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MEASURING INTER-PARTICLE FORCES AT AN INTERFACE WITH

OPTICAL TWEEZERS AND A LONG WORKING-DISTANCE OBJECTIVE

LENS

Daniel R. McAdams, M.S.

University of Pittsburgh, 2009

An optical tweezer set up is used to measure the forces between polystyrene microspheres on

the interface between mineral oil and water. The trap is controlled through Matlab Simulink

and dSpace ControlDesk. The forces were found to follow a combination of Coulomb’s law

and dipole-dipole interaction, but for much less charge than is specified by the manufacturer

to be on the surface of the microspheres. There is also a value given for the effective viscosity

of the interface. A discussion on the design and motivation for using a Bessel beam trap can

be found in the appendix.
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1.0 INTRODUCTION

Photons have momentum. When they interact with matter through reflection, refraction

and absorption, they transfer momentum to the object. The transfer of momentum results

in a force.

The term “optical trap” or “optical tweezer” refers to how a tightly focused laser beam

can be used to manipulate a small particle in two dimensions, or confine an object in a

three dimensional potential well. This was first demonstrated by Arthur Ashkin in 1970 [4].

Because the trapping potential acts like a spring, optical traps can be used to measure small

forces acting on microparticles (see Figure 1).

There are two major methods to measure forces in the piconewton to micronewton range:

optical tweezers and atomic force microscopy. The major advantage of the optical tweezer

over the other major micromanipulation technique, atomic force microscopy (AFM), is that

the object under study does not come into contact with the measurement device. For example

the organelles of a cell can be manipulated while the cell is still alive. If an object cannot

be trapped directly, it can still be studied with optical tweezers if a suitable microparticle is

attached to the object to act as a handle. Sometimes these handles can interact with each

other if they have charge or are chemically active with respect to the fluids in which they

are suspended. The trap in this thesis experiment can measure down to the femptonewton

range. The reason for this will be explained below.

Colloid science is the study of the interaction between small solid particles and a liquid

medium. Colloids are used in many industries, and their stability and other properties are

integral to a variety of processes. Fundamental questions about the behavior of certain types

of colloids under different conditions remain today. New experiments help refine the theory

describing colloids in these situations. The forces between colloidal particles are important in
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Figure 1: Light interacts with a colloidal particle in such a way to cause a restoring force

toward the regions of highest intensity gradient [16].
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order to improve models and understand some yet-to-be explained phenomena. Information

about these forces can be applied to other sciences, e.g. where ordered arrays of particles are

needed in photonic crystals. Colloids are also a convenient way to model atomic systems.

It is possible to monitor phase transitions on a longer timescale, and in a more controllable

manner in colloids than it is in atomic systems [3].

This thesis will discuss the interaction forces that small polystyrene spheres experience

when they are adsorbed to the interface between oil and water. The data and the methods

with which the data is collected will help answer questions about colloid science. The

various forces on the polystyrene beads (van der Waals, capillary, Coulomb and dipole-

dipole repulsion) will be measured using a traditional Gaussian beam-based trap, and the

use of a much less common Bessel beam trap will be discussed as future work. The optical

trap is a suitable measurement tool because optical forces are on the order of fempto- to

nano-newtons, which is the range of magnitudes for the inter-particle forces being measured.

The forces between the beads will displace them in the traps. The amount of displacement

is related to the force by the trap stiffness, k. Light scattered by the bead is related to the

displacement. Hooke’s Law can be used to calculate the force for a given trap stiffness. The

stiffness of the trap can be found using the equipartition method as discussed below.

In the experiment, polystyrene beads will be placed on the interface between oil and

water, approximately confining them to two dimensions. The force of one bead acting on

another will be measured using two optical traps, one for each bead. The interface on which

the beads in this experiment lie is formed by placing water and oil in a well (see Figure 2).

Information about the stabilization of colloids by use of small particles can be taken from

the experiments discussed in this thesis. This thesis will also add to the body of knowledge

available about interfaces and 2D microsphere interaction. The viscosity and various other

properties of interfaces are unknown, and normally assumed in the interpretation of many

experiments. A value for the effective interfacial viscosity will be given in the Results section.

The drag force on a spherical particle at an interface is not known. Because the forces the

microspheres exert on each other are highly dependent on the nature of the interfacing fluids

and the particles themselves, having accurate knowledge about two of the three substances

can provide information about the remaining substance through measurement with an optical

3



Figure 2: Model of the well used in the experiment (5 mm in diameter).
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trap [12]. It may be possible to determine minute variations in surface charge or electrolyte

concentration by measuring the forces two microspheres exert on each other.

Normally oil immersion lenses are used for optical trapping experiments because they

have a higher numerical aperture (NA). Numerical aperture is a figure describing how wide

of an angle of light rays that a lens can collect. A higher NA provides a stronger intensity

gradient at the focus as light converges from a greater angle. Unfortunately, oil immersion

lenses cannot reach deep into a sample; a long working distance objective can. It may be

possible to negate the disadvantages of a long working distance lens (being limited to weaker,

2D trapping because of lower NA), by using a Bessel beam as the trap.

1.1 BACKGROUND AND MOTIVATION

There have been several advances and additions of functionality to optical trapping since

Ashkin’s discovery in 1970 that allow for the measurement of the pair potential/force in this

research. These advances were slowly applied to the questions of colloid science.

There are two forces at work in an optical trap, the scattering force and the gradient

force (see Figure 1. The scattering force pushes the bead along the optical axis due to

photons being reflected, and dominates the gradient force at low NA. The gradient force

pulls the bead toward the area of the beam with the highest intensity gradient (the center

in a Gaussian beam). The gradient force acts in a radial direction from the focus [5]. The

scattering force acting along the beam axis.

The field of optical trapping started out with only lateral trapping capability. In order

to stably trap an object in three dimensions, two counter-propagating beams were used. In

1986 Ashkin, Dziedzic, et al. used a high enough NA lens to increase the axial intensity

gradient, increasing the restoring force toward the focus [1]. In the ray optics regime (λ �

diameter) only lateral 2D trapping is possible if the convergence angle of the light is less

than ≈ 30degrees [5]. If the particle is moving toward the focus along the optical axis, it has

the gradient force pulling it toward the focus and the scattering force pushing it forward.

If the bead is further down the optical axis it is being pulled back toward the focus by the

5



Figure 3: The higher the numerical aperture, the greater the angle of rays collected by the

lens.

gradient force and is being pushed away by the scattering force. The force exerted on a

particle by a trap is independent of particle radius, r, in the ray optics regime, and varies as

r3 in the Rayleigh regime (λ� diameter) [5].

At first only image analysis of photographs and video images could be used to determine

the position of a trapped particle. In order to move beyond a microscope’s resolution limit,

a new position detection system needed to be developed. Any external force acting on a

microparticle in an optical trap, pushes the particle out of its natural position in the center

of the beam. This means that the change in light scattering due to the translation of the

particle can be measured and used to accurately determine the amount of displacement and

achieve sensing at bandwidths above video sample rates. Then through the knowledge of the

stiffness of the spring-like characteristic of the potential created by the laser, the force that

caused the particle to be displaced can be found. Ashkin used a photodiode for feedback

stabilization of optically levitated particles in 1977 [7]. This method involved trying to keep

a trapped particle at the same height above the microscope objective. The signal to the

6



photodiode varied with the height of the particle. Two dimensional displacement was first

measured with quadrant photodiodes in 1992 [25].

When Ashkin was using a single trap to levitate a microparticle, technically a force

measurement was being made. When the particle was motionless, it was known that the

force of gravity was balanced with the force of radiation pressure against the bead. The first

force measurement made on a force exerted by something under test, i.e. not some force

applied outside of the experimental set-up with magnets, gravity, etc. was made in 1989 by

equating the Stokes drag on a trapped bacteria with the force necessary to break the bacteria

out of the trap, the “escape force” [39]. This is a popular method of calibration.

1.1.1 Colloidal Experiments

Ten years after the invention of optical tweezing, Pawel Pieranski reported the first micro-

scopic observation of microspheres arranged in a lattice on an interface in 1980. The interface

was between water and air. The particles were found to create a triangular crystal lattice

in some cases, and disordered arrays in others [32]. He was able to use a regular microscope

objective (instead of a long-working distance objective) by removing the water until there

was only a 3 micron thick layer between the coverslip and the air. In the disordered structure

he observed longer interaction distances, greater than 10 microns for beads that were only

245 nm in diameter. The interactions he observed were repulsive.

In 1994, John C. Crocker and David G. Grier were the first to apply laser tweezers

to the problem of measuring colloidal interaction potentials. They did not use the lasers

as measurement devices though, and simply used them to position the beads in bulk at

a specified distance from each other. Then by turning off the lasers, video observations

could be made of the beads’ reactions to each other at different separations [11]. Force

measurements could be deduced from the movement of the beads by use of Stokes drag and

diffusion. The beads are spherical and have a known radius. Knowledge of the viscosity of

the water can then be used for interaction force determination. They later found evidence

of a long-range attractive potential when the microspheres were located between charged

glass walls (within 25 microns for 1 micron diameter beads), similar to many experimental

7



set-ups used to make measurements on colloids [13]. The experiment in this thesis does not

place particles between charged panes of glass, and therefore should not see evidence of a

long-range attractive potential.

The first use of laser tweezers to measure forces between particles on an interface was by

Aveyard et al. in 2002. They brought two beads together with a time-shared trap until the

repulsive force between the beads forced one out of the trap. In a time-shared trap a single

laser is scanned from trap position to trap position, with a repetition rate fast enough that the

particles do not have time to wander from the trap due to Brownian motion. By performing

this experiment at different powers it is possible to create a bead-to-bead separation distance

vs. interaction force graph [33]. They used a mixture of decane and undecane as the “oil” to

match the viscosity of water, eliminating the need to figure out how much of the bead was

in the water, and how much was in the oil. The “effective viscosity” of the interface remains

a question.

Sickert and Rondelez found the shear viscosity of Langmuir monolayers of surfactants

on an air-water interface by measuring the diffusion of a very dilute solution of polystyrene

microspheres [38].

In 2008 Bum Jun Park published a study on the interaction forces between colloidal

particles on an oil-water interface [9]. The effects of different concentrations of salt, i.e. ions,

and surfactant, on the forces, were found using multiple optical traps to hold beads still

relative to each other. Time-dependence of the interactions was observed.
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2.0 OPTICAL TRAPPING THEORY AND SET UP

In this chapter, the basic optical forces will be explained. The experimental set-up will be

given, making it clear what goes into determining the trap dynamics. In order to quantify

the interaction force between the beads, the trap must be actuated, the displacement of the

beads from the trap must be sensed, and these instruments must be calibrated.

2.1 OPTICAL TWEEZER THEORY

Refraction of light transfers momentum from photons to the objects with which they in-

teract. This force is large enough to counteract forces due to gravity, viscous drag, etc.

on a microparticle. It is important for the beam to have a high intensity gradient if three

dimensional trapping is desired. This can be obtained by filling the input aperture of the

trap with the laser enough that the convergence angle is high while using a high NA lens

[5]. The convergence angle is the angle the light makes with the optical axis as it reaches

the focus (see Figure 3).

When a photon encounters an object, it can be either refracted or absorbed. Conservation

of momentum demands that the object interacting with the light has its own momentum

changed if the momentum of the photon is changed. The momentum, p, of a photon is:

p =
h[J · s]
λ[m]

, (2.1)

where λ is the wavelength of light and h is Planck’s constant. The force due to the photons

is their rate of energy transfer (power) divided by their velocity:

F =
Pnk̂

c
(2.2)
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where P is the incident power, n is the refractive index of the propagating medium, and k̂

is the vector pointing in the direction of the beam [44]. It is shown below that a laser beam

can provide enough photons to move small objects if some of this momentum is transferred

to the object through interaction. If the light goes through the particle without refracting,

reflecting, or absorbing, there is no change in momentum, and no force generated.

For example, consider a red HeNe laser (λ = 633nm). It has a power, P = 5mW. The

maximum force it could exert on a bead if all of the momentum were transferred from the

photons to the bead:

F =
(5 · 10−3J/s)(1.33)(1)

3 · 108 m/s
(2.3)

F = 1.6667 · 10−11J/m = 16.667 pN (2.4)

The n chosen for the calculation is nwater = 1.33. A focused laser beam causes two forces

on a dielectric sphere, a scattering force, and a gradient force. Of the momentum that is

transferred, some goes into creating the scattering force and some goes into creating the

gradient force, so the force on the bead in any one direction is less than this maximum value.

The weight of the bead is on the order of fempto-newtons, three orders of magnitude lower

than this maximum possible force generation. The amount of force per unit of input power

is known as the trapping efficiency, q.

q =
Ftrap
nPlaser

c

(2.5)

where n is the relative refractive index.

In the research, the laser beam will travel through 5 different media being refracted and

reflected along the way. The beam starts in air (n = 1.00), then travels through the glass

of the coverslip (n = 1.52), into the layer of water (n = 1.33), into the polystyrene bead

(n = 1.59), to the mineral oil (n = 1.47), and finally back out into air. The values given

are the real parts of the refractive index of the five materials. The imaginary parts of the

refractive indices are zero for all five.

If the particles have a higher index of refraction than the surrounding medium, they are

attracted to the beam, while particles with lower respective refractive indices are pushed out
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Figure 4: The different refractive indices that the beam encounters as it makes its way

through the sample.
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from the beam. The refractive index of both water and oil are less than polystyrene, so the

qualitative effect will be the same as if the microspheres were in bulk water or bulk oil. This

is important to the experiment because different particles react to the beam differently.

2.1.1 Mie Scattering

The fundamental way in which the photons interact with matter depends on the character-

istic size of the material. There are two limiting cases, λ � d and λ � d, where d is the

dimension of the object along which the light is interacting.

Mie scattering includes all light scattering, of which Rayleigh scattering is a special case

[23]. Geometrical (ray) optics is based on the assumption that all the pertinent dimensions

of the materials that the light is interacting with are large compared to the wavelength

(λ� d)[26].

The force exerted on a bead is dependent not only on the power of the beam, but also the

relationship between the laser wavelength and the size of the bead. When the wavelength

matches a surface wave resonance, it takes more laser power to apply the same trapping

force [6].

Because the particles in this experiment are 2 microns in diameter, neither the ray optics

nor the Rayleigh regime explicitly applies, but it has been shown that single beam gradient

force traps are stable in the transition regime between Rayleigh and Mie scattering [1].The

particles used in this experiment are in the transition region between the Mie and Rayleigh

regimes. The light scattering can be described by the generalized Lorenz-Mie theory (GLMT)

[46].

In Figure 5, there is an explanation of the three cases of relative bead/beam focus posi-

tion in the ray-optics regime. The vector force exerted on the bead is equal to the difference

between the incident momentum vector, and the sum of momentum vectors from all the

scattered light coming out of the bead. Most of the momentum transfer comes from the

change in direction of the emergent rays [1]. This explains why the resultant force matches

the opposite direction of the refraction of the emergent rays.
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Figure 5: If objective lens has a high enough NA, the bead always feels a force restoring it

to the focus of the beam. a.) Shows that a bead beyond the focus of the beam, is pulled

backward. b.) Shows that a bead centered behind the focus is pushed forward. c.) Shows

that a bead that is to the right of the focus, is pushed to the left [45].
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It is valid to use ray tracing-geometric optics when the value of a dimensionless size pa-

rameter, β is greater than 100: [44]

β =
2πn2R

λ
(2.6)

where n2 is the index of refraction of the liquid, R is the radius of the microsphere and

lambda is the wavelength of laser light in a vacuum. In the case of this experiment, β is

about 8. The ray optics method of determining the forces is within a factor of 2 around this

range of β values [44].
2π(1.33) · 10−6

1.064 · 10−6
= 7.85 (2.7)

2.1.2 Optical Trap set-up

The optical trap set up can be seen in Figure 6. A Zeiss Axiovert 200 inverted microscope

acts to image the particles and collect light to be analyzed. The fast-steering mirror (FSM)

used to control the location of the beams is an FSM-300 from Newport. The laser used to

create the trap is a Compass 1064-2500 MN diode-pumped Continuous Wave IR laser from

Coherent. The wavelength is 1064 nm. This wavelength was chosen because it does not do

as much damage to biological samples which will be used in future experiments.

The beam from the laser comes out with a divergence that can be accounted for to provide

a collimated beam. To counteract the divergence and expand the beam, a telescope is placed

a few centimeters beyond the laser. A half-wave plate is used to adjust the polarization of

the beam. The beam must have a 45 degree orientation so that each beam is of equal

intensity after the polarizing beamsplitter. Actually, because the mirror on the FSM has a

lower reflectivity in IR, the half-wave plate can actually adjust the polarization so that both

beams have the same intensity at the image plane. This can be determined with a power

meter.

The half wave plate at the beginning of the optical train determines how much power goes

to the stationary mirror and the FSM. The wave plate shifts the polarization of the laser light

by adding different phase delays to different incoming polarizations. It has two axes, a slow

and a fast axis. By placing the wave plate in a rotational mount, it is possible to change the
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angle at which the two axes are oriented with respect to the incoming light. This allows for

the outgoing light to have a continuum of polarizations from completely vertically polarized

to completely horizontally polarized and anywhere in between. The polarizing beam-splitter

further down the optical train splits the light according to polarization, deflecting vertically

polarized light and allowing horizontally polarized light to pass through. The response of

the QPD is heavily dependent on the half-wave plate position. If there is more power going

to the vertically polarized beam (FSM) then there is a large response, but if most of the

power is in the stationary beam, very little signal is found from scanning the FSM beam

across a microsphere.

The beam is then raised to the level of the entrance to the microscope with a periscope.

After the periscope, the beam is divided by a polarizing beamsplitting cube. One beam

is directed to the FSM while the other beam is directed to the stationary gimbal-mounted

mirror. The FSM steers the beam that will control the moveable bead. The gimbal mounted

mirror will hold a reference bead steady. Now both beams are recombined by another

polarizing beamsplitter. This “double” beam is sent through another lens.

There are reasons for the specific spacings between each lens and mirror in the system.

For example, it is important for the FSM and stationary mirror to be imaged to the entrance

aperture of the microscope objective, so that the tilt of the mirror only changes the angle of

the light incident on the microscope objective, not the position. This means that the beam

will only translate, and not change in angle at the specimen plane.
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Figure 6: Optical Tweezer Setup with Gaussian beam.
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Viscosity has been found to decrease with increasing laser power as the sample heats

up because the particles absorb some energy and transfer it to the surrounding liquid [2].

In Bishop et al. they report a decrease in viscosity after 0.1 W at the sample, but this

is significantly higher than the power at the sample in this experiment (∼ 2 mW). The

Gaussian trap experimental set up takes up about 12 square feet on an optical table. This

could probably be optimized to about 10 square feet. The part where the beam comes up

and gets reflected to the QPD is shown in Figure 9. Figure 7 shows the variables that are

measured in the experiment. According to Crocker and Grier, the trapped particles do not

appreciably heat up (less than 0.1 K for 30 nm diameter spheres) because the light is not

strongly absorbed and water carries heat away quickly [11]. This does not match with the

fact that the interface flow increases significantly when the laser is turned on.

The equation of motion for the bead in the trap:

mü+ cu̇+ ku = 0 (2.8)

where m is the mass of the bead, c is the damping due to the viscosity of the medium, and

k is the stiffness of the trap (u=x-z). The variables in the system include u, the distance the

bead is from the center of the trap, z, the distance the trap is from a reference point, and x,

the absolute position of the bead with reference to the microscope. The term u is necessary

because the spring force is with respect to how far the bead is from the center of the trap,

but the damping from the water occurs no matter where the bead is.

In this case, the damper is the Stokes drag of oil and water and other forces caused by

the interface between oil and water. The equation for Stokes drag of a sphere in bulk:

F = 6πvµR (2.9)

where v is the velocity of the particle with respect to the fluid, µ is the viscosity of the fluid

and R is the radius of the particle. This equation is not explicitly valid for a bead on the

interface because the effective viscosity of the interface is not known. Also, the bead could

potentially be rolling, again changing the concept of “viscosity”. Depending on where the

bead sits on this interface (i.e. how much surface area is in the water or the oil) changes the

damping properties of the system.
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Figure 7: Schematic of the variables used to calculate the force between the beads.
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Figure 8: Free body diagram of forces on bead. The equation of motion can be derived from

this.
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A dichroic mirror reflects the IR light through an LD Plan Neofluar 63x objective (NA

0.75) to the specimen. The objective has a corrective collar that allows correction for coverslip

thickness. The only reason a higher NA would be useful is for the collection of light onto the

QPD. The light proceeds to be collected by a condenser (NA 0.55). Another dichroic mirror

reflects the laser light to another polarizing beam splitting cube. The beam corresponding to

the stationary bead is reflected and blocked. The beam corresponding to the moveable bead

is sent through a collimating lens. This beam is then analyzed using a Dual Axis position

sensing diode (PSD) Sum and Difference Amplifier from Pacific Silicon Sensor Incorporated.

The device is called a quadrant photodiode (QPD) from this point on. A small active area

was chosen to minimize the amount of dark noise coming from the parts of the diode which

the scattered beam is not filling [36]. The small active area also allows for less magnification,

meaning that the QPD can be placed closer to the microscope, and any vibrations of the

platform on which it stands, have less of an effect on the signal. The differential voltage of

the left and right sides (X) and top and bottom halves (Y) are measured along with the total

voltage detected by the Y diodes. The total voltage can be used to normalize the readings

because the laser intensity has been found to pulse at about 170 Hz.

The images that are analyzed for experimental data have fundamental limits in resolution.

This has to do with the CCD (Hitachi KP-D20 A/B) specifications shown in Table 1.

Table 1: Specifications of CCD camera.

Total pixels (NTSC) 811 (H) x 508 (V)

Effective pixels 768 x 494

Scanning Area 6.45 mm x 4.84 mm

Unit Cell Size 8.4 microns x 9.8 microns

Most times that measurements are made with optical traps, the object under test is

within microns of the objective, allowing for the use of a high NA objective. In the case

of this experiment, the beads are over one millimeter from the objective. This leaves two
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Figure 9: Sensing Portion of Set-up.
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choices, lower magnification or lower NA. The magnification is needed to easily distinguish

between particles on the video screen. Lower NA is allowable because three dimensional

trapping is unnecessary.

The reduced NA of this lens reduces the stiffness of the trap. There is a corrective collar

to adjust to different coverslip thicknesses. This experiment uses a coverslip that is 0.17 mm

thick. The actual depth into the water does not need to be accounted for with the collar.

2.2 SYSTEM CHARACTERIZATION

It is important to know that the sensing and actuating equipment are fast enough and

sensitive enough to detect the movement of a bead within the beam. The peak and roll-off

in the dynamics of the FSM are around 1 kHz. The roll-off of the QPD dynamics are around

10 kHz. Both of these are far above the 100 Hz maximum signal that will be measured in

the calibration and pair potential experiments. Brownian motion will be randomly putting

forces on the bead in every direction. The laser, microscope, etc. will all be vibrating due to

ambient noise, people walking in the halls and air currents in the room. The FSM has noise

associated with it. These noise sources are not significant to the finding of force vs. position

values.

The trap will consist of a stationary beam with horizontal polarization and a steerable

beam with vertical polarization. The stationary beam will hold one particle still while the

other particle is moved with respect to it. Both beams are assumed to be of equal efficiency

meaning that the stiffness is only a function of input power.

The Reynolds number that most microspheres experience is very low because of the small

length scale. This means that viscous forces dominate over inertial forces. When the beam

is dragging the bead somewhere, it will not overshoot the stop position when the beam stops

moving.

The QPD measures how far out of the trap center the bead is at a certain time, and this

information is fed through the dSpace board. The dSpace board is connected to a Simulink

model of the system that is run through Matlab.
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In order to characterize the optical tweezer, a random noise source is used as the input

to the FSM. The voltage signal controlling the FSM is put through an anti-aliasing (AA)

filter because there is a finite sampling rate.

The laser is placed through a bead that is stuck to the coverslip so that only the noise

source is acting upon the QPD. The response of the QPD is then recorded and analyzed

using matlab. A bode plot of the power spectral density allows the FSM dynamics to be

characterized. The FSM dynamic model is used to make a prediction of where the bead is

with reference to the microscope.

dSpace provides the control signal to the FSM. Because the control is in discrete time,

the mirror moves in jerky steps. The physical mirror “rings” in response to these steps,

adding extra noise to the measurement. One way to smooth the steps that the mirror makes

is to place a smoothing filter between the dSpace control signal, and the FSM mirror signal

input. The smoothing filter is a simple RC circuit with the cutoff frequency designed to be

a little below the Nyquist frequency of the control signal (400 Hz).

2.3 ACTUATION BY FAST-STEERING MIRROR

The fast-steering mirror is a voltage controlled device. A certain voltage input to the fast-

steering mirror (FSM) will cause the mirror to tilt on the x and/or y axis. By placing the

FSM at the front focal plane of the beam, it is possible to translate the beam across the

specimen plane without changing the tilt of the beam. This means the beam always leaves

the objective going straight, perpendicular to the specimen plane.

2.4 SENSING

In order to measure force exerted on the bead by the laser beam, several sensors must be used.

There are three things that can be physically measured in the experiment, the “distances

between” and “sizes of” objects in the specimen plane, and two sets of voltages, the signals
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controlling the fast-steering mirror’s two axes, and the voltages coming form the quadrant

photodiode. Two quantities are needed to determine the force experienced by a bead on the

interface, the displacement, x, and the trap stiffness, k.

All the images of the beads used in this thesis are taken using a CCD camera attached

to the microscope. The images are helpful in calibration. The laser beam is guided along

the optical path by lenses and mirrors. Almost all of these are stationary. The trap can be

moved by moving a lens and/or a mirror. In order to find the force between two particles

with respect to their distance from each other in a systematic way, it is useful to have a

mirror that is computer controlled. Also, the light that is scattered by the displacement of

the bead from the center of the trap must be measured by a light sensitive device, in this case

a QPD. The transfer functions between all the sensors and actuators must be determined

through calibration steps. Then the data can be interpreted.

2.4.1 Quadrant Photo Diode (QPD)

A photodiode converts incident photons into current. The concept of a quadrant photodiode

is that four diodes can have their photocurrents measured simultaneously and compared.

For example, if there is a beam of light centered on the four panes of the photodiode, the

difference in current between the sum of the right two panes and the left two should be zero.

Also, the difference between the sum of the top two and the sum of the bottom two panes

should be zero. The XSUM and YSUM signals are the sums of the two sets of photocurrents.

The “sum” signals can be used for normalization. There is an area in the middle of the active

area where the response to position is linear. All frequency dependent measurements should

be taken in this linear region. A visualization of how the QPD creates signals is shown in 10

The experiment involves the use of a self-aligned sensor. The QPD is placed at the Fourier

plane, meaning the spot on the QPD face never moves. For example, the conjugate action of

whatever happens at the specimen plane happens at the QPD. If the beam is moved across

the specimen plane with the FSM, there should be no change at the QPD because this will

only change the angle of light hitting it. If the beam is stationary, and the trapped bead

moves relative to the beam, the light will be scattered to a different angle. This will cause
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Figure 10: Two of the most important signals coming from the qpd are the XDIFF and

YDIFF signals. The XDIFF signal is the difference in current between the right and left half

of the qpd. The YDIFF signal is the difference in current between the top and bottom half

of the qpd.
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a change in the intensity distribution at the QPD (see Figure 11). If a bead is trapped and

scattering light, the intensity of different parts of the circle of light on the QPD changes,

but the whole circle never translates across the face of the QPD. Figure 12 shows the how

misalignment of the QPD system can lead to a bias in the voltage reading as the bead moves

relative to the laser. To prove that the QPD is at a plane conjugate with the objective, a

coherence measurement can be made.

2.5 CALIBRATION

In order for the voltages measured by the QPD to have any real meaning, the system of

FSM, trap, bead, and QPD must be calibrated and the transfer functions between them,

found. There are two main variables in the experiment, the displacement of the bead from

the center of the trap, and the stiffness of the trap. The first two subsections of this section

will cover the former. The last subsections will cover the stiffness determination.

2.5.1 FSM volts to Trap displacement

The voltage signals sent to the FSM cause the trap to move across the specimen plane.

In order to calibrate the voltage to the trap displacement, an image of the trap is taken

at two extreme voltages, i.e. (-3V and +3V). The six volt span is correlated to a distance

by measuring how many pixels wide a known 2 micrometer diameter bead is. The bead is

measured 10 times and an average number of pixels is found. Then the distance the trap

traveled in the 6 volt swing is measured in pixels, and converted to micrometers. The results

of the calibration are given in Table 2.
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Figure 11: Schematic representation of how a change in relative bead/beam position does

not move the spot on the QPD, but does change the position of the intensity maximum,

allowing for displacement measurement. The spot on the QPD does not move because the

specimen and QPD are at conjugate Fourier planes and the aperture diaphragm cuts off

light that would be projected to a different point on the QPD.
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Figure 12: The middle row shows the same thing as the previous figure, but the third row

shows the effect of putting the QPD somewhere besides the back focal plane (BFP) of the

condenser.
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Table 2: Conversions in Force Calculation.

1.6 V/µ m for Y

2.1 V/µ m for X

It is expected that the FSM Volts per pixel (see Figure 13) moved across the microscope

screen should be the same for all cases from beads dried on slides, to beads trapped in bulk,

to beads trapped at an interface. Measurements have determined a maximum deviation for

the Gaussian trap case. Table 3 shows the relationship between FSM volts and pixels the

beam moves across the screen in the horizontal and vertical directions for just a slide with

water and an actual interface. The thickness of water that the beam travels through in

the “bulk water” case is approximately 100 microns while in the “interface” case, the beam

travels through about 500 microns of water. The fact that both cases are within 5 percent of

each other implies that the beam is going straight through the sample at all FSM voltages

tested. There are only small angles introduced to the beam.

Table 3: FSM volts per pixel of beam movement across the screen for the Gaussian trap in

bulk water and on the interface.

Case FSM volts per pixel

Bulk water Horz. 0.032± 2x10−4

Interface Horz. 0.032± 3x10−4

Bulk Water Vert. 0.022± 2x10−4

Interface Vert. 0.021± 2x10−4

2.5.2 Displacement of the bead from the trap

The FSM volts to micrometer conversions can then be used in interpreting data from scanning

the beam across a stationary bead. The reaction of the quadrant photodiode (QPD) to the

scattered light can be correlated with the exact position of the beam with respect to the
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Figure 13: Here is an example of an FSM volts to nanometer calibration. The number of

pixels in the image between the two extremes (a 6 volt span) in FSM voltage is found. This

is compared to the number of nanometers per pixel, found by measuring the known diameter

of the image of the microsphere.
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bead at all positions. A certain displacement of the beam from the center of the bead, or

vice versa, will cause a certain voltage response by the QPD. By drying beads onto a slide

and scanning the laser beam across a stationary bead, this transfer function can be found.

In order to find the transfer functions between the voltages measured and their corre-

sponding forces and displacements, several control experiments must be done. The experi-

ments were discussed in general in Chapter 2, but now the details will be given.

In this thesis experiment, the laser must go through many different media. This can

complicate the meaning of the light scattering that that happens between the microscope

objective and the QPD. To help resolve what is going on, it is helps to find the effect of

light scattering off a bead in only water, and a bead in only mineral oil. Drying the beads

to a coverslip ensures that the trap does not move the bead, then the beam can be rastered

across the bead in a controlled manner. Whether the laser light goes through the liquid, and

then hits the bead, or goes from the bead into the liquid, will also be investigated, covering

both cases of what light will be doing at the interface, and their opposites for comparison.

These measurements will provide a contour plot that corresponds to the QPD voltage at all

points of the bead. This type of measurement (raster of stationary bead) will enable the

determination of how far a bead is pushed out of the center of the beam by an external force.

Specifically using dried-on beads is only necessary as a first-time sanity check to make sure

the QPD is functioning properly.

Figures 14 and 15 show the QPD voltage corresponding to the beam sweeping across the

bead. The bead has been dried on the coverslip, and covered with water. The center of the

bead is about zero, and the edges cause the largest signal. The slope between the maximum

and minimum value is important. The figures are qualitatively the same for all cases, water,

oil, or interface.

In order to interpret the interaction force measurements at the interface, it is necessary

to take a bead contour of a bead while it is on the interface. It is impossible to “dry” a bead

to the interface, therefore the raster must be done with a very weak beam while the bead is

being trapped by a significantly stronger beam.

The dried bead contour calibration measurements were performed at two power levels to

confirm that there is a proportionality between the QPD response at different laser powers.
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Figure 14: This is the QPD voltage from X channel of a bead dried to a coverslip and covered

in water. The trap was rastered across the face of the bead.

Figure 15: This is the QPD voltage from Y channel of a bead dried to a coverslip and covered

in water. The trap was rastered across the face of the bead.
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Table 4: The table shows the average dynamic range of QPD response to scanning the laser

across a fixed bead. This shows that the ratio between trap power and low power is much

more important than the combination of media.

Slide Oil Low 0.1625

Slide Oil Trap 0.91 5.6

Slide Water Low 0.26

Slide Water Trap 1.48 5.7

Coverslip Oil Low 0.17

Coverslip Oil Trap 1.02 6

Coverslip Water Low 0.21

Coverslip Water Trap 1.25 5.95

One level will be designated “LOW” and is used to raster scan the beads when they are

trapped on the interface by a higher power stationary beam. The other power level will be

designated “TRAP” and will be the power of the beam during the actual interaction force

measurement.

The “LOW” power was 30 mW while the “TRAP” power was 180 mW. If the dynamic

range of the QPD measurement, i.e. the difference between the maximum and minimum

voltage on any particular scan is proportional to the laser power, it would differ by a factor

of six. The fact that it is means that data taken at “LOW” power in bulk raster scans can

be extrapolated to correlate with data taken at “TRAP” power.
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Figure 16: The QPD voltage response is only linear in the central region of the bead. All

measurements must take place with this small displacement from the bead center.

Figure 17 shows a slab approximation of the difference in light scattering between oil and

water, to explain the difference in QPD response for beads dried on the coverslip. Figure 18

shows the difference in light scattering between oil and water, to explain the difference in

QPD response for beads dried on the slide. A Matlab model of the scattering for the four

cases gives a maximum difference of 2 percent. This does not match with the measured data

shown in Table 4. Possible explanations are that the oil absorbs more light than water, or

that the spherical nature of the particles has a large effect on the scattering, and the slab

approximation is not appropriate.

It has been found that the slope of the linear region of the response curve is very different

depending on whether the dried bead is covered with water or oil. This probably has to do

with the difference in relative refractive index. The difference in refractive index, between

water and polystyrene is larger than the difference between mineral oil and polystyrene. The

slope of beam position to QPD volts is much greater for the case of water than oil.
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Figure 17: Dry beads onto two cover slips. Make one slide with water and one with oil to test

the response of the QPD as the beam is scanned across the bead and diffracted. Treating the

bead like a slab of polystyrene, ray goes through two refractions. Say that θ1=15 degrees.

Both cases give the same resulting angles, but because θ4 is greater in the water case, the

displacement of the beam is further from the entrance point than in the oil case.

Figure 18: Dry beads onto two slides. Make one slide with water and one with oil to test the

response of the QPD as the beam is scanned across the bead and diffracted. Treating the

bead like a slab of polystyrene, ray goes through two refractions. Say that θ1=15 degrees.

Both cases give the same resulting angles, but because θ4 is greater in the water case, the

displacement of the beam is further from the entrance point than in the oil case.
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Figure 19: System with four AA’s to make clean measurements.

The QPD voltages also depend on where the beam is focused in the Z direction, into

the sample. As the focus is moved from the shallowest region of the bead, through the bead

to the deepest, the bead apparently grows and shifts according to the QPD voltages. This

means that the measurements taken in the experiment will also depend on focus depth.

The QPD must be zeroed by checking what position will give a “no-beam” response.

This is not zero volts. It is more like -1.1 V for one channel and -1.6 V for the other channel.

This measurement will enable the determination of velocity that the bead is dragged during

calibration experiments.

The signals of QPDx and FSMx should have high coherence and the signals of QPDy and

FSMy should have high coherence. This can be measured by finding the transfer function

between the FSM input and the QPD output. It is important that in a scan of the bead,

the beam is only scanned within the linear portion of the QPD’s response curve. The beam

should stay within about a half micron from the center of the bead. Non-linearities would

show up as extra noise. Figure 19 shows the system that was used to make the coherence

measurements etc.
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Figure 20: FSM to QPD transfer function (in linear region) for y to y and y to x (cross

channel).The trailing off of the data around 400 Hz, is due to the 500 Hz cutoff of the AA

filter.

The coherence of an input/output system has to do with how related the output is to

the input. A coherence of one says that a certain input after a certain initial condition

produces the same response every time at the output. It is desirable for this set-up to have

a coherence of one in all four cases, FSMy to QPDy, etc. It is shown in Figures 22 and 23

that the coherence is near one for all pertinent frequencies in the two corresponding channels

(FSMy to QPDy and FSMx to QPDx). The cross channels are not as important, but they

are also around one for most of the spectrum.

In the linear region of the QPD response (as shown in Figure 16), the FSM to QPD

transfer function should be flat. It can be seen in Figure 19 that one AA filter applies a gain

of one of the signals coming from the dSpace board while the other AA filter applies a gain

of 10 to the signal coming from the QPD to increase the dynamic range of measurement.

The trailing off of the data around 400 Hz in Figures 20 and 21 is due to the 500 Hz cutoff

of the AA filter. The fact that the magnitude of the gain is not one is due to the fact that

there are factors of 10 between the input to dSpace and the output.
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Figure 21: FSM to QPD transfer function (in linear region) for x to x and x to y (cross

channel). The trailing off of the data around 400 Hz, is due to the 500 Hz cutoff of the AA

filter.

The non-zero slope of the phase shows that the “group delay” of this set-up is not

constant. This means that there is dispersion (certain frequencies are delayed more than

others).

2.5.3 Trap Stiffness

There are several ways to find the trap stiffness, which is the effective “spring constant” of

the potential well created by the interaction between the laser and the bead. They include

the escape force method, the drag force method, the momentum transfer method, the power

spectrum method, the step response method, and the equipartition method [43]. Each one

requires different knowledge about the particle and its surroundings. This experiment will

use the method that requires the least information about the environment of the experiment,

the equipartition method.
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Figure 22: Coherence of FSM to QPD for y to y and y to x. The coherence is near one for

all pertinent frequencies in the two corresponding channels (FSMy to QPDy and FSMx to

QPDx). The cross channels are not as important, but they are also around one for most of

the spectrum.

The related power spectrum method will be used to find the effective viscosity of the

interface, a quantity that is unknown, and uncertain in the literature. The power spectrum

from the x and y channels of the QPD need to be approximately equal to prove that there

is a circular beam, instead of an elliptical beam.

2.5.3.1 Equipartition Method The stiffness of the trap can be found by trapping a

bead with no input to the FSM, and measuring the Brownian motion of the bead in a

stationary beam with the QPD.

The equipartition method can be used to find the stiffness of the trap by measuring the

mean square displacement of the bead in a stationary trap due to Brownian disturbances,

using the volts/nanometer transfer function from scanning the dried bead.

Importantly, the viscous drag coefficient is not needed for the equipartition method be-

cause the viscous drag of the bead on the interface is unknown [43]. The quadrant photodiode
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Figure 23: Coherence of FSM to QPD for x to x and x to y. The coherence is near one for

all pertinent frequencies in the two corresponding channels (FSMy to QPDy and FSMx to

QPDx). The cross channels are not as important, but they are also around one for most of

the spectrum.

(QPD) has a high bandwidth and can record all the minute movements of the bead within

the trap to obtain the mean square displacement. The trap stiffness is found using the

equation:

1

2
kBT =

1

2
ktrap〈x2〉 (2.10)

First a bead is trapped on the interface and a frequency spectrum of the QPD data is

taken at 1 kHz, with an AA filter at 3 kHz. The trap will be assumed stationary here, so

the data collected at the QPD can be used to determine the distance the bead is pushed out

of the trap by Brownian motion. An example set of data can be seen in Figure 24.

After removing the bias from the data, it is found that the mean square displacement of

the bead is

< x2 >= 1.4 · 105nm2 (2.11)
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Figure 24: Random movements of bead on the interface.

and from the value of kBT ,

4pN · nm

1.4 · 105nm2
= 2.86 · 10−5 pN

nm
(2.12)

which is the trap stiffness on the interface, ktrap. Using this trap stiffness, the Frequency

Spectrum Method can be used to find the other unknown of the system, the effective viscosity

of the interface.

2.5.3.2 Frequency Spectrum Method The frequency spectrum method uses the fact

that the trap-bead system has two first order poles. The pole corresponding to the stiffness on

the hydrodynamic drag, k
c
, is much lower than the pole corresponding to the hydrodynamic

drag on the mass of the bead, c
m

(see the equation describing the system above). In the

following equations, the hydrodynamic drag will be represented with γ instead of c. The

equation relating the cutoff frequency to the stiffness follows:

ktrap = Ωγ (2.13)

where Ω is the cutoff frequency and γ is the hydrodynamic drag. The hydrodynamic drag

is:

γ = 6πrµmedium (2.14)
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Figure 25: Power spectrum of equipartition data with fits of 0.5 and 1 Hz.

where r is the radius of the spherical particle and µmedium is the viscosity of the medium.

Using the stiffness derived from the equipartition method, it is possible to find the effective

viscosity:

π[
rad

s
] =

2.86 · 10−5[ pN
nm

]

6πµeffective · 10−6[m]
(2.15)

µeffective = 4.83 · 10−4[Pa · s] (2.16)

The effective viscosity of the interface is found to be about half that of water alone. This

might have to do with the fact that the interface pulls the particle in the direction of its

motion more than it holds the particle back against its motion.
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3.0 COLLOIDAL INTERACTION ENERGIES AT AN INTERFACE

There are two aspects to the behavior of the microspheres at the interface. First there are

forces that keep the particles on the interface. Second there are forces between the particles.

The experiment will measure the forces between the particles, but explanation of the forces

keeping the particles on the interface is also important for completeness. The measurement

and understanding of these forces is important in the prediction of the stability of colloids.

For example if a certain diameter particle is introduced into a mixture of oil and water, the

properties of the particle can cause the mixture of the two immiscible liquids to form into

a stable colloid of water with small particle bounded “bubbles” of oil, or vice versa. The

properties of this two-part liquid would be different depending on whether the oil or water

was the bulk phase.

In this research, there is a well with water on the bottom half and oil on the top half.

Polystyrene beads are introduced from above. The beads are heavier than both oil and

water and will sink. As the beads sink through the interface between the oil and water,

many adhere to the interface and stay there.

There are three main forces causing the particles to interact: 1. van der Waals forces

cause attraction. 2. Capillary forces cause attraction. 3. Like charges cause electrostatic

repulsion (Coulomb and/or dipole-dipole) [14]. Only their sum can be measured.
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3.1 VAN DER WAALS FORCES

The van der Waals force has to do with induced dipole interaction. The electron cloud of one

atom or molecule is constantly changing its instantaneous configuration. This force applies

to both polar and non-polar molecules. The overall interaction is always attractive for like

materials no matter what the intervening medium [31].

The van der Waals force is characterized by a number called the Hamaker coefficient.

Every material has its own value, which also depends on the materials with which it is in

contact. For example, polystyrene has a Hamaker coefficient, AHam (in the limit of small

separation) of 13 zJ across water and 79 zJ across a vacuum [31]. There are instances where

the interaction energy between two polystyrene spheres can be significant compared to kT:

Ei =
−AHam

12

R

l
(3.1)

where Ei is the interaction energy, AHam is the Hamaker coefficient, R is the radius of the

particles, and l is their separation [31]. This equation applies with l� R. A situation where

Ei would be greater than kT would be if AHam > kT and l < R/12. In water, polystyrene’s

AHam is about 3kT. For the 1 micrometer radius bead’s used in this experiment, they would

have to be less than 300 nm apart for van der Waals forces to dominate. The beads are

normally much further away than this, but they are bound to come close enough every once

in a while and this helps explain their aggregation over time. The DLVO theory treats the

van der Waals and electrostatic forces as though they are separable even though they are

not [31].

The interaction force (derivative of the energy equation above) between two spheres

(very close together) varies with 1/l2 where l is the separation (between the surfaces of the

particles) [31].

F = −dE
dl

=
AHamR

12l2
(3.2)
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3.2 CAPILLARY FORCES AND SURFACE TENSION

Capillary forces are caused by surface tension. The capillary forces are proportional to the

amount the beads deform the interface. The beads in this experiment are so small that the

interface is effectively flat. There are surface tensions between the particle and oil, between

the particle and water, and between the oil and water, which act upon all particles at the

interface [35]. Where the bead sits within the interface, i.e. more surface area contacting the

water or the oil has to do with the beads hydrophobicity. The weight of the bead is about

66 fN while the force due to surface tension between water and polystyrene is 63 nN, about

6 orders of magnitude. This is assuming the surface tension between water and polystyrene

is about 100 µN/cm.

Force due to surface tension = surface tension · circumference of bead (3.3)

Force due to surface tension = 100 · 10−6[
N

cm
] · 2π(10−4[cm]) = 6.28 · 10−8N (3.4)

Table 5: Densities of Materials in Experiment in grams per cubic centimeter

Water Mineral Oil Microsphere

1.0 0.9 1.06

The fact that any microspheres are adsorbed to the interface shows that their presence

lowers the interfacial surface tension between the oil and water, or the tension between oil

and microsphere, and water and microsphere[10]. The density of each material should also

be noted, in Table 5. The microspheres sink through the oil and eventually end up on the

bottom of the well, but some do adhere to the interface. The contact angle is related to the

three interfacial tensions shown in Fig 26 by the Young’s Equation:

cos θ =
γpo − γpw
γow

(3.5)

where θ is the contact angle [8].
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There can be an accounting of the surface energy changes. As the microspheres are

sinking, there is an interface between the oil and water with area, Aow, and there are interfaces

between the polystyrene microspheres and the oil with area Apo. When the microsphere

adsorbs to the interface, a change occurs. Aow decreases, Apo decreases, and an interface

between microsphere and water is formed with area, Apw.

The surface tension between oil and water is 49 mN/m [27].

The energy associated with gravity’s effect on the microsphere is:

Eg =
4

3
πR4ρg ≈ 4.4 · 10−20J (3.6)

where R = 10−6m and ρ = 1600kg/m3.

Thermal energy at room temperature is:

kBT ≈ 4.1 · 10−21J (3.7)

or about 4 zeptojoules (zJ) where the Boltzmann constant k = 1.38 · 10−23J/K.

It can be shown that the forces experienced by the microspheres on the interface from the

optical tweezers will not be strong enough to remove them from the interface. Thus showing

that only 2 dimensional movement will occur assuming the interface is flat with respect to

the objective. The contact angles between the microsphere, and the oil, and the microsphere

and water, are difficult to measure. They would be necessary to know in order to determine

the forces experienced by the microspheres due to the interface using other methods, but

the use of optical tweezers eliminates the need to know these angles.

3.3 ELECTROSTATIC FORCES

The microspheres have some charge. They sit in a solution for weeks at a time, and get

shaken every once in a while. It is possible that they were functionalized with some ionic

substance that would give them a permanent charge. Also, they could have picked up charge

from the solvent in which they sit. In this section some possible interaction energy pair

46



Figure 26: Diagram of surface forces acting on bead, independent of other particles.

potentials will be discussed. The Coulomb potential describes the interaction between two

charged objects. The Coulomb potential is:

UCoulomb(r) = k
q1q2
r
. (3.8)

where q1 and q2 are the charges, k is some constant, and r is the distance between the

charges. In the case of this experiment, the microspheres will be modeled as point charges

with a charge that is the sum of all the surface charges on the bead. All the r’s in the potential

equations refer to the distance between point charges. The Lennard-Jones potential applies

to neutrally charged objects like water molecules. The Lennard-Jones potential is:

ULennard−Jones(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]

(3.9)

where σ is a parameter in units of meters and ε is in units of kJ/mol. The Yukawa potential

is as follows:

UY ukawa(r) = −g2 e
−mr

r
. (3.10)
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where g is the coupling constant from quantum electrodynamics, and m is the mass. The pair

potential of two colloidal particles is given by the “electrostatic part of the DLVO theory”

as follows:

UDLV O(r) =
Z2
∗e

2

ε

[
eκσ

1 + κσ

]2
e−κr

r
(3.11)

where Z∗ is the effective charge of a sphere with radius (assuming both microspheres have

the same charge), σ, κ−1 is the Debye-Huckel screening length, and ε is the permittivity

of the liquid [12]. This has the same form as the Yukawa theory for a screened Coulomb

interaction. The Debye-Huckel screening length is on the order of 10s to 100s of nanometers.

On the interface, the microspheres arrange themselves into a hexagonal lattice. The

lattice can be seen in bands across the surface, not actually spreading uniformly across the

whole interface. There are multiple lattice constants in the lattice. The edges of the bands

have constants near 14.6 micrometers, while the central regions have a constant near 8.8

micrometers, as can be seen in figures 27 and 28.

In my experiment, there are more forces at work, than just the Coulomb force, but in

general, the term used is ‘pair potential’. By comparing the shape of the data with these

theories, the correct form of the potential can be chosen. The force due to two charges as

mentioned in the above section, is inversely proportional to the distance between the two

charges.

The dipole-dipole interaction potential between the particles varies with 1/r3 if the par-

ticle separation is greater than the particle diameter [24]. This would cause a force varying

with 1/r4. This goes against what all four proposed potentials say.

When the slope of potential is positive, there is attraction between the two particles.

The Coulomb potential is repulsive (for particles of like charge) at all separations and gains

strength at small separations. The Lennard-Jones potential on the other hand can be at-

tractive at large separations, and becomes very repulsive at smaller separations The Yukawa

potential is similar in shape to the Coulomb potential, but is different in magnitude because

it accounts for shielding of charges.
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Figure 27: Lattice spacing on edge of a lattice.
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Figure 28: Lattice spacing in center of band.
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Because water is polar the charges around the water-wetted area of the microsphere can

move toward the surface, creating a local dipole. The effect of this dipole on the surrounding

microspheres is screened by the free charges in the water, but because the oil is non-polar,

the charges in the oil do not move, and cannot screen the top half of the dipole, therefore,

the interaction between the dipoles can occur through the oil.

Another reason that the electric field from the charges on the microspheres is more

significant through the oil phase is that the magnitude of an external electric field is reduced

inside any material with a higher dielectric constant than the surrounding medium. The

dielectric constants of water, mineral oil, and air are shown in Table 6.

Table 6: Dielectric Constants of Materials in Experiment.

Distilled Water Mineral Oil Air Polystyrene

77 2-3 1.0 2.55

Figure 29 shows a schematic representation of the screening and repulsion of the dipoles

formed by the charges on the surface of the microspheres interacting with the free charges

in water.

According to Robinson and Earnshaw, the “dipole” that causes the repulsion between

the particles is formed by the counterions that are attached to the sulfate groups on the

particle in the non-wetted portion, not the attracted counterions from the water [37]. There

is “short range repulsive dipole interactions arising from dissociated bound surface groups

on the part of the particle” not in the water [37]. Particles manufactured without surfactant

make better, more stable crystalline monolayers [37]. The more hydrophobic the particle is,

the less screening it experiences in the water phase, and therefore the stronger the repulsion

it has on other particles.

Depending on the charge on the microspheres, the dielectric constants of the two ma-

terials, the concentration of electrolyte, and the distance between the microspheres, dipole-

dipole interactions or Coulomb interactions dominate in the electrostatic portion of the

inter-particle forces [17]. The dipole-dipole interactions dominate at long distances.
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Figure 29: Dipole repulsion acting only through oil.
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It has been shown by several researchers that much higher concentrations of salt (100x)

are needed to cause agglomeration of particles on an interface compared to a bulk colloid

[37]. This implies that the repulsion is much stronger through the other fluid making the

interface, be it air or oil.

The Debye length, λd is defined as the distance from a particle where the electrical

potential is equal to the thermal energy. This means that after this length, the electrostatic

potential is too low to have a real effect on the motion of surrounding particles. The equation

for the Debye length is:

λd =

(
εRT

2F 2z2C

)1/2

(3.12)

where ε is the relative permittivity, R is the Universal gas constant, T is the temperature in

Kelvin, F is the Faraday number (the product of Avogodro’s number and the charge of an

electron), C is moles per unit volume (concentration of the electrolyte), and z is the valence of

the electrolyte. De-ionized water is used in the experiment, so the electrolyte concentration

is very low. The addition of salt to the water would decrease the Debye length. This means

for the given temperature, the Debye length is at the maximum value it could be in water.

Yet even at this maximum value, it is believed that the majority of the electrostatic force is

mediated through the oil.

Dai et al. found that electrostatic repulsion does not completely explain lattice formation.

The surface treatments of the microspheres in their experiment included sulfate, carboxylate,

and amine. All of these surface treatments add charge to the microsphere, and yet only

the sulfate-treated microspheres formed self-assembled lattices [28]. This implies that the

chemistry of the surface also has something to do with lattice formation.
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4.0 EXPERIMENT

The experiment involves measuring the light scattered from beads that are pushed from

centers of optical traps by interaction forces. The polystyrene beads are on an interface

between oil and water, and are therefore confined to two dimensions.

4.1 METHODS

The interface on which the beads in this experiment will lie, is formed by placing about 12

microliters of water on the bottom of the well with a microsyringe. Then 12 microliters of

oil are placed on top of the water with a sharp piece of aluminum. In the amount of time

it takes to get the oil, air has already contacted the surface of the water. Surface tension

changes dramatically with the addition of impurities, and it is assumed that the effect of

impurities is about the same in every sample [10]. The well is 5 mm in radius and about

1.5 mm deep. It is made by drilling a hole in a piece of plastic and attaching it to a No. 1

coverslip with nail polish. A model of the well can be seen in Figure 2. The No.1 coverslip is

0.17 mm thick. In order to help the beads spread across the interface, isopropanol is added

to the bead solution. One dilution used in a previous work is 1 part bead solution, 4 parts

isopropanol and 5 parts deionized water [40]. This reduces the concentration of beads to

a manageable level (≈ 2x107 microspheres/mL). The microsyringe is used to place a small

droplet of microsphere solution into the oil in the well. The beads sink through the oil, and

some get trapped on the interface between the oil and water. The rest sink through into the

water layer.
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Polystyrene microspheres self-assemble into hexagonal lattices when they are confined

to two dimensions on the oil-water interface. Plots of force versus position will be made.

These plots will be compared with the four potentials mentioned above to see which they

match most closely with. The theoretical values that would take into account charge on

the microspheres, the surface tension of the oil and water, etc. will be absorbed into some

general fitting parameters.

Proximity to walls can change viscous forces and create electrostatic forces on the

beads[13]. To prevent this it is important that the beads are a few microns from the cover-

slip. The layer of water provides this needed separation. The reason the water layer can be

thick enough, is that the objective has a long working distance.

Note: When the vial of microsphere solution is not shaken, beads will adsorb to the

interface, but the hexagonal lattice will be less pronounced or not present at all, and mea-

surements confirm that the beads do not exert the same force on each other in this state

even though they still appear to be in a plane, i.e. on the interface.

Note: When the microsyringe is used to inject the microsphere solution into the inter-

face, the oil reacts in such a way that it retreats from the injection site, ripples a little, and

then re-covers the open patch of water that was created when it retreated. If this does not

happen, it is likely that no beads were deposited on the interface.

Note: The interface can have flow patterns. From the measurements taken, there was

no noticeable pattern as to what conditions caused what flow patterns. These flow patterns

increase in velocity and change direction depending on whether the laser is on, and which

power setting is chosen. This can make trapping two beads to move towards each other very

difficult. Even if two beads can be trapped, the flow causes other beads to bump into them

disturbing the measurement being taken.

Because the trap is formed by a low-NA lens, radiation pressure causes several things

to happen throughout the calibration and interaction force measurements. When dragging

beads through the bulk, the bead is pressed against the slide, creating extra drag by Faxen’s

Law. When dragging beads along the interface, the bead can be pressed further into the

oil phase than it would naturally sit. Sometimes beads are kicked up from the bulk water

and pressed all the way up to the interface. This interferes with measurements and makes it

55



difficult to take long samples. It is unknown whether the laser being used is powerful enough

to push one of these “kicked-up” beads into the interface. They can easily be distinguished

from beads adsorbed to the interface because they can be moved around much more easily

by the trap. Also, as the trap focus is made deeper, the “kicked-up” beads behave similarly

to the beads in bulk water as the focus is deepened toward the slide. It can be seen that the

particles in this setup are always many particle radii from the well walls and the coverslip

surface, so these do not need to be taken into account with drag calculations. The effect of

charge shielding by the water can also be studied by comparing the “kick-up” beads with

the beads on the interface, and also with the different focus depths.

The stiffness of the trap was measured when the bead is in the middle of a large lattice

and also when a bead is pulled from the edge of the lattice and measured alone. The stiffness

is the same in both cases. The optical properties of the trap are obviously the same in both

cases, but this also means that the “effective viscosity” of the interface is the same whether

the bead is in a lattice or not.
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5.0 RESULTS AND DISCUSSION

All measurements made at the interface assume a stationary interface, though in many cases,

the interface seems to be “flowing” due to heating by the laser. By taking averaged data it

should be possible to remove any bias from a steady movement of the beads.

For the interaction force measurement the FSM trapped bead is dragged slowly towards

and away from another bead trapped with the stationary beam. Only one axis is necessary

because the force is radially symmetric. Because there are diffraction bands, in the vertical

direction, there will be less distortion of the measurement dragging the bead parallel to the

bands (i.e. along the y-axis of the viewing screen).

There is a diffraction pattern likely from the dichroic mirrors that is superimposed on the

image of the interface when viewed through the microscope. As the laser is rastered across

the screen, it passes through vertical stripes that blur and reduce its brightness. There

are about 100 vertical stripes across the width of the microscope field of view. The QPD

signal seems to vary in correspondence with these stripes, changing in intensity. The width

of the stripes (3-4 microns) is about the period of the fluctuations in the data in the x

direction. One way to remove these fluctuations is to measure the total intensity on the

QPD simultaneously, and normalize all the data to this overall intensity. There is only y

direction data shown here, making normalization unnecessary.

Note: It is unnecessary to consider all the beads that are floating in the water below

the interface and the oil above the interface because only the bead in the focus scatters

light strongly. Any other beads that are in line with the beam and condenser would have

negligible scattering.

According to Dai et al. ”the diffusion of microspheres on an oil-water interface is domi-

nated by the characteristics of the oil phase”[28]. This means that it may be valid to assume

57



Figure 30: Sample with bunches of beads after 18 hrs.

the viscosity of the oil as the ”effective viscosity” of the interface. Their determination was

based on the fact that the diffusion constant found using the Stokes-Einstein relationship

(described in the Future Work section) matched the viscosity of the oil much more closely

than that of water. The other main factor in determining the dynamics of a microsphere at

the interface is its wettability [28]. Diffusion is faster for particles that are more hydrophilic

because the extra viscosity of the oil does not hold them back as much. A value for the

effective viscosity of the interface was already found during calibration, and will be used in

the interpretation of the experimental data.

There is change that occurs over time with the sample. If it is allowed to sit for 18

hours, the beads slowly agglomerate into bunches. Figure 30 shows the bunches of beads to

compare with the arrays in a fresh sample. Because the water is completely covered, it can

be assumed that the ionic concentration of the water is not changing with time. It is possible

that the oil is collecting materials from the air which ionize and help shield the repulsion

of the particles through the oil phase allowing attractive van der Waals forces to be large

enough to pull particles together [37].
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It is helpful that the diameter of the particles is known because that is the main source

of error in Bishop et al, contributing an error of 5% in their measurements of viscosity in a

liquid [2].

5.1 ASSUMPTIONS

Many assumptions must be made to find actual values for the forces:

The bead could potentially be rolling, again changing the concept of “viscosity”.

The interface is not flowing or assume the flow that occurs during each experiment is

significant, so that it must be averaged out by several measurements.

The cutoff frequency of the trap while holding a bead still on the interface was measured

as 1 Hz, but is probably not correct, it is probably even lower.

5.2 GAUSSIAN TRAP PAIR POTENTIAL MEASUREMENTS

Measurement set stats: “Crossforce4” data was taken with two beadsoutside the lattice.

FSM beam = 80 mW, Stationary beam = 100 mW. “Crossforce6” is assumed to have the

same powers as “Crossforce4” but was taken with the beads inside the lattice. Table 7 shows

the conversion of QPD volts to bead displacement out of the trap, used in the interpretation

of the experimental data.

Table 7: Conversions in Force Calculation.

QPDvpmY 1.6 QPD volts per micron for Y

QPDvpmX 2.1 QPD volts per micron for X

The FSM beam had a power of 80 mW while the stationary beam had a power of 100

mW. This means that the stationary bead was moving approximately as much as the moving
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Figure 31: Force on bead with respect to distance from each other in direction perpendicular

to movement.

bead. Because the traps are not coupled, the force measured at the FSM trap, is equal to

the force that would be measured at the stationary trap. It is only necessary to make the

one measurement.

The QPD is used to determine the position of the bead with respect to the beam. The

QPD volts vs. FSM raster data is used to find the QPD response of the moving beam with

a stationary beam. The dynamic range of the QPD response is proportional to the power in

the raster beam. Therefore, the 30 mW raster beam can be used to determine the meaning

of QPD data found with an 80 mW trapping beam. The calibration data from the raster

must be scaled by 80/30 for example.

Figures 31 and 32 show the force measured in the direction perpendicular to the motion

of the FSM bead toward the stationary bead. This channel should show zero force, but

does not because there are Brownian disturbances acting on the bead in this direction, and

there are also random flows on the interface. This information can be used to compare the

interfacial “flow” between data sets.
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Figure 32: Force on bead with respect to distance from each other in direction perpendicular

to movement.

The charges on the surface of the particles can cause them to attract or repel according

to the Coulomb force:

F = k
q1q2
r2

. (5.1)

where

k =
1

4πε0

(5.2)

and ε0 = 8.854 · 10−12C2/Nm2. In general the Coulomb force varies as r−2 where r, is the

center-to-center distance of the microspheres. The dipole-dipole force varies as r−3.

Figures 33 and 34 show the force in the direction parallel to the motion of the FSM

bead toward the stationary bead. The forces are very small, showing the sensitivity of the

measurement method. The fit is a general r−2, Coulombic fit. The r-squared values of the

fit, are reasonably high.

Figures 35 and 36 show the force in the direction parallel to the motion of the FSM

bead toward the stationary bead. The forces are very small, showing the sensitivity of the

measurement method. The fit is a general r−3, dipole-dipole fit. The r-squared values of the

fit, are reasonably high and approximately the same as that for the Coulombic fit.
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Figure 33: Force on bead with respect to distance from each other in direction parallel to

movement with a Coulomb force fit.

Figure 34: Force on bead with respect to distance from each other in direction parallel to

movement with Coulomb force fit.
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Figure 35: Force on bead with respect to distance from each other in direction parallel to

movement with a Dipole- Dipole force fit.

Figure 36: Force on bead with respect to distance from each other in direction parallel to

movement with Dipole-Dipole force fit.
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Figure 37: Force on bead with respect to distance from each other in direction parallel to

movement with a Coulomb and Dipole-Dipole force combined fit.

Because both fits have approximately the same r-squared value, the fit to an r−4 was

checked and found to be lower than both Coulombic and dipole-dipole fits. Finally, a com-

bination Coulombic and dipole-dipole fit was performed on the crossforce6 data (see Figure

37) in an effort to maximize the r-squared value, but it stayed about the same.

Table 8: Microsphere Information.

Company Interfacial Dynamics Corp.

Product Surfactant-Free White Sulfate Latex

Diameter(µm) 2 CV: 1.8 percent

Solid percentage 8.1
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Figure 38: The total surface charge taken as a point charge at the center of two interacting

beads necessary to match the experimental data.

The data available about the microspheres is given in Table 8. There is a charge of two

electrons on a single sulfate group, and according to the company website, there is one charge

group per 2-20 square nanometers. The microsphere has a radius of 1,000 nm giving it a

surface area of 1.256 ·107 nm2. This gives each microsphere a theoretical total surface charge

of between 2 pC and 0.2 pC. Figure 38 shows the much lower amount of surface charge found

to be causing the beads to repel in the experiment.
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The magnitude of the forces expected are about 8 orders of magnitude too high. In order

to match the forces measured, there would need to be on the order of 30 charge groups per

microsphere, which puts the surface density down to about one charge group per 200,000

square nanometers. There must be something neutralizing the surface charges down to this

much lower density. The water in the experiment is de-ionized, so there should be very few

charges (10−7 mol/L) available in the water to neutralize the charges. There might be some

charges from the air as the sample is being made, and there might be some in the mineral oil,

considering that the beads are hydrophobic and the majority of the bead sits in the oil when

it is on the interface. Also, the beads could pick up neutralizing charges from each other.

The dielectric constant of water would reduce the electric field of the beads by a factor of

80, but again, only a portion of the bead is in the water.

Most of the data taken with the QPD is done at 1 kHz. For measurements that involve

moving the beads toward each other, this is much faster than the timescale over which the

forces change. The FSM is normally making small jumps on the order of 10-200 Hz. As

the jump occurs, the bead will experience a drag force, but then it settles to a steady state

force that it experiences from the other bead. It is possible to filter out noise and data that

happens at timescales faster than the steady state forces being measured.

Quantization error occurs when dSpace measures the FSM voltage and QPD voltage.

Instead of a continuum of voltages, the signals are so small that there are noticeable periodic

gaps in the data. These can be eliminated by proper amplification. Already the signal from

the QPD is amplified 10 times when it comes through the AA filter.

The optical tweezer does exert forces on the beads that must be taken into account

when determining the potentials governing the behavior of the hexagonal lattice. There is a

force between the trapped particles caused by the fact that they are both trapped and the

light that is trapping them is scattered [30]. The force can be either attractive or repulsive

depending on the distance between the two particles. This could explain the small oscillation

in the force measurement.
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6.0 SUMMARY

It was found that a combination of the electrostatic Coulomb force and dipole-dipole interac-

tion force dominated the pair interaction between the colloidal particles in the experiment.

This is not surprising because experimental conditions were not close enough to ideal to

measure any subtle, smaller interactions. The effective charge on the beads was found to

be much lower than that given on the data sheet from the manufacturer. There are many

factors that could have contributed to this. The lack of an absolutely clean lab set up could

have introduced ions that could neutralize the sulfate groups on the microspheres.

It is interesting that the expected Coulomb forces due to the manufacturer’s specified

surface charges are orders of magnitude too great to even be measured with an optical trap.

It must be common for the surface charges to be neutralized otherwise, the spacing in the

lattice would be much larger.

A value is provided for the effective interfacial viscosity. The value is lower than that

of water or mineral oil, implying that surface forces somehow make movement along the

interface easier than in bulk.
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7.0 FUTURE WORK

It would be useful to check the slope of the QPD voltage vs. beam/bead position for a few

different particle sizes. This is because the slope of the linear part of the QPD response

should be proportional to 1/d[15]. Only one size of particle was used in this experiment, so

this was not able to be checked.

It would be interesting to see the effect of different hydrophobicities on the measured

interfacial viscosity. A relation could be found between the two interfacing fluid viscosities,

and the effective viscosity of the interface. Also, it is important to find whether the beads

are rolling on the interface, or whether they are pinned. This could be found by using a

marked bead.

Over time it seemed that the strength of the electrostatic repulsion between the beads

diminished. Several papers mentioned the cleaning of the beads to remove surfactants which

could move from the bead to the interface. One specific process is the use of mixed-bed ion

exchange resin. This would reduce the contact angle between the bead and water, causing

increased shielding, and less interaction. In the future, it would be beneficial to use washed

beads in the experiments to nullify the effect of the time the beads sit in solution before

being used.

It was not possible to measure the curvature of the interface using the available equip-

ment. With some way to move the focus knob of the microscope, and a motorized stage

to move the well, it would be possible to measure the z-coordinate of the interface for the

whole well. It is definitely not flat, but does not seem to simply follow the Young-Laplace

equation either.
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The properties of the optical trap should be examined at both the center of the well

where the curvature will be around zero, to the edges of the well where curvature is highest.

Most of the future work will involve creating Bessel beam traps and exploring their unique

properties and uses. The sections below will discuss this topic.

7.1 BESSEL BEAMS

A Bessel beam has its wavefronts converging on each other in a conical pattern. Bessel beams

were first used in an experiment by Durnin, Miceli, and Eberly in 1986 [19]. Collimated light

was sent through a circular slit placed in the focal plane of a lens. This created a beam of

converging plane waves, such that the wavevector of every photon was parallel to the surface

of a cone (its base being the slit)[19]. Bessel beams can be created by several methods

(annular slit, axicon, or spatial light modulator) but in this work it is suggested to be

formed by passing a collimated Gaussian beam through an axicon (conical lens). The Bessel

beam has an ‘extended’ focus, that will allow trapping in several planes. Because the beads

are adhered to the oil/water interface, 3D trapping is unnecessary, and force measurements

can still be made.

The Rayleigh range of the focus of a Gaussian beam is very small. In this experiment,

the NA = 0.75 and λ = 1064nm. This gives a minimum waist size (radius) of the Gaussian

beam:

R = 865.4 nm (7.1)
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Figure 39: Gaussian beam characteristics.

Substituting this value into the equation for the Rayleigh range gives a “usable trapping

tube length” of:

ZRayleigh =
πr2

λ
(7.2)

ZRayleigh =
π(865.4 · 10−9)2

1064 · 10−9
(7.3)

ZRayleigh = 2.21µm (7.4)

which is barely greater than the diameter of one bead in the experiment.

Figure 39 shows the characteristics of the Gaussian beam. The distance 2Zr is the

“usable trapping tube distance” which can be compared to the much longer distance of the

Bessel beam (see Figure 40). The intensity at the focus drops off quickly and only that focal

volume can be used for trapping. When force measurements are made, the object must be

kept in the plane of the focus for the measurements to have a consistent meaning. If the

trap does not confine the particle in three dimensions, there may be axial movement as a

measurement is being made. If the particle is being pushed along on the optical axis as it is
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Figure 40: Two dimensional plot of Bessel beam along the optical axis.

being dragged through water, the drag force on the particle might not be consistent because

different depths of the water might have different flow rates. It would be possible to measure

the force between two objects that are not in the same focal plane if one beam was designed

to be out of focus in the focal plane of the microscope, so that it is in focus at the depth of

the object that needs to be trapped.

There is a characteristic radius of the beam out to the first intensity minimum, rb, and

a characteristic length that the beam propagates without diffracting, zmax.

θ ≈
(π

2
− α

2

)( na
nm
− 1

)
(7.5)

where na is the refractive index of the axicon, nm is the refractive index of the propagating

medium, α is the usually obtuse apex angle of the triangular cross-section of the cone of the

axicon, and θ is the “polar angle between propagation axis of the Bessel beam and the plane

waves wavevectors forming the Bessel beam behind the axicon” [21].
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The propagation distance is:

zmax = w
cos θ

sin θ
(7.6)

where w is the half-width of the incident beam at the axicon [21].

The radius of the central lobe of the Bessel beam is:

rb =
2.4048

k sin θ
(7.7)

where k is the wavenumber of the beam in the medium [21]. For a reasonable θ:

θ ≈
(
π

2
− 179 degrees

2

)(
1.52

1.0
− 1

)
(7.8)

θ ≈ 0.004538 radians (7.9)

zmax =
0.0254 meters

2

cos 0.004538

sin 0.004538
(7.10)

zmax = 2.8 meters (7.11)

Because the zmax scales with the square of the magnification, the 63x objective lens will

cause the real zmax to be:

zmax =
2.8 meters

632
(7.12)

zmax = 13.5 micrometers (7.13)

which is about 6 times the “usable trap length” of the Gaussian trap.

Many industries and academic subjects require measurements to be made on forces acting

in a direction other than perpendicular to the specimen plane. A Bessel beam can be used

to extend the use of the optical trap to these situations. The equivalent 2D force between

two particles that are out of plane would be the measured force divided by the cosine of

the angle between them. Knowing that the Bessel beam has a uniform intensity over a long

range can actually allow the mapping of the out of plane interface by the component of the

force measured. For example, the optical tweezer created by a long working distance lens
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Figure 41: The use of a Bessel beam more accurately determines a force acting on a particle

adsorbed to curved interface. This is because the intensity is the same at all points where

the bead comes into contact with the interface.

only traps in two dimensions. If there is a third dimension to the interface, the component

of the 2D force will be proportional to the local curvature of the interface. Figure 41 shows

an illustration of this concept.

The interface of the beads has some curvature because the meniscus of the water creeps up

the edges of the well. The Bessel beam trap should show much less variation between forces

measured on the flat center of the interface and the steeply curved edges of the interface.

Figure 41 shows an illustration of this concept. This assumes that the upward force of the

Bessel beam trap is negligible on the curved interface. If it is not negligible, then the interface

shape measuring will be enhanced. Dai et al. found that the ratio between the particle radius

and the radius of curvature of an interface becomes less significant as the viscosity of the

non-water phase becomes much greater than that of water (> 10 times)[28]. The viscosity

of the mineral oil is about 30 times that of water. Therefore in this experiment, the drag

caused by the curving of the interface should be negligible.
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A good way to compare the Gaussian trap with the Bessel beam trap would be to use a

“volume trapping efficiency” which would look something like:

qvol =
trap stiffness

Plaser
· tvol (7.14)

where tvol is the volume over which the stiffness does not fall by a factor of e.

In order to fully use the capabilities of long-working distance optical trapping, it is

interesting to investigate the uses of a Bessel beam which has a long “tube focus” which can

reach deep into a sample and through a much longer region than a Gaussian focused beam.

There are two unique aspects to a Bessel beam, its long diffractionless propagation and

its self-healing ability. Most experimental use of Bessel beams involves using them to guide

particles, but not to measure forces.

The Bessel beam is a non-diffracting solution to the Helmholtz equation [19]. The

Helmholtz equation:

(∇2 + k2)A(x, y, z) = 0 (7.15)

where ∇2 is the Laplacian and k is a constant. If k = 0 then it reduces to the Laplace

equation.

An axicon takes a point source and images it as a “tube” on the axis of the lens [29].

The axicon can be thought of as a toric lens in which the toroidal portion has an infinite

radius [29].

J. Durnin, J. J. Miceli, and J.H. Eberly determined that Bessel beams are comparable to

Gaussian beams for energy transport because they do not diffract, even though their peak

intensity is lower [20].

A zeroth-order Bessel beam is created by an axicon. Zeroth order meaning that there

is a central maximum. It is an approximation to a theoretical Bessel beam. A true Bessel

beam would carry all its energy to infinity and is impossible to create. The beam within the

propagation distance is what a true Bessel beam would look like extending to infinity.
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The equation describing how the Bessel beam propagates without decay/diffraction is

[20]:

ψ(x, y, z, t) = eı(ωt−βz)J0(αρ) (7.16)

where ψ is the wave amplitude, and it can be seen to oscillate, but not decay. Another

description of the Bessel beam’s electric field amplitude [18]:

E(r, z) = A exp(ikzz)J0(krr) (7.17)

where kr and kz are the radial and longitudinal parts of the wave vector, k, respectively.

The reconstruction distance, i.e. the amount of distance it takes for a Bessel-beam to

reform after an obstacle, is dependent on the refractive index of the obstructing particle[41].

This means Bessel beams could be used to find the refractive index of particles [41]. It should

be noted that the beam will not reform if the whole beam is blocked by an opaque particle.

According to Garces-Chavez, et al, the amount of distance it takes for the Bessel beam

to reform after an obstacle is[41]:

l =
robk

kr
(7.18)

where l is the length of the shadow, rob is the radius of the obstructing object, k is the

wavevector and kr is the radial wavevector where

k = (k2
r + k2

z)
1
2 (7.19)

The reconstruction distance after the whole central spot is blocked is:

dr ≈
3a

tan θ
(7.20)

where dr is the reconstruction distance, a is the radius of the central spot and θ is the same

as defined below [34].

75



Figure 42: Optical Tweezer Setup with Axicon.
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7.1.1 Choosing an Axicon

The determination of what axicon to use in the experiment was made using equations found

in Jezek et al. The schematic of the set-up for the “Bessel beam” portion of the experiment

is shown in Figure 42. There is a characteristic radius of the beam out to the first intensity

minimum, rb, and a characteristic length that the beam propagates without diffracting, zmax.

θ ≈
(π

2
− α

2

)( na
nm
− 1

)
(7.21)

where na is the refractive index of the axicon, nm is the refractive index of the propagating

medium, α is the usually obtuse apex angle of the triangular cross-section of the cone of the

axicon, and θ is the “polar angle between propagation axis of the Bessel beam and the plane

waves wavevectors forming the Bessel beam behind the axicon” [21].

The propagation distance is:

zmax = w
cos θ

sin θ
(7.22)

where w is the half-width of the incident beam at the axicon [21].

The radius of the central lobe of the Bessel beam is:

rb =
2.4048

k sin θ
(7.23)

where k is the wavenumber of the beam in the medium [21].

These values are for the Bessel beam that is produced immediately after the axicon. The

lenses downstream affect the properties. Because the two telescopes in this experimental

set-up (as shown in Figure 42 have a magnification of unity, they do not effect the properties

of the Bessel beam. The 63x magnification of the long-working distance objective does affect

the propagation distance and radius of the beam. Using the small angle approximation

because the axicon has an apex angle of almost 180 degrees, the value of rb scales with the

magnification and the value of zmax scales with the square of magnification [21].
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Figure 43: Variables in propagation matrix.

Ray transfer matrices for the action of propagation and a lens:

1 d

0 1

 x
θ

 =

x′
θ′

 (7.24)

 1 0

−1
f

1

 x
θ

 =

x′
θ′

 (7.25)

The first equation is for propagation of a ray. The second is for a lens. Propagation

changes only the x value of the ray, while a lens changes only the angle.

In order to choose an axicon, assume a 1 inch diameter axicon because they are most

readily available. Values for α (apex angle of axicon) range from 140 degrees to 179.9 degrees.

The refractive index of the axicon, the refractive index of air, an average of the refractive

indices of water and mineral oil, a Gaussian input beam of a half-width of 1/2 inch are inputs

and a variety of α values are tested. The propagation and lens matrices are used to trace

the path of two rays, the center ray at the tip of the axicon, and the ray at the edge of the

axicon. The maximum displacement from the optical axis determines the size of the lenses

needed for the system.
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It was found that for α = 170 degrees, the edge ray is displaced a maximum of 1 inch

off the optical axis, requiring a 2 inch lens. This lens is not the objective, and therefore

can be made to be 2 inches in diameter. This set up provides a Bessel beam that extends

135 microns when the change in refractive index from air to water/oil is used. The radius

of the zero order of the beam (i.e. the part of the Bessel beam to be used for trapping) is

calculated to be 170 nanometers in the sample, but diffraction will cause this to be on the

order of the wavelength of light (1 micron).

There are several apertures that the beam must be made to fit through. This makes

the choice of axicon more difficult. The aperture of the objective is 6.5 mm. There is an

aperture before the first dichroic mirror that is 1 inch in diameter.

The Matlab script assumed the position and focal length of the two lenses closest to the

specimen plane as shown in Figure 6.

The Bessel beam fully forms when it is half of zmax down the optical train. The equation

of the plot uses the solution of the Fresnel integral by the stationary phase approximation

method. A figure showing a two dimensional plot along the optical axis (r = 0) is shown in

Figure 40. The point that are marked on the plot are the 1/e points of the intensity defining

the zmax range of the Bessel beam. The Fresnel integral follows the form [42]:

∫ b

a

e
−ikx2

2l dx =

(
2πl

k

) 1
2

e
−iπ
4 =

√
lλe

−iπ
4 (7.26)

where l is the propagation distance, and λ = 2π
k

.

The approximate solution is:

I(r, z) =
4Pk sin θ

w

z

zmax
J2

0 (kr sin θ)e

(
−2z2

z2max

)
(7.27)

where r is the radius from the optical axis [21]. This approximate equation is valid if

[22]:

z >
z2
max

kw2
0

(7.28)

By the boundary condition of the input beam being a certain intensity, the intensity on

the other side of the axicon should not be zero. This is an artefact of the approximation.
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7.1.2 Preliminary Results and Observations

During experimentation, it was noticed that the Bessel beam cannot be moved in an “aligned”

way. The beam doesn’t move as a perpendicular tube, in just the x-y plane of the specimen

plane when it is controlled by the FSM. This may have to do with the fact that the axicon

does not have a well-defined “focal length” and therefore it is not possible to place the FSM

exactly in the back focal plane of the axicon. When moving the BB trap with the FSM, the

trap not only translates, but the angle of the beam through the sample also changes. This

is not desirable. In the literature review, it is rare that a particle is moved in a non-axial

direction with the BB. If this functionality is necessary, a motorized stage is used. Most

times, the BB is stationary, or its properties can be moved axially by moving the axicon

parallel to the beam or changing the SLM hologram. This is very important with regards

to the usefulness of a BB. The only paper in the literature review where the Bessel beam

was not stationary was by J. Arlt, et al in 2001. In it, the position of the Bessel beam is

controlled by moving the lens after the axicon in 3 dimensions but NO force measurements

are made [18].

A paper in which a force measurement is made with a Bessel beam was not found during

the literature review. This could be because the beam is self-healing, making this impossible

without a coincident beam.

7.2 BESSEL BEAM TRAP PAIR POTENTIAL MEASUREMENTS

Try to keep as many parameters constant as possible, i.e. laser power. Because the Bessel

beam is self-healing, the light that is scattered from the bead cannot be used to gather

information about the position of the bead. No matter how the bead obstructs or alters the

path of the light, the signal at the QPD remains the same. In order to measure the force

exerted by a Bessel beam, it is necessary to coalign another ”measurement beam” that is

too weak to trap, but intense enough to shine through the particle and provide information

about its position. This set-up seems to only allow pair potential measurements because
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the FSM beam will be a Gaussian trap and the stationary beam will contain the Bessel

beam and the red ”measurement beam”. Drag measurements through bulk water will not

be possible with this method, so only power spectral density measurements will provide the

stiffness of the Bessel beam trap at a certain power. The force between two particles at a

certain distance is known from the Gaussian trap data, therefore the measurement with the

Bessel beam will be only a formality to confirm that the same force is measured with both

the Gaussian and Bessel beam traps according to their respective stiffnesses.

The beads just below and just above the interface may be trapped by the Bessel beam.

This should still not be a problem because the “measurement beam” is Gaussian and will

only scatter light from the bead trapped on the interface. The only problem would come

from beads being pushed up into the interface while the measurement is being taken. This

same problem occurs for regular Gaussian trap pair potential measurements.

The axicon chosen for the experiment has an α = 170 degrees.

θ ≈ 0.045 (7.29)

zmax = 0.01m
cos 0.045

sin 0.045
(7.30)

zmax = 0.222 m (7.31)

The radius of the central lobe of the Bessel beam is:

rb =
2.4048

k sin θ
(7.32)

where k = 2π
λ

but maybe account for different refractive indices, so possibly off by factor of

1.33 or 1.5.

rb =
2.4048

2π
1064 nm

sin 0.045
(7.33)

rb = 9 micrometers (7.34)

without any magnification.
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APPENDIX

WHOLE PROCEDURE

1. Set up optical trap.

2. Check alignment.

a. Focus on thumbprint and make sure everything looks right.

b. Adjust condenser.

c. Make sure beam is collimated at QPD.

d. Choose a laser power to use for all measurements.

3. Dry beads onto a coverslip.

a. Mark the inside of the coverslip and the slide to have markings with which to compare

the actual location of the beads.

b. Seal to slide with water.

c. Seal to slide with oil.

d. Repeat with drying beads to the slide. It seems that the contrast (difference between

min and max reading) is best with beads dried on the slide, not the coverslip.

e. Perform all measurements at two power levels. One level will be designated “LOW”

and will be used to raster scan the beads when they are trapped by the stationary

beam. The other power level will be designated “TRAP” and will be the power of

the beam during FSM trapping.

f. This type of measurement (raster of stationary bead) will enable the determination

of how far a bead is pushed out of the center of the beam by an external force.
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Specifically using dried-on beads is only necessary as a first-time sanity check to make

sure the QPD is functioning properly. This data can also be used to qualitatively

figure out the effects of different refractive indices on light scattering and QPD data.

Sometimes there were different blocks hooked to the input of the FSM. For example,

a raster would involve a “repeating sequence stair”.

g. NOTE: This dried-on bead step does not need to be repeated for every experimental

set-up change.

h. A Matlab model of the scattering for the four cases gives a maximum difference of

2 percent. This does not match with the measured data shown in Table 4. Possible

explanations are that the oil absorbs more light than water, or that the spherical

nature of the particles has a large effect on the scattering, and the slab approximation

is not appropriate.

i. The QPD voltages also depend on where the beam is focused in the Z direction, into

the sample. As the focus is moved from the shallowest region of the bead, through

the bead to the deepest, the bead apparently grows and shifts according to the QPD

voltages. This means that the measurements taken later in the experiment will also

depend on focus depth. Because the trap is not focused tightly enough, the beads

get pushed in the Z direction by the trap, so the bead will not self-center itself in

the trap. The focus depth will matter.

j. The data shows that the dynamic range of the QPD measurement, i.e. the difference

between the maximum and minimum voltage on any particular scan is proportional

to the laser power. This means that data taken at “LOW” power in bulk raster

scans can be extrapolated to correlate with data taken at “TRAP” power.

4. Take FSM volts per nanometer measurement:

a. with dried bead/water slide.

b. with dried bead/oil slide.

• Take care to focus on beads that are on the cover slip and not the slide. BE

CONSISTENT.

• There is no difference in Volts/nm of the FSM whether the microscope is focused

on the coverslip surface or the slide surface.
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• Use the “VperNMcal.mdl” file in Calibration/calibration in matlab to get a 2D

cross section of the beads. The raster can be done with “fourinputcal”.

• When taking measurements with the QPD, zero it by checking what position

will give a “no-beam” response. This is not zero volts. It is more like -1.1 V for

one channel and -1.6 V for the other channel.

c. The vectors for the repeating sequence stairs in Simulink can be created using

“beamvector.m”.

d. The Simulink model is “fourinputcal” in the same folder. The sequence stairs can

be replaced with constants to control the location of the beam by hand in dSpace.

e. This measurement will enable the determination of velocity that the bead is dragged

during calibration experiments.

f. It is expected that the FSM Volts per pixel moved across the microscope screen

should be the same for all cases from beads dried on slides, to beads trapped in

bulk, to beads trapped at an interface. Measurements have determined a maximum

deviation for the Gaussian trap case. Table 3 shows the relationship between FSM

volts and pixels the beam moves across the screen in the horizontal and vertical

directions for several cases of the Gaussian trapping set-up. The thickness of water

that the beam travels through in the “bulk water” case is approximately 100 microns

while in the “interface” case, the beam travels through about 500 microns of water.

The fact that both cases are within 5 percent of each other implies that the beam is

going straight through the sample at all FSM voltages tested. There are only small

angles introduced to the beam.

g. Sanity Check - The signals of QPDx and FSMx should have high coherence and

the signals of QPDy and FSMy should have high coherence. This can be measured

by finding the transfer function between the FSM input and the QPD output. It is

important that in a scan of the bead, that the beam is only scanned within the linear

portion of the QPD’s response curve. This means the beam should stay within about

a half micron from the center of the bead. Non-linearities show up as extra noise.

Figure 19 shows the system that was used to make the coherence measurements etc.

h. In the linear region of the QPD response, the FSM to QPD transfer function should
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be flat. It can be seen in Figure 19 that one AA filter applies a gain of one to the

signal coming from the dSpace board while the other AA filter applies a gain of 10

to the signal coming from the QPD to increase the dynamic range of measurement.

The trailing off of the data around 400 Hz in Figures 20 and 21 is due to the 500

Hz cutoff of the AA filter. The fact that the magnitude of the gain is not one may

be due to the fact that there are factors of 10 between the input to dSpace and the

output for which may not have been accounted. The non-zero slope of the phase

shows that the “group delay” of this set-up is not constant. This means that there

is dispersion (certain frequencies are delayed more than others).

i. The coherence of an input/output system has to do with how related the output

is to the input. A coherence of one says that a certain input after a certain initial

condition produces the same response every time at the output. It is desirable for

this set-up to have a coherence of one in all four cases, FSMy to QPDy, etc. It is

shown in Figures 22 and 23 that the coherence is near one for all pertinent frequencies

in the two corresponding channels (FSMy to QPDy and FSMx to QPDx). the cross

channels are not as important, but they are also around one for most of the spectrum.

5. Prepare a slide with beads in bulk:

a. water.

b. oil.

6. Trap a bead in bulk and measure the frequency response at 1 kHz, with AA filter at 3

kHz.

a. water

b. oil

c. The trap will be assumed stationary here, so the data collected at the QPD can

be used to determine the distance the bead is pushed out of the trap by Brownian

motion.

7. Determine stiffness from equipartition theorem using ‘stiffnesscalnew’ in Calibration/

calibration in Matlab.

8. Trap bead in bulk and drag through square at 3 different velocities
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a. water.

i. It is necessary to save the vectors which define where the bead is dragged because

these will be used to determine the actual velocity at which the bead is dragged.

b. Take a measurement with no bead and subtract as an offset.

i. The no bead measurement needs to be taken at every velocity at which data is

collected for it to be possible to subtract the voltages.

9. Determine stiffness of trap from force vs. velocity with ‘forcevleplotbad.m’ in Calibra-

tion/calibration in Matlab.

a. Also drag the beads back and forth in 1D for both x and y with a sine wave. This

will move the bead at many different velocities, and it will be possible to filter the

data at that frequency to pick up “noiseless” information.

10. Prepare beads on interface.

a. A piece of 1.53 mm thick plastic with a 5 mm hole drilled in it, is glued with nail

polish and superglue onto a No. 1 coverslip.

b. A microsyringe is used to place about 15 microliters of deionized water into the well.

c. A 2 mm by 3 cm piece of aluminum can is dipped into a vial of mineral oil and the

oil collects at the tip and is dropped into the well on top of the water.

d. The solution of microspheres, water, and isopropanol must be shaken very hard to

make sure the water and alcohol is mixed well.

i. Note: When the vial of microsphere solution is not shaken, beads will adsorb to

the interface, but the hexagonal lattice will be less pronounced or not present

at all, and measurements confirm that the beads do not exert the same force on

each other in this state even though they still appear to be in a plane, i.e. on

the interface.

e. Use the microsyringe to inject about 2 microliters of microsphere solution into the

interface.

i. This can be done by hand.

ii. Start the tip of the syringe in the water and pull up through the interface and

oil as the plunger is depressed.
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iii. The oil should react in such a way that it retreats from the injection site, ripples

a little, and then re-covers the open patch of water that was created when it

retreated. If this does not happen, it is likely that no beads were deposited on

the interface.

11. Change ratio of polarizations and make the stationary trap much stronger than the FSM

trap. (maybe stat trap is 300 mW and FSM trap is 80 mW) The force on the bead is

proportional to the power. Hold the bead still with the stationary trap and raster the

beam across the bead. Hopefully it will not move appreciably and the measurement can

be compared to the dried bead oil and water rasters.

12. The interface can have flow patterns. From the measurements taken, there was no

noticeable pattern as to what conditions caused what flow patterns. These flow patterns

increase in velocity and change direction depending on whether the laser is on, and which

power setting is chosen. This can make trapping two beads to move towards each other

very difficult. Even if two beads can be trapped, the flow causes other beads to bump

into them disturbing the measurement being taken.

13. Drag bead slowly towards and away from another bead trapped with the stationary

mirror in the shape of a cross. This will provide data on the force vs. position for four

directions, i.e. from the right, left, top and bottom.

14. Take frequency response of bead on interface at 1 kHz.

15. Repeat steps 1-14 with axicon set up. Try to keep as many parameters constant as

possible, i.e. laser power.
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