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ABSTRACT 
 
 

CONVEX ANALYSIS OF METABOLIC NETWORK FOR OPTIMAL CELL DESIGN & 
FLUX VALIDATION BY GC-MS OR NMR 

 
 

Tao Zhu, PhD 
 
 

University of Pittsburgh, 2003 
 
 
 

In this thesis an integrated software tool: MetaboLogic was developed.  This software not 

only integrates most of the techniques developed in Metabolic Flux Analysis (MFA), but also 

two mathematical techniques for finding multiple optimal solution and designing tracer 

experiments. MetaboLogic is designed to allow users to construc t arbitrary network model 

visually through a friendly graphic user interface. 

 

The functions of the software can be classified into two groups. The first group is to compute 

flux distribution by using stoichiometric information. This part includes traditional linear 

programming techniques and the modified simplex algorithm we developed to find the 

alternative optimal solutions.  The second group of functions deals with the mathematical 

methods to simulate NMR and GC/MS spectra based on flux distributions. The multiple 

solutions found using MILP or modified simplex method can be used to better design the tracer 

experiment in terms of choice of labeled substrates and signal molecules.    

 

We applied MetaboLogic to find a potential metabolic engineering strategy for inhibiting the 

acid formation. Acid formation is a major problem in production of recombinant protein in both 

E. coli and B. subtilis, because it limits process stability and cell concentration and thus cell-

based biotechnological processes. The inactivation of pyruvate kinase (PYK) was identified as 

one potential metabolic engineering strategy for eliminating acidic by-products. PYK mutants 

were constructed and characterized in terms of growth and acid formation. The experimental 
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results confirmed that the predicted strategy is an effective way to reduce acid formation. This 

application is good demonstration of the MetaboLogic’s capabilities.     

 

Finally, the MetaboLogic was used for the design of genetic-based strategies for enhancing 

folic acid production in E. coli and B. subtilis. The genetic strategy that emerged for reduction of 

acid formation (pyk mutation) was found to be a very promising start point for increased folic 

acid production. The experimental data in E. coli confirmed that pyk mutation increased the folic 

acid production by 5-6 fold compared to the wild type. 
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1.0  SPECIFIC AIMS AND OVERVIEW 
 
 
 

Metabolic Flux Analysis (MFA) has become a widely used approach for studying the 

properties and capabilities of metabolic networks in microorganisms (Stephanopoulos et at. 

1995). MFA may be used for the determination of steady state metabolic flux distributions, if 

measurement of uptake and/or excretion rates of a cell culture in steady state is available. 

Combined with tracer experiment data, MFA can also be used to determine the flux distribution 

even if there are not enough uptake/execration data available.  These predicted distributions 

provide information on both product yield horizons as well as suggest how the regulation of 

existing and inserted pathways needs to be altered in order to attain the yield horizon. 

 

Various mathematical and experimental techniques are developed for prediction of flux 

distributions that provide high product yield. These methods include linear programming 

(Majewski & Domach, 1991), pathway analysis (Schilling et at. 2000), elementary mode analysis 

(Schuster et at. 1999), NMR and GC/MS simulation (Wiechert et at. 1997). Software are 

developed which integrates most of the mathematical methods (E-Cell Tomita, 2001; Gepasi, 

Mendes 1997; Glaser, 1999; Metatool (Pfeiffer et al. 1999); Metabolic Explorer, 

http://www.simtec.mb.uni-siegen.de/Software/ 13CFlux/). 

 

One issue that has arisen with metabolic engineering models and software (Schaff et al., 

1997; Goryanin et al., 1999; NSF Workshop on Metabolic Engineering, Sept. 2000) is that new 

and powerful software and modeling developments are challenging to adopt by potential users. It 

can be problematic to unravel the underlying assumptions encoded in a program or adapt the 

model for use in another problem.  Also, there is a lack of a software tool which integrates all 

these techniques in a comprehensive manner. The user has to access different software if they 

want to apply different analysis methods to the same problem. The challenges may compound 

when the non-expert user desires to use a model or software as an input for another analysis 

activity.   

 

http://www.simtec.mb.uni-siegen.de/Software/13CFlux/
http://www.bioinfo.de/isb/gcb01/poster/moldenhauer.html
http://ecell.sourceforge.net/
http://gepasi.dbs.aber.ac.uk/softw/gepasi.html


 

2 

There is another issue in the metabolic network modeling work. Two important mathematical 

methods are not well implemented in any software yet. There is no software package of 

metabolic flux analysis that can find all alternative solutions for a degenerate LP problem, which 

commonly arises in metabolic flux analysis.  Furthermore, there is no software can validate flux 

distribution found by NMR or GC-MS spectra in any arbitrary network model. 

 
 
 

1.1 Specific Aims 
 
 
 
 

The first aim in this research is to develop an integrated software tool: MetaboLogic.  This 

software shall not only integrate most of the techniques developed in MFA, but also two 

mathematical techniques for finding multiple optimal solution and the design of radio labeled 

pattern for flux confirmation. MetaboLogic is designed to allow users to construct arbitrary 

network model visually through a friendly graphic user interface. 

 

We adopted MATLAB ® (Mathworks, Inc; www.mathworks.com) as the computationa l 

engine, which offers the possibility to directly benefit from predefined functions of MATLAB. 

Visual C++ and Microsoft Foundation Class (MFC) library were used to develop the user 

interface. This is a convenient choice because many libraries exist in C++ which expedites the 

developmental process. Many advanced user interface features are designed to increase the user 

friendliness of software significantly. 

 

The functions of the software can be classified into two groups. The first group is to compute 

flux distribution by using stoichiometric information. This part includes traditional linear 

programming techniques and the modified simplex algorithm we developed to find the 

alternative optimal solutions.  There are several algorithms available for finding alternative 

optimal solution of a degenerate LP problem, such as the MILP approach that our group 

proposed in earlier work (Lee et al. 2000). The modified simplex method was developed instead 

of using MILP because MATLAB doesn’t have MILP solver. Moreover, the modified simplex 

http://www.mathworks.com
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method is efficient in handling a LP problem with many equality constraints. In next chapter, this 

algorithm will be discussed in detail.  

 

The second group of functions deals with the tracer experimental design and data analysis. 

The multiple solutions found using MILP or modified simplex method can be used to better 

design the tracer experiment in terms of choice of labeled substrates and signal molecules. Once 

the experiment is done, software can validate the flux distribution by matching the simulated 

NMR or GC-MS spectra with the actual data. NMR and GC-MS spectra simulations are both 

based on the isotopomer distribution calculations. The tracer experiment should maximize the 

difference among spectra simulated from each extreme solution. The determination of actual flux 

distribution is to find the combination coefficient of extreme solutions that closely resembles the 

observed spectra.  

 

The second aim is to study the acid formation in E. coli and B. subtilis in a glucose minimal 

medium. Acid formation is a major problem in production of recombinant protein in both E. coli 

and B. subtilis, because it limits process stability and cell concentration and thus cell-based 

biotechnological processes (Ko, et al. 1993, Shiloach et al. 1996). We applied MetaboLogic to 

find a potential metabolic engineering strategy for inhibiting the acid formation. The inactivation 

of pyruvate kinase (PYK) was identified as one potential metabolic engineering strategy for 

eliminating acidic by-products. PYK mutants were constructed and characterized in terms of 

growth and acid formation. The experimental results confirmed that the predicted strategy is an 

effective way to reduce acid formation. This application is a good demonstration of the 

MetaboLogic’s capabilities.   

 

The third aim in this research is to design genetic-based strategies for enhancing folic acid 

production and to experimentally test some strategies. We applied Metabologic in the calculation 

of the folic acid production capacity of different strains. The genetic strategy that emerged for 

reduction of acid formation (pyk mutation) proved to be a very promising start point for 

increased folic acid production. The experimental data confirmed that pyk mutation increased the 

folic acid production by 5-6 fold compared to the wild type.  

 



 

4 

 
 

1.2 Thesis Outline  
 
 
 

• Chapter 2 presents the mathematical background of convex analysis and the modified 

three-phase simplex algorithm to find the multiple solutions. A stoichiometric model 

of E. coli and B. subtilis central carbon metabolism is constructed. When applied with 

the convex analysis algorithm, the model predicts that PYK mutation is a good 

strategy for reducing acid formation. 

• Chapter 3 explores NMR spectra simulation and searches for operative flux 

distribution in the convex polytope found by the modified simplex algorithm. This 

chapter also presents a strategy for the design of an effective NMR and GC-MS 

experiment.  

• Chapter 4 presents the features of the user-friendly computer software, Metabologic, 

which integrated the convex analysis and the NMR spectra simulation.  

• Chapter 5 discusses experiment results on acid formation in both E. coli and B. 

subtilis. The experimental data confirmed the model prediction that was made in 

chapter 2.  

• Chapter 6 applies the convex analysis to optimize the theoretical folic acid production 

and evaluate folic acid production in E. coli batch fermentation.  

 

In the thesis, there is no separate chapter about material and methods for the experiment, 

because most of experimental work is done in chapter 5 and 6 only. The experimental methods 

will be covered in those chapters. Computer codes for the convex analysis appear in Appendix 

A. The isotopomer mapping matrix method is reviewed in Appendix B. The source code of the 

software is not listed as appendix due to its length (about 70000 lines), but it has been archived 

on a compact disk. 
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2.0 MODIFIED SIMPLEX METHOD TO FIND ALTERNATIVE FLUX 

DISTRIBUTIONS 
 
 
 
 

2.1 Introduction 
 
 
 

Finding alternative yet feasible flux distributions in a metabolic network is the first task in 

designing a metabolic engineering strategy aimed at enhanced product yield. Many mathematical 

methods have been developed to solve this problem.  Linear Programming has been one of the 

most important tools used in analysis of the productive capabilities of metabolic networks (Fell 

& Small, 1986; Majewski & Domach, 1990; Varma & Palsson, 1994a).  Typically, flux balance 

equations are formulated and local and system-wide constraints are imposed.  Examples of local 

and system-wide constraints are inclusion of an upper bound enzymatic capacity or that an ATP 

requirement for biosynthesis must be met through the aggregate activity of a subset of reactions.  

An objective is then posed such as maximization of a particular flux that leads to high product 

yield.  The answer informs one of the yield horizons.  Moreover, the values of the fluxes in the 

optimal solution indicate how to engineer the trafficking of metabolites by altering the available 

reaction paths and feedback loops. 

 

While very useful, the system of equations and constraints is often underdetermined, which 

means more than one solution may exist that could satisfy the objective.  These other solutions 

are not always immediately accessible to the analyst because classical solution methods such as 

the Simplex Algorithm typically stop after one optimal flux solution is found.  One must inspect 

the details of the intermediate calculations to discover that multiple solutions exist and then the 

problem must be manually reformulated to ferret them out. 

 

The identification of other solutions is of interest for several reasons.  First, the different 

solutions may differ in how easy it is to implement them.  For example, one solution may 

indicate more genetic manipulation is required than another that could yield the same value of 

the objective.  Second, there is fundamental value in knowing how many alternatives exist.  This 
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provides some insights on how redundant and robust a metabolic system can be.  Finally, 

knowing the portfolio of alternatives ahead of time can result in the development of a more 

inclusive and tighter patent strategy. 

 

Recent work in metabolic engineering has drawn from the network analysis field to address 

the problem of enumerating alternate metabolite trafficking solutions. Lee et al (2000) and 

Phalakornkule et al (2001) developed an alternative approach to find all the alternate optima in 

LP models that entailed transforming the master problem into a mixed integer linear 

programming (MILP) problem.  Phalakornkule et al (2001) used different solutions from LP 

analysis to design 13C NMR experiments such that different potential flux patterns in a strain 

can be more conclusively distinguished. 

 

To find the alternative solutions of an arbitrary network using MetaboLogic, we have utilized 

some additional features of convex space analysis to find multiple solutions.  In this chapter, we 

first describe the basic idea about how the linear programming problem can be converted to a 

convex hull searching problem. Then we will describe new algorithm modified from two phase 

simplex method to find the flux space. Then this algorithm is used to calculate flux distribution 

in B. subtilis and E. coli under different culture conditions. The comparison between the new 

algorithm and MILP algorithm will be given at the end of the chapter.  

 

 

 

2.2 Background on Convex Analysis 
 
 
 

A set X in En is called a convex set if given any two points x1 and x2 in X, then λx1 + (1-λ) 

x2∈ X for each λ∈[0,1]. A convex set can be bounded or unbounded.  

 

Theorem 1: A set S of feasible solutions of an LP is a convex set. 
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The convex analysis of metabolic network entails finding the set of minimum basic vectors 

spanning the convex space that satisfy mass balance equations for all metabolites.  The set (S) 

can be denoted as 









≥== ∑
k

i
iiiexxS 0,: αα        (1) 

 

where x is any possible vector that satisfies the constraints. In Equation (1), ei (i=1, 2…k), k, 

and αi refer to the minimum solution set that spans the solution space, the number of basic 

vectors, and a combinational coefficient.  

 

When the solution space is bounded, the convex set is a polytope, otherwise it constitutes a 

polyhedron.  Each flux in the polytope can expressed as a convex combination of base vectors by 

 









=≥== ∑ ∑
k

i

k

i
iiiiexxS 1,0,: ααα     (2) 

 

A linear programming problem then is equivalent to a problem to find such a set of ei. A 

number of special purpose algorithms have been reported for finding all the extreme points of 

convex polytope (Matheiss & Rubin, 1980).  Lee (2000) developed a recursive MILP method, 

which utilizes the MILP solver that is already implemented in a modeling language (e.g. GAMS, 

AMPL).  Since we choose MATLAB as our computational engineering, which doesn’t have a 

MILP solver, the MILP approach doesn’t satisfy our requirement.   

 

It is noticed that in a convex analysis problem of metabolic network, many of the constraints 

are equality constraints (mass balance constraints). Although the system has many variables (e.g. 

reaction rates), the total degree of freedom of the system is usually low (less than 10).  We have 

developed an efficient algorithm that takes advantage of these properties.  The algorithm is based 

on a two-phase simplex method (Hartley, 1985). Unlike the traditional simplex method, which 

stops at one optimal solution, the new proposed algorithm will continue to find all the other 

extreme points that have the same value of objective function. This algorithm can also be named 
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as three-phase simplex. To search the neighboring vertices we adopted depth first search 

algorithm (Sedgewich, 2001), which is commonly used in graph search in computer science. 

 

 

 

2.3 Algorithm 
 

 

 

Simplex method starts from an arbitrary vertex, searching the adjacent vertices to find the 

one that optimizes objective function locally. It then moves to the new vertex and repeats the 

searching again. It stops when all the adjacent vertices will not improve the objective function. 

But there might be some adjacent vertices that have the same value of the objective function, if 

the LP problem is degenerate. We add the third phase (depth first search) to the commonly used 

two-phase simplex method to find all the alternative optimal vertices. A detailed description of 

algorithm appears in Appendix A.  

 

The algorithm is implemented in MATLAB language (Appendix B). An example problem is 

built up to test the algorithm. In this problem, there are 69 inequality constraints and 28 equality 

constraints and 34 variables. The solutions found by our algorithm are identical to the MILP 

methods. To evaluate the speed of the algorithm, we deleted some of the equality constraints so 

that more alternative optimal solutions exist and record the time needed to find all these 

solutions. We found the quadratic dependency of time on the total number of solution (Figure 2-

1). Since number of solution is exponentially depending on the system freedom number in the 

worst case, the computational time to find all solutions is then also exponentially depending on 

system freedom number in worst case, which is same to MILP approach.  

 

Compared with MILP and other available algorithms, our algorithm has several features.  

First, the computation time of this algorithm is second order with respect to the number of 

optimal vertices, yet still exponentially to the system number of freedom in the worst case.  

Secondly, this algorithm can be implemented easily and it does not require a MILP solver.  
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Thirdly, it is efficient when the system has a large number of equality constraints, which is 

common for flux balance analysis. This is because the computational time is exponential to the 

system degree of freedom, which is usually small in metabolic flux analysis. The disadvantage of 

our algorithm is that the first step of algorithm may not succeed in all cases. Simplex methods 

may fail because of infinitely looping. One way to overcome this problem is to adopt another LP 

method to first find the optimum value of the objective function. Then the modified simplex 

method can be used to find all feasible solutions. In this approach, it will ensure that the 

searching can be finished in a finite time. 

 

 

 

2.4 Application of Algorithm: Solution Space of E. coli and B. subtilis  
 
 
 
2.4.1. Stoichiometric Model of Glucose Metabolism in Bacteria 
 
 
 

The metabolic networks of E. coli and B. subtilis as well as candidate reversible reactions are 

shown in Figure 2-2.  The networks are based on prior representations (Lee et al, 2000; 

Phalakornkule et al, 2001; Sauer et al, 1998).  The only difference between the B. subtilis and E. 

coli pathways is that B. subtilis synthesizes oxaloacetate from pyruvate instead of PEP.  

The 16 molar balances about intracellular metabolite are represented by equations (1a) - (1p), 

which have been previously described (Lee et al, 2000; Phalakornkule et al, 2001).   

010321 =−−− rrrr          (1a) 

087111210 =++−− rrrrr        (1b) 

0161514 =−− rrr         (1c) 

0311718161 =−−−+− rrrrr        (1d) 

032201921181 =+−−−+ rrrrrr        (1e) 

033302431 =−++− rrrr        (1f) 
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024232221 =−−− rrrr         (1g) 

02524 =− rr          (1h) 

0272625 =−− rrr         (1i) 

0542 =−− rrr          (1j) 

0764 =−− rrr          (1k) 

0875 =−− rrr          (1l) 

0987 =−− rrr          (1m) 

02 1314812 =−−+ rrrr         (1n) 

0333229 =−− rrr         (1o) 

0292827 =−− rrr         (1p) 

 

Another 11 equality constraints equations (2a) – (2k) for the biosynthetic load were derived 

from cellular mass composition. Here, different cell mass compositions are used for E. coli 

(Mandelstam 1982; Ingraham 1983; & Lee et al., 1996) and B. subtilis (Sauer et al, 1997).  Other 

constraints are derived from NADPH and minimum ATP requirements (Eq. 3a -3b, Goel et al., 

1996).  A reference specific growth rate equal to 0.4 h-1 is used to generate flux units that can be 

scaled, when other growth rates are considered. 

 

).(154.0).(205.0 33 subtilisBrorcoliEr µµ ⋅=⋅=    (2a) 

).(190.0).(0709.0 1111 subtilisBrorcoliEr µµ ⋅=⋅=    (2b) 

).(194.0).(129.0 1313 subtilisBrorcoliEr µµ ⋅=⋅=    (2c) 

).(395.1).(493.1 1515 subtilisBrorcoliEr µµ ⋅=⋅=    (2d) 

).(711.0).(7191.0 1717 subtilisBrorcoliEr µµ ⋅=⋅=    (2e) 
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).(816.0).(897.0 66 subtilisBrorcoliEr µµ ⋅=⋅=    (2f) 

).(308.0).(361.0 99 subtilisBrorcoliEr µµ ⋅=⋅=    (2g) 

).(942.2).(833.2 2020 subtilisBrorcoliEr µµ ⋅=⋅=    (2h) 

).(132.2).(928.2 2222 subtilisBrorcoliEr µµ ⋅=⋅=    (2i) 

).(071.1).(078.1 2626 subtilisBrorcoliEr µµ ⋅=⋅=    (2j) 

).(923.1).(786.1 3030 subtilisBrorcoliEr µµ ⋅=⋅=    (2k) 

 

These constraints are obtained from the network structure and reaction stoichiometry. Dauner 

and Sauer (2001) found the cell composition has a linear relation with dilution rate. In our 

research, fixed dilution rate (growth rate) is used, and we neglected the change of composition. 

There is also one type of constraint coming from the aggregate activity of different subsets of 

metabolic reactions. Such constraints provide connectivity between individual reaction rates. 

These constraints involve NADPH and ATP production. NADPH is the molecule responsible for 

reducing chemistry and ATP hydrolysis provides the energy for biosynthesis (i.e. free energy of 

hydrolysis drives otherwise thermodynamically infeasible polymerization). The NADPH and 

minimum ATP requirement (Goel et al. 1996, Dauner and Sauer 2001) are represented by Eq 

(3a), and Eq (3b).  

 

).(7.162).(182 3225232252 subtilisBrrrorcoliErrr µµ ⋅=++⋅=++     (3a) 

).(1.3322233 19313329212723181412 coliErrrrrrrrrr µ⋅≥−++++++++−  

).(7.3122233 19313329212723181412 subtilisBrrrrrrrrrr µ⋅≥−++++++++−  (3b) 

 

In order to guarantee the convex set is bounded, all reaction’s rate are constrained to have a 

lower bound of 0 mmol g-1 h-1 and an upper bound of 20 mmol g-1 h-1 ( Lee, et al. 2000 ) except 

flux r10 and r33 (see Fig. 1), which has a lower bound of -20 mmol g-1 h-1.  These later two 
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reactions are reported to have standard free energy changes nearly equal to 0; hence, they may be 

quite reversible.  

 

The linear systems of wild type B. subtilis and E. coli are defined by the 28 equality and 69 

inequality constraints. These equality constraints are equation 1a - 1p, 2a – 2k and 3a and the 

inequality constraints are 3b and the upper and lower boundary constraints of 34 reactions. When 

gene deletion or addition occurs, extra constraints can be introduced (i.e., r18 = 0 for pyruvate 

kinase deletion). If the network structure is changed due to reaction addition/deletion, a new set 

of constraints is redefined based on same approach, for example, when citrate is fed to the 

culture, there are one new variables and 2 new inequality constraints (the boundary of the 

variable) about the flux boundary. 

 
 
 
2.4.2. Choice of Objective Function 

 

 

 

A linear objective function is usually chosen to maximize/minimize the product formation 

rate. Minimizing the glucose update rate is also used by assuming the cell utilizes the carbon 

source the most efficiently. Also a constant objective function may be used to find all feasible 

extreme points. 

 
 
 
2.4.3. Results 
 
 
 

We first calculated the convex polytope of E. coli and B. subtilis wild type cultured in 

glucose minimum medium.  A constant objective function is used to find all feasible extreme 

points. The number of extreme point for B. subtilis and E. coli is 16 and 18, respectively.  

Selected fluxes from each scenario, carbon yields (Yc), and ATP yields (YATP), which are 

calculated from Equations (4) and (5), are reported in Table 2-1 and Table 2-2.  
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172
%*1000

r
C

Yc
µ

=       (4) 

ATP
ATP r

Y
µ1000

=        (5) 

 

In Equations (4) and (5), C% and µ denote the carbon composition of cell mass (50% for E. 

coli and 45% for B. subtilis) and the specific growth rate, respectively.  

 

Each solution reveals different ways for carbon to traffic through the E. coli and B. subtilis 

networks.  The maximum biomass yield of B. subtilis is 0.847 g biomass C/g glucose C, which is 

corresponding to 121.9 g biomass/mol glucose.  The solution is identical to the value found by 

Sauer et al (1998).  

 

Another output that convex analysis produced is the minimal reaction set that can satisfy all 

the biomass synthetic and energetic requirements. This is done by checking the number of none 

zero flux in each flux scenarios. Convex analysis can also find if a reaction is redundant or not 

by checking if zero flux exists for the reaction. It is found that for the growth on glucose, 

pyruvate kinase is a required enzyme for B. subtilis (in all flux scenarios, it has a positive flux 

value, but it is not always required for E. coli (in some flux solution, it has zero flux value, these 

scenarios are marked in bold in Table 2).  

 

Another use of convex analysis is the phenotype prediction. The prediction based on such 

analysis is rough and can only predict the range of phenotype. It is likely the precise position of 

an object in the space can not be predicted, but the smaller subspace that the object might fall in 

can be predicted. Such a prediction is very useful for formulating a metabolic engineering 

strategy and understanding a strain’s metabolic capacity. Adding more constraints will make the 

sub space smaller, and allow for a closer look at the system. Phase plane projections are very 

useful to present the flux data obtained from convex analysis. It projects the solution space (a 

convex polytope) into a two dimensional plane. Because the phase plane can be used to represent 

the phenotype of a strain, it is also called phenotype phase plane. For example, in Figure 2-3, we 
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project total acid production (acetate r19, lactate r23, succinate r28) vs. glucose uptake rate phase 

plane. The wild type phonotype should be located anywhere in the biggest polygon. Adding 

more constraints, such as PYK flux = 0 ( r18 = 0), or Malate flux = 0 ( r32 = 0), the solution space 

is much reduced.  

 

Pyruvate kinase mutation is a metabolic engineering strategy that proposed by Ataai’ group 

(Goel et al. 1995) to reduce the acid by-production. The PYK mutation adds one more equality 

constraint (r18 = 0) than the wild type. In fact all the extreme solution of PYK mutants are in a 

subset of the extreme solutions for the wild type, because in these strains, there is an inequality 

constraints (r18 ≥ 0). The subset of the PYK mutant in the Table 1, and Table 2 is marked with a 

different color. It is found that there is no solution in B. subtilis that has zero PYK flux. 

 

The relationship between total acid production (r19 + r23 + r28)  and PYK flux is presented in 

the phase plane plots (Figure 2-4 and Figure 2-5). The plot is the projection of solutions space to 

the phase plane of total acid production vs. r18. The results show that in both E. coli and B. 

subtilis strain, in order to minimize the acid production, PYK flux should be minimized. When 

PYK flux is greater than 2.5 mmol g-1 h-1 (E coli) and 3.3 mmol g-1 h-1 in (B. subtilis), the lower 

bound of acid by-production is greater than 0, which means the flux of glycolysis is in excess of 

TCA cycle. 

 

For E. coli, even if PYK flux is constrained to be 0, it still may have high acid production 

capacity compare to B. subtilis. But in B. subtilis, when PYK flux is minimized to 0.3 mmol g-1 

h-1, the upper bound and lower bound of total acid production are both 0, which suggest pyk 

deletion must be effective in reducing acid by-production in B. subtilis, and it might be effective 

in E. coli also.    

 

To validate the prediction of convex analysis, experiment works (acid production 

measurement) have been done on both E. coli (Zhu et al., 2001) and B. subtilis (Fry et al. 2000). 

The chapter 5 will discuss the experimental work done with the E. coli pyk mutant. 
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2.5 Chapter Summary 
 
 
 

Convex analysis can be used to find the alternative optimal solutions which satisfy a given 

objective function. What is the biological significance of such a computation? What information 

are derived and represented to the biologist or metabolic engineer?  

 

The identification of other solutions is of interest for several reasons.  First, the different 

solutions may differ in how easy it is to implement them.  For example, one solution may 

indicate more genetic manipulation than another for attaining the same value of the objective 

function.  Secondly, there is fundamental value in knowing how many alternatives exist.  This 

provides some insights on how redundant and robust a metabolic system can be.  Finally, 

knowing the portfolio of alternatives ahead of time can result in the development of a more 

inclusive and tighter patent strategy. 

 

In this chapter, a modified simplex method for finding the alternative solutions of an LP 

problem was presented. Algorithm is applied to calculate the solution space of acid production of 

E. coli and B. subtilis. Convex analysis not only finds all alternative solutions of a degenerate LP 

problem, but also provides more insight view of carbon metabolism. 
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Table 2-1 Alternate solutions of B. subtilis wild type on glucose minimum medium 

Alternate 
Solutions 

Select fluxes (mmol g-1 cell h -1) 
 

 r1 r2 r10 r18 r19 R23 
1 3.281 2.924 0.2954 0.3746 0 0 
2 3.3024 3.0524 0.1884 0.3532 0 0 
3 3.39094 0.6152 2.71414 1.25414 0 0 
4 3.9618 0.6152 3.285 1.825 0 0 
5 4.0506 0.6152 3.3738 1.9138 0 2.3088 
6 5.3334 0.6152 4.6566 3.1966 0 0 
7 7.7706 0.6152 7.0938 5.6338 0 0 
8 9.8226 0.6152 9.1458 7.6858 13.8528 0 
9 10.9262 0.6152 10.2494 8.7894 16.06 0 

10 10.9262 0.6152 10.2494 8.7894 0 16.06 
11 10.9262 0.6152 10.2494 8.7894 0 6.3112 
12 10.9262 0.6152 10.2494 8.7894 6.3112 0 
13 10.9262 0.6152 10.2494 8.7894 11.1856 0 
14 10.9262 0.6152 10.2494 8.7894 0 11.1856 
15 11.3324 3.0524 8.2184 8.3832 16.06 0 
16 11.3324 3.0524 8.2184 8.3832 0 16.06 

continued 
Alternate 
Solutions 

r27 r32 Yc(mol/mol) YATP  Yacid total Yc  
(g/mol) 

1 0 0.2568 0.846625 31.84713 0 121.9141 
2 0 0 0.841139 30.0066 0 121.124 
3 0.98949 3.88491 0.819176 31.84703 0 117.9614 
4 1.0656 3.8088 0.70114 31.84713 0 100.9642 
5 0 4.8744 0.685769 31.84713 0.56999 98.7508 
6 4.8744 0 0.520827 5.974715 0 74.99906 
7 4.8744 0 0.357473 6.44388 0 51.47608 
8 0 4.8744 0.282795 31.84713 1.410299 40.72242 
9 0 4.8744 0.254231 27.08706 1.469861 36.60925 

10 0 4.8744 0.254231 4.20755 1.469861 36.60925 
11 4.8744 0 0.254231 4.002337 0.577621 36.60925 
12 4.8744 0 0.254231 5.849185 0.577621 36.60925 
13 4.8744 0 0.254231 5.119384 1.023741 36.60925 
14 4.8744 0 0.254231 2.983685 1.023741 36.60925 
15 0 0 0.245118 13.60989 1.417176 35.29702 
16 0 0 0.245118 3.646627 1.417176 35.29702 
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Table 2-2 Alternate Solutions of E. coli wild type on glucose minimum medium 

Alternate Solutions Select fluxes (mmol g-1 cell h -1) 
 r1 r2 r10 r18 r19 r23 

1 4.00917 2.74762 1.17955 0 0 0 
2 4.22143 3.3844 0.75503 0 1.48583 0 
3 4.22143 3.3844 0.75503 0 0 1.48583 
4 4.94251 0.6476 4.21291 0 0 0 
5 5.75918 0.6476 5.02958 2.45002 0 0 
6 8.2092 0.6476 7.4796 0 0 0 
7 8.78276 0.6476 8.05316 0 11.52076 0 
8 8.78276 0.6476 8.05316 0 0 11.52076 
9 8.78276 0.6476 8.05316 0 0 0.57356 

10 8.78276 0.6476 8.05316 0 0.57356 0 
11 10.6394 0.6476 9.90976 1.8566 15.23396 0 
12 10.6394 0.6476 9.90976 1.8566 0 15.23396 
13 10.6394 0.6476 9.90976 1.8566 0 4.28676 
14 10.6394 0.6476 9.90976 1.8566 4.28676 0 
15 10.6394 0.6476 9.90976 7.3302 9.76036 0 
16 10.6394 0.6476 9.90976 7.3302 0 9.76036 
17 11.0955 3.3844 7.62909 6.87407 15.23396 0 
18 11.0955 3.3844 7.62909 6.87407 0 15.23396 

continued 
Alternate Solutions r27 r32 Yc(mol/mol) YATP  Yacid total Yc  (g/mol) 

1 1.27357 0 0.692856 13.35016 0 110.857 
2 0 0 0.658018 22.93742 0.351973 105.2829 
3 0 0 0.658018 16.08499 0.351973 105.2829 
4 3.84025 1.63335 0.562018 7.282129 0 89.92282 
5 5.4736 0 0.482322 5.251927 0 77.17148 
6 5.4736 0 0.338374 5.251927 0 54.1398 
7 0 5.4736 0.316276 24.20358 1.311747 50.60419 
8 0 5.4736 0.316276 5.395906 1.311747 50.60419 
9 5.4736 0 0.316276 5.024881 0.065305 50.60419 

10 5.4736 0 0.316276 5.212672 0.065305 50.60419 
11 0 5.4736 0.261085 19.76316 1.431849 41.77361 
12 0 5.4736 0.261085 4.14897 1.431849 41.77361 
13 5.4736 0 0.261085 3.926069 0.402915 41.77361 
14 5.4736 0 0.261085 4.972077 0.402915 41.77361 
15 5.4736 0 0.261085 4.655337 0.917382 41.77361 
16 5.4736 0 0.261085 2.969018 0.917382 41.77361 
17 0 0 0.250352 12.82591 1.372987 40.05632 
18 0 0 0.250352 3.725898 1.372987 40.05632 
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Figure 2-1  Relationship between the computation time and number of alternative solutions. 
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Figure 2-2 Metabolic networks of B. subtilis and E. coli. The two-way arrows represent reversible reaction 

with the bold heads showing the forward reaction. The dash arrow from PEP to OAA is only for E. coli and 
the dot arrow from PYR to OAA is only for B. subtilis. 
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Figure 2-3 Phenotype phase place of E. coli:  total acid production vs. glucose uptake rate. 
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Figure 2-4 Phase plane of B. subtilis wild type (acid production vs. PYK flux) 
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Figure 2-5 Phase plane of E. coli wild type (Acids production vs. PYK flux) 
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3.0 PRECISELY DETERMINE THE FLUX USING NMR / GC-MS & DESIGN OF 

TRACER EXPERIMENT 
 
 
 
 

3.1 Introduction 
 
 
 

Due to the lack of constraints on the metabolic network, multiple solutions arise from convex 

analysis. Any one or a combination may constitute the actual flux distribution. For the E. coli 

example in last chapter, minimizing PYK flux yields nine different solutions. In order to 

determine the flux distribution precisely, more constraints must be added to the system. 

Isotopomer tracer measurements provide an effective route for introducing more information that 

can be used to discriminate between alternative flux scenarios. 

 

Recently, several elegant approaches have been proposed for deriving flux distribution from 

isotopomer data (Schmidt et al., 1998; Wiechert et al., 1997). In this chapter, I will present a 

different approach to find the flux distribution that integrates the NMR/MS simulation with the 

convex analysis. The algorithms proposed in this chapter are all implemented in the software 

MetaboLogic. 

 

 

 

3.2 Isotopomer Distribution Calculation at Steady State 
 
 
 

An isotopomer is a metabolite with a specific 13C labeling pattern. A metabolite with n 

carbons thus has 2n isotopomers (Schmidt et al., 1997). For each metabolite, at steady state the 

composition of different isotopomer is a constant. Hence, for a metabolic network, the 

isotopomer distribution for each metabolite can be decided by the isotopomer distribution of the 

substrate fed to the system, flux distribution, and reaction reversibility. 
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To solve the isotopomer distribution, the relationship between isotopomers in a single 

reaction should be found first. Atom Mapping Matrices (AMM) (Zupke 1997) and Isotopomer 

Mapping Matrices (IMM) (Schmidt 1997) are the matrices that describe the switching of carbon 

atoms. The detailed information about these methods is given as Appendix B and C. In our 

approach, Schmidt’s IMM approach is used. Appendix D gives an algorithm to construct IMMs 

based on AMMs. 

 

Based on conservation law of mass, we have the following equation for a given metabolic 

network. 

0=vGT
        (Eq. 4 -1) 

 

G is the stoichiometric coefficients matrix and v is the flux distribution vector. Each row of 

GT  corresponds to the mass balance of one intracellular metabolite. For simplicity, first assume 

that all reactions are irreversible. Consider the ith intracellular metabolite mass balance. We have  

 

n] ... [1,  i g], ... [1,  i allfor ,0
1

∈∈=∑
=

m

j
jijvg     (Eq. 4-2) 

 

where gij is the stoichiometric coefficient of ith metabolite in jth reaction. If gij >0, for the jth 

reaction, metabolite i is a product. For each reaction j, we can calculate the ith metabolite’s 

isotopomer’s production (denoted as Ui, j( I )) using the following relation.  

 

Ui,j( I )= vj*(IMMk1ài * Ik1 ⊗ IMMK2àj * Ik2)    (Eq. 4-3) 

 

k1 and k2 denote the substrates in the jth reaction that contribute carbon atoms to the 

metabolite i, and vj is the flux of the jth reaction. I is the distribution vector of different 

metabolites. ⊗ is the pair-wise multiplication of two vectors with same length. 



 

25 

Ui, j is not a convex function of I due to the pair-wise multiplication. This property makes it 

difficult to search the flux space to match the experimental data. The form of Ui, j will be simpler 

in the case that only one substrate is involved carbon switching, such as A à B + C or A  à C. 

Ic = IMMAàC * IA 

And Ui,j( I )= vj*(IMMk1ài * Ik1 )    (eq. 4-4) 

 

The consumption rate of isotopomer of A, and B in the reaction (A + B -> C + D) is identical 

to the rate of the reaction. 

 

Rearranging equation 4-2 by moving all consumption term to one side of the equation yields 

∑∑
<=>=

−=
m

gj
jij

m

gj
jij

ijij

vgvg
0,10,1

     (Eq. 4-5) 

Based on the conservation law for each isotopomer, we have a corresponding equation  

)()(
0,10,10,1

, ∑∑∑
<=<=>=
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m

gj
ji

m

gj
ji

m

gj
ji

ijijij

vIvIIU     (Eq. 4-6) 

The left term is formation rate of isotopomers for metabolite i, and the right term is the 

consumption rate of isotopomers. By rearranging the equation, we obtain 
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ij

v

IU

I      (Eq. 4-7) 

Notice for a metabolic network, we can write down a list of Equations 4-7. The number of 

such an equation is g (number of intracellular metabolites), which is less than n (the total number 

of metabolite). Based on this equation, a steady state isotopomer distribution (I) can be solved 

using an iteration algorithm. 
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3.2.1 Reaction Reversibility Consideration 
 
 
 

The scrambling due to reversibility can be accounted by exchange coefficient (e), which is 

defined as the relative magnitudes of the net flux and reverse flux.  

FRNRR VVVVV /)/( =+=ε  

RFN VVV −=  

The choice of e is usually based on the thermodynamics or those assignments made by other 

works (Zupke and Stephanopoulos, 1994; Schmidts et al. 1997 and Klapa et al., 1998). After 

introducing the exchange coefficient, a reversible reaction can be replaced by two reactions, 

which have different directions but positive fluxes.  The original stoichiometrics matrix G should 

be expanded. If there are k reversible reactions, the number of column in matrix G is now k + m.  

The equation 4-7 holds true, after replacing each reversible reaction with two irreversible 

reactions. 

 

3.2.2 Algorithm to find IDV 
 
 
 

If the substrate’s IDV is known, a simple iteration method can be used to find the steady 

state IDV distribution.  The algorithm is described by following: 

 

Start with ...g] [1,  i ) 0  ...  0  0  0  (1 T0 ∈=iI , and subI . 
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i II , or k < KMax stop the iteration 
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There is no mathematical proof for the convergence of the algorithm, but in the application of 

different example network, it converges when k (iteration number) is less than 100. And the 

initial value of Ii doesn’t have significant effect on the convergence of algorithm. 

 

 

3.3 NMR or MS Simulation Based on IDV 
 
 
 

If the IDV of target molecule is found, the NMR and MS spectra can be simulated. MS 

spectra can be represented by mass distribution vector (MDV). A matrix (M) can be constructed 

to convert an IDV into MDV.  

MDV = M*IDV 

where M is a matrix decided by the number of carbons in the metabolite only.  

 

NMR spectra simulation is more complex compared to the MS simulation, and it depends on 

the chemistry of different metabolites. In the current work, only the NMR spectrum of glutamate 

was computed. There are three reasons glutamate was chosen as the signal molecule. First, 

glutamate is the most abundant metabolite in E. coli (Tempest et al., 1970); hence, the signal-to-

noise ratio is large. Second, the signals from the three interior carbons of glutamate (C2, C3, and 

C4) are not confounded by effects such as partial saturation or different nuclear Overhauser 

enhancements. Third, glutamate is located deep enough within metabolism to have “recorded” 

the entire flux pattern. 

 

 

 

3.4 Operative Flux Distribution Search 
 
 
 

Once GC-MS and NMR spectra experiment data are collected, the flux distribution can be 

found by matching the simulation data with the experiment data. In order to quantify the 

difference between to spectra data, a difference function should be defined first. 
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3.5 Tracer Experiment Design 
 
 
 
 

The choice of labeled substrate (e.g. 1-13C, 2 -13C, U-13C, etc) will alter the difference 

between experimental and simulated spectra. We can iterate all the different substrate labeling 

patterns to choose the labeled substrate that makes the difference between these spectra most 

significant. 

 

Phalakornkule et al. (2000) proposed the alternative choice for labeled glucose to be screened 

by assessing the relative intensities of the singlet and satellite peaks that would appear in the 

NMR spectra. In the example research on the glucose metabolism of B. subtilis, the ratio of C3 

singlet and C4 singlet is useful characteristic of a spectrum. The ratio of different peaks in the 

spectra then is used to characterize the spectra. 

 

In the case that many peaks exist in a spectrum, we proposed a formal method to evaluate the 

difference between spectra. If there are only two possible scenarios exist, the choice of the 

labeled substrate is aimed to minimize the value of δ (in Eq. 4-8). If there are n different 

scenarios, then there are (n*(n-1))/2 values of δ need to be minimized, and these δ’s can be list 

into a matrix form. 
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    (Eq 4-9) 

where dij is the difference between spectra simulated from flux scenario i and j. 

 

There are many choices for defining an objective function f(∆) that can character the overall 

difference between each spectra. One possible form of f(∆) could be the function shown as 

equation 4-10. 
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∑∑=∆=
i j

ijfLF δ)()(      (Eq. 4-10) 

where L denotes different labeled substrate. A labeled substrate that maximize such of 

f(∆) would be a good choice. 

 

 It is noted that the elements in vector S is chosen to be the intensity at the major peaks in the 

spectra. Generally, it could be the intensity at any resonant  frequency, but the former approach 

has at least two advantages. First, less calculation is needed since the dimensions of vector S is 

much decreased. Secondly, the noise that appears in the base line of experimental spectra won’t 

affect the comparison of spectra. The disadvantage of this approach is the computer/man time 

required to recognize the peak in the spectra.   

 

Exchange coefficient e significantly affects the simulated spectra. In the label design phase, 

the exchange coefficients are set to 0.5 (Phalakornkule, et al. 2001). A robust labeling substrate 

can be tested by varying the value of e, and to check if the difference of each scenario remains 

significant.  The task was to confirm that the chosen labeled glucose could differentiate two flux 

scenarios over a large range of reaction reversibilities. 

 
 
 

3.6 Chapter Summary 
 
 
 

Using the convex analysis in combination with IMM-based spectra simulation allows for the 

prediction of the NMR spectra associated with a particular flux distribution and labeled precursor 

compound. These predicted spectra, in turn, can enable the design of 13C NMR experiments. 

Based on the spectra, the labeled glucose can be chosen such that the spectra associated with 

different flux distribution candidates will differ most significantly. From the practical standpoint, 

these algorithms and strategies may facilitate the performance of rapid-screening NMR 

experiments and minimize the use of expensive 13C-labeled precursor compounds. The result of 

these methods will be presented and discussed in the next chapter. Although glutamate was 

chosen as the target NMR analyte based on several desirable properties, the same experimental 
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design strategy can be used for other analytes because the isotopomer distributions are readily 

extracted from the IMM calculation.  
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4.0 METABOLOGIC PROGRAM  
 
 
 
 

4.1 Introduction  
 
 
 
 

In this chapter, we will describe the user interface of the MS-Windows program, 

MetaboLogic, which integrates the modified simplex method and NMR spectra simulation 

presented in previous chapters.  The interface enables one to build and edit a network model by 

drawing/modifying a picture on a computer screen as opposed to programming with a symbolic 

language or working at the source code level.  Once a metabolic model has been “drawn,” the 

program’s computational component can (1) enumerate the flux distributions that satisfy the 

constraints and optimize an objective function and (2) design 13C NMR and/or GC/MS 

experiments that can help validate that is desired flux distribution is actually used.   

 

The first facet acknowledges that biological systems have built in redundancy (e.g. more than 

one ATP generating reaction exists; induction/repression adds new paths).  In a large network it 

is not always straightforward to intuit what flux distribution scenarios are feasible; hence, a 

computerized aid can be of assistance.  The second aspect pertains to designing and interpreting 

experiments that will ultimately help to validate a metabolic engineering strategy with 

intracellular information.  Ultimately finding a match between the predicted and observed 

spectra would support process validation and patent applications; i.e. both the extracellular and 

intracellular measurements indicate that a strategy’s intended outcome occurs and the claimed 

mechanisms are actually responsible for the outcome. 

 

The program’s interface and requirements are summarized first.  Thereafter, the sequence of 

how a user works with the program and the nature of the interfaces is illustrated with an example 

problem.  We conclude with a discussion of the limitations and how they may be addressed. 

 

 



 

33 

4.2 Overview of Model Construction, Visualization, Computational Components & System 
Requirement 

 
 
 
 

The model construction process mimics the process of using a software application (e.g. 

PowerPoint) to draw a network on a computer screen.  To build a network, the user first “clicks” 

reactant nodes and reaction links to draw a figure.  Each node is assigned a label (e.g. metabolite 

name) when it is defined.  At this point it is also possible to access and edit properties such as the 

exchange coefficient and isotopomer mapping matrix.  The size of model is only limited by the 

available memory on the computer.  For a large network, multiple pages (i.e. computer screens) 

are provided to group some sub-networks.  Also different graphical objects can be added to the 

model “picture” for customization and presentation purposes. 

 

Once the network is drawn on the computer screen by the user, the software automatically 

generates the mole balance equations for each metabolite.  These equations are accessible to the 

user for checking or modification.  They are presented in tabular form in a way that resembles 

how one would write them on a sheet of paper.  Additionally, physiological-based constraints 

(Bonarius et al., 1997) can be conveniently inputted and integrated to the model.  An example of 

such a constraint is the aggregate activity of a subset of reactions must provide a minimum or 

certain amount of ATP.  This feature allows a user to check model assumptions, develop case 

studies, or perform sensitivity analyses. 

 

There are two computational engines:  (1) prediction of all flux distributions that satisfy all 

constraints and optimize an objective and (2) NMR/GC-MS experiment simulation and design.  

The second engine uses the output of the first engine as an input.  In one version mixed integer 

linear programming is used to find alternative flux distributions by wedding the program to 

GAMS software; the algorithm has been described elsewhere (Lee et al., 2000).  The current 

version employs the Depth First Search Algorithm to implement convex analysis (Zhu et al., 

2002; Sedgewick, 2001), which simplifies the integration of different software platforms.  More 

details on the Depth First Search Algorithm are provided in Appendix 1. 
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The alternate and feasible “flow sheets” found for a particular objective and set of constraints 

are provided to the user in the form of a list.  “Clicking” an entry in the list will update the 

window to display the network and flux values.  Clicking another list entry will provide a new 

figure; flux values that changed from the prior figure are shown in a different color to flag values 

that differ between solutions.  

 

Once the convex analysis is complete, each solution can be examined to find the minimum 

gene set (zero flux means that gene is not required) that satisfies all the constraints.  Moreover, 

by checking the rate of a specific reaction in all scenarios, whether a reaction is redundant or not 

can be reported.  This search of the solution space provides information akin to Burgard et al 

(2001 a, b) investigation of the minimal reaction sets for E. coli metabolism under different 

growth requirements and uptake environments.   

 

The prediction of the NMR/GC-MS spectra associated with a particular flux scenario is 

based on the isotopomer mapping matrix method (Schmidt et al., 1997).  One can either choose a 

particular labeled compound (e.g. 1-13C glucose) or allow the program to identify the labeled 

glucose that will maximally distinguish one flux distribution from another by having 

significantly different spectral features.  The approach used to enable NMR experiment design 

has been described elsewhere (Phalakornkule et al., 2001).  In the version described here, the 

selection of the best labeled compound to use has been automated as opposed to making this 

decision by manually comparing the predicted spectra.   

 

Automation of label selection for MS/GC or NMR experiments was accomplished by 

performing two steps.  First, the quantitative comparison of NMR spectra is accomplished by 

vectorizing the spectra.  Each dimension corresponds to the intensity of a feature (e.g. singlet 

intensity of carbon 3 in glutamate), and the resultant magnitude and angle are computed.  The 

best labeled glucose to use can be identified by maximizing the differences between the 

vectorized spectra.    

 

Secondly, a function that quantifies the difference between the spectra vectors is defined. For 

MS/GC experiment, the “difference” function is defined as the distance between the spectra 
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vectors because MS spectra data are typically normalized.  For an NMR experiment, the 

difference function is based on the angle between spectra vectors. The substrate label pattern that 

maximizes the average difference between different flux scenarios is found by iterating through 

all different label patterns that are available for use. In the labeling design phase, all exchange 

coefficients are fixed to a reasonable value (ε = 0.5).  The user can change these values of the 

exchange coefficients to assess how the labeling pattern works when reversibilities are higher or 

have a wider range, which allows for the most robust label pattern to be identified. 

 
 
 

4.3 Example Problem 
 
 
 

The elimination of pyruvate kinase activity has been suggested to be a strategy for 

minimizing glucose uptake and eliminating acid production by some bacteria (Goel et al., 1995).  

The theory is the mutation leads to the reduced formation of the acid precursor, pyruvate, from 

glucose.  Thus, glycolysis and the TCA cycle are more tightly coupled where the latter is fed by 

the pyruvate formed by the activity of the phosphotransferase system.  Glucose-6-phosphate, 

however, is still free to flow through the hexose monophosphate pathway thereby producing 

precursors and NADPH.  The efficacy of the mutation strategy has been recently been supported 

by extracellular measurements (Fry et al., 2000; Zhu et al., 2001).   

 

Here, we shall show how the program can be used to quickly develop a model, explore in 

silico the potential effects of the suggested mutation in E. coli, and then generate a 13C NMR 

experimental design.  In general, looking at the results generated by using different labels ahead 

of time would be useful for eliminating inconclusive or unnecessary experiments.  Moreover, the 

effect of assumptions (e.g. assigned fluxes, cellular composition) can be assessed ahead of time 

to gain a sense of how uncertainties may affect the interpretation of the NMR experiments. 
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4.4 Application of Software to the Example Problem 
 
 
 

Model Construction.  The model-picture construction process has two components.  The first 

step entails reactant node placement on the computer screen and formatting/definition. The 

second step involves drawing a reaction link and identifying its properties.  These two steps are 

shown in Figure 4-1, where the reaction involves the phosphorylation of glucose.  The user types 

the name of a reactant in a text box (see Fig. 4-1a).  Clicking the text box opens the text window 

shown in Figure 4-1b.  In this box, format (e.g. border around species), the number of carbons, 

and other details can be addressed.  Drawing an arrow between two species using the tool in the 

menu links reactants to product species.  Clicking the arrow opens another text box (see Fig. 4-

1d) that allows the user to identify the reaction as reversible, input values of exchange 

coefficients, and set lower and/or upper bounds of rate if desired.  The default stoichiometry is 

1:1 because this value is common for glycolytic and other elemental reactions in the central 

metabolic pathways.  However, the displayed values can be changed by the user.  It took about 

30 minutes to build the full “model-picture” shown Figure 4-2. The network’s layout can be 

customized by the user as indicated by the different colors used for the different metabolites.  

The balance equations for the metabolites are automatically produced (see Figure 4-3).  The 

equations are identical to those manually derived by Phalakornkule et al. (2000).  All the user has 

to do is input the “biosynthetic loads” based on cellular composition; these values can thus be 

varied to permit sensitivity analyses.   

 

Flux Trafficking Solutions.  Once the user has built a model “picture” and inputted 

assumptions, the different analysis tools are accessed through the software menu or toolbar.  For 

this example, to calculate all possible metabolite trafficking solutions, the user can use the “lp” 

toolbox.  By click the “linear programming” menu, a dialog will pop up to accept the objective 

function (see Figure 4-4) and other options for the linear optimizations. If a constant linear 

objective function (i.e. “0”) is used, the software will find all the solutions that satisfy the mass 

balances and inequality constraints.  Otherwise, a specific objective can be inputted (e.g. 

minimize pyruvate kinase flux) and an optimal subset will be reported (see Figure 4-4).  
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The number of different flux solutions is eighteen for the E. coli wild type.  When the 

objective is to minimize pyruvate kinase flux, which is the aim of the aforementioned mutation 

strategy, nine flux distributions are feasible.  The nine solutions are actually a subset of the 

eighteen solution found for the wild-type strain.  Overall, pyruvate kinase deletion can generate a 

number of outcomes; a subset of the outcomes is consistent with the goal of acid elimination and 

reduced glucose uptake.  The computational time required to find the possible flux solutions 

using a PIII-900 MHz personal computer with 128 RAM was less than 1 second.  The 

computation time increases with the number of different solutions in a second-order fashion.  

 

Once the search for the optimal flux distribution scenarios is done, the user can choose Show 

Flux in View Menu to view the flux values as a conventional biochemical pathway diagram.  A 

window will be displayed that asks the user to select the scenario of interest.  The user then 

chooses a number between 1 and the maximum numbers of flux scenarios found by the LP 

solver.  The user can also view the different scenarios in sequence by a toolbox on the toolbar. 

These values can also be exported to Excel for further analysis or an email attachment for a 

collaborator.  An example of the output is shown in Figure 4-5.  This solution has minimal 

pyruvate kinase and acid fluxes. 

 

NMR Experimental Design.  The tool under the Tool Menu, Simulate Spectrum, enables 

the design of a 13C NMR experiment or if preferred, a mass spectrometry experiment.  Here, we 

restrict the demonstration to NMR experimentation using glutamate as signal molecule.   

 

Via the “NMR Simulation” window shown in Figure 4-6, the user can select one or multiple 

scenarios of interest. The labeling pattern and degree of 13C enrichment of glucose can also be 

varied by the user.  Enrichments between 0 and 100 per cent can be chosen.  Additionally, the 

seven forms of labeled glucose that are now commercially available can be chosen in the 

“Substrate Labeling Pattern” box.   

 

Once the user presses the “OK” button, the program produces several MATLAB code files 

(m file) and executes these files to perform the NMR simulation.  It first finds the isotopomer 
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distributor vector (IDV) for each reactant in the network. Then, the software simulates the NMR 

spectra based on the glutamate’s IDV.  The program will automatically generate a plotted 

spectrum on the screen.  For the flux scenario shown in Figure 5, using the choices of exchange 

coefficients (default values of 0.5 used, see Figure 4-2.d), and uniformly labeled glucose (see 

Figure 4-6) results in the NMR spectrum shown in Figure 4-7.  The intensities of singlets and 

satellites vs. ppm arising from the central glutamate carbons (carbons 2, 3, and 4 only) are 

shown.  To more easily view the fine structure, the user can magnify a section by using the zoom 

in/out function denoted by the magnifying glasses in the tool bar. 

 

Before an experiment is done, it is important to check if a particular labeled substrate can 

provide an NMR spectrum that will allow one to conc lusively distinguish between the different 

flux pattern possibilities.  Reaction reversibility and other facets may blur the distinctiveness of 

the spectra.  To address this problem, a Substrate Labeling Pattern Design Tool can be 

employed.  This tool calculates the average difference between the NMR spectra associated with 

the different flux scenarios and possible combinations of exchange coefficients.   

 

As we discussed in chapter 3, the best labeled glucose to use can be identified by maximizing 

the differences between the vectorized spectra, which is defined as the angle between different 

spectra vectors.  To illustrate, the spectra arising from the nine flux alternatives will maximally 

differ in their features when 2-13C glucose is used (see Table 4-1).  Glucose labeled in the 1, 5, 

and 6 positions also yield spectra that can distinguish between the nine scenarios, but the contrast 

is lower than when 2-13C glucose is used.  Uniformly labeled glucose or labeling in positions 4 

and 3 may not prove to discriminate between the spectra that can arise from the nine flux 

distribution scenarios.  

 

Once an NMR experiment has been performed, the software can also be used to further 

interpret the data in terms of what fluxes and reaction reversibility could generate the observed 

spectra.  This tool is accessed by choosing “Spectra Search” from the “Tools” menu.  A dialog 

box (see Fig. 8) will appear to request the NMR data file and other information.  The user can 

also define the upper bound and lower bound of exchange coefficients for each reversible 

reaction.  This feature is useful because two different flux distributions could conceivably yield 
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similar NMR spectra if the reaction reversibility was different.  After the searching is finished, 

the software will report the most likely flux distribution and exchange coefficients, as well as the 

difference between the simulated spectra and the experimental one. 

 
 
 

4.5 Chapter Summary 
 
 
 

A Windows program for metabolic engineering analysis and experimental design has been 

developed.  A graphical user interface is intended to enable model construction, modification, 

and communication.  Such an interface eliminates the need for programming at the source code 

level when one wishes to investigate other’s computational results or to modify a problem.  The 

example shown can be run on a 900 MHz lap top computer.  The different tasks are executed in 

seconds to several minutes. 

 

Two limitations exist which are the subject of ongoing work.  First, the NMR spectra 

prediction focuses on the analyte, glutamate.  The rationale is glutamate is an informative and 

often used analyte.  Moreover, the demands and cost of performing a glutamate-based NMR 

experiment are less that, for example, acquiring the spectra of hydrolyzed protein.  Thus, a 

layered approach, where one first ascertains if the easier NMR experiment can do the job would 

seem to be a logical and cost effective first step.  If one finds through the simulation and design 

functions that the glutamate NMR spectra cannot provide conclusive information, then a strong 

justification for a including more analytes in a more labor- and cost-intensive experiment is 

provided before that experiment is performed.  Including additional analytes in the simulation 

and design function is straight forward as long as they are network components, or the mapping 

from a network component to a desired analyte is known.  Thus, we shall add a menu that allows 

for the NMR spectra of different analytes to be predicted.   

 

The second limitation is the trafficking solutions provided are not fully narrowed down by 

the regulation (e.g. feedback inhibition) actually present.  Currently, upper and lower bounds for 

individual fluxes, reaction directionality, and aggregate constraints capture thermodynamic 
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feasibility and some regulatory details, which in turn, limit the number of alternative solutions.  

In practice, however, separated network elements can “communicate” by feedback loop cascades 

and/or mutual induction and repression behavior, and these features are not fully captured by 

capacity or other constraints.  This limitation can be addressed by adding integer or other 

constraints, which will be the subject of future work.  However, from another standpoint, it may 

be still worthwhile to examine a larger solution set because they imply what regulation needs to 

be present and also absent.  Both types of information are of interest and can be the goals of cell 

engineering at the molecular level. 
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Figure 4-1 Initial steps in model construction.  The user can choose reactant or reaction from toolbar and add 
them into the network by typing a name in a text box.  Glucose and glucose-6 phosphate are the reactant and 
products shown.  By double clicking reactant (a) and reactions (c), property dialogs will pop up for user to 
edit properties and to customize information (b, d). 

 
 
 

 

a b 

c d 
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Figure 4-2  The window of MetaboLogic that displays the model network.  This E. coli network is the basis for 
the example problem of finding flux distributions and NMR spectra. 
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Figure 4-3 Equations automatically produced by software based on the model “picture” and information 
inputted during model construction (see Fig. 1). The first column is the metabolite. The second, third and 
fourth columns present the balance equation for the metabolite.  The “>=<” column denotes the constraint 
type, where “>” and “<” denote “=” and “=”, respectively. 
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Figure 4-4 Dialog box used to engage flux balance analysis (linear programming or convex analysis).  All flux 
solutions can be found by inputting an integer into the objective function (top) or a specific objective can be 
sought (bottom). 
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Figure 4-5 Flux distribution of one scenario that satisfies the balance equations, inequality constraints, and 
the objective of minimizing pyruvate kinase-catalyzed flux. 

 
 



 

46 

 
Figure 4-6 The dialog for setting up the NMR simulation.  Two operative modes are possible.  The spectrum 
associated with one flux distribution and a particular labeling of glucose can be computed.  Alternately, a 
subset of all feasible flux distributions can be explored.  By vectorizing the spectra and looking at different 
combinations of exchange coefficients, the labeled glucose will be determined that produces spectra that 
maximally differ from each other. 
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Figure 4-7 The simulated spectra of the central glutamate carbons.  From left to right, the multiplets result 
from C3, C4, and C2 of glutamate (C2 bears the amino group). 
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Figure 4-8 The dialog window for the flux searching based on inputted NMR data.  All combinations of 
exchange coefficients are searched based on discretizing the bounded domain established by the user.  This 
function allows one to establish what feasible flux and exchange coefficients combinations can account for the 
experimental data. 
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Table 4-1 Performance of Different Labeled Glucose Substrates in Distinguishing Flux Scenarios by 13C NMR 
Analysis  

Glucose Label Pattern Average Difference between NMR spectra* 
2- C 13 21.3 
1- C 13 11.1 
5- C 13 8.12 
6- C 13 6.14 

4- C 13, 3- C 13, U- C 13 <0.16 
 
* The average difference between NMR spectra simulated from different extremes point of the 
convex polytope is calculated based on the angle between the vectors describing the NMR 
spectra features. 
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5.0 ELIMINATATION OF ACID FORMATION  

 
 
 

 
5.1 Introduction 

 
 
 

It has been suggested that E. coli and B. subtilis have excess glycolytic capacity relative to 

the Krebs cycle (Majewski and Domach, 1990, Jensen and Pederson, 1990, Marr, 1991) when 

grown in glucose containing growth medium. In chapter 2, we found pyk deletion might be a 

good genetic engineering strategy to reduce acid by- production.  

In this chapter, the acid formation in an E. coli pyk and the B. subtilis pyk mutant were 

compared. The results demonstrate that acid formation is significantly reduced in the PYK 

mutant of E. coli as well.  This substantial reduction in acids is accompanied by an increase in 

CO2 production. Moreover, the growth rate of the E. coli pyk mutant is only slightly lower than 

the wild-type. This is in contrast to B. subtilis pyk mutant, which exhibited a significant 

reduction in growth rate (Fry et al., 2000).   This difference might reflect a dramatic increase in 

PEP pool of the B. subtilis pyk mutant. The E. coli pyk mutant did not show a substantial 

increase in the PEP pool. 

 
 
 

5.2 Materials and Methods  
 
 
 
5.2.1 Cells and Growth Medium.   
 
 
 

Construction of B. subtilis pyk mutant was described in Fry et al. (2000). The E. coli mutant 

strain (PB25) lacking activities of both PYKI and PYKII was used in these experiments. The 

strain was generously provided to us by Dr. Fernando Vale (Ponce et al., 1995).  The medium 

was M9 (Maniatias et al. 1982). The concentrations of glucose used in each experiment are noted 

in the text. 
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5.2.2 Cultivation & Measurement of Cell Mass, Glucose, & Extracellular Acid..   
 
 
 

A fermentation vessel with 2 liter capacity (Applikon, Austin, TX) was used.  An on- line 

data acquisition system collected data for CO2 evolution rate from a Dycor mass spectrometer 

(Ametek, PA) using a standard gas mixture for calibration.  The air flow rate was set at 2.5 l/min.  

Optical density was measured off- line using a Lambda 6 Perkin Elmer spectrophotometer 

(Perkin Elmer, Norwalk, CT), (1 OD660 = 0.36 g cell dry weight/l).  The glucose concentration 

was measured enzymatically.  The concentrations of organic acids (lactate, acetate, acetoin, 

formate, fumarate, malate, pyruvate, succinate, and citrate) were measured using a HPLC 

gradient Module (Bio-Rad, CA) equipped with a UV/VIS detector (Goel et al., 1993).   

 
 
 
5.2.3 Intracellular Enzyme & Metabolite Assays  
 
 
 

For PEP assays, cell extracts were prepared using the formic acid extraction method.  A 

sample was withdrawn via a syringe and quickly filtered (5-10 s) followed by immersion of the 

filter into liquid nitrogen (20 s).  The metabolites were extracted from the filtered cells by 

immersing the filter in formic acid as detailed by Fisher & Magasanik (1984) and assayed as 

described in Goel et al. (1999). 

 
 
 
 

5.3 Results and Discussion 
 
 
 

Growth experiments were first conducted in shake flasks. The volume of the growth medium 

in the flasks was 10% of total volume. Our initial experiments with a low glucose concentration 

(2.2 g/l) in the growth medium showed very similar growth rates and final cell densities for the 

wild-type and the mutant cultures (Figure 5-1).  Additionally, very low levels of acids were 

found in both cultures of wild-type and the mutant. 
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Since acid formation is substantially more pronounced in high glucose cultures, an 

experiment was conducted with a higher initial glucose concentration.   Figure 5-2 is the growth 

curve of the wild-type and the mutant in batch cultures with an initial glucose concentration of 9 

g/l.  This figure shows that the growth rates of the wild-type and the mutant are similar in the 

shake flasks. but higher cell densities are attained for the mutant than the wild-type culture.  The 

major difference between the wild-type and the mutant was, in the levels of acids found in their 

cultures.  Figure 5-3 demonstrates that the pyk mutant produces significantly lower levels of 

acetic acid.  The increase in cell density (1 OD 660 = 0.36 g/l of cells based on our calibration) 

of the mutant culture can not compensate for the dramatic reduction in acetic acid. Thus, it is 

likely that CO2 formation may be substantially higher in the mutant cultures than the wild-type. 

 

In order to assess how glucose carbon was distributed between cells and metabolic by 

products, an experiment was conducted in a 2 liter fermentor (800 ml working volume). In this 

experiment, the CO2 evolution rate was monitored. Figures 4a and 4b compare the cells and CO2 

produced by the wild-type and E. coli mutant, respectively.  The initial glucose concentration in 

this batch experiment was 10 g/l. Data shown in Figure 4a depict that the growth rate of the 

mutant was about 15% lower than the wild-type initially but the mutant reaches a higher cell 

density. For the wild-type culture an exponential increase in cell density occurs for the first 200 

minutes of the growth.  This is consistent with the rapid rise in CO2 evolution rate during the 

same period (Figure 5-4b). For the time period after the first 200 minutes the rate of increase in 

cell density of wild type culture decelerates.  During this later period acid formation is significant 

(see Figure 4c) and CO2 evolution rate is decelerated.  

 

The cell density of the mutant also increases exponentially for the first 200 minutes but it is 

followed by an extended linear increase.  This trend is also observed in CO2 evolution rate of 

mutant culture (Figure 5-4a). The CO2 evolution rate (Figure 5-4b) shows an initial exponential 

increase followed by an extended period of relatively high but constant CO2 evolution rate. 

Figure 4b also shows a substantially higher CO2 production in the mutant than the wild-type 

cells. While CO2 production is higher in the mutant, acetate and pyruvate are present at a 

drastically lower level in the mutant than the wild-type cultures (Figure 5-4c). Figure 5-4d 
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indicates that in contrast to the wild-type culture, glucose was completely utilized in the mutant 

culture. The drop in acid concentration following the exhaustion of glucose may be due to the 

consumption of acids towards the end of growth phase.  

 

The carbon balances were performed for the fermentor experiment at two points during 

fermentation.  The results are summarized in Table 1. Overall, the results indicate a lower rate of 

acid formation in the mutant (Figure 5-4c) and higher cell mass (Figure 5-4a) and CO2 (Figure 5-

4b) production. These results confirm our original hypothesis that acid formation should be 

substantially lower in the pyk mutants (Goel et al., 1995).  The results of Table 1 also 

demonstrate that a substantially higher fraction of the glucose consumed evolved as CO2 in the 

mutant culture. 

 

This higher CO2 yield for the mutant appears to be in contrast with the results reported by 

Ponce et al. (1998) who found equal CO2 yields (mole CO2/mole glucose) for the wild-type and 

the PB25 strain (lacking activities of both PYKI and PYKII). Ponce et al. (1998), did not 

measure acid for the wild-type or the mutant in their experiments. Our results (Figure 5-4 and 

Table 5-1) are for a medium glucose concentration of 10 g/l versus 2 g/l in the experiments 

performed by Ponce et al. (1998).  In experiments with 2.2 g/l glucose in the medium (Figure 5-

1), we have found very little or no acids in both wild type and mutant cultures.  Furthermore, 

given that both cultures attained essentially similar cell density, the CO2 evolution rate may not 

be significantly different in the two cultures at low glucose concentrations. Thus, our results at 

low glucose concentration are in agreement with the results of Ponce et al. (1998). However, the 

results of Figure 5-4 and Table 5-1 indicate that major differences between the wild-type and the 

mutant become discernable at high glucose concentrations.  

 

The pyk mutation has the advantage of allowing the cell's strategy of phosphorylating 

metabolites to prevent leakage to be harnessed.  This advantage contrasts other acetate flux-

reducing approaches. Diaz-Ricci et al. (1991) abolished the activities of acetate kinase and acetyl 

phosphotransferase, the enzymes responsible for acetate production in E. coli.  The deletion 

eliminated acetate production but resulted in significant formation of pyruvate.  Another 

interesting strategy entails diverting excess glucose flux to products that are less toxic than 
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In NMR spectra data, the relative signal intensity of different singlets and multiplets is the 

information that can be used to compare between two spectra.  If a vector collects the signal 

intensity to represent a NMR spectrum, then the angle between such two vectors will be a good 

indication of the difference of spectra. 
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where fi is the intensity of ith peak in the spectra. || Si || denotes the second norm of vector Si. 

Such an angle function performs better than the distance between spectra, Si and Sj, because the 

absolute signal intensity also depends on the sample concentration and instrument sensitivity.  

 

A mass distribution vector (MDV) will present the mass spectrum. Since the summation of 

all components of MDV is one, the distance between two MDV is a good indication of the 

difference. Because of natural abundance of 13C, the raw data of MS should be adjusted before 

using to search the flux space. 

 

The experiment data of NMR spectra can also be present as such a vector. Finding the 

operative flux distribution can be solved by searching the convex polytope to find a matching 

between simulated NMR spectra and experiment one. Such a problem is a constrained global 

nonlinear optimization problem. We adopt GAOT (generic algorithm optimization toolbox) 

(Houck et al. 1995) to solve the optimization problem. GAOT can be downloaded on 

http://www.ie.ncsu.edu/mirage/GAToolBox/gaot/. We also use the “fmincon” function from the 

MATLLAB optimization toolbox to solve the problem. Although, fmincon is a local 

optimization tool, it converges much faster than GAOT (more than several orders). Additionally, 

fmincon can find the most of the solution accurately, and a good initial guess will significantly 

reduce the computation time. Further work on formulating a better objective function and a 

better initial may help increase the efficiency of searching. 

 

 

http://www.ie.ncsu.edu/mirage/GAToolBox/gaot/
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acetate.  Dhedia et al. (1991) engineered E. coli to overproduce glycogen, as a way of diverting 

the excess glucose flux. Although glycogen levels increased by several- fold, the acetate 

production remained essentially unaltered.  Chou et al. (1994) mutated ptsG, the gene encoding 

an enzyme in the glucose phosphotransferase system.  The ptsG mutation reduced glucose uptake 

by about 20%.  This decreased glucose uptake led to a 20-40% decrease in acetate yield, 15% 

lower growth rate, and an overall 50% increase in productivity of β-galactosidase (as a model 

recombinant protein).  Finally, Farmer and Liao (1997) were able to achieve acetate reduction by 

increasing the activity of two anaplerotic pathways. E. coli strains which overexpressed the PEP 

carboxylase gene and depressed the glycoxylate bypass were shown to reduce acetate production 

four fold with respect to the wild type strain.  However, there was no increase in cell density 

indicating the possibility of glucose conversion to other metabolic by-products.  

 

Finally, we measured the intracellular PEP concentration for the mutant and the wild-type of 

E. coli (Figure 5-5).  The intracellular concentration of PEP is typically very low in bacteria.  

The PEP concentration for both wild-type and the mutant remained below the detection limit of 

about 0.06 mM.   This was in sharp contrast to our recent finding with the B. subtilis pyk mutant 

(Fry et al., 2000).  The B. subtilis pyk mutant exhibited a very high intracellular PEP 

concentration of about 30-fold higher than the wild-type level.  

 

The difference in PEP concentration between E. coli and B. subtilis pyk mutants is very 

interesting. This difference may be due to the differences in the path of formation of oxaloacetate 

in these bacteria. In E. coli, PEP is converted to oxaloacetate by the enzyme PEP carboxylase.  

Excess oxaloacetate may produce malate, which in turn can yield pyruvate via malic enzyme 

activity.  This two step path may result in a "trickle" around the pyk mutation that could have 

just enough mass action potential to be thermodynamically feasible. Thus, since E. coli can 

convert PEP to oxaloacetate or pyruvate, it may not accumulate high levels of PEP. In B. subtilis 

oxaloacetate is formed by pyruvate.  Hence, in a B. subtilis pyk mutant, there are no routes for 

converting the PEP formed by glucose transport to TCA cycle metabolites or pyruvate. This 

difference in the oxaloacetate- forming reactions may explain the build up of PEP in B. subtilis 

pyk mutant but not in E. coli pyk mutant. 
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5.4 Chapter Summary 

 
 
 

In summary, while the residual acid production in the mutant (even with relatively high 

initial glucose concentration) is low and we are pleased with the results, some further 

improvements may result from blocking a possible small flux that bypasses the PYK bottleneck 

through the activities of the PEP carboxylase and the malic enzyme. It is likely that incorporation 

of a malic enzyme deletion into the pyk double mutant of E. coli might further reduce acid 

formation. 
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Table 5-1 Carbon balance at different time in the batch growth of wild type and mutant 

Strain (culture time) 
(1)

(2)

used C Total
cellsin  C

 
used C Total

acidsin  C (3)

 
used C Total

COin  C (4)
2

 

Wild Type (320 min) 29.3 29.5 33.6 

Wild Type (600 min) 23.7 29.3 37.3 

Mutant  (320 min) 37.0 9.2 52.8 

Mutant (600 min) 27.7 8.1 52.0 

 

Total Carbon used was calculated using the difference between initial glucose concentration 

(zero time) and glucose concentration at the time indicated in the table. 

The carbon content of cell was estimated based on (1 OD660 = 0.36 g cell/l) and cell carbon 

content of 0.45. 

Carbon in acids (acetate, pyruvate) was calculated based on data of Figure 4c. 

Carbon in CO2 was calculated by the measurement of the area under the curve in Figure 4b. 
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Figure 5-1 The growth of wild type and pyk mutant of E. coli with feed glucose concentration of 2.2 g/l. The 
experiment was repeated 3 times. The error bars represent the average variation in optical density 
measurements 
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Figure 5-2 Similar to Figure 1.1 except that the glucose concentration is 9 g/l 
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Figure 5-3 Residual glucose and acetate concentration for the shake flask with initial glucose concentration of 
9 g/l (Figure 2). The error bars indicate the variation in measurements of residual glucose and acetate, which 
were preformed three times. 
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Figure 5-4 Growth of the wild type and pyk mutant of E. coli in the fermentor with initial glucose 
concentration of 10 g/l. (a) optical density, (b) CO2 evolution rate . 
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Figure 5-4 Growth of the wild type and pyk mutant of E. coli in the fermentor with initial glucose 
concentration of 10 g/l. (c) acid formation and (d) residual glucose. 
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Figure 5-5 The intracellular PEP concentration for the wild type and pyk mutants of E. coli and B. subtilis. 
Error bars indicate the variations of two measurements. 
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6.0 ENHANCEMENT OF FOLIC ACID PRODUCTION 
 
 
 

 
6.1 Introduction 

 
 
 

Metabolic engineering has focused on increasing the yield of both low quantity/high value 

products and commodities.  One product that has received less attention in the United States 

metabolic engineering community is folic acid, a member of the B class of vitamins.  Folic acid 

is not produced by birds and mammals so it is an important dietary requirement.  Food 

supplements and microbial production in the digestive track are the main sources of folic acid for 

mammals and birds.  Production by intestinal bacteria is often insufficient and can be impaired 

by antibiotic intake. A number of recent developments, such as studies that show increased folic 

acid intake can lessen the incidence of birth defect have raised the demand for folic acid.  To 

meet current demand, the bulk of commercially sold folic acid is produced by chemical 

synthesis.  This synthetic source is relatively expensive based on raw material costs and the low 

process yield, hence, interest has emerged on increasing the yields associated with potential 

biological routes. 

In the first part of this chapter, convex analysis method embedded in MetaboLogic will be 

used to explore metabolite trafficking options for enhanced folic acid production.  The, phase 

planes will be used to represent the flux distribution of several potentially high yielding 

metabolic mutants. Finally, the most viable genetic engineering strategy predicted for enhanced 

folic acid will be discussed. 

The second part of this chapter will focus on experimental verification of some of the model 

prediction. Specially, we will show that in according to the model prediction, PYK mutation is 

an efficient metabolic engineering strategy for enhanced folic acid production. 
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6.2 Stoichiometric Model and Methods  
 
 
 
6.2.1 Model and Analysis Methods  
 
 
 

The biochemical reactions in central carbon metabolism of E. coli as well as candidate 

reversible reactions are shown in Figure 6-1.  The networks are based on our prior work (4).   

 

The metabolite balance equations and constraints have been previously described (4).  Cell 

mass compositions data for E. coli are from previous work (6, 7). Other constraints are derived 

from NADPH and minimum ATP requirements (8).  A reference specific growth rate equal to 

0.4 h-1 is used to generate flux units that can be scaled when other growth rates are considered. 

 

The overall stoichiometry for folic acid production can be described as: 

2PEP + E4P + 1.5 3GP +KG + 11 ATP + R5P + 4 NADPH à 

FA + Pyr + GLdh + 1.5CO2 

where PEP (phosphoenolpyruvate), E4P (erythrose-4-phosphate), 3GP (3-phosphoglyceric 

acid), KG (oxoglutarate), R5P (ribose-5-phosphate), Pyr (pyruvate) and Gycolaldehyde (GLdh) 

are intermediate metabolites present in the central carbon metabolic pathway. FA (folic acid) and 

CO2 are cellular products. This lumped reaction is added to the model, assuming the leakage of 

intracellular metabolites in this pathway is negligible when the strain is optimized for folic acid 

production. 

 

Using the MetaboLogic model construction tool, all the reactants, reactions and constraints 

are inputted in less than an hour. The objective function, maximization of folic acid production, 

is used to find all the flux scenarios that lead to high folic acid production. Computation takes 

less than one minute on a PIII-900 Hz computer.  
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6.2.2 Experimental Methods  
 

 

The E. coli wild-type strain (JM101) and mutant strain (PB25) lacking activities of both 

PYKI and PYKII was used in these experiments. The strain was generously provided to us by 

Dr. Fernando Vale (9).  The medium was M9 (10). An initial glucose concentration of 4 g/L was 

used. Optical density was measured off- line using a Lambda 6 Perkin-Elmer spectrophotometer 

(Perkin-Elmer, Norwalk, CT), (1 OD660 = 0.36 g cell dry weight/l).  

 

250 mL Shake flasks were used in the cultivation experiments. Folic acid concentration is 

measured using microbial method (Difco Manual 11th).  Samples were collected at different 

culture time for E. coli wild type and mutant culture. These samples are filtered thought 0.2 µm 

filter, and diluted 40 to 200 times based the estimated folic acid concentration. Stock cultures of 

the test organism, L. casei subsp. Rhamnosus ATCC® 7469 were prepared by stabbing 

inoculation into prepared tubes of Lactobacilli Agar AOAC. The cultures were incubated at 35-

37°C for 18-24 hours. The cultures were stored in the refrigerator at 2-8°C. Transfers were made 

monthly. The inoculums for assay were prepared by subculturing from a stock culture of L. casei 

subsp. rhamnosus into a tube containing 10 ml Micro Inoculum Broth. These inoculums were 

incubated at 35-37°C for 16-18 hours. Under aseptic conditions, the tubes were centrifuged to 

sediment the cells and the supernatant is decanted. Cells were washed 3 times in sterile single-

strength Folic Acid Casei Medium. After the third washing, the cells were resuspended in 10 ml 

sterile single-strength medium and were diluted 100 times. 20 µL of this suspension was used to 

inoculate each of the assay tubes. In each test tube, 2.5 mL double-strength Folic Acid Casei 

Medium, 0.5 mL of sample and 2 mL distilled water were added to the test tube to make the total 

volume 5 mL. The growth response of the assay tubes was read turbidimetrically after 18-24 

hours incubation at 35-37°C.  It is essential that a standard curve be constructed for each separate 

assay. Autoclave and incubation conditions can influence the standard curve readings and cannot 

always be duplicated. The standard curve may be obtained by using folic acid at levels of 0.0, 

0.1, 0.2, 0.3, 0.4 and 0.5 ng per assay tube (5 ml). 
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6.3 Results and Discussion 
 
 
 
6.3.1 Computation Results 
 
 
 

To scout the complete yield horizon, we first found all the solutions that can satisfy the 

metabolic constraints for the growth of E. coli in glucose minimum medium while maximizing 

folic acid flux.  We found 32 different flux distributions. The highest carbon yield predicted for 

folic acid [mol C in folic acid/mol C from glucose] is 0.087.  Certain aspects of the flux solutions 

will be highlighted further here because of their potential implementation via metabolic 

engineering and a tractable relationship exists to what is known about folic acid synthesis.  One 

aspect is the role of PYK activity (i.e. Figure 1; r18 flux).  As noted earlier,  reducing the activity 

of PYK could elevate at least one folic acid precursor, PEP, as well as divert carbon normally 

lost to acids  (11, 12) into other more useful metabolic products. 

 

One phase plane for folic acid production by wild-type E. coli is shown in Figure 6-2, where 

PYK-catalyzed flux is the independent variable.  Folic acid synthesis increases linearly as the 

PYK-catalyzed flux decreases to zero.  This limiting result suggests that a mutant deficient in 

PYK activity may exhibit elevated folic acid production. 

 

Because PEP is an important folic acid precursor, another potential strategy for elevating 

folic acid synthesis is to replace the phospho-transferase system (PTS) with a glucose permease.  

In E. coli, one mole of PEP is converted to pyruvate when one mole of glucose is transported 

into the cell via PTS. Replacing the PTS by glucose permease, which transports one mole of 

glucose at cost of one mole of ATP, could thus reduce PEP use and increase intracellular 

concentration.   

 

A comparison of the PTS and PYK activity-modulating strategies and abbreviated pathways 

are shown in Figure 3.  Based on the wild-type phase plane (Figure 6-2) and the stoichiometric 
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potential of a PTS-deficient mutant, models of PYK- and PTS-deficient strains were constructed.  

The phase planes for the PYK- and PTS-deficient strains are shown and compared to the wild-

type in Table 1.    

 

The phase plane for the PYK-deficient strain (Table 6-1) is simply a subspace of the wild-

type because one additional constraint was added (i.e. Figure 1, r18 = 0).  Therefore, the 

maximum production potential of folic acid for the wild-type cannot be surpassed by a PYK 

mutant.  However, the solution shows a contracted glucose uptake window within which, folic 

acid synthesis potential is high.  Moreover, the phase plane for the single PYK mutation provides 

a bench mark for comparison to the folic acid production that may be achieved by the PTS 

deletion.  

 

The PTS-deficient mutant is predicted (Table 6-1) to have greater folic acid production 

potential compared to the wild-type (and the PYK-deficient mutant). The maximum production 

rate is predicted to equal 1.81 mmol g-1 h-1.  Moreover, this high potential production rate could 

also be achieved with a lower to comparable glucose uptake rate (9 mmol g-1 h-1), which 

indicates that the potential molar and carbon yields are higher than that associated with the wild-

type or PYK-deficient strains.  Indeed, based on the fluxes (not shown), the molar maximal 

potential yield for the PTS-deficient strain is 0.211 mol folic acid/mol glucose, which is more 

than double the wild-type’s or PYK-deficient mutant’s yield potential. 

 

 Although the results show that PTS mutation might be an effective strategy for increasing 

folic acid production, stoichiometric calculations need to be combined with kinetic and other 

considerations in order to fully assess different metabolic engineering strategies.  Indeed, a 

recent study (13) reported that PTS-deficient strains can exhibit very slow growth rates. Slow 

growth could potentially limit the utility of the PTS-deletion strategy for folic acid production 

especially if the product was labile and regulation is such that product synthesis is growth-

related. 
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6.3.2 Experimental Results and Discussion 
 
 
 

Based on desirable growth properties (12) and stoichiometric potential, we have first focused 

on examining the utility of using a PYK-deficient mutant of E. coli for producing folic acid.  

Figure 6-4 shows that the growth rates of the two strains were similar.  Additionally, folic acid 

accumulation in the medium appears to parallel growth.  However, the folic acid production by 

the PYK-deficient mutant (0.27mg/L at the end of growth) was significantly higher as compared 

to the wild-type strain (0.05mg/L at the end of growth).  Thus, based on theoretical yield 

potentials and experiments, PYK-deficiency shows promise as a starting point for enhancing the 

folic acid production by bacteria. 

 

Our other initial work has also suggested (not shown) that after accumulating in the medium, 

folic acid is consumed by nutrient-starved cultures presumably for the glutamate content.  Future 

work will be devoted to mapping out the product formation and degradation kinetics in more 

detail in order to further maximize the product yield.  Additionally, using what has been learned 

in E. coli to metabolically engineer Bacillus subtilis to produce folic acid with high yield is 

envisioned.  In contrast to E. coli, B. subtilis is generally regarded as “safe;” hence, B. subtilis 

may be prove to be a more commercially acceptable platform for nutraceutical production. 

 
 
 

6.4 Chapter Summary 
 
 
 

Computer-aided metabolic flux analysis has suggested how to divert cell raw materials to 

elevate the production of folic acid in E. coli. One of the strategies, pyruvate kinase (PYK) 

deletion, is predicted to divert resources to increase folic acid production. This flux redirecting 

strategy is also consistent with elevating the precursors, phosphoenolpyruvate and erthyrose-4-

phosphate, which provides the mass action potential to increase the product formation rate. 

Experimental measurement of folic acid released in the culture medium shows that deletion of 

pyruvate kinase activity from E. coli significantly increases folic acid production. These 
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calculations and experimental results suggest that PYK deletion may be a good initial starting 

point for further enhancing folic acid production via metabolic engineering.. 



 

70 

 

Table 6-1 Phase plane of different E. coli strains 

Strain 
( Metabolic engineering strategy) 
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Figure 6-1 The metabolic network of E. coli. The two-way arrows represent reversible fluxes with the bold 
heads showing the constrained net directions 
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Figure 6-2 Phenotype plane of E. coli wild type.  Pyk flux is constrained from 0 to 20 mmol g -1 h-1. 
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Figure 6-3 Schematic presentation of three metabolic engineering strategies to increase folic acid production 
and representative phenotypephase planes.  The scenarios are (a)  E. coli wild-type, (b) a mutation that deletes 
PYK activity, and (c) a mutation that replaces PTS with a glucose permerase..  
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Figure 6-4 Folic acid production in E coli mutant (PB25) and wild type (JM101). 
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Appendix A Depth First Search Algorithm 
 

A simple problem (Steuer, 1986) can illustrate the computation procedure. 

Max  z = 2x1 + 2x2 

s.t. x1 + x2  ≤ 4 

  x1 + 2x3 ≤ 8 

and  x1, x2 , x3 ≥ 0. 

A graph of the problem is shown in Figure A1.  There are six “corner points,” which are 

more typically termed, “extreme points.”  In a linear programming problem where the feasible 

domain is convex, optimal solutions will lie at one or more corner point (or along an edge).  In 

this case, the objective function is a family of parallel lines where x2 versus x1 has a slope equal 

to –1.  Different values of x2 intercepts and x3 are possible. By inspection, the points, A, B, C, 

and D are the extreme points that minimize z. 

Reformulating the problem by introducing slack variables to replace inequality constraints 

with equalities results in 

Max  z = 2x1 + 2x2 

s.t. x1 + x2  + x4 = 4 

 x1 + 2x3 + x5 = 8 

and  x1, x2 , x3 ≥ 0. 

The Depth First Search Algorithm (DFS; also known as the last- in-first-out (LIFO) 

algorithm) involves starting with a node and visiting each of the nodes adjacent to the current 

node, calling the algorithm on each that has not been visited. Each node corresponds to an 

extreme point; hence, DFS is a strategic way to identify and search the extreme points for the 

occurrence of equally optimal values of an objective function.  An organized search becomes 

necessary when the dimensionality of a problem defies graphical solution.  The Simplex Method 

is employed for determining which variables enter and depart the basis set and thus how the 

nodes connect and branch. 
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When choosing which edge to explore next, the algorithm always chooses to go ‘deeper’ into 

the graph. That is, it will pick the next adjacent unvisited vertex until reaching a vertex that has 

no unvisited adjacent vertices. (For this purpose, the algorithm simply initializes a set of 

markers, so, we can tell which vertices are visited. If a vertex has several neighbors, it would be 

equally correct to go through them in any order.) The algorithm will then backtrack to the 

previous vertex and continue along as-yet unexplored edges from that vertex. After DFS has 

visited all the reachable vertices from a particular source vertex, it chooses one of the remaining 

undiscovered vertices and continues the search. This process creates a set of depth-first trees, 

which together form the depth-first forest. 

The search for optimal solutions can be tracked by Tableaus and Figure A1.  The Tableau 

calculations identify extreme points and which basis variable to replace with a nonbasic variable. 

Table  I     

 Z X1 X2 X3 X4 X5 RHS 

Z 1 -2 -2 0 0 0 0 

X4 0 1 1 0 1 0 4 

X5 0 1 0 2 0 1 8 

The reduced ratio test indicates that x1 comes in and x4 departs the basis set. 

Table  II 

 Z X1 X2 X3 X4 X5 RHS 

Z 1 0 0 0 2 0 8 

X1 0 1 1 0 1 0 4 

X5 0 0 -1 2 -1 1 4 

This is an optimal solution {4,0,0} which corresponds to the point A in Fig.A1. 

 

From here, it is possible to branch into 2 nodes : 

x2 comes into the basis. 

x3 comes into the basis. 
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Now examine the branch (1). 

Tableau III 

 Z X1 X2 X3 X4 X5 RHS 

Z 1 0 0 0 2 0 8 

X2 0 1 1 0 1 0 4 

X5 0 1 0 2 0 1 8 

 

Another optimal solution {0,4,0} (D in Fig. A1). 

Further branching can be done as follows: 

x1 comes into the basis – here, the new basis is {x1, x5}, which has been already examined in 

Tableau II – so, this node is fathomed. 

x3 comes into the basis – this is now examined. 

 

Table  IV: 

 Z X1 X2 X3 X4 X5 RHS 

Z 1 0 0 0 2 0 8 

X2 0 1 1 0 1 0 4 

X3 0 ½ 0 1 0 ½ 4 

 

So, the optimal solution is {0,4,4}  - this is C in Fig A1. 

Further branching is as follows: 

x5 comes into the basis – here, the new basis is {x2, x5}, which has been already examined in 

Tableau III – so, this node is fathomed. 

x1 comes into the basis - this is now examined. 

 

Table  V: 

 Z X1 X2 X3 X4 X5 RHS 

Z 1 0 0 0 2 0 8 
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X1 0 1 1 0 1 0 4 

X3 0 0 -½ 1 -½ ½ 2 

The optimal solution in this case is B{4,0,2} 

Branching occurs again in the following manner : 

 x2 comes into the basis – here, the new basis is {x2, x3}, which has been already examined in 

Tableau IV – so, this node is fathomed. 

x5 comes into the basis – here, the new basis is {x1, x5}, which has been already examined in 

Tableau II – so, this node is fathomed. 

Both nodes have been fathomed so the search returns to Node 2 (after Tableau II). Here, the 

new basis is {x1,  x3}, but this has already been examined in Tableau V. Thus, no further 

branching is possible and we have obtained all the possible solutions of the LP.  The Depth-First 

Search (Branch & Bound Scheme) presented in the Tableaus is also summarized in Figure A.2.   

A(4,0,0)

B(4,0,2)

C(0,4,4)

D(0,4,0)

Fig A1 –Graphical Representation of the given LP 
(the solutions are indicated)

x1

x2

x3
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x1,x5

x2,x5

x2,x3

x1,x5

x1,x3

x2,x5

x2,x3

x1,x5

x1,x3

 

 

Algorithm 

The algorithm is a typical depth first search algorithm. The distinction of this algorithm is 

that the graph is built as long as the searching goes on. In contrast,  a common depth first search 

takes a built graph as input.  

There are 3 arrays used in the searching, E [], finish [], and dad []. E collected alternative 

optimal vertices. Finish [i] is a Boolean variable to tell us if all the adjacent points to E [i] have 

been searched or not. Dad[i] save the index of the dad point, from which E[i] was searched, and 

for the starting point, the dad is set to be –1. The indices of all arrays start with 0. 

1. Use simplex method to find starting optimal extreme point S. Put S in the array E,  

here S is the first element in the array (E [0]). And dad [0] = -1 and finish [0] = false. 

2. Check the extreme points connecting with a E [i]  (i =0,…).  If one point has the same 

value of objective function and it is not in the Array E. Add this point to the end of 

array E, which is now the nth point in array E. Set finish [n] = false and dad [n] =  i.  

Then start to search the neighboring point of E[n].  

3. If for point E [i], there are no point found to be added to array, set finish [i] to true, 

The point in E array indexed by dad [i] is chosen to search the neighborhood.  If 

Figure A2.  Branch and bound scheme used to solve the example problem.  
The current basis variables are shown in the circles.  ‘X’ indicates that a 
node has been fathomed. 
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finish [dad [i]] is already true (already finished searching), use dad’s dad, until back 

to E [0]. 

4. If every finish [0] is true, the algorithm finishes and all the optimal vertices are saved 

in array E. 

Five m-files are used for convex analysis. LinprogT, lpex, PHASEI, PHASEII, and 

PHASEIII. The PHASEI and PHASEII are adopted from Jeff Stuart, Department of Mathematics 

at University of Southern Mississippi. These two pieces of code implements a two phase simplex 

method. Only PHASEIII.m implements the searching algorithm, which is given as followed.  
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Table A-1 phaseiii.m 

function [z,xbasicTable,ibasicTable,ienter,iter,PCOL,OPTEST,CYCTEST] = phaseiii (A, b, c, ibasic ); 
%PHASEIII searchs other optimal extreme points 
%The first optimal point is found by PHASEII with ibasic as the selected base, 
%and xbasic as the values of x. 
% 
%See also PHASEI and PHASEII.  
%Written for Matlab version 5.0. 
% 
%Written by Tao Zhu, Department of Chemical Engineering,  
%University of Pittsburgh, PA 15219. March, 2001.  
%tzzt@yahoo.com 
%    Written for MATLAB version 5.3 
%     Author:    Tao Zhu 
%    Email:     tzzt@yahoo.com 
%     date:       March.03.2001 
%    Department of Chemical Engineering, 
%    University of Pittsubrgh, Pittsburgh, PA 15219. 
%    Copyright to Tao Zhu.   All right reserved. 
 
[m,n]=size(A); 
PCOL=[]; 
ienter=[]; 
iter=0; 
cycle=0; 
CYCTEST=0; 
X=zeros(1,n); 
J=X; 
tol=0.0000000000001; 
ztol=0.0000000000001; 
J(ibasic)=ones(1,m); 
K=[1:n]; 
inon=K(~J); 
B=A(:,ibasic);  
xbasic=B\b; 
%save the basis in the table 
xbasicTable=xbasic'; %xbasic is column vector, BUT xbasicTable is row oriented. 
ibasicTable=ibasic;  %ibasic is row vector, AND ibasicTable is row oriented. 
iSolution=1; 
bFinished=0; 
dads = 0; %the first basis has no dad 
 
z=c(ibasic)*xbasic; 
if m<n; 
   X(ibasic)=xbasic; 
   Cred=c(inon) - (c(ibasic)/B)*A(:,inon);  
   OPTEST=1; 
   loop =1; 
   dad = -1; 
   while loop ==1; 
      if max(Cred) >= 0; %means other optimal solution is found 
         %must find new basic, for Cred=0 and has not been selected into the table. 
         pp=logical(find(Cred>=0)); 
         %         inonSelect = ZT(inon,pp); 
         inonSelect = ZT(inon,pp); 
         [row,col]=size(inonSelect);  
      %for each of possible new basis, found the one may switch with it.  
         newBasisfound=0; 
         for i=1:row; 
          ienter=inonSelect(i);  
          PCOL=B\A(:,ienter); 
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Table A-1 (continued) 

 
          if PCOL <= 0 , OPTEST = 0; 
             loop = 0; 
            else 
               testJ = J; 
      testJ(ienter)=1; 
             TESTROWS=find(PCOL > ztol);  
               TESTCOL=PCOL(TESTROWS); 
               %another loop to pick the one that should be switched out from the original bases 
             [minrat,j]=min(xbasic(TESTROWS)./TESTCOL);  
             if minrat <=0, cycle = cycle+1; 
                if cycle > m; 
                   disp('Algorithm terminated due to excessive cycling.') 
                   disp('Restart algorithm from phase II using a perturbed') 
                   disp(' RHS vector b and the current basis.') 
                   disp(ibasic) 
                   CYCTEST=1; 
                   break 
                end 
             else 
                cycle = 0; 
             end 
               iexit=ibasic(TESTROWS(j));  
         testJ(iexit)=0; 
               testJ=logical(testJ); %don't change the state of J and ibasic at this time 
               testBasic = K(testJ); 
               %Check if the ibasic is already in the table 
               alreadyHas=0; 
               for p=1:iSolution; 
                  if (all(testBasic ==ibasicTable(p,:)))  
                     alreadyHas=1; %already in the ibasicTable 
                     break; 
                  end 
               end 
               if (alreadyHas==0); %new basis found ! good  
              xbasic=xbasic - minrat*PCOL; 
              X(ibasic)=xbasic; 
              X(ienter)=minrat;  
              X(iexit)=0; 
                  %z=z + Maxcost*minrat;  
                  J = testJ; %since it is good J  
              ibasic=K(J); 
              inon=K(~J); 
              B=A(:,ibasic);  
                xbasic=X(ibasic)'; 
                   
                  test = c(ibasic)/B; 
                  if test~=inf; %good test! B maybe not full ranked 
                   newBasisfound=1; 
                   Cred=c(inon) - (c(ibasic)/B)*A(:,inon);  
                   %add new basis to the table 
   xbasicTable=[xbasicTable;xbasic']; 
   ibasicTable=[ibasicTable;ibasic]; 
                   iSolution=1+iSolution; 
                     bFinished= [bFinished; 0]; 
                     if dad==-1; 
                        dads=[dads; iSolution-1]; 
                     else 
                        dads=[dads; dad]; 
                     end 
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Table A-1 (continued) 

                 break; 
                  end 
               end 
            end % end if 
         end % end of for loop 
          loop = newBasisfound; 
         if (newBasisfound==0); %current starting basis finished searching 
            %Get the dad 
            if (dad==-1); %means the last one in the table is finished search 
               bFinished(iSolution)=1; 
               dad=dads(iSolution); 
            else 
               bFinished(dad)=1; %current basis (dad) finish searching 
               dad=dads(dad); %check current basis' dad now 
            end 
            %if dad==0, means the last basis under check is the root basis. 
            if dad~=0; % there are still some basis in the table can be used to search 
               loop = 1; 
               %make the next test; 
               looping= 1; 
               while looping; 
                  if dad==0; 
                     loop = 0 % already searched every basis stored in the ibasicTable 
                     break; 
                  end 
                  if bFinished(dad)==1 %current bas ic is already searched, get its parent; 
                     dad = dads(dad); 
                   looping = 1; 
                  else 
                   ibasic = ibasicTable(dad,:);  %row vector 
                 xbasic = xbasicTable(dad,:)';  %column vector 
                 X=zeros(1,n); 
   J=X; 
   J(ibasic)=ones(1,m); 
   K=[1:n]; 
                 inon=K(~J);               
   X(ibasic)=xbasic; 
    B=A(:,ibasic);  
                     test =  c(ibasic)/B; 
                   if test == inf; 
                        looping = 1; 
                        dad = dads(dad); 
                     else 
                        Cred=c(inon) - (c(ibasic)/B)*A(:,inon);  
                        looping = 0; 
                     end 
                  end % end of while 
               end % end of if dad~=0; 
            else % search is finished when " finish ==1 " 
               loop =0;  
            end 
         else 
            dad = -1;  
         end 
      else 
         loop=0; 
      end 
   end %loop 
end % i 
xbasicTable=xbasicTable'; 
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Appendix B Atom Mapping Matrices Method (Zupke, 1994) 

 

Specific activity vector of n carbon molecule has n elements. The nth element of a metabolite 

contains the fractional isotope enrichment of the nth carbon. Examples are: 
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For example, glucose whose C1 is 88% 13C- enriched and C2 is 30% enriched can be 

presented by: 
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Atom Mapping Matrix describes the transfer of atoms from reactants to products. They are 

constructed such that multiplication of the reactant specific activity vector by the AMM specifies 

the contribution to the product specific activity vector. The number of carbons in the reactant is 

the number of columns, while the number of carbons in the product decides the number of rows. 

The element in the ith row and the jth column (Aji) specifies the amount of the ith carbon of the 

product that is derived from the jth carbon of the reactant. If it is 1, means all the ith carbon in the 

product are derived from the jth carbon. Typically, these numbers are 1 or 0. However, fractional 

elements are possible. For example, due to the symmetric structure, the mapping matrix of 

fumarate à malate is  
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The biochemistry of carbon switch could be easily represented by in string switching.  For 

example, the pattern of carbon switching in reaction (Xylulose-5-P + R5P à F6P + E4P) could 

be expressed in: ABCDE + abcde à abcCDE + ABde. A c++ function is developed for 

producing AMMs that takes the four string patterns as the only input. 
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Table B-1 code to produce AMM based on pattern strings 

 
/** Produce AMM based pattern strings 
* @param subAtoms A string specifies the pattern of substrate. i.e. ABCDE  

 * @param proAtoms A string specifies the pattern of product, i.e. ABcdef 
* @return A string describes AMM ( MatLab syntax). Ie. “AMM = [ 1 0 \n 0 1;]”  
* @author Tao Zhu 

*/ 
 
CString ProduceAMM (CString subAtoms, CString proAtoms) 
{ 
 if (subAtom=="" || proAtom=="") { 
  //There is no carbon switching between them at all. 
  return "AMM = [ ]"; 
 } 
 
 //build AMMs. len1 is column number, len2 is row number 
 int len1 = subAtoms.GetLength();  
 int len2 = proAtoms.GetLength();  
 
 int* AMM = new int [len1 * len2]; 
 
 for (int I = 0; i < len1 * len2;  i++) 
  AMM[i]=0; 
  
 for (i=0 ; i < len2; i++){ 
  // AMM(i, j) specify the amount of the ith carbon of product that is developed  
  // from the jth carbon of the reatant. It is either 1 or 0. 
  char carbonInPro = proAtom.GetAt(i); // get a symbol, such as 'B', 'c' 
  int carbonInSub = subAtom.Find(carbonInPro);  
  if (carbonInSub != -1) //find it at the carbonInSub position, which means they are same carbon 
   AMM[i*len1 + carbonInSub] = 1; 
 } 
  
                CString t,strAmm; 
 strAmm = "AMM = ["; 
  
 for (i=0;i<len2;i++){ 
  for (int j=0;j<len1;j++){ 
   t.Format("%d ",AMM[i*len1+j]);  
   strAmm += t; 
  } 
  if (i!=len2-1) 
   strAmm +="\r\n"; 
 } 
 strAmm +="];\r\n"; 
 
 delete [] AMM; 
 return strAmm; 
} 
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Appendix C Isotopomer Mapping Matrices Method (Schmidt et al. 1997, 1998) 
 

Isotopomer Distribution Vectors (IDVs) of n-carbon metabolite has 2n element, which 

represents the mole fraction of the metabolite’s individual isotopomer. Since a carbon can only 

be labeled or non- labeled (12C or 13C), labeling pattern of metabolites can be coded as binary 

code.  

As an example, the IDV of glucose has 26 or 64 elements. The first element of this vector is 

indexed by 0000002, or 0 in octal code. The pattern 000011, which means the 5th and 6th are 

labeled, is the fourth elements in the IDV. The complete glucose IDV is: 
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                                  (1) 

The summation of all components equals to 1.  

Isotopomer Mapping Matrices for a reaction is constructed based on the stoichiometric 

coefficient and information about reaction biochemistry. For each pair of substrate and product 

(which has carbon) in the reaction, there is isotopomer mapping matrix.  

productsubproductMMsub IDVIDVIMM =>− *
 

The individual row is associated with the product isotopomer labeling pattern, and the 

number of rows equals the number of elements in the product IDV. The ith row’s multiplying to 

the IDVsub gives the ith component in the IDVprodcut, which means given a distribution of 

isotopomer in substrate, if the reaction’s biochemistry is known, the distribution of each 

isotopomer in product can be solved by matrix multiplication. IMMs are matrices filled with 1 or 

0 usually. The position of the nonzero elements can be found by considering all possible 

combinations of the reactant isotopomers, and by calculating the resulting labeling pattern of the 

product molecule using the AMM concept. 

 As an example, consider the construction of IMM for isotopomer transitions from pyruvate 

to oxaloacetate in pyruvate carboxylation (IMMpyràoaa). The reaction is 
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Pyruvate + CO2 = OAA 

Assume PYR is not labeled. It has pattern of [0 0 0], and CO2 is labeled, which has pattern of 

[1], since in the reaction, the carbon in CO2 will add into pyruvate in the following way. 

•

=•+
ο
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ο

ο

 

or in the form matrix: 
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In the same way, consider all the combination of any pattern of substrate, For example, if 

CO2 is no labeled too, the equation is 
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The pattern of result OAA is [0 0 0 0]’, which is first element in the IDVOAA. EQ 2 and EQ 3 

tell us that for a non labeled pyruvate (IDVpyr = [1 0 0 0 0 0 0 0]), the product OAA may have 

pattern [ 0 0 0 1] (last carbon is labeled) or [ 0 0 0 0] (none of the carbon is labeled). Hence, the 

first and second column of IMM IMMPYKàOAA should be 
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If all combination of isotopomer patters of pyruvate and CO2 is considered in the same 

manner, the IMMPYKàOAA is found to be: 
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Appendix D Algorithm to Construct IMM from AMM 
 

The above procedure is tedious. Based this idea, the algorithm is easy to be implement by 

MatLab language. For the following reaction: 

A + B à C + D 

Assuming A has n carbons and B has m carbons, while C has p carbons and D has q carbons. 

The dimension of labeling patter of A, B, C and D are n, m, q and p respectively and the IDV for 

these four reactants are 2n, 2m, 2p and 2q.  

The following procedure is used to find IMM from A to C. 

There are 2n columns in IMMAàC. We will find IMM column by column.  Iterate pattern A 

from [0 0 …0]n until [1 1 …1]n. Each pattern corresponds to a column in the IMM.  

For the first pattern of A, which is [0 …0]n, iterate pattern B from [0 0 …0]m until [1 1 …]m 

to find all possible pattern C that corresponds to this pattern A.  Then convert all pattern C to 

octocal code (x1, x2,  …  xi…). The first column is found by set the all xi elements as 1 and left 

element 0.   

By the same procedure, all columns in IMM can be produced. This algorithm can be finished 

in O (n2) time. 

Usually, the element in the IMM is 1 or 0. But value of 0.5 may appear if we consider the 

scrambling effect of symmetrical molecules. As an example, consider the reaction between 

succinate-CoA and succinate. Because succinate is symmetric, a succinate-CoA labeled as (1 0 0 

0) could be converted to a succinate molecule labeled as (1 0 0 0) or (0 0 01). If succinate was 

not symmetricl, the IMM (succ-CoAà succ) is simply unit matrix (I). And if succinate was not 

symmetrical and all atoms sequenced oppositely after reaction, the IMM is found using the 

described algorithm: 

ΙΜΜ= [ 1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   
       0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0   
       0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0   
       0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0   
       0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0   
       0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0   
       0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  
       0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  
       0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  
       0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  
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       0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  
       0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  
       0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  
       0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  
       0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  
       0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1 ]  

To save the space, I would like use following bitmap to represent this matrix. 

IMM=  

Since the real isotopomer flow is the means of these two fluxes, the IMM taking account the 

scrambling effect would be: 

IMM=(  +  )/2 = 

 

In above bitmaps, black grid represents 1, gray one represents ½, and blank grid represents 0. 

A MatLab® code (Table D-1) developed by Karsten Schmidt is adopted to create the IMM 

based on the AMM of the reaction: A + B à C + D. The AMM is automatically produced using 

the procedure described in appendix C. 
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Table D-1 genimm.m (Karsten Schmidt) 

function [imm_AxC, imm_AxD, imm_BxC, imm_BxD] = genimm(... 
          amm_AxC, amm_AxD, amm_BxC, amm_BxD) 
 
% Author: Karsten Schmidt 
% date:   20.11.95 
% 
% This Script generates the isotopomer mapping matrices 
% of a reaction  A + B -> C + D on the basis of the respective  
% atom mapping matrices.   
% 
% In case of only one substrate or product, the respective input 
% AMMs can be empty matrices ([] or '') but must be present. 
 
clear imm_AxC imm_AxD imm_BxC imm_BxD 
 
 
% check input arguments 
 
if (isempty(amm_AxC))  
  error('first argument is an empty matix') 
end 
 
% get the number of carbon atoms in A, B, C and D 
 
n_A = size(amm_AxC, 2); % number of columns in matrix 
n_B = size(amm_BxC, 2); % number of columns in matrix 
n_C = size(amm_AxC, 1); % number of rows in matrix 
n_D = size(amm_AxD, 1);  % number of rows in matrix 
 
% fill matrices with zeros 
 
imm_AxC = zeros(2^n_C, 2^n_A); 
imm_AxD = zeros(2^n_D, 2^n_A); 
imm_BxC = zeros(2^n_C, 2^n_B); 
imm_AxD = zeros(2^n_D, 2^n_A); 
 
for i = 1 : 2^n_A 
  for j = 1 : 2^n_B 
    p_A = bin(i-1, n_A);   % labeling pattern of A 
    p_B = bin(j-1, n_B);   % labeling pattern of B 
 
    if (n_B == 0)    % no B in the reaction 
      p_C=(amm_AxC*p_A')';   % labeling pattern of C 
      p_D=(amm_AxD*p_A')';   % labeling pattern of D 
    else 
       p_C=(amm_AxC*p_A'+amm_BxC*p_B')'; % labeling pattern of C 
       if(n_D ~= 0)  % added by Tao Zhu 
          p_D=(amm_AxD*p_A'+amm_BxD*p_B')'; % labeling pattern of D 
       end %if 
    end 
 
    imm_AxC(dec(p_C)+1, i) = 1;  % imm from A to C 
    imm_BxC(dec(p_C)+1, j) = 1;  % imm from B to C 
 
    if (n_D ~= 0) 
      imm_AxD(dec(p_D)+1, i) = 1;  % imm from A to D 
      imm_BxD(dec(p_D)+1, j) = 1; % imm from B to D 
    end % if 
  end % for j 
end % for i 
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Table D-1 (continued) 

if (n_B == 0)  % if there is no B then these IMMs 
  imm_BxC = [];  % do not exist! 
  imm_BxD = []; 
end 
 
if (n_D == 0)  % if there is no D then these IMMs 
  imm_AxD = [];  % do not exist! 
  imm_BxD = []; 
end 
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