Link to the University of Pittsburgh Homepage
Link to the University Library System Homepage Link to the Contact Us Form

Energy-Efficient Design of Adhoc and Sensor Networks

Gobriel, Sameh (2008) Energy-Efficient Design of Adhoc and Sensor Networks. Doctoral Dissertation, University of Pittsburgh. (Unpublished)

[img]
Preview
PDF
Primary Text

Download (2MB) | Preview

Abstract

Adhoc and sensor networks (ASNs) are emerging wireless networks that are expected to have significant impact on the efficiency of many military and civil applications. However, building ASNs efficiently poses a considerable technical challenge because of the many constraints imposed by the environment, or by the ASN nodes capabilities themselves. One of the main challenges is the finite supply energy.Since the network hosts are battery operated, they need to be energy conserving so that the nodes and hence the network itself does not expire. In this thesis different techniques for anenergy-efficient design for ASNs are presented. My work spans two layers of the network protocol stack; these are the Medium Access Layer (MAC) and the Routing Layer. This thesis first identifies and highlights the different sources of energy inefficiency in ASNs, and then it describes how each of these inefficiencies is handled. Toward this goal, I first focus on the Medium Access (MAC) Layer and present my work that handles the wasted energy in transmission and describe how the transmission distance is optimized to extend the network lifetime. I then describe BLAM, an energy-efficient extension for the IEEE 802.11, that handles the wasted energy in collisions. Next, TDMA-ASAP, a new MAC protocol for sensor networks, is introduced. TDMA-ASAP targets the wasted energy in idle listening. I also investigate energy-efficiency at the routing layer level. First, the ``Flooding-Waves' problem is identified. This is a problem in any cost-based energy-efficient routing protocol for adhoc networks, different ways of solving this problem are presented. For sensor networks routing trees are usually used, I introduce a new routing scheme called RideSharing which is energy-efficient and fault-tolerant. RideSharing will deliver a better aggregate result to the end user while masking network linkfailures. Next, I present how to extend the RideSharing scheme to handle different link quality models. Finally, I introduce GroupBeat,a new health detection system for sensor networks, which when combined with RideSharing can deliver the information to the end user even in case of node failures.


Share

Citation/Export:
Social Networking:
Share |

Details

Item Type: University of Pittsburgh ETD
Status: Unpublished
Creators/Authors:
CreatorsEmailPitt UsernameORCID
Gobriel, Samehsameh@cs.pitt.edu
ETD Committee:
TitleMemberEmail AddressPitt UsernameORCID
Committee ChairMelhem, Ramimelhem@cs.pitt.eduMELHEM
Committee CoChairMosse, Danielmosse@cs.pitt.eduMOSSE
Committee MemberAmer, Ahmedamer@cs.pitt.edu
Committee MemberAbdelzaher, Tarekzaher@cs.uiuc.edu
Date: 12 June 2008
Date Type: Completion
Defense Date: 8 February 2008
Approval Date: 12 June 2008
Submission Date: 20 February 2008
Access Restriction: No restriction; Release the ETD for access worldwide immediately.
Institution: University of Pittsburgh
Schools and Programs: Dietrich School of Arts and Sciences > Computer Science
Degree: PhD - Doctor of Philosophy
Thesis Type: Doctoral Dissertation
Refereed: Yes
Uncontrolled Keywords: adhoc; Energy-efficient; MAC; routing; sensor; wireless
Other ID: http://etd.library.pitt.edu/ETD/available/etd-02202008-134328/, etd-02202008-134328
Date Deposited: 10 Nov 2011 19:31
Last Modified: 15 Nov 2016 13:36
URI: http://d-scholarship.pitt.edu/id/eprint/6381

Metrics

Monthly Views for the past 3 years

Plum Analytics


Actions (login required)

View Item View Item