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It is common practice that aging and structurally damaged prestressed concrete bridge 

members are taken out of service and replaced. This, however, is not an efficient use of materials 

and resources since the member can often be repaired in situ. There are numerous repair 

techniques proposed by entrepreneurial and academic institutions which restore prestressed 

concrete girder flexural strength and save both material and economic resources. Of course, not 

all repair methods are applicable in every situation and thus each must be assessed based on 

girder geometry and the objectives of the repair scenario. This document focuses on the practical 

application of prestressed concrete bridge girder repair methods.  

In this document, repair methods are presented for three prototype prestressed concrete 

highway bridge girder shapes: adjacent boxes (AB), spread boxes (SB), and AASHTO-type I-

girders (IB), having four different damage levels. A total of 22 prototype repair designs are 

presented. Although not applicable to all structure types or all damage levels, the repair 

techniques covered include the use of carbon fiber reinforced polymer (CFRP) strips, CFRP 

fabric, near-surface mounted (NSM) CFRP, prestressed CFRP, post-tensioned CFRP, strand 

splicing and external steel post-tensioning. It is the author’s contention that each potential 

structural repair scenario should be assessed independently to determine which repair approach is 

best suited to the unique conditions of a specific project. Therefore, no broad classifications have 

been presented directly linking damage level (or a range of damage) to specific repair types. 

iv 



Nonetheless, it is concluded that when 25% of the strands in a girder no longer contribute to its 

capacity, girder replacement is a more appropriate solution. 

Guidance with respect to inspection and assessment of damage to prestressed concrete 

highway bridge girders and the selection of a repair method is presented. These methods are 

described through 22 detailed design examples. Based on these examples, review of existing 

projects and other available data, a detailed review of selection and performance criteria for 

prestressed concrete repair methods is provided. 
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NOTATION 

 

The following abbreviations and notation are used in this work. 

Abbreviations 

AASHO American Association of State Highway Officials 

AASHTO American Association of State Highway and Transportation Officials 

AB  Adjacent Box Beam 

ACI  American Concrete Institute 

CFRP  Carbon Fiber Reinforced Polymer 

CFCC  Carbon Fiber Composite Cables 

FRP  Fiber Reinforced Polymer 

IB  I-Beam (or AASHTO Girder) 

NCHRP National Cooperative Highway Research Program 

NSM  Near-surface mounted (FRP) 

PCFRP Prestressed carbon fiber reinforced polymer 

SB  Spread Box Beam (or Multi Box Beam) 

Notation 

Af  FRP cross sectional area 

Ap  Prestressed reinforcement area in the tension zone 
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b  width of compression face of member 

CE  environmental reduction factor 

c  distance from extreme concrete compression fiber to the neutral axis 

cg strands center of gravity of strands, measured from bottom of member 

df  effective depth of FRP flexural reinforcement 

dp distance from the extreme concrete compression fiber to centroid of prestressed 

reinforcement 

Ec modulus of elasticity of concrete 

Ef tensile modulus of elasticity of FRP 

Eps tensile modulus of elasticity of prestressing steel, taken as 28500 ksi 

e eccentricity of prestressing steel with respect to centroidal axis of member 

fc’ specified compressive strength of concrete 

fc’DECK specified compressive strength of concrete in the deck 

ffe effective stress in FRP; stress level attained at section failure 

ffu design ultimate tensile strength of FRP 

ffu* ultimate tensile strength of the FRP material as reported by the manufacturer 

fps stress in prestressed reinforcement at nominal strength 

fpu specified tensile strength of prestressing tendons 

Ksplice stiffness of strand splice 

Lexposed exposed length of prestressing strand 

Ltr transfer length of prestressing strand 

I moment of inertia of section 

M moment due to eccentric prestressing force in strands 

xvii 



MDECK moment on girder due to deck 

MDW moment on girder due to wearing surface 

MEXTmax maximum external moment applied to structure for preload technique 

MHS20 moment on girder due to an HS20 truck  

MHS25 moment on girder due to an HS25 truck  

MJB moment on girder due to Jersey barrier 

MLANE moment on girder due to AASHTO (2007) lane load 

Mn nominal flexural strength of girder 

Mnf contribution of FRP to nominal flexural strength of girder 

Mnp contribution of prestressing steel to nominal flexural strength of girder 

MSW moment on girder due to its self-weight 

MTAN moment on girder due to AASHTO (2007) tandem load 

Mu design ultimate flexural strength of girder 

n number of plies of FRP reinforcement 

Pe effective force in prestressing reinforcement (after all losses) 

r radius of gyration of a section 

S section modulus 

tf nominal thickness of one ply of FRP reinforcement 

yb distance from extreme bottom fiber to the section centroid 

yt distance from top fiber to the section centroid 

α empirical constant to determine an equivalent rectangular stress distribution in 

concrete 

β1 ratio of depth of equivalent rectangular stress block to depth of neutral axis 
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Δsplice change in length or ‘shortening’ of strand splice 

εbi strain level in concrete substrate at time of FRP installation (tension is positive) 

εc strain level in concrete 

εc’ maximum strain of unconfined concrete corresponding to f’c; may be taken as 

0.002 

εcu ultimate axial strain of unconfined concrete 

εfd debonding strain of externally bonded FRP reinforcement 

εfd* debonding strain of externally bonded PT FRP reinforcement 

εfe effective strain level in FRP reinforcement attained at failure 

εfu design rupture strain of FRP reinforcement 

εfu* ultimate rupture strain of FRP reinforcement 

εpe effective strain in prestressing steel after losses 

εpi initial strain level in prestressed steel reinforcement 

εpnet net strain in flexural prestressing steel at limit state after prestress force is 

discounted (i.e.: excluding strains due to effective prestress force after losses) 

εps strain in prestressed reinforcement at nominal strength 

εpt strain induced in FRP reinforcement by PT 

ψf FRP strength reduction factor 

This thesis reports all values in US units (inch-pound) throughout. The following “hard” 

conversion factors have been used:  

1 inch = 25.4 mm  

1 kip = 4.448 kN  

1 ksi = 6.895 MPa  
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xx 

Reinforcing bar sizes are reported using the designation given in the appropriate reference. A bar 

designated using a “#” sign (e.g.: #4) refers to the standard inch-pound designation used in the 

United States where the number refers to the bar diameter in eighths of an inch.



1.0  INTRODUCTION 

1.1 INTRODUCTION 

The demands on transportation infrastructure, in particular bridges, have increased significantly 

in recent years. This can be seen in the increase in traffic volume and design loadings (AASHTO 

1960 and 2007). Additional demands associated with degradation of bridge infrastructure 

coupled with the rise in fuel and material costs have made structural repair and retrofitting a 

more attractive solution to fix aging, damaged and failing structures. Prestressed concrete girders 

represent a relatively new portion of the bridge inventory – the oldest of these structures is only 

now approaching 50 years old. Therefore repair of prestressed concrete bridge elements has not 

received as much attention as repair of other, older structural forms. As the prestressed concrete 

bridge inventory ‘comes of age’, the repair of this structural form is an area which needs further 

investigation. It has been shown that repair of prestressed concrete bridge girders is possible, but 

not very common (Feldman et al. 1996). Often the decision to replace the bridge or the repair 

method chosen is not appropriate for the level of damage present resulting in inefficient and 

improper repair actions (Shanafelt and Horn 1980). It is proposed that with more education and 

familiarity with field applications of appropriate repair technology, the more often repair actions 

will be selected over bridge replacement, ultimately conserving resources. Presently, it is not 

uncommon that if a girder cannot be superficially repaired (by either painting or patching 
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techniques) it is replaced. Nonetheless, there are numerous repair techniques proposed by 

entrepreneurial and academic institutions which restore girder strength and save both material 

and economic resources. It is with this latter paradigm in mind that the decision to repair or 

replace damaged prestressed concrete bridge members should be viewed. This thesis focuses on 

the practical application of prestressed concrete bridge girder repair methods. 

1.2 SCOPE AND OBJECTIVE OF THESIS 

It is the goal of this thesis to provide illustration of practical structural repair solutions for 

damaged prestressed concrete bridge girders with the emphasis on restoration of strength. This 

thesis focuses on state-of-the-art techniques for the structural repair of these members (rather 

than aesthetic repairs, which are addressed only briefly). Common repair techniques include steel 

jacketing, strand splicing, external post-tensioning and post-tensioned and non post-tensioned 

carbon fiber reinforced polymer (CFRP) applications. Viability and limitations of each repair 

method are discussed for three common prestressed girder types: Spread box (SB), Adjacent box 

(AB) and ASSHTO-type I-beams (IB) with the focus being on CFRP repairs. Representative 

prototype repairs are presented with complete calculations, from which a discussion of the 

applicability, advantages and disadvantages of each methodology is developed. While limited in 

scope, the parameters necessary to make the ‘repair or replace’ decision are proposed.  
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1.3 OUTLINE OF THESIS 

Chapter 2 of this thesis provides the necessary background information regarding prestressed 

concrete member repair and rehabilitation techniques. Chapter 3 reviews the prestressed concrete 

bridge inventory of Pennsylvania, establishing both need and a scope for the remaining Chapters. 

Representative structures are chosen from those reviewed in Chapter 3 and are described in 

Chapter 4. Chapter 5 describes prototype repair designs which include CFRP repairs, strand 

splicing and steel post tensioning repairs. Finally, Chapter 6 summarizes the work presented in 

this document, suggests a repair selection matrix and provides recommendations and future 

research opportunities.  

1.4 DISCLAIMER 

This document presents engineering design examples; use of the results and or reliance on the 

material presented is the sole responsibility of the reader. The contents of this document are not 

intended to be a standard of any kind and are not intended for use as a reference in specifications, 

contracts, regulations, statutes, or any other legal document. The opinions and interpretations 

expressed are those of the author and other duly referenced sources. The designs presented have 

not been implemented nor have they been sealed by a professional engineer. 
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2.0  LITERATURE REVIEW 

This literature review provides the necessary background to illustrate repair, retrofit and 

rehabilitation techniques for prestressed concrete bridge girders. The importance of NCHRP 

Project 12-21 (Shanafelt and Horn 1980) should be noted. This document is considered seminal 

and identifies the state-of-the-art and state-of-practice as of its publication. A significant amount 

of work has been performed using the findings of NCHRP 12-21 as the primary reference – thus 

the results of NCHRP 12-21 are summarized here and considered representative of pre-1980s 

treatment of this subject. The state-of-the-art portion of the present review considers technology 

developed since the completion of the NCHRP 12-21 project in 1985. The following sections 

discuss repair techniques based on NCHRP 12-21, external and internal post-tensioned and non 

post-tensioned CFRP repair systems, anchorage systems for CFRP and expected damage 

guidelines. 

 

2.1 THE NCHRP 12-21 PROJECT 

NCHRP Report 226 (Shanafelt and Horn 1980) focused on providing guidance for the 

assessment, inspection and repair of damaged prestressed concrete bridge girders. Suggestions 

were given for standardized inspection including proper techniques, tools and forms. The authors 
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emphasized the need to separate the damage assessment tasks (inspection) from the engineering 

assessment tasks (load rating, etc.).  

Often the decision to replace or the repair method chosen is not appropriate for the level 

of damage present resulting in inefficient and improper repair actions. A damage classification 

system, allowing users to quantify the damage present was proposed. Shanafelt and Horn 

classified damage into one of three categories:  

Minor damage is defined as concrete with shallow spalls, nicks and cracks, scrapes and 

some efflorescence, rust or water stains. Damage at this level does not affect member capacity. 

Repairs are for aesthetic or preventative purposes.  

Moderate damage includes larger cracks and sufficient spalling or loss of concrete to 

expose strands. Moderate damage does not affect member capacity. Repairs are intended to 

prevent further deterioration.  

Severe damage is any damage requiring structural repairs. Typical damage at this level 

includes significant cracking and spalling, corrosion and exposed and broken strands.  

Minor and moderate damage can be repaired via patching and painting techniques. Since 

minor and moderate damage do not require structural repairs, emphasis was placed on severe 

damage. 

 In Report 226, eleven different repair methods were developed for the severe damage 

condition and are discussed in detail; none however was demonstrated or tested. Each repair 

technique was evaluated to provide an overview of the processes and advantages and limitations 

of the method. Guidelines were proposed based on service load capacity, ultimate load capacity, 

overload capacity, fatigue life, durability, cost, user inconvenience and speed of repairs, 

aesthetics and range of applicability. Evaluation of the repair techniques based on these 
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parameters was conducted using a value-engineering process. Areas to be considered for future 

research were identified, particularly associated with the proposed splice repairs. Some of the 

repair techniques presented needed to be tested and evaluated for strength and fatigue loading.  

Repair methods considered in Report 226 were external post-tensioning, metal sleeve 

splicing (to avoid confusion, this method will be referred to as ‘steel jacketing’ in the present 

work), strand splicing, a combination of these methods, and replacement.  

External post-tensioning is affected using steel rods, strands or bars anchored by corbels 

or brackets (typically referred to as ‘bolsters’) which are cast or mounted onto the girder; 

typically on the girder’s side (although occasionally on the soffit). The steel rods, strands or bars 

are then tensioned by jacking against the bolster or preload (which will be discussed later). 

Examples of this method are shown in Figure 2-1. Splice 1 (Report 226 designation) used Grade 

40 reinforcing bars, Splice 2 used Grade 60 steel rods encased in PVC conduits as a corrosion 

resisting measure, and Splice 4 used a corbel that was continuous over the entire length of the 

girder for corrosion protection of six post-tensioned 270 ksi strands. Post-tensioning force in the 

case of Splice 1 is nominal and is induced by preload only. Today, Splice 2 details would 

generally be accomplished using high strength (150 ksi) post-tensioning bars (such as Williams 

or Dwyidag products). In this case post-tensioning force may be induced by jacking or preload or 

a combination of both. For Splice 4, post-tensioning force will typically be induced by jacking. 

An advantage of Splice 4 is that it can also be designed as a ‘harped’ system, affecting greater 

efficiency, particularly with respect to restoring excessive vertical deflection of the girder. In this 

case both bolsters and deviators must be attached to the beam.  

Design of external post-tensioned repair systems is relatively straight forward using a 

simple plane sections analysis (recognizing that the post-tensioning bar is unbonded). The 
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attachment/interface of the bolsters, however, requires significant attention. These elements are 

‘disturbed regions’ subject to large concentrated compression forces. Additionally, sufficient 

shear capacity along the interface between the bolster and existing beam must be provided to 

transfer the post-tensioning force. Effective shear transfer often requires the bolsters themselves 

to be post-tensioned (transversely) to the girder to affect adequate ‘friction’ forces along the 

interface. Finally, the design of the bolsters and interface must consider the moments induced by 

the eccentric post-tensioning forces.  

Steel jacketing is the use of steel plates to encase the girder to restore girder strength. 

With this repair technique, post-tensioning force can only be introduced by preloading. Splice 3, 

shown in Figure 2-2, employs a steel jacket. Generally, this method of repair will also require 

shear heads, studs or through bars to affect shear transfer between the steel jacket and substrate 

beam. Steel jacketing is felt to be a very cumbersome technique. In most applications, field 

welds will be necessary to ‘close’ the jacket (since the jacket cannot be ‘slipped over’ end of 

beam in most applications). Additionally, the jacket will need to be grouted in order to make up 

for dimensional discrepancies along the beam length. Neither of these details is addressed in 

Report 226.  

Strand splices are designed to reconnect severed strands. Methods of reintroducing 

prestress force into the spliced strand are preloading, strand heating and torquing the splice; the 

latter is most common, essentially making the splice a turnbuckle of sorts. Strand heating is a 

method whereby the strand is heated, the strand splice is secured to the strand and as the strand is 

allowed to cool, it shrinks, thus introducing tension back into the strand. Strand heating of 

conventional high-strength prestressing strand is not believed to be a terribly rational method of 

affecting any reasonable prestrain: either a) a long length of strand must be heated; or b) a short 

7 



length of strand must be heated to a high temperature. The former is impractical in a bridge 

girder and the latter will affect the material properties of the strand. Strand heating is not 

recommended.  

Commercially available strand splices have couplers connected to reverse threaded 

anchors; as the coupler is turned, both anchors are drawn toward each other, inducing a prestress 

in the attached strand (see Figure 2-3). Schematic examples of strand splices are shown in Figure 

2-4. Splice 6 utilizes strand chucks to splice the strands and strand heating to induce tension 

(recall that the methods reported in Report 226 were not tested in relation to this work). Splice 7 

uses a strand splice that has a nut in the middle which is tightened to reconnect and introduce 

tension into the strand. Splice 8 uses a round steel bar which connects to a steel transfer plate and 

then to the strands to reconnect the strands.  

Repair techniques may be combined. Combination of repair techniques will allow the 

user to employ the advantages of each repair. For example, Splice 5, shown in Figure 2-5, uses 

post-tensioning in conjunction with steel jacketing to restore girder strength. The post-tensioning 

addresses girder serviceability while the steel jacket reinforces the girder’s ultimate capacity.  

Most repairs proposed in Report 226 make use of preloading during girder repair. Preload 

is the temporary application of a vertical load to the girder during the repair. The preload is 

provided by either vertical jacking or a loaded vehicle. If the damage has caused a loss of 

concrete without severing strands, preloading during concrete restoration can restore the strength 

of the girder without adding prestress. Because preloading may be used to restore partial or full 

prestress to the repaired area, it effectively reduces tension in the repaired area during live load 

applications. It is for this reason that preloading is suggested for most repairs, particularly those 
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including patching. Care should be taken when preloading a structure so as to not overload the 

structure or cause damage from excessive localized stresses from the preloading force. 

 It must be noted that Shanafelt and Horn, in Report 226, addressed relatively small 

prestressed elements having only 16 strands. In this case, the preload required to affect the post-

tensioning force is relatively small. In this case the structural system is similar in scale to a 

parking garage. As elements become larger – as for a bridge – the level of preload required 

becomes very large and not practical to apply. The effectiveness of considering preload is 

improved with reduced dead-to-live load ratios; however these are not typical in concrete 

structures.  

NCHRP Report 226 provides the selection matrix, shown in Table 2-1, for selecting 

repair methods for prestressed girders. Guidelines presented for each repair method are as 

follows. The ‘number of strands’ that may be spliced must be placed in context. The prototype 

girders considered in this study only had 16 strands. 

External Post-tensioning: replacing the loss of more than 6-8 strands may be difficult, 

but this method can be used to restore strength and durability to damaged girders and add 

strength to existing bridges. 

Strand Splicing: this method is good for repair of a few strands but is limited by the 

geometry of the strand splice and concrete cover. 

Steel Jacketing: this method was successfully used to replace the loss of 6 strands, but is 

not very common. 

The second phase of the NCHRP 12-21 project and the focus of NCHRP Report 280 

(Shanafelt and Horn 1985) was to provide a practical user’s manual for the evaluation and repair 

of damaged prestressed concrete bridge members. Significantly, some of the the repair methods 
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presented in the earlier Report 226 were load tested and suggestions for their implementation are 

given. It is important to note that the girders were never loaded to their ultimate capacity. All 

tests were conducted on a single girder with artificial damage and one of the repair techniques 

for each test. Therefore, in order to test all repair methods, the girder was not loaded to failure. 

Ten different load tests were conducted on a single I-girder to measure the behavior of each 

repair: 

1. Load girder up to 75% of the calculated ultimate load capacity;  

2. Add concrete corbels and post-tension high-strength bars and load;  

3. Disconnect high-strength bars and load (same as load test 1 but girder is now cracked);  

4. Break out specified concrete to sever 4 strands (25% of the total 16 strands) and load;  

5. Splice 4 strands with single strand splice and patch and load;  

6. Reconnect post-tension high-strength bars (same test as test 5 but with external PT);  

7. Disconnect bars, break out concrete and sever the four strands spliced in test 5 and load;  

8. Patch the girder and tension the external bars;  

9. Disconnect bars, break out patch, sever 2 more strands for a total of 6 and splice them 

with a steel jacket and load; and  

10. Load the steel jacketed girder to 100% of the calculated ultimate moment capacity.  

While the tests of each repair technique generally demonstrated a sound response, the fact 

that a) there was no control specimen with which to compare results; and b) the repairs were 

sequential and thus the degree of damage was necessarily incremented between tests affected the 

ability to draw conclusions from this test program. Although a significant amount of test data is 

provided, few conclusions are or can be drawn. 
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2.2 TRADITIONAL REPAIR TECHNIQUES 

The techniques described in NCHRP 12-21 have provided many repair methods which restore 

strength and serviceability to prestressed concrete girders. The resulting Reports 226 and 280 

provided a background to a significant amount of research testing the viability of each repair 

method. This section provides a review of literature available since the publication of the 

NCHRP 12-21 reports. The techniques discussed below are strand splicing, external steel post-

tensioning, and beam coatings; these are considered to be traditional repair methods. 

2.2.1 Strand Splicing 

In repairing a few damaged strands, strand splicing provides an efficient, quick and simple 

solution. Strand splices reconnect broken strands and allow the strand to be re-tensioned. 

However, interactions between spliced strands and girder behavior where multiple strand splices 

are used should be explored. Strand splice tensioning based on the torque wrench method (i.e.: 

applying a specified torque to a strand splice coupler) was found to be unsatisfactory due to a 

variation in friction stresses along the splice and thus a variation of stress induced into the strand 

(Labia et al. 1996). The ‘turn of the nut’ method which uses the displacement between strand 

chucks or splice ends and material properties to calculate stress was found to be more easily 

accomplished and reliable (Labia et al. 1996 and Olson et al. 1992). This method is analogous to 

the method of assuring appropriate prestress in a strand as it is jacked: by elongation of the 

strand. Testing has shown that strand splices can restore original girder strength (Labia et al. 

1996).  
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In some instances, the size of the strand splices has been found to be problematic. Beam 

geometries and the amount of concrete cover limit the use of strand splices. Often, strands are 

too closely spaced or concrete cover is too small to accommodate the strand splice. Additionally, 

turnbuckle strand splices have a much larger axial and flexural stiffness than the strands 

themselves. This affects girder behavior, particularly if the splice repair is not symmetric in the 

girder cross section. Olson et al. (1992) report a strand splice-repaired test girder that failed in 

tension at less than 82% of the original girder capacity. Possible reasons cited for the tension 

failure include: a) increased strand damage during the fatigue program: the stress ranges may 

have been magnified on the undamaged side of the girder; b) the turnbuckle splices may have 

worked as anchors on the damaged side of the girder; or c) a combination of the two factors. 

Premature failure of test girders using the strand splices is cause for concern.  

It is important that the strength of the strand splices be assured. Zobel and Jirsa (1998) 

studied the performance of various strand splice repairs. All splices gave a minimum strength of 

85% of the nominal strength of the strand. From this study, strand splices are recommended: a) 

when ultimate flexural strength of the girder with the remaining undamaged strands is greater 

than the factored design moment, repair by internal strand splices could be used to reduce the 

range of stress imposed on the other strands; and b) if fatigue is not a major concern, internal 

splice methods could be used to restore ultimate flexural strength to a damaged girder. In any 

case, repairing more than 10-15% of the total number of strands within a single girder is not 

recommended (Zobel and Jirsa 1998). 

There is a single known commercially available strand splice available today. The 

‘Grabb-it Splice’ utilizes a reverse threaded coupler. This splice has two factors negatively 

affecting its use: a) the prestress force that may be developed is limited to 39.5 kips which is 
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slightly greater than fpu for 0.5 in. strand (Law Engineering 1990). It is believed that the splice 

strength should be: a) at least 15% greater than the strand strength to minimize the possibility of 

splice failure (Labia et al. 1996); and b) the splice diameter of 1.625 in. potentially affects 

concrete cover and strand spacing requirements. In any event, the latter issue requires such 

splices to be staggered along the length of a member (Grabb-it technical literature 2008). 

2.2.2 Post Tensioning 

Post tensioning can be used to help restore prestress as well as girder strength. This allows the 

design to be customized to restore strength and serviceability, as desired. For example, in the 

adjacent box (AB) beam bridge examined in Preston et al. (1987), the original strand pattern was 

determined to meet a particular concrete stress requirement. Therefore, it was important for the 

repair to restore bottom fiber prestress in a manner consistent with the original design intent. The 

post tensioned repair utilized four post tensioned 0.5 in. diameter, epoxy coated, low-relaxation 

strands installed 2 in. below the beam soffit, each tensioned and anchored at 21.5 kips. The total 

depth of the repair was 3 in. Some issues arose when seating the post-tensioning strands as the 

losses were greater than expected and thus the induced tensile force needed to be increased to 

account for these losses. Nonetheless, full ultimate capacity of the girder was restored as well as 

some of the lost prestressing force.  

 The same concept can be used with CFRP instead of steel as the post tensioning material. 

El-Hacha and Elbadry (2006) examined the use of post tensioned 7-wire CFRP cables (CFCC) 

for strengthening of concrete beams. The experiment showed comparable results to steel post-

tensioned repairs. The post-tensioning force created a stiffer beam and thus a stiffer load-

deflection response. 
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2.2.3 Corrosion Mitigation 

When considering repair of corroded strand, it is important to consider the source of corrosion. 

For example, corrosion initiated because of cracks in the beam requires repair of the cracks to 

arrest further corrosion. Prestressing strand is more susceptible to corrosion than lower grades of 

steel, therefore prestressed concrete beams are susceptible to corrosion, especially at beam ends. 

Since prestressed strands are anchored in the beam ends, strand corrosion in this area can be 

detrimental to girder strength. Tabatabi et al. (2004) focused on the repair of the beam end region 

(within the last two feet of the beam). A protective coating was put on some beam ends before 

the experimental accelerated corrosion program began to see how this would affect strand 

corrosion rates. Beam ends were then subjected to wet/dry cycles of salt-water sprays together 

with an impressed electric current to accelerate the corrosion process. After an initial exposure of 

six months, all but one of the untreated beam ends was protected using CFRP wrapping or 

painted with a protective coating. The corrosion process was then allowed to continue for an 

additional year. It was concluded that surface treatments and coatings are effective in the short 

term, but not in the long term unless the coating is applied prior to chloride contamination. As 

expected, a patch repair having no initial protection performed the worst. Table 2-2 compares 

beam end ratings and displays the most effective mitigation measure. Studies have shown that 

FRP composite wraps are effective at mitigating future corrosion damage (Tabatabi et al. 2004 

and Klaiber et al. 2004). Generally speaking, cathodic protection is also effective, but is not 

commonly used due to high maintenance costs and method complexity (Broomfield and Tinnea 

1992 and Tabatabi et al. 2004). 

14 



2.3 EXTERNAL NON PT CFRP RETROFIT 

Carbon fiber reinforced polymer (CFRP) strips bonded to prestressed concrete girders can 

increase flexural capacity of the girder. The use of externally mounted CFRP strips to restore 

flexural capacity of damaged girders is well documented (Scheibel et al. 2001, Tumialan et al. 

2001, Klaiber et al. 2003, Green et al. 2004, Reed and Peterman 2004, Wipf et al. 2004, Reed 

and Peterman 2005 and Reed et al. 2007). In most cases, repairs performed as expected and 

designed. Green et al. (2004) investigated the behaviors of four different CFRP systems: two wet 

lay-up procedures from different manufacturers, a fabric pre-impregnated with resin (prepreg), 

and a spray layed-up application. For the various repairs, the experimentally observed and 

theoretical capacities achieved were in the range of 91-108% and 96-114%, respectively, of the 

unrepaired, undamaged control girder. Beam deflections, however, were found to be reduced in 

the range of 20 to 23% (Klaiber et al. 2003 and Green et al. 2004, respectively). Often, to reduce 

the chance of early debonding, transverse U-wrapped CFRP strips were used to help ‘hold’ the 

CFRP and underlying concrete patch in place (Scheibel et al. 2001, Tumialan et al. 2001, Klaiber 

et al. 2003, Green et al. 2004, Reed and Peterman 2004, Wipf et al. 2004 and Reed and Peterman 

2005). Additional confinement of the concrete patch is helpful to mitigate the possibility of a 

‘pop out’ failure of the patch where the newly placed patch material breaks away from the girder.  

The results reported by Wight et al. (2001) are used here to illustrate the effects of non-

PT CFRP retrofit of prestressed concrete beams. Figure 2-6 shows the cross section of the test 

specimens used by Wight et al. One specimen was not strengthened with CFRP (to serve as a 

control), one was strengthened with non post-tensioned CFRP sheets and the remaining two used 

post-tensioned CFRP sheets. Each strengthened member was strengthened with 5 layers of CFRP 

sheets (where each subsequent layer was 7.87in. (200 mm) shorter than the preceding layer and 
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centered on the tension face of the specimen) for a total of 0.47in2 (300 mm2) of CFRP at 

midspan. Figure 2-7 summarizes the experimentally observed load-deflection behavior. As seen 

in Figure 2-7, there is a 20% increase in mid-span moment capacity for the beam strengthened 

with CFRP as compared to the control beam. 

2.4 EXTERNAL PT CFRP RETROFIT 

A parallel can be drawn between prestressed and non prestressed CFRP retrofits and prestressed 

and conventionally reinforced concrete beams. Prestressing the steel precompresses the concrete 

in the tension zone of the girder. As the beam is loaded, it must first ‘undo’ the compressive 

stress induced by the strands resulting in a more durable (fully-prestressed members do not crack 

under service loads) and stiffer concrete member. Prestressing is the optimized use of both 

materials since concrete is best in compression and steel performs well in tension. The benefits 

of stressing CFRP strips prior to application are similar to that of using a prestressed strand in a 

concrete beam. The four main advantages of using a stressed CFRP repair are (Nordin and 

Taljsten 2006): a) better utilization of the strengthening material; b) smaller and better 

distributed cracks in concrete; c) unloading (stress relief) of the steel reinforcement; and d) 

higher steel yielding loads. Conventionally used CFRP materials have about 1.5 times the tensile 

stress capacity of 270 ksi steel prestressing strand and a Young’s modulus about 75% of that of 

steel, meaning they can reach a higher strain. Stressing the CFRP for the repair reintroduces 

prestressing force back into the beam allowing for redistribution and a decrease of stresses in the 

strands and concrete (Kim et al. 2008b). Thus when reloaded, the stress levels in the existing 

(remaining) strands will be reduced as compared to the unrepaired beam. In other words,  
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prestressed CFRP systems create an active load-carrying mechanism which ensures that part of 

the dead load is carried by the CFRP sheets whereas non prestressed CFRP strips can only 

support loads applied after installation of the CFRP on the structure (Wight et al. 2001, El-Hacha 

et al. 2003, Kim et al. 2008a and Kim et al. 2008c). Loading that follows prestressed CFRP 

placement will result in greater CFRP strains meaning that: a) the material is used in the most 

efficient manner; and b) the CFRP strip is engaged, resulting in an increase in flexural capacity.  

There are three approaches to prestressing or post-tensioning (the terms are used 

inconsistently in the literature) CFRP. The following terminology is adopted to clarify the types 

of prestressed CFRP systems (PCFRP): 

Prestressed CFRP: The CFRP is drawn into tension using external reaction hardware and 

is applied to the concrete substrate while under stress. The stress in maintained using the external 

reaction until the bonding adhesive is cured. The reacting stress is released and the ‘prestress’ is 

transferred to the substrate concrete. This method of prestressing is potentially susceptible to 

large losses at stress transfer and long term losses due to creep of the adhesive system. 

Additionally, details (such as FRP U-wraps) must be provided to mitigate debonding at the 

termination of the CFRP strips. Prestressed CFRP systems are analogous to prestressed concrete 

systems where the stress is transferred by bond to the structural member. 

Unbonded post-tensioned CFRP: The CFRP is drawn into tension using the member 

being repaired to provide the reaction. The stress is transferred to the member by mechanical 

anchorage. Typically a hydraulic or mechanical stressing system will be used to apply the 

tension after which it will be ‘locked off’ at the stressing anchorage. This method of post-

tensioning is susceptible to losses during the ‘locking off’ procedure. Depending on the 

anchorage method, long term losses due to creep in the anchorage is a consideration. Such 
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systems must be designed with sufficient clearance between the CFRP and substrate concrete to 

mitigate the potential for fretting. Unbonded post-tensioned systems are analogous to 

conventional unbonded post tensioning systems. 

Bonded post-tensioned CFRP: The CFRP is stressed and anchored in the same fashion 

as unbonded systems. Following anchorage, the CFRP is bonded to the concrete substrate 

resulting in a composite system with respect to loads applied following CFRP anchorage. Since 

the adhesive system is not under stress due to the post-tension force, adhesive creep is not as 

significant a consideration with this system. The bonding of the CFRP may also help to mitigate 

creep losses associated with the anchorage. Bonded post-tensioned systems are analogous to 

conventional bonded post tensioning systems. 

Another advantage of using PCFRP systems is the restoration of service level 

displacements or performance of the structure. PCFRP systems have a confining effect on 

concrete (and, significantly, any patch material) because they place the concrete into 

compression. Therefore, a delay in the onset of cracking and a reduction of crack widths (only in 

bonded systems) has been found when this technique is used (Wight et al. 2001, El-Hacha et al. 

2003, Kim et al. 2008a, Kim et al. 2008c and Yu et al. 2008b). 

Wight et al. (2001) demonstrated the difference between prestressed and non-prestressed 

CFRP applications. The unstrengthened specimens and retrofit details used are shown in Figure 

2-6 and the experimentally observed load-deflection curves are shown in Figure 2-7. It can be 

seen that mid-span moment capacity for the bonded PCFRP is greater than both the 

unstrengthened control and non-prestressed CFRP strengthened beams (this curve in Figure 2-7 

is described as ‘Strengthened with Prestressed FRP’). Flexural capacity of the bonded PCFRP 

repair was 35 to 40% higher than that of the control specimen. Additionally, the bonded PT 
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repair displayed a cracking load 150% greater than that of the control specimen. The increase in 

cracking load is attributed to the addition of prestress-induced compressive force back into the 

member which makes the beam stiffer than before the repair. 

There are significant challenges associated with prestressing CFRP strips. The most 

obvious is the means by which the strip is prestressed. One solution proposes post tensioning the 

CFRP strip against the girder end, as seen in Figure 2-8 (Wight et al. 2001 and El-Hacha et al. 

2003). This method proposes that the strips are permanently anchored at one end of the beam 

(commonly called the ‘dead end’) while jacking forces are introduced at the other, movable end 

(called the ‘jacking end’). Steel rollers are connected to each end of the strip to allow for 

anchorage. Rollers attached to the jacking end are connected to steel prestressing strands which 

are connected to a hydraulic ram (jack). The movable end rollers are jacked to the desired 

extended position and permanently anchored. Alternative prestressing techniques include using 

indirect methods where the sheets are stressed in a jacking or prestressing frame independent of 

the beam. Prestressing force is induced by either jacking the sheet against a frame thus increasing 

its length (Casadei et al. 2006) or by deflection controlled loading (Yu et al. 2008a) as seen in 

Figures 2-9 and 2-10, respectively. After prestressing by either method, the frame is moved to 

the girder to allow the strip to be bonded. Once bonded, the prestress force is removed from the 

frame and transferred (by bond) to the girder. 

2.4.1 CFRP Anchorage 

In prestressed CFRP applications, the prestressing force in the CFRP strip must transfer into the 

girder through the bonding agent (adhesive). Due to the high strains at the bond interface, strip 

debonding is a major concern. It is essential that the entire force be transferred into the beam via 
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the adhesive layer or the repair will not behave as designed and fail prematurely. Additionally, 

most suitable high performance epoxy adhesives exhibit significant creep and are therefore 

unsuitable for maintaining a large prestress force without additional anchorage. If mechanical 

anchors are left in place, the system is a post-tensioned CFRP system (which can be bonded or 

unbonded). Permanent anchors can be used to resist the prestressing force and reduce the chance 

of early debonding and peeling failures (Wight et al. 2001, El-Hacha et al. 2003, Kim et al. 

2008a and Yu et al. 2008b).  The anchors at the ends of the CFRP strips reduce the shear 

deformation that occurs within the adhesive layer associated with the prestress force minimizing 

the possibility of premature failure (El-Hacha et al. 2003). It is noted that the ability of a system 

to transfer shear, regardless of anchorage or adhesive used, is limited by the shear capacity of the 

concrete substrate. ACI 440 (2008) recommends that the shear stress transferred is limited to 200 

psi in any event. 

El-Hacha et al. (2003) tested three different metallic anchors including a round bar, 

elliptical bar and a flat plate anchor. The results indicated that a flat plate anchor was the most 

efficient anchor and reinforcement of the anchor zone with CFRP U-wrap resulted in greater 

failure loads. When the CFRP U-wrap was used in conjunction with the anchorage, failure 

occurred away from the anchor zone. Although these results seem promising, there are concerns 

about galvanic corrosion of the anchor when steel and CFRP strips are in direct contact. 

Mitigation of galvanic corrosion is conventionally addressed by providing an insulating layer, 

often E-glass (Cadei et al. 2004). This layer is softer than the CFRP and therefore affects the 

efficiency of the stress transfer. 

U-wrapped CFRP strips have been employed as an alternative to metallic anchorage 

systems (Kim et al. 2008a, Kim et al. 2008b and Yu et al. 2008b). Many nonmetallic mechanical 
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anchoring systems for the CFRP U-wraps have been explored including (Kim et al. 2008a and 

Kim et al. 2008b): a) CFRP U-wrap; b) mechanical anchorage; c) prestressed CFRP U-wrap with 

mechanical anchorage; and d) CFRP wrap anchored systems (see Figure 2-11). Test results 

indicated that: a) the beams with nonmetallic anchors exhibited a pseudoductile failure due to the 

contribution of CFRP anchors, b) beams with mechanically anchored U-wraps and side sheets 

exhibited a capacity close to that of the control beam; and c) the beams fitted with nonmetallic 

anchors displayed better stress redistributions compared to the beam with steel anchors (Kim et 

al. 2008b).  

It has been shown that when an anchorage system is used, the anchored prestressed sheets 

fail at a greater load than the nonanchored prestressed sheets since anchorage greatly reduces the 

chance of premature ‘end peel debonding’ failure of the repair (Wight et al. 2001, El-Hacha et al. 

2003, Kim et al. 2008a, Kim et al. 2008b and Yu et al. 2008b). 

One unique approach did not use anchors, but rather gradually reduced the prestressing 

force of the strip until the force was zero at the ends of the strip (Aram et al. 2008). The concept 

behind this was that peeling failure of the strip could be avoided if the force at the strip 

terminations is zero. Results show that the gradient anchorage method was not effective and 

premature debonding failure occurred.  

 

2.4.2 Commercially-Available PCFRP System 

The only known commercially available ‘standardized’ PCFRP system (i.e.: not customized for 

each application) is made by SIKA Corporation and marketed primarily in Europe. The SIKA 

CarboStress system is shown in Figure 2-12. The anchorage has a capacity of 67 kips (300 kN) 
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and is intended for a maximum applied prestress force of 45 kips (200 kN). Material properties 

of the CFPR strips are given later in Table 5-2. This system is comprised of CFRP strips with 

‘potted’ CFRP anchorages referred to as ‘stressheads’ manufactured on each end. These 

stressheads are captured by steel anchorages mounted on the concrete (Figure 2-12a) or by the 

jacking hardware (Figures 2-12b and d). One anchor is the fixed or ‘dead’ end (Figure 2-12a) 

while the other is the jacking end (Figure 2-12b). The jacking end stresshead connects into a 

movable steel frame which connects to a hydraulic jack, thus allowing the strip to be stressed. 

Once the desired stress level is reached, the jack can be mechanically locked to retain the stress 

in the CFRP or the CFRP strip can be anchored by ‘clamps’ (Figure 2-12c) near the jacking end. 

Anchor points can also be located at the beam diaphragms. The introduced stress in the strips can 

vary according to the structural needs and is limited to the tensile strength of the strip (in many 

cases, the strength of the beam at the anchor location controls the amount of prestress force that 

can be applied). Herman (2005) reports an application of this system on two prestressed concrete 

box girder bridges. The intended repair of the prestressed concrete box girders was to restore 

flexural capacity as well as replace some of the lost prestressing forces; employment of the 

Carbostress system as the repair technique proved successful at restoring flexural capacity and 

prestressing force. Additionally, this method saved monetary and material resources and 

minimized construction time and traffic closures. 

2.5 NSM CFRP REPAIRS 

Near-surface mounted (NSM) CFRP repairs provide an alternative to externally bonded CFRP 

strip repairs. The NSM technique places the CFRP in the cover concrete of the member (see 
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Figure 2-13). This protects the laminate from impact forces and environmental exposure (Nordin 

et al. 2002). Similar to external CFRP repairs, an NSM repair can be prestressed if serviceability 

is a concern or non prestressed if ultimate capacity is the only design consideration. It is noted, 

however, that prestressing NSM applications is very difficult and has only been demonstrated in 

laboratory applications using a stressing procedure that is not practical for use in the field 

(Nordin et al. 2002 and Casadei et al. 2006). An NSM CFRP repair is completely enclosed in 

epoxy, making it possible to achieve higher bond strength as compared to external strip bonding 

due to the larger surface area which is bonded. Additionally, an NSM application engages more 

cover concrete and is able to transfer greater stresses into the concrete substrate (Quattlebaum et 

al. 2005). Therefore, NSM repairs will typically use less CFRP material than an externally 

bonded strip repair. However, NSM repairs are sensitive to the amount of concrete cover and are 

not a viable option when cover is not sufficient. Laboratory studies have shown that both 

prestressed and non prestressed NSM repairs have been successful in restoring ultimate girder 

capacity (Nordin et al. 2002 and Casadei et al. 2006). 

2.6 EXPECTED DAMAGE 

In designing repair measures, it is of the utmost importance for the designer to thoroughly 

understand the condition of the member prior to repair. Incorrect assumptions regarding the 

structure’s condition result in a poor or improper repair design. It is important to also consider 

the nature or cause of the damage in order to understand the damage and address the source of 

the damage in addition to facilitating the repair. For example, based on findings of the 

investigation of the Lake View Drive Bridge collapse (Harries 2006 and Naito et al. 2006) a 
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recommendation was proposed that when considering observable corrosion damage to strands, 

that the contribution of between 50% and 100% of adjacent (unobservable) strands be neglected 

in rating the damaged structure. Based on these recommendations, PennDOT adopted the ‘150% 

rule’ for assessing the area of lost prestressing strand: [paraphrasing] when assessing corrosion 

damage to a prestressed concrete girder, the area of prestressing strand assumed to be 

ineffective due to corrosion shall be taken as 150% of that determined by visual inspection. 

Similarly, the strength capacity of a girder suffering impact damaged may change 

significantly. For example, a prestressed concrete structure is impacted by a truck and only one 

strand is visible and severed. Small strand spacing results in little concrete between strands. In 

this case, there may be insufficient concrete surrounding the adjacent strand(s) to allow the 

prestressing force of these strands to be transferred into the structure. As a result, a portion or all 

of the prestressing force near the impact may be ineffective. It may be prudent to disregard a 

portion or all of the contribution from surrounding strands in repair design. 

Damaged strands in larger spans or long girders may be ‘redeveloped’ if there is 

sufficient undamaged length remaining. There has been no study on the ‘redevelopment’ of 

severed or corroded strands; therefore, for repair design, it is conservative to neglect the strand in 

the analysis of the structure (Harries 2006). 
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Table 2-1 Repair Selection Criteria (Shanafelt and Horn 1980). 

Damage Assessment 
Factor 

Repair Method 

External PT Strand 
Splicing Steel Jacket Girder 

Replacement 
Behavior at Ultimate 

Load Excellent Excellent Excellent Excellent 

Overload Excellent Excellent Excellent Excellent 

Fatigue Excellent Limited Excellent Excellent 
Adding Strength to Non-

Damaged Girders Excellent N/A Excellent N/A 

Combining Splice 
Methods Excellent Excellent Excellent N/A 

Splicing Tendons or 
Bundled Strands Limited N/A Excellent Excellent 

Number of Strands 
Spliced Limited Limited Large Unlimited 

Preload Required Perhaps Yes Probably No 
Restore Loss of 

Concrete Excellent Excellent Excellent Excellent 

Speed of Repair Good Excellent Good Poor 
Durability Excellent Excellent Excellent Excellent 

Cost Low Very Low Low High 
Aesthetics Fair* Excellent Excellent Excellent 

N/A:  not applicable 
*can be improved to excellent by extending corbels on fascia girder 
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Table 2-2 Comparison of Various Beam-End Numerical Ratings and Overall Ratings (Tabatabi et al. 2004). 

Beam 
End Description Chlorides*

   

 

Cracking* Corrosion* Overall 
Rating*

1A Epoxy Coated From Day 1 1 2 3 6 

1B Epoxy Coated After 6 Months of 
Exposure 2.5 4 7 13.5 

2A No Treatment Applied 2 6 5.5 13.5 

2B Patch Repair After 6 Months of 
Exposure 8 7 8 23 

3A Silane Sealer Applied from Day 1 1 5 3.5 9.5 

3B Silane Sealer Applied After 6 
Months of Exposure 2 8 5.5 15.5 

4A Polymer Resin Coating Applied 
After 6 Months of Exposure 4.5 3 6 13.5 

4B FRP Wrap Applied After 6 
Months of Exposure 2.5 1 7 10.5 

5A Polymer Resin Coating Applied 
from Day 1 1 1 2 4 

5B FRP Wrap Applied From Day 1 1.5 1 2 4.5 
*Individual criterion ratings were based on 1 –8 scale, 1 indicating best effect, 8 indicating worst effect. The overall 
ranking was based on a scale of 3 to 24 with 3 indicating the best condition and 24 indicating the worst condition. 
Shaded rows indicate beam-ends that were treated after 6 months of exposure. 
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(a) Splice 1: mild reinforcing anchored by bolster.  
PT provided by preload. 

(b) Splice 2: PT anchored by bolster.  
Bar is usually mounted in duct or greased sleeve to 

affect environmental protection. 

(c) Splice 4: Prestressing strand in continuous bolsters. 
Strand may be harped. PT provided by jacking.  

Unbonded strand in a greased sleeve is conventionally used.
 

Figure 2-1 External post-tensioned repair methods (Shanafelt and Horn 1980). 
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Figure 2-2 Splice 3: Steel jacket repair method (Shanafelt and Horn 1980). 

 

 

 

 
Figure 2-3 Commercially available ‘turnbuckle’ style strand splice repair method (PCI). 
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(a) Splice 6: Strand chucks used to splice strand. 
Prestressing reintroduced by heating strand during 

installation 

(b) Splice 7: ‘Turnbuckle’ style strand splice.  
Coupler draws strand ends together. 

 
(c) Splice 8: Multiple strand ‘turnbuckle’ style strand splice.  

 
Figure 2-4 Strand splicing methods (Shanafelt and Horn 1980). 
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Figure 2-5 Combination of repair methods (Splice 5) (Shanafelt and Horn 1980). 

 
 
 

2 #3

#3 ties at 10 in.

2 #8 & 1 #7 

5 layers CFRP
A = 0.465 inf

2 CFRP layer terminations offset 8 in. (typ.)

end of beam

 
 
 

Figure 2-6 Specimen cross sections tested by Wight et al. (2001). 
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Figure 2-7 Moment –displacement plots for beams tested by Wight et al. (2001). 

 
 
 
 

 
 

Figure 2-8 Proposed direct prestressing system (Wight et al. 2001). 
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(a) Schematic of closed loop prestressing system.

(b) Prototype system under development.

 
Figure 2-9 Proposed indirect prestressing system (Casadei et al. 2006). 

 
 

 

 

Figure 2-10 Proposed deflection controlled indirect prestressing system (Yu et al. 2008a). 
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Figure 2-11 Nonmetallic anchoring systems (Kim et al. 2008a). 
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(a) dead end anchor. (b) jacking end anchor in movable frame. 

  

(c) multiple live end anchors at one location. (d) stress head system. 

Figure 2-12 Sika CarboStress system (SIKA). 
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                 Externally Bonded                          various NSM configurations  
 

Figure 2-13 Schematic of externally bonded and NSM CFRP techniques. 
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3.0  INVENTORY CONDITION ASSESSMENT 

A review of all prestressed concrete bridge structures in Pennsylvania was conducted. All 

bridges having a ‘structure type’ coded 4xxxx (i.e.: prestressed concrete) in the PONTIS 

database were included. Data was considered on a statewide basis (including District 11) and for 

District 11 (Allegheny, Beaver and Lawrence counties) only. The intent of this exercise was to 

establish a snapshot of the condition of the prestressed concrete bridge inventory in Pennsylvania 

and to ensure that the bridges considered for further study (from District 11) were representative 

of the statewide distribution.  

3.1 BRIDGE INVENTORY REVIEWED 

Table 3-1 provides a summary of the data obtained based on bridge type considering statewide 

and District 11 data. For this exercise, only structures rated as ‘structural deficient’ (SD) are 

considered. Additionally, the data is divided into those bridges rated deficient for ‘any’ (deck, 

superstructure, substructure) reason and for only superstructure (‘super’) deficiency; the latter is 

the focus of the present study. In reading Table 3-1, the percentages reported in the ‘No.’ 

columns are determined based on the total number of prestressed bridges reported; thus 

statewide, 33% of prestressed bridges are ‘simple composite multi-box beams’ (1921/5874 = 

0.33). The percentages reported in the ‘SD’ columns are based on the total number of bridges of 
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a particular type; thus statewide, 11% of the ‘simple composite multi-box beams’ are structurally 

deficient (214/1921 = 0.11). The following observations are made based on this data:  

• Statewide, the inventory of prestressed bridges has proportionally fewer deficient 

structures (15.1%) than the total inventory (21.4%). This should be expected since 

prestressed concrete is a relatively durable material and the average age of the prestressed 

inventory is younger than the inventory as a whole.  

• District 11 has a greater proportion of prestressed bridges (37.7%) than the statewide 

inventory (23.3%).  

• District 11 reports a greater proportion of deficient structures (28.4%) than the statewide 

inventory. Additionally, the proportion of prestressed bridges reported as being deficient 

in District 11 (28.0%) is comparable to the total inventory deficient in this district 

(28.4%). However, the majority of deficient structures in District 11 are not rated as 

deficient based on their superstructure condition and District 11 has essentially the same 

proportion of deficient prestressed superstructures as the statewide inventory (7.8% in 

each case).  

• Four bridge types dominate the prestressed inventory: simple, noncomposite adjacent box 

beams (14% of prestressed inventory statewide and 10% in District 11); simple 

composite I-beams (22%/25%); simple composite multi-box beams (33%/26%); and 

simple composite adjacent box beams (19%/14%).  

• Considering only prestressed bridges rated deficient based on their superstructure rating, 

noncomposite adjacent box beams represent the majority of such bridges (40% of such 

bridges are deficient statewide representing 71% of the deficient prestressed structures in 

the state). Composite I-beam, adjacent box beam and multi-box beams also represent 
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large numbers of such deficient bridges. The trends and the dominance of these four 

bridge types are similar when considering District 11 only.  

 

Based this review, 28 bridges from District 11 were selected for an in-depth review of 

their inspection reports in order to assess the nature of damage resulting in a ‘structural deficient’ 

superstructure rating. As indicated in Table 3-1, five bridge types1, reflective of the District 11 

inventory, were selected. Initially, 22 bridges (Bridges A – H in Table 3-2) were selected based 

on: a) having a superstructure rating less than 4; and b) having low reported clearance over a 

roadway. The latter criterion was selected to ensure some vehicle impact damage would be 

present in the sample. Five additional bridges having known vehicle impacts were added 

(Bridges J – P). Finally, the collapsed Lake View Drive bridge (Harries 2006) from District 12 

was also added (Bridge LV). Table 3-2 summarizes the 29 bridges selected for further study. The 

bridges have been assigned an alphanumeric identification as shown in Table 3-2 which will be 

adopted for clarity in further reporting and to obscure the identity of the in-service bridges. 

3.2 SOURCES OF DAMAGE TO PRESTRESSED CONCRETE GIRDERS 

Observed sources damage to prestressed concrete girders are classified as indicated in Table 3-3. 

Vehicle impact damage (Source I) was the basis for bridge selection and is thus 

disproportionately represented in the sample. As of July 16, 2008, only 18 bridges in District 11 

were listed as having undergone significant damage from vehicle impact; 7 of these were 
                                                 

1 There is some confusion in the inventory. ‘Simple noncomposite multi-box beams’ are reported although there is 
not believed to be such a structure type. It is believed that this classification represents a mis-classification either 
‘simple composite multi-box beams’ or ‘simple noncomposite adjacent box beams’. 
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prestressed concrete structures. Impact damage (Figures 3-1 to 3-5) ranges from significant loss 

of section and reinforcing (Figure 3-1), which was not observed in the bridges investigated, to 

minor ‘scrape’ marks on the bridge soffit (Figure 3-2). Impact may result in spalling, typically 

resulting in exposed (although rarely damaged) strands (Figures 3-3 and 3-4). Feldman et al. 

(1996) identified a commonly occurring damage pattern associated with side impact. The impact 

causes a torsion-induced shear cracking pattern in the exterior (or fascia) girder as shown in 

Figure 3-5. This was observed in Bridge P, reviewed for this study (Figure 3-5).  

The most common source of damage observed results from ‘environmental distress’ and 

simple aging of the structure coupled with limited or inadequate maintenance (Source II). 

Chloride intrusion resulting from the use of road salt is the most significant environmental 

stressor. Chloride-laden water from the bridge surface may affect the bridge deck, sides of the 

bridge and soffit region where no ‘drip strips’ are present (Figure 3-6). Additionally, chlorides 

may be introduced into regions assumed to be ‘protected’ as a result of leaking expansion joints 

and drain systems (Figure 3-7). Deterioration of shear keys in adjacent box girders (observed in 

the Lake View Drive bridge (Harries 2006)) and anecdotally throughout southwestern 

Pennsylvania2) results in chloride laden water accessing all webs and most of the soffit (Figure 

3-6). Spray from trucks travelling beneath the bridge may introduce additional chloride-laden 

water to the underside of the bridge superstructure. Although not an issue in the present study, 

bridges located near an ocean environment are also subject to enhanced chloride attack. Related 

to the presence of water (whether chloride-laden or not) is the potential for damage associated 

with freezing and thawing cycles. Such freeze/thaw damage in prestressed structures typically 

requires other damage to be present (allowing water ingress) before initiating.  
                                                 

2 Many noncomposite adjacent box girders display icicles between their beams during winter. These icicles are often 
‘stained’ indicating some degree of active corrosion. 
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Improper retrofit or repair practices can initiate damage (Source III). For example, a 

concrete patch having a lower chloride content than the adjacent concrete can result in the 

formation of a localized corrosion cell at the patch interface resulting in accelerated corrosion in 

this region even without further chloride load (as the chloride ions migrate from the older 

concrete into the patch). This source of damage is most commonly observed on patched decks. 

Another damage source (IV) associated with bridge retrofit was observed where a barrier rail 

system was replaced and the original bolted attachment locations not patched. This led to local 

spalling as shown in Figure 3-8. Additionally, the possibility that the new rail mounting (Figure 

3-8a) is drilled through a strand or may cause future spalling cannot be discounted.  

Inadequate maintenance practices may not be a primary source of damage; however they 

will exacerbate existing damage (Source V). Clogged drain systems, exposed strands, concrete 

that remains un-patched and clogged weep holes are all maintenance issues that must be 

corrected before further damage results. For example, weep holes in the adjacent box girders of 

the Lake View Drive Bridge (Harries 2006) were clearly clogged as evidenced by significant 

water residing in the beam voids (collapsed void forms can be seen in Figure 3-9). This internal 

water may affect chloride attack of the girder soffit from the top-down (not observed in the Lake 

View Drive bridge) and adds an unaccounted-for dead load to the girder. 

Construction error (Source VI) may result in bridge damage if uncorrected. Minor errors 

may exacerbate degradation from other sources. For example, Figure 3-9 shows that some 

strands in the Lake View Drive Bridge had only one half of their prescribed 1.5 inch concrete 

cover. Such misplacement results in less protection to the steel from chloride intrusion and is 

likely to exacerbate spalling.  
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Bridges may be damaged by overload (Source VII) or extreme events (Source VIII). Such 

loads may be from overloaded or oversized vehicles or from natural causes including seismic 

effects (Figure 3-10a) or floods. In general, damage flood-borne debris will be similar to that 

caused by vehicle impact but may be located anywhere in the bridge depth. No such damage was 

observed in the present study. Bridges may also be damaged by fire (Figure 3-10b). Due to the 

nature of such damage, bridges affected by fire should be assessed on a case-by-case basis. Fire 

damage is beyond the scope of the present work.  

3.3 TYPES OF DAMAGE TO PRESTRESSED CONCRETE BRIDGE GIRDERS 

Observed types of damage to prestressed concrete girders are classified as indicated in Table 3-4. 

This classification may be interpreted as a damage continuum. Left uncorrected, less significant 

damage types (Types i and ii) will progress to becoming more significant (Types iii to v) as 

corrosion becomes manifest. Eventually corrosion will lead to section loss of the strand (Types 

vi and vii) and resulting loss of prestress and member capacity. Figure 3-11 schematically 

illustrates this continuum of corrosion damage. In general, the progression of corrosion-related 

damage tends to be exponential in time. Repairing such types of damage must be accompanied 

my mitigating the source of the damage where possible.  

Mechanical damage resulting in strand rupture may also result from significant impact 

events (Type viii) or other overloads (Types ix to xi), although the latter are rare and not 

generally observed in the present study. It should be noted that the load tests carried out on 

girders recovered from the Lake View Drive Bridge (Harries 2006) resulted in examples of both 

shear (Type ix) and flexural (Type x) damage as shown in Figures 3-12 and 3-13, respectively. 
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Longitudinal cracking (Type xi) may result from impact (Fig. 3-5) or from corrosion of 

reinforcement prior to spalling. The latter will generally be accompanied by staining.



Table 3-1 Summary of statewide and District 11 prestressed bridge inventory. 

 
Structure 

Type 
Code 

Statewide District 111
 

 

bridges considered 
for further study5

No. SD (rating < 4) No. SD (rating < 4)  
Any2

  Super  Any2 Super review design 

all bridges3
 xxxxx 25203 5385 

(21.4%) 
3465 

(13.7%) 1781 505 
(28.4%) 

318 
(17.9%) 

  

all prestressed4
 4xxxx 5874 

(23.3%) 
887 

(15.1%) 
456 

(7.8%) 671 (37.7%) 188 
(28.0%) 52 (7.8%)   

simple, noncomposite slab 4x101 42 3 (7%) 2 (5%) 0 0 0   
simple, noncomposite hollow slab 4x102 4 2 (50%) 0 4 2 (50%) 0   
simple, noncomposite I beam 4x104 56 16 (29%) 1 (2%) 29 15 (52%) 0 2 x 
simple, noncomposite multi-box beam8

  4x106 84 20 (24%) 11 (13%) 41 16 (39%) 9 (22%) 96 x 
simple, noncomposite adjacent box beam 4x107 821 (14%) 350 (43%) 326 (40%) 69 (10%) 19 (28%) 14 (20%) 6 x 
simple, composite slab 4x201 55 1 (2%) 0 6 0 0   
simple, composite I beam 4x204 1275 (22%) 173 (14%) 29 (2%) 167 (25%) 59 (35%) 9 (5%) 4  
simple, composite multi-box beam 4x206 1921 (33%) 214 (11%) 55 (3%) 177 (26%) 53 (30%) 12 (7%) 5  
simple, composite adjacent box beam 4x207 1110 (19%) 95 (9%) 29 (3%) 95 (14%) 17 (18%) 8 (8%) 3  
simple, composite other 4x299 3 1 (33%) 0 1 0 0   
continuous, noncomposite I beam 4x304 5 0 0 3 0 0   
continuous, noncomposite multi-box 
beam8

 

4x306 1 0 0 0 0 0   

continuous, noncomposite adjacent box 
beam 4x307 1 0 0 0 0 0   

continuous, composite I beam 4x404 210 7 (3%) 0 50 7 (14%) 0   
continuous, composite multi-box beam 4x406 197 0 0 20 0 0   
continuous, composite adjacent box beam 4x407 65 1 (2%) 0 9 0 0   
other I beam 4x504/804 6 1 (17%) 0 0 0 0   
other multi-box beam 4x806 5 0 0 0 0 0   
other adjacent box beam 4x807/907 10 3 (30%) 3 (30%) 0 0 0   
other 4xxxx 2 0 0 0 0 0   
1Allegheny, Beaver and Lawrence Counties 
2Deck, Superstructure and Substructure only (culverts not considered) 
3data from September 10, 2007  
4prestressed data from: statewide: February 12, 2008; District 11: December 26, 2007  
5only bridges from District 11 were considered for further study 

6more 4x106 bridges were selected for review as many had vertical clearance issues 
7includes Lake View Drive Bridge. 
8there is not believed to be such a structure as a noncomposite multi box beam. It is believed 

that this classification represents a mis-classification either simple composite multi-box 
beams (4x406) or simple noncomposite adjacent box beams (4x107). 
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Table 3-2 Bridges Selected for further investigation of inspection records. 

ID Structure Type 

Min 
Vert. 
Clear 

(ft) 

Year Rating 
Suff. 
Rate 

Built Recon
. 

Deck Super Sub 

A S-NC-multi box beam 421061
 17.25 1962 1976 5 3 4 27.1 

A S-NC-multi box beam 421061
  

2 1962 1976 5 3 4 27.1 
A S-NC-multi box beam 421061

 
 

2 1962 1976 5 3 4 27.1 
A S-NC-multi box beam 421061

 53.00 1962 1976 5 3 4 27.1 
B S-NC-multi box beam 421061

 
 

2 1967 - 4 4 4 47.3 
B S-NC-multi box beam 421061

 14.58 1967 - 4 4 4 47.3 
C S-NC-multi box beam 421061

 
 

2 1963 - 5 4 4 49.0 
C S-NC-multi box beam 421061

 14.42 1963 - 5 4 4 49.0 
C S-NC-multi box beam 421061

 14.42 1963 - 5 4 4 49.0 
D S-NC-adjacent box beam 42107 2

 1957 - 4 3 5 41.3 
D S-NC-adjacent box beam 42107 10.00 1957 - 4 3 5 41.3 
E S-NC-adjacent box beam 42107 2

 1901 1957 5 4 5 22.7 
E S-NC-adjacent box beam 42107 8.00 1901 1957 5 4 5 22.7 
F S-C-I beam 42204 32.00 1969 - 3 4 4 63.1 
F S-C-I beam 42204 32.00 1969 - 3 4 4 63.1 
F S-C-I beam 42204 2

 1969 - 3 4 4 63.1 
G S-C-multi box beam 42206 14.75 1973 - 3 4 4 56.5 
G S-C-multi box beam 42206 14.75 1973 - 3 4 4 56.5 
G S-C-multi box beam 42206 2

 1973 - 3 4 4 56.5 
G S-C-multi box beam 42206 2

 1973 - 3 4 4 56.5 
H S-C-adjacent box beam 42207 15.58 1966 - 3 4 3 33.0 
H S-C-adjacent box beam 42207 2

 1966 - 3 4 3 33.0 
H S-C-adjacent box beam 42207 15.58 1966 - 3 4 3 33.0 
J S-C-multi box beam 42206 15.00 1988 - - 5 - 80.0 
K S-NC I beam 42104 14.42 1970 - - 5 - 63.6 
M S-NC I beam 42104 15.92 1971 - - 5 - 43.6 
N S-C-I beam 42204 14.42 1970 - - 5 - 48.8 
P S-NC-adjacent box beam 42107 - - - - - - - 

LV S-NC-adjacent box beam 42107 14.50 1961 - - - - - 
1there is not believed to be such a structure as a noncomposite multi box beam. It is believed that this 
classification represents a mis-classification either simple composite multi-box beams (42406) or simple 
noncomposite adjacent box beams (42107). 
2bridge does not pass over active roadway. 
S = simple; NC = noncomposite; C = composite
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Table 3-3 Sources of Observed Damage. 

Damage 
Source 

Description Representative 
Photograph(s) 

Bridges 
where 

observed 
I Impact by over height vehicle Figs. 3-1 to 3-5 A, C, J-P & 

LV 
II Environmental Distress/Aging including 

freeze-thaw and water-induced 
Figs. 3-6 and 3-7 A, E, F, G, H, 

N & LV 
III Construction error or poor practice 

associated with previous repair 
- H & LV 

IV Construction error associated with 
appurtenance mounting 

Fig. 3-8 C & E 

V Poor maintenance practice Figs 3-7 and 3-8 A, C, E, F, H 
& LV 

VI Construction error Fig. 3-9 LV 
VII Load-related damage (other than impact), 

including effects of natural disasters 
Figs. 3-12 and 3-13 E 

VIII Extreme events such as natural disaster 
and fire 

Fig. 3-10 none 
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Table 3-4 Types of Observed Damage. 

Damage 
Type 

Observed Damage Representative
Photograph(s) 

Bridges 
where 

observed 

Damage 
Source 

i Concrete spalling 

Fig 3-11 

A, C, D, E, 
F, G & LV 

all 

ii Exposed prestressing strands A, C, D, E, 
F, G, K, N & 

LV 

all but VI 

iii Corroded prestressing strand 
without pitting 

A, E, J, N & 
LV 

all but VI 

iv Corroded prestressing strand with 
light pitting 

A, LV all but VI 

v Corroded prestressing strand with 
heavy pitting 

A, LV all but VI 

vi Partial loss of strand area due to 
corrosion (rupture of individual 

wires) 

A, LV all but VI 

vii Complete loss of strand area due to 
corrosion 

A, LV all but VI 

viii Strand rupture associated with load 
or impact 

Figs 3-3 – 3-4 K, N &LV I, IV, VII & 
VIII 

ix Shear cracking of girder Fig. 3-12 C, G & LV I, VI, VII 
&VIII 

x Flexural cracking of girder Fig. 3-13 none VI, VII & VIII 
xi Longitudinal cracking of girder Figs  3-3(c) 

and 3-5 
J, N & P I, II, VII,& 

VIII 
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Figure 3-1 Loss of section of AASHTO girder due to vehicle impact (Harries; not taken in PA). 

 

 

Figure 3-2 Scraping due to minor vehicle impact 
(Lake View Drive Bridge prior to collapse; PennDOT and Harries 2006). 

 

  

(a) damage to girder soffit. (b) close up view of (a) showing 
severed strands. 

(c) longitudinal cracking resulting 
from impact. 

 
Figure 3-3 Impact damage to I beam (PennDOT). 

 
 

47 



 

 
Figure 3-4 Exposed and ruptured strand due to vehicle impact (Lake View Drive Bridge; Harries 2006). 

 

 
(a) following vehicle impact 

(PennDOT). 
(b) typical impact damage pattern 

(PennDOT). 
(c) typical impact damage due to side 

impact (Feldman et al. 1996). 
Figure 3-5 Vehicle impact due to collision. 

 

(a) water coming down exterior face of adjacent box 
girder (Harries 2006). 

(b) water leaking between adjacent box girders 
(PennDOT). 

 
Figure 3-6 Evidence of water on soffits of adjacent box girders. 
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(a) water pooling due to clogged deck drain (PennDOT). (b) damaged drain system resulting in water affecting 
superstructure (PennDOT). 

Figure 3-7 Water from unanticipated sources. 
 

(a) spalling at original attachment and possible future 
damage at sight of new attachment. 

(b) unpatched holes at sight of original attachment result 
in exposed strands. 

Figure 3-8 Damage to strands caused by relocating barrier supports (PennDOT). 
 

¾” center of strand to soffit                                        inconsistent spacing 

Figure 3-9 Girder with insufficient cover and inconsistent strand spacing  
 (Lake View Drive Bridge; Harries 2006). 
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(a) earthquake (FEMA). (b) fire (SIKA Corporation). 

 
Figure 3-10 Damage due to extreme events-beyond the scope of the present study. 
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(a) concrete spalling. (b) exposed strands without corrosion (Fig. 3-8b). 

 
(c) corrosion without pitting (strand intentionally cut). 

(d) corroded strand with light pitting 

 
(e) corroded strand with heavy pitting. 

 
(f) partial loss of strand area. 

 
(g) complete loss of strand area. 

Figure 3-11 Continuum of corrosion damage (Naito et al. 2006; Harries 2006). 
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Load Cycle 8:  P = 59.9 kips

6 inches

Figure 3-12 Representative shear distress (Lake View Drive EXTERIOR test girder; Harries 2006). 

 

Figure 3-13 Representative flexural distress (Lake View Drive INTERIOR test girder; Harries 2006). 
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4.0  PROTOTYPE PRESTRESSED GIRDER SELECTION 

It was initially anticipated that specific bridges would be used as prototype structures for repair, 

however, based on the inventory review (Chapter 3) it was decided that prototypes will be 

prepared having greater damage than has been reported on any of the bridges investigated (Table 

3-2). For simplicity, only simply supported, non-composite prototypes are considered. There are 

few continuous prestressed bridge elements and the nature of repair techniques will not generally 

be affected by whether the structure is composite or non-composite. Based on the Chapter 3, 

only three bridge types will be considered: a) Adjacent box beams (AB); b) Multi-box (spread 

box) beams (SB); and c) I-beams (AASHTO-type beams) (IB). Cross sections of the prototype 

girders used for the repair designs are shown in Figures 4-1, 4-2 and 4-3, respectively. These 

prototypes are based on the as-built details of bridges LV, A and K, respectively as reported in 

Table 3-2 and will be described in greater detail in Chapter 5. 

4.1 DAMAGE CLASSIFICATION 

The NCHRP 12-21 study (Shanafelt and Horn 1980 and 1985) established three damage 

classifications: minor, moderate and severe. These are defined in Section 2.1. Based on the 

potential for more effective retrofit of more heavily damaged members, a further division of the 

‘severe’ category is proposed as follows: 
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MINOR Concrete with shallow spalls, nicks and cracks, scrapes and some efflorescence, 

rust or water stains. Damage at this level does not affect member capacity. 

Repairs are for aesthetic or preventative purposes. 

MODERATE Larger cracks and sufficient spalling or loss of concrete to expose strands. 

Damage does not affect member capacity. Repairs are intended to prevent 

further deterioration. 

SEVERE I Damage requires structural repair that can be affected using a non- 

prestressed/post-tensioned method. This may be considered as repair to affect 

the strength (or ultimate) limit state (ULS). 

SEVERE II Damage requires structural repair involving replacement of prestressing force 

through new prestress or post-tensioning. This may be considered as repair to 

affect the service limit state (SLS) in addition to the ultimate limit state (ULS). 

SEVERE III Damage is too extensive. Repair is not practical and the element must be 

replaced. 

 

  Damage may be quantified in a variety of ways. Table 4-1 may be viewed as a guide for 

both selecting a method by which to quantify damage to prestressed members and for 

quantifying the damage. The entries are tentative at this time; based on the findings of the repair 

scenarios presented and additional parallel studies values will be proposed. Nonetheless, it is 

informative to describe the approach to damage quantification. 
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Defining damage based on the number of strands lost is not felt to be rational in so far as 

this value does not take into account the contribution of an individual strand to the member 

capacity. That is; 4 strands missing from a girder having only 16 strands is significant, whereas 4 

strands missing from a girder having 72 strands may not require immediate repair. Classification 

by girder deflection, while likely an excellent indicator of performance, is felt to be impractical 

to establish in the field. Attention will be focused on live load and ultimate capacity replacement.  

Washington State DOT (2008) has provided limited guidance as to when girder replacement 

is required. This guidance would correspond to the threshold between SEVERE II and SEVERE 

III. Replacement is required in cases where: 

1. Over 25% of the strands have been severed.  

2. The bottom flange is displaced from the horizontal position more than ½” per 10’ of 

girder length. 

3. If the alignment of the girder has been permanently altered by the impact. 

4. Cracks at the web/flange interface remain open.  

5. Abrupt lateral offsets may indicate that stirrups have yielded. 

6. Concrete damage at harping point resulting in permanent loss of prestress. 

7. Severe concrete damage at girder ends resulting in permanent loss of prestress. 

Items 3-7 are additional qualitative considerations for determining SEVERE III level damage. 

4.2 REPAIR EXAMPLE SELECTION 

Based on the review of repair methodologies available and the proposed damage 

classification, a ‘flow chart’ of appropriate repair methods was established for each type of beam 
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considered, adjacent box (AB), multi-box (SB) and AASHTO girder (IB). These flow charts are 

shown in Figure 4-4. The resulting matrix of repair examples is shown in Table 4-2. Three 

variants of non-prestressed CFRP, one variant of prestressed CFRP, one variant of post-

tensioned CFRP, one variant of strand splicing and one variant of external steel post-tensioning 

will be demonstrated in examples presented in the following chapter. 

The viable selections outlined in Figure 4-4 were developed based on some practical 

considerations of girder and retrofit geometry. For example, due to the large dimension of the 

splices and the need to stagger splices is felt that strand splicing is only marginally applicable in 

sections having relatively thin wall or flange dimensions (box girders). Such splices would be 

more appropriate for prestressed slabs having only a single layer of strands and reasonable cover 

dimensions.  

No example of steel jacketing is provided. This method is felt to be very cumbersome to 

apply in the field and offers no advantages over the non-corrosive, lighter and easier to apply 

CFRP systems. An example of a steel jacket design is provided in Shanafelt and Horn (1980). 

All repair approaches should also include mitigation of the damage source, the adoption 

of passive or active corrosion mitigation measures and finally concrete patching. These steps are 

shown in Figure 4-4 but are beyond the scope of the present work. 
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Table 4-1 Proposed damage classifications. 

Damage Classification SEVERE I SEVERE II SEVERE III 
Repair philosophy ULS only ULS and SLS - 
Action non PT repair PT repair replace 
Live load capacity replacement up to 5% up to 30% 100% 
Ultimate load capacity replacement up to 8% up to 15% 100% 
Replace lost strands 2-3 strands up to 8 strands >8 strands 
Deflection loss of camber up to 0.5% >0.5% 

 

Table 4-2 Repair Examples. 

Beam Damage Retrofit

Adjacent Box 
Beam 

4-0-0 & 8-2-1 Non-prestressed preformed 
CFRP strip 

8-2-1 Prestressed CFRP strips 

8-2-1 Post-tensioned CFRP strips 

Spread Box 
Beam 

4-0-0 & 8-2-1 Non-prestressed preformed 
CFRP strip 

8-2-1 Prestressed CFRP strips 

8-2-1 Post-tensioned CFRP strips 

AASHTO I-
girder 

4-0-0 Strand Splice 

4-0-0, 6-2-1 & 
10-2-1 Non-prestressed CFRP fabric 

4-0-0, 6-2-1 & 
10-2-1 Non-prestressed NSM CFRP 

4-0-0, 6-2-1 & 
10-2-1 Prestressed CFRP strips 

4-0-0, 6-2-1 & 
10-2-1 Post-tensioned CFRP strips 

6-2-1 & 10-2-1 External steel post-tensioning 
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Figure 4-1 Prototype AB girder cross section. 

 

 

Figure 4-2 Prototype SB girder cross section. 
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Figure 4-3 Prototype IB girder cross section. 
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(a) Adjacent box girders 

 
(b) Multi-box beam 

 
(c) I-beam 

Figure 4-4 Flow charts illustrating viable retrofit techniques based on level of damage. 
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5.0  PROTOTYPE REPAIR DESIGNS 

This chapter describes prototype repair designs which include CFRP repairs, strand splicing and 

steel post tensioning repairs. CFRP repairs are designed primarily using ACI 440.2R-08 Guide 

for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete 

Structures (ACI 2008) as a guide and are based on strain compatibility of the section. 

Comparable strand splicing and steel post-tensioning repairs are designed using the previously 

established guidance provided by the NCHRP 12-21 project (Shanafelt and Horn 1985). The 

objective of this section is to provide design examples where the repair is intended to restore the 

section flexural capacity of a damaged prestressed girder. The repair method chosen for each 

girder type and damage is outlined in Table 4-2.  

5.1.1 Materials 

Section geometry and material properties of the prototype girders are compiled in Table 5-1. 

CFRP repair materials and post-tensioning steel material properties are compiled in Tables 5-2 

and 5-3, respectively. The material strengths and girder geometries used are based on 

representative/prototype structures LV, A and K as described in Chapter 4. CFRP material and 

geometric properties are based on manufacturer’s data for Sika CarboDur strips (preformed 

CFRP strips) (Sika 2008a) and SikaWrap Hex 103C (unidirectional CFRP ‘fabric’) materials. 
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Data for SikaWrap assumes the use of with Sikadur Hex 300 epoxy (Sika 2008c). Post-

tensioning steel material and geometric properties are based on the use of 150ksi Williams all 

thread bar (Williams 2008). These properties were used for convenience; the use of Sika or 

Williams products is not specifically endorsed in this document. 

5.1.2 Assumptions and Simplifications 

For the analysis and repair of the girders some assumptions and simplifications have been made 

to allow generalized representative designs to be prepared. It is noted that every structure is 

different and all designs must consider local conditions and circumstances. 

All prototype girders are interior girders. It is understood that impact damage is more 

likely to occur on the exterior girders, but the inclusion of barrier walls complicates the analysis 

(Harries 2006), clouding the issues relevant in the present work. The main goal is to provide 

repair designs and model the repaired girder in order to verify the strength of the repair. 

Therefore, all girders modeled have been considered to be interior and have not included barrier 

walls. A parallel study (Russell 2009) has as its objective simplifying the analysis of exterior 

girders so that a simple plane sections approach (as is applied here) may be used for exterior 

girders subject to biaxial bending. 

The design method of FRP repairs accounts for the initial state of the girder by including 

the strain distribution present at the time of FRP installation in design calculations. The state of 

strain at the soffit at this time is assumed to be only the strain due to the dead load of the 

structure. In field applications, additional loads may be presented which need to be included in 

the calculation of initial strain conditions. Due to limitations of the plane-sections analysis 

program XTRACT (see following section), it is not possible to correctly account for the initial 
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soffit strain for the CFRP repairs. Therefore, the moment curvature plots created for the CFRP 

repairs are not representative at load levels below the dead load of the structure (of course, the 

structure will never be subject to loads below this level).  

The damage, modeled by removing strands from the section, was chosen to mimic truck 

impact damage. Strands are removed from the exterior bottom corner and progress inward (this 

is discussed later in Section 5.1.4). As a result, the section is no longer symmetric and a rotation 

of the neutral axis occurs resulting a torsional moment being introduced to the girder. Harries 

(2006) has shown that the effect of this torsional moment is negligible for interior girders 

(although it can be significant for exterior girders having composite barrier walls). Additionally, 

the presence of adjacent girders and the coupling effect of the slab further negate the effects of 

torsion on interior girders. The analyses presented in this document do not account for girder 

twist. 

5.1.3 XTRACT Program 

XTRACT is the commercial version of the University of California at Berkeley program 

UCFyber (Chadwell and Imbsen 2002).  XTRACT is a biaxial nonlinear fiber element sectional 

analysis program. As it is biaxial (2D in the parlance of this report), it permits the input of any 

section shape. While XTRACT can perform moment-curvature (M-φ) and axial load-moment 

interaction (P-M) analyses about the traditional horizontal (x) and vertical (y) axes. Its “orbit 

analysis” tool additionally permits a Mxx-Myy failure surface to be generated based on specified 

failure criteria. Only moment-curvature analyses are presented in this work.  

XTRACT provides both customizable analysis reports and an interactive mode to view 

results. A strong graphical component allows the user to see the outcome of their analyses. 
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Finally, all data is easily exported in text format for further processing. XTRACT is not able to 

run ‘batch jobs’ and thus multiple scenarios (as done for this study) require individual runs and 

data processing. The ease of use (particularly in editing models) of XTRACT however makes up 

for the necessity of this ‘brute force’ approach for multiple analyses. 

The sections analysis design methodology for FRP repair systems is based on strain 

compatibility and does not consider beam curvature. In modeling the repair designs for the FRP 

systems, for convenience the target repair capacity has been determined based on the moment 

capacity at a selected curvature, φ = 0.00015. Because the objective is to consider ultimate 

capacity, the maximum capacity of the repaired girder, determined from a fiber section analysis 

(XTRACT), is presented in Table 5-4. The ultimate curvature at which this value is achieved is 

also reported in Table 5-4. The ultimate curvature in all CFRP analyses presented is determined 

by CFRP debonding failure. While the ultimate curvature varies considerably, all reported values 

continue to represent a reasonable degree of ductility (see moment-curvature plots in this 

chapter, i.e. Figure 5-3).  

5.1.4 Girder Damage 

It is assumed that the most significant damage is related to truck impact. Thus it is appropriate to 

remove strands beginning at the exterior web-soffit corner and move inward across the soffit of 

the girder. Even if truck impact is not the source of damage, removing strands in this manner is 

rational since it represents a worst-case scenario (Harries 2006).  

 In the analyses to follow, strands were removed from the lower three layers only. The 

three-digit identification of each analysis indicates the number of strands removed from the 

lower, second and third layers, respectively. Thus, IB 6-2-1 indicates 6 strands removed from the 
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lower layer, 2 from the second and 1 from the third, for a total of 9 strands removed from the I-

beam section (Figure 4-3). In all cases the strands were removed from the exterior face and 

moved inward. An example is shown in Figure 5-1. Table 5-4 lists all cases considered. In Table 

5-4, the nominal capacity of the damaged girders is given along with the nominal capacity of the 

undamaged girder. The objective of all repairs is to restore the undamaged girder capacity. 

Figures 4-1 through 4-3 show the girder prototypes and their strand arrangement. 

5.1.5 Bridge Loading 

Bridge load calculations were completed according to AASHTO LRFD (2007) specifications 

and are compiled in Tables 5-5 to 5-8 for the various girder types. Loads are calculated based on 

the HS-25 vehicle. It is suggested that in adjacent box (AB) beam bridges with inadequate or 

damaged shear keys that a moment distribution factor of g = 0.50 be used (Harries 2006). Table 

5-6 shows this case and illustrates the potential difference between the assumed load distribution, 

where the distribution factor is approximately g = 0.30 (Table 5-5) and possible in situ 

conditions (Table 5-6). Most bridges reviewed in this study were originally built around 1960, 

therefore the bridges were originally designed for a lower HS-20 loading according to the 1960 

AASHO Specifications. The HS-20 and HS-25 loads are shown in Tables 5-5 through 5-8 to 

contrast the difference between current rating loads and original design loads. Select load levels 

from these tables are superimposed onto the repaired girder moment-curvature plots presented 

later. 

65 



5.2 NON PRESTRESSED PREFORM CFRP STRIP REPAIRS 

Non-prestressed CFRP strip repairs assume the use of Sika CarboDur strips (Table 5-2). The 

explanation of the repair design is best seen via example. This example illustrates the necessary 

steps in designing a CFRP repair as well as provides a brief explanation of each step. All 

equations, equation numbers and clause references shown in the example are from ACI 440.2R-

08 unless noted otherwise. The girder and damage considered for this example repair is the AB 

4-0-0 case. Subsequent cases refer to the steps described in this example and identify appropriate 

modifications. A summary of the parameters, intermediate values obtained during the 

calculations and results of this repair are shown in Table 5-9. Schematic drawings of the 

resulting repair are presented in Figure 5-2. Non-prestressed perform CFRP strip repairs have 

been modeled using XTRACT and the moment-curvature plots are shown in Figures 5-3 and 5-4.  

5.2.1 Design Example AB 4-0-0 

The design example is presented below. A brief description of each step and the associated 

equations are provided in the left column. The calculations associated with AB 4-0-0 are 

provided in the right column. All subsequent CFRP designs use the approach presented with 

some modification as indicated in the sections to follow. 

In the following example, the capacity of the damaged AB 4-0-0 is 3160 k-ft (Table 5-4). 

The objective of the repair is to restore the undamaged nominal moment capacity of the girder: 

3395 k-ft (Table 5-4).  

66 



 

Procedure Calculation 
Define objective of repair. 
For all examples discussed, the objective 
is to restore the undamaged moment 
capacity, Mu. Values of Mu and the 
capacity of the damaged girders are given 
in Table 5-4. 

Restore undamaged moment capacity: 
Mn = 3395 k-ft 

 
Capacity of damaged girder without repair: 

Mn 4-0-0 = 3160 k-ft 

Step 1: Calculate the FRP system 
design material properties. 
The repair is of a bridge girder exposed 
to the elements. Per ACI Table 9.1, a 
reduction factor, CE, of 0.85 is suggested. 
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Step 2: Assemble beam properties. 
Assemble geometric and material 
properties for the beam and FRP system. 
An estimate of the area of FRP (Af) is 
chosen here. If the section capacity does 
not meet the demand after the completion 
of all steps in this procedure, the FRP 
area is iterated upon. 
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Step 3: Determine the state of strain on 
the beam soffit, at the time of FRP 
installation. 
The existing strain on the beam soffit is 
calculated. It is assumed that the beam is 
uncracked and the only load applied at 
the time of FRP installation is dead load. 
MDL is changed to reflect a different 
moment applied during CFRP 
installation. If the beam is cracked, 
appropriate cracked section properties 
may be used. However, a cracked 
prestressed beam may not be a good 
candidate for repair due to the excessive 
loss of prestress required to result in 
cracking.  
 

inin
inpsi

inftk
in

inin
inpsi

lb
bi

/001.0
2040006800

41.21)120001199(
)11.16(
41.2128.181

7686800
616000

4

22

−=
×

××−
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
+

×
−

=ε

gc

bDLb

cgc

e
bi IE

yM
r
ey

AE
P

+⎟
⎠
⎞

⎜
⎝
⎛ +

−
= 21ε   

 

 

Step 4: Estimate the depth to the 
neutral axis. 
Any value can be assumed, but a 
reasonable initial estimate of c is 0.1h. 
The value of c is adjusted  to affect 
equilibrium. 
 

ininc 2.4421.0 × ==  

68 



Step 5: Determine the design strain of 
the FRP system. 
The limiting strain in the FRP system is 
calculated based on three possible failure 
modes: FRP debonding (Eq. 10-2), FRP 
rupture (Eq. 10-16) and FRP strain 
corresponding to prestressing steel 
rupture (Eq. 10-17). The strain in the 
FRP system is limited to the minimum 
value obtained from (Eq. 10-2), (Eq. 10-
16) and (Eq. 10-17). 
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Therefore, the limiting strain in the FRP system is 

=ε
 and the anticipated mode of failure is FRP 

debonding 
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Step 6: Calculate the strain in the 
existing prestressing steel. 
The strain in the prestressing steel can be 
calculated using Eq. (10-22): 
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εpnet is calculated for concrete crushing 
(Eq. 10-23a) or FRP rupture or 
debonding (Eq. 10-23b). The value used 
in Eq. (10-22) is based on the failure 
mode of the system. 
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For concrete crushing: 
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For FRP rupture or debonding: 
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Therefore, FRP debonding represents the expected 

failure mode of the system and εps = 0.0111 in/in. 

 

Step 7: Calculate the stress level in the 
prestressing steel and FRP. 
The stresses are calculated in the 
prestressing steel and FRP using Eq. (10-
24) and Eq. (10-9), respectively. 
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Step 8: Calculate the equivalent stress 
block parameters. 
From strain compatibility, the strain in 
the concrete at failure can be calculated 
as: 
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Using ACI 318-08, the equivalent stress 
block factors can be calculated as: 
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Step 9: Calculate the internal force 
resultants. 
Use Eq. (10-25) 
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Step 10: Adjust c until estimate creates 
equilibrium. 
The value of c calculated in Step 9 must 
be equal to the estimate in Step 4. If not, 
choose another value of c and repeat 
Steps 5 through 9 with the new c value 
until equilibrium is achieved. 
 

By iteration,  c = 10 in. 
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Step 11: Calculate the flexural strength 
corresponding to the prestressing steel 
and FRP components. 
The flexural strength is calculated using 
Eq. (10-26). The component of flexural 
strength contributed by the FRP system 
includes an additional (empirical) 
reduction factor, ψ. 
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 The outlined approach is easily programmed as a spreadsheet (as was done for this study) 

allowing the designer to investigate the effects of varying any of the parameters with relative 

ease. The iteration procedures (c and Af) are also easily automated. 

Following the flexural design, the shear capacity should be verified. If the flexural 

capacity is increased beyond the undamaged girder capacity, the shear demand at ultimate 

capacity will increase. Typically, for long prestressed highway bridge girders, shear will not be a 
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found as: 
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Step 12: Verify that the repair 
provides sufficient strength as 
compared to the demand on the 
structure.  
The area of CFRP provided, Af, is 
adjusted and the procedure repeated until 
the desired flexural capacity is achieved. 
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Therefore, the repair is sufficient. 

Design Summary 

Af = 0.556 in2 

Use 6-2 in. wide CFRP strips as shown in Figures 5-

2a and 5-6.  
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problem provided the objective of the repair is to simply restore the undamaged capacity of the 

girder. 

The use of 2 in. CFRP strip width in the examples is arbitrary. However, Ramanathan and 

Harries (2008) have shown that, analogous to reinforcing steel, a larger number of less wide 

strips (i.e.: using 2-2 in. strips instead of 1-4 in. strip) results in marginally improved debonding 

performance. Based on interaction of adjacent strips it is recommended that the clear spacing 

between strips be greater than 0.25 in. (Oehlers and Seracino 2004). Finally, where possible, the 

strips should be located in the vicinity of the damaged strands. For example, the repair of AB 4-

0-0 would likely be arranged as shown in Figure 5-5. 

A summary of all non prestressed CFRP strip repairs (AB 4-0-0, AB 8-2-1, SB 4-0-0 and 

SB 8-2-1) is provided in Table 5-9. Resulting CFRP repairs are shown in Figure 5-2. Finally, 

detailed moment-curvature responses of: a) the undamaged beams (target values); b) damaged 

beams; and c) repaired beams are shown in Figures 5-3 and 5-4 for the AB and SB examples, 

respectively. Also shown in these figures are the 1960 AASHO and 2007 AASHTO design 

moment and dead load moments for the girders (Tables 5-5 through 5-8).  

A fiber section analysis (XTRACT) is used to determine the moment-curvature responses 

of the beams. Modeling the repairs using a fiber sections analysis is more refined since the 

material stress strain behaviors are better captured than in a simplified plane section analysis 

utilizing stress block factors. Therefore, the results of the sections analysis of Step 11 and the 

XTRACT program are slightly different. The moment-curvature plots produced to model the 

repairs (such as Figures 5-3 and 5-4) display a pronounced ‘kink’ in the curves representing 

section cracking. This kink is an artifact of the transition from uncracked to cracked behavior and 
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is typical of the moment curvature response of prestressed concrete elements as shown in Figure 

5-6 (Collins and Mitchell 1997). 

5.2.2 Further Examples 

The following sections report other repair methods utilizing the preceding detailed 

example. The sections highlight the differences in parameters and equations used in this method. 

Like the presented AB 4-0-0 example, each section includes summary tables of the procedure 

followed, summary drawings of the resulting designs and moment-curvature plots of the target 

and repaired beam behaviors. 

5.3 NON PRESTRESSED CFRP FABRIC REPAIR 

The difference between this and the previous repair is the CFRP material. The CFRP fabric is 

flexible and can be wrapped around complex shapes and thus is particularly useful for 

‘wrapping’ the complex tension flange shape of an I-beam. However, the fabric should not be 

wrapped around the entire bulb since ‘pull off’ failures at inside corners can occur easily. 

Additionally, a significant amount of effort is required to wrap over a sharp corner because the 

corner must be rounded to accommodate the CFRP fabric. Typically, fabric manufactures 

recommend a minimum outside corner radius of 1 in. and do not recommend wrapping around an 

inside corner (such as the flange-to-web interface in an I-beam). Therefore, repairs conducted 

with the fabric are practically restrained to the bulb only (consisting of the bottom soffit and the 

vertical sides). The repairs conducted for the IB 6-2-1 and IB 10-2-1 cases use multiple layers of 
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fabric on the soffit (as seen in Figure 5-7). With the exception of CFRP material properties 

(Table 5-2), the repair design is identical to that presented in Section 5.2.1. Input parameters and 

results are shown in Table 5-10 and drawings of the repairs are shown in Figure 5-7. The repairs 

are modeled in XTRACT and moment-curvature plots are shown in Figure 5-8. It is noted that the 

repairs prescribed for IB 6-2-1 and 10-2-1 did not completely restore the undamaged girder 

moment capacity. This will be discussed in Chapter 6. 

5.4 NSM CFRP REPAIRS 

The design of near-surface mounted (NSM) CFRP repairs is similar to that for CFRP strips 

presented in Section 5.2. The geometric difference is that the CFRP of an NSM repair is located 

in the concrete cover of the member (as seen in Figure 2-13) thereby affecting the FRP lever 

arm, df, in Step 11. The same material is used for NSM repair as the CFRP strip repair, although 

the geometry of the material is customized by cutting the strips longitudinally. For the repairs 

done here, a strip size of 0.875 in. x 0.047 in. was used (see following section for rationale). 

Additionally, two strips were glued together and inserted into each slot in the beam. This method 

of increasing the available area of CFRP per slot has been successfully demonstrated by Aidoo et 

al. (2006), among others. The advantage of an NSM repair is that a greater debonding strain can 

be achieved. The design of an NSM repair is the same as the example in Section 5.2.1 with the 

exception of the calculation of equation (10-2) in Step 5. For NSM, rather than making the 

calculation of equation (10-2), the debonding strain is calculated by , (where 

) (ACI 440.2R-08).  Input parameters and results are shown in Table 5-11 and drawings 

*
fumfd k εε ×=

7.0=mk
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of the repairs are shown in Figure 5-9. NSM repaired girder moment-curvature plots are seen in 

Figure 5-10. It is noted that the repair prescribed for IB 10-2-1 did not completely restore the 

undamaged girder moment capacity. This will be discussed in Chapter 6.  

5.4.1 NSM Strip Size Optimization 

NSM slot geometry (required slot size and spacing) is prescribed by ACI 440.2R-08. Therefore, 

for a given soffit width, an optimal strip size can be determined so as to maximize the area of 

NSM reinforcement that may be provided. A typical slot, cut with a concrete saw is 0.25 in. wide 

(Aidoo 2004 and Quattlebaum et al. 2005). This is the maximum width for the cut (if made in 

one pass) and therefore restricts the width of NSM reinforcement that may be used3. ACI 

440.2R-08 recommends that the slot be at least 3 times the width of the inserted strip. Based on 

this, it is assumed that two strips (glued together) may be inserted into a 0.25 in. slot; this was 

demonstrated by both Aidoo (2004) and Quattlebaum et al. (2005). The clear concrete cover 

depth also restricts the NSM strip size. The depth of the slot clearly must not exceed the clear 

cover as this will result in cutting into the transverse reinforcement. Some margin is required 

when cutting slots. For prestressed construction where dimensions are well controlled and 

primary reinforcement does not sag, a margin of 0.125 in. is suggested. Therefore, for the I-

beam, for instance, the maximum depth of cut was determined using the depth to the strand (2 

in.) and subtracting half of the diameter of the strand (0.219 in.), the diameter of #3 stirrups 

(0.375 in.) and the safety margin (0.125 in.). Therefore, the maximum slot depth was determined 

                                                 

3 Alternate methods of cutting the slot include using a concrete grinding wheel (very inefficient), tuck pointing blade 
(rather inefficient for concrete) or making multiple, overlapping passes with a concrete saw (efficient, but each pass 
doubles the cost of the slot). Each of these approaches would allow a wider slot to be formed.  
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to be approximately 1.25 in. Finally, slot spacing and edge distance is a function of slot depth; 

ACI 440.2R-08 recommends that spacing exceed twice the slot depth and edge distance be four 

times the slot depth. Considering these restrictions, an optimal slot size may be determined such 

that the amount of CFRP is maximized for a given soffit dimension. The optimized NSM 

reinforcement size for the 24 in. soffit of the IB chosen for NSM repairs is 0.875 x 0.094 in. 

Allowing for the slot to be 0.125 in. deeper than the CFRP dimension, this arrangement requires 

1 in. deep slots located 2 in. on center having a 4 in. edge distance. The optimization process is 

summarized in Table 5-12.  

5.5 PRESTRESSED CFRP STRIP REPAIR 

CFRP strip dimension and material properties are based on Sika CarboDur strips. This system 

does not use mechanical anchorage; therefore the prestressing force is transferred to the beam 

over the entire bond length of the strip. Since no anchorage is used, it is suggested  that CFRP U-

wraps be used to help mitigate the possibility of peeling failure at strip ends (Klaiber et al. 2003, 

Green et al. 2004, Reed and Peterman 2004, Reed and Peterman 2005, Scheibel et al. 2001, 

Tumialan et al. 2001, and Wipf et al. 2004). Experiments have shown that a sustained prestress 

force of 30% of the ultimate strain capacity of the strip is achievable (El-Hacha et al. 2003) with 

a prestressed CFRP system; this value is used in the present example. The differences in design 

of the prestressed CFRP strip repair as compared to the example presented in Section 5.2.1 are as 

follows: 

1. The strain introduced by the prestressed strip is considered in the calculation of the initial 

soffit condition, biε : (Step 3) 
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2. Adding the anchored strain of the prestressed strip to the debonding strain, fdε  : (Step 5, 

Equation 10-2) 

fu
ff

c
fd tnE

f
εε 30.0083.0

'
+=  

The prestressed CFRP repair design follows the same procedure as the example with the 

exception of the changes noted in steps 3 and 5, respectively. Input parameters and results are 

shown in Table 5-13 and drawings of the repairs are shown in Figures 5-11 to 5-13. Prestressed 

CFRP repaired girder moment-curvature plots are seen in Figures 5-14 to 5-16. It is noted that 

the repair prescribed for IB 10-2-1 did not completely restore the undamaged girder moment 

capacity. This will be discussed in Chapter 6. 

5.6 BONDED POST-TENSIONED CFRP REPAIR 

Bonded post-tensioned CFRP repairs include the use of mechanical anchorage at each end of the 

beam. As a result, a greater strain can be sustained when compared to the prestressed CFRP 

system described in the previous section. Sika CarboStress system technical data suggests that 

50% of the CFRP strip’s ultimate strain can be sustained. This value is used in present example. 

CFRP anchorage is discussed below. Design of bonded post-tensioned CFRP repairs is the same 

as that of the prestressed CFRP repair design except that the debonding strain, fdε , calculated in 

Step 5, is increased to 50% of the strip’s ultimate strain  (rather than 30% described in the 

previous section). Additionally, the original state of strain in the soffit, εbi (Step 3) is also 
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calculated accounting for the amount of post tensioning provided the CFRP. Since this system 

includes anchorage at the ends, peeling failures are not a concern. Input parameters and results 

are shown in Table 5-14 and drawings of the repairs are shown in Figures 5-17 to 5-19. Post-

tensioned CFRP repaired girder moment-curvature plots are seen in Figures 5-20 to 5-22. 

5.6.1 Anchorage of CFRP 

CFRP anchorage is usually secured to proprietary anchorage hardware which in turn is anchored 

to the concrete substrate. The CFRP-to-anchor connections may rely on adhesive bond, friction 

or bearing of a preformed CFRP ‘stresshead’ (the SIKA system uses the latter as shown in Figure 

2-12a; Sika 2008b). Manufacturer recommendations must be followed in considering the CFRP 

to-anchor connection. 

The proprietary anchor, in turn, is secured to the concrete substrate. Anchor bolts (Figure 

2-12c) and shear keys are conventional methods of transferring the force. Anchorage 

requirements such as available space and bolt spacing may affect the amount of post-tensioned 

CFRP that may be installed. Due to their size, anchorages will have to be staggered 

longitudinally (analogous to staggering reinforcing steel lap splice locations) if a large amount of 

CFRP is required. Temporary jacking anchorages may be bolted or utilize temporary shear keys. 

An example of a temporary shear key comprised of a pipe inserted into a hole cored through the 

beam web is shown in Figure 2-12d. 

For anchorages bolted to the concrete substrate, the recommendations ACI 318-08 

Appendix D for bolting to concrete should be followed. For anchorages relying on a shear key 

arrangement, the key should be designed to carry 100% of the prestress force and bolts should be 

provided to carry any moment and to keep the shear key fully engaged. In cases where the end of 
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the beam is available for anchorage (Figure 2-8), this is preferred although bearing stresses 

should be considered in designing the prestressing anchorage. 

5.7 STRAND SPLICE REPAIR 

Conceptually, the goal of a strand splice is to recreate the original strand, including the 

prestressing force. Due to geometric constraints of concrete cover, strand spacing and strand 

splice dimensions, this repair can only be used to repair a small number of strands at a particular 

section. The ‘turn of the nut method’ is suggested (rather than the torque wrench method) to 

ensure that the proper stress is reintroduced in the strand (Labia et al. 1996 and Olson et al. 

1992). Determining the amount of stress introduced into the strand by the strand splice is done 

using the stiffness of the strand splice and the stiffness of the undeveloped strand (i.e.: at least 

the exposed strand being connected) and balancing these with the ‘shortening’ of the splice as 

the nut is turned. The stiffness of the strand splice is a function of its geometry, length and strand 

diameter being developed. This stiffness must be calculated on an individual basis. Based on the 

desired prestress force, P, stiffness of the strand splice, Ksplice, exposed length of strand, Lexposed 

and strand transfer length, Ltr into the concrete, the required shortening of the strand splice may 

be calculated as: 

( )
pp

trosed

splice
splice EA

LLP
K

P +
+=Δ ∑ exp                                        (Eq. 5-1)

 
 

For the I-beam, for instance, the stress in the 7/16 in. strand after long term losses was 

found to be 133.6 ksi. Suggested practice is to add 5 ksi for dead load stress and 5 ksi for error to 

the target stress value and use this value as the target value for the strand splice induced stress 
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(Labia et al. 1996). This resulted in a target stress of 143.6 ksi (corresponding to a force of 15.5 

kips) per strand. Assuming a splice stiffness of 187.7 k/in. (reported by Labia et al. 1996), that 

there is 24 inches of exposed strand to either side of the splice and that the strand transfer length 

is equal to db(fpe/3000) = 21 in. (ACI 318-08), a shortening of 0.42 in. is required. There are 16 

threads per inch on the splice; therefore, to reach the required deformation, 6.7 nut revolutions 

are required. The use of the strand transfer length assumes a linear development of strand force 

in the sound concrete. Thus the strand strain associated with development of the strand force is 

PLtr/2ApEp. Considering both sides of the splice, the ½ coefficient cancels and Equation 5-1 

results. 

The use of the preload technique is often used with the strand splice method. The preload 

technique is discussed in Section 5.9. 

5.8 EXTERNAL STEEL POST-TENSIONING 

The goal of external steel post-tensioning is to restore the compressive stress in the bottom of the 

girder as intended by the original prestressed strands as well as increase the flexural capacity. 

Although not covered in this document, external steel post tensioning can be used to restore 

original stress levels in the bottom of the girder even if there is no damage. In this document, this 

method is used to repair the IB 6-2-1 and 10-2-1 cases. 

Analysis of the section after strand loss is done by sections analysis. A general procedure 

is provided here as an example. 

1. Determine the amount of stress lost at the girder soffit due to the loss of strands: 
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It should be noted that the section modulus, S, and effective area, A, may be different for 

the undamaged and damaged terms particularly if the damaged girder is cracked under 

the influence of dead load. The P and Pe terms are the axial prestressing force and its 

resulting moment (e is the strand eccentricity), respectively. The MDL term is the moment 

due to girder dead load. 

2. Determine the required force in the post tensioning steel needed to replace the lost strands: 

        
PT

loss S
Pe

A
Pf ⎟

⎠
⎞

⎜
⎝
⎛ −−=                     (Eq. 5-3) 

3. Design the bolster for the post-tensioning system. The bolster should anchor the additional 

forces and should be designed such that in the event of overstress, the post-tensioning bar, 

rather than the bolster, fails.  

Drawings of the example repairs are shown in Figures 5-23 and 5-24 and the repaired 

girder moment-curvature plots are seen in Figure 5-25. 

Post-tensioning steel will typically take the form of solid high strength post-tensioning 

rods (such as Williams all thread bars) or prestressing strand. Due to the dimension of the post-

tensioning system and the possibility of impact damage, external post-tensioning systems are 

conventionally mounted along the girder web rather than the soffit below. As a result, this repair 

method is inappropriate for adjacent box girders. Appropriate environmental protection (such as 

using encapsulated strand, epoxy-coated or galvanized rod, etc.) is provided for external 

applications. 

Bolsters can be made of either concrete or steel. Bolster material is the preference of the 

designer, but cost and constructability must be considered. Regardless of bolster material, bolster 
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design is to be carried out as a shear friction connection following AASHTO (2007) Section 

5.8.4. Figure 5-26a shows an example of a concrete bolster and Figure 5-26b shows a schematic 

of a steel angle bolster.  

 

5.9 PRELOAD TECHNIQUE 

Preload is the application of a load to a girder during the repair process. Used primarily to 

improve the performance on concrete patches, the preload results in a tension stress applied to 

the beam soffit. The patch is executed in this condition and when the preload is released, the 

patch is drawn into compression (even if there is still a net tension at the soffit). The goal of a 

preload is to sufficiently compress the concrete patch in order to counteract live load effects 

reducing the possibility of patch ‘pop-out’ failure. Although covered in this document for 

completeness, it should be realized that this method is not applicable for all structures or repair 

types. 

 A generalized preload application procedure is provided here as an example (adopted and 

corrected from Labia et al. 1996). In this procedure, tension is represented by positive stress. 

1. Using AASHTO (2007) Table 5.9.4.2.2-1, the maximum permissible tensile stress, tf , at 

the bottom of the patch can be selected. Typically a value of '19.0 cf (ksi units) is 

selected.  

2. The maximum external moment, MEXTmax, that can be applied can be determined as 

follows: 
d
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3. For completeness, compressive stress due to the prestressing force and dead load at the 

bottom of the damaged girder should be checked using Table 5.9.4.2.1-1 (AASHTO 

2007). These stresses should not exceed '45.0 cf :   

'
2 45.01 c

d

Db f
S

M
r
ey

A
P

≤+⎟
⎠

⎞
⎜
⎝

⎛ +− .                      (Eq. 5-5) 

Upon release of the preload, the concrete patch is placed in compression with a stress equal to 

MEXT/Sd. Due to the magnitude of the load required to achieve a useful value of MEXT, the use of 

preloading is only practical on shorter spans.  
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Table 5-1 Prototype girder material and geometric properties. 

Property AB SB IB 

Section prestressed concrete 
adjacent box beam 

prestressed concrete 
multi-box beam 

prestressed concrete 
I-girder 

prestressing steel  60 - 250 ksi 3/8 in. 
seven-wire strand  

68 - 250 ksi 3/8 in. 
seven-wire strand  

50 - 250 ksi 7/16 in. 
seven-wire strand  

Young’s modulus of 
prestressed steel, Ep

28500 ksi 28500 ksi 28500 ksi 

Concrete girder 
compressive strength, fc’ 

6800 psi 5500 psi 5500 psi 

Young’s modulus of 
girder, Ec

4700 ksi 4227 ksi 4227 ksi 

Concrete deck 
compressive strength n.a. 4000 psi 4000 psi 

Young’s modulus of 
deck n.a. 3605 ksi 3605 ksi 

girder geometry Figure 4-1 Figure 4-2 Figure 4-3 

girder length 90.0 ft 69.0 ft 75.5 ft 
 

Table 5-2 CFRP material and geometric properties (Sika 2008a and 2008c). 

Property Sika CarboDur strips 
SikaWrap Hex 103C 
(w/Sikadur Hex 300 

epoxy) 

Material type preformed unidirectional 
CFRP strip unidirectional CFRP fabric 

Tensile strength, ffu 406 ksi 104 ksi 
Compressive strength - - 
Young’s Modulus, Ef 23,200 ksi 9,446 ksi 

Rupture strain, εfu 0.017 0.0098 
Material thickness 0.047 in. approx. 0.04 in. 

Size/packaging 
1.97 in. strips1

3.15 in. strips 
3.94 in. strips 

25 in. x 50 ft. rolls 
25 in. x 300 ft. rolls 

 
1 product is fabricated in 50, 75 and 100 mm widths; hard conversions are presented here to facilitate later 
stress calculations. 
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Table 5-3 Post-tensioning steel material and geometric properties (Williams 2008). 

Nominal Bar 
Diameter 

Minimum Net 
Area Through 

Threads  

Minimum 
Tensile Strength 

Minimum Yield 
Strength 

1.25 in. 1.25 in2
 188 kips 150 kips 

1.375 in. 1.58in2
 237 kips 190 kips 
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Table 5-4 Target and repaired flexural capacities for repair designs. 

Example Repair Type 

Damaged 
Capacity at 
φ = 0.00015 

(k-ft) 

Target 
Capacity at 
φ = 0.00015

(k-ft) 

Repaired 
Capacity 

(k-ft) 

Repaired 
φ = 

AB 4-0-0 CFRP strip 3160 3387 3425 0.00019 
AB 8-2-1 CFRP strip 2770 3387 3396 0.00019 
SB 4-0-0 CFRP strip 4317 4596 4591 0.00015 
SB 8-2-1 CFRP strip 3838 4596 4822 0.00015 
IB 4-0-0 CFRP fabric 4200 4590 4596 0.00022 
IB 6-2-1 CFRP fabric 3731 4590 4436 0.00013 
IB 10-2-1 CFRP fabric 3340 4590 4052 0.00013 
IB 4-0-0 NSM CFRP 4200 4590 4703 0.00026 
IB 6-2-1 NSM CFRP 3731 4590 4972 0.00026 
IB 10-2-1 NSM CFRP 3340 4590 4389 0.00026 

AB 8-2-1 Prestressed 
CFRP 2770 3387 3590 0.00025 

SB 8-2-1 Prestressed 
CFRP 3838 4596 4553 0.00013 

IB 4-0-0 Prestressed 
CFRP 4200 4590 4345 0.00013 

IB 6-2-1 Prestressed 
CFRP 3731 4590 4492 0.00013 

IB 10-2-1 Prestressed 
CFRP 3340 4590 4280 0.00013 

AB 8-2-1 Post-tensioned 
CFRP 2770 3387 3369 0.00018 

SB 8-2-1 Post-tensioned 
CFRP 3838 4596 4461 0.00013 

IB 4-0-0 Post-tensioned 
CFRP 4200 4590 4502 0.00013 

IB 6-2-1 Post-tensioned 
CFRP 3731 4590 4600 0.00013 

IB 10-2-1 Post-tensioned 
CFRP 3340 4590 4554 0.00013 

IB 6-2-1 Post-tensioned 
steel 3731 4590 4291 0.0001 

IB 10-2-1 Post-tensioned 
steel 3340 4590 4040 0.0001 
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Table 5-5 AB loading with AASHTO-prescribed distribution factor g = 0.285. 

 based on 
load… Moment MPF g IM Strength 

I 
Service 

I 
Service 

III units 

MDW 0.12 klf 118 - - - 177 118 118 k-ft 
MSW 0.90 klf 909 - - - 1137 909 909 k-ft 
MJB 0.17 klf 171 - - - 214 171 171 k-ft 

MLANE 0.64 klf 648 1 0.285 - 323 185 148 k-ft 
MHS20 HS20 1344 1 0.285 1.33 891 509 407 k-ft 
MHS25 HS25 1680 1 0.285 1.33 1114 637 509 k-ft 
MTAN TANDEM 1076 1 0.285 1.33 713 407 326 k-ft 

Dead Load Moment (MDL)= 1528 1199 1199 k-ft 
Live Load Moment (HS20) = 1214 694 555 k-ft 
Live Load Moment (HS25) = 1437 821 657 k-ft 

Live Load Moment (TANDEM) = 1036 592 474 k-ft 
MPF = multiple lane presence factor 
g = distribution factor for moment 
IM = impact factor 
 

 

 

Table 5-6 AB loading with distribution factor g = 0.5. 

 based 
on… Moment MPF g IM Strength 

I 
Service 

I 
Service 

III units 

MDW 0.12 klf 118 - - - 177 118 118 k-ft 
MSW 0.90 klf 909 - - - 1137 909 909 k-ft 
MJB 0.17 klf 171 - - - 214 171 171 k-ft 

MLANE 0.64 klf 648 1 0.5 - 567 324 259 k-ft 
MHS20 HS20 1344 1 0.5 1.33 1564 894 715 k-ft 
MHS25 HS25 1680 1 0.5 1.33 1955 1117 894 k-ft 
MTAN TANDEM 1076 1 0.5 1.33 1252 715 572 k-ft 

Dead Load Moment = 1528 1199 1199 k-ft 
Live Load Moment (HS20) = 2131 1218 974 k-ft 
Live Load Moment (HS25) = 2522 1441 1153 k-ft 

Live Load Moment (TANDEM) = 1819 1039 831 k-ft 
MPF = multiple lane presence factor 
g = distribution factor for moment 
IM = impact factor 
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Table 5-7 SB loading. 

 based 
on… Moment MPF g IM Strength 

I 
Service 

I 
Service 

III units 

MDECK
 

0.77 klf 456 - - - 570 456 456 k-ft 
MDW 0.20 klf 122 - - - 182 122 122 k-ft 
MSW 0.80 klf 475 - - - 594 475 475 k-ft 
MJB 0.09 klf 53 - - - 66 53 53 k-ft 

MLANE 0.64 klf 381 1 0.648 - 432 247 197 k-ft 
MHS20 HS20 968 1 0.648 1.33 1460 834 667 k-ft 
MHS25 HS25 1210 1 0.648 1.33 1825 1043 834 k-ft 
MTAN TANDEM 813 1 0.648 1.33 1227 701 561 k-ft 

Dead Load Moment = 1411 1105 1105 k-ft 
Live Load Moment (HS20) = 1892 1081 865 k-ft 
Live Load Moment (HS25) = 2257 1289 1032 k-ft 

Live Load Moment (TANDEM) = 1659 948 758 k-ft 
MPF = multiple lane presence factor 
g = distribution factor for moment 
IM = impact factor 

 

 

Table 5-8 IB loading. 

 based 
on… Moment MPF g IM Strength 

I 
Service 

I 
Service 

III units 

MDECK
 

0.70 klf 499 - - - 623 499 499 k-ft 
MSW 0.69 klf 491 - - - 614 491 491 k-ft 
MJB 0.15 klf 108 - - - 135 108 108 k-ft 

MLANE 0.64 klf 456 1 0.592 - 472 270 216 k-ft 
MHS20 HS20 867 1 0.592 1.33 1194 682 546 k-ft 
MHS25 HS25 1084 1 0.592 1.33 1493 853 682 k-ft 
MTAN TANDEM 894 1 0.592 1.33 1232 704 563 k-ft 

Dead Load Moment = 1372 1098 1098 k-ft 
Live Load Moment (HS20) = 1667 952 762 k-ft 
Live Load Moment (HS25) = 1965 1123 898 k-ft 

Live Load Moment (TANDEM) = 1705 974 779 k-ft 
MPF = multiple lane presence factor 
g = distribution factor for moment 
IM = impact factor 
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Table 5-9 Non-prestressed perform CFRP strip repair results. 

Step 
#  AB 

4-0-0 
AB 

8-2-1 
SB 

4-0-0 
SB 

8-2-1 units 

1 ffu 345 345 345 345 ksi 
1 εfu 0.0145 0.0145 0.0145 0.0145 in/in 
2 cg strands 3.09 3.16 4.41 4.77 in. 
2 df 42  42 50 50 in. 
2 dp 38.91 38.84 45.59 45.23 in. 
2 εcu 0.003 0.003 0.003 0.003 in/in 
2 Pe 616 539 692 616 kips 
2 Ap 4.48 3.92 5.12 4.56 in2

 

2 Eps 28500 28500 28500 28500 ksi 
2 Acg 786 786 1553 1553 in2

 

2 Ec 4700 4700 4230 4230 ksi 
2 e 18.32 18.31 27.44 27.14 in 
2 I 204000 204000 543000 543000 in4

 

2 r 16.1 16.1 18.7 18.7 in 
2 εpe 0.0048 0.0048 0.0047 0.0047 in/in 
2 Af 0.56 1.57 0.56 1.67 in2

 

2 fc’DECK  - - 4000 4000 psi 
3 εbi -0.0001 0 -0.0002 -0.0001 in/in 
4 c 9.9 10 7.5 7.5 in. 
5 εfd 0.0066 0.0066 0.0059 0.0059 in/in 
5 εfe (cc) 0.0098 0.0097 0.0172 0.0172 in/in 
5 εpi 0.0052 0.0052 0.0051 0.0050 in/in 
5 εfe (psr) 0.0331 0.0332 0.0336 0.0339 in/in 
6 εpnet (cc) 0.0088 0.0087 0.0152 0.0151 in/in 
6 εpnet (frp) 0.0058 0.0059 0.0051 0.0051 in/in 
6 εps (cc) 0.0140 0.0138 0.0203 0.0201 in/in 
6 εps (frp) 0.0110 0.0110 0.0102 0.0101 in/in 
7 fps 241 241 239 239 ksi 
7 ffe 152 152 137 137 ksi 
8 εc 0.0020 0.0020 0.0010 0.0010 in/in 
8 ε’c 0.0025 0.0025 0.0016 0.0016 in/in 
8 β1 0.728 0.730 0.711 0.711 - 
8 α 0.811 0.820 0.697 0.701 - 

9/10 c (check) 10.0 10.1 7.6 7.6 in 
11 Mnp 38132 33253 52593 46388 k-in 
11 Mnf 3242 9175 3596 10782 k-in 
11 ψf 0.85 0.85 0.85 0.85 - 
11 Mn 40888 41052 55650 55553 k-in 
11 Mn 3407 3421 4638 4629 k-ft 
12 Mu (Table 5-4) 3395 3395 4596 4596 k-ft 
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Table 5-10 CFRP fabric repair results. 

Step #  IB 
4-0-0 

IB 
6-2-1 

IB 
10-2-1 units 

1 ffu 88.4 88.4 88.4 ksi 
1 εfu 0.0102 0.0102 0.0102 in/in 
2 cg strands 6.43 6.78 7.3 in. 
2 df 52.5 52.0 52.0 in. 
2 dp 46.07 45.72 45.2 in. 
2 εcu 0.003 0.003 0.003 in/in 
2 Pe 664 592 534 kips 
2 Ap 4.97 4.43 4.00 in2

 

2 Eps 28500 28500 28500 ksi 
2 Acg 1272 1272 1272 in2

 

2 Ec 4230 4230 4230 ksi 
2 e 26.45 26.1 25.72 in 
2 I 402400 402400 402400 in4

 

2 r 17.8 17.8 17.8 in 
2 εpe 0.0047 0.0047 0.0047 in/in 
2 Af 0.8 3.44 3.44 in2

 

2 fc’DECK 4000 4000 4000 psi 
3 εbi -0.0002 -0.0002 -0.0001 in/in 
4 c 6.3 7.6 6.7 in. 
5 εfd 0.0100 0.0058 0.0058 in/in 
5 εfe (cc) 0.0222 0.0177 0.0204 in/in 
5 εpi 0.0051 0.0050 0.0050 in/in 
5 εfe (psr) 0.0350 0.0350 0.0354 in/in 
6 εpnet (cc) 0.0189 0.0150 0.0172 in/in 
6 εpnet (frp) 0.0084 0.0048 0.0048 in/in 
6 εps (cc) 0.0240 0.0201 0.0222 in/in 
6 εps (frp) 0.0135 0.0099 0.0098 in/in 
7 fps 244 238 238 ksi 
7 ffe 95 55 55 ksi 
8 εc 0.0013 0.0010 0.0010 in/in 
8 ε’c 0.0016 0.0016 0.0016 in/in 
8 β1 0.731 0.708 0.702 - 
8 α 0.822 0.677 0.614 - 

9/10 c (check) 6.4 7.7 6.8 in 
11 Mnp  53100 45394 40413 k-in 
11 Mnf 3798 9247 9241 k-in 
11 ψf 0.85 0.85 0.85 - 
11 Mn 56328 53254 48268 k-in 
11 Mn 4694 4438 4022 k-ft 
12 Mu (Table 5-4) 4688 4688 4688 k-ft 
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Table 5-11 NSM CFRP repair results. 

Step #  IB 
4-0-0 

IB 
6-2-1 

IB 
10-2-1 units 

1 ffu 345 345 345 ksi 
1 εfu 0.0145 0.0145 0.0145 in/in 
2 cg strands 6.43 6.78 7.3 in. 
2 df 51.9 51.4 51.4 in. 
2 dp 46.07 45.72 45.2 in. 
2 εcu 0.003 0.003 0.003 in/in 
2 Pe 664 592 534 kips 
2 Ap 4.97 4.43 4.0 in2

 

2 Eps 28500 28500 28500 ksi 
2 Acg 1272 1272 1272 in2

 

2 Ec 4230 4230 4230 ksi 
2 e 26.45 26.1 25.72 in 
2 I 402400 402400 402400 in4

 

2 r 17.8 17.8 17.8 in 
2 εpe 0.0047 0.0047 0.0047 in/in 
2 Af 0.33 0.91 0.99 in2

 

2 fc’DECK 4000 4000 4000 psi 
3 εbi -0.0002 -0.0002 -0.0001 in/in 
4 c 6.0 6.0 5.7 in. 
5 εfd 0.0119 0.0119 0.0119 in/in 
5 εfe (cc) 0.0232 0.0228 0.0242 in/in 
5 εpi 0.0051 0.0050 0.0050 in/in 
5 εfe (psr) 0.0345 0.0344 0.0348 in/in 
6 εpnet (cc) 0.0200 0.0199 0.0208 in/in 
6 εpnet (frp) 0.0102 0.0103 0.0102 in/in 
6 εps (cc) 0.0251 0.0249 0.0258 in/in 
6 εps (frp) 0.0153 0.0153 0.0152 in/in 
7 fps 246 246 245 ksi 
7 ffe 276 276 276 ksi 
8 εc 0.0015 0.0016 0.0015 in/in 
8 ε’c 0.0016 0.0016 0.0016 in/in 
8 β1 0.744 0.746 0.740 - 
8 α 0.873 0.878 0.859 - 

9/10 c (check) 6.0 6.1 5.8 in 
11 Mnp 53464 47240 42242 k-in 
11 Mnf 4511 12270 12304 k-in 
11 ψf 0.85 0.85 0.85 - 
11 Mn 57298 57670 52701 k-in 
11 Mn 4775 4806 4392 k-ft 
12 Mu (Table 5-4) 4742 4742 4742 k-ft 
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Table 5-12 NSM size optimization. 

FRP strip 
width 
(in) 

Depth of slot 
required 

(in) 

Edge 
distance 
required  

(in) 

Required 
spacing 

between slots 
(in) 

Number of 
slots in 24 
in. wide 

soffit 

Available area 
of FRP1 

(in2) 

bb bb + 0.125 4(bb + 0.125) 2(bb + 0.125)   
0.500 0.625 2.5 1.25 13 0.306 - 0.611 
0.625 0.750 3.0 1.5 11 0.323 - 0.646 
0.750 0.875 3.5 1.75 9 0.317 - 0.635 
0.875 1.000 4.0 2 8 0.329 - 0.658 
1.000 1.125 4.5 2.25 6 0.282 - 0.564 
1.125 1.250 5.0 2.5 6 0.317 - 0.635 

1A range is provided to show the area of FRP using one or two strips per slot, respectively. Actual area of FRP can 
be anywhere between these bounds. 
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Table 5-13 Prestressed CFRP repair results. 

Step #  AB 
8-2-1 

SB 
8-2-1 

IB 
4-0-0 

IB 
6-2-1 

IB 
10-2-1 units 

1 ffu 345 345 345 345 345 ksi 
1 εfu 0.0145 0.0145 0.0145 0.0145 0.0145 in/in 
2 cg strands 3.16 4.77 6.43 6.78 7.3 in. 
2 df 42 50 52 52 52 in. 
2 dp 38.84 45.23 46.07 45.72 45.2 in. 
2 εcu 0.003 0.003 0.003 0.003 0.003 in/in 
2 Pe 539 616 664 592 534 kips 
2 Ap 3.92 4.56 4.97 4.43 4.00 in2

 

2 Eps 28500 28500 28500 28500 28500 ksi 
2 Acg 786 1553 1272 1272 1272 in2

 

2 Ec 4700 4230 4230 4230 4230 ksi 
2 e 18.31 27.14 26.45 26.1 25.72 in 
2 I 204000 543000 402400 402400 402400 in4

 

2 r 16.1 18.7 17.8 17.8 17.8 in 
2 εpe 0.0048 0.0047 0.0047 0.0047 0.0047 in/in 
2 Af 0.74 0.83 0.19 0.83 1.02 in2

 

2 fc’DECK - 4000 4000 4000 4000 psi 
3 εbi -0.0001 -0.0002 -0.0002 -0.0002 -0.001 in/in 
4 c 7.3 6.1 6.2 6.2 6.0 in. 
5 εPT 0.004 0.004 0.004 0.004 0.004 in/in 
5 εfd 0.0109 0.0102 0.0102 0.0102 0.0102 in/in 
5 εfe (cc) 0.0144 0.0218 0.0226 0.0226 0.0234 in/in 
5 εpi 0.0052 0.0050 0.0051 0.0050 0.0050 in/in 
5 εfe (psr) 0.0329 0.0338 0.0349 0.0353 0.0358 in/in 
6 εpnet (cc) 0.0130 0.0192 0.0193 0.0191 0.0196 in/in 
6 εpnet (frp) 0.0098 0.0090 0.0086 0.0086 0.0085 in/in 
6 εps (cc) 0.0181 0.0243 0.0244 0.0242 0.0246 in/in 
6 εps (frp) 0.0150 0.0140 0.0137 0.0136 0.0135 in/in 
7 fps 245 245 245 244 244 ksi 
7 ffe 253 237 237 237 237 ksi 
8 εc 0.0023 0.0014 0.0013 0.0013 0.0013 in/in 
8 ε’c 0.0025 0.0016 0.0016 0.0016 0.0016 in/in 
8 β1 0.741 0.735 0.731 0.731 0.728 - 
8 α 0.863 0.840 0.825 0.825 0.811 - 

9/10 c (check) 7.4 6.1 6.2 6.3 6.1 in 
11 Mnp 34703 47970 53209 46990 41953 k-in 
11 Mnf 7348 9449 2209 9931 12156 k-in 
11 ψf 0.85 0.85 0.85 0.85 0.85 - 
11 Mn 40949 56002 55087 55431 52285 k-in 
11 Mn 3412 4667 4591 4619 4357 k-ft 
12 Mu (Table 5-4) 3388 4596 4557 4557 4557 k-ft 
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Table 5-14 Post-tensioned CFRP repair results. 

Step #  AB 
8-2-1 

SB 
8-2-1 

IB 
4-0-0 

IB 
6-2-1 

IB 
10-2-1 units 

1 ffu 345 345 345 345 345 ksi 
1 εfu 0.0145 0.0145 0.0145 0.0145 0.0145 in/in 
2 cg strands 3.16 4.77 6.43 6.78 7.3 in. 
2 df 42 50 52 52 52 in. 
2 dp 38.84 45.23 46.07 45.72 45.2 in. 
2 εcu 0.003 0.003 0.003 0.003 0.003 in/in 
2 Pe 539 616 664 592 534 kips 
2 Ap 3.92 4.56 4.97 4.43 4.00 in2

 

2 Eps 28500 28500 28500 28500 28500 ksi 
2 Acg 786 1553 1272 1272 1272 in2

 

2 Ec 4700 4230 4230 4230 4230 ksi 
2 e 18.31 27.14 26.45 26.1 25.72 in 
2 I 204000 543000 402400 402400 402400 in4

 

2 r 16.1 18.7 17.8 17.8 17.8 in 
2 εpe 0.0048 0.0047 0.0047 0.0047 0.0047 in/in 
2 Af 0.56 0.56 0.28 0.74 1.11 in2

 

2 fc’DECK - 4000 4000 4000 4000 psi 
3 εbi -0.0001 -0.0002 -0.0002 -0.0002 -0.002 in/in 
4 c 6.3 5.5 5.8 5.8 5.8 in. 
5 εPT 0.007 0.007 0.007 0.007 0.007 in/in 
5 εfd 0.0138 0.0131 0.0131 0.0131 0.0131 in/in 
5 εfe (cc) 0.0171 0.0245 0.0244 0.0244 0.0244 in/in 
5 εpi 0.0052 0.0050 0.0051 0.0050 0.0050 in/in 
5 εfe (psr) 0.0329 0.0337 0.0349 0.0350 0.0358 in/in 
6 εpnet (cc) 0.0155 0.0217 0.0208 0.0208 0.0204 in/in 
6 εpnet (frp) 0.0125 0.0116 0.0162 0.0162 0.0159 in/in 
6 εps (cc) 0.0207 0.0267 0.0259 0.0259 0.0254 in/in 
6 εps (frp) 0.0176 0.0166 0.0162 0.0162 0.0159 in/in 
7 fps 246 246 246 246 246 ksi 
7 ffe 320 304 304 304 304 ksi 
8 εc 0.0024 0.0016 0.0016 0.0016 0.0016 in/in 
8 ε’c 0.0025 0.0016 0.0016 0.0016 0.0016 in/in 
8 β1 0.748 0.749 0.750 0.750 0.750 - 
8 α 0.883 0.887 0.888 0.888 0.888 - 

9/10 c (check) 6.5 5.6 5.8 5.9 5.9 in 
11 Mnp 35181 48407 53612 47768 42222 k-in 
11 Mnf 7033 8105 4256 11345 17015 k-in 
11 ψf 0.85 0.85 0.85 0.85 0.85 - 
11 Mn 41159 55296 57229 57411 56685 k-in 
11 Mn 3430 4608 4769 4784 4724 k-ft 
12 Mu (Table 5-4) 3388 4596 4742 4742 4742 k-ft 
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(a) case IB 0-0-0. 

 

(b) case IB 6-2-1. 

Figure 5-1 Example of analysis identification. 
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(a) AB CFRP strip repair.
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42"50"

105"

SB 4-0-0 6-2" strips

SB 8-2-1 18-2" strips

REPAIR

 

(b) SB CFRP strip repair.

Figure 5-2 Preformed CFRP strip repairs. 

97 



 

0

10000

20000

30000

40000

50000

60000

-0.00005 0 0.00005 0.0001 0.00015

X
 A

xi
s M

om
en

t (
k-

in
)

X Axis Curvature (1/in)

AB 0-0-0
AB 4-0-0

1960 HS20 Design Load

2007 HS25 STRENGTH I (g=0.285)
AB 8-2-1

Girder Dead Load, MDL

Repaired AB 8-2-1

Repaired AB 4-0-0

2007 HS25 STRENGTH I (g=0.5)

 

Figure 5-3 Preformed CFRP strip repaired AB moment-curvature plot. 
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Figure 5-4 Preformed CFRP strip repaired SB moment-curvature plot. 
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2"
6-2" strips @ 2.25" on center

 

Figure 5-5 Suggested strip location for AB 4-0-0. 

 

 

 

Figure 5-6 Flexural behavior of prestressed girders (Collins and Mitchell 1997). 
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24", 1 layer CFRP fabric
 

24", 3 layers CFRP fabric

7", 1 layer 
CFRP fabric

 

(a) IB 4-0-0 CFRP fabric repair. (b) IB 6-2-1 and 10-2-1 CFRP fabric repair. 

Figure 5-7 CFRP fabric repairs. 
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Figure 5-8 CFRP fabric repair moment-curvature plot. 
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7
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Figure 5-9 NSM repairs. 
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Figure 5-10 NSM repair moment-curvature plot. 
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Figure 5-11 Prestressed CFRP repaired AB. 
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Figure 5-12 Prestressed CFRP repaired SB. 
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Figure 5-13 Prestressed CFRP repaired IB. 
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Figure 5-14 Prestressed CFRP repaired AB moment-curvature plot. 
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Figure 5-15 Prestressed CFRP repaired SB moment-curvature plot. 
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Figure 5-16 Prestressed CFRP repaired IB moment-curvature plot. 
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Figure 5-17 Post-tensioned CFRP repaired AB. 
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Figure 5-18 Post-tensioned CFRP repaired SB. 
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Figure 5-19 Post-tensioned CFRP repaired IB. 
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Figure 5-20 Post-tensioned CFRP repaired AB moment-curvature plot. 
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Figure 5-21 Post-tensioned CFRP repaired SB moment-curvature plot. 
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Figure 5-22 Post-tensioned CFRP repaired IB moment-curvature plot. 
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Figure 5-23 External post-tensioned steel repaired IB 6-2-1 drawing. 
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Figure 5-24 External post-tensioned steel repaired IB 10-2-1 drawing. 
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Figure 5-25 External post-tensioned steel repaired IB moment-curvature plot. 
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(a) Post-tension tendon retrofit with concrete bolsters (Collins and Mitchell 1997). 

 

(b) steel angle anchorages for straight or harped strands.

Figure 5-26 Bolster examples. 
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6.0  CONCLUSIONS, DISCUSSION AND RECOMMENDATIONS 

With the continued deterioration of infrastructure and the increase in structurally 

deficient structures, the need for repair and retrofit strategies and particular measures has become 

more apparent. In this document, repair methods have been presented for three prototype 

prestressed concrete highway bridge girder shapes (adjacent boxes (AB), spread boxes (SB), and 

AASHTO-type I-girders (IB)) having four different damage levels. A total of 22 prototype repair 

designs are presented. Although not applicable to all structure types or all damage levels, the 

repair techniques covered include the use of carbon fiber reinforced polymer (CFRP) strips, 

CFRP fabric, near-surface mounted (NSM) CFRP, prestressed CFRP, post-tensioned CFRP, 

strand splicing and external steel post-tensioning. It is the author’s contention that each potential 

structural repair scenario should be assessed independently to determine which repair approach is 

best suited to the unique conditions of a specific project. Therefore, no broad classifications have 

been presented directly linking damage level (or a range of damage) to specific repair types. 

Nonetheless, it is concluded that when 25% of the strands in a girder no longer contribute to its 

capacity, girder replacement is a more appropriate solution. This can be seen most dramatically 

in the repairs of prototype IB 10-2-1 in which the flexural capacity could not be easily restored. 

The only instance in which the capacity of IB 10-2-1 was restored was by using external steel 

post-tensioning (Figure 5-24).  
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Table 5-4 provides a summary of the target capacities of the beam prototypes; in this 

study, this value was taken as the capacity of the undamaged girder. Table 5-4 also summarizes 

the ultimate capacity obtained using each repair approach and the ultimate curvature of the 

repaired beam at which this capacity was obtained. Despite some repairs failing to achieve their 

target capacities, the behavior of all examples was improved. This leads to three possible 

scenarios: 

1. The target capacity is achieved and the repair is considered successful. 

2. The target capacity is not achieved; however the beam behavior is improved 

sufficiently to carry required loads. The corollary of this case is that the target 

capacity is selected only at a level to allow the beam to perform adequately, but 

not necessarily achieve its original undamaged capacity. That is: the target 

capacity was selected higher than is necessary to provide adequate performance. 

3. The target capacity is not achieved and the beam behavior is not improved 

sufficiently. In this case an alternate repair method or beam replacement is 

required. This case permits the limit of each repair method to be assessed. 

Additionally, there are some practical limits associated with some of the repair methods 

presented which may limit their use in certain circumstances; these are discussed further in the 

following sections. 
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6.1 DISCUSSION 

6.1.1 Damage Assessment and Damaged Girder Rating 

Chapter 3 presents a detailed description of observed damage to prestressed concrete 

bridge members in Southwestern Pennsylvania. NCHRP Report 226 (Shanafelt and Horn 1980) 

provides guidance for the assessment and inspection of damaged prestressed concrete bridge 

girders. Suggestions were given for standardized inspection including proper techniques, tools 

and forms. Additionally, Harries (2006) provides a guide for inspecting such girders and 

identifying and assessing damage types. The need to separate the damage assessment tasks 

(inspection) from the engineering assessment tasks (load rating, etc.) is emphasized by both 

Shanafelt and Horn (1985) and Harries (2006). A relevant example of damage assessment 

guidance that should be emphasized is PennDOT’s adoption of the ‘150% rule’ for assessing the 

area of lost prestressing strand: [paraphrasing] when assessing corrosion damage to a 

prestressed concrete girder, the area of prestressing strand assumed to be ineffective due to 

corrosion shall be taken as 150% of that determined by visual inspection. This guidance, 

recommended by Harries (2006) and Naito et al. (2006) is believed to conservatively capture the 

unseen (uninspectable) corrosion of strands adjacent to those damaged by corrosion.   

In general, the use of plane sections analysis using standard Whitney stress block factors 

has been shown to be adequate for assessing the capacity of damaged and repaired girders. 

Harries (2006) describes some limitations of a plane sections approach for beams having highly 

eccentric loading or resistance. A parallel study (Russell 2009) has as its objective the 

simplification of highly eccentric sections such that a plane sections analysis approach may be 

utilized. In the present work, only sections having nominal eccentricities were considered. 
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Harries (2006) has shown that these eccentricities have essentially no effect on the capacities 

derived using conventional plane sections analyses. 

A non-linear fiber sections analysis program (XTRACT) was used to establish the moment 

curvature relationships presented in Chapter 5 and girder capacities reported in Table 5-4 for the 

sections considered. As should be expected, the differences between this analysis and the stress-

block approach are small with the code-prescribed stress block approach being somewhat 

conservative. 

 

6.1.2 Repair Type Selection 

The matrices shown in Figure 4-4 present a range of viable repairs for each girder type 

and do not consider the specific damage level. Nonetheless, the damage level dictates which 

repair method can be used. For example, in an IB girder, strand splicing is a potential repair 

approach, but only if a few strands need to be replaced. The geometry of the strand arrangement 

and strand splice make this method impractical for heavier damage. Although ‘percentage of 

strands lost’ appears to be a representative indicator of girder strength, the only correlation found 

between percentage of lost strands to repair method has been at the level of 25% of strands lost. 

At this level of damage, repair (restoration of undamaged capacity) becomes impractical (as seen 

in the case of IB 10-2-1). This is not to say that the girder cannot be repaired, but the resources 

necessary to repair this girder would be significant and thus replacement may become a more 

attractive solution. 

Often times, the girders have been designed to have a specific stress level at the soffit. To 

restore this, an active repair (i.e. strand splicing, prestressed or post-tensioned repairs) should be 
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selected so that as much of the prestressing force is restored as possible. However, when soffit 

stress is not the main consideration, any of the described techniques, active or passive, may be 

used. 

The repair type chosen must be done so on a project-by-project basis. At this point, it is 

not feasible to standardize repair type selection based on damage level due to the variability 

between structures, the unique nature of damage to a particular girder and the original girder’s 

design or stress requirements. Nonetheless, Figure 4-4 provides a summary of viable repair 

techniques for each scenario and some additional guidelines (rules of thumb) are presented in the 

following sections. 

6.1.3 Repair Technique Applicability 

The repair method chosen is a function of the original girder’s design considerations such 

as soffit stress (Preston et al. 1987), girder shape, strand spacing or layout and damage, amongst 

other factors. Also, the goal of the repair must be considered, i.e. if the repair must restore 

prestressing force (an active repair) or flexural capacity (achievable with a passive repair). Table 

6-1 summarizes the potential applications and a number of selection and design considerations 

for each repair type. Although specific damage levels are not suggested, this table suggests the 

limits of applicability of each repair type. Table 6-1 updates and revises the performance 

comparison matrix presented by Shanafelt and Horn (1980) and presented in Table 2-1. Due to 

the different bases for comparison (inclusion of CFRP methods), the ranking and practicality of 

various methods reported by Shanafelt and Horn have changed. For instance, steel jackets are not 

considered practical. They are cumbersome, untested, and their design, installation and 

performance are all expected to be exceeded by CFRP methods. While strand splicing is felt to 
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viable for localized repairs associated with individual impacts, this method is limited by the 

degree of damage it can reasonably mitigate. 

In terms of CFRP methods, non-prestressed methods are well established in both the 

literature and practice (see Chapter 2). Prestressed or post-tensioned methods are presently 

limited to proprietary systems and have similarly limited field experience. Nonetheless, post-

tensioned CFRP holds great promise for highway bridge applications. NSM CFRP out performs 

surface-mounted CFRP, however this performance comes at a cost in terms of constructability. 

Additionally, NSM repairs may be more limited than surface mounted methods due to slot 

geometry and spacing requirements. 

All external methods require protection from the environment. Steel methods may use 

galvanizing, epoxy coating or encased (unbonded post-tensioning type) strand. CFRP itself 

requires little environmental protection, although adhesive systems do. Therefore, CFRP systems 

are often painted with a gel coat to limit moisture intrusion and protect against UV radiation. 

External repair methods must also be protected from mechanical damage. Repairs that are 

attached to the beam soffit encroach upon the roadway clearance below. The only viable method 

for protecting against mechanical damage is ensuring the repair is not impacted. This therefore, 

should be an initial design consideration. In general, external CFRP systems are smaller and have 

a ‘lower profile’ than steel systems. NSM and strand splicing are internal repairs and have little 

effect on beam geometry. 

Cost and aesthetic rankings given in Table 6-1 are quantitative assessments of the author. 

Once again, due to the unique nature of each repair project, it is difficult to provide cost 

efficiency in a general sense. 
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6.1.4 Girder Shape 

As has been discussed in a few instances, girder shape plays a role in repair selection and 

design. For instance, IB girders have a more vertically distributed arrangement of strands 

resulting in a higher center of gravity of strands than AB and SB girders. As a result, strands lost 

on the bottom row in an IB girder have a greater proportional affect on the strand center of 

gravity (and thus girder capacity) when compared to the same damage for an AB or SB girder. 

That is, one lost strand has more of an impact on the flexural capacity in an IB girder than for an 

AB or SB girder. This results in the repairs for IB girders being more substantial as compared to 

those for AB or SB girders having the same damage level. This can be seen in the repairs 

presented in this document. Furthermore, the bulb of an IB girder results in certain geometric 

constraints on the repair. As has been seen, NSM slots are limited and external CFRP requires 

rounding of the bottom corners in order to be extended up the side of the bulb. Extending the 

CFRP vertically from the soffit also results in proportionally less efficient use of the CFRP (as its 

centroid rises). 

 

6.1.5  Ductility 

Using ultimate curvatures as an indicator of ductility, it can be seen that passive repair 

methods are more ductile than active methods. It is believed that the active utilization of the 

material (i.e. post-tensioning) creates a greater possibility of material yielding and thus a less 

ductile failure than a passive repair application. This relationship can be seen in Table 5-4. As a 

result, it is concluded that maximizing an active repair for a girder is not ideal and other solutions 
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should be investigated. One possibility not considered here is a ‘partially prestressed’ repair 

where only a portion of the CFRP provided is post-tensioned. 

 

6.2 FUTURE WORK 

6.2.1 Strand ‘Redevelopment Length’ 

In determining the flexural capacity of a damaged structure, the damage strands are 

discounted over their entire length. Often times, damage is localized and forensic studies have 

shown that, away from the damage, the strand is still in excellent shape (Harries 2006). 

Therefore, it is proposed that the damaged strand can redevelop prestressing force (as it extends 

into sound concrete) and thus contribute to section capacity at some distance away from the 

damage. As a result, determining this ‘redevelopment length’ is of importance in order to be 

certain that the prestressing force has been developed. A small project using the recovered Lake 

View Drive girders is planned to investigate the redevelopment of severed strand. 

6.2.2 Best Practices Document 

The work included in this document was funded by PennDOT and will be compiled into 

a ‘best practices’ document. For reasons of liability and contractual obligation these specific best 

practices recommendations cannot be presented here 



Table 6-1 Repair Selection Criteria. 

Damage 
Assessment 

Factor 

Repair Method 
preform

CFRP strips CFRP fabric NSM CFRP prestressed 
CFRP PT CFRP PT steel Strand 

Splicing Steel Jacket1 Replace 
Girder

Damage that 
may be repaired Severe I low Severe I Severe I Severe II Severe II Severe II low Severe I Severe II Severe III 

Active or 
Passive repair passive passive passive marginally 

active active active active or 
passive 

passive or 
marginally 

active
n/a 

Applicable 
beam shapes all all IB, limited 

otherwise all all all IB, limited 
otherwise IB all

Behavior at 
ultimate load excellent excellent excellent excellent excellent excellent excellent uncertain excellent 

Resistance to 
overload 

limited by 
bond 

limited by 
bond good limited by 

bond good excellent excellent uncertain excellent 

Fatigue limited by 
bond2

limited by 
bond2 good limited by 

bond2
excellent

(unbonded) excellent poor uncertain excellent 

Adding strength 
to non-damaged 

girders 
excellent good excellent excellent excellent excellent n/a excellent n/a 

Combining 
splice methods possible possible unlikely possible good 

(unbonded) good excellent excellent n/a 

Number of 
strands spliced up to 25% limited 

limited by 
slot

geometry 
up to 25% up to 25% up to 25% few strands up to 25% unlimited 

Preload for 
repair3 no no no no no no possibly possibly n/a 

Preload for 
patch3 possibly no yes possibly possibly possibly yes no n/a 

Restore loss of 
concrete 

patch prior to 
repair 

patch prior to 
repair 

patch prior to 
repair 

patch prior to 
repair 

patch prior to 
repair 

patch prior to 
repair excellent patch prior to 

repair n/a 

Constructability easy easy difficult difficult moderate moderate difficult very difficult difficult 
Speed of repair fast fast moderate moderate moderate moderate fast slow very slow 

Environmental 
impact of repair 

process 

VOCs from 
adhesive 

VOCs from 
adhesive 

VOCs from 
adhesive & 

concrete 
sawing dust 

VOCs from 
adhesive minimal minimal minimal welding 

typical
erection
issues 

Durability 
requires 

environment
al protection 

requires 
environment
al protection 

excellent 
requires 

environment
al protection 

requires 
environment
al protection 

requires 
corrosion
protection  

excellent 
requires 

corrosion
protection 

excellent 

Cost low low moderate moderate moderate low very low moderate high 
Aesthetics excellent excellent excellent excellent fair fair excellent excellent excellent 

n/a:  not applicable 
1 Due to their complexity and the fact that they are untested, steel jacket repairs are not recommended; it is believed that CFRP repairs address all advantages of 
steel jackets while overcoming some of their drawbacks. 
2 see Harries et al. (2006) for a discussion of fatigue of bonded CFRP repair systems. 
3 Preload may be required for the repair or simply to pre-compress associated concrete patches. Jackets render the need to pre-compress the patch unnecessary. 
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APPENDIX A 

BRIDGE DRAWINGS 

A.1 BRIDGE LV 

Structural drawings for bridge LV (Spancrete 1960).
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A.2 BRIDGE A 

Structural drawings for bridge A (PADoH 1960c). 
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A.3 BRIDGE K 

Structural drawings for bridge K (PADoH 1960a and 1960b). 
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