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ABSTRACT 
 
 

OXYGENATED HYDROCARBON-BASED AND HYDROCARBON-BASED 
CO2 SOLUBLE SURFACTANTS  

 
 

Xin Fan, PhD 
 
 

University of Pittsburgh, 2006 
 
 
 
 

The objectives of this work are to design, synthesize, and evaluate hydrocarbon-based or 

oxygenated hydrocarbon-based CO2 soluble surfactants. These surfactants would be able to form 

stable water-in-CO2 microemulsions with polar microenvironments capable of dissolving polar 

species in the bulk non-polar CO2 solvent, or to form metal precursors which can be reduced to 

nanoparticles in the presence of stabilizing ligands, or to generate foams in-situ for enhanced oil 

recovery application.  

Several oxygenated hydrocarbons, including acetylated sugars, poly(propylene glycol), 

oligo(vinyl acetate), and highly branched methylated hydrocarbons were used generate CO2-

soluble ionic surfactants. Surfactants with vinyl acetate tails yielded the most promising results, 

exhibiting levels of CO2 solubility comparable to those associated with fluorinated ionic 

surfactants. For example, a sodium sulfate with single, oligomeric vinyl acetate (VAc) tails 

consisting of 10 VAc repeat units was 7 wt% soluble in CO2 at 25 oC and 48 MPa. Upon 

introduction of water to these systems, only surfactants with the oligomeric vinyl acetate tails 
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exhibited spectroscopic evidence of a polar environment that was capable of solubilizing the 

methyl orange into CO2-rich phase.  

Silver bis(3,5,5-trimethyl-1-hexyl) sulfosuccinate, Ag-AOT-TMH, was synthesized from 

hydrocarbon-based ionic surfactant of sodium bis(3,5,5-trimethyl-1-hexyl) sulfosuccinate, Na-

AOT-TMH through ion exchange. Ag-AOT-TMH exhibits 1.2 wt% solubility in dense CO2 at 40 

oC and 52 MPa. Silver nanoparticles were produced by reducing the supercritical CO2 solution 

containing 0.06 wt% Ag-AOT-TMH and 0.5 wt% perfluorooctanethiol (stabilizing ligand) using 

a reducing agent of NaBH4. Iso-stearic acid, a short, stubby compound with branched, 

methylated tails, as a hydrocarbon-based nonionic surfactant, has been shown to have high 

solubility in carbon dioxide. The solvation of the tails by carbon dioxide has made isostearic acid 

sterically stabilize metallic nanoparticles as a ligand.  

The stability of CO2-water emulsion formed by ionic and nonionic surfactants was 

studied in CO2 at 22 oC and 34.5 MPa for 0.01-1.0 wt% surfactant mixed with equivalent 

volumes of CO2 and water. Emulsion stability was monitored by observing the rate of collapse of 

the white, opaque middle-phase emulsion between the transparent CO2 and water phases and the 

steady-state volume of the emulsion. It was found that at surfactant concentration of 0.01 wt%, 

oligo(vinyl acetate)10 sodium sulfate displayed the best emulsion, taking over 450 minutes to 

collapse.  
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1.0 INTRODUCTION 
 
 
 
 

Supercritical carbon dioxide (sc-CO2) is a potential alternative to organic solvents in many 

chemical processes because of its abundance, low cost, non-toxicity, non-flammability and easily 

accessible critical conditions (Pc = 7.38 MPa, Tc = 31.1 oC). Unfortunately, sc-CO2 is a feeble 

solvent. Although it can solubilize low-molecular weight, volatile compounds at pressures below 

10 MPa, polar and high-molecular weight materials are usually poorly soluble at tractable 

pressures. One strategy for enhancing the capabilities of CO2 as a green solvent has been the 

identification of additives, such as surfactants,[1, 2] dispersants,[3, 4] chelating agents,[5, 6] 

thickeners[7] and polymers,[4, 8] that are designed to exhibit favorable thermodynamic 

interactions with CO2. With regards to surfactants, nearly all conventional hydrocarbon-based 

ionic surfactants are essentially insoluble in sc-CO2; however,  because ionic head groups are 

CO2-phobic and hydrocarbon surfactant tails are not designed for favorable interactions with 

dense CO2.[9] 

A number of groups began a search for CO2-philic materials that would be soluble in CO2 

at moderate pressures. Beckman and Desimone’s groups have shown experimentally that 

fluoalkyls,[10] fluoethers,[11] fluoacrylates,[12] and silicones [13, 14] are miscible with CO2 at 

moderate pressures, while conventional alkyl functional polymers and oligomers are nearly 

insoluble. Ionic surfactants with CO2-solubility of 1 wt% or more have been developed by 

incorporating highly CO2-philic fluorinated tails or silicone-based tails. For example, 
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perfluopolyether (PFPE) sodium and ammonium carboxylates with average molecular weights of 

2500, 5000, and 7500 were soluble in supercritical CO2 at 40 oC and pressures below 17 

MPa.[11] Fluoroalkyl-tailed sulfosuccinate surfactants, such as di-CF3, di-CF4, and di-CF6 

stabilized microemulsions at CO2 bottle pressure (5.7 MPa) at 15 oC, with a W value 

([water]/[surfactant]) of 10.[15] Silicone-based ionic surfactants, such as PDMS-based AOT 

analogue can dissolve in CO2 at 65 oC and pressures below 31 MPa.[16, 17] Although these 

surfactants have been used successfully in supercritical fluid research such as emulsion 

polymerization, dispersion polymerization, and extraction, the environmental and biological 

persistence of these expensive fluorous and silicone-based surfactants (approaching $1/gram) has 

impeded their use in commercial applications, especially for large-scale applications in which the 

surfactant will be lost to the environment, such as enhanced oil recovery (EOR). Less expensive, 

biodegradable, CO2-soluble surfactants composed of carbon, hydrogen, and oxygen would 

hasten the practical applications of CO2 as a processing solvent. 
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2.0 BACKGROUND 
 
 
 
 

2.1 PROPERTIES OF SUPERCRITICAL/LIQUID CO2
 
 

A supercritical fluid (SCF) is a substance elevated above its critical temperature (Tc) and 

pressure (Pc). The critical temperature is defined as the temperature above which a pure, gaseous 

compound cannot be liquefied regardless of the pressure applied. The critical pressure is then 

defined as the vapor pressure of the gas at the critical temperature. The temperature and pressure 

at which the gas and liquid phases become identical is the critical point. In the supercritical 

region, only one phase exists; the supercritical fluid, as it is termed, is neither a gas nor a liquid 

and is best described as intermediate to the two extremes. A comparison of typical values for 

density, viscosity, and diffusivity of gases, supercritical fluids, and liquids is presented in Table 

2.1.[18] Supercritical fluids have a density close to liquids, a viscosity close to gases, and a high 

diffusivity, which retain the solvent power common to liquids as well as the transport properties 

common to gases. 

As carbon dioxide is the most commonly used SCF, the pressure-temperature phase 

diagram for carbon dioxide is presented in Figure 2.1 to illustrate the differences between the 

gas, liquid, and supercritical states. The critical point is marked at the end of the gas-liquid 

equilibrium curve, and the supercritical fluid region is indicated by the shaded area. CO2 attains 

its supercritical state at near-ambient temperature (Tc=31 oC) and relatively moderate pressure 
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(Pc=7.4 MPa). Supercritical CO2 (sc-CO2), like all other supercritical fluids, offers many mass 

transfer advantages over conventional organic solvents due to its gas-like diffusivity, low 

viscosity, and negligible surface tension.  

 
 
 
Table 2.1. Comparison of density, viscosity, and diffusivity of gases, supercritical fuids, and 
liquids.[18] 
 
 
Property Gas Supercritical Fluid Liquid 
Density (g/ml) 0.001 0.1 – 1 1 
Viscosity (cp)                 0.01 0.05-0.1  0.5-1 
Diffusivity (mm2/s) 1-10 0.01-0.1 0.001 

 

 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

Gas 

Solid 
Liquid 

Tc (31 oC) 

          Pc 
   (7.4 MPa) 

Triple Point 

Critical Point 

Supercritical Fluid 
(SCF) 

 
 

Figure 2.1. Pressure-temperature diagram for pure CO2, showing the solid, liquid, gas, and 

supercritical regions.   
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Supercritical CO2 has many properties that make it an interesting solvent; it is abundant, 

inexpensive, nontoxic, and nonflammable. It has been proposed as a green alternative to 

traditional organic solvents because it is not regulated as a volatile organic chemical (VOC). 

Moreover, supercritical fluids have a tunable solvent power, which increases as a function of 

increasing density.[19] As a result, the solvent power of supercritical CO2 can be easily tuned 

simply by adjusting the operating temperature and/or pressure, which in turn affects the density 

of the supercritical CO2. In addition to the tunable solvent power, a number of other physical 

properties such as dielectric constant, viscosity, and diffusivity change significantly near the 

critical point.[20, 21] One interesting characteristic of supercritical fluids is the extremely low 

surface tension possessed as a result of the gas-like transport properties of viscosity and 

diffusivity.[22]  This imparts supercritical fluids the ability to easily penetrate very small surface 

areas and contributes to their attractiveness for extraction of solutes from porous media.[21] A 

particularly attractive advantage of using supercritical CO2 is that the solvent can be removed by 

simply decompression. It is worth noting that liquid CO2 can sometimes be used in the place of 

sc-CO2 in certain procedures. Near the critical point, liquid CO2 has many of the similar 

properties of the supercritical fluid and can be achieved at milder conditions. Overall, CO2 has a 

great potential to be a valuable process solvent.  

 There is one major drawback to supercritical/liquid CO2 as a solvent. CO2 has an 

extremely low polarizability/volume ratio (a parameter to estimate solvent power) and hence is a 

somewhat feeble solvent for many polar and nonpolar compounds, although it can dissolve many 

small molecules.[23] It was once believed that CO2 had solvent properties similar to those of 

hexane based on solubility parameters calculations, but in fact, Mcfann et al. have shown that the 

quadrupole moment of CO2 serves to inflate the calculated solubility parameter by 20%.[24, 25] 
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Consequently, using the solubility parameter as a sole determination of solubility could be 

misleading. The polarizability/volume has been suggested as a better parameter on which to 

estimate the solvent power of CO2, but the polarizability/volume of CO2 indicates that it is a 

weak solvent.[25] Other properties of CO2 include low polarizability and electron accepting 

capacity, since CO2 is a Lewis acid and can participate in Lewis acid: Lewis base interactions. 

Fourier transform infrared (FTIR) spectroscopy has been used to show that CO2 interacts with 

polymers containing electron-donating functional groups[26] and Lewis bases.[27] Specific 

interactions resulting from quadrupole-dipole interactions between CO2 and certain polymers are 

also believed to influence solubility.[28, 29] O’Neill et al. suggest that cohesive energy density 

(CED), reflected by surface tension, of a polymer determines solubility in CO2.[30]  

 

 

2.2 SURFACTANTS  

 

A surfactant (surface active agent) is an amphiphilic molecule containing both hydrophilic head 

group and lipophilic tail group. Typically, the hydrophilic head contains groups like water such 

as sulfonates, sulfates, and phosphonates while the lipophilic or hydrophobic tail group consists 

of a hydrocarbon chain. Figure 2.2 represents the structure of a common surfactant consists of a 

hydrophilic head group and a hydrophobic tail group.  

The polar or ionic portion is solvated by water as a result of strong dipole-dipole or ion-

dipole interactions. It is therefore said to be hydrophilic, and often simply called the head group. 

The hydrocarbon chain of the surfactant is typically called hydrophobic because of the 

hydrocarbon section’s minimal interaction with the water in an aqueous environment.  
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Furthermore, the strong attractions between water molecules, arising from dispersion forces and 

hydrogen bonding, act to force the hydrocarbon out of the water. Since the nonpolar, 

hydrophobic part is usually an elongated alkyl chain, it is often simply called the tail. The 

balanced properties of both the hydrophilic and hydrophobic portions of surfactants combine to 

give the unique properties commonly associated with surface active agents.   

Surfactants can be classified according to the charge present in the hydrophilic portion of 

the molecule (after dissociation in aqueous solution): anionic, cationic, nonionic, and amphoteric 

surfactants. Typically, these four kinds of surfactants are composed of similar lipophilic or 

hydrophobic tail group, such as a long hydrocarbon chain, however with different hydrophilic 

head groups.  

 
 
 

Hydrophilic 
head group Lipophilic tail  

 

     

     Figure 2.2 Example of a basic surfactant structure 

 
 
 

AOT (Aerosol-OT, bis(2-ethyl-1-hexyl) sodium sulfosuccinate), as an anionic surfactant, 

has been extensively utilized and investigated in numerous alkane solvents for the formation of 

reverse micelles due to its ability to disperse large amount of water. The structure of AOT is 

shown in Figure 2.3. The rich phase behavior of AOT, and its ability to form microemulsions, is 
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often attributed to its twin hydrocarbon tails which impart a cone-like structure and encourage 

the molecule to pack into spherical aggregations.   

 
O

O

O

O

NaO3S

Hydrophilic head Hydrophobic tail 
 

 
Figure 2.3. Structure of AOT (Aerosol-OT, sodium bis(2-ethyl-1-hexyl) sulfosuccinate) 

 

 

2.3 CO2-SOLUBLE SURFACTANTS  

 

Sc-CO2 is a feeble solvent, although it can solubilize low-molecular weight, volatile compounds 

at pressures below 10 MPa, polar and high molecular weight materials are usually poorly soluble 

at tractable pressures. One strategy to broaden the range of applications of CO2 as a green 

solvent has been the identification of additives, such as surfactants,[1, 2] dispersants,[3, 4] 

chelating agents,[5, 6] thickeners[7] and polymers,[4, 8] that are designed to exhibit favorable 

thermodynamic interactions with CO2. With regards to surfactants, nearly all conventional 

hydrocarbon-based ionic surfactants are essentially insoluble and could not form microemulsions 

in sc-CO2; however, because ionic head groups are CO2-phobic and hydrocarbon surfactant tails 

are not designed for favorable interactions with dense CO2.[9] A CO2-soluble surfactant would 
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be amphiphilic, like a traditional surfactant, but instead of hydrophilic and lipophilic segments, it 

would contain CO2-philic and CO2-phobic segments. Once the CO2-philic portion of the 

surfactant has been identified, the CO2-phobic segment can be chosen from conventional 

hydrophilic or lipophilic groups. The structure of a CO2-soluble surfactant is presented in Figure 

2.4.   

 
 
 

CO2-phobic 
segment CO2-philic segment  

 

     
Figure 2.4. Example of a CO2-soluble surfactant structure 

 

Development of CO2-philic surfactants has been a target of researchers for many years.  

Functional CO2-soluble surfactants would allow the feeble solvent nature of CO2 to be enhanced 

by the formation of a microemulsion with a polar water domain which can favorably dissolve 

polar solutes and high molecular weight molecules. The concept of a nm-scale water pool 

dispersed in CO2 find applications in a variety of reaction chemistry and material synthesis.[31-

34]   
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2.4 FLUORINATED AND SILICONE-BASED CO2 SOLUBLE SURFACTANTS  

 

Preliminary studies by Consani and Smith have shown that most conventional surfactants are 

insoluble in CO2. They studied over 130 commercially available surfactants, among which only a 

few nonionic exhibited reasonable solubility in CO2 [9]. Focus was then being given to 

fluorinated and silicone compounds as effective CO2-philic agents. Followed the finding by Iezzi 

et al. that fluorocarbons and CO2 are compatible,[35] Beckman and Desimone’s groups have 

shown experimentally that fluoalkyls,[10] fluoethers,[11] fluoacrylates,[12] and silicones [13, 

14] are miscible with CO2 at moderate pressures, while conventional alkyl functional polymers 

and oligomers are nearly insoluble. The fluorinated and silicon chains represent low cohesive 

energy density groups thereby promoting low solubility and low polarizability, which are more 

characteristic of carbon dioxide’s properties. The structures of fluorinated and silicone CO2-

philes are shown in Figure 2.5, and these molecules have been used in the design and synthesis 

of surfactants for applications in CO2. Ionic surfactants with CO2-solubility of 1 wt% or more 

have been developed by incorporating highly CO2-philic fluorinated tails or silicone-based tails. 
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Figure 2.5. Structures of fluorinated and silicones CO2-philic functionalities. 
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Fluoroalkyls: Fluorocarbon-Based Ionic surfactants  

Based on the fact that the fluorocarbons and CO2 are compatible, Hoefling et al. designed 

the first effective fluoro-surfactants for CO2, the pioneering work demonstrating solubility of a 

fluorinated analogue to AOT in CO2.[10] Harrison et al. reported the first water-in-CO2 (w/c) 

microemulsion using a double chain hybrid surfactant comprising of separate fluororocarbon and 

hydrocarbon chains: (C7F15)(C7H15)CHOSO3
-Na+ or F7H7. Water up W of 32 could be stabilized 

in w/c microemulsion at 35 oC, 26.2 MPa, and surfactant concentration of 1.9 wt%.[36] In 1997, 

Eastoe et al. launched a study of fluoroalkyl analogues to AOT. Twelve different linear chain 

fluoroalkyl AOT analogues were investigated, of which nine stabilized w/c microemulsions at 15 

oC and CO2 bottle pressure (5.7 MPa), with a W value of 10; these were di-HCF4, di-HCF6, di-

CF3, di-CF4, di-CF6, di-CF4H, di-CF6H, di-CF4GLU and the cobalt salt of Co-HCF4.[37] 

 

Fluoroethers: PFPE-Based Ionic Surfactants 

In 1993, perfluoropolyether (PFPE) sodium and ammonium carboxylates with average 

molecular weights of 2500, 5000, and 7500, were reported to be soluble in liquid CO2 up to 10 

wt% at 40 oC and pressures below 17 MPa.[11] However, these high molecular weight polymers 

were not effective for stabilizing w/c microemulsions. Later, Johnston et al. formed w/c 

microemulsion with a PFPE ammonium carboxylate (PFPE-COO-NH4
+) surfactant of only 740 

MW.[38] Success with this class was attributed to the chemical structure itself. PFPE constitutes 

an extremely CO2-philic tail group, accentuated by the presence of pendant fluoromethyl groups, 

which tend to increase the volume at the interface on the CO2 side and thus favor curvature 

around water.  
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Fluoroacrylates: PFOA Block Copolymer Nonionic Surfactants 

Fluorinated acrylate polymer, poly(1,1-dihydroperfluorooctylacrylate) or PFOA, was 

obtained from homopolymerization in sc-CO2 at 60 oC and 20.7 MPa, with molecular weight of 

270,000.[12] Small angle neutron and scattering (SANS) investigations of dilute solutions of 

PFOA in CO2, over a wide range of temperatures and pressures, provided clear evidence for 

favorable interaction between PFOA and CO2.[39] PFOA contains a lipophilic, acrylic backbone, 

and a CO2-philic segment, rendering it amphiphilic, thus it can be used as a surfactant without 

modification. McClain et al used PFOA as the CO2-philic segment of a nonionic surfactant, 

where PFOA was copolymerized with a CO2-insoluble polystyrene (PS) segment to form a block 

copolymer of PFOA-b-PS. The micelles formed by PFOA-b-PS were used to solubilize CO2-

phobic hydrocarbon oligomers.[40] Copolymers composed of PFOA and poly(ethylene oxide) 

(PEO) were also able to form micelles in CO2, in which small amount of water was able to be 

stabilized.[41]   

 

Silicones: PDMS 

  For applications in CO2, silicones are generally considered less effective than their 

fluoroinated counterparts. Solubility of poly(dimethyl siloxane) (PDMS) in CO2 was first 

reported in 1996. At a level of 4 wt%, PDMS (Mn~13,000) is soluble in CO2 at 35 oC and 27.7 

MPa.[30] Block copolymer surfactants consisting of CO2-philic PDMS and CO2-phobic 

poly(methacrylic acid) (PMA) or poly(acrylic acid) (PAA) were used to form water-in-CO2 (w/c) 

and CO2-in-water (c/w) emulsions.[17] Recently, Fink’s research in silicone-based ionic 

surfactants pointed that a PDMS-based AOT analogue can dissolve in CO2 at 65 oC and and 

pressure below 31 MPa up to 1 wt%.[16] 
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Although these surfactants have been used successfully in supercritical CO2 research, the 

environmental and biological persistence of these expensive fluorous and silicone-based 

surfactants (approaching $1/gram) has impeded their use in commercial applications, especially 

for large-scale applications in which the surfactant will be lost to the environment, such as 

enhanced oil recovery (EOR). The development of CO2-soluble surfactants, which are composed 

of carbon, hydrogen, and oxygen, biodegradable and less expensive, would hasten the 

applications of CO2, as they could represent significant advantages over the biological persistent 

and high-cost fluorinated or silicone counterparts.  

 

 

2.5 OXYGENATED HYDROCARBON AND HYDROCARBON-BASED CO2 SOLUBLE 

SURFACTANTS 

 

2.5.1 Design of Oxygenated Hydrocarbon and Hydrocarbon-Based CO2 Soluble 

Surfactants 

 

Experimental results from several research groups have shown that the incorporation of CO2-

philic functionalities into the structures of surfactants, dispersants, and chelating agents has 

greatly enhanced their solubility, making it possible to use CO2 for polymerization [4, 8], metal 

extraction [5, 6] and other more sustainable processes. It must be noted that combining a CO2-

philic tail to a conventional head group does not ensure the resultant surfactant will also exhibit 

CO2-solubility, or that will be effective in the proposed application if it is solubility. CO2 

solubility is a necessary but insufficient property of the candidate surfactant. The interactions 
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between the tail and CO2 must be strong enough to impart CO2-philicity to a compound that 

contains a CO2-phobic segment.  

 The characteristic of hydrocarbons most commonly associated with enhanced CO2-

solubility is the presence of polymer side chains [42] or a high degree of branching [43]. This 

enhanced solubility is usually attributed to the increased polymer free volume and the diminished 

intermolecular interactions [43]. Recently, Stone and Johnston found that the interaction between 

CO2 and CH2 is about the same as CO2 and CF2.[44] A level of 1 wt% surfactant soluble in CO2, 

which would typically be needed for microemulsions, requires a moderate high, yet reasonable 

pressure. Clearly, solubility is a key factor that governs whether a surfactant will lead to water-

in-CO2 microemulsions. An additional factor, steric force, which plays an important role in 

designing hydrocarbon surfactants for w/c microemulsions, has been described recently. Stubby 

tails enhance the formation of w/c microemulsions as they raise surfactant solubility in CO2 by 

weakening interactions between tails, weaken interactions between droplets, favor curvature of 

the interface bending toward water, and reduce the interfacial tension.[44-46] Ryoo and Johnston 

achieved about 1 wt% water, significant protein solubilities, and the presence of microemulsions 

as detected with dynamic light scattering formed by a methylated branched hydrocarbon 

nonionic surfactant. Furthermore, this study shows that the surfactant lowers the water-CO2 

interfacial tension significantly, which is an important requirement for forming 

microemulsions.[46]        
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2.5.2 Oxygenated Hydrocarbon and Hydrocarbon-Based CO2-Philic Functionalities  

 

Several oxygenated hydrocarbon and hydrocarbon-based groups previously shown to exhibit 

CO2-philicity include acetylated sugars, poly (propylene oxide), acetate-rich compounds, and 

short alkyl group with t-butyl tip. These CO2-philes are illustrated in Figure 2.6.  

 

 

O

O

OAc
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OAc OAc

OAc

(a) per-acetylated glucose (Ac=COCH3)

O
n

(b) Poly(propylene oxide)

O O
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(c) Oligo(vinyl acetate) (d) Short alkyl group with tert-butyl tip  

 

Figure 2.6. Oxygenated hydrocarbon-based and hydrocarbon-based CO2-philic groups 

 
 
 
Per-acetylated sugars 

 The replacement of the proton of every hydroxyl group (-OH) with an acetate group (-

OCOCH3) can dramatically enhance the CO2-philicity of sugar molecules. Acetylated sugars, 

such as per-acetylated glucose and galactose,[47] sorbitol,[48] maltose[49] and 
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cyclodextrins,[50] have been shown to dissolve in CO2 at low pressures up to 10-50 wt%. The 

high degree of CO2 solubility has been attributed to a favorable two-point interaction between 

CO2 and the accessible acetate side chain, a Lewis acid−Lewis base interaction between the C of 

the CO2 and the O of the acetate carbonyl, and a weak, complimentary hydrogen bond between 

the O of the CO2 and a proton on the methyl group of the acetate,[51, 52] as shown in Figure 2.7.  

 

 

O

O

O

C

O

H
H H

Hydrogen Bonding

Lewis Acid : Lewis Base Interaction

 

 
 

Figure 2.7. Two point interaction between CO2 and acetate 
 
 
 
Poly(propylene oxide) (PPO) 

Low molecular weight PPO (Mn<2000) is quite CO2-soluble at moderate temperature,[30] 

and higher MW PPO (>2000) is also soluble in CO2 at elevated temperatures.[53] The solubility 

of the PPO oligomers has been attributed to the Lewis acid−Lewis base interaction between the 

carbon in CO2 and the ether oxygen in poly(propylene oxide),[54] and the lower surface tension 

caused by the pendent methyl group on each monomer unit favoring solvation by CO2.[30] The 
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lowering of the interfacial tension at the water-CO2 interface, emulsion formation and solubilities 

of block copolymers containing PPO segment were reported.[30, 55] PPO has been used as a 

CO2-philic segment in di-block and tri-block nonionic surfactants along with hydrophilic blocks 

of poly(ethylene oxide) (PEO).[56-59] For example, the tri-block nonionic surfactant, 

(PO)15(EO)10(PO)15, composed of two CO2-philic propylene oxide oligomers, and a single 

hydrophilic ethylene oxide oligomers, exhibit CO2 solubility up to 0.6 wt% below 30 MPa at 25 

oC.[59] Other CO2 soluble nonionic triblock surfactants include those contain an alkyl group, an 

ethylene oxide block and a propylene oxide block, such as C12H25-(EO)3(PO)6-OH, which is 1 

wt% soluble in CO2 at 35−45 oC and pressures below10-15 MPa.[57] 

 

Poly(vinyl acetate) 

 McHugh and coworkers were the first to note that poly(vinyl acetate) demonstrated 

remarkable solubility in dense CO2.[29] Recently, poly(vinyl acetate) has been identified as the 

most CO2 soluble, high molecular weight, oxygenated hydrocarbon-based homopolymer 

composed of solely of carbon, hydrogen and oxygen; however, only short oligomers of PVAc, 

n<20 are likely to be soluble in CO2 at pressure below moderate pressure (35 MPa), as shown in 

Figure 2.8.[53] The interactions between poly(vinyl acetate) and CO2 are similar to those of per-

acetylated sugars and CO2.  
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Figure 2.8. Cloud point pressure at ~ 5 wt% polymer concentration and 25 oC for binary mixture 

of CO2 with poly(methyl acrylate) (PMA), poly(lactide) (PLA), poly(vinyl acetate) (PVAc), 

poly(dimethyl siloxane) (PDMS), and poly(fluoroalkyl acrylate) (PFA) as a function of number 

of repeat units based on Mw.[53] 

 
 
Short Alkyl Chain with t-Butyl Tip 

Recently, Eastoe and Johnston[60-62] described two branched hydrocarbon-based ionic 

surfactants, sodium bis(2,4,4-trimethyl-1-pentyl) sulfosuccinate and sodium bis(3,5,5-trimethyl-

1-hexyl) sulfosuccinate, that exhibit CO2 solubility. These twin tailed sodium succinates are 

similar in structure to the CO2-insoluble surfactant AOT, sodium bis(2-ethyl-1-hexyl) 

sulfosuccinate, but they contain trimethyl pentyl or trimethyl hexyl tails and are referred to as 

AOT-TMP and AOT-TMH, respectively. This is illustrated as the “short alkyl chain with t-butyl 

tip” in Figure 2.6. AOT-TMH has been reported 0.1 wt% solubility in CO2 at 40 oC, 50 oC, and 
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80 oC at 34.5 MPa, 31MPa, and 29 MPa, respectively.[62] Even though there are no specific sites 

for strong CO2-alkyl interactions in this system, the favored solvation of the branched tail 

surfactants by CO2 may be attributable to the surface energy of the pendant methyl groups being 

much lower than that of the CH2 groups of linear tails.[30] Further, it was found the high degree 

of chain tip methylation do form water-in-carbon dioxide (w/c) reverse micelles [61]. 

 

 

2.6 MICELLES AND MICROEMULSIONS 

 

Surfactants reduce interfacial tension and aid in the solubilization of hydrophobic compounds 

into hydrophilic solvents, or vice versa. A micelle or a microemulsion droplet is an aggregation 

of surfactant molecules, which can only form when the surfactant concentration is greater than 

the critical micellar concentration (CMC). Depending on the nature of the continuous phase, the 

micelles formed are termed oil-in-water (o/w, for a bulk water phase with dispersed organic 

phase) or water-in-oil (w/o, for a bulk organic phase with dispersed water phase). Water-in-CO2 

microemulsion (w/c) is formed for bulk CO2 with dispersed water phase. The structure of typical 

oil-in-water (o/w) micelle is shown in Figure 2.9 a, in which the hydrophilic segment interacts 

with the aqueous phase and the lipophilic segment is oriented to interact with the organic phase. 

The opposite structure of water-in-oil (w/o), or water-in-CO2 (w/c), called reverse micelle, is also 

formed whereby the lipophilic tail interacts with the continuous organic phase and the 

hydrophilic heads are directed to the core of the micelle, thus interacting with the aqueous phase, 

as shown in Figure 2.9 b. Micelles can exist in different shapes, including spherical, cylindrical, 

hexagonal, or lamellar.  
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Figure 2.9. Representation of a micelle and a reverse micelle. 
 
 
 

System containing micelles is referred to as emulsion, which is a dispersion of one liquid 

in another. Microemulsions are special kind of emulsions, which are thermodynamically stable 

and optically transparent, with the dispersed liquid droplets dimensions less than 100 nm. It has 

been long established that hydrophilic-hydrophobic balance plays a crucial role in the formation 

and stability of colloidal dispersions and self-assembly structures. An important efficiency factor 

for a surfactant to form water-in-CO2 microemulsion is the water uptake W, defined as the molar 

ratio of water loading to the surfactant, which is highly dependent on the surfactant type and 

nature of the CO2-philic chains, as well as CO2 pressure and temperature. Another measure of 

efficiency is the minimum pressure that requires keeping the dispersion a stable single 
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transparent phase. Above this pressure the surfactant is able to stabilize w/c microemulsion, 

whereas below this pressure a phase separation occurs.  

The formation of microemulsions in a scf continuous phase was first reported by Smith 

and co-workers using AOT in sub- and supercritical alkanes.[63] Since then, interest in 

surfactant/scf has grown steadily and produced a wide variety of research aimed at characterizing 

and applying these systems.[63-65] The most commonly used alkanes to form the scf continuous 

phase have been ethane and propane.[64] However, interest in using more environmentally 

benign solvents in chemical processes has pushed the forefront of surfactant/scf systems and 

formation of microemulsions to include CO2 as the continuous phase.[61, 62, 66]  

One interesting feature in the formation of water-in-CO2 microemulsions is the creation 

of a nanosized water pool in a bulk CO2 phase. The concept of a nano-scale water pool dispersed 

in CO2 is particularly interesting in that there is tremendous potential for chemical applications. 

For example, the low viscosity (high diffusivity) of a scf makes scf-based microemulsions 

particularly attractive as separation media. Also, water pools formed in CO2 find applications in 

a variety of reaction chemistry and material synthesis. The advantages of using sc-CO2 to carry 

out these processes lies in one’s ability to achieve more specific or selective control over 

separation and/or reactivity via the tunable solvent property. By changing the system pressure, 

one can selectively tune droplet-droplet interactions, thereby directly influencing the chemistry 

that takes place within the water domain.  

 

Characterizations of Microemulsions 

Various probing techniques such as FTIR, UV-vis, X-band electron parametic resonance 

(EPR), and time-resolved fluorescence depolarization have been used to characterize the nature 

 22



 

of the PFPE/CO2 reverse micelles. EPR identified the micelle as having a bulk-like water core 

able to solvate ionic species while time-resolved fluorescence depolarization revealed an 

anisotropic/nonspherical reverse micelle.[67] FTIR and UV-vis spectroscopy by Johnston and 

coworkers[68, 69] showed that the w/c microemulsion consists of regions of “bulk” hydrogen 

bonded water, “interfacial” water, and “free” water dissolved in sc-CO2. The UV-vis 

spectroscopic studies using methyl orange as a probe indicated that the PFPE/sc-CO2/water 

reverse micelle cores have a polar environment as seen in dry PFPE reverse micelles, a bulk-like 

water region, and an acidic environment resulting from carbonic acid formation. Additionally, 

Lee et al.[70] observed the interaction strength between the droplets to be larger in water-in-CO2 

relative to water-in-oil microemulsions due to stronger tail-tail interactions resulting from the 

weak solvation by CO2. As a result, it is more difficult to overcome droplet interactions to 

produce stable microemulsions. Lastly, SANS measurements performed by Zielinski et al.[71] 

show evidence of water-in-CO2 microemulsion with a droplet radius ranging from 20 to 36 A.  

 

 

2.7 APPLICATIONS OF SURFACTANTS IN CARBON DIOXIDE 

 
 

Carbon dioxide is desirable as a process solvent because of its “green” characteristics and it has 

been considered as a replacement for organic solvents in numerous technologies, such as the 

production of nanoparticles, polymer processing, chemical reactions, and extractions due to the 

development of CO2 soluble surfactants specifically for each application.  
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2.7.1 Nanoparticle Formation 

 

There is a growing interest in the preparation of nanoparticles for use as catalysts, 

pharmaceuticals, sensors, semiconductors, optical materials, and others. Current techniques for 

producing nanoparticles involve harsh process conditions and do not provide adequate control 

over particle characteristics. Recently, CO2 has been extensively investigated as a pressure-

tunable reaction medium for the manufacture of nanoparticles. Changes to CO2 solvent properties 

through manipulation of the pressure can affect the growth rate of nanoparticles, their final size, 

and their size distribution, allowing fine control over nanoparticles. Several modes of 

nanoparticle synthesis have been explored in CO2.  

 

Nanoparticle Formation in w/c Microemulsions 

One method provides for the formation of nanoparticles within w/c microemulsions by 

reducing metal salts dissolved in the nano aqueous core and has been demonstrated for 

copper,[33] silver,[33, 72-74] and palladium.[34] This technique employs CO2-philic 

perfluoropolyether (PFPE) surfactants in order to form reverse micelles in CO2 with a water core 

into which CO2-phobic polar species (metal salts) can dissolve. Typically, by using this strategy, 

metallic nanoparticles having diameters from 2−15 nm were synthesized and stabilized in the 

water-in-CO2 microemulsions formed by PFPE surfactants.  

In nanoparticle formation, a metal ion is introduced into a reverse micelle. A reducing 

agent within the CO2 continuous phase diffuses into the micelle, reducing the metal ions to form 

very small metal particles. The inter-micellular exchange of the metal particles solubilized within 

the core of the micelles allows for the particles growth by the aggregation and coalescence of the 
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very small particles. The particle growth continues until the particles reach a terminal size 

determined by the system and where the surfactant aids in stabilization of the particles.   

The substitute of oxygenated hydrocarbon-based or hydrocarbon-based surfactants for 

fluorinated surfactants in the applications of nanoparticle formation in w/c microemulsion would 

mitigate the problems associated with the environmental and biological persistence associated 

with fluorinated surfactants. One of the objectives of this study was to design, synthesize, 

characterize, and evaluate the CO2 solubility of ionic surfactants with oxygenated hydrocarbon 

tails composed of acetylated sugar, PPO, or oligo(vinyl acetate). Additionally, these surfactants 

were examined for their ability to form stable microemulsions with polar microenvironments 

capable of dissolving polar species in the bulk non-polar CO2 solvent. 

 

Nanoparticle Formation via Reducing CO2-Soluble Organometallic Precursors 

An alternative technology forgoes the formation of the reverse micelles, and instead 

employs the reduction of fluorinated, CO2-soluble organometallic precursors of Ag(1,1,1,5,5,5-

hexafluoropentane-2-,4-dione)(tetraglyme) [Ag(hfpd)(tetraglyme)], palladium(II) 

hexafluoroacetylacetonate [Pd(hfac)2],[75] and triphenylphosphine gold(I) perfluorooctanoate 

[TPAuFO].[76] After reduction, the metal atoms aggregate to form nanoparticles which are 

capped by the CO2 soluble fluorinated thiols. The thiol binds to the surfaces of nanoparticles, 

quenches particle growth and provides a steric barrier to aggregation. In this manner, metallic 

silver, palladium, and gold nanoparticles with a size range of about 1−4 nm were dispersed in 

supercritical CO2.  

Another method involves reducing CO2-soluble fluorinated, organometallic precursors, 

such as Ag(hfpd)(tetraamine), Ag(hfpd)(tetraglyme), and Pd(hfac)2 in the absence of stabilizing 

 25



 

thiols. Rather, the reduced silver nanoparticles were trapped in porous substrates, such as 

poly(styrene-divinlybenzene) and silica aerogels,[77] palladium nanoparticles were stabilized in 

swelled plastics.[78] In each of these cases, CO2-soluble fluorinated metal complexes were 

required to make the metal nanoparticles.  

The use of hydrocarbon-based or oxygenated hydrocarbon-based precursor complexes in 

supercritical CO2 manufacture of metal nanoparticles would mitigate the problems associated 

with the environmental and biological persistence associated with fluorous compounds. 

Platinum, copper, and nickel film were successfully deposited onto polymer substrates or silicon 

wafer by reducing CO2-soluble hydrocarbon-based metal precursors, such as 

dimethyl(cyclooctadiene)platinum(II) [CODPtMe2],[79] bis(2,2,6,6-tetramethyl-3,5-

heptanedionato)copper (II) [Cu(tmhd)2], and bis(cyclopentadienyl)nickel [NiCp2].[80] Silver 

acetylacetonate, [Ag(acac)] was reported as a hydrocarbon-based precursor for the preparation of 

silver nanocrystals capped with fluorinated ligands of 1H,1H,2H,2H-perfluorooctanethiol.[81, 

82] However, these prior reports of metallic nanoparticle synthesis by reducing hydrocarbon-

based metal precursors did not contain any CO2-metal precursor phase behavior data. Our 

objective was to produce silver nanoparticles capped with non-fluorinated ligands via the 

reduction of highly CO2-solulbe hydrocarbon-based or oxygenated hydrocarbon-based metal 

precursors.  

 

2.7.2 CO2 in Enhanced Oil Recovery 
 

The largest application of CO2 is in the area of enhanced oil recovery. Carbon dioxide, being 

available at high purity and in large quantities from natural reservoirs, has been used in enhanced 

oil recovery for many years.  
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Enhanced Oil Recovery  

In petroleum industry, primary recovery, producing oil under natural reservoir pressure, 

accounts 5-20% of original oil in place (OOIP). Subsequently, secondary recovery, the injection 

of water to displace oil, called water flooding, can recover up to 50% of OOIP. Much of the oil 

still remains behind in place due to inefficiency of these recovery processes. With the increasing 

demand for petroleum versus limited resources, tertiary recovery methods, referred to as 

enhanced or improved oil recovery (EOR/IOR) employ fluids other than water to displace 

additional oil from reservoir. Recent production trends show less than 10% of OOIP comes from 

EOR processes. EOR processes include hydrocarbon miscible flooding, CO2 flooding, polymer 

flooding, surfactant flooding, steam flooding, and immiscible gas injection. Different fluids are 

injected to displace additional oil from the reservoir, via several mechanisms including solvent 

extraction to achieve (or approach) miscibility, interfacial-tension (IFT) reduction, improved 

sweep efficiency, pressure maintenance, oil swelling, and viscosity reduction.[83]  

 

CO2 as a Flooding Agent in Enhanced Oil Recovery  

 During a CO2 flooding, also called miscible displacement, because CO2 is miscible with 

light oils under reservoir conditions. CO2 is injected into the oil-bearing porous media, typically 

at a depth greater than 2000 ft and reservoir temperature usually between 300 K and 400 K. The 

working pressure is maintained slightly above the “minimum miscibility pressure” (MMP, 

approximately 7-30 MPa) as shown in Figure 2.10,[84] thus CO2 can dynamically develop 

effective miscibility with oil and displace the oil left behind by water flooding.[85] As the 

reservoir fluids are produced form the production well, CO2 can be easily separated from the oil 

simply by pressure reduction. Other properties of CO2 such as low cost, nonflammable, nontoxic, 
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and easy separation from the oil also contribute to make CO2 flooding an attractive oil recovery 

procedure.  

CO2 flooding at nearly 70 projects sites in the U.S. produces more than 200,000 barrels 

per day, which is approximately 3% of the domestic oil production rate. About 1.3 billion 

standard cubic feet (SCF) of CO2 is injected into domestic reservoirs each day, the majority of 

which are located in the Southwest. At typical reservoir conditions, CO2 is a dense fluid and its 

utilization corresponds to 3 barrel of liquid CO2 injected per barrel of oil rejected. Despite the 

large amount of CO2 flooding injected into these formations, the recovery efficiency is typically 

only 10-20% of the OOIP. Further, shallow reservoirs are not amenable to CO2 flooding because 

the MMP exceeds the overburden pressure of the formation. 
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Figure 2.10. Working temperature and pressure for CO2 flooding as a function of oil average 

molecular weight.[84] 
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The foremost disadvantage of CO2 as an oil displacement fluid is its low viscosity, 0.03-

0.1 cp at the reservoir conditions, as shown the shade area in Figure 2.11,[86] which is up to 100 

times lower than that of the oil being displaced, varying from 0.1 cp to 50 cp. The low viscosity 

of CO2 results in its much higher mobility (defined as permeability/viscosity of that fluid in 

porous media) compared to that of the oil, because the permeability of CO2 and oil are 

comparable in magnitude. This unfavorable high mobility of CO2 causes CO2 “fingering” its way 

towards the production well, bypassing as much as 85% of the oil in the reservoir, which reduces 

the area sweep efficiency. Figure 2.12 shows the comparison of CO2 fingering and the ideal case 

in EOR. Injection is in the lower left hand corner, and production is in the upper right hand 

corner, the curves show CO2/oil interface as a function of time  

Moreover, the low viscosity of CO2 also contributes to the low vertical sweep efficiency, 

especially in stratified reservoirs that include two or more layers. The formation may contain a 

highly permeable water-rich zone caused by extensive water flooding, while the other layer is 

low permeability oil-rich zone. The high mobility of CO2 prefers entering the highly permeable 

water-rich zone, leaving oil residing in the less permeable zones, which is not contacted by CO2 

and thus not efficiently displaced.  

Furthermore, some shallow reservoirs are not amenable to CO2 flooding because the 

MMP exceeds the overburden pressure of the formation. In this case, the displacement of oil by 

CO2 would be conducted at pressures below the MMP, and the resultant displacement would be 

categorized as immiscible displacement. Such a process would benefit from a CO2 thickener to 

improve sweep efficiency. The displacement efficiency would also be enhanced if there was a 

way to reduce the CO2-oil interfacial tension.  
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Figure 2.11. Viscosity of CO2 as function of temperature and pressure.[86]  
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Figure 2.12.  CO2 flooding in EOR: (a) CO2 “fingering” (b) ideal case.  

 

 

Mobility Control Technologies to Improve the Efficiency of CO2 Flooding  

The high CO2 utilization rate and low volumetric sweep efficiency are primarily 

attributing to the low viscosity and density of dense CO2 relative to the oil being displaced. For 

example, the density of CO2 at reservoir conditions may be 0.45-0.75 g/cm3, while the oil density 

varies between 0.7-0.9 g/cm3. The viscosity of CO2, 0.03-1 cp at reservoir conditions, is 

commonly 2-20 times less than that of the oil being displaced. Although it is not feasible to 

significantly increase the density of CO2, it is possible to significantly alter the relative viscosity 

of CO2 using several technologies. 
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Water-Alternating-Gas (WAG) Technology 
 

Currently, the water-alternating-gas (WAG) process remains the most common means of 

moderating CO2 mobility.[87] The water slugs act as a blocking agent to impeding CO2 flow in 

the porous medium. Alternating slugs of water and CO2 are injected to improve the mobility of 

CO2 by reducing the relative permeability of CO2. The increased water saturation in the porous 

media decreases the relative permeability of CO2; however, the high saturation of water may 

impede the contact of CO2 with oil, and gravity segregation of CO2 and water can impede the 

effectiveness of this process. The injection of water also extends the time required to inject the 

desired amount of carbon dioxide. Further, a significant amount of oil can still be left behind 

during the WAG process; recovery of only 10-20% of the oil is common.  

 
 
CO2 Foam Flooding or Surfactant Solution-Alternating-Gas (SAG) Technology 
 

Foam is a dispersion of a gas in a liquid. CO2 foams have also been studied by both 

academic groups[42, 88-90] and by industrial researchers.[91, 92] An aqueous surfactant solution 

is injected into the formation, followed by the CO2, which is called surfactant-alternating-gas 

(SAG) process. The in-situ generation of foams results in high phase volume CO2 foams in 

which bubbles of the CO2 are separated by aqueous films. Foams show potential for both 

mobility control (modest decreases in mobility) and permeability modification (significantly 

decreases in mobility). Shorter cycles are recommended in the SAG process to obtain a more 

uniform foam quality. Problems associated with CO2 foam flooding or SAG process includes 

corrosion, surfactant adsorption and control of foam mobility within the reservoir for extended 

periods of time. 
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CO2-Soluble Polymeric Thickener Technology 

A search for CO2-soluble polymers or smaller associating compounds capable of directly 

enhancing the viscosity of dense CO2 have been conducted by numerous research groups [42, 

93]. Subsequently, Enick and co-workers identified the first CO2 thickener, 

poly(fluoroalkylacrylate-styrene) copolymer, poly FAST, which successfully increased the 

viscosity of CO2 by a factor of 10 in porous media at 1 wt%.[7, 94] Poly FAST isn’t practical for 

field use; however due to its expensive and environment persistence.  

 

These examples demonstrate the diversity applications of CO2 from nanoparticle 

formation to enhanced oil recovery. Despite difficulties associated with its feeble solvent nature, 

application of creative engineering solutions can still enable its use, provided that CO2 soluble 

surfactants can be specifically designed and synthesized for each application. Such surfactants 

contain a CO2-philic segment such as a fluoroether, fluoroacrylate, or silicone-based compound 

and a CO2-phobic segment made up of a hydrophilic or lipophilic molecule, depending on the 

application.  
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3.0 RESEARCH OBJECTIVES AND APPROACH 
 
 
 
 

3.1 RESEARCH OBJECTIVES 

 

The primary objective of this project is to enhance the performance of petroleum and chemical 

engineering CO2-based processes using oxygenated hydrocarbon-based or hydrocarbon-based, 

novel, inexpensive, biodegradable CO2 soluble surfactants with tails composed of C, H, and O 

(other elements may be used in ionic surfactant counterions).  

 

3.1.1 CO2 Soluble Surfactants for Nanoparticle Synthesis and Stabilization 

 

Our objectives are to design, synthesize, characterize, and evaluate the CO2 solubility of ionic 

surfactants with oxygenated hydrocarbon tails composed of acetylated sugar, PPO, or oligo(vinyl 

acetate). Additionally, these surfactants were examined for their ability to form stable 

microemulsions with polar microenvironments capable of dissolving polar species in the bulk 

non-polar CO2 solvent. Other objectives for nanoparticle synthesis application were to design 

and determine the solubility of silver organometallic complex that could be used to form silver 

nanoparticles in CO2 via reduction in the presence of fluorous or non-fluorous stabilizing ligands.  
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3.1.2 CO2 Soluble Surfactants for Generating in-Situ EOR Foams 

 

We proposed the use of CO2 soluble surfactants that can be injected along with CO2 into the oil 

reservoir for mobility control and/or permeability alteration. Upon mixing with the reservoir 

brine, foam would be generated in-situ; especially in watered out zones into which a significant 

fraction of the CO2 typically flows with little economic benefit. The fundamental advantages of 

such a surfactant include (a) a reduction or elimination of the need to inject brine or aqueous 

surfactant solutions into the reservoir, and (b) the generation of foams along and at the tips of the 

CO2 “fingers” where mobility control is needed the most, thereby acting as a “smart fluid” to 

divert the subsequently injected neat CO2 to oil-rich zones.   

The objective of this study was to form emulsions by mixing of CO2, water and CO2-

soluble surfactants, and then to characterize the stability of the emulsion by measuring its rate of 

collapse. CO2-soluble ionic surfactants with oxygenated hydrocarbon tails composed of 

acetylated sugar, PPO, or oligo(vinyl acetate) were evaluated along with two nonionic 

surfactants, iso-stearic carboxylic acid and PPG-PEG-PPG triblock polymer (Mn=3300). 

Nonionic surfactants are considered to be low-to-moderate foamers relative to ionic surfactants, 

and were therefore expected to yield less stable emulsions, but nonionic surfactants have less 

severe problems associated with adsorption or chemical degradation. The stability of the 

emulsions stabilized with CO2 soluble ionic surfactants was then contrasted with that the 

stability of emulsions formed using conventional water soluble ionic surfactants.   
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3.2 OUR APPROACH 

 

We proposed to explore new types of oxygenated hydrocarbon-based or hydrocarbon-based, 

novel, inexpensive, biodegradable CO2 soluble surfactants. Each surfactant will contain two 

types of segments, one of which will be a novel, highly CO2-philic, oxygenated hydrocarbon-

based or hydrocarbon-based segment. The other would be either a conventional non-ionic or 

ionic hydrophilic segment, or a nonionic lipophilic segment.   

 The CO2 solubility of each surfactant will be evaluated, along with the ability of the 

surfactant to solubilize water or generate foams in a high pressure variable volume view cell. 

Auburn University will confirm the solubilization of water into the cores of micelles 

spectroscopically. 
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4.0 OXYGENATED HYDROCARBON-BASED IONIC SURFACTANTS  
 
 
 
 

4.1 IONIC SURFACTANTS WITH PERACETYL GLUCONIC TAILS 

 

4.1.1 Materials 

 

Acetic anhydride, perchloric acid, D-glucose, triethylamine, 1,8-Diazabicyclo[5.4.0]undec-7-ene 

(DBU), 2-boromoethanol, pyridine sulfur trioxide, sodium bicarbonate, ammonium carbonate 

were purchased from Aldrich and used as received. All other reagent and solvents were obtained 

from Aldrich and used without further purification. N2 (99.995%) and CO2 (99.99%, Coleman 

grade) were purchased from Penn Oxygen. 

 

4.1.2. Characterizations 

 

The purities of the ionic surfactants were estimated by 1H NMR spectra recorded on a Bruker 

400 MHz NMR and IR spectra obtained on a Mattson Polaris FTIR. The molecular weights of 

the ionic surfactants were detected by mass spectra performed on a liquid 

chromatography/electrospray ionization/quadrupole time-of-flight mass spectrometer. 
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4.1.3 Synthesis  

 

The synthesis of peracetyl gluconic (sugar acetate)-based ionic surfactants with ethyl sodium 

sulfate, sodium carboxylate and ammonium carboxylate head groups were carried out with the 

help of Dr. Hamilton’s group of Chemistry Department at Yale University.[95] The structures of 

peracetyl gluconic-based ionic surfactants are shown in Figure 4.1.  
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Figure 4.1 Structures of peracetyl gluconic-based ionic surfactants. 
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The reaction scheme is shown as follows in Figure 4.2, with the synthesis of peracetyl 

gluconic ethyl sodium sulfate as an example. Peracetyl gluconic carboxylic acid was prepared by 

acetylation of D-glucose by acetic anhydride, followed by neutralization with sodium 

bicarbonate.  
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Figure 4.2 Reaction scheme for preparation of peracetyl gluconic ethyl sodium sulfate.  
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Synthesis of Peracetyl Gluconic Carboxylic Acid 

Acetic anhydride (30 mL) was cooled to about 15 °C, 67% HClO4 (4 g, 39.82 mmol) was 

then added to the cold acetic anhydride, followed by the addition of D-glucose (5 g, 25.23 mmol). 

The temperature of the mixture was kept below 40 °C. After brief heating to obtain a 

homogeneous solution, the mixture was poured on ice and extracted twice with CHCl3 (2 x 100 

mL). The organic layers were pooled and washed with ice-cold water. Water (50 mL) and 

triethylamine (4 mL) were added to the CHCl3, followed by overnight stirring to hydrolyze any 

anhydride. The organic layer was separated and washed with 1 N HCl and dried over anhydrous 

Na2SO4, and CHCl3 was removed in vacuo to yield 80% 2,3,4,5,6-penta-O-acetyl-D-gluconic 

acid. 1H NMR δH (CDCl3): 5.618 (t, J = 4.8 Hz, 1H), 5.510 (dt J = 6.4 Hz, 1H), 5.285 (d, J = 3.6 

Hz, 1H), 5.055 (m, 1H), 4.301 (dd, J = 12.4 Hz, 4 Hz, 1H), 4.113 (dd, J = 12.4 Hz, 5.6 Hz, 1H), 

2.249 (s, 3H), 2.085 (s, 3H), 2.077 (s, 3H), 2.072 (s, 3H), 2.044 (s, 3H). 

 

Synthesis of Peracetyl Gluconic Ethyl Sodium Sulfate (Figure 4.2a) 

1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) (4.8 g, 31.53 mmol) was added to a solution 

of peracetyl gluconic carboxylic acid (10 g, 24.63 mmol) and 2-bromoethanol (3.94 g, 31.53 

mmol) in DMF(10 mL) and stirred at room temperature. After 12 h the mixture was poured into 

water (100 mL) and extracted with dichloromethane (3 x 50 mL). The organic layers were 

pooled, washed with water, and dried over anhydrous Na2SO4 prior to the removal of solvent. 

Column chromatographic purification of the crude product over silica gel using 50% ethyl 

acetate and hexanes as the eluent gave the pure product (9.4 g, yield 85%). The product was 

dissolved in anhydrous dichloromethane, pyridine sulfur trioxide (6.3 g, 39.58 mmol) was added, 

and the mixture was stirred at room temperature for 12 h. The mixture was filtered through a pad 
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of Celite and solvent removed to give the pyridinium salt. The pyridinium salt was dissolved in 

water (100 mL), and sodium bicarbonate (1.74 g, 20.71 mmol) was added. The resultant mixture 

was frozen and water was removed using a freeze-dryer to give a white color fluffy solid.  

HRMS (ESI) calculated for C18H25Na2O16S ([M + Na]+) 575.0659, found 575.0630. 

(Appendix A Figure A.1) 

 

Synthesis of Peracetyl Gluconic Sodium Carboxylate (Figure 4.2b). 

Peracetyl gluconic carboxylic acid (5 g, 12.32 mmol) was dissolved in water (50 mL), 

and sodium bicarbonate (1.04 g, 12.38 mmol) dissolved in water (10 mL) was added. The 

resultant solution was frozen and water was removed using a freeze-dryer to give white color 

fluffy solid. 

HRMS (ESI): calculated for C16H22NaO12 ([M + H]+) 429.1009, found 429.1016. 

(Appendix A Figure A.2) 

 

Synthesis of Peracetyl Gluconic Ammonium Carboxylate (Figure 4.2c).  

Ammonium carbonate (2.0 g, 20.81 mmol) was added to a solution of peracetoxy 

gluconic carboxylic acid (5 g, 12.32 mmol) dissolved in water (50 mL), and the mixture was 

stirred. The resultant solution was frozen and water was removed using a freeze-dryer to give a 

yellow color fluffy solid.  

HRMS (ESI) calculated for C16H26NO12 ([M + H]+) 424.1455, found 424.1422. 

(Appendix A Figure A.3) 
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4.1.4 Phase Behavior of Peracetyl Gluconic-Based Ionic Surfactants 

 

4.1.4.1 Experimental Apparatus    The CO2 solubility of surfactants was determined by phase 

behavior study as function of temperature, pressure and concentration. The apparatus is a high 

pressure, windowed, variable volume view D. B. Robinson cell with magnetic mixer and 

temperature control. The schematic apparatus is shown in Figure 4.3 and the variable volume 

view D.B. Robinson cell with magnetic mixer is illustrated in Figure 4.4. The system is rated to 

70 MPa and 200 oC.  

 
 
 

 

 
 

Figure 4.3 Schematic apparatus for solubility/phase behavior measurements. 
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Figure 4.4 Variable volume view D. B. Robinson cell with magnetic mixer 
 
  
 
 A known amount of surfactant (e.g., 0.0700 ± 0.0001 g) was loaded into the sample 

volume of a high pressure, windowed, stirred, variable-volume view cell (DB Robinson & 

Assoc., 3.18 cm i.d., ∼120 cm3 working volume). In this cell, the sample volume is separated 

from the overburden fluid by a steel cylinder (floating piston) that retains an O-ring around its 

perimeter. The O-ring permits the cylinder to move while a seal is retained between the sample 

volume and the overburden fluid. After purging with carbon dioxide at 0.2 MPa, the sample 

volume was minimized by displacing the floating piston to the highest possible position within 

the cell that did not result in the displacement of surfactant out of the sample volume. High 

pressure liquid carbon dioxide (22 °C, 13.8 MPa) was then introduced to the sample volume as 

the silicone oil overburden fluid (which was maintained at the same pressure as the CO2) was 

withdrawn at the equivalent flow rate using a dual-proportioning positive displacement pump 

(DB Robinson). This technique facilitated the isothermal, isobaric addition of a known volume 
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of CO2 (e.g., 12.50 ± 0.01 mL) into the sample volume. The mass of CO2 introduced was 

determined from the displaced volume, temperature, and pressure using an accurate equation of 

state for carbon dioxide.[96] On the basis of the uncertainties associated with the measurement 

of temperature, pressure, and volume, and the precision of the equation of state, compositions are 

estimated to be accurate to within 1% of the specified value (e.g., 0.5 ± 0.005 wt %). The 

surfactant-CO2 mixture was compressed to high pressure (e.g., 60 MPa) and mixed thoroughly 

using a magnetic stirrer (DB Robinson, max. 2500 rpm). If the surfactant did not completely 

dissolve at these conditions, additional CO2 was added to the system until a single transparent 

phase could be attained. Cloud points were determined by standard nonsampling techniques. The 

high-pressure, single-phase solution of known composition was subjected to a slow, isothermal 

expansion until the cloud point was attained. Cloud points were reproduced three times to within 

approximately ± 0.1 MPa for monodisperse surfactants and ± 0.5 MPa for polydisperse 

surfactants. Temperatures were measured with a type K thermocouple to an accuracy of  ± 0.1 °C. 

 Experiments with water were conducted by adding the specified amount of surfactant and 

double distilled and deionized water to the sample volume, followed by the introduction of CO2. 

W is the molar ratio of total amount of loading water to surfactant in the mixture. The W value is 

“uncorrected” in that this value accounts for the total amount of water in the mixture that may 

dissolve into the bulk CO2 and/or be solubilized in the core of reverse micelles. The corrected 

water/surfactant ratio, Wcorr, for a transparent single phase mixture can be estimated by assuming 

that the bulk CO2 is saturated with water, while the amount of the excess water, which is 

assumed to reside within the cores of the micelles, is used in the numerator of Wcorr.[97] 
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Figure 4.5. Phase diagram for solid surfactant/CO2 system (P-x diagram) 
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Figure 4.6. Phase diagram for liquid surfactant/CO2 system (P-x diagram) 
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The cloud point pressure is the minimum pressure at which the sample is miscible with 

dense carbon dioxide at that particular temperature and composition. Below this pressure, the 

system consists of a sample-rich phase and a CO2-rich phase. Thus we could obtain a point on 

the two-phase boundary of a P-x diagram of solid surfactant/CO2 system and liquid 

surfactant/CO2 system, shown in Figure 4.5 and Figure 4.6. A series of these experiments were 

conducted over a range of overall compositions, enabling the two-phase boundary of the 

surfactants/CO2 system to be established.  

 

4.1.4.2 Phase Behavior Results    The neat peracetyl gluconic-based surfactants with an ethyl 

spacer and a sodium sulfate, sodium carboxylate or ammonium carboxylate head group (Figures 

4.1 a,b,c) are solids. Peracetyl gluconic ethyl sodium sulfate (PGESS) does not dissolve in CO2 

at 22 oC or 40 oC in the absence of water (W=0), but its solubility increases as water is added, as 

shown in Figure 4.7. The surfactant is up to 0.6 wt% soluble in CO2 in the presence of water at a 

W value of 10 (W is the molar ratio of water to surfactant, uncorrected for dissolved water). At 

W values of 40 and 50; however, a water phase appeared at the bottom of the cell. Attempts to 

dissolve 0.7 wt% or more yielded an excess surfactant-rich phase at the bottom of the cell for all 

values of W. Table 4.1 lists W and Wcorr for the PGESS surfactant in water and CO2 mixture at 

different weight percent and temperature. 
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Figure 4.7. Phase behavior of peracetyl gluconic-CH2CH2-OSO3Na/CO2 mixtures. Insoluble at 

W = 0; 22 oC, W =10 (●); 40 oC, W=10 (▲). (Appendix A Figure A.4. Surfactant concentration in 

mM)  

 
 
 

 48



 

Table 4.1. W and Wcorr for the PGESS surfactant in water and CO2 mixture at different weight 

percents and temperature. *When the amount of water is not sufficient to saturate the CO2, Wcorr 

is reported as 0. 

 
 

PGESS Concentration, wt% Temperature, oC W Wcorr*

0.1-0.5 25 10 0 
0.6 25 10 0.8 

0.1-0.6 40 10 0 
 
 
 

Figure 4.8 shows that peracetyl gluconic sodium carboxylate (PGSC) appears to be more 

CO2 soluble than PGESS because PGSC can dissolve at 40 oC in the absence of water. The 

solubility of PGSC decreases slightly with the addition of water. PGSC has a limiting solubility 

of approximately 0.4 wt% in CO2 at W = 10. Single phase solutions could not be realized at W 

values of 40, even at surfactant concentrations as low as 0.1 wt%. Wcorr is 0 at W value of 10 for 

PGSC surfactant in water and CO2 mixture at concentration range of 0.1-0.5 wt% is 0 at 40 oC.  
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Figure 4.8. Phase behavior of peracetyl gluconic-COONa/CO2 mixtures at 40 oC. W=0 (ο); 

W=10 (•). (Appendix A Figure A.5. Surfactant concentration in mM).   

 
 
 

Figure 4.9 illustrates that peracetyl gluconic ammonium carboxylate (PGAC) can 

dissolve in CO2 up to 2 wt% at 40 oC without water. Although this limiting solubility value is 

significantly greater than those for either PGESS or PGSC, the pressure required to dissolve 

PGAC at dilute concentrations (up to 0.5 wt%) was greater than that required to dissolve PGSC. 

The solubility of PGAC decreases with the introduction of water, as does its limiting solubility in 

CO2, which is about 0.5 wt% at W value of 10. Single phase solutions could not be realized at W 

values of 40, even at surfactant concentrations as low as 0.1 wt%. Wcorr is 0 for W value of 10 

over PGSC concentrations up to 0.5 wt% at 40 oC.  
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Figure 4.9. Phase behavior of peracetyl gluconic-COONH4/CO2 mixtures at 40 oC. W =0 (ο); W 

=10 (•). (Appendix A Figure A.6. Surfactant concentration in mM).     

 
 
 
4.1.5 Dye Solubilization and Spectroscopic Measurements 

 

Dye solubilization and spectroscopic measurements were carried out with the help of Dr. 

Roberts’ group in Chemical Engineering Department at Auburn University.[95]  

The ability to form reverse micelles by these CO2-soluble surfactants was investigated 

using the solvatochromic probe methyl orange at system concentration of ca. 4.7 x 10-5 M. 

Methyl orange is a polar probe that is insoluble in both carbon dioxide and water-saturated 

carbon dioxide. Furthermore, the location of its absorption maximum is dependent upon the 

polar environment in which it is dissolved. For instance, it has an absorption maximum at 416 in 

dry PFPE-NH4/CO2 reverse micelles, 421 in methanol, 464 in water, and 502 nm in CO2-
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saturated water.[68, 69] Hence, the solubility of methyl orange in an otherwise ineffective 

solvent, such as CO2, indicates the presence of reverse micelles and it also functions as a probe 

of polarity of the water environment within CO2 reverse micelles. Consequently, methyl orange 

has been used successfully to identify the presence of reverse micelles as well as their ability to 

uptake water in CO2 reverse micelles.[68, 69, 98-103] It was indicated that the absorption 

maximum in water-in-CO2 microemulsions formed by ammonium carboxylate PFPE surfactant 

approaches that of pure water ( nm460max =λ ).[66]While a surfactant may show some solubility 

in CO2 in the presence of dissolved water, this alone does not guarantee that a polar 

microenvironment is present. Verification of a polar microenvironment is necessary to confirm 

that the surfactant does indeed self-assemble in solution to form reverse micelles. 

 

4.1.5.1 Experimental Apparatus    A 32 mL stainless steel high-pressure vessel equipped with 

pressure gauge, resistance temperature detector (RTD), and parallel quartz windows for UV-vis 

characterization, which has been described previously,[73] was used to perform dye 

solubilization experiments. A magnetic stir bar was used to facilitate surfactant/CO2 mixing. For 

a typical experiment, 100 μL freshly prepared 0.015 M methyl orange (MO) in methanol solution 

was added into the UV cell, and a gentle stream of N2 was passed through the cell for ten 

minutes to fully evaporate the methanol while only maintaining the MO inside of the UV-cell. 

0.15 wt% of surfactant was charged into the cell, then specific amount of double distilled and de-

ionized water was injected into the cell using a syringe to reach the desired W value. After 

sealing the vessel, an ISCO syringe pump was used to add specific quantity of CO2 to the vessel. 

Once the vessel was filled with CO2 to the desired pressure, the system was mixed for at least an 

hour to reach a single phase before performing spectroscopic analysis. The vessel was placed in a 
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Cary 300E UV-vis spectrophotometer and absorption spectra were recorded to determine the 

presence of methyl orange solubilized in the surfactant/water/CO2 mixture. Pressure within the 

vessel was monitored to approximately ± 0.7 MPa, and temperature was maintained to within ± 

0.1 oC.  

 

4.1.5.2 Spectroscopic Results    The peracetyl gluconic surfactants were examined at 0.3 wt% in 

CO2 at 40 °C and with water loading of W = 10. In each case, the CO2-surfactant solutions were 

compressed to pressures above the reported cloud point pressure. Specifically, the sodium 

carboxylate, ammonium carboxylate, and ethyl sodium sulfate forms of the peracetyl gluconic 

were pressurized to 38, 44.8, and 48.3 MPa, respectively. There was no apparent methyl orange 

absorption, however, indicating that there was no tendency of the surfactants to form reverse 

micelles or polar microenvironments. Visual observation showed that, while water was dissolved 

into the CO2, dry methyl orange was being left on the surface of the vessel, thus indicating that 

none of the water in the CO2-rich phase existed in the form of a bulk water pool within the core 

of reverse micelles.  
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4.2 IONIC SURFACTANTS WITH PPG TAILS 

 

4.2.1 Materials 

 

Poly(propylene glycol) monobutyl ether (Mn=340, 1000), pyridinium sulfur trioxide, sodium 

bicarbonate, fumaryl chloride, sodium hydrogen sulfite were purchased from Aldrich and used as 

received. All other reagent and solvents were obtained from Aldrich and used without further 

purification. N2 (99.995%) and CO2 (99.99%, Coleman grade) were purchased from Penn 

Oxygen. 

 

4.2.2 Synthesis  

 

Poly (Propylene Glycol) MonoButyl Ether (PPGMBE) is a secondary alcohol containing 

propylene oxide repeat units. PPGMBE of different molecular weights (Mn=340, 1000) have 

been identified to be extremely CO2 soluble at very low pressure. Three kinds of ionic 

surfactants with sodium sulfate, pyridinium sulfate, and sodium sulfosuccinate head groups were 

designed and synthesized. The synthesis of PPG-based ionic surfactants with sodium sulfate and 

pyridinium sulfate head groups were carried out with the help of Dr. Hamilton’s group of 

Chemistry Department at Yale University.[95] AOT (sodium bis-2-ethyl-1-hexyl sulfosuccinate) 

is a commercially widely used aqueous surfactant, but it doesn’t dissolve in CO2 at all. Sodium 

bis (3,5,5-trimethyl1-hexyl) sulfosuccinate (AOT-TMH) with highly methyl branched tail as an 

AOT analogue was first synthesized by Nave and Eastoe,[60] considering that the pendant 

methyl groups in the outer blocks have a much lower surface energy (cohesive energy density) 
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than the CH2 group. Therefore, PPGMBE 340 is combined with the sodium sulfosuccinate head 

to form a twin tailed AOT analogue as an ionic surfactant. The structures of PPG-based single 

and twin tailed ionic surfactants are shown in Figure 4.10. The reaction scheme is shown as 

follows in Figure 4.11, with the synthesis of PPGMBE 340 sodium sulfate as an example. The 

reaction route for the synthesis of sodium bis(PPGMBE 340) sulfosuccinate (AOT Analogue) is 

shown in Figure 4.12.  

 
 
 

PPGMBE 340 Sodium Sulfate (a)

O
O

5

SO3Na

 

 

N

H

PPGMBE 340, 1000 Pyridinium Sulfate (b, c)

O
O

 5, 16

SO3

 

 
O

Sodium bis(PPGMBE 340) Sulfosuccinate (d)

O

O
O

5

O
O

5

NaO3S

 

 

Figure 4.10. Structures of peracetyl gluconic-based ionic surfactants. 
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Figure 4.11. Reaction scheme for the synthesis of PPGMBE 340 sodium sulfate. 
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Figure 4.12. Reaction scheme for the synthesis of sodium bis(PPGMBE 340) sulfosuccinate. 
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Synthesis of PPGMBE 340 Sodium Sulfate (Figure 4.10 a) 

Poly(propylene glycol) monobutyl ether (Mn = 340, 10 g, 29.4 mmol) was dissolved in 

dichloromethane (150 mL), pyridine sulfur trioxide (10 g, 62.83 mmol) was added, and the 

mixture was stirred at room temperature for 12 h. The reaction mixture was filtered through a 

pad of Celite and solvent removed to give the pyridinium salt. The pyridinium salt was dissolved 

in water (100 mL), and sodium bicarbonate was added until no further effervescence was 

observed. The resultant mixture was frozen and water was removed using a freeze-dryer to give 

yellow viscous liquid. Mass spectrum showed that the number-average molecular weight for 

PPGMBE (Mn = 340) sodium sulfate is 445.3. (Appendix A Figure A.7) 

 

Synthesis of PPGMBE 340, 1000 Pyridinium Sulfate (Figure 4.10 b, c)  

Poly(propylene glycol) monobutyl ether (Mn = 340, 10 g, 29.4 mmol) was dissolved in 

dichloromethane (150 mL), pyridine sulfur trioxide (10 g, 62.83 mmol) was added, and the 

mixture was stirred at room temperature for 12 h. The reaction mixture was filtered through a 

pad of Celite and solvent removed to give the PPGMBE (Mn = 340) pyridinium salt. PPGMBE 

(Mn = 1000) pyridinium sulfate was synthesized in the similar way.  

Mass spectra showed that the number-average molecular weight for PPGMBE (Mn = 340) 

pyridinium sulfate and PPGMBE (Mn = 1000) pyridinium sulfate is 515.2 and 1178.6, 

respectively.  

 

Synthesis of Sodium Bis(PPGMBE 340) Sulfosuccinate (AOT Analogue) (Figure 4.10 d)  

The esterification of alcohol and fumaryl chloride followed the procedure described by 

Nave et al.[60] Poly(propylene glycol) monobutyl ether (Mn = 340, 10.41 g, 30.62 mmol) and 
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anhydrous THF (60 mL) were charged in a 250 mL three-neck round-bottom flask equipped with 

a stirring bar and condenser under a steady flow of nitrogen. After cooling to 0 °C, fumaryl 

chloride (2.81 g, 18.36 mmol) was added dropwise. The reaction mixture was stirred for the next 

24 h at room temperature. After rotary evaporation of THF, the mixture was dissolved in 100 mL 

of diethyl ether and washed with 50 mL of 1 N HCl, 50 mL of saturated NaHCO3, and 50 mL of 

saturated NaCl solutions sequentially. The ether extract was dried over anhydrous Na2SO4 and 

filtered and then ether was removed by rotary evaporation. A pale yellow oil of diester product 

was obtained with 89% yield (10.37 g). The diester was subject to sulfonation with sodium 

hydrogen sulfite following the procedure provided by Baczko et al.[104] Sodium hydrogen 

sulfite (0.89 g, 8.55 mmol) in water (60 mL) was added dropwise to a solution of the diester (5 g, 

6.58 mmol) in 2-propanol (80 mL) (both solutions were previously degassed with nitrogen for 20 

min). The reaction mixture was then refluxed for the next 24 h. After rotary evaporation of the 

solvent, the residue was dissolved in chloroform and dried over Na2SO4 followed by removal of 

the solvent and drying of the resulting paste under a vacuum desiccator overnight. A yellow 

viscous liquid was obtained (4.2 g, yield 74%)  

The FTIR spectra showed the disappearance of the OH peak at 3471 cm-1 and appearance 

of carbonyl peak at 1723 cm-1. (Appendix A Figure A.8-9) Mass spectrum showed that the 

number average molecular weight for sodium bis(PPGMBE 340) sulfosuccinate is 913.5. 

(Appendix A Figure A.10) 
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4.2.3 Phase Behavior Results 

 

The PPGMBE 340 pyridinium sulfate was insoluble in CO2. Figure 4.13 illustrates that the 

PPGMBE 340 sodium sulfate is CO2-soluble; however, indicating that the sodium counterion is 

less CO2 phobic than the pyridinium counterion. The PPGMBE 1000 pyridinium sulfate can 

dissolve in CO2, indicating that the longer PPG segment of the tail made the surfactant with the 

pyridinium sulfate more CO2 soluble. The addition of water lowers the cloud point pressure, as 

shown by the PPGMBE 1000 pyridinium sulfate dissolving in CO2 at 40 oC and concentrations 

of 0.1-0.6 wt% with at W = 10. Wcorr is 0 for W value of 10 over PPGMBE 1000 pyridinium 

sulfate concentrations up to 0.5 wt% at 40 oC. In each case, the limiting solubility of this 

surfactant in CO2 is approximately 0.5 wt%. Single phase solutions could not be realized at W 

values of 40, even at surfactant concentrations as low as 0.1 wt%.  

The phase behavior of mixtures of CO2 and a twin tailed sodium bis(PPGMBE 340) 

sulfosuccinate, Figure 4.10 d, was also determined. This PPG twin tailed AOT analogue 

surfactant is 2 wt% soluble in CO2, and its solubility in CO2 decreases with the addition of water 

at W value of 10, as shown in Figure 4.13. Wcorr is 0 for W value of 10 over sodium 

bis(PPGMBE 340) sulfosuccinate concentrations up to 0.5 wt% at 40 oC. Single phase solutions 

could not be realized at W values of 40, even at surfactant concentrations as low as 0.1 wt%.  
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Figure 4.13. Phase behavior of PPGMBE surfactants/CO2 mixtures at 40 oC. PPGMBE 340 

sodium sulfate, W=0 (Δ); PPGMBE 1000 pyridinium sulfate, W=0 (ο); PPGMBE 1000 

pyridinium sulfate, W=10 (•); Sodium bis(PPBMBE 340) sulfosuccinate, W=0 (◊); Sodium 

bis(PPBMBE 340) sulfosuccinate, W=10 (♦). (Appendix A Figure A.11. Surfactant 

concentration in mM). 

 
 
 
4.2.4 Spectroscopic Results  

 

It was difficult to attain a single phase solution with the PPG-based surfactants, possibly due to 

the less intense mixing in the UV-vis cell and/or the instability of these surfactants exhibited 

during the weeks between their synthesis and their evaluation for water uptake. Therefore no 

evidence of reverse micelle formation was obtained for these surfactants. 
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4.3 IONIC SURFACTANTS WITH OLIGO(VINYL ACETATE) TAILS 

 

4.3.1 Materials 

 

Chlorosulfonic acid, pyridine, sodium hydroxide, sodium carbonate, sodium bicarbonate, 

fumaryl chloride, sodium hydrogen sulfite were purchased from Aldrich and used as received. 

The 2,2’-azobisisobutyronitrile (AIBN) was recrystalized in methanol, and vinyl acetate was 

passed through an inhibitor remover column to remove the inhibitor prior to use. All other 

reagent and solvents were obtained from Aldrich and used without further purification. N2 

(99.995%) and CO2 (99.99%, Coleman grade) were purchased from Penn Oxygen. 

 

4.3.2 Synthesis 

 

Oligomerization of vinyl acetate was carried out using AIBN as a free radical initiator with 2-

isopropoxyethanol being both the solvent and chain-transfer agent. Hydroxy-functional 

oligo(vinyl acetate) was then transformed to single tailed oligo(vinyl acetate) sodium sulfate and 

twin tailed sodium bis(vinyl acetate)8 sulfosuccinat (AOT analogue) surfactants. The structures 

of oligo(vinyl acetate)-based ionic surfactants are shown in Figure 4.14. The reaction scheme for 

the synthesis of single-tailed oligo(vinyl acetate) sodium sulfate is shown as follows in Figure 

4.15. The reaction route for the synthesis of twin tailed sodium bis(vinyl acetate)8 sulfosuccinate 

(AOT Analogue) is similar to that of sodium bis(PPGMBE 340) sulfosuccinate as shown 

previously. 
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Figure 4.14. Structures of oligo(vinyl acetate)-based ionic surfactants. 
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Synthesis of hydroxy-functional oligo(vinyl acetate)  

The preparation of hydroxy-functional oligo(vinyl acetate) followed the method of 

Zimmermann et al.[105] For a typical experiment, a solution of AIBN (0.04 g, 0.24 mmol) in 2-

isopropoxyethanol (10 mL) (previously degassed for 15 min) was added to a solution of vinyl 

acetate (20 g, 232 mmol) in 2-isopropoxyethanol (190 mL) (previously degassed in a 3-neck 500 

mL round-bottom flask by bubbling through nitrogen for 30 min). The reaction mixture was 

refluxed at 90 oC under a N2 blanket for 24 h. The solvent was removed by rotary evaporation 

followed by vacuum desiccation at 90 oC overnight. A viscous yellow liquid of hydroxyl-

functional oligo(vinyl acetate) with 10 repeat units, designated PVAc10, was recovered (15.8g, 

yield 79%). 1H NMR δH (CDCl3): 4.90 (10H, CH), 4.09 (2H, CH2), 3.59 (2H, CH2), 3.43 (1H, 

OH), 2.04 (30H, CH3), 1.84 (20H, CH2), 1.20 (6H, CH3). 1H NMR spectra showed DPn=10 and 

Mn=964 g/mol. Table 4.2 lists the experimental data for the number of repeat units and number 

average molecular weight of four PVAc-OH samples obtained from the NMR spectra by the 

polymerization of vinyl acetate in 2-isopropoxyethanol. The concentration of vinyl acetate 

monomer in 2-isopropoxyethanol was varied to control the molecular weight at constant 

oncentration ratio of AIBN to VAc at 0.1%. Hydroxy-functional oligo(vinly acetate) with repeat 

nit d as 

PVAc6-OH, PVAc8-OH, PVAc10-OH, and PVAc17-OH respectively. The functional hydroxyl 

end group was verified by FTIR spectra. (Appendix A Figure A.12-19)  

   

c

u of 6, 8, 10, and 17 as determined through NMR spectra were obtained and represente

 65



 

Table 4.2. Experimental Data for PVAc-OH Oligomers from 1H NMR at [AIBN]/[VAc]=0.1%. 
 
 

a

(mol %) ( H NMR) ( H NMR, g/mol) 
 

[VAc] DPn

1

Mn 
1

PVAc6-OH 6.3 6 620 

PVAc8-OH 8.2 8 792 

PVAc10-OH 11.8 10 964 

PVAc17-OH 18.6 17 1566 
a Molar Ratio of [VAc]/([VAc]+[2-isopropoxyethanol]) 

 

 
 

Synthesis of oligo(vinyl acetate) sodium sulfate surfactants, Figures 4.14 a,b,c 

The oligo(vinyl acetate) sodium sulfate surfactants were prepared according to Murphy 

and Taggart’s procedure.[106] In a typical experiment, chlorosulfonic acid (0.45 mL, 6.76 

mmol) was added dropwise to pyridine (10 mL) in a 250 mL round-bottom flask placed in an ice 

bath. The solution was stirred vigorously during the dropwise addition. A solution of hydroxy-

functional oligo(vinyl acetate) PVAc10-OH (5 g, 5.19 mmol) in pyridine (50 mL) was slowly 

added to the above solution, and cooling and stirring were continued. The contents of the flask 

were refluxed for about 4 h until a clear yellow solution was formed. The reaction was then 

quenched and the product converted to the sodium salt by pouring the contents into an ice-cooled 

sodium hydroxide and sodium carbonate solution (0.27 g NaOH and about 30-40 g Na2CO3 in 

100 mL deionized water). The reaction mixture was stirred at room temperature for 3 h. The 

resulting oligo(vinyl acetate) surfactant solution was extracted using n-butanol (2 x 50 mL). The 

combined organic layers were dried over anhydrous sodium sulfate and filtered. Evaporating the 

solvents of pyridine and n-butanol by rotary evaporation followed by vacuum desiccation gave a 
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dark yellow product of PVAc10-SO3Na (4.86 g, yield 87.9 %, Mn= 1066 g/mol). The NMR 

spectra of PVAc6, 10, 17-OSO3Na were illustrated in Appendix A Figure A. 20-22. 

 

Synthesis of sodium bis(vinyl acetate)8 sulfosuccinate, Figure 4.14 d  

Twin tailed oligo(vinyl acetate) AOT analogue was synthesized using the PVAc8-OH in 

a simil e PPGM (Mn=340) twin led AOT analogue  was described 

previously. A yello confirmed by the 

isappearance of the FTIR peak at approximately 3500 cm-1 (-OH) and the appearance of 

arbonyl peak at 1741 cm-1. (Appendix A Figure A. 23-24) 

 

4.3.3 Phase Behavior Results 

 

Single tailed oligo(vinyl acetate) sodium sulfate surfactants, Figures 4.14 a,b,c  

Viscous liquid oligo(vinyl acetate) sodium sulfate surfactants (Mn=722, 1066, 1668 

g/mol) exhibit remarkably high solubility in CO2, as shown in Figure 4.1. These levels of CO2 

solubility for an ionic surfactant are comparable to those reported for fluorous surfactants,[11] 

greater than the other oxygenated hydrocarbon surfactants developed during this work, and 

greater than those reported for branched hydrocarbon AOT analogs.[62] The PVAc-OSO3Na 

surfactants consisting of 6, 10, or 17 repeat units exhibit CO  solubility of 4, 7 and 2.5 wt%, 

respectively, at room temperature and pressure less than 50 MPa. The occurrence of an optimal 

tail length, 10 repeat units in this case, has been previously observed in the design of surfactants 

with PFPE tails, and can be attributed to two competing trends. As the number of repeat units in 

vinyl acetate oligomer decreases, the oligomer itself becomes more CO2 soluble; however, as the 

ar way as th BE  tai  that

w viscous liquid was recovered as product and 

d

c

2
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length of the oligomeric tail decreases the surfactant becomes more hydrophilic (and CO2 

phobic) as the influence of the ionic group becomes more pronounced.[59]  

The solubility of oligo(vinyl acetate) surfactant decreases with increasing temperature, 

C than it is at 22 oC, as 

represe

 

concentration in mM). 

i.e., the pressure required to achieve miscibility with CO2 is higher at 40 o

nted in Figure 4.16. The solubility of the oligo(vinyl acetate) surfactant in CO2 also 

decreases with the addition of water at W value of 10. The surfactant solubility drops to 0.5 wt% 

at these conditions. Wcorr is 0 for W value of 10 over PVAc10-OSO3Na concentrations up to 0.5 

wt% at 40 oC. Single phase solutions could not be realized at W values of 40, even at surfactant 

concentrations as low as 0.1 wt%. 

 

 

 
 
Figure 4.16. Phase behavior of PVAc-OSO3Na/CO2 mixtures. PVAc6-OSO3Na, 22 oC, W=0 (�); 

PVAc10-OSO3Na, 22 oC, W=0 (ο); PVAc17-OSO3Na, 22 oC, W=0 (Δ); PVAc10-OSO3Na, 22 oC, 

W=10 (•); PVAc10-OSO3Na, 40 oC, W=0 (◊). (Appendix A Figure A.25. Surfactant 
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Twin tailed sodium bis(vinyl acetate)8 sulfosuccinate, Figure 4.14 d     

The sodium bis(vinyl acetate)8 sulfosuccinate AOT analogue consisting of twin tails of 8 

repeat 

 
 

 

Figure 4.17. Phase behavior of sodium bis(vinyl acetate)8 sulfosuccinate/CO2 mixtures at 22 oC. 

W = 0 (Δ); W = 10 (♦); W = 50 (•). Sodium bis(dodecafluoroheptyl) sulfosuccinate, W=0 (ο). 

[10] (Appendix A Figure A.26. Surfactant concentration in mM). 

units on each tail (Mn= 1747 g/mol) was a viscous liquid that exhibited CO2 solubility up 

to 3 wt% at 22 oC and pressure less than 40 MPa, as shown in Figure 4.17. The solubility 

decreases with the addition of water at W= 10. This surfactant was the only one (of those 

illustrated in Figure 4.14) capable of solubilizing water to W values as high as 50, at surfactant 

concentrations up to 1 wt%. Table 4.3 lists W and Wcorr for the sodium bis(vinyl acetate)8 

sulfosuccinate surfactant in water and CO2 mixture at different weight percents and 22 oC. 
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Table 4.3. W and Wcorr for sodium bis(vinyl acetate)8 sulfosuccinate in water and CO2 mixture at 

fficient to saturate the 

CO2, W

 

Concentration, wt% 

different weight percents and 22 oC. *When the amount of water is not su

corr is reported as 0. 

 

Sodium bis(vinyl acetate)8 

sulfosuccinate Temperature, oC W Wcorr*

0.2-1.5 22 10 0 

0.15-0.3 22 50 0 

0.4 22 50 10.80 

0.5 22 50 17.83 

0.6 22 50 22.51 

0.8 22 50 28.87 

1 22 50 32.69 

 

 

4.3.4 Spectro

 

The single tailed PVAc10-OSO

(Wcorr=0, 0.025 wt%) and m rized to 38 MPa 

thyl orange peak was observed at 

422 nm im lsions. The twin tailed 

sodium

ading of W = 10, 20, 30, and 40, respectively, (0.015 wt%, 0.03 wt%, 0.045 wt%, and 0.06 

wt%, respectively) at W  = 0, and methyl orange at 4.7 x 10  M. After pressurizing to 34.5 

scopic Results  

3Na was loaded at 0.15 wt% with water loading of W = 10 

ethyl orange at 4.7 x 10-5 M. The system was pressu

at 25 °C and stirred for 1 hour. After this mixing period, a me

plied the formation of water-in-CO2 (w/c) reverse microemu

 bis(vinyl acetate)8 sulfosuccinate AOT analogue was loaded at 0.15 wt% with water 

lo

corr -5

MPa at 22 °C, the system was allowed to mix for over an hour to reach a single phase 
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microemulsion. Figure 4.18 shows the UV-vis spectra for the twin tailed sodium bis(vinyl 

e intensity of the methyl orange peak increases with the loading 

ater ranging from W = 10 to 40, which indicates that the concentration of methyl orange within 

the microemulsions increases as the amount of loading water increases. However, the absorption 

maximum wavele ’t shift t ths, which implies the polarity of 

the microenvironment within the reverse micelles  the increasing of water 

amount loaded to th Methyl orange diss d in bulk w  results an absorption 

maximum wavelength at 464 nm. The absorption b  of ~423 nm

the microenvironment within the reverse micelles e ionic su tants Ac tails is 

similar to that of neat m nol (methyl orange absorption at ~421 nm), and slightly more polar 

than that of the cores of y PFPE−COONH4 reverse micelles (~416 nm).[68, 69] Whereas the 

in tailed vinyl acetate based surfactants lead to high water loading values up to W=50, the 

ethyl orange solubilities and polarities are rather limited. This can be attributed to the relatively 

cent of water caused by the low surfactant loading concentration 

nd the high molecular weight and the Wcorr = 0 at these conditions, which means the amount of 

acetate)8 sulfosuccinate w/c reverse microemulsion system. As shown in Figure 4.18, the UV 

absorption peaks which assigned at about 423 nm indicate the formation of the water-in-CO2 

reverse microemulsions. Th

w

ngth, λmax, doesn o higher waveleng

 doesn’t increase as

e system. olve ater in 

ands  in these studies indicate that 

 of th rfac with PV

etha

 dr

tw

m

low corresponding weight per

a

water added to the system would be insufficient to saturate the CO2. 
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Figure 4.18. UV-vis absorption spectra of methyl orange in 0.15 wt% twin tailed sodium 

bis(vinyl acetate)8 sulfosuccinate based water-in-CO

 

2 reverse microemulsions with different 

loading of water at 34.5 MPa and 25 oC.   
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4.4 DISCUSSIONS 

 

4.4.1 Modeling Results 

 

Wang and Johnson[95] have optimized the geometries and calculated the binding energies for a 

single water molecule interacting with an isopropyl acetate (IPA) molecule. Two different 

binding modes were found for the IPA/H2O system. As shown in Figure 4.19, for mode (A) the 

water molecule mainly interacts with the carbonyl oxygen. For mode (B) H2O binds mainly with 

the ether oxygen. The interaction energies for the two modes are listed in Table 4.4. The 

interactions between IPA and water molecules as shown in Table 4.4 are much stronger than the 

strongest binding energy between IPA and CO2.[54] The calculations therefore predict that the 

tails of the acetate functionalized surfactants (Figure 4.1a-c, Figure 4.14 a-d) are hydrophilic. 

 
 
 

       
(A)                                    (B) 

 
 

Figure 4.19. Two different binding modes for the isopropyl acetate/H2O system. (white = H, 

gray = C, red = O). 
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Table 4.4 Interaction energies for seve lated to the CO2/H2O surfactant 

stems. The energies are computed at the MP2/aug-cc-pVDZ level of theory. 

IPA/H2O CO2/CO2  

ral different dimers re

sy

 

 (A) (B) IPA/CO2
* H2O/H2O [107] T- Slipped 

shape parallel
Interaction 

(kJ/mol) 
energy -27.0 -21.3 -15.9 -19.6 -20.7** -5.1 -5.8 

 

* There are actually three binding modes for the IPA/CO  dimer. We chose the mode that has the 

strongest interaction energy for comparison.[54] 

** The value is calculated at the MP2 level of theory and extrapolated to the complete basis set 

limit.[107]  

 

4.4.2 Water Solubility Values of Three Acetate Functionalized Surfactants 

Furthermore, experiments were performed to measure the water solubility of peracetyl gluconic 

sodium carboxylate (Figure 4.1b), peracetyl gluconic ammonium carboxylate (Figure 4.1c), and 

oligo(vinyl acetate)10 sodium sulfate (Figure 4.14b). 20 μL of water was initially added to 0.08 g 

of surfactant (80 wt%), then water was gradually added to the mixture followed by stirring the 

mixture using a Vortex-Genie® 2 mixer until the surfactant was completely dissolved. The 

measured solubilities are reported  that both perace l surfactants 

re significantly more water soluble than the vinyl acetate-based surfactant. The head groups on 

fate 

re 4.14b) should make that surfactant more water soluble than the sodium 

arboxylate head group of (Figure 4.1b) and ammonium carboxylate head group of (Figure 4.1c). 

2

 

 

 in Table 4.5 and clearly show ty

a

the peracetyl- and vinyl acetate-based surfactants are not identical. However, the sodium sul

head group of (Figu

c
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Therefore, we expect that the differences in water solubility are due to the composition of the

groups is larger than the head groups indicated by the data in Table 4.5.  

 tail 

 
 

T ble 4.5. W solu  valu  acet  sur tant

 
S nt  (wt

 

a ater bility es of three ate functionalized fac s 

urfacta Water solubility %) 

Peracetyl gluconic sodium carboxylic (Figure 4.1b) 64 % 

Peracetyl gluconic ammonium carboxylic (Figure 4.1c) 73 % 

Oligo(vinyl acetate)10 sodium sulfate (Figure 4.13b) 40 % 

 
 

4.4.3 Effects of the Addition of Water in Surfactants/CO2 Systems 

ts resulted in an 

crease in the cloud point pressures. Water molecules will compete with CO2 molecules for 

 

The addition of water to CO2 mixtures containing acetate-based surfactan

in

binding to the acetate groups. The acetate tail groups will preferentially bind with water 

molecules because of the more favorable binding energies (see Table 4.4), thus lowering the CO2 

solubilities of the surfactants. Experiments have shown that the addition of water does indeed 

increase the cloud point pressures of two of the peracetyl gluconic-based surfactants (Figure 

4.1b,c) and also of the PVAc single/twin tailed surfactants (Figure 4.14a-d). These observations 

are consistent with our theoretical analysis. However, PGESS (Figure 4.1a) exhibits the opposite 

behavior, which couldn’t dissolve in CO2 in the absence of water, and its solubility increases as 

water is added. This may be due to co-solvent effects with water. PGESS is insoluble in CO2 

because of its extremely polar head group. Adding water to the PGESS/CO2 system acts to shield 

the sulfate head group from CO2 and therefore increases the solubility. Therefore, water plays 
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competing roles in the PGESS/CO2 system. On one hand, it increases solubility by shielding the 

head group from the nonpolar CO2 environment. On the other hand, water competes with CO2 in 

inding to the CO2-philic acetate tail.  

 

4.4.4 Formation of the Reverse Micelles 

 

The ex ctants can f verse micelles. 

None o ation, although their tail 

ilar structures to those of PVAc-based surfactants. The formation of micelles 

ogeneous phase 

icelles. Our calculations indicate that the peracetyl tails are very hydrophilic. We 

b

periments have shown that only the PVAc-based surfa orm re

f the peracetyl gluconic-based surfactants exhibit micelle form

groups have sim

requires a tail that is sufficiently hydrophobic to drive water out of the bulk hom

into confined m

therefore speculate that peracetyl tails do not have a large enough hydrophobic driving force to 

form micelles. In contrast, the methylene groups in the PVAc tails are relatively hydrophobic, 

which provides enough of an energetic driving force to stabilize the micelles. The difference in 

water solubilities of peracetyl gluconic-based surfactants and PVAc-based surfactants (Table 4.5) 

indicates that peracetyl tails are indeed more hydrophilic than PVAc tails. The difference in water 

solubilities provides a plausible explanation for the observation that PVAc-based surfactants 

form micelles while the surfactants with peracetyl gluconic tails do not.  
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5.0 PREPARATION OF SILVER NANOPARTICLES VIA CO2-SOLUBLE 

SED METAL PRECURSOR 

2

2

2

 

Silver acetylacetonate, fumaryl chloride, 3,5,5-trimethyl-1-hexanol, sodium hydrogensulfite, 

silver nitrate, tert-nonyl mercaptan, 4-tert butylbenzenethiol, and solvents was purchased from 

Aldrich. The fluorocarbon thiol 1H,1H,2H,2H-perfluorooctanethiol (C6F13C2H4SH) was obtained 

from Oakwood Product Inc. Poly(mercaptopropyl) methyl siloxane (Mw=4000-7000) was 

HYDROCARBON-BA

 
 
 
 
The objectives of this study were to determine the solubility of silver acetylacetonate and (if this 

solubility was low) to design a novel organometallic complex with much greater CO -solubility 

that could be used to form silver nanoparticles in CO  via reduction in the presence of fluorous 

or non-fluorous stabilizing thiols. Silver bis(3,5,5-trimethyl-1-hexyl)sulfosuccinate (Ag-AOT-

TMH) was selected as the metal-ligand candidate because of the ease of its synthesis; simply 

requiring an ion exchange of the CO -soluble ionic surfactant AOT-TMH to yield Ag-AOT-

TMH. Ion exchange of other ionic surfactants composed of oxygenated hydrocarbon tails was 

not successful due to the instability of the Ag+ counterion during the synthesis.  

 

 

5.1 MATERIALS 
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obtained from Gelest, Inc. Thiol terminated poly(ethylene oxide) (Mn=2000, Mw=2100) was 

obtained from Polymer Science, Inc. H2 (99.999), N2 (99.995%) and CO2 (99.99%) gases were 

obtained from BOC gases and perfluorobutylm −7100) was obtained from 3M. 

A

 

 

5.2 Synthesis of a CO2-Soluble Hydrocarbon-based Silver Precursor  

ethyl ether (HFE

ll chemicals were used as received.   

 

The structures of AOT-TMH and Ag-AOT-TMH are shown in Figure 5.1.  

 
 
 

O

O
AgO3S

O

O

O

NaO3S
O

AOT-TMH (a)           

O

O

Ag-AOT-TMH (b)  

 

Figure 5.1. Structures of sodium bis(3,5,5-trimethyl-1-hexyl) sulfosuccinate (AOT-TMH) and 

silver precursor, silver bis(3,5,5-trimethyl OT-TMH). -1-hexyl) sulfosuccinate (Ag-A

 

Sodium bis (3,5,5-trimethyl-1-hexyl) sulfosuccinate (AOT-TMH) with highly methyl 

branched tail as an AOT analogue was first synthesized by Nave and Eastoe.[60] Ag-AOT-TMH 
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was synthesized via the esterification of fumaryl chloride and 3,5,5-trimethyl-1-hexanol, 

sulfonation by sodium hydrogensulfite, then ion exchange by AgNO3, as shown in Figure 5.2.   

 

 
 

 

 

Figure 5.2. Synthesis of Ag-AOT-TMH (a) anhydrous THF, RT, 24 h; (b) NaHSO3, iPrOH-H2O, 

80 oC, 24 h; (c) AgNO3, ethanol−H2O, RT. 

 
 
 
The glassware was oven-dried overnight and purge with ultra-high purity nitrogen before 

use. 3,5,5-trimethyl-1-hexanol (14.4 g, 100 mmol) and anhydrous THF (150 mL) were charged 

in a 500 mL 3-neck round-bottom flask equ with a stirring bar and condenser under a 

steady flow of nitrogen. After cooling to 0 oC, fumaryl chloride (7.65 g, 50 mmol) was added 

dropwise. The reaction mixture was stirred for the next 24 h at room temperature. After rotary 

evaporation of THF, the mixture was dissolved in 100 mL diethyl ether, washed with 50 mL 1N 

HCl, 50 mL saturated NaHCO3, and 50 mL saturated NaCl solutions sequentially. The ether 

extract

obtained diester was subject to sulfonation with sodium hydrogensulfite. A solution of sodium 

+   2ROH
a b c(Z)

Cl

O

Cl
(Z)

OR

OR (E)
OR

O

OR

NaO3S

(E)
OR

O

O

OR

AgO3S

O O

  

O O

OHROH: 3,5,5-trimethyl-1-hexanol

ipped 

 was dried over anhydrous Na2SO4 and filtered, then ether was removed by rotary 

evaporation. 16.56 g pale yellow oil of diester product was obtained with 90% yield. The 
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hydrogensulfite (3.45 g, 32.56 mmol) in water (60 mL) (previously degassed for 15 min) was 

added dropwisely to a solution of the diester (6 g, 16.28 mmol) in isopropanol (80 mL) 

reviously degassed in a 3-neck round-bottom flask by bubbling through N2 for 30 min). The 

eaction mixture was then refluxed for the next 24 h. After rotary evaporation of the solvent, the 

residue was dissolved in 100 mL ether and the water layer was extracted with ether (2×30 mL). 

The combined ether extraction was dried over anhydrous Na2SO4 and then filtered. White paste 

was yielded after removing ether. Traces of water were removed by redissolving the paste in 

chloroform followed by drying over Na2SO4. Chloroform was removed by rotary evaporation 

and the resulting paste was dried under vacuum oven at 40 oC overnight. White solid of AOT-

TMH was obtained (5.77 g, yield 75%), which was then transformed to Ag-AOT-TMH via ion 

(5 mL). After mixing for 6 h, ether (6 mL) 

was added which led to the formation of two separate phases. The lower phase containing 

NaNO3

1

+ +

(p

r

exchange. A silver nitrate (5.025 g, 29.58 mmol) aqueous solution (10 mL) was mixed with 

AOT-TMH (0.8297 g, 1.8 mmol) dissolved in ethanol 

 and excess AgNO3 was removed to leave the upper phase containing the Ag-AOT-TMH. 

The upper phase was dried on a rotary evaporator, redissolved in isooctane, and centrifuged to 

separate any residual solids. Finally, isooctane was removed in a vacuum oven at room 

temperature, and yellow solid of Ag-AOT-TMH was received as product (0.82 g, 84%).  

The FTIR and H NMR spectra of the intermediate diester and the sodium bis(3,5,5-

trimethyl-1-hexyl) sulfosuccinate (AOT-TMH) are shown in Appendix B.1-3. Soil analysis 

indicates the Ag  exchange for the Na  is around 85% (Appendix B.4).  
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5.3 PHASE BEHAVIOR STUDY 

 

5.3.1 Experimental Apparatus 

 

The experimental setup of the phase behavior study with silver acetylacetonate, AOT-TMH, and 

Ag-AOT-TMH is the same as shown in Chapter 4.1.4.1.  

 

5.3.2 Phase Behavior Results 

 

The commercially available silver acetylacetonate was tested for CO2 solubility at 40 C. At 

concentrations as low as 0.01 wt% and pressures as high as 70 MPa, there was no evidence of 

dissolution, swelling or melting point reduction of the silver acetylacetonate particles.    

The solubility of AOT-TMH and Ag-AOT-TMH in CO

o

2 were then evaluated. Figure 5.3 

presents a pressure-composition diagram for this mixture at 40 C. Although the AOT-TMH was 

initially insoluble when CO

o

2 was introduced, the solid surfactant melted in CO2 immediately at 

room temperature and 13.8 MPa and then formed a single transparent solution after 1 h stirring at 

1500 rpm. Figure 5.3 illustrates that the cloud point pressure increases with AOT-TMH 

concentration, reaching a limiting value of about 1 wt% at 50 MPa. Ag-AOT-TMH also melted 

in CO2 immediately and reached a limiting solubility of 1.2 wt% at 52 MPa.  
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ure B.4. 

Surfact

 

5.4 SILVER NANOPARTICLE FORMATION 

 

Silver nanoparticle formation experiment was carried out at Dr. Roberts’ group in Chemical 

Engineering Department at Auburn University.[108] 

  

5.4.1 Experimental Apparatus 

 

Nanoparticles were synthesized in a 32 mL stainless steel high-pressure vessel equipped with 

pressure gauge, resistance temperature detector (RTD), and parallel quartz windows for UV-vis 
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Figure 5.3. Phase behavior of AOT-TMH and Ag-AOT-TMH at 40 oC. (Appendix B Fig

ant concentration in mM). 
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characterization. A magnetic stir bar was used to facilitate mixing. The vessel was initially filled 

with 0.06 wt% Ag-AOT-TMH, 0.5 wt% fluorinated thiol. After sealing the vessel, an ISCO 

syringe pump was used to add specific quantity of CO2 to the vessel to reach the desired pressure 

of 28.6 MPa. The temperature of the vessel was raised to 40 oC by using a heating tape which 

was wrapped around the vessel and connected to the temperature controller. The system was 

mixed for one hour to reach a single phase. Reducing agent was then injected by forcing in 200 

μL of a 0.8 M NaBH4/ethanol solution with additional carbon dioxide.  

 

5.4.2 Nanoparticle Formation Results 

 

The CO2 solution turned into dark red color in less than 2 minutes after the introduction of the 

urate UV−vis data was not possible. The particles were stable 

in solution for 24 h as the solution maintained its visible red color. The vessel was subsequently 

depressurized, and the particles were redispersed in HFE−7100 and placed onto a transmission 

electron microscopy (TEM) grid for analysis.   

, and the size 

5.5. Energy dispersive spectroscopy (EDS) was also performed 

t the particles consist of silver with the fluorinated thiol ligand 

present as indicated by the absorbance of silver, fluorine, and sulfur in Figure 5.6. The large 

reducing agent, but unfortunately, due to the highly optical absorbance of the silver 

nanoparticles, the collection of acc

Figure 5.4 shows the TEM image of silver nanoparticles. A statistical analysis of the TEM 

image yields an average size of 3.5 nm in diameter, a standard deviation of 0.8 nm

distribution is shown in Figure 

on the particles and identified tha

copper peak is due to the copper support of the TEM sample grid. This analysis reveals the 
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effectiveness of the fluorocarbon thiol molecule as a stabilizing ligand on the silver 

nanoparticles.  

 

 
 

 

 

 

 
 

Figure 5.4. TEM Image of silver nanoparticles formed by reducing CO2 solution containing Ag-

AOT-TMH and fluorinated thiol stabilizing ligands using NaBH4 as reducing agent.[108]  
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Figure 5.5. Size distribution of silver nanoparticles synthesized in CO2. P = 28.6 MPa, t = 40 oC, 

[Ag-AOT-TMH] = 0.06 wt%, [Fluorinated Thiol] = 0.5 wt%.[108] 

 
 

 
 

 

 

Figure 5.6. EDS measurement of the silver nanoparticles. The spectrum shows the presence of 

silver along with fluorine and sulfur indicating the presence of the fluorinated thiol stabilizing 

agent.[108]  
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5.5 NON-FLUOROUS THIOLS RESULTS 

 

Non-fluorous thiols, including silicone-based, PEG-based, and hydrocarbon-based thiols, were 

also investigated for CO2 solubility study and their abilities to stabilize nanoparticles in CO2. 

Figure 5.7 shows the structures of silicone-based and PEG-based thiols investigated in this study. 

Poly(mercaptopropyl) methyl siloxane and thiol terminated poly(ethylene oxide) are insoluble in 

CO2 at room temperature at concentrations as low as 1 wt%. Hydrocarbon-based thiols 

containing tert-butyl group, 4-tert-butylbenzenethiol and tert-nonyl mercaptan, are very miscible 

with CO  at moderate pressure values, as shown in Figure 5.8 and Figure 5.9. Tert-nonyl 

mercaptan is more branched than the 4-tert-butylbenzenethiol, and therefore is more miscible 

with CO2. However, these hydrocarbon-based thiols were unable to disperse and stabilize the 

ilver nanoparticles.  

 
 

 

 

Figure 5.7. Structures of silicone-based and PEG-based thiols investigated in this study. 
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Figure 5.8. Phase behavior of 4-tert-butylbenzenethiol at 22 oC. 
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Figure 5.9. Phase behavior of tert-nonyl mercaptan at 22 oC. 

0

5

10

15

20

25

30

0 10 20 30 40

Concentration of tert-nonyl mercaptan in 
CO2 (wt%)

Tw
o 

Ph
as

e 
Pr

es
su

re
 (M

Pa
)

Bobble point

H3C C

CH3

CH3

CH2 C

CH3

CH2

CH3

SH

Single phase 

0

5

0 10 20 30 40

Concentration of 4-tert-butylbenzenethiol in 
CO  (wt%)

o 
Ph

as
e 

Pr
es

su
r

M
Pa

Bubble point

10

15

20

25

2

Tw
e 

(
)

Dew  point

CH3

CH

H3C

Single phase 

3

SH

 87



 

5.6 CONCLUSIONS 

 

A previously reported CO2 soluble hydrocarbon complex, silver acetylacetonate, is less than 0.01 

wt% CO2 soluble at 40 oC and 70 MPa, whereas the Ag-AOT-TMH synthesized during this 

investigation can dissolve in CO2 up to 1.2 wt% at 40 oC and 52 MPa. Silver nanoparticles (1−6 

nanometers in diameter) were synthesized at 40 oC and 28.6 MPa from Ag-AOT-TMH in CO2 

using NaBH4 as a reducing agent. A CO2-soluble fluorinated thiol was used to sterically stabilize 

the silver nanoparticles, as evidenced by TEM and EDS analysis. Attempts to produce the silver 

nanoparticles in a completely non-fluorous system were unsuccessful because stabilization could 

not be attained with silicone-, PEG-, or hydrocarbon-based thiols.  
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6.0 STABLE DISPERSION OF SILVER NANOPARTICLES IN CARBON 

DIOXIDE WITH HYDROCARBON-BASED LIGANDS 

 
 
 
 

6.1 STABLE DISPERSION OF NANOPARTICLES IN CARBON DIOXIDE WITH 

LIGANDS 

 

In order to disperse particles in a given solvent, t is common to use ligands extending from the 

surface of the nanoparticles that can interact with the solvent molecules. Favorable interactions 

between the solvent molecules and the ligand tails provide enough repulsive force between 

particles to overcome the attractive Van der Waals forces that occur between particles in 

solution. Unfortunately, CO2 is a poor solvent for most commonly available ligands and 

surfactants. As a result, fluorinated surfactants have been required to stabilize nanoparticles in 

CO2 or to form microemulsions for the synthesis of nanoparticles within CO2. Early studies 

showed the ability of these fluorinated compounds to support water in CO2 microemulsions[68, 

69] based on better surfactant tail – solvent interactions. These water in CO2 microemulsion 

systems have since been used to form a variety of nanoparticles in CO2[109-115]. The need for 

surfactants, and a separate water phase, during synthesis of nanoparticles in CO2 was eliminated 

by Shah et al.[81, 82] and McLeod et al.[75] They synthesized and subsequently precipitated 
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nanoparticles in single CO2 phase. The approach in these studies was to reduce CO2-soluble 

metallic precursors in a single CO2 phase and to prevent agglomeration by capping the particles 

with CO2-soluble fluorinated ligands that provide for steric stabilization of the particles.  

U  

nanoparticles es of being 

both expensive and environmentally unfriendly[116, 117].  

Several research groups[10, 61, 116, 118-126] have sought to find non-fuorinated 

com  

well as surfactants where the latter could be used to form microemulsions in CO2. Research has 

shown that branched, methylated, and stubby surfactants can be used to form micelles in 

percritical CO2, because of higher tail solvation and smaller tail-tail interactions[44, 45, 61, 

nfortunately, these processes continue to require the use of fluorinated ligands to disperse the

. These CO2 soluble fluorinated compounds suffer from the disadvantag

pounds that would be soluble in CO2 in the hopes of creating non-fluorinated polymers as

su

127]. Although some success has been reported in forming fluorine-free microemulsions using 

hydrocarbon surfactants[46, 128] and in making macroemulsions using silica nanoparticles[129], 

ionic hydrocarbon surfactants[130, 131], or trisiloxane surfactants[127] in CO2, no reports to 

date have demonstrated the synthesis or dispersion of nanoparticles within these non-fluorinated 

surfactant systems in CO2. To make full use of the advantages of supercritical CO2, a stable 

dispersion of fluorine-free nanoparticles in a single CO2 phase would be ideal. While metallic 

nanoparticles have been stably dispersed in pure liquid and supercritical CO2[132, 133], 

fluorinated ligands were required. The objective of this study is to illustrate the ability to stably 

disperse ligand coated metal nanoparticles in neat CO2 without the need for fluorinated 

constituents. To accomplish this, iso-stearic acid, received from Nissan Chemicals, as structure 

shown in Figure 6.1, was chosen as a ligand for dispersion of silver nanoparticles in CO2 solvent. 
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Chapter 4.1.4.1.  

 

6.3 PHASE BEHAVIOR RESULTS 

Figure 6.2 presents a pressure-composition diagram for the iso-stearic acid-CO  mixture 

compound with branched, methylated tails, is completely miscible with CO  at pressures above 

13 MPa at 22 oC, as shown in Figure 6.2. No data was collected for the small VL1 two phase 

region at the CO2-rich end of the diagram. The high CO2 solubility may be attributable to the 

highly methylated branched tails, in which the surface energy of the pendant methyl groups is 

Figure 6.1. Structure of iso-stearic acid, Mn = 284 g/mol. 

6.2 EXPERIMENTAL APPARATUS 

The experimental setup of the phase behavior study with iso-stearic is the same as shown in 

 

 

2

demonstrating that iso-stearic acid is highly CO2-soluble. Iso-stearic acid, a short, stubby 

2
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much lower than that of the CH2 groups of linear tails[30]. These interactions between the ligand 

tails and CO2 are also what make iso-stearic acid a useful ligand to sterically stabilize metallic 

nanoparticles in CO2. Iso-stearic acid coated silver nanoparticles have been stably dispersed in 

carbon dioxide with hexane cosolvent. Neat carbon dioxide has successfully dispersed iso-stearic 

acid coated silver nanoparticles that had been deposited on either quartz or polystyrene surfaces. 

These results are the first reports of sterically stabilized nanoparticles in carbon dioxide without 

the use of any fluorinated compounds.[134] 
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Figure 6.2. Phase behavior of iso-stearic acid/CO2 mixture at 22 C. No data was collected for 

the small VL1 two phase region at the CO2-rich end of the diagram. 

 

 

 92



 

 

 

 

7.0 STABILITY OF CO2-WATER EMULSIONS STABILIZED WITH CO2-

SOLUBLE SURFACTANTS 

 
 
 
 

7.1 INTRODUCTION 

 
Carbon dioxide is an attractive fluid for enhanced oil recovery (EOR) processes because it is a 

good solvent for light crude oils and it is available in large quantities from natural reservoirs at 

high purity and pressure. Currently, about 1.5 billion standard cubic feet (SCF) per day of CO2 

are injected into domestic reservoirs, resulting in the recovery of nearly 200,000 barrels of oil per 

day. An inherent disadvantage to this CO2 flooding process is the low viscosity of CO2 (0.03-0.1 

cp) relative to that of the oil being displaced (0.1-50 cp), causing mobility control problems. The 

high mobility of CO2 (permeability/viscosity) in the sandstone or limestone causes CO2 

“fingering” its way towards the production well, bypassing much of the oil in the reservoir and 

reducing the areal sweep efficiency. Moreover, the low viscosity of CO2 also contributes to the 

low vertical sweep efficiency, especially in stratified reservoirs that include two or more layers 

into which the CO  may enter. For example, the formation may contain a highly permeable, 

water-rich zone caused by decades of prior water flooding, while the other less permeable layer 

is oil-rich because the water preferred to enter the high permeability zone. The high mobility of 

CO2 induces it to preferentially enter the highly permeable water-rich zone, leaving oil residing 

in the less permeable zone.  
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The mobility of a CO2 foam or emulsion (e.g. 80-95 vol% dense CO2, 1% surfactant, and 

9% brine) in porous media is much lower than that of CO2 alone. Therefore, CO2 foams have 

been investigated as a means of reducing fingeri  by making moderate decreases in mobility, or 

f  

foam in the water-rich zone. C  academic groups [42, 88-90, 

135-137] and by industrial researchers [91, 92, 138-141]. In all previously reported applications, 

an aqueous surfactant solution has been injected into the porous media, followed by CO2 

injection in a process referred to as surf s (SAG). The in-situ generation of 

ams results in high phase volume CO2 foams in which bubbles of the supercritical CO2 (or 

ng

or diverting CO2 to low permeability oil-rich zones by initially forming a very low mobility

O2 foams have been studied by both

actant-a ternating-gal

fo

droplets of liquid CO2) are separated by thin aqueous films. Shorter cycles are recommended in 

the SAG process to obtain a more uniform foam quality. Bernard and coworkers [138] have 

presented mobility control results indicating that the CO2 mobility can be reduced by almost 50% 

using a commercially available surfactant, Alipal CD-128 (ammonium sulfate ester), as the 

foaming agent. Researchers at Shell Development Company [141, 142] demonstrated a 

relationship between surfactant compositions and surfactant adsorption, foam stability, and 

mobility control using a series surfactants of alcohol ethoxy glyceryl sulfonates (AEGS) and 

alpha olefin sulfonates (AOS). The stability of CO2 foams formed by water soluble surfactants 

depends on many factors such as the texture of the foams (bubble size, shape, and distribution),  

salinity, pH, surfactant concentration, pressure and temperature.[89, 135, 136] The method of 

foam generation is also a major factor that determines the texture and quality of the foam that 

will ultimately establish the concentration required to prolong stability.[143] The anionic 

surfactants used for the SAG process include Chaser CD 1045,[135, 136, 143] Rhodapex CD-

128,[143] Witcolate 1276,[88, 89] and Enordet X2001,[88] which have been investigated for 
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foam stability and mobility control in both the laboratory and field at concentrations ranging 

from 0.01-0.1 wt%. Problems associated with CO2 foam flooding or the SAG process include 

corrosion, surfactant adsorption, and control of foam mobility within the reservoir for extended 

periods of time.  

In this work, we propose the dissolution of an ionic surfactant in dense CO2, rather than 

the injection of a water-soluble surfactant into the brine slug followed by the injection of a CO2 

slug. The single-phase solution of surfactant in CO2 would be injected into the reservoir and 

form CO2 foams in-situ as it mixes with the brine retained within the formation. These low 

mobility foams could form in water-out high permeability zones, thereby diverting the 

subsequently injected neat CO2 to oil-rich zones. If the mobility decrease induced by the foam 

could be moderated, then the surfactant-CO2 solution could also be used for mobility control 

purposes.  The potential advantages of this process include the elimination of aqueous surfactant 

slug injection and the generation of foams along and at the tips of the CO2 “fingers” where 

mobility control is most needed.   

The objective of this study was to form emulsions by mixing of CO2, water, and CO2-

soluble surfactants, and to characterize the stability of the emulsion by measuring its rate of 

collapse. CO2-soluble ionic surfactants with CO2-philic hydrocarbon or oxygenated hydrocarbon 

tails and conventional ionic head groups that have been presented in Chapter 4, and 5 were 

investigated for the foam stability study. CO2-soluble ionic surfactants with oxygenated 

hydrocarbon or hydrocarbon tails composed of acetylated sugar, PPO, oligo(vinyl acetate), and 

3,5,5-trimethyl-1-hexyl were evaluated along with two nonionic surfactants. The structures of 

these ionic and nonionic surfactants are shown in Figure 7.1 and Figure 7.2, respectively. The 

ionic surfactants with oxygenated hydrocarbon or hydrocarbon tails were synthesized as 
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described in Chapter 3 and 4, while the nonionic surfactants of iso-stearic carboxylic acid and 

PPG-PEG-PPG triblock polymer (Mn=3300) were obtained from Nissan Chemical and Aldrich, 

respectively. Several prior investigators[30, 56] have noted the CO2 solubility of oligomeric 

block copolymers of PPG and PEG. Nonionic surfactants are considered to be low-to-moderate 

foamers relative to ionic surfactants and were therefore expected to yield less stable emulsions. 

However, nonionic surfactants have less severe problems associated with adsorption or chemical 

degradation. The stability of the emulsions stabilized with CO2 soluble ionic surfactants was then 

contrasted with the stability of emulsions formed using conventional water soluble ionic 

surfactants.   
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Figure 7.1. Structures of ionic surfactants with oxygenated hydrocarbon CO2-philic tails. 
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7.2 EXPERIMENTS 

 

Foam stability experiments were conducted in a high pressure, windowed, stirred, variable-

volume view cell (DB Robinson & Assoc., 3.18 cm ID, ~120 cm3 working volume), as described 

previously for phase behavior study.[95]  The sample volume of this apparatus is a cylinder of 

variable height and fixed diameter. A specified amount of surfactant (e.g., 0.004 ± 0.0001 g) and 

double distilled and de-ionized water (e.g., 45.9 ± 0.1 mL) were added to the sample volume of 

the view cell and followed by the introduction of equal volume of CO2 (e.g., 45.90 ± 0.1 mL) at 

2000 psi. The amount of surfactant corresponded to 0.01 wt% based on the mass of CO2. In this 

cell ng , the sample volume is separated from the overburden fluid by a steel cylinder (floati
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piston) that retains an O-ring around its perimeter. The O-ring permits the cylinder to move 

easily while retaining a seal be e and the overburden fluid. The sample 

volume was minimi possible position within 

the cell that did not resu ixture out of the sample 

volume. High pressure li C, 13.8 MPa) was then introduced to the 

sample volum intained at the same pressure 

s the CO2) was withdrawn at the equivalent flow rate using a dual-proportioning positive 

displacement pump (DB Robinson). This technique facilitated the isothermal, isobaric addition 

of a known volume of CO2 into the sample volume. The mass of CO2 introduced was determined 

from the displaced volume, temperature, and pressure using an accurate equation of state for 

carbon dioxide.[96] Pressure within the vessel was monitored to approximately ± 0.5 MPa, and 

temperature was measured with a type K therm couple to an accuracy of ± 0.1 oC. The system 

was then compressed to 34.5 MPa. The surfactants are both CO2 soluble and water soluble at 

these conditions, and no attempts  the partitioning of the surfactant 

between the phases. 

tween the sample volum

zed by displacing the floating piston to the highest 

lt in the displacement of surfactant-water m

quid carbon dioxide (22 o

e as the silicone oil overburden fluid (which was ma

a

o

were made to quantify

 The cell was inverted, allowing the mixer to be at the bottom of the sample volume. The 

position of the original interface between water and liquid CO2 prior to mixing (and emulsion 

generation) was then measured using a ruler that was adjacent to the window. The mixture was 

then mixed thoroughly for 10 minutes at 2000 rpm using a slotted propeller-type impeller 

magnetic stirrer on the bottom of the sample volume (DB Robinson, max. 2500 rpm). After the 

mixing ceased, a white, creamy, opaque emulsion formed immediately within the entire sample 

volume. Subsequently, clear CO2-rich upper phase and aqueous lower phase appeared. The 

emulsion stability and volume were evaluated by periodically measuring the position of the top 
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(CO2-emulsion) and bottom (water-emulsion) interfaces of the white emulsion. The volume of 

the foam was measured as the percentage of the original CO2 and aqueous phases that were 

occupied by the emulsion.    

%100)t(HvolumeFoam ×=   (1) 

where t is time, H(t) is the height of the CO

)0(H

 

about 15% of the CO2 volume. The emulsion formed by the peracetyl gluconic sodium 

2 or H2O emulsion layers with time, and H(0) is the 

initial height of the CO2 or H2O layer. In all cases, the foam volume was initially 100% of both 

the CO2 and water layers, but the foam decayed thereafter. The final volume corresponded to 

either 0, which corresponded to the complete collapse of the foam, or a finite % value that was 

indicative of a stable middle phase emulsion. Stable foams were characterized by slow collapse 

and the occurrence of a stable middle phase emulsion.  

 

 

7.3 RESULTS AND DISCUSSIONS 

Peracetyl Gluconic-based Ionic Surfactants, Figures 7.1a,b,c 

Foam stabilities of peracetyl gluconic-based ionic surfactants with an ethyl spacer and a 

sodium sulfate, sodium carboxylate or ammonium carboxylate head group (Figures 7.1a,b,c) are 

shown in Figure 7.3. The emulsion generated by peracetyl gluconic ammonium carboxylate is 

much more stable than those generated by the other two peracetyl gluconic-based ionic 

surfactants, taking about 250 minutes to collapse to a stable middle phase emulsion that occupied 

about 22% of the original CO2 volume. The emulsion formed by the peraceyl gluconic ethyl 

sodium sulfate required about 200 minutes to collapse to a middle phase emulsion that occupied 
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carboxylate collapsed in about 120 minutes to a volume that was 5% of the CO2 volume.  In all 

cases, the emulsion percentage in the aqueous phase collapsed quickly from 100% to 0%. 

 

Figure 7.3. Foam stability of peracetyl gluconic-based ionic surfactants at concentration of 0.01 

2, 22 oC and 34.5 MPa. 

 
 
 

 Ionic Surfactants, Figures 

7.1d,e 

100

 

wt% in CO

Poly(Propylene Glycol) MonoButyl Ether(PPGMBE)-based

Emulsions formed by twin tailed AOT analogue of sodium bis(PPGMBE 340) 

sulfosuccinate are slightly more stable than those formed by the single-tailed PPGMBE 340 

sodium sulfate, as shown in Figure 7.4 in that the emulsions collapsed at comparable rates, 

requiring about 160 minutes to reach steady state values of 15% and 5% of the original CO2 

volume, respectively. The portion of the emulsion that originally formed in the aqueous phase 

collapsed at a comparable rate, and a portion of the final emulsion volume, about 5% of the 

water volume, resided below the original CO2-water boundary.   
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e 7.4. Foam stability of PPGMBE-based ionic surfactants at concentration of 0.01 wt% in 
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Figur

2, 22 oC and 34.5 MPa. 

 

(Vinyl Acetate)-based Ionic Surfactants, Figures 7.1f,g 

Single-tailed oligo(vinyl acetate)10 sodium sulfate (OVAc10-OSO3Na) formed 

l acetate)8 sulfosuccinate (OVAc8 AOT analogue). As shown in Figure 7.5, it took 

roughly

CO

 

 
Oligo

emulsions that were only slightly more stable than the twin-tailed AOT analogue of sodium 

bis(viny

 400 minutes for the emulsion formed by 0.01 wt% OVAc10-OSO3Na to collapse to 

about 10% of the orignial CO2 volume, while emulsions formed by OVAc8 AOT analogue took 

about 300 minutes to collapse to a comparable volume. The portion of the emulsion in the 

aqueous layer decayed first and collapsed to 0. 
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Figure 7.5. Foam stability of oligo(vinyl acetate)-based ionic surfactants at concentration of 0.01 

wt% in CO2, 22 oC and 34.5 MPa. 

ommercial Chaser CD 1045 

t of oligo(vinyl acetate)10 sodium sulfate lasted 

400 minutes to collapse to 0. 

 

 
 
 
Comparison of Oligo(Vinyl Acetate)10 Sodium Sulfate and C

The oligo(vinyl acetate)10 sodium sulfate demonstrated the best foam stability in both 

CO2 and H2O layers, which was chosen for comparison with the commercial water soluble ionic 

surfactant of Chase CD 1045. The foam stability comparison was presented in Figure 7.6. The 

stability of CO2 emulsions formed by both surfactants at 0.01 wt% are comparable. It took 

roughly 400 minutes for the CO2 emulsions to collapse to about 10% of the orignial CO2 volume. 

The portion of the emulsion in the aqueous layer formed by Chaser CD 1045 decayed faster and 

collapsed to 0 at about 200 minutes, while tha
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Figure 7.6. Foam stability of OVAc10-OSO3Na and Chaser CD 1045 at concentration of 0.01 

wt% in CO2, 22 oC and 34.5 MPa. 

 
 
 
Nonionic surfactants, Figures 7.2a,b 

The emulsions generated by the nonionic surfactants decayed at a much faster rate than 

the ionic surfactants, as shown in Figure 7.7. The emulsion formed by the iso-stearic acid 

collapsed completely in less than an hour. The emulsion formed by the PPG-PEG-PPG reached 

its steady-state value of about 10% of the aqueous phase volume in just over an hour.  
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igure 7.7. Foam stability of iso-stearic acid and PPG-PEG-PPG nonionic surfactants at 

cncentration of 0.01 wt% in CO2, 22 C and 34.5 MPa. 

 

4 CONCLUSIONS 

 

mmonium 

carboxylate demonstrated the best CO2 foam stability, with around 20% of the CO2 foams lasting 

for over 450 min. The oligo(vinyl acetate)10 sodium sulfate demonstrated the best foam stability 

in both CO2 and H2O layers, with around 10% and 1% of foams respectively remaining stable for 

over 450 min. Further tests on the salinity of the H2O present, pressure, temperature, and varied 

surfactant concentrations would be evaluated further for the most potential candidate of 

oligo(vinyl acetate)10 sodium sulfate to be used in EOR processes. 
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At constant conditions of 0.01 wt% surfactant in CO2, 22 oC and 34.5 MPa, it is apparent that the 

emulsions formed by the ionic surfactants displayed a significantly greater stability than those 

formed by the nonionic compounds. Of the ionic surfactants, the peracetyl gluconic a
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8.0 NONIONIC SURFACTANTS 
 
 
 
 

8.1 EFFECT OF ALKYL CHAIN LENGTH 

 

Some commercially available nonionic surfactants were also investigated for CO2 solubility. 

irst, the effect of alkyl chain length to surfactants solubility in CO  was investigated. Poly 

(propylene) butyl ether and poly(propylene) stearyl ether (Chemron) have almost the same PPO 

repeat units while different alkyl chains length; see their structures in Figure 8.1. PBE-14 is 

extremely CO2 soluble up to 80wt%. PSE-15 is much less CO2 soluble, only up to 15wt% could 

be dissolved in CO2 at much higher pressure (Figure 8.2). That means short alkyl chain is much 

more CO2-philic than longer alkyl chain. 

Figure 8.1. Structures of PBE-14 and PSE-15. 
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o

oxide and propylene oxide including Vanwet9N9, LS-

54 (Cognis), TD-23 and TD-29 (Chemron) were compared at room temperature. Water in TD-23 

and TD-29 was removed by vacuum distillation before the phase behavior study. Figure 8.3 

shows their structures. Phase behavior results in Figure 8.4 illustrate that Vanwet9N9 is the least 

soluble because it contains only PEO repeat units, while the LS-54, TD-23 and TD-29 are much 

more CO2 soluble due to the CO2 philic PPO units. Further, TD-29 is more soluble than LS-54 

nd TD-23 because its re

 

 
Figure 8.2. Phase behavior of PBE-14, PSE-15/CO2 mixtures at 22 C. 

 

 

8.2 EFFECT OF ETHYLENE OXIDE AND PROPYLENE OXIDE 

 

The function of PEO and PPO to CO2 solubility was also studied. The solubility of commercial 

nonionic surfactants containing ethylene 

a latively higher composition of PPO.  
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Figure 8.3. Structures of Vanwet9N9, LS-54, TD-23 and TD-29. 

 
 
 
 

C9H19 O
OH

9

C13H27 O
O

OH

2 3(branched)

C13H27 O
O

OH

2 9(branched)

C12H25 O
O

OH

5 4(linear)

Ls-54 Vanwet 9N9 

TD-23  TD-29 

0

10

20

30

40

50

60

70

0 5 10 15 20

Concentration of Surfactants in CO2 (wt%)

C
l

oi
n

 P
re

s
ur

e 
(

9N9
LS-54

ou
d 

P
t

s
M

P
a)

TD-29
TD-23

 

 
Figure 8.4. Phase behavior of Vanwet9N9, LS-54, TD-23 and TD-29/CO2 mixtures at 22 oC. 



 

 

 

 

9.0 CONCLUSIONS 
 
 
 
 

(1) Oxygenated hydrocarbon based ionic surfactants composed of acetylated sugars, 

poly(propylene oxide) tails are 0.1-2 wt% soluble in CO2. 

(2) Oxygenated hydrocarbon based ionic surfactants composed of oligo(vinyl acetate) tails are 

highly CO2

i. Single-tailed OVAc-OSO3Na are 2-7 wt% soluble in CO2 

ii. Twin-tailed OVAc8 AOT analogue is 3 wt% soluble in CO2 

iii. Both single and twin-tailed OVAc ionic surfactants can form water-in-CO2 

microemulsions at W values as high as 40. 

iv. OVAc ionic surfactants represent the first reports of highly CO2 soluble ionic surfactants 

with tails composed solely of C, H and O that can form water-in-CO2 microemulsions.  

(3) Ag-AOT-TMH, a hydrocarbon-based metal precursor, is 1.2 wt% soluble in CO2. It was 

reduced to silver nanoparticles in CO2. 

(4) Iso-stearic acid, a highly branched nonionic surfactant, is completely miscible with CO2 and 

it is the first report of metallic nanoparticles dispersed in pure CO2 without the use of 

fluorinated ligands. 

) The oligo(vinyl acetate)10 sodium sulfate demonstrated the best foam stability in both CO2 

ver 

450 min. 

 soluble. 

(5

and H2O layers, with around 10% and 1% of foams respectively remaining stable for o
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(6) Short alkyl chain is much more CO2-philic than long alkyl chain and poly (propylene oxide) 

(PPO) is much more CO2-philic than poly (ethylene oxide) (PEO). 
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10.0 FUTURE WORK 
 
 
 
 

Our future work will continue to design oxygenated hydrocarbon-based or hydrocarbon-based 

CO2 soluble surfactants for nanoparticle formation, foam generation, interfacial tension reduction 

and other chemical engineering applications. The interactions between the tail and the CO2 must 

be strong enough to impart CO2-philicity to the surfactant that contains a CO2-phobic segment. 

Further, the CO2 soluble surfactant must be able to form water-in-CO2 microemulsions, stabilize 

nanoparticles, generate foams, increase viscosity or reduce interfacial tension.  
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APPENDIX A  
 
 
 
 

SPECTRA AND PHASE BEHAVIOR OF SURFACTANTS IN CHAPTER 4 
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Figure A.4. 3Na/CO2 mixtures. Insoluble at 

W = 0; 25 oC, W M).  
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Figure A.6. Phase behavior of peracetyl gluconic-COONH4/CO2 mixtures at 40 
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C. PPGMBE 340 

); PPGM 1000 

pyridinium sulfate, W=10 (•); Sodium bis(PPBMBE 340) sulfosuccinate, W=0 (◊); Sodium 

bis(PPBMBE 340) sulfosuccinate, W=10 (♦). (Surfactant concentration in mM). 

 

 
Figure A.11. Phase behavior of PPGMBE surfactants/CO2 mixtures at 40 o

sodium sulfate, W=0 (Δ); PPGMBE 1000 pyridinium sulfate, W=0 (ο
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C, W=0 (�); 

Na, 25 oC, 

 

 
Figure A.25. Phase behavior of PVAc-OSO3Na/CO2 mixtures. PVAc6-OSO3Na, 25 o

PVAc10-OSO3Na, 25 oC, W=0 (ο); PVAc17-OSO3Na, 25 oC, W=0 (Δ); PVAc10-OSO3

W=10 (•); PVAc10-OSO3Na, 40 oC, W=0 (◊). (Surfactant concentration in mM). 
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Figure A.26. Phase behavior of sodium bis(vinyl acetate)8 sulfosuccinate/CO2 mixtures at 25 oC. 

W = 0 (Δ); W = 10 (♦); W = 50 (•). (Surfactant concentration in mM). 
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Figure B.4. Phase behavior of AOT-TMH and Ag-AOT-TMH at 40 oC. (Surfactant concentration

in mM).

0

10

20

30

40

50

0 5 10 15 20 25

Concentrations of AOT analogues in CO 2 (mM)

C
lo

ud
 P

oi
nt

 P
re

ss
ur

e 
(M

Pa
)

60

70

AOT-TMH

Ag-AOT-TMH

Fluid 

Solid + Liquid 



 

 

Table B.1. Soil analysis results of Ag-AOT-TMH 
 
 

original dissolved Ag-AOT-TMH 0.0154 g 
AOT dissolved in volume H2O 10 mL 

moles Ag-AOT-TMH= 3.343E-05 moles 
moles H2O= 0.5555556 moles 

original ppm AOT in solution= 60.178749  

assuming all sodium not present exchanged to silver= 85.237314 
% 
exchange 

 
 
 

-- ppm in solution --  

       

Ca K Mg P Al B Cd 

8.2 10.0 7.9 7.8 5.4 2.1 <0.1 

       

       

 -- ppm in solution --  

       

Cr Cu Fe Mn Na Ni Pb 

<0.1 0.1 8.2 <0.1 8.9 0.5 2.4 
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