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Zhouyan Wang, PhD
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This research considers a stochastic supply chain problem that (a) has applications in a

number of continuous production industries, and (b) integrates elements of several classical

operations research problems, including the cutting stock problem, inventory management,

facility location, and distribution. The research also uses techniques such as stochastic

programming and Benders’ decomposition. We consider an environment in which a company

has geographically dispersed distribution points where it can stock standard sizes of a product

from its plants. In the most general problem, we are given a set of candidate distribution

centers with different fixed costs at the different locations, and we may choose not to operate

facilities at one or more of these locations. We assume that the customer demand for smaller

sizes comes from other geographically distributed points on a continuing basis and this

demand is stochastic in nature and is modeled by a Poisson process. Furthermore, we

address a sustainable manufacturing environment where the trim is not considered waste,

but rather, gets recycled and thus has an inherent value associated with it. Most importantly,

the problem is not a static one where a one-time decision has to be made. Rather, decisions

are made on a continuing basis, and decisions made at one point in time have a significant

impact on those made at later points. An example of where this problem would arise is a steel

or aluminum company that produces product in rolls of standard widths. The decision maker

must decide which facilities to open, to find long-run replenishment rates for standard sizes,

and to develop long-run policies for cutting these into smaller pieces so as to satisfy customer

demand. The cutting stock, facility-location, and transportation problems reside at the heart
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of the research, and all these are integrated into the framework of a supply chain. We can see

that, (1) a decision made at some point in time affects the ability to satisfy demand at a later

point, and (2) that there might be multiple ways to satisfy demand. The situation is further

complicated by the fact that customer demand is stochastic and that this demand could

be potentially satisfied by more than one distribution center. Given this background, this

research examines broad alternatives for how the company’s supply chain should be designed

and operated in order to remain competitive with smaller and more nimble companies.

The research develops a LP formulation, a mixed-integer programming formulation, and a

stochastic programming formulation to model different aspects of the problem. We present

new solution methodologies based on Benders’ decomposition and the L-shaped method to

solve the NP-hard mixed-integer problem and the stochastic problem respectively. Results

from duality will be used to develop shadow prices for the units in stock, and these in turn will

be used to develop a policy to help make decisions on an ongoing basis. We investigate the

theoretical underpinnings of the models, develop new, sophisticated computational methods

and interesting properties of its solution, build a simulation model to compare the policies

developed with other ones commonly in use, and conduct computational studies to compare

the performance of new methods with their corresponding existing methods.

Keywords: Supply Chain, Inventory Management, Production, Distribution, Facility Loca-

tion, Integer Programming, Benders’ Decomposition, Stochastic Programming, L-shaped

Method.

iv



TABLE OF CONTENTS

PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.0 BASIC MODEL: PRODUCTION AND DISTRIBUTION . . . . . . . . 8

2.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 A Price-Directed Strategy for Dynamic Supply Chain Management . . . . 14

2.3.1 Strategy in a Dynamic Demand Environment . . . . . . . . . . . . 14

2.3.2 A Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.3 Degeneracy, Multiple Optima, and Perturbation . . . . . . . . . . . 19

2.4 Properties of the ε-Perturbation . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Simulation and Inventory Control . . . . . . . . . . . . . . . . . . . . . . . 38

3.0 LOCATION MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Problem Formulation and Policy Development . . . . . . . . . . . . . . . . 42

3.1.1 Primal Formulation of the Static Problem . . . . . . . . . . . . . . 43

3.1.2 Implementation in a Dynamic Environment . . . . . . . . . . . . . 44

3.2 Benders’ Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
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1.0 INTRODUCTION

1.1 MOTIVATION

We consider a supply chain problem that integrates elements of several classical optimization

problems, including the cutting stock problem, facility-location, inventory management, and

distribution. Relatively large pieces, called raws, are manufactured or bought from suppliers

and stocked at distribution centers. Demand from geographically dispersed customers arises

for a variety of different lengths that must be cut at these distribution centers from the

standard-sized rolls and then shipped to customers. The overall objective is to find which

facilities to operate, long-run rates of replenishment for the standard sizes at each facility, and

long-run policies for cutting these raws and remnants into smaller pieces to satisfy stochastic

customer demands.

A large multinational steel company presented the problem addressed here. Steel is

typically produced as rolls having one of several standard lengths. These rolls are then

sent out to distribution centers that might either be attached to plants or at independent

locations. Demands arise for a variety of different lengths that must be cut from the standard-

sized rolls and shipped to customers on a daily basis. These demands are stochastic in nature

and are modeled by a Poisson process. The decision of which rolls to cut is complicated by the

fact that the distribution centers also maintain inventories of remnants generated from prior

cutting operations, unless of course, these remnants are considered too small to satisfy any

potential demand, in which case they are sold as scrap in the open market. Consequently,

it is clear that a decision made at some point in time affects both the ability to satisfy

demand at a later point in time, as well as the associated cost when the decision can be

made in more than one way. The situation is further complicated by the fact that customer
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demand is stochastic and that this demand could be potentially satisfied by more than one

distribution center. Given this environment, the company was interested in looking at broad

alternatives for how its supply chain should be redesigned and operated in order to remain

competitive with smaller and more flexible companies.

1.2 LITERATURE REVIEW

At the heart of this research is the production-distribution and facility-location problem for

remnant inventory systems. The cutting stock problem is familiar to most researchers in

Operations Research, and hundreds of papers (e.g., [21, 36, 37, 49, 50]) have been written on

the subject and its variants since the seminal work of Gilmore and Gomory [41, 42, 43]. The

interested reader is referred to Cheng et al. [23], or Haessler and Sweeney [46] as starting

points on the aforementioned topic. The basic cutting stock problem is typically a static

one [53, 68, 69, 90]. Both optimal as well as heuristic methods have been applied to solve

the problem [97, 103, 104, 105, 110]: the product is produced in (a relatively small number

of) standard sizes, and one must meet a given set of requirements for this product. These

requirements encompass (a relatively large number of) non-standard sizes that must be cut

from the standard stock. The problem is to find the number of pieces of stock of each

standard size to use, along with the associated cutting patterns, so that all requirements are

satisfied at minimum cost [23]. This situation is very common in a number of continuous

production applications including metals such as steel or aluminum, paper, textiles, lumber,

fiber-optic and electrical cables, and glass.

The cutting stock problem presented in this research is a little different. First, we

address the problem in the context of a supply chain where a company has geographically

dispersed distribution centers that can be stocked with standard sizes that are procured from

its plants; the demand at these centers for smaller sizes comes from other geographically

distributed points. Second, unlike classical cutting stock problems, in our model decisions

are made in a stochastic and dynamic environment. Third, we account for a sustainable

manufacturing environment where the trim is not necessarily treated as waste; rather, it
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may get recycled. This assumption holds in industries such as steel, or aluminum. Fourth,

and most importantly, the problem is not static, where a one-time decision has to be made.

Rather, decisions are made on an ongoing basis since demand is dynamic, and decisions

made at one point in time have a significant impact on those made later.

Steel can either be produced in integrated mills from iron ore, or in so-called mini-mills

from recycled scrap. Much of the relevant research has focused on optimizing steel production

planning and scheduling [78, 88, 99, 115]. A survey of this topic may be found in Tang et al.

[98], where numerous approaches for solving scheduling and planning problem in the steel

industry are reviewed. A few papers have looked at the combined production and distribution

system, e.g., Chen and Wang [22] present a deterministic linear programming model for this

integrated production and transportation planning problem. Inventory planning in the steel

industry is addressed by Denton et al. [35], who present a model of a hybrid make-to-stock,

make-to-order system to help an integrated steel mill manage its inventory. Krichagina et al.

[61] use a combination of linear programming and Brownian analysis to address a problem

in a dynamic and stochastic environment, but this paper looks at a single location, and only

considers the production problem. Denton and Gupta [34] describe a model where they use a

two-stage stochastic integer programming model to decide on optimal levels of semi-finished

steel inventory, for use with a delayed product differentiation approach.

In addition to steel, researchers have also addressed production and inventory issues

in other remnant inventory systems such as aluminum, copper, and paper and pulp. For

example, Hendry et al. [47] consider a two-stage production planning problem in the copper

industry and describe an IP-based heuristic method to solve the problem; Johnson et al. [57]

address a combined skiving and cutting stock problem in paper mills; Bredström et al. [18]

develop MIP models for the production and distribution problem in pulp mills and provide a

heuristic based on column generation; and Partington [82] addresses inventory issues related

to aluminum.

The classical transportation problem first described by Hitchcock in 1941 [51]. In the

area of integrated production and transportation, Hochbaum et al. [52] show that for the

production-distribution problem, it is still NP-hard even if demand is deterministic and the

production cost function is concave, separable and symmetric. While some authors [31, 56,

3



81, 91, 109] focus on strategic models that integrate design decisions such as location, plant

capacity, and transportation channels into the supply chain, our research is involved more

with both production and distribution operations. In this area, some authors [16, 17, 85, 113]

consider decisions across multiple stages, and others [10, 14, 15, 20, 95] address problems

that integrate inventory and distribution decisions.

For algorithms for this NP-hard production-distribution problem, the paper by Tuy et

al. [101] is a good starting reference since they look into a problem with two production

facilities. Tuy et al. [102] develop a polynomial time algorithm for the simple case of two

production facilities with concave production costs and linear transportation costs. Kuno and

Utsunomiya [62] present a Lagrangian-based branch-and-bound algorithm for the situation

where the production cost function is concave and separable. All of these papers only consider

deterministic demand.

The classical network location problems include the maximum covering location problem

[32, 79], the set covering location problem [9, 30, 100], the p-center problem [19, 70, 83, 87],

and the facility location problem [5, 8, 27, 66], which includes the uncapacitated version

(UFLP [4, 44]) as well as capacitated version (CFLP [7, 40, 60]). In general, both UFLP

and CFLP are NP-hard [77] and have been widely studied. Many algorithms and heuristics

have been developed in the past decades [7, 38, 55, 59, 106]. An exhaustive survey can be

found in [6], while a more recent review of algorithms, heuristics, and exact methods for the

capacitated facility location problem may be found in [96].

Some research has also been conducted on the polyhedral structure of the NP-hard facility

location problem. For the capacitated facility location problem, Leung and Magnanti [65]

look into the polyhedral structure for the case of constant, equal capacities; Aardal et al. [1]

study the case of different capacities; Deng and Simchi-Levi [33] consider the case of unsplit

demands; Cornuéjols at al. [28] compare the strength of various Lagrangian relaxations.

Interested readers are also referred to polyhedral study for the uncapacitated facility location

problem [24, 25, 29, 45].

The problem most closely related to ours is the multi-product capacitated facility location

problem (MPCFL), first introduced by Lee [63, 64]. Relatively few researchers have studied
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this problem. Mazzola and Neebe [75] show that it is NP-hard and presented a solution

method based on Lagrangian relaxation method.

In this research, we extend the deterministic location-production-distribution problem to

the stochastic case. Stochastic programming has been well studied, e.g. Birge and Louveaux

[11], Higle and Sen [48], and Kall and Wallace [58]. For our problem in this case, the decision

is further complicated by the fact that there exist several scenarios in which some parameters,

i.e. the cutting costs, raw costs, demand rates, etc., will have different values under different

scenarios. Specifically, we consider facilities that are capacitated with the types, sizes, and

costs of raw materials processed, cutting costs, capacities, and scrap value possibly being

different under different scenarios. The types, sizes, and amounts demanded by customers

are also stochastic variables. Finally, the shipping costs from the facilities to the customers

can change over scenarios as well.

In examining prior research, the most closely related to this research is some relatively

recent work (Adelman and Nemhauser [2]; Adelman et al. [3]) applied to the fiber-optic cable

industry. In these papers, the authors consider a single supply and a single demand location

and build a linear programming model that allows standard duality results to place a “value”

on remnants of any size; this in turn leads to a cutting policy adapted to a dynamic demand

environment wherein one chooses the size of the piece to be cut based upon the reduction in

its value when it is cut to a remnant of smaller size.

Our work extends the work in Adelman and Nemhauser [2] in several regards. First,

unlike the fiber optic cable industry, scrap in the metals industry has value, and our models

account for this. For example, used beverage can scrap value could be as high as 75% of the

original value [80], and coil steel scrap value could be more than 25% of the original value

[86, 92]. Second, we do not assume prespecified proportions in which different raw stock

sizes are replenished, but rather, allow our model to find the optimal replenishment rates

for each location; correspondingly, the model is far more realistic in practice. Third, the

decision maker in our model incurs a cost for each cutting operation. The cutting cost is

nontrivial in the steel industry (Chu and Antonio [26]) and ignoring this cost is inaccurate in

real-life practice. Fourth, unlike Adelman and Nemhauser [2] who consider a single location,

we consider multiple supply and demand locations. The modified model is then embedded
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within a location/distribution network for the general supply chain problem in order to

determine which distribution facilities should be selected for operation, what cutting policies

should be used, and how product should be distributed from distribution centers to demand

points. Fifth, we consider the fixed cost and the capacity limit for each facility. Rather

than opening all facilities, we also let the model itself choose the optimal set of facilities to

open from the potential locations. Sixth, unlike Adelman and Nemhauser [2] who consider

the deterministic problem, we make the model even more realistic by introducing stochastic

parameters.

1.3 SIGNIFICANCE

The research is significant in several regards. First, it represents one of the few efforts

at an exact solution to a supply chain problem that integrates location, production and

distribution. Second, the application domain is potentially vast since many industries, such

as paper, steel and aluminum, deal with remnant inventories similar to those addressed

here. Third, the research aims to improve solution procedures for large-scale stochastic

programming problems, which is an area that has been relatively unexplored because of the

computational difficulties associated with it.

In this dissertation, major contributions are as follows. First, to effectively manage long-

run costs in a dynamic and stochastic demand environment, we develop a policy to assist

price-directed policy makers in deciding which facility to satisfy the demand from and to pick

which remnant to cut to obtain the demanded size. Second, to make the policy applicable,

we develop a new perturbation technique to make the dual prices satisfy several desirable

properties. Third, considering the facility location problem results in an NP-hard mixed-

integer program. To solve the resulting large-scale integer program, we adapt Benders’

decomposition [74]. To improve its performance, we develop a new method to generate

a set of feasibility constraints that replace Benders’ feasibility cuts and whose number is

bounded polynomially. Fourth, by considering stochastic demand, we develop a stochastic

program and present new algorithms based on the L-shaped method to solve the resulting

6



problem. Fifth, it also shows the potential of applying new feasibility constraint in complex

solution methodologies because our results prove new feasibility constraints are robust in

complex solution methodologies such as Benders’ Decomposition and the L-shaped method.

Finally, our solution development provides insight into algorithmic and computational issues

regarding these methodologies.

This document is organized as follows. We first start in Chapter 2 with a linear program-

ming model for the actual cutting and distribution problem, given a set of locations, and

then present a strategy for dynamic demands. In Section 2.5, we address inventory control

and present a simulation model to evaluate the technique that is developed. In Chapter 3,

the LP model is then extended to the case where the location of distribution centers must

be decided by considering their different fixed costs and capacity limits. Solution algorithms

based on Benders’ decomposition are proposed for this problem. In Chapter 4, we present

an even more general model with stochastic parameters, and develop a stochastic program-

ming approach based on the L-shaped method to solve this problem. Chapter 5 presents

conclusions and directions for future research.
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2.0 BASIC MODEL: PRODUCTION AND DISTRIBUTION

In our first model, we assume that all facilities are open and have no capacity limits. Each

facility stocks some set of standard raw sizes. Demand arises from the various customers

according to a Poisson process with different mean values. When a certain demand size

arises, an effective policy should help the decision makers choose an appropriate raw or

remnant at one of the facilities so that material, production, and transportation costs are

minimized in the long run. The objective of this model is to find such a policy.

2.1 SYSTEM DESCRIPTION

As shown in Figure 1, we consider a production-distribution system consisting of a set of

geographically distributed facility locations indexed by i ∈ I each of which stocks a product

in one or more “standard” sizes. The product is replenished periodically from an outside

production facility. Demand for the product arises from some other set of geographically

distributed demand locations indexed by j ∈ J , but typically in smaller, “non-standard”

sizes. The demand for a particular size k at a particular location j is assumed to follow a

Poisson distribution with some known mean rate λjk. We assume that there is no capacity

limit at each facility i and that all demand must be fulfilled. A cost δi is incurred each time

a cut is made at location i and a per-unit transportation cost cijk is incurred in shipping a

unit of size k from location i to location j. The problem is to determine a long-term policy

for cutting and distributing the product in order to satisfy demand.

In order to formulate the problem first note that remnants from cutting standard-size

stock can either be used again to produce other (smaller) non-standard sizes, or recycled
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Figure 1: Distribution Network

as scrap. Thus, at any given time each distribution facility could be expected to have an

inventory of units of various sizes. Now consider a node in Figure 1 that represents some

distribution facility i. Each such node will be represented by its own sub-network. These sub-

networks are then connected to the various demand locations as part of a larger distribution

network; thus the overall network is one comprising of several smaller sub-networks. Each

of the sub-networks is represented using a model similar to that proposed in [2] for their

single supplier/single user problem. In this model, nodes in each sub-network represent the

various sizes that could be present at the facility at any time as standard (raw) stock, finished

product, remnants or scrap, where node m represents size m. The flow along an arc from

node m to node n (where n < m) represents the number of units of size m that are cut down

to remnants of size n (while producing that many pieces of size m−n in the process); Figure

2 illustrates an example of such a sub-network.

9



Figure 2: Sub-Network

2.2 MODEL FORMULATION

To describe our model, we first introduce some notation.

• I = Set of facility locations.

• J = Set of demand locations.

• Ki = Set of all possible sizes, including scrap sizes (we refer to sizes that are smaller

than the smallest demanded size as scrap sizes), that could be generated at facility i (we

include the size 0 in this set); define K =
⋃

i∈I Ki.

• Dj = Set of all sizes that are demanded at demand location j ∈ J ; define D =
⋃

j∈J Dj.

• Si ⊆ Ki = Set of all raw stock sizes that are processed at facility location i ∈ I; define

S =
⋃

i∈I Si.

• λjk = Mean demand rate at location j ∈ J for product of size k ∈ Dj.

• cijk = Cost of transporting a single unit of size k ∈ Dj from location i ∈ I to location

j ∈ J .

• aih = Cost of one unit of raw stock of size h ∈ Si at location i ∈ I.
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• σi = Unit salvage value of product at facility i ∈ I; σi > 0.

• δi = Cost per cut at facility i ∈ I; δi > 0.

The variables are:

• xijk = Rate of shipment of units of size k ∈ Dj from facility location i ∈ I to demand

location j ∈ J .

• yi
m,n = Rate of generation at facility location i ∈ I, of units of size (m − n) that are

obtained by cutting size m(≥ n) down to size n.

• rih = Rate of replenishment of raw units of size h ∈ Si at facility location i ∈ I; define

rih = 0 if h ∈ (Ki\Si).

• siu = Rate at which size u is scrapped at facility location i ∈ I. Define siu = 0 if the size

u cannot be generated at location i.

Before formulating the problem, we also define for each i ∈ I, the sub-network Gi =

(Ki, Ai) similar to the example in Figure 2, where Ki is the set of nodes and Ai the set of

arcs in the graph. Specifically, we define:

Ai = {(m,n)|(m− n) ∈ D; m,n ∈ Ki,m > n}.

Note that for the sub-network in Figure 2, Ki = {0, 1, 2, 3, 5, 6, 8, 11} and the arc set

Ai = {(11,8),(11,6), (8,5),(8,3),(6,3),(6,1),(5,2),(5,0),(3,0)}.

We are now ready to formulate the problem as the following linear program (LP):

Minimize
∑
i∈I

∑

h∈Si

aihrih+
∑
i∈I

∑

{(m,n)∈Ai|n>0}
δiy

i
m,n+

∑
i∈I

∑
j∈J

∑

k∈Dj

cijkxijk−
∑
i∈I

∑
u∈Ki

uσisiu (2.1)

subject to:


ril +

∑

m|(m,l)∈Ai

yi
m,l


−


sil +

∑

n|(l,n)∈Ai

yi
l,n


 = 0, for all i ∈ I and l ∈ Ki, (2.2)
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∑
i∈I

xijk = λjk, for all j ∈ J and k ∈ Dj, (2.3)


 ∑

(m,n)∈Ai|(m−n)=k

yi
m,n


−

(∑
j∈J

xijk

)
= 0, for all i ∈ I and k ∈ D, (2.4)

all x, y, r, s ≥ 0. (2.5)

It is readily seen that the objective (2.1) is to minimize cost of raw stock, cutting and

transportation, less the value of the scrap that is salvaged. Constraints (2.2) ensure flow

balance at each node of each facility sub-network, constraints (2.3) ensure that all demand is

satisfied, and constraints (2.4) ensure that total flow of each size out of each sub-network is

equal to its production in that sub-network. Notice that this primal formulation only yields

a replenishment and shipment policy for a static environment for one particular demand rate

(the expected value λjk). What one actually needs is a policy to use in a dynamic environment

where demand occurs in a stochastic fashion. Furthermore, additional difficulty arises from

the fact that in general the above LP will have multiple optima.

Figure 3: Alternative Optima

For instance, consider Figure 3: If the flow in the Figure 3(a) is optimal, then so is the

one in Figure 3(b). Both take in 25 units of raw stock of size 11 and generate 30 units of size
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5 and 20 units of size 6, along with 5 units of scrap of size 1. While there is no difference

between one optimum and the other for the static problem formulated in this section, the

same cannot be said if the objective is to come up with a long-term operating policy for the

case where the demands are dynamic. In such an environment a particular decision could

have a significantly more (or less) adverse impact on future decisions.

In light of the preceding discussion we introduce the dual program corresponding to the

above LP. Define the dual variables:

• ηi,m corresponding to each constraint in (2.2), i.e., to each node of each facility’s sub-

network,

• µjk corresponding to each constraint in (2.3), i.e., to each demanded size at each location,

• πik corresponding to each constraint in (2.4), i.e., to each demanded size produced at

each location.

Then the corresponding dual is:

Maximize
∑
j∈J

∑

k∈Dj

λjkµjk, (2.6)

subject to:

µjk − πik ≤ cijk, for all i ∈ I, j ∈ J, k ∈ Dj, (2.7)

ηi,n − ηi,m + πik ≤ δi, for all i ∈ I; m,n ∈ Ki; (m, n) ∈ Ai; k = m− n, n > 0, (2.8)

ηi,n − ηi,m + πik ≤ 0, for all i ∈ I; m,n ∈ Ki; (m,n) ∈ Ai; k = m− n, n = 0, (2.9)

ηi,h ≤ aih, for all i ∈ I, h ∈ Si, (2.10)

ηi,u ≥ uσi, for all i ∈ I, u ∈ Ki, (2.11)

η, µ, π unrestricted.

In order to interpret the dual, consider an external entity that is willing to deliver the

demanded pieces directly to the customer at the demand point. Then µjk may be interpreted
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as the sale price set by this entity for a unit of size k at demand point j. The dual objective

is to maximize revenues. The same entity is also willing to supply pieces at distribution

facility i for the price of πik for a piece of size k. We may interpret ηi,m as the inherent unit

value of a product of size m at facility i. Note that the ηi,m values provide us with the value

associated with a particular size of remnant. For our long-term decision-making, these are

the values that will be used.

Then (2.7) states that the sale price at location j can be no higher than the price

charged at facility i plus the shipping cost from facility i to demand location j (otherwise

the decision maker would buy at the facility at the price of πik and ship it himself). To

interpret constraints (2.8) and (2.9) first note that ηi,m - ηi,n is the loss in inherent value

when a piece of size m is cut down to a piece of size n (while producing a piece of size

k=(m−n) in the process). Thus the quantity ηi,m - ηi,n +δi may be interpreted as the “total

cost” to us of making a piece of this size k. Then (2.8) and (2.9) state that the price charged

at facility i for size k cannot exceed the cost to make it (otherwise the decision maker would

make it himself and not buy from the external entity); note that in (2.9) we do not include

cutting costs since the entire remnant is used and there is no cutting operation. Constraints

(2.10) and (2.11) are defined for each facility; (2.10) says that a unit of size k cannot be

worth more than its raw unit cost; and (2.11) says that a unit of size k is worth at least as

much as its scrap value.

2.3 A PRICE-DIRECTED STRATEGY FOR DYNAMIC SUPPLY CHAIN

MANAGEMENT

2.3.1 Strategy in a Dynamic Demand Environment

In the previous section we have presented primal-dual formulations for a static version of

our problem, i.e., we have assumed a fixed value for the demand rate for each size at each

location. In practice, demand is stochastic and is modeled by a Poisson process with some

rate vector λ. Thus, what one needs is a policy that can be used to make demand fulfillment
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decisions in this dynamic demand environment. To do this, we examine the optimal solution

to the static problem and use it to arrive at a sensible policy for the dynamic problem. The

dual program just described is crucial to this step since the policy will be based on the values

of the optimal dual variables.

As an example of what this entails, suppose that a customer at demand location j orders

a unit of size 5. There may be multiple facilities from which this demand could be satisfied

as well as multiple cutting options at a particular facility. Since a decision made today will

influence the cost of a decision made tomorrow, the questions to be answered are of the

following kind: “Should we cut this order from our 11-unit inventory at Chicago, from our

13-unit inventory at Chicago, or from our 11-unit inventory at Pittsburgh?” Recall that ηi,m

is the dual variable corresponding to constraint (2.2) for a remnant of size m at location i.

Thus the optimal (static) value for ηi,m represents the marginal value of an extra piece of

size m at location i, i.e., the inherent value of this particular remnant. There is intuitive

appeal in using this value as the basis for a policy that is adapted to the dynamic demand

environment. In particular, the answer to the question posed above will depend on (a) the

reduction in inherent value when going from a larger to a smaller size (e.g., 13 to 8 units

or 11 to 6 units, as represented by ηi,13 − ηi,8 or ηi,11 − ηi,6, respectively), (b) the cutting

costs δi at Pittsburgh and Chicago, and (c) the transportation cost from the source to the

destination.

The fundamental question to answer is the following: “What is the general policy that

we should follow for choosing from multiple cutting and distribution options in order to

minimize long-run costs?” Obtaining a dual solution to the static problem allows us to

develop such a policy for the dynamic case and also provides us with information as to when

we might be indifferent between one policy and another.

Theorem 1. Suppose there is demand at location j for units of size k (that is, k ∈ Dj and

λjk > 0). The optimal static strategy for fulfilling this is to choose the location i′ and cutting

size m′ via: (i′, m′) ∈ argmini∈I,(m∈Ki|m≥k)(ηi,m − ηi,m−k + δi + cijk), where δi = 0 if m = k.

Proof. Consider the set Ik = {i ∈ I|∃m ≥ k, yi
m,m−k > 0} at optimality. That is, Ik is the

set of all facilities that produce units of size k according to the optimum solution. We would
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like to see which of these facilities could possibly have xijk > 0 at optimality, i.e., be used to

fulfill the demand arising at location j for size k. Suppose then that i′ ∈ Ik is such a facility,

i.e., xi′jk > 0 at optimality.

From constraint (2.7) of the dual problem we know that µjk ≤ πik + cijk for all i ∈ I.

Since (a) µjk appears only in (2.7), (b) λjk ≥ 0, and (c) the dual objective is to be maximized,

it also follows that

µjk = min
i∈I

(πik + cijk). (2.12)

Now consider complementary slackness conditions corresponding to (2.7) and (2.8):

(µjk − πik − cijk)xijk = 0, for all i ∈ I, j ∈ J, k ∈ Dj (2.13)

(ηi,n − ηi,m − δi + πik)y
i
m,n = 0, for all i ∈ I, (m,n) ∈ Ai, k = m− n (2.14)

Since xi′jk > 0, complementary slackness condition (2.13) implies µjk = πi′k + ci′jk, so

that from (2.12), i′ ∈ argmini∈I(πik + cijk). Also, from complementary slackness condition

(2.14), for all i ∈ Ik, if size m′ is cut down to size n = (m′−k), (so that yi
m′,n > 0), it follows

that πik = ηi,m′ − ηi,(m′−k) + δi. Since all defined cijk > 0 it follows from the two previous

sentences that (i′,m′) ∈ argmini∈I,(m∈Ki|m≥k)(ηi,m − ηi,(m−k) + δi + cijk).

Theorem 1 implies that if there is demand for size k, the optimal strategy in the static

problem is to consider all pieces of size m ≥ k at all facilities and pick a facility and size for

which (ηi,m − ηi,m−k + δi + cijk) or (ηi,m − ηi,0 + cijk) is minimized, depending on whether

m > k or m = k respectively. The intuition behind this is straightforward: the difference

ηi,m − ηi,m−k is the decrease in value to the decision-maker associated with reducing a unit

of size m to size m − k at facility location i and, along with δi, thus represents a “cost.”

The additional term cijk is added to account for the transportation cost from facility i to

demand location j. Furthermore, since we assume no limits on capacity, all of the demand

from customer j for size k would be satisfied from the same facility i.

We use Theorem 1 as the basis for our policy in a dynamic demand environment by re-

stricting our search to the existing inventory at each facility. The optimal size corresponding
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Table 1: Facility Data

Facility 1 Facility 2

Raw Unit Cutting Raw Unit Cutting

Size Cost Scrap Value Cost Size Cost Scrap Value Cost

13 20 0.05 0.05 11 19 0.1 0.05

11 19

to a static policy might not be in stock at the associated facility and there is thus no guar-

antee that the optimal static policy will always be used in a dynamic demand environment.

However, it does provide us with a logical basis for a policy in the dynamic environment.

Such policies based on the inherent values of inventory are referred to as price-directed

policies. We illustrate this policy by a small numerical example in the next section.

2.3.2 A Numerical Example

In this section, we provide a small numerical example to show how the policy works. Consider

a system with two facilities and two demand locations. The raw sizes available at each

facility along with the unit costs are summarized in Table 1. This table also provides the

unit salvage values at each facility. The demanded sizes and the corresponding demand rates

at each demand point, along with unit shipping costs are summarized in Table 2.

Upon formulating and solving this problem we obtain the dual prices given in Table 3.

Note that there are certain sizes that can never be produced as remnants, and the ηi,k are

not defined for these.

To see how the solution translates into a dynamic policy, consider a case where there is

demand for 3-unit pieces at Location 2. Suppose that at the time that this demand arrives,

we have 13-unit pieces and 6-unit remnants at Facility 1 and 6-unit remnants at Facility 2. In

this case, facility 1 has: η1,13−η1,10+c123+δ1 = 20−17+2+0.05 = 5.05, η1,6−η1,3+c123+δ1 =
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Table 2: Unit Shipping Costs and Demands

Location 1 Location 2

Size 5 6 3 5

Demand 20 20 10 30

Facility 1 2 4 2 5

Facility 2 3 3 1.5 4

Table 3: Optimal Dual Prices (ηik)

Remnant Size Facility

k i = 1 i =2

13 20 -

11 19 19

10 17 -

8 11.5 15.5

7 8.6 -

6 8.55 9.55

5 8.50 9.45

4 3.05 -

3 3 3.5

2 0.1 0.2

1 .05 0.1
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8.55−3+2+0.05 = 7.60 and facility 2 has: η2,6−η2,3+c223+δ2 = 9.55−3.5+1.5+0.05 = 7.60.

We would thus use the 13-unit piece at Facility 1 to fulfill this demand. On the other hand

if we only had 6-unit remnants at both locations, we would be indifferent between the two.

While this is a small example, it nevertheless illustrates the kinds of policies that we can

derive from the duality results.

2.3.3 Degeneracy, Multiple Optima, and Perturbation

In Section 2.2 at Chapter 2, we noted with an illustrative example that the primal problem

will generally have multiple optima. When attempting to adapt the static optimum to a

dynamic policy, an issue that needs to be addressed is that the problem tends to be degenerate

at optimality, with several of the yi
m,n variables being basic at zero values. Each of the optimal

bases leads to a different dual vector. Note that this should be intuitively obvious based

on the fact that most dual variables have objective coefficient of zero. Unfortunately, not

all of these dual vectors yield values for the optimal dual prices that are desirable from the

perspective of price-directed policies. There is no guarantee that an arbitrary dual vector will

satisfy properties that are intuitively appealing with the interpretation of the dual price for

a remnant as its inherent value. Adelman and Nemhauser [2] present several such properties

in their work on the single location problem with no cutting costs and no scrap values. We

present monotonicity and superadditivity as follows:

Definition 1. A value function η is monotonic if for any facility i ∈ I and any sizes

m,m− n ∈ Ki, ηi,m ≥ ηi,m−n.

Definition 2. A value function η is superadditive if for any facility i ∈ I and any sizes

m,m− n, n ∈ Ki, ηi,m ≥ ηi,m−n + ηi,n.

We now generalize the above concepts as follows:

Definition 3. For a given cost δ ∈ <|I|++ , a value function η is δ-monotonic if for any

facility i ∈ I and any sizes m,m− n ∈ Ki, ηi,m ≥ ηi,m−n − δi.

Definition 4. For a given cost δ ∈ <|I|++ , a value function η is δ-superadditive if for any

facility i ∈ I and any sizes m,m− n, n ∈ Ki, ηi,m ≥ ηi,m−n + ηi,n − δi.
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Consider any piece that has been cut into two smaller pieces. If a value function is δ-

monotonic, then the inherent value of this piece plus the unit cutting cost is at least as much

as the inherent value of any of the smaller pieces. If a value function is δ-superadditive, then

the inherent value of the piece plus the unit cutting cost is at least as much as the sum of

the inherent values of the two smaller pieces.

When δ = 0 for all facilities, the notions of δ-monotonicity and δ-superadditivity reduce

to classical notions of monotonicity and superadditivity. The interested reader is referred to

Adelman and Nemhauser [2] for a further discussion of these types of properties when δ = 0

for a single facility problem. It suffices to say that such properties should be satisfied by the

value function if we plan to use them for a dynamic policy, but picking an arbitrary optimal

dual vector for our problem does not necessarily guarantee this.

What we need, then, is a consistent way of picking the “correct” values for the optimal

dual variables for use in a dynamic environment where one must make decisions over time

based on these inherent values. To address this issue we adapt the approach followed in

Adelman and Nemhauser [2] of developing a so-called “ε-perturbation” that creates small

exogenous supplies and demands to ensure positive flows in optimal arcs. Our perturbation

differs from the one in Adelman and Nemhauser [2] in several respects. First, with multiple

facilities we cannot simply create exogenous demand to ensure positive flows, since this

demand may be completely satisfied by a single facility and still leave the flows in all the

others degenerate. Rather, one needs to account for each facility individually and ensure

that there is (at least some minimal amount of) production of all sizes at each facility so

that we avoid yi
m,n = 0. Second, unlike in Adelman and Nemhauser [2] we do not assume

that the relative proportions of raw sizes at each facility is prespecified. Rather, these are

decision variables in our problem. Finally, we do not necessarily create perturbations for

every size.

To introduce the perturbation we first extend the set D, which was defined earlier as

the union of all sizes demanded across all locations. We now define a set ∆ by adding to D

every other size that could be generated at a facility i, i.e.

∆ = K ∪D. (2.15)
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We partition ∆ as follows,

Definition 5. Define

a) ∆0 = {m|m ∈ ∆,m < min{k|k ∈ D}},
b) ∆1 = {m|m ∈ ∆,m ≥ min{k|k ∈ D}}.

Set ∆0 indexes scrap sizes while ∆1 indexes all sizes in the extended demand set ∆ that

are at least as large as the minimum demand size in the original problem.

Next suppose ε is some small positive constant.

Definition 6. The parameters of an ε-perturbation are defined as αim ∈ <1
++, βim ∈ <1

++, ∀i ∈
I, m ∈ ∆ such that:

βim < αim, ∀m ∈ ∆0 and βim = αim,∀m ∈ ∆1.

To define an ε-perturbation, we go through the following three steps:

Step 1: Solve the primal LP problem and denote the optimal values of xijk by x∗ijk.

Step 2: Extend the set D to ∆ as given by (2.15), the union of the original demand

sizes and all sizes that could possibly be generated. Define new node and arc sets for each i

as K ′
i and A′

i, respectively.

Step 3: At each facility i, perturb the right hand sides of constraint (2.2) for nodes

l ∈ ∆ as follows:


sil +

∑

n|(l,n)∈A′i

yi
l,n


−


ril +

∑

m|(m,l)∈A′i

yi
m,l


 = αilε, for all i ∈ I and l ∈ ∆. (2.16)

For nodes l ∈ K ′
i\∆, constraint (2.2) is kept the same as before:


sil +

∑

n|(l,n)∈A′i

yi
l,n


−


ril +

∑

m|(m,l)∈A′i

yi
m,l


 = 0, for all i ∈ I and l ∈ K ′

i\∆. (2.17)

Replace xijk in constraint (2.4) with x∗ijk and perturb constraint (2.4) as follows for the

size k ∈ D:

∑

(m,n)∈A′i|(m−n)=k

yi
m,n =

(∑
j∈J

x∗ijk + βikε

)
, for all i ∈ I and k ∈ D. (2.18)
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For the size k ∈ ∆\D, there is no original demand and thus, x∗ijk = 0. Therefore, we

perturb constraint (2.4) as follows:

∑

(m,n)∈A′i|(m−n)=k

yi
m,n = βikε, for all i ∈ I and k ∈ ∆\D. (2.19)

Finally, we drop constraint (2.3) in the perturbed model.

We can rewrite the primal perturbed problem as follows:

Minimize
∑

i∈I

∑
h∈Si

aihrih +
∑

i∈I

∑
{(m,n)∈Ai|n>0} δiy

i
m,n +

∑
i∈I

∑
j∈J

∑
k∈Dj

cijkx
∗
ijk

−∑
i∈I

∑
u∈Ki

uσisiu

subject to (2.16), (2.17), (2.18), (2.19), and y, r, s ≥ 0.

The dual of the perturbed problem is:

Maximize
∑

i∈I

∑
k∈∆ πik(

∑
j∈J x∗ijk + βjkε)−

∑
i∈I

∑
m∈∆ ηi,mαimε

Subject to (2.8), (2.9), (2.10), (2.11), and η, π unrestricted.

Even if the size k ∈ Ki is not generated at location i for shipment to some demand

point (i.e., xijk is zero for all j), the constraints in the above perturbed model still force

production of a small amount (βikε) of this size. For sizes that are generated for shipment,

the production is simply increased by a small amount.

Before getting into details about what it accomplishes, we examine the perturbation

further and contrast the optimal flows in the original problem with those in the perturbed

problem. Note that in the perturbed problem, for each m that belongs to ∆:

• There is an extra inflow of αimε units into node m.

• There is an additional demand of βimε units for size m, where βim < αim if m ∈ ∆0 and

βim = αim if m ∈ ∆1.

We first show that in the optimal solution to the perturbed problem there is always a

positive flow from all nodes with scrap sizes to node 0.
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Proposition 1. For every optimal solution ∗y to the perturbed problem, ∀i ∈ I, m ∈ ∆0:

∗ym,0 = βimε.

In order to prove Proposition 1, we first present the following definition and lemma.

Definition 7. Define P i
m,n as the set of directed paths p that start at node m and end at

node n in network G′
i = (K ′

i, A
′
i) at facility i ∈ I. Define ∗qi

p = min(m,n)∈p
∗yi

m,n, that is, the

optimal path flow along p, and ∗Qi
m,n =

∑
p∈P i

m,n

∗qi
p.

Lemma 1. Under an ε-perturbation, ∀i ∈ I, m ∈ Ki,
∗Qi

m,0 ≥ βimε.

Proof. Suppose at the optimum ∗Qi
m,0 < βimε, for some i ∈ I,m ∈ Ki. First, note that the

total flow along all arcs (m1,m2) ∈ A′
i such that m1 −m2 = m must be at least as much as

βimε, so that

∑

(m1,m2)∈A′i|m1−m2=m

∗yi
m1,m2

≥ βimε > ∗Qi
m,0.

Isolating the flow along arc (m, 0), this implies that

∗yi
m,0 +

∑

(m1,m2)∈A′i|m1−m2=m,m1 6=m

∗yi
m1,m2

> ∗Qi
m,0.

But ∗Qi
m,0 ≥ ∗yi

m,0 by definition. Therefore,

∑

(m1,m2)∈A′i|m1−m2=m,m1 6=m

∗yi
m1,m2

> 0.

That is, there exists at least one m′ > m such that ∗yi
m′,m′−m > 0.

Now, since the inflow into node m is at least αimε, it follows by flow balance that the out-

flow from node m,
∑

(n|n∈K′
i,0≤n<m)

∗Qi
m,n + ∗sim ≥ αimε. Therefore,

∑
(n|n∈K′

i,0<n<m)
∗Qi

m,n +

∗sim ≥ αimε − ∗Qi
m,0 ≥ βimε − ∗Qi

m,0 > 0, where the last two inequalities follow from Defi-

nition 6 and assumption (∗Qi
m,0 < βimε), respectively. Consequently,

∑
(n|n∈K′

i,0<n<m)
∗Qi

m,n

and ∗sim can not both be zero and we have the following cases:

Case 1): Suppose ∗sim > 0. Consider the following alternative scheme:

(a) Reduce ∗yi
m′,m′−m > 0 by some small amount ν, thus saving νδi units in cutting costs.

This reduces production of size m by ν units.
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(b) Increase ∗yi
m,0 by ν with no added cutting cost. This increases production of size m

by ν units.

(c) Compensate for the extra outflow from node m by decreasing scrap ∗sim > 0 by ν

units.

(d) Compensate for the decreased outflow from node m′ by increasing scrap ∗sim′ by ν.

Case 2): Suppose ∗sim = 0, so that
∑

(n|n∈K′
i,0<n<m)

∗Qi
m,n > 0. Without loss of gen-

erality, suppose for some node 0 < n < m, ∗Qi
m,n > 0. Consider the following alternative

scheme:

(1) Reduce ∗yi
m′,m′−m by some small amount ν, thus saving νδi units in cutting costs.

This reduces production of size m by ν units.

(2) Increase ∗yi
m,0 by ν with no added cutting cost. This increases production of size m

by ν units.

(3) Compensate for the extra outflow from node m by decreasing ∗Qi
m,n by ν units and

save at least νδi units of cutting costs.

(4) Compensate for the decreased outflow from node m′ by increasing ∗Qi
m′,m′−(m−n) by

ν units, and add cutting costs exactly equal to those saved in Step (3).

Comparing either new cutting scheme with the original one, we find: 1) Total production

of sizes are the same in each scheme; 2) Either of the new cutting schemes will save costs

from the original cutting scheme. This contradicts the assumption that the original cutting

scheme is optimal. Thus, ∗Qi
m,0 ≥ βimε.

We are now ready to prove Proposition 1.

Proof of Proposition 1: Given m ∈ ∆0,
∗yi

m,0 ≤ βimε since m is a scrap size. Suppose

∗yi
m,0 < βimε. Since ∗Qi

m,0 ≥ βimε by Lemma 1, it follows that there is at least one path

p ∈ P i
m,0 with intermediate nodes between node m and node 0 along which there are positive

flows. Consider one such path with a flow of ∗qi
p units. Assume the path consists of b arcs

that produce ∗qi
p pieces of sizes k1, k2, ..., kb where

∑b
j=1 kj = m. Since all of these sizes

are scrap sizes and the total demands for these are βi(m−k1)ε , ..., and βikb
ε, it follows that

∗qi
p ≤ min1≤j≤b(βikj

ε). Consider ν such that 0 < ν ≤ ∗qi
p, and the following alternative

scheme:
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(a) Reduce the flow along the path by ν units and increase ∗sim by ν units, thus save

(b− 1)νδi units in cutting costs.

(b) Increase ∗yi
m−kj ,0 for j = 1, 2, ..., b by ν units and add no cutting cost (note that this

is always possible since αi(m−kj)ε > βi(m−kj)ε ≥ ν for each node in the path).

This will save (b−1)νδi units of cutting costs and satisfy all demands, which contradicts

the assumption of optimality. Therefore, ∗yi
m,0 = βimε and the additional demand of βimε

units for size m are satisfied at no additional cost. The remainder of (αimε− βimε) units is

scrapped at node m. 2

Now suppose optimal flows in the original and the perturbed problem are given by

the vectors ŷ and ∗y respectively, while the corresponding optimal values of the objectives

are given by ẑ and ∗z. Assuming that cutting costs are strictly positive and that we are

not charged for the additional inflows of αimε, it is clear that the optimal solution to the

original problem with the following modifications will be an optimal solution to the perturbed

problem:

• For m ∈ ∆1, the extra inflow of αimε units is routed along arc (m, 0), i.e., ∗ym,0 =

ŷm,0 + αimε = ŷm,0 + βimε. Thus it satisfies the additional demand of βimε units for size

m at no additional cost since there is no cutting.

• For m ∈ ∆0, a portion βimε of the extra inflow of αimε units is routed along arc (m, 0),

i.e., ∗ym,0 = ŷm,0 + βimε = βimε. Thus it satisfies the additional demand of βimε units for

size m at no additional cost. The remainder of (αimε − βimε) units is scrapped at node

m since there is no original demand for size m.

Thus we do not pay any additional cutting costs in the perturbed problem and ∗z =

ẑ −∑
i∈I,m∈∆0

(αimε− βimε)σi. We can see that, as ε → 0 this ε-perturbation reduces to the

original problem.

To clarify and illustrate the perturbation and its optimal solution, consider facility i with

Si = {11} and D = {3, 5} shown in Figure 2. Suppose that λ3 = 20 and λ5 = 10 and the

optimum solution has ŷ11,6 = ŷ6,3 = ŷ3,0 = 10 as shown in Figure 4.

For the ε-perturbation we have ∆ = {1, 2, 3, 5, 6, 8, 11} with ∆0 = {1, 2} and ∆1 =

{3, 5, 6, 8, 11}, and we define αim = βim for m ∈ ∆1 and αim > βim for m ∈ ∆0. The
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Figure 4: Optimal Cutting Scheme for Original Problem

Figure 5: Optimal Cutting Scheme for Perturbed Problem

node set for the perturbed problem is given by K ′
i = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, and the

optimal flow for the perturbed problem described above is given by Figure 5.

While the above flows describe the optimum for the perturbed problem, they are not

necessarily unique. To illustrate this fact, consider the flow pattern depicted in Figure 6,

which differs from Figure 5 in the following flows only:

• ∗y8,0, which is now equal to zero,
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Figure 6: Alternative Optimum for Perturbed Problem

• ∗y11,6,
∗y6,3, each of which is decreased by an amount βi8ε, and

• ∗y11,3,
∗y8,3,

∗y3,0, each of which is increased by an amount βi8ε.

Note that flow balance is maintained and the net flow for each different size is identical

in both cases so that all demand is satisfied. We save 2(βi8ε)δi corresponding to reduced

flows in arcs ∗y11,6 and ∗y6,3 that now need not be cut, but pay an additional 2(βi8ε)δi due

to the increased flows along ∗y11,3 and ∗y8,3 and the corresponding extra cutting cost. Thus,

there is no overall change in costs and thus this also represents an optimal solution.

Rather than solving the perturbed problem directly, we will find it is convenient to

construct an optimal solution from the optimal solution to the unperturbed problem.

We also present an algorithm for constructing alternative optima when these exist. Al-

gorithm 1 constructs an optimal solution to the perturbed problem:

Algorithm 1 Obtaining an Optimal Solution to the Perturbed Primal Problem

1: Solve the unperturbed problem and obtain the optimal solution ŷ, with optimal value ẑ.

2: For m ∈ ∆1, let ∗ym,n = ŷm,n for n > 0 and ∗ym,0 = ŷm,0 + αimε = ŷm,0 + βimε.

3: For m ∈ ∆0, let ∗ym,0 = βimε and scrap the remainder of (αimε− βimε) units at node m.

Proposition 2. The solution obtained by Algorithm 1 is optimal for the perturbed problem.

Proof. For m ∈ ∆0, the conclusion follows from Step 2 of Algorithm 1 and Proposition 1.
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For m ∈ ∆1, we create exactly as much of supply (αimε) as the new demand (βimε). By

assigning all of the extra supply to the arc (m, 0), we create exactly enough of size m to

satisfy all additional demands at no extra cost, from which the conclusion follows.

Corollary 1. Let ẑ be the optimal value for the unperturbed problem. Then the optimal

value ∗z for the perturbed problem is: ∗z = ẑ −∑
i∈I,m∈∆0

(αimε− βimε)σi.

Suppose that in the optimal solution created by Algorithm 1, ∃m,m′ ∈ ∆1, k1, k2, ..., kp ∈
D with k1 + k2 + ... + kp = m,m′ > m such that ∗yi

m′,m′−k1
> 0, ∗yi

m′−k1,m′−k1−k2
> 0, ...,

∗yi
m′−Pa=p−1

a=1 ka,m′−m
> 0. Then we can find alternative optimal solutions for the perturbed

problem by Algorithm 2:

Algorithm 2 Obtaining Alternative Optimal Solutions to the Perturbed Primal Problem

1: Apply Algorithm 1 and obtain an optimal solution ∗y.

2: Reduce the flow along the path (m′,m′ − k1), (m
′ − k1,m

′ − k1 − k2), ..., (m
′ −

∑a=p−1
a=1 ka,m

′ −m) by some small amount ν ≤ βimε.

3: Compensate for the reduced production of sizes k1, k2, ..., kp by increasing the flow along

the path (m,m− k1), (m− k1, m− k1 − k2), ..., (m−∑a=p−1
a=1 ka, 0) by ν.

4: Compensate for the increased flow out of node m by reducing the flow along arc (m, 0)

by ν, thus producing ν fewer pieces of size m.

5: Compensate for the decreased flow out of node m′ by increasing the flow along the arc

(m′,m′ −m) by ν, thus producing ν additional pieces of size m.

We now show that the solution obtained by Algorithm 2 is also optimal.

Proposition 3. Suppose that in the optimal solution created by Algorithm 1, ∃m,m′ ∈
∆1(m

′ > m), k1, k2, ..., kp ∈ D with k1 + k2 + ... + kp = m such that ∗yi
m′,m′−k1

> 0,

∗yi
m′−k1,m′−k1−k2

> 0, ..., ∗yi
m′−Pa=p−1

a=1 ka,m′−m
> 0. Then by applying Algorithm 2 for ∀m ∈

∆1, we can create alternative optimal solutions to the perturbed problems at each facility

i, i ∈ I with the following properties

∀m ∈ ∆1,

• ∗yi
m′,m′−m > 0;

• ∗yi
m,m−k1

> 0, ∗yi
m−k1,m−k1−k2

> 0, ..., ∗yi
m−Pa=p−1

a=1 ka,0
> 0.
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Proof. In Step 2 of Algorithm 2, we save νp units in cutting costs.

In Step 3 of Algorithm 2, we pay ν(p− 1) units in cutting costs.

In Step 4 of Algorithm 2, no cutting costs are added.

In Step 5 of Algorithm 2, we pay ν units in cutting costs.

Thus Algorithm 2 incurs exactly the same cutting costs as Algorithm 1 while producing

the same amount of products. Consequently, the solution created by Algorithm 2 is optimal.

Note that Figure 5 illustrates an optimal solution by Algorithm 1 while Figure 6 illus-

trates an alternative optimal solution by Algorithm 2 with p = 2, m = 8,m′ = 11 and

k1 = 3, k2 = 5. The following proposition characterizes any solution to the perturbed prob-

lem.

Proposition 4. ∀i ∈ I, m ∈ ∆1, any solution to the perturbed problem must have the

following characteristics,

a) ∗yi
m,0 ≥ βimε > 0, or

b) 0 ≤ ∗yi
m,0 < βimε, ∃m′ ∈ Ki,m

′ > m, and k1, k2, ..., kq ∈ Ki with
∑q

g=1 kg = m such

that

• ∗yi
m′,m′−m > 0;

• ∗yi
m,m−k1

> 0, ∗yi
m−k1,m−k1−k2

> 0, ..., ∗yi
(m−Pq−1

g=1 kg),0
> 0.

Proof. ∀m ∈ ∆1: From Lemma 1, ∗Qi
m,0 =

∑
p∈P i

m,0

∗qi
p = ∗yi

m,0 +
∑

p∈(P i
m,0\(m,0))

∗qi
p ≥ βimε.

We consider the two cases: ∗yi
m,0 ≥ βimε and ∗yi

m,0 < βimε.

a) If ∗yi
m,0 ≥ βimε > 0, the result follows immediately.

b) Suppose ∗yi
m,0 < βimε so that

∑
p∈(P i

m,0\(m,0))
∗qi

p > 0. Then there must exist at

least one path with flow amount ν such that 0 < ν ≤ βimε − ∗yi
m,0 and k1, k2, ..., kp with

k1 + k2 + ... + kp = m such that ∗yi
m,m−k1

> 0, ∗yi
m−k1,m−k1−k2

> 0, ..., ∗yi
(m−Pp−1

g=1 kg),0
> 0.

Furthermore, since ∗yi
m,0 < βimε, it follows that ∃m′ > m such that ∗yi

m′,m′−m > 0 to

satisfy the additional demand for size m.

To summarize the need for the preceding description, we note that because of dual

degeneracy we may obtain inherent values that may not satisfy the properties of monotonicity
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and superadditivity, which makes a price-directed policy inapplicable. We therefore develop

and solve a perturbed model. In the next section, we show that the inherent values from

the perturbed model will satisfy these describe properties; Section 2.4 will be used for this

purpose.

2.4 PROPERTIES OF THE ε-PERTURBATION

We now prove some important properties of the static problem that will hold under an

ε-perturbation, and thus make our policy applicable in a dynamic environment.

Proposition 5. The perturbed problem is always feasible.

Proof. The conclusion follows from the fact that if right hand sides of constraints (2.2) and

(2.4) are positive, the constraints can always be satisfied by adjusting the raw material

consumption because there are no upper bounds for these: there are no capacity limits at

facilities.

Denote an optimal primal solution to the perturbed problem by (∗y, ∗r, ∗s) and the cor-

responding optimal dual multipliers by (∗π, ∗µ, ∗η). Recall that we also assume that the

cutting cost δi is strictly positive.

The following proposition proves that permutability holds, i.e. satisfying a demand for

size k1 by cutting node m and then cutting the remnant to satisfy a demand for size k2,

is equivalent to satisfying the demand for size k2 first and then k1. Interested readers may

refer to the paper by Adelman and Nemhauser [2] for a discussion of permutability property

when cutting costs are zero.

Proposition 6. For any i ∈ I, k1, k2 ∈ ∆, and m,m − k1, m − k1 − k2 ∈ K ′
i, suppose

∗yi
m,m−k1

> 0 and ∗yi
m−k1,m−k1−k2

> 0. Then

a) ∗πik1 = ∗ηi,m − ∗ηi,m−k1 + δi,
∗πik2 = ∗ηi,m−k1 − ∗ηi,m−k1−k2 + δi.

b) ∗πik2 = ∗ηi,m − ∗ηi,m−k2 + δi,
∗πik1 = ∗ηi,m−k2 − ∗ηi,m−k2−k1 + δi.
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Proof. The conclusion of part a) directly follows from complementary slackness corresponding

to the assumption that there exist ∗yi
m,m−k1

> 0 and ∗yi
m−k1,m−k1−k2

> 0.

To show the conclusion of part b), by complementary slackness corresponding to (2.8),

it follows that

∗πik1 = ∗ηi,m − ∗ηi,m−k1 + δi, (2.20)

and

∗πik2 = ∗ηi,m−k1 − ∗ηi,m−k1−k2 + δi. (2.21)

Constraint (2.8) for arcs (m, m− k2) and (m− k2,m− k1 − k2) implies that

∗ηi,m − ∗ηi,m−k2 + δi ≥ ∗πik2 , (2.22)

and

∗ηi,m−k2 − ∗ηi,m−k1−k2 + δi ≥ ∗πik1 . (2.23)

(2.21) and (2.22) imply that

∗ηi,m−k2 ≤ ∗ηi,m − ∗ηi,m−k1 + ∗ηi,m−k1−k2 , (2.24)

while (2.20) and (2.23) imply that

∗ηi,m−k2 ≥ ∗ηi,m − ∗ηi,m−k1 + ∗ηi,m−k1−k2 . (2.25)

Then, from (2.24) and (2.25) it follows that

∗ηi,m−k2 = ∗ηi,m − ∗ηi,m−k1 + ∗ηi,m−k1−k2 . (2.26)

Equation (2.26) can then be written in the following two ways using (2.21) and (2.20)

respectively:

∗ηi,m − ∗ηi,m−k2 + δi = ∗ηi,m−k1 − ∗ηi,m−k1−k2 + δi = ∗πik2 ,

and

∗ηi,m−k2 − ∗ηi,m−k1−k2 + δi = ∗ηi,m − ∗ηi,m−k1 + δi = ∗πik1 ,

from which the conclusion follows.
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The following proposition assigns an appropriate inherent value to scrap sizes.

Proposition 7. Under an ε-perturbation, ∀i ∈ I, m ∈ ∆0,
∗ηi,m = mσi.

Proof. The total inflow into node m is
∑

(n,m)∈A′i
∗yi

n,m + αimε and it is equal to the outflow

from node m,
∑

(m,n)∈A′i
∗yi

m,n + ∗sim. Consider ∗yi
m,n, ∀(m,n) ∈ A′

i. From Proposition

1, ∗yi
m,0 = βimε. Further, ∗yi

m,n = 0 for all other n since m − n < m has no original

demand. Thus,
∑

(m,n)∈A′i
∗yi

m,n + ∗sim = βimε + ∗sim =
∑

(n,m)∈A′i
∗yi

n,m + αimε ≥ αimε.

But by Definition 6, βimε < αimε. It follows that ∗sim > 0. The result then follows from

complementary slackness corresponding to (2.11).

Proposition 9, which we introduce next, shows that δ-superadditivity will always hold

with the ε-perturbation. To prove this proposition, we first introduce the following crucial

proposition, which will also be used subsequently to prove δ-monotonicity.

Proposition 8. Under an ε-perturbation, ∀i ∈ I, m ∈ Ki,
∗πim = ∗ηi,m.

Proof. Consider an optimal primal solution ∗y to the perturbed problem.

For m ∈ ∆0,
∗yi

m,0 > 0 by Proposition 1. Complementary slackness corresponding to

(2.9) implies that ∗πim = ∗ηi,m − ∗ηi,0. By Proposition 7, ∗ηi,0 = 0, and thus, ∗πim = ∗ηi,m.

For node m ∈ ∆1, there are two possibilities:

Case 1): ∗yi
m,0 > 0. The proof is identical to the proof for m ∈ ∆0.

Case 2): ∗yi
m,0 = 0. From Proposition 4, ∃m′ > m such that ∗yi

m′,m′−m > 0 to satisfy the

additional demand for size m. Let l′ denote a raw size, from which there is a flow into node

m′.

Proposition 4 also states that there exists a positive flow along the path p = {(m,m−k1),

(m − k1,m − k1 − k2), ..., (m − ∑q−1
g=1 kg, 0)}, from which we obtain products with sizes

k1, k2, ..., kq. Note that sizes k1, k2, ..., kq must correspond to sizes that have original demand.

From Corollary 1, it follows that the optimal solution to the perturbed problem must

not use additional original raw material, that is, the optimal solution to the perturbed

problem uses the same amount of all original raw material as the one to the unperturbed

problem. Thus, flow along the path p must free up exactly the same amount (say ν units)

of the same size of raw material (i.e. raw size l′) as the extra requirement of the flow
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along the arc (m′,m′ −m). To ensure this, there must exist m′′ such that ∗yi
m′′,m′′−k1

> 0,

∗yi
m′′−k1,m′′−k1−k2

> 0, ..., ∗yi
(m′′−Pq−1

g=1 kg),m′′−m
> 0 in the path from l′ to m. Note that m′′

may or may not be identical to node m′.

By complementary slackness for (2.8), the following q equalities follow

∗ηi,m′′ − ∗ηi,m′′−k1 + δi = ∗πik1 .

∗ηi,m′′−k1 − ∗ηi,m′′−k1−k2 + δi = ∗πik2 .
...

∗ηi,(m′′−Pq−1
g=1 kg) − ∗ηi,m′′−m + δi = ∗πikq . (2.27)

Adding all equations of the form (2.27), we obtain

∗ηi,m′′ − ∗ηi,m′′−m + qδi = ∗πik1 + ... + ∗πikq . (2.28)

Also, ∗yi
m,m−k1

> 0, ..., ∗yi
(m−Pq−2

g=1 kg),(m−Pq−1
g=1 kg)

> 0 and complementary slackness corre-

sponding to (2.8) imply that

∗ηi,m − ∗ηi,m−k1 + δi = ∗πik1 ,

...

∗ηi,(m−Pq−2
g=1 kg) − ∗ηi,(m−Pq−1

g=1 kg) + δi = ∗πikq−1 , (2.29)

while ∗yi
(m−Pq−1

g=1 kg),0
> 0 and complementary slackness corresponding to (2.9) imply that

∗ηi,(m−Pq−1
g=1 kg) − ∗ηi,0 = ∗πikq . (2.30)

Adding all equations of the form (2.29) to equation (2.30) and recalling that ∗ηi,0 = 0

from Proposition 7, it follows that

∗ηi,m + (q − 1)δi = ∗πik1 + ... + ∗πikq . (2.31)

Finally, ∗yi
m′,m′−m > 0 and complementary slackness corresponding to (2.8) imply that

∗ηi,m′ − ∗ηi,m′−m + δi = ∗πim. (2.32)
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By Proposition 6, we obtain

∗ηi,m′′ − ∗ηi,m′′−m + δi =∗ ηi,m′ − ∗ηi,m′−m + δi = ∗πim. (2.33)

Comparing equations (2.28) and (2.33), we conclude

∗πim + (q − 1)δi = ∗πik1 + ... + ∗πikq . (2.34)

From equations (2.31) and (2.34), it then follows that

∗πim = ∗ηi,m, (2.35)

thus concluding the proof.

This leads to the following proposition:

Proposition 9. Let (∗η, ∗π) be optimal dual multipliers under an ε-perturbation. Then the

value function ∗η is δ-superadditive.

Proof. Consider any nodes l, m, l+m ∈ Ki at an arbitrary facility i ∈ I. From dual constraint

(2.8), ∗ηi,l+m + δi − ∗ηi,m ≥ ∗πil, and by Proposition 8, ∗πil = ∗ηi,l. Thus, ∗ηi,l+m + δi ≥
∗ηi,l + ∗ηi,m.

Next, we address δ-monotonicity and show that it follows as a corollary from the following

proposition, which provides a general relationship between the inherent values of different

sizes at a facility.

Proposition 10. Let (∗η, ∗π) be optimal dual multipliers under an ε-perturbation. Then

∗ηi,m + δi − σi(m− n) ≥ ∗ηi,n, ∀i ∈ I, m, n ∈ Ki such that m− n ∈ Ki.

Proof. ∗ηi,m + δi − (m− n)σi ≥ ∗ηi,m + δi − ∗ηi,m−n ≥ ∗πi,n where the first inequality follows

from dual constraint (2.11), and the second follows from constraint (2.8). By Proposition 8,

∗πi,n = ∗ηi,n, from which the proposition follows.

Proposition 10 indicates that the inherent value of a remnant depends on both cutting

costs and scrap value. Two corollaries follow from this: Corollary 2 shows that as long as
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cutting costs are positive, δ-monotonicity follows directly, while Corollary 3 shows that if

the unit scrap value at each facility is higher than the unit cutting cost at the facility, then

the inherent value is strictly decreasing with size.

Corollary 2. Let (∗η, ∗π) be optimal dual multipliers under an ε-perturbation. Then the value

function ∗η is strictly δ-monotonic, that is, ∗ηi,m + δi > ∗ηi,n, ∀i ∈ I, m, n(m > n) ∈ Ki.

Proof. Follows directly from Proposition 10 and the fact that (m− n)σi > 0.

Corollary 3. Under an ε-perturbation, ∀i ∈ I, if σi ≥ δi, then ∗ηi,m ≥ ∗ηi,n, ∀m > n, m, n ∈
Ki.

Proof. If σi ≥ δi, then since m − n ≥ 1, δi − σi(m − n) ≤ 0. Then, Proposition 10 implies

that ∗ηi,m ≥ ∗ηi,n.

Conversely, if the cutting cost is high, it is possible that (m−n)σi− δi ≤ ηi,m− ηi,n < 0,

so that the inherent values could actually increase as the size decreases.

The next proposition that we introduce provides an upper bound on the inherent value

of a specific size at a specific facility. Suppose that for any given raw stock of size h and

remnant of size l, we denote dh,l as the maximum number of pieces of the remnant that can

be cut from one piece of raw stock, d′h,l as the number of cuts made to obtain dh,l pieces,

and bh,l as the scrap size remaining after cutting. That is, dh,l = bh/lc, bh,l = h− ldh,l, and

d′h,l = dh,l if bh,l > 0, d′h,l = dh,l−1 otherwise. Then we obtain a bound on the inherent value

as follows:

Proposition 11. Under an ε-perturbation, ∀i ∈ I, l ∈ Ki,
∗ηi,l ≤ min(h∈Si,h≥l){aih + d′h,lδi −

bh,lσi}/dh,l.

Proof. Consider an arc from node h (h ≥ l) to node m = h− l, where h ≥ l. By constraint

(2.8),

∗ηi,h + δi ≥ ∗ηi,h−l + ∗πil.

Adding (d′h,l − 1)δi to both sides yields

∗ηi,h + d′h,lδi ≥ ∗ηi,h−l + ∗πil + (d′h,l − 1)δi.
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Since ∗ηi,h ≤ aih from (2.10), and ∗πil = ∗ηi,l from Proposition 8, it follow that

aih + d′h,lδi ≥ ∗ηi,h−l + ∗ηi,l + (d′h,l − 1)δi.

Now consider the arc from node h− l to node h− 2l. Adding ∗ηi,l + (d′h,l − 2)δi to both

sides of constraint (2.8) for this arc and using Proposition 8 we obtain

∗ηi,h−l + ∗ηi,l + (d′h,l − 1)δi ≥ ∗ηi,h−2l + 2∗ηi,l + (d′h,l − 2)δi.

If we continue the same procedure through nodes h− 2l, h− 3l, ... we eventually reach

the arc from node l + bh,l to node bh,l, where size bh,l is either zero or corresponds to a scrap

size. The constraint for this arc (constraint (2.8) if bh,l > 0 or constraint (2.9) if bh,l = 0)

yields

∗ηi,h−(dh,l−1)l + (dh,l − 1)∗ηi,l + (d′h,l − (dh,l − 1))δi ≥ ∗ηi,bh,l
+ dh,l

∗ηi,l.

The above sequence of relationships implies that

aih + d′h,lδi ≥ ∗ηi,bh,l
+ dh,l

∗ηi,l.

By Proposition 7, ∗ηi,bh,l
= bh,lσi, it follows that

aih + d′h,lδi ≥ bh,lσi + dh,l
∗ηi,l,

from which the proposition follows.

Based upon computational tests, it appears that on average, these bounds are between

approximately 7.10% (for small problems) and 11.32% (for large problems) higher than the

true values. Details may be found in Section 2.5.

Finally, the following proposition provides a bound on the difference in inherent values

between the same sizes but at different facilities:

Proposition 12. If the scrap value is the same for each facility, then under ε-perturbation,

|∗ηi,l − ∗ηi′,l| ≤ minh∈Si,h′∈Si′{aih − hσ + δi, ai′h′ − h′σ + δi′}.
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Proof. Consider any raw size h, and any remnant l ((h, l) ∈ Ai) at facility i (i ∈ I). From

dual constraint (2.8), it follows that

∗ηi,l ≤ aih − ∗ηi,h−l + δi. (2.36)

constraint (2.11) and the above inequality yield

∗ηi,l ≤ aih − (h− l)σ + δi. (2.37)

If we consider a similar constraint for size l at facility i′, it follows that

∗ηi′,l ≤ ai′h′ − (h′ − l)σ + δi′ . (2.38)

From dual feasibility, we obtain

lσ ≤ ∗ηi′,l, (2.39)

and

lσ ≤ ∗ηi,l. (2.40)

From (2.37) and (2.39), we obtain

∗ηi,l − ∗ηi′,l ≤ aih − hσ + δi. (2.41)

Similarly, (2.38) and (2.40) imply that

∗ηi′,l − ∗ηi,l ≤ ai′h′ − h′σ + δi′ . (2.42)

From (2.41) and (2.42), the result then follows.

To check the performance of our policy based on the inherent values, we develop a

simulation model to compare our policy with two other policies. The results are described

in the following chapter.
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2.5 SIMULATION AND INVENTORY CONTROL

We designed and ran a simulation model to compare our policy with two other heuristic

policies to test how our adaptation of the optimal static policy performs in a dynamic and

stochastic demand environment. We assume this supply chain is operated over a long period

of time. In each period (day), demand for various sizes arise at various demand location.

These demands arrive randomly according to independent Poisson processes with rate λjk

for size k at location j. There are no capacity constraints on the facility and all demand is

to be fulfilled.

Our goal was to test our price-directed policy against two other plausible heuristic poli-

cies. Each of the three policies is described briefly below:

A. Smallest Fit: This is a greedy approach where we search all facilities for the smallest

remnant or raw piece that can accommodate the demanded size. Ties are broken by picking

the option that minimizes the sum of raw materials costs (if any), shipping costs, and cutting

costs, less the value of any scrap generated.

B. Multi-criteria Heuristic: This policy follows a hierarchy of choices. First, if a

remnant of the exact size demanded exists, it is used. If not, we look for the smallest

feasible remnant that can not be used after cutting the current demand size. If no such

piece exists, we cut from the largest feasible remnant in stock (thus leaving another smaller

useful remnant behind). Finally, if there are no feasible remnants, we cut from the largest

raw stock size. In all instances, ties are broken using the same criterion as in Policy A.

C. Price-Directed Policy: This is our policy that uses dual values from the perturbed

version of the static LP formulation. We look across all facilities and pick the facility i and

size m according to the criterion described in Theorem 1, where ties are broken arbitrarily.

An important consideration with a price-directed policy is that inventories must be suitably

controlled; without constraints on raw materials it is possible that inventories of certain rem-

nant sizes can grow unchecked. Adelman and Nemhauser [2] get around this by empirically

setting a suitable (and identical) limit on the inventory of each size.

We follow a different approach. For each day, we track the number of pieces of all sizes

created, as well as the number of pieces of each raw size used during that day at every site.
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These numbers are then compared to the optimal yi
m,n and rih values from the solution to

the static LP in order to set limits on their inventory as follows: suppose the demand to be

met is for size k, so that cutting a piece from the selected size m would leave a remnant of

size n = m−k. If the size m corresponds to a remnant we check to see if the total number of

pieces of size n created after this operation exceeds the optimal daily rate from the static LP

for size n (i.e., exceeds the sum of the flow into or out of node n). If the size m corresponds

to a raw size we check to see if the usage of that raw size exceeds the optimal daily rate rim.

If either of these occurs we forego the option of using facility i and size m, and move on to

the next best one according to the inherent value criterion. The only time we violate these

inventory restrictions is if it is completely impossible to otherwise satisfy the demand. In

that case we just pick the location and raw size that yield the best value for the inherent

value criterion.

To compare these policies we tested three randomly generated sets of instances using

our simulation model: these consist of 10 small, 10 medium and 10 large-size instances

respectively. Table 4 provides some key characteristics of each instance set. For each of the

thirty instances, the actual demand for each size at each demand location over a 300-day

period was generated randomly according to a Poisson process, and an overall time-ordered

vector of demands was first created, with each element having a demand location, a size and

a time associated with it. The same vector was then separately used as the input to each of

the three different policies. For each instance studied, the simulation was run for 300 days

with statistics collected after day 50. Ten replications were run for each instance, with each

replication using a different randomly generated demand vector, thus resulting in a total

of 100 instances for each instance set, each of which was analyzed in turn using the three

heuristics. Total costs for a given instance were averaged across the ten replications. The

cost elements were the same as those in the LP formulation, namely raw materials, cutting,

and shipping. Revenues from all recovered scrap were subtracted from the total costs.

For a complete list of computational results, see Appendix A. Table 5 summarizes the

results. For every instance, the price-directed policy was the least expensive. For clarity

of exposition, the costs for the other two policies were re-scaled by defining the cost for

the price-directed policy for an instance to be 1.0, i.e., the numbers in the table represent
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Table 4: Test Instance Characteristics

Size of Instances No. of No. of Unique Unique No. of Nodes

in set Facilities Customers Raw Sizes Demand Sizes in Network

Small 2 2 to 4 3 to 4 4 to 6 14 to 22

Medium 4 to 5 10 to 20 5 to 13 7 to 38 50 to 384

Large 10 to 20 40 to 75 15 to 29 19 to 99 352 to 3097

Table 5: Performance of the Policies*

Size of Instances in Set Smallest Fit Multi-criteria Heuristic

Min. Max. Average Min. Max. Average

Small 1.18 1.55 1.39 1.04 1.30 1.16

Medium 1.13 1.78 1.47 1.16 1.74 1.37

Large 1.51 1.98 1.72 1.37 2.17 1.66

*Costs for the two policies in the above table represent multipliers of the corresponding

cost for the price-directed policy.

40



multipliers of the corresponding cost for the price-directed policy. The entries in Table 5

represent the average of these costs across the ten different instances in each instance set,

along with the maximum and minimum costs. The results indicate that on average, the

multi-criteria heuristic can result in costs that are from 16 to 66% higher, while a naive

policy such as the greedy heuristic (smallest fit) can cost from 39 to 72% more. In the

worst case, the costs could be 98 to 117% more. These results clearly indicate the benefits

of a price-directed policy that adapts the optimal results of the static LP formulation to a

stochastic and dynamic environment.

Finally, while conducting these computational experiments, we also gathered data on

the inherent values (ηi,k) so as to evaluate the quality of the bounds that were developed in

Proposition 11. The value of each ηi,k was compared to the theoretical upper bound from

Proposition 11 and the gap expressed as a percentage of the value was then averaged across

all ηi,k values for each instance. Detailed computational results can be found Chapter A in

Appendix. Table 6 below summarizes our observations:

Table 6: Performance of Bounds Given by Proposition 11

Size of Instances in Set Percentage Gap

Min. Max. Average

Small 2.19 12.04 7.10

Medium 4.99 13.00 8.49

Large 8.38 14.93 11.32

As might be expected, the bounds are tighter for the smaller instances. However, even

for the larger instances, they are not unreasonably large. This suggests that as a quick and

dirty approach, one could use the bound from Proposition 11 for the inherent values and

still expect to perform quite reasonably.
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3.0 LOCATION MODEL

The LP model in Chapter 2 can be extended to include a facility location problem. We

are given a set of candidate distribution centers with different fixed costs and capacities at

the different locations, and we may choose not to operate facilities at one or more of these

locations. In this section, we integrate the production, location and distribution problems

together. Compared with the LP model discussed in Chapter 2, the situation considered in

this section is further complicated by the fact that in the design phase we must choose which

distribution centers to open, and in the operational phase we must choose a particular open

distribution center and a particular size to be cut at that facility. The operational decision is

also complicated by the fact that we may need several different centers to meet all demand

because of the capacity limits at these facilities, and each of these could have several different

feasible sizes for cutting; the latter is true because open distribution centers also maintain

inventories of potentially useful remnants generated from prior cutting operations. Thus,

the design decision influences both the ability to satisfy demand at a later point in time, as

well as the associated long-run cost. To solve this problem, the basic model in Chapter 2

is expanded to include location as a decision variable. The objective in this chapter is to

determine which facilities should be operated, along with a long-term policy for cutting and

distributing the product in order to satisfy demand.

3.1 PROBLEM FORMULATION AND POLICY DEVELOPMENT

We consider the same production-distribution system described in Chapter 2, but now as-

sume that facility i has a fixed cost fi and processing capacity Mi. The problem is to de-
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termine which facilities to open, along with a long-term policy for how to cut and distribute

the product to satisfy dynamic and ongoing demand.

3.1.1 Primal Formulation of the Static Problem

In addition to the notation introduced in Section 2.2 of Chapter 2, we make the following

additional definitions:

• fi = Equivalent uniform daily fixed cost of operating a facility at location i ∈ I. We

uniform the total fixed cost based on unit operation time to make it comparative with

the other operating costs we defined in the previous chapter. This ensures that the fixed

cost will not dominate other daily operating costs and the model has a proper objective

function.

• Mi = Total daily processing capacity for facility i ∈ I.

• zi = Binary variable to decide whether facility i should be operated or not; zi = 1, if

facility i ∈ I is opened; zi = 0, otherwise.

We are now ready to formulate the problem as the following mixed-integer program:
Program P-MIP

min
∑

i∈I

∑

h∈Si

aihrih+
∑

i∈I

∑

{(m,n)∈Ai|n>0}
δiy

i
m,n+

∑

i∈I

∑

j∈J

∑

k∈Dj

cijkxijk+
∑

i∈I

fizi−
∑

i∈I

∑

u∈Ki

uσisiu (3.1)

subject to:


ril +

∑

m|(m,l)∈Ai

yi
m,l


−


sil +

∑

n|(l,n)∈Ai

yi
l,n


 = 0, for all i ∈ I and l ∈ Ki, (3.2)

∑

i∈I

xijk = λjk, for all j ∈ J and k ∈ Dj , (3.3)


 ∑

(m,n)∈Ai|(m−n)=k

yi
m,n


−


∑

j∈J

xijk


 = 0, for all i ∈ I and k ∈ D, (3.4)

∑

j∈J

∑

k∈Dj

xijk ≤ Mizi, for all i ∈ I, (3.5)

x, y, r, s ≥ 0; zi ∈ {0,1}. (3.6)
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Note that this formulation is identical to the one in Chapter 2 except for the additional

term
∑

i∈I fizi in the objective function and constraint (3.5), which ensures that no shipments

take place from a facility that is not chosen for operation and that total shipments out of

an operational facility i cannot exceed its processing capacity. We assume that the above

problem always has a feasible solution.

Proposition 13. The problem described by Program P-MIP is NP-hard.

Proof. Observe that if we simplify our problem by assuming that D and S are identical (i.e.,

all demand is only for sizes that are available as raws) we can satisfy all demand without

any cutting. Then Program P-MIP contains the multi-product capacitated facility location

problem (MPCFL) as a special case (for a discussion of MPCFL, the reader is referred to

[63, 64]). Since MPCFL is known to be NP-hard [75], it follows that P-MIP is NP-hard.

3.1.2 Implementation in a Dynamic Environment

In Section 3.1.1, we have presented a formulation for a static version of our problem, i.e., we

have assumed a fixed value for the demand rate for each size at each location. In practice,

demand is stochastic. We assume that it follows a Poisson process with rate vector λ. To

manage the long-run cost under a dynamic environment, we need to make decisions over two

stages.

In the first stage, the decision on which facility to open is made. Once this decision

has been made, the capacity and fixed costs are known, and the static problem reduces to

the linear program of Chapter 2, and at this point, we could follow the procedure described

therein for the second stage.

Let us first consider the above P-MIP but for a fixed binary location vector z = ẑ. This

yields the following linear programming problem:

Program P-SP(ẑ)

min
∑

i∈I

∑

h∈Si

aihrih+
∑

i∈I

∑

{(m,n)∈Ai|n>0}
δiy

i
m,n+

∑

i∈I

∑

j∈J

∑

k∈Dj

cijkxijk−
∑

i∈I

∑

u∈Ki

uσisiu+
∑

i∈I

fiẑi (3.7)
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Subject to (3.2), (3.3), (3.4), and

∑

j∈J

∑

k∈Dj

xijk ≤ Miẑi, for all i ∈ I, (3.8)

x, y, r, s ≥ 0. (3.9)

To obtain the dual corresponding to P-SP(ẑ) we define dual variables as follows:

• ηi,m corresponding to each constraint in (3.2), i.e., to each size at each facility,

• µjk corresponding to each constraint in (3.3), i.e., to each demanded size at each location,

• πik corresponding to each constraint in (3.4), i.e., to each demanded size produced at

each facility,

• ωi corresponding to each constraint in (3.8), i.e., to each facility.

Here, ωi may be interpreted as the marginal cost of one extra unit of processing capacity

at facility i. By dropping the constant term
∑

i∈I fiẑi from the objective of P-SP(ẑ), we can

write out its dual formulation as follows:

Program D-SP(ẑ)

Maximize
∑

j∈J

∑

k∈Dj

λjkµjk −
∑

i∈I

Miẑiωi (3.10)

subject to:
µjk − πik − ωi ≤ cijk, for all i ∈ I, j ∈ J, k ∈ Dj , (3.11)

ηi,n − ηi,m + πik ≤ δi, for all i ∈ I; m,n ∈ Ki; (m,n) ∈ Ai; k = m− n, n > 0, (3.12)

ηi,n − ηi,m + πik ≤ 0, for all i ∈ I;m,n ∈ Ki; (m,n) ∈ Ai; k = m− n, n = 0, (3.13)

ηi,h ≤ aih, for all i ∈ I, h ∈ Si, (3.14)

ηi,u ≥ uσi, for all i ∈ I, u ∈ Ki, (3.15)

ωi ≥ 0, for all i ∈ I, (3.16)

η, µ, π unrestricted.

Consider Program P-SP(ẑ) and let Î be the set of open facilities such that ẑi = 1 for

all i ∈ Î ⊆ I and ẑi = 0 for i /∈ Î. If the capacity constraint given by (3.8) did not

exist, it was shown in Chapter 2 that in the optimal solution to the resulting (static) LP
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problem, all demand for a particular size k at a particular location j (namely, λjk) will

be satisfied from a single demand location ∗i by cutting from a piece of size ∗m, where

(∗i, ∗m) ∈ argmini∈I,(m|m∈Ki,m≥k)(
∗ηi,m − ∗ηi,m−k + δi + cijk).

For the capacitated version of the LP that we consider herein, the situation is a little

more complicated since it might happen that demand for size k at location j is satisfied

from more than one facility since the “best” option might correspond to a facility with

insufficient capacity. Let (∗x, ∗y, ∗r, ∗s) be an optimal solution to P-SP(ẑ), and (∗η, ∗µ, ∗π, ∗ω)

be the corresponding optimal dual vector. Suppose λi
jk is the amount of demand for size

k at location j that is satisfied by facility i in the optimal solution to P-SP(ẑ). Note that
∑

i∈Î λi
jk = λjk. Let ∗λi

jk be the corresponding amount at the optimum. If all demand λjk

happens to come from a single facility at the optimum of Program P-SP(ẑ), a result similar

to that discussed above holds. Proposition 14 below states and proves this.

Proposition 14. If
∑

i∈Î λi
jk = λi′

jk = λjk for some i′ ∈ Î, the optimal static solution will

fulfill all of the demand λjk by choosing the facility i′ and cutting the size m′(≥ k), where

(i′,m′) ∈ argmini∈Î,(m|m∈Ki,m≥k)(
∗ηi,m − ∗ηi,m−k + δi + cijk).

Proof. Consider the complementary slackness condition corresponding to (3.8):

(Miẑi −
∑
j∈J

∑

k∈Dj

∗xijk)
∗ωi = 0, for all i ∈ I. (3.17)

When a facility i ∈ Î is open and its capacity is not fully used, that is,
∑

j∈J

∑
k∈Dj

∗xijk <

Miẑi, then (3.17) implies ∗ωi = 0. Let I1(I1 ⊂ Î) be the set of open facilities whose capacities

are fully used and I2 = Î\I1. Thus,
∑

i∈I2
Mi(

∗ωiẑi) = 0.

For i ∈ I1,Mi =
∑

j∈J

∑
k∈Dj

∗xijk =
∑

j∈J

∑
k∈Dj

∗λi
jk. Now consider the optimal value

of the objective function of Program D-SP(ẑ):
∑

j∈J

∑
k∈Dj

∗µjkλjk −
∑

i∈I Mi(
∗ωiẑi),

=
∑

j∈J

∑
k∈Dj

∗µjkλjk −
∑

i∈I1
∗ωiMi,

=
∑

i∈Î

∑
j∈J

∑
k∈Dj

∗λi
jk
∗µjk −

∑
i∈I1

∑
j∈J

∑
k∈Dj

∗λi
jk
∗ωi,

=
∑

i∈Î

∑
j∈J

∑
k∈Dj

∗λi
jk
∗µjk −

∑
i∈I1

∑
j∈J

∑
k∈Dj

∗λi
jk
∗ωi −

∑
i∈I2

∑
j∈J

∑
k∈Dj

∗λi
jk
∗ωi,

=
∑

i∈Î

∑
j∈J

∑
k∈Dj

∗λi
jk
∗µjk −

∑
i∈Î

∑
j∈J

∑
k∈Dj

∗λi
jk
∗ωi,

=
∑

i∈Î

∑
j∈J

∑
k∈Dj

∗λi
jk(

∗µjk − ∗ωi).
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Now consider the set Ik = {i ∈ Î|∃m ≥ k, ∗yi
m,m−k > 0} at optimality. That is, Ik is

the set of all open facilities that produce units of demand size k at the optimum. We would

like to see which of these facilities could possibly have ∗xijk > 0 at optimality, i.e., fulfill

the demand arising at location j for size k. Suppose then that i′ ∈ Ik is such a facility,

i.e., ∗xi′jk > 0 at optimality. From constraint (3.11) of the dual problem we know that

∗µjk − ∗ωi ≤ ∗πik + cijk for all i ∈ Î. Since (a) ∗µjk− ∗ωi appears only in (3.11), (b) ∗λi
jk ≥ 0,

and (c) the dual objective is maximized, it therefore follows that

∗µjk − ∗ωi = min
i∈Î

(∗πik + cijk). (3.18)

Now consider complementary slackness conditions corresponding to (3.11) and (3.12):

(∗µjk − ∗ωi − ∗πik − cijk)
∗xijk = 0, for all i ∈ Î , j ∈ J, k ∈ Dj. (3.19)

(∗ηi,n − ∗ηi,m − δi + ∗πik)
∗yi

m,n = 0, for all i ∈ Î , (m,n) ∈ Ai, k = m− n. (3.20)

Since ∗xi′jk > 0 by assumption, complementary slackness condition (3.19) implies that

∗µjk − ∗ωi′ = ∗πi′k + ci′jk, so that from (3.18), i′ ∈ argmini∈Î(
∗πik + cijk). Also, from

complementary slackness condition (3.20), for all i ∈ Ik, if size m′ is cut down to size n =

(m′ − k), (so that ∗yi
m′,n > 0), it follows that ∗πik = ∗ηi,m′ − ∗ηi,m′−k + δi. Since all defined

cijk > 0 it follows from the two previous sentences that (i′, m′) ∈ argmini∈Î,(m∈Ki|m≥k)(
∗ηi,m−

∗ηi,m−k + δi + cijk).

For the case where λjk is fulfilled from more than one location, it is clear that there

is at least one facility ∗i and size ∗m for which Proposition 14 holds; we can use the same

argument as we did in proving Proposition 14. There may be other facilities though, where

Proposition 14 will not necessarily hold. However, as with the uncapacitated case this leads

us to an intuitively appealing policy that we can adopt for the dynamic environment. When

a demand arrives, we pick the facility and size according the criterion of Proposition 14. If

the facility’s capacity has been exhausted we remove it from consideration and pick the next

best option based on the same criterion, and so on. It is worth noting that in the actual
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dynamic and stochastic demand situation, even if the capacity of the best facility has not

been exhausted we might still have to move on to the next best option because the selected

size ∗m might not be in stock at the facility ∗i at the time when that demand arrives.

A second factor that needs to be kept in mind when trying to adapt the static optimum

to the dynamic problem is the fact that once again, not all of the optimal dual vectors can be

used with a price-directed policy such as the one described above, since they do not all have

appealing properties such as monotonicity or superadditivity described in Chapter 2. For

the uncapacitated problem this difficulty was addressed by defining and solving a suitable

perturbation, where each of the right-hand sides for some of the constraints are increased by

a small amount. This ensured a unique set of optimal multipliers that also have properties

that are desirable from the perspective of a price-directed policy. Since none of the proofs

for this in Chapter 2 are affected by the capacity constraints given by (3.8), we follow an

identical approach here as well. The perturbation of Program P-SP(ẑ), that we solve is

exactly the same as the one solved in the uncapacitated case, with the exception of the

additional capacity constraints.

In summary, the procedure followed for our location-distribution problem is to a) solve

Program P-MIP and obtain the optimal values ∗xijk and ∗zi, b) solve the perturbed version

of Program P-SP(∗z) in order to obtain the optimal dual vector, and c) use these dual values

and the criterion of Proposition 14 to satisfy demand as it arrives.

To solve P-MIP we use an approach based on Benders’ decomposition. There are two

reasons for doing this. First, it is a well known procedure that has been shown to work

well on such problems (e.g., [40, 108, 112]). Second, it can often obviate the need to define

and solve a perturbation when the solution obtained is non-degenerate. In such cases one

can directly use the values of the dual multipliers that are obtained from the solution to

Benders’ subproblem at the last (optimal) iteration; with general IP solvers, one does not

have direct access to dual information and after solving the P-MIP, we would have to solve

a perturbation of Program P-SP(∗z) to obtain the multipliers.

48



3.2 BENDERS’ DECOMPOSITION

Let Ω and Ψ denote the sets of extreme points and extreme rays respectively of the dual poly-

hedron described by (3.11-3.16). Benders (1962) proposed a solution methodology, whereby

the decision variables for the above problem are partitioned into “hard” and “easy” variables

(the integer z variables and the continuous ones, respectively). Since the optimal value of

Program P-SP(ẑ) is equal to the optimal value of Program D-SP(ẑ) described in Section

3.1.2 (plus the constant
∑

i∈I fiẑi), we may rewrite the original problem (P-MIP) as the

following master problem:

Program MP

min
∑

i∈I

fizi + θ (3.21)

subject to:
θ ≥

∑

j∈J

∑

(k∈D|λjk>0)

λjkµjk −
∑

i∈I

Miωizi, (µ, η, π, ω) ∈ Ω, (3.22)

∑

i∈I

Miωizi ≥
∑

j∈J

∑

(k∈D|λjk>0)

λjkµjk, (µ, η, π, ω) ∈ Ψ, (3.23)

zi ∈ {0,1}. (3.24)

Note that θ represents the optimal value of Program D-SP(ẑ) and (3.23) is required to

ensure that enough capacity is built to satisfy demand. If we consider only a subset of the

extreme points in Ω (say Ω′ ⊆ Ω), and a subset of the extreme rays in Ψ (say say Ψ′ ⊆ Ψ),

then the above program may be approximated via the following restricted master problem:

Program RMP(Ω′, Ψ′)

min
∑

i∈I

fizi + θ (3.25)

subject to:
θ ≥

∑

j∈J

∑

k∈D

λjkµjk −
∑

i∈I

Miωizi, (µ, η, π, ω) ∈ Ω′, (3.26)

∑

i∈I

Miωizi ≥
∑

j∈J

∑

k∈D

λjkµjk, (µ, η, π, ω) ∈ Ω′Ψ′, (3.27)

zi ∈ {0,1}. (3.28)
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The constraints (3.26) and (3.27) are referred to as Benders’ optimality and feasibility

cuts, respectively. Program RMP is a 0-1 integer program in z with the exception of the

variable θ. Essentially, Benders’ decomposition algorithm alternates between solving a re-

stricted master problem (Program RMP) and a linear subproblem (Program D-SP(z)) at

each iteration. Program RMP is solved for z with an extra constraint added on at each

successive iteration. Program D-SP(z) is solved using a fixed z (obtained from the current

approximation RMP) and is in turn used to generate a constraint that is then added to

Program RMP at the next iteration. The basic algorithm may be described as follows:

Step 1: Set L = 0 and U = ∞ as lower and upper bounds on the true optimum; set

r = s = t = p = 0 and pick any binary vector z = ∗z and go to Step D.

Step 2: Solve Program RMP to obtain the optimal vector z = ∗z. Update L = θ +
∑

i∈I
∗zifi.

Step 3: If L = U stop.

Step 4: Solve D-SP(∗z) to obtain either the optimal vector {∗µ, ∗η, ∗π, ∗ω} if it has an

optimum solution, or if the problem is unbounded, obtain the extreme direction

{∗µ, ∗η, ∗π, ∗ω} along which it is unbounded. If it is the former case, go to Step 5,

if it is the latter case go to Step 6.

Step 5: Set r = r + 1, t = t + 1, µt = ∗µ and ωt = ∗ω; generate an optimality cut

to add the constraint Θ ≥ ∑
j∈J

∑
k∈D λjkµ

t
jk −

∑
i∈I Miω

t
izi, to RMP. Update

U =
∑

i∈I fi
∗zi +

∑
j∈J

∑
k∈D λjkµ

t
jk −

∑
i∈I Miω

t
i
∗zi and go to Step 2.

Step 6: Set s = s + 1, p = p + 1, µp = ∗µ and ωp = ∗ω; generate a feasibility cut to add the

constraint
∑

i∈I Miω
p
i zi ≥

∑
j∈J

∑
k∈D λjkµ

p
jk to RMP. Go to Step 2.

3.3 GUARANTEEING FEASIBILITY OF P-SP(Ẑ)

At each iteration of Benders’ procedure, we either add a cut corresponding to (3.26) that

results in a tighter bound for the master problem, or add a cut corresponding to (3.27) that

restricts the feasible region of the master problem in order to bound the subproblem D-SP(ẑ)

generated by ẑ, or equivalently, ensuring that P-SP(ẑ) is feasible. With large problems there
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could be many such cuts, and this could considerably increase the time required to solve

the problem. Furthermore, since the procedure generates the cut from information at the

current iteration, it will often generate several cuts dominated by other cut generated later

before solving the problem. In light of these points, we examine the possibility of improving

the algorithm by adding feasibility constraints to the master problem directly in order to

guarantee that the objective of subproblem D-SP(ẑ) is bounded, i.e., that P-SP(ẑ) is feasible.

We now develop two versions of these constraints that guarantee the feasibility of the

primal subproblem and illustrate them with examples. We first present the feasibility con-

straints based on unique demand sizes in the following section.

3.3.1 Demand Size Version

Without loss of generality, suppose there are e elements in the demand set D, D = (k1, k2, ..., ke),

such that:

k1 < k2 < k3 < ... < ke.

Define Ikg ⊂ I, g = 1, 2, ..., e as the set of the facilities such that, each facility in this

set has at least one raw size equal to or longer than kg. Thus, facilities in the set Ikg have

feasible raw materials for the demand size kg. Note that Ik1 = I.

Theorem 2. Subproblem P-SP(z) will be feasible if, and only if, vector z satisfies the fol-

lowing constraints:

∑
i∈Ikg

Mizi ≥
∑
j∈J

e∑

l=g

λjkl
,∀g = 1, 2, ..., e. (3.29)

Proof. For necessity, note that if P-SP(z) is feasible for the vector z, then all demand is satis-

fied and thus, facilities must have enough capacity to satisfy each demanded size. Therefore,

constraints (3.29) must be satisfied by the vector z.

For sufficiency, consider a vector z that satisfies all constraints (3.29). For a particular

demand size k it is clear that demand can be satisfied if the following two conditions are

met:
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i) One or more open facilities have raw materials that are long enough to satisfy this

demand size.

ii) The open facilities have sufficient processing capacity to satisfy the demand for this size.

Now suppose the constraints specified by (3.29) hold.

For a given h, the left-hand side of each constraint represents the total open capacities

at all facilities that process raw sizes that are longer than or equal to rh. On the other hand,

the right-hand side is the total demand for all sizes k that are longer than or equal to rh.

For all such k it is obvious that i) holds and (3.29) guarantees that ii) will be true as well.

Thus, the demand for each size k can be satisfied. Since this holds for all h, it is clear that

all demand can be satisfied and hence P-SP(z) is feasible.

To illustrate how these constraints work and explore interesting characteristics among

them, we give an example. In this example, there are two facility locations and three demand

locations. At each location, there are some raw and demand sizes. The detailed information

is listed in Table 7.

Table 7: Parameters of Raw and Demand Sizes

Location 1 Location 2 Location 3

Raw Size 7 - - 7 10 12 - - - -

Demand Size 2 4 8 2 8 11 2 4 8 11

Amount 10 20 10 20 30 10 20 10 30 40

From the above table, we can see that there four unique demand sizes: k1 = 2, k2 =

4, k3 = 8, k4 = 11. Thus, e = 4. Correspondingly, we obtain four sets of facilities such that

facilities in each set have raw size feasible for each demand size. We list these four sets as

follows

Ik1 = I2 = (1, 2),

Ik2 = I4 = (1, 2),
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Ik3 = I8 = (2),

Ik4 = I11 = (2),

For each demand size, we have to develop a constraint corresponding to constraint (3.29)

to ensure all demand for this size will be satisfied. For total four demand sizes 2, 4, 8, 11,

we need the following four constraints:

∑
i∈Ik1

Mizi = M1z1 + M2z2 ≥
∑
j∈J

4∑

l=1

λjkl
= 200. (3.30)

∑
i∈Ik2

Mizi = M1z1 + M2z2 ≥
∑
j∈J

4∑

l=2

λjkl
= 150. (3.31)

∑
i∈Ik3

Mizi = M2z2 ≥
∑
j∈J

4∑

l=3

λjkl
= 120. (3.32)

∑
i∈Ik4

Mizi = M2z2 ≥
∑
j∈J

4∑

l=4

λjkl
= 50. (3.33)

We can rewrite the above four constraints as follows

M1z1 + M2z2 ≥ 200. (3.34)

M1z1 + M2z2 ≥ 150. (3.35)

M2z2 ≥ 120. (3.36)

M2z2 ≥ 50. (3.37)

It is not hard to see that although constraints (3.29) can guarantee feasibility, some

constraints may be dominated by others. In the example we just presented, among all 4

constraints, two of them are dominated by other two. Generally, if there exist two demand
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sizes k1, k2(k1 < k2) such that rg < k1, k2 ≤ rg+1, then constraint (3.29) corresponding to

demand size k2 is always a dominated cut. The reason behind this is that if constraint

(3.29) corresponding to demand size k1 is satisfied, then constraint (3.29) corresponding to

demand size k2 must be satisfied. To avoid adding dominated feasibility constraints into

the master problem and improve the computational efficiency, we address more compact

feasibility constraints based on raw sizes in the following section.

3.3.2 Raw Size Version

Suppose there are t elements in the raw set S, S = (r1, r2, ..., rt), where rt represents the size

of the tth raw. Define S ′ = (r0, r1, r2, ..., rt) where r0 = 0. Without loss of generality, we

assume the elements in S ′ are ordered:

r0 < r1 < r2 < ... < rt.

Define Irh
⊂ I, h = 0, ..., t − 1 as the set of all facilities that have at least one raw

size longer than rh. Observe that Ir0 = I and that all demands with size k such that

rh < k ≤ rh+1 must be satisfied by raw sizes rh+1, ..., rt. The following proposition ensures

the feasibility of subproblem P-SP(z).

Proposition 15. The primal subproblem (Program P-SP(z)) with the vector z obtained from

the master problem (Program MP) is feasible if, and only if, z satisfies all of the following

constraints:

∑
i∈Irh

Mizi ≥
∑
j∈J

∑

(k∈Dj ,k>rh)

λjk, ∀h ∈ (0, 1, ..., t− 1). (3.38)

Before we prove this proposition, we first present an example to illustrate it. In this

example, we consider an example with two facilities and two demand locations. The raw

sizes available at each facility along with the unit costs are summarized in Table 8. This table

also provides the unit salvage values and unit cutting cost at each facility. The demanded

sizes and the corresponding demand rates at each demand point, along with unit shipping

costs are summarized in Table 9.
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Table 8: Facility Characteristics

Facility 1 Facility 2

Raw Unit Cutting Raw Unit Cutting

Size Cost Scrap Value Cost Size Cost Scrap Value Cost

13 20

7 12
0.05 0.05 7 13 0.1 0.06

In this example, there are 2 original raw sizes. After adding 0 to the raw set, we obtain

S ′ = (0, 7, 13). Namely, r0 = 0, r1 = 7, r2 = 13. The corresponding facility set feasible for

rh, h = 0, 1 is as follows

Ir1 = I7 = (1),

Ir0 = I0 = (1, 2).

Demand for size k = 9 can only be met by raw size 13 from facility in the set I7, while

other demand sizes, i.e. 3, 5, 6, 7 can be met by raw sizes 7 and 13 from facilities in the set

I0.

Then, since there are 2 original unique raw sizes, we have two feasibility constraints. We

generate them as follows

∑
i∈Ir1

Mizi = M1z1 ≥
∑
j∈J

∑

(k∈Dj ,k>r1)

λjk = 25, (3.39)

∑
i∈Ir0

Mizi = M1z1 + M2z2 ≥
∑
j∈J

∑

(k∈Dj ,k>r0)

λjk = 120. (3.40)

Or, we can rewrite them as

M1z1 ≥ 25, (3.41)
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Table 9: Parameters of Demands

Location 1 Location 2

Size 5 6 3 5 7 9

Demand 20 20 10 30 15 25

Facility 1 2 4 2 5 6 7

Facility 2 3 3 1.5 3 4 5

M1z1 + M2z2 ≥ 120. (3.42)

Now, let us check whether these two constraints can guarantee the feasibility of the

problem. First, let us consider constraint (3.41). Obviously, if it is satisfied, facility 1 must

be opened and the demand for size 9 can be satisfied by raw size 13.

Second, consider constraint (3.42). This constraint ensures that Facility 1 and 2 together

can produce are at least 120 units. In other words, in addition to the capacity required to

satisfy the demand for size 9, the open facilities can still produce at least 95 units. Since

the total demand for all sizes 3, 5, 6, 7 is 95, no matter whether we open only Facility 1 or

both facilities, the open facilities always have raw materials long enough to satisfy demand

for sizes 3, 5, 6, 7. Thus, all demand for sizes 3, 5, 6, 7 can always be satisfied.

Now, we are ready to prove Proposition 15 as follows:

Proof of Proposition 15: To show necessity, note that if P-SP(z) is feasible for the

vector z obtained from the master problem, then all demand is satisfied and therefore there

must be enough capacity to process the raw sizes required to satisfy each demanded size.

Therefore constraints (3.38) must be satisfied by the vector z.

For sufficiency, consider a vector z obtained from the master problem that satisfies all

constraints specified by (3.38). Then P-SP(z) will be feasible if all demand can be met for

this vector. Now suppose the constraints specified by (3.38) hold.
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For a given h, the left-hand side of each constraint represents the total open capacities

at all facilities that process raw sizes that are longer than or equal to rh+1. On the other

hand, the right-hand side is the total demand for all sizes k that are longer than rh. For all

such k it is obvious that (3.38) guarantees that open facilities have enough feasible raw sizes

to satisfy the demand. Thus, the demand for each size k ∈ (rt−1, rt] can be satisfied. Since

this holds for all h it is clear that all demand can be satisfied and hence P-SP(z) is feasible,

and thus, replacing constraints (3.23) by constraints (3.38) in the master problem (Program

MP) guarantees that the primal subproblem with z will be feasible. 2

Next, we show that replacing constraints (3.23) in the master problem with the con-

straints specified by (3.38) maintains its equivalence to the original problem, i.e., it does not

eliminate any feasible points in the original problem (Program P-MIP). To show this, we

first prove the following lemma.

Lemma 2. If z is feasible for Program P-MIP, then it satisfies constraints (3.38).

Proof. From constraint (3.3), it follows that

∑
j∈J

∑

(k∈Dj ,k>rh)

λjk =
∑
j∈J

∑

(k∈Dj ,k>rh)

∑
i∈I

xijk =
∑
i∈I

∑
j∈J

∑

(k∈Dj ,k>rh)

xijk, ∀h = 0, 1, ..., t− 1.

(3.43)

Recalling the definition of Irh
, it follows that

∑
i∈I

∑
j∈J

∑

(k∈Dj ,k>rh)

xijk =
∑
i∈Irh

∑
j∈J

∑

(k∈Dj ,k>rh)

xijk,∀h = 0, 1, ..., t− 1. (3.44)

Since
∑

(k∈Dj ,k>rh) xijk ≤
∑

k∈Dj
xijk, from equations (3.43) and (3.44), it follows that

∑
j∈J

∑

(k∈Dj ,k>rh)

λjk ≤
∑
i∈Irh

∑
j∈J

∑

k∈Dj

xijk, ∀h = 0, 1, ..., t− 1. (3.45)

By constraint (3.5) and (3.45), we note that

∑
j∈J

∑

(k∈Dj ,k>rh)

λjk ≤
∑
i∈Irh

Mizi,∀h = 0, 1, ..., t− 1, (3.46)

from which the result follows.
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Corollary 4. Constraints (3.38) are valid inequalities for P-MIP.

Now define Program NMP by replacing Benders’ feasibility cuts in the master problem

with the feasibility constraints specified by (3.38):

Program NMP

min
∑

i∈I

fizi + Θ (3.47)

subject to:

Θ ≥
∑

j∈J

∑

(k∈D|λjk>0)

λjkµjk −
∑

i∈I

Miωizi, (µ, η, π, ω) ∈ Ω, (3.48)

∑

i∈Irh

Mizi ≥
∑

j∈J

∑

(k∈Dj ,k>rh)

λjk, ∀h = 0, ..., t− 1, (3.49)

zi ∈ {0,1}. (3.50)

The following proposition shows that Program NMP and Program P-MIP are equivalent.

Proposition 16. Vector z is feasible for Program P-MIP if, and only if, it is feasible for

the Program NMP.

Proof. The conclusion follows directly from Proposition 3.38 and Lemma 2.

3.4 RELATIONSHIP AMONG VARIOUS POLYHEDRA

In the previous section, we showed that replacing the set of feasibility cuts in the master

problem with our new feasibility constraints (3.38) guarantees the feasibility of the subprob-

lem but does not eliminate any of the integer points feasible in the original problem. In

this section we study the efficiency of these constraints by comparing them with Benders’

feasibility cuts. We begin by examining how (3.38) relates to the polyhedra defined by the

LP relaxation and the convex hull of the original problem.
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3.4.1 Eliminating Redundancy

Note that if capacities are large enough that some of the constraints defined by (3.38) can

never be satisfied as equalities, then none of these can represent a proper face. In general,

it is difficult to come up with an exact characterization of a face or a facet.

Next, we examine these constraints to see whether we can eliminate any redundancy.

There are three kinds of dominated constraints in (3.38). A description of these redundancies

and how they may be eliminated is as follows.

1) There exist constraints that have the same nonzero coefficients for z variables on the

left-hand side, but have different right-hand sides. This happens when there are raw sizes

rh and rh+1 such that the subset of facilities with raw materials that are longer than raw

size rh is identical to the subset of facilities with raw materials that are longer than raw size

rh+1. In this case, the feasibility constraint (3.38) corresponding to raw size rh+1 is always

dominated since it has a smaller right-hand side. Therefore, constraint (3.38) for raw size

rh+1 may be eliminated.

2) There exist constraints that have the same right-hand side, but have different nonzero

coefficients for the z variables in the left-hand-side. This could happen when there exists

some h, (h = 0, ..., t−2) such that there is no demand for size k ∈ (rh, rh+1]. In this case, we

should eliminate feasibility constraint (3.38) corresponding to raw size rh since it is always

dominated by the constraint for raw size rh+1.

3) There exist constraints with zero right-hand sides. This happens when one or more of

the raw sizes are longer than the largest demand size. Suppose the largest demand size k is

between raw size rh′−1 and raw size rh′ , we can effectively rewrite the feasibility constraints

(3.38) as follows:

∑
i∈Irh

Mizi ≥
∑
j∈J

∑

(k∈Dj ,k>rh)

λjk, ∀h = 0, 1, ..., h′ − 1. (3.51)
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3.4.2 Definitions

We will now show that our feasibility constraints yield the same set of integer points as

Benders’ feasibility cuts. This implies that we can obtain the same feasible region as Ben-

ders’ original procedure but potentially, with far fewer constraints - we only need as many

constraints as the number of different raw sizes, while the number of Benders’ feasibility cuts

required could be much larger. The computational implications of this are also studied in

Section 3.5.

Before conducting the polyhedral study, we introduce some notation.

Let N be the total number of variables in Program P-MIP and define Q, the set of

feasible points of P-MIP, as follows:

Q =
{
(z, x, y, r, s) ∈ IRN (3.2), (3.3), (3.4), (3.5), x, y, r, s ≥ 0, and zi ∈ {0, 1}, ∀i ∈ I

}
.

(3.52)

Define the set R of integer 0-1 points that satisfy (3.51) as:

R =



z ∈ {0, 1}|I|,


∑

i∈Irh

Mizi ≥
∑
j∈J

∑

(k∈Dj ,k>rh)

λjk, ∀h = 0, ..., t− 1






 . (3.53)

and Γ, the set of integer 0-1 points corresponding to Benders’ feasibility cuts (3.23) as:

Γ =



z ∈ {0, 1}|I|,


∑

i∈I

Miωizi ≥
∑
j∈J

∑

k∈D|λjk>0

λjkµjk,∀(µ, η, π, ω) ∈ Ψ






 . (3.54)

In the next section, we will discuss the relationship between Q,R and Γ.
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3.4.3 Relationship among Polyhedra

In this section, we want to show that the convex hull of feasible binary vectors defined by Ben-

ders’ feasibility cuts is identical to the one defined by non-dominated feasibility constraints

(3.51). The first step is to project the binary variables z in vectors belonging to Q onto a

subspace Z where Z = {(z, 0)|z ∈ IR|I|, (z, 0) ∈ IRN}. Let Z⊥ = {(z, x, y, r, s) ∈ IRN |z =

0, z ∈ IR|I|}. Let projZ(Q) be the projection of Q onto Z, i.e. for any q = (z, x, y, r, s) ∈ Q,

∃(z′, 0) ∈ Z such that q − (z′, 0) ∈ Z⊥. Then we can obtain the following propositions:

Proposition 17. projZ(Q) is nonempty if, and only if, P-MIP is feasible.

Proof. 1) “⇒” Suppose projZ(Q) is nonempty and there exists (z, 0) ∈ projZ(Q), then by

the definition of projection there exist x, y, r, s such that q = (z, x, y, r, s) ∈ Q. By the

definition of Q, it follows that q is feasible in P-MIP.

2) “⇐” Now suppose P-MIP is feasible. Then there exists q = (z, x, y, r, s) ∈ Q. Project

q onto the subspace Z. Then there exists (z′, 0) ∈ projZ(Q) such that q − (z′, 0) ∈ Z⊥. By

the definition of Z⊥, it follows that z − z′ = 0, i.e. z = z′. Thus, (z, 0) ∈ projZ(Q).

Proposition 18. R = projZ(Q).

Proof. Corollary I.4.12 from (Nemhauser and Wolsey, 1988) states that R = projZ(Q) if,

and only if, (A) each inequality of the polyhedron R is a valid inequality for Q; (B) ∀z ∈ R,

there exists a vector (x, y, r, s) such that (z, x, y, r, s) ∈ Q. Examining both conditions it is

clear that:

1) (A) follows directly from Corollary 4.

2) Proposition 15 shows that ∀z ∈ R, Program P-SP(z) is feasible. Since P-MIP has

the same additional constraints as P-SP(z), it follows that the former is also feasible. Then

from Proposition 17 it follows that projZ(Q) is nonempty. Suppose (z, 0) ∈ projZ(Q). Then

there exists a vector (x, y, r, s) such that q = (z, x, y, r, s) ∈ Q, thus (B) also holds.

The conclusion follows.

It is well known (Martin, 1999) that Benders’ decomposition can be viewed as a projection

from the space (z, x, y, r, s) onto Z space. That is, Γ = projZ(Q), from which the following

corollary follows.
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Corollary 5. Γ = R.

From Corollary 5, we can see that the convex hull determined by Benders’ feasibility

cuts is the same as the convex hull determined by our feasibility constraints. We present

this conclusion as follows:

Corollary 6. Conv(Γ) = Conv(R).

3.5 COMPUTATIONAL COMPARISONS

In Section 3.4, we showed that our feasibility constraints yield the same set of binary integer

points as Benders’ feasibility cuts. In practice, our feasibility constraints given by (3.51) can

be expected to be much more effective because of the following reasons:

1) The upper bound on the total number of Benders’ feasibility cuts to be generated

could be an extremely large number, while the upper bound on the number of our feasibility

constraints is no more than the number of unique raw sizes.

2) Benders’ feasibility cuts could include dominated cuts, while there are no such con-

straints for our case after we have removed redundancies.

3) At each iteration, Benders’ decomposition can generate one and only one feasibility

cut, while our constraints are all known a priori.

Therefore if our feasibility constraints are all added to the master problem before we

begin to solve it, we can expect that at each iteration the improvement in the objective

function value will be better than with Benders’. In other words, compared with Benders’

feasibility cuts, our feasibility constraints should yield a better lower bound for the master

problem (Program MP) at each iteration and therefore reduce the time to reach optimality.

In this section, we compare their effectiveness of our approach through a computational

study. We begin by formally defining two algorithms based on our approach that are com-

pared with Benders’ decomposition.
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3.5.1 Algorithms

The simplest algorithm to avoid Benders’ feasibility cuts is to obtain all non-dominated

feasibility constraints given by (3.51) and add these to the master problem (thus yielding

Program NMP) a priori. We specify this algorithm as follows:

Algorithm 3 Adding all Non-Dominated Feasibility Constraints a priori

1: Generate all non-dominated feasibility constraints in the set given by (3.51) and add

them onto the initial restricted master problem (obtained from Program NMP).

2: Solve the restricted master problem and obtain the optimal ∗z.

3: Solve P-SP(∗z) and check the stopping criteria; if not satisfied add the corresponding

optimality cut onto the master problem and go to Step 2.

One disadvantage of Algorithm 3 is that the size of the restricted master problem solved

at each iteration is relatively large since it has all constraints added initially. A second ver-

sion of the algorithm (Algorithm 4) adds at each iteration, only those constraints in the set

of non-dominated constraints from (3.51) that are needed at that iteration.

Algorithm 4 Adding Feasibility Constraints as Needed

1: Generate all non-dominated feasibility constraints in the set given by (3.51); suppose

there are b of these in all. Define B = {1, 2, ..., b}, ∗z = {1, ..., 1}|I| and go to Step 4.

2: Solve the restricted master problem and obtain the optimal vector ∗z.

3: For each constraint k ∈ B, check whether it is violated by ∗z; if so set B = B\k and add

constraint k to the master problem. If any constraint is added to the master problem

(Program NMP), go to Step 2; otherwise go to Step 4.

4: Solve P-SP(∗z) and check the stopping criteria; if not satisfied add the corresponding

optimality cut into the master problem (Program NMP) and go to Step 2.

3.5.2 Results

Before exploring the effectiveness of our approach, we report on a study to compare the

basic Benders’ approach for solving Program P-MIP with a generic MIP solver (we used
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Table 10: Performance of Direct and Benders’ Approaches

Time (Seconds)
Instance Facilities Customers

Direct Benders

1 2 2 0.04 0.08

2 2 5 0.10 0.23

3 5 10 2.323 2.323

4 6 12 3.6960 2.583

5 8 30 108.89 41.30

6 10 21 112.19 51.41

7 12 24 177.53 88.93

8 14 17 220.87 118.95

9 17 30 595.96 367.80

10 24 43 2423.41 1663.32

11 27 48 6552.11 4856.34

12 31 53 * 8610.77

13 35 49 * 9474.80

14 38 72 * 10302.32

15 41 78 * *

Note:“*” indicates that it takes more than (10800 Seconds).

the default solver in CPLEX 7.0. The computers we use in this chapter have Pentium III

processor (930MHz) and 256 MB of RAM).

Table 10 indicates that

i) For very small problems (fewer than 5 facilities), it takes longer using Benders’ decom-

position.

ii) For larger problems the rate of increase in computing time is much higher for the direct

approach than Benders’ approach. The gap increases as problems become larger.
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Table 11: Characteristics of Tested Instances

No. of No. of No. of Raw Sizes No. of Demanded Sizes
Instance Set Facilities Customers

per Facility per Customer

Small 2 to 4 2 to 5 1 to 5 2 to 10

Medium 5 to 15 6 to 30 2 to 7 5 to 15

Large 16 to 45 31 to 90 3 to 10 8 to 30

iii) The direct method can solve a problem with 27 facilities within a 3-hour time limit;

Benders’ decomposition can solve a problem that has almost 40 facilities.

In summary, it appears that Bender’s Decomposition is an effective alternative to a

generic IP solver for nontrivial problem sizes.

The main comparison in this section is between the performance of a traditional Benders’

decomposition approach and the two modified versions developed for our problem, namely

Algorithms 3 and 4. Our study examined three sets of problems of various sizes, ranging from

relatively small to relatively large. Actual instances within each problem set were randomly

generated with the parameter values in the ranges shown in Table 11. For each set, 20

problems were randomly generated, and each instance generated was solved independently

using each of the three algorithms.

The following performance characteristics are studied for each algorithm:

• TC — The total number of feasibility cuts generated and added to the master problem

before reaching optimality.

• DC — The total number of dominated feasibility cuts added to the master problem

before reaching optimality.

• AC — The average number of feasibility cuts added to the master problem at each

iteration.

• ITE — The total number of iterations to add all feasibility cuts required by the algorithm.
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Table 12: Comparison of Three Algorithms

Instance Benders Algorithm 3 Algorithm 4

Set
Item

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

TC 1 6 2.15 1 5 2.05 1 4 1.45

DC 0 1 0.15 0 0 0 0 0 0

Small AC 1 1 1 N/A N/A N/A 1 2 1.20

ITE 1 6 2.15 N/A N/A N/A 1 3 1.15

TIM 0.05 6.50 1.62 0.03 4.93 1.16 0.03 4.72 1.08

TC 1 19 7.15 4 12 7.4 1 5 2.75

DC 0 10 2.95 0 0 0 0 0 0

Medium AC 1 1 1 N/A N/A N/A 1 4 2.1

ITE 1 19 7.15 N/A N/A N/A 1 2 1.35

TIM 10.24 651.07 150.17 8.15 602.20 128.74 8.00 572.70 120.88

TC 1 27 12.65 10 18 13.32 1 5 3.85

DC 0 20 6.55 0 0 0 0 0 0

Large AC 1 1 1 N/A N/A N/A 1 4 2.41

ITE 1 27 12.65 N/A N/A N/A 1 3 1.60

TIM 362 11040 3752 331 4838 3013 259 4454 2806

Note:

“N/A”: Since Algorithm 3 adds all feasibility constraints to the master problem before it

starts to solve the subproblems AC and ITE are not applicable.

• TIM — The total time (in seconds) to solve the problem.

The complete computational results can be found Chapter B in Appendix. They are

summarized in Table 12. These results indicate the following:
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i) In general, when the problem becomes larger more feasibility cuts/constraints are re-

quired to find the optimum. However, using Algorithm 4 results in significantly fewer

cuts being added when compared to Benders’ original approach and Algorithm 3.

ii) Even though Algorithm 3 adds all constraints initially, the approach used in Algorithm 4

of adding feasibility constraints as required seems to be more efficient. In every instance,

Algorithm 4 outperforms Algorithm 3; while the total number of iterations required to

reach optimality with Algorithm 4 might be a little larger the time spent at each iteration

is lower because of the smaller master problems solved each time. The total savings in

computational time average about 7%.

iii) On average, Algorithm 4 adds more than one feasibility constraint to the master problem

(Program NMP) at each iteration; Benders’ approach always adds exactly one. This

indicates that our approach tightens the feasible region more quickly.

Figure 7: Redundancy of Benders’ Feasibility Cuts

iv) Algorithms 3 and 4 both result in no dominated feasibility constraints. However, with

Benders’ approach feasibility cuts generated at earlier iterations are often rendered dom-

inated by the cuts generated later. This is particularly true for the larger problem

instances. Figure 7 displays results for one large problem where 20 of 27 feasibility con-
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straints (74%) generated by Benders’ procedure are dominated at the optimum, while

Algorithm 4 only needs 4 feasibility constraints. This indicates that for this problem

our feasibility constraints are more efficient than the traditional Benders’ cuts.

v) Compared with Benders’ decomposition it takes both Algorithms 3 and 4 less time to

solve the problem. Table 12 shows that compared with Algorithm 3, on average Benders’

decomposition takes between about 17% and 40% longer to solve the problems in our

test sets; compared with Algorithm 4 the corresponding values range from about 24%

to 50%.

vi) The results in Table 12 support the conclusion that our approach is also more efficient at

each iteration. The total number of iterations to add all required feasibility constraints

for Algorithm 4 is significantly lower than Benders’ approach: for the large problems,

it takes Benders’ decomposition over 12 iterations on average, while the corresponding

number for Algorithm 4 is under two.

Table 13: Comparison between Benders and Algorithm 4

Time (Seconds)
Instance Facilities Customers

Benders Algorithm 4

1 31 44 7812 5085

2 35 46 8911 5832

3 38 60 9823 6776

4 40 64 * 7928

5 43 69 * 8690

6 46 63 * 9437

7 51 61 * 10682

8 56 76 * *

Note: “*” indicates that it takes more than 10800 Seconds.

Finally, we compared Benders’ decomposition with Algorithm 4 to find the largest prob-

lem that each one could solve within a 3-hour time limit. The results in Table 13 indicate
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that within this time limit Algorithm 4 could solve a problem with as many as 51 facilities,

while Benders’ approach could not solve problems with more than 40 facilities.
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4.0 STOCHASTIC MODEL

4.1 BACKGROUND

In the previous section, we considered a mixed-integer program in which we assumed that

parameters such as the shipping costs and demand rates were known a priori. In practice, this

may not be true. Whereas deterministic optimization problems are formulated with known

parameters, real world problems almost invariably include some unknown parameters. Some

parameters might be random variables with values that depend on random events. In other

words, the decision on which facilities to open might have to be taken without full information

on some random events. Later, full information is received and corrective production and

distribution actions are taken. Therefore, we may need to consider an optimization problem

with uncertain information.

To model this stochastic and dynamic environment, we will utilize stochastic program-

ming [11, 39, 58]. Stochastic programs are mathematical programs where some of the data

incorporated into the objective or constraints are uncertain. Uncertainty is usually charac-

terized by a probability distribution on the parameters. We assume the distribution of this

uncertainty is discrete and each element in the distribution is defined as a scenario. The

outcomes are generally described in terms of scenarios. For example, they can be the set of

possible demands over the next few months.

In a classical stochastic program, we make one decision now and minimize the expected

costs of the consequences of that decision. The most widely applied and studied stochastic

programming models are two-stage programs. In these programs, the decision maker takes

some action in the first stage, after which a random event occurs affecting the outcome of the

first-stage decision. A recourse decision can then be made in the second stage that depends
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on the first-stage decision as well as the random outcome. The optimal policy from such

a model is a single first-stage decision and a collection of recourse decisions defining which

second-stage action should be taken in response to each random outcome.

When the random variable is discretely distributed, the problem can be written as a large

deterministic problem. The expectations can be written as finite sums, and each constraint

can be duplicated for each realization of the random data. While in theory the resulting

extensive form can be solved using any general purpose optimization package, in practice, it

is too large to do so. For computational methods in stochastic programming, Wollmer [114]

introduces a two-stage stochastic program with a binary first stage. Subsequently, several

heuristics were developed to solve the problem [61, 67, 76, 116], but several computational

issues still need to be resolved. Holmberg and Tuy [54] consider a production-distribution

problem where the demand is stochastic and there is a convex penalty for unmet demand,

and develop a branch and bound procedure to solve the reduced problem. Louveaux and

Peeters [73] develop a dual-based heuristic to solve the uncapacitated stochastic facility

location problem. Wang et al. [111] consider a facility location problem with stochastic

demand to decide the locations of immobile servers and develop three heuristics based on

the greedy dropping procedure, tabu search approach, and branch-and-bound method to

solve the problem. Louveaux and Hamme [72] develop a branch-and-bound method to solve

a capacitated facility location problem optimally, but they do not consider the production

problem and their method could only solve problems with up to 10 potential facility locations

and 40 customers. A survey of heuristics and algorithms for stochastic location problems

can be found in Louveaux [71].

These extensive form models often have a block-angular structure [13]. Also, several

models are MIP problems, i.e., problems with binary variables, which makes the problem

hard to solve. One of the most popular methods for obtaining optimal solutions to stochas-

tic programs is the L-shaped method [107], which follows an approach similar to Benders’

decomposition [74] in order to separate the binary variables and to decompose the problem

by exploiting the block angular structure.

Suppose ξ describes a possible realization, or scenario, and that ξ can take on a finite

number of different values, each with some known probability. Let Ξ be this finite support
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for the random variable ξ. Assume f1, f2 and z1, z2 are vectors of cost coefficients and

variables, respectively, where the values of f2 and z2 depend on the particular scenario that

is realized. We can write the standard extensive form for stochastic program with binary

variables as follows:

Extensive Form

min f1
T z1 + Eξ

[
(f2(ξ))T z2(ξ)

]
(4.1)

subject to:

Az1 = b, (4.2)

T (ξ)z1 + Wz2(ξ) = h(ξ), ξ ∈ Ξ, (4.3)

z1 ∈ IBn, z2(ξ) ≥ 0, ξ ∈ Ξ. (4.4)

Note that A and W are fixed matrices and b is a fixed vector, while T (ξ) and h(ξ)

depend on the scenario ξ. To exploit block-angular structure in the above extensive form,

the L-shaped method decomposes the primal problem into a master problem and many

subproblems. Like Benders’ decomposition, the L-shaped method first solves the master

problem to obtain a solution for the vector z1, and then passes this to each subproblem.

If it is infeasible for some subproblem, a feasibility cut is added onto the master problem;

otherwise optimality cuts are added. Depending on how many optimality cuts are added onto

the master problem at each iteration, the L-shaped method has two versions: the single-cut

version and the multi-cut version [11]. We briefly present these two methods in the following

sections.

4.1.1 The Single-Cut L-shaped Method

The motivation behind the single-cut L-shaped method is that large stochastic problems

usually have hundreds or even thousands of scenarios. Adding an optimality cut based on

the dual values for every scenario could lead to many constraints after each iteration, which

causes the master problem for the single-cut L-shaped method to rapidly become very large.

This weakens the efficiency of the L-shaped method very quickly since the master problem for

the single-cut L-shaped method is a mixed-integer program and is, in general, hard to solve.
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Considering this difficulty, at each iteration, the single-cut version solves all second-stage

optimality subproblems and combines all their dual information together to only generate

one optimality cut and add it to the master problem. Therefore, for the single-cut version,

the size of the master problem increases by no more than one optimality cut at each iteration,

which make it less sensitive to the increasing number of scenarios.

Let θ represent the expected recourse function Q(z). The details of the L-shaped algo-

rithm [39, 93] are as follows:

Step 0. Set w1 = w2 = ν = 0.

Step 1. Set ν = ν +1, solve the following master problem and let (zν
1 , θν) be its optimal

solution.

Master Problem for the Single-Cut L-shaped Method

min f1
T z1 + θ (4.5)

subject to:
Wl1z1 ≥ dl1 , l1 = 1, ..., w1, (4.6)

El2z1 + θ ≥ el2 , l2 = 1, ..., w2, (4.7)

θ ∈ <, z1 ∈ IBn. (4.8)

Let (zν
1 , θν) be its optimal solution. Constraints (4.6) are called feasibility cuts, which

are generated from the feasibility subproblem described in Step 2. Constraints (4.7) are

optimality cuts, which are generated from the optimality subproblem described in Step 3.

Step 2. Obtain the feasibility cut. For every ξ = 1, 2, ..., |Ξ|, we solve the following

feasibility subprogram

Feasibility Subproblem

min ω′ = eT υ+ + eT υ− (4.9)

subject to:

Wz2 + Iυ+ − Iυ− = h(ξ)− T (ξ)zν
1 , (4.10)

z2 ≥ 0, υ+ ≥ 0, υ− ≥ 0. (4.11)

where eT = (1, 1, ..., 1).
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If the optimal value ω′ for that scenario is positive, define %ν as dual variable associated

with (4.10). Set w1 = w1 + 1, generate the feasibility cut (4.6) using Ww1 = (%ν)T T (ξ) and

dw1 = (%ν)T h(ξ), and add it to the master problem. If no feasibility cuts are added at this

step, i.e., ω′ ≤ 0 for every scenario ξ, then go to Step 3, otherwise go to Step 1.

Step 3. Solve the following optimality subproblem for ξ = 1, ..., |Ξ|.
Optimality Subproblem

min ω = (f2(ξ))T z2 (4.12)

subject to:

Wz2 = h(ξ)− T (ξ)zν
1 , (4.13)

z2 ≥ 0. (4.14)

Suppose πν
ξ represents the associated optimal dual values for the optimality subproblem

under scenario ξ. Define Ew2 =
∑|Ξ|

ξ=1 p(ξ)(πν
ξ )T T (ξ) and ew2 =

∑|Ξ|
ξ=1 p(ξ)(πν

ξ )T h(ξ), where

p(ξ) is the probability of scenario ξ.

Let ων = ew2 − Ew2z
ν
1 . If θν ≥ ων , stop; (zν

1 , θν) is an optimal solution. Otherwise set

w2 = w2 + 1 and add the constraint (4.7) to the master problem defined in Step 1. Return

to Step 1.

4.1.2 The Multi-Cut L-shaped Method

Interestingly, the shortcomings of the single-cut L-shaped method arise from combining the

dual information from optimal multipliers for all scenarios to generate only one cut, because

this weakens the strength of the cut. The reason is that this aggregation ignores any special

information for a specific scenario. Thus, its convergence might be slow and it could take

many iterations to solve the problem. In 1988 Birge and Louveaux [12] presented a new

multi-cut L-shaped method and showed that the total number of iterations for the multi-cut

version is less than or equal to the total number for the single-cut version. In this new

method, instead of generating one optimality cut using all dual information for all scenarios,

it emphasizes the dual values for each scenario by generating a cut based on the optimal

multipliers of each scenario.
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In this section, we discuss this new method in more detail. The feasibility cuts in the

multi-cut L-shaped method are the same as the ones in the single-cut version. The main

difference is at Step 3. In the multi-cut version, we may add an optimality cut for each

scenario and thus as many as |Ξ| optimality cuts to the master problem per iteration. Let

θξ represent the expected recourse function under scenario ξ, Q(z1, ξ). We can rewrite the

new master problem with multi-cut as follows:

Master Problem for the Multi-Cut L-Shaped Method

min f1
T z1 +

|Ξ|∑

ξ=1

θξ (4.15)

subject to:

Wl1z1 ≥ dl1 , l1 = 1, ..., w1, (4.16)

El2(ξ)z1 + θξ ≥ el2(ξ), l2(ξ) = 1, ..., w2(ξ), ξ = 1, ..., |Ξ|, (4.17)

z1 ∈ IB, θξ ∈ <, ∀ξ = 1, ..., |Ξ|. (4.18)

The procedure of the multi-cut L-shaped method is as follows:

Step 0. Set w1 = ν = 0 and w2(ξ) = 0, ∀ξ = 1, ..., |Ξ|.
Step 1. Set ν = ν + 1, solve the master problem for the multi-cut version and let

(zν
1 , θν

1 , ..., θ
ν
|Ξ|) be its optimal solution.

Step 2. As before in the single-cut L-shaped method.

Step 3. For ξ = 1, ..., |Ξ|, solve the linear optimality subproblem described in Step 3

for the single-cut L-shaped method. Suppose πν
ξ represents the optimal dual variables for

scenario ξ. If

θν
ξ < p(ξ)(πν

ξ )T (h(ξ)− T (ξ)zν
1 ), (4.19)

define: El2(ξ)+1 = p(ξ)(πν
ξ )T T (ξ) and el2(ξ)+1 = p(ξ)(πν

ξ )T h(ξ). Set l2(ξ) = l2(ξ) + 1 and add

an optimality cut corresponding to (4.17). If (4.19) does not hold for any ξ = 1, ...|Ξ|, stop;

zν
1 is an optimal solution. If any optimality cuts have been added to the master problem,

return to Step 1.
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4.1.3 Overview of Our Approach

In the next section of this chapter, we first develop a two-stage stochastic model to describe

our problem. Then, to decide which facilities to open, we use the L-shaped method [11, 94]

to solve the problem. In Chapter 3, we have shown that even the deterministic version of

this problem is NP-hard. Therefore, the stochastic program developed in this chapter is

clearly NP-hard. It is very time-consuming to solve this two-stage stochastic model even

using a solution approach such as the L-shaped method, which could theoretically solve the

second-stage problems an exponentially large number of times.

In this research, we try to enhance the performance of the traditional L-shaped method

along the following two directions:

1) Instead of generating either one or multiple optimality cuts using all dual information

under all scenarios, we develop a new algorithm, which we call the double-cut algorithm

to generate two optimality cuts using only selected dual information at each iteration.

This appears to increase the efficiency of the optimality cuts.

2) Instead of solving the second-stage problem to generate feasibility cuts, we generate con-

straints without solving the feasibility problems and add these to the first-stage problem

so as to guarantee the feasibility of the second-stage problem. By doing so, we eliminate

the step of solving the feasibility problem in the L-shaped method. We also show that

our feasibility constraints are more effective because the upper bound on the number of

feasibility constraints we generate is polynomial in the size of the instance.

Based on the above two improvements, we develop new algorithms to solve our stochastic

program. To check the effectiveness of these new algorithms, we also perform computational

tests on randomly generated test problems.

4.2 FORMULATION

In this section, we handle a more general case of our problem by extending the version

described in Chapter 3 and restating it as a stochastic program. In this new model, all
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parameters described before, except the fixed facility cost, are considered uncertain and have

different realization values under different random scenarios. These uncertain parameters as

treated as random variables. An accurate probabilistic description of these random variables

is assumed available under some form of discrete probability distribution. The particular

values these random variables will assume are only known after a specific scenario is realized.

In this new model, the set of decisions is divided into two groups:

1) The first-stage decisions on which facilities to open has to be taken before we know the

values of these random variables.

2) The second-stage decisions on how to cut raws / remnants and how to distribute the

products to satisfy all demand are taken after we know the values of these random vari-

ables.

Compared with the problem described in Chapter 3, the one described in this section is

complicated by the fact that the decision on which facilities to open must be made without

full information. The decisions on which sizes to cut and how to distribute the product

are also complicated by the fact that parameters such as the cutting costs, raw costs, de-

mand rates, etc., typically have different values under different random scenarios. The goal

is to minimize the sum of the fixed costs, the expected material costs, cutting costs and

transportation costs, minus the expected recycled scrap value.

Suppose that the λ’s are discretely distributed, and ξ describes a possible realization,

or scenario. Suppose ξ can take on a finite number of different values and let Ξ be this

finite support for the random variable ξ. In this chapter, we first consider a model in which

in addition to the demand rates, the cutting costs, scrap value, facility capacity, the sizes,

and costs of raw materials at each facility i ∈ I, the demand types and sizes arising from

customer j ∈ J , and the shipping costs from the facilities to the customers are all permitted

to be stochastic. Initially, we assume that all parameters could be stochastic and develop

a corresponding model. Then, we present a model for the case where the capacity and the

stock raw sizes at each facility do not change under different scenarios ξ ∈ Ξ.

To solve the problem, we must first decide on a set of facility locations to open without

full information, so that it minimizes the sum of the discounted fixed costs and the expected
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future operating costs and transportation costs, minus the expected recycled scrap value.

After this decision has been made, we then fix the binary location variables and solve the

second-stage recourse linear programs. By solving the perturbed recourse LP model, as

described in Chapter 2, we can obtain the inherent value for each size at each open facility

under each scenario. Based on these inherent values, we can then apply the same inherent

value policy we developed in Chapter 3 to manage the long-run costs under dynamic demand.

4.2.1 Model

To describe our model, we first introduce some notation. Sets I and J are defined as before:

• I = Set of facility locations.

• J = Set of demand locations.

We introduce some new notation and modifications to our prior notation as follows:

• ξ ∈ Ξ = Possible scenario, where Ξ is the set of all scenarios and has a discrete distribu-

tion.

• p(ξ) = Probability of scenario ξ.

• Ki(ξ) = Set of all possible sizes, including scrap sizes, that could be generated at facility

i ∈ I under scenario ξ (we include the size 0 in this set); define K =
⋃

i∈I,ξ∈Ξ Ki(ξ).

• Dj(ξ) = Set of all sizes that are demanded at demand location j ∈ J under scenario ξ;

define D =
⋃

j∈J,ξ∈Ξ Dj(ξ).

• Si(ξ) = Set of all raw stock sizes that are processed at facility location i ∈ I under

scenario ξ; define S =
⋃

i∈I,ξ∈Ξ Si(ξ).

• λjk(ξ) = Demand rate at location j ∈ J for size k ∈ Dj(ξ) under scenario ξ.

• cijk(ξ) = Cost of transporting a single unit of size k ∈ Dj(ξ) from facility location i ∈ I

to demand location j ∈ J under scenario ξ ∈ Ξ.

• aih(ξ) = Cost of one unit of raw stock of size h ∈ Si(ξ) at facility location i ∈ I under

scenario ξ ∈ Ξ.

• σi(ξ) = Unit salvage value of product at facility i ∈ I under scenario ξ ∈ Ξ; σi > 0.

• δi(ξ) = Cost per cut at facility i ∈ I under scenario ξ ∈ Ξ; δi > 0.
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• Mi(ξ) = Total open production capacity for facility i ∈ I per unit time under scenario

ξ ∈ Ξ.

• fi= Equivalent uniform daily fixed cost [84] of operating a facility at location i ∈ I.

The decision variables are:

• zi = Variables to decide whether facility i is open or not, if facility i ∈ I is open, zi = 1;

otherwise, zi = 0.

• xijk(ξ) = Rate of shipment of units of size k ∈ Dj(ξ) from facility location i ∈ I to

demand location j ∈ J under scenario ξ ∈ Ξ.

• yi
m,n(ξ) = Rate of generation at facility location i ∈ I of units of size (m − n) that are

obtained by cutting size m down to size n under scenario ξ ∈ Ξ.

• rih(ξ) = Rate of replenishment of raw units of size h ∈ Si(ξ) at facility location i ∈ I

under scenario ξ ∈ Ξ; define rih(ξ) = 0 if h ∈ (Ki(ξ)\Si(ξ)) under scenario ξ ∈ Ξ.

• siu(ξ) = Rate at which size u is scrapped at facility location i ∈ I; define siu(ξ) = 0 if

the size u cannot be generated at location i under scenario ξ ∈ Ξ.

Before formulating the problem, we also define the sub-network under scenario ξ, as

Gi(ξ) = (Ki(ξ), Ai(ξ)), where Ki(ξ) is the set of nodes and Ai(ξ) is the set of arcs under

scenario ξ in the graph.

We are now ready to formulate the problem as the following stochastic program (SP):

Extensive Form of SP Model (Program SP)

min
∑

i∈I

fizi + Eξ


∑

i∈I

∑

h∈S

aih(ξ)rih(ξ) +
∑

i∈I

∑

j∈J

∑

k∈D

cijk(ξ)xijk(ξ)

+
∑

i∈I

∑

(m,n)∈Ai(ξ)|n>0

δi(ξ)yi
m,n(ξ)−

∑

i∈I

∑

u∈K

uσi(ξ)siu(ξ)


 (4.20)

subject to:


ril(ξ) +

∑

m|(m,l)∈Ai(ξ)

yi
m,l(ξ)


−


sil(ξ) +

∑

n|(l,n)∈Ai(ξ)

yi
l,n(ξ)


 = 0,

for all i ∈ I, l ∈ Ki(ξ), ξ ∈ Ξ, (4.21)
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∑

i∈I

xijk(ξ) = λjk(ξ), for all j ∈ J, {k ∈ D|λjk > 0}, ξ ∈ Ξ, (4.22)


 ∑

(m,n)∈Ai(ξ)|(m−n)=k

yi
m,n(ξ)


−


∑

j∈J

xijk(ξ)


 = 0, for all i ∈ I, k ∈ D, ξ ∈ Ξ, (4.23)

∑

j∈J

∑

k∈D

xijk(ξ) ≤ Mi(ξ)zi, for all i ∈ I, ξ ∈ Ξ, (4.24)

zi ∈ {0,1}; x(ξ), y(ξ), r(ξ), s(ξ) ≥ 0, for all ξ ∈ Ξ. (4.25)

It is not difficult to see that the objective function (4.20) is to minimize the fixed costs

of facilities, plus the expected costs of raw materials, cutting and transportation, minus the

value of the scrap that is salvaged, over all scenarios.

4.2.2 Solution Procedure

The problem described in Section 4.2.1 is a two-stage stochastic program with a binary first

stage. Our approach will be used to solve the stochastic program and obtain the inherent

values for all sizes at all facilities. We apply the L-shaped method to solve Program and

obtain the dual values from its linear subproblem. The policy that was outlined in Section

3.1.2 will then be used to manage long-run costs under dynamic demand.

In the L-shaped method, the first-stage corresponds to the facility location problem, and

the second-stage is the operational phase. Note that the master problem only has binary

variables and each subproblem, or recourse problems, is defined for one scenario and uses

parameter values realized under that scenario. We first present the first-stage master problem

as follows:

Master Problem in SP

min
∑

i∈I

fizi +Q(z) (4.26)

subject to:
zi ∈ {0,1}, i ∈ I. (4.27)

Let Q(z, ξ) be the optimal value of second-stage problem for scenario ξ in the stochastic

program, which is defined below in (4.28). ThenQ(z), the expected recourse function, is given

by Q(z) =
∑|Ξ|

ξ=1 p(ξ)Q(z, ξ). The expected value function of the problem is continuous and
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convex. For each scenario, there is a corresponding recourse problem. Each recourse problem

is analogous to the Benders’ subproblem described in Chapter 3. Once the random vector z

has been realized, the recourse problems will be solved. After solving the recourse problems,

two types of constraints are sequentially added: 1) feasibility cuts determining the vector z

feasible for all recourse problem, 2) optimality cuts, which are supporting hyperplanes and

linear approximations to the expected recourse function on its domain. The dual values of

these second-stage problems will then be used as the η variables in the proposed policy for

the dynamic environment. The recourse problem are defined as follows:

The Second-Stage Problem in SP (Program SSP)

Q(z, ξ) = min
∑

i∈I

∑

j∈J

∑

k∈D

cijk(ξ)xijk +
∑

i∈I

∑

h∈S

aih(ξ)rih

+
∑

i∈I

∑

(m,n)∈Ai(ξ)|n>0

δi(ξ)yi
m,n −

∑

i∈I

∑

u∈K

uσi(ξ)siu (4.28)

subject to: 
ril +

∑

m|(m,l)∈Ai(ξ)

yi
m,l


−


sil +

∑

n|(l,n)∈Ai(ξ)

yi
l,n


 = 0,

for all i ∈ I and l ∈ Ki(ξ), (4.29)

∑

i∈I

xijk = λjk(ξ), for all j ∈ J and k ∈ D, (4.30)


 ∑

(m,n)∈Ai(ξ)|(m−n)=k

yi
m,n


−


∑

j∈J

xijk


 = 0, for all i ∈ I and k ∈ D, (4.31)

∑

j∈J

∑

k∈D

xijk ≤ Mi(ξ)zi, for all i ∈ I, (4.32)

x, y, r, s ≥ 0. (4.33)

For our model, the above second-stage problem is the optimality subproblem. Before

the second-stage optimality problem is solved, we need to know whether it is feasible for the

optimal vector z that we obtain from the master problem.

Recall that in the L-shaped method described in Section 4.1.1, before solving Program

SSP for a given vector z in Step 3, we solve a feasibility subproblem in Step 2 to ascertain

second-stage feasibility for vector z. If this is infeasible, we generate a feasibility cut based
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on dual information from this problem and add it into the master problem to reduce the

feasible region for the vector z. We will keep adding these feasibility cuts until we obtain a

vector z that is feasible for all optimality subproblems. Feasibility cuts are generated from

the extreme rays of the dual program of the above program SSP to restrict the vector z

in the master problem. This work is done by solving the following feasibility subproblem

(Program SFP):

Feasibility Subproblem in SP (Program SFP)

min ω′ =
∑

i∈I

∑

l∈Ki

υ+
1il+

∑

j∈J

∑

k∈D

υ+
2jk+

∑

i∈I

∑

k∈D

υ+
3ik+

∑

i∈I

∑

l∈Ki

υ−1il+
∑

j∈J

∑

k∈D

υ−2jk+
∑

i∈I

∑

k∈D

υ−3ik+
∑

i∈I

υ−4i

(4.34)
subject to:


ril +

∑

m|(m,l)∈Ai(ξ)

yi
m,l


−


sil +

∑

n|(l,n)∈Ai(ξ)

yi
l,n


+υ+

1il−υ−1il = 0, for all i ∈ I and l ∈ Ki, (4.35)

∑

i∈I

xijk + υ+
2jk − υ−2jk = λjk(ξ), for all j ∈ J and k ∈ D, (4.36)


 ∑

(m,n)∈Ai(ξ)|(m−n)=k

yi
m,n


−


∑

j∈J

xijk


 + υ+

3ik − υ−3ik = 0, for all i ∈ I and k ∈ D, (4.37)

∑

j∈J

∑

k∈D

xijk − υ−4i ≤ Mi(ξ)zi, for all i ∈ I, (4.38)

x, y, r, s, υ+, υ− ≥ 0, (4.39)

where υ+ = (υ+
1i, υ

+
2j, υ

+
3i) and υ− = (υ−1i, υ

−
2j, υ

−
3i, υ

−
4 ).

If a vector z is feasible for all optimality subproblems, i.e. ω′ = 0 for all scenarios, we

will check the optimality of this vector z. If it is not optimal for Program SP, then we need

to generate optimality cuts and add them into the master problem.
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4.2.3 Comparison of Single and Multi-Cut Methods

The single-cut and multi-cut methods both have their advantages and disadvantages [11,

89, 94]. The advantage of the multi-cut version is that unlike the single-cut version we can

make good use of dual information from each scenario. Its disadvantage is that if there

are many scenarios or if the number of iterations to solve a problem is large, we may add

too many optimality cuts, potentially taking much longer to solve the problem. Gassmann

[39] concludes that for large problems, the single-cut version generally performs better than

the multi-cut version. This conclusion is especially true for a problem such as ours with

a mixed-integer first-stage problem, because compared with a linear program, a mixed-

integer program is much harder to solve and much more sensitive to the size of the problem.

Therefore, the single-cut version is likely to be be more suitable to solve large-scale problems

for our SP model. This general observation is supported by the results from a computational

study that was conducted. The results are shown in Table 14, where the instances are listed

in increasing order of size. The computers we use in this chapter have Pentium 4 processor

(2.40GHz) and 2.00 GB of RAM. CPLEX is version 7.0.

Table 14 shows that for large problems, although the multi-cut L-shaped method takes

fewer iterations to solve the problem, it adds many more optimality cuts into the first-stage

problems and generates much larger mixed-integer problems. Therefore, in terms of the

total time to obtain the optimal solutions, it is dominated by the single-cut version for these

large problems. We therefore choose the single-cut L-shaped method to solve our stochastic

problem.

In the following sections, we only focus on the single-cut L-shaped method. We explore

how to improve the performance of the single-cut version by presenting a new method to

generate optimality cuts based on selected dual information from the second-stage problem.

We also enhance its performance by developing a new method to generate a polynomially

bounded number of new constraints to replace the feasibility cuts, so as to ensure the feasi-

bility of the second-stage optimality problems under all scenarios.
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Table 14: Performance of Single and Multi-cut L-shaped Methods

Single-cut Multi-cut

Instance Time # of Optimality Time
Iterations

(Seconds) Cuts
Iterations

(Seconds)

1 4 12.705 31 3 11.27

2 8 257.88 166 6 249.55

4 3 281.4 227 3 382.2

3 4 294.59 178 4 448.835

5 5 410.34 304 4 473.67

6 5 553.98 611 5 632.85

7 16 581.35 38 9 790.91

8 3 657.09 389 3 871.34

10 7 269.04 39 6 1044.37

9 4 1527.61 436 4 1877.19

11 9 2194.85 1147 7 3189.22

12 10 2724.47 607 7 3310.58

13 8 2974.44 806 7 3885.49

14 18 3167.49 78 12 4484.62

15 8 3997.91 647 6 4780.65

16 16 5146.31 1565 13 7411.78

Avg 8.00 1565.72 454.31 5.75 2115.28
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4.3 THE DOUBLE CUT L-SHAPED METHOD

As discussed in the previous section, the L-shaped method with single-cut is better for

solving large-scale problems, especially for problems with a mixed-integer first-stage problem.

However, simply aggregating all dual information from the second-stage problems might

weaken the cut.

Let us consider a stochastic program whose second-stage optimality problem is a min-

imization problem. For a minimization problem, its primal objective function value is an

upper bound on its optimal objective value, while its dual objective function value is a lower

bound. Therefore, the primal objective function value Q(z, ξ) (or θo) must be larger than or

equal to the dual objective function value el − Elz. In the L-shaped method, we obtain the

recourse function value, θo, from the master problem. Then, when we solve the second-stage

problem SSP for each scenario ξ, we check whether the above criterion has been met. If it

is not satisfied, θo obtained in the master problem is not optimal for this scenario ξ and we

need to add an optimality cut into the master problem to increase θo. If the lower bound

of the second-stage problem is equal to its upper bound, then the solution to the second-

stage problem corresponding to this scenario is optimal and we do not need to increase θo.

Therefore, the optimality cut based on these optimal scenarios is weak. Combining these

scenarios with those scenarios that are not optimal will weaken the cut, and could slow down

convergence and result in more iterations to solve the problem.

In this section, we first develop a new method to quantify this phenomenon and separate

these two different groups of scenarios: one whose subproblem is optimal and the other

suboptimal. We then generate two cuts based on the dual information from the scenarios in

these two groups, respectively.

Before introducing this new algorithm, first let us define a vector γl1. Define γ(l1,o)(o =

1, 2, ...|Ξ|) as an indicator such that it is equal to 1 if the second-stage optimality problem

for scenario o at iteration l is not optimal; 0 otherwise. Then we can introduce the master

problem for the double-cut L-shaped method as follows:
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The Double Cut Master Problem

min
∑

i∈I

fizi +
|Ξ|∑

o=1

θo (4.40)

subject to:
Wlz ≥ dl, l = 1, ..., r, (4.41)

El1z +
|Ξ|∑

o=1

γ(l1,o)θo ≥ el1 , l1 = 1, ..., q1, (4.42)

El2z +
|Ξ|∑

o=1

(1− γ(l1,o))θo ≥ el2 , l2 = 1, ..., q2, (4.43)

∀zi ∈ {0, 1},∀i ∈ I, θo ∈ <, o = 1, ..., |Ξ|. (4.44)

We refer to the optimality cut (4.42) as the aggregated violated optimality cut since each

θo in the set is not optimal and the cut based on these scenarios will be active and increase

their values (θo) in the master problem at the next iteration. Correspondingly, we refer to

cut (4.43) as the aggregated nonviolated optimality cut.

Now, we are ready to present the procedure for the double-cut L-shaped method as

follows:

Step 0. Set w = ν = q1 = q2 = 0.

Step 1. Set ν = ν + 1, solve the master problem for the double cut method and let

(zν , θν
1 , ..., θ

ν
|Ξ|) be its optimal solution.

Step 2. For every ξ = 1, 2, ..., |Ξ|, we solve the following feasibility subprogram

Feasibility Subproblem

min ω′ = eT υ+ + eT υ− (4.45)

subject to:

Wz2 + Iυ+ − Iυ− = h(ξ)− T (ξ)zν
1 , (4.46)

z2 ≥ 0, υ+ ≥ 0, υ− ≥ 0. (4.47)

where eT = (1, 1, ..., 1).

If the optimal value ω′ for a scenario is positive, define %ν as dual variable associated

with (4.46). Set w1 = w1 + 1, generate the feasibility cut (4.41) using Ww1 = (%ν)T T (ξ) and
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dw1 = (%ν)T h(ξ), and add it to the master problem. If no feasibility cuts are added at this

step, i.e., ω′ ≤ 0 for every scenario ξ, then go to Step 3, otherwise go to Step 1.

Step 3. For o = 1, ..., |Ξ|, solve the linear program SSP and suppose πν
o is the optimal

dual values for scenario o. If

θν
o < po(πν

o )T (ho − Toz
ν), (4.48)

set γ(l1,o) = 1; otherwise set γ(l1,o) = 0.

After solving Program SSP for each scenario, define: E1
q1

=
∑|Ξ|

o=1 poγ(l1,o)(π
ν
o )T To and

e1
q1

=
∑|Ξ|

o=1 poγ(l1,o)(π
ν
o )T ho; E2

q2
=

∑|Ξ|
o=1 po(1 − γ(l1,o))(π

ν
o )T To and e2

q2
=

∑|Ξ|
o=1 po(1 −

γ(l1,o))(π
ν
o )T ho. If

∑|Ξ|
o=1 γ(l1,o) = 0, stop; (zν , θν) is an optimal solution. Otherwise, set

q1 = q1 + 1, set q2 = q2 + 1 if
∑|Ξ|

o=1 γ(l1,o) < |Ξ|, and add the optimality cuts to the master

problem and return to Step 1.

Compared with optimality cuts in the single-cut version, our new optimality cuts (4.42)

and (4.43) can be expected to be more effective since they will yield tighter bounds. The

reason is that at each iteration we separate the scenarios and generate a stronger cut.

The following proposition shows that our algorithm will converge:

Proposition 19. When Ξ is finite, the double-cut L-shaped method will converge.

Proof. When ξ is a finite random variable, the power set of Ξ includes only finite elements.

At each iteration, the double cut version cuts off at least one element of this power set.

Therefore, the conclusion follows.

4.4 FEASIBILITY CUTS TO GUARANTEE THE FEASIBILITY OF

PROGRAM SSP

From the above description, we can see that at each iteration, we add a cut either to obtain a

higher bound on the master problem or to restrict the feasible region of the master problem

in order to make the second-stage problem (Program SSP) feasible. Because there could

be many such feasibility cuts, and consequently many iterations, it could take a significant

87



number of iterations and a long time to solve the feasibility problems to obtain these cuts

before reaching optimality.

In this chapter, we try to improve the algorithm by replacing a potentially exponential

number of the L-shaped feasibility cuts with a polynomially bounded number of new feasibil-

ity constraints. These new constraints will be generated a priori without dual information

from the subproblem. We first introduce some notation. Let N be the total number of

variables in Program SP and define U , the set of feasible points of SP, as follows:

U =
{
(z, x, y, r, s) ∈ IRN (4.21), (4.22), (4.23), (4.24), (4.25)

}
. (4.49)

Define κ2 as the second-stage feasibility set such that κ2 = {z|Q(z) < ∞}. Let κ′2 =

κ2 ∩ IB|I|.

One interesting relationship among these sets is between U and κ′2. Let us project the

binary variables z belonging to U onto a subspace Z where Z = {(z, 0)|z ∈ IR|I|, (z, 0) ∈ IRN}.
Define projZ(U) to be the projection of U on Z, i.e. projZ(U) = {q′ | q′ is the projection of q

on Z for some q ∈ U}. Equivalently, if we define Z⊥ = {(z, x(ξ), y(ξ), r(ξ), s(ξ)) ∈ IRN |z =

0, z ∈ IR|I|}, then for any q = (z, x(ξ), y(ξ), r(ξ), s(ξ)) ∈ U , ∃(z′, 0) ∈ Z such that q−(z′, 0) ∈
Z⊥.

Then we can obtain the following propositions:

Proposition 20. κ′2 = projZ(U).

Proof. 1) “projZ(U) ⊆ κ′2”: Suppose projZ(U) is nonempty and consider (z, 0) ∈ projZ(U).

By the definition of projection there exist x(ξ), y(ξ), r(ξ), s(ξ) such that q = (z, x(ξ), y(ξ),

r(ξ), s(ξ)) ∈ U . By the definition of U , it follows that q is feasible in U , so Q(z) < ∞.

2) “κ′2 ⊆ projZ(U)”: Now suppose U is feasible. Then there exists q = (z, x(ξ), y(ξ),

r(ξ), s(ξ)) ∈ U . Project q onto the subspace Z. Then there exists (z′, 0) ∈ projZ(U) such

that q − (z′, 0) ∈ Z⊥. By the definition of Z⊥, it follows that z − z′ = 0, i.e. z = z′. Thus,

(z, 0) ∈ projZ(U).

Following the above proposition, we introduce a method to obtain these polynomially

bounded number of feasibility constraints. The advantages of these new constraints are

obvious. First, we do not need to generate feasibility problems to obtain these feasibility
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constraints. Also, in the worst case, the total number of the constraints is far fewer. Further-

more, since they can be generated once the problem parameters are given, we can develop

techniques to eliminate any dominated constraints. With these advantages, we would expect

the new feasibility constraints to be much more compact and effective. We present these

new constraints in the following section.

4.4.1 New Feasibility Constraints

Suppose under a scenario ξ, the set of raw stock sizes S(ξ) across all facilities has t(ξ)

elements. That is, S(ξ) = (r1(ξ), r2(ξ), ..., rh(ξ), ..., rt(ξ)(ξ)), where rh(ξ) represents the size

of the hth raw under scenario ξ. Let S ′(ξ) = {0} ∪ S(ξ) where r0 = 0. Without loss of

generality, we assume the elements in S ′(ξ) satisfy the following order:

r0 < r1(ξ) < r2(ξ) < ... < rh(ξ) < ... < rt(ξ)(ξ).

Define Irh
(ξ) ⊂ I, h = 0, 1, 2, ..., t(ξ)− 1 under scenario ξ as the set of facilities such that

each facility in this set has at least one raw size longer than rh(ξ). We develop the following

constraints to ensure the feasibility of the second-stage problem (Program SSP).

Proposition 21. The vector z from the master problem can guarantee the feasibility of

the second-stage problem for all scenarios ξ(∈ Ξ) if, and only if, it satisfies the following

constraints:

∑
i∈Irh(ξ)

Mi(ξ)zi ≥
∑
j∈J

∑

(k∈Dj(ξ),k>rh(ξ))

λjk(ξ), ∀ξ ∈ Ξ, h = 0, 1, ..., t(ξ)− 1. (4.50)

Proof. Section 3.3.2 has proven that, for one specific scenario ξ and its demand λ(ξ), the

vector z obtained from the master problem will guarantee the feasibility of the second-stage

problem if, and only if, it satisfies constraint (4.50) corresponding to scenario ξ. Therefore,

since constraint (4.50) includes all scenarios, the conclusion follows.
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Now suppose that the stock raw sizes and the capacity at each facility do not vary by

scenario. Assume there are t elements in the raw set S, S = (r1, r2, ..., rt). Add an element

r0 = 0 to raw set S and define it as S ′. Without loss of generality, we also assume the

elements in S ′ satisfy the following order:

r0 < r1 < r2 < ... < rt.

Define Irh
⊂ I, h = 0, 1, 2, ..., t − 1 as the set of facilities such that, each facility in this

set has at least one raw size longer than rh.

Observe that all demands with size k such that rh < k ≤ rh−1, h = 0, 1, ..., t − 1 can be

satisfied by raw size rh+1, ..., rt. Then we can present the following proposition to ensure the

feasibility of the second-stage problem.

Proposition 22. If the capacity and raw sizes at each facility do not change under different

scenarios, then vector z from the master problem can guarantee the feasibility of the second-

stage optimality subproblem for all scenarios ξ(∈ Ξ) if, and only if, it satisfies the following

constraints:

∑
i∈Irh

Mizi ≥ max
ξ∈Ξ

∑
j∈J

∑

(k∈Dj(ξ),k>rh)

λjk(ξ),∀h = 0, 1, ..., t− 1. (4.51)

Proof. Proposition 21 has shown that the vector z obtained from the master problem will

guarantee the feasibility of all optimality subproblems if, and only if, it satisfies all of the

following constraints:

∑
i∈Irh

Mizi ≥
∑
j∈J

∑

(k∈Dj(ξ),k>rh)

λjk(ξ),∀h = 0, 1, ..., t− 1, ξ ∈ Ξ. (4.52)

It is obvious that the constraints (4.52) will be satisfied if, and only if, the vector z

satisfies:

∑
i∈Irh

Mizi ≥ max
ξ∈Ξ

∑
j∈J

∑

(k∈Dj(ξ),k>rh)

λjk(ξ),∀h = 0, 1, ..., t− 1, (4.53)

from which the conclusion follows.
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To illustrate the constraints in Proposition 22, consider a system with two facilities, two

demand locations and two scenarios. The raw sizes available at each facility along with the

unit costs are summarized in Table 15. This table also provides the unit salvage values and

unit cutting cost at each facility. The demanded sizes and unit shipping costs, along with the

corresponding demand rates at each demand point are summarized in Table 16 for scenario

one and in Table 17 for scenario two.

Table 15: Facility Parameters

Facility 1 Facility 2

Raw Unit Cutting Raw Unit Cutting

Size Cost Scrap Value Cost Size Cost Scrap Value Cost

13 20 0.05 0.05 7 13 0.1 0.06

7 12

In this example, there are two original unique raw sizes. After adding 0 to the raw set,

we obtain S ′ = (0, 7, 13). Namely, r0 = 0, r1 = 7, r2 = 13. The corresponding facility sets

feasible for rh(h = 0, 1) are as follows

Ir1 = I7 = (1),

Table 16: Unit Shipping Costs under Scenario One

Location 1 Location 2

Size 5 6 3 5 7 9

Demand 20 20 10 30 15 25

Facility 1 2 4 2 5 6 7

Facility 2 3 3 1.5 3 4 5
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Table 17: Unit Shipping Costs under Scenario Two

Location 1 Location 2

Size 4 6 4 5

Demand 50 10 60 20

Facility 1 2 1 2 3

Facility 2 3 2 3 4

Ir0 = I0 = (1, 2).

A unique demand size k with r1 < k ≤ r2 is 9 for scenario one, while there is no such

that size for scenario two; unique demand sizes with r0 < k ≤ r1 are 3, 5, 6, 7 for scenario

one and 4, 5, 6 for scenario two.

Then, since there are 2 original unique raw sizes, we have two feasibility constraints as

follows:

∑
i∈Ir1

Mizi = M1z1 ≥ max
ξ=1,2

∑
j∈J

∑

(k∈Dj(ξ),k>r1)

λjk(ξ) = max(25, 0) = 25, (4.54)

∑
i∈Ir0

Mizi = M1z1 + M2z2 ≥ max
ξ=1,2

∑
j∈J

∑

(k∈Dj(ξ),k>r0)

λjk(ξ) = max(120, 140) = 140. (4.55)

i.e.,

M1z1 ≥ 25, (4.56)

M1z1 + M2z2 ≥ 140. (4.57)

Now, let us check whether these two constraints can guarantee the feasibility of the

problem. First, consider constraint (4.57). This constraint ensures that Facilities 1 and 2
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together can produce at least 140 units. These units can be used to satisfy any demand

sizes. First consider scenario one, since the total demand across all sizes is 120 units, if the

open facilities have feasible raw materials for demand size k, then the demand for this size

k will always be satisfied. Whether we open Facility 1, 2, or both, there is sufficient feasible

raw material to satisfy demand for sizes 3, 5, 6, 7. Based on the same reason, all demands

for sizes 4, 5, 6 can also always be satisfied for scenario two since their total demand is 140

units. However, for size 9, under scenario one, constraint (4.57) alone is not sufficient to

ensure that demand is met, and we also need constraint (4.56).

4.4.2 Feasibility after Using New Feasibility Constraints

Since (a) the vector z that satisfies constraints (4.51) can ensure the feasibility of the second-

stage problem (Program SSP) for all scenarios, and (b) compared with constraints (4.6), these

constraints are easier to generate, we can replace constraints (4.6) with constraints (4.51) in

the master problem.

We know that adding new constraints into the master problem will reduce the feasible

region for vector z. Therefore, before using constraints (4.51), we must ensure that they will

not eliminate any points in the original feasible region for Program SP. To show this, we

present the following proposition.

Proposition 23. If z is feasible for the stochastic problem (Program SP), then it is also

feasible for the feasibility constraints (4.51).

Proof. Consider any arbitrary h, and without loss of generality, suppose the maximum right

hand side of constraints 4.51 is from scenario ξ′. From constraint (4.22), it follows that

∑
j∈J

∑

(k∈Dj(ξ′),k>rh)

λjk(ξ
′) =

∑
j∈J

∑

(k∈Dj(ξ′),k>rh)

∑
i∈I

xijk(ξ
′) =

∑
i∈I

∑
j∈J

∑

(k∈Dj(ξ′),k>rh)

xijk(ξ
′).

(4.58)

Recalling the definition of Irh
, we can rewrite the above equation (4.58) as
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∑
j∈J

∑

(k∈Dj(ξ′),k>rh)

λjk(ξ
′) =

∑
i∈I

∑
j∈J

∑

(k∈Dj(ξ′),k>rh)

xijk(ξ
′) =

∑
i∈Irh

∑
j∈J

∑

(k∈Dj(ξ′),k>rh)

xijk(ξ
′).

(4.59)

Because
∑

(k∈Dj(ξ′),k>rh) xijk(ξ
′) ≤ ∑

k∈Dj
xijk(ξ

′), from equation (4.59), it follows that

∑
j∈J

∑

(k∈Dj(ξ′),k>rh)

λjk(ξ
′) ≤

∑
i∈Irh

∑
j∈J

∑

k∈Dj

xijk(ξ
′). (4.60)

From (4.24) and (4.60), we conclude that

∑
j∈J

∑

(k∈Dj(ξ′),k>rh)

λjk(ξ
′) ≤

∑
i∈Irh

∑
j∈J

∑

k∈Dj

xijk(ξ
′) ≤

∑
i∈Irh

Mizi. (4.61)

Since ξ′ yields the maximum value for
∑

j∈J

∑
(k∈Dj(ξ),k>rh) λjk(ξ), the conclusion follows.

Although constraints (4.51) may be fewer in number than the L-shaped feasibility cuts,

there are still some dominated constraints. There are three kinds of dominated constraints

among them. We can use the technique described in Chapter 3 to identify them and elim-

inate the redundancy. After these eliminations, we note that the number of our feasibility

constraints (4.51) is polynomial since it consists of no more than t (the number of unique

raw sizes) constraints. Now, we can replace constraints (4.6) by non-dominated constraints

(4.51).

Double Cut Master Problem with a priori Feasibility Cuts (Program DMP)

min
∑

i∈I

fizi +
|Ξ|∑

o=1

θo (4.62)

subject to: ∑

i∈Irh

Mizi ≥ max
ξ∈Ξ

∑

j∈J

∑

(k∈Dj(ξ),k>rh)

λjk(ξ), ∀h = 0, 1, ..., t− 1, (4.63)

El1z +
|Ξ|∑

o=1

γ(l1,o)θo ≥ el1 , l1 = 1, ..., q1, (4.64)

El2z +
|Ξ|∑

o=1

(1− γ(l1,o))θo ≥ el2 , l2 = 1, ..., q2, (4.65)

θ ∈ <, zi ∈ {0,1}, i ∈ I. (4.66)
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4.5 ALTERNATIVE L-SHAPED METHODS

In the above section, we presented a new version of the feasibility constraints. In practice,

after eliminating the dominated constraints, our feasibility constraints (4.63) are much more

effective than the dual-based feasibility cuts (4.63) because (a) there are fewer constraints,

(b) there is no redundancy, (c) more than one constraint is added at each iteration, and (d)

these are available without generating and solving the feasibility problem SFP.

One easy way to make use of the feasibility constraints in the above section is to replace

the double cut master problem with Program DMP, which includes all feasibility constraints

(4.63). We can present this new version of the L-shaped method (Algorithm 5) as follows.

Algorithm 5 Double Cut L-shaped Method with a priori Feasibility Cuts
1: Set q1 = q2 = ν = 0.

2: Generate the feasibility constraints (4.63) and add them into the master problem to

obtain the initial new master problem (Program DMP).

3: Set ν = ν + 1 and solve problem DMP.

4: Solve LP problem SSP for scenario o = 1, ..., |Ξ| described in Section 4.1.1. Let πν
o be

the associated optimal dual values for scenario o and if

θν
o < po(πν

o )T (ho − Toz
ν), (4.67)

set γ(l1,o) = 1; otherwise set γ(l1,o) = 0.

After solving all SSP for all scenarios, define: E1
q1

=
∑|Ξ|

o=1 poγ(l1,o)(π
ν
o )T To and

e1
q1

=
∑|Ξ|

o=1 poγ(l1,o)(π
ν
o )T ho; E2

q2
=

∑|Ξ|
o=1 po(1 − γ(l1,o))(π

ν
o )T To and e2

q2
=

∑|Ξ|
o=1 po(1 −

γ(l1,o))(π
ν
o )T ho. If

∑|Ξ|
o=1 γ(l1,o) = 0, stop; (zν , θν) is an optimal solution. Otherwise, set

q1 = q1 + 1, set q2 = q2 + 1 if
∑|Ξ|

o=1 γ(l1,o) < |Ξ|, add the optimality cuts to the master

problem, and then go to step 3.

From the above, we can see that for Algorithm 5 all feasibility constraints are generated

at the beginning. Adding all of them into the master problem DMP will increase its objective

function value and obtain a better lower bound. However, it is very possible that we do not

need all feasibility constraints to achieve optimality since our objective of adding feasibility

constraint is only to help find the optimal solution, not all feasible points. Therefore, in
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Algorithm 5 there is a tradeoff between the time to add new feasibility constraints and the

time to solve the larger master problem. There is also a tradeoff between fewer iterations

being required but a longer time being required to solve the master problem at each iteration.

One idea is only to select and add the violated feasibility constraints. In order to do

this, we should choose and add the feasibility constraints based on the information provided

by the master problem at each iteration. That is, at each iteration, we first solve the mas-

ter problem to obtain the optimal z values. Then, we separate the feasibility constraints

by checking whether they are violated by the optimal z values, and only add the violated

constraints into the master problem. Based on this idea, we present an alternative new

algorithm (Algorithm 6) as follows:

Algorithm 6 Double Cut L-shaped Method with Feasibility Cuts Added as Needed

1: Set q1 = q2 = ν = 0 and set the master problem as the initial master problem DMP.

2: Generate all feasibility constraints (4.63). Suppose there are b total constraints and set

B = {1, 2, ..., b}. Let ∗z = (1, ..., 1)|I| be the optimal solution to the problem DMP and

go to step 5.

3: Set ν = ν + 1 and solve the problem DMP.

4: Check each feasibility constraint t, t ∈ B. If it is violated, add it to the problem DMP

and set B = B\t; if it is satisfied, ignore it. If any constraint is added to the problem

DMP, go to step 3, otherwise go to step 5.

5: Solve LP problem SSP for scenario o = 1, ..., |Ξ| described in Section 4.1.1. Let πν
o be

the associated optimal dual values for scenario o and if

θν
o < po(πν

o )T (ho − Toz
ν), (4.68)

set γ(l1,o) = 1; otherwise set γ(l1,o) = 0.

Then define: E1
q1

=
∑|Ξ|

o=1 poγ(l1,o)(π
ν
o )T To and e1

q1
=

∑|Ξ|
o=1 poγ(l1,o)(π

ν
o )T ho; E2

q2
=

∑|Ξ|
o=1 po(1 − γ(l1,o))(π

ν
o )T To and e2

q2
=

∑|Ξ|
o=1 po(1 − γ(l1,o))(π

ν
o )T ho. If

∑|Ξ|
o=1 γ(l1,o) = 0,

stop; (zν , θν) is an optimal solution. Otherwise, set q1 = q1 + 1, set q2 = q2 + 1 if
∑|Ξ|

o=1 γ(l1,o) < |Ξ|, and add the optimality cuts to the master problem and return to step

3.
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To check how these new feasibility cuts affect the performance of the traditional single-

cut L-shaped method, we also develop two algorithms by replacing the L-shaped feasibility

cuts with non-dominated feasibility constraints (4.63). We first present the algorithm in

which we add all feasibility constraints (4.63) a priori (Algorithm 7).

Algorithm 7 Single-Cut L-shaped Method with a priori Feasibility Cuts

1: As before in the single-cut L-shaped method.

2: Generate all feasibility constraints (4.63) and add them into the master problem to obtain

the initial new master problem.

3: Set ν = ν + 1 and solve the resulting master problem.

4: Solve optimality subproblem for ξ = 1, ..., |Ξ| as before in the single-cut L-shaped

method. Stop if optimal. Otherwise add the optimality cut (4.7) to master problem

and return to Step 3.

Similar to Algorithm 6, we can also add the feasibility cuts only when needed for the

single-cut L-shaped method. We present this algorithm as follows (Algorithm 8):

Algorithm 8 Single-Cut L-shaped Method with Feasibility Cuts Added as Needed

1: As before in the single-cut L-shaped method.

2: Generate all feasibility constraints (4.63). Suppose there are b total constraints and set

B = {1, 2, ..., b}. Let ∗z = (1, ..., 1)|I| be the optimal solution to the master problem and

go to step 5.

3: Set ν = ν + 1 and solve the resulting master problem.

4: Check each feasibility constraint t, t ∈ B. If it is violated, add it to the master problem

and set B = B\t; if it is satisfied, ignore it. If any constraint is added to the master

problem, go to step 3, otherwise go to step 5.

5: Solve optimality subproblem for ξ = 1, ..., |Ξ| as before in the single-cut L-shaped

method. Stop if optimal. Otherwise add the optimality cut (4.7) to master problem

and return to Step 3.
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4.6 COMPUTATIONAL RESULTS

In this section, we compare the effectiveness of the above algorithms by doing some compu-

tational tests. We first compare the performances of the following six algorithms:

• Single-cut L-shaped method: add single optimality cut and single traditional L-shaped

feasibility cut per iteration.

• Double-cut L-shaped method: add double optimality cuts and single traditional L-shaped

feasibility cut per iteration.

• Algorithm 5: add double optimality cuts per iteration and all feasibility constraints (4.63)

a priori.

• Algorithm 6: add double optimality cuts and feasibility constraints (4.63) when needed

per iteration.

• Algorithm 7: add single optimality cut per iteration and all feasibility constraints (4.63)

a priori.

• Algorithm 8: add single optimality cut and feasibility constraints (4.63) when needed

per iteration.

Their performances are measured by solving three sets of instances: 1) small problems, 2)

medium problems, and 3)large problems. There are 20 instances in each set. These instances

are randomly generated with parameters whose ranges are showed in Table 18.

Table 18: Characteristics of Tested Stochastic Instances

Instance No. of No. of No. of Raw Sizes No. of Demand Sizes No. of

Set Facilities Customers per Facility per Customer Scenarios

Small 2 to 4 3 to 8 1 to 4 2 to 7 20 to 80

Medium 5 to 15 9 to 30 2 to 7 3 to 12 81 to 180

Large 16 to 40 31 to 80 3 to 10 4 to 18 181 to 350

We use each of the six algorithms to solve 20 problems (Program SP) in each set. To

evaluate an algorithm’s performance, we look at the number of instances where the algorithm
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Table 19: Performance Comparison for Stochastic Algorithms

Single-Cut Method Double-Cut Method

Instance L-shaped All Fea Fea When L-shaped All Fea Fea When

Set Fea a priori Needed
Total

Fea a priori Needed
Total

Small 0 8 4 12 0 5 3 8

Medium 0 1 4 5 0 3 12 15

Large 0 0 3 3 0 1 16 17

solves the problem in the least amount of time. To emphasize the comparison between the

single-cut and the double-cut method, we add the item “Total” in the following table. Total

represents the total number of the problems where the single-cut / double-cut method wins.

We summarize the computational results in Table 19; a complete list of the results can

be found at Appendix C. From Table 19 we can make the following observations:

(1) When comparing the procedures for generating the optimality cuts, the performances

by the single-cut and the double-cut methods seems to depend on the sizes of the problems.

For the set of small problems, the single-cut method performs better than double-cut method:

among 20 instances, the single-cut method wins 12. The reason for this is that, for small

problems, the number of iterations for both methods is small and the numbers are roughly

the same. Since the double-cut method adds two cuts at each iteration, the master problem

is larger and it usually takes longer to solve the problem.

When the size of the problem increases, the double-cut method performs better than the

single-cut method: for the instances in the set of medium problems, the double-cut method

wins 15 out of total 20 instances; for large-size problems, it beats the single-cut method by

winning 17 instances. This is mainly because when the problem becomes large, the double-

cut method will take significantly fewer iterations than the single-cut method, which reduces

the solution time because there are fewer iterations (at each iteration, each algorithm has to
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solve at least |Ξ| subproblems)and furthermore the master problem is smaller as well. We

may thus conclude that the double-cut method will perform better than single-cut method

when the problems become bigger.

(2) For the approach used to add the feasibility constraints / cuts, the different methods

in the single-cut method and the double-cut method perform slightly differently, but the

trends reflected by these two methods are similar.

In general the “a priori” approach is the better for small problems, while the “as-needed”

approach is better for large problems. Looking across the single and double optimality cut

methods, the “a priori” approach (Algorithms 5 and 7) wins 13 out of 20 for the small

problems, but the “as-needed” approach (Algorithms 6 and 8) wins 16 out of 20 and 19 out

of 20 for the medium and large problems, respectively.

Small problem will, in general, not have many feasibility cuts and adding all of them

into the master problem will not make much difference. The time savings from the fewer

iterations required to solve the problem and not having to check which feasibility cuts should

be added outweigh the extra time required for the larger problems.

However, when the problems become larger, there will be more scenarios, along with

more different kinds of raw materials and demand. Therefore, we need more feasibility cuts

to guarantee the feasibility of all subproblems. We definitely do not want to add unnecessary

feasibility cuts into the master problem, since it will make the master problem much larger

and harder to solve at each iteration. This is why the method of adding feasibility cuts when

needed becomes more and more effective with increasing size of the problem.

(3) The traditional L-shaped feasibility cuts perform the worst and the algorithms based

on this method never win for any instance. This implies that our new feasibility constraints

(4.63) are much better than the traditional L-shaped feasibility cuts. The main reason is that,

compared with the non-dominated feasibility constraints in (4.63), many of the traditional

L-shaped feasibility cuts generated are dominated(some feasibility cuts generated earlier are

dominated by cuts generated later on). In other words, the traditional L-shaped method

generates far more than the necessary number of feasibility cuts and adds all of them into

the master problem. A second reason is that it only can generate one cut at each iteration

and thus takes many iterations to obtain these cuts. A third reason is that it needs to solve
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Figure 8: Comparison of Total Cuts

o(= |Ξ|) feasibility subproblems at each iteration to obtain the feasibility cut. In contrast,

our feasibility constraints (4.63) do not need to be obtained by solving any feasibility problem

and are all known beforehand.

(4) Finally, as the problems become larger, all algorithms need more cuts and iterations

to obtain the optimal solutions. However, the rate of increase for algorithms with our

feasibility constraints (4.63) is significantly smaller. Figure 8 illustrates this point further.

In the figure, single-cut method represents the traditional single-cut L-shaped method.

In conclusion, Algorithm 6 (double-cut and feasibility constraints (4.63) as needed per

iteration) appears to be the best among these six algorithms, especially for the large prob-

lems. Not only does it eliminate dominated constraints, but it also needs less time, fewer

iterations and a fewer total number of feasibility and optimality cuts to solve the NP-hard

stochastic problem. The results in Table 19 clearly support this conclusion: compared with

other methods, the number of large instance won by Algorithm 6 is significantly larger.
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5.0 CONCLUSIONS AND FUTURE RESEARCH

5.1 CONCLUSION

This research has addressed a stochastic location-production-distribution problem for rem-

nant inventory supply chains through three models. The development builds upon and gen-

eralizes a model first introduced by Adelman and Nemhauser [2, 3], who addressed a related

problem with a single supply and a single demand location in the context of the fiber-optic

cable industry. Our problem is motivated by an application in the steel industry where the

problem environment is significantly more complex. We consider positive cutting costs, non-

zero scrap values, the presence of multiple facilities and multiple sources of demand, fixed

facility costs, capacity limits on facilities and the selection of facilities to operate.

The first model addresses only production and distribution. A linear programming model

is developed, and several new theoretical results are provided to develop an operating policy

that can be used in a stochastic and dynamic environment such as the one underlying the

problem that motivated this research. Results from a simulation study indicate that this

policy performs significantly better than other plausible heuristic procedures.

In the second model, we integrate the capacitated facility location problem into the

previous model. We show that the general policy developed in the previous model to manage

the cost under a dynamic environment still applies to this new situation. We also develop

an alternative method to generate feasibility constraints that are non-dominated and, in the

worst case, polynomially bounded in number. The feasibility cuts in Benders’ decomposition

are replaced by these constraints. We prove that these constraints ensure the feasibility of

the second-stage problem, while not eliminating any feasible points. We also conduct a

comparative polyhedral study to show that the new feasibility constraints have the same
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convex hull as that of Benders’ feasibility cuts. Finally, computational results show that our

new algorithm based on the feasibility constraints is much more efficient than the traditional

Benders’ decomposition algorithm.

In the third model, we consider the most general case: a stochastic problem combining

facility location, production, and distribution. We use the L-shaped method to solve this

problem. In order to improve this method, we present a new way to generate optimality

cuts and a new method to obtain all feasibility constraints without solving the feasibility

problem. We find that these optimality cuts generate better bounds for the master problem.

We also conclude that these new feasibility constraints are much more effective, by showing

that compared with the traditional L-shaped feasibility cuts, the total number of these new

feasibility constraints is polynomially bounded. Also, there are no dominated feasibility

constraints, and while more feasibility constraints might be added into the master problem

per iteration, the total number of these required to reach optimality is smaller. Based on

these new optimality and feasibility constraints, we develop the double-cut L-shaped method.

Computational tests show that our double-cut L-shaped method with feasibility cuts when

needed takes fewer iterations, adds fewer cuts in total, and obtains optimal solutions in

less time. Furthermore, from the computational results in Chapters 3 and 4, we conclude

that our new feasibility constraint is robust for the different methodologies. It is especially

effective for the stochastic problem and it performs better when the problem becomes larger.

5.2 EXTENSIONS AND FUTURE WORK

In future research, we could first extend our master models to consider the two-dimensional

cutting problem. Such problems arise in industries such as glass, copper, paper, etc. For

this model, we would have to find an intelligent way to measure the inherent value for any

remnant area in order to develop a price-directed policy. In the two-dimensional problem,

the inherent value for a remnant may not simply be the dual value for a single variable. We

might need to combine some dual values to obtain the inherent value for a remnant area.

Therefore, it is likely to be a more complicated extension.
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Second, in this research, we do not integrate inventory control directly into the models.

Instead, we considered a heuristic approach to this problem. This could be a shortcoming

since the inherent value policy in the master models does not consider the inventory holding

costs. In practice, for some industries, the inventory holding costs may not be trivial so

that this cannot be ignored; future research should aim at integrating the inventory control

problem into the model. Finding a suitable price-directed policy for this more complicated

model will be a challenge. This is because in the new model, the inherent values for the

different sizes should somehow reflect the change in the different inventory levels in stock.

For example, when the inventory for one remnant is going up, its inherent value should be

going down. Also, we assume in this research that the raw suppliers are integrated into the

distribution centers. This may not be the case, and future research could separate the raw

suppliers from the distribution centers.

Third, in the stochastic programming model in this research, we have separated the

optimal scenarios from those that are not optimal. However, we only divide them into

two groups to generate two optimality cuts. We believe a cutting-plane technique could be

applied to build more effective optimality cuts. Also, among all scenarios, there may be more

than two different characteristics. In other words, we can divide them into more different

groups to build more powerful optimality cuts. For example, we can study the properties of

the polyhedra for optimality problem SSP, then we can aggregate the scenarios with similar

properties into a group to generate a cut. However, this needs to be studied further. Also,

the double cut method should be tested further on general stochastic programming problems

to see how it performs relating to the single and multi-cut.

Finally, because the mixed-integer programs in this research are NP-hard, it could be

worth developing heuristics for the location model and the stochastic problem to decide

which facilities to open, and to obtain inherent value for remnants at each facility. This

is because for NP-hard problems, it is still quite time-consuming for methods like Benders’

decomposition and the L-shaped method to solve the problem. It is also a nontrivial task to

formulate and solve the perturbation to obtain the non-degenerate inherent value. In addition

to developing these heuristics, we perform a computational study to examine whether the

inherent values obtained from the heuristics are close to the optimal dual prices.
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APPENDIX A

COMPUTATIONAL RESULTS FOR LP MODEL

Table 20: Performance of Three Policies and Bound Gap between Proposition 11 and Optimal

Values

Set Instance Our Smallest Fit Multi-criteria Bound

Policy Max Min Avg Max Min Avg Gap

1 1.00 1.26 1.25 1.26 1.18 1.18 1.18 6.46%

2 1.00 1.27 1.27 1.27 1.09 1.09 1.09 5.78%

3 1.00 1.45 1.44 1.44 1.17 1.16 1.17 3.29%

4 1.00 1.18 1.18 1.18 1.04 1.04 1.04 2.15%

Small 5 1.00 1.33 1.32 1.33 1.20 1.19 1.19 10.76%

6 1.00 1.53 1.52 1.53 1.15 1.15 1.15 2.88%

7 1.00 1.55 1.55 1.55 1.20 1.19 1.20 12.04%

8 1.00 1.52 1.51 1.51 1.30 1.29 1.30 7.70%

9 1.00 1.48 1.48 1.48 1.19 1.18 1.19 9.26%

10 1.00 1.33 1.33 1.33 1.14 1.13 1.13 10.67%

Avg 1.00 1.39 1.39 1.39 1.17 1.16 1.16 7.10%
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Table 21: Performance of Three Policies and Bound Gap, Cont.

Set Instance Our Smallest Fit Multi-criteria Bound

Policy Max Min Avg Max Min Avg Gap

1 1.00 1.43 1.42 1.43 1.16 1.16 1.16 13.00%

2 1.00 1.91 1.21 1.78 1.22 1.22 1.22 8.00%

3 1.00 1.68 1.24 1.54 1.58 1.57 1.57 4.99%

4 1.00 1.73 1.18 1.41 1.64 1.64 1.64 6.89%

Medium 5 1.00 1.74 1.31 1.49 1.57 1.57 1.57 5.89%

6 1.00 1.51 1.24 1.40 1.38 1.38 1.38 10.70%

7 1.00 1.88 1.39 1.67 1.20 1.19 1.20 7.60%

8 1.00 1.31 1.31 1.31 1.17 1.17 1.17 8.64%

9 1.00 1.68 1.30 1.52 1.41 1.41 1.41 9.96%

10 1.00 1.48 0.94 1.13 1.38 1.38 1.38 9.22%

Avg 1.00 1.64 1.25 1.47 1.37 1.37 1.37 8.49%

1 1.00 1.98 1.98 1.98 1.74 1.74 1.74 11.65%

2 1.00 1.98 1.31 1.69 1.37 1.36 1.37 12.03%

3 1.00 1.84 1.84 1.84 1.58 1.35 1.50 10.46%

4 1.00 1.68 1.40 1.54 1.73 1.67 1.69 10.86%

Large 5 1.00 1.82 1.56 1.73 1.54 1.54 1.54 8.84%

6 1.00 1.96 1.33 1.70 1.39 1.39 1.39 12.92%

7 1.00 1.70 1.65 1.67 2.20 2.13 2.17 14.93%

8 1.00 1.59 1.35 1.51 1.85 1.85 1.85 10.15%

9 1.00 1.61 1.39 1.54 1.67 1.67 1.67 8.38%

10 1.00 1.95 1.95 1.95 1.64 1.64 1.64 12.94%

Avg 1.00 1.81 1.58 1.72 1.67 1.63 1.66 11.32%
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APPENDIX B

COMPUTATIONAL RESULTS FOR LOCATION MODEL

The tables in Appendix B use

• IT to denote the total number of iterations required by an algorithm to add all feasibility

cuts / constraints before obtaining the optimality.

• TIm to denote the total time for an algorithm to solve the MIP problem.

All other characteristics are as defined in Chapter 3.

For the algorithm that adds all feasibility constraints a priori, AC and IT are not appli-

cable and DC is always 0; for the traditional Benders’ decomposition, AC is always 1 and

IT is always equivalent to TC; for the algorithm that adds feasibility constraints only when

needed, DC is always 0. For these cases, we do not list the results in order to save space.
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Table 22: Performance on Small Location Problems

Inst- All a Priori Benders Cuts When Needed

ance TC TIM TC DC TIM TC AC IT TIM

1 1 0.15 1 0 0.23 1 1 1 0.15

2 1 0.20 1 0 0.40 1 1 1 0.19

3 1 0.44 1 0 0.75 1 1 1 0.42

4 1 0.66 1 0 1.03 1 1 1 0.62

5 1 0.03 1 0 0.08 1 1 1 0.03

6 1 0.07 1 0 0.14 1 1 1 0.07

7 1 0.04 1 0 0.08 1 1 1 0.04

8 1 0.03 1 0 0.05 1 1 1 0.03

9 1 1.73 1 0 2.32 1 1 1 1.55

10 1 0.04 1 0 0.06 1 1 1 0.04

11 1 0.23 1 0 0.46 1 1 1 0.22

12 1 2.07 1 0 2.58 1 1 1 1.77

13 4 0.34 4 0 0.60 4 2 2 0.33

14 5 4.00 6 0 5.62 2 2 1 3.95

15 3 1.34 4 1 2.03 3 1 3 1.20

16 4 2.81 4 0 3.78 2 2 1 2.69

17 2 1.89 1 1 2.28 1 1 1 1.61

18 5 4.93 6 1 6.50 1 1 1 4.72

19 2 1.34 2 0 2.00 2 1 2 1.22

20 4 0.84 4 1 1.47 2 2 1 0.82
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Table 23: Performance on Medium Location Problems

Inst- All a Priori Benders Cuts When Needed

ance TC TIM TC DC TIM TC AC IT TIM

1 5 9.09 5 2 11.21 2 2 1 8.70

2 6 203.98 1 0 241.94 2 2 1 201.71

3 8 239.40 6 1 265.75 5 2.5 2 228.69

4 6 20.67 3 1 24.78 3 3 1 19.39

5 7 602.20 1 0 651.07 2 2 1 572.70

6 7 44.09 5 1 51.41 4 2 2 43.14

7 12 117.77 16 10 174.61 3 1.5 2 58.89

8 10 163.14 16 11 189.42 4 4 1 130.52

9 7 106.94 2 0 118.95 2 2 1 105.97

10 8 220.10 5 1 237.64 4 2 2 216.94

11 10 93.20 13 8 128.07 2 2 1 91.81

12 8 110.36 9 4 152.26 2 2 1 106.80

13 9 30.58 11 6 50.39 2 2 1 32.49

14 6 30.62 6 2 41.30 2 2 1 30.37

15 4 13.81 4 0 17.51 4 2 2 13.67

16 7 81.73 1 0 88.94 1 1 1 79.35

17 4 8.15 19 10.24 10 3 1.5 2 8.00

18 10 46.33 15 9 78.34 3 1.5 2 46.51

19 9 396.62 1 0 427.80 3 3 1 386.70

20 5 36.11 4 2 41.84 2 2 1 35.34
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Table 24: Performance on Large Location Problems

Inst- All a Priori Benders Cuts When Needed

ance TC TIM TC DC TIM TC AC IT TIM

1 21 4473 9 4 4999 5 2.5 2 4418

2 16 2956 1 0 4746 4 4 1 2794

3 14 523 15 11 640 3 1.5 2 337

4 12 367 15 11 411 3 1.5 2 333

5 12 331 8 4 362 3 1.5 2 259

6 17 2230 1 0 1668 1 1 1 1240

7 10 4838 1 0 11040 1 1 1 4441

8 12 349 27 19 424 4 1.33 3 367

9 8 881 1 0 926 2 2 1 843

10 13 8212 1 0 9775 2 2 1 7632

11 13 1463 2 0 1545 2 1 2 1411

12 11 3046 1 0 4748 2 2 1 2936

13 18 4599 10 4 4572 5 2.5 2 4454

14 13 3966 5 2 4306 2 2 1 3870

15 13 3944 5 2 4155 4 1.33 3 3859

16 12 3546 18 12 4101 4 1.33 3 3469

17 14 2134 5 1 2341 4 1.33 3 2083

18 17 8179 1 0 9111 2 2 1 7130

19 10 3721 1 0 4527 2 2 1 3723

20 10 493 6 3 637 2 2 1 514
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APPENDIX C

COMPUTATIONS FOR STOCHASTIC MODEL

Note that in the tables of this appendix, we test the following six algorithms:

• Single-cut L-shaped method: add single optimality cut and single traditional L-shaped

feasibility cut per iteration.

• Double-cut L-shaped method: add double optimality cuts and single traditional L-shaped

feasibility cut per iteration.

• Algorithm 5: add double optimality cuts per iteration and all feasibility constraints (4.63)

a priori.

• Algorithm 6: add double optimality cuts and feasibility constraints (4.63) when needed

per iteration.

• Algorithm 7: add single optimality cut per iteration and all feasibility constraints (4.63)

a priori.

• Algorithm 8: add single optimality cut and feasibility constraints (4.63) when needed

per iteration.
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Table 25: Performance of Algorithms for Small Stochastic Problems

Instance Single-Cut Method Double-Cut Method

L-shaped All Fea Fea When L-shaped All Fea Fea When
Set

Fea a priori Needed Fea a priori Needed

1 12.26 2.11 2.44 10.46 2.63 3.00

2 14.39 2.63 3.33 11.07 2.99 3.10

3 16.05 3.52 3.19 12.11 3.43 3.20

4 19.65 4.84 4.60 17.99 4.16 4.29

5 28.35 4.61 4.56 22.40 6.11 5.83

6 13.20 4.04 3.88 13.89 2.43 2.38

7 16.03 5.16 4.60 15.87 3.06 3.01

8 8.92 3.55 3.21 7.80 6.43 6.15

9 22.50 3.54 3.38 15.63 4.71 3.85

10 17.07 5.91 6.36 11.78 4.45 4.84

11 11.68 3.19 3.75 11.55 2.08 2.17

12 11.29 3.01 3.85 9.46 3.38 3.55

13 12.53 3.01 4.21 10.64 3.39 3.51

14 6.71 1.32 1.31 6.02 1.46 1.40

15 4.20 1.91 2.53 3.93 2.37 2.42

16 15.20 3.34 4.31 12.76 3.64 4.49

17 9.31 1.23 3.21 7.65 1.32 2.52

18 14.97 5.87 6.76 11.43 4.72 5.30

19 13.87 4.22 6.23 10.54 4.89 4.50

20 36.84 5.21 4.95 31.56 3.31 3.29
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Table 26: Performance of Algorithms for Medium Stochastic Problems

Instance Single-Cut Method Double-Cut Method

L-shaped All Fea Fea When L-shaped All Fea Fea When
Set

Fea a priori Needed Fea a priori Needed

1 369.15 186.54 162.54 168.13 135.32 102.45

2 153.98 22.53 22.99 177.15 34.18 25.69

3 237.43 43.40 40.52 251.30 50.71 46.41

4 2737.00 611.21 561.54 1099.37 293.86 289.02

5 807.11 312.23 287.46 259.37 128.75 118.16

6 696.27 276.54 288.76 453.69 184.24 186.75

7 798.43 322.83 286.53 543.13 215.87 208.21

8 673.65 217.15 204.93 349.10 163.35 134.35

9 554.19 150.21 143.83 434.87 240.68 204.22

10 1124.95 172.96 158.71 1393.07 214.90 200.59

11 478.46 141.98 133.17 315.04 107.90 98.91

12 1105.32 368.32 354.93 732.76 211.78 183.08

13 Unsolved 423.96 434.97 Unsolved 360.16 364.24

14 356.70 142.69 135.63 365.32 151.59 137.00

15 245.72 122.49 111.63 201.63 86.73 71.65

16 547.04 226.52 232.84 385.43 180.40 184.33

17 424.32 152.75 131.31 279.88 108.20 96.91

18 1370.11 498.67 432.33 742.92 263.50 240.13

19 540.34 230.53 129.55 428.42 174.63 78.93

20 1605.76 602.11 432.35 1258.82 394.65 277.05
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Table 27: Performance of Algorithms for Large Stochastic Problems

Instance Single-Cut Method Double-Cut Method

L-shaped All Fea Fea When L-shaped All Fea Fea When
Set

Fea a priori Needed Fea a priori Needed

1 6734.97 1411.31 1123.55 4365.83 726.91 577.48

2 960.69 400.11 392.39 1237.43 414.10 423.68

3 500.64 184.70 168.36 323.70 119.89 106.64

4 1581.51 464.50 450.35 1286.74 478.83 408.64

5 5022.35 1022.45 767.73 3117.63 674.82 568.90

6 1273.04 559.55 556.06 943.34 430.39 406.30

7 718.86 178.95 171.95 823.54 228.27 214.82

8 1554.48 278.54 283.60 1134.64 208.12 213.24

9 2120.41 317.23 321.50 1506.92 268.27 183.28

10 6460.66 921.56 790.43 2811.64 547.04 404.62

11 754.68 197.71 113.95 956.14 202.25 158.28

12 Unsolved 458.72 380.34 Unsolved 376.56 297.65

13 3575.85 786.07 726.93 2690.26 484.16 417.58

14 1602.82 359.17 343.60 729.57 239.22 173.64

15 1852.18 367.89 361.18 1562.43 283.00 209.20

16 2142.29 432.32 412.43 1838.48 376.57 327.74

17 2276.13 845.69 764.85 1698.62 515.97 431.72

18 4546.39 720.77 559.17 2974.32 403.45 286.52

19 Unsolved 958.50 881.11 Unsolved 603.79 543.12

20 1058.69 359.42 313.73 874.38 202.89 188.28
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APPENDIX D

NOMENCLATURE

D.1 NOTATION FOR DETERMINISTIC PROBLEM

D.1.1 Greek Letters

δi — Cost per cut at facility i ∈ I; δi > 0.

λjk — Mean demand rate at location j ∈ J for product of size k ∈ Dj.

σi — Unit salvage value of product at facility i ∈ I; σi > 0.

D.1.2 Roman Letters

aih — Cost of one unit of raw stock of size h ∈ Si at location i ∈ I.

cijk — Cost of transporting a single unit of size k ∈ Dj from location i ∈ I to location j ∈ J .

Dj — Set of all sizes that are demanded at demand location j ∈ J ; define D =
⋃

j∈J Dj.

fi — Equivalent uniform daily fixed cost of operating a facility at location i ∈ I.

i — Facility location.

I — Set of facility locations.

j — Demand location.

J — Set of demand locations.

Ki — Set of all possible sizes, including scrap sizes (we refer to sizes that are smaller than

the smallest demanded size as scrap sizes), that could be generated at facility i (we include

the size 0 in this set); define K =
⋃

i∈I Ki.
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Mi — Total daily processing capacity for facility i ∈ I.

rih — Rate of replenishment of raw units of size h ∈ Si at facility location i ∈ I; define

rih = 0 if h ∈ (Ki\Si).

siu — Rate at which size u is scrapped at facility location i ∈ I. Define siu = 0 if the size u

cannot be generated at location i.

Si ⊆ Ki — Set of all raw stock sizes that are processed at facility location i ∈ I; define

S =
⋃

i∈I Si.

xijk — Rate of shipment of units of size k ∈ Dj from facility location i ∈ I to demand

location j ∈ J .

yi
m,n — Rate of generation at facility location i ∈ I, of units of size (m−n) that are obtained

by cutting size m(≥ n) down to size n.

zi — Binary variable to decide whether facility i should be operated or not; zi = 1, if facility

i ∈ I is opened; zi = 0, otherwise.

D.1.3 Abbreviation

AC — The average number of feasibility cuts added to the master problem at each iteration.

ITE — The total number of iterations required to add all feasibility cuts required by the

algorithm.

DC — The total number of dominated feasibility cuts added to the master problem before

reaching optimality.

TC — The total number of feasibility cuts generated and added to the master problem before

reaching optimality.

TIM — The total time (in seconds) to solve the problem.

D.2 NEW NOTATION FOR STOCHASTIC PROBLEM

D.2.1 Greek Letters

δi(ξ) — Cost per cut at facility i ∈ I under scenario ξ ∈ Ξ; δi > 0.

λjk(ξ) — Demand rate at location j ∈ J for size k ∈ Dj(ξ) under scenario ξ.
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ξ ∈ Ξ — Possible scenario and Ξ is the set of all scenarios.

σi(ξ) — Unit salvage value of product at facility i ∈ I under scenario ξ ∈ Ξ; σi > 0.

D.2.2 Roman Letters

aih(ξ) — Cost of one unit of raw stock of size h ∈ Si(ξ) at facility location i ∈ I under

scenario ξ ∈ Ξ.

cijk(ξ) — Cost of transporting a single unit of size k ∈ Dj(ξ) from facility location i ∈ I to

demand location j ∈ J under scenario ξ ∈ Ξ.

Dj(ξ) — Set of all sizes that are demanded at demand location j ∈ J under scenario ξ;

define D =
⋃

j∈J,ξ∈Ξ Dj(ξ).

Ki(ξ) — Set of all possible sizes, including scrap sizes, that could be generated at facility

i ∈ I under scenario ξ (we include the size 0 in this set); define K =
⋃

i∈I,ξ∈Ξ Ki(ξ).

Mi(ξ) — Total open production capacity for facility i ∈ I per unit time under scenario ξ ∈ Ξ.

p(ξ) — Probability of scenario ξ.

rih(ξ) — Rate of replenishment of raw units of size h ∈ Si(ξ) at facility location i ∈ I under

scenario ξ ∈ Ξ; define rih(ξ) = 0 if h ∈ (Ki(ξ)\Si(ξ)) under scenario ξ ∈ Ξ.

siu(ξ) — Rate at which size u is scrapped at facility location i ∈ I; define siu(ξ) = 0 if the

size u cannot be generated at location i under scenario ξ ∈ Ξ.

Si(ξ) — Set of all raw stock sizes that are processed at facility location i ∈ I under scenario

ξ; define S =
⋃

i∈I,ξ∈Ξ Si(ξ).

xijk(ξ) — Rate of shipment of units of size k ∈ Dj(ξ) from facility location i ∈ I to demand

location j ∈ J under scenario ξ ∈ Ξ.

yi
m,n(ξ) — Rate of generation at facility location i ∈ I of units of size (m − n) that are

obtained by cutting size m down to size n under scenario ξ ∈ Ξ.

D.2.3 Abbreviation

FC — The total number of feasibility cuts generated and added to the master problem before

reaching optimality.

FIT — The total number of iterations required to add all feasibility cuts required by the
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algorithm.

OC — The total number of optimality cuts generated and added to the master problem

before reaching optimality.

OIT — The total number of iterations required to add all optimality cuts required by one

algorithm.
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