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Measures of dispersion in the form of covariance control charts are the multivariate analog to the 

univariate R-chart, and are used in conjunction with multivariate location charts such as the 

Hotelling T2 chart, much as the R-chart is the companion to the univariate X-bar chart.  

Significantly more research has been directed towards location measures, but three multivariate 

statistics (|S|, Wi, and G) have been developed to measure dispersion.  This research explores the 

correlation component of the covariance statistics and demonstrates that, in many cases, the 

contribution of the correlation component is less significant than originally believed, but also 

offers suggestions for how to implement a correlation control chart when this is the variable of 

primary interest. 

This research mathematically analyzes the potential use of the three covariance statistics 

(|S|, Wi, and G), modified for the special case of correlation.  A simulation study is then 

performed to characterize the behavior of the two modified statistics that are found to be feasible.  

Parameters varied include the sample size (n), number of quality characteristics (p), the variance, 

and the number of correlation matrix entries that are perturbed.  The performance and utility of 

the front-running correlation (modified Wi) statistic is then examined by comparison to similarly 

classed statistics and by trials with real and simulated data sets, respectively.  Recommendations 

for the development of correlation control charts are presented along with a description of the 
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types of process to which they apply.  An outgrowth of the research is the understanding that the 

correlation component often does not contribute as much as the scale factor component of the 

dispersion measure in many cases. 
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1.0  INTRODUCTION 

Multivariate quality control charts expand the options for process monitoring beyond the 

traditional univariate case by allowing for the simultaneous monitoring of several variables.  In 

the multivariate setting, many developments have provided improved charts for monitoring 

location (i.e. the mean vector) while relatively little research has addressed measures of 

dispersion (Alt, 1985; Golnabi & Houshmand, 1996).  However, it has been recognized that 

dispersion may have a significant impact on the location vector (Hayter & Tsui, 1994; 

Houshmand et al., 1997).  

Thus, while three statistics to measure dispersion exist (|S|, Wi, and G), a comparison has 

not been made among them to determine their effectiveness for a variety of process conditions.  

The sample generalized variance, |S|, is the oldest of the statistics, but several authors have cited 

possible disadvantages.  The Wi statistic was introduced by Alt (1985) and appears to overcome 

many of the drawbacks reported with using the |S| chart.  More recently, the G chart has been 

introduced by Levinson et al. (2002) and incorporates mean square successive differences in an 

attempt to increase sensitivity of the dispersion measure.  Each of these statistics can be plotted 

in a traditional quality control manner against time or lot number to monitor a process as shown 

in Figure 1 where “CL” (center line) is the mean value and “UCL” and “LCL” are the upper and 

lower control limits, respectively.  If the plotted point exceeds the control limits (as shown by the 

last point) the statistic is out-of-control, indicating a possible change in the process. 
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Figure 1 Control Chart 

Multivariate dispersion charts are usually intended to supplement location charts, much 

as the univariate R-chart is used as a supplement to the X-bar chart.  Despite this orientation, 

several authors have indicated that dispersion, in the form of the variance-covariance matrix, is 

often a component of location and, therefore, affects changes in the mean vector (Lowry and 

Montgomery, 1995; Golnabi and Houshmand, 1996).  Understanding the behavior of covariance 

independent of the mean vector in a statistical quality control setting guides the direction of this 

research. 

As an avenue to begin an investigation, consider instead the correlation matrix, a 

standardized variance-covariance matrix, for the same data set.  The diagonal elements, each 

representing the correlation of a number with itself, are all equal to unity and provide an upper 

boundary condition.  This bounded nature of the correlation matrix provides an alternative and 

initial approach to the comparison of dispersion statistics.  Furthermore, this approach also 

separates the covariance matrix into two components:  the correlation matrix and a scale factor.  

The contribution of the correlation component to the dispersion measure can, thus, also be 

evaluated in this manner and this is the focus of this dissertation.   

The generation and use of correlation control charts rather than covariance charts may 

have some advantages in application as well as contribute to understanding dispersion in 

CL 
UCL 

LCL 
Samples 

Out of Control 
Point 
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Multivariate Statistical Process Control (MSPC).  Similar to the variance-covariance case, 

changes in the correlation matrix could be used to help explain changes in the location vector 

that appear on a location chart such as the Hotelling T2 chart (1947).  A chart that monitors for 

changes in the correlation matrix for p quality characteristics could also be used to monitor for 

changes in the dispersion, specifically the correlation, matrix separate from the location vector.  

Additionally, if the data for the in-control correlation matrix originates from a process 

where no changes are expected, then changes in the sampled correlation matrix may indicate that 

the underlying assumptions have changed and a new analysis for the current data would likely 

reveal the discrepancies.  This is particularly applicable to process data such as that found in the 

chemicals industry where certain relationships are assumed to remain independent when the 

process is stable. 

1.1 OBJECTIVES OF THE RESEARCH 

This research investigates the modification of known statistics for covariance (|S|, Wi, and G) to 

the special case of correlation to:  (1) compare and evaluate the three statistics for a number of 

parameters; (2) provide guidance for the application of said statistics to correlation control 

charts; (3) investigate the application of correlation control charts; and (4) make assessments of 

the role correlation plays in dispersion. 
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1.2 RATIONALE FOR THE DEVELOPMENT OF CORRELATION CONTROL 

CHARTS 

This research focuses on evaluation of the dispersion statistics used for development of 

multivariate control charts where the unique nature of correlation matrices would make the 

correlation control chart itself a tool in certain circumstances where the measures of linear 

association are of interest to an organization.  

For example, in the chemicals industry a distillation column is expected to produce 

outputs which are correlated with one another because of their stoiciometric relationship.  A 

change in the feedstock composition could change the correlation between outputs if this balance 

is upset.  All the outputs of the column may be saleable but, if their relation changes due to a 

change in the input feedstock, then the column operator should be made aware. 

This scenario also illustrates an important observation for interpretation of correlation 

control charts.  Namely, it is the proposition that a shift in the correlation matrix does not 

necessarily denote an out-of-control condition in the traditional sense of the term.  The shift may 

be attributable to a change in requirements, as opposed to requirements not being satisfied.  

Thus, the study of correlation, the standardized version of the variance-covariance matrix, 

provides additional value in its conceptual form. 

1.3 ORGANIZATION OF THE WORK 

To begin an exploration of correlation as a measure of dispersion, it is illustrative to start with 

the first MSPC chart and statistic.  In Chapter 2, the Hotelling T2 chart, which considered the 
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location vector, is introduced.  Since its inception in 1947, additional research has modified and 

improved upon Hotelling’s approach to the monitoring of the location vector.  Charts for 

dispersion then followed, albeit less in number.  The Literature Review presented in Chapter 2 

places particular emphasis on the dispersion statistics for covariance (|S|, Wi, and G) that are 

considered in modified form in this research. 

The evaluation of the three statistics in Chapter 3 begins with a mathematical analysis to 

determine the applicability of the covariance statistics modified to the correlation special case 

and investigates the associated control limits.  From these analyses, the |S| and Wi statistics in 

modified form for correlation emerge as feasible possibilities for the construction of control 

charts.  The bounded nature of the correlation matrix, while providing a framework for the 

analysis, also raises some concerns about the sensitivity of the control limits in certain situations. 

Chapter 4 starts with a simulation study to evaluate the correlation case for various levels 

of quality characteristics (p) and sample size (n) for two common matrices.  A terminating 

sequential simulation provides data with the performance measure being the Average Run 

Length, or ARL.  The results of the simulation indicate that only a modified form of the Wi 

statistic (noted as the WR statistic) is possible, under specified conditions, for the development of 

correlation control charts.  An empirical equation developed from the simulation results is then 

used to characterize the behavior of this statistic.   

A comparison with similarly developed MSPC statistics is presented in Chapter 5, along 

with a discussion of the effect that each parameter has on the statistic.  Existing data sets are then 

employed in Chapter 6 to demonstrate possible applications with results that vary from 

encouraging to discouraging.  The insight gained from attempting to control chart these data sets 
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allows for a summarization of implementation issues and used to make conclusions about the 

utility of this branch of MSPC.   

In Chapter 7, recommendations for associated future work and the direction thereof are 

then presented.  A summary of the work is also provided, showing how the WR statistic for 

correlation, developed from the Wi statistic for covariance, is really the only feasible alternative 

for control charting.  While this statistic behaves similar to other statistics of its type, it also 

similarly has a number of issues with regard to practical implementation.  However, the upshot 

of the conclusion is that the correlation component of the variance-covariance matrix is often of 

less influence than the scale factor component. 
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2.0  LITERATURE REVIEW & BACKGROUND 

The literature review presented is partitioned into four areas.  First an overview of multivariate 

statistical process control and specifically the most commonly used multivariate chart  is 

discussed in Section 2.1.  Next, in Section 2.2, a summary of the research associated with 

multivariate control charts is presented.  In section 2.3, the three statistics of dispersion specific 

to this research are discussed in depth.  Other dispersion measures are briefly discussed in 

Section 2.4.  Section 2.5 provides the background and rationale for the use of the correlation 

component of the covariance matrix.  

2.1 MULTIVARIATE STATISTICAL PROCESS CONTROL 

Following the original univariate mean and range charts of Shewhart are a variety of 

multivariate control charts.  Perhaps the best known is the Hotelling T2 chart, the more common 

version of the χ2 chart in which the covariance matrix and mean vector are not known and are 

estimated from the current sample (Montgomery, 1997).  A single statistic is generated by the 

equation  

)()'( 12 xXSxXnT −−= −        (2-1), 
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where n is the sample size, x  is the estimate of the true mean vector, μ, and S is the estimate of 

the true covariance matrix, Σ.  This statistic is plotted as shown in Figure 1, against control limits 

of the form 

 

⎪⎩

⎪
⎨
⎧

=
+−−
−+

= +−−

0
1
)1)(1(

1,,

LCL

F
pmmn

nmpUCL pmmnpα       (2-2), 

where p represents the number of quality characteristics, n is the sample size for each group, m 

represents the number of sample groups and the F-statistic comes from the distribution with the 

number of degrees of freedom as specified. 

2.2 A SUMMARY OF LITERATURE ASSOCIATED WITH THE HOTELLING T2 

CONTROL CHART AND ITS DEVELOPMENTS 

The concept of developing a correlation control chart, with an objective of characterizing 

covariance behavior, evolves naturally in the progression of research into multivariate charts that 

originated with the Hotelling T2 chart.  Figure 2 provides an overview of these research 

directions that are reviewed herein.  Most research since the late 1950s involving the T2 chart has 

concentrated on monitoring changes in the location or mean vector, as depicted on the left side of 

Figure 2.  The developments for location (mean) can be subdivided into two general areas:  

determination and tolerance.  Determination denotes research concerned with identifying 

univariate components responsible for generating an out-of-control point on the T2 chart.  

Tolerance applies to research seeking the preferred method for assigning control limits to the T2 
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chart.  Similarly, as shown on the right side of Figure 2, there have also been developments 

investigating changes in the dispersion (variance), including two hybrid methods that also 

incorporate information related to the location vector.  Figure 2 is explained in the Literature 

Review with the emphasis placed primarily on the dispersion measures. 

 

Figure 2  Research Directions Related to the Hotelling T2 Chart 

2.2.1 Research on Control Limits for Location 

Research on the T2 chart mentions several alternatives for setting control limits.  Typically, Phase 

I limits are used to estimate process parameters from the sample when exact values are not 

known, and then Phase II limits are established for the process in control (Alt, 1985, Sullivan and 

Woodall, 1995).  However, if the process mean and variance are known a priori it is generally 

Hotelling T2 Chart

Location (Mean) Dispersion (Variance) 

Determination Tolerance (CL’s) Tolerance (CL’s) 

Approx. vs. Exact

Individual Observations

Univariate Charts 

Principal Components 

Decomposition 

Ranking Methods 

Regression Methods 

M Chart

|S| Chart 

Wi Chart 

G Chart 

Partial/Multiple 
Correlation 

GS Chart
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accepted that Phase II limits can be applied.  In general, Phase II control limits are established 

with an upper limit based on the chi-squared distribution with p degrees of freedom and the 

lower control limit at zero. 

Much of the research investigates the differences between using asymptotic 

approximations and exact values in the setting of Phase I control limits and the asymptotic 

estimates are found to be acceptable for most cases (Alt, 1985).  Tracy et al. (1996) have made a 

specific contribution in the area of MSPC addressing the problem of single observations plotted 

on the T2 chart.  That is, they address the situation where the sample size, n, equals one.  Sullivan 

and Woodall (1996) review various approaches for single sample control charts, including the 

work of Tracy et al. related to the T2 chart. 

2.2.2 Research on the Explanation of Out-of-Control Points 

A simple method for determination of out-of-control points is plotting a univariate control chart 

for each variable used in calculation of the T2 statistic.  The upper and lower control limits are 

calculated using a Bonferroni approach so that the tolerance on each univariate statistic is α/p, 

where p is the number of variables and α is the overall simultaneous tolerance requirement.   

The earliest alternative approach to determining the out-of-control components involved 

decomposition by principal components analysis (PCA) and stems from the work of Jackson 

(1959, 1980, 1985).  The chemical process industry readily uses this approach but more recent 

techniques that more accurately define out-of-control variables can be found in the literature.  As 

noted by Hayter and Tsui (1994), the variables resulting from PCA are often quantities such as 

“(1/4) weight + (3/4) length” that do not have an analog in the process. 
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Two interrelated methods have recently been used in place of principal components 

analysis to determine those variables which cause an out-of-control signal on the T2 chart.  

Doganaksoy et al. (1991) introduced a method that ranked the components of the observation 

vector based on a statistic compared to a t-distribution.  Similarly, Hawkins (1991, 1993) has 

done extensive work to improve the capabilities of multivariate control charts by making 

regression adjustments to individual variables.  Hawkins (1993) and Wade and Woodall (1993) 

have applied these regression adjustments to the T2 chart to identify influential components.  In 

1995, Mason et al. demonstrated a comprehensive decomposition procedure by which the 

regression and ranking techniques were both shown to be subsets. 

2.2.3 Research on Control Limits for Dispersion 

Referring back to Figure 2, the other factor influencing T2 charts concerns dispersion.  It has 

been recognized that much work remains in this area, including a 1995 review of multivariate 

control charts by Lowry and Montgomery and an article by Golnabi and Houshmand (1996).  Of 

particular note in the existing literature is the orientation, although it is not explicitly stated, that 

changes in the variance-covariance matrix (or correlation matrix at its most basic state) are 

considered nuisances that must be addressed in order to ensure that the T2 chart is properly 

monitoring the process location.  The M chart (Hayter and Tsui, 1994) and GS chart (Houshmand 

et al.,  1997) combine dispersion with location to address this issue.  Research that directly 

attacks the dispersion question has resulted in the production of three statistics for control 

charting purposes:  the |S|, the Wi, and the G.  In addition, the methods of partial and multiple 

correlation have been introduced.  The latter methods, while providing the ability to indicate in- 

and out-of-control conditions, are algorithmic applications (Golnabi and Houshmand, 1996).  
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These methods were not designed with the intent of adaptation to control charts and do not 

produce a single, chartable statistic.  Thus, they are only briefly summarized.  The following 

section elaborates on the development of the three statistics (|S|, Wi, and G) of interest to this 

research. 

2.3 DISPERSION CONTROL CHARTS 

As previously noted, three dispersion statistics (|S|, Wi, and G) and associated control charts have 

been developed.  Each is described below in the chronological order of their introduction—this 

facilitates understanding the motivation for the more recent developments. 

2.3.1 The |S| Chart 

The sample generalized variance, |S|, is one of the most widely used measures of process 

dispersion (Alt, 1985).  The foundation of the |S| chart is based on the assumption that the 

determinant of the covariance matrix is the multivariate analog to covariance (Wilks, 1932).  

One attraction of the |S| chart is ease of calculation and the resultant scalar |S| that is 

plotted against the control limits.  Alt (1985) notes that the “. . . |S|-control chart can be 

constructed using only the first two moments of |S| and the property that most of the probability 

distribution of |S| is contained in the interval |)(|3|)(| SVSE ± ” (p. 116).   
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The control limits are 
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where 0Σ  is the in-control covariance matrix, n is the sample size, and α is the specified 

tolerance.  If n < 6, the lower control limit is replaced with zero.  The control limits in equation 

2-3 are more common, although others exist for specific purposes (Golnabi and Houshmand, 

1996; Alt, 1985; Montgomery and Wadsworth, 1972).  

Despite ease of calculation and intuitive plausibility, the |S| statistic has several potential 

drawbacks as a relatively simplistic, scalar representation of a complex multivariate structure 

(Lowry and Montgomery, 1997).  Alt (1985) cites an example from Johnson and Wichern using 

bivariate data resulting in “distinctly different correlations, r = 0.8, 0.9, and -0.8” although the 

sample covariances have the same generalized variance (p. 116).  Similarly, Lowry and 

Montgomery (1997) note three covariance matrices: 
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each of which “conveys considerably different information about process variability and the 

correlation between the two variables” but result in |S1| = |S2| = |S3| = 1 (p. 804).  Consequently, 
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Lowry and Montgomery (1997), Alt (1985) and others suggest that the |S| chart not be used in 

isolation, but rather be used in conjunction with univariate dispersion control charts created from 

the multivariate data. 

2.3.2 The Wi Chart 

Some concerns related to use of the sample generalized variance, |S|, can be alleviated by 

employing a direct multivariate extension of the univariate S2 control chart.  The evolution of this 

control chart started with Alt in the mid-1970s and since 1985 it has been regularly mentioned in 

the literature as an alternative to the |S| chart. 

Assuming that the true covariance matrix, Σ, is known (or estimated from a large, in-

control sample), multiple comparisons are made between the sample covariance matrices from 

the process and the known covariance matrix.  The multiple comparisons are a series of tests of 

significance of the form H0:  2
0

2 σσ =  vs. H1:  2
0

2 σσ ≠  (Alt, 1985,  p. 116).  In this case, the 

repeated hypothesis tests compare the known and the sample covariance matrices. 

The test statistic computed and plotted for each sample, i, is 
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(Lowry and Montgomery, 1997, p. 804).  In equations 2-5 and 2-6, p denotes the number of 

quality characteristics, n denotes the sample size, and S is the sample covariance matrix for the 

ith sample.  

The calculated point, Wi, is compared to an upper control limit (UCL) with a χ2 

distribution with p(p+1)/2 degrees of freedom at a significance level of α, as shown in equations 

2-7, 
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2.3.3 The G Chart 

The G Chart is a recent application of the G statistic to multivariate statistical process control for 

dispersion introduced by Levinson et al. (2002).  This work stems from attempts to improve the 

T2 statistic (Holmes and Mergen, 1993) in view of variation and starts with the q2 statistic 

reported by Hald (1952).  Hald showed that q2 is an unbiased estimator of σ2 given by the 

equation: 

 ∑
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+ −
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1 n

i
ii XX

n
q        (2-8), 

where iX  and 1+iX  are consecutive sample values, and n is the sample size.  Equation 2-8 

represents the Mean Squared Successive Differences (MSSD) estimation of the variances.  Hald 

also proposed a ratio r (not to be confused with the correlation coefficient, r) that is equal to 

q2/s2.  He suggested that this ratio could be used as an “hypothesis alternative to the hypothesis 

of statistical control” that would indicate a gradual change in the population mean, with small 
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values of r being significant (Hald, p. 358).  The distribution of r is approximately normal for n > 

20; a table of fractiles is presented for values from n = 4 to n = 20. 

Holmes and Mergen (1993) applied the concept of MSSD as an attempt to improve the 

sensitivity of the T2 control chart (p. 261).  Since q2 is an unbiased estimator of σ2, it can be used 

in place of s2 to calculate the variance-covariance matrix S.  Consider two processes, X and Y, 

and the covariance calculated by the standard method and by the MSSD method.  “If the X and 

Y processes are random and have no cross-correlation other than at zero lag, these two estimates 

of the universe covariance will be similar.  If these conditions are not met, then there will be a 

difference in the estimators” (p. 622).  

Holmes and Mergen (1998) extend the MSSD application as “a test for the equality of the 

regular covariance matrix and the MSSD covariance matrix to establish whether or not the 

multivariate process is stable” (p. 505).  It employs a G statistic to compare the equality of two 

population covariance matrices calculated as 

 ))((3026.2 MmG = ,        (2-9) 

where m is a constant defined as 
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and 

 ||log)1(||log)1(||log)2( 221121 SnSnSnnM −−−−−+=   (2-11) 

where p represents the number of quality characteristics, n is the sample size, and S is the 

covariance matrix.  Subscripts refer to the individual data for each of two covariance matrices, S1 

and S2 from samples of size n1 and n2, respectively, so that S represents a pooled covariance.  In 

this equation the logarithm used is base 10. 
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The G statistic was proposed by Kramer and Jensen (1969b) and is based on the 

assumption that the determinant of the covariance matrix is the multivariate analog of the 

variance (Holmes and Mergen, 1998).  It should be noted that this assumption comes from Wilks 

(1932), and is subject to the same arguments presented in Section 2.3.1. 

 Levinson et al. (2002) reason that a stable process would produce separate estimates of 

the covariance matrix that are approximately equal, and that the equivalence of these matrices 

could be tested using the G statistic.  Two methods are presented for calculation of the 

covariance matrix, S.  The first is the standard calculation, referred to by Levinson et al. as the 

“full data set” method.  The second method uses the MSSD (Holmes and Mergen, 1998) and is 

given as 

 ∑
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1      (2-12), 

where 1−jX  and jX  are consecutive samples in a sample of size n, computed for k subgroups 

(number of samples), and T is the transpose operator.  The value of the constant m remains the 

same as in equation 2-10 above, but the value of M changes to 

 ||ln||ln||ln)( 221121 SSSM νννν −−+=      (2-13) 

where |S2| is the sample generalized variance for the sample being compared to the in-control 

sample generalized variance, |S1|, and S is the pooled variance given by 
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and 

 )1( 22 −= nν          (2-15b) 

where ν1 and ν2 are the degrees of freedom for the initial (control) sample, and subsequent 

samples, respectively, with n2 representing the number of samples in the kth sample subset.  The 

G statistic is then calculated as the product 

 ))(( mMG =          (2-16), 

where M and m are as defined above.  Control limits are set as  
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where χ2
(p,q) is the qth quantile (Levison et al., 2002, p. 541). 

2.4 OTHER MEASURES OF DISPERSION 

There are three other approaches found in the literature that attempt to capture the effect of 

dispersion on MSPC control charts.  These are depicted on Figure 2 as the M  (Hayter and Tsui, 

1994) chart, the GS (Houshmand et al., 1997) chart, and the methods of partial and multiple 

correlation (Golnabi and Houshmand, 1997).  While each of these approaches does address the 

dispersion issue, their directions diverge from that of this research since the objective here is to 

separate the dispersion from the location to characterize its behavior.  Both the M chart and the 

GS chart combine dispersion and location measures into a single, chartable statistic, and are an 

attempt to address Alt’s (1985) recommendation for the development of one control chart for the 
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simultaneous monitoring of location and dispersion. The M chart and GS chart are reviewed in 

Appendix A and Appendix B, respectively.  

The similar methods of partial correlation and multiple correlation do directly address 

changes in the correlation structure itself.  However, the process makes iterative comparisons 

using a method that does not follow the template of the standard Shewhart chart which is the 

basis for MSPC charting.  Thus, the practical difficulties and other implications of charting the 

generated parameters are not addressed.  This algorithmic method is reviewed in Appendix C. 

2.5 THE CORRELATION MATRIX AS A MEASURE OF DISPERSION 

While three statistics (|S|, Wi, and G) have been proposed for tracking changes in the dispersion, 

there has been no evaluation to compare the relative performances of these statistics.  At best, 

these statistics have been “validated” using data from Jackson (1980) and others.  The following 

section outlines the relationship between R and S as a mathematical justification to comparing 

the existing statistics (|S|, Wi, and G) for monitoring changes in the correlation matrix.   

Sample covariance provides a measure of linear association between two variables and is 

calculated as: 
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where Xi and Xk are values from two equal-sized (n) sets of variables with means iX  and kX , 

respectively, and j is an index.  For the population, sik would be replaced by σik and the average 
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values iX and kX would be replaced by μi and μk, respectively.  The sample correlation 

coefficient, rik, is the standardized sample covariance, where the product of the square roots of 

the sample variances provides the standardization.  Thus, the sample correlation coefficient, rik, 

can also be viewed as a sample covariance (Johnson & Wichern, p.10). 

The sample correlation matrix is comprised of p x p quality characteristics, rik, each of the 

form 
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where i = 1, 2, . . . , p and k = 1, 2, . . . , p.  In this equation, each entry rik is the Pearson’s 

product moment correlation coefficient for the ith and kth  entry in the p x p matrix.  If the original 

values Xij and Xkj are replaced by standardized values 
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then the standardized values are commensurable since both sets are centered at zero and 

expressed in standard deviation units.  The sample covariance of the standardized observations, 

then, is the sample correlation coefficient, rik (Johnson & Wichern, p. 10). 

Each sample correlation coefficient, rik, will possess several properties of interest.  First, 

the value of  rik must be between -1 and 1.  Note that rik will equal rki for all values of i and k, and 

that any number correlated with itself will have a value of unity.  Thus, the diagonals of the 

matrix R will be equal to one, and the matrix itself will be symmetric.  This property means that, 

unlike the variance-covariance matrix S, the correlation matrix R is bounded, allowing a 

comparison between calculated dispersion statistics. 

Second, similar to covariance, the correlation coefficient measures the strength of linear 

association where rik = 0 indicates no association, and the sign of rik indicates direction.  For 
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correlation, rik < 0 indicates a tendency for one value in the pair to be larger than the mean when 

the other is smaller than its mean and  rik > 0 indicates that values in each pair will tend to be 

either simultaneously large together or small together (Johnson & Wichern, p. 10). 

Third, if the values of the ith variable are changed to yij = axij + b and the those of the kth 

variable are changed to ykj = cxkj + d, for i= 1, 2, . . . , n in both cases, then, provided that a and c 

have the same sign, there will be no change in rik. 

Fourth, using either n or n – 1 (common to avoid bias) as the denominator for sik results 

in the same value for rik. 

Despite the desirable qualities of the correlation matrix, R, there are some items that 

remain of concern when using R in place of S.  Largely these relate to situations where |S| = 0 

(similarly, then, when |R| = 0).  When the determinant of a matrix is zero, the matrix is singular 

and cannot be inverted so that a dispersion statistic cannot be calculated.  Note that this does not 

permit a calculation of the T2 statistic for the mean vector either.  This degenerate case can result 

from any row of the deviation matrix being expressible as a linear combination of the remaining 

rows, or in all cases where the number of quality characteristics, p, exceeds the sample size, n.  

The latter case can be avoided by proper design.  In cases where the former situation occurs, 

Johnson and Wichern suggest: 

that the measurements on some variables be removed from the study as far as the 
mathematical computations are concerned.  The corresponding reduced data 
matrix will then lead to a covariance matrix of full rank and a nonzero generalized 
variance.  The question of which measurements to remove in degenerate cases is 
not easy to answer.  When there is a choice, one should retain measurements on a 
(presumed) causal variable instead of those on a secondary characteristic (p. 105). 

 

This was the case with the data analyzed by Holmes and Mergen (1993) using the G 

chart.  The study looked at changes in the distribution of particle size in an industrial process, 
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where size was categorized as small, medium, or large.  The authors state, “The data on three 

different particle sizes are given . . . only the first two columns are used in the analysis since the 

total of the percentages is always 100 and the variance-covariance matrix will not invert under 

these conditions” (p. 622). 

Large sample behavior tends to dominate the application of multivariate statistical 

process control, and the multivariate normal distribution is the distribution usually associated 

with MSPC processes.  Johnson and Wichern note that there are two main reasons for this:  (1) 

for certain natural phenomenon multivariate normal is the population model; and (2) for many 

statistics, the approximate sampling distribution is multivariate normal (p. 120).  Therefore, 

provided the sample size, n, is large enough, the parent population does not need to be 

multivariate normal, but must have a mean μ and finite covariance Σ (p. 144).  If Σ is finite, S 

and R will be finite as well. 
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3.0  CORRELATION CONTROL CHART DEVELOPMENT 

Since the three statistics, |S|, Wi, and G, were developed at different times with different 

approaches they have not been appropriately compared to one another, nor have they been 

compared using the in-control ARL, the common metric of control charts in which shorter ARLs 

are generally desired (DeVore, 2002).  To elaborate, Alt (1985) used a mathematical derivation 

to develop the Wi statistic and then used a small data set to compare it to the |S| statistic, the latter 

being a matrix determinant that was assumed to capture dispersion effects (Wilks, 1932).  While 

Alt (1985) had mathematical justification for preferring the Wi statistic to the |S| statistic, closed-

form solutions are generally not practical for the comparison of multiple statistics; rather 

simulations are used, and ARLs are determined as the measure of comparison (Montgomery, 

1997; Holmes and Mergen, 1998; Levinson et al., 2003).  Accordingly, Levinson et al. (2003) 

derived the G statistic and used a simulation producing an ARL to show its effectiveness; 

however, they did not compare the G statistic to the |S| nor the Wi statistic.  In the next chapter 

(Chapter 4), this research uses a terminating sequential simulation to compare the special case of 

correlation for two of these three statistics, using the in-control ARL as the measure of 

comparison.  In this chapter, a mathematical evaluation develops modified versions of the |S| and 

Wi statistics and also shows that the G statistic cannot be modified for and applied to the 

correlation case.  
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3.1 RATIONALE FOR MODIFICATION OF THE COVARIANCE STATISTICS 

FOR THE APPLICATION TO CORRELATION MATRICES 

The three statistics under consideration (|S|, Wi, and G) all utilize the generalized sample 

variance, |S|, in some fashion to capture the effects of covariance, a practice that can be traced to 

Wilks (1932).  The concept presented here is that, as a special case of covariance (S), correlation 

(R), could be substituted into the equations for each of the statistics and control charts created 

therefrom.  Because of the way the control limits are calculated, which will appear in subsequent 

sections, if a certain assumption is made these limits do not change when the generalized sample 

variance of the standardized variables, |R|, is substituted for the generalized sample variance of 

the non-standardized variables, |S|, and this is either beneficial or detrimental depending on the 

statistic considered. 

An assumption is required since the generalized sample variance of the standardized 

variables, |R|, only captures a portion of the information contained by the generalized sample 

variance of the non-standardized variables, |S|.  In addition to the correlation component, 

covariance also contains a scale factor component that provides for the standardization and is 

calculated as a product of the variances, sii, so that  

RsssS pp )( 2211 L= ,         (3-1) 

for a matrix of i = 1 to p quality characteristics. 

In the context of a control chart, then, the creation of charts based on |R| instead of |S| 

requires the assumption that the scale factor is the same in the samples as it is in the in-control 

condition and that out-of-control conditions are generated solely by changes in the correlation 

matrix, R.  While this assumption may not always be valid, it is reasonable in MSPC if it is the 
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correlation component that is of interest and if it is the correlation component that is expected to 

provide the out-of-control condition.  That is, the scale factor component is not being ignored; 

rather the concentration is on the correlation component’s contribution to covariance.  Such 

matrices occur in a number of processes ranging from chemical fractionating to anthropometric 

data to financial data and meet the requirements of an Exchange Structure which will be 

discussed in Chapter 5.  Furthermore, the assumption of scale factor stability can be tested once 

an out-of-control condition is detected by the correlation control chart by also viewing the 

control chart for the covariance that utilizes |S|, since |S| does not capture only the effects of 

correlation (Johnson & Wichern, 103).  This approach is analogous to performing a linear 

regression and then examining the residuals to verify normality because that assumption is 

sometimes inconvenient to assess a priori.  When the generalized sample variance is 

decomposed as shown in equation 3-1, the effects of the scale factor and the correlation are 

separated, as will be shown geometrically later, so that the correlation control charts become 

companions to the covariance control charts. 

Because different correlation structures are not detected by the generalized sample 

variance of the non-standardized samples, and different correlation structures are detected by the 

generalized sample variance of the standardized samples, this suggests the following in regard to 

these control charts: 

1. If the correlation chart is in-control and the covariance chart is in-control, then the 

process is in control. 

2. If the correlation chart is out-of-control and the covariance chart is in-control, then 

the process may be out-of-control due to correlation. 
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3. If the correlation chart is in-control and the covariance chart is out-of-control, then 

the process may be out-of-control due to the scale factor. 

4. If the correlation chart is out-of-control and the covariance chart is out-of-control, 

then the process is out-of-control due to both the correlation and the scale factor. 

Thus, even though the correlation control chart could be seen mathematically as a special 

case of the covariance chart, the covariance chart would in practical applications be considered 

the companion chart to the correlation chart even if the primary objective is to detect changes in 

the correlation matrices generated from the process data. 

3.2 RELATION OF |R| TO |S| 

Since the three covariance statistics being considered use |S| as part of their calculations, it is 

instructive to see the relationship between |S| and |R|.  Although equation 3-1 explains this 

relation mathematically, geometry of the bivariate or trivariate cases provides a visual 

explanation.  It is extendable by induction for p > 3, where p represents the number of quality 

characteristics since, even if the p vectors are n-dimensional, p vectors can span no more than a 

p-dimensional space.  If p = 2, a plane is defined.  If p = 3, a volume is defined.  Similarly, when 

extended for p > 3 the spaces become hypervolumes (specifically parallelotopes) that are 

difficult to visualize but nonetheless valid (Anderson, 1984). 

Johnson & Wichern (1988), and similarly Anderson (1984), develop the notion of a 

deviation vector in (p =) 3-space that is useful in illustrating the relation of |S| to |R|.   
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where ix  is the sample mean and n is the dimension of an n x 1 vector ]1,,1,1[ K=′A , so that 

Ay
n i′
1 corresponds to the multiple of A that gives the projection of yi onto the line determined by 

A.  For each yi, the geometric decomposition would be as shown in Figure 3. 

 

 

Figure 3 Decomposition of deviation vector 

The deviations of the measurements on the ith variable from their respective sample 

means, then, are given by the difference vector ei 
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where the other variables are as defined previously. 
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The vector A has been defined purposefully to lie anywhere in n-space, as the axes of the 

deviation vectors, ei, can now be translated to the origin without affecting their lengths nor their 

orientations.  A typical view showing three deviation vectors is shown in Figure 4. 

 

Figure 4  Deviation vectors on A-B-C axes 

The squared lengths of the deviation vectors, which are proportional to the variance of 

the measurements on the ith variable, are equivalent to the sum of the squared deviations, 

meaning that the lengths are proportional to the standard deviations.  The cosine of the angle 

between pairs of deviation vectors is the correlation coefficient given by the equation 

 )cos( ik
kkii

ik
ik ss

s
r θ==         (3-4) 

where rik denotes the correlation coefficient, sik is a variance, and the square roots of sii and skk 

are standard deviations.  Figure 5 shows the geometric interpretation, in (p = 2) dimensions, 
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between any two deviation vectors Axye 111 −=  and Axye 222 −= .  Since the height of the 

trapezoidal region formed by the deviation vectors is )sin(
1

θeL , the area bounded by the vectors 

and their projections is )(cos1 2
21

θ−ee LL .  Johnson & Wichern show that, by using 

substitutions and extending to a multidimensional case by induction, that the volume generated 

in n space for p  

deviation vectors is given by 

 |S| = (n – 1)-p (volume)2.       (3-5) 

 

 

Figure 5 Trapezoidal region formed by deviation vectors 

Looking at this in three dimensions, shown in Figure 6, it is evident that two components 

affect the volume—the length of the sides, and the angles between edges. 

The correlation corresponds to the angle between deviation vectors and the lengths of the 

edges correspond to the scale factor (usually expressed in standard deviation units).  Thus, in the 

covariance case, either the scale factor or the correlation may affect the volume and, therefore, 

the sample generalized variance, |S|. 
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Figure 6  Parallelotope in Three Dimensions 

When the covariance matrix is standardized, so that the standardized covariance, or 

correlation matrix, R, is obtained, all of the vector lengths are equivalent and only the angle 

between vectors effects the volume.  The geometric representation is the same as that of Figure 

6, with all the ei being of equal lengths.  Assume, then, that the generalized sample variance of 

the standardized sample is used instead of the non-standardized version in calculation of the 

three covariance statistics (|S|, Wi, and G), and that these statistics behave similarly as 

hypothesized.  Then replacing |S| with |R| in the covariance statistics would lead to control charts 

that detect when correlation has gone out-of-control assuming the scale factor has remained 

constant between the in-control condition and subsequent samples.  As stated, this assumption of 

e1 e2 

e3 
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constant scale factor should be investigated by comparing the correlation control chart with the 

covariance control chart when an out-of-control condition for correlation is detected. 

3.3 COVARIANCE STATISTICS APPLIED TO CORRELATION1 

Since correlation is a special case of covariance, the statistics used for MSPC monitoring of 

covariance should apply to the monitoring of correlation.  To investigate the plausibility of 

correlation as a separate component, it is necessary that the scale factor does not change between 

the in-control condition and the samples—an assumption that must be checked by also using the 

covariance control chart once the correlation control chart detects an out-of-control condition.  In 

doing so, the control limits for the correlation case are generally commensurate with those for the 

original covariance statistics and this is shown in subsequent sections.  As Table 1 indicates, 

there is a slight modification of the control limits when considering |R| instead of |S|, but no 

modification when considering WR instead of Wi.  These limits will be derived in the following 

sections.  Issues with the G statistic will be addressed in Section 3.3.3. 

 

 

 

 

 

                                                 

1 Thanks to Dr. Murat C. Testik, Ph.D. for reviewing the derivation of control limits and other calculations presented 
in Chapter 3.  Dr. Testik received his doctorate from Arizona State University where he studied MSPC with Dr.  
Douglas Montgomery. 



  32

Table 1 The Statistics and Their Control Limits 

Covariance Statistic Correlation Statistic Control Limits 
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3.3.1 Control Limits for |R| 

When p = 2, |S| is distributed exactly as chi-squared.  However, for p > 2, Alt (1973) suggests 

using Anderson’s approximation as 
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where Σ0 is the in-control covariance matrix, S is the sample covariance matrix, p denotes the 

number of quality characteristics, n is the sample size, and zα/2 is from the standard normal 

distribution.  Then the control limits for the |S| chart are 
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and 
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where the variables are as noted above.  Since 2/12/1
0 VV ρ=Σ , where V represents the diagonal 

matrix of variances so that V½ is the diagonal matrix of standard deviations and ρ represents the 

correlation matrix for the in-control condition, substituting into the first equation gives 
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where R is the sample correlation matrix.  Now, if A and B are k x k square matrices—which S 

and R have to be—and it has been shown that  

BAAB =           (3-9) 

the equation now becomes 
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Since the determinants are scalars and it is assumed that, under the in-control conditions, 

the standard deviation matrices for the sample and population are equivalent, and sample sizes 

are sufficiently large, dividing by the common factor leaves 
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meaning that the control limits for the |R| chart would be 
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and 
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so that a control chart could be constructed for correlation based on the |S| covariance control 

chart.   



  35

However, a significant issue with the limits shown in Equations 3-12 and 3-13 is very 

evident.  The determinant of a correlation matrix is bounded as [0,1] so that the upper and lower 

limits of Equations 3-12 and 3-13, respectively, will rarely be exceeded, especially when the 

magnitude of the correlation exceeds 0.4.  This result is an indicator that the performance of the 

|R| statistic is questionable (or that correlation, thus measured, cannot be viewed as a major 

contributor to the covariance). 

3.3.2 Control Limits for WR 

Use of the Wi statistic (Alt, 1973) is equivalent to making repeated hypothesis tests of the form 

 00 : Σ=ΣH versus 01 : Σ≠ΣH  

where Σ and Σ0 are the population covariance and matrix of in-control covariance values, 

respectively. 

The statistic is a ratio of the maximum likelihood estimators for the multivariate normal 

distribution (μ, Σ) in the following sets: 

 { }definitepositiveis ___,:),( Σ∞<<−∞Σ=Ω μμ  

 { }0,:),( Σ=Σ∞<<−∞Σ= μμω . 

This implies that the mean is unspecified and the covariance matrix is specified, to be 

used in the likelihood ratio statistic to derive the control statistic.  Note that this is important 

since the statistic now becomes invariant to changes in the mean vector.   
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It has been shown (Anderson, 1984) that the maximum likelihood estimators for the multivariate 

normal case are: 

 x=Ωμ̂  A
n
1ˆ =ΣΩ              (3-14a, b) 

 x=ωμ̂  0
ˆ Σ=Σω              (3-15a, b) 

where x  is the vector mean, n is the sample size, and SnA )1( −=  so that the likelihood 

functions based on the multivariate normal distribution are 
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(where tr is the trace operator) giving a maximum likelihood estimate 
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Note here that the maximum likelihood of the covariance matrix is not an unbiased 

estimator.  Taking the log likelihood, the statistic becomes 

 )(lnln)ln(2 1
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which is rejected any time its value exceeds ⎟
⎠
⎞

⎜
⎝
⎛ + αχ ,

2
)1(2 pp , an expected result for the log 

likelihood.  This is the asymptotic general result, since the specification of 0Σ requires 
2

)1( +pp  

independent elements to be specified. 
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To approach this statistic from the standpoint of correlation in which the goal is repeated 

tests of the hypotheses 

00 : ρρ =H  versus 01 : ρρ ≠H ,  

one could calculate the maximum likelihood ratio for a new Ω and ω defined in terms of the 

correlation.  However, since the multivariate normal distribution requires introduction of the 

variance for full characterization, the result will be a test of the covariance. 

If, instead, we look at the third and fourth terms of the Wi statistic, we see that they 

include the ratio 
0Σ

A
, which is equivalent to 

0

)1(
Σ

− Sn
, or 

0

)1(
Σ

−
S

n p , where S  is replacing Σ 

in equation 3-19, and depicts a scalar (n-1)p multiplied by the ratio of the determinants of the 

sample covariance matrix to the in-control covariance matrix.  To convert this ratio for the in-

control correlation matrix to the ratio of the determinants of the sample correlation matrix, 
0ρ

R
, 

requires making the assumption that the scale factors for both cases are equivalent, an 

assumption that has been noted must be checked once an out-of-control condition is indicated.  

The statistic, by substitution, then becomes 

)()1()1(lnln)ln(2 1
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⎛
−−+−=Λ−= ρ

ρ
,  (3-20) 

so that a control chart can be constructed for correlation, WR,  based on the Wi covariance control 

chart. 

In addition to being intuitive, there is a justification for this substitution since the 

maximum likelihood of the correlation occurs at the same point as the maximum likelihood of 

the covariance.   
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This is shown by Anderson (1984, pp. 64-65) for the elements of the estimated correlation 

matrix, the correlation coefficients rij, and uses the following corollary: 

If on the basis of a given sample mθθ ˆ,,1̂ K are maximum likelihood estimates of 

the parameters mθθ ,,1 K of a distribution, then )ˆ,,ˆ(,),ˆ,,ˆ( 111 mmm θθφθθφ KKK are 
maximum likelihood estimators of ),,(,),,,( 111 mmm θθφθθφ KKK if the 
transformation from mθθ ,,1 K to mφφ ,,1 K is one-to-one.  If the estimators of 

mθθ ,,1 K are unique, then the estimators of mφφ ,,1 K are unique. 

The maximum of the ratio of the correlation matrices, 
0ρ

R
, occurs at the same point as 

the maximum of the ratios of the covariance matrices, 
0Σ

S
, and WR reaches its maximum at the 

same point as Wi and is thus commensurate.  In other words, the control limits remain the same 

since they are based on the asymptotic approach of the maximum likelihood estimate. 

Two numeric cases will be used to illustrate application of the modified Wi (named WR) 

statistic.  Assume that the following bivariate matrix, Σ0, for a sample of size n = 5, and α = 0.05 

represents the in-control condition.  The in-control correlation matrix, ρ0, and the determinants of 

Σ0 and ρ0 are also shown below: 

 

⎥
⎦

⎤
⎢
⎣

⎡
=Σ

50.120.1
20.196.6

0   90 =Σ  

 

⎥
⎦

⎤
⎢
⎣

⎡
=

1371.0
371.01

0ρ   862.00 =ρ . 
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3.3.2.1 Case I:  Covariance In-Control / Correlation Out-of-Control 

Consider the following matrices 

 

⎥
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and then calculate the Wi statistic for covariance as 
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966.4736.1286.1309.1610 =+−+−=iW  

 

which is compared to a chi-squared distribution  

 

 2
05.0,381.7966.4 χ=<=iW  

 

and found to be in-control. 
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Now, calculate the same statistic, modified for correlation 
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103.11994.5931.009.1610 =+−+−=RW  

 

which is compared to the chi-squared distribution  

 

 2
05.0,381.7103.11 χ=>=RW  

 

and found to be out-of-control. 
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3.3.2.2 Case 2:  Covariance Out-of-Control / Correlation In-Control 

With the aforementioned in-control matrices established above, consider the following matrices 
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and then calculate the Wi statistic for covariance as 
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27.29332.33514.4809.1610 =+−+−=iW  

 

which is compared to the chi-squared distribution  

 

 2
05.0,381.727.293 χ=>=iW  
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and found to be out-of-control. 

 

Now, calculate the same statistic, modified for correlation 
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23.096.781.1309.1610 =+−+−=RW  

 

which is compared to a chi-squared distribution  

 

 2
05.0,381.723.0 χ=<=RW  

 

and found to be in-control.  Similarly, examples can be developed whereby the covariance and 

correlation matrices are both either in-control or out-of-control at the same time.  From a 

simulation study, the results for which appear in Chapter 4, it can be shown that the calculation 

of the aforementioned test statistics can be very dependent on the values of certain parameters.  

Thus, the cases shown above are simplistic examples designed only to show that correlation and 

covariance can be viewed separately. 
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3.3.3 The Problem with the G Statistic 

Recall that the G statistic compares the equality of two covariance matrices for the purpose of 

detecting subtle shifts and is computed as  

 ))((3026.2 MmG = ,        (3-21) 

where m is a constant defined as 
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and 

 ||log)1(||log)1(||log)2( 221121 SnSnSnnM −−−−−+=   (3-23) 

where p represents the number of quality characteristics from sample sizes n1 and n2, 

respectively.  S1 was from the standard calculation for covariance, referred to by Levinson et al. 

as the “full data set” method and S2 used the mean squared successive differences, or MSSD, 

(Holmes and Mergen, 1998) formula and was given as 

 ∑
=

−− −−
−

=
n

j

T
jjjjMSSD XXXX

n
S

2
11 ))((

)1(2
1      (3-24) 

so that S represents a pooled covariance.  In this equation the logarithm used is base 10.  In 

equation 3-24, 1−jX  and jX  are consecutive samples in a sample of size n, and T is the transpose 

operator.  While the calculation in 3-24 can be shown to be an unbiased estimator for the 

covariance, the challenge is to standardize this equation to form a correlation that is comparable 

to the correlation calculated as a standardized covariance using the regular approach.  In other 

words, the development of a MSSD correlation is required and this type of calculation has not 

been demonstrated to be feasible..  As such, a modified version of the G statistic is discounted 

for use with the correlation control chart. 
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3.3.4   A Word About Bias 

It should be noted that the sample correlation coefficient, rik, is not an unbiased estimator of the 

population correlation coefficient, ρik, for any pair (i, k), so the correlation matrix, R, is not an 

unbiased estimate of the correlation matrix ρ.  However, it has been noted by Johnson & 

Wichern that the bias given by 

ikikrE ρ−)(          (3-25) 

can be ignored if the sample size, n, is “moderately large” (p. 99).  In the simulation studies of 

the next chapter (Chapter 4) sample sizes are increased from smaller values through the 

“moderately large” range up to a value of n = 30.  As this range is necessary to use the 

simulation to characterize the behavior of the statistics, the bias that may be present for smaller 

sample sizes will be accepted herein since it cannot be accurately quantified. 
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4.0  INVESTIGATION OF CORRELATION STATISTIC BEHAVIOR 

Based on the aforementioned analyses, the modified version of the G statistic is not suitable for 

development of correlation control charts and the proposed |R| statistic potentially exhibits many 

undesirable characteristics when |R| > 0.4.  In this chapter, the Wi Statistic, modified for 

correlation and denoted as WR, and the control chart based on |R| are both investigated for a 

variety of conditions to characterize their behavior.  A simulation study is used with the in-

control ARL as the primary metric of performance evaluation. 

The in-control ARL is defined as the average number of points that must be plotted before 

a point indicates an out-of-control condition even if the process is in-control (Montgomery, 

1997).  The average run length is given by the formula 

p
ARL 1

=          (4-1) 

where p is the probability that any point will cause an out-of-control signal.  For example, the 

univariate X-bar chart has a probability p = 0.0027 that a plotted point falls outside the control 

limits when the process is in-control, given standard control limits of σ3± .  The ARL is then 

calculated as 1/0.0027 = 370.  In other words, even if the process is in-control, an out-of-control 

signal will be generated, on average, every 370 points (Montgomery, 1997, p. 142).  Use of the 

out-of-control ARL is not typical for comparisons of the type proposed herein for reasons 

presented with a description in Appendix D. 
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The in-control ARL is used to investigate the two covariance statistics that can be 

investigated for the special case of correlation matrices.  Recall, from Chapter 3, that use of the 

Wi Statistic presumes the assumptions of consistent scale factor while the chart based on |R| does 

not consider the scale factor because it looks at |R| after the standardization has occurred.  

Although both methods could be used to monitor correlation alone if only the correlation matrix 

data is available, it is preferred to also employ a covariance monitoring chart, and/or other 

control charts, such as the T2 (for the location vector) whenever feasible. 

4.1 INTRODUCTION 

For simulation purposes, it is expedient to directly create deviates of correlation matrices to test 

the behavior of the statistics.  A method to calculate a data set starting from a desired correlation 

matrix, working backwards creating a covariance matrix and then an initial data set for 

simulation was not found in the literature—development of such an algorithm is left as future 

work.  Note that this does not preclude the testing of the two methods with real-world data sets 

after the simulations have been performed.  Specifically, multivariate normal deviates were 

generated at four levels of variance for two correlation matrices of common, special structures.  

Deviates were applied to one, two, and three entries in p-quality characteristic matrices (only one 

deviate could be applied when p = 2).  A terminating sequential simulation was then used to 

apply the statistics of interest—modified |S| and Wi—to each of several combinations of the 

number of quality characteristics, p, and sample size, n, with the specified-tolerance ARL being 

the terminating event.  The ARLs for each of these runs were tabulated and most were plotted 

against n and p to graphically compare the |R| and WR statistics across parameters.  An empirical 
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equation was developed to assess the relative contributions of the parameters for the “moderate” 

correlation case—a case that has been shown to commonly exist in a variety of processes 

(Johnson & Wichern, 1988).   

The two types of structures considered are reviewed in sections 4.2.1 and 4.2.2 along 

with the parameters tested.  The terminating sequential simulation and its results are described in 

the remainder of the chapter. 

4.2 CORRELATION MATRIX STRUCTURES 

One challenge to making assessments of the various dispersion statistics is the adoption 

of in-control matrices from which to develop perturbations and then apply the statistics that are 

to be compared.  Even though correlation matrices are bounded, there are still an infinite number 

of choices possible for the off-diagonal elements.  Since correlated data often results in patterned 

matrices, this leads to the suggestion that the selection of common correlation structures allows 

an orderly method with which to conduct the analysis.   

Six common structures for correlation matrices are Independence, Exchangeable, 

Unstructured, Fixed, Auto-regressive, and M-dependent.  The time-dependency of the M-

dependent and Auto-regressive cases lend themselves to other types of analyses whereas the 

Unstructured and Fixed structures tend to have elements of disorder that are not conducive to 

simulation studies.  These four structures would not provide results that are comparable with 

each other and they are, therefore, not included.  The Exchangeable structure, and Independence 

structure (which can be shown to be a subset of the Exchangeable structure), conversely, 
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resemble structures that occur naturally in certain processes and are comparable so they are 

employed for the analyses.   

4.2.1 Exchangable Structure 

The Exchangeable correlation structure is defined as 1, =vuR  if u = v, and α=vuR ,  otherwise 

and is represented by 

⎥
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⎥
⎥

⎦

⎤

⎢
⎢
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⎣

⎡

1

1
1

L

MOMM

L

L

αα

αα
αα

        (4-2). 

The Exchange Structure with α = 0.5 was selected for simulation because it expresses 

neither a weak nor a strong correlation and occurs naturally in a number of processes (Johnson & 

Wichern, 1988).  This is consistent with the work of Hawkins (1991), whose data will be further 

considered in a later section in conjunction with this research.  Deviates were generated at four 

levels of variance (0.25, 0.20, 0.15, and 0.10) from a multivariate normal distribution and applied 

to the Exchange (0.5) Structure for p = 2, 3, 5, and 8 quality characteristics for sample sizes, n = 

p + 1, . . . , 10, 12, 15, 20, 25, 30, 35, and 40.  These ranges were chosen to capture a range 

commensurate with other MSPC studies.  With the exception of the bivariate case where p = 2, 

three types of changes in the correlation matrix were considered.  The first case, which is the 

only one that applies to the bivariate case, considered a change in the correlation coefficient 

between two variables, r12 (= r21).  The second case considered a change two correlation 

coefficients, meaning a change in correlation between three variables.  The third case considered 

a change in three correlation coefficients, meaning a change in correlation between four 
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variables.  The following is an illustration of a perturbed Exchange (0.5) matrix for p = 3 with 

one change in correlation applied to r12 = r21: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

15.05.0
5.0143.0
5.043.01

. 

This approach, used here to study the correlation matrix, is similar to the approach taken 

by Hawkins (1991) investigating test statistics that he claims are more powerful than the 

Hotelling T2 for detecting shifts in the mean vector.  Hawkins suggests that departures from 

control are more commonly restricted to changes in a minority of the variables, instead of to all 

the variables simultaneously, and applies several approaches based on maximum likelihood 

estimators.  (p. 63).   

The simulations were performed until the Average Run Length (ARL) was calculated for 

each combination to a standard error no greater than 0.05 of the ARL itself—this was the 

termination ratio used to stop the simulation—for both the |R| and the WR statistic and the results 

tabulated.  A complete table of the results of each simulation run, including ARL, standard error, 

and number of repetitions until termination, appear in Appendix F. 

4.2.2 Independence Structure 

The Independence Structure is the Exchange Structure where alpha in equation 4-2 is equal to 

zero and it is an important structure to consider since the results of other types of analyses, such 

as principal components analysis (PCA), provide a relationship between variables where no 

correlation is expected to be present.  As such, the detection of correlation is an indicator that 
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something has changed in the expected relationship among the variables. The Independence 

correlation structure is defined as 1, =vuR  if u = v, and 0, =vuR  otherwise and is represented by 

⎥
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010
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L
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          (4-3).  

Deviates were generated from a multivariate normal distribution at up to four levels of 

variance (0.25, 0.20, 0.15, and 0.10) and applied to the Independence Structure for p = 2, 3, and 

5 quality characteristics for sample sizes, n = p + 1, . . . , 10, 12, 15, 20, 25, 30, 35, and 40.  With 

the exception of the bivariate case where p = 2, three types of changes in the correlation matrix 

were considered, of the same nature as with the Exchange (0.5) Structure described in Section 

4.2.1. 

4.3 TERMINATING SEQUENTIAL SIMULATION 

Since the ARL indicates the first time an out-of-control point is generated (Type I error), it meets 

the conditions of a “natural” event for which a terminating simulation is indicated (Law and 

Kelton, 2000).  A point estimate of the ARL, for the various combinations of n and p described in 

sections 4.2.1 and 4.2.2, was obtained from each simulation.  Table 2 summarizes these 

combinations.  The trigger points that terminate the simulation are any values of the statistic that 

exceed the control limits as defined in Table 1, shown in Chapter 3. 

To visualize how this simulation progresses, consider Figure 7.  Note that, for clarity, in 

Figure 7 the value for n0 is set at zero for initialization but that the actual value for the number of 

replications must, in practice, exceed two to employ the algorithm to be described.  The various 
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correlation matrices for the simulation are formed by the application of standard normal deviates 

to the selected number of off-diagonal entries of the in-control matrix, where 0R≡ρ for each 

simulation.  The test statistic (|R|, WR) was then calculated and compared to the appropriate 

control limits as listed in Table 1.  As long as the process remained “in-control” and the limits 

were not exceeded, the ARL(n,p) counter incremented and this process was repeated (the 

parenthetical notation indicates that the ARL is a function of n and p) until the control limits were 

exceeded.  The value of ARL(n,p) was stored and the next replicate was performed.  Replications 

continued until the simulation terminated by meeting or exceeding the established relative 

precision (an α = 0.05 was used for this research for reasons that will be explained in Section 

4.4) or the value of ARL(n,p) exceeded 10,000 which is beyond a practical range for control 

charting. 

Table 2  Combinations of n and p for Simulations 

 |R| Statistic WR Statistic 
p-> 2 3 5 8* 2 3 5 8* 

n         
3 1 n/a n/a n/a 1 n/a n/a n/a 
4 1, 2, 3 1, 2, 3 n/a n/a 1, 2, 3 1, 2, 3 n/a n/a 
5 1, 2, 3 1, 2, 3 n/a n/a 1, 2, 3 1, 2, 3 n/a n/a 
6 1, 2, 3 1, 2, 3 1, 2, 3 n/a 1, 2, 3 1, 2, 3 1, 2, 3 n/a 
7 1, 2, 3 1, 2, 3 1, 2, 3 n/a 1, 2, 3 1, 2, 3 1, 2, 3 n/a 
8 1, 2, 3 1, 2, 3 1, 2, 3 n/a 1, 2, 3 1, 2, 3 1, 2, 3 n/a 
9 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 

10 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 
12 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 
15 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 
20 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 
25 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 
30 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 
35 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 
40 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 

*p = 8 not simulated for Independence Structure 
All combinations simulated for variances:  0.10, 0.15, 0.20, 0.25 
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The values of the ARL as a function of n and p for the total number of simulations, n0, 

was stored by the simulation.  The average of these values was then taken as the final value for 

ARL(n,p).  This is consistent with the description of the terminating sequential description 

described earlier. 

A sequential procedure that added new replications one-at-a-time until the desired 

relative precision was attained was used to provide an estimate of the mean value of the run 

lengths, with a confidence interval of 100 (1 – α) percent and a relative error 0 < γ < 1, given by 

γ’ and was adapted from Law and Kelton (2000, pp. 513-514).  The total number of required 

replications for each simulation was recorded, but this was found to give no good indication of 

the actual convergence of the MSPC test statistic for the fixed confidence interval.  The speed of 

modern computers has made runtime a less important indicator for simulations of this nature. 
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Figure 7 Simulation Flowchart 

4.4 SIMULATION OF THE EXCHANGE STRUCTURE 

The simulation was performed using MathCAD 2001 Professional software and an example of 

the code used is included as Appendix E.  The tolerance level used was set at α = 0.05 for two 

reasons.  First, it provided relatively quick convergence of the algorithm while still providing a 

95% confidence interval.  Second, it was very robust to the ranges of matrix determinants used in 

the calculation.  A line of code was also required to skip iterations (which were, therefore, not 

counted towards the ARL) in which singularities resulted.  The ARL, standard error of the ARL, 
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and number of iterations were recorded for each run.  Summarized data appears in the tables of 

Chapter 4, and the entire data table appears as Appendix F. 

The simulation results for the Exchange (0.5) Structure appear in sections 4.4.1. and 4.4.2 

for the |R| statistic and the WR statistic, respectively.  The two statistics are compared in Section 

4.4.3.  Results for the Independence Structure are considered in Section 4.5. Complete data for 

all of the Exchange Structure simulation runs appear in Appendix F, Table F-1.  In the following 

sections, tabulated data will only be presented for the case where p = 2 as a means of 

introduction, after which only the charted data is used for discussion.  Where discontinuities, or 

missing data points, occur on the charts, the simulation did not produce usable data for one of 

two reasons.  The first reason for missing chart data would be that the simulation generated 

either a singularity or an “unknown error.”  The second reason would be that the ARL generated 

by the simulation exceeded 10,000 and was, therefore, well beyond a practical upper limit for 

control charting. 

4.4.1 The |R| Statistic 

The results for the |R| Statistic are shown in Figures 8-10.  In general, ARL decreases with 

increases in sample size (n), number of quality characteristics (p), and variance of the deviations.  

The ARL also decreases as the number of altered correlation coefficients in the matrix increases.  

In a number of cases, the combination of these varied parameters was significant enough to 

disallow the calculation of an ARL, or produced an ARL that exceeded 10,000 at which point the 

simulation was terminated automatically. 
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4.4.1.1 |R| Statistic for Number of Quality Characteristics p = 2 and One Change in the 

Correlation Matrix 

Referring to Table 3 and Figure 8, it will be noticed that for a variance of 0.10, only sample sizes 

greater than 30 (n > 30) produced an ARL that was less than 10,000.  Larger variances produced 

ARLs for larger range of sample sizes (n). 

 

Table 3 ARLs for |R| Statistic for p = 2, with One Change to the Exchange (0.5) Matrix 

 Variance 

Sample Size 0.25 0.20 0.15 0.10 

3 >10,000 > 10,000 > 10,000 > 10,000 
4 5044 > 10,000 > 10,000 > 10,000 
5 1779 > 10,000 > 10,000 > 10,000 
6 770 6985 > 10,000 > 10,000 
7 411 4300 > 10,000 > 10,000 
8 253 2329 > 10,000 > 10,000 
9 180 1378 > 10,000 > 10,000 
10 133 876 > 10,000 > 10,000 
12 84 443 7185 > 10,000 
15 53 206 3409 > 10,000 
20 31 95 985 > 10,000 
25 21 58 406 > 10,000 
30 17 39 220 > 10,000 
35 14 30 140 6384 
40 12 24 99 3852 
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Figure 8 ARLs for |R| Statistic for p = 2, with One Change to the Exchange (0.5) Matrix 

4.4.1.2 |R| Statistic for Number of Quality Characteristics p = 3 with 1-3 Changes in the 

Correlation Matrix 

Referring to Figure 9, when the number of characteristics (p) was increased by one with a single 

change to the correlation matrix no simulations produced an ARL that was less than 10,000 for a 

variance of 0.10.  For a variance of 0.15 only sample sizes greater than 15 (n > 15) produced an 

ARL that was less than 10,000.  Comparing Figure 9(a) for a single change with p = 3 to Figure 8 

for a single change with p = 2, the effect of increasing the number of quality characteristics (p) 

has increased the ARLs for the same range of sample sizes (n).   

In Figure 9(c), it will be noticed that for a variance of 0.10, only the simulation with a 

sample size, n = 35, produced an ARL that was less than 10,000 since the sample size, n = 40, 
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produced an error.  For a variance of 0.15 the ARL was greater than 10,000 or errors were 

generated until sample sizes were greater than 20 (n > 20).  Thus, Figure 9 shows that the ARL 

decreases as the number of changes in the correlation matrix increases, holding the value of the 

variance and the number of quality characteristics (p) constant. 
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Figure 9  ARLs for |R| Statistic for p = 3, with 1- 3 Changes to the Exchange (0.5) Matrix 
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4.4.1.3 |R| Statistic for Number of Quality Characteristics p = 5 and 1-3 Changes in the 

Correlation Matrix 

In Figure 10(a), for variances 0.10 and 0.15, all of the simulations returned an error or generated 

an ARL that was over 10,000.  Compared to p = 2 quality characteristics for one change in the 

correlation matrix, Figure 8, and p = 3 quality characteristics for one change in the correlation 

matrix, Figure 9(a), as the number of quality characteristics, p, increases, with all other 

parameters held constant, the corresponding ARLs increase, creating the changes shown by 

consecutive comparison.  It is also worth noting that errors were generated for the smaller sample 

sizes (n).  

Referring to Figure 10(b), it will be noticed that a larger sample size (n) was required to 

get meaningful ARLs for the range of variances considered. A flattening of the curve is illustrated 

for the larger sample sizes (n) in Figure 10(b). 

In Figure 10(c) the number of meaningful ARLs increased for the range of variances 

considered by changing an additional correlation coefficient in the matrix versus the case of only 

two changes to the correlation matrix.  Although ARLs for a variance of 0.10 were all greater 

than 10,000, some meaningful ARLs were generated by simulations using a variance of 0.15, 

suggesting that a certain amount of “total variation” needs to be present in the correlation matrix 

for a change to be detected.  Increasing the amount of “total variation,” however, appears also to 

decrease the range for the ARLs generated, as illustrated by consecutively comparing the curves 

in Figure 10 for the variance 0.25. 
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Figure 10 ARLs for |R| Statistic for p = 5, with 1-3 Changes to the Exchange (0.5) Matrix 
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4.4.1.4 |R| Statistic for Number of Quality Characteristics p = 8 and 1-3 Changes in the 

Correlation Matrix 

The amount of “total variation” generated with one change in the correlation matrix and p = 8 

quality characteristics was insufficient to produce meaningful ARLs for the range of sample sizes 

(n) and variances considered.  The exception occurred with a variation of 0.25 and sample sizes 

of 25 or more (n > 20), but the range was contracted as has been illustrated previously.  This data 

was not charted nor were simulations run for variances less than 0.15 due to the trends exhibited 

by the larger variances. 

4.4.2 The WR Statistic 

The results for the WR Statistic are shown in and Figures 11-14.  In general, the WR Statistic 

behaves similarly to the |R| Statistic where ARL decreases with increases in sample size (n), 

number of quality characteristics (p), and variance applied for the perturbations.  The ARL also 

decreases as the number of altered correlation coefficients in the matrix increases.  However, the 

range of values for both statistics are not equivalent for the Exchange (0.5) Structure, as will be 

explored in Section 4.4.3.   

In a number of cases where the |R| Statistic would not calculate for the combination of 

varied parameters presented, the WR Statistic did.  Again, complete data is presented in Table F-1 

of the Appendix. 
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4.4.2.1 WR Statistic for Number of Quality Characteristics p = 2 and One Change in the 

Correlation Matrix 

In Table 4 and Figure 11 for the range of variances considered most of the simulation 

runs returned ARLs less than 10,000 although combinations of small sample size (n) and small 

variance tended to be insufficient to cause ARLs within a practical range.   

Table 4  ARLs for WR Statistic for p = 2, with One Change to the Exchange (0.5) Matrix 

 Variance 

Sample Size 0.25 0.20 0.15 0.10 

3 197 471 3369 > 10,000 
4 109 255 1717 > 10,000 
5 70 161 1008 > 10,000 
6 53 106 646 9603 
7 41 85 451 9430 
8 32 65 328 9106 
9 29 56 248 8651 
10 24 50 205 7577 
12 19 35 131 5868 
15 14 27 90 3022 
20 10 18 52 1071 
25 10 12 35 492 
30 6 10 26 269 
35 5 8 20 172 
40 4 7 17 121 
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Figure 11  ARLs for WR Statistic for p = 2, with One Change to the Exchange (0.5) Matrix 

4.4.2.2 WR Statistic for Number of Quality Characteristics p = 3 and 1-3 Changes in the 

Correlation Matrix 

In Figure 12(a), it will be noticed that for a variance of 0.10, only sample sizes greater than 20 (n 

> 20) produced an ARL that was less than 10,000.  Comparing Figure 12(a) to Figure 11, the 

effect of increasing the number of quality characteristics (p) has increased the ARLs for the same 

range of sample sizes (n) and is similar to the phenomenon seen with the |R| Statistic in Figures 8 

and 9(a). 

With two changes in the correlation matrix, Figure 12(b) shows, for a variance of 0.10 

only sample sizes greater than 9 (n > 9) produced an ARL that was less than 10,000.  
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As the number of changes increases to three, Figure 12(c), for the smallest tested variance 

of 0.10, only the simulation with a sample size, n = 4, produced an ARL that was greater than 

10,000.  Comparing Figures 12(a) through (c), it will be noticed that the ARL curve shifts 

downward as the number of changes in the correlation matrix increases, holding the value of the 

variance and the number of quality characteristics (p) constant. 
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Figure 12 ARLs for WR Statistic for p = 3, with 1-3 Changes to the Exchange (0.5) Matrix 
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4.4.2.3 WR Statistic for Number of Quality Characteristics p = 5 and 1-3 Changes in the 

Correlation Matrix 

Figure 13 shows the effect of increasing the number of quality characteristics to p = 5.  For 

variance 0.10 most of the simulations returned an ARL that was either over 10,000 or close to it, 

and for variance 0.15 errors were returned for the smaller sample sizes (n < 12).  Compared to p 

= 2 quality characteristics for one change in the correlation matrix, Figure 11, and p = 3 quality 

characteristics for one change in the correlation matrix, Figure 12, it will be noticed that, as the 

number of quality characteristics, p, increases, with all other parameters held constant, the 

corresponding ARLs increase, creating a steeper curve as shown by comparison.  It is also worth 

noting that errors were generated for the smaller sample sizes (n).  Figure 13(b) indicates that a 

larger sample size (n) was required to get meaningful ARLs for the range of variances 

considered. The number of meaningful ARLs increased for the range of variances considered by 

changing an additional correlation coefficient in the matrix versus the case of Section 4.4.2.2 as 

shown in Figure 13(c).  A flattening of the curve is illustrated for the larger sample sizes (n) in 

Figure 13.  Similarly to the |R| Statistic, increasing the amount of “total variation,” however, 

appears also to contract the range for the ARLs generated, as illustrated by consecutively 

comparing the curves in Figure 13 for any of the variances. 
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Figure 13 ARLs for WR Statistic for p = 8, with One Change to the Exchange (0.5) Matrix 
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4.4.2.4 WR Statistic for Number of Quality Characteristics p = 8 and 1-3 Changes in the 

Correlation Matrix 

In Figure 14(a) the amount of “total variation” generated with one change in the correlation 

matrix and p = 8 quality characteristics produced meaningful ARLs for the higher ends of the 

ranges of sample sizes (n) and variances considered.  As sample sizes (n) and variances 

simultaneously decreased, the simulations returned either errors or ARLs exceeding 10,000.  No 

simulations were run for variances less than 0.15 due to the trends exhibited by the larger 

variances. 
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Figure 14 ARLs for WR Statistic for p = 8, with 1-3 Changes to the Exchange (0.5) Matrix 
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In Figure 14(b), recognize that the performance of the ARLs was similar to that for p = 8 

quality characteristics and one change in the correlation.  Again, it will be noticed that the 

amount of “total variation” generated with two changes in the correlation matrix and p = 8 

quality characteristics produced meaningful ARLs for the higher ends of the ranges of sample 

sizes (n) and variances considered.  As sample sizes (n) and variances simultaneously decreased, 

the simulations returned either errors or ARLs exceeding 10,000. 

With three changes to the correlation matrix and p = 8, the majority of the simulations 

runs produced meaningful ARLs except for cases of small sample size (n) and/or small variance.  

For a variance of 0.10 all simulation runs produced either errors or an ARL that exceeded 10,000 

with the larger sample sizes producing the former and the smaller sample sizes the latter. 

4.4.3 Comparing the |R| Statistic to the WR Statistic 

The qualitative behavior of the |R| Statistic and the WR Statistic was similar for the Exchange 

Structure with alpha = 0.5.  In general, for both statistics: 

• the ARL decreases with increases in sample size (n), 

• the ARL decreases with increases in the number of quality characteristics (p) 

• the ARL decreases with increases in the variance of the deviations 

• the ARL decreases as the number of altered correlation coefficients in the matrix 

increases. 

One of the important differences between the performance of the |R| Statistic and the WR 

Statistic concerns the range of the ARLs.  As the previously listed characteristics increase, the 

ARL decreases more rapidly for the |R| Statistic than for the WR Statistic.  Additionally, for the 

smaller end of the range of variances, the ARL for the |R| Statistic exceeds 10,000 in many of the 



  71

cases.  The practical significance of this is that an out-of-control condition may never be 

recognized by the |R| Statistic.  Additional insight into this characteristic of the |R| Statistic will 

be discussed in Section 4.5, where the Independence Structure is considered, and a deeper 

examination of the WR Statistic is provided in Section 4.6. 

4.5 SIMULATIONS FOR THE INDEPENDENCE STRUCTURE 

The following sections review the results for the |R| Statistic and the WR statistic for the 

Independence Structure. Complete data for all of the Independence Structure simulation runs 

appear in Appendix F, Table F-2.  In the following sections, tabulated data will only be presented 

for the case where p = 2 as a means of introduction, after which the charted data is used for 

discussion.  Where discontinuities, or missing data points, occur on the charts, the simulation did 

not produce usable data for one of two reasons.  The first reason for missing chart data would be 

that the simulation generated either a singularity or an “unknown error.”  The second reason 

would be that the ARL generated by the simulation exceeded 10,000 and was, therefore, well 

beyond a reasonable number for charting. 

4.5.1 The |R| Statistic 

The |R| Statistic did not perform well for the Independence Structure.  In most cases, the 

simulation returned either an error or a value exceeding 10,000.  The implication of these results 

is that use of the |R| Statistic will rarely show an out-of-control condition.  This is not unexpected 

when one considers that only very gross changes in the individual correlation coefficients, rij, 
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will ever result in a determinant, |R|, that varies significantly from unity.  As the control limits 

are calculated by  
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where ρ is the in-control correlation matrix, p denotes the number of quality characteristics, n is 

the sample size, and zα/2 is a value from the standard normal distribution, the upper and lower 

limits of Equations 4-3 and 4-4, respectively will never be exceeded in most practical 

applications (see description in Section 3.3.1). 

4.5.2 The WR Statistic 

The results for the WR Statistic are shown in Figures 15-17.  In general, the WR Statistic behaves 

similarly when applied to the Independence Structure as when applied to the Exchange (0.5) 

Structure described in Section 4.1.2.  The ARL decreases with increases in sample size (n), 

number of quality characteristics (p), and variance of the perturbations.  The ARL also decreases 

as the number of altered correlation coefficients in the matrix increases.  
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4.5.2.1 WR Statistic for Number of Quality Characteristics p = 2 and One Change in the 

Correlation Matrix 

Referring to Table 5 and Figure 15 for the range of variances considered most of the simulation 

runs returned ARLs less than 10,000 although combinations of small sample size (n) and small 

variance tended to be insufficient to cause ARLs within a practical range.   

Table 5 ARLs for WR Statistic for p = 2, with One Change to the Independence Matrix 

 Variance 

Sample Size 0.25 0.20 0.15 0.10 

3 7373 > 10,000 > 10,000 > 10,000 
4 4900 > 10,000 > 10,000 > 10,000 
5 2807 9414 > 10,000 > 10,000 
6 1622 8995 > 10,000 > 10,000 
7 990 8254 > 10,000 > 10,000 
8 625 7005 > 10,000 > 10,000 
9 435 5316 > 10,000 > 10,000 
10 308 3774 > 10,000 > 10,000 
12 175 1791 > 10,000 > 10,000 
15 89 680 8927 > 10,000 
20 44 221 5143 > 10,000 
25 26 98 1799 > 10,000 
30 17 58 706 > 10,000 
35 14 39 353 9455 
40 11 28 200 8942 
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Figure 15 ARLs for WR Statistic for p = 2, with One Change to the Independence Matrix 

4.5.2.2 WR Statistic for Number of Quality Characteristics p = 3 and 1-3 Changes in the 

Correlation Matrix 

In Figure 16(a) for variances of 0.10 and 0.15,  the ARLs were large or exceeded 10,000 for most 

of the sample sizes.  Comparing Figure 15 to Figure 16(a), the effect of increasing the number of 

quality characteristics (p) has increased the ARLs for the same range of sample sizes (n), the 

same as with the Exchange (0.5) Structure shown Figure 8.  This is also illustrated by comparing 

Figure 16(a) and Figure 16(b) and is similar to the phenomenon seen with the Exchange (0.5) 

Structure in Figures 12(a) and 12(b). 

Figure 16 (b) shows that, for the smaller variances of 0.10 and 0.15, the ARLs generated 

were impractically large, with most exceeding 10,000.  
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In Figure 16(c) variances of 0.10 and 0.15 in most of the simulations produced an ARL 

exceeding 10,000 for the range of sample sizes (n) considered.  Comparing Figure 16(a) though 

16(c) the ARL curve for the Independence Structure  shifts as the number of changes in the 

correlation matrix increases, holding the value of the variance and the number of quality 

characteristics (p) constant, similar to the case for the Exchange (0.5) Structure shown in Figure 

14(a) through 14(c). 
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Figure 16  ARLs for WR Statistic for p = 3, with 1-3 Changes to the Independence Matrix 
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4.5.2.3 WR Statistic for Number of Quality Characteristics p = 5 and 1-3 Changes in the 

Correlation Matrix 

When the number of quality characteristics was increased to p = 5, only the simulations using a 

variance of 0.25 returned an ARL that was in a reasonable range, Figure 17(a), although sample 

sizes greater than 15 (n > 15) returned ARLs less than 10,000 for a variance of 0.20.  Compared 

to p = 2 quality characteristics for one change in the correlation matrix, Figure 15, and p = 3 

quality characteristics for one change in the correlation matrix, Figure 16(a), as the number of 

quality characteristics, p, increases, with all other parameters held constant, the corresponding 

ARLs increase, shifting the curves as shown by consecutively comparing Figures 17(a) through 

17(c). 

With two changes, a larger sample size (n) was required to get meaningful ARLs for a 

variance of 0.25.  Smaller variances (0.20, 0.15, and 0.10) returned either errors or an ARL 

exceeding 10,000.  

Figure 17 shows how the number of meaningful ARLs increased for the range of 

variances considered by changing an additional correlation coefficient in the matrix versus the 

case of only two changes to the correlation matrix.  A flattening of the curve is illustrated for the 

larger sample sizes (n) in Figure 17(c).  Thus, increasing the amount of “total variation,” 

however, appears also to contract the range for the ARLs generated, as illustrated by 

consecutively comparing the curves in Figure 17 for any of the variances.  This is also true in the 

Exchange (0.5) Structure, as shown in Figure 14.  
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Figure 17  ARLs for WR Statistic for p = 5, with 1-3 Changes to the Independence Matrix 
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4.5.2.4 WR Statistic for Number of Quality Characteristics p = 8 and One to Three Changes 

in the Correlation Matrix 

The amount of “total variation” generated with one to three changes in the correlation matrix and 

p = 8 quality characteristics did not produce meaningful ARLs, even for the higher ends of the 

ranges of sample sizes (n) and variances considered.  This is in contrast to the Exchange (0.5) 

Structure (Figures 11-14) where the ARLs did not exceed 10,000 for all of the combinations as in 

the Independence Structure case.  Higher values for the number of quality characteristics (e.g.  p 

= 8) were, therefore, not simulated. 

4.6   EMPIRICAL EQUATION 

Based on the results of the simulations, it appears that the WR Statistic is superior to the 

|R| statistic since it can be calculated for both the Independence Structure and the Exchange (0.5) 

Structure, whereas the |R| Statistic is not capable of detecting an out-of-control condition as the 

Exchange (0.5) Structure approaches the Independence Structure (as alpha 0.5  0.0).  In 

addition, the ranges of values was also broader.  In order to make recommendations for the 

application of the WR Statistic and to further understand the effect of the various parameters, the 

ARLs for all cases where the ARL obtained was less than 10,000 for the simulation results for the 

Exchange (0.5) Structure were regressed on the number of changes to the correlation matrix, the 

variances, the number of quality characteristics (p), and the sample sizes (n).   
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An examination of the residuals revealed that regressing on the natural logarithm of the 

ARL was more appropriate, and two equations were generated.  When a regression equation is 

developed for prediction, either a natural or standardized version can be used, but to interpret the 

contribution of the individual regressor variables, the standardized regression equation should be 

employed (Myers, 1990, pp. 384-385).    

4.6.1 Natural Equation 

For the sake of parsimony, the natural form of the regression equation is considered for 

determining the sample size based on the desired ARL.  The natural regression equation is  

iancenchangespARL var*388.30113.0*810.0467.0011.12)ln( −−−+=  (4-6), 

where the variables are as listed above.  Considering that the simulations were run with a 

specified standard error of 0.05 for the termination ratio, the coefficient of determination for the 

regression being 0.868 is reasonable.  It will be shown that this value can be improved when the 

standardized equation is calculated in the next section for purposes of characterization.  A 

Kolmogorov-Smirnov test was performed to verify normality. 

Since the number of quality characteristics (p) is known from the size of the matrix, and 

the number of changes and variance can be assumed based on process conditions, a suitable 

sample size can be chosen based on the ARL desired, using this equation as an approximation.  

For example, assume that it is desired to have an ARL equivalent to that of the univariate 

Shewhart Chart, (ARL = 370), and that the expected amount of variation between two variables is 

0.20 when five quality characteristics (p) are being considered.   
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Since ln (370) = 5.913, the required sample size can be estimated from 4-6 as 

)20.0(*388.30*113.0)1(*810.0)5(*467.0011.12913.5 −−−+= n   (4-7), 

or, in other words, choose a sample size of n = 13.67, or approximately n = 14.  Due to process 

constraints or economic considerations, it may not be possible to specify a desired ARL and then 

calculate a corresponding sample size.  In these cases, Equation 4-7 can give an estimate of the 

ARL that can be expected (and, hence, the probability of a Type I error), noting that the 

Exchange (0.5) Structure on which it is based assumes neither a strong nor a weak correlation 

but, rather, a moderate correlation between all variables concerned. 

4.6.2 Standardized Equation 

For purposes of characterization, the standardized regression equation was explored.  The 

standardized version of Equation 4-6 is 

iancenchangespARL var*750.0648.0*335.0441.0)ln( −−−=   (4-8) 

which, necessarily, also has a coefficient of determination of 0.868.  Residuals were assessed for 

normality.  In an attempt to better understand the contributions of each parameter, interaction 

terms were investigated.  The only term that showed no significance (p = 0.596) for the full 

model was the interaction between the number of changes and the sample size (n). 

As shown in Figures 11-14, the ARL increases with the number of quality characteristics 

(p) but decreases with increases in the number of changes to the correlation matrix, the sample 

size (n) and the degree of the change as represented by the variance.  Equation 4-6 shows that the 
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largest effect on the ARL comes from the amount of change introduced—this would be the 

preferred situation inasmuch as this is the change that the WR Statistic is expected to detect. 

Using forward, backward, and stepwise regression with probability of F to enter ≤ 0.050 

and to leave ≥ 0.10, the same results were obtained and are as shown in Table 6A.  From this 

table it is also evident that the variance is the largest contributor to the calculation for ln(ARL) 

shown in equation 4-8.  The marginal impact to the model resulting from the inclusion of 

interaction terms may be foregone for the sake of parsimony when calculating a sample size 

estimate based on desired ARL and for such estimations, Equation 4-6 is recommended. 

 

Table 6 Improvements to Regression Equation by Addition of Interaction Terms 

Coefficient 
of Determination 

Parameters 

0.383 variance 

0.645 variance, n 

0.761 variance, n, p 

0.868 variance, n, p, changes 

0.931 variance, n, p, changes, (variance)2 

0.958 variance, n, p, changes, (variance)2, (n)2 

0.963 variance, n, p, changes, (variance)2, (n)2, p × n 

0.968 variance, n, p, changes, (variance)2, (n)2, p × n, n × variance 

0.975 variance, n, p, changes, (variance)2, (n)2, p × n, n × variance, 

0.976 variance, n, p, changes, (variance)2, (n)2, p × n, n × variance, 
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5.0  IMPLEMENTING THE CORRELATION CONTROL CHART 

The interpretation and evaluation of multivariate control charts is more complicated than for 

univariate control charts.  The increased number of variables to consider, their associated 

parameters and correlation among the variables can possibly trigger or mask the presence of a 

shift, and the non-scalar nature of the shift itself can have the same effect.  As a result, it is 

usually recommended that several multivariate charts be employed together, or in unison with 

univariate charts on the variables of interest (Alt, 1985; Johnson & Wichern, 1988; Flury & 

Riedwyl, 1988).  The theoretical implementation of a correlation matrix control chart is 

presented in this Chapter. 

In Section 5.1, some general recommendations for the application of correlation matrix 

control charts are discussed.  Guidelines from the interpretation of location MSPC charts are then 

extended to the (dispersion) correlation control chart.  As the ARL performance of dispersion 

control charts is a continuing area of research, in Section 5.2, the ARL performance of the 

correlation control chart using WR, the modified version of the Wi statistic, is compared to the 

ARL performance of MSPC charts for location.  Section 5.3 presents an example of shift 

detection with the correlation control chart and Section 5.4 comments on ARL behavior.  The 

practical applicability of the correlation control chart is explored later, in Chapter 7. 
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5.1 DATA REQUIREMENTS FOR USE OF THE CORRELATION CONTROL 

CHART 

The correlation control chart developed herein could more precisely be called a correlation 

matrix control chart as it does not seek to mitigate the effects of correlation between variables 

but, rather, attempts to detect shifts in the correlation between them via the standardized 

covariance (a.k.a. correlation) matrix.  Data that is suited to this technique is common in 

chemical engineering where multivariate process control is used to monitor reactors and 

columns.  This type of data is also naturally occurring such as in the movement of stock returns 

and in the biological sciences where measurements taken on numerous specimens of living 

things reveal fairly consistent correlation matrices (Johnson & Wichern, p. 366).  The form of the 

correlation matrix is the Exchange Structure special case where the correlation between all 

variables is the same.  In practice, the values are not all exactly the same, but the matrix entries 

are close enough to one another that techniques of principal components analysis are easily 

applied.  While no formal definition is provided for “close enough to,” Johnson and Wichern 

present one illustrative example for the body weights of 150 female mice after the births of their 

first four litters.  The correlation matrix provided is shown to be 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

000.16625.07386.06363.0
6625.0000.16925.06329.0
7386.06925.0000.17501.0
6363.06329.07501.0000.1

R  

and the principal components analysis is performed.  Although the entries are not all equal, they 

are all within 95% of the average value of 0.690 and the structure is considered of the Exchange 

type.   
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Instead of, or in addition to, the principal components approach, a correlation control chart could 

theoretically be used to check the first four litters of groups of five (since n > p) mice over time 

to monitor for shifts changes in weight outside the expected relationship that may then indicate 

illness or other factors. 

The correlation control chart appears to detect subtle changes in the correlation matrix, R, 

that differ from the in-control condition, ρ.  Thus, as the number of quality characteristics, p, 

increases, the correlation control chart decreases in efficacy because the effects of the variation 

become masked.  Similarly, increasing the amount of total variation in the system has the effect 

of decreasing the efficacy of the WR statistic because the ARLs of the resultant chart are 

decreased (quantifying this total system variation in a single parameter is considered future 

work).  The opposite is also true; too little variation cannot be detected by the WR statistic.  The 

aforementioned phenomena are not unique and are seen with various other MSPC control charts 

as will be discussed in Chapter 6.  In short, there are, for most types of control charts, specific 

ranges of application that are more suited to the chart of interest than to other charts, and vice 

versa. 

When the whole data set is available, and it is possible to calculate the covariance matrix, 

S, the appropriateness of the correlation control chart can be explored.  The correlation control 

chart is designed to detect changes in the correlation matrix, assuming the scale factor remains 

nearly constant, and changes to the correlation matrix, therefore, should have the dominant effect 

on changes to the covariance matrix.  This happens when the entries in the correlation matrix are 

relatively large compared to the entries in the covariance matrix and the scale factor is 

correspondingly large.  For example, assuming an Exchange (0.5) structure would give 
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correlation entries, by definition, of approximately 0.5.  Thus, a typical covariance entry would 

be in the 10-4 range, say 0.0003 and the scale factor large, in this case around 1600. 

5.2 CHOICE OF SAMPLE SIZE 

Regarding the application of the WR statistic (the modified Wi statistic) for the development of 

correlation control charts, the desired ARL is selected and the required sample size, n, is then 

calculated from the empirical equation for the moderate Exchange structure shown in equation 4-

6, based on expectations of the other parameters.  Like the similar approach of Lowry et al. 

(1992) for the MEWMA chart, the empirical equation is only considered as a general guideline, 

which may require some modification depending on the data under consideration.  This method 

of setting up the control chart based on the desired ARL is also used by Crowder (1989) and 

Lucas and Saccucci (1990), (see also a summary in Lowry et al., page 50), although tabulated 

data from simulations instead of an empirical regression equation is used as a basis in those 

examples. 

Despite the desire to base sample size on desired ARL, the preferred multivariate sample 

size is sometimes stated to be three to four times the number of quality characteristics (Flury and 

Riedwyl, 1988).  Duncan (1986) makes an argument for choosing control chart sample sizes of 

four or five whenever possible, as the chance of the change occurring during the sample taking 

procedure is minimized when the sample size itself is small.  In other words, the effects of taking 

averages on the samples should not be allowed to mask changes to the cause system (p. 497).  As 

the simulations for both the Exchange (0.5) correlation structure and the Independence Structure 

show, Figures 11 to 13, the ARLs decrease asymptotically with the sample size and the “better” 
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values for ARL are often associated with smaller sample sizes, specifically when n = p + 1.   

While modern computers and data collection methods can often reduce the costs associated with 

sample gathering, it is recommended that the sample sizes remain smaller to take advantage of 

larger ARLs (recognizing that these will be specified for the process under consideration), and 

the automation be used to collect more frequent, instead of larger, samples.  This 

recommendation is captured using n = p + 1 and also lends itself to application of tests for 

special causes which will be mentioned in Section 5.3. 

5.3 DETECTING SHIFTS WITH THE CORRELATION CONTROL CHART 

As MSPC charts for detecting shifts in the dispersion vector are an emerging area of research, it 

is insightful to examine the recommendations for various MSPC charts that are employed to 

detect shifts in the location vector.  While the Hotelling T2 chart is the basic multivariate location 

chart, additional statistics and charts have been developed to improve upon the detection 

capabilities that the Hotelling T2 chart can provide.  Some of these are modified versions of the 

Hotelling T2 chart, while others are multivariate extensions of univariate techniques.  In both 

cases, it is recognized that the presence of correlation, captured by the covariance matrix, Σ, may 

be present (see Chapter 2). 

In striving to detect gradual trends away from in-control conditions using specific types 

of charts, some of the assumptions underlying the Hotelling T2 chart are relaxed, such as 

assuming that all variables change simultaneously following a normal distribution (Hawkins, 

1991).  This approach allows the separation of the location and dispersion components which can 

then be evaluated independently.  Most of the research to date has concentrated on the location 
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vector once the dispersion effects are identified or quantified.  From the decomposition, it 

follows that many of the same techniques applicable to the location vector can also be considered 

for the dispersion scenarios. 

First, a shift may be present in multivariate data, due to inertia, even if an out-of-control 

point has not yet been detected.  This can occur if two consecutive points are calculated from 

vectors in opposing directions.  The application of some Shewhart tests for special causes to the 

chart can be used to find these shifts (see Nelson, 1984).  Lowry et al. (1992) discuss this 

approach with regard to their MEWMA charts as well as noting that Crossier (1988) suggested a 

similar approach for the multivariate CUSUM chart (p. 51-52).  This approach will be advocated 

for the correlation control charts since these tests for special causes do not rely on specification 

of the underlying distribution. 

Second, it is good practice to use additional control charts when attempting to detect 

shifts.  One of the more common examples is the use of univariate charts to notice a shift due to 

correlation that may not be detected by the single statistic of a multivariate chart.  In the case of 

the correlation control chart, it is the shift in the correlation control chart that is of interest, but it 

is nonetheless prudent to employ a second chart, perhaps a MEWMA chart or Hotelling T2 chart.  

Recall, however, that the correlation control chart assumes that the correlation component of the 

covariance matrix is changing while the scale factor remains constant and this assumption should 

be verified whenever the data allows.  If the scale factor is known to be constant and/or only the 

correlation data is available, the correlation control chart would, of necessity, have to be used in 

isolation. 

In summary, it is desired to have data where the correlation matrix approximates the 

moderate Exchange structure, the scale factor is large in comparison to the covariance matrix 
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entries, the number of quality characteristics does not exceed p = 5, and the sample size is chosen 

to be n = p + 1.  Detecting changes using the correlation statistics should also employ tests for 

special causes, and the correlation control charts should be used in conjunction with other types 

of control charts such as the Wi chart for covariance or the Hotelling T2 chart for location, similar 

to the companion univariate Shewhart X-bar and R charts. 

5.4 THE ISSUE OF ARL 

The logarithmic nature of the WR statistic naturally presents some concerns because the range on 

the ARL for a given situation can become quite large.  This issue is not unique to the correlation 

control charts discussed herein but is also present with similar location control charts that are 

discussed in Chapter 6.  To some extent, this effect is mitigated by choosing a sample size n = p 

+ 1 but, as Table 7 shows, the ARLs for various combinations of the Exchange (0.5) Structure, 

based on empirical regression equation 4-6, still have a wide range even when this advice is 

applied. 

If it is assumed that an ARL of 370 is a reasonable benchmark, based on its use with 

univariate Shewhart charts, then Table 7 illustrates how the choice of sample size (n) may be 

help to mitigate the effects of the logarithmic nature of the ARL for the WR statistic.  Also, in 

view of this, the chart should be interpreted with the expectation of more Type I errors when the 

total system variation is large.  Note that sample sizes of p = 8 were not used for computation of 

the empirical regression equation. 
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Table 7 Selected ARLs based on the Empirical Regression Equation 

p number of 
changes 

variance ARL for 
n = p + 1 

ARL for 
n = 3p 

ARL for 
n = 4p  

2 1 0.25 59 42 33 
2 1 0.20 275 196 157 
2 1 0.15 1291 919 733 
2 1 0.10 6046 4308 3436 
3 1 0.25 84 48 34 
3 1 0.20 392 223 159 
3 1 0.15 1839 1045 745 
3 1 0.10 8614 4896 3488 
3 2 0.25 37 21 15 
3 2 0.20 175 99 71 
3 2 0.15 818 465 331 
3 2 0.10 3832 2178 1552 
3 3 0.25 17 9 7 
3 3 0.20 78 44 31 
3 3 0.15 364 207 147 
3 3 0.10 1705 969 690 
5 1 0.25 170 61 35 
5 1 0.20 797 288 164 
5 1 0.15 3732 1350 767 
5 1 0.10 17487 6325 3595 
5 2 0.25 76 27 16 
5 2 0.20 354 128 73 
5 2 0.15 1660 601 341 
5 2 0.10 7779 2814 1599 
5 3 0.25 34 12 7 
5 3 0.20 158 57 32 
5 3 0.15 739 267 152 
5 3 0.10 3461 1252 711 

 

5.5 SUMMARY 

It is recommended to design the correlation control chart by choosing the sample size, n, based 

on the known and expected values of the other parameters of the empirical regression equation, 
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Equation 4-6, for the desired ARL, with n = p + 1 often giving the most optimal condition in the 

presence of large total expected system variation.  The chart is then evaluated by looking for not 

only out-of-control signals but also for those tests for special causes that would be applicable to a 

chart without a centerline value and then determining the reasonableness of shifts knowing the 

expected ARL.  Additional control charts for the process should be used in conjunction with the 

WR correlation control chart, especially the covariance control chart based on the unmodified Wi 

statistic, whenever the data required to construct them is available.  Chapter 7 will illustrate these 

issues by applying the WR statistic to three data sets.  First, Chapter 6 will compare the WR 

statistic to other MSPC approaches. 
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6.0  COMPARISON WITH OTHER MSQC TECHNIQUES 

The correlation control charts developed herein are based on WR, a modified version of Alt’s 

(1985) Wi statistic for covariance control charts.  Since the |S| statistic has been shown to have 

drawbacks for control charting (see discussion in Section 2.3.1) and the G statistic is designed to 

detect gradual shifts instead of instantaneous ones, comparisons of either to the Wi statistic in 

terms of ARL performance have not been undertaken (see Section 2.3.3).  As a result and due to 

the differences between correlation and covariance, a one-to-one benchmark for the performance 

of the developed correlation control charts does not exist as such.  Significantly more attention 

has been devoted to the evaluation of multivariate measures of location than to those for 

dispersion and, compared with these, the behavior of the WR statistic can be characterized as 

typical, as can the Wi statistic, by induction. 

Consider, for example, the multivariate exponentially weighted moving average 

(MEWMA) chart developed by Lowry et al. (1992).  The ARL of their MEWMA chart2 is 

compared to that for Crossier’s (1988) MCUSUM chart, Pignatiello and Runger’s (1990) 

multivariate CUSUM (MC1) chart, and the Hotelling χ2 chart.  Several approaches are 

considered to make the comparison, with either the ARL and or the number of quality 

characteristics, p, being held constant.  One of the key differences between the location charts 

                                                 

2 Two versions of the MEWMA chart are considered—one using the actual covariance matrix and the other an 
asymptotic approximation. 
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reviewed by Lowry et al. and the dispersion charts considered herein (or elsewhere, for that 

matter), is the necessary consideration of the noncentrality parameter, λ, given by 

( ) 2/11' μμλ −Σ=        (6-1), 

where μ is the mean vector and Σ is the covariance matrix.  With the ARL performance of the 

location charts considered by Lowry et al. shown to depend only on this parameter, a comparison 

amongst the location charts is thus possible (pp. 47-48, 51).  In the case of dispersion charts, 

including the correlation control charts developed with the modified Wi statistic, the shift one is 

interested in detecting is a part of the noncentrality parameter, meaning that comparison of the 

dispersion chart ARLs with those of the location charts is not wholly commensurate.  

Nonetheless, a review of the ARLs for the location charts, noting the effect of the noncentrality 

parameter, indicates that the behavior of the dispersion charts can be considered typical for 

multivariate control charts in general. 

Since the covariance matrix is composed of a scale factor and a correlation matrix, 

related by the equation 

( )ρσσσ ppL2211=Σ       (6-2), 

where ρ is the correlation matrix and the product of the σii individual covariances on the matrix 

diagonal form the scale factor, one can see that changes in either component will affect the value 

of the noncentrality parameter, λ.  If it is assumed that the scale factor remains constant then 

changes to the correlation matrix invoke changes in the covariance matrix, Σ, and therefore the 

noncentrality parameter. 

For the location charts evaluated by Lowry et al., with the number of quality 

characteristics, p, held constant, the ARLs decreased when the noncentrality parameter, λ, was 

increased.  Thus, as the amount of dispersion increased, the ARLs of the location charts 
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decreased.  Comparatively, this same phenomenon was exhibited by the Wi statistic modified to 

the WR statistic to address shifts in the correlation matrix.  With the number of quality 

characteristics, p, held constant, the ARLs for the correlation control charts decreased when the 

variance of the deviates applied to the in-control correlation matrix were increased.  The same 

effect occurred when the variance was held constant but the number of entries in the correlation 

matrix to which the deviates was applied was increased (refer to Sections 4.4 and 4.5). 

Another comparison can be made regarding the ranges of the ARLs produced by the 

location control charts described in Lowry et al. and those of the WR correlation control charts 

based on the modified Wi statistic.  The same comparison can be made with data from Hawkins 

(1991).  Both methods were proposed to be more sensitive to shifts in the location vector than the 

Hotelling T2 approach whereas the correlation control chart is highly sensitive to small shifts, 

due partially to the small range for the determinant of the correlation matrix that is employed in 

the calculations.  Thus, a comparison with the Hotelling T2 chart would not be appropriate.  

Again, while is not possible to make a one-to-one comparison between the ARL performance of 

the location charts and the dispersion charts, the behaviors of both show them to be typical of 

multivariate control charts in general.  In particular, the logarithm relationship of the MEWMA 

chart described by Lowry et al. is of interest.  The MEWMA extends the univariate EWMA case 

by defining vectors of the form 

1)( −−+= iii ZRIRXZ        (6-3), 

where i is an index, 

   00 =Z         (6-4), 

and 

   ),,,( 21 prrrdiagR K=       (6-5) 
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for 10 ≤< jr , j = 1, 2, . . . , p. 

The MEWMA chart signals an out-of-control condition when 

   hZZT iZii i
>Σ= −1'2       (6-6), 

where h is chosen to achieve a specified ARL.  The covariance matrix, 1−Σ
iZ , is derived from Zi (p. 

48).  The simulations showed that the logarithm of the in-control ARL is nearly a linear function 

of h, and this is used to approximate appropriate control limits for other desired ARLs using the 

MEWMA approach.  Similarly, the empirical regression equation (discussed in Section 4.6),  

iancenchangespARL var*388.30113.0*810.0467.0011.12)ln( −−−+=  (6-7), 

developed from the simulations for the Exchange (0.5) correlation structure also exhibits a 

logarithmic form that can be used to approximate appropriate parameters, such as sample size, n, 

for a desired ARL, given a known number of quality characteristics, p, expected number of 

changes, and expected amount of change to the correlation matrix, variance. 

Furthermore, the numeric range for the expected ARLs of the MEWMA, CUSUM and 

Hotelling χ2 charts, holding various parameters constant and changing others, is similar to that 

found for the WR statistic used to detect shifts in the correlation matrix.  For example, with h = 

14.78, r = 0.10, and p = 3 quality characteristics, the MEWMA ARL ranges from 1007 for a 

centrality parameter λ = 0.0 down to 3.75 for a for a centrality parameter λ = 3.0 (Lowry et al., 

Table 3, p. 49).  For the correlation control chart, with p = 3 quality characteristics, Charts 14-16 

show similar ranges and patterns.  In both cases, more variation translates to a lower ARL in 

logarithmic fashion.  Note that Lowry et al. (1992) suggest an ARL of 200, an ARL reasonably 

achieved in most correlation control chart applications when the sample size, n, is twice to three 

times the number of quality characteristics, p.  While this may hold for the location vector, the 

ARL for the correlation control chart is more reasonable when the sample size is closer to the 
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number of quality characteristics (i.e. when n = p + 1), as illustrated by viewing the entries in 

Table 7 for various combinations of the parameters. 

Hawkins (1991) compares five location charts using a regression-adjusted variables 

approach.  These include Crosier’s (1988) CUSUM of T, Crossier’s Multivariate CUSUM, 

Woodall and Ncube’s (1985) MCUSUM applied to X, Woodall and Ncube’s (1985) MCUSUM 

applied to Z as a transform of X, and a Euclidean norm of the Z CUSUMs for p = 5 quality 

characteristics (note that two of the scenarios utilize variants of the same Crossier CUSUM chart 

considered by Lowry et al.).  With multiple changes applied to the in-control condition of a p = 5 

quality characteristics scenario, ARLs are in a range that rarely exceeds 100 and, for many of the 

approaches, are less than ten.  While Hawkins’s point is to illustrate the superiority of his 

regression-adjusted method that provides a more concise look than that which would be obtained 

from global signals by essentially decoupling the variables so that the shift in each can be 

considered individually, the same patterns and similar ranges emerge as those seen with the 

correlation control charts as evidenced by the data for the moderate Exchange Structure case.  

In summary, while there are no one-to-one comparisons for the performance of the 

correlation control chart performance, other control chart statistics have been similarly derived.  

Those with logarithmic calculations produce ARLs in ranges that are commensurate with that for 

the correlation statistic, WR. 
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7.0  DEMONSTRATION WITH DATA SETS 

Three data sets are considered to illustrate the application of correlation control charts and the 

disparity between theoretical validity and practical applications.  The first involves a 

manipulation of the Flury-Riedwyl (1988) data set used by Hawkins (1991) and considers 

relative dimensions on switch drums.  The second example uses a data set from Johnson & 

Wichern (1988) for stock return data based on the work of King (1966).  The third example uses 

data from a distillation column simulator developed at the University of Delaware (Doyle, 

Gatzke and Parker, 1999).  Only the WR statistic (the modified Wi statistic) is considered for 

these cases, as the |R| statistic was shown in Chapter 4 to perform poorly in the simulation study.  

These data sets demonstrate that the WR statistic must be applied with caution, as it does not offer 

reasonable statistical process control monitoring in all situations.  Recall that it is desired to have 

data where the correlation matrix approximates the moderate Exchange structure, the scale factor 

is large in comparison to the covariance matrix entries, the number of quality characteristics does 

not exceed p = 5, and the sample size is chosen to be n = p + 1.  Three data sets are considered in 

the following sections, with the basic characteristics listed in Table 8. 
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Table 8 Data Sets for Testing WR Correlation Statistic 

Data Set Characteristics Sample Size Variation 

Flury-Riedwyl p = 5 n = 6 Moderate 

King p = 2 

p = 3 

p = 5 

n = 3 

n = 4 

n = 6 

Low 

Large 

Large 

Doyle, Gatzke & 
Parker 

p = 2 n = 3 Low 

 

 

7.1 FLURY-RIEDWYL DATA SET 

A simulated data set, based on data from Flury and Riedwyl (1988), was generated by Hawkins 

(1991) to compare several statistics for MSQC of the location vector.  The original data 

represents the dimensions of a switch drum where X1 is the inside diameter of the drum and X2, . 

. . , X5 are the head-to-edge distances of four sectors cut into the drum.  Hawkins uses the sample 

mean and covariance to be the true mean and covariance and then generates fifty data points 

based on a multinormal distribution about the center.  After point 35, a quarter of a standard 

deviation shift was introduced into X5, chosen specifically by Hawkins because it had neither 

weak nor strong correlation with the other variables.  Also, after point 35, the marginal standard 

deviation of X1 was increased by 50%.  While Hawkins’s purpose was evaluation of mean vector 
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statistics, it is evident that his approach to the Flury-Riedwyl data provides a data set for p = 5 

quality characteristics that includes a shift in the correlation between X1 and X5 after point 35. 

The WR Statistic behaves predictably for the Flury-Riedwyl / Hawkins data set based on 

the simulation results of Section 4.4.  Since this data set contained 50 points, it was divided into 

samples of size n = 6 with the last sample under the value of n dropped from the analysis.  The 

eight samples that were generated were used to calculate the values of the covariance statistic, 

Wi, and the correlation statistic, WR, and these are shown in Table 8.  Hawkins (1991) objective 

was to develop control charts that were more sensitive to shifts in the mean vector than the 

traditional T2 chart and, as a result, the traditional T2 chart is not capable of detecting the shifts 

that were introduced after point 35.  However, since the shifts were created by manipulating the 

covariance, the Wi Statistic and the proposed WR correlation statistic would be expected to 

indicate a shift on their respective control charts.  Referring to Table 8 and also to Figure 18, the 

sample containing point 35 and its associated shift do indicate the out-of-control condition with 

the upper control limit of 34.39 exceeded for both.  Note that while the covariance statistic 

slightly exceeds the upper control limit for samples two and three, the correlation statistic does 

not, meaning that the scale factor is the likely cause for a shift that barely exceeds the control 

limit.   

Table 9 Flury-Riedwyl Data Set Results 

Sample Number Wi Statistic WR Statistic 

1 23.72 9.48 
2 36.64 33.08 
3 34.56 26.61 
4 22.00 22.80 
5 19.23 13.69 
6 78.88 100.19 
7 11.87 9.11 
8 32.18 22.09 
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Figure 18  Correlation Control Chart for Flury-Riedwyl / Hawkins (1991) Data Set 

7.2 FINANCIAL DATA FROM KING (1966) AND JOHNSON & WICHERN (1988) 

Another example of the application of the correlation control chart is provided by financial data 

that was originally approached using principal components analysis by King (1966) and 

considers the observed weekly rates of return for five stocks (a simplified example is given in 

Johnson and Wichern, p. 376-377).  Three of the stocks are from chemical companies and two 

from petroleum companies.  King’s analysis revealed two major components to the changes in 

the returns:  the market component affected all stocks generally whereas the industry component 
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noted a contrast between the chemical and petroleum company stocks.  The correlation control 

chart is applied to the correlation matrix of the observed weekly returns either to detect either a 

market or an industry shift.  In practice, it is more likely to have one or two correlations changing 

more severely than to have all the correlation relationships shifting simultaneously (Hawkins, 

1991) and these are the type of shifts that are assumed to be indicators of out-of-control 

conditions.  

Three separate approaches were used to analyze the weekly stock return data, illustrating 

the effect of the data set itself on the practicality of applying the WR statistic.  The first approach 

considered the correlation matrix for all five stocks:  Allied Chemical, DuPont, Union Carbide, 

Exxon, and Texaco.  The second approach considered the correlation matrix for only the three 

chemical companies.  The third approach considered only the correlation matrix for the two 

petroleum companies.  In all cases, the sample size, n, was chosen to be the number of 

characteristics (the stocks) plus one, or n = p + 1, to keep the ARL as high as possible in view of 

the presence of much expected variation.  For each case, both the WR statistic for correlation and 

the unmodified Wi statistic, for covariance, were calculated and plotted.  The data set consisted 

of 100 data points, or 100/n samples of size n.  Thus, each sample group roughly represents one 

“month” of return data and the control charts generated are plotted as Figures 19 through 21. 

King’s (1966) analysis showed, using principal components analysis, that the stocks of 

various industries moved by primarily two forces.  Primarily, stock returns moved with the stock 

market as a whole, and these were called market effects.  Secondarily, stock returns moved 

within industries such as chemical and petroleum, or moved relative to other industries, such as 

contrasting chemical with petroleum.  These were called industry effects (see Johnson and 
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Wichern, p. 376-377 for additional interpretation).  Both types of changes are germane to the 

correlation control chart, as the monitoring of these effects lend insight into the movement of the 

stock prices. 

7.2.1 All Stocks 

The first analysis used the in-control correlation and covariance matrices for all five stocks, 

which has a moderately correlated Exchange Structure with the covariance matrices having small 

but non-zero entries.  Referring back to Table 7, based on the empirical regression equation, for 

five characteristics, a sample size of six, three expected changes to the matrix entries, and 

changes of variance 0.25 or greater, the ARL will be, at best, approximately 34.  Examining 

Figure 19, the first half of the groups exhibit a lack of control, with the covariance coming into 

control after point seven.  The correlation, while not in control for much of the chart, does track 

with the covariance from point eight until the end.  Although not it is not meant to be a rigorous 

statement, the scale factor remains relatively constant from point nine forward.  Note that the 

chart shows the correlation and covariance statistics, not the correlation and covariance 

themselves, so that the gap between the two curves does not have a one-to-one representation of 

the scale factor.  Considering the small expected ARL for this chart, the two points of largest 

concern are points two and seven, both of which show a correlation statistic that exceeds the 

covariance statistic, meaning that the scale factor assumption has been violated.  In consideration 

of the value of p = 5 and the relatively large amount of expected variation, construction of this 

chart is not of much value, and it is included to illustrate this. 
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Table 10 Statistics Calculated for All Stocks 

Sample Number Wi Statistic WR Statistic 

1 174.60 115.21 
2 47.03 110.78 
3 28.32 -16.05 
4 164.94 173.83 
5 99.70 107.87 
6 -78.35 39.25 
7 84.65 24.19 
8 3.95 131.15 
9 -15.59 55.56 
10 -14.37 50.63 
11 -18.10 46.37 
12 -117.07 39.79 
13 -69.39 76.64 
14 -122.06 56.02 
15 -42.10 30.95 
16 -73.27 6.19 
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Figure 19 Correlation Control Chart for Allied Chemical, DuPont, Union Carbide, Exxon, and 
Texaco Weekly Stock Returns (Johnson & Wichern, 2002, Table 8.4) 

7.2.2 Chemical Stocks 

The data for only the chemical company stocks (Allied Chemical, DuPont, and Union Carbide) is 

a better representation of the limited utility of the correlation control chart and is shown in Table 

11 and Figure 20.  Since the matrices for the chemical stocks case are submatrices of the overall 

case, the same characteristics of Exchange Structure and small, non-zero covariances apply.  In 

some respects, this chart represents a “worst-case” scenario since the diverse product mix of the 

three companies coupled with general volatility of stock price within a market segment leads to 

the expectation of out-of-control conditions on a more frequent basis than may be expected with 

companies producing a more homogenous product mix. 
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Referring back to Table 7, based on the empirical regression equation, for three 

characteristics, a sample size of four, three expected changes to the matrix entries, and changes 

of variance 0.25 or greater, the ARL will be, at best, approximately 17, so at least one Type I 

error can be expected from this data set.  With the exception of points two and ten, the 

covariance remains in control for all sample groups so that the effect of scale factor, in those 

cases where the correlation statistic is out-of-control, is to bring the covariance back into control.   

If the covariance statistic was not available, and since the correlation matrix is the 

dominant feature, those sample groups where a shift is indicated would be reviewed to determine 

possible causes based on the correlation statistic itself.  However, since both the covariance and 

correlation statistics are available and plotted, only point two would qualify as signaling an out-

of-control condition for both covariance and correlation.  If the correlation matrix underlying this 

sample group is viewed, it can be seen that the returns for Allied Chemical have increased 

compared to DuPont and Union Carbide for that sample group.  Another point on the chart may 

be of interest, between samples nine and ten where the covariance is in-control and the 

correlation is out-of-control at point nine and then the situation reverses at point ten.  In all 

likelihood, the correlation, as a component of covariance, will not be out-of-control if the 

covariance is not.  Thus, point ten shows an out-of-control condition where the scale factor is a 

more likely cause than the correlation matrix.  
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Table 11 Statistics Calculated for Chemical Stocks 

Sample Number Wi Statistic WR Statistic 

1 8.10 -0.17 
2 34.64 21.08 
3 -57.03 -16.88 
4 -24.86 -13.02 
5 -29.23 -0.01 
6 -10.86 10.27 
7 -28.41 -12.31 
8 -30.82 -14.35 
9 5.31 34.30 
10 40.19 7.08 
11 -94.67 -37.82 
12 -13.99 26.47 
13 -18.15 -18.91 
14 9.55 20.38 
15 -37.50 -21.93 
16 -29.77 33.78 
17 -1.66 5.40 
18 -57.64 19.23 
19 -34.60 -43.26 
20 -34.66 39.62 
21 -55.38 -20.20 
22 -31.91 14.24 
23 8.89 13.56 
24 -1.52 28.40 
25 6.05 42.45 
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Figure 20 Correlation Control Chart for Allied Chemical, DuPont, and Union Carbide Weekly Stock 
Returns (Johnson & Wichern, 2002, Table 8.4) 

7.2.3 Petroleum Stocks 

Figure 21 shows the control charts for only the petroleum stocks (Exxon and Texaco), with data 

in Table 12.  Using Table 7 as a reference, based on the empirical regression equation, for two 

characteristics, a sample size of three, only one possible change to the matrix entries, and 

changes of variance 0.25 or greater, the ARL will be, at best, approximately 59.  As the product 

mix of the oil companies is more homogenous than that for the chemical companies, less 

volatility is expected in the correlation between weekly stock returns.   
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Other than the first point, for which the data reveals a zero entry that explains why the 

covariance statistic is out-of-control, both the covariance and correlation statistics remain in-

control for all samples.  Furthermore, tests for specific causes (Nelson, 1984) applied to both 

charts do not reveal any suspicious patterns. 

Table 12 Statistics Calculated for Petroleum Stocks 

Sample Number Wi Statistic WR Statistic 

1 16.20 7.49 
2 -2.50 -8.34 
3 -19.94 7.09 
4 -7.25 -0.01 
5 -13.51 5.34 
6 13.74 7.44 
7 -16.62 -33.65 
8 8.61 8.99 
9 -13.16 -22.73 
10 -29.51 5.04 
11 -31.42 -12.04 
12 -26.01 -21.78 
13 -12.86 -16.19 
14 -69.56 -56.14 
15 -6.69 9.82 
16 -6.32 9.84 
17 -25.21 -13.37 
18 -32.83 -2.39 
19 -14.94 -13.61 
20 -15.29 9.14 
21 -11.39 9.42 
22 5.45 1.60 
23 -7.54 7.54 
24 -13.73 10.00 
25 -37.39 9.30 
26 -18.29 9.60 
27 -26.79 -5.07 
28 -30.93 -16.49 
29 -50.69 -13.93 
30 -10.92 10.04 
31 -19.38 3.05 
32 -35.76 -4.23 
33 -22.57 8.04 
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Figure 21 Correlation Control Chart for Exxon, and Texaco Weekly Stock Returns (Johnson & 
Wichern, 2002, Table 8.4) 

7.3 DISTILLATION COLUMN (DOYLE, GATZKE & PARKER, 1999) 

While the smaller data sets considered in Sections 7.1-7.2 provided some encouraging results, it 

was desired to apply the WR statistic to a larger data set developed from a real or (validated) 

simulated process to assess performance under conditions that could be expected in industrial 

settings.  As previously noted, chemical processes often produce data for which the correlation 

matrix remains nearly constant.  As an example consider a distillation column where the 

stoichiometric relationship between outputs is expected to remain in control unless a process 

disruption occurs at the column input. 
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The Department of Chemical Engineering at the University of Delaware developed, 

under direction of F. J. Doyle III, a software-based simulator for both an annealing furnace and a 

distillation column (1999).  The modules of this simulator, and the accompanying text, are used 

for the instruction of process control, primarily at the undergraduate level. The distillation 

column was originally developed by K. Weischedel and T. J. McAvoy and has been validated 

and used by several researchers since its introduction in 1980.  The simulator models a 27-tray 

column into which a 50%-50% ethanol-methanol mixture is fed at the 14th tray with the objective 

of producing 85% methanol and ethanol output streams at the top and bottom, respectively.  

There are four column inputs and four column outputs, as shown in Table 13.  For purposes of 

research into the behavior of the WR statistic, the steady-state analysis section of the distillation 

column text applies.  The correlation between Overhead and Bottom MeOH Composition was 

considered for testing plausibility of the WR statistic. 

As the objective of using the column model was to evaluate the efficacy of the WR 

statistic for MSPC monitoring of a chemical process, not an analysis of the process itself, only a 

brief summary of the employment of the model will be provided before considering the results 

obtained. 

Table 13 Inputs and Outputs for Distillation Column Model 

Inputs Outputs 
Feed Flow Rate Overhead MeOH Composition 

Feed MeOH Composition Overhead MeOH Flow Rate 
Vapor Flow Rate Bottom MeOH Composition 

Reflux Ratio Bottom MeOH Flow Rate 
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7.3.1 Creation of Test Data Set from Column Simulator 

For steady state operation, the column is started with initial input values of 0.025 for the Feed 

Flow Rate, 0.5 for the Feed MeOH Composition, 0.033 for the Vapor Flow Rate, and 1.75 for 

the Reflux Ratio.  These values can be changed as the simulator runs, and the responses in the 

output are visible on four continuously updating screens.  With minor programming, the data 

underlying the graphic responses are available in tabular form along with the value of the clock 

which runs throughout the simulation.  For purposes of testing the WR statistic, the values of the 

Overhead and Bottom MeOH Composition were captured along with the clock.3  The actual 

output data appears as Appendix G, and is graphed in Figure 22.  Essentially, the input value of 

the Feed MeOH Composition was changed from 0.50 to 0.33 somewhere prior to clock number 

50 shown on the x-axis.  The curves of Figure 37 show the resultant change to the Overhead and 

Bottom MeOH compositions at this transition point.  Thus, up to time zero (clock number zero), 

the in-control conditions are represented.  A large sample of data leading up to time zero was 

used to establish the in-control correlation matrix, in-control covariance matrix, and in-control 

mean vector for the process.  Statistical process control was then attempted with the data shown 

in Figure 22 and Appendix G.  It was hypothesized that the WR statistic would detect the 

transition and then continue to show an out-of-control condition beyond time clock 145 where 

the process had stabilized at a new point. 

                                                 

3 Additional studies were performed on other combinations of inputs and outputs with similar results.  The 
information presented here is that which was deemed most illustrative of the phenomena concerned. 
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Figure 22 Relation of Overhead and Bottom MeOH Compositions at Transition Point 

 

7.3.2 Analysis of the Statistical Process Control 

Using the in-control conditions, a tolerance of α =  0.0027, and a sample size of n = p + 1 = 3, 

based on the recommendations of Section 5.2, the Hotelling T2 statistic for the mean vector, the 

Wi statistic for covariance, and the WR statistic for correlation were calculated for each sample in 

order to create a control chart for the distillation column process.  An abbreviated table of the 

calculated statistics is included as Table 14 (again, the raw data from the simulator is presented 

in Appendix G). 
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Table 14 Abbreviated Data from Distillation Column 

Clock Start Clock End T2 Statistic Wi Statistic WR Statistic 

1 3 19.40581 -24.69999 -20.56958 
4 6 101.7249 -15.2121 -17.76114 
7 9 16.2472 -7.061518 8.230153 

… … … … … 
46 48 123.3706 -21.83342 6.304022 
49 51 21.62375 14.75854 6.157492 
52 54 364.0311 -9.543662 -1.723563 
55 57 452.3275 6.246241 0.0133 
58 60 3.18E+04 -27.41963 -25.97202 
61 63 157.2806 8.547046 6.384029 
64 66 7.31E+03 -21.68386 6.233781 
67 69 7.91E+03 -3.855103 -10.01732 
70 72 1.31E+04 -22.63011 7.363401 
73 75 9.95E+03 -27.49375 4.846569 
76 78 605.0046 -2.12742 -8.349874 
79 81 2.34E+03 -15.67689 7.289592 
82 84 2.61E+04 -18.72286 3.073323 
85 87 2.15E+03 12.38127 -2.610835 
88 90 3.33E+03 33.82547 2.744224 
91 93 487.2216 32.69232 4.543911 
94 96 2.44E+04 -2.961295 -25.28779 
97 99 563.8493 50.90036 3.049007 
… … … … … 

256 258 1.82E+05 139.7199 7.300016 
259 261 4.28E+04 76.7424 3.192868 
262 264 7.14E+04 128.1519 5.572952 
265 267 2.90E+05 48.37465 7.551111 
268 270 1.04E+06 7.642254 8.350875 
271 273 1.88E+04 165.1768 7.94836 
274 276 2.79E+05 82.3648 3.863147 
277 279 2.13E+05 62.11641 8.14695 
 

Two MSPC charts were created from the statistical data.  The first chart, included here as 

Figure 23, is the classical Hotelling T2 chart used for monitoring the location via the mean 

vector.  It is evident that the Hotelling T2 chart falls short of being able to properly detect shifts 

in the mean vector for this process.  The upper control limit has a value of 12.40, which is 

exceeded in almost every case. 
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Figure 23  Hotelling T2 Chart for Distillation Column 

 

Halfway through the data set, when the transition occurs, the T2 statistic exceeds 10,000 

or 103 times the control limit, and is no longer plotted on the chart.  While the correlation 

dispersion statistics are of primary consideration, the location statistic is included to illustrate 

that it is incapable of detecting the shift. 

Looking next at the dispersion control chart for the same process and data, Figure 24, it is 

obvious that there are issues with the Wi statistic and WR statistic as well.  Of the two, the Wi 

(covariance) statistic appears to perform better than the WR (correlation) statistic. 
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Figure 24 Dispersion Control Chart for Distillation Column Simulator 

In the dispersion control chart, the Wi statistic shows, with the process having an out-of-control 

condition near the transition point (approximately sample index 33).  The system remains out-of-

control beyond the transition point but, although the statistic is out-of-control beyond sample 

index 52, the process itself has stabilized with regard to the new output concentrations.  The WR 

statistic, however, never indicates an out-of-control condition, meaning that the correlation has—

according to the WR statistic—remained in control throughout this period of the process.  

Unfortunately, the data could not be perturbed to show otherwise.  In fact, various changes were 

made to the output data of Figure 22 in the range between clock number ten and 25.  The WR 

statistic never was able to detect an out-of-control condition. 
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7.4 EVALUATION OF THE WR STATISTIC 

What does application of these various MSPC statistics to the various data sets indicate?  First, it 

confirms the conceptual idea that, if the correlation (or other dispersion measure) is of primary 

interest then the mean vector should not be the statistic that is monitored.  Specifically, if the 

dispersion is the variable of interest, then a location MSPC chart such as the Hotelling T2 may 

not be appropriate.  Second, it confirms the efficacy of Alt’s (1973) Wi statistic, at least in some 

cases, for the monitoring of covariance as the combined effect of both the correlation matrix and 

a scale factor.  Third, the WR statistic has limited applicability.  The bounded nature of the 

correlation matrix which, unlike the covariance matrix, allows the behavior of its associated 

statistic to be characterized, severely limits its ability to indicate process changes even if 

correlation is the dominant component of covariance.  Fourth, these insights indicate that the 

scale factor and correlation components of covariance should not always be separated when 

using MSPC statistics and charts to monitor for changes in dispersion. 

The statistic appeared to perform, to some degree, for the Flury-Riedwyl and King data 

sets but did not perform at all for the Doyle, Gatzke & Parker data set.  This is disturbing since 

both the first and last data sets shared a commonality inasmuch as the number of characteristics, 

sample size, and expected variation were similar.  For the chemical distillation column, it is 

important to note that, by one definition, the column is always in control because of the 

stoiciometric relationship between the inputs and outputs.  The amount of variation may have 

been masked by the randomness of the simulator in this case.   
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8.0  CONCLUSION 

The research presented herein provides several contributions to the existing body of knowledge 

surrounding Multivariate Statistical Process Control Charts.  Specifically, it adds to the neglected 

area of charting dispersion parameters that have evolved from research associated with the 

Hotelling T2 location chart.  While one contribution of this research is the assessment of current 

dispersion statistics (|S|, Wi, and G) for the correlation matrix, another is the consideration of 

charting changes in the correlation matrix itself.  The former aspect has implications directly to 

dispersion charts as well as for adding further understanding to Hotelling T2 charts.  The latter 

has additional applications beyond engineering in areas of business and biological science where 

correlated data is not only common, but expected.  This chapter summarizes the major findings 

of this research. 

8.1 EVALUATION OF THE COVARIANCE STATISTICS FOR THE SPECIAL 

CASE OF CORRELATION 

Three statistics that were originally developed for the control charting of covariance were 

considered for the special case of the covariance matrix.  The first, the |S| statistic developed by 

Wilks (1932), was modified to become the |R| statistic by isolating the scale factor.  Through a 

mathematical analysis, it was demonstrated that the control limits for the |R| statistic were, in 
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most cases, so wide as to be incapable of showing an out-of-control condition.  A simulation 

model confirmed this finding.  The second, the Wi statistic developed by Alt (1973), was 

modified to become the WR statistic by isolating the scale factor.  It was demonstrated both 

mathematically and geometrically that the correlation and scale factor components were 

independent and could be separated from the covariance.  The preference of the WR statistic for 

MSPC monitoring of the correlation matrix was confirmed through the simulation study for 

various levels of the number of quality characteristics and sample sizes at four levels of variance 

for two commonly occurring forms of correlation matrix structure.  The third, the G statistic 

developed by Holmes and Mergen (1993) was shown mathematically to be infeasible for 

application to correlation matrices.  The G statistic relies on the Mean Squared Successive 

Differences calculation of Hald (1952) to evaluate changes in covariance and an analog for 

correlation matrices could not be developed. 

8.2 THE WR STATISTIC 

The WR statistic is a modified form of the Wi statistic developed by Alt (1973) and was evaluated 

both mathematically and via a simulation study that employed three permutations to two 

standard correlation structure matrices for a variety of parameters, with the permutation scheme 

suggested by previous work in other areas of MSPC (Hawkins, 1991).  The parameters were 

varied over common ranges of values that were also suggested by previous work in various areas 

of MSPC.  While the WR statistic appeared to be superior to the |R| statistic for the control 

charting of correlation matrices, it was also shown that certain assumptions and requirements are 

necessary for its application.  The primary assumption is that the scale factor component of 
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covariance is expected to remain constant while the changes to the process are attributed to the 

changes in the correlation matrix.  In practice, this assumption should be recognized or verified 

by using the WR chart in conjunction with the Wi chart whenever feasible.  This approach is 

similar to verifying the normality of residuals after running a linear regression.  The condition of 

“constant” scale factor and changing correlation matrix occurs naturally in some processes, to 

which the WR chart can be applied.  While quantification of “large” remains as future work, the 

WR statistic is most suitable when the scale factor is “large” compared to the correlation 

component of the covariance matrix. 

8.2.1 WR Statistic for the Exchangeable Structure 

The WR statistic was evaluated for several permutations of the Exchangeable Correlation 

Structure for the case of moderate correlation to be consistent with previous work in other areas 

of MSPC.  This case represents the situation most similar to the types of matrices that would be 

considered for monitoring in various process control settings.  Performance of the statistic was 

judged via the Average Run Length (ARL) for changes over a range of parameter changes and 

the relative effect of each of these parameters to the expected ARL was evaluated through the 

development of an empirical regression equation.  This equation demonstrated that the largest 

amount of influence on ARL, at a 30:1 ratio, was due to changes in the variance of the 

permutated entries in the matrix, which is the result that would be expected and preferred.  As 

expected, increases in variance, the number of entries permutated, and the sample size all 

resulted in decreases to the ARL.  The ARL was increased, albeit slightly, with increases in the 

number of quality characteristics.   This is consistent with the behavior of multivariate location 

control charts. 
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One of the major issues found with the WR statistic is that, unlike the Wi statistic from 

which it was developed, is that the size of the matrix has a major effect on the utility of the WR 

statistic itself.   Due to the bounded nature of the correlation matrix and the logarithmic nature of 

the calculation for the WR statistic, the WR chart works best to detect small changes; this is 

consistent with previous work in other areas of MSPC where logarithmic calculations are 

involved.  Recommendations for the determination of sample size and chart interpretation were 

generated from these results, recognizing that the WR statistic is more sensitive to small changes 

than the Wi statistic from which it was derived. 

8.2.2 WR Statistic for the Independence Structure 

The WR statistic was also evaluated for several permutations of the Independence Correlation 

Structure in which there is no correlation between any of the variables in the correlation matrix.  

This scenario would occur when a Principal Components Analysis, or similar procedure, had 

rotated the axes so as to render the variables independent of one another.  The correlation control 

chart using the WR statistic would be useful to detect any changes that may violate this assumed 

independence.  Like the moderate Exchange Structure, increases in variance, the number of 

entries permutated, and the sample size all resulted in decreases to the ARL while the ARL was 

increased with increases in the number of quality characteristics.   The range of utility was more 

severely limited in the Independence case versus the Exchangeable case, which was expected 

due to the logarithmic nature of the calculation and is consistent with previous work in other 

areas of MSPC. 
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8.3 APPLICATION RECOMMENDATIONS 

Based on the results presented herein, the WR statistic is recommended for the MSPC control 

charting of correlation matrices that follow a basic Exchangeable Structure with the entries in an 

approximate range (0.4 – 0.6) for p = 5 quality characteristics or less.  The sample size is 

recommended to be n = p + 1 unless the amount of variation to the correlation matrix is known 

with certainty, in which case the empirical regression equation (4.6) can be used to estimate the 

sample size for the desired ARL.  This approach is consistent with previous work in similar areas 

of MSPC and ensures the largest ARL considering the logarithmic nature of the calculation for 

the WR statistic. 

Even when these recommendations are followed, results from larger data sets are 

mixed—a phenomenon common to other types of MSPC techniques where the ARL is 

logarithmic with respect to the parameters.  Partly, this can be attributed to the bounded nature of 

the correlation matrix.  Also, all these statistics use a matrix determinant calculation which can 

be traced to Wilks (1932) but has been subsequently shown to have drawbacks as a single 

measure that cannot capture all the information contained by the matrix despite its claim to do so 

(Johnson & Wichern, 1988). 
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8.4 TESTS WITH THREE DATA SETS 

Two of the three data sets tested with the WR correlation statistic showed encouraging results, but 

the third—the distillation column of Section 7.3—yielded discouraging results.  This indicates 

that application of the correlation control chart should be approached with caution, as the amount 

of correlation, and how much it is expected to change, are both factors that influence the 

capabilities of the chart. 

8.5   CONTRIBUTION 

Several new concepts have been introduced through this research.  Starting with the separation of 

the covariance matrix into two components—the correlation matrix and a scale factor—to 

determine an out-of-control dispersion condition via matrix analysis.  The potentially unbounded 

nature of the scale factor component encourages study of the correlation matrix which is 

bounded and resulted in the investigation of a method to perform MSPC on correlation matrices. 

The WR statistic, developed herein as a modified form of the Wi statistic, provides a 

method to analyze some correlation matrices “as-is.”  While it does not require additional control 

charts it could be used to supplement other control charts, similar to the use of R charts along 

with X-bar charts for the univariate case.  The development of an empirical equation from a 

simulation study for the WR correlation statistic supported the concept that the amount of 

variation introduced into the correlation matrix is the parameter that has the largest effect on the 

ARL for the process and that this factor outweighs the effects of choice of sample size and 

number of characteristics considered.  Recommendations for limited use of the WR statistic for 
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the monitoring of correlation matrices via control charts were presented.  Applications to data 

sets showed that the application range is narrow, commensurate with similarly derived MSPC 

statistics.   

The mathematical and simulation demonstration that the proposed |R| statistic is not 

suitable for control charting under many conditions is a non-trivial result since several dispersion 

measures in MSPC have been built around the determinant of the correlation matrix.  A 

discussion and mathematical analysis of why the G statistic cannot be modified for application to 

correlation whereas the |R| and Wi statistic can is explained by the origin of the G statistic being 

based on a mean squares successive differences calculation that has no analog with a correlation 

matrix.  These analyses lend insight into the nature of correlation matrices with respect to an 

MSPC orientation. 

An overall contribution is a demonstration that the correlation component of covariance 

may not be as influential as previously believed or, conversely, that the scale factor component 

of covariance is of primary influence on dispersion in many situations. 

8.6 RECOMMENDATIONS FOR FUTURE WORK 

During the research undertaken for this dissertation, several areas for future work have been 

identified.  First would be the development of an algorithm to generate correlation matrix test 

data.  That is, starting with an in-control correlation matrix, generating deviates of it, and then 

generating covariance matrices, mean vectors and, finally, raw data that can be used for testing 

when the correlation matrix is the item of interest.  Second, building upon the development of the 

empirical regression equation for the Exchange Structure, it was determined that there is a need 
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for a single measure to quantify the amount of variation in a multivariate process that 

incorporates the number of characteristics (p), the number of changes to matrix entries, and the 

variation of the expected changes.  Third, although the WR statistic can be implemented for small 

matrices, methods to monitor for changes in the correlation matrix when the number of 

characteristics (p) becomes large (> 5) are needed.  Fourth, a chartable statistic developed from 

the methods of partial and multiple correlation (Appendix C) could be adapted for use in MSPC.  

Fifth, as with other statistics from the MSPC arena, the limits of applicability for the WR statistic 

should be extended via future studies. 

 



  125

APPENDIX A 

THE M CHART 

The M chart (Hayter and Tsui, 1994) starts with the defining of a critical point noted by the 

authors as CR,α that captures the simultaneous confidence intervals with respect to the correlation 

matrix, R.  The control limits are given by 

⎩
⎨
⎧

=

=

0
,

LCL
CUCL R α           (A-1).  

An out-of-control point is signaled when the calculated value of M exceeds the critical 

point, where M is given by the equation 
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      . 

 

In equation A-2, xi and σi are the mean and standard deviation for the ith sample, and μi
0 

is the symbol for the in-control mean at sample i.  When μ = μ0, the probability that each of the 

confidence intervals contains the value μi
0  is 1 – α.  Although their critical regions differ, in 

comparing the M chart to the χ2 chart (the χ2 chart is used in place of the T2 chart in this article 
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because the covariance is assumed to be known), the authors note that both the χ2 and M statistics 

control the overall error rate at exactly α, and usually reach the same conclusion.  However, they 

note it is also possible for one statistic to trigger and the other not to trigger.  The reason for this 

is shown geometrically and the overall conclusion is that neither statistic is superior in terms of 

relative power or relative sensitivity. 

Historically, the χ2 (or T2) statistic is preferred because the required critical point is 

independent of correlation structure and is readily available.  The developers note that the 

calculation of the critical point, CR,α, is now possible with modern computers.  However, 

numerical integration techniques are not feasible, due to the dimensionality of the integration 

region, for quality characteristics greater than or equal to five, so extensive simulations are 

required.  
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APPENDIX B 

THE GS CHART 

To understand the GS chart, it helps to envision the simplest multivariate case where 

there are only two variables of interest and the variances are equal.  Plotted on a Cartesian plane, 

the confidence intervals for the two variables would intersect to form a square.  The critical 

region for the same variables on a Hotelling T2 chart would be a circle.  Houshmand et al. (1997) 

relate these regions using calculus, noting the instances where the square region can indicate an 

out-of-control point when the circle does not, and vice versa. 

 When correlation is introduced to this bivariate case, the square becomes a 

parallelogram, and the circle becomes an ellipse.  Applying a Fisher-Z transform to relate the two 

cases, the procedure is then expanded to encompass the multivariate situation.  Houshmand et al. 

(1997) use the resulting statistic to develop the GS chart, or “Generalized Shewhart” chart.  They 

further demonstrate that the familiar X-bar chart can be a subset when the number of 

characteristics is given by p = 1.  The procedure starts by assigning the desired overall Type I 

error of the process, α, and the individual Type I errors for each of the i characteristics, αi.  Then, 

for each quality characteristic pi K1=  calculate the value 

 ii zb α=          (B-1) 
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where zαi is obtained from the standard normal distribution. 

The mean is calculated as 

),,,( 21 pXXXX K=         (B-2) 

for pi K1= quality characteristics and the statistic 
 

)(),,,( 2/1
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p
−== K       (B-3) 

 
where n is the sample size, 2/1−R is the inverse of the square root of the correlation matrix, T is 

the transpose operator, and  
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In equation B-4, iX  is the mean value of the ith characteristic for a sample of size n, μi is 

the in-control value for that mean value, and σii is the covariance of the ith characteristic. 

Continuing, for each of the characteristics, pi K1= , δi is calculated as 

i

i
i b

Z
=δ          (B-5) 

for each of the Zi and bi as defined in equations B-1 and B-3 above. 

The single statistic that is then calculated for the control chart is given by 
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where k is an index for the pi K1= quality characteristics.  If any of the pkk K,2,11 =∀<δ , 

then δ = 0.   Otherwise, δ = r if r of the variables are out-of-control.  Thus, the control limits 

cannot be expressed in the traditional manner with an upper and lower limit.  Instead, if δ = 0, 

the process is in-control; if δ > 0, the process is out-of-control for k = 1, 2, . . ., p. 
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APPENDIX C 

METHODS OF PARTIAL AND MULTIPLE CORRELATION 

The methods of partial correlation and multiple correlation attempt to directly detect changes in 

the correlation matrix but are not designed for control charts.  For an example based on a 

trivariate normal population with a sample of size n = 10 and p = 3 quality characteristics, 

Golnabi and Houshmand (1997) present a table with nine parameters to be compared to two sets 

of control limits.   

Both methods are algorithmic in nature.  The method of partial correlations starts by 

calculating the covariance, S, from a sample of size n.  The standardized covariance matrix is 

then calculated as 

2/12/1 −−= SRRSS          (C-1) 

where 2/1−R is the inverse of the square root of the correlation matrix.  From SS, all of the sample 

partial correlations are calculated and compared to a Beta distribution with parameters α = (n – k 

– 1) / 2 and β = ½, where n is the sample size, and k is an index value for the partial correlations 

 )2(,12.)1(1.2311312 ,,,,,, −− pppp rrrrr LLK       (C-2) 

of the p quality characteristics.  Each sample variance, sii  (also calculated from SS , and where i 

is an index) is compared to a χ2 distribution with (n-1) degrees of freedom.  Comparing the 
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calculated parameters to the control limits, it is possible to detect whether there has been a shift 

in a particular partial correlation (shown in equation C-2) or sample variance, sii. 

The method of multiple correlations begins similarly to the method of partial correlations, 

differing after the standardized covariance matrix, SS, has been calculated in equation 2-27.  

From the standardized covariance matrix, the sample variances, standardized sample correlation 

matrix, RS, and the statistics 121 ,,, −pyyy K are extracted.  The latter values are calculated by the 

formula 

 
k

S
k R

R
y −= 1         (C-3) 

where Rk is the k by k upper left triangular matrix of the standardized sample correlation matrix 

RS.  Each of the yk are calculated and compared to a Beta distribution with parameters α = (n – k 

– 1) / 2 and β = k/2, where n is the sample size, and k is an index value.  Each sample variance, sii  

is calculated in the same manner as the method of partial correlations and is compared to a χ2 

distribution with (n-1) degrees of freedom.  Comparing the calculated parameters to the Beta 

distribution or χ2 distribution, it is possible to detect whether there has been a shift in a particular 

multiple correlation or variance, respectively.  For both methods, the calculated statistics are 

tabulated for comparison to tolerance limits; charts are not used.  The number of calculations 

required for either method increases rapidly as the number of quality characteristics increases. 



  131

APPENDIX D 

OUT-OF-CONTROL ARL 

The use of in-control Average Run Length (ARL), as opposed to out-of-control ARL is 

predominant in the literature as a means to evaluate the performance of statistics proposed for 

statistical process control, whether univariate or multivariate.*  The in-control ARL is the inverse 

probability of detecting a shift in the mean when the process is actually in-control and essentially 

denotes a “false alarm.”  On the other hand, the out-of-control ARL measures the inverse 

probability of not detecting a shift in the mean when the process is actually out-of-control (or a 

shift in the mean has occurred).  To make an assessment of out-of-control ARL, it is necessary to 

define what is considered to be the out-of-control condition.   

In the univariate case, for example, shifts in the mean vector can be defined by assigning 

a value that is known to be out-of-control.  This information is then compared to an operating 

characteristic curve to get a probability that is then used to calculate the out-of-control ARL.  

This type of calculation is subsequently used to determine the appropriate sampling frequency.   

There are a myriad of factors that could contribute to an out-of-control condition in the 

multivariate case and choice of the appropriate out-of-control condition as a start point for 
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analysis is more complicated.  When making comparisons amongst statistics, factors that shift 

the distribution of the data set are often a function of the parameters, such as sample size (n) and 

number of characteristics (p), and may not be uniformly applied to all the statistics under 

consideration for the comparison.  Specifically, the value of p is not used in determination of the 

control limits for the |S| statistic, and the value of n is not used when the control limits for the Wi 

and G statistics are determined.  As a result, investigation into the performance of the dispersion 

statistics using out-of-control ARL as a measure of performance is left as future work.   

                                                                                                                                                             

* When in-control ARL and out-of-control ARL are both used, the customary notation is ARL0 for the in-control 
ARL and ARL1 for the out-of-control ARL (Montgomery, 1997).  
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APPENDIX E 

MATHCAD SIMULATION PROGRAM 

The following is an example of the MathCAD 2001 code that was used for the simulation 

study described in Section 4, the data for which appears in Tables 15 and 16 of Appendix F.  The 

example depicted here is for the Independence Structure with (p = 2) quality characteristics. 

 
Declared Variables that are Global for Simulation (varied for the study): 

 
These variables are entered prior to running the simulation. 

 

ρ
1

0

0

1
⎛
⎜
⎝

⎞
⎟
⎠

≡  

 
n 4:=  
 
var 0.10:=  
 
α 0.05:=  
 
γ 0.02:=  
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Normal Deviate Generator: 

 
Uses the built-in MathCAD random normal deviate generator to generate individual deviates, called by Randomize Code. 

 
NORRN var( ) rnorm 1 0, var,( ):=  
 
 

Randomize Code 
 

Applies normal deviates of the specified variance (from the generator) to a form a deviation matrix that, when added to the in-control correlation 

matrix using the Sampler Code, produces a correlation matrix that is a normal deviate of the in-control condition. 

 
Randomize B var,( )

Ri j, Bi j, NORRN var( )1+←

Rj i, Ri j,←

Ri i, 1←

j 1 cols B( )..∈for

i 1 rows B( )..∈for

Rreturn

:=  
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Sampler Routine: 

 
Applies the normal deviates of the specified variance from the Randomize Code to the in-control correlation matrix to produce a correlation 

matrix that is a normal deviate of the in-control condition. 

 
Sampler n B,( ) U B←

U U Randomize B var,( )+←

k 1 n..( )∈for

U
n 1+

:=  

 
SubRoutineR Code: 

 
Compares a deviate of the correlation matrix to the control limits (UCLR, LCLR) until an out-of-control condition is detected, then returns the 

number of trials before this condition is reached (ARLR) and sets a flag to stop the iterations.  A flag is also set if the value of ARLR exceeds 

10000. 

 
SubRoutineR n ρ, α,( ) flag 0←

ARLR 0←

R Sampler n ρ,( )←

p rows R( )←

UCLR ρ 1 qnorm
α

2
0, 1,⎛⎜

⎝
⎞⎟
⎠

2 p⋅
n 1−

⋅+
⎛
⎜
⎝

⎞
⎟
⎠

⋅←

LCLR ρ 1 qnorm
α

2
0, 1,⎛⎜

⎝
⎞⎟
⎠

2 p⋅
n 1−

⋅−
⎛
⎜
⎝

⎞
⎟
⎠

⋅←

flag 1← R UCLR≥ R LCLR≤∨if

flag 1← ARLR 10000≥if

ARLR ARLR 1+←

flag 1≠while

U1 1, ARLR←

U2 1, R←

U3 1, flag←

U

:=  
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SubRoutineW Code: 

 
Compares a deviate of the correlation matrix to the control limits (UCLR, LCLR) until an out-of-control condition is detected, then returns the 

number of trials before this condition is reached (ARLW) and sets a flag to stop the iterations.  A flag is also set if ARLW exceeds 10000. 

 
SubRoutineW n ρ, α,( ) flag 0←

ARLW 0←

R Sampler n ρ,( )←

p rows R( )←

A n 1−( ) R⋅←

W p− n⋅ p n⋅ ln n( )⋅+ n ln
A
ρ

⎛⎜
⎝

⎞⎟
⎠

⋅− tr ρ
1−

A⋅( )+←

UCLW qchisq α
p p 1+( )⋅[ ]

2
,⎡⎢

⎣
⎤⎥
⎦

←

LCLW 0←

flag 1← W UCLW≥ W LCLW≤∨if

flag 1← ARLW 10000≥if

ARLW ARLW 1+←

flag 1≠while

ARLWreturn

:=  

 
 

Delta Routine: 
 

Calculates the standard error of the estimate.  This is used by the TestR and TestW routines to determine the relative precision that is used to 

terminate the simulation for each. 

 
δ α X,( ) n rows X( )←

df n 1−←

t0 qt 1
α

2
− df,⎛⎜

⎝
⎞⎟
⎠

←

s
n

n 1−
Var X( )⋅←

δ t0
s

n
⋅←

δreturn

:=  
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SimTest Routine (adapted to |R|) 
 

If the relative precision is outside of the tolerance, it increments and returns the value of the replicate. 

 
Xbar = ARL for the combination 
delta = standard error of estimate 
ratio = γ (termination ratio) 
rep = number of repetitions to get to specified relative precision 
 
TestR α γ, n, ρ,( ) ratio 1←

rep 0←

U SubRoutineR n ρ, α,( )←

V SubRoutineR n ρ, α,( )←

U augment U V,( )←

ARL UT( ) 1〈 〉
←

Xbar mean ARL( )←

delta δ α ARL,( )←

ratio
delta
Xbar

←

rep rep 1+←

ratio γ≥while

Q1 1, Xbar←

Q2 1, delta←

Q3 1, ratio←

Q4 1, rep←

Q

:=  
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SimTest Routine (adapted to WR) 
 

If the relative precision is outside of the tolerance, it increments and returns the value of the replicate. 

 
Xbar = ARL for the combination 
delta = standard error of estimate 
ratio = γ (termination ratio) 
rep = number of repetitions to get to specified relative precision 
 
TestW α γ, n, ρ,( ) ratio 1←

rep 0←

U SubRoutineW n ρ, α,( )←

V SubRoutineW n ρ, α,( )←

U augment U V,( )←

ARL UT( ) 1〈 〉
←

Xbar mean ARL( )←

delta δ α ARL,( )←

ratio
delta
Xbar

←

rep rep 1+←

ratio γ≥while

Q1 1, Xbar←

Q2 1, delta←

Q3 1, ratio←

Q4 1, rep←

Q

:=  
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Summary Table for Simulation: 
 

The following table provides the summary information of the data that was input prior to beginning the simulation. 

 
In-Control Correlation Matrix: 
 
ρ =  
 
Variance of Deviates: 
 
var =  
 
Sample Size: 
 
n =  
 
Number of Quality Characteristics: 
 
p =  
 
Tolerance: 
 
α =  
 
Relative Precision: 
 
γ =  

 
 
Simulation Start Code: 
 

The following two lines start the simulations for the |R| and WR statistic using the parameters declared at the beginning and provide columnar 

output with the labels defined below. 

 
Xbar = ARL for the combination 
delta = standard error of estimate 
ratio = γ (termination ratio) 
rep = number of repetitions to get to specified relative precision 
 
 
TestR α γ, n, ρ,( ) =     TestW α γ, n, ρ,( ) =  
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APPENDIX F 

MATHCAD SIMULATION RESULTS 

This appendix provides complete results of the simulation study described in Section 4.  In the 

first four columns of both tables, p is the number of quality characteristics, “perturbs” is the 

number of non-diagonal matrix entries to which deviates were applied, n is the sample size, and 

“var” is the variance used to generate the deviates.  For the |R| and WR statistics, ARL gives the 

average run length calculated by the simulation, at the tolerance provided by the simulation and 

“std err” is the standard error of the simulation, at the tolerance provided by the simulation (and 

specified through the design of the simulation algorithm).  The column marked “reps” refers to 

the number of replications required before the sequential simulation automatically terminated at 

the specified tolerance ratio. 

For the ARL, non-numeric entries in the table indicate the following:  “over” means that 

the ARL calculated exceeded 10,000 and the simulation was automatically terminated; “sing” 

indicates that the simulation returned a singularity after several attempted runs; “unk” represents 

an “unknown error” returned by the simulation after several attempted runs; and “n/s” means that 

the combination of parameters listed was not simulated since the trend that developed from 

simulations with previous parameters indicated that meaningful results would not be obtained. 
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Table 15  Simulation Results for the Exchange (0.5) Structure 

     |R|   WR  
p perturbs n var ARL std err reps ARL std err reps 
2 1 3 0.25 over ---- ---- 196 10 1527 
2 1 4 0.25 5044 252 718 109 5 1620 
2 1 5 0.25 1779 89 1466 70 4 1435 
2 1 6 0.25 771 39 1539 53 3 1529 
2 1 7 0.25 411 21 1528 41 2 1497 
2 1 8 0.25 253 13 1577 32 2 1548 
2 1 9 0.25 180 9 1557 29 1 1297 
2 1 10 0.25 133 7 1541 24 1 1473 
2 1 12 0.25 84 4 1600 19 1 1438 
2 1 15 0.25 53 3 1515 14 1 1379 
2 1 20 0.25 31 2 1507 10 0 1351 
2 1 25 0.25 21 1 1385 7 0 1398 
2 1 30 0.25 17 1 1377 6 0 1334 
2 1 35 0.25 14 1 1377 5 0 1125 
2 1 40 0.25 12 1 1369 4 0 1190 
2 1 3 0.20 over ---- ---- 471 24 1490 
2 1 4 0.20 over ---- ---- 255 13 1592 
2 1 5 0.20 over ---- ---- 161 8 1554 
2 1 6 0.20 6985 349 394 106 5 1457 
2 1 7 0.20 4300 215 884 85 4 1599 
2 1 8 0.20 2329 116 1426 65 3 1564 
2 1 9 0.20 1378 69 1550 56 3 1357 
2 1 10 0.20 876 44 1542 50 2 1433 
2 1 12 0.20 443 20 1934 35 2 1709 
2 1 15 0.20 206 10 1541 27 1 1374 
2 1 20 0.20 95 5 1556 18 1 1413 
2 1 25 0.20 58 3 1600 12 1 1335 
2 1 30 0.20 39 2 1409 10 1 1370 
2 1 35 0.20 30 1 1499 8 0 1325 
2 1 40 0.20 24 1 1479 7 0 1380 
2 1 3 0.15 over ---- ---- 3369 168 1100 
2 1 4 0.15 over ---- ---- 1717 86 1584 
2 1 5 0.15 over ---- ---- 1008 50 1639 
2 1 6 0.15 over ---- ---- 646 32 1594 
2 1 7 0.15 over ---- ---- 451 23 1592 
2 1 8 0.15 over ---- ---- 328 16 1645 
2 1 9 0.15 over ---- ---- 248 12 1616 
2 1 10 0.15 over ---- ---- 205 10 1573 
2 1 12 0.15 7185 359 366 131 7 1518 
2 1 15 0.15 3409 170 1139 90 5 1558 
2 1 20 0.15 985 49 1556 52 3 1638 
2 1 25 0.15 406 20 1494 35 2 1420 
2 1 30 0.15 220 11 1506 26 1 1405 
2 1 35 0.15 140 7 1551 20 1 1504 
2 1 40 0.15 99 5 1518 17 1 1481 
2 1 3 0.10 over ---- ---- over ---- ---- 
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2 1 4 0.10 over ---- ---- over ---- ---- 
2 1 5 0.10 over ---- ---- over ---- ---- 
2 1 6 0.10 over ---- ---- 9603 479 43 
2 1 7 0.10 over ---- ---- 9430 467 71 
2 1 8 0.10 over ---- ---- 9106 452 85 
2 1 9 0.10 over ---- ---- 8651 430 140 
2 1 10 0.10 over ---- ---- 7577 378 296 
2 1 12 0.10 over ---- ---- 5868 293 580 
2 1 15 0.10 over ---- ---- 3022 151 1219 
2 1 20 0.10 over ---- ---- 1071 54 1532 
2 1 25 0.10 over ---- ---- 492 25 1484 
2 1 30 0.10 over ---- ---- 269 13 1547 
2 1 35 0.10 6384 319 487 172 9 1557 
2 1 40 0.10 3852 193 1001 121 6 1617 
3 1 4 0.25 7807 389 260 379 19 1508 
3 1 5 0.25 3808 190 976 202 10 1524 
3 1 6 0.25 1816 91 1336 128 6 1370 
3 1 7 0.25 960 48 1425 92 5 1469 
3 1 8 0.25 616 31 1525 74 4 1653 
3 1 9 0.25 415 21 1582 61 3 1611 
3 1 10 0.25 309 15 1465 48 2 1357 
3 1 12 0.25 185 9 1579 36 2 1536 
3 1 15 0.25 109 5 1675 24 1 1431 
3 1 20 0.25 62 3 1568 15 1 1394 
3 1 25 0.25 42 2 1647 11 1 1426 
3 1 30 0.25 31 2 1573 9 0 1291 
3 1 35 0.25 25 1 1581 7 0 1377 
3 1 40 0.25 21 1 1484 6 0 1352 
3 1 4 0.20 over ---- ---- 999 50 1523 
3 1 5 0.20 over ---- ---- 520 26 1517 
3 1 6 0.20 over ---- ---- 357 17 1604 
3 1 7 0.20 8000 399 223 219 11 1588 
3 1 8 0.20 5988 299 541 175 9 1630 
3 1 9 0.20 5146 207 905 131 7 1529 
3 1 10 0.20 2834 142 1231 111 6 1682 
3 1 12 0.20 1347 67 1383 77 4 1521 
3 1 15 0.20 632 32 1489 50 3 1502 
3 1 20 0.20 263 13 1525 31 2 1499 
3 1 25 0.20 148 7 1611 22 1 1539 
3 1 30 0.20 99 5 1639 15 1 1291 
3 1 35 0.20 72 4 1575 13 1 1469 
3 1 40 0.20 57 3 1503 11 1 1458 
3 1 4 0.15 over ---- ---- 5608 280 635 
3 1 5 0.15 over ---- ---- 3532 176 1135 
3 1 6 0.15 over ---- ---- 2235 112 1365 
3 1 7 0.15 over ---- ---- 1532 77 1494 
3 1 8 0.15 over ---- ---- 1062 53 1500 
3 1 9 0.15 over ---- ---- 813 41 1500 
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3 1 10 0.15 over ---- ---- 634 32 1528 
3 1 12 0.15 over ---- ---- 405 20 1298 
3 1 15 0.15 8310 414 201 234 12 1502 
3 1 20 0.15 4515 226 829 124 6 1442 
3 1 25 0.15 1985 99 1313 77 4 1421 
3 1 30 0.15 965 48 1423 56 3 1605 
3 1 35 0.15 590 30 1538 39 2 1544 
3 1 40 0.15 378 19 1539 30 2 1415 
3 1 4 0.10 over ---- ---- over ---- ---- 
3 1 5 0.10 over ---- ---- over ---- ---- 
3 1 6 0.10 over ---- ---- over ---- ---- 
3 1 7 0.10 over ---- ---- over ---- ---- 
3 1 8 0.10 over ---- ---- over ---- ---- 
3 1 9 0.10 over ---- ---- over ---- ---- 
3 1 10 0.10 over ---- ---- over ---- ---- 
3 1 12 0.10 over ---- ---- over ---- ---- 
3 1 15 0.10 over ---- ---- over ---- ---- 
3 1 20 0.10 over ---- ---- over ---- ---- 
3 1 25 0.10 over ---- ---- 2481 124 1254 
3 1 30 0.10 over ---- ---- 1214 61 1423 
3 1 35 0.10 over ---- ---- 724 36 1478 
3 1 40 0.10 over ---- ---- 453 23 1586 
3 2 4 0.25 2821 141 1287 140 7 1505 
3 2 5 0.25 952 48 1548 74 4 1475 
3 2 6 0.25 456 23 1613 45 2 1511 
3 2 7 0.25 268 13 1533 33 2 1629 
3 2 8 0.25 173 9 1626 25 1 1314 
3 2 9 0.25 120 6 1505 20 1 1644 
3 2 10 0.25 91 5 1457 17 1 1440 
3 2 12 0.25 58 3 1550 13 1 1415 
3 2 15 0.25 34 2 1475 9 0 1209 
3 2 20 0.25 21 1 1522 6 0 1318 
3 2 25 0.25 14 1 1501 5 0 1296 
3 2 30 0.25 11 1 1393 4 0 1036 
3 2 35 0.25 9 0 1353 3 0 1001 
3 2 40 0.25 8 0 1695 3 0 1244 
3 2 4 0.20 over ---- ---- 323 16 1540 
3 2 5 0.20 over ---- ---- 166 8 1533 
3 2 6 0.20 6582 329 455 111 6 1492 
3 2 7 0.20 3911 195 1009 74 4 1494 
3 2 8 0.20 2122 106 1430 57 3 1427 
3 2 9 0.20 1209 60 1583 42 2 1482 
3 2 10 0.20 794 40 1505 34 2 1583 
3 2 12 0.20 399 20 1541 24 1 1715 
3 2 15 0.20 190 9 1558 17 1 1503 
3 2 20 0.20 83 4 1406 11 1 1528 
3 2 25 0.20 49 2 1537 8 0 1419 
3 2 30 0.20 36 2 1420 6 0 1341 
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3 2 35 0.20 25 1 1442 5 0 1239 
3 2 40 0.20 20 1 1467 4 0 1201 
3 2 4 0.15 over ---- ---- 2296 115 1416 
3 2 5 0.15 over ---- ---- 1185 59 1418 
3 2 6 0.15 over ---- ---- 709 35 1439 
3 2 7 0.15 over ---- ---- 461 23 1587 
3 2 8 0.15 over ---- ---- 329 16 1521 
3 2 9 0.15 over ---- ---- 248 12 1574 
3 2 10 0.15 over ---- ---- 190 9 1449 
3 2 12 0.15 over ---- ---- 123 6 1336 
3 2 15 0.15 5128 256 751 73 4 1428 
3 2 20 0.15 unk ---- ---- 36 2 1554 
3 2 25 0.15 580 29 1527 24 1 1503 
3 2 30 0.15 299 13 1947 17 1 1830 
3 2 35 0.15 175 9 1481 13 1 1423 
3 2 40 0.15 120 6 1412 10 1 1278 
3 2 4 0.10 over ---- ---- over ---- ---- 
3 2 5 0.10 over ---- ---- over ---- ---- 
3 2 6 0.10 over ---- ---- over ---- ---- 
3 2 7 0.10 over ---- ---- over ---- ---- 
3 2 8 0.10 over ---- ---- over ---- ---- 
3 2 9 0.10 over ---- ---- over ---- ---- 
3 2 10 0.10 over ---- ---- 9666 451 13 
3 2 12 0.10 over ---- ---- 7643 381 268 
3 2 15 0.10 over ---- ---- 4841 242 797 
3 2 20 0.10 over ---- ---- 1670 83 1461 
3 2 25 0.10 over ---- ---- 667 33 1538 
3 2 30 0.10 over ---- ---- 330 17 1587 
3 2 35 0.10 over ---- ---- 189 9 1600 
3 2 40 0.10 7546 377 302 114 6 1651 
3 3 4 0.25 unk ---- ---- 73 4 1597 
3 3 5 0.25 213 11 1510 41 2 1427 
3 3 6 0.25 118 6 1479 26 1 1593 
3 3 7 0.25 79 4 1580 18 1 1418 
3 3 8 0.25 55 3 1621 14 1 1426 
3 3 9 0.25 42 2 1588 12 1 1332 
3 3 10 0.25 33 2 1539 10 1 1292 
3 3 12 0.25 23 1 1493 7 0 1410 
3 3 15 0.25 16 1 1461 5 0 1315 
3 3 20 0.25 10 0 1428 4 0 1093 
3 3 25 0.25 7 0 1685 3 0 1296 
3 3 30 0.25 6 0 1217 2 0 821 
3 3 35 0.25 5 0 1118 2 0 809 
3 3 40 0.25 4 0 1136 2 0 724 
3 3 4 0.20 over ---- ---- 147 7 1550 
3 3 5 0.20 sing ---- ---- 82 4 1425 
3 3 6 0.20 unk ---- ---- 50 2 1605 
3 3 7 0.20 802 40 1525 38 2 1508 
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3 3 8 0.20 unk ---- ---- 27 1 1565 
3 3 9 0.20 300 15 1457 22 1 1639 
3 3 10 0.20 208 10 1518 18 1 1381 
3 3 12 0.20 118 6 1562 13 1 1343 
3 3 15 0.20 65 3 1523 9 0 1508 
3 3 20 0.20 34 2 1922 6 0 1553 
3 3 25 0.20 22 1 1516 4 0 1119 
3 3 30 0.20 16 1 1517 4 0 1112 
3 3 35 0.20 12 1 1399 3 0 966 
3 3 40 0.20 10 0 1699 3 0 1000 
3 3 4 0.15 over ---- ---- 847 42 1491 
3 3 5 0.15 over ---- ---- 461 23 1532 
3 3 6 0.15 over ---- ---- 268 13 1478 
3 3 7 0.15 over ---- ---- 180 9 1559 
3 3 8 0.15 over ---- ---- 127 6 1515 
3 3 9 0.15 over ---- ---- 94 5 1598 
3 3 10 0.15 over ---- ---- 73 4 1540 
3 3 12 0.15 sing ---- ---- 52 3 1603 
3 3 15 0.15 unk ---- ---- 33 2 1548 
3 3 20 0.15 445 22 1547 17 1 1546 
3 3 25 0.15 195 10 1509 11 1 1360 
3 3 30 0.15 105 5 1646 8 0 1423 
3 3 35 0.15 68 3 1580 6 0 1288 
3 3 40 0.15 49 2 1544 5 0 1358 
3 3 4 0.10 over ---- ---- over ---- ---- 
3 3 5 0.10 over ---- ---- 9763 477 19 
3 3 6 0.10 over ---- ---- 9115 452 105 
3 3 7 0.10 over ---- ---- 8477 423 178 
3 3 8 0.10 over ---- ---- 7514 375 340 
3 3 9 0.10 over ---- ---- 6730 336 451 
3 3 10 0.10 over ---- ---- 5778 260 752 
3 3 12 0.10 over ---- ---- 3700 166 1275 
3 3 15 0.10 over ---- ---- 1656 83 1617 
3 3 20 0.10 over ---- ---- 502 25 1529 
3 3 25 0.10 over ---- ---- 208 10 1563 
3 3 30 0.10 over ---- ---- 109 5 1582 
3 3 35 0.10 6517 326 478 68 3 1445 
3 3 40 0.10 sing ---- ---- 45 2 1702 
5 1 6 0.25 sing ---- ---- 977 49 1464 
5 1 7 0.25 sing ---- ---- 539 27 1658 
5 1 8 0.25 unk ---- ---- 353 18 1585 
5 1 9 0.25 unk ---- ---- 257 13 1603 
5 1 10 0.25 unk ---- ---- 180 9 1592 
5 1 12 0.25 506 25 1635 112 6 1577 
5 1 15 0.25 268 13 1474 68 3 1555 
5 1 20 0.25 137 7 1509 37 2 1427 
5 1 25 0.25 89 4 1632 24 1 1557 
5 1 30 0.25 66 3 1680 18 1 1594 
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5 1 35 0.25 51 3 1556 14 1 1418 
5 1 40 0.25 41 2 1602 12 1 1370 
5 1 6 0.20 over ---- ---- sing ---- ---- 
5 1 7 0.20 over ---- ---- 1544 77 1624 
5 1 8 0.20 over ---- ---- 951 48 1537 
5 1 9 0.20 over ---- ---- 645 32 1619 
5 1 10 0.20 over ---- ---- 475 24 1571 
5 1 12 0.20 sing ---- ---- 291 16 1471 
5 1 15 0.20 unk ---- ---- 180 9 1522 
5 1 20 0.20 unk ---- ---- 98 5 1583 
5 1 25 0.20 499 25 1660 59 3 1457 
5 1 30 0.20 297 15 1483 41 2 1502 
5 1 35 0.20 207 10 1432 30 2 1502 
5 1 40 0.20 unk ---- ---- 24 1 1484 
5 1 6 0.15 over ---- ---- over ---- ---- 
5 1 7 0.15 over ---- ---- over ---- ---- 
5 1 8 0.15 over ---- ---- over ---- ---- 
5 1 9 0.15 over ---- ---- sing ---- ---- 
5 1 10 0.15 over ---- ---- sing ---- ---- 
5 1 12 0.15 over ---- ---- 2387 119 1451 
5 1 15 0.15 over ---- ---- 1313 66 1551 
5 1 20 0.15 over ---- ---- 606 30 1561 
5 1 25 0.15 over ---- ---- 337 17 1517 
5 1 30 0.15 sing ---- ---- 207 10 1568 
5 1 35 0.15 unk ---- ---- 144 7 1624 
5 1 40 0.15 unk ---- ---- 111 6 1513 
5 1 6 0.10 over ---- ---- over ---- ---- 
5 1 7 0.10 over ---- ---- over ---- ---- 
5 1 8 0.10 over ---- ---- over ---- ---- 
5 1 9 0.10 over ---- ---- over ---- ---- 
5 1 10 0.10 over ---- ---- over ---- ---- 
5 1 12 0.10 over ---- ---- over ---- ---- 
5 1 15 0.10 over ---- ---- 9783 465 20 
5 1 20 0.10 over ---- ---- 9408 464 60 
5 1 25 0.10 over ---- ---- 8622 430 165 
5 1 30 0.10 over ---- ---- 7692 384 283 
5 1 35 0.10 over ---- ---- 6172 308 522 
5 1 40 0.10 over ---- ---- sing ---- ---- 
5 2 6 0.25 unk ---- ---- sing ---- ---- 
5 2 7 0.25 unk ---- ---- 189 9 1557 
5 2 8 0.25 unk ---- ---- 116 6 1403 
5 2 9 0.25 unk ---- ---- 84 4 1584 
5 2 10 0.25 219 11 1589 61 3 1444 
5 2 12 0.25 126 6 1528 41 2 1528 
5 2 15 0.25 71 4 1400 23 1 1430 
5 2 20 0.25 38 2 1858 14 1 1847 
5 2 25 0.25 27 1 1548 9 0 1447 
5 2 30 0.25 21 1 1520 7 0 1266 
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5 2 35 0.25 16 1 1455 6 0 1356 
5 2 40 0.25 13 1 1547 5 0 1248 
5 2 6 0.20 over ---- ---- 788 39 1417 
5 2 7 0.20 sing ---- ---- 456 23 1551 
5 2 8 0.20 sing ---- ---- 289 14 1461 
5 2 9 0.20 sing ---- ---- 203 10 1609 
5 2 10 0.20 sing ---- ---- 149 7 1419 
5 2 12 0.20 unk ---- ---- 93 5 1487 
5 2 15 0.20 unk ---- ---- 57 3 1612 
5 2 20 0.20 unk ---- ---- 28 1 1620 
5 2 25 0.20 130 6 1483 19 1 1486 
5 2 30 0.20 81 4 1523 14 1 1720 
5 2 35 0.20 58 3 1518 10 1 1336 
5 2 40 0.20 46 2 1496 8 0 1346 
5 2 6 0.15 over ---- ---- sing ---- ---- 
5 2 7 0.15 over ---- ---- sing ---- ---- 
5 2 8 0.15 over ---- ---- sing ---- ---- 
5 2 9 0.15 over ---- ---- sing ---- ---- 
5 2 10 0.15 over ---- ---- 1063 53 1526 
5 2 12 0.15 over ---- ---- 656 33 1521 
5 2 15 0.15 over ---- ---- 352 18 1497 
5 2 20 0.15 sing ---- ---- 154 8 1539 
5 2 25 0.15 sing ---- ---- 89 4 1518 
5 2 30 0.15 sing ---- ---- 58 3 1451 
5 2 35 0.15 unk ---- ---- 40 2 1658 
5 2 40 0.15 unk ---- ---- 31 2 1448 
5 2 6 0.10 over ---- ---- over ---- ---- 
5 2 7 0.10 over ---- ---- over ---- ---- 
5 2 8 0.10 over ---- ---- over ---- ---- 
5 2 9 0.10 over ---- ---- over ---- ---- 
5 2 10 0.10 over ---- ---- over ---- ---- 
5 2 12 0.10 over ---- ---- over ---- ---- 
5 2 15 0.10 over ---- ---- over ---- ---- 
5 2 20 0.10 over ---- ---- over ---- ---- 
5 2 25 0.10 over ---- ---- over ---- ---- 
5 2 30 0.10 over ---- ---- sing ---- ---- 
5 2 35 0.10 over ---- ---- sing ---- ---- 
5 2 40 0.10 over ---- ---- unk ---- ---- 
5 3 6 0.25 unk ---- ---- 193 10 1388 
5 3 7 0.25 unk ---- ---- 107 5 1428 
5 3 8 0.25 unk ---- ---- 69 3 1565 
5 3 9 0.25 73 4 1487 47 2 1602 
5 3 10 0.25 57 3 1349 36 2 1454 
5 3 12 0.25 39 2 1446 23 1 1388 
5 3 15 0.25 26 1 1405 14 1 1439 
5 3 20 0.25 16 1 1396 8 0 1248 
5 3 25 0.25 12 1 1479 5 0 1181 
5 3 30 0.25 9 0 1411 4 0 1056 
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5 3 35 0.25 8 0 1356 3 0 1013 
5 3 40 0.25 7 0 1337 3 0 963 
5 3 6 0.20 sing ---- ---- 398 20 1651 
5 3 7 0.20 sing ---- ---- 215 11 1619 
5 3 8 0.20 unk ---- ---- 134 6 1856 
5 3 9 0.20 721 36 1528 94 4 1815 
5 3 10 0.20 unk ---- ---- 73 4 1352 
5 3 12 0.20 270 14 1455 44 2 1532 
5 3 15 0.20 146 7 1624 26 1 1472 
5 3 20 0.20 70 4 1449 15 1 1453 
5 3 25 0.20 43 2 1362 10 1 1337 
5 3 30 0.20 31 2 1389 7 0 1326 
5 3 35 0.20 23 1 1443 6 0 1325 
5 3 40 0.20 19 1 1401 5 0 1127 
5 3 6 0.15 over ---- ---- sing ---- ---- 
5 3 7 0.15 over ---- ---- sing ---- ---- 
5 3 8 0.15 over ---- ---- 738 37 1543 
5 3 9 0.15 over ---- ---- 518 26 1626 
5 3 10 0.15 sing ---- ---- 365 18 1705 
5 3 12 0.15 sing ---- ---- 215 11 1579 
5 3 15 0.15 sing ---- ---- 121 6 1675 
5 3 20 0.15 sing ---- ---- 60 3 1559 
5 3 25 0.15 unk ---- ---- 36 2 1409 
5 3 30 0.15 284 19 1489 25 1 1437 
5 3 35 0.15 237 12 1476 18 1 1446 
5 3 40 0.15 158 8 1538 14 1 1476 
5 3 6 0.10 over ---- ---- over ---- ---- 
5 3 7 0.10 over ---- ---- over ---- ---- 
5 3 8 0.10 over ---- ---- over ---- ---- 
5 3 9 0.10 over ---- ---- over ---- ---- 
5 3 10 0.10 over ---- ---- over ---- ---- 
5 3 12 0.10 over ---- ---- over ---- ---- 
5 3 15 0.10 over ---- ---- over ---- ---- 
5 3 20 0.10 over ---- ---- sing ---- ---- 
5 3 25 0.10 over ---- ---- sing ---- ---- 
5 3 30 0.10 over ---- ---- sing ---- ---- 
5 3 35 0.10 over ---- ---- 555 28 1540 
5 3 40 0.10 over ---- ---- 307 15 1468 
8 1 9 0.25 sing ---- ---- unk ---- ---- 
8 1 10 0.25 sing ---- ---- 2127 106 1519 
8 1 12 0.25 sing ---- ---- 877 44 1532 
8 1 15 0.25 unk ---- ---- 397 20 1433 
8 1 20 0.25 unk ---- ---- 152 8 1404 
8 1 25 0.25 179 9 1651 87 4 1458 
8 1 30 0.25 125 6 1538 57 3 1538 
8 1 35 0.25 97 5 1514 41 2 1590 
8 1 40 0.25 76 4 1478 32 2 1383 
8 1 9 0.20 9948 278 2 sing ---- ---- 
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8 1 10 0.20 9948 278 2 sing ---- ---- 
8 1 12 0.20 9948 278 2 sing ---- ---- 
8 1 15 0.20 sing ---- ---- 1107 55 1556 
8 1 20 0.20 sing ---- ---- 430 21 1485 
8 1 25 0.20 sing ---- ---- 237 12 1518 
8 1 30 0.20 sing ---- ---- 149 7 1904 
8 1 35 0.20 unk ---- ---- 105 5 1477 
8 1 40 0.20 406 20 1589 76 4 1501 
8 1 9 0.15 sing ---- ---- sing ---- ---- 
8 1 10 0.15 over ---- ---- over ---- ---- 
8 1 12 0.15 over ---- ---- over ---- ---- 
8 1 15 0.15 over ---- ---- 9966 186 2 
8 1 20 0.15 over ---- ---- 3707 167 1324 
8 1 25 0.15 9948 278 2 2058 93 1863 
8 1 30 0.15 8989 403 157 1202 54 1920 
8 1 35 0.15 9948 278 2 824 41 1420 
8 1 40 0.15 sing ---- ---- 541 27 1564 
8 2 9 0.25 unk ---- ---- sing ---- ---- 
8 2 10 0.25 unk ---- ---- sing ---- ---- 
8 2 12 0.25 unk ---- ---- sing ---- ---- 
8 2 15 0.25 unk ---- ---- 132 7 1488 
8 2 20 0.25 77 4 1449 54 3 1660 
8 2 25 0.25 47 2 1738 29 1 1650 
8 2 30 0.25 35 2 1539 21 1 1414 
8 2 35 0.25 27 1 1530 15 1 1434 
8 2 40 0.25 unk ---- ---- 11 1 1371 
8 2 9 0.20 over ---- ---- sing ---- ---- 
8 2 10 0.20 over ---- ---- sing ---- ---- 
8 2 12 0.20 sing ---- ---- 764 38 1532 
8 2 15 0.20 sing ---- ---- 318 16 1545 
8 2 20 0.20 sing ---- ---- 126 6 1663 
8 2 25 0.20 unk ---- ---- 73 4 1538 
8 2 30 0.20 unk ---- ---- 46 2 1436 
8 2 35 0.20 145 7 1447 33 2 1449 
8 2 40 0.20 102 5 1453 25 1 1439 
8 2 9 0.15 over ---- ---- over ---- ---- 
8 2 10 0.15 over ---- ---- over ---- ---- 
8 2 12 0.15 over ---- ---- sing ---- ---- 
8 2 15 0.15 over ---- ---- sing ---- ---- 
8 2 20 0.15 over ---- ---- sing ---- ---- 
8 2 25 0.15 over ---- ---- sing ---- ---- 
8 2 30 0.15 sing ---- ---- 294 15 1588 
8 2 35 0.15 sing ---- ---- 195 10 1500 
8 2 40 0.15 sing ---- ---- 130 7 1401 
8 2 9 0.10 over ---- ---- over ---- ---- 
8 2 10 0.10 over ---- ---- over ---- ---- 
8 2 12 0.10 over ---- ---- over ---- ---- 
8 2 15 0.10 over ---- ---- over ---- ---- 
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8 2 20 0.10 over ---- ---- over ---- ---- 
8 2 25 0.10 over ---- ---- over ---- ---- 
8 2 30 0.10 over ---- ---- 9553 466 34 
8 2 35 0.10 over ---- ---- sing ---- ---- 
8 2 40 0.10 over ---- ---- sing ---- ---- 
8 3 9 0.25 unk ---- ---- sing ---- ---- 
8 3 10 0.25 unk ---- ---- sing ---- ---- 
8 3 12 0.25 unk ---- ---- 181 9 1542 
8 3 15 0.25 unk ---- ---- 71 4 1434 
8 3 20 0.25 27 1 1360 30 1 1402 
8 3 25 0.25 19 1 1387 17 1 1462 
8 3 30 0.25 5 0 1 11 1 1414 
8 3 35 0.25 5 0 1 9 0 1307 
8 3 40 0.25 5 0 1 7 0 1308 
8 3 9 0.20 sing ---- ---- sing ---- ---- 
8 3 10 0.20 sing ---- ---- 888 44 1521 
8 3 12 0.20 sing ---- ---- 396 20 1579 
8 3 15 0.20 unk ---- ---- 167 8 1585 
8 3 20 0.20 unk ---- ---- 64 3 1512 
8 3 25 0.20 unk ---- ---- 36 2 1493 
8 3 30 0.20 unk ---- ---- 24 1 1425 
8 3 35 0.20 unk ---- ---- 17 1 1514 
8 3 40 0.20 36 2 1554 13 1 1411 
8 3 9 0.15 over ---- ---- sing ---- ---- 
8 3 10 0.15 over ---- ---- sing ---- ---- 
8 3 12 0.15 9679 468 18 sing ---- ---- 
8 3 15 0.15 sing ---- ---- unk ---- ---- 
8 3 20 0.15 sing ---- ---- sing ---- ---- 
8 3 25 0.15 sing ---- ---- 180 9 1506 
8 3 30 0.15 sing ---- ---- 111 6 1485 
8 3 35 0.15 unk ---- ---- 76 4 1673 
8 3 40 0.15 unk ---- ---- 54 3 1597 
8 3 9 0.10 over ---- ---- over ---- ---- 
8 3 10 0.10 over ---- ---- over ---- ---- 
8 3 12 0.10 over ---- ---- over ---- ---- 
8 3 15 0.10 over ---- ---- over ---- ---- 
8 3 20 0.10 over ---- ---- over ---- ---- 
8 3 25 0.10 over ---- ---- over ---- ---- 
8 3 30 0.10 over ---- ---- sing ---- ---- 
8 3 35 0.10 over ---- ---- sing ---- ---- 
8 3 40 0.10 over ---- ---- sing ---- ---- 

 

The following table, Table 16, provides the results for simulations of the Independence 

correlation matrix structure and uses the same nomenclature as that for Table 15. 
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Table 16  Simulation Results for the Independence Structure 

     |R|   WR  
p perturbs n var ARL std err reps ARL std err reps 
2 1 3 0.25 over ---- ---- 7373 369 339 
2 1 4 0.25 over ---- ---- 4900 245 800 
2 1 5 0.25 over ---- ---- 2807 140 1306 
2 1 6 0.25 over ---- ---- 1622 81 1550 
2 1 7 0.25 over ---- ---- 990 49 1489 
2 1 8 0.25 over ---- ---- 625 31 1421 
2 1 9 0.25 over ---- ---- 435 22 1338 
2 1 10 0.25 over ---- ---- 308 15 1398 
2 1 12 0.25 over ---- ---- 175 9 1415 
2 1 15 0.25 over ---- ---- 89 4 1455 
2 1 20 0.25 5322 266 712 44 2 1427 
2 1 25 0.25 2848 142 1275 26 1 1473 
2 1 30 0.25 1579 79 1476 17 1 1360 
2 1 35 0.25 981 49 1499 14 1 1516 
2 1 40 0.25 663 33 1418 11 1 1188 
2 1 3 0.20 over ---- ---- over ---- ---- 
2 1 4 0.20 over ---- ---- over ---- ---- 
2 1 5 0.20 over ---- ---- 9414 468 69 
2 1 6 0.20 over ---- ---- 8995 446 128 
2 1 7 0.20 over ---- ---- 8254 411 223 
2 1 8 0.20 over ---- ---- 7005 350 375 
2 1 9 0.20 over ---- ---- 5316 266 711 
2 1 10 0.20 over ---- ---- 3774 189 1060 
2 1 12 0.20 over ---- ---- 1791 90 1497 
2 1 15 0.20 over ---- ---- 680 34 1451 
2 1 20 0.20 over ---- ---- 221 11 1501 
2 1 25 0.20 over ---- ---- 98 5 1455 
2 1 30 0.20 over ---- ---- 58 3 1530 
2 1 35 0.20 over ---- ---- 39 2 1675 
2 1 40 0.20 over ---- ---- 28 1 1625 
2 1 3 0.15 over ---- ---- over ---- ---- 
2 1 4 0.15 over ---- ---- over ---- ---- 
2 1 5 0.15 over ---- ---- over ---- ---- 
2 1 6 0.15 over ---- ---- over ---- ---- 
2 1 7 0.15 over ---- ---- over ---- ---- 
2 1 8 0.15 over ---- ---- over ---- ---- 
2 1 9 0.15 over ---- ---- over ---- ---- 
2 1 10 0.15 over ---- ---- over ---- ---- 
2 1 12 0.15 over ---- ---- over ---- ---- 
2 1 15 0.15 over ---- ---- 8927 443 135 
2 1 20 0.15 over ---- ---- 5143 257 746 
2 1 25 0.15 over ---- ---- 1799 90 1489 
2 1 30 0.15 over ---- ---- 706 35 1510 
2 1 35 0.15 over ---- ---- 353 18 1412 
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2 1 40 0.15 over ---- ---- 200 10 1536 
2 1 3 0.10 over ---- ---- over ---- ---- 
2 1 4 0.10 over ---- ---- over ---- ---- 
2 1 5 0.10 over ---- ---- over ---- ---- 
2 1 6 0.10 over ---- ---- over ---- ---- 
2 1 7 0.10 over ---- ---- over ---- ---- 
2 1 8 0.10 over ---- ---- over ---- ---- 
2 1 9 0.10 over ---- ---- over ---- ---- 
2 1 10 0.10 over ---- ---- over ---- ---- 
2 1 12 0.10 over ---- ---- over ---- ---- 
2 1 15 0.10 over ---- ---- over ---- ---- 
2 1 20 0.10 over ---- ---- over ---- ---- 
2 1 25 0.10 over ---- ---- over ---- ---- 
2 1 30 0.10 over ---- ---- over ---- ---- 
2 1 35 0.10 over ---- ---- 9455 472 56 
2 1 40 0.10 over ---- ---- 8942 447 131 
3 1 4 0.25 over ---- ---- over ---- ---- 
3 1 5 0.25 over ---- ---- over ---- ---- 
3 1 6 0.25 over ---- ---- over ---- ---- 
3 1 7 0.25 over ---- ---- over ---- ---- 
3 1 8 0.25 over ---- ---- 2909 145 1202 
3 1 9 0.25 over ---- ---- 2018 101 1389 
3 1 10 0.25 over ---- ---- 1480 74 1441 
3 1 12 0.25 over ---- ---- 793 40 1559 
3 1 15 0.25 over ---- ---- 377 19 1516 
3 1 20 0.25 over ---- ---- 159 8 1495 
3 1 25 0.25 7430 371 300 78 4 1556 
3 1 30 0.25 5234 262 716 51 3 1499 
3 1 35 0.25 3353 167 1145 35 2 1571 
3 1 40 0.25 2128 106 1346 28 1 1437 
3 1 4 0.20 over ---- ---- over ---- ---- 
3 1 5 0.20 over ---- ---- over ---- ---- 
3 1 6 0.20 over ---- ---- over ---- ---- 
3 1 7 0.20 over ---- ---- over ---- ---- 
3 1 8 0.20 over ---- ---- over ---- ---- 
3 1 9 0.20 over ---- ---- 9845 440 5 
3 1 10 0.20 over ---- ---- 9845 440 5 
3 1 12 0.20 over ---- ---- 9845 440 5 
3 1 15 0.20 over ---- ---- 4988 249 778 
3 1 20 0.20 over ---- ---- 1530 76 1422 
3 1 25 0.20 over ---- ---- 587 29 1487 
3 1 30 0.20 over ---- ---- 281 14 1533 
3 1 35 0.20 over ---- ---- 166 8 1474 
3 1 40 0.20 over ---- ---- 103 5 1583 
3 1 4 0.15 over ---- ---- over ---- ---- 
3 1 5 0.15 over ---- ---- over ---- ---- 
3 1 6 0.15 over ---- ---- over ---- ---- 
3 1 7 0.15 over ---- ---- over ---- ---- 
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3 1 8 0.15 over ---- ---- over ---- ---- 
3 1 9 0.15 over ---- ---- over ---- ---- 
3 1 10 0.15 over ---- ---- over ---- ---- 
3 1 12 0.15 over ---- ---- over ---- ---- 
3 1 15 0.15 over ---- ---- over ---- ---- 
3 1 20 0.15 over ---- ---- over ---- ---- 
3 1 25 0.15 over ---- ---- 9845 440 5 
3 1 30 0.15 over ---- ---- 6494 324 475 
3 1 35 0.15 over ---- ---- 3709 185 1074 
3 1 40 0.15 over ---- ---- 1814 91 1415 
3 1 4 0.10 over ---- ---- over ---- ---- 
3 1 5 0.10 over ---- ---- over ---- ---- 
3 1 6 0.10 over ---- ---- over ---- ---- 
3 1 7 0.10 over ---- ---- over ---- ---- 
3 1 8 0.10 over ---- ---- over ---- ---- 
3 1 9 0.10 over ---- ---- over ---- ---- 
3 1 10 0.10 over ---- ---- over ---- ---- 
3 1 12 0.10 over ---- ---- over ---- ---- 
3 1 15 0.10 over ---- ---- over ---- ---- 
3 1 20 0.10 over ---- ---- over ---- ---- 
3 1 25 0.10 over ---- ---- over ---- ---- 
3 1 30 0.10 over ---- ---- over ---- ---- 
3 1 35 0.10 over ---- ---- over ---- ---- 
3 1 40 0.10 over ---- ---- over ---- ---- 
3 2 4 0.25 over ---- ---- 5007 250 740 
3 2 5 0.25 over ---- ---- 2804 140 1286 
3 2 6 0.25 over ---- ---- 1610 81 1526 
3 2 7 0.25 over ---- ---- 976 49 1572 
3 2 8 0.25 over ---- ---- 637 32 1630 
3 2 9 0.25 over ---- ---- 439 22 1525 
3 2 10 0.25 over ---- ---- 326 16 1588 
3 2 12 0.25 over ---- ---- 186 9 1512 
3 2 15 0.25 8445 421 189 95 5 1516 
3 2 20 0.25 unk ---- ---- 40 2 1457 
3 2 25 0.25 unk ---- ---- 23 1 1513 
3 2 30 0.25 unk ---- ---- 15 1 1405 
3 2 35 0.25 unk ---- ---- 11 1 1465 
3 2 40 0.25 460 23 1536 8 0 1444 
3 2 4 0.20 over ---- ---- over ---- ---- 
3 2 5 0.20 over ---- ---- over ---- ---- 
3 2 6 0.20 over ---- ---- over ---- ---- 
3 2 7 0.20 over ---- ---- over ---- ---- 
3 2 8 0.20 over ---- ---- over ---- ---- 
3 2 9 0.20 over ---- ---- 6975 348 371 
3 2 10 0.20 over ---- ---- 5467 273 643 
3 2 12 0.20 over ---- ---- 3163 158 1217 
3 2 15 0.20 over ---- ---- 1162 58 1452 
3 2 20 0.20 over ---- ---- 334 17 1440 
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3 2 25 0.20 over ---- ---- 142 7 1414 
3 2 30 0.20 over ---- ---- 72 4 1410 
3 2 35 0.20 8480 423 186 45 2 1662 
3 2 40 0.20 7582 379 286 29 1 1679 
3 2 4 0.15 over ---- ---- over ---- ---- 
3 2 5 0.15 over ---- ---- over ---- ---- 
3 2 6 0.15 over ---- ---- over ---- ---- 
3 2 7 0.15 over ---- ---- over ---- ---- 
3 2 8 0.15 over ---- ---- over ---- ---- 
3 2 9 0.15 over ---- ---- over ---- ---- 
3 2 10 0.15 over ---- ---- over ---- ---- 
3 2 12 0.15 over ---- ---- over ---- ---- 
3 2 15 0.15 over ---- ---- over ---- ---- 
3 2 20 0.15 over ---- ---- over ---- ---- 
3 2 25 0.15 over ---- ---- 5098 255 722 
3 2 30 0.15 over ---- ---- 1961 98 1459 
3 2 35 0.15 over ---- ---- 798 40 1537 
3 2 40 0.15 over ---- ---- 391 20 1481 
3 2 4 0.10 n/s ---- ---- n/s ---- ---- 
3 2 5 0.10 n/s ---- ---- n/s ---- ---- 
3 2 6 0.10 n/s ---- ---- n/s ---- ---- 
3 2 7 0.10 n/s ---- ---- n/s ---- ---- 
3 2 8 0.10 n/s ---- ---- n/s ---- ---- 
3 2 9 0.10 n/s ---- ---- n/s ---- ---- 
3 2 10 0.10 n/s ---- ---- n/s ---- ---- 
3 2 12 0.10 n/s ---- ---- n/s ---- ---- 
3 2 15 0.10 n/s ---- ---- n/s ---- ---- 
3 2 20 0.10 n/s ---- ---- n/s ---- ---- 
3 2 25 0.10 n/s ---- ---- n/s ---- ---- 
3 2 30 0.10 n/s ---- ---- n/s ---- ---- 
3 2 35 0.10 n/s ---- ---- n/s ---- ---- 
3 2 40 0.10 n/s ---- ---- n/s ---- ---- 
3 3 4 0.25 over ---- ---- 1522 76 1629 
3 3 5 0.25 over ---- ---- 752 36 1626 
3 3 6 0.25 over ---- ---- 432 32 1532 
3 3 7 0.25 over ---- ---- 277 14 1449 
3 3 8 0.25 over ---- ---- 187 9 1443 
3 3 9 0.25 over ---- ---- 133 7 1434 
3 3 10 0.25 over ---- ---- 102 5 1516 
3 3 12 0.25 sing ---- ---- 63 3 1559 
3 3 15 0.25 unk ---- ---- 36 2 1473 
3 3 20 0.25 unk ---- ---- 27 0 1 
3 3 25 0.25 unk ---- ---- 10 1 1305 
3 3 30 0.25 273 14 1406 7 0 1353 
3 3 35 0.25 176 9 1446 6 0 1287 
3 3 40 0.25 122 6 1508 1 0 1 
3 3 4 0.20 over ---- ---- 8608 430 149 
3 3 5 0.20 over ---- ---- 7261 363 347 
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3 3 6 0.20 over ---- ---- 5949 297 582 
3 3 7 0.20 over ---- ---- 4322 216 888 
3 3 8 0.20 over ---- ---- 3044 152 1193 
3 3 9 0.20 over ---- ---- 2000 100 1412 
3 3 10 0.20 over ---- ---- 1354 68 1486 
3 3 12 0.20 over ---- ---- 687 34 1645 
3 3 15 0.20 over ---- ---- 296 15 1366 
3 3 20 0.20 over ---- ---- 98 5 1540 
3 3 25 0.20 7155 357 375 48 2 1369 
3 3 30 0.20 sing ---- ---- 28 1 1490 
3 3 35 0.20 unk ---- ---- 18 1 1346 
3 3 40 0.20 unk ---- ---- 12 1 1413 
3 3 4 0.15 over ---- ---- over ---- ---- 
3 3 5 0.15 over ---- ---- over ---- ---- 
3 3 6 0.15 over ---- ---- over ---- ---- 
3 3 7 0.15 over ---- ---- over ---- ---- 
3 3 8 0.15 over ---- ---- over ---- ---- 
3 3 9 0.15 over ---- ---- over ---- ---- 
3 3 10 0.15 over ---- ---- over ---- ---- 
3 3 12 0.15 over ---- ---- over ---- ---- 
3 3 15 0.15 over ---- ---- over ---- ---- 
3 3 20 0.15 over ---- ---- 4385 218 881 
3 3 25 0.15 over ---- ---- 1323 66 1408 
3 3 30 0.15 over ---- ---- 499 25 1548 
3 3 35 0.15 over ---- ---- 225 11 1304 
3 3 40 0.15 over ---- ---- 117 6 1465 
3 3 4 0.10 n/s ---- ---- n/s ---- ---- 
3 3 5 0.10 n/s ---- ---- n/s ---- ---- 
3 3 6 0.10 n/s ---- ---- n/s ---- ---- 
3 3 7 0.10 n/s ---- ---- n/s ---- ---- 
3 3 8 0.10 n/s ---- ---- n/s ---- ---- 
3 3 9 0.10 n/s ---- ---- n/s ---- ---- 
3 3 10 0.10 n/s ---- ---- n/s ---- ---- 
3 3 12 0.10 n/s ---- ---- n/s ---- ---- 
3 3 15 0.10 n/s ---- ---- n/s ---- ---- 
3 3 20 0.10 n/s ---- ---- n/s ---- ---- 
3 3 25 0.10 n/s ---- ---- n/s ---- ---- 
3 3 30 0.10 n/s ---- ---- n/s ---- ---- 
3 3 35 0.10 n/s ---- ---- n/s ---- ---- 
3 3 40 0.10 n/s ---- ---- n/s ---- ---- 
5 1 6 0.25 over ---- ---- over ---- ---- 
5 1 7 0.25 over ---- ---- over ---- ---- 
5 1 8 0.25 over ---- ---- over ---- ---- 
5 1 9 0.25 over ---- ---- over ---- ---- 
5 1 10 0.25 over ---- ---- over ---- ---- 
5 1 12 0.25 over ---- ---- 5847 292 577 
5 1 15 0.25 over ---- ---- 3558 178 1106 
5 1 20 0.25 over ---- ---- 1506 75 1585 
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5 1 25 0.25 over ---- ---- 715 36 1600 
5 1 30 0.25 over ---- ---- 395 20 1662 
5 1 35 0.25 over ---- ---- 235 12 1460 
5 1 40 0.25 over ---- ---- 156 8 1462 
5 1 6 0.20 over ---- ---- over ---- ---- 
5 1 7 0.20 over ---- ---- over ---- ---- 
5 1 8 0.20 over ---- ---- over ---- ---- 
5 1 9 0.20 over ---- ---- over ---- ---- 
5 1 10 0.20 over ---- ---- over ---- ---- 
5 1 12 0.20 over ---- ---- over ---- ---- 
5 1 15 0.20 over ---- ---- 9783 564 20 
5 1 20 0.20 over ---- ---- 8366 417 189 
5 1 25 0.20 over ---- ---- 6765 338 422 
5 1 30 0.20 over ---- ---- 4923 246 770 
5 1 35 0.20 over ---- ---- 2759 138 1260 
5 1 40 0.20 over ---- ---- 1508 75 1558 
5 1 6 0.15 over ---- ---- over ---- ---- 
5 1 7 0.15 over ---- ---- over ---- ---- 
5 1 8 0.15 over ---- ---- over ---- ---- 
5 1 9 0.15 over ---- ---- over ---- ---- 
5 1 10 0.15 over ---- ---- over ---- ---- 
5 1 12 0.15 over ---- ---- over ---- ---- 
5 1 15 0.15 over ---- ---- over ---- ---- 
5 1 20 0.15 over ---- ---- over ---- ---- 
5 1 25 0.15 over ---- ---- over ---- ---- 
5 1 30 0.15 over ---- ---- over ---- ---- 
5 1 35 0.15 over ---- ---- over ---- ---- 
5 1 40 0.15 over ---- ---- 9783 465 20 
5 1 6 0.10 n/s ---- ---- n/s ---- ---- 
5 1 7 0.10 n/s ---- ---- n/s ---- ---- 
5 1 8 0.10 n/s ---- ---- n/s ---- ---- 
5 1 9 0.10 n/s ---- ---- n/s ---- ---- 
5 1 10 0.10 n/s ---- ---- n/s ---- ---- 
5 1 12 0.10 n/s ---- ---- n/s ---- ---- 
5 1 15 0.10 n/s ---- ---- n/s ---- ---- 
5 1 20 0.10 n/s ---- ---- n/s ---- ---- 
5 1 25 0.10 n/s ---- ---- n/s ---- ---- 
5 1 30 0.10 n/s ---- ---- n/s ---- ---- 
5 1 35 0.10 n/s ---- ---- n/s ---- ---- 
5 1 40 0.10 n/s ---- ---- n/s ---- ---- 
5 2 6 0.25 over ---- ---- over ---- ---- 
5 2 7 0.25 over ---- ---- sing ---- ---- 
5 2 8 0.25 over ---- ---- sing ---- ---- 
5 2 9 0.25 over ---- ---- sing ---- ---- 
5 2 10 0.25 over ---- ---- sing ---- ---- 
5 2 12 0.25 over ---- ---- 1780 89 1485 
5 2 15 0.25 over ---- ---- 859 43 1433 
5 2 20 0.25 over ---- ---- 333 17 1482 
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5 2 25 0.25 over ---- ---- 168 8 1508 
5 2 30 0.25 sing ---- ---- 94 5 1439 
5 2 35 0.25 unk ---- ---- 60 3 1483 
5 2 40 0.25 sing ---- ---- 41 2 1524 
5 2 6 0.20 over ---- ---- over ---- ---- 
5 2 7 0.20 over ---- ---- over ---- ---- 
5 2 8 0.20 over ---- ---- over ---- ---- 
5 2 9 0.20 over ---- ---- over ---- ---- 
5 2 10 0.20 over ---- ---- over ---- ---- 
5 2 12 0.20 over ---- ---- over ---- ---- 
5 2 15 0.20 over ---- ---- over ---- ---- 
5 2 20 0.20 over ---- ---- sing ---- ---- 
5 2 25 0.20 over ---- ---- sing ---- ---- 
5 2 30 0.20 over ---- ---- 1173 59 1365 
5 2 35 0.20 over ---- ---- 588 29 1431 
5 2 40 0.20 over ---- ---- 337 17 1534 
5 2 6 0.15 over ---- ---- over ---- ---- 
5 2 7 0.15 over ---- ---- over ---- ---- 
5 2 8 0.15 over ---- ---- over ---- ---- 
5 2 9 0.15 over ---- ---- over ---- ---- 
5 2 10 0.15 over ---- ---- over ---- ---- 
5 2 12 0.15 over ---- ---- over ---- ---- 
5 2 15 0.15 over ---- ---- over ---- ---- 
5 2 20 0.15 over ---- ---- over ---- ---- 
5 2 25 0.15 over ---- ---- over ---- ---- 
5 2 30 0.15 over ---- ---- over ---- ---- 
5 2 35 0.15 over ---- ---- over ---- ---- 
5 2 40 0.15 over ---- ---- over ---- ---- 
5 2 6 0.10 over ---- ---- over ---- ---- 
5 2 7 0.10 over ---- ---- over ---- ---- 
5 2 8 0.10 over ---- ---- over ---- ---- 
5 2 9 0.10 over ---- ---- over ---- ---- 
5 2 10 0.10 over ---- ---- over ---- ---- 
5 2 12 0.10 over ---- ---- over ---- ---- 
5 2 15 0.10 over ---- ---- over ---- ---- 
5 2 20 0.10 over ---- ---- over ---- ---- 
5 2 25 0.10 over ---- ---- over ---- ---- 
5 2 30 0.10 over ---- ---- over ---- ---- 
5 2 35 0.10 over ---- ---- over ---- ---- 
5 2 40 0.10 over ---- ---- over ---- ---- 
5 3 6 0.25 n/s ---- ---- sing ---- ---- 
5 3 7 0.25 n/s ---- ---- sing ---- ---- 
5 3 8 0.25 n/s ---- ---- sing ---- ---- 
5 3 9 0.25 n/s ---- ---- 1102 55 1633 
5 3 10 0.25 n/s ---- ---- 773 39 1508 
5 3 12 0.25 n/s ---- ---- 446 20 1910 
5 3 15 0.25 n/s ---- ---- 234 12 1684 
5 3 20 0.25 n/s ---- ---- 104 5 1461 
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5 3 25 0.25 n/s ---- ---- 54 3 1307 
5 3 30 0.25 n/s ---- ---- 35 2 1440 
5 3 35 0.25 n/s ---- ---- 24 1 1499 
5 3 40 0.25 n/s ---- ---- 17 1 1452 
5 3 6 0.20 n/s ---- ---- over ---- ---- 
5 3 7 0.20 n/s ---- ---- over ---- ---- 
5 3 8 0.20 n/s ---- ---- over ---- ---- 
5 3 9 0.20 n/s ---- ---- over ---- ---- 
5 3 10 0.20 n/s ---- ---- 7386 369 316 
5 3 12 0.20 n/s ---- ---- 6125 306 513 
5 3 15 0.20 n/s ---- ---- 3733 187 1064 
5 3 20 0.20 n/s ---- ---- 1470 73 1413 
5 3 25 0.20 n/s ---- ---- 588 29 1616 
5 3 30 0.20 n/s ---- ---- 291 15 1556 
5 3 35 0.20 n/s ---- ---- 166 8 1594 
5 3 40 0.20 n/s ---- ---- 102 5 1490 
5 3 6 0.15 n/s ---- ---- n/s ---- ---- 
5 3 7 0.15 n/s ---- ---- n/s ---- ---- 
5 3 8 0.15 n/s ---- ---- n/s ---- ---- 
5 3 9 0.15 n/s ---- ---- n/s ---- ---- 
5 3 10 0.15 n/s ---- ---- n/s ---- ---- 
5 3 12 0.15 n/s ---- ---- n/s ---- ---- 
5 3 15 0.15 n/s ---- ---- n/s ---- ---- 
5 3 20 0.15 n/s ---- ---- n/s ---- ---- 
5 3 25 0.15 n/s ---- ---- n/s ---- ---- 
5 3 30 0.15 n/s ---- ---- n/s ---- ---- 
5 3 35 0.15 n/s ---- ---- n/s ---- ---- 
5 3 40 0.15 n/s ---- ---- n/s ---- ---- 
5 3 6 0.10 n/s ---- ---- n/s ---- ---- 
5 3 7 0.10 n/s ---- ---- n/s ---- ---- 
5 3 8 0.10 n/s ---- ---- n/s ---- ---- 
5 3 9 0.10 n/s ---- ---- n/s ---- ---- 
5 3 10 0.10 n/s ---- ---- n/s ---- ---- 
5 3 12 0.10 n/s ---- ---- n/s ---- ---- 
5 3 15 0.10 n/s ---- ---- n/s ---- ---- 
5 3 20 0.10 n/s ---- ---- n/s ---- ---- 
5 3 25 0.10 n/s ---- ---- n/s ---- ---- 
5 3 30 0.10 n/s ---- ---- n/s ---- ---- 
5 3 35 0.10 n/s ---- ---- n/s ---- ---- 
5 3 40 0.10 n/s ---- ---- n/s ---- ---- 
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APPENDIX G 

DISTILLATION COLUMN SIMULATOR DATA 

Table 17 presents the numeric data obtained from the distillation column simulator described in 

Section 7.3.  Two clock numbers are shown.  The first gives the original time stamp from the 

simulation run and the second is simply the renumbering applied to the extracted portion of the 

simulation run that was used for the analysis of Section 7.3.  The upper control limit for the T2 

statistic is 12.407.  The upper control limit for the Wi and WR statistics is 14.156. 

 

Table 17  MeOH Concentrations from Distillation Column Simulator 

Original Clock (msec) Clock Bottom MeOH Overhead MeOH 

172000 1 0.034145 0.64001 
171950 2 0.034579 0.6443 
171900 3 0.034249 0.64146 
171850 4 0.034878 0.64302 
171800 5 0.034324 0.64112 
171750 6 0.034023 0.63943 
171700 7 0.034162 0.64214 
171650 8 0.03394 0.64441 
171600 9 0.033991 0.64041 
171550 10 0.03421 0.64062 
171500 11 0.03471 0.64236 
171450 12 0.033946 0.64418 
171400 13 0.033966 0.64014 
171350 14 0.033805 0.6421 



  160

Table 17 (continued) 

171300 15 0.034147 0.6416 
171250 16 0.03461 0.64577 
171200 17 0.034078 0.64256 
171150 18 0.03452 0.64147 
171100 19 0.033926 0.64126 
171050 20 0.034316 0.64124 
171000 21 0.034445 0.64265 
170950 22 0.034417 0.64344 
170900 23 0.0347 0.64102 
170850 24 0.034784 0.64113 
170800 25 0.034246 0.64208 
170750 26 0.034189 0.64148 
170700 27 0.034125 0.64562 
170650 28 0.034073 0.64149 
170600 29 0.034376 0.64039 
170550 30 0.034646 0.64291 
170500 31 0.033575 0.64229 
170450 32 0.03445 0.6436 
170400 33 0.033728 0.64312 
170350 34 0.034362 0.64137 
170300 35 0.035116 0.64422 
170250 36 0.034628 0.64297 
170200 37 0.034585 0.64154 
170150 38 0.035505 0.64388 
170100 39 0.034354 0.63909 
170050 40 0.034349 0.64209 
170000 41 0.03508 0.64186 
169950 42 0.034452 0.64208 
169900 43 0.034433 0.64204 
169850 44 0.034638 0.64144 
169800 45 0.034724 0.64768 
169750 46 0.034707 0.64264 
169700 47 0.035154 0.64223 
169650 48 0.035002 0.6418 
169600 49 0.03435 0.64886 
169550 50 0.034268 0.64445 
169500 51 0.034812 0.64231 
169450 52 0.035008 0.6437 
169400 53 0.034356 0.64517 
169350 54 0.034971 0.64296 
169300 55 0.034941 0.64792 
169250 56 0.035411 0.64203 
169200 57 0.035488 0.64393 
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169150 58 0.035211 0.64441 
169100 59 0.035027 0.64502 
169050 60 0.035766 0.642 
169000 61 0.035652 0.64633 
168950 62 0.035308 0.64475 
168900 63 0.034794 0.64818 
168850 64 0.035074 0.64792 
168800 65 0.0358 0.64755 
168750 66 0.035664 0.64792 
168700 67 0.036962 0.64595 
168650 68 0.035843 0.64818 
168600 69 0.035872 0.64769 
168550 70 0.036698 0.64638 
168500 71 0.036614 0.64915 
168450 72 0.036597 0.64689 
168400 73 0.03726 0.64807 
168350 74 0.037573 0.64732 
168300 75 0.037453 0.64814 
168250 76 0.036891 0.64932 
168200 77 0.038092 0.65098 
168150 78 0.037972 0.65144 
168100 79 0.038335 0.65053 
168050 80 0.038429 0.65178 
168000 81 0.038734 0.65119 
167950 82 0.038809 0.65541 
167900 83 0.038884 0.65352 
167850 84 0.03907 0.65314 
167800 85 0.039488 0.65462 
167750 86 0.040306 0.65458 
167700 87 0.04131 0.65608 
167650 88 0.040354 0.6605 
167600 89 0.042099 0.65787 
167550 90 0.041696 0.65638 
167500 91 0.04238 0.65676 
167450 92 0.042278 0.66156 
167400 93 0.04375 0.66257 
167350 94 0.043813 0.66275 
167300 95 0.043982 0.66381 
167250 96 0.045205 0.66822 
167200 97 0.04516 0.66722 
167150 98 0.047408 0.66857 
167100 99 0.047325 0.67221 
167050 100 0.046933 0.67376 
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167000 101 0.048911 0.67304 
166950 102 0.049868 0.67547 
166900 103 0.051264 0.68143 
166850 104 0.05242 0.68225 
166800 105 0.054163 0.68643 
166750 106 0.055236 0.68571 
166700 107 0.056139 0.68696 
166650 108 0.058094 0.69269 
166600 109 0.059772 0.69815 
166550 110 0.059305 0.69955 
166500 111 0.062157 0.70094 
166450 112 0.065354 0.70506 
166400 113 0.067415 0.70766 
166350 114 0.068203 0.71365 
166300 115 0.071422 0.7234 
166250 116 0.075171 0.72584 
166200 117 0.076576 0.73129 
166150 118 0.078391 0.73478 
166100 119 0.082642 0.73992 
166050 120 0.085402 0.74381 
166000 121 0.088628 0.75315 
165950 122 0.094039 0.7628 
165900 123 0.097461 0.77378 
165850 124 0.10181 0.77758 
165800 125 0.1061 0.78352 
165750 126 0.10879 0.79257 
165700 127 0.11558 0.80347 
165650 128 0.12213 0.81009 
165600 129 0.12443 0.81913 
165550 130 0.13244 0.8285 
165500 131 0.13636 0.83065 
165450 132 0.14039 0.83736 
165400 133 0.14435 0.83965 
165350 134 0.14757 0.84489 
165300 135 0.1541 0.85102 
165250 136 0.15301 0.85322 
165200 137 0.15151 0.854 
165150 138 0.15451 0.85492 
165100 139 0.15133 0.85126 
165050 140 0.15026 0.85048 
165000 141 0.14858 0.84514 
164950 142 0.14959 0.85148 
164900 143 0.15203 0.84785 
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164850 144 0.15076 0.848 
164800 145 0.1491 0.85074 
164750 146 0.14899 0.85167 
164700 147 0.14916 0.85211 
164650 148 0.1505 0.85188 
164600 149 0.15069 0.84931 
164550 150 0.15116 0.84485 
164500 151 0.15126 0.8484 
164450 152 0.15021 0.85289 
164400 153 0.14854 0.84972 
164350 154 0.1517 0.85057 
164300 155 0.14838 0.84369 
164250 156 0.14871 0.85385 
164200 157 0.15382 0.84969 
164150 158 0.15434 0.84951 
164100 159 0.15315 0.85057 
164050 160 0.15171 0.8478 
164000 161 0.15065 0.84945 
163950 162 0.15024 0.85107 
163900 163 0.15381 0.84797 
163850 164 0.14989 0.84998 
163800 165 0.1503 0.85403 
163750 166 0.15058 0.85164 
163700 167 0.14957 0.85452 
163650 168 0.14902 0.84702 
163600 169 0.1506 0.85049 
163550 170 0.15194 0.8509 
163500 171 0.14909 0.84819 
163450 172 0.14994 0.84891 
163400 173 0.15187 0.84835 
163350 174 0.14961 0.84798 
163300 175 0.1507 0.85312 
163250 176 0.15104 0.85208 
163200 177 0.14901 0.85274 
163150 178 0.15149 0.84791 
163100 179 0.151 0.85183 
163050 180 0.15276 0.84831 
163000 181 0.15061 0.8504 
162950 182 0.14901 0.85364 
162900 183 0.1518 0.85074 
162850 184 0.14943 0.84966 
162800 185 0.15121 0.84656 
162750 186 0.15245 0.85193 
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162700 187 0.15044 0.84978 
162650 188 0.15106 0.8492 
162600 189 0.1535 0.85174 
162550 190 0.14954 0.84616 
162500 191 0.15218 0.8503 
162450 192 0.14975 0.85129 
162400 193 0.15193 0.84754 
162350 194 0.15009 0.85416 
162300 195 0.14878 0.85024 
162250 196 0.14841 0.84987 
162200 197 0.15074 0.84962 
162150 198 0.15303 0.84659 
162100 199 0.15 0.84995 
162050 200 0.15126 0.85226 
162000 201 0.15213 0.85287 
161950 202 0.14966 0.85038 
161900 203 0.15153 0.85028 
161850 204 0.1505 0.85302 
161800 205 0.14936 0.85185 
161750 206 0.14753 0.85084 
161700 207 0.15059 0.84896 
161650 208 0.15198 0.85011 
161600 209 0.15136 0.85074 
161550 210 0.14976 0.84831 
161500 211 0.15075 0.8488 
161450 212 0.15047 0.84944 
161400 213 0.15185 0.84976 
161350 214 0.15149 0.85249 
161300 215 0.14969 0.85204 
161250 216 0.15274 0.84946 
161200 217 0.15058 0.85014 
161150 218 0.15093 0.84703 
161100 219 0.15096 0.85087 
161050 220 0.14934 0.85074 
161000 221 0.15242 0.84996 
160950 222 0.15383 0.8489 
160900 223 0.15287 0.85137 
160850 224 0.15318 0.84901 
160800 225 0.14989 0.85103 
160750 226 0.14977 0.85092 
160700 227 0.14905 0.84904 
160650 228 0.1495 0.852 
160600 229 0.14894 0.85265 
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Table 17 (continued) 

160550 230 0.15226 0.85101 
160500 231 0.15091 0.852 
160450 232 0.1515 0.85173 
160400 233 0.15021 0.85609 
160350 234 0.15404 0.84768 
160300 235 0.1514 0.84656 
160250 236 0.1499 0.85166 
160200 237 0.14937 0.85205 
160150 238 0.14981 0.84932 
160100 239 0.14881 0.8492 
160050 240 0.14953 0.8486 
160000 241 0.14907 0.85116 
159950 242 0.15146 0.84959 
159900 243 0.14763 0.85038 
159850 244 0.15163 0.85167 
159800 245 0.15088 0.85229 
159750 246 0.15219 0.85287 
159700 247 0.14965 0.85064 
159650 248 0.15082 0.85095 
159600 249 0.15048 0.85032 
159550 250 0.15082 0.84912 
159500 251 0.15071 0.85596 
159450 252 0.1514 0.85157 
159400 253 0.14953 0.84988 
159350 254 0.15267 0.85089 
159300 255 0.15332 0.84946 
159250 256 0.1536 0.84974 
159200 257 0.14925 0.85202 
159150 258 0.15021 0.84919 
159100 259 0.14967 0.85026 
159050 260 0.15281 0.85182 
159000 261 0.15231 0.85453 
158950 262 0.15303 0.85298 
158900 263 0.15127 0.84966 
158850 264 0.14855 0.85099 
158800 265 0.15227 0.85185 
158750 266 0.14996 0.85221 
158700 267 0.15188 0.84979 
158650 268 0.15137 0.84991 
158600 269 0.15012 0.85058 
158550 270 0.15009 0.8496 
158500 271 0.15229 0.84796 
158450 272 0.15242 0.85702 
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Table 17 (continued) 

158400 273 0.14827 0.85193 
158350 274 0.14929 0.85327 
158300 275 0.15227 0.84876 
158250 276 0.14998 0.84955 
158200 277 0.15315 0.84833 
158150 278 0.15037 0.8485 
158100 279 0.15109 0.85061 
158050 280 0.14918 0.84962 
158000 281 0.14879 0.84885 
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