Link to the University of Pittsburgh Homepage
Link to the University Library System Homepage Link to the Contact Us Form

The Role of the Transcription Factor 3 Gene 3 Product E47 in Multipotent Hematopoietic Stem Cells and Progenitors

Yang, Qi (2010) The Role of the Transcription Factor 3 Gene 3 Product E47 in Multipotent Hematopoietic Stem Cells and Progenitors. Doctoral Dissertation, University of Pittsburgh. (Unpublished)

[img]
Preview
PDF
Primary Text

Download (3MB) | Preview

Abstract

E47, an alternative splice product of the transcription factor 3 (TCF3) gene, has been mechanistically linked with multiple leukemias and lymphomas, and thus it is of great public health importance to study the mechanisms by which E47 influences the development of the hematopoietic system. Throughout life, all mature blood cells are constantly replenished from rare, self-renewing bone marrow hematopoietic stem cells (HSCs) and downstream non-renewing multipotent progenitors (MPPs). Little is known about the gene regulatory network that controls the integrity of these essential bone marrow subsets. Previous evidence has suggested a crucial role for the transcription factor E47 in lymphocyte lineage commitment. However, the specific stages of hematopoiesis that require E47 and the underlying mechanisms through which it acts on remain unclear. Our study aims to elucidate the role of the transcription factor E47 in the earliest, multipotent stages of hematopoiesis. Using E47 deficient mice, we found that E47 is required for the development and functional integrity of uncommitted hematopoietic progenitors. Our results showed that E47 deficient mice had a 50-70% reduction in non-renewing MPPs, and the residual MPPs failed to initiate V(D)J recombination, a hallmark of lymphoid lineage progression. The long-term lineage repopulation and self-renewal activities of the primitive HSCs are also compromised in the absence of E47. Not only were the in vivo long-term repopulating HSCs reduced by 3 fold in the bone marrow of E47 deficient mice, but also these HSCs displayed poor self-renewal efficiency by serial transplantation. The compromised self-renewal of E47 null HSCs appears to be associated with premature exhaustion due to over-proliferation under replication stress. The multipotent hematopoietic stem/progenitor cells from E47 deficient mice displayed a striking hyperproliferation following transplantation stress, and they exhibited increased susceptibility to in vivo challenge with a mitotoxic drug. Finally, loss of function and gain of function assays identified the cell cycle inhibitor p21 as a target gene of E47. Together, these observations suggested that E47 regulates the development and functional potential of multipotent hematopoietic subsets, probably through effects on p21-mediated cell cycle quiescence. These findings might provide novel mechanistic insights into hematopoietic damage repair and malignant transformation.


Share

Citation/Export:
Social Networking:
Share |

Details

Item Type: University of Pittsburgh ETD
Status: Unpublished
Creators/Authors:
CreatorsEmailPitt UsernameORCID
Yang, Qiqibyang@yahoo.com
ETD Committee:
TitleMemberEmail AddressPitt UsernameORCID
Committee ChairBorghesi, Lisaborghesi@pitt.eduBORGHESI
Committee Memberde Vallejo, Abbe N.Abbe.Vallejo@chp.eduANDV26
Committee MemberFerrell, Robert E.rferrell@pitt.eduRFERRELL
Committee MemberGollin, Susanne M.gollin@pitt.eduGOLLIN
Date: 28 June 2010
Date Type: Completion
Defense Date: 10 January 2010
Approval Date: 28 June 2010
Submission Date: 27 January 2010
Access Restriction: 5 year -- Restrict access to University of Pittsburgh for a period of 5 years.
Institution: University of Pittsburgh
Schools and Programs: Graduate School of Public Health > Human Genetics
Degree: PhD - Doctor of Philosophy
Thesis Type: Doctoral Dissertation
Refereed: Yes
Uncontrolled Keywords: E47; hematopoietic stem cells; Transcription Factor 3
Other ID: http://etd.library.pitt.edu/ETD/available/etd-01272010-143133/, etd-01272010-143133
Date Deposited: 10 Nov 2011 19:31
Last Modified: 19 Dec 2016 14:34
URI: http://d-scholarship.pitt.edu/id/eprint/6313

Metrics

Monthly Views for the past 3 years

Plum Analytics


Actions (login required)

View Item View Item