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ABSTRACT

CONVEX ANALYSISOF METABOLIC NETWORK FOR OPTIMAL CELL DESIGN &
FLUX VALIDATION BY GC-MS OR NMR

Tao Zhu, PhD

University of Pittsburgh, 2003

In this thesis an integrated software tool: Metabol ogic was developed. This software not
only integrates most of the techniques developed in Metabolic Flux Analysis (MFA), but also
two mathematical techniques for finding multiple optimal solution and designing tracer
experiments. MetabolLogic is designed to alow users to construct arbitrary network model

visualy through a friendly graphic user interface.

The functions of the software can be classified into two groups. The first group is to compute
flux distribution by using stoichiometric information. This part includes traditional linear
programming techniques and the modified simplex algorithm we developed to find the
aternative optimal solutions. The second group of functions deas with the mathematical
methods to ssimulate NMR and GC/MS spectra based on flux distributions. The multiple
solutions found using MILP or modified smplex method can be used to better design the tracer

experiment in terms of choice of labeled substrates and signal molecules.

We applied MetaboL ogic to find a potential metabolic engineering strategy for inhibiting the
acid formation. Acid formation is a major problem in production of recombinant protein in both
E. coli and B. subtilis, because it limits process stability and cell concentration and thus cell-
based biotechnological processes. The inactivation of pyruvate kinase (PYK) was identified as
one potential metabolic engineering strategy for eliminating acidic by-products. PYK mutants

were constructed and characterized in terms of growth and acid formation. The experimental



results confirmed thet the predicted strategy is an effective way to reduce acid formation. This
application is good demonstration of the MetabolL ogic’s capabilities.

Finally, the MetaboL ogic was used for the design of genetic-based strategies for enhancing
folic acid production in E. coli and B. subtilis. The genetic strategy that emerged for reduction of
acid formation (pyk mutation) was found to be a very promising start point for increased folic
acid production. The experimental datain E. coli confirmed that pyk mutation increased the folic
acid production by 5-6 fold compared to the wild type.



TABLE OF CONTENTS

Page

1.0 SPECIFIC AIMS AND OVERVIEW ... eeaaa e 1
IS o 1= o o AN | 0 2
A N 1S T O 10 1 LT TS 4

2.0 MODIFIED SIMPLEX METHOD TO FIND ALTERNATIVE FLUX DISTRIBUTIONS...5

P2 N T g oo [0t (o] o TSSO PSR 5
2.2 Background 0N CONVEX ANBIYSIS. ......c.coiiiiiiriiriieeeieee et ss b e sne s ne e 6
B2 37 Lo o 11 0o o OSSPSR 8
2.4 Application of Algorithm: Solution Space of E. coli and B. SUbtilis..........cc.cooecrivniiennnnen. 9
2.4.1. Stoichiometric Model of Glucose Metabolism in Bacteria..........cccoceveverinenenceeenees 9
2.4.2. Choice of ObjeCtiVe FUNCLION.........cccveiiieeee e 12
24,3 RESUITS.....ee ettt bbb n b e n e 12
2.5 Chapter SUMIMAIY .......ocieieeeie ettt te s e st e e e sae e beetesreesneenneeneenteennenns 15
3.0 PRECISELY DETERMINE THE FLUX USING NMR / GC-MS & DESIGN OF
TRACER EXPERIMENT ... s 23
G300 1 gL {00 o (o] o ISP USSR 23
3.2 Isotopomer Distribution Calculation at Steady State..........cccvveveeiiieeiieesiieeree e 23
3.2.1 Reaction Reversibility CONSIAEration ..........ccccvveereeiesiesecie e s eee e 26
3.2.2 Algorithm tO fINA IDV .....oeiiiiiie et s 26
3.3NMR or MS Simulation Based 0N IDV .........ccccciiiiiiiniceneseee e 27
3.4 Operative Flux Distribution SEarch ... 27



3.5 Tracer EXPeriment DESION .....ccuciieie ettt sttt sreesn e nesneenreennenns 29

3.6 CapLEr SUMIMIBIY ....c.eivirieitieiieieeee ettt sttt sb b bbb se e e b et e sb b e b e ebeene e e s 30
40 METABOLOGIC PROGRAM ..ottt e e e e et e e e e e e e e e e eeeaaaaeas 32
R I 1 0 [0 (o (o] TR RTRRRRR 32

4.2 Overview of Model Construction, Visualization, Computational Components & System

REGUITEIMENT ...ttt e st e s te e e s ae e aeessesseesseeneeeneeseensesreesseenseaneenens 33
4.3 EXaMPIE PrODIOM. ... et 35
4.4 Application of Software to the Example Problem...........cccooviieiiccc e, 36
4.5 Chapter SUMIMEIY .....c.coiuiriiriisiesieeiieitet et ste sttt ese et s s e s b e sbeesesse e e e e e sbesbesbesbesreeseeneens 39
S.0 ELIMINATATION OF ACID FORMATION ..ottt 50
5.1 INEFOAUCTION. ...ttt b e et r e nn e nn s 50
5.2 Materials and MEtNOGS............coiiiiie s 50
5.2.1 Cellsand Growth MEJIUM. .........ccueiiiriiieirieeeee e 50
5.2.2 Cultivation & Measurement of Cell Mass, Glucose, & Extracellular Acid................. 51
5.2.3 Intracellular Enzyme & Metabolite ASSAYS .......ccovevieiiiiiiiesie e 51

5.3 RESUILS 8N DISCUSSION ......ecueiiiiieiesiestee et r s r e nne s 51
o O gz o (= T 010 7= Y PSR 55
6.0 ENHANCEMENT OF FOLIC ACID PRODUCTION.......ccciieirieeiesieesiee e 63
6.1 INEFOTUCTION......eoeitit ettt bbbttt e et e e e b b e b e nreeneeneeneas 63
6.2 Stoichiometric Model and Methods.............coveiiiiiii e 64
6.2.1 Model and ANalySISMENOAS ........ccooeiiieeee e 64
6.2.2 EXperimental MEthOOS ..........oooiiieii e e 65

6.3 RESUITS @NA DISCUSSION ......ouviueiiiiieiesiestee ettt r e b s snesn e ene e 66
6.3.1 COMPULALION RESUITS........eiuiiiiiiiesiesie e 66

Vi



6.3.2 Experimental ResuUItS and DiSCUSSION.......c..ccuiiuierieeieieesieeee et eee e eee e sre e enis 68

6.4 ChapLEr SUMIMIBIY ......eiveieieiieiieieree ettt et bbbt et et e b e be b e s benaeeseeneeneas 68
Appendix A Depth First Search AlgOrithm ..o 76
Appendix B Atom Mapping Matrices Method (Zupke, 1994) ........ccooveevievesieseere e 85
Appendix C Isotopomer Mapping Matrices Method (Schmidt et al. 1997, 1998).............cccueueee. 88
Appendix D Algorithm to Construct IMM frOMAMM ... 91
BIBLIOGRAPHIY .ottt sttt sttt sttt e bt e et e e s b e e e nte e nae e e nbeenbeesnteenneeanee 96

vii



LIST OF TABLES

Table 2-1 Alternate solutions of B. subtiliswild type on glucose minimum medium.................. 16
Table 2-2 Alternate Solutions of E. coli wild type on glucose minimum medium ..................... 17

Table 4-1 Performance of Different Labeled Glucose Substrates in Distinguishing Flux Scenarios

BY T3C NMBR ANAIYSIS .....ooovieeveeeeeee s sss s st ssssssssnaassssess st enss s snssesssnsans 49
Table 5-1 Carbon balance at different time in the batch growth of wild type and mutant ........... 56
Table 6-1 Phase plane of different E. COli SIFAINS .......cccocceiievece e 70

viii



LIST OF FIGURES

Page

Figure 2-1 Relationship between the computation time and number of aternative solutions..... 18

Figure 2-2 Metabolic networks of B. subtilis and E. coli. The two-way arrows represent
reversible reaction with the bold heads showing the forward reaction. The dash arrow from PEP
to OAA isonly for E. coli and the dot arrow from PYR to OAA isonly for B. subtilis. ............. 19

Figure 2-3 Phenotype phase place of E. coli: total acid production vs. glucose uptake réte. ...... 20
Figure 2-4 Phase plane of B. subtilis wild type (acid production vs. PYK flux)..........cccceeuerunenne. 21
Figure 2-5 Phase plane of E. coli wild type (Acids production vs. PYK fluX).........ccceeveivieenens 22

Figure 41 Initial steps in model construction. The user can choose reactant or reaction from
toolbar and add them into the network by typing a name in a text box. Glucose and glucose-6
phosphate are the reactant and products shown. By double clicking reactant (a) and reactions (c),
property dialogs will pop up for user to edit properties and to customize information (b, d). ..... 41

Figure 4-2 The window of MetaboL ogic that displays the model network. This E. coli network
is the basis for the example problem of finding flux distributions and NMR spectra. ................. 42

Figure 43 Equations automatically produced by software based on the model “picture” and
information inputted during model construction (see Fig. 1). The first column is the metabolite.
The second, third and fourth columns present the balance equation for the metabolite. The
“>=<" column denotes the constraint type, where “>” and “<” denote “=" and “=", respectively.
....................................................................................................................................................... 43

Figure 44 Dialog box used to engage flux balance analysis (linear programming or convex
analysis). All flux solutions can be found by inputting an integer into the objective function
(top) or a specific objective can be sought (DOttOM)..........cooiviiieiicc 44

Figure 4-5 Flux distribution of one scenario that satisfies the balance equations, inequality
constraints, and the objective of minimizing pyruvate kinase-catalyzed flux. .........ccccevvevvvennenee. 45

Figure 46 The dialog for setting up the NMR simulation. Two operative modes are possible.
The spectrum associated with one flux distribution and a particular labeling of glucose can be
computed. Alternately, a subset of all feasible flux distributions can be explored. By vectorizing



the spectra and looking at different combinations of exchange coefficients, the labeled glucose
will be determined that produces spectra that maximally differ from each other......................... 46

Figure 4-7 The simulated spectra of the central glutamate carbons. From left to right, the
multiplets result from C3, C4, and C2 of glutamate (C2 bears the amino group). ........cccceeeeneens 47

Figure 4-8 The dialog window for the flux searching based on inputted NMR data. All
combinations of exchange coefficients are searched based on discretizing the bounded domain
established by the user. This function allows one to establish what feasible flux and exchange
coefficients combinations can account for the experimental data. ...........cccooveeeveevecciccecceceee 48

Figure 5-1 The growth of wild type and pyk mutant of E. coli with feed glucose concentration of
2.2 g/l. The experiment was repeated 3 times. The error bars represent the average variation in
optical denSity MEASUMEIMENTS ........c.coveieeieeierieee e st e ste e e e sae e e s esbeeseesreenseeneesneenseeneennes 57

Figure 5-2 Similar to Figure 1.1 except that the glucose concentration iSO g/l ........ccoecvvvrueneee. 58

Figure 53 Residua glucose and acetate concentration for the shake flask with initial glucose
concentration of 9 g/l (Figure 2). The error bars indicate the variation in measurements of
residual glucose and acetate, which were preformed three times. ..........ccceeveceveecievieseese s 59

Figure 54 Growth of the wild type and pyk mutant of E. coli in the fermentor with initial
glucose concentration of 10 g/l. (a) optical density, (b) CO, evolution rate. .........cccccveverevenenee. 60

Figure 5-5 The intracellular PEP concentration for the wild type and pyk mutants of E. coli and
B. subtilis. Error bars indicate the variations of two Measurements. ..........ccoeceeveerereerenseesieeneens 62

Figure 6-1 The metabolic network of E. coli. The two-way arrows represent reversible fluxes
with the bold heads showing the constrained net direCtions............cocveeeeieierene v 71

Filgure 6-2 Phenotype plane of E. coli wild type. Pyk flux is constrained from O to 20 mmol g*
USRS 72

Figure 6-3 Schematic presentation of three metabolic engineering strategies to increase folic acid
production and representative phenotypephase planes. The scenarios are (@) E. coli wild-type,
(b) a mutation that deletes PYK activity, and (c) a mutation that replaces PTS with a glucose
(01 L= S =TSRSS PR 73

Figure 6-4 Folic acid production in E coli mutant (PB25) and wild type (IM101). ..........ccucu..... 74



1.0 SPECIFIC AIMSAND OVERVIEW

Metabolic Flux Analysis (MFA) has become a widely used approach for studying the
properties and capabilities of metabolic networks in microorganisms (Stephanopoulos et at.
1995). MFA may be used for the determination of steady state metabolic flux distributions, if
measurement of uptake and/or excretion rates of a cell culture in steady state is available.
Combined with tracer experiment data, MFA can also be used to determine the flux distribution
even if there are not enough uptake/execration data available. These predicted distributions
provide information on both product yield horizons as well as suggest how the regulation of

existing and inserted pathways needs to be atered in order to attain the yield horizon.

Various mathematical and experimental techniques are developed for prediction of flux
distributions that provide high product yield. These methods include linear programming
(Maewski & Domach, 1991), pathway analysis (Schilling et at. 2000), elementary mode analysis
(Schuster et at. 1999), NMR and GC/MS simulation Wiechert et at. 1997). Software are
developed which integrates most of the mathematical methods (E-Cell Tomita, 2001; Gepasi,
Mendes 1997; Glaser, 1999; Metatool (Pfeiffer et al. 1999); Metabolic Explorer,
http://www.simtec.mb.uni-siegen.de/Software/ 13CFlux/).

One issue that has arisen with metabolic engineering models and software (Schaff et al.,
1997; Goryanin et al., 1999; NSF Workshop on Metabolic Engineering, Sept. 2000) is that new
and powerful software and modeling developments are challenging to adopt by potential users. It
can be problematic to unravel the underlying assumptions encoded in a program or adapt the
model for use in another problem. Also, there is a lack of a software tool which integrates all
these techniques in a comprehensive manner. The user has to access different software if they
want to apply different analysis methods to the same problem. The challenges may compound
when the non-expert user desires to use a model or software as an input for another analysis
activity.


http://www.simtec.mb.uni-siegen.de/Software/13CFlux/
http://www.bioinfo.de/isb/gcb01/poster/moldenhauer.html
http://ecell.sourceforge.net/
http://gepasi.dbs.aber.ac.uk/softw/gepasi.html

There is another issue in the metabolic network modeling work. Two important mathematical
methods are not well implemented in any software yet. There is no software package of
metabolic flux analysis that can find all alternative solutions for a degenerate L P problem, which
commonly arises in metabolic flux analysis. Furthermore, there is no software can validate flux
distribution found by NMR or GC-MS spectra in any arbitrary network model.

1.1 Specific Aims

The first aim in this research is to develop an integrated software tool: MetabolLogic. This
software shall not only integrate most of the techniques developed in MFA, but aso two
mathematical techniques for finding multiple optimal solution and the design of radio labeled
pattern for flux confirmation Metabologic is designed to allow users to construct arbitrary

network model visually through a friendly graphic user interface.

We adopted MATLAB ® (Mathworks, Inc; www.mathworks.com) as the computational
engine, which offers the possibility to directly benefit from predefined functions of MATLAB.

Visua C++ and Microsoft Foundation Class MFC) library were used to develop the user
interface. This is a convenient choice because many libraries exist in C++ which expedites the
developmenta process. Many advanced user interface features are designed to increase the user

friendliness of software significantly.

The functions of the software can be classified into two groups. The first group is to compute
flux distribution by using stoichiometric information. This part includes traditional linear
programming techniques and the modified simplex algorithm we developed to find the
aternative optimal solutions. There are several agorithms available for finding dternative
optimal solution of a degenerate LP problem, such as the MILP approach that our group
proposed in earlier work (Lee et a. 2000). The modified simplex method was developed instead

of using MILP because MATLAB doesn't have MILP solver. Moreover, the modified simplex


http://www.mathworks.com

method is efficient in handling a LP problem with many equality constraints. In next chapter, this
algorithm will be discussed in detail.

The second group of functions deals with the tracer experimental design and data analysis.
The multiple solutions found using MILP or modified smplex method can be used to better
design the tracer experiment in terms of choice of labeled substrates and signal molecules. Once
the experiment is done, software can validate the flux distribution by matching the simulated
NMR or GC-MS spectra with the actual data. NMR and GC-MS spectra simulations are both
based on the isotopomer distribution calculations. The tracer experiment should maximize the
difference among spectra simulated from each extreme solution. The determination of actual flux
distribution is to find the combination coefficient of extreme solutions that closely resembles the

observed spectra.

The second aim is to study the acid formation in E. coli and B. subtilis in a glucose minimal
medium. Acid formation is a maor problem in production of recombinant protein in bothE. coli
and B. subtilis because it limits process stability and cell concentration and thus cell-based
biotechnological processes (Ko, et al. 1993, Shiloach et al. 1996). We applied MetabolLogic to
find a potential metabolic engineering strategy for inhibiting the acid formation. The inactivation
of pyruvate kinase (PYK) was identified as one potential metabolic engineering strategy for
eliminating acidic by-products. PYK mutants were constructed and characterized in terms of
growth and acid formation. The experimental results confirmed that the predicted strategy is an
effective way to reduce acid formation. This application is a good demonstration of the
MetaboLogic’ s capabilities.

The third aim in this research is to design genetic-based strategies for enhancing folic acid
production and to experimentally test some strategies. We applied Metabologic in the calculation
of the folic acid production capacity of different strains. The genetic strategy that emerged for
reduction of acid formation (pyk mutation) proved to be a very promising start point for
increased folic acid production. The experimental data confirmed that pyk mutation increased the
folic acid production by 5-6 fold compared to the wild type.



1.2 Thesis Outline

Chapter 2 presents the mathematical background of convex analysis and the modified
three-phase simplex algorithm to find the multiple solutions. A stoichiometric model
of E. coli and B. subtilis central carbon metabolism is constructed. When applied with
the convex analysis algorithm, the model predicts that PYK mutation is a good
strategy for reducing acid formation.

Chapter 3 explores NMR spectra simulation and searches for operative flux
distribution in the convex polytope found by the modified ssmplex agorithm. This
chapter also presents a strategy for the design of an effective NMR and GC-MS
experiment.

Chapter 4 presents the features of the user-friendly computer software, Metabologic,
which integrated the convex analysis and the NMR spectra ssmulation.

Chapter 5 discusses experiment results on acid formation in both E. coli and B.
subtilis. The experimental data confirmed the model prediction that was made in
chapter 2.

Chapter 6 applies the convex analysis to optimize the theoretical folic acid production

and evauate folic acid production in E. coli batch fermentation.

In the thesis, there is no separate chapter about material and methods for the experiment,
because most of experimental work is done in chapter 5 and 6 only. The experimental methods
will be covered in those chapters. Computer codes for the convex analysis appear in Appendix
A. The isotopomer mapping matrix method is reviewed in Appendix B. The source code of the
software is not listed as appendix due to its length (about 70000 lines), but it has been archived
on a compact disk.



20MODIFIED SSIMPLEX METHOD TO FIND ALTERNATIVE FLUX
DISTRIBUTIONS

2.1 Introduction

Finding alternative yet feasible flux distributions in a metabolic network is the first task in
designing a metabolic engineering strategy aimed at enhanced product yield. Many mathematical
methods have been developed to solve this problem. Linear Programming has been one of the
most important tools used in analysis of the productive capabilities of metabolic networks (Fell
& Small, 1986; Mgewski & Domach, 1990; Varma & Palsson, 19944). Typicadly, flux balance
equations are formulated and local and system-wide constraints are imposed. Examples of local
and system-wide congtraints are inclusion of an upper bound enzymatic capacity or that an ATP
requirement for biosynthesis must be met through the aggregate activity of a subset of reactions.
An objective is then posed such as maximization of a particular flux that leads to high product
yield. The answer informs one of the yield horizons. Moreover, the values of the fluxes in the
optimal solution indicate how to engineer the trafficking of metabolites by altering the available

reaction paths and feedback |oops.

While very useful, the system of equations and constraints is often underdetermined, which
means more than one solution may exist that could satisfy the objective. These other solutions
are not always immediately accessible to the analyst because classical solution methods such as
the Simplex Algorithm typically stop after one optimal flux solution is found. One must inspect
the details of the intermediate calculations to discover that multiple solutions exist and then the

problem must be manually reformulated to ferret them out.

The identification of other solutions is of interest for severa reasons. First, the different
solutions may differ in how easy it is to implement them. For example, one solution may
indicate more genetic manipulation s required than another that could yield the same value of
the objective. Second, there is fundamental value in knowing how many alternatives exist. This



provides some insights on how redundant and robust a metabolic system can be. Finaly,
knowing the portfolio of alternatives ahead of time can result in the development of a more
inclusive and tighter patent strategy.

Recent work in metabolic engineering has drawn from the network analysis field to address
the problem of enumerating aternate metabolite trafficking solutions. Lee et a (2000) and
Phalakornkule et a (2001) developed an aternative approach to find al the alternate optima in
LP modes that entailed transforming the master problem into a mixed integer linear
programming (MILP) problem. Phalakornkule et a (2001) used different solutions from LP
analysis to design 13C NMR experiments such that different potential flux patterns in a strain
can be more conclusively distinguished.

To find the alternative solutions of an arbitrary network using MetaboLogic, we have utilized
some additional features of convex space analysis to find multiple solutions. In this chapter, we
first describe the basic idea about how the linear programming problem can be converted to a
convex hull searching problem. Then we will describe new algorithm modified from two phase
simplex method to find the flux space. Then this algorithm is used to calculate flux distribution
in B. subtilisand E. coli under different culture conditions. The comparison between the new
algorithm and MILP agorithm will be given at the end of the chapter.

2.2 Background on Convex Analysis

A set X in E'is called a convex set if given any two points x; and X, in X, then | x; + (1-1)

X2l Xforeach |1 [0,1]. A convex set can be bounded or unbounded.

Theorem 1: A set Sof feasible solutions of an LP is a convex set.



The convex analysis of metabolic network entails finding the set of minimum basic vectors
spanning the convex space that satisfy mass balance equations for all metabolites. The set (S)

can be denoted as

1 & u
S=jx:x=gae, a3 0 1)
pomaas Bty

where X is any possible vector that satisfies the constraints. In Equation (1), g (i=1, 2..k), K,
and a; refer to the minimum solution set that spans the solution space, the number of basic

vectors, and a combinational coefficient.

When the solution space is bounded, the convex set is a polytope, otherwise it constitutes a

polyhedron. Each flux in the polytope can expressed as a convex combination of base vectors by
do.._ 4 5 & _.U
S={x:x=gaeg, a;%0 aai—lg 2
| i i

A linear programming problem then is equivalent to a problem to find such a set of g. A
number of specia purpose algorithms have been reported for finding al the extreme points of
convex polytope (Matheiss & Rubin, 1980). Lee (2000) developed arecursive MILP method,
which utilizes the MILP solver that is already implemented in a modeling language (e.g. GAMS,
AMPL). Since we choose MATLAB as our computational engineering, which doesn’'t have a
MILP solver, the MILP approach doesn’t satisfy our requirement.

It is noticed that in a convex analysis problem of metabolic network, many of the constraints
are equality constraints (mass balance constraints). Although the system has many variables (e.g.
reaction rates), the total degree of freedom of the system is usualy low (less than 10). We have
developed an efficient algorithm that takes advantage of these properties. The algorithm is based
on a two-phase simplex method (Hartley, 1985). Unlike the traditional simplex method, which
stops at one optimal solution, the new proposed algorithm will continue to find al the other

extreme points that have the same value of objective function. This algorithm can also be named



as three-phase simplex. To search the neighboring vertices we adopted depth first search

algorithm (Sedgewich, 2001), which is commonly used in graph search in computer science.

2.3 Algorithm

Simplex method starts from an arbitrary vertex, searching the adjacent vertices to find the
one that optimizes objective function localy. It then moves to the new vertex and repeats the
searching again. It stops when all the adjacent vertices will not improve the objective function.
But there might be some adjacent vertices that have the same value of the objective function if
the LP problem is degenerate. We add the third phase (depth first search) to the commonly used
two-phase smplex method to find all the alternative optimal vertices. A detailed description of
algorithm appearsin Appendix A.

The agorithm is implemented in MATLAB language (Appendix B). An example problem is
built up to test the algorithm. In this problem, there are 69 inequality constraints and 28 equality
constraints and 34 variables. The solutions found by our algorithm are identical to the MILP
methods. To evaluate the speed of the algorithm, we deleted some of the equality constraints so
that more aternative optimal solutions exist and record the time needed to find all these
solutions. We found the quadratic dependency of time on the total number of solution (Figure 2-
1). Since number of solution is exponentially depending on the system freedom number in the
worst case, the computational time to find all solutions is then also exponentially depending on

system freedom number in worst case, which is same to MILP approach.

Compared with MILP and other available algorithms, our algorithm has several features.
First, the computation time of this algorithm is second order with respect to the number of
optimal vertices, yet still exponentially to the system number of freedom in the worst case.

Secondly, this algorithm can be implemented easily and it does not require a MILP solver.



Thirdly, it is efficient when the system has a large number of equality constraints, which is
common for flux balance analysis. This is because the computational time is exponential to the
system degree of freedom, which is usually small in metabolic flux analysis. The disadvantage of
our algorithm is that the first step of algorithm may not succeed in al cases. Simplex methods
may fail because of infinitely looping. One way to overcome this problem is to adopt another LP
method to first find the optimum value of the objective function. Then the modified simplex
method can be used to find all feasible solutiors. In this approach, it will ensure that the
searching can be finished in afinite time.

2.4 Application of Algorithm: Solution Space of E. coli and B. subtilis

2.4.1. Stoichiometric Moded of Glucose M etabolism in Bacteria

The metabolic networks of E. coli and B. subtilis as well as candidate reversible reactions are
shown in Figure 2-2. The networks are based on prior representations (Lee et al, 2000;
Phalakornkule et al, 2001; Sauer et a, 1998). The only difference between the B. subtilisand E.
coli pathways is that B. subtilis synthesizes oxal oacetate from pyruvate instead of PEP.

The 16 molar balances about intracellular metabolite are represented by equations (1a) - (1p),
which have been previously described (Lee et a, 2000; Phalakornkule et a, 2001).

n-r-rh-rn=0 (19)
Mo T Ty tr +,=0 (1b)
4= N5 le= 0 (1C)
LT R T EV 0 (1d)
M +Tg-Tp- fg- Ty t1; =0 (1le)
LT PR R 0 (1f)



Mo = Top= Tyg= T =0 (19)

My~ s =0 (1h)
Fog = Tog- ;=0 (1)
r,-r,-r;=0 1)
r,-re-r,=0 (1k)
rg-r,-13=0 )
r,-rg-1,=0 (1m)
2r,+rg-1,-1,=0 (1n)
Fg = F3p- I33=0 (10)
Fy7 = Tog= Tg=0 (1p)

Another 11 equality constraints equations (2a) — (2k) for the biosynthetic load were derived
from cellular mass composition. Here, different cell mass compositions are used for E. coli
(Mandelstam 1982; Ingraham 1983; & Leeet a., 1996) and B. subtilis (Sauer et al, 1997). Other
constraints are derived from NADPH and minimum ATP requirements (Eq. 3a -3b, Goel et al.,
1996). A reference specific growth rate equal to 0.4 ' is used to generate flux units that can be
scaled, when other growth rates are considered.

r, =0.205xm(E.coli) or r, =0.154>m(B. subtilis) (2a)
r,, =0.0709>m(E.coli) or r,=0.190>m(B. subtilis) (2b)
r, =0.129xm(E.coli) or r, =0.194xm(B. subtilis) (2c)
rs =1.493xm(E.coli) or r, =1.395xm(B. subtilis) (2d)
r, =0.7191xn(E.coli) or r,=0.711xm(B. subtilis) (2e)

10



rs =0.897 xm(E. coli) or ry=0.816>xm(B. subtilis) (20

r, =0.361xm(E.coli) or ry=0.308xm(B. subtilis) (20)
Il =2.833xm(E.coli) or r,=2942xm(B.subtilis) (2h)
r,, =2.928xn(E.coli) or r, =2.132xm(B. subtilis) (2)
re =1.078xm(E.coli) or r,, =1.071xm(B. subtilis) (2)
ro =1.786>xm(E.coli) or ry; =1.923xm(B. subtilis) (2k)

These constraints are obtained from the network structure and reaction stoichiometry. Dauner
and Sauer (2001) found the cell composition has a linear relation with dilution rate. In our
research, fixed dilution rate (growth rate) is used, and we neglected the change of composition.
There is also one type of constraint coming from the aggregate activity of different subsets of
metabolic reactions. Such constraints provide connectivity between individual reaction rates.
These constraints involve NADPH and ATP production. NADPH is the molecule responsible for
reducing chemistry and ATP hydrolysis provides the energy for biosynthesis (i.e. free energy of
hydrolysis drives otherwise thermodynamically infeasible polymerization). The NADPH and
minimum ATP requirement (Godl et al. 1996, Dauner and Sauer 2001) are represented by Eq
(38), and Eq (3b).

2r, + 1, + 1, =18xm(E. coli) or 2r, +r, +r,, =16.7>xm(B. subtilis) (39
- N, + 30, F g+ 3, + 20, + 1 + 20, +1,, - 2% 33.1xm(E. coli)

- M, 30, F g+ 3, + 26, + 1 + 20, +1,, - 2% 31.7xm(B. subtilis) (3b)

In order to guarantee the convex set is bounded, all reaction’s rate are constrained to have a
lower bound of 0 mmol g* hand an upper bound of 20 mmol g W' ( Lee, et al. 2000 ) except

flux rio and r3 (see Fig. 1), which has a lower bound of -20 mmol g h'. These later two
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reactions are reported to have standard free energy changes nearly equal to O; hence, they may be

quite reversible.

The linear systems of wild type B. subtilisand E. coli are defined by the 28 equality and 69
inequality constraints. These equality constraints are equation l1a - 1p, 2a — 2k and 3a and the
inequality constraints are 3b and the upper and lower boundary constraints of 34 reactions. When
gene deletion or addition occurs, extra constraints can be introduced (i.e., ng = 0 for pyruvate
kinase deletion). If the network structure is changed due to reaction addition/deletion, a new set
of constraints is redefined based on same approach, for example, when citrate is fed to the
culture, there are one new variables and 2 new inequality constraints (the boundary of the

variable) about the flux boundary.

2.4.2. Choice of Objective Function

A linear objective function is usually chosen to maximize/minimize the product formation
rate. Minimizing the glucose update rate is also used by assuming the cell utilizes the carbon
source the most efficiently. Also a constant objective function may be used to find al feasible

extreme points.

2.4.3. Resaults

We first calculated the convex polytope of E. coli and B. subtilis wild type cultured in
glucose minimum medium. A constant objective function is used to find all feasible extreme
points. The number of extreme point for B. subtilis and E. coli is 16 and 18, respectively.
Selected fluxes from each scenario, carbon yidds (Y.), and ATP yidds (Yatp), which are
calculated from Equations (4) and (5), are reported in Table 2-1 and Table 2-2.
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In Equations (4) and (5), C% and mdenote the carbon composition of cell mass (50% for E.

coli and 45% for B. subtilis) and the specific growth rate, respectively.

Each solution reveadls different ways for carbon to traffic through the E. coli and B. subtilis
networks. The maximum biomass yield of B. subtilis is 0.847 g biomass C/g glucose C, which is
corresponding to 121.9 g biomass/mol glucose. The solution is identical to the value found by
Sauer et d (1998).

Another output that convex analysis produced is the minimal reaction set that can satisfy al
the biomass synthetic and energetic requirements. This is done by checking the number of none
zero flux in each flux scenarios. Convex analysis can also find if a reaction is redundant or not
by checking f zero flux exists for the reaction. It is found that for the growth on glucose,
pyruvate kinase is a required enzyme for B. subtilis (in all flux scenarios, it has a positive flux
value, but it is not always required for E. coli (in some flux solution, it has zero flux value, these
scenarios are marked in bold in Table 2).

Another use of convex anaysis is the phenotype prediction. The prediction based on such
analysis is rough and can only predict the range of phenotype. It is likely the precise position of
an object in the space can not be predicted, but the smaller subspace that the object might fall in
can be predicted. Such a prediction is very useful for formulating a metabolic engineering
strategy and understanding a strain’s metabolic capacity. Adding more constraints will make the
sub space smaller, and alow for a closer look at the system. Phase plane projections are very
useful to present the flux data obtained from convex analysis. It projects the solution space (a
convex polytope) into atwo dimensional plane. Because the phase plane can be used to represent

the phenotype of a strain, it is also called phenotype phase plane. For example, in Figure 2-3, we
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project total acid production (acetate rig, lactate rp3, succinate ryg) vs. glucose uptake rate phase
plane. The wild type phonotype should be located anywhere in the biggest polygon. Adding
more constraints, such as PYK flux = 0 ( g = 0), or Malate flux = 0 ( r32 = 0), the solution space
is much reduced.

Pyruvate kinase mutation is a metabolic engineering strategy that proposed by Ataai’ group
(Goel et a. 1995) to reduce the acid by-production. The PYK mutation adds one more equality
constraint (rig = 0) than the wild type. In fact all the extreme solution of PYK mutants are in a
subset of the extreme solutions for the wild type, because in these strains, there is an inequality
constraints (s 2 0). The subset of the PYK mutant in the Table 1, and Table 2 is marked with a

different color. It is found that there is no solution in B. subtilis that has zero PYK flux.

The relationship between total acid production (rig + r2s + fg) and PYK flux is presented in
the phase plane plots (Figure 2-4 and Figure 2-5). The plot is the projection of solutions space to
the phase plane of total acid production vs. rg. The results show that in both E. coli and B.
subtilis strain, in order to minimize the acid production, PYK flux should be minimized. When
PYK flux is greater than 2.5 mmol g* h* (E coli) and 3.3 mmol g* h! in (B. subtilis), the lower
bound of acid by-production is greater than 0, which means the flux of glycolysisis in excess of
TCA cycle.

For E. coli, even if PYK flux is constrained to be O, it still may have high acid production
capacity compare to B. subtilis. But in B. subtilis, when PYK flux is minimized to 0.3 mmol g*
h1, the upper bound and lower bound of total acid production are both 0, which suggest pyk
deletion must be effective in reducing acid by-production in B. subtilis, and it might be effective
in E. coli aso.

To vaidate the prediction of convex anaysis, experiment works (acid production

measurement) have been done on both E. coli (Zhu et al., 2001) and B. subtilis (Fry et a. 2000).

The chapter 5 will discuss the experimental work done with the E. coli pyk mutant.
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2.5 Chapter Summary

Convex analysis can be used to find the alternative optimal solutions which satisfy a given
objective function. What is the biological significance of such a computation? What information

are derived and represented to the biologist or metabolic engineer?

The identification of other solutions is of interest for several reasons. First, the different
solutions may differ in how easy it is to implement them. For example, one solution may
indicate more genetic manipulation than another for attaining the same value of the objective
function. Secondly, there is fundamental value in knowing how many aternatives exist. This
provides some insights on how redundant and robust a metabolic system can be. Finaly,
knowing the portfolio of aternatives ahead of time can result in the development of a more

inclusive and tighter patent strategy.

In this chapter, a modified simplex method for finding the aternative solutions of an LP
problem was presented. Algorithm is applied to calculate the solution space of acid production of
E. coli and B. subtilis. Convex analysis not only finds all alternative solutions of a degenerate LP

problem, but also provides more insight view of carbon metabolism.
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Table2-1 Alternate solutions of B. subtilis wild type on glucose minimum medium

Alternate Select fluxes (mmol g-1cell h-1)
Solutions
r r lo g lg Ros
1 3.281 2.924 0.2954 0.3746 0 0
2 3.3024 3.0524 0.1884 0.3532 0 0
3| 3.39094 0.6152 2.71414 1.25414 0 0
4 3.9618 0.6152 3.285 1.825 0 0
5 4.0506 0.6152 3.3738 1.9138 0 2.3088
6 5.3334 0.6152 4.6566 3.1966 0 0
7 7.7706 0.6152 7.0938 5.6338 0 0
8 9.8226 0.6152 9.1458 7.6858 13.8528 0
9| 10.9262 0.6152 10.2494 8.7894 16.06 0
10| 10.9262 0.6152 10.2494 8.7894 0 16.06
11| 10.9262 0.6152 10.2494 8.7894 0 6.3112
12| 10.9262 0.6152 10.2494 8.7894 6.3112 0
13| 10.9262 0.6152 10.2494 8.7894 11.1856 0
14| 10.9262 0.6152 10.2494 8.7894 0 11.1856
15| 11.3324 3.0524 8.2184 8.3832 16.06 0
16| 11.3324 3.0524 8.2184 8.3832 0 16.06
continued
Alternate 7 I3 Yc(mol/mol) | Yatp Yacid total Ye
Solutions (g/mol)
1 0 0.2568 0.846625| 31.84713 0| 121.9141
2 0 0 0.841139 30.0066 0 121.124
3| 0.98949 | 3.88491 0.819176| 31.84703 0| 117.9614
4 1.0656 3.8088 0.70114 | 31.84713 0| 100.9642
5 0 4.8744 0.685769| 31.84713 0.56999 98.7508
6 48744 0 0.520827| 5.974715 0| 74.99906
7 4.8744 0 0.357473 6.44388 0| 51.47608
8 0 4.8744 0.282795| 31.84713| 1.410299| 40.72242
9 0 4.8744 0.254231| 27.08706| 1.469861| 36.60925
10 0 48744 0.254231 420755 | 1.469861 | 36.60925
11 4.8744 0 0.254231| 4.002337| 0.577621| 36.60925
12 4.8744 0 0.254231| 5.849185| 0.577621| 36.60925
13 4.8744 0 0.254231| 5.119384 | 1.023741| 36.60925
14 48744 0 0.254231| 2.983685| 1.023741| 36.60925
15 0 0 0.245118| 13.60989 | 1.417176| 35.29702
16 0 0 0.245118| 3.646627 | 1.417176| 35.29702
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Table2-2 Alternate Solutions of E. coli wild type on glucose minimum medium

Alternate Solutions

Select fluxes (mmol g-1 cell h-1)

r 2 10 lg 19 23
1| 4.00917 | 2.74762 1.17955 0 0 0
2| 422143 | 3.3844 0.75503 0| 1.48583 0
3| 422143 | 3.3844 0.75503 0 0 1.48583
4] 494251 | 0.6476 4.21291 0 0 0
5| 575918 | 0.6476 5.02958 2.45002 0 0
6 82092 0.6476 7.4796 0 0 0
7 | 878276 | 0.6476 8.05316 0| 11.52076 0
8 | 8.78276 | 0.6476 8.05316 0 0 11.52076
9| 878276 | 0.6476 8.05316 0 0 0.57356
10 | 8.78276 | 0.6476 8.05316 0| 057356 0
11 | 10.6394 | 0.6476 9.90976 1.8566 | 15.23396 0
12 | 10.6394 | 0.6476 9.90976 1.8566 0 15.23396
13 | 10.6394 | 0.6476 9.90976 1.8566 0 4.28676
14 | 10.6394 | 0.6476 9.90976 1.8566 | 4.28676 0
15| 10.6394 | 0.6476 9.90976 7.3302 | 9.76036 0
16 | 10.6394 | 0.6476 9.90976 7.3302 0 9.76036
17 | 11.0955| 3.3844 7.62909 6.87407 | 15.23396 0
18 | 11.0955 | 3.3844 7.62909 6.87407 0 15.23396
continued
Alternate Solutions | ry7 I3 Yc(mol/mol) | Yatp Yacid total Y. (g/mol)
1| 1.27357 0 0.692856 | 13.35016 0 110.857
2 0 0 0.658018 | 22.93742 | 0.351973 | 105.2829
3 0 0 0.658018 | 16.08499 | 0.351973 | 105.2829
4 | 3.84025 | 1.63335 0.562018 | 7.282129 0| 89.92282
5| 5.4736 0 0.482322 | 5.251927 0 77.17148
6| 5.4736 0 0.338374 | 5.251927 0 54.1398
7 0| 5.4736 0.316276 | 24.20358 | 1.311747 | 50.60419
8 0| 5.4736 0.316276 | 5.395906 | 1.311747 | 50.60419
9| 5.4736 0 0.316276 | 5.024881 | 0.065305 | 50.60419
10 | 5.4736 0 0.316276 | 5.212672 | 0.065305 | 50.60419
11 0| 5.4736 0.261085| 19.76316 | 1.431849 41.77361
12 0| 5.4736 0.261085| 4.14897 | 1.431849 41.77361
13| 5.4736 0 0.261085| 3.926069 [ 0.402915 41.77361
14| 5.4736 0 0.261085| 4.972077 | 0.402915 41.77361
15| 5.4736 0 0.261085| 4.655337 | 0.917382 41.77361
16 | 5.4736 0 0.261085| 2.969018 [ 0.917382 41.77361
17 0 0 0.250352 | 12.82591 | 1.372987 40.05632
18 0 0 0.250352 | 3.725898 | 1.372987 40.05632
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3.0PRECISELY DETERMINE THE FLUX USING NMR / GC-MS & DESIGN OF
TRACER EXPERIMENT

3.1 Introduction

Due to the lack of constraints on the metabolic network, multiple solutions arise from convex
analysis. Any one or a combination may constitute the actual flux distribution. For the E. coli
example in last chapter, minimizing PYK flux yields nine different solutions. In order to
determine the flux distribution precisely, more constraints must be added to the system.

| sotopomer tracer measurements provide an effective route for introducing more information that
can be used to discriminate between alternative flux scenarios.

Recently, several elegant goproaches have been proposed for deriving flux distribution from
isotopomer data (Schmidt et al., 1998; Wiechert et al., 1997). In this chapter, | will present a
different approach to find the flux distribution that integrates the NMR/MS simulation with the
convex analysis. The algorithms proposed in this chapter are al implemented in the software
MetaboLogic.

3.2 Isotopomer Distribution Calculation at Steady State

An isotopomer is a metabolite with a specific **C labeling pattern. A metabolite with n
carbons thus has 2" isotopomers (Schmidt et al., 1997). For each metabolite, at steady state the
composition of different isotopomer is a constant. Hence, for a metabolic network, the
isotopomer distribution for each metabolite can be decided by the isotopomer distribution of the
substrate fed to the system, flux distribution, and reaction reversibility.
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To solve the isotopomer distribution, the relationship between isotopomers in a single
reaction should be found first. Atom Mapping Matrices (AMM) (Zupke 1997) and |sotopomer
Mapping Matrices (IMM) (Schmidt 1997) are the matrices that describe the switching of carbon
atoms. The detailed information about these methods is given as Appendix B and C. In our
approach, Schmidt’s IMM approach is used. Appendix D gives an agorithm to construct IMMs
based on AMMSs.

Based on conservation law of mass, we have the following equation for a given metabolic

network.

G'v=0 (Eq. 4-1)

G is the stoichiometric coefficients matrix and v is the flux distribution vector. Each row of
G' corresponds to the mass balance of one intracellular metabolite. For simplicity, first assume

that all reactions are irreversible. Consider the i intracellular metabolite mass balance. We have

ag,v, =0, foralil [1,..q],iT [1,...n] (Eq. 4-2)

j=1

where g is the stoichiometric coefficient of " metabolite in j'" reaction. If g; >0, for the ™

reaction, metabolite i is a product. For each reaction j, we can calculate the i metabolite's

isotopomer’ s production (denoted as U j( | )) using the following relation.

Ui,j( I ): Vj*(||\/||\/|k1_)i * | A ||V||\/|K2%j * |k2) (Eq. 4-3)

ky and ko denote the substrates in the j™ reaction that contribute carbon atoms to the
metabolite i, and v; is the flux of the j™ reaction. | is the distribution vector of different

metabolites. A is the pair-wise multiplication of two vectors with same length.
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Ui, j is not a convex function of | due to the pair-wise multiplication. This property makes it
difficult to search the flux space to match the experimental data. The form of U j will be simpler
in the case that only one substrate isinvolved carbon switching, suichasA > B+Cor A - C.

lc=IMMac* Ia

And Ui,j( I ): VJ.*(|MMk19i * 1k ) (eq 4-4)

The consumption rate of isotopomer of A, and B in thereaction (A + B -> C + D) isidentical

to the rate of the reaction.

Rearranging equation 4-2 by moving all consumption term to one side of the equation yields

m m

o _ 0

agVv,= a- 9y (Eg. 4-5)
j=1,g;>0 j=1,g;<0

Based on the conservation law for each isotopomer, we have a corresponding equation

m m m

o o o

ayv,;hH=alv=LCav) (Eq. 4-6)
j=1,g;>0 j=1,g;<0 j=1,g<0

The left term is formation rate of isotopomers for metabolite i, and the right term is the

consumption rate of isotopomers. By rearranging the equation, we obtain

au,;n

_ 1790

i = — (Eq. 4-7)
avV,
j=Lg; <0
Notice for a metabolic network, we can write down a list of Equations 4-7. The number of
such an equationis g (number of intracellular metabolites), which is less than n (the total number
of metabolite). Based on this equation, a steady state isotopomer distribution (I) can be solved
using an iteration algorithm.
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3.2.1 Reaction Reversibility Consideration

The scrambling due to reversibility can be accounted by exchange coefficient (€), which is
defined as the relative magnitudes of the net flux and reverse flux.

e =V, /(Vg +V,) =V,5 /V,
V, =V, -V,

The choice of e is usualy based on the thermodynamics or those assignments made by other
works (Zupke and Stephanopoulos, 1994; Schmidts et al. 1997 and Klapa et al., 1998). After
introducing the exchange coefficient, a reversible reaction can be replaced by two reactions,
which have different directions but positive fluxes. The original stoichiometrics matrix G should
be expanded. If there are k reversible reactions, the number of column in matrix G isnowk + m.
The equation 47 holds true, after replacing each reversible reaction with two irreversible

reactions.

3.2.2 Algorithm to find IDV

If the substrate’'s IDV is known, a simple iteration method can be used to find the steady

state IDV distribution. The algorithm is described by following:

Startwith 12=(1000...0)"iT [1,..g],and | ..

émui,j (' k'l)

| k _ j=Lg9;>0
Cdculate 'i — m ,k=0,1,2, ...

[e]
aV;

j=Lg;<0

if HI - Iik'lH £e, or k < Kua stop the iteration
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There is no mathematical proof for the convergence of the algorithm, but in the application of
different example network, it converges when k (iteration number) is less than 100. And the

initial value of 1; doesn’t have significant effect on the convergence of algorithm.

3.3NMR or MS Simulation Based on IDV

If the IDV of target molecule is found, the NMR and MS spectra can be simulated. MS
spectra can be represented by mass distribution vector (MDV). A matrix (M) can be constructed

to convert an IDV into MDV.
MDV = M*IDV

where M is amatrix decided by the number of carbons in the metabolite only.

NMR spectra simulation is more complex compared to the MS simulation, and it depends on
the chemistry of different metabolites. In the current work, only the NMR spectrum of glutamate
was computed. There are three reasons glutamate was chosen as the signal molecule. First,
glutamate is the most abundant metabolite in E. coli (Tempest et a., 1970); hence, the signal-to-
noise ratio is large. Second, the signals from the three interior carbons of glutamate (C2, C3, and
C4) are not confounded by effects such as partial saturation or different nuclear Overhauser
enhancements. Third, glutamate is located deep enough within metabolism to have “recorded’

the entire flux pattern.

3.4 Operative Flux Distribution Search

Once GC-MS and NMR spectra experiment data are collected, the flux distribution can be
found by matching the simulation data with the experiment data. In order to quantify the

difference between to spectra data, a difference function should be defined first.

27



3.5 Tracer Experiment Design

The choice of labeled substrate (e.g. 1-°C, 2 -3C, U-*C, etc) will dter the difference
between experimental and simulated spectra. We can iterate al the different substrate labeling
patterns to choose the labeled substrate that makes the difference between these spectra most

significant.

Phalakornkule et al. (2000) proposed the aternative choice for labeled glucose to be screened
by assessing the relative intensities of the singlet and satellite peaks that would appear in the
NMR spectra. In the example research on the glucose metabolism of B. subtilis, the ratio of C3
singlet and C4 singlet is useful characteristic of a spectrum. The ratio of different peaks in the
gpectrathen isused to characterize the spectra.

In the case that many peaks exist in a spectrum, we proposed a formal method to evaluate the

difference between spectra. If there are only two possible scenarios exist, the choice of the
labeled substrate is aimed to minimize the value of d (in Eg. 4-8). If there are n different
scenarios, then there are (n* (n-1))/2 values of d need to be minimized, and these d’s can be list

into a matrix form.

€ d, d, .. d, 0
e u
é 0 d23 d2n U
D=¢ . ..o G (Eq 4-9)
¢ od. .Y
? (n-l)nl:|
g 0 Hﬁ*n

where d;; is the difference between spectra simulated from flux scenario i and j.

There are many choices for defining an objective function f(D) that can character the overall
difference between each spectra. One possible form of (D) could be the function shown as
equation 4-10.
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FID=fD=aad, (Eq. 4-10)
i

where L denotes different labeled substrate. A labeled substrate that maximize such of

f(D) would be a good choice.

It is noted that the elements in vector Sis chosen to be the intensity at the major peaks in the
spectra. Generally, it could be the intensity at any resonant frequency, but the former approach
has at least two advantages. First, less calculation is needed since the dimensions of vector Sis
much decreased. Secondly, the noise that appears in the base line of experimental spectra won't
affect the comparison of spectra. The disadvantage of this approach is the computer/man time
required to recognize the peak in the spectra

Exchange coefficient e significantly affects the smulated spectra. In the label design phase,
the exchange coefficients are set to 0.5 (Phalakornkule, et al. 2001). A robust labeling substrate
can be tested by varying the value of e, and to check if the difference of each scenario remains
significant. The task was to confirm that the chosen labeled glucose could differentiate two flux

scenarios over alarge range of reaction reversibilities.

3.6 Chapter Summary

Using the convex analysis in combination with IMM-based spectra smulation allows for the
prediction of the NMR spectra associated with a particular flux distribution and labeled precursor
compound. These predicted spectra, in turn, can enable the design of 13C NMR experiments.
Based on the spectra, the labeled glucose can be chosen such that the spectra associated with
different flux distribution candidates will differ most significantly. From the practical standpoint,
these algorithms and strategies may facilitate the performance of rapid-screening NMR
experiments and minimize the use of expensive 13C-labeled precursor compounds. The result of
these methods will be presented and discussed in the next chapter. Although glutamate was

chosen as the target NMR analyte based on several desirable properties, the same experimental



design strategy can be used for other analytes because the isotopomer distributions are readily
extracted from the IMM calculation.
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4.0 METABOLOGIC PROGRAM

4.1 Introduction

In this chapter, we will describe the user interface of the MSWindows program,
MetaboLogic, which integrates the modified ssimplex method and NMR spectra smulation
presented in previous chapters. The interface enables one to build and edit a network model by
drawing/modifying a picture on a computer screen as opposed to programming with a symbolic
language or working at the source code level. Once a metabolic model has been “drawn,” the
program’s computational component can (1) enumerate the flux distributions that satisfy the
constraints and optimize an objective function and (2) design **C NMR and/or GC/MS
experiments that can help validate that is desired flux distribution is actually used.

The first facet acknowledges that biological systems have built in redundancy (e.g. more than
one ATP generating reaction exists; induction/repression adds new paths). In a large network it
is not aways straightforward to intuit what flux distribution scenarios are feasible; hence, a
computerized aid can be of assistance. The second aspect pertains to designing and interpreting
experiments that will ultimately help to validate a metabolic engineering strategy with
intracellular informetion. Ultimately finding a match between the predicted and observed
spectra would support process validation and patent applications; i.e. both the extracellular and
intracellular measurements indicate that a strategy’s intended outcome occurs and the claimed
mechanisms are actually responsible for the outcome.

The program’s interface and requirements are summarized first. Thereafter, the sequence of

how a user works with the program and the nature of the interfaces is illustrated with an example

problem. We conclude with a discussion of the limitations and how they may be addressed.
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4.2 Overview of Model Construction, Visualization, Computational Components & System
Requirement

The model construction process mimics the process of using a software application (e.g.
PowerPoint) to draw a network on a computer screen. To build a network, the user first “clicks”
reactant nodes and reaction links to draw a figure. Each node is assigned a label (e.g. metabolite
name) when it is defined. At thispoint it is also possible to access and edit properties such as the
exchange coefficient and isotopomer mapping matrix. The size of model is only limited by the
available memory on the computer. For a large network, multiple pages (i.e. computer screens)
are provided to group some sub-networks. Also different graphical objects can be added to the

model “picture” for customization and presentation purposes.

Once the network is drawn on the computer screen by the user, the software automatically
generates the mole balance equations for each metabolite. These equations are accessible to the
user for checking or modification. They are presented in tabular form in a way that resembles
how one would write them on a sheet of paper. Additionaly, physiological-based constraints
(Bonarius et a., 1997) can be conveniently inputted and integrated to the model. An example of
such a congtraint is the aggregate activity of a subset of reactions must provide a minimum or
certain amount of ATP. This feature allows a user to check model assumptions, develop case

studies, or perform sensitivity analyses.

There are two computational engines: (1) prediction of all flux distributions that satisfy all
constraints and optimize an objective and (2) NMR/GC-MS experiment simulation and design.
The second engine uses the output of the first engine as an input. 1n one version mixed integer
linear programming is used to find alternative flux distributions by wedding the program to
GAMS software; the algorithm has been described elsewhere (Lee et al., 2000). The current
version employs the Depth First Search Algorithm to implement convex analysis (Zhu et a.,
2002; Sedgewick, 2001), which simplifies the integration of different software platforms. More
details on the Depth First Search Algorithm are provided in Appendix 1.



The alternate and feasible “flow sheets’ found for a particular objective and set of constraints
are provided to the user in the form of a list. “Clicking” an entry in the list will update the
window to display the network and flux values. Clicking another list entry will provide a new
figure; flux values that changed from the prior figure are shown in a different color to flag values

that differ between solutions.

Once the convex analysis is complete, each lution can be examined to find the minimum
gene set (zero flux means that gene is not required) that satisfies al the constraints. Moreover,
by checking the rate of a specific reaction in all scenarios, whether areaction is redundant or not
can be reported. This search of the solution space provides information akin to Burgard et al
(2001 &, b) investigation of the mnimal reaction sets for E. coli metabolism under different

growth requirements and uptake environments.

The prediction of the NMR/GC-MS spectra associated with a particular flux scenario is
based on the isotopomer mapping matrix method (Schmidt et al., 1997). One can either choose a
particular labeled compound (e.g. 1-3C glucose) or allow the program to identify the labeled
glucose that will maximally distinguish one flux distribution from another by having
significantly different spectral features. The approach used to enable NMR experiment design
has been described elsewhere (Phalakornkule et al., 2001). In the version described here, the
selection of the best labeled compound to use has been automated as opposed to making this
decision by manually comparing the predicted spectra.

Automation of label selection for MS/GC or NMR experiments was accomplished by
performing two steps.  First, the quantitative comparison of NMR spectra is accomplished by
vectorizing the spectra. Each dimension corresponds to the intensity of a feature (e.g. singlet
intensity of carbon 3 in glutamate), and the resultant magnitude and angle are computed. The
best labeled glucose to use can be identified by maximizing the differences between the
vectorized spectra.

Secondly, a function that quantifies the difference between the spectra vectors is defined. For

MS/GC experiment, the “difference” function is defined as the distance between the spectra



vectors because MS spectra data are typically normaized. For an NMR experiment, the
difference function is based on the angle between spectra vectors. The substrate label pattern that
maximizes the average difference between different flux scenarios is found by iterating through
al different label patterns that are available for use. In the labeling design phase, al exchange
coefficients are fixed to a reasonable value (e = 0.5). The user can change these values of the
exchange coefficients to assess how the labeling pattern works when reversibilities are higher or
have a wider range, which allows for the most robust label pattern to be identified.

4.3 Example Problem

The elimination of pyruvate kinase activity has been suggested to be a strategy for
minimizing glucose uptake and eliminating acid production by some bacteria (Goel et al., 1995).
The theory is the mutation leads to the reduced formation of the acid precursor, pyruvate, from
glucose. Thus, glycolysis and the TCA cycle are more tightly coupled where the latter is fed by
the pyruvate formed by the activity of the phosphotransferase system. Glucose-6-phosphate,
however, is ill free to flow through the hexose monophosphate pathway thereby producing
precursors and NADPH. The efficacy of the mutation strategy has been recently been supported
by extracellular measurements (Fry et al., 2000; Zhu et al., 2001).

Here, we shall show how the program can be used to quickly develop a model, explore in
silico the potential effects of the suggested mutation in E. coli, and then generate a **C NMR
experimental design. In general, looking at the results generated by using different labels ahead
of time would be wseful for eliminating inconclusive or unnecessary experiments. Moreover, the
effect of assumptions (e.g. assigned fluxes, cellular composition) can be assessed ahead of time

to gain a sense of how uncertainties may affect the interpretation of the NMR experiments.



4.4 Application of Softwareto the Example Problem

Model Construction. The model-picture construction process has two components. The first
step entalls reactant node placement on the computer screen and formatting/definition. The
second step involves drawing a reaction link and identifying its properties. These two steps are
shown in Figure 4-1, where the reaction involves the phosphorylation of glucose. The user types
the name of areactant in atext box (see Fig. 4-1a). Clicking the text box opens the text window
shown in Figure 4-1b. In this box, format (e.g. border around species), the number of carbons,
and other details can be addressed. Drawing an arrow between two species using the tool in the
menu links reactants to product species. Clicking the arrow opens another text box (see Fig. 4-
1d) that allows the user to identify the reaction as reversible, input values of exchange
coefficients, and set lower and/or upper bounds of rate if desired. The default stoichiometry is
1:1 kecause this value is common for glycolytic and other elemental reactions in the central
metabolic pathways. However, the displayed values can be changed by the user. It took about
30 minutes to build the full “model-picture’” shown Figure 42. The network’s layout can be
customized by the user as indicated by the different colors used for the different metabolites.

The balance equations for the metabolites are automatically produced (see Figure 4-3). The
equations are identical to those manually derived by Phalakornkule et al. (2000). All the user has
to do is input the “biosynthetic loads’ based on cellular composition; these values can thus be

varied to permit sensitivity analyses.

Flux Trafficking Solutions. Once the user has built a model “picture” and inputted
assumptions, the different analysis tools are accessed through the software menu or toolbar. For
this example, to calculate all possible metabolite trafficking solutions, the user can use the “Ip”
toolbox. By click the “linear programming” menu, adialog will pop up to accept the objective
function (see Figure 44) and other options for the linear optimizations. If a constant linear
objective function (i.e. “0”) is used, the software will find al the solutions that satisfy the mass
balances and inequality constraints. Otherwise, a specific objective can be inputted (e.g.

minimize pyruvate kinase flux) and an optimal subset will be reported (see Figure 4-4).



The number of different flux solutions is eighteen for the E. coli wild type. When the
objective is to minimize pyruvate kinase flux, which is the aim of the aforementioned mutation
strategy, nine flux distributions are feasible. The nine solutions are actually a subset of the
eighteen solution found for the wild-type strain. Overall, pyruvate kinase deletion can generate a
number of outcomes; a subset of the outcomes is consistent with the goal of acid elimination and
reduced glucose uptake. The computational time required to find the possible flux solutions
using a PIII-900 MHz personal computer with 128 RAM was less than 1 second. The

computation time increases with the number of different solutions in a second-order fashion.

Once the search for the optimal flux distribution scenarios is done, the user can choose Show
Flux in View Menu to view the flux values as a conventional biochemical pathway diagram. A
window will be displayed that asks the user to select the scenario of interest. The user then
chooses a number between 1 and the maximum numbers of flux scenarios found by the LP
solver. The user can aso view the different scenarios in sequence by a toolbox on the toolbar.
These values can also be exported to Excel for further analysis or an email attachment for a
collaborator. An example of the output is shown in Figure 4-5. This solution has minima
pyruvate kinase and acid fluxes.

NMR Experimental Design. The tool under the Tool Menu, Simulate Spectrum, enables
the design of a 13C NMR experiment or if preferred, a mass spectrometry experiment. Here, we

restrict the demonstration to NMR experimentation using glutamate as signal molecule.

Viathe “NMR Simulation” window shown in Figure 4-6, the user can select one or multiple
scenarios of interest. The labeling pattern and degree of **C enrichment of glucose can also be
varied by the user. Enrichments between 0 and 100 per cent can be chosen. Additionally, the
seven forms of labeled glucose that are now commercialy available can be chosen in the
“Substrate Labeling Pattern” box.

Once the user presses the “OK” button, the program produces several MATLAB code files

(m file) and executes these files to perform the NMR simulation. It first finds the isotopomer
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distributor vector (IDV) for each reactant in the network. Then, the software simulates the NMR
gpectra based on the glutamate’s IDV. The program will automatically generate a plotted
gpectrum on the screen.  For the flux scenario shown in Figure 5, using the choices of exchange
coefficients (default values of 0.5 used, see Figure 4-2.d), and uniformly labeled glucose (see
Figure 4-6) results in the NMR spectrum shown in Figure 47. The intensities of singlets and
satellites vs. ppm arising from the central glutamate carbons (carbons 2, 3, and 4 only) are
shown. To more easily view the fine structure, the user can magnify a section by using the zoom
infout function denoted by the magnifying glasses in the tool bar.

Before an experiment is done, it is important to check if a particular labeled substrate can
provide an NMR spectrum that will alow one to conclusively distinguish between the different
flux pattern possibilities. Reaction reversibility and other facets may blur the distinctiveness of
the spectra.  To address this problem, a Substrate Labeling Pattern Design Tool can be
employed. Thistool calculates the average difference between the NMR spectra associated with
the different flux scenarios and possible combinations of exchange coefficients.

Aswe discussed in chapter 3, the best labeled glucose to use can be identified by maximizing
the differences between the vectorized spectra, which is defined as the angle between different
spectra vectors. To illustrate, the spectra arising from the nine flux aternatives will maximally
differ in their features when 2-3C glucose is used (see Table 4-1). Glucose labeled in the 1, 5,
and 6 positions also yield spectra that can distinguish between the nine scenarios, but the contrast
is lower than when 2-2°C glucose is used. Uniformly labeled glucose or labeling in positions 4
and 3 may not prove to discriminate between the spectra that can arise from the nine flux

distribution scenarios.

Once an NMR experiment has been performed, the software can also be used to further
interpret the data in terms of what fluxes and reaction reversibility could generate the observed
gpectra. This tool is accessed by choosing “Spectra Search” from the “Tools” menu. A dialog
box (see Fig. 8) will appear to request the NMR data file and other information. The user can
also define the upper bound and lower bound of exchange coefficients for each reversible

reaction. This feature is useful because two different flux distributions could conceivably yield



similar NMR spectra if the reaction reversibility was different. After the searching is finished,
the software will report the most likely flux distributionand exchange coefficients, as well as the

difference between the simulated spectra and the experimental one.

4.5 Chapter Summary

A Windows program for metabolic engineering analysis and experimental design has been
developed. A graphica user interface is intended to enable model construction, modification,
and communication. Such an interface eliminates the need for programming at the source code
level when one wishes to investigate other’s computational results or to modify a problem. The
example shown can be run on a 900 MHz lap top computer. The different tasks are executed in

seconds to several minutes.

Two limitations exist which are the subject of ongoing work. First, the NMR spectra
prediction focuses on the analyte, glutamate. The rationale is glutamate is an informative and
often used analyte. Moreover, the demands and cost of performing a glutamate-based NMR
experiment are less that, for example, acquiring the spectra of hydrolyzed protein. Thus, a
layered approach, where one first ascertains if the easier NMR experiment can do the job would
seem to be a logical and cost effective first step. If one finds through the ssimulation and design
functions that the glutamate NMR spectra cannot provide corclusive information, then a strong
justification for a including more anaytes in a more labor- and cost-intensive experiment is
provided before that experiment is performed. Including additional analytes in the simulation
and design function is straight forward as long as they are network components, or the mapping
from a network component to a desired analyte is known. Thus, we shall add a menu that allows

for the NMR spectra of different analytes to be predicted.
The second limitation is the trafficking solutions provided are not fully narrowed down by

the regulation (e.g. feedback inhibition) actually present. Currently, upper and lower bounds for

individual fluxes, reaction directionality, and aggregate constraints capture thermodynamic
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feasibility and some regulatory details, which in turn, limit the number of aternative solutions.
In practice, however, separated network elements can “communicate” by feedback loop cascades
and/or mutual induction and repression behavior, and these features are rot fully captured by
capacity or other constraints. This limitation can be addressed by adding integer or other
congtraints, which will be the subject of future work. However, from another standpoint, it may
be still worthwhile to examine a larger solution set because they imply what regulation needs to

be present and also absent. Both types of information are of interest and can be the goals of cell
engineering at the molecular level.
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Table 41 Performance of Different Labeled Glucose Substrates in Distinguishing Flux Scenarios by *C NMR
Analysis

Glucose L abel Pattern Aver age Difference between NMR spectra*

2-CE 21.3
1-ctd 11.1
5-Cct3 8.12
6- C13 6.14
4-cB 3 cBu-c® <0.16

* The average difference between NMR spectra simulated from different extremes point of the
convex polytope is calculated based on the angle between the vectors describing the NMR
spectra features.
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S.0ELIMINATATION OF ACID FORMATION

5.1 Introduction

It has been suggested that E. coli and B. subtilis have excess glycolytic capacity relative to
the Krebs cycle (Mgewski and Domach, 1990, Jensen and Pederson, 1990, Marr, 1991) when
grown in glucose containing growth medium. In chapter 2, we found pyk deletion might be a
good genetic engineering strategy to reduce acid by- production.

In this chapter, the acid formation in an E. coli pyk and the B. subtilis pyk mutant were
compared. The results demonstrate that acid formation is significantly reduced in the PYK
mutant of E. coli as well. This substantial reduction in acids is accompanied by an increase in
CO, production. Moreover, the growth rate of the E. coli pyk mutant is only dightly lower than
the wild-type. This is in contrast to B. subtilis pyk mutant, which exhibited a significant
reduction in growth rate (Fry et al., 2000). This difference might reflect a dramatic increase in
PEP pool of the B. subtilis pyk mutant. The E. coli pyk mutant did not show a substantia

increase in the PEP pool.

5.2 Materialsand Methods

5.2.1 Cdlsand Growth Medium.

Construction of B. subtilis pyk mutant was described in Fry et al. (2000). The E. coli mutant
strain (PB25) lacking activities of both PYKI and PYKII was used in these experiments. The
strain was generously provided to us by Dr. Fernando Vale (Ponce et al., 1995). The medium
was M9 (Maniatiaset al. 1982). The concentrations of glucose used in each experiment are noted

in the text.



5.2.2 Cultivation & Measurement of Cell Mass, Glucose, & Extracelular Acid..

A fermentation vessel with 2 liter capacity (Applikon, Austin, TX) was used. An ontline
data acquisition system collected data for CO2 evolution rate from a Dycor mass spectrometer
(Ametek, PA) using a standard gas mixture for calibration. The air flow rate was set at 2.5 I/min.
Optical density was measured off-line using a Lambda 6 Perkin Elmer spectrophotometer
(Perkin Elmer, Norwalk, CT), (1 ODeso = 0.36 g cell dry weight/l). The glucose concentration
was measured enzymatically. The concentrations of organic acids (lactate, acetate, acetoin,
formate, fumarate, malate, pyruvate, succinate, and citrate) were measured using a HPLC
gradient Module (Bio-Rad, CA) equipped with a UV/VIS detector (Godl et al., 1993).

5.2.3 Intracellular Enzyme & Metabolite Assays

For PEP assays, cell extracts were prepared using the formic acid extraction method. A
sample was withdrawn via a syringe and quickly filtered (5-10 s) followed by immersion of the
filter into liquid nitrogen (20 s). The metabolites were extracted from the filtered cells by
immersing the filter in formic acid as detailed by Fisher & Magasanik (1984) and assayed as
described in Godl et al. (1999).

5.3 Results and Discussion

Growth experiments were first conducted in shake flasks. The volume of the growth medium
in the flasks was 10% of total volume. Our initial experiments with a low glucose concentration
(2.2 g/l) in the growth medium showed very similar growth rates and final cell densities for the
wild-type and the mutant cultures (Figure 51). Additionaly, very low levels of acids were

found in both cultures of wild-type and the mutant.
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Since acid formation is substantially more pronounced in high glucose cultures, an
experiment was conducted with a higher initial glucose concentration. Figure 5-2 is the growth
curve of the wild-type and the mutant in batch cultures with an initial glucose concentration of 9
g/l. This figure shows that the growth rates of the wild-type and the mutant are smilar in the
shake flasks. but higher cell densities are attained for the mutant than the wild-type culture. The
major difference between the wild-type and the mutant was, in the levels of acids found in their
cultures. Figure 53 demonstrates that the pyk mutant produces significantly lower levels of
acetic acid. The increase in cell density (1 OD 660 = 0.36 g/l of cells based on our calibration)
of the mutant culture can not compensate for the dramatic reduction in acetic acid. Thus, it is

likely that CO, formation may be substantialy higher in the mutant cultures than the wild-type.

In order to assess how glucose carbon was distributed between cells and metabolic by
products, an experiment was conducted in a 2 liter fermentor (800 ml working volume). In this
experiment, the CO, evolution rate was monitored. Figures 4a and 4b compare the cells and CO,
produced by the wild-type and E. coli mutant, respectively. The initial glucose concentration in
this batch experiment was 10 dl. Data shown in Figure 4a depict that the growth rate of the
mutant was about 15% lower than the wild-type initialy but the mutant reaches a higher cell
density. For the wild-type culture an exponentia increase in cell density occurs for the first 200
minutes of the growth. This is consistent with the rapid rise in CO, evolution rate during the
same period (Figure 5-4b). For the time period after the first 200 minutes the rate of increase in
cell density of wild type culture decelerates. During this later period acid formation is significant

(see Figure 4c) and CO, evolution rate is decel erated.

The cell density of the mutant also increases exponentialy for the first 200 minutes but it is
followed by an extended linear increase. This trend is aso observed in CO; evolution rate of
mutant culture (Figure 5-4a). The CO» evolution rate (Figure 5-4b) shows an initial exponential
increase followed by an extended period of relatively high but constant CO, evolution rate.
Figure 4b also shows a substantialy higher CO, production in the mutant than the wild-type
cells. While CO; production is higher in the mutant, acetate and pyruvate are present at a

drasticaly lower level in the mutant than the wild-type cultures (Figure 5-4c). Figure 5-4d

52



indicates that in contrast to the wild-type culture, glucose was completely utilized in the mutant
culture. The drop in acid concentration following the exhaustion of glucose may be due to the

consumption of acids towards the end of growth phase.

The carbon balances were performed for the fermentor experiment at two points during
fermentation. The results are summarized in Table 1. Overall, the results indicate a lower rate of
acid formation in the mutant (Figure 5-4c) and higher cell mass (Figure 5-4a) and CO; (Figure 5-
4b) production. These results confirm our original hypothesis that acid formation should be
substantially lower in the pyk mutants (Goedl et al., 1995). The results of Table 1 aso
demonstrate that a substantially higher fraction of the glucose consumed evolved as CO- in the

mutant culture.

This higher CO, yield for the mutant appears to be in contrast with the results reported by
Ponce et al. (1998) who found equal CO» yields (mole CO,/mole glucose) for the wild-type and
the PB25 dtrain (lacking activities of both PYKI and PYKII). Ponce et al. (1998), did not
measure acid for the wild-type or the mutant in their experiments. Our results (Figure 54 and
Table 51) are for a medium glucose concentration of 10 g/l versus 2 g/l in the experiments
performed by Ponce et a. (1998). In experiments with 2.2 g/l glucose in the medium (Figure 5
1), we have found very little or no acids in both wild type and mutant cultures. Furthermore,
given that both cultures attained essentialy similar cell density, the CO, evolution rate may not
be significantly different in the two cultures at low glucose concentrations. Thus, our results at
low glucose concentration are in agreement with the results of Ponce et al. (1998). However, the
results of Figure 5-4 and Table 5-1 indicate that major differences between the wild-type and the

mutant become discernable at high glucose concentrations.

The pyk mutation has the advantage of allowing the cell's strategy of phosphorylating
metabolites to prevent leakage to be harnessed. This advantage contrasts other acetate flux-
reducing approaches. DiazRicci et al. (1991) abolished the activities of acetate kinase and acetyl
phosphotransferase, the enzymes responsible for acetate production in E. coli. The deletion
eliminated acetate production but resulted in significant formation of pyruvate. Another

interesting strategy entails diverting excess glucose flux to products that are less toxic than



In NMR spectra data, the relative signal intensity of different singlets and multiplets is the
information that can be used to compare between two spectra. If a vector collects the signal
intensity to represent aNMR spectrum, then the angle between such two vectors will be a good

indication of the difference of spectra.

S
d; =cosg; = 59,

IREEX (Bq. 48

where f; is the intensity of i" peak in the spectra. || S || denotes the second norm of vector S.
Such an angle function performs better than the distance between spectra, S and S, because the

absolute signal intensity also depends on the sample concentration and instrument sensitivity.

A mass distribution vector (MDV) will present the mass spectrum. Since the summation of
all components of MDV is one, the distance between two MDYV is a good indication of the
difference. Because of natural abundance of 13C, the raw data of MS should be adjusted before

using to search the flux space.

The experiment data of NMR spectra can also be present as such a vector. Finding the
operative flux distribution can be solved by searching the convex polytope to find a matching
between simulated NMR spectra and experiment one. Such a problem is a constrained global
nonlinear optimization problem. We adopt GAOT (generic algorithm optimization toolbox)
(Houck et al. 1995) to solve the optimization problem. GAOT can be downloaded on

http://www.ie.ncsu.edu/mirage/ GAToolBox/gaot/. We aso use the “fmincon” function from the

MATLLAB optimization toolbox to solve the problem. Although, fmincon is a loca
optimization tool, it converges much faster than GAOT (more than severa orders). Additionally,
fmincon can find the most of the solution accurately, and a good initial guess will significantly
reduce the computation time. Further work on formulating a better objective function and a

better initial may help increase the efficiency of searching.
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acetate. Dhedia et al. (1991) engineered E. coli to overproduce glycogen, as a way of diverting
the excess glucose flux. Although glycogen levels increased by severa-fold, the acetate
production remained essentially unatered. Chou et al. (1994) mutated ptsG, the gene encoding
an enzyme in the glucose phosphotransferase system. The ptsG mutation reduced glucose uptake
by about 20%. This decreased glucose uptake led to a 20-40% decrease in acetate yield, 15%
lower growth rate, and an overal 50% increase in productivity of b-gaactosidase (as a model
recombinant protein). Finally, Farmer and Liao (1997) were able to achieve acetate reduction by
increasing the activity of two anaplerotic pathways. E. coli strains which overexpressed the PEP
carboxylase gene and depressed the glycoxylate bypass were shown to reduce acetate production
four fold with respect to the wild type strain. However, there was no increase in cell density

indicating the possibility of glucose conversion to other metabolic by-products.

Finally, we measured the intracellular PEP concentration for the mutant and the wild-type of
E. coli (Figure 55). The intracellular concentration of PEP is typically very low in bacteria
The PEP concentration for both wild-type and the mutant remained below the detection limit of
about 0.06 mM. Thiswas in sharp contrast to our recent finding with the B. subtilis pyk mutant
(Fry et al., 2000). The B. subtilis pyk mutant exhibited a very high intracellular PEP
concentration of about 30-fold higher than the wild-type leve.

The difference in PEP concentration between E. coli and B. subtilis pyk mutants is very
interesting. This difference may be due to the differences in the path of formation of oxal oacetate
in these bacteria. In E. coli, PEP is converted to oxaloacetate by the enzyme PEP carboxylase.
Excess oxaoacetate may produce malate, which in turn can yield pyruvate via malic enzyme
activity. This two step path may result in a "trickle" around the pyk mutation that could have
just enough mass action potential to be thermodynamically feasible. Thus, since E. coli can
convert PEP to oxaloacetate or pyruvate, it may not accumulate high levels of PEP. In B. subtilis
oxaloacetate is formed by pyruvate. Hence, in a B. subtilis pyk mutant, there are no routes for
converting the PEP formed by glucose transport to TCA cycle metabolites or pyruvate. This
difference in the oxal oacetate-forming reactions may explain the build up of PEP in B. subtilis

pyk mutant but not in E. coli pyk mutant.



5.4 Chapter Summary

In summary, while the residua acid production in the mutant (even with elatively high
initial glucose concentration) is low and we are pleased with the results, some further
improvements may result from blocking a possible small flux that bypasses the PY K bottleneck
through the activities of the PEP carboxylase and the malic enzyme. It is likely that incorporation

of a malic enzyme deletion into the pyk double mutant of E. coli might further reduce acid
formation.



Table5-1 Carbon balance at different timein the batch growth of wild type and mutant

Strain (culture time) Cin cdis® Cin acids® Cin CO2"
Total C used® Total C used Total C used
Wild Type (320 min) 29.3 295 336
Wild Type (600 min) 23.7 29.3 37.3
Mutant (320 min) 37.0 9.2 52.8
Mutant (600 min) 27.7 8.1 52.0

Total Carbon used was calculated using the difference between initial glucose concentration
(zero time) and glucose concentration at the time indicated in the table.

The carbon content of cell was estimated based on (1 ODeso = 0.36 g cell/l) and cell carbon
content of 0.45.

Carbon in acids (acetate, pyruvate) was calculated based on data of Figure 4c.

Carbon in CO, was calculated by the measurement of the area under the curve in Figure 4b.
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Figure 5-1 The growth of wild type and pyk mutant of E. coli with feed glucose concentration of 2.2 g/l. The
experiment was repeated 3 times. The error bars represent the average variation in optical density
measur ements
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6.0 ENHANCEMENT OF FOLIC ACID PRODUCTION

6.1 Introduction

Metabolic engineering has focused on increasing the yield of both low quantity/high value
products and commodities. One product that has received less attention in the United States
metabolic engineering community is folic acid, a member of the B class of vitamins. Folic acid
is not produced by birds and mammals so it is an important dietary requirement. Food
supplements and microbial production in the digestive track are the main sources of folic acid for
mammals and birds. Production by intestinal bacteria is often insufficient and can be impaired
by antibiotic intake. A number of recent developments, such as studies that show increased folic
acid intake can lessen the incidence of birth defect have raised the demand for folic acid. To
meet current demand, the bulk of commercialy sold folic acid is produced by chemical
synthesis. This synthetic source is relatively expensive based on raw material costs and the low
process yield, hence, interest has emerged on increasing the yields associated with potential
biological routes.

In the first part of this chapter, convex analysis method embedded in MetabolLogic will be
used to explore metabolite trafficking options for enhanced folic acid production. The, phase
planes will be used to represent the flux distribution of several potentially high yielding
metabolic mutants. Finally, the most viable genetic engineering strategy predicted for enhanced
folic acid will be discussed.

The second part of this chapter will focus on experimental verification of some of the model
prediction. Specialy, we will show that in according to the model prediction, PYK mutation is

an efficient metabolic engineering strategy for enhanced folic acid production.



6.2 Stoichiometric Model and M ethods

6.2.1 Model and Analysis Methods

The biochemical reactions in central carbon metabolism of E. coli as well as candidate

reversible reactions are shown in Figure 6-1. The networks are based on our prior work (4).

The metabolite balance equations and constraints have been previously described @). Cell
mass compositions data for E. coli are from previous work (6, 7). Other constraints are derived
from NADPH and minimum ATP requirements 8). A reference specific growth rate equal to

0.4 h'! is used to generate flux units that can be scaled when other growth rates are considered.

The overall stoichiometry for folic acid production can be described as:
2PEP + E4P + 1.5 3GP +KG + 11 ATP + R5P + 4 NADPH >
FA + Pyr + GLdh + 1.5CO2

where PEP (phosphoenolpyruvate), E4P (erythrose-4-phosphate), 3GP (3-phosphoglyceric
acid), KG (oxoglutarate), R5P (ribose-5-phosphate), Pyr (pyruvate) and Gycolaldehyde (GLdh)
are intermediate metabolites present in the central carbon metabolic pathway. FA (folic acid) and
CO, are cellular products. This lumped reaction is added to the model, assuming the leakage of
intracellular metabolites in this pathway is negligible when the strain is optimized for folic acid

production.

Using the MetabolLogic model construction tool, all the reactants, reactions and constraints
are inputted in less than an hour. The objective function, maximization of folic acid production,
is used to find all the flux scenarios that lead to high folic acid production. Computation takes

less than one minute on a PI11-900 Hz computer.



6.2.2 Experimental Methods

The E. coli wild-type strain (IM101) and mutant strain (PB25) lacking activities of both
PYKI and PYKII was used in these experiments. The strain was generously provided to us by
Dr. Fernando Vae (9). The medium was M9 (10). An initial glucose concentration of 4 g/L. was
used. Optical density was measured off-line using a Lambda 6 Perkin- EImer spectrophotometer
(Perkin-Elmer, Norwalk, CT), (1 OD660 = 0.36 g cell dry weight/l).

250 mL Shake flasks were used in the cultivation experiments. Folic acid concentration is
measured using microbial method (Difco Manual 11'"). Samples were collected at different
culture time for E. coli wild type and mutant culture. These samples are filtered thought 0.2 nm
filter, and diluted 40 to 200 times based the estimated folic acid concentration. Stock cultures of
the test organism, L. casei subsp. Rhamnosus ATCC® 7469 were prepared by stabbing
inoculation into prepared tubes of Lactobacilli Agar AOAC. The cultures were incubated at 35-
37°C for 18-24 hours. The cultures were stored in the refrigerator at 2-8°C. Transfers were made
monthly. The inoculums for assay were prepared by subculturing from a stock culture of L. casei
subsp. rhamnosus into a tube containing 10 ml Micro Inoculum Broth. These inoculums were
incubated at 35-37°C for 16-18 hours. Under aseptic conditions, the tubes were centrifuged to
sediment the cells and the supernatant is decanted. Cells were washed 3 times in sterile single-
strength Folic Acid Casei Medium. After the third washing, the cells were resuspended in 10 ml
sterile single-strength medium and were diluted 100 times. 20 L of this suspension was used to
inoculate each of the assay tubes. In each test tube, 2.5 mL double-strength Folic Acid Casel
Medium, 0.5 mL of sample and 2 mL distilled water were added to the test tube to make the total
volume 5 mL. The growth response of the assay tubes was read turbidimetrically after 18-24
hours incubation at 35-37°C. It isessential that a standard curve be constructed for each separate
assay. Autoclave and incubation conditions can influence the standard curve readings and cannot
always be duplicated. The standard curve may be obtained by using folic acid at levels of 0.0,
0.1,0.2,0.3, 0.4 and 0.5 ng per assay tube (5 ml).



6.3 Results and Discussion

6.3.1 Computation Results

To scout the complete yield horizon, we first found al the solutions that can satisfy the
metabolic constraints for the growth of E. coli in glucose minimum medium while maximizing
folic acid flux. We found 32 different flux distributions. The highest carbon yield predicted for
folic acid [mol C in folic acid/mol C from glucose] is 0.087. Certain aspects of the flux solutions
will be highlighted further here because of their potentia implementation via metabolic
engineering and a tractable relationship exists to what is known about folic acid synthesis. One
aspect istherole of PYK activity (i.e. Figure 1; rig flux). Asnoted earlier, reducing the activity
of PYK could elevate at least one folic acid precursor, PEP, as well as divert carbon normally
lost to acids (11, 12) into other more useful metabolic products.

One phase plane for folic acid production by wild-type E. coli is shown in Figure 6-2, where
PYK-catalyzed flux is the independent variable. Folic acid synthesis increases linearly as the
PYK-catalyzed flux decreases to zero. This limiting result suggests that a mutant deficient in
PYK activity may exhibit elevated folic acid production.

Because PEP is an important folic acid precursor, another potential strategy for elevating
folic acid synthesis is to replace the phospho-transferase system (PTS) with a glucose permease.
In E. coli, one mole of PEP is converted to pyruvate when one mole of glucose is transported
into the cell via PTS. Replacing the PTS by glucose permease, which transports one mole of
glucose at cost of one mole of ATP, could thus reduce PEP use and increase intracellular

concentration.

A comparison of the PTS and PYK activity-modulating strategies and abbreviated pathways
are shown in Figure 3. Based on the wild-type phase plane (Figure 6-2) and the stoichiometric
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potential of a PTS-deficient mutant, models of PYK - and PTS-deficient strains were constructed.
The phase planes for the PYK- and PTS-deficient strains are shown and compared to the wild-
typein Table 1.

The phase plane for the PYK-deficient strain (Table 6-1) is smply a subspace of the wild-
type because one additional constraint was added (i.e. Figure 1, rig = 0). Therefore, the
maximum production potential of folic acid for the wild-type cannot be surpassed by a PYK
mutant. However, the solution shows a contracted glucose uptake window within which, folic
acid synthesis potential is high. Moreover, the phase plane for the single PY K mutation provides
a bench mark for comparison to the folic acid production that may be achieved by the PTS
deletion.

The PTS-deficient mutant is predicted (Table 6-1) to have greater folic acid production
potential compared to the wild-type (and the PY K -deficient mutant). The maximum production
rate is predicted to equal 1.81 mmol g* hi*. Moreover, this high potential production rate could
aso be achieved with a lower to comparable glucose uptake rate (9 mmol g' h?), which
indicates that the potential molar and carbon yields are higher than that associated with the wild-
type or PYK-deficient strains. Indeed, based on the fluxes (not shown), the molar maximal
potential yield for the PTS-deficient strain is 0.211 mol folic acid/mol glucose, which is more
than double the wild-type' s or PYK-deficient mutant’s yield potential .

Although the results show that PTS mutation might be an effective strategy for increasing
folic acid production, stoichiometric calculations need to be combined with kinetic and other
considerations in order to fully assess different metabolic engineering strategies. Indeed, a
recent study (13) reported that PTS-deficient strains can exhibit very slow growth rates. Slow
growth could potentially limit the utility of the PTS-deletion strategy for folic acid production
especialy if the product was labile and regulation is such that product synthesis is growth
related.
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6.3.2 Experimental Results and Discussion

Based on desirable growth properties (12) and stoichiometric potential, we have first focused
on examining the utility of using a PYK-deficient mutant of E. coli for producing folic acid.
Figure 6-4 shows that the growth rates of the two strains were similar. Additionally, folic acid
accumulation in the medium appears to parallel growth. However, the folic acid production by
the PY K -deficient mutant (0.27mg/L at the end of growth) was significantly higher as compared
to the wild-type strain (0.05mg/L at the end of growth). Thus, based on theoretical yield
potentials and experiments, PY K -deficiency shows promise as a starting point for enhancing the

folic acid production by bacteria.

Our other initial work has also suggested (not shown) that after accumulating in the medium,
folic acid is consumed by nutrient-starved cultures presumably for the glutamate content. Future
work will be devoted to mapping out the product formation and degradation kinetics in more
detail in order to further maximize the product yield. Additionaly, using what has been learned
in E. coli to metabolicaly engineer Bacillus subtilis to produce folic acid with high yield is
envisioned. In contrast to E. coli, B. subtilis is generally regarded as “safe;” hence, B. subtilis

may be prove to be a more commercially acceptable platform for nutraceutical production.

6.4 Chapter Summary

Computer-aided metabolic flux analysis has suggested how to divert cell raw materials to
elevate the production of folic acid in E. coli. One of the strategies, pyruvate kinase (PYK)
deletion, is predicted to divert resources to increase folic acid production. This flux redirecting
strategy is aso consistent with elevating the precursors, phosphoenolpyruvate and erthyrose-4-
phosphate, which provides the mass action potential to increase the product formation rate.
Experimental measurement of folic acid released in the culture medium shows that deletion of

pyruvate kinase activity from E. coli significantly increases folic acid production. These



calculations and experimental results suggest thet PYK deletion may be a good initial starting

point for further enhancing folic acid production via metabolic engineering..
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Table6-1 Phase plane of different E. coli strains

Strain Phase Plane of Folic Acid Production vs. Glucose Consumption
(Metabolic engineering strategy)
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Figure 6-2 Phenotype plane of E. coli wild type. Pyk flux is constrained from 0 to 20 mmol g™ h™.
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Appendix A Depth First Search Algorithm

A simple problem (Steuer, 1986) can illustrate the computation procedure.

Max Z= 2%+ 2%

st. X1+ X2£ 4
X1+ 2X3£ 8
and X1, X2 , X33 0.

A graph of the problem is shown in Figure A1l. There ae six “corner points,” which are
more typicaly termed, “extreme points.” In a linear programming problem where the feasible
domain is convex, optimal solutions will lie at one or more corner point (or along an edge). In
this case, the objective function is a family of parallel lines where % versus x has a sope equal
to—1. Different values of » intercepts and % are possible. By inspection, the points, A, B, C,
and D are the extreme points that minimize z.

Reformulating the problem by introducing dack variables to replace inequality constraints
with equalities resultsin

Max Z=2X1+ 2X2

st. X+ X2+ X4=4
Xp+ X3+ X5 = 8

and X1, X2,X33 0.

The Depth First Search Algorithm (DFS; also known as the last-infirst-out (LI1FO)
algorithm) involves starting with a node and visiting each of the nodes adjacent to the current
node, calling the algorithm on each that has not been visited. Each node corresponds to an
extreme point; hence, DFS is a strategic way to identify and search the extreme points for the
occurrence of equally optimal values of an objective function. An organized search becomes
necessary when the dimensionality of a problem defies graphical solution. The Simplex Method
is employed for determining which variables enter and depart the basis set and thus how the

nodes connect and branch.
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When choosing which edge to explore next, the algorithm always chooses to go ‘deeper’ into
the graph. That is, it will pick the next adjacent unvisited vertex until reaching a vertex that has
no unvisited adjacent vertices. (For this purpose, the agorithm simply initializes a set of
markers, so, we can tell which vertices are visited. If a vertex has several neighbors, it would be
equally correct to go through them in any order.) The algorithm will then backtrack to the
previous vertex and continue along as-yet unexplored edges from that vertex. After DFS has
visited al the reachable vertices from a particular source vertex, it chooses one of the remaining
undiscovered vertices and continues the search. This process creates a set of depthfirst trees,
which together form the depth-first forest.

The search for optimal solutions can be tracked by Tableaus and Figure A1. The Tableau
calculations identify extreme points and which basis variable to replace with a nonbasic variable.

Table |

VA X1 X2 X3 X4 Xs RHS
z 1 -2 -2 0 0 0
Xa 0 1 1 0 1 0
X5 0 1 0 2 0 1
The reduced ratio test indicates that x; comes in and x; departs the basis set.
Table 11
z X1 X2 X3 X4 Xs RHS
z 1 0 0 0 2 0 8
X1 0 1 0 1 0 4
Xs 0 0 -1 2 -1 1 4

Thisisan optimal solution {4,0,0} which corresponds to the point A in Fig.A L.

From here, it is possible to branch into 2 nodes :
X2 comes into the basis.

X3 comes into the basis.



Now examine the branch (1).

Tableau 111

z X1 X2 X3 X4 Xs RHS
Z 1 0 0 0 2 0
X2 0 1 1 0 1 0 4
Xs 0 1 0 0

Another optimal solution {0,4,0} (D in Fig. Al).

Further branching can be done as follows:

X1 comes into the basis— here, the new basisis {1, s}, which has been already examined in
Tableau Il — so, this node is fathomed.

X3 comes into the basis — this is now examined.

Table I1V:
Z X1 X2 X3 X4 X5 RHS
Z 1 0 0 0 2 0
X2 0 1 1 0 1 0
X3 0 1 0 1 0 %

S0, the optimal solution is{0,4,4} - thisisCinFig Al

Further branching is as follows:

Xs comes into the basis— here, the new basisis {2, xs}, which has been already examined in
Tableau 111 — 0, this node is fathomed.

X1 comes into the basis - this is now examined.

Table V:

X1

X2

X3

X4

Xs

RHS
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X1 0 1 1 0 1 0 4

X3 0 0 -Yo 1 -Yo Yo

The optimal solution in this case is B{4,0,2}

Branching occurs again in the following manner :

X2 comes into the basis — here, the new basis is {xz, xs}, which has been aready examined in
Tableau |V — s0, this node is fathomed.

X5 comes into the basis— here, the new basisis {x1, X}, which has been already examined in
Tableau Il — so, this node is fathomed.

Both nodes have been fathomed so the search returns to Node 2 (after Tableau I1). Here, the
new bass is {x;, »}, but this has already been examined in Tableau V. Thus, no further
branching is possible and we have obtained all the possible solutions of the LP. The Depth-First
Search (Branch & Bound Scheme) presented in the Tableaus is also summarized in Figure A.2.

Xz

D(0,4,0)

C(0,4,4) N

A(4,0,0)

‘Xl

(40,2

X3

Fig A1 — Graphical Representation of the given LP
(the solutions are indicated)
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Figure A2. Branch and bound scheme used to solve the example problem.
The current basis variables are shown in the circles. ‘X’ indicates that a
node has been fathomed.

Algorithm

The agorithm is a typical depth first search algorithm. The distinction of this algorithm is
that the graph is built as long as the searching goes on. In contrast, a common depth first search
takes a built graph as input.

There are 3 arrays used in the searching, E [], finish [], and dad []. E collected alternative
optimal vertices. Finish [i] is a Boolean variable to tell us if all the adjacent points to E [i] have
been searched or not. Dad[i] save the index of the dad point, from which EJ[i] was searched, and
for the starting point, the dad is set to be —1. The indices of all arrays start with O.

1. Use smplex method to find starting optimal extreme point S. Put S in the array E,
here Sisthefirst element in the array (E [0]). And dad [0] = -1 and finish [0] = fdse.

2. Check the extreme points connecting with aE [i] (i =0,..). If one point has the same
value of objective function and it is not in the Array E. Add this point to the end of
array E, which is now the i point in array E. Set finish [n] = false and dad [n] = .
Then dtart to search the neighboring point of E[n].

3. If for point E [i], there are no point found to be added to array, set finish [i] to true,
The point in E array indexed by dad [i] is chosen to search the neighborhood. If
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finish [dad [i]] is already true (aready finished searching), use dad’s dad, until back
to E [O].
4. If every finish [Q] istrue, the algorithm finishes and all the optimal vertices are saved
inaray E.
Five mfiles are used for convex anaysis. LinprogT, lpex, PHASEI, PHASEII, and
PHASEIII. The PHASEI and PHASEII are adopted from Jeff Stuart, Department of Mathematics
at University of Southern Mississippi. These two pieces of code implements atwo phase simplex

method. Only PHASEII1.m implements the searching algorithm, which is given as followed.
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Table A-1 phaseiii.m

function [z,xbasicTable,ibasicTable,ienter,iter, PCOL,OPTEST,CYCTEST] = phaseiii (A, b, c, ibasic );
%PHASEII searchs other optimal extreme points

%The first optimal point is found by PHASEII with ibasic as the selected base,
%and xbasic as the values of x.

%

%See also PHASEI and PHASEII.

%Written for Matlab version 5.0.

%

%Written by Tao Zhu, Department of Chemical Engineering,

%University of Pittsburgh, PA 15219. March, 2001.

%tzzt@yahoo.com

% Written for MATLAB version 5.3

% Author: Tao Zhu

% Email: tzzt@yahoo.com

% date: March.03.2001
% Department of Chemical Engineering,

% University of Pittsubrgh, Pittsburgh, PA 15219.
% Copyright to Tao Zhu. Al right reserved.
[m,n]=size(A);

PCOL=[];

ienter=[J;

iter=0;

cycle=0;

CYCTEST=0;

X=zeros(1,n);

J=X;

t0l=0.0000000000001;

7t0l=0.0000000000001;

J(ibasic)=ones(1,m);

K=[1:n];

inon=K(~J);

B=A(:,ibasic);

xbasic=B\b;

%save the basis in the table

xbasicTable=xbasic"; %xbasic is column vector, BUT xbasicTable is row oriented.
ibasicTable=ibasic; %ibasic is row vector, AND ibasicTable is row oriented.
iSolution=1;

bFinished=0;

dads = 0; %the first basis has no dad

z=c(ibasic)*xbasic;
if m<n;
X(ibasic)=xbasic;
Cred=c(inon) - (c(ibasic)/B)*A(:,inon);
OPTEST=1;
loop =1;
dad =-1;
while loop ==1;
if max(Cred) >= 0; %means other optimal solution is found
%must find new basic, for Cred=0 and has not been selected into the table.
pp=logical(find(Cred>=0));
% inonSelect = ZT(inon,pp);
inonSelect = ZT(inon,pp);
[row,col]=size(inonSelect);
Y%for each of possible new basis, found the one may switch with it.
newBasisfound=0;
for i=1:row;
ienter=inonSelect(i);
PCOL=B\A(;,ienter);
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Table A-1 (continued)

if PCOL <= 0, OPTEST =0;

loop = 0;
else
testd = J;

testJ(ienter)=1;
TESTROWS=find(PCOL > ztol);
TESTCOL=PCOL(TESTROWS);
Y%another loop to pick the one that should be switched out from the original bases
[minrat,jl=min(xbasic(TESTROWS)./TESTCOL);
if minrat <=0, cycle = cycle+1;
if cycle > m;
disp('Algorithm terminated due to excessive cycling.")
disp(Restart algorithm from phase Il using a perturbed')
disp(' RHS vector b and the current basis.")
disp(ibasic)
CYCTEST=1;
break
end
else
cycle =0;
end
iexit=ibasic(TESTROWS());
testJ(iexit)=0;
testd=logical(testJ); %don't change the state of J and ibasic at this time
testBasic = K(testJ);
%Check if the ibasic is already in the table
alreadyHas=0;
for p=L:iSolution;
if (all(testBasic ==ibasicTable(p,:)))
alreadyHas=1; %already in the ibasicTable
break;
end
end
if (alreadyHas==0); %new basis found ! good
xbasic=xbasic - minrat*PCOL;
X(ibasic)=xbasic;
X(ienter)=minrat;
X(iexit)=0;
%z=z + Maxcost*minrat;
J = testJ; %since it is good J
ibasic=K(J);
inon=K(~J);
B=A(:,ibasic);
xbasic=X(ibasic)’;

test = c(ibasic)/B;
if test~=inf; %good test! B maybe not full ranked
newBasisfound=1;
Cred=c(inon) - (c(ibasic)/B)*A(:,inon);
%add new basis to the table
xbasicTable=[xbasicTable;xbasic’;
ibasicTable=[ibasicTable;ibasic];
iSolution=1+iSolution;
bFinished= [bFinished; 0];
if dad==-1;
dads=[dads; iSolution-1];
else
dads=[dads; dad];
end




Table A-1 (continued)

break;
end
end
end % end if
end % end of for loop
loop = newBasisfound;
if (newBasisfound==0); %current starting basis finished searching
%Get the dad
if (dad==-1); %means the last one in the table is finished search
bFinished(iSolution)=1;
dad=dads(iSolution);
else
bFinished(dad)=1; %current basis (dad) finish searching
dad=dads(dad); %check current basis' dad now
end
%if dad==0, means the last basis under check is the root basis.
if dad~=0; % there are still some basis in the table can be used to search
loop = 1;
%make the next test;
looping= 1;
while looping;
if dad==0;
loop = 0 % already searched every basis stored in the ibasicTable
break;
end
if bFinished(dad)==1 %current basic is already searched, get its parent;
dad = dads(dad);
looping = 1;
else
ibasic = ibasicTable(dad,:); Y%row vector
xbasic = xbasicTable(dad,:)’; %column vector
X=zeros(1,n);
J=X;
J(ibasic)=ones(1,m);
K=[1:n];
inon=K(~J);
X(ibasic)=xbasic;
B=A(:,ibasic);
test = c(ibasic)/B;
if test == inf;
looping = 1;
dad = dads(dad);
else
Cred=c(inon) - (c(ibasic)/B)*A(:,inon);
looping = 0;
end
end % end of while
end % end of if dad~=0;
else % search is finished when " finish ==1"
loop =0;
end
else
dad =-1;
end
else
loop=0;
end
end %loop
end %i
xbasicTable=xbasicTable';




Appendix B Atom Mapping Matrices M ethod (Zupke, 1994)

Specific activity vector of n carbon molecule has n elements. The " element of a metabolite
contains the fractional isotope enrichment of the " carbon. Examples are:
g’GLC (1)@
u
gGLC(Z)Q
_&eLe)
“eLc@); ¢PYR(D 0
GLCEY  PYR= PR
u P e
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For example, glucose whose C1 is 88% 13C- enriched and C2 is 30% enriched can be

presented by:
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Atom Mapping Matrix describes the transfer of atoms from reactants to products. They are
constructed such that multiplication of the reactant specific activity vector by the AMM specifies
the contribution to the product specific activity vector. The number of carbons in the reactant is
the number of columns, while the number of carbons in the product decides the number of rows.
The element in the i" row and the |'" column (Aj;) specifies the amount of the {" carbon of the
product that is derived from the j'" carbon of the reactant. If it is 1, means all the i carbon in the
product are derived from the j'" carbon. Typically, these numbers are 1 or 0. However, fractional
elements are possible. For example, due to the symmetric structure, the mapping matrix of

fumarate > malate is
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The biochemistry of carbon switch could be easily represented by in string switching. For
example, the pattern of carbon switching in reaction (Xylulose-5-P + RSP - F6P + E4P) could
be expressed in: ABCDE + abcde - abcCDE + ABde. A c++ function is developed for
producing AMMs that takes the four string patterns as the only inpuit.



TableB-1 codeto produce AMM based on pattern strings

[** Produce AMM based pattern strings

* @param subAtoms A string specifies the pattern of substrate. i.e. ABCDE

* @param proAtoms A string specifies the pattern of product, i.e. ABcdef

* @return A string describes AMM ( MatLab syntax). le. ‘AMM =[10\n 0 1;]"
* @author Tao Zhu

*/

CString ProduceAMM (CString subAtoms, CString proAtoms)
{
if (subAtom==""|| proAtom=="") {
I[There is no carbon switching between them at all.
return"AMM =[1"
}

/Ibuild AMMSs. lenl is column number, len2 is row number
int len1 = subAtoms.GetLength();
int len2 = proAtoms.GetLength();

intt AMM = new int [len1 * len2];

for (int 1=0;i<lenl*len2; i++)
AMM(i]=0;

for (i=0 ; i < len2; i++){
I AMM(i, j) specify the amount of the ith carbon of product that is developed
Il from the jth carbon of the reatant. It is either 1 or 0.
char carbonInPro = proAtom.GetAt(i); // get a symbol, such as ‘B, ‘¢’
int carbonInSub = subAtom.Find(carboninPro);
if (carbonInSub != -1) //find it at the carbonInSub position, which means they are same carbon
AMM]i*lenl + carbonInSub] = 1;

}

CString t,strAmm;
strAmm = "AMM = [*;

for (i=0;i<len2;i++){
for (intj=0;j<lenL;j++){
t.Format("%d ", AMM][i*len1+j));
strAmm +=t;

}
if (i'=len2-1)
strAmm +="\r\n";

strAmm +="];\n\n";

delete [] AMM;
return strAmm;
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Appendix C I sotopomer Mapping Matrices M ethod (Schmidt et al. 1997, 1998)

Isotopomer Distribution Vectors (IDVs) of n-carbon metabolite has 2" eement, which
represents the mole fraction of the metabolite’'s individual isotopomer. Since a carbon can only
be labeled or nonlabeled ¢2C or *C), labeling pattern of metabolites can be coded as binary
code.

As an example, the IDV of glucose has 2° or 64 elements. The first element of this vector is
indexed by 000000, or O in octal code. The pattern 000011, which means the 5" and 6" are
labeled, is the fourth elements in the IDV. The complete glucose IDV is:
él gIC(OOOOOObin)g éIgIC(O) u
£19c(000001si) ;£ lalc(d)
€lglc(000010nin)U _ €lglc(2)
S M S OM g
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(D
The summation of all components equalsto 1.

|sotopomer Mapping Matrices for a reaction is constructed based on the stoichiometric
coefficient and information about reaction biochemistry. For each pair of substrate and product

(which has carbon) in the reaction, there is isotopomer mapping matrix.

IMM *|DV_, = IDV

MMsub- >product product

The individual row is associated with the product isotopomer labeling pattern, and the
number of rows equals the number of elements in the product IDV. The f" row’s multiplying to
the IDVgp gives the i component in the IDVprodeut, Which means given a distribution of
isotopomer in substrate, if the reaction’'s biochemistry is known, the distribution of each
isotopomer in product can be solved by matrix multiplication. IMMs are matrices filled with 1 or
0 usually. The position of the nonzero elements can be found by considering all possible
combinations of the reactant isotopomers, and by calculating the resulting labeling pattern of the
product molecule using the AMM concept.

As an example, consider the construction of IMM for isotopomer transitions from pyruvate
to oxaloacetate in pyruvate carboxylation (IMMpy: , oaa). The reaction is
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Pyruvate + CO2 = OAA

Assume PYR is not labeled. It has pattern of [0 0 0], and CO2 is labeled, which has pattern of
[1], since in the reaction, the carbon in CO2 will add into pyruvate in the following way.

or in the form matrix:

él 0 0 . €0 0u
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In the same way, consider all the combination of any pattern of substrate, For example, if
CO2 is no labeled too, the equation is

& 0 Oy . €O 0y
& 1 Ougot,l & U & U
e oY + €qo] = €u
€ 0 19335 €0u eou
e U e u e.u
@ 0 0Og eld &

©)
The pattern of result OAA is[000Q]’, which isfirst element in the IDVoaa. EQ 2 and EQ 3

tell us that for a non labeled pyruvate (IDVpy, = [1 00 0 0 0 0 0]), the product OAA may have
pattern [ 0 0 0 1] (last carbon is labeled) or [ 0 0 0 Q] (none of the carbon is labeled). Hence, the
first and second column of IMM IMMpyk , oaa should be
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If al combination of isotopomer patters of pyruvate and CO2 is considered in the same

g

manner, the IMMpyk SOAA is found to be:
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Appendix D Algorithm to Construct IMM from AMM

The above procedure is tedious. Based this idea, the algorithm is easy to be implement by
MatL ab language. For the following reaction:
A+B->C+D

Assuming A has n carbons and B has m carbons, while C has p carbons and D has g carbons.
The dimension of labeling patter of A, B, C and D are n, m, g and p respectively and the IDV for
these four reactants are 2", 2™, 2P and 24

The following procedure is used to find IMM from A to C.

There are 2" columns in IMMa_c. We will find IMM column by column. Iterate pattern A
from[00..0],until [11..1],. Each pattern corresponds to a column in the IMM.

For the first pattern of A, which is[0 ..Q],, iterate pattern B from [0 O .. O] until [1 1 ..],
to find al possible pattern C that corresponds to this pattern A. Then convert all pattern C to
octocal code (X1, X, ... X..). The first column is found by set the all x elements as 1 and left
element O.

By the same procedure, all columnsin IMM can be produced. This agorithm can be finished
in O () time.

Usually, the element in the IMM is 1 or O. But value of 0.5 may appear if we consider the
scrambling effect of symmetrical molecules. As an example, consider the reaction between
succinate-CoA and succinate. Because succinate is symmetric, a succinate-CoA labeledas (100
0) could be converted to a succinate molecule labeled as (1 0 0 0) or (0 0 01). If succinate was
not symmetricl, the IMM (succ-CoA-> succ) is ssmply unit matrix (I). And if succinate was not
symmetrical and all atoms sequenced oppositely after reaction, the IMM is found using the
described algorithm:

IMM=[ 1
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To save the space, | would like use following bitmap to represent this matrix.

Since the real isotopomer flow is the means of these two fluxes, the IMM taking account the

scrambling effect would be:

IMM=( = . + .

In above bitmaps, black grid represents 1, gray one represents %2, and blank grid represents 0.

A MatLab® code (Table D-1) developed by Karsten Schmidt is adopted to create the IMM
based on the AMM of thereaction: A + B > C + D. The AMM is automatically produced using
the procedure described in appendix C.
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Tabl e D-1 genimm.m (K ar sten Schmidt)

function [imm_AxC, imm_AxD, imm_BxC, imm_BxD] = genimm(...
amm_AxC, amm_AxD, amm_BxC, amm_BxD)

% Author: Karsten Schmidt

% date: 20.11.95

%

% This Script generates the isotopomer mapping matrices

% of a reaction A +B ->C + D on the basis of the respective
% atom mapping matrices.

%

% In case of only one substrate or product, the respective input
% AMMs can be empty matrices ([] or *) but must be present.

clear imm_AxC imm_AxD imm_BxC imm_BxD

% check input arguments

if (isempty(amm_AxC))
error(first argument is an empty matix)
end

% get the number of carbon atoms in A, B, C and D

n_A = size(amm_AxC, 2); % number of columns in matrix
n_B = size(amm_BxC, 2); % number of columns in matrix
n_C = sizelamm_AxC, 1); % number of rows in matrix
n_D = size(amm_AxD, 1); % number of rows in matrix

% fill matrices with zeros

imm_AxC = zeros(2"n_C, 2"n_A);
imm_AxD = zeros(2*n_D, 2*n_A);
imm_BxC = zeros(2"n_C, 2"n_B);
imm_AxD = zeros(2*n_D, 2"n_A)

fori=1:2"_A
forj=1:2"n_B

p_A = bin(i-1, n_A); % labeling pattern of A

p_B = hin(j-1, n_B); % labeling pattern of B

if (n_B ==0) % no B in the reaction
p_C=(amm_AxC*p_A")"; % labeling pattern of C
p_D=(amm_AxD*p_A""; % labeling pattern of D

else

p_C=(amm_AxC*p_A'+tamm_BxC*p_B'); % labeling pattern of C
ifn_D ~= 0) % added by Tao Zhu
p_D=(amm_AxD*p_A'+amm_BxD*p_B"); % labeling pattern of D
end %if
end

imm_AxC(dec(p_C)+1, i)
imm_BxC(dec(p_C)+1, j)

1; % imm from Ato C
1; % imm from B to C

if (n_D ~=0)
imm_AxD(dec(p_D)+1, i) =
imm_BxD(dec(p_D)+1, j) =
end% if
end % for j
end % for i

1; % imm from A to D
1; % imm from B to D




Tabl e D-1 (continued)

if (n_B==0) % if there is no B then these IMMs
imm_BxC =]; % do not exist!
imm_BxD = [];

end

if (n_D == 0) % if there is no D then these IMMs
imm_AxD =]; % do not exist!
imm_BxD =];

end
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