 

atoms in its linker. PV-O also has a higher Tg than PV-T, though the difference in Tg is smaller. 

The optimal number and placement of oxygen atoms in the linker appears to be two oxygen 

atoms, one at each end of the linker. This arrangement leads to a higher Tm than either an all 

methylene linker (vide supra) or a linker with four regularly spaced oxygen atoms. Based on the 

data collected for our ADMET polymers, we expect PV-D, the copolymer containing only the all 

methylene linker, will exhibit a Tm intermediate between those of PV-O and PV-T.  

The thermal properties of the rod-coil copolymers can be fine-tuned by preparing 

copolymers containing varying ratios of O and T linkers. The thermal properties of these PV-

OxTy copolymers vary linearly with composition between the properties of the parent polymers 

PV-O and PV-T (Table 15, Figure 28), with the exception of PV-O1T9, which anomalously does 
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not exhibit a melting transition. We expect that copolymers containing various ratios of linkers D 

and O or D and T will exhibit similar behavior.  

 

Figure 28. Correlation of thermal properties of the PV-OxTy series to composition: Tg (open circles) and Tm (closed 
circles). 

4.2.2.3 Conclusions 

The thermal properties of a series of rod-coil phenylene-vinylene copolymers vary 

significantly with changes in the oxygen content and placement within the linker group. The 

copolymers with linkers containing two oxygen atoms, one at either end of the linker, have the 

highest Tms and Tgs. The thermal properties can be fine-tuned by incorporating varying ratios of 

two linkers. The thermal properties of these copolymers vary linearly between the properties of 

the parent polymers. These polymers are prepared by an HWE polycondensation that proceeds in 

good to excellent yields and generates polymers with moderate Mns and low PDIs.  
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We will investigate the optical properties of these copolymers. Based on previous 

reports100-102 and our own results with the ADMET polymers we believe these copolymers will 

have similar absorption and emission profiles. If so, these polymers would represent an example 

of fine-tuning thermal properties of conjugated polymers without disrupting optical properties. 

4.3 EXPERIMENTAL SECTION 

4.3.1 General methods 

Materials. Pyridine and MeCN were dried over CaH2 and distilled. Anhydrous DMF, 9-H-9-

borabicyclo[3.3.1]nonane (0.5 M in THF) and nBuLi (1.6 M in hexanes) were purchased from 

Aldrich and dispensed using air-sensitive techniques. KOtBu was stored in a desiccator over 

anhydrous CaSO4. PdCl2(PPh3)2 was stored in a nitrogen-filled glovebox. When necessary, THF 

was dried by passing over a column of activated alumina. 9-(hex-5-en-1-yl)-9-

borabicyclo[3.3.1]nonane, 9-(oxt-7-en-1-yl)-9-borabicyclo[3.3.1]nonane, and 9-(dec-9-en-1-yl)-

9-borabicyclo[3.3.1]nonane were according to a literature procedure. All other reagents and 

solvents were used as received. Column chromatography was carried out on standard grade silica 

gel (60 Å pore size, 40-63 m particle size), which was purchased and used as received. 

Hexanes, dichloromethane, ethyl acetate, and diethyl ether used for column chromatography 

were purchased and used as received. 

Instrumentation. 1H (300 and 400 MHz) and 13C (75 and 100 MHz) NMR spectra were 

recorded on Bruker spectrometers. Chemical shifts were referenced to residual 1H or 13C signals 

in deuterated solvents (7.27 and 77.0 ppm, respectively, for CHCl3 and 5.32 and 54.0 ppm, 
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respectively, for CH2Cl2).  UV/VIS absorption spectra were recorded on a Perkin Elmer Lambda 

9 UV/VIS/NIR spectrometer. Emission spectra were recorded on a Varian Cary Eclipse 

fluorimeter. DSC was performed on a Perkin Elmer Pyris 6 with a heating and cooling rate of 10 

oC/min. HRMS were recorded on a Fison VG Autospec in the Mass Spectral Facility of the 

University of Pittsburgh. Elemental analysis was performed independently by Atlantic 

Microlabs.  

 

4.3.2 Rod-coil copolymers prepared by ADMET 

 

1,4-bis(chloromethyl)-2,5-bis(hexyloxy)benzene (35, vi15a). Based on the methods of Severen, 

et al.,104 1 (25.0 g, 89.8 mmol), paraformaldehyde (8.0 g, 265 mmol), and HCl (12 M, 53 mL, 

636 mmol) were added to a round-bottom flask equipped with a water-cooled condenser and a 

thermometer and heated to 60 oC with stirring. Ac2O (90 mL, 958 mmol) was added dropwise 

down the condenser at a slow rate to prevent the temperature from rising above 70 oC. The 

mixture was stirred at 60 oC overnight, by which time the product had precipitated. The mixture 

was poured into ice cold H2O (500 mL) and extracted with DCM (3x 250 mL). The combined 

organic layers were washed with sat. NaHCO3 (100 mL), water (2x 100 mL), and brine (100 

mL). The organic solution was dried over MgSO4 and the solvent was removed in vacuo to give 

1,4-bis(chloromethyl)-2,5-bis(hexyloxy)benzene as a white solid (32.8 g, 100%). 1H NMR 

(CDCl3, 300 MHz)  0.89 (6H, t, J = 6.8 Hz), 1.33 (8H, mult), 1.47 (4H, mult), 1.78 (6H, pent, J 
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= 6.7 Hz), 3.96 (4H, t, J = 6.4 Hz), 4.61 (4H, s), 6.89 (2H) ppm. 13C NMR (CDCl3, 75 MHz)  

14.0, 22.6, 25.7, 29.3, 31.5, 41.4, 69.1, 114.3, 127.0, 150.6 ppm. MS (EI) 376 (M+2), 374 (M+), 

339, 255, 208, 206 (base), 172, 158, 122, 107, 91, 84, 77, 69, 57, 55 m/z. HRMS calcd for 

C20H32Cl2O2 374.1782 g/mol. Found: 374.1779 g/mol. 

 

  

1,4-bis(dimethoxyphosphorylmethyl)-2,5-bis(hexyloxy)benzene (22, vi17a). 35 (31.0 g, 87.2 

mmol) and P(OCH3)3 (25 mL, 212 mmol) were dissolved in PhMe (200 mL) and refluxed for 24 

h. The volatiles were removed in vacuo. The crude product was triturated with cold hexanes and 

filtered to give the title compound as a white solid (27.8 g, 60%). MP 68.0-69.0 oC. 1H NMR 

(CDCl3, 300 MHz)  0.88 (6H, t, 3JH-H = 6.6 Hz), 1.32 (8H, mult), 1.43 (4H, mult), 1.75 (4H, 

pent, 3JH-H = 7.3 Hz), 3.21 (4H, d, 2JH-P = 20.5 Hz), 3.65 (12H, d, 3JH-P = 10.4 Hz), 3.91 (4H, d, 

3JH-H = 6.6 Hz), 6.87 (2H, s) ppm. 13C NMR (CDCl3)  14.0 (CH3), 22.6 (CH2), 25.6 (d, 1JC-P = 

141.9 Hz, PCH2Ar), 25.7 (CH2), 29.5 (CH2), 31.6 (CH2), 52.6 (2d, 2JC-P = 3.1 Hz, P(OCH3)2), 

69.0 (OCH2), 114.9 (Ar CH), 119.2 (t, 2JC-P = 2.5 Hz, Ar quat), 150.4 (ArO quat) ppm. FT-IR 

(thin film) 2950 (m), 2869 (m), 1515 (m), 1474 (w), 1423 (w), 1395 (w), 1275 (m), 1224 (s), 

1058 (m), 1032 (s), 901 (m), 871 (m), 859 (m), 834 (m) cm-1. MS (EI) 522 (M+, base), 438, 400, 

354, 322, 316, 278, 245, 232, 213, 110, 93, 57 m/z. HRMS calcd for C24H44O8P2: 522.2511 

g/mol. Found: 522.2514 g/mol. 
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4-(hex-5-enyl)benzaldehyde (23, iii28a). Based on the methods of Thiem, et al.,105 p-

bromobenzaldehyde (2.60 g, 14.1 mmol) and tetra-N-butylammonium bromide (90 mg, 0.28 

mmol) were dissolved in toluene (50 mL) in a Schlenk flask equipped with a stirbar. Aqueous 

sodium carbonate (2.0 M, 20 mL) was added and the mixture was degassed and taken into a 

nitrogen-filled glovebox. 9-(hex-5-enyl)-9-BBN (4.1 mL, 18 mmol) and PdCl2(PPh3)2 (196 mg, 

0.28 mmol) were added quickly and the reaction mixture was removed from the glovebox. The 

reaction mixture was stirred under nitrogen at 50 oC for 24 h. After cooling to RT, the layers 

separated. The aqueous layer was extracted with DCM (2x 30 mL). The combined organic layers 

were then washed with brine (50 mL), dried over MgSO4, and reduced in vacuo. The crude 

product was purified column chromatography (silica gel, 19:1 hexanes:Et2O) to give the title 

compound as a colorless oil (2.50 g, 95%). 1H NMR (CDCl3, 300 MHz)  1.39 (2H, pent, J = 7.2 

Hz), 1.64 (2H, pent, J = 7.5 Hz), 2.07 (2H, q, J = 7.2 Hz), 2.68 (2H, t, J = 7.7 Hz), 4.85-5.00 

(2H, mult), 5.70-5.85 (1H, mult), 7.31 (2H, d, J = 8.0 Hz, p-C6H4), 7.78 (2H, d, J = 8.0 Hz, p-

C6H4), 9.95 (s, 1H) ppm. 13C NMR (CDCl3, 75 MHz )  28.2 (CH2), 30.3 (CH2), 33.3 (CH2), 

35.8 (CH2), 114.5 (vinyl CH2) , 128.9 (Ar CH), 129.7 (Ar CH), 134.3 (Ar quat), 138.3 (vinyl 

CH), 150.0 (Ar quat), 191.7 (CHO) ppm. FT-IR (neat) 3076 (s), 2932 (s), 2857 (s), 2732 (s), 

1705 (s), 1640 (s), 1607 (s), 1576 (s), 1461 (s), 1388 (s), 1306 (s), 1213 (s), 1168 (s), 1114 (w), 

993 (s), 912 (s), 826 (s), 779 (s) cm-1. MS (EI) 188 (M+), 159, 145, 132, 117, 105, 91 (base), 77, 

65 m/z. HRMS calcd for C13H16O: 188.1201 g/mol. Found: 188.1202 g/mol. 

 

 

4-(oct-7-enyl)benzaldehyde (24, iii24a). Based on the methods of Thiem, et al.,105 p-

bromobenzaldehyde (3.00 g, 16.2 mmol) and tetra-N-butylammonium bromide (100 mg, 0.32 
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mmol) were dissolved in toluene (30 mL) in a Schlenk flask equipped with a stirbar. Aqueous 

sodium carbonate (2.0 M, 20 mL) was added and the mixture was degassed and taken into a 

nitrogen-filled glovebox. 9-(oct-7-enyl)-9-BBN (5.64 g, 24.3 mmol) and PdCl2(PPh3)2 (225 mg, 

0.28 mmol) were added quickly and the reaction mixture was removed from the glovebox. The 

reaction mixture was stirred under nitrogen at 50 oC for 24 h. After cooling to RT, the layers 

separated. The aqueous layer was extracted with DCM (2x 30 mL). The combined organic layers 

were then washed with brine (50 mL), dried over MgSO4, and reduced in vacuo. The crude 

product was purified column chromatography (silica gel, 19:1 hexanes:Et2O) to give the title 

compound as a colorless oil (2.30, 66%). 1H NMR (CDCl3, 300 MHz)  1.35-1.45 (6H, mult), 

1.62 (2H, pent, J = 6.9 Hz), 1.95-2.05 (2H, mult), 2.67 (2H, t, J = 7.5 Hz), 4.85-5.00 (2H, mult), 

5.70-5.85 (1H, mult), 7.31 (2H, d, J = 8.1 Hz, p-C6H4), 7.78 (2H, d, J = 8.1 Hz, p-C6H4), 9.95 

(1H, s, CHO). 13C NMR (CDCl3, 75 MHz )  28.79 (CH2), 28.90 (CH2), 29.08 (CH2), 31.02 

(CH2), 33.74 (CH2), 36.20 (CH2), 114.30 (vinyl CH2), 128.09 (Ar CH), 129.91 (Ar CH), 134.42 

(Ar quat), 139.03 (vinyl CH), 150.43 (Ar quat), 192.06 (CHO) ppm. MS (EI): 216 (M+) 145, 

132, 120, 105, 91 (base), 77, 65, 55 m/z. HRMS calcd for C15H20O: 216.514 g/mol. Found: 

216.1514 g/mol. 

 

 

4-(dec-9-enyl)benzaldehyde (25, iii25a). Based on the methods of Thiem, et al.,105 p-

bromobenzaldehyde (3.00 g, 16.2 mmol) and tetra-N-butylammonium bromide (100 mg, 0.32 

mmol) were dissolved in toluene (30 mL) in a Schlenk flask equipped with a stirbar. Aqueous 

sodium carbonate (2.0 M, 20 mL) was added and the mixture was degassed and taken into a 

nitrogen-filled glovebox. 9-(dec-9-enyl)-9-BBN (6.32 g, 24.3 mmol) and PdCl2(PPh3)2 (225 mg, 
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0.28 mmol) were added quickly and the reaction mixture was removed from the glovebox. The 

reaction mixture was stirred under nitrogen at 50 oC for 24 h. After cooling to RT, the layers 

separated. The aqueous layer was extracted with DCM (2x 30 mL). The combined organic layers 

were then washed with brine (50 mL), dried over MgSO4, and reduced in vacuo. The crude 

product was purified column chromatography (silica gel, 19:1 hexanes:Et2O) to give the title 

compound as a colorless oil (2.61 g, 66%). 1H NMR (CDCl3, 300 MHz)  1.35-1.45 (10H, mult), 

1.62 (2H, mult), 2.01 (2H, q, J = 6.6 Hz), 2.66 (2H, t, J = 7.8 Hz), 4.85-5.00 (2H, mult), 5.70-

5.85 (1H, mult), 7.31 (2H, d, J = 8.1 Hz, p-C6H4), 7.78 (2H, d, J = 8.1 Hz, p-C6H4), 9.95 (1H, s, 

CHO). 13C NMR (CDCl3, 75 MHz )  28.90 (CH2), 29.10 (CH2), 29.24 (CH2), 29.38 (CH2), 

31.09 (CH2), 33.80 (CH2), 36.23 (CH2), 114.50 (vinyl CH2), 129.09 (Ar CH), 129.91 (Ar CH), 

134.41 (Ar quat), 139.19 (vinyl CH), 150.50 (Ar quat), 192.06 (CHO) ppm. MS (EI:) 244 (M+), 

159, 146, 132, 120, 91 (base), 77, 69, 55 m/z. HRMS calcd for C17H24O: 244.1827 g/mol. Found: 

244.1829 g/mol. 

 

 

Pent-4-enyl tosylate (36, ii91a). 4-penten-1-ol (4.72 g, 54.8 mmol) and TsCl (14.2 g, 74.3 

mmol) were dissolved in dry pyridine (40 mL) at 0 oC and stirred for 3.5 h. The reaction was 

quenched into a mixture of 100 g of ice and 100 mL of 1 M HCl. The mixture was extracted with 

Et2O (3x 100 mL). The combined organic layers were washed with sat. NaHCO3 (100 mL), 

water (100 mL), and brine (100 mL). The solution was dried over MgSO4 and the solvent was 

removed in vacuo to give the title compound as a pale yellow oil that crystallized into thin 

needles (13.2 g, 100%). 1H NMR (CHCl3, 300 MHz)  1.75 (2H, pent, J = 6.9 Hz), 2.09 (2H, q, J 
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= 6.9 Hz), 2.46 (3H, s), 4.04 (2H, t, J = 6.3 Hz), 4.90-5.00 (2H, mult), 5.60-5.75 (1H, mult), 7.36 

(2H, d, J = 8.1 Hz, p-C6H4), 7.80 (2H, d, J = 8.1 Hz, p-C6H4) ppm. 

 

 

Hept-6-enyl tosylate (37, iii39a). 6-hepten-1-ol (5.0 mL, 37.2 mmol) and TsCl (10.6 g, 55.5 

mmol) were dissolved in dry pyridine (40 mL) at 0 oC and stirred for 3.5 h. The reaction was 

quenched into a mixture of 100 g of ice and 100 mL of 1 M HCl. The mixture was extracted with 

Et2O (3x 100 mL). The combined organic layers were washed with sat. NaHCO3 (100 mL), 

water (100 mL), and brine (100 mL). The solution was dried over MgSO4 and the solvent was 

removed in vacuo to give the title compound as a pale yellow oil (8.97, 90%). 1H NMR (CHCl3, 

300 MHz)  1.25-1.35 (4H, mult), 1.65 (2H, pent, J = 6.3 Hz), 1.95-2.05 (2H, mult), 2.46 (3H, 

s), 4.03 (2H, t, J = 6.3 Hz), 4.90-5.00 (2H, mult), 5.65-5.75 (1H, mult), 7.35 (2H, d, J = 8.1 Hz, 

p-C6H4), 7.80 (2H, d, J = 8.1 Hz, p-C6H4) ppm. 

 

  

Non-8-enyl tosylate (38, iii39a). 8-nonen-1-ol (5.0 mL, 29.9 mmol) and TsCl (10.6 g, 55.5 

mmol) were dissolved in dry pyridine (40 mL) at 0 oC and stirred for 3.5 h. The reaction was 

quenched into a mixture of 100 g of ice and 100 mL of 1 M HCl. The mixture was extracted with 

Et2O (3x 100 mL). The combined organic layers were washed with sat. NaHCO3 (100 mL), 

water (100 mL), and brine (100 mL). The solution was dried over MgSO4 and the solvent was 

removed in vacuo to give the title compound as a pale yellow oil (7.59 g, 86%). 1H NMR 

(CHCl3, 300 MHz)  1.15-1.40 (8H, mult), 1.55-1.70 (2H, mult), 2.02 (2H, pent, J = 7.0 Hz), 
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2.46 (3H, s), 4.03 (2H, t, J = 6.3 Hz), 4.90-5.05 (2H, mult), 5.60-5.75 (1H, mult), 7.35 (2H, d, J 

= 8.4 Hz, p-C6H4), 7.80 (2H, d, J = 8.4 Hz, p-C6H4) ppm. 

 

 

4-(pent-4-enyloxy)benzaldehyde (26, ii92a). p-Hydroxybenzaldehyde (5.00 g, 40.9 mmol) was  

dissolved in dry MeCN (50 mL). K2CO3 (6.00 g, 43.4 mmol) was added, followed by 36 (10.0 g, 

41.6 mmol). The dark pink mixture was refluxed for 2.5 h. The mixture was poured into H2O 

(100 mL) and extracted with Et2O (3x 100 mL). The combined organic layers were washed with 

brine (100 mL) and dried over MgSO4. The solvent was removed in vacuo. The crude product 

was purified by column chromatography (silica gel, 4:1 hexanes:Et2O) gave the title compound 

as a colorless oil (5.07 g, 65%). 1H NMR (CHCl3, 300 MHz)  1.93 (2H, pent, J = 6.9 Hz), 2.27 

(2H, q, J = 7.0 Hz), 4.06 (2H, t, J = 6.3 Hz), 4.95-5.15 (2H, mult), 5.75-5.95 (1H, mult), 7.00 

(2H, d, J = 8.7 Hz, p-C6H4), 7.84 (2H, d, J = 8.7 Hz, p-C6H4), 9.89 (1H, s, CHO) ppm. 13C NMR 

(CDCl3, 75 MHz)  28.14 (CH2), 29.92 (CH2), 67.49 (OCH2), 114.71 (Ar CH), 115.44 (vinyl 

CH2), 129.82 (Ar quat), 131.92 (Ar CH), 137.39 (vinyl CH), 164.10 (ArO quat), 190.69 (CHO) 

ppm. MS (EI): 190 (M+), 119, 81 (base), 65 m/z. HRMS calcd for C12H14O2: 190.0994 g/mol. 

Found: 190.1001 g/mol. 

 

 

4-(hept-6-enyloxy)benzaldehyde (27, iii58a). p-Hydroxybenzaldehyde (3.30 g, 27.0 mmol) was  

dissolved in dry MeCN (60 mL). K2CO3 (3.75 g, 26.8 mmol) was added, followed by 37 (30.0 g, 

11.2 mmol). The dark pink mixture was refluxed for 24 h. The mixture was poured into H2O 
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(100 mL) and extracted with Et2O (3x 100 mL). The combined organic layers were washed with 

brine (100 mL) and dried over MgSO4. The solvent was removed in vacuo. The crude product 

was purified by column chromatography (silica gel, 9:1 hexanes:Et2O) gave the title compound 

as a colorless oil (2.44 g, 90%). 1H NMR (CHCl3, 300 MHz)  1.40-1.50 (4H, mult), 1.70-1.85 

(2H, mult), 2.00-2.10 (2H, mult), 4.00 (2H, t, J = 6.3 Hz), 4.90-5.05 (2H, mult), 5.75-5.90 (1H, 

mult), 6.95 (2H, d, J = 8.7 Hz, p-C6H4), 7.79 (2H, d, J = 8.7 Hz, p-C6H4), 9.84 (1H, s, CHO) 

ppm. 13C NMR (CDCl3, 75 MHz)  25.26 (CH2), 28.37 (CH2), 28.72 (CH2), 33.46 (CH2), 68.10 

(OCH2), 114.19 (vinyl CH2), 114.55 (Ar CH), 129.59 (Ar quat), 131.76 (Ar CH), 138.46 (vinyl 

CH), 164.01 (ArO quat), 190.50 (CHO) ppm. 

 

 

4-(non-8-enyloxy)benzaldehyde (28, iii46a). p-Hydroxybenzaldehyde (2.50 g, 20.5 mmol) was  

dissolved in dry MeCN (30 mL). NaH (60% in mineral oil, 0.86 g, 21.5 mmol) was added, 

followed by 38 (6.20 g, 20.9 mmol). The dark pink mixture was refluxed for 2.0 h. Further 

aliquots of NaH (60% in mineral oil, 0.86 g, 21.5 mmol) and p-hydroxybenzaldehyde (2.50 g, 

20.5 mmol) were added and the mixture was refluxed for another 2 h. The mixture was poured 

into H2O (100 mL) and extracted with Et2O (3x 100 mL). The combined organic layers were 

washed with brine (100 mL) and dried over MgSO4. The solvent was removed in vacuo. The 

crude product was purified by column chromatography (silica gel, 49:1 hexanes:Et2O) gave the 

title compound as a colorless oil (2.89 g, 57%). 1H NMR (CHCl3, 300 MHz)  1.25-1.50 (8H, 

mult), 1.80 (2H, pent, J = 7.1 Hz), 2.03 (2H, q, J = 7.2 Hz), 4.02 (2H, t, J = 6.6 Hz), 4.85-5.05 

(2H, mult), 5.70-5.90 (1H, mult), 6.97 (2H, d, J = 8.7 Hz, p-C6H4), 7.81 (2H, d, J = 8.7 Hz, p-

C6H4), 9.86 (1H, s, CHO) ppm. 13C NMR (CDCl3, 75 MHz)  25.92 (CH2), 28.30 (CH2), 29.00 
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(CH2), 29.05 (CH2), 29.18 (CH2), 33.76 (CH2), 68.41 (OCH2), 114.27 (vinyl CH2), 114.76 (Ar 

CH), 129.79 (Ar quat), 132.00 (Ar CH), 139.07 (vinyl CH), 190.81 (CHO) ppm. MS (EI): 246 

(M+), 135, 123, 122, 121, 110, 105, 95, 83, 77, 69, 55 (base) m/z. HRMS calcd for C16H22O2: 

246.1620 g/mol. Found: 246.1615 g/mol. 

 

General HWE procedure to produce segmers. 22 (1 eq) was dissolved in THF (20 mL per g) 

and cooled to 0 oC under N2. KOtBu (4 eq) was added portionwise over 2 min, and the mixture 

was stirred at 0 oC for 5 min. A solution of aldehyde (2.5 eq) in THF (10 mL per g) was added 

dropwise, and the mixture was allowed to come to rt overnight with stirring. The reaction 

mixture was poured into 100 mL H2O and 100 mL of sat. NH4Cl and extracted with DCM (5x 

100 mL) and hexanes (100 mL). The combined organic layers were washed with brine (100 mL) 

and dried over MgSO4. The solvent was removed in vacuo. The crude product was purified using 

column chromatography. 

 

 

1,4-bis(4-(hex-5-enyl)styryl)-2,5-bis(hexyloxy)benzene (29, ii68a). According to the general 

procedure, 22 (0.925 g, 1.77 mmol) was dissolved in THF (20 mL) and cooled to 0 oC under N2. 

KOtBu (0.800 g, 7.13 mmol) was added portionwise over 2 min, and the mixture was stirred for 

5 min. To the orange mixture, as solution of 23 (0.800 g, 4.25 mmol) in THF (10 mL) was added 

dropwise. The reaction mixture was allowed to come to rt overnight with stirring. After workup, 

the crude product was purified using column chromatography (silica gel, 99:1 hexanes:Et2O) to 

give the title compound as a yellow solid (0.80 g, 70%). 1H NMR spectroscopy showed a small 
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cis impurity ( 6.7) that could not be removed. 1H NMR (CD2Cl2, 300 MHz)  0.94 (6H, t, J = 

6.9 Hz), 1.27 – 1.70 (20H, mult), 1.88 (4H, t, J = 6.9 Hz), 2.10 (4H, q, J = 6.9 Hz), 2.63 (4H, t, J 

= 7.5 Hz), 4.06 (4H, t, J =6.6 Hz), 4.90 – 5.05 (4H, mult), 5.80 – 5.90 (2H, mult), 7.10 – 7.20 

(8H, mult), 7.40 – 7.50 (6H, mult) ppm. 13C NMR (CD2Cl2, 75 MHz) 14.4 (CH3), 23.3 (CH2), 

26.6 (CH2), 29.2 (CH2), 30.1 (CH2), 31.5 (CH2), 32.3 (CH2), 34.2 (CH2), 36.1 (CH2), 70.2 

(OCH2), 111.0 (Ar CH), 114.7 (vinyl CH2), 123.0 (vinylene CH), 126.9 (Ar CH), 127.4 (Ar 

quat), 129.1 (vinylene CH), 129.3 (Ar CH), 136.0 (Ar quat), 139.6 (vinyl CH), 143.0 (Ar quat), 

151.6 (ArO quat) ppm. MS (EI) 646 (M+), 462 (base), 377, 294, 225, 223, 187, 173, 141, 129, 

117, 91, 83, 69, 55 m/z. HRMS calcd for C42H62O2: 646.4750. Found: 646.4756. 

 

 

1,4-bis(4-(oct-7-enyl)styryl)-2,5-bis(hexyloxy)benzene (30, iii49a). According to the general 

procedure, 22 (1.15 g, 2.20 mmol) was dissolved in THF (20 mL) and cooled to 0 oC under N2. 

KOtBu (1.00 g, 8.91 mmol) was added portionwise over 2 min, and the mixture was stirred for 5 

min. To the orange mixture, as solution of 24 (0.970 g, 4.48 mmol) in THF (10 mL) was added 

dropwise. The reaction mixture was allowed to come to rt overnight with stirring. After workup, 

the crude product was purified using column chromatography (silica gel, 99:1 hexanes:Et2O) to 

give the title compound as a yellow solid (0.711 g, 46%). 1H NMR (CD2Cl2, 300 MHz)  0.94 

(6H, mult), 1.27 – 1.50 (20H, mult), 1.50-1.70 (8H, mult), 1.89 (4H, t, J = 6.6 Hz), 2.00-2.10 

(4H, mult), 2.62 (4H, t, J = 7.5 Hz), 4.06 (4H, t, J =6.6 Hz), 4.90 – 5.05 (4H, mult), 5.75 – 5.90 

(2H, mult), 7.10 – 7.20 (8H, mult), 7.40 – 7.50 (6H, mult) ppm. 13C NMR (CD2Cl2, 75 MHz) 
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14.24 (CH3), 23.06 (CH2), 26.35 (CH2), 29.27 (CH2), 29.36 (CH2), 29.51 (CH2), 29.88 (CH2), 

31.78 (CH2), 31.93 (CH2), 32.05 (CH2), 34.15 (CH2), 36.01 (CH2), 70.26 (OCH2), 110.81 (Ar 

CH), 114.27 (vinyl CH2), 122.77 (vinylene CH), 126.73 (Ar CH), 127.20 (Ar quat), 128.96 

(vinylene CH), 129.13 (Ar CH), 135.81 (Ar quat), 139.65 (vinyl CH), 142.96 (Ar quat), 151.46 

(ArO quat) ppm. MS (EI) 702 (M+, base), 534, 504, 490, 369, 239, 129, 117, 97, 83, 69, 53 m/z. 

HRMS calcd for C50H70O2: 702.5376 g/mol. Found: 702.5355 g/mol. 

 

 

1,4-bis(4-(dec-9-enyl)styryl)-2,5-bis(hexyloxy)benzene (31, iii53a). According to the general 

procedure, 22 (1.00 g, 1.91 mmol) was dissolved in THF (20 mL) and cooled to 0 oC under N2. 

KOtBu (0.886 g, 7.90 mmol) was added portionwise over 2 min, and the mixture was stirred for 

5 min. To the orange mixture, as solution of 25 (0.965 g, 3.95 mmol) in THF (10 mL) was added 

dropwise. The reaction mixture was allowed to come to rt overnight with stirring. After workup, 

the crude product was purified using column chromatography (silica gel, 49:1 hexanes:Et2O) to 

give the title compound as a yellow solid (0.899 g, 62%). 1H NMR (CD2Cl2, 300 MHz)  0.94 

(6H, mult), 1.27 – 1.50 (28H, mult), 1.50-1.70 (8H, mult), 1.88 (4H, t, J = 6.6 Hz), 2.04 (4H, q,  

J = 7.5 Hz), 2.61 (4H, t, J = 7.5 Hz), 4.04 (4H, t, J =6.6 Hz), 4.90 – 5.05 (4H, mult), 5.75 – 5.90 

(2H, mult), 7.10 – 7.20 (8H, mult), 7.40 – 7.50 (6H, mult) ppm. 13C NMR (CD2Cl2, 75 MHz) 

14.05 (CH3), 22.64 (CH2), 25.94 (CH2), 28.91 (CH2), 29.11 (CH2),  29.28 (CH2), 29.40 (CH2), 

29.44 (CH2), 29.48 (CH2), 31.42 (CH2), 31.63 (CH2), 31.91 (CH2), 33.78 (CH2), 35.70 (CH2), 

69.58 (OCH2), 110.50 (Ar CH), 114.01 (vinyl CH2), 122.47 (vinylene CH), 126.37 (Ar CH), 
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126.85 (Ar quat), 128.56 (vinylene CH), 128.69 (Ar CH), 135.38 (Ar quat), 139.25 (vinyl CH), 

142.43 (Ar quat), 151.01 (ArO quat) ppm. MS (EI) 759 (M+), 702, 551, 518, 368, 334, 256, 149, 

129 (base) m/z. HRMS calcd for C54H78O2: 758.6002 g/mol. Found: 758.6023 g/mol 

 

 

1,4-bis(4-pent-4-enyloxy)styryl)-2,5-bis(hexyloxy)benzene (32, ii80a). According to the 

general procedure, 22 (1.15 g, 2.20 mmol) was dissolved in THF (20 mL) and cooled to 0 oC 

under N2. nBuLi (1.6 M in hexanes, 2.8 mL, 4.5 mmol) was added dropwise over 2 min, and the 

mixture was stirred for 5 min. To the orange mixture, as solution of 26 (1.00 g, 5.25 mmol) in 

THF (10 mL) was added dropwise. The reaction mixture was allowed to come to rt overnight 

with stirring. After workup, the crude product was purified using column chromatography (silica 

gel, 1:1 hexanes:PhMe) to give the title compound as a yellow solid (1.07 g, 75%). 1H NMR 

spectroscopy showed a small cis impurity ( 6.7) that could not be removed. 1H NMR (CD2Cl2, 

300 MHz)  0.93 (6H, t, J = 6.9 Hz), 1.25 – 1.45 (8H, mult), 1.45-1.60 (4H, mult), 1.80-1.95 

(8H, mult), 2.25 (4H, q, J = 6.6 Hz), 4.00 (4H, t, J =6.6 Hz), 4.05 (4H, t, J =6.6 Hz), 4.95 – 5.15 

(4H, mult), 5.80 – 5.95 (2H, mult), 6.89 (4H, d, J =8.7 Hz, p-C6H4), 7.10 (1H, d, J = 16.5 Hz, 

trans CH=CH), 7.12 (1H, s), 7.34 (1H, d, J = 16.5 Hz, trans CH=CH), 7.46 (4H, d, J =8.7 Hz, p-

C6H4) ppm. MS (EI): 650 (M+, base), 464, 420, 379, 228, 211, 183, 107, 95, 83, 69, 55 m/z. 

HRMS calcd for C44H58O4: 650.4335 g/mol. Found: 650.4357 g/mol. 
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1,4-bis(4-(hept-6-enyloxy)styryl)-2,5-bis(hexyloxy)benzene (33, iii62a). According to the 

general procedure, 22 (1.00 g, 1.91 mmol) was dissolved in THF (20 mL) and cooled to 0 oC 

under N2 KOtBu (0.886 g, 7.90 mmol) was added portionwise over 2 min, and the mixture was 

stirred for 5 min. To the orange mixture, as solution of 27 (0.860 g, 3.94 mmol) in THF (10 mL) 

was added dropwise. The reaction mixture was allowed to come to rt overnight with stirring. 

After workup, the crude product was purified using column chromatography (alumina, 1:1 

hexanes:DCM) to give the title compound as a yellow solid (1.16 g, 86%). 1H NMR 

spectroscopy showed a small cis impurity ( 6.7) that could not be removed. 1H NMR (CD2Cl2, 

300 MHz)  0.94 (6H, t, J = 6.9 Hz), 1.25 – 1.65 (20H, mult) 1.75-1.95 (8H, mult), 2.05-2.15 

(4H, mult), 3.99 (4H, t, J =6.6 Hz), 4.06 (4H, t, J =6.6 Hz), 4.90 – 5.10 (4H, mult), 5.80 – 5.95 

(2H, mult), 6.89 (4H, d, J =8.7 Hz, p-C6H4), 7.12 (1H, d, J = 16.5 Hz, trans CH=CH), 7.13 (1H, 

s), 7.36 (1H, d, J = 16.5 Hz, trans CH=CH), 7.47 (4H, d, J =8.7 Hz, p-C6H4) ppm. 13C NMR 

(CD2Cl2, 75 MHz) 14.43 (CH3), 23.27 (CH2), 26.57 (CH2), 26.50 (CH2), 29.66 (CH2),  29.83 

(CH2), 29.87 (CH2), 30.12 (CH2), 32.27 (CH2), 34.36 (CH2), 68.70 (OCH2), 70.17 (OCH2), 

110.84 (Ar CH), 114.47 (vinyl CH2), 115.25 (Ar CH), 121.66 (vinylene CH), 127.31 (Ar quat), 

128.18 (Ar CH), 128.69 (vinylene CH), 131.15 (Ar quat), 139.85 (vinyl CH), 151.54 (ArO quat), 

159.51 (ArO quat) ppm. MS (EI) 707 (M+), 429, 307, 293, 167, 149 (base), 129 m/z. HRMS 

calcd for C48H66O4: 706.4961 g/mol. Found: 706.4955 
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1,4-bis(4-(non-8-enyloxy)styryl)-2,5-bis(hexyloxy)benzene (34, iii54a). According to the 

general procedure, 22 (0.846 g, 1.62 mmol) was dissolved in THF (20 mL) and cooled to 0 oC 

under N2 KOtBu (0.752 g, 6.70 mmol) was added portionwise over 2 min, and the mixture was 

stirred for 5 min. To the orange mixture, as solution of 28 (0.825 g, 3.35 mmol) in THF (10 mL) 

was added dropwise. The reaction mixture was allowed to come to rt overnight with stirring. 

After workup, the crude product was purified using column chromatography (silica gel, 19:1 

hexanes:Et2O) to give the title compound as a yellow solid (1.24 g, 88%). 1H NMR spectroscopy 

showed a small cis impurity ( 6.7) that could not be removed. 1H NMR (CD2Cl2, 300 MHz)  

0.94 (6H, t, J = 6.9 Hz), 1.25 – 1.65 (28H, mult), 1.79 (4H, pent, J = 7.0 Hz), 1.88 (4H, pent, J = 

7.2 Hz), 2.05-2.15 (4H, mult), 3.98 (4H, t, J =6.6 Hz), 4.05 (4H, t, J =6.6 Hz), 4.90 – 5.05 (4H, 

mult), 5.75 – 5.90 (4H, mult), 6.90 (4H, d, J =8.7 Hz, p-C6H4), 7.11 (1H, d, J = 16.5 Hz, trans 

CH=CH), 7.13 (1H, s), 7.35 (1H, d, J = 16.5 Hz, trans CH=CH), 7.47 (4H, d, J =8.7 Hz, p-C6H4) 

ppm. 13C NMR (CD2Cl2, 75 MHz) 14.40 (CH3), 23.24 (CH2), 26.10 (CH2), 26.53 (CH2), 29.25 

(CH2),  29.69 (CH2), 30.06 (CH2), 30.25 (CH2), 32.23 (CH2), 34.26 (CH2), 68.54 (OCH2), 70.07 

(OCH2), 110.71 (Ar CH), 114.6 (vinyl CH2), 115.17 (Ar CH), 121.57 (vinylene CH), 127.21 (Ar 

quat), 128.14 (Ar CH), 128.60 (vinylene CH), 131.08 (Ar quat), 139.55 (vinyl CH), 151.45 (ArO 

quat), 159.41 (ArO quat) ppm. MS (EI) 763 (M+, base), 565, 535, 107 m/z. HRMS calcd for 

C52H74O4: 762.5587 g/mol. Found: 762.5621 g/mol. 
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Tandem ADMET polymerization/hydrogenation – p29 (ii70). In a nitrogen-filled glovebox, 

29 (0.50 g, 0.77 mmol) was dissolved in toluene (10 mL), in a pear-shaped flask equipped with a 

stirbar. Grubbs catalyst I (15 mg, 19 mol) and diphenyl ether (200 mg, 1.2 mmol) were added, 

and the reaction mixture was removed from the glovebox. While stirring, the toluene was slowly 

removed under vacuum. Once all toluene had been removed, the reaction mixture was heated to 

50 oC under vacuum. After 24 h, the stirbar became immobilized, and the reaction mixture was 

cooled to RT and returned to the glovebox. 1H NMR spectroscopy revealed no remaining 

terminal olefin. The reaction mixture was transferred to a stainless steel bomb with toluene (7 

mL). Silica (250 mg) was added, and the bomb was sealed. The bomb was removed from the 

glovebox, pressurized to 140 psi H2 and heated to 80 oC. After 72 h, the bomb was cooled to rt 

and degassed. The silica was removed by filtration through a plug of celite. The filtrate was 

reduced in vacuo, and the residue was dissolved in a small amount of DCM and precipitated into 

MeOH to give the polymer as a yellow-green solid (0.42 g, 88%). Mw = 27.8 kDa, Mn = 15.1 

kDa, PDI =1.84.  1H NMR (CD2Cl2, 300 MHz)  0.93 (6H, mult), 1.27 – 1.40 (28H, mult), 1.52 

– 1.59 (10H, mult), 1.87 (4H, mult), 2.61 (4H, t, J = 7.5 Hz), 4.05 (4H, t, J = 6.6 Hz), 7.07 – 7.19 

(8H, mult), 7.42 – 7.46 (6H, mult) ppm. 13C NMR (CD2Cl2, 75 MHz) 14.2 (CH3), 23.1 (CH2), 

26.4 (CH2), 29.7 (CH2), 29.9 (CH2), 30.0 (CH2), 31.9 (CH2), 32.1 (CH2), 36.1 (CH2), 70.0 

(OCH2), 110.8 (Ar CH), 122.7 (vinylene CH), 126.7 (Ar CH), 127.2 (Ar quat), 129.0 (vinylene 

CH), 129.1 (Ar CH), 135.8 (Ar quat), 143.0 (Ar quat), 151.4 ppm (ArO quat). UV/VIS 
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absorbance (6.19 x 10-6 M, DCM) max = 391 nm, = 78,400. Fluorescent emission (6.19 x 10-6 

M, DCM) max = 445, 469 nm. Analysis Calcd: C, 85.12; H, 9.84. Found: C, 81.46; H, 9.62. 

 

 

Tandem ADMET polymerization/hydrogenation – p32 (ii95). In a nitrogen-filled glovebox, 

32 (0.50 g, 0.77 mmol) was dissolved in toluene (10 mL), in a pear-shaped flask equipped with a 

stirbar. Grubbs catalyst I (29 mg, 24 mol) and diphenyl ether (200 mg, 1.2 mmol) were added, 

and the reaction mixture was removed from the glovebox. While stirring, the toluene was slowly 

removed under vacuum. Once all toluene had been removed, the reaction mixture was heated to 

50 oC under vacuum. After 30 h, the stirbar became immobilized, and the reaction mixture was 

cooled to RT and returned to the glovebox. 1H NMR spectroscopy revealed no remaining 

terminal olefin. The reaction mixture was transferred to a stainless steel bomb with toluene (7 

mL). Silica (250 mg) was added, and the bomb was sealed. The bomb was removed from the 

glovebox, pressurized to 140 psi H2 and heated to 80 oC. After 30 h, the bomb was cooled to rt 

and degassed. Continuous extraction of the reaction mixture with DCM over 72 h followed by 

removal of the solvent gave the polymer as a yellow-green solid (0.39 g, 81%). Mw = 22.8 kDa, 

Mn = 13.1 kDa, PDI =1.74. 1H NMR (CD2Cl2, 300 MHz)  0.93 (6H, mult), 1.25-1.65 (36H, 

mult), 1.70-1.90 (8H, mult), 3.98 (4H, t, J = 6.6 Hz), 4.04 (4H, t, J = 6.6 Hz), 6.89 (4H, d, J =8.7 

Hz, p-C6H4), 7.09 (1H, d, J = 16.5 Hz, trans CH=CH), 7.11 (1H, s), 7.34 (1H, d, J = 16.5 Hz, 

trans CH=CH), 7.46 (4H, d, J =8.7 Hz, p-C6H4) ppm. 13C NMR (CD2Cl2, 75 MHz) 14.40 

(CH3), 23.25 (CH2), 26.54 (CH2), 29.86 (CH2), 29.92 (CH2), 30.09 (CH2), 30.26 (CH2), 32.24 
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(CH2), 68.67 (OCH2), 70.14 (OCH2), 110.82 (Ar CH), 115.25 (Ar CH), 121.64 (vinylene CH), 

127.29 (Ar quat), 128.17 (Ar CH), 128.67 (vinylene CH), 131.14 (Ar quat), 151.52(ArO quat), 

159.48 (ArO quat) ppm. UV/VIS absorbance (DCM) max = 393 nm, = 40,700. Fluorescent 

emission (DCM) max = 447, 475 nm.  

 

 

ADMET polymerization in DCM without hydrogenation – p30 (iii69). 30 (200 mg, 0.284 

mmol) and Grubbs I (5.0 mg, 6.1 mol) were dissolved in DCM (4 mL) and refluxed for 24 h 

under N2. The reaction mixture was precipitated into MeOH and the polymer was isolated by 

filtration as 192 mg (100%) of a yellow solid. Mw = 43.3 kDa, Mn = 20.6 kDa, PDI =1.66. 

 

 

ADMET polymerization in DCM without hydrogenation – p31 (iii74). 31 (200 mg, 0.263 

mmol) and Grubbs I (5.0 mg, 6.1 mol) were dissolved in DCM (4 mL) and refluxed for 24 h 

under N2. The reaction mixture was precipitated into MeOH and the polymer was isolated by 

filtration as 190 mg (99%) of a yellow solid. Mw = 62.5 kDa, Mn = 30.6 kDa, PDI =2.05. 
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ADMET polymerization in DCM without hydrogenation – p34 (iii67). 34 (210 mg, 0.275 

mmol) and Grubbs I (5.0 mg, 6.1 mol) were dissolved in DCM (4 mL) and refluxed for 24 h 

under N2. The reaction mixture was precipitated into MeOH and the polymer was isolated by 

filtration as 204 mg (100%) of a yellow solid. Mw = 39.4 kDa, Mn = 21.9 kDa, PDI =1.80. 

4.3.3 Rod-coil copolymers prepared by HWE 

 

1,10-bis(4-formylphenyl)decane (D, ii104). A solution of 9-H-9-BBN in THF (0.5 M, 26 mL, 

13 mmol) was added dropwise to 1,9-decadiene (1.2 mL, 6.51 mmol) under N2 with stirring. The 

mixture was stirred for 48 h at rt and 20 h at 45 oC. Then, PdCl2(PPh3)2 (390 mg, 0.56 mmol), 4-

bromobenzaldehyde 5.00 g, 27.0 mmol), and 2.0 M Na2CO3 (20 mL) were added. The reaction 

mixture was stirred at 45 oC under N2 for 72 h. The mixture was cooled to rt. The aqueous layer 

was extracted with DCM (2x 30 mL). The combined organic layers were then washed with brine 

(50 mL), dried over MgSO4, and reduced in vacuo. The crude product was purified column 

chromatography (silica gel, 3:1 hexanes:Et2O) to give the title compound as a white solid (1.44 

g, 63%). 1H NMR (CDCl3, 300 MHz)  1.35-1.45 (12H, mult), 1.62 (4H, pent, J = 6.9 Hz), 2.67 

(4H, t, J = 7.5 Hz), 7.31 (4H, d, J = 8.1 Hz), 7.78 (4H, d, J = 8.1 Hz), 9.95 (1H, s, CHO). 13C 

NMR (CDCl3, 75 MHz )  28.79 (CH2), 28.90 (CH2), 29.08 (CH2), 31.02 (CH2), 36.20 (CH2), 

128.09 (Ar CH), 129.91 (Ar CH), 134.42 (Ar quat), 150.43 (Ar quat), 192.06 (CHO) ppm. MS 
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(EI): 350 (M+), 181, 161, 133, 120, 91 (base), 82, 67, 55 m/z. HRMS calcd for C24H30O2: 

350.2246 g/mol. Found: 350.2250 g/mol. 

 

 

1,8-bis(4-formylphenoxy)octane (O, vi70a). 1,8-dibromooctane (4.80 g, 17.6 mmol), 4-

hydroxybenzaldehyde (8.60 g, 70.4 mmol), K2CO3 (10.0 g, 72.4 mmol), and KI (2.90 g, 17.5 

mmol) were added to dry MeCN (100 mL) and refluxed for 4 h. The reaction mixture was 

poured into 3 M NaOH (200 mL) and extracted into Et2O (3x 100 mL). The combined ether 

layers were washed with 3 M NaOH (200 mL) and dried over MgSO4. The solvent was removed 

in vacuo to give the title compound as a white solid (5.6 g, 90%). 1H NMR (CDCl3, 300 MHz)  

1.35 – 1.55 (8H, mult), 1.83 (4H, pent, J = 6.6 Hz), 4.05 (4H, t, J = 6.6 Hz), 6.99 (4H, d, J = 8.7 

Hz), 7.83 (4H, d, J = 8.7 Hz), 9.88 (1H, s, CHO) ppm. 13C NMR (CDCl3, 75 MHz)  25.9 (CH2), 

29.0 (CH2), 29.2 (CH2), 68.3 (OCH2), 114.7 (Ar CH), 129.7 (Ar quat), 132.0 (Ar CH), 164.2 

(ArO quat), 190.8 (CHO) ppm. MS (EI) 354 (M+), 326, 250, 233, 135, 123, 121, 105, 94, 81, 77, 

69, 65, 55 (base) m/z. HRMS calcd for C22H26O4: 354.1831 g/mol. Found: 354.1824.  

 

 

2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl) bis(4-methylbenzenesulfonate) (vi68a). 

According to the methods of Bonger, et al,106 triethylene glycol (2.5 mL, 18.3 mmol) and TsCl 

(6.96 g, 36.6 mmol) were dissolved in DCM (20 mL) and cooled to 0 oC. Powdered KOH (8.21 

g, 141 mmol) was added portionwise over 10 min, and the reaction mixture was stirred at 0 oC 

for 3 h. The mixture was proportioned between water (50 mL) and DCM (50 mL). The aqueous 
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layer was extracted with DCM (2x 50 mL). The combined organic layers were washed with 

water (50 mL) and brine (50 mL) and dried over MgSO4. The solvent was removed in vacuo to 

give the title compound as a white solid (8.0 g, 95%). 1H NMR (CDCl3, 300 MHz)  2.31 (6H, 

s), 3.53 (4H, s), 3.66 (4H, t, J = 4.8 Hz), 4.14 (4H, t, J = 4.8 Hz), 7.34 (4H, dd, J = 6.6, 1.8 Hz), 

7.79 (4H, dd, J = 6.6, 1.8 Hz) ppm. 13C NMR (CDCl3, 75 MHz)  21.6 (ArCH3), 68.7 (OCH2), 

69.1 (OCH2), 70.6 (OCH2), 127.9 (Ar CH), 129.8 (Ar CH), 132.7 (Ar quat), 144.8 (ArSO2 quat) 

ppm. 

 

 

1,2-bis(2-(4-formylphenoxy)ethoxy)ethane (T, vi69a). vi68a (8.0 g, 17.4 mmol), 4-

hydroxybenzaldehyde (8.60 g, 70.4 mmol), and K2CO3 (10.0 g, 72.4 mmol), were added to dry 

MeCN (100 mL) and refluxed for 4 h. The reaction mixture was poured into 3 M NaOH (200 

mL) and extracted into Et2O (3x 100 mL). The combined ether layers were washed with 3 M 

NaOH (200 mL) and dried over MgSO4. The solvent was removed in vacuo to give the title 

compound as a white solid (6.1 g, 98%). 1H NMR (CDCl3, 300 MHz)  (4H, s), 3.89 (4H, t, J 

= 4.8 Hz), 4.20 (4H, t, J = 4.8 Hz), 6.99 (4H, dd, J = 6.9, 1.8 Hz), 7.80 (4H, dd, J = 6.9, 1.8 Hz), 

9.87 (1H, s, CHO)  ppm. 13C NMR (CDCl3, 75 MHz)  67.6 (OCH2), 69.5 (OCH2), 70.8 (OCH2), 

114.0 (Ar CH), 130.0 (Ar quat), 131.4 (Ar CH), 163.7 (ArO quat), 190.7 (CHO) ppm. MS (EI): 

358 (M+), 254, 224, 210, 193, 181, 149 (base), 131, 121, 105 m/z. HRMS calcd for C20H22O6: 

358.1416 g/mol. Found 358.1433 g/mol.  
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General HWE polycondensation procedure (vi72). A solution of 22 in THF (0.10 M, 10 mL, 1 

mmol) and various ratios of solutions of dialdehyde linkers in THF (0.10 M, 10 mL total, 1 

mmol, total) were added to an oven-dried rbf and cooled to 0 oC under N2. KOtBu (450 mg, 4.01 

mmol) was added portionwise over 5 min and the mixtures were allowed to come to rt overnight 

with stirring. The mixture was poured into cold MeOH (150 mL), and the polymers were isolated 

by filtration. 

 

 

PV-O (vi73). Following the general HWE polycondensation procedure, O (0.1 M in THF, 10 

mL, 1 mmol) was copolymerized with 22 (0.1 M in THF, 10 mL, 1 mmol). The polymer was 

isolated as 554 mg (89%) of a yellow-orange solid. Mw = 69.0 kDa, Mn = 48.7 kDa, PDI = 1.42. 

 

 

PV-T (vi74). Following the general HWE polycondensation procedure, T (0.1 M in THF, 10 

mL, 1 mmol) was copolymerized with 22 (0.1 M in THF, 10 mL, 1 mmol). The polymer was 

isolated as 590 mg (94%) of a yellow-orange solid. Mw = 49.3 kDa, Mn = 36.5 kDa, PDI = 1.35. 
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PV-O9T1 (vi75). Following the general HWE polycondensation procedure, O (0.1 M in THF, 9 

mL, 0.9 mmol) and T (0.1 M in THF, 1 mL, 0.1 mmol) were copolymerized with 22 (0.1 M in 

THF, 10 mL, 1 mmol). The polymer was isolated as 575 mg (92%) of a yellow-orange solid. Mw 

= 71.1 kDa, Mn = 51.8 kDa, PDI = 1.38. 

 

 

PV-O5T5 (vi77). Following the general HWE polycondensation procedure, O (0.1 M in THF, 5 

mL, 0.5 mmol) and T (0.1 M in THF, 5 mL, 0.5 mmol) were copolymerized with 22 (0.1 M in 

THF, 10 mL, 1 mmol). The polymer was isolated as 509 mg (81%) of a yellow-orange solid. Mw 

= 74.0 kDa, Mn = 57.8 kDa, PDI = 1.28. 

 

 

PV-O1T9 (vi76). Following the general HWE polycondensation procedure, O (0.1 M in THF, 1 

mL, 0.1 mmol) and T (0.1 M in THF, 9 mL, 0.9 mmol) were copolymerized with 22 (0.1 M in 

THF, 10 mL, 1 mmol). The polymer was isolated as 505 mg (82%) of a yellow-orange solid. Mw 

= 74.0 kDa, Mn = 57.8 kDa, PDI = 1.28. 
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APPENDIX A: CHAPTER 2 

A.1 1H AND 13C NMR SPECTRA OF NEW COMPOUNDS 
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Figure 29. 1H and 13C NMR spectra of compound 1. 
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Figure 30. 1H and 13C NMR spectra of compound 2. 
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Figure 31. 1H and 13C NMR spectra of Br-D-CHO. 
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Figure 32. 1H and 13C NMR spectra of compound 3. 

 

 



 193 

Figure 33. 1H and 13C NMR spectra of compound 4. 
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Figure 34. 1H and 13C NMR spectra of compound 5. 
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Figure 35. 1H and 13C NMR spectra of P-A-acetal. 
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Figure 36. 1H and 13C NMR spectra of compound 6. 
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Figure 37. 1H spectrum of compound 7. 
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Figure 38. 1H and 13C NMR spectra of compound 8. 
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Figure 39. 1H and 13C NMR spectra of P-D-acetal. 
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Figure 40. 1H and 13C NMR spectra of P-A-CN. 
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Figure 41. 1H and 13C NMR spectra of compound 9. 
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Figure 42. 1H and 13C NMR spectra of compound 10. 
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Figure 43. 1H and 13C NMR spectra of compound 11. 
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Figure 44. 1H and 13C NMR spectra of P-D-CN 
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Figure 45. 1H, 13C, and DEPT 135 NMR spectra of Br-AA-CN. 
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Figure 46. 1H, 13C, and DEPT 135 NMR spectra of Br-AD-CN. 
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Figure 47. 1H, 13C, and DEPT 135 NMR spectra of Br-DA-CN. 
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Figure 48. 1H, 13C, and DEPT 135 NMR spectra of Br-DD-CN. 
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Figure 49. 1H, 13C, and DEPT 135 NMR spectra of Br-AA-CHO. 

 



 210 

Figure 50. 1H, 13C, and DEPT 135 NMR spectra of Br-AD-CHO. 
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Figure 51. 1H, 13C, and DEPT 135 NMR spectra of Br-DA-CHO. 
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Figure 52. 1H, 13C, and DEPT 135 NMR spectra of Br-DD-CHO. 
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Figure 53. 1H, 13C, and DEPT 135 NMR spectra of Br-AAD-CN. 
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Figure 54. 1H, 13C, and DEPT 135 NMR spectra of Br-ADD-CN. 
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Figure 55. 1H, 13C, and DEPT 135 NMR spectra of Br-ADA-CN. 
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Figure 56. 1H, 13C, and DEPT 135 NMR spectra of Br-DAA-CN. 
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Figure 57. 1H, 13C, and DEPT 135 NMR spectra of Br-DAD-CN. 
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Figure 58. 1H, 13C, and DEPT 135 NMR spectra of Br-DDA-CN. 
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Figure 59. 1H, 13C, and DEPT 135 NMR spectra of Br-AAD-CHO. 

 



 220 

Figure 60. 1H, 13C, and DEPT 135 NMR spectra of Br-ADD-CHO. 
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Figure 61. 1H, 13C, and DEPT 135 NMR spectra of Br-ADA-CHO. 
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Figure 62. 1H, 13C, and DEPT 135 NMR spectra of Br-DAA-CHO. 
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Figure 63. 1H, 13C, and DEPT 135 NMR spectra of Br-DAD-CHO. 

 



 224 

Figure 64. 1H, 13C, and DEPT 135 NMR spectra of Br-DDA-CHO. 
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Figure 65. 1H, 13C, and DEPT 135 NMR spectra of Br-AADD-CN. 
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Figure 66. 1H, 13C, and DEPT 135 NMR spectra of Br-ADDA-CN. 
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Figure 67. 1H, 13C, and DEPT 135 NMR spectra of Br-ADAD-CN. 

 



 228 

Figure 68. 1H, 13C, and DEPT 135 NMR spectra of Br-DAAD-CN. 
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Figure 69. 1H, 13C, and DEPT 135 NMR spectra of Br-DADA-CN. 
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Figure 70. 1H, 13C, and DEPT 135 NMR spectra of Br-DDAA-CN. 
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A.2 ABSORPTION AND EMISSION SPECTRA  

Figure 71. Absorption and emission spectra of Br-AA-CN. 

 

Figure 72. Absorption and emission spectra of Br-DD-CN. 
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Figure 73. Absorption and emission spectra of Br-AD-CN. 

 

Figure 74. Absorption and emission spectra of Br-DA-CN. 
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Figure 75. Absorption and emission spectra of Br-AAD-CN. 

 

Figure 76. Absorption and emission spectra of Br-DAA-CN. 
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Figure 77. Absorption and emission spectra of Br-ADA-CN. 

 

Figure 78. Absorption and emission spectra of Br-DAD-CN. 
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Figure 79. Absorption and emission spectra of Br-ADD-CN. 

 

Figure 80. Absorption and emission spectra of Br-DDA-CN. 
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Figure 81. Absorption and emission spectra of Br-AADD-CN. 

 

Figure 82. Absorption and emission spectra of Br-AADD-CN. 
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Figure 83. Absorption and emission spectra of Br-ADAD-CN. 

 

Figure 84. Absorption and emission spectra of Br-DADA-CN. 
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Figure 85. Absorption and emission spectra of Br-ADDA-CN. 

 

Figure 86. Absorption and emission spectra of Br-DAAD-CN. 
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A.3 CYCLIC AND DIFFERENTIAL PULSE VOLTAMMOGRAMS  

 

Figure 87. Cyclic voltammograms of Br-AA-CN. 

 

Figure 88. Differential pulse voltammograms of Br-AA-CN. Left: reduction. Right: oxidation. 



 240 

 

Figure 89. Cyclic voltammograms of Br-AD-CN. 

 

Figure 90. Differential pulse voltammograms of Br-AD-CN. Left: reduction. Right: oxidation. 
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Figure 91. Cyclic voltammograms of Br-DA-CN. 

 

Figure 92. Differential pulse voltammograms of Br-DA-CN. Left: reduction. Right: oxidation. 
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Figure 93. Cyclic voltammograms of Br-DD-CN. 

 

Figure 94. Differential pulse voltammograms of Br-DD-CN. Left: reduction. Right: oxidation. 

 



 243 

 

Figure 95. Cyclic voltammograms of Br-AAD-CN. 

 

Figure 96. Differential pulse voltammograms of Br-AAD-CN. Left: reduction. Right: oxidation. 
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Figure 97. Cyclic voltammograms of Br-ADA-CN. 

 

Figure 98. Differential pulse voltammograms of Br-ADA-CN. Left: reduction. Right: oxidation. 
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Figure 99. Cyclic voltammograms of Br-AA-CN. 

 

Figure 100. Differential pulse voltammograms of Br-ADD-CN. Left: reduction. Right: oxidation. 
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Figure 101. Cyclic voltammograms of Br-DAA-CN. 

 

Figure 102. Differential pulse voltammograms of Br-DAA-CN. Left: reduction. Right: oxidation. 
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Figure 103. Cyclic voltammograms of Br-DAD-CN. 

 

Figure 104. Differential pulse voltammograms of Br-DAD-CN. Left: reduction. Right: oxidation. 
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Figure 105. Cyclic voltammograms of Br-DDA-CN. 

 

Figure 106. Differential pulse voltammograms of Br-DDA-CN. Left: reduction. Right: oxidation. 
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Figure 107. Cyclic voltammograms of Br-AADD-CN. 

 

Figure 108. Differential pulse voltammograms of Br-AADD-CN. Left: reduction. Right: oxidation. 
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Figure 109. Cyclic voltammograms of Br-ADAD-CN. 

 

Figure 110. Differential pulse voltammograms of Br-ADAD-CN. Left: reduction. Right: oxidation. 
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Figure 111. Cyclic voltammograms of Br-ADDA-CN. 

 

Figure 112. Differential pulse voltammograms of Br-ADAD-CN. Left: reduction. Right: oxidation. 
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Figure 113. Cyclic voltammograms of Br-DAAD-CN. 

 

Figure 114. Differential pulse voltammograms of Br-DAAD-CN. Left: reduction. Right: oxidation. 
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Figure 115. Cyclic voltammograms of Br-DADA-CN. 

 

Figure 116. Differential pulse voltammograms of Br-DAAD-CN. Left: reduction. Right: oxidation. 
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Figure 117. Cyclic voltammograms of Br-DDAA-CN. 

 

Figure 118. Differential pulse voltammograms of Br-DDAA-CN. Left: reduction. Right: oxidation. 
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A.4 DIFFERENTIAL SCANNING CALORIMOGRAMS  

In all differential scanning calorimograms, the heating curve is plotted in red and the cooling 

curve in blue. 

Figure 119. Differential scanning calorimograms of Br-AA-CN. 
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Figure 120. Differential scanning calorimograms of Br-AD-CN. 
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Figure 121. Differential scanning calorimograms of Br-DA-CN. 
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Figure 122. Differential scanning calorimograms of Br-DD-CN. 
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Figure 123. Differential scanning calorimograms of Br-AAD-CN. 
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Figure 124. Differential scanning calorimograms of Br-ADA-CN. 
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Figure 125. Differential scanning calorimograms of Br-ADD-CN. 
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Figure 126. Differential scanning calorimograms of Br-DAA-CN. 
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Figure 127. Differential scanning calorimograms of Br-DAD-CN. 
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Figure 128. Differential scanning calorimograms of Br-DDA-CN. 
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Figure 129. Differential scanning calorimograms of Br-AADD-CN. 
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Figure 130. Differential scanning calorimograms of Br-ADAD-CN. 
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Figure 131. Differential scanning calorimograms of Br-ADDA-CN. 
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Figure 132. Differential scanning calorimograms of Br-DAAD-CN. 
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Figure 133. Differential scanning calorimograms of Br-DADA-CN. 
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Figure 134. Differential scanning calorimograms of Br-DDAA-CN. 
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A.5 TRENDS IN OPTOELECTRONIC PROPERTIES 

This section contains tables and graphs displaying other methods of organizing the 

optoelectronic data than the method presented in the main text.  

The following tables compare the optoelectronic properties of the various OPVs based on 

different sequence features. All sequences are listed from (left-to-right) the bromo endgroup to 

the nitrile endgroup. 

Table 16. Sequences with A on the outside. 

A outside max
abs  max

em   g
opt  g

ec 
  nm nm eV eV 

AA 327 381 3.44 3.30 
ADA 406 474 2.65 2.65 

ADDA 437 511 2.47 2.46 
 

Table 17. Sequences with D on the outside. 

D outside max
abs  max

em   g
opt  g

ec 
  nm nm eV eV 

DD 380 454 2.89 2.81 
DAD 396 472 2.77 2.74 

DAAD 408 485 2.72 2.60 
 

Table 18. Alternating sequences with A on the bromo end. 

Alternating max
abs  max

em   g
opt  g

ec 
A first nm nm eV eV 

AD 364 418 2.99 3.05 
ADA 406 474 2.65 2.65 

ADAD 422 499 2.58 2.55 
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Table 19. Alternating sequences with D on the bromo end. 

Alternating max
abs  max

em   g
opt  g

ec 
D first nm nm eV eV 

DA 362 450 2.97 2.86 
DAD 396 472 2.77 2.74 

DADA 425 492 2.56 2.54 
 

Table 20. Alternating sequences with A on the nitrile end. 

Alternating max
abs  max

em   g
opt  g

ec 
A last nm nm eV eV 
DA 362 450 2.97 2.86 

ADA 406 474 2.65 2.65 
DADA 425 492 2.56 2.54 

 

Table 21. Alternating sequences with D on the nitrile end. 

Alternating max
abs  max

em   g
opt  g

ec 
D last nm nm eV eV 
AD 364 418 2.99 3.05 

DAD 396 472 2.77 2.74 
ADAD 422 499 2.58 2.55 

 

Table 22. Blocky sequences with A on the bromo end and D on the nitrile end. 

blocky max
abs  max

em   g
opt  g

ec 
A first nm nm eV eV 

AD 364 418 2.99 3.05 
AAD 385 432 2.86 2.86 
ADD 412 479 2.63 2.64 

AADD 425 492 2.55 2.49 
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Table 23. Blocky sequences with D on the bromo end and A on the nitrile end. 

blocky max
abs  max

em   g
opt  g

ec 
D first nm nm eV eV 

DA 362 450 2.97 2.86 
DAA 383 474 2.84 2.77 
DDA 412 488 2.62 2.46 

DDAA 424 515 2.56 2.41 
 

Table 24. Sequences with two adjacent A units. 

AA max
abs  max

em   g
opt  g

ec 
  nm nm eV eV 

AA 327 381 3.44 3.30 
AAD 385 432 2.86 2.86 
DAA 383 474 2.84 2.77 

AADD 425 492 2.55 2.49 
DAAD 408 485 2.72 2.60 
DDAA 424 515 2.56 2.41 

 

Table 25. Sequences with two adjacent D units. 

DD max
abs  max

em   g
opt  g

ec 
  nm nm eV eV 

DD 380 454 2.89 2.81 
ADD 412 479 2.63 2.64 
DDA 412 488 2.62 2.46 

AADD 425 492 2.55 2.49 
ADDA 437 511 2.47 2.46 
DDAA 424 515 2.56 2.41 

 

Table 26. Sequences in the synthesis of Br-AADD-CN. 

Build up max
abs  max

em   g
opt  g

ec 
AADD nm nm eV eV 

AA 327 381 3.44 3.30 
AAD 385 432 2.86 2.86 

AADD 425 492 2.55 2.49 
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Table 27. Sequences in the synthesis of Br-ADAD-CN. 

Build up max
abs  max

em   g
opt  g

ec 
ADAD nm nm eV eV 

AD 364 418 2.99 3.30 
ADA 406 474 2.65 2.65 

ADAD 422 499 2.58 2.55 
 

Table 28. Sequences in the synthesis of Br-ADDA-CN. 

Build up max
abs  max

em   g
opt  g

ec 
ADDA nm nm eV eV 

AD 364 418 2.99 3.30 
ADD 412 479 2.63 2.64 

ADDA 437 511 2.47 2.46 
 

Table 29. Sequences in the synthesis of Br-DDAA-CN. 

Build up max
abs  max

em   g
opt  g

ec 
DDAA nm nm eV eV 

DD 380 454 2.89 2.81 
DDA 412 488 2.62 2.46 

DDAA 424 515 2.56 2.41 
 

Table 30. Sequences in the synthesis of Br-DADA-CN. 

Build up max
abs  max

em   g
opt  g

ec 
DADA nm nm eV eV 

DA 362 450 2.97 2.86 
DAD 396 472 2.77 2.74 

DADA 425 492 2.56 2.54 
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Table 31. Sequences in the synthesis of Br-DAAD-CN. 

Build up max
abs  max

em   g
opt  g

ec 
DAAD nm nm eV eV 

DA 362 450 2.97 2.86 
DAA 383 474 2.84 2.77 

DAAD 408 485 2.72 2.60 
 

The following graphs show the trends in optoelectronic data regardless of oligomer 

length. Of note is the intermingling of the trimers and tetramers in the relative order. 

 

Figure 135. Ordering of the OPVs according to increasing max
abs , disregarding oligomer length. 
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Figure 136. Ordering of the OPVs according to increasing solution max
em , disregarding oligomer length. 

 

Figure 137. Ordering of the OPVs according to increasing  g
opt disregarding oligomer length. 
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Figure 138. Ordering of the OPVs according to increasing  g
ec disregarding oligomer length. 

 

Figure 139. Sequence dependent trends in optoelectronic properties. 
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APPENDIX B: CHAPTER 3 

B.1 1H AND 13C NMR SPECTRA OF NEW COMPOUNDS 
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Figure 140. 1H and 13C NMR spectra of compound 15. 
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Figure 141. 1H and 13C NMR spectra of compound 16. 
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Figure 142. 1H and 13C NMR spectra of compound 13. 
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Figure 143. 1H and 13C NMR spectra of compound 12. 
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Figure 144. 1H, 13C, and DEPT 135 NMR spectra of OPV1a. 
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Figure 145. 1H, 13C, and DEPT 135 NMR spectra of OPV1b. 
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Figure 146. 1H, 13C, and DEPT 135 NMR spectra of OPV2a. 
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Figure 147. 1H, 13C, and DEPT 135 NMR spectra of OPV2b. 
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Figure 148. 1H, 13C, and DEPT 135 NMR spectra of OPV3a. 

 

OPV3a 

OPV3a 



 288 

Figure 149. 1H, 13C, and DEPT 135 NMR spectra of OPV3b. 
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Figure 150. 1H, 13C, and DEPT 135 NMR spectra of OPV4a. 
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Figure 151. 1H, 13C, and DEPT 135 NMR spectra of OPV4b. 
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Figure 152. 1H, 13C, and DEPT 135 NMR spectra of OPV2c. 
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Figure 153. 1H, 13C, and DEPT 135 NMR spectra of OPV2d. 
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Figure 154. 1H, 13C, and DEPT 135 NMR spectra of OPV2e. 
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Figure 155. 1H, and 13C NMR spectra of p(OPV2e). 
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Figure 156. 1H, 13C, and DEPT 135 NMR spectra of compound 17. 
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Figure 157. 1H, 13C, and DEPT 135 NMR spectra of OPV1c. 
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Figure 158. 1H and 13C NMR spectra of compound 18. 
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Figure 159. 1H and 13C NMR spectra of compound 19. 
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B.2 ABSORPTION AND EMISSION SPECTRA 

 
 

Figure 160. Normalized absorption spectra of OPV1a, OPV2a, OPV3a, and OPV4a (10-6 M in CHCl3). 

 
 
 

Figure 161. Normalized emission spectra of OPV1a, OPV2a, OPV3a, and OPV4a (10-6 M in CHCl3). 
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Figure 162. Normalized absorption spectra of OPV1b, OPV2b, OPV3b, and OPV4b (10-6 M in CHCl3). 

 
 
 

Figure 163. Normalized emission spectra of OPV1b, OPV2b, OPV3b, and OPV4b (10-6 M in CHCl3). 
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Figure 164. Normalized absorption spectra of OPV2a, OPV2b, OPV2c, and OPV2d (10-6 M in CHCl3). 

 
 
 

Figure 165. Emission spectra of OPV2a, OPV2b, OPV2c, (10-6 M in CHCl3) and OPV2d (10-3 M in CHCl3). 
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Figure 166. Absorption (solid lines) and emission (dashed lines) spectra of OPV2e and p(OPV2e) (10-5 M in 
CHCl3). 
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APPENDIX C: CHAPTER 4 

C.1 1H AND 13C NMR SPECTRA OF NEW COMPOUNDS 
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Figure 167. 1H and 13C NMR spectra of compound 35. 
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Figure 168. 1H and 13C NMR spectra of compound 22. 
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Figure 169. 1H and 13C NMR spectra of compound 23. 
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Figure 170. 1H and 13C NMR spectra of compound 24 
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Figure 171. 1H spectrum of compound 37. 

 

Figure 172. 1H spectrum of compound 38. 

 



 309 

Figure 173. 1H spectrum of compound 39. 
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Figure 174. 1H and 13C NMR spectra of compound 26. 
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Figure 175. 1H and 13C NMR spectra of compound 27. 
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Figure 176. 1H and 13C NMR spectra of compound 28. 
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Figure 177. 1H and 13C NMR spectra of compound 29. 
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Figure 178. 1H and 13C NMR spectra of compound 30. 
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Figure 179. 1H and 13C NMR spectra of compound 31. 
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Figure 180. 1H spectrum of compound 32. 
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Figure 181. 1H and 13C NMR spectra of compound 33. 
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Figure 182. 1H and 13C NMR spectra of compound 34. 
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Figure 183. 1H and 13C NMR spectra of p29. 
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Figure 184. 1H and 13C NMR spectra of p32. 
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Figure 185. 1H and 13C NMR spectra of compound O. 
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Figure 186. 1H and 13C NMR spectra of (TsOCH2CH2OCH2)2. 
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Figure 187. 1H and 13C NMR spectra of compound T. 
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C.2 ABSORPTION AND EMISSION SPECTRA OF 29, 32, P29 AND P32 

 

Figure 188. Normalized absorption and emission spectra of 29, 32, p29, p32 (10-6 M in CH2Cl2) 
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C.3 DIFFERENTIAL CALORIMOGRAMS OF THE PV-OXTY SERIES 

 

Figure 189.Differential calorimograms of the PV-OXTY series. 
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