
 

CHARACTERIZATION AND MODELING OF LIGHT ACTIVATED SHAPE 
MEMORY POLYMER 

 
 
 
 
 
 
 
 

by 

Richard Vincent Beblo 

Bachelor of Science in Mechanical Engineering, Bucknell University, 2003 

Master of Science in Mechanical Engineering, University of Pittsburgh, 2007 
 
 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of 

Swanson School of Engineering in partial fulfillment  

of the requirements for the degree of 

Doctor of Philosophy in Mechanical Engineering 
 
 
 
 
 
 
 
 
 

University of Pittsburgh 

2010 

 



 ii 

UNIVERSITY OF PITTSBURGH 

SWANSON SCHOOL OF ENGINEERING 
 

 
 
 
 

 
This dissertation was presented 

 
by 

 
 

Richard V. Beblo 
 
 
 

It was defended on 

December 11, 2009 

and approved by 

Dr. William W. Clark, PhD, Associate Professor 
Department of Mechanical Engineering and Materials Science 

Dr. John P. Leonard, PhD, Assistant Professor 
Department of Mechanical Engineering and Materials Science 

Dr. William S. Slaughter, PhD, Associate Professor 
Department of Mechanical Engineering and Materials Science 

Dr. Tat H. Tong, PhD  
Cornerstone Research Group, Inc. 

 Dissertation Director: Dr. Lisa Mauck Weiland, PhD, Assistant Professor 
Department of Mechanical Engineering and Materials Science 



 iii 

Copyright © by Richard V. Beblo 

2010 



 iv 

 

Shape memory polymers have recently become the focus of research for their unique ability to 

switch between two modulus states, allowing them to both recover from large amounts of strain 

as well as support complex loads.  Part of this research involves engineering new formulas 

specifically designed for applications where traditional thermally activated SMPs are not ideal by 

tailoring the activation method used to transition the polymer.  One such class of polymers is 

those that utilize optical energy at specific wavelengths to create and cleave crosslinks.  It is the 

development of this new class of light activated shape memory polymers (LASMP) that is the 

focus of the presented work.   

Experimental methods are newly created for this novel class of active materials.  Several 

candidate LASMP formulas are then subjected to this set of experiments characterizing their 

mechanical and optical properties.  Experimentally observed variations among the formulae 

include virgin state modulus, percent change in modulus with stimulus, and in some instances 

inelastic response. 

To expedite the development of LASMP, a first principles multi-scale model based on the 

polymer’s molecular structure is presented and used to predict the stress response of the 

candidate formulas.  Rotational isomeric state (RIS) theory is used to build a molecular model of 

a phantom polymer chain.  Assessment of the resulting conformation is then made via the 

Johnson family of statistical distributions and Boltzmann statistical thermodynamics.  The ability 
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of the presented model to predict material properties based on the molecular structure of the 

polymer reduces the time and resources required to test new candidate formulas of LASMP as 

well as aiding in the ability to tailor the polymer to specific application requirements. 

While the first principles model works well to identify promising formulas, it lacks 

precision.  The stress contribution from the constraints on the polymer chain’s junctions and 

neighboring chain entanglements is then added to that of the phantom network allowing Young’s 

modulus to be calculated from the predicted stress response of the polymer.  Simple extension, 

equi-biaxial, and shear strain states are modeled and associated predicted material properties 

presented.  The added precision of this phenomenological extension will aid device design.   
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1.0  INTRODUCTION 

1.1 SHAPE MEMORY POLYMERS – CURRENT STATE OF THE ART 

1.1.1 Shape Memory Polymer Introduction 

Shape memory polymers (SMP) were first introduced in 1984 in Japan [1] and have since 

become the focus of many ambitious research initiatives.  They are divided into three major 

types based on the stimulus used to bring about a change or desired response of the polymer.   

The most common is the thermally or heat activated type [2-27], followed by the electrically 

activated type [28-30], and finally the light activated type [31-42].  Each type is further divided 

into two categories based on material response and then again into groups with respect to the 

chemical makeup of the polymer.  The first main category of each type of SMP is comprised of 

those polymers that start in an initial stress free state, exert a force on their surroundings when 

stimulated, and then return to their initial state when the stimulus is removed, without the use of 

external forces.  Such polymers are typically presented as actuators or artificial muscle [28-

30,43]. Heat activated polymers belonging to this category include those based on siloxanes, 

polyethers, and Smectic-C [2-27].  Electrically activated polymers of the “shape change” group 

include Nafion®, Flemion®, and PVDF.  Light activated shape memory polymers of this group 

are typically constructed of triphenylmethane or azobenzene [43-45,28-30].  The second main 
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category is comprised of those polymers that, rather than switching between two strain states 

based on a stimulus, switch between two moduli when activated and require external forces to 

deviate from their initial state.  This category of shape memory polymer is most generally 

presented as a candidate material for morphing or reconfigurable structures.  It is this second 

category that is of interest here.  To the author’s knowledge, there does not exist electrically 

activated SMPs currently available belonging to this second category.  Heat activated SMPs and 

light activated SMPs are typically variations of styrene, urethane, or epoxy [46,47], and 

coumarin, cinnamates, or stilbenes respectively [31-42,47,48].  Since polymers in this second 

category are the focus of this thesis, electrically activated polymers will be given no further 

treatment.  The two main categories of each type of SMP are then further divided into groups 

based on their chemical makeup.  Some of these groups are presented below in Figure 1.1.1-1. 

 

Shape Memory Polymers

Electrically Activated SMPThermally Activated SMP Light Activated SMP

Shape
Change
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poly(vinylidene flouride)  

Figure 1.1.1-1: Shape memory polymer categorization chart  

 

Modulus changing SMPs are the group that has been proposed for adaptive structures, are 

the focus of the presented work, and will be the only group of polymer discussed further.  As 

such, all subsequent language referring to SMPs will refer to the modulus changing group unless 
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otherwise noted.  SMPs have the ability to switch between low and high moduli while retaining a 

memorized shape, making them desirable for designs requiring adaptable structural components.  

They do this by switching between a rubbery or elastic state and a glassy or stiff state using a 

stimulus.  Pictured below in Figure 1.1.1-2 is a typical graph of the modulus dependence on 

thermal stimulus of a heat activated SMP.  Below the glass transition temperature, Tg, the 

polymer is in the glassy state and has a relatively high modulus and is thus capable of supporting 

load.  Above Tg, the polymer is in the elastic state and behaves similar to an elastomer, capable 

of sustaining extremely high strains but unable to support large loads.   

 

 

Figure 1.1.1-2: Representative SMP temperature dependence 

 

A typical SMP cycle consists of a sample beginning at a temperature below Tg, the 

temperature is then increased above Tg, the sample deformed into a new shape, then cooled 

below Tg where the new shape is fixed.  Stored energy in the polymer by way of strain during 

deformation provides a restorative force when again heated above Tg in the elastic state, allowing 

the polymer to return to its memorized shape given the absence of external forces.  This shape 
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memory cycle is shown below in Figure 1.1.1-3.  The amount of strain that the sample can 

sustain without permanent damage is considered the strain limit of the polymer, which differs 

between each formulation.  Shape fixity is related to the amount of relaxation that the polymer 

undergoes during cooling after being strained while strain recovery refers to the amount of 

induced strain recovered when no forces are acting on the polymer above Tg.  Other typical 

characteristics of interest is the amount of energy required to transition, which for thermally 

activated SMPs is presented as the heat of crystallization, as well as more common material 

characteristics such as density, molecular weight, heat capacity, electrical resistance, etc.  The 

unique combination of the above characteristics of SMP make it an ideal candidate for particular 

applications.  While the most common thermally activated SMP is well suited for many uses, 

certain applications require a unique set of material qualities.  Applications such as morphing 

aircraft and satellite systems where heat signatures, operational temperature ranges, and on board 

power limitations are not ideally suited for a thermally activated material; a new, different type 

of SMP is required, such as light activated SMP (LASMP).  While development of LASMP is 

clearly desirable, the bulk of research to date has focused on thermally activated SMP.  It is 

therefore prudent to become versed in thermal SMP as a means to efficiently direct LASMP 

evolution.  The following literature review therefore begins with an in-depth treatment of the 

state of the art in thermal SMP and is followed by review of current research efforts for LASMP.   
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Figure 1.1.1-3: Heat activated shape memory polymer cycle 

1.1.2 Thermally Activated SMP 

The first realized shape memory polymers were based on polynorborene, trans-isopolyprene, and 

styrene-butadiene copolymer systems.  Due to their relatively complicated synthesis and poor 

mechanical properties, focus quickly switched to segmented polyurethane thermoplastic SMPs.  

These multiblock copolymers consist of alternating sequences of hard and soft segments.  The 

distribution of soft segments, typically 1000 to 10,000 in molecular weight, and hard segments, 

typically built from diisocyanates and extenders, give shape memory polymer its unique 

characteristics.  The hard segments accumulate and form permanent physical crosslink points by 

polar interactions, hydrogen bonding, and or crystallization while the soft segments form the 

reversible phase and provide the molecular motion required for deformation and the restorative 

aspects of SMPs.  Above the glass transition temperature, Tg, of the polymer; the soft segments 

are relatively elastic and allow the polymer to accommodate large deformations as high as 400% 
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strain.  Below Tg, the soft segments become hard and are locked in place, fixing the current 

shape of the polymer.  The glass transition temperature of such polyurethane block copolymer 

systems can easily be tailored as much as plus or minus 50 degrees Celsius from room 

temperature by altering the ratio of hard and soft segments and can be processed through 

extrusion, injection, blow molding, and solution coating, making them extremely versatile 

[17,18]. 

1.1.2.1 Constitutive Modeling of Thermally Activated SMP 

Currently there are two basic methodologies for creating constitutive models for 

describing heat activated shape memory polymers.  The first is a piece wise method that breaks 

up the response of the polymer into four distinct sections, see Figure 1.1.1-2.  Below the 

transition temperature, small strain approximations and constant temperature, hence constant 

modulus, are utilized to create visco-elastic models.  During transition when heat is applied, time 

dependent temperature equations are derived describing the modulus of the polymer, which is 

assumed isotropic.  During straining above the transition temperature, the modulus is again 

assumed constant and the model takes the form of purely elastic equations, such as those used to 

describe elastomers.  Finally, during transition while cooling, the constitutive equations are 

similar to those during heating but differ only in the modeling of the chemical structure of the 

polymer.  While this method results in accurate 3-D predictions of material response within each 

segment, lifetime simulations become more complicated with four separate equations.  Another 

limitation of this methodology is that some polymers are capable of large strains below the 

transition temperature, which cannot be modeled by this method having assumed small strains in 

that region of the response. 
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The second methodology, in an attempt to derive a single thermo-visco-plastic 

constitutive equation for shape memory polymers over their entire operating range, assumes the 

polymer to be isotropic in all conditions.  Since other assumptions such as constant temperature 

or small strains are not required, such 1-D models have proven useful for several applications.  

The resulting equation of this method accurately predicts the material’s behavior under any 

environment in the direction chosen making lifetime simulations much simpler.  While this 

method is valuable for applications such as simple unidirectional sensors and actuators, designs 

requiring complex loading cannot use this approach due to the polymer’s anisotropic nature at 

large strains. 

1.1.2.1.1 Review of Recent Constitutive Models 

In January of 2002, Häusler et al. introduced a model predicting the transverse isotropy 

effect exhibited by many materials at large deformations.  In the elastic region, the elasticity law, 

kinetic hardening rule, and yield function are considered to be transversely isotropic as well as 

the evolving plastic deformation constitutive properties.  Assuming the virgin material to be 

isotropic, the yield function, Equation 1.1.2.1.1-1, kinematic hardening rule, Equation 1.1.2.1.1-

2, elasticity law, Equation 1.1.2.1.1-3, and plastic spins, Equation 1.1.2.1.1-4, comprise the 

proposed 3-D visco-plastic model [49].   
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Where ν1-ν6 are material parameters, σ is the Eulerian counterpart of the plastic spin, M is a 

structural tensor, ∆ is the spin associated with the kinematic hardening rule, C is the Right 

Couchy-Green tensor, S is stress, Ae is the Almansi strain tensor, D is the deformation rate 

tensor, W is work, Ve is the Left Cauchy-Green tensor, L is the velocity gradient, and Ω is the 

associated plastic spin with respect to the intermediate configuration.  The resulting set of 

constitutive equations includes 26 material constants, many of which admittedly have unknown 

real relations.  With arbitrarily chosen values, the qualitative response of the model is indicative 

of many materials.  By varying the unknown quantities, the model accurately predicts the 

transverse isotropy found experimentally at large deformations [49].  The pertinent information 

provided by the proposed model is the method in which the equations are derived.  By assuming 

transverse isotropy initially, the derivations of the equations are simplified with little loss of 

generality.  Since shape memory polymers can be considered orthotropic at large strains, starting 

with equations tailored to model such behavior is intuitive [49]. However, the form of the initial 

yield, kinematic hardening, elasticity law, and spin functions are typical for those of metals, 

making direct applications to shape memory polymers somewhat impractical, although possible 



 9 

through manipulation of the several parameters.  The model also does not take into account 

thermal effects, rendering the model incapable of predictions in the transition region.   

In 2001, Tobushi et al. developed a one dimensional model for shape memory polymers.  

The proposed model, comprised of Equations 1.1.2.1.1-5 through 1.1.2.1.1-7, is a nonlinear 

extension of a previous linear model.  The linear model was based on linear visco-elastic theory 

with the addition of a slip element accounting for internal friction, allowing large strain 

calculations [50].   
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Where ε is strain, σ is stress, E is Young’s modulus, m and k are material parameters, µ is the 

modulus of viscosity, λ is the retardation time, α is the coefficient of thermal expansion, T is 

temperature, S is a proportional coefficient, Tg is the glass transition temperature of the polymer, 

Eg is the value of E at T = Tg, εs is irrecoverable strain, εc is creep strain, and εp is plastic strain.  

The non-linearities arise from the addition of the terms containing m, k, and b in Equation 

1.1.2.1.1-5.  While this model results in accurate 1-D predictions, the lack of transverse 

directions greatly limits its uses.  Because the model is incapable of predicting transverse 
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anisotropies, it is only useful in applications such as 1-D actuators or sensors.  The major 

strength however, is that it provides a single constitutive equation relating temperature, strain, 

strain rate, and stress of the material providing easy calculations and lifetime simulations.  Such 

simulations resulted in the ability to correctly predict irrecoverable strain, Equation 1.1.2.1.1-6, 

over many cycles in different stress states [50].   

In 2006, Diani, Liu, and Gall proposed a thermo-visco-elastic constitutive model for 

shape memory polymers.  Their model is based on the assumption that changes in the stress state 

of the polymer above Tg are due primarily to changes in entropy while changes below Tg are 

derived by changes in the internal energy of the polymer.   They assumed that the polymer is of 

constant volume and at constant temperature while in its rubbery state above the glass transition 

temperature and that chain motion can be neglected in the polymer’s glassy state.  Diani et al. 

also considered all strains to be elastic, assuming that no plasticity through chain slippage occurs.  

These assumptions lead to the following Zener model pictured in Figure 1.1.2.1.1-1 [51]. 

 

 

Figure 1.1.2.1.1-1: Model rheological scheme 

 

Taking Young’s modulus to be linearly dependent on temperature and the polymer to be 

an isotropic heavily cross-linked epoxy network, the thermo-visco-elastic model is described by 

the following equation [51]: 
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which can be decomposed into the following: 
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Thermal Dissipation:   ( ) 00 ≥− Tgrad
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q    (1.1.2.1.1-11) 

 

Where S is the second Piola-Kirchoff stress tensor, T is temperature, C is the right Cauchy-Green 

tensor, Fv is the viscous part of the deformation gradient, U is the internal energy of the polymer 

and a function of Fv, Lv is the velocity gradient corresponding to Fv, qo is the outward heat flux 

from the Clausius-Duhem inequality, and η is entropy.  The model predicts the 

thermomechanical response of the polymer well, having a difference of only 0.5% between the 

experimental and calculated permanent strain after unloading following a thermal cycle. 

However the authors admit that more accurate evolution equations would improve the accuracy 

of the model [51].  While the model is useful for several applications, the initial assumptions 

limit the model’s ability to accurately estimate the stress strain behavior of shape memory 

polymers under certain conditions.  The incorrect assumption that chain motion can be neglected 

below Tg significantly effects the predictions of the model.  Including polymer chain slippage 

would result in higher internal energies of the polymer below Tg, producing higher stress state 
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predictions.  Since the model is elastic, it cannot predict the plastic strain coupled with chain 

slippage.  The model also assumes the polymer to be isotropic resulting in Equation 1.1.2.1.1-10 

becoming [51]: 
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In contrast, it has been shown that at high strains, the material properties of shape memory 

polymers become anisotropic differing by as much as 63% [52], limiting the application of the 

proposed model. 

Also in 2006, Barot and Rao proposed dividing the material response into four distinct 

segments; being the glassy state, melting, rubbery state, and crystallization.  The glassy state is 

modeled by traditional elastic methods assuming small strains and constant temperature.  The 

rubbery state is modeled as a hyperelastic incompressible material described by Equation 

1.1.2.1.1-13, based on changes in entropy [53]. 
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Where T is the Cauchy stress, p is the Lagrangian multiplier, FKo is the deformation gradient, ψ 

is the Helmholtz potential, and CKo is the Right Cauchy stress tensor.  The crystallization phase, 

which is the focus of the work, is modeled as a constrained mixture.  The proposed model 

assumes the crystals are formed under a stress free state which deviates from practical 

application. It has been shown that if under stress, the forming crystals will have an orientation 
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resulting in anisotropic bulk material properties.  To better model this effect, evolution equations 

for Ka and Kc would have to be prescribed.  To account for the anisotropies of the polymer, the 

Helmholtz potential function is of the form of an anisotropic solid.  To accommodate lifetime 

simulations, the stored energy between two phases of the polymer is considered to be additive.   

Finally, assuming the polymer to be orthotropic, the resulting non-dimensional form of the 

constitutive equation is given by [53]: 
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Where T is the Cauchy stress, p is the Lagrange multiplier, I is the identity, µa, µ1, µ2, and µ3 are 

non-dimensional material moduli, BKa is the Left Cauchy stress tensor, τ is the time of 

crystallization, n and m are unit vectors in the direction of orthotropy, J1 and K1 are invariants, 

and FKc is a mapping between the time of formation τ and the current time t.  To assess the 

validity of the model, the equations are simplified to simulate uni-axial strain and circular shear 

conditions.  The material parameter constants are heuristically determined to match published 

experimental data, resulting in very little error between the predicted and experimental stress 

states [53].  While the proposed constitutive relations fit experimental data well, there are still a 

few inherent discrepancies in their derivations.  The model does not take into account any rate 

effects associated with the polymer, ignoring any visco-elastic or visco-plastic effects.   In 

addition, while it is stated in the derivation that prediction of anisotropic material properties is 

accounted for, the evaluation of the validity of the model does not include this.  Further, the 
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model for the polymer below the glass transition temperature assumes small strain, thus the 

model is incapable of predicting the experimentally known plastic strain region of the response 

[52].  Finally, the model being divided into separate segments makes lifetime simulations more 

complicated than is desirable.  Because of this, the effect seen experimentally of the polymer’s 

ability to deform plastically being a function of the current strain state with respect to a virgin 

material is difficult to simulate. 

1.1.2.1.2 Summary of Recent Constitutive Models 

Each of the proposed constitutive relations has been derived for a particular purpose and 

fits the available experimental data well.  Each, however, also has inherent flaws that limit the 

potential uses of the model.   

Rate Effects: While the models presented by Tobushi and Diani contain rate effects, seen 

in Equations 1.1.2.1.1-5 and 1.1.2.1.1-8, Häusler’s and Barot’s models do not.  Without rate 

effects, environments involving high frequency cyclic loading or vibrations, such as near electric 

motors or jet engines cannot accurately be modeled and thus should be avoided.  While assuming 

small strain rates is not an unreasonable assumption, it does limit the range of applications the 

model can be applied.  Isothermal assumptions also create error in the models presented by 

Häusler and Barot, leaving room for improvement. 

Thermal Effects: With the goal of developing a single constitutive equation that is valid 

for all environments and stress states, the inclusion of thermal effects must be considered.  There 

are a few ways to include temperature in the model, for example Tobushi introduces a 

phenomenological fit for the evolution of material parameters with respect to temperature, such 

as Equation 1.1.2.1.1-7.  Diani’s model embeds the effects of temperature in a thermal 

dissipation term attached at the end of the constitutive equation, Equations 1.1.2.1.1-8 and 
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1.1.2.1.1-11).  Finally, Barot’s approach of dividing the response into segments simplifies the 

overall set of equations by allowing the temperature to be assumed constant above and below Tg.  

During melting and crystallization, the thermal effects are imbedded in the internal variables of 

µa, µ1, µ2, and µ3.   

Plasticity: Traditionally, plasticity has been avoided when modeling shape memory 

polymers.  The material’s ability to recover nearly 100% of the applied strain through heating 

with the rubbery state of the polymer capable of strains over 200%, has caused many engineers 

to assume that an application requiring large strains would be designed such that those strains 

would be applied during the rubbery state of the polymer, eliminating the need to account for 

plastic deformation since the polymer is elastically linear to failure, such is the model proposed 

by Diani.  New research however suggests that plasticity is an issue with shape memory 

polymers and should be included in modeling [52].  Tobushi accounted for large plastic strains 

by the addition of a slip element in the model while Barot separated the response into segments, 

deriving the pertinent equations from traditional plasticity theory.     

1.1.2.2 Experimental Characterization of Thermally Activated SMP 

Over the past decades as SMP has become increasingly utilized, the body of research, 

especially mechanical characterization, has dramatically increased.  Although numerically not 

directly applicable to light activated shape memory polymers; material response results of 

several heat activated SMPs are indicative of those expected to be found with LASMPs, 

particularly when the backbone monomers are similar as is the case with the polystyrene based 

SMP Veriflex® and the current presented study of LASMP, also styrene based.   
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1.1.2.2.1 Thermally Activated Styrene SMPs  

Published in 2007, Gross and Weiland conducted 3 point bend tests on Veriflex® finding 

the flexural moduli to be 700 and 6.48 MPa and flexural strengths 38 and 0.8 MPa in the glassy 

and elastic states respectively.  Also reported were the yield stresses of the polymer at 20 and 

0.61 MPa and creep moduli of 710±110 MPa and 440±240 Pa in the cold and hot states 

respectively.  Their research provided the remaining material parameters needed to complete a 1-

D constitutive model for Veriflex®, such as that presented in Equations 1.1.2.1.1-5 through 7, 

furthering the polymer’s incorporation into current design initiatives [11,54].   

Polystyrene based SMPs have also been the focus of orientation studies by Aida et al. 

[21] and Beblo and Weiland [52,55]; with expected results as compared with other polymers [9].  

Aida utilized SAXS methods to prove that the polymer chains become oriented under strain, thus 

resulting in an anisotropic material.  Beblo and Weiland conducted tensile tests in the axial and 

transverse directions with respect to differing amounts of pre-applied strain.  The study 

concluded that for Veriflex®, the Young’s modulus of the material decreases by as much as 86% 

in the transverse direction at 70% strain in the axial direction, decreasing from an isotropic value 

of 1140 to 160 MPa when below the transition temperature in the glassy state.  The yield stress 

was also seen to decrease by 30% in similar conditions.  Another significant finding was that the 

failure strain of the polymer in the glassy state is dramatically increased when the polymer is 

appropriately strained in the elastic state prior to testing.  Samples which typically failed between 

5 and 31% strain in their isotropic state, were capable of sustaining additional strains up to 82% 

in the glassy state when conditioned with 40% strain prior to testing in the elastic state.  This 

increase in toughness could be used as a preventative measure in certain applications where 

undesired strain is less catastrophic than crack propagation.  It is proposed that these changes in 
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material properties under strain result from the partial alignment of the polymer chains under 

high strain [52,55].   

Tandon et al. have also recently published work quantifying Veriflex’s® change in 

material properties when exposed to lubricating oil, water, and UV light.  The study found that 

surface microcracks formed when submersed in oil for as little as 8 hours, presumably leading to 

premature failure.  The polymer was also seen to turn milky white when exposed to water for 

extended periods of time, 4 days, leading to a slight decrease in strength, 1.4 to 1.36 GPa.  All 

adverse effects due to water absorption, however, were found to be reversible with heating and 

evaporation.  The adverse effects of UV light, however, are irreversible and resulted in the 

polymer becoming extremely brittle.  Tandon et al. also report the sensitivity of the polymer to 

viscous effects during testing, stating a change in the measured Young’s modulus with differing 

strain rates [56].   

1.1.2.2.2 Thermally Activated Polyurethane SMPs  

Less directly applicable to the LASMP of this thesis than tests conducted on polystyrene 

based SMPs, but valuable in predicting material trends, are those studies performed on other heat 

activated SMPs, such as the more common polyurethane based formulas.  Several studies have 

been performed measuring the glass transition temperature of different formulas [13,20,22,24,57] 

and the change in modulus with respect to temperature [13,20,22].  The elastic limit of the 

material, typically around 10% strain, as well as the observed stress plateau between 10% and 

60% strain have been observed in several polyurethane polymers [13,15] as well as polystyrene 

polymers [52,55].  Strain recovery and shape fixity in polyurethane SMPs have been shown to be 

as high as 99.5% and 97.5% respectively after several hours and cycles [15,20,25,58].   
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Thin film nanoindentation, bulge, and point deflection tests on polyurethane thin film 

SMP have been conducted with comparable results to traditional mechanical tests, opening the 

possibility of direct applications using known parameters in thin film applications [3].   

The creep response of several polymer formulas have been studied [25,27] as well as the 

effect of varying the ratio of hard and soft segments on the tensile modulus, heat of 

crystallization, shape fixity, and shape recovery of polyurethane based SMPs [22].   

Moisture, like in polystyrene SMPs, has been shown to decrease the Young’s modulus 

after submersion in water for a period of time.  The glass transition temperature has also been 

shown to decrease by as much as 35 C [10,59,60].   

Not directly studied in styrene based SMPs, secondary shapes have been shown to form 

in polyurethane SMP foams by holding the sample in a deformed shape above Tg for extended 

periods [23].  Other forms of SMP having been studied include the Tg, strain recovery, creep, and 

heating and cooling rates of epoxy based systems [24,57] as well as many others [6,16,26].   

1.1.2.2.3 Thermally Activated SMP Composites  

Alongside studies of neat polymers are investigations of various SMP composites.  Cho 

et al. dispersed carbon nanotubes in a polyurethane SMP resulting in improved mechanical 

properties and causing the composite to become conductive, which could then be thermally 

activated by applying a voltage [61].  A similar study with polyurethane SMP using glass fibers 

by Schmidt et al. also resulted in increased tensile strength and resistance to crack propagation.  

The study also estimated the optimum fiber weight fraction to be between 10 and 20%, resulting 

in a best fit balance between improved material strength and residual strain during cycling [62].  

Studies with chopped fiberglass and woven fabric reinforcements have also been reported with 

similar results [13].   
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Novel heating schemes have been proposed using dispersed nanoparticles allowing the 

finished product to be inductively heated; negating the need for embedded resistive heating 

elements requiring wired connections.  Inductive heating schemes using nanoparticles such as 

zinc ferromagnetic particles, superparamagnetic magnetite (Fe3O4), and SiC have been proposed 

[12,24,57,62,63].  Zinc ferromagnetic particles have been shown to sufficiently heat a device 

with as little as 10% by volume of particles [63], with magnetite showing similar results at 40 

weight percent [62].  Epoxy based SMPs have been successfully stimulated using SiC particles at 

20 weight percent with the added effect of approximately doubling the strength of the polymer 

[12,24,57].   

1.1.2.3 Applications of Thermally Activated SMP 

Although there are several proposed and implemented applications of heat activated 

shape memory polymers including customizable utensils for the physically disabled and fiber 

reinforced deployable structures for space applications [64], most proposed devices are either 

biomedical or militaristic in nature.  Morphing aircraft and deformable wing structures have been 

under investigation recently with the desire to produce multi-mission and more fuel efficient 

aircraft [65,66].  In the biomedical field, several designs utilizing SMP in stents, aiding in 

minimally invasive surgery, have been proposed [26,67-69].  Stents made of tert-butyl acrylate 

monomer with diethyleneglycol diacrylate crosslinker have been proposed for their 

biocompatibility [26].  Stents impregnated with drugs designed to leach out over time, reducing 

the chance of rejection and or supplying needed medication have also been tested [67].  SMP 

foam filled stents have been proposed for use in cerebral vasculature aneurysms utilizing laser 

heating [68,69].  Other biomedical applications include using the shape memory effect of SMP 

for sutures.  The proposed research showed that in rats, loose sutures could be tightened through 
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heating, aiding in minimally invasive techniques [5,70].  Thrombectomy devices have been 

proposed for removing blood clots using SMP wires with memorized spiral shapes [68,71].  

Similar thrombectomy devices have also been proposed using inductive heating as the actuation 

method with nickel zinc ferromagnetic particle doped SMP [63].  With shape memory polymers 

moving increasingly into mainstream design, ever more devices are being proposed and 

implemented, with each type of SMP taking their own place based on their unique 

characteristics. 

1.1.3 Light Activated SMP 

Effects due to the irradiation of polymers have been under investigation since the 1950s [72,73].  

The first formulations marketed as polymers with the ability to generate a force when exposed to 

light were introduced in the late 1980s and early 1990s [39,74].  These polymer gels containing 

N-isopropylacrylamide and the light sensitive chromophore trisodium salt of copper 

chlorophyllin were reported to have reduced in diameter by as much as 40% when cylindrical 

rods were exposed to 488 nm light.  Since then several monomers have been shown to be 

affected by irradiation and much research has been completed characterizing their response [75].   

1.1.3.1 Crosslink Chemistry 

Of the two categories of shape memory polymers belonging to the light activated type, by 

far the most common and most studied are those polymers that undergo a shape change when 

exposed to an optical stimulus.  Polymer systems based on Poly[oxy(methylsilylene)] as well as 

azobenzene have been shown to reversibly strain under an optical stimulus [32,33,35,38].  The 

trans-cis transformation of azobenzene is pictured below, as published by Jiang [75], where 
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contraction occurs under 330-380 nm light and extension occurs under wavelengths greater than 

420 nm. 

  

 

Figure 1.1.3.1-1: Trans-cis transformation of azobenzene when exposed to UV irradiation 

 

The second category of light activated polymer, whose primary response to UV exposure 

is the formation or scission of crosslinks, thereby increasing or decreasing the strength of the 

polymer, is both less common and the focus of the presented work.  Light sensitive molecular 

switches, commonly consisting of cinnamic acid (CA), cinnamy-liden acetic acid (CAA), or 

coumarin moieties, form covalent bonds with each other upon irradiation [47].  Such systems are 

based on the reversible photo-dimerization brought on by cycloaddition induced by UV 

irradiation and the corresponding cleaving of crosslinks of cyclobutane derivatives [37,42,48].   

The two strategies used to incorporate the photoactive species into the polymer include 

grafting the photosensitive moieties onto a permanent elastomer network and interpenetrating the 

network with oligomeric molecules having several photosensitive moieties.  As examples, the 

crosslinked and uncrosslinked chemical structures of coumarin (C9H6O2) are shown below in 

Figure 1.1.3.1-2 as published by Jiang et al. [48].  Also shown below in Figure 1.1.3.1-3 is the 

photodimerization crosslinking reaction of cinnamic acid [75].  
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Figure 1.1.3.1-2: UV induced crosslinking reaction of coumarin 

 

 

Figure 1.1.3.1-3: UV induced crosslinking reaction of cinnamic acid 

1.1.3.2 UV Degradation 

The degradation of polymer materials due to exposure to ultraviolet radiation has been 

studied for some time and is influenced by many factors.  Degradation and yellowing of 

materials has been shown to be dependent on temperature, the presence and concentration of 

oxygen, radiation dose, radiation dose rate, polymer composition, as well as other environmental 

and chemical factors.  The type and degree of degradation due to UV exposure differs between 

polymers and can be a combination of simple discoloration, changes in molecular weight, 

crosslink scission or changes in structure, resulting in changes in mechanical and optical 
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properties such as absorbance, transmittance, and tensile strength [76-79].  Changes in structure 

such as the scission of the C-CH2 bond in polyisobutylene from radiation, causing a change in 

molecular weight [77], as well as up to a 60% decrease in the tensile strength of polyethylene 

and ethylene-propylene copolymer have been shown [78].  Table 1.1.3.2-1 below lists a selection 

of polymers and the ranges of radiation known to cause degradation [76].   

 

Table 1.1.3.2-1: Degradation of select polymer systems [76] 

  Wavelength region showing highest activity   

14                             Nylon Spectroscopy 

13                       ECO film Extensibility 

12                         Polyethylene film Extensibility 

11                         Polyethylene (molded) Extensibility 

10                           Polyethylene Spectroscopy 

9                        Polypropylene Extensibility 

8                          Polypropylene Spectroscopy 

7                           Polystyrene foam Yellowing 

6                          PC (stabilized) Yellowing 

5                         PC (unstabilized) Yellowing 

4                         PVC (Rigid (0% TiO2)) Yellowing 

3                          Wool Yellowing 

2                         Newsprint Brightness 

1                          Newsprint Yellowing 

                                           
                                            
 290 310 330 350 370 (nm)  

 

While it is a well known phenomenon that exposure to UV radiation has the ability to degrade 

polymers and such degradation would affect the life cycle of LASMP in practical applications, 

such a study is beyond the scope of this thesis.  It is however worth noting that, although the 

exact polymer system is proprietary, steps can be taken to minimize degradation.  From the work 

of Seguchi et al., it is known that increasing the dose rate increases the amount of degradation 

described by Equation 1.1.3.2-1 [78]. 
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Where Deg represents the magnitude of degradation, r is the dose of radiation, I is the dose rate 

of radiation, and k is a material constant.  From Equation 1.1.3.2-1, the degree of degradation 

during testing can be minimized by lowering the dose rate.     

1.1.3.3 Modeling of LASMP 

While there are several mathematical models describing the cure kinetics of photo-cured 

polymers, invoking for example Arrhenius type equations such as Equations 1.1.3.3-1, which can 

be adapted to predict the crosslinking that occurs during a finite time leading to the ability to 

estimate Young’s modulus [34]; to the authors knowledge there is a complete lack of constitutive 

models developed specifically for light activated polymers, taking into account optical 

stimulation  predicting the stress response of the polymer.   
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In Equations 1.1.3.3-1 above, X is the extent of cure at time t, Xm is the maximum level of curing 

the polymer is capable of, k is a constant, n is a material constant, k0 is a constant dependent on 

the molecular weight of the polymer, E is the activation energy, R is the gas constnat, and T is 

absolute temperature.  The models that have been derived for use with heat activated shape 

memory polymers discussed in the previous section, however, may be able to be adapted for 
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light activated shape memory polymers.  For example replacing the quantities 
.

Tα  in Equation 

1.1.2.1.1-5 and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−1

T
T

a g  in Equation 1.1.2.1.1-7 with activation time dependent functions, such 

as Equations 1.1.3.3-1, may be sufficiently accurate and flexible for many design and modeling 

efforts. 

1.1.3.4 Experimental Characterization of LASMP 

In 2001, Finkelmann et al. published a study on Poly[oxy(methylsilylene)] (PHMS) and 

its ability to strain as much as 20% when exposed to UV light for 60 minutes.  The report also 

detailed the less often reported temperature dependence of the polymer.  The observed maximum 

attainable strain was seen to decrease from 20% to as low as 16% as temperature decreased from 

313 K to 298 K [32].  The most common light activated polymer system belonging to the “shape 

change” category, however, are those based on azobenzene.   

Azobenzene liquid crystal elastomer films have been shown to permanently bend under 

UV light of 360 nm and unbend under 450 nm [33,35,38].  Polymers based on this system have 

been reported to experience strains up to 20% with as little as 130 seconds of exposure and can 

be directionally curled using polarized light [35,38].   

Polymers categorized as having a change in modulus as a result of UV irradiation, such 

as CA and CAA polymer systems, have been shown to crosslink when exposed to light above 

260 nm and cleave under light below 260 nm, effectively switching between modulus states with 

1.5 hours of exposure time [37,41,47].  By novel application of strain and optical stimulus, 

various shapes such as cork screws and spirals can also be obtained [37,75].  Studies conducted 

on coumarin based polymers have shown that the polymer crosslinks when irradiated at 
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wavelengths near 310 nm and cleaves near 260 nm [48].  Since most light activated shape 

memory polymers are still in the development stages with molecular formulas and synthesizing 

techniques varying greatly among practitioners, there is little detailed or numerical published 

mechanical characterization data available. 

1.1.3.5 Applications of LASMP 

Although light activated shape memory polymers are still in their infancy, there are a 

significant number of application opportunities.  LASMP’s unique characteristic of being able to 

switch between two strain or modulus states regardless of the temperature makes them attractive 

in the biomedical field.  Several applications have been proposed including smart implants 

[47,75] or sutures [70] that can be activated without fear of damaging nearby tissue, as is a 

concern with heat activated shape memory polymers.  The non-contact activation feature of the 

polymer has been proposed as a way to activate LASMP micelles used for targeted drug delivery 

in cancer and other patients [48].  The polymer has also been proposed for use in high speed 

actuators for microscale and nanoscale robots, pumps, and optical tweezers [35,38] as well as 

other light responsive sensors and actuators [75].  Finally, light activated polymers are a 

candidate material for morphing structures such as aircraft and satellite systems, taking 

advantage of their ability to permanently change in modulus without the need for continued 

energy input to overcome environmental losses as well as their relative independence of 

temperature effects.  With a myriad of possible applications, the research initiative developing 

and characterizing these polymers is just beginning.   
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2.0  EXPERIMENTAL CHARACTERIZATION 

The main focus of the work is to establish a proven experimental technique for accurately 

measuring the stimulus dependent mechanical properties of light activated shape memory 

polymer.  Because LASMP is a new class of polymer, coherent experimental characterization 

techniques have not yet been established, thus the first phase of the experimental aspect of the 

research is to both establish a set of reliable methods for determining the properties of LASMP 

as well as supply poof of concept data that the chosen polymer monomers and synthesis yield 

expected results.  The experimental results are also used to both calibrate and validate the model 

presented.   

The second phase of experimental work will focus more heavily on refining the polymer 

formula.  It is the goal of the phase II effort to obtain a formula or family of formulas with 

sufficiently acceptable characteristics to be used in first generation light activated shape memory 

polymer devices such as adaptable optics. 
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2.1 EXPERIMENTAL SETUP AND TECHNIQUE 

2.1.1 Optical Equipment, Setup, and Characterization 

2.1.1.1 Optical Stimulus Equipment and Setup 

The optical setup for material characterization of the polymer includes two lasers, a filter, 

a convex lens, and several mirrors, Figure 2.1.1.1-1.  The laser responsible for transitioning the 

polymer from the soft to the hard state is an Omnichrome Series 56 Ni-Cd class IIIb 150 mW 

laser outputting at 325 and 442 nm wavelengths at 19.0 and 55.0 mW of optical power 

respectively.  Exiting the aperture of the laser, the beam is directed 13 cm through a 25 mm short 

pass fused silica filter (NT47-285) manufactured by Edmund Optics that transmits wavelengths 

from 250 to 385 nm and rejects those from 420 to 485 nm, resulting in a slightly less powerful 

beam of 325 nm light due to the transmission efficiency of the filter.   

 

Omnichrome Series 56 Ni-Cd 150mW laser, 325 and 442nm

Photon Systems Ne-Cu 70-248SL pulsed 1.5mW laser, 248-280nm
250-385nm Pass Filter

Optical Mirrors

Cylindrical 100mm lens
LASMP Sample  

Figure 2.1.1.1-1: Laser pathway 

 

From the filter the beam travels approximately 245 cm, redirected by 2 Newport model 

10D20AL.2 broadband optical mirrors, to a fused silica Newport plano-convex uncoated 

cylindrical lens (CSX100) with a focal length of 100 mm, which spreads the beam to an 



 29 

experimentally usable size approximately 35 mm in height and 7 mm in width, Figures 2.1.1.2-2 

and 3.  The properties of the beam will be discussed in much more detail in Section 2.1.1.2.  

Finally, the diffused beam reaches the sample 62.5 cm from the cylindrical lens.   

For transitioning the sample from the hard to the soft state, a Photon Systems Ne-Cu 70-

248SL class IIIb pulsed laser is used, outputting from 248 to 280 nm at less than 1.5 mW.  For 

testing, this laser is configured to pulse at 20 Hz at 40 µs each.  The exiting light from the Ne-Cu 

laser travels approximately 208 cm to the cylindrical lens, also directed by 2 optical mirrors.   

 

1K MTI Load Frame LASMP Sample

Cylindrical Lens

Low Pass Filter

Optical Power Meter

Video Extensometer

Omnichrome Ni-Cd Laser

Photon Systems Ne-Cu Laser

Protective Goggles

 

Figure 2.1.1.1-2:  Experimental setup used for LASMP material characterization 

2.1.1.2 Stimulus Characterization – Spatial Variations 

Spatial and temporal characterization of the 325 nm wavelength beam is accomplished 

via a Newport model 1830-C Optical Power Meter with a 20 mm diameter Newport model 818-

UV optical sensor.  To measure the total power of the beam the sensor is covered with 1.2 mm 

thick posterboard with a pinhole approximately 0.58 mm in diameter in the center and simply 
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placed in the beam path.  For sample transmission measurements the sensor is placed behind the 

sample of interest.    

Characterization of the 248 nm wavelength laser is not available because the optical 

power meter available is not suitable for measuring light from a pulsed laser. 

In addition to fluctuating over time, the optical 325 nm wavelength stimulus described 

above is also non-uniform in space.  While it is generally accepted that most lasers will exhibit 

beams that have a spatial intensity distribution that is Gaussian in nature, it is not always the case 

[80].  Therefore, it is appropriate to characterize the spatial light distribution in advance of 

LASMP stimulus characterization.  A contour map of the optical power delivered to the sample 

considered in this work is created by (1) covering the power meter with opaque material with a 

pinhole, (2) attaching the meter to a sliding 90° optical mounting bracket that is fixed to the 

crosshead of the load frame, Figure 2.1.1.2-1, and (3) mapping the laser power incident on the 

sample over a 1 mm square grid.  The data is then conditioned in Matlab® using the 

griddata(cubic) function to produce contour and surface plots of the optical power seen by the 

sample, pictured as Figure 2.1.1.2-2 and 3 respectively.  Figure 2.1.1.2-2 also illustrates how this 

information is to be used to properly place the sample within the diffused light in order to impose 

a stimulus that is as uniform as possible. 

 

Figure 2.1.1.2-1:  Optical power sensor attached to load frame cross-head with sliding bracket 
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Figure 2.1.1.2-2:  Contour plot of optical power as seen by the sample 

 

 

Figure 2.1.1.2-3:  Surface plot of optical power as seen by the sample 
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To determine where within the laser dot the sample lies during testing, a strip of 35 mm 

film is positioned behind the sample in the load frame and exposed to the 325 nm laser.  By 

examining the resulting shadow of the sample on the film, pictured in Figure 2.1.1.2-4, the 

position of the sample can be precisely located within the laser dot.  For the case performed here, 

this comparison leads to the sample encompassing the space outlined from 3.0 to 7.0 mm 

horizontally and 7.5 to 37.5 mm vertically in the contour plot of Figure 2.1.1.2-2.  Accounting 

for the gage length measured by the video extensometer, which will be discussed further later, 

the vertical space of the sample responsible for mechanical measurement is reduced to the 

bounds of 10 to 35 mm as illustrated (Figure 2.1.1.2-2).   

 

 

Figure 2.1.1.2-4:  Film depicting laser shadow of a sample during testing 

 

As seen in Figure 2.1.1.2-2 and taking into account the area occupied by the sample as 

described above, although the laser dot is irregular, the area used to transition the sample is 

relatively uniform in strength.  While variations are apparent, the majority of the sample is 

relatively evenly stimulated.  Only 8.8 mm2 of the sample is exposed to intensities less than 5.0 

nW, which corresponds to 9.0% of the total area, with the average and median optical power 



 33 

intensity being 5.62 and 5.83 nW respectively.  From Figure 2.1.1.2-4 and the data represented in 

Figure 2.1.1.2-2, the power incident on the sample, and thus power required for transition, can be 

calculated.  Of the available 9.2 μW of optical power emitted by the laser, 7.7 μW is incident on 

the sample and responsible for transition.  

2.1.1.3 Stimulus Characterization – Temporal Variations 

By placing an optical power meter at a fixed point in the path of the 325 nm wavelength laser 

beam and measuring the intensity of the light over a length of time, fluctuations in the power 

output of the laser can be measured.  The laser utilized for this particular study exhibits 

sinusoidal optical power output with a period of 1200 s (~20 min) and has a difference of 

approximately 6.76% between the maximum and minimum power output.  Since the polymer 

considered in the first phase of experimental characterization requires 60 minutes or more to 

fully transition, these fluctuations are noted but are not believed to greatly affect testing.  

Ultimately however, LASMP development efforts are expected to yield formulations that 

transition in about 1 second. To account for these fluctuations in incident power when testing 

polymers having quicker transition times, prior to testing it will be essential to determine the 

position and direction of the laser on its intensity curve when computing the polymer’s power 

requirements.   

Figure 2.1.1.3-1 is a graph depicting power readings over 3.3 hours using the optical 

power meter described previously with a 0.58 mm diameter pinhole.  The sensor is placed behind 

a 0.9 mm thick sample with readings taken every 30 seconds.  The graph shows a fluctuation in 

the optical power being transmitted through the sample of 6.76%.  It also demonstrates the 

gradient of light intensity transmitted through the sample.  At the beginning of the test, almost no 

light is penetrating through the sample, being diffused or absorbed for transitioning of the bulk of 



 34 

the material.  At the end of the test, more of the light provided to the sample is transmitted.  It 

should also be noted that the optical power meter in the same configuration, not being behind a 

sample, measures an optical intensity of approximately 354 nW, indicating that 99.94% of the 

incident light is scattered or absorbed by a 0.9 mm thick sample. 

 

0.195

0.2

0.205

0.21

0.215

0.22

0.225

0.23

0 1800 3600 5400 7200 9000 10800 12600 14400

Time (s)

In
ci

de
nt

 O
pt

ic
al

 P
ow

er
 (n

W
)

data RMS

6.76% change

τ = 63.2% at 1860s

12.5% change

 

Figure 2.1.1.3-1:  Optical power transmitted through a 0.9mm thick LASMP sample 

 

LASMPs are unique in that the absorption of light stimulates transition, however, the 

polymer must also transmit light through its thickness for bulk transitioning of the polymer.  

Because of this unique material property, it is pertinent that we measure the absorption of the 

polymer [81]. Consider the Beer-Lambert-Bouguer law  
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λ
πα k4

=       (2.1.1.3-2) 

lcA α=       (2.1.1.3-3) 

 

where  A is absorbance, Io is the intensity of the incident light, Ii is the intensity of the light 

exiting the material, α is the absorption coefficient, k is the extinction coefficient, λ is the 

wavelength of the light, c is the concentration of the absorbing species in the material, and l is 

the distance light travels through the material.  To measure the absorption of the polymer, the 

optical power meter is positioned behind a sample in the grips of the load frame and 

measurements taken at incremental strains.  The thickness of the sample at each measurement is 

estimated using Poisson’s ratio, known from previous tests.  Figure 2.1.1.3-2 shows the results of 

such a test and, as can be seen, the absorption of the polymer is nearly linear with sample 

thickness, supporting the use of the Beer-Lambert-Bouguer law, Equations 2.1.1.3-1 through 3. 
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Figure 2.1.1.3-2:  Absorbance of LASMP based on sample thickness 
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As LASMP transitions from a soft state to a hard state, the absorbance of the polymer, 

and the polymer’s absorption coefficient, change.  The result is that to fully characterize the 

absorbance of the polymer, measurements must be taken at several different exposure times 

resulting in an equation for the absorbance of the polymer dependent on the thickness of the 

polymer, l, the concentration of the absorbing species, c, and the absorption coefficient, α, which 

is in turn dependent on laser exposure time.  The paradox is that for LASMP to perform well a 

high concentration of absorbing species is needed while Beer’s Law is known to become less 

accurate at high absorbing species concentrations. Further, Beer’s Law is also known to become 

less accurate for materials with high scattering, which is also a trait of LASMP [81].  A possible 

solution is to simply make the absorption coefficient also dependent on material thickness. 

However this strategy makes the equation phenomenological and thus cannot be extrapolated to 

thicknesses untested.   

2.1.2 Mechanical Equipment and Setup 

The mechanical equipment used for material characterization includes a small tabletop 

load frame with tensile grips and a video extensometer, Figure 2.1.1.1-2.  The load frame is an 

MTI-1K tabletop screw driven load frame with a 2.5lb Transducer Techniques load cell, model 

MDB-2.5, accurate to 7.5E-4lb (3.3mN).  A Messphysik ME46-NG video extensometer is used 

to track both axial and transverse strain of the sample using a Mintron model MTV-13W1C 

digital camera with a 50mm Tamron lens, Figure 2.1.1.1-2.  The accuracy of the video 

extensometer depends on the angle and tilt of the camera, quality of sample markings, lighting, 

and the camera field of view, but is estimated to be less than 1.5 μm based on the manufacturer’s 
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manual for the setup shown.  The tensile grips are pictured in Figure 2.1.3-1 and are typical, 

hand tightened steel grips.  The grip faces were sand blasted to provide improved grip on the 

specimens. 

Because it is desirable to establish the property change of LASMP as a function of time, 

in situ characterization is required.  The transition time for the first phase LASMP formulas is 

approximately one hour. For this state of development a brief tensile test, approximately 2 

minutes in duration, is periodically performed with the grips returning to their “pre-test” position 

after completion of each cycle.  As compared to the one hour transition time, it is reasonable to 

assume the test is instantaneous relative to the amount of time required for full transition.  In 

such an instance the load frame can simply be programmed to perform a low cycle fatigue test 

with the proper dwell between cycles applied with the laser remaining on for the duration of the 

test.  Tensile tests were conducted at 0.25 mm/min, representing a strain rate of approximately 

1% strain per minute with each cycle stopped below the yield stress of the polymer.  Young’s 

modulus of the polymer is then calculated as the initial slope of each individual stress strain 

curve. 

In anticipation of future LASMP formulas with much faster response times, custom 

software has been created by MTI per University of Pittsburgh specifications. This control 

strategy effectively converts the small tabletop load frame into a DMA that waits for user input 

before completing each cycle.  Typical DMA and other commercial experimental devices are not 

adequate for LASMP testing because of the type and number of systems that need access to the 

sample during testing.  The software is easily interfaced with other programs, such as Labview®, 

allowing the interfacing of the lasers, load frame, video extensometer, optical power meter, and 

other controlling devices such as shutters.  This experimental setup effectively allows the laser to 
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be turned off or shuttered during each cycle of testing resulting in an instantaneous measurement 

with respect to laser exposure during transition allowing extremely small time spans between 

data points.  Also expected with the introduction of polymers with faster transition times is the 

need for conditioning the sample before testing.  While every effort is made to shield the test 

samples from ambient radiation between sample creation and characterization, it is not feasible 

to block all ambient radiation.  While this is not a significant issue for polymers with large 

transition times, such as those presented, it must be accounted for in future formulations more 

sensitive to ambient light.  To account for this, future formulations will require an extra step of 

conditioning for a period of time, such as exposure to 248nm light for several times the time 

required for transition, to ensure that the polymer is in a known reference state.  It will also 

become required that the optical properties of the material be investigated more thoroughly, such 

as the polymer’s reflectivity and scattering characteristics. 

2.1.3 Sample Preparation 

Samples of various formulations are typically received as thin film sheets ranging from 25 x 25 

mm to 40 x 40 mm with thicknesses between 0.05 to 0.25 mm and are in the elastic state with 

little to no photo-crosslinks.  Preparing the samples for testing involves cutting the samples into 

strips compliant with ASTM Standard 882 for thin films requiring at least an 8 to 1 width to 

thickness ratio.  Cutting of the samples is performed using a metal ruler as a guide and a razor 

blade knife.  Vertical and horizontal lines are then applied with white paint to the back of the 

samples for tracking by the video extensometer.  The samples, approximately 4mm wide, 0.1 

mm thick, and having a gage length of 20 mm are then cleaned with 91% isopropyl alcohol 

before being centered in the grips of the load frame, shown in Figure 2.1.3-1.   
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Figure 2.1.3-1:  Standard LASMP sample with 325nm laser 

 

An important area of interest when mechanically testing any polymer is the choice of 

sample type and the interface between the grips and the sample.  Dogbone samples are generally 

preferred because their shape makes it possible to argue that the thinnest segment, or gage 

length, of the sample dominates the strain response, thereby minimizing grip effects.  However, 

LASMP synthesis constraints result in sample sizes too small to justify the material loss 

associated with the creation of dogbone samples.  Also, it should be noted that when 

transitioning from the soft to hard states, only the sample that is exposed to light transitions.  The 

result is that the portion of the sample covered by the grips remains soft.  When testing a sample 

in this state, the sample tends to undergo slight necking in the region of the grips. In order to 

prevent this phenomenon from skewing the data, resulting in an artificially low Young’s 

modulus measurement, a video extensometer is employed.  Because the entire sample is subject 

to a known load and the video extensometer monitors deformation in the central portion of the 

sample, far from the grips, the property variation at the grips is eliminated from the 

characterization data. 
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2.1.4 Equipment Lists 

Table 2.1.4-1: Optical Experimental Equipment 

Item Manufacturer and Model Description 
Ni-Cd Class IIIb 105mW Laser Omnichrome series 56 output 325nm at 19.0mW 

  output 442nm at 55.0mW 
Ne-Cu Class IIIb Pulsed Laser Photon Systems 70-248SL output 248-280nm at <1.5mW 

  20Hz, 40μs pulses 
Short-pass Fused Silica Filter Edmund Optics NT-47-285 25mm diameter 

  transmission band 250-385nm 
  rejection band 420-485nm 
  cut-off wavelength 400nm 

Broadband Metallic Mirror Newport 10D20AL.2 Pyrex construction 
  25.4mm diameter 
  6.0mm thick 
  250-600nm wavelength range 
  MM2-1A aluminum mounts 

Plano-convex Cylindrical Lens Newport CSX100 uncoated 
  50.8 x 25.4mm dimensions 
  100mm focal length 

Optical Power Meter Newport 1830C 818-UV 20mm sensor 
 

 

 

Table 2.1.4-2: Mechanical Experimental Equipment 

Item Manufacturer and Model Description 
Tabletop Load Frame MTI-1K screw driven 

Load Cell Transducer Techniques MDB-2.5 2.5lb capacity 
  3.3mN accuracy 

Tensile Grips custom steel, hand tightened 
  sand blasted grip surface 

Video Extensometer Messphysik ME46-NC Mintron MTV-13W1C digital camera 
  Tamron 50mm lens 
  1.5μm accuracy 

Digimatic Micrometer Mitutoyo MDC-1" SB no. 293-831 range 0-1" 
  resolution 0.00005" 

Digital Calipers Marathon CO-031050 0-150mm range 
  0.01mm accuracy 

35mm Color Print Film Kroger 400 speed 
Razor Blade Knife   

91% Isopropyl Alcohol CVS  
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2.2 EXPERIMENTAL RESULTS 

2.2.1 Characterization 

Since the polymers being tested are new, the degradation of their mechanical properties due to 

repeated strain cycles is unknown.  Thus before material changes due to an optical stimulus can 

be measured, a reference sample must be tested evaluating the mechanical effects of the testing 

procedure on the sample.  To characterize the fatigue properties of the polymer, a sample is 

tested per the method above for 60 cycles between strains of 0.05% and 2.5% at a rate of 0.5 

mm/min.  For example, formula EAS-220-20E decreased from a stiffness of 1.45 MPa to a 

stiffness of 1.22 MPa over 60 cycles, corresponding to a drop in Young’s modulus of 15.9% in 

the absence of optical stimulation.  Since formula EAS-220-20E is seen to increase from 5.17 to 

32.0 MPa when exposed to 325nm light, discussed further below, it can be assumed that the 

increase in stiffness is a result of the polymer’s reaction to the radiation and not a result of the 

mechanical test procedure.   

Conversely, the decrease in stiffness due to exposure to 248nm light, seen for example in 

formula EAS-155-115 shown in Figure 2.2.1-5, can also be attributed to a reaction to incident 

radiation since the decrease in stiffness is much larger than that measured when the sample is 

shielded from any stimulus source.  Any temperature changes due to the absorption of photons 

by the polymer, thus altering the sample’s material properties, must also be considered.  

Polymers of similar structure to the LASMP samples tested have specific heats ranging from 

103.4 to 215.3 J/mol*K [148].  Using the total optical energy incident on the sample during 

testing shown in Figure 2.2.1-1, if all of the optical energy is absorbed as heat in the sample and 

there is no heat loss to the surrounding environment, formula EAS-155-115 will see a rise in 
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temperature between 3.2 and 6.8 C and formula EAS-155-93 will experience an increase in 

temperature between 7.1 and 14.7 C.  Since only a portion of the optical energy incident on the 

sample during testing is absorbed as heat, the remaining amount reflected, transmitted, or utilized 

for crosslinking, with a portion of that heat being diffused to the sample’s surroundings, the 

resulting small temperature changes are not believed to significantly impact the test results. 

Experimental characterization includes tests on LASMP sample formulas designated 

LASMP Sample 1, LASMP Sample 2, AKK-171-60, AKK-171-64, EAS-155-93, EAS-155-115, 

EAS-155-143, EAS-220-20D, and EAS-220-20E. These designations have been introduced by 

the manufacturer, CRG Industries.  LASMP Samples 1 and 2, AKK-171-60, and AKK-171-64 

had marginal performance characteristics and are thus omitted here.  The results from samples 

EAS-155-93, 115, and 143, which are used for model calibration and validation in later sections, 

as well as samples EAS-220-20D and 20E are presented below.   
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Figure 2.2.1-1:  In situ test results of formula EAS-155-93 
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Formula EAS-155-93, Figure 2.2.1-1, was the first formula to achieve a significant 

modulus change but at the expense of less favorable creep characteristics.  The formula was able 

to transition from a Young’s modulus of 15 MPa to that of 106.7 MPa when exposed to the 

325nm laser for 1.5 hours, a 610% increase.  The rate of change will be discussed later and can 

be seen in Figure 2.2.1-3.  As can be seen from the graph, hysteresis and creep are significant 

issues.  The slow recovery of the polymer is noticeable in the large hysteresis loops in Figure 

2.2.1-1, also showing approximately 1.2% of un-recovered strain, 0.8% of which resulting from 

the first cycle.  This un-recovered strain however, as with all of the samples tested, is not 

believed to be due to plastic deformation but rather the grips of the load frame returning to their 

initial state faster than the polymer can recover.  Given sufficient time, all of the samples tested 

recovered to their initial dimensions. 
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Figure 2.2.1-2:  In situ test results of formula EAS-155-115 
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Formula EAS-155-115, Figure 2.2.1-2, showed similar results as formula EAS-155-93 

with the exception of the magnitude of Young’s modulus.  The formula exhibited a modulus 

increase of 470% from 2.0 MPa to 11.4 MPa when exposed to the 325nm laser for 1.75 hours.  

Creep is slightly improved, having smaller hysteresis loops and about 1.5% unrecovered strain.  

Poisson’s ratio for this formula was measured to be 0.42 when the polymer is in its hard state and 

0.29 when in its soft state.  It should be noted in Figure 2.2.1-2, that the measured stress during 

the test becomes negative.  This is a result of both the grips returning to their pre test position 

faster than the polymer can recover and also an indication of unrecoverable strain.  Also evident 

in the figure are sharp peaks in the stress at the end of each cycle, this is a result of the load 

frame and is not believed to be a material property. 

Figure 2.2.1-3 below displays Young’s modulus of formulas EAS-155-93 and EAS-155-

115 as a function of stimulation time.  As can be seen, both formulas closely follow a 

logarithmic transition from hard to soft, shown by the solid line in Figure 2.2.1-3.  Figure 2.2.1-4 

shows the evolution of Young’s modulus of the same two samples but with respect to radiation 

dose (the total accumulated incident radiation energy).  The two graphs differ slightly due to the 

size difference between the two samples and the spatially non-uniform activation energy 

mapping, Figure 2.1.1.2-2, resulting in different total incident power available for transition.  
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Figure 2.2.1-3:  Young’s modulus evolution of formulas EAS-155-93 and 115 with respect to exposure time 
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Figure 2.2.1-4: Young’s modulus evolution of formulas EAS-155-93 and 115 with respect to available power 
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Figure 2.2.1-5 is the result of formula EAS-155-115 being exposed to 325nm wavelength 

light at 4.05mJ/m2 for 30 minutes to transition from the soft to the hard state; then periodically 

tested while being exposed to 248 nm wavelength light to transition back to the soft state.  The 

virgin polymer has a Young’s modulus of 5.5 MPa before being hardened to 33.3 MPa.  After 

approximately 200 minutes (3.3 hours) of reverse stimulus the polymer reaches a quasi steady 

state at 20.8 MPa, resulting in 45% recovery.  The longer exposure time is due to the 

characteristics of the laser.  The 248nm laser emits pulses at 20Hz that are 40µs in duration as 

compared to the steady beam of the 325nm laser, resulting in only 800µs of laser exposure per 

second during the test.  Thus 200 minutes of 248nm reverse activation is the equivalent of 9.6 

seconds of 325nm activation.  Figure 2.2.1-5 does not, however, consider any damage or 

degradation to the backbone of the polymer as a result of irradiation, which like crosslink 

scission would also result in decreased stiffness.  Although not performed for the shown case, 

later studies of subsequent polymer formulations have been shown to become stiff again after 

being softened, indicating that the softening taking place when exposed to 248nm light is at least 

in part due to crosslink scission.   
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Figure 2.2.1-5:  In situ softening test results of formula EAS-155-115   

 

The final two formulas tested were EAS-220-20D and 20E.  Formula EAS-220-20D 

exhibited an increase in Young’s modulus of 739% over 13 cycles and 2.4 hours of exposure to 

the 325 nm laser, increasing from an initial value of 3.4 MPa to a final value of 32.5 MPa.  The 

formula did, however, have slightly less desirable creep characteristics as compared to formula 

EAS-220-20E with approximately 1.1% of irrecoverable strain.   
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Figure 2.2.1-6:  In situ test results of formula EAS-220-20D 

 

Formula EAS-220-20E also displayed significant improvements over initial formulas 

increasing in Young’s modulus by 519%.  The sample was exposed to 325 nm light for 2.1 hours 

with an initial modulus of 5.2 MPa transitioning to a final modulus of 32.0 MPa.  Despite 

needing longer to recover from applied strain, indicated by the large hysteresis loops, the 

polymer had improved creep characteristics, having 0.6% of irrecoverable strain over 13 cycles 

between 0.05 and 1.0% applied strain.   
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Figure 2.2.1-7:  In situ test results for formula EAS-220-20E 

 

Pictured below in Figure 2.2.1-8, is a time scale plot of the evolution of the samples’ 

Young’s moduli during testing.  As can be seen from the graph, and like earlier formulations, 

both formulas EAS-220-20D and 20E exhibit logarithmic trends with respect to time.  Assuming 

that steady state is reached at 32.0 MPa at about 100 minutes, the resulting time constant (63.2% 

of steady state) is approximately 63 minutes. 
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Figure 2.2.1-8:  Young’s modulus versus time for formulas EAS-220-20D and EAS-220-20E 

 

As described in Section 2.1.1.2, the optical power required for transitioning the polymer 

can be calculated.  Knowing the position of the sample from Figure 2.1.1.2-4 and its dimensions, 

the fraction of optical radiation and thus the amount of energy incident on any sample can be 

calculated, shown in Table 2.2.1-1.  Using the optical power meter, the 325 nm laser beam has a 

strength of 9.2 μW at the sample after passing through the filter, cylindrical lens, and mirrors.  

Applying the fractional amount of optical energy reaching the sample then reduces the amount of 

energy available for transition for each sample to those listed below in Table 2.2.1-1, averaging 

approximately 50.5 mW/m2.  This corresponds to between 9.8 and 48.3 mJ of radiation during 

transition, or between 0.75 and 5.19 J/g.    The slightly differing numbers associated with the 

amount of optical energy available for transition are a result of differences in sample sizes and 

the non-uniform distribution of incident power.  It should also be noted that not all of the light 

exposed to the sample is utilized, as designed.  A portion of the light is transmitted through the 
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sample, as indicated in Figures 2.1.1.2-5 and 6, as well as reflected from the sample’s surface, or 

scattered. 

 

Table 2.2.1-1: Activation energy incident on sample 

 Area Incident Fraction Activation Time Mass Power 
Formula mm2  minutes g mW/m2 mJ J/g 

60 113.2 0.65 118 0.052 52.7 42.3 0.82 
64 114.9 0.66 118 0.057 52.5 42.8 0.75 
93 105.9 0.59 89 0.012 51.6 29.1 2.47 
115 38.7 0.17 105 0.009 40.5 9.8 1.14 
143 79.2 0.45 129 0.006 52.0 31.9 5.19 
20D 99.7 0.60 146 0.033 55.4 48.3 1.46 
20E 119.2 0.63 126 0.040 48.9 44.2 1.11 

 

To test LASMP’s material characteristic dependence on the intensity of the incident light, 

the optical power supplied to the sample is reduced yielding Figure 2.2.1-9.   Initially, the two 

tests are similar, having comparable moduli and slopes.  After approximately 10 minutes, 

however, the sample exposed to lower incident optical intensity reaches steady state at 10.8 MPa 

while the sample exposed to higher optical power continues to harden.     
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Figure 2.2.1-9:  Effect of incident light intensity on material response 

 

As shown in Figure 2.2.1-10 and described in Section 2.1.1.2, the optical power 

transmitted by the polymer decreases exponentially with thickness.  This phenomenon is 

believed to produce the result seen in Figure 2.2.1-9 of the lower intensity sample reaching 

quasi-steady state earlier than the sample irradiated at full power.   

 

Figure 2.2.1-10:  Optical power degradation through sample  
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3.0  CHEMICAL KINETIC MODEL 

It is well known that the transmission of optical power through the thickness of materials follows 

an exponential decline.  Since crosslink formation and scission are directly related to the amount 

of optical energy available and the through thickness distribution of optical energy is non-

uniform, it can be assumed that the through thickness distribution of crosslinking, and thus the 

modulus of the material, is also non-uniform.  This has been shown by Ikeda et al. working with 

an azobenzene liquid-crystalline gel reporting activation to a depth of only 1μm of a 10μm thick 

sample [33].  The experimentally derived material parameters presented above in Section 2.2 are 

an average across the thickness of the sample.  Thus, a model is needed to characterize the 

through thickness distribution of crosslinking and the evolution of Young’s modulus of the 

material as a function of position within the sample.  With different thicknesses of samples and 

varying optical intensities used to transition the samples, a model predicting the theoretical 

material properties possible with each formulation would allow direct comparison across all 

formulations and activation techniques.  Such predictions are also used to both calibrate and 

validate the multi-scale model presented in Chapter 4.  Section 3.1 below illustrates the 

derivation of one such model that predicts the time and spatial varying optical intensity, 

concentration of crosslinks, the evolution of the sample averaged modulus, and the theoretical 

maximum Young’s modulus.   
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3.1 MODEL DEVELOPMENT 

From the Beer-Lambert-Bouguer Law; the optical intensity of light through the thickness 

of a sample decays exponentially.  From data collected to generate Figure 2.1.1.2-6, this decay is 

found to be, 

 

( ) xeIxI 82
0

−=      (3.1-1) 

 

where x is the through-thickness position.  The chemical kinetics of the system are assumed to be 

bimolecular in nature; making the reaction causing cross-linking second order, Equation 3.1-2 

[82].   
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Here, P is the concentration of cross-linked product, t represents time, k1 is a constant, and S is 

the concentration of optically activated species.  The degree of cross-linking is assumed to be 

proportional to the intensity of the light and the concentration of photo-active species at any 

given point and time, thus,  

 

IUkS 2=      (3.1-3) 

 

where, k2 is a constant, U is the concentration of uncross-linked photo active species, and I is the 

light intensity at the given location, expressed by Equation 3.1-1.  In the calculation of S in 

Equation 3.1-3, it is also assumed that once a photon has interacted with and activated a 
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functional group giving it the ability to crosslink, that the group remains active and results in the 

creation of a crosslink regardless of time or spatial constraints.  Realistically, an activated group 

is limited in the amount of time available to crosslink.  If a suitable counterpart is not available 

within a given time, the energy imparted by the photon is either re-radiated or absorbed and 

diffused as heat in the polymer.  It is important to note the distinction between S, the 

concentration of optically activated species, and U, the concentration of optically active species.  

U is the amount of material in the sample that, given enough time and optical energy, has the 

ability to cross-link.  S is the amount of material in the sample that, at the current time, has 

sufficient optical energy to cross-link.   

The local modulus of the polymer at any given point in the material is assumed to be 

proportional to the degree of cross-linking.  Thus, having an expression for the change in 

concentration of cross-linked product P with respect to time and the change in concentration of 

optically activated species S, Young’s modulus of the polymer at any point through the thickness 

of the sample may be expressed as, 

 

03 EPkE +=      (3.1-4) 

 

where k3 is a constant and E0 is the experimentally determined initial Young’s modulus of the 

sample before laser exposure.  Equation 3.1-4 predicts the modulus at any given point and time 

where the quantities I, P, S, and E are dependent on position, x.  Finally, the maximum attainable 

value of Young’s modulus at any given location, x, within the sample is fixed at Emax while 

Young’s modulus for the entire sample is found by integrating Equation 3.1-4 over the depth of 

the sample. 
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From Equation 3.1-2, we assume that before exposure to the laser the concentration of 

cross-linked product P is equal to 0.  The equation is then evaluated at the time τ, when all 

possible photo crosslinks have formed, resulting in dP equaling S.  We then solve for k1 as 
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1
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k
∗
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τ

     (3.1-5) 

 

The time τ represents the time constant for the reaction and is found by 

phenomenologically fitting the initial slope of the predicted time evolution of Young’s modulus 

curve, Figure 3.2-1, to experimental data. From Equation 3.1-3, we again assume sample 

conditions before light exposure: I at x = 0, the front face of the sample, is equal to I0, U is equal 

to U0.  We then assume that the amount of optical energy incident on the front surface of the 

sample is sufficient to activate all of the available uncross-linked photo active material, thus S is 

also equal to U0.  Then, 
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1
Ik =      (3.1-6) 

 

Finally, from Equation 3.1-4 we assume that as time approaches infinity, the Young’s 

modulus of the total sample, and at every position x within the sample, should approach Emax.  

Also, all of the photo active species in the material should have undergone cross-linking, 

resulting in P approaching U0.  Then, 
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As can be inferred from Equations 3.1-2 through 3.1-4, k1 is related to the efficiency at 

which the polymer mechanically crosslinks given an acceptable environment.  An acceptable 

environment is associated with the amount of optical energy available, the spatial location of 

cross-linking polymer chains within the sample, as well as other factors. k2 is representative of 

the polymer’s optical efficiency and the degree to which available light is utilized for cross-

linking versus, transmitted, reflected, or absorbed as heat.  The constant k3 is then a measure of 

the effect cross-linking has on the magnitude of the sample’s stiffness.  Finally, the value of Emax 

is varied until the resulting curve of the total sample Young’s modulus versus time coincides 

with experimental data.  The resulting model includes two phenomenological constants, τ and 

Emax, which are found by fitting the model to experimental data.  Emax is then the theoretically 

predicted maximum Young’s modulus of the polymer, which also corresponds to the modulus of 

an individual polymer chain. 

Although the model has been shown to be accurate in the presented cases, there are two 

known variations between model assumptions and the actual physics of transition.  First, while 

the model assumes that 100% photo induced cross linking is possible, there are physical and 

spatial restraints in the polymer that prevent this.  In reality, crosslinks can only be formed when 

two photo-crosslinkable end segments are both physically close to one another and have 

sufficient mobility.  Such phenomena could be introduced to the model by way of an efficiency 

parameter multiplying k1 in Equation 3.1-5.  Such an efficiency parameter would require an in-

depth study of crosslink formation and would vary between different formulas, and as such is 

beyond the scope of the presented research and left for future study.   
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3.2 MODEL RESULTS AND PREDICTIONS 

Figure 3.2-1 illustrates the predicted time evolution of the volume averaged stiffness as 

compared to experiment for formula EAS-155-115; corresponding to a theoretical value of Emax 

of 110 MPa.  Hence if cross-linking of every polymer chain within the sample occurs, the 

resulting volume averaged Young’s modulus would be 110 MPa.  As mentioned earlier, because 

it is physically improbable that 100% of the photo-crosslinks form, this estimate of the maximum 

attainable macroscopic sample averaged Young’s modulus is an over estimate.  As is displayed 

in the figure below, the model prediction corresponds well with the experimental data.   
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Figure 3.2-1:  Model prediction as compared to experimental data for formula EAS-155-115 

 

Having an experimentally calibrated model, it is instructive to analyze the through 

thickness time evolution of other parameters, such as the concentration of optically activated 

uncross-linked species, S, and the through thickness evolution of Young’s modulus, E.  Pictured 
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in Figure 3.2-2, before exposure to light, S is equal to 0 throughout the sample.  After 1 minute 

of exposure, the amount of photo activated material forms a shape similar to that of the 

exponentially decaying transmitted optical power predicted by the Beer-Lambert Law, which is 

consistent with our assumptions in deriving the equation governing k1 and k2.  As time 

progresses, the amount of photo activated species decreases as cross-linking occurs. 
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Figure 3.2-2:  Predicted through thickness evolution of photo activated uncross-linked species for formula EAS-

155-115 

 

Figure 3.2-3 illustrates the through-thickness evolution of Young’s modulus for various 

laser exposure times, as predicted by the presented model.  The effect of the polymer’s ability to 

transmit light, as expressed through the Beer-Lambert Law, is clearly evident in the through 

thickness distribution of Young’s modulus.  Such an observation leads to the realization that 

while the cross-linking kinetic characteristics play a significant role in the transition time of 
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LASMP, equally important is the ability of the polymer to transmit sufficient amounts of light to 

enable through-thickness cross-linking.  For instance inspection of Figures 3.2-2 and 3.2-3 

together illustrates that even in the absence of an increased rate of chemical kinetics, increased 

transmittance alone will result in deeper penetration of light at any given moment in time, and 

therefore a larger increase in volume averaged stiffness at that moment in time; the result being 

an increased rate of property change at the macroscopic level.  Once the interplay between 

chemical kinetics and transmittance has been optimized for a given formulation family, creative 

light delivery strategies, such as optical fiber or particle doping, may be employed to further 

enhance the rate and depth of property transition in LASMP structural components.       
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Figure 3.2-3:  Predicted evolution of Young’s modulus through sample thickness for formula EAS-155-115 
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Table 3.2-1: Chemical kinetic model parameters for formulas 

 U0 (%) E0 (MPa) Emax (MPa) τ EF (MPa) 
EAS-155-93 2.4 5.0 850 18 106.7 
EAS-155-115 3.0 2.0 110 8 11.4 
EAS-155-143 3.3 1.13 NA NA NA 

      

Table 3.2-1 above lists the known and phenomenologically fit model parameters for 

various LASMP formulas.  U0 is the initial concentration of photo active species based on the 

molecular formula of the polymer, E0 is the experimentally determined soft state Young’s 

modulus, Emax and τ are the phenomenologically determined maximum Young’s modulus and 

time constant respectively, and EF is the final sample averaged Young’s modulus experimentally 

measured.  As can be seen from Table 3.2-1, formula EAS-155-93 has a theoretical modulus 

much higher than formula EAS-155-115.  This is expected since formula 93 also has a much 

higher experimentally determined modulus.  It is interesting to note though, that formula EAS-

155-115 has more crosslinkable material than formula EAS-155-93.  This should translate into 

more crosslinks and thus a higher modulus.  Other factors influencing crosslink formation such 

as chain mobility and entanglements, not directly accounted for in the model, could account for 

the unexpected result. 

 Figures 3.2-4 through 6 are the model results for formula EAS-155-93.  As can be seen 

from Figure 3.2-4, the time evolution of the concentration of uncrosslinked photo-active species 

is similar to the distribution shown for formula EAS-155-115 in Figure 3.2-2.  For formula 93, 

activation occurs up to a depth of approximately 0.02mm, which is consistent with formula EAS-

155-115.  As mentioned previously, the depth of penetration of the sample is consistent across all 

the tested samples but the thicknesses of each changes, requiring the development of a model 

such as the one presented effectively removing the geometry of the samples from reported 

results. 
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Figure 3.2-4: Predicted through thickness evolution of photo activated uncross-linked species for formula EAS-155-

93 

Figure 3.2-5, below, pictures the evolution of Young’s modulus of formula EAS-155-93 

as a function of activation time.  Both formulas 115 and 93 show significant crosslink formation 

and thus increases in stiffness to a depth of 0.02mm (20μm), which is comparable to previous 

studies by Ikeda et al. achieving a depth of 1μm [33]. 
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Figure 3.2-5: Predicted evolution of Young’s modulus through sample thickness for formula EAS-155-93 

 

In Figure 3.2-6 below, the time evolution of the sample averaged Young’s modulus as predicted 

by the model is shown compared to the experimental values of two samples.  An initial modulus 

of 5.0 MPa is used to model formula 93, and not the experimentally determined soft state 

modulus of 15.0 MPa, to allow the initial part of the modeled curve to match experimental data.  

As can be seen, the initial slope of the modeled and experimental data coincide well, as 

prescribed by Emax and τ in Table 3.2-1. 
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Figure 3.2-6: Model prediction as compared to experimental data for formula EAS-155-93 

 



 65 

4.0  ROTATIONAL ISOMERIC STATE MODEL 

Synthesis and experimental characterization of novel LASMP formulations require substantial 

investments in both time and resources. In order to minimize both the cost and lead time of 

LASMP development a model has been developed for predicting the macroscopic material 

characteristics of candidate formulas. Thus the model input parameters must be derivable from 

the molecular formula with minimal if any requirement of empirical parameters, while still 

generating reasonable predictions of both the soft state and stiff state Young’s modulus of 

candidate formulas.  Under these constraints precise predictions are of course an unreasonable 

expectation. However, the method should prove sufficient for identifying especially promising 

formulations (or conversely, ruling out ill-fated formulations). For this purpose a model is 

presented based on rotational isomeric state theory. A single experimental parameter, namely 

density, is required to assess a broad family of potential formulations; the approach otherwise 

requires only the proposed molecular formula. In addition to adhering to the aforementioned 

objectives, the approach has been developed to be modular in nature to expand adaptability to 

other formulation families.   

As schematically illustrated in Figure 4.0-1, the progression of the model begins with the 

application of rotational isomeric state theory to simulate a model of a single polymer chain. This 

single chain necessarily includes crosslinked and photo-crosslinkable sites. Employing a Monte 

Carlo strategy this simulated chain can then be used to create a list of crosslink to crosslink 
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distances, or r-values.  Employing Johnson distribution functions, this list of r-values is 

converted to a single probability density function describing the simulated polymer.  The 

probability density function is adapted to the strategies of Boltzmann statistical mechanics per 

the three chain rule where the change in entropy due to strain of the polymer chain is used to 

estimate the Young’s modulus of the polymer.  Each of these steps, described in detail below in 

Sections 4.1 through 4.5, can be substituted for alternative methods, also described below.  This 

modular system allows the model to be adapted and optimized for many different polymeric 

materials having drastically different characteristics than LASMP, making the presented model 

extremely useful for formula development and design across the field of materials and 

engineering. 
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Figure 4.0-1: Schematic of model flow 
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4.1 ROTATIONAL ISOMERIC STATE THEORY 
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Figure 4.1-1: Module 1, diagram of flow for building a molecular chain 

 

Rotational isomeric state (RIS) theory, developed by Flory in the 1960s and 70s, is used to build 

a molecular model of the polymer.  Many advancements and studies have been conducted 

regarding RIS including the accurate molecular representations of many polymers including 

Poly(dimethylsiloxane), Poly(oxyethylene), and Vinyl Polymer Glass [149-151].  Presented is a 

brief synopsis of the most important aspects of the theory.  More detailed discussions of the 

theory and applications can be found here [83-100,101-106].  RIS theory simply states that if the 

molecular formula of the polymer is known, such as that pictured below in Figure 4.1-2, the 

rotational state of any given bond is uniquely dependent on the rotational state of neighboring 

bonds.   
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Figure 4.1-2: Example molecular formula 

 

Figure 4.1-2 shows a typical molecular formula of the presented study.  Individual atoms and 

molecules are grouped together into “segments” indicated by Π, Σ, Ω, P, and K.  This practice is 

referred to as graining.  It allows all of the pertinent information about the polymer chain to be 

shared between collaborating agencies without compromising the intellectual property of the 

polymer’s designer.  Graining is employed to (1) reduce the computational burden of the 

approach while also (2) masking the exact formulation details in accordance with manufacturer 

specifications.  Thus the exact position and type of the atoms involved in creating a crosslink are 

not known within each molecular segment, but as will be demonstrated below this is 

inconsequential to model development and effectiveness.   

While in-plane bond angles are directly calculated based on the molecular structure, θ in 

Figure 4.1-3, each rotational bond has a discrete number of angles corresponding to low energy 

configurations, φ in Figure 4.1-3.  Bond potential versus rotational angle relationships are 

compiled using the software package HyperChem®, produced by HyperCube, Inc., an example 

of which is shown in Figure 4.1-4.   
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Figure 4.1-3: Bond angles used to build polymer chain [31] 
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Figure 4.1-4: Example of the torsional potential of a bond 

 

It is known that rotational bond angles can fluctuate by up to 20 degrees from the mathematical 

minima produced by HyperChem, but because the sign of the offset of such fluctuations are 

random and thus mutually compensatory, it is sufficient to model all rotational bond angles as if 
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they were in fact the angle of minimum potential.  Not all rotational angles are clearly defined, 

however, as can be seen in Figure 4.1-4, and require additional arguments.  In some cases, the 

potential is nearly constant over a range of rotational bond angles, such as between the angles of 

200 to 325 in Figure 4.1-4.  Although there are mathematical minima at 220° and 300° (L3 and 

L4), the energy barrier associated with the rotation of such bonds is very low.  It can be argued; 

however, that RIS theory still holds for cases where the barriers to rotation are negligible, 

arguing a similar case as above in that the random offsets, while more common, remain mutually 

compensatory.  It is possible to argue, however, that because the energy barriers for certain 

angles are not symmetrical that the distribution of resulting fluctuations will be skewed toward 

the lower barrier.   This is acknowledged, however assumed to have little effect on the resulting 

r-value prediction and thus ignored during the presented study. 

Once the low energy rotational bond angles have been identified, a statistical weight 

matrix must be developed to project the probability of occurrence for each angle.  To calculate 

the statistical weights of the rotational angles the peak to peak potential distances are used.  

When any given molecule or atom is added to the polymer chain, RIS theory postulates that it 

approaches the chain from a random angle.  The bonding molecule then rotates in the direction of 

decreasing bond potential until at the minimum bond potential angle.  The fraction of available 

angles between two consecutive peaks of the potential curve relative to a full rotation (360 

degrees), then, represents the probability of occurrence of the included minimum energy angle.   

Since it can be argued that the instantaneous intramolecular environment of a molecule or 

bond in the liquid state is exactly described by the potentials described above by citing that all 

motion in the liquid state is random and relatively free, it is reasonable to argue that the 

potentials also describe those molecules in the cured state, negating any perturbations due to 
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intermolecular packing, again citing the compensatory argument.  Simply stated, any and all 

effects having influence over the rotational bond angles are ignored since it can be argued that all 

effects are random and thus offset from a modeling standpoint. 

During construction of the chain, lists of inherent (permanent) crosslink locations and 

possible photo-crosslinkable locations are compiled.  Since the molecular structure of the 

polymer is known, it is also known if each segment placed during construction has the ability to 

crosslink.  For the presented study, the P-K-P chain segment in Figure 4.1-2 represents an 

inherent crosslink in the polymer while the Ω segments represent photo-crosslinkable locations.  

These lists of crosslink locations are then used to compile a list of crosslink to crosslink 

distances, or the straight line distance between two crosslink locations, used by the statistical 

mechanics portion of the model.  Figure 4.1-5 shows a graphical representation of the definition 

of an r-value, where the red locations denote inherent crosslink sites in the polymer and the blue 

locations denote photo-crosslinkable sites along the polymer chain backbone.  For the purpose of 

the presented model, it is assumed that all photo-crosslinkable sites have crosslinked in the hard 

state and there are no photo-crosslinked sites in the soft state.  Although this is highly unlikely, a 

more detailed study of the nature of the photo-crosslinks is needed to more accurately 

characterize this property, which is beyond the scope of the presented work.   
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Figure 4.1-5: Schematic of r-value definition 

 

The above described RIS model for constructing a single LASMP chain, while having 

been shown to reflect the qualities of the actual polymer chain, is not without limits.  As 

mentioned previously, the rotational bond angles can fluctuate by as much as 20 degrees.  

Typically the fluctuations are mutually offsetting, however there are exceptions to this rule 

arising primarily from environmental factors such as temperature and pressure.  For temperatures 

and pressures far from ambient, the response of the polymer may differ from that predicted by 

the model.  The bonds having wide potential wells approximate those polymers having freely 

rotating bonds and, under some circumstances, since they are modeled here as fixed can lead to 

higher than actual stiffness predictions at low strains, causing the predicted stress-strain curve to 

be offset from those attained experimentally.  Despite known inaccuracies, the above detailed 

RIS method of simulating a single polymer chain effectively produces a relatively accurate 

representation of the polymer and results in a list of crosslink to crosslink distances, or r-values, 

used subsequently in the presented model. 
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4.2 JOHNSON DISTRIBUTIONS 
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Figure 4.2-1: Module 2, diagram of flow for evaluating best fit probability density function 

 

In calculating the entropy of the modeled polymer chain, discussed in detail later, a probability 

density function describing the distribution of distances between crosslinks is needed.  It is this 

distribution of r-values that differentiates the polymer formulas.  When the polymer is in the hard 

state, the distribution has tighter bounds and the mean is lower than when the polymer is in the 

soft state.  Differences in the PDF then correspond to differences in the calculated change in 

entropy with respect to strain, discussed subsequently in Section 4.4.  For this, Johnson 

distributions are used, consisting of four families including lognormal, unbounded, bounded, and 

normal covering a wide variety of distribution profiles.  Detailed derivations and examples of 

implementation of Johnson distributions have previously been published, showing that they are 

ideally suited for modeling the distribution of r-values in material systems with high crosslink 

density [31,102-104,107,108], such as LASMP.  To estimate an unknown density P(x), Johnson 

transforms the random variable X into a standard normal random variable Z.   
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where γ and δ are shape parameters, λ is a scale parameter, and ξ is a location parameter.  The 

function f is family specific.  
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Equation 4.2-3 below is then the corresponding probability density function (PDF) and the 

governing equation for all Johnson distributions. 
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Here, P(x) is the probability distribution of the analyzed data, x is the dependent variable (in our 

case the distance between crosslinks), δ, λ, ξ, and γ are fitted variables, the function f is family 

specific defined by Equation 4.2-2, and f ’ is the first derivative of f 
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The closed support of Equation 4.2-3 is defined as: 
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Fitting of the distributions to the modeled data is achieved through the software package 

FITTR1, developed by James Wilson and readily downloadable [107,109].  Utilization of a 

standardized method, such as FITTR1, removes some of the human error associated with curve 

fitting and increases success of similar results being obtained by many different researchers. 

FITTR1, given a list of the r-values, is capable of fitting the data to any chosen Johnson 

distribution using moment matching, percentile matching, ordinary least squares, diagonally 

weighted least squares, L1-norm and L∞-norm estimations, weighted least squares, and L1-norm 

(BWS) estimations.  An example probability density function created by the FITTR1 program is 

shown below in Figure 4.2-2.   
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Figure 4.2-2: Example PDF created by FITTR1 program 

 

As with all distributions, however, Johnson distributions and the FITTR1 program have 

limitations.  Johnson distributions are not capable of modeling bimodal data, although not seen in 

current LASMP formulations, which may be encountered in the future when modeling other 

polymers.  Johnson distributions also have difficulty modeling increasingly narrow distributions, 

resulting in the distribution approaching an impulse function, which is possible with heavily 

crosslinked polymer systems.  

Alternatives to Johnson distributions include Gaussian, Bezier, and inverse distribution 

functions. Gaussian distributions [110] are known to have increasingly large errors at large 

strains, making them less desirable for the current application.  Bezier distributions [111], 

although accurate, are more complex than Johnson distributions resulting in more complex and 

elaborate computer code for implementation. Similarly Inverse distribution functions [112] are 

more accurate but also more complex.  Although Johnson distributions have limited flexibility 

due to the discrete number of fitting parameters, they are computationally simple to implement 
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and have been shown to accurately capture the form of the probability density function 

describing the distance between crosslinks for polymer systems [31]. Moreover, Johnson 

distribution parameters are well defined; thus unlike the other fitting methods the Johnson 

distribution parameters are insensitive to user-defined bins.   

The use of distributions in general to model the simulated r-values and the subsequent 

use of Boltzmann statistical mechanics calculating a change in entropy as a function of stretch 

limits the overall method to quasi-static predictions.  Atomic forces such as Van der Waals are 

neglected, thus modeling any rate dependent material characteristics becomes impossible.  An 

alternative method that includes such functionality is presented in Chapter 8.  The current 

presented method, however, is much less computationally and time intensive, which is the 

original objective of the project of decreasing the time required to evaluate candidate LASMP 

formulas.   

4.3 KOLMOGOROV-SMIRNOV STATISTIC 

Only one PDF for each conformation is required to predict the material response using 

the statistical mechanics method outlined below in Section 4.4.  Since there are many possible 

PDFs, 4 families each with 8 fitting methods resulting in 32 possible PDFs, a consistent 

evaluation method is needed.  The distribution of r-values is represented most accurately by a 

histogram.  Histograms, however, are notoriously inconsistent when visually curve fitting.  The 

size of the bins can have a significant impact on the interpretation of the displayed data.  With 

relatively small bins, unrealistic peaks and valleys may be displayed due mostly to an 

insufficient number of data points in each bin or as a result of the randomness inherent in the 
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Monte Carlo simulation method.  Conversely, bins that are too large have the opposite effect of 

masking trends, resulting in an overly smooth representation.  To compare the PDFs, the 

Kolmogorov-Smirnov (KS) statistic is used to reduce the error associated with both human 

intuition and histogram presentations.   

 

 

Figure 4.3-1: Example cumulative distribution function in the hard state 

 

The KS statistic is the maximum difference between the simulated cumulative 

distribution function (CDF) of r-values, shown in Figure 4.3-1, and the CDF of the Johnson 

distribution modeling them [31,113].  CDFs are created by evaluating the number of data points 

of equal or lesser value for each successive data point, eliminating the use and misleading 

aspects of the bins used in histograms.  The KS statistic can loosely be thought of as the 

maximum error associated with the corresponding PDF.  When the polymer is in the hard state, 

the r-values typically range between 0 and 150Å, while in the soft state they can range from 0 up 
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to 1200Å resulting in vastly different CDFs.  In the hard state, due to the more regularly 

dispersed crosslinks and thus small range of r-values, the PDF can approach a sharp peak 

causing the CDF to approach a step function.  Such a distribution is exceptionally hard to model 

while maintaining flexibility.  This also, however, exemplifies how KS statistics can be used to 

remove human error from evaluating a distribution.  When discussing the goodness of fit, it is 

pertinent to divide the distribution into three sections, delineated in Figure 4.3-1 by the vertical 

dashed lines.  The lower section is comprised of r-values less than 30Å, the middle being those 

between 30-55Å, and the upper section containing the r-values higher than 55Å.  The middle 

section is defined as the part of the curve that is relatively linear.  In the hard state, the vertical 

nature of the middle section is modeled relatively well considering the difficulty in modeling the 

distribution and the desire to maintain flexibility in the fitting method.  The lower and upper 

sections are modeled slightly less accurately; in this thesis however this is considered acceptable 

since the bulk of the r-values, approximately 80%, are contained in the middle section, see 

Figure 4.3-1.   

When in the soft case, the distribution of r-values is more dispersed and thus easier to 

model.  Sections of the CDF in the soft state range from below approximately 50Å, between 50 

and 400Å, and above 400Å, see Figure 4.3-2.  The middle section typically contains 70% of the 

r-values and is modeled extremely well, unsurprising since Johnson distributions are known to 

model skewed data.  The upper and lower sections in the soft state are also modeled relatively 

well considering the increasingly smaller sample sizes nearing the limits of the distribution.   
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Figure 4.3-2: Example cumulative distribution function in the soft state 

 

Another characteristic of the CDF taken into consideration when choosing the best fit 

distribution is the upper and lower limits of the graph.  Theoretically there is no upper limit to 

the distance between two crosslinks, although the probability approaches zero.  The lower limit, 

however, is dictated by the molecular formula and is between 5.3 and 12.1Å.  The inability to 

report an exact minimum distance is due to the graining of the molecular formula, discussed 

previously.  As illustrated in Figures 4.3-1 and 4.3-2, the CDFs in both the hard and soft states 

approach zero before this lower limit, which is consistent with expectations of a real polymer 

chain.  When choosing the preferred distribution and fitting method, the KS statistic as well as a 

qualitative analysis of the fit of the lower and upper regions of the CDF curve are taken into 

account. 

While the KS statistic provides an accurate way to evaluate the goodness of fit of any 

distribution while reducing the impact of human error, there are alternatives.  The Chi-squared 
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statistic, also calculated by the FITTR1 program, can also be used to evaluate the goodness of fit, 

however it is arguably a less accurate method [31,113].   

4.4 STATISTICAL MECHANICS 
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Figure 4.4-1: Module 3, diagram of flow for statistical mechanics model 

 

The entropy of the polymer chain is related to the probability density function of r-values 

by [31,91,93,106,110] 

 

( ) ( )[ ]rPkcrS ln+=      (4.4-1) 

 

where S represents entropy, c is a constant of integration, k is Boltzmann’s constant, and P(r) is 

the probability density function produced per the methods of the previous section.  If the rotation 

of any individual bond is considered unrestricted, Helmholz free energy is strictly a function of 

entropy.  Although this assumption of elasticity is increasingly invalid for stiffening (glassy) 

polymers, relative predictions of several polymer formulations require a single theory be used for 

all polymer states.  Also, as will be shown later, the error associated with this assumption can be 

mitigated by the flexibility of including the stress response due to junction constraints.  The three 

chain model, which assumes that each represented r-value can be decomposed into three 
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equivalent chains aligned with each of the Cartesian axes, is then used to describe the change in 

entropy as a function of strain [31,110] 
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where ν is the number density of network chains, r is test specific and is a function of r0 and α, r0 

is the root-mean-square of the distance between crosslinks (r-values), α is the relative length of 

the sample (L/L0) in each of the coordinate directions, L is the current length of the sample, and 

L0 is the original length of the sample [31,110].  Inside the square brackets in Equation 4.4-2, the 

first three terms are associated with the change in entropy with respect to strain in the three 

coordinate  directions and the last term the entropy of the reference state of the polymer.  By 

decomposing Equation 4.4-2 into its respective parts the theory can be used to study the strain 

induced anisotropic properties of the polymer [55].  The number density of network chains is 

then given by [110]. 
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where ρ is the density of the polymer, NA is Avogadro’s number, MP is the molecular weight of 

the polymer chain, and R is the gas constant.  It is this density that is the only macroscopic 

property needed to study the phantom polymer network.  From rubber elasticity, the nominal 

stress can then be calculated using [31] 
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where T is absolute temperature.  Equation 4.4-4 assumes that all strain is affine, and is the 

basis for which deformation is imparted on the system since the PDF, P(r) in Equation 4.4-1, 

describing the list of generated r-values is a function of stretch, α, as defined in Table 4.4-1.  

Visually this can be thought of as stretching the distribution, thus altering its shape and 

derivative, changing the calculated entropy of the system.  The remaining quantities in Equation 

4.4-4 are 
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The quantities C1, C2, C3, r1, r2, and r3 are test specific.  For modeling simple tension, simple 

shear, and equi-biaxial strain they have the values: 
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Table 4.4-1: Test specific C and r quantities 

 Simple Tension Simple Shear Equi-biaxial

C1 0r  0r  
3
02

α
r

−  

C2 
2

3
0

2α

r
−  

0 0r  

C3 
2

3
0

2α

r
−  2

0

α
r

−  0r  

r1 α0r  α0r  2
0

−αr  

r2 2
1

0

−
αr  0r  α0r  

r3 2
1

0

−
αr  

1
0

−αr  α0r  

 

The corresponding modulus is then calculated by [31,97] 

 

[ ] 2−

∗
∗

−
=

αα
ff       (4.4-8) 

 

The modulus in Equation 4.4-8 approaches Young’s modulus as α approaches 1 and is 

the basis by which the modeled polymer formulations are compared.  While the assumption that 

the polymer is elastic and subsequent use of Equation 4.4-4 is strictly not true in all cases, the 

results given by the theory are consistent with experiment, as will be discussed later.  The 

modular nature of the model does, however, allow for the substitution of Equation 4.4-4 by 

alternative theories, such as those presented below. 

While the three chain model of Equation 4.4-2 provides a relatively accurate and 

easily implemented method for calculating the change in entropy with respect to strain, 

alternative and arguably more accurate, models have been proposed.  For instance the four 
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chain, or tetrahedral, model developed by Flory and Rehner, also based on Gaussian 

fluctuations, models a single junction as having four contributing components radiating 

outward from the central point of interest.  One of the major drawbacks of this theory is that 

it is inherently non-isotropic.  To correct this, the inverse Langevin series approximation 

was introduced, which is similar to the three chain rule but with increased accuracy by 

including higher order terms when calculating the probability density [106,110].  Also, an 

eight chain model, developed by Arruda and Boyce [114], having eight components 

radiating outward from the center point of a cube to the eight corners has been shown to be 

accurate at high strain as well as alternative strain states such as equi-biaxial and shear 

strain.  Although the model is slightly more accurate than the three chain model, it is 

significantly more complex, and thus is reserved for applications requiring a higher level of 

accuracy than the presented effort. 
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5.0  RIS THEORY MODEL RESULTS 

5.1 LASMP MODEL DATA 

5.1.1 Formula EAS-155-115 Model Data 

The three molecular formulas modeled in the current study are EAS-155-93, EAS-155-115, and 

EAS-155-143.  Since the actual molecular formula is proprietary to Cornerstone Research 

Group, Inc. (CRG), a grained molecular formula, still capturing the qualities of the polymer is 

used.  This grained structure for formula 115 is shown below in Figure 5.1.1-1. 

 

 

Figure 5.1.1-1: Molecular formula of LASMP formula EAS-155-115 

 

where Π, Ω, Σ, P, and K represent given repeating groupings of molecules.  The critical quantity 

produced by the RIS model is the distances between inherent crosslink sites along the polymer 

backbone, represented by the P-K-P segments, and the distances between photo crosslinkable 
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sites, represented by Ω segments in Figure 5.1.1-1.  Since every individual atom is not required 

to obtain the necessary r-values, the above grained structure maintains the proprietary properties 

of the polymer while also allowing accurate modeling with the presented methods.  Also 

supplied by the manufacturer, the bond lengths between each segment are known to be 1.54 Å 

and the in plane angle 111°.  The molecular weights of each segment are listed below in Table 

5.1.1-1. 

 

Table 5.1.1-1: Molecular weights of LASMP polymer grained segments 

Segment Symbol Molecular Weight (Daltons)
Π 14.02658 
Σ 13.01864 
Ρ 174.1785 
Κ 142.1956 
Ω 274.2687 

 

The program HyperChem® has been used to produce a graph of potential versus 

rotational angle, such as those pictured below in Figures 5.1.1-2 through 5.1.1-4, for each 

possible order of segments.  The figures below include the segment order with the red segments 

being those that have already been placed and a blue segment which is about to be added to the 

simulated polymer chain.   
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Figure 5.1.1-2: Torsional potential placing a Π segment after a Π-Π-Σ segment sequence 
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Figure 5.1.1-3: Torsional potential placing a Π segment after a Σ-Π-Ω segment sequence 
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Figure 5.1.1-4: Torsional potential placing a Ρ segment after a Π-Ω-Π segment sequence 

 

All three of the examples pictured above have areas of both well defined angular 

positions with large energy barriers, such as 240° in Figure 5.1.1-2, 100° in Figure 5.1.1-3, and 

172° in Figure 5.1.1-4, as well as areas of negligible barriers to rotation such as 75° in Figure 

5.1.1-2, 220° in Figure 5.1.1-3, and 40° in Figure 5.1.1-4.  Figures 5.1.1-2 through 5.1.1-4 are 

then used to calculate the low energy angles and their respective probabilities as outlined 

previously in Section 4.1.  Table 5.1.1-2 lists the range and low energy angles of each possible 

configuration. 

 

 

 

 

 



 91 

 
 

Table 5.1.1-2: Low energy angles and associated angular range of each segment configuration 

Segment Sequence Energy Minimum 

degrees 

Range Minimum 

degrees 

Range Maximum 

degrees 

Π-Π-Σ-Π  

(chain end) 

75 0 119 
164 120 220 
240 221 259 
310 260 359 

Π-Σ-Π-Σ 

Π-Ω-Π-Σ 

Π-P-Π-Σ 

220 41 285 
305 286 325 
350 326 40 

Ω-Π-Σ-Π 

Σ-Π-Σ-Π 

P-Π-Σ-Π 

188 71 218 
250 219 308 
329 309 349 
30 350 70 

Π-Σ-Π-Ω 

Π-Ω-Π-Ω 

Π-P-Π-Ω 

116 97 167 
228 168 271 
305 272 329 
40 330 96 

Σ-Π-Ω-Π 

32 12 54 
100 55 150 
220 151 260 
300 261 11 

Ω-Π-Ω-Π 

P-Π-Ω-Π 

85 40 110 
139 111 152 
300 153 260 
220 261 39 

Π-Ω-Π-Ρ 

Π-Σ-Π-Ρ 

Π-P-Π-Ρ 

Ω-Π-Ρ-Π 

Σ-Π-Ρ-Π 

P-Π-Ρ-Π 

110 80 159 

172 160 180 

195 181 220 

40 221 79 

 

With the in-plane angles, all possible rotational angles and associated probabilities, and 

bond lengths known, it is left to estimate the physical length of each of the segments.  Since the 

molecular weight of each segment is known the network density of a chain can be calculated by 

Equation 4.4-3 using a material density measured from experimental samples.  The inverse of the 

network density is then the volume of a single simulated polymer chain.  In the extreme 
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elongated case where the chain approximates a cylinder, a radius equal to the radius of a sphere 

with a volume the size of the smallest segment, Π, is used to calculate the overall length of the 

simulated polymer chain.  This overall length is then used to calculate the lengths of each 

individual segment based on their molecular weights and the total molecular weight of the chain, 

listed below in Table 5.1.1-3.  Although this method results in chain segment length estimations 

longer than expected in a real conformation, due to coiling, it does not inhibit the overreaching 

goal of the model of accurately comparing different formulations.   

 

Table 5.1.1-3: Simulated polymer segment lengths 

Segment Symbol Segment Length (nm)
Π 0.2232 
Ω 4.3643 
Σ 2.2627 
Ρ 0.2072 

Chain Radius 0.1677 
Bond Length 0.1540 

 

Knowing the in plane bond angles, rotational bond angles, bond lengths, molecular 

formula, and segment lengths, it is possible to build a simulated polymer chain using RIS theory.  

Rotational bond angles and segment order, where applicable, is determined through random 

number generation resulting in a slightly different polymer chain conformation each time the 

program is executed.   
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5.1.2 Formula EAS-155-93 Model Data 

The grained molecular formula for sample EAS-155-93 is pictured below in Figure 5.1.2-1, 

having two photo-crosslinkable segments in the repeating pattern versus three for formula EAS-

155-115.   

 

 

Figure 5.1.2-1: Molecular formula of LASMP formula EAS-155-93 

 

The bond lengths between each segment and in plane angles are the same as the previous 

formula of 1.54 Å and 111° respectively.  The molecular weights and modeled physical length of 

each segment are also the same as those listed in Tables 5.1.1-1 and 5.1.1-3 with the exception of 

the segment represented by Σ, listed below in Table 5.1.2-1.     

 
Table 5.1.2-1: Molecular weights of LASMP polymer grained segments 

Segment Symbol Molecular Weight (Daltons) Segment Length (nm) 
Σ 118.1742 2.0103 
Π 14.02658 0.2232 
Ρ 174.1785 0.2072 
Κ 142.1956 NA 
Ω 274.2687 4.3643 

 

The rotational bond potentials and angle probabilities also remain identical to those listed in 

Table 5.1.1-2.   
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5.1.3 Formula EAS-155-143 Model Data 

Pictured below in Figure 5.1.3-1 is the grained molecular structure of formula EAS-155-143.  

With every 4th segment containing photo-crosslinkable material of 124 segments between 

inherent crosslinks, as compared to every 4.7th of 126 segments for formula EAS-155-115 and 

every 7th of 126 segments for formula EAS-155-93, of the three modeled formulas presented it 

has the highest crosslink density in both the hard and soft states.   

 

  

Figure 5.1.3-1: Molecular formula of LASMP formula EAS-155-143 

 

The bond lengths between each segment, in plane angles, rotational bond potentials, and angle 

probabilities are the same as formula EAS-155-115.  The molecular weights and modeled 

physical length of each segment are also the same as formula EAS-155-115, listed in Tables 

5.1.1-1 and 5.1.1-3. 

5.1.4 Conformation Build Statistics 

Ten polymer conformations are generated for each of the three modeled formulas.  Because the 

FITTR1 program used to fit the Johnson distributions to the data has a limit of 10,000 input 

values, the lengths of each formula conformation is adjusted so that each conformation of each of 



 95 

the three formulas has approximately, but no more than, 10,000 r-values in the hard state.  To 

save computing time, soft state predictions are limited to approximately 2,000 r-values.  When 

the 10 conformations in each state are averaged together, the final numerical data presented in 

Section 5.2 and 7.0 include 100,000 r-values in the hard state and 20,000 r-values in the soft 

state, which is considered adequate for statistical reporting purposes.  Table 5.1.4-1 lists the 

average r-value and number of r-values for each formula in both the hard and soft states. 

 

Table 5.1.4-1: Average number and value of r-values 

 r-values STDEV r-value STDEV
 # # Å Å 

115 soft 1935 46 404.8 7.4 
115 hard 9754 55 47.8 0.1 
93 soft 2167 42 360.1 3.9 
93 hard 9666 79 49.8 0.1 
143 soft 1933 26 417.8 6.3 
143 hard 9571 62 47.0 0.1 

 

As can be seen, formula 143 has the smallest average r-value in the soft state followed by 

formula 115 and finally formula 93.  Formula 143 also has the largest r-value in the hard state 

and formula 93 the smallest.   

As described in Section 4.3, Kolmogorov-Smirnov statistics are collected for each 

formulation under each fitting method in both the hard and soft states.  Table 5.1.4-2 lists the KS 

statistics in the hard and soft states for each fitting method. 
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Table 5.1.4-2: Kolmogorov-Smirnov statistics for each distribution 

 Hard State Soft State 
Fit 93 115 143 93 115 143 

1000 0.107 0.156 0.176 0.018 0.017 0.015 
1001 0.114 0.189 0.219 0.021 0.025 0.021 
1002 0.097 0.136 0.164 0.015 0.018 0.016 
1003 0.104 0.147 0.156 0.018 0.018 0.017 
1004 0.104 0.152 0.201 0.018 0.021 0.018 
1005 0.116 0.165 0.186 0.014 0.017 0.016 
1006 0.121 0.174 0.203 0.028 0.031 0.025 
1007 0.123 0.171 0.183 0.022 0.025 0.025 
2000 0.107 0.156 0.176 0.018 0.017 0.015 
2001 0.107 0.156 0.176 0.034 0.035 0.032 
2002 0.058 0.075 0.071 0.016 0.019 0.017 
2003 0.087 0.078 0.074 0.018 0.018 0.018 
2004 0.067 0.101 0.127 0.018 0.022 0.020 
2005 0.082 0.105 0.125 0.015 0.019 0.016 
2006 0.119 0.173 0.204 0.030 0.032 0.026 
2007 0.111 0.150 0.172 0.034 0.037 0.035 
3000 0.107 0.156 0.176 0.018 0.017 0.015 
3001 0.119 0.171 0.195 0.015 0.018 0.015 
3002 0.100 0.136 0.158 0.011 0.012 0.011 
3003 0.106 0.148 0.156 0.012 0.013 0.012 
3004 0.106 0.155 0.198 0.012 0.013 0.011 
3005 0.087 0.134 0.139 0.010 0.010 0.009 
3006 0.125 0.177 0.206 0.023 0.023 0.019 
3007 0.110 0.159 0.176 0.013 0.013 0.013 
4000 0.107 0.156 0.176 0.018 0.017 0.015 
4001 0.151 0.190 0.202 0.106 0.105 0.105 
4002 0.151 0.190 0.202 0.106 0.105 0.105 
4003 0.151 0.190 0.202 0.106 0.105 0.105 
4004 0.151 0.190 0.202 0.106 0.105 0.105 
4005 0.151 0.190 0.202 0.106 0.105 0.105 
4006 0.151 0.190 0.202 0.106 0.105 0.105 
4007 0.151 0.190 0.202 0.106 0.105 0.105 

 

The minimum KS statistic, and thus the smallest associated error, is attained by fitting method 

“3005” for each of the formulas in the soft state, which corresponds to a Johnson bounded  (SB) 

distribution using the L∞-norm estimation fitting method.  Although the “2002” fitting method 

corresponding to a Johnson unbounded (SU) distribution and ordinary least squares fitting 

method, highlighted in blue in Table 5.1.4-2, has the smallest KS statistic in the hard state, the 

choice was made to evaluate the performance of the polymers based on the “3005” fitting 
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method, highlighted in red in Table 5.1.4-2, for several reasons.  First, it is desired that the fitting 

method remain consistent between polymer states resulting in more consistent relative 

predictions.  Second, the “3005” fitting method appears to be an overall better fit than the “2002” 

method, despite having a larger maximum difference between the fitted and actual data, see 

Figure 5.2.1.1-6.   

5.2 RIS MODEL RESULTS 

5.2.1 RIS Model Conformation Results 

5.2.1.1 Formula EAS-155-115 Conformation Results 

Pictured below in Figures 5.2.1.1-1 and 5.2.1.1-2 are example chain conformations of 

polymer formula EAS-155-115 both the hard and soft states.  The blue lines represent individual 

bonds and the red lines delineate crosslink locations.  The difference in the blue lines between 

Figures 5.2.1.1-1 and 5.2.1.1-2 are due to the figures representing different conformations, while 

the increase in length of the red lines between the two figures represents the increase in distance 

between crosslinks in the soft state versus the hard state.  Figure 5.2.1.1-3 is an enlargement of a 

section of Figure 5.2.1.1-1 showing the centers of the polymer segments as blue circles, segment 

bonds as blue solid lines, and the locations of crosslinks and r-values as red dotted lines.  As can 

be seen from the Figure, there is significant variation in the distances between crosslinks. 
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Figure 5.2.1.1-1: Example formula EAS-155-115 polymer chain conformation in the hard state 
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Figure 5.2.1.1-2: Example formula EAS-155-115 polymer chain conformation in the soft state 
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Figure 5.2.1.1-3: Enlargement of Figure 5.2.1.1-1 showing segment bonds and crosslink locations 

 

From data collected during the generation of the polymer chain conformation, a list of r-

values for both the inherent, P-K-P, crosslink locations and the photo-crosslink, Ω, locations are 

generated.  These lists are then modeled using Johnson probability distribution functions as 

described in Section 4.2.  Pictured below, Figures 5.2.1.1-4 and 5.2.1.1-5 show the modeled 

PDFs for both the hard case, using the list of r-values connecting photo-crosslink locations, and 

the soft case, using the list of r-values connecting inherent crosslinks in the polymer. 
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Figure 5.2.1.1-4: Johnson PDFs for formula EAS-155-115 in the hard state 
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Figure 5.2.1.1-5: Johnson PDFs for formula EAS-155-115 in the soft state 
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As can be seen from the Figures, the bounded and unbounded distributions are the preferred fit in 

both states, while the normal distribution is much less accurate.  Here, and throughout the work, 

all four Johnson distributions are presented in the figures for comparison.  All numerical data, 

however, is based on the bounded distribution.  From the Johnson distributions, cumulative 

distribution plots are also created, pictured below in Figures 5.2.1.1-6 and 5.2.1.1-7, and used to 

calculate Kolmogorov-Smirnov statistics, listed previously in Tables 5.1.4-2 and 5.1.4-3. 
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Figure 5.2.1.1-6: Johnson CDFs for formula EAS-155-115 in the hard state 



 102 

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

r-value

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

sample CDF
Lognormal
Unbounded
Bounded
Normal

 

Figure 5.2.1.1-7: Johnson CDFs for formula EAS-155-115 in the soft state 

 

While three of the distributions in the soft state illustrated in Figure 5.2.1.1-7 provide similar fits, 

differences in the distributions are more apparent in the hard state in Figure 5.2.1.1-6.  As 

discussed previously, the bounded distribution is more accurate near the lower and upper limits 

of the data while the unbounded distribution more accurately captures the peak of the PDF or the 

center section of the CDF shown in Figure 5.2.1.1-6 in the hard state. 

5.2.1.2 Formula EAS-155-93 Conformation Results 

Example polymer chain conformations for formula EAS-155-93 are shown below in Figures 

5.2.1.2-1 and 5.2.1.2-2.   
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Figure 5.2.1.2-1: Example formula EAS-155-93 polymer chain conformation in the hard state 
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Figure 5.2.1.2-2: Example formula EAS-155-93 polymer chain conformation in the soft state 
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The conformations shown above for formula EAS-155-93 are similar in structure to those 

pictured for formula EAS-155-115.  From the simulated polymer chain, lists of r-values are 

generated in both the hard and soft states of the polymer and modeled using the L∞-norm fitting 

method.  The PDFs and CDFs in the hard and soft states for formula EAS-155-93 are pictured 

below as Figures 5.2.1.2-3 through 5.2.1.2-6.   
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Figure 5.2.1.2-3: Johnson PDFs for formula EAS-155-93 in the hard state 
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Figure 5.2.1.2-4: Johnson PDFs for formula EAS-155-93 in the soft state 
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Figure 5.2.1.2-5: Johnson CDFs for formula EAS-155-93 in the hard state 
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Figure 5.2.1.2-6: Johnson CDFs for formula EAS-155-93 in the soft state 

 

As can be seen from the Figures, the unbounded and bounded distributions are very similar, both 

providing accurate representations of the simulated polymer chain for formula 93.  The 

Kolmogorov-Smirnov statistics associated with the distributions pictured in Figures 5.2.1.2-5 

and 5.2.1.2-6 are listed previously in Tables 5.1.4-2 and 5.1.4-3 

5.2.1.3 Formula EAS-155-143 Conformation Results 

Figures 5.2.1.3-1 and 5.2.1.3-2, pictured below, are typical conformations of formula EAS-155-

143 with the associated PDFs and CDFs shown in Figures 5.2.1.3-3 through 5.2.1.3-6. 
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Figure 5.2.1.3-1: Example formula EAS-155-143 polymer chain conformation in the hard state 
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Figure 5.2.1.3-2: Example formula EAS-155-143 polymer chain conformation in the soft state 



 108 

 

0 20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

r-value

P
ro

ba
bi

lit
y

simulated PDF
Johnson lognormal
Johnson unbounded
Johnson bounded
Johnson normal

 

Figure 5.2.1.3-3: Johnson PDFs for formula EAS-155-143 in the hard state 
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Figure 5.2.1.3-4: Johnson PDFs for formula EAS-155-143 in the soft state 
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Figure 5.2.1.3-5: Johnson CDFs for formula EAS-155-143 in the hard state 
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Figure 5.2.1.3-6: Johnson CDFs for formula EAS-155-143 in the soft state 
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As can be seen from the Figures, formula 143 also has similar structure to the previous two 

formulas.  Also as with formula 93, the unbounded and bounded distributions modeling formula 

143 are similar.  The Kolmogorov-Smirnov statistics used to evaluate the “goodness of fit” 

associated with the distributions pictured in Figures 5.2.1.3-5 and 5.2.1.3-6 are listed above in 

Tables 5.1.4-2 and 5.1.4-3. 

5.2.2 RIS Model Tensile Test Results 

Using the Johnson Bounded distribution with the L∞-norm estimation fitting method, the stress 

due to strain is calculated as described in Section 4.4 using statistical mechanics with the 

coefficients for simple extension from Table 4.4-1.  Stress-strain curves for each of the three 

modeled formulas in both the soft and hard states are presented in the following sections.  As can 

be seen in each of the graphs, the stress becomes zero at α equal to 1, representing a strain of 0.  

Quantities of α less than 1 represent compression; while quantities of α greater than 1 represent 

tension.   

5.2.2.1 Formula EAS-155-115 Tensile Test Results 

Presented below in Figures 5.2.2.1-1 and 5.2.2.1-2 are typical stress-strain curves for formula 

EAS-155-115 under simple tension.  As expected, the stress is positive under tension and 

negative under compression.   
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Figure 5.2.2.1-1: Predicted stress response of formula EAS-155-115 in the hard state 
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Figure 5.2.2.1-2: Predicted stress response of formula EAS-155-115 in the soft state 
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Table 5.2.2.1-1 below lists the predicted Young’s modulus of the RIS model as compared 

to previously reported experimental results.  Moreover, the experimental measurement of 

stiffness necessarily embodies stiffness gradation associated with light penetration limitations.  

Therefore, the empirically fit chemical kinetic model results are presented to estimate the 

stiffness of the samples’ incident layer as a comparison base for the first principles RIS 

prediction.  As is expected, the RIS model underestimates the stiffness of the polymer in both the 

soft and hard states by a significant amount.   

 

Table 5.2.2.1-1: Comparison of Young’s modulus predictions for formula 115 

 Young's Modulus STDEV 
 MPa MPa 

Experimental soft state 2.0 NA 
RIS model soft state 0.063 0.003 

Experimental sample averaged hard state 11.4 NA 
Chemical Kinetic model theoretical hard state 110.0 NA 

RIS model hard state 49.1 11.1 
 

While both the soft and hard case predictions of Young’s modulus are underestimates, the theory 

does accurately predict a large increase in stiffness due to crosslinking.  This is expected due to 

the difference in the average simulated r-value, decreasing from 398.3Å to 47.8Å with increased 

crosslinking, resulting in an increase in the change in entropy calculated by Equation 4.4-2.  

Comparison between the experimentally measured stress response of the polymer and that 

predicted by the model is presented in Section 7.1.1.1 and Figures 7.1.1.1-3 and 4 for both the 

first principles RIS model and the junction constraints model, discussed in Chapter 6.   
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5.2.2.2 Formula EAS-155-93 Tensile Test Results 

Presented below in Figures 5.2.2.2-1 and 5.2.2.2-2 are typical stress-strain curves for formula 

EAS-155-93 under simple tension as predicted by the RIS model. 
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Figure 5.2.2.2-1: Predicted stress response of formula EAS-155-93 in the hard state 
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Figure 5.2.2.2-2: Predicted stress response of formula EAS-155-93 in the soft state 

 

The soft state predictions are very similar in shape to that of formula 155 in the previous 

section while the hard state predictions differ substantially.  The difference in the hard state is 

most pronounced by the unbounded curve.  These differences are the result of how the Johnson 

distributions are fit to model sharp peaks.  The peak of the unbounded curve modeling formula 

115 in the hard state, Figure 5.2.1.1-4, is much sharper than the peak modeling formula 93 in 

Figure 5.2.1.2-3, resulting in drastically different stress-strain predictions.  Table 5.2.2.2-1 below 

lists the predicted Young’s modulus of the RIS model as compared to previously reported 

experimental results for formula 93.  As is expected, the RIS model underestimates the stiffness 

of the polymer in both the soft and hard states by an amount similar to that found with formula 

115.  The predicted RIS Young’s modulus of the polymer is only 7.7% of that expected from the 

chemical kinetic model.  As with formula 115, comparison between the experimentally measured 
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stress response of the polymer and that predicted by the model is presented in Section 7.1.1.2 and 

Figures 7.1.1.2-3 and 4 for both the first principles RIS model and the junction constraints 

model, discussed in Chapter 6. 

 

Table 5.2.2.2-1: Comparison of Young’s modulus predictions for formula 93 

 Young's Modulus STDEV 
 MPa MPa 

Experimental soft state 5.0 NA 
RIS model soft state 0.080 0.006 

Experimental sample averaged hard state 106.7 NA 
Chemical Kinetic model theoretical hard state 850.0 NA 

RIS model hard state 65.1 15.1 
 

 Although there are more photo crosslink locations in formula EAS-155-115, Figure 5.1.1-

1, the physical lengths of the Ω segments in formula EAS-115-93 are longer than formula EAS-

155-115, leading to relatively similar simulated r0 values.  In the soft case, the average r0 value 

for formula EAS-155-93 is slightly smaller than formula EAS-155-115, expectedly yielding a 

slightly higher modulus prediction for formula EAS-155-93, which is consistent with the trends 

seen in experimental testing.  In the hard state, however, the average r0 value for formula EAS-

155-93 is slightly larger than for formula EAS-155-115, resulting in slightly lower modulus 

predictions.  While the method correctly predicts a significant increase in stiffness due to 

crosslinking, increasing from 2.3 to 103.0 MPa, the relative stiffness between the two formulas is 

not consistent with experiment.  A possible source of error explaining this discrepancy includes 

inaccuracies in the method used to calculate the physical lengths of the individual segments, 

which is based on their molecular weights.  The error also could be a result of inaccuracies in the 

hard state modulus estimation from the chemical kinetic model, presented in Section 3.1, which 

is expected to overestimate the polymer’s stiffness.  When accounting for the standard deviation 



 116 

associated with each formula’s r0 value, however, the two formulas are statistically indifferent 

according to the model. 

5.2.2.3 Formula EAS-155-143 Tensile Test Results 

Figures 5.2.2.3-1 and 5.2.2.3-2 shown below are typical stress-strain curves for formula EAS-

155-143 under simple tension as predicted by the RIS model.  Again, due to the differences in 

the distribution of r-values, and thus the subsequent PDF describing them, the stress-strain 

curves are noticeably different than those previously presented for formulas 115 and 93. 
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Figure 5.2.2.3-1: Predicted stress response of formula EAS-155-143 in the soft state 

 



 117 

0.5 1 1.5 2 2.5
-4

-3

-2

-1

0

1

2
x 10

8

st
re

ss
 (P

a)

alpha - (L/Li)

Lognormal
Unbounded
Bounded
Normal

 

Figure 5.2.2.3-2: Predicted stress response of formula EAS-155-143 in the hard state 

 

Table 5.2.2.3-1 below lists the predicted Young’s modulus of the RIS model as compared 

to previously reported experimental results for formula 143.  As expected, the RIS model 

underestimates the stiffness of the polymer in the soft state by an amount similar to that found 

with formula 115.  While the model predicts a hard state modulus of 232 MPa, experimental data 

is unavailable for comparison. 

 

Table 5.2.2.3-1: Comparison of Young’s modulus predictions for formula 143 

 Young's Modulus STDEV 
 MPa MPa 

Experimental soft state 1.13 NA 
RIS model soft state 0.063 0.002 

Experimental sample averaged hard state NA NA 
Chemical Kinetic model theoretical hard state NA NA 

RIS model hard state 232.0 81.7 
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5.3 RIS MODEL CONCLUSIONS 

RIS theory underestimates the Young’s moduli of the polymer.  It does, however, provide an 

accurate and valuable gage for the relative material properties between formulae.  

Experimentally, formula 143 is the least stiff in both the soft and hard states, followed by 

formula 115, with formula 93 being the stiffest.  This ranking of the stiffness of the polymer in 

the soft state is mirrored by the predicted moduli by RIS theory.  Although the nominal values 

are inaccurate, the relative predictions coincide with observed experimental values.  Thus, the 

original goal of the model of having the capability to evaluate select candidate formulas with 

respect to other formulas of the same chemical makeup is achieved.  The ability of quickly and 

accurately ranking candidate formulas according to their predicted stiffness will drastically 

reduce the time required for formula synthesis and material testing.  

 

Table 5.3-1: Comparison of RIS predicted and experimental Young’s moduli 

  Soft State Hard State 
  MPa MPa 

Formula 115 Experimental 2.0 110 
RIS model 0.06 49 

Formula 93 Experimental 5.0 850 
RIS model 0.08 65 

Formula 143 Experimental 1.13 NA 
RIS model 0.06 232 
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6.0  JUNCTION CONSTRAINT THEORY 
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Figure 6.0-1: Module 4, diagram of flow for junction constraint theory model 

 

The application of rotational isomeric state theory as described in Chapters 5 and 6 considers 

only a single polymer chain, or phantom network, and neglects all physical chain interactions 

with itself or neighboring chains, resulting in underestimated material characteristics.  In this 

chapter, to account for physical constraints on the polymer chain, the stress on the chain is 

described as having two contributions, one derived from the phantom network as outlined in the 

previous chapters and one due to junction constraints, where a junction is defined as any point 

where a force is exerted on the polymer chain, such as a crosslink or physical entanglement.  The 
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integration of junction constraint considerations into the phantom network is described by the 

flow chart of Figure 6.0-1 [15-17]. 

6.1 MODEL DERIVATION 

The below derivation is a brief synopsis of the original proof, a more detailed review of which 

can be found here [97-99]. To include the stress due to junction constraints, a statistical approach 

is taken based on the graphical representation shown in Figure 6.1-1.  The elastic free energy of a 

phantom network of Gaussian chains is expressed by:  
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1 −++⎟
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⎛=Δ λλλζkTAph     (6.1-1) 

 

where ζ is the cycle rank, k is Boltzmann’s constant, T is temperature, and λ represents the stretch 

in the three primary directions relative to an unperturbed reference state.   

 

Figure 6.1-1: Diagram depicting the basis of junction constraint theory [98] 
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The points A, B, C, and D represent the mean location of the junction being modeled (A), the 

mean location of the nearest neighboring junction (B), the current location of the nearest 

neighboring junction (C), and the current location of the modeled junction (D).  The distances 

between the current modeled junction, the mean location, and the mean neighboring junction 

location are represented by R and S respectively.  The distributions of R and S are described by 

the following Gaussian functions [97-99]: 
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Taking the product of Equations 6.1-2 and 6.1-4 results in the probability of a displacement ∆Ri 

of junction i.  Also, we know that the actual distribution of the components {∆X} of the vectors 

locating the junctions in the real network {∆R} under strain relative to their mean positions in the 

phantom network is calculated by the convolution of the normalized result for the X coordinate 

and the quantity ( )XΔΘ  [97-99].  It is then asserted that ( )XΔΘ  and ( )XR Δ∗  (the convolution 

result) are Gaussian for all strains.  The distribution of mean relative positions of the centers of 

the constraints, ( )xH  can then be expressed.  After substitution, ( )XR Δ∗  becomes: 
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where 
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Since the actual distribution in the reference state must conform to the distribution in the 

phantom network [97-99], 
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From Equation 6.1-7, substitution of 1−
λρη  in Equation 6.1-6 with ( )( )00 1 σρηη λ +  yields 
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From Equation 6.1-1, the principal components of stress contributed by constraints are given by 

[97-99] 
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with  
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and 
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To force the centers of the domains to be affine under macroscopic strain, 
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We are then left to define the form of σ, which is a function of λ and is a measure of the severity 

of the interaction between neighboring junctions.  This is accomplished by expressing the 

variance of σ with respect to λ as a power series [97-99]: 
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While previous works have truncated the expansion at λ2, the expansion is left open ended in the 

current work for flexibility of fitting.  When Equations 6.1-16 are combined, the resulting 

expression for the variance of σ becomes 
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Defining the coefficients as 
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Substituting Equations 6.1-18 into Equation 6.1-17 then yields 
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Inserting Equation 6.1-19 into Equation 6.1-12 and taking into account Equations 6.1-18, the 

quantity g becomes 

 

( ) ( ) ( )[ ]...1111 32120 +−+−+−+== − λφλωλξκλ
κσ

σ

λ

g   (6.1-20) 

 

Similarly, from Equations 6.1-8, 6.1-11, 6.1-12, and 6.1-15, the quantity B becomes 
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From Equations 6.1-10, 6.1-13, 6.1-14, 6.1-20, and 6.1-21, the stress contribution due to junction 

constraints is fully characterized.  More details of the original theory can be found here [97-99].  

The quantities к, ξ, ω, and φ are phenomenalogically fit parameters, where к characterizes the 

stress response of the polymer due to the initial network entanglements and ξ, ω, φ, and any 

other included higher order term coefficients, represent the departure of the system from affine 

deformation.     
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6.2 JUNCTION CONSTRAINT THEORY STABILITY ISSUES 

Due to the phenomenological nature of the model, it is possible for instabilities to occur.  For 

certain combinations of coefficients, the denominators of quantities B, 
•

B , and K, shown below 

in Equations 6.2-1 through 6.2-3, can approach 0.  This occurs when either g, B, or the quantity 

g*B approach -1. 
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Figures 6.2-1 through 6.2-3 below are mappings of when instabilities occur during 

tensile, equi-biaxial, and shear tests.  The three tests are different because the stretch for each of 

the tests is different; affecting the quantities g and B, see Table 4.4-1.  An instability is said to 

occur, denoted by a dot in the figures, when the denominator of one of the Equations 6.2-1 

through 6.2-3 is between -0.05 and 0.05 and the stretch is between 0.5 and 1.5 in any of the three 

coordinate directions. 
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Figure 6.2-1: Instabilities occurring during simple tension modeling 

 

 

Figure 6.2-2: Instabilities occurring during biaxial modeling 
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Figure 6.2-3: Instabilities occurring during shear modeling 

 

As can be seen, instabilities occur when ξ is less than 4.5 during tension modeling, 2.0 during 

biaxial strain modeling, and 4.5 during shear modeling.  The safe range during biaxial modeling 

can be extended to values less than 4.5 for ξ if instabilities occurring only between a stretch of 

0.8 and 1.2 are considered.  To circumvent these instabilities, к is given a value of 3.0 and ξ a 

value of 0.15, well within the range of stable values, with all other higher order coefficients set to 

0.  Since these values are not high enough to correct the disparities between the RIS predicted 

modulus values and those found experimentally, however, an additional junction constraint 

correction factor is added.  This correction factor is simply multiplied by the predicted junction 

constraint stress component and provides the necessary flexibility to force the predicted Young’s 

modulus to match the experimental value.   
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6.3 MODEL INTEGRATION WITH RIS THEORY 

The presented method of calculating the effects of junction constraints results in the prediction of 

the amount of stress derived solely from a phantom network chain’s interactions with 

neighboring chains.  This stress contribution then, is simply added to the stress contribution of 

the phantom network as calculated using RIS theory for the total stress on the polymer. 

 

1τσ JCT Cf += ∗      (6.3-1) 

 

where σT is the total stress on the chain, f* is the stress due to the phantom network, CJC is the 

junction constraints correction factor, and τ1 is the stress due to junction constraints.  The total 

stress on the polymer is then used to calculate the modulus of the polymer as in Equation 4.4-8 

as the strain approaches 0. 
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7.0  JUNCTION CONSTRAINT THEORY MODEL RESULTS 

7.1 JUNCTION CONSTRAINT MODEL CALIBRATION 

Since the modulus of the polymer is calculated as stretch, α, approaches 1 (strain goes to 

0) the departure from affine deformation is expected to have little impact.  This also leads to the 

conclusion, verified by experiment, that any junction constraint coefficient or combination of 

coefficients may be used to calibrate the model and obtain the desired predicted Young’s 

modulus.  Changing the higher order coefficients used in the model results in changes to the 

predicted stress strain curves, as shown below in Figures 7.1-1 and 7.1-2, with the associated 

junction constraint coefficients listed in Table 7.1-1. 
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Figure 7.1-1: Stress-strain dependence on higher order junction constraint coefficients in the hard case 
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Figure 7.1-2: Stress-strain dependence on higher order junction constraint coefficients in the soft case 
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Table 7.1-1: Stress-strain dependence on higher order junction constraint coefficients 

 Case 1 Case 2 Case 3
к 10.0 10.0 10.0 
ξ 10.7 0.0 0.0 
ω 0.0 5.4 0.0 
φ 0.0 0.0 3.6 

 

As shown in the above Figures, the model can be calibrated to predict the desired experimental 

Young’s modulus using any combination of junction constraint coefficients.  Altering which 

higher order coefficients are used gives the user a separate and deliberate method to tailor the 

model to accurately predict other quantities derived from the stress strain curve such as yield and 

ultimate stresses.  From Figures 7.1-1 and 7.1-2 and Table 7.1-1, using increasingly higher order 

junction constraint coefficients to calibrate the model results in increasingly higher predictions of 

yield and ultimate stresses in both the soft and hard cases, although the difference is much more 

pronounced in the soft case.  This difference between the two modulus states of the polymer is 

expected because the higher order terms account for the departure of the system from affine 

deformation.  From Figures 5.2.1.1-5 and 5.2.1.1-6, it can be seen that the distribution of r-

values, or distances between crosslinks, in the hard case is much smaller than in the soft case.  

The more uniformly distributed the crosslinks are, yielding a tight distribution, the more affine 

the deformation is expected to be.  This also leads to the conclusion that in the soft state, at a 

microscopic level, the polymer undergoes non-affine deformation, reaffirming the impact of 

including junction constraints when predicting material properties. 

To calibrate the model, specifically the phenomenologically determined coefficients of 

the junction constraint theory, several conformations are analyzed and the results averaged.  Ten 

polymer conformations are generated using the above RIS method, each yielding approximately 
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10,000 r-values in the hard case and 2000 in the soft case.  Each case is then fit with a Johnson 

bounded PDF using the L∞-norm fitting method.  The values of the Johnson fitting parameters, δ, 

λ, ξ, and γ are then input into the phantom network chain model outlined above in Chapter 4.0.  

The resulting model predictions of the junction constraint theory are then matched to 

experimental data by adjusting the junction constraint correction factor as described in Section 

6.2.  The averages and standard deviations of the junction constraint correction factors are listed 

below in Table 7.1-2. 

 

Table 7.1-2: Average junction constraint correction factors 

  JC correction factor STDEV 

Formula 115 Soft 103.8 2.4 
Hard 38.3 12.0 

Formula 93 Soft 217.1 4.2 
Hard 568.9 5.7 

Formula 143 
Soft 60.7 0.8 

Hard 93-ratio 23.2 NA 
Hard 115-ratio 164.6 NA 

 

Since no experimental data for formula 143 in the hard state is available, the model cannot be 

calibrated for this state.  Alternatively, estimations are made based on the ratio of correction 

factors in the soft and hard states of formulas 93 and 115 and the correction factor for formula 

143 in the soft state.   

7.1.1 JC Model Tensile Test Results 

7.1.1.1 Formula EAS-155-115 Tensile Test Results 

Below, a representative case comparing the stress contributions with respect to strain of the 

phantom network and junction constraints as well as the total stress response of the polymer in 



 134 

the soft state is presented in Figure 7.1.1.1-1.  Shown in Figure 7.1.1.1-2 is the stress 

contributions from the phantom network, junction constraints, and the total response in the hard 

state.  The average predicted phantom network Young’s modulus, junction constraint Young’s 

modulus, root-mean-squared r-value, and Kolmogorov-Smirnov statistic from the 10 

conformations are also presented below in Table 7.1.1.1-1 compared to the experimentally 

determined Young’s moduli for formula EAS-155-115.   
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Figure 7.1.1.1-1: Predicted stress contributions under simple tension for formula EAS-155-115 in the soft state 
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Figure 7.1.1.1-2: Predicted stress contributions under simple tension for formula EAS-155-115 in the hard state 

 

Table 7.1.1.1-1: Junction constraint theory predicted hard and soft state properties of formula EAS-155-115  

 Soft State Hard State 
 Young's Modulus STDEV Young's Modulus STDEV 
 MPa MPa MPa MPa 
Experimental 2.0 NA 11.4 NA 
Chemical Kinetic Model NA NA 110 NA 
Phantom Network 0.063 0.003 49.1 11.1 
Junction Constraints 2.0 0.0 110.0 0.0 

 

In Table 7.1.1.1-1, Experimental refers to the sample averaged Young’s modulus obtained 

experimentally, Chemical Kinetic Model refers to the theoretical predicted maximum Young’s 

modulus in the hard state, Phantom Network refers to the soft and hard state Young’s moduli as 

predicted by RIS theory, and Junction Constraints refers to the soft and hard state Young’s 

moduli predicted when the junction constraint theory is included.  As can be seen, the Young’s 

modulus of the polymer predicted including junction constraints coincides exactly with 

experiment.  This is because the coefficients in Equation 4.5-28 and the junction constraint 
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correction factor are phenomenologically fit ensuring this result.  Although the theoretical hard 

state modulus predicted by the chemical kinetic model is believed to be an overestimate since it 

assumes that all possible photo-crosslinks are formed; the junction constraint model is calibrated 

to coincide with the chemical kinetic model for demonstrative purposes highlighting the 

versatility of the theory. 

Figures 7.1.1.1-3 and 4 below compare the experimentally determined sample averaged 

stress response of the polymer to that predicted by junction constraint theory and RIS theory for 

both the hard and soft states.  In the soft state, the junction constraint theory predicted stress 

response precisely matches the experimentally measured stress response.  This is expected since 

in the soft state, the stiffness of the polymer is uniform through the thickness of the sample.  In 

the hard case, however, the through thickness distribution of the stiffness of the polymer is non-

uniform, resulting in the averaged measured stress being lower than that of the incident surface 

layer of the sample.  Since the junction constraint theory presented simulates only a single 

polymer chain, and thus is incapable of any through thickness stiffness distribution, the Young’s 

modulus predicted by junction constraint theory is phenomenologically fit to the theoretical 

single chain Young’s modulus of the chemical kinetic model, which as seen in Figure 7.1.1.1-4 

is significantly higher than the sample averaged stiffness measured experimentally.   
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Figure 7.1.1.1-3: Comparison between experiment and predicted RIS model stress response of formula EAS-155-

115 in the soft state 
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Figure 7.1.1.1-4: Comparison between experiment and predicted RIS model stress response of formula EAS-155-

115 in the hard state 
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7.1.1.2 Formula EAS-155-93 Tensile Test Results 

Pictured below in Figures 7.1.1.2-1 and 7.1.1.2-2 are the stress strain predictions for formula 

EAS-155-93 under simple tension.  As can be seen, the predicted stresses for formula 93 are 

much higher than that of formula 115, correlating with the higher modulus predictions listed in 

Table 7.1.1.2-1. 
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Figure 7.1.1.2-1: Predicted stress contributions under simple tension for formula EAS-155-93 in the soft state 
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Figure 7.1.1.2-2: Predicted stress contributions under simple tension for formula EAS-155-93 in the hard state 

 

Table 7.1.1.2-1: Junction constraint theory predicted hard and soft state properties of formula EAS-155-93 

 Soft State Hard State 
 Young's Modulus STDEV Young's Modulus STDEV 
 MPa MPa MPa MPa 
Experimental 5.0 NA 107 NA 
Chemical Kinetic Model NA NA 850.0 NA 
Phantom Network 0.080 0.006 65.1 15.1 
Junction Constraints 5.0 0.0 850.0 0.0 

  

Figures 7.1.1.2-3 and 4 below compare the experimentally determined sample averaged stress 

response of the polymer to that predicted by junction constraint theory and RIS theory for both 

the hard and soft states.  As with formula EAS-155-115, the junction constraint theory predicted 

stress response matches the experimentally measured stress response in the soft state, with the 

exception of the region below a stretch of 1.008 due to slack in the sample during testing.    

Although in Figure 7.1.1.2-4 it appears that the RIS method captures the correct slope of the 

curve in the hard state, the two cannot be directly compared because the experimental curve is a 
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sample average with a non-uniform distribution of stiffness through the thickness of the sample 

while the RIS predicted stress response is for a single phantom network chain.  Also as with 

Figure 7.1.1.2-3, the stress below a stretch of 1.001 is due to slack in the sample. 
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Figure 7.1.1.2-3: Comparison between experiment and predicted RIS model stress response of formula EAS-155-93 

in the soft state 
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Figure 7.1.1.2-4: Comparison between experiment and predicted RIS model stress response of formula EAS-155-93 

in the hard state 
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7.1.1.3 Formula EAS-155-143 Tensile Test Results 

Pictured below in Figures 7.1.1.3-1 through 7.1.1.3-3 are the stress strain predictions for formula 

EAS-155-143 under simple tension.  As described earlier, there is no reliable experimental data 

available for formula EAS-155-143 in the hard state.  Thus to estimate the hard state modulus of 

the formula 143, the junction constraint correction factor is estimated based on the ratio of the 

junction constraint correction factor in the hard and soft states for formulas EAS-155-93 and 

EAS-155-115 and the correction factor for formula 143 in the soft state.  The resulting correction 

factors used are listed in Table 7.1-2. 
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Figure 7.1.1.3-1: Predicted stress contributions under simple tension for formula EAS-155-143 in the soft state 
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Figure 7.1.1.3-2: Predicted stress contributions under simple tension for formula EAS-155-143 in the hard state 

using formula 93 ratio 
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Figure 7.1.1.3-3: Predicted stress contributions under simple tension for formula EAS-155-143 in the hard state 

using formula 115 ratio 



 143 

 

Table 7.1.1.3-1: Junction constraint theory predicted hard and soft state properties of formula EAS-155-143 

 Soft State Hard State 
 Young's Modulus STDEV Young's Modulus STDEV 
 MPa MPa MPa MPa 
Experimental 1.1 NA NA NA 
Chemical Kinetic Model NA NA NA NA 
Phantom Network 0.06 0.002 232 82 
Junction Constraints 93 ratio 1.1 0.0 124 27 
Junction Constraints 115 ratio 318 770 

 

There are more photo crosslink locations in formula 143, every 4th segment, than are in either 

formula 115, every 4.7th segment, or formula 93, every 7th segment.  Formula 143 also has the 

smallest average r-value of the three modeled formulas in the hard state.  It would be expected, 

then, that formula 143 would have the highest Young’s modulus of the three in the hard state.  

This is not the case, however, as the predicted hard state Young’s modulus of formula 143 using 

the correction factor calculated from formula 93 is lower than the predicted Young’s modulus of 

formula 93.  This results in the conclusion that formulas 93, 115, and 143 are not sufficiently 

similar enough for the use of a single junction constraint correction factors universally applied to 

all three formulas.  This conclusion is further justified by recognizing that junction constraint 

theory is based on the assumption that the distribution of fluctuations in the chain caused by 

entanglements are Gaussian in nature, however it is well known that this is not the case 

[106,110].  For these reasons, junction constraint model results for Formula EAS-155-143 in the 

equi-biaxial and shear strain states is located in Appendix B, as the predictions may offer insight 

into the modeling methodology, but are unlikely to be physically accurate.   
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7.1.2 JC Model Equi-biaxial Test Results 

7.1.2.1 Formula EAS-155-115 Equi-biaxial Test Results 

Pictured below in Figures 7.1.2.1-1 and 7.1.2.1-2 are the stress predictions for formula EAS-155-

115 under equi-biaxial strain.  Equi-biaxial strain is modeled using the quantities listed in Table 

4.4-1. 
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Figure 7.1.2.1-1: Predicted stress contributions under equi-biaxial strain for formula EAS-155-115 in the soft state 
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Figure 7.1.2.1-2: Predicted stress contributions under equi-biaxial strain for formula EAS-155-115 in the hard state 

 

Table 7.1.2.1-1: Junction constraint theory predicted hard and soft state properties of formula EAS-155-115 under 

equi-biaxial strain 

 Biaxial Modulus SB STDEV 
 MPa MPa 

Soft State 8.0 0.0 
Hard State 422 5.6 

 

The biaxial modulus reported in Table 7.1.2.1-1 is calculated with Equation 4.4-8 using the stress 

and strain in the primary direction using the Johnson bounded distribution.  Equi-biaxial 

experimental data for LASMP is unavailable at this time, thus the presented data is offered as an 

example of how the model can be used to predict material properties without the need for 

experiment.    
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7.1.2.2 Formula EAS-155-93 Equi-biaxial Test Results 

Pictured below in Figures 7.1.2.2-1 and 7.1.2.2-2 are the stress predictions for formula EAS-155-

93 under equi-biaxial strain. 
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Figure 7.1.2.2-1: Predicted stress contributions under equi-biaxial strain for formula EAS-155-93 in the soft state 
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Figure 7.1.2.2-2: Predicted stress contributions under equi-biaxial strain for formula EAS-155-93 in the hard state 
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Table 7.1.2.2-1: Junction constraint theory predicted hard and soft state properties of formula EAS-155-93 under 

equi-biaxial strain 

 Biaxial Modulus SB STDEV 
 MPa MPa 

Soft State 20 0.0 
Hard State 3380 2.7 

 

Although the magnitudes of the ultimate stresses predicted under biaxial strain for formulas 115 

and 93 are similar, the predicted biaxial modulus of formula 93 in the hard state is much higher.  

The proportional difference in biaxial modulus between formulas 93 and 115, however, is in 

agreement with the proportional difference in Young’s modulus between the two formulas.    

   

7.1.3 JC Model Shear Test Results 

Presented below are results of the junction constraint theory model under shear using the 

quantities listed in Table 4.4-1.  The shear modulus is calculated using Equation 7.1.3-1 [106].   

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 3

1
11

1
λ

λGf      (7.1.3-1) 

 

Where f1 is the stress in the primary direction, G is the shear modulus, and λ1 is the stretch in the 

primary direction.  
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7.1.3.1 Formula EAS-155-115 Shear Test Results 

Pictured below in Figures 7.1.3.1-1 and 7.1.3.1-2 are the stress predictions for formula EAS-155-

115 under shear.  Table 7.1.3.1-1 lists the predicted shear moduli in the hard and soft states using 

the Johnson bounded distribution. 
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Figure 7.1.3.1-1: Predicted stress contributions under shear strain for formula EAS-155-115 in the soft state 
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Figure 7.1.3.1-2: Predicted stress contributions under shear strain for formula EAS-155-115 in the hard state 

 

Table 7.1.3.1-1: Junction constraint theory predicted hard and soft state properties of formula EAS-155-115 under 

shear 

 Shear Modulus SB STDEV 
 MPa MPa 

Soft State 1.2 0.0 
Hard State 52 9.7 
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7.1.3.2 Formula EAS-155-93 Shear Test Results 

Pictured below in Figures 7.1.3.2-1 and 7.1.3.2-2 are the stress predictions for formula EAS-155-

93 under shear.  Table 7.1.3.2-1 lists the predicted shear moduli in the hard and soft states using 

the Johnson bounded distribution. 

 

0.5 1 1.5 2 2.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1
x 10

7

stretch (L/Li)

st
re

ss
 (P

a)

SB phantom network
junction constraints
total

 

Figure 7.1.3.2-1: Predicted stress contributions under shear strain for formula EAS-155-93 in the soft state 
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Figure 7.1.3.2-2: Predicted stress contributions under shear strain for formula EAS-155-93 in the hard state 

 

Table 7.1.3.2-1: Junction constraint theory predicted hard and soft state properties of formula EAS-155-93 under 

shear 

 Shear Modulus SB STDEV 
 MPa MPa 

Soft State 3.0 0.0 
Hard State 509 1.8 

 

As can be seen from Table 7.1.3.2-1 and is expected, the predicted shear modulus of formula 93 

is much higher than that predicted for formula 115 in both the hard and soft states. 
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7.2 JUNCTION CONSTRAINT MODEL CONCLUSIONS 

Table 7.2-1: Junction constraint model Young’s, biaxial, and shear modulus predictions 

  Phantom Network Junction Constraint Theory 
Strain State Formula Soft State Hard State Soft State Hard State 

Tensile 115 (MPa) 0.06 50 2.0 110 
93 (MPa) 0.08 65 5.0 850 

Equi-biaxial 115 (MPa) NA NA 7.9 422 
93 (MPa) NA NA 19.8 3384 

Shear 115 (MPa) NA NA 1.2 52 
93 (MPa) NA NA 3.0 509 

 

As highlighted by the distribution of junction constraint correction factors in Table 7.1-2, 

junction constraint theory is ill-suited for predictive applications.  It is however, capable of being 

calibrated for a specific formula allowing the modeling of alternative loading scenarios, making 

it useful for design purposes.  This of course does not exclude the theory from being utilized to 

model other LASMP formulas that are more similar in molecular structure than the formulas 

presented.  As well as the quantities shown above, other material response characteristics may 

also be calculated using the presented method and data, further enhancing the model’s usefulness 

for design.   
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8.0  FUTURE RESEARCH 

While the presented research is a promising start to both the realization of a commercially 

available light activated shape memory polymer as well as a refined model methodology for 

predicting macroscopic response of proposed polymer systems based on microscopic parameters, 

there is much work to be done.  The viability of the polymer in real applications remains 

untested.  Material properties such as fatigue, creep, crack growth resistance, oxidation, damage 

to the backbone due to optical irradiation, and others need to be quantified for the polymer to be 

implemented in applications.  Novel activation schemes, while proposed and theoretically viable, 

also remain untested.  Other factors such as manufacturing techniques, cost of production, and 

life cycle analysis are also issues facing the introduction of any new material.  

Further research is also needed to refine the proposed model.  While the model is 

designed and presented to be modular in nature with the ability to replace any given step, 

actually replacing the theories presented with alternative methods has not been tried and thus the 

limits of doing so are unknown.  The effect of complex data, such as a bimodal distribution of r-

values, on the accuracy of the method is also unknown.  The method is theoretically capable of 

predicting other quantities derivable from the stress strain curve, provided sufficient accuracy 

regarding the coefficients used in the junction constraint theory such as yield and ultimate 

stresses.  This capability would provide a powerful tool and enable the model to be used with 

material design software such as ABAQUS, but has to date not been attempted.  The two models 
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presented, the chemical kinetic model and the RIS model, also have the ability to be integrated 

resulting in a more detailed prediction of the evolution of Young’s modulus.  The chemical 

kinetic model can be used to predict the degree and depth of crosslinking given a dose of 

radiation which can then be used by the RIS model predicting the through thickness and sample 

averaged stiffness of polymers not available for experimental characterization. 

As an alternative to the methods described above using statistical mechanics to calculate 

the change in entropy of the polymer chain with respect to strain, yielding the stress response of 

the polymer, molecular dynamics (MD) can also be used to model the polymer and predict 

macroscopic material properties based on the molecular structure.  The presented study uses the 

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), developed and made 

available by Sandia National Laboratories and is a readily downloadable application used to 

model interatomic interactions [113,115,116]. 

8.1 LAMMPS MODELING 

The atomic coordinates for the atoms included in the MD simulation are determined as with the 

previous method using RIS theory.  The bond potentials, in plane bond angles, and dihedral 

potentials are the same as previously determined.  To model the polymer in either state, only a 

section of atoms between two crosslinks is included in the simulation.  This results in the 

simulation of formula EAS-155-115 including 91 “atoms” when modeling the polymer in the 

soft state and 7 “atoms” in the hard state.  Because the exact molecular structure is proprietary, 

the polymer is modeled in LAMMPS as if the grained segments of the polymer, as described 

previously, where individual atoms with all of the information to model the polymer (bond 
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lengths, bond potentials, in plane angles and potentials, and rotational dihedral angles and 

potentials) known for the included molecules.   

Since MD simulations are not the intention of this work, the following is only a brief 

outline of the method used.  The three dimensional simulation uses “real” units, “full” atom 

style, and a non-periodic shrink-wrapped “s s s” boundary.  The bond potential between two 

molecules is modeled using the Lennard Jones potential with coulombic interactions with the 

inner and outer global switching cutoffs for the Lennard Jones potential set as 1.0 and 45.2.  The 

outer cutoff is significantly larger than expected because the “atoms” in the simulation represent 

molecules.  The optional coulombic interaction coefficients are neglected and the pair 

coefficients are set to 0.0.  This essentially turns off pair potentials, rendering the above moot, 

while preventing the molecules from interacting with each other in any way not explicitly stated 

in the input file.  This is needed because the model includes only a single polymer chain.  If 

general interactions are allowed, the chain, upon executing an energy minimization, will coil 

onto itself since it is unrestricted.  In a real polymer, however, this is prevented by physical 

entanglements with neighboring chains.  Because modeling several polymer chains is 

computationally prohibitive, the pair coefficients are set to 0.0 and any bond potentials explicitly 

described.  The potential must be included however to prevent the program from terminating 

early with an error stating the potential is missing.  The Lennard Jones potential and coulomb 

interaction equations used are presented below in Equations 8.1-1. 
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The harmonic bond style is used in the simulation, described by Equation 8.1-2 below, and 

serves as the criteria describing bond length.  There are six possible bond lengths in the 

simulated polymer with the following coefficients. 

 

Table 8.1-1: Bond style coefficients 

Bonded Molecules K (energy/dist2) r0 (distance) 
Omega to Sigma 100 3.77198 

Pie to Sigma 100 3.77198 
PKP to Sigma 100 3.77198 

Sigma to Omega 100 45.183 
Sigma to Pie 100 24.1669 

Sigma to PKP 100 3.61159 
 

( )2
0rrKE −=      (8.1-2) 

 

The names given to the molecules in column 1 of Table 8.1-1 are the same as those used to 

describe the molecular structure of the polymer in Chapter 4.  These coefficients result in the 

bond potentials seen below in Figure 8.1-1.  
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Figure 8.1-1: Bond potentials 

 

The minimum energy locations, r0 in Table 8.1-1, represent the calculated bond lengths of the 

different bonds using RIS theory with the in plane angle between each pair of molecules being 

111 degrees, as presented in Chapter 4.  The harmonic angle style is used with coefficients of 

1000 energy/radian2 and 111 degrees, representing K and Θ0 respectively, seen below in 

Equation 8.1-3.   

 

( )2
0θθ −= KE      (8.1-3) 

 

The exact magnitude of K is not known, although it is assumed that rotation about a bond is the 

chief mechanism of deformation, thus the coefficient of K describing the in plane angle is given 

a relatively large value.  A graph of the in plane angle potential is shown below in Figure 8.1-2. 
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Figure 8.1-2: In plane angle bond potential 

 

The charmm potential is used to describe the rotational dihedral bond angles of the simulated 

polymer, shown below in Equation 8.1-4. 

 

( )[ ]dnKE −+= φcos1     (8.1-4) 

 

A value of 1500 is assigned to K in Equation 8.1-4 for all dihedral angles.  Figure 8.1-3, below, 

is the shows a select few of the calculated dihedral angle potentials.   
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Figure 8.1-3: Rotational dihedral potentials 

 

Finally, the bonds, angles, and dihedrals and their associated molecules are listed in the input file 

and random initial velocities prescribed to all molecules.   

The first and last atoms in the chain are identified forces applied during the simulation.  

An “nvt” command equalizing the temperature at 300K, the force increased incrementally, and 

the positions of the atoms output until the simulation fails. 

8.2 RESULTS AND EXPERIMENTAL COMPARISON 

In the soft state, the initial conformation in LAMMPS, after the temperature is 

equilibrated and the simulation minimized, is shown below in Figure 8.2-1.   
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Figure 8.2-1: LASMP conformation in the soft state 

 

Approximately half way through the simulation the polymer chain has been strained 

approximately 218% with a force of 27 Pa, and is pictured below in Figure 8.2-2. 

 

 

Figure 8.2-2: LASMP in the soft state approximately half way through the simulation 
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The simulation fails after approximately 110 steps at a final strain of 380% at a force of over 60 

Pa.  The final step is shown below in Figure 8.2-3.   

 

 

Figure 8.2-3: LASMP in the soft state just before simulation failure 

 

The soft state simulation of the polymer yielded a Young’s modulus of 9.7 Pa, as seen below in 

Figure 8.2-4, and predicts the polymer to be highly elastic.   

 



 162 

0

10

20

30

40

50

60

70

0 0.5 1 1.5 2 2.5 3 3.5 4

Strain (m/m)

St
re

ss
 (P

a)

Young's Modulus = 9.7 Pa

 

Figure 8.2-4: Constitutive response predicted by LAMMPS for LASMP in the soft state 

 

In the hard state, the polymer has much fewer molecules between crosslinks and is thus 

much shorter.  The initial conformation after thermal equilibration and simulation minimization 

for the hard state simulation is pictured below in Figure 8.2-5.   
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Figure 8.2-5: Hard state initial conformation 

 

As can be seen, the molecules appear to be uncharacteristically far from one another, this is 

however expected due to the nature of the simulation and the zoom required so that the entire 

frame is utilized.  Approximately half way through the simulation, at step 55, the strain on the 

polymer is 270% with an applied force of 29 Pa, shown below in Figure 8.2-6.   

 

 

Figure 8.2-6: Step 55 simulating LASMP in the hard state using LAMMPS 
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The simulation fails after approximately 102 steps at a final strain of 365% at a force of over 56 

Pa.  The final step is shown below in Figure 8.2-7. 

 

 

Figure 8.2-7: Final step before failure of LASMP in the hard state 

 

The hard state simulation of the polymer yielded a Young’s modulus of 28.2 Pa, as seen below in 

Figure 8.2-8, also showing the polymer to be highly elastic. 
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Figure 8.2-8: Constitutive response of LASMP in the hard state as predicted by LAMMPS 

 

Below, Table 8.2-1 lists the experimentally determined Young’s modulus and all of the 

predicted Young’s moduli for each of the three simulation methods in both the hard and soft 

states of the polymer. 

 

Table 8.2-1: Predicted Young’s modulus comparison 

 Young’s Modulus soft (Pa) Young’s Modulus hard (Pa)
Experimental 2.0*106 110.0*106 

Phantom Network Theory 0.1*106 49.1*106 
Junction Constraint Theory 2.0*106 110.0*106 

LAMMPS 9.7 22.8 
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8.3 MOLECULAR DYNAMICS CONCLUSIONS 

As can be seen from Table 8.2-1, the only method accurately predicting the nominal 

value of Young’s modulus of the polymer is the statistical mechanics method when junction 

constraints are included.  This method, however, requires that experimental results of a 

molecularly similar polymer are available to calibrate the model, which in some instances will 

not be the case.  In contrast, neither the phantom network model nor the MD simulation using 

LAMMPS requires any knowledge of macroscopic material parameters prior to use.  This 

provides a very useful tool in evaluating candidate material formulations of new polymers.  

Although the phantom network model is significantly more accurate, both can be used to 

qualitatively evaluate the relative properties of a polymeric material.  Both the phantom network 

model and LAMMPS simulation accurately predict the hardening of the material with increased 

crosslinking due to optical stimulation.   

The lower values of Young’s modulus predicted by the LAMMPS simulation are 

believed to be due to several factors.  First, there is error in the potentials themselves.  The actual 

potentials are non-regular functions and require higher order approximations to model correctly.  

This results in misplaced, underestimated, and overestimated energy barriers for extension and 

rotation in the LAMMPS simulation.  Improving the modeling of these potentials, though 

beyond the scope of the current work, should result in more accurate predictions.  Also, in the 

current LAMMPS simulation, movement in the transverse directions to the applied force is 

unrestricted, resulting in a slight rotation of the polymer chain.  In reality, neighboring chains in 

the polymer would hinder such rotation, increasing the strength of the polymer.  Finally, the 

simulation, as with the phantom network model, does not take into account any physical 

entanglements or other interactions with neighboring chains.  Theoretically it is possible to 
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model several chains using MD, however currently it is computationally unpractical.  Each full 

polymer chain includes tens of thousands of molecules.  To model neighboring chain interaction, 

hundreds of thousands of chains would need to be simulated so that edge and end effects would 

be accounted for.  Such a large simulation would require computing power and computation run 

time that would negate the purpose of the project, which is to reduce the time required to 

determine the optimum formula of a given polymer for a specific application.  Finally, the 

polymer chain modeled here is simply one conformation of the polymer.  The number of 

molecules between crosslinks and their order vary greatly.  The simulation presented here 

includes five molecules between the end points in the hard state.  Statistically, however, there 

can be anywhere from 1 to 9 molecules between the endpoints.  The distribution of which varies 

between polymer formulas.  For a more accurate prediction of Young’s modulus in the hard 

state, all of the possible conformations should be modeled and the resulting material properties 

condensed using a weighted average. 

 



 168 

9.0  CONCLUSIONS 

Several candidate formulas of light activated shape memory polymer have been experimentally 

characterized and their properties’ dependence on optical stimulus defined.  While the optimal 

formula is still under investigation, candidate formulations have proven that significant modulus 

change in a feasible amount of time is attainable.  Reversible modulus changes of over 600% 

have been achieved in current formulas, opening the door to a wide range of applications.  

Having a power requirement of less than 1.5J/g, they are extremely attractive for applications 

requiring the ability to switch between two modulus states where power is restricted, such as 

space applications.   

The presented method of building a polymer chain using rotational isomeric state theory, 

modeling the distribution of crosslink to crosslink distances, or r-values, using Johnson 

distributions, relating the conformational entropy to changes in stress due to strain with 

Boltzmann statistical mechanics and the three chain rule, and accounting for the stress due to 

interactions with neighboring chains using junction constraint theory has proven a valuable and 

accurate tool in evaluating the material properties of light activated shape memory polymer.  The 

modular nature of the method allows the theory to be adapted to systems with varying behavior, 

such as a bimodal distribution of r-values.  The phenomenological fitting nature of junction 

constraint theory yields nominally accurate Young’s modulus predictions while also providing 

some customization of the stress strain curve, which in future studies may lead to accurate 
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predictions of such quantitative quantities as yield stress and ultimate stress as well as qualitative 

observations such as ductility.  The method is well suited for evaluating the relative stiffness of 

proposed formulas, providing a valuable assessment in the continuing effort to optimize LASMP 

formula.  It greatly decreases the time required for formula evaluation with respect to traditional 

experimental techniques and also provides an avenue to customer-tailored formulations in the 

future. 
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APPENDIX A 

EXAMPLE POLYMER CHAIN CONFORMATIONS 

The following graphs show example polymer chain conformations for formulas EAS-155-115, 

EAS-155-93, and EAS-155-143 in both the soft and hard states.  The blue lines represent the 

polymer chain backbone and the red lines designate photo-crosslinkable locations.  The hard 

state conformations comprise of approximately 10,000 crosslinks while the soft state 

conformations comprise of approximately 2000 crosslinks.  As can be seen, the difference in 

crosslink density between the hard and soft states is clearly visible. 
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A.1 FORMULA EAS-155-115 SOFT STATE CONFORMATIONS 
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A.2 FORMULA EAS-155-115 HARD STATE CONFORMATIONS 
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A.3 FORMULA EAS-155-93 SOFT STATE CONFORMATIONS 
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A.4 FORMULA EAS-155-93 HARD STATE CONFORMATIONS 
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A.5 FORMULA EAS-155-143 SOFT STATE CONFORMATIONS 
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A.6 FORMULA EAS-155-143 HARD STATE CONFORMATIONS 
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APPENDIX B 

FORMULA EAS-155-143 

B.1 FORMULA EAS-155-143 EQUI-BIAXIAL TEST RESULTS 

Pictured below in Figures B.1-1 through B.1-3 are the stress predictions for formula EAS-155-

143 under equi-biaxial strain.  As previously, hard state predictions are shown using calculated 

junction constraint correction factors using both formula 93 and 115. 
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Figure B.1-1: Predicted stress contributions under equi-biaxial strain for formula EAS-155-143 in the soft state 
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Figure B.1-2: Predicted stress contributions under equi-biaxial strain for formula EAS-155-143 in the hard state 

using formula 93 ratio 
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Figure B.1-3: Predicted stress contributions under equi-biaxial strain for formula EAS-155-143 in the hard state 

using formula 115 ratio 
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Table B.1-1: Junction constraint theory predicted hard and soft state properties of formula EAS-155-143 under equi-

biaxial strain 

 Biaxial Modulus SB STDEV
 MPa MPa 

Soft State 4.4 0.0 
Hard State 93-ratio 473 104 

Hard State 115-ratio 1600 106 
 

The soft state predicted biaxial modulus is lower than that of formulas 93 and 115, which is in 

agreement with the trends of the predicted Young’s moduli of the three formulas.  The hard state 

biaxial modulus predicted using the formula 93 ratio is lower than the hard state biaxial modulus 

predicted for formula 93 but higher than that predicted for formula 115.  The hard state biaxial 

modulus predicted using the formula 115 ratio is also higher than the predicted biaxial modulus 

for formula 115 and lower than that predicted for formula 93.  This change in order based on the 

magnitude of the biaxial modulus with respect to the order based on the predicted Young’s 

moduli for the formula again leads to the conclusion that the junction constraint theory is ill-

suited for predictive purposes.   

B.2 FORMULA EAS-155-143 SHEAR TEST RESULTS 

Pictured below in Figures B.2-1 through B.2-3 are the stress predictions for formula EAS-155-

143 under shear.  Table B.2-1 lists the predicted shear moduli in the hard and soft states using the 

Johnson bounded distribution. 
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Figure B.2-1: Predicted stress contributions under shear strain for formula EAS-155-143 in the soft state 
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Figure B.2-2: Predicted stress contributions under shear strain for formula EAS-155-143 in the hard state using 

formula 93 ratio 
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Figure B.2-3: Predicted stress contributions under shear strain for formula EAS-155-143 in the hard state using 

formula 115 ratio 

 

Table B.2-1: Junction constraint theory predicted hard and soft state properties of formula EAS-155-143 under 

shear 

 Shear Modulus SB STDEV
 MPa MPa 

Soft State 0.7 0.0 
Hard State 93-ratio 47 7.0 

Hard State 115-ratio 218 7.1 
 

As expected, the soft state shear modulus is lower than both the predicted values for formula 93 

and 115.  The hard state shear modulus predicted using the formula 93 ratio is also lower than 

that predicted for formulas 93 and 115, however, the hard state shear modulus predicted using 

the formula 115 ratio is higher than the predicted shear modulus of formula 115.  This again 

reaffirms that the three modeled formulas are not sufficiently similar enough to allow a 
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universally applied junction constraint correction factor.  Table B.2-2 below lists all of the 

phantom network and junction constraint predicted tensile, biaxial, and shear moduli in the hard 

and soft states. 

 

Table B.2-2: Junction constraint model Young’s, biaxial, and shear modulus predictions 

  Phantom Network Junction Constraint Theory 
Strain State Formula Soft State Hard State Soft State Hard State 

Tensile 

115 (MPa) 0.06 49 2.0 110 
93 (MPa) 0.08 65 5.0 850 

143 93 (MPa) 0.06 232 1.1 124 
143 115 (MPa) 318 

Equi-biaxial 

115 (MPa) NA NA 7.9 422 
93 (MPa) NA NA 19.8 3384 

143 93 (MPa) NA NA 4.4 473 
143 115 (MPa) NA NA 1603 

Shear 

115 (MPa) NA NA 1.2 52 
93 (MPa) NA NA 3.0 509 

143 93 (MPa) NA NA 0.7 47 
143 115 (MPa) NA NA 218 
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