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The central theme of my research is to understand self-assembly of molecules at 

interfaces and to develop strategies that control the arrangement of atoms and molecules 

at the nanometer length scale.  

 

We have sought molecular level insight into the mechanism of photoreactivity of 

octadecylsiloxane (ODS) self-assembled monolayers (SAMs), which has implications in 

high resolution nanolithography. We have improved the reproducibility of preparation of 

ODS SAMs by controlling the water content in the reaction solution and in the ambient 

environment. We have demonstrated that atomic oxygen is the primary agent for the UV 

photoreactivity of ODS SAMs. UV degradation proceeds via oxidation of carbon chains 

instead of the siloxane headgroups. We found that degradation introduces microscopic 

roughness in SAMs. Using a novel technique, Fluorescence Labeling of Surface Species, 

we identified low-concentration surface functional groups produced as intermediates in 

UV degradation. We proposed a reaction mechanism based on hydrogen abstraction.  

 

To understand the rules governing self-assembly at electrochemical interfaces and how 

they can be exploited to control the arrangement of molecules, we performed in-situ STM 

investigations. To probe the effect of hydrophobic interactions, we investigated how the 

electrode potential transforms the microscopic structure of a completely hydrophobic 

molecule, hexadecane. Molecular level evidence suggests that the competition between 
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hexadecane and the electrolyte plays a pivotal role in the self-assembled structures at the 

charged interface. We studied how the electrode potential can affect the dynamics of self-

assembly of 5,10,15,20-Tetra(4-Pyridyl)-21H,23H-Porphine (TPyP), which can not 

displaced by the electrolyte due to much stronger adsorption. Our results suggest that 

while TPyP can be kinetically trapped in a disordered structure, its ordering process can 

be facilitated at electrode potentials where molecule substrate interaction is strong 

enough to confine molecules in ordered arrays but also weak enough to allow facile 

lateral reorganization, a key requirement for self-assembly. Our investigation also 

suggests that electrode potential can direct the formation of multilayers due to the π 

stacking interaction of TPyP. We observed distinct electrochemical reactivity of adsorbed 

TPyP, due to the interaction between TPyP and the Au substrate.  

 

Finally, we have demonstrated that the intrinsic length scales of molecular assemblies 

may be exploited to grow metal nanostructures of controlled spacing. Our study of metal 

electrodeposition on surface micelles affords insight into the interaction between metal 

nanostructures. In particular, how the interaction can be controlled to grow metal 

nanoscale structures, are relevant to electrocatalysis and nanoscale electronics. 
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1. Preparation of alkylsiloxane self-assembled 
monolayers: the issue of reproducibility. 

1.1. Introduction. 

In the 1940’s, Zisman et al. discovered that an alkanoic acid could self-organized into a 

monolayer on a clean platinum surface driven by chemisorption from a solution phase 

[1].  Monolayers prepared by this method are called Self-Assembled Monolayers 

(SAMs).  SAMs typically are more stable than organic thin film prepared by the 

Langmuir-Blodgett method [2] because the molecules in a SAM are attached to the solid 

surfaces via chemical bonds.  The applications of organic thin films were further 

extended by the preparation of trifunctional alkylsiloxane monolayers on SiO2 surfaces 

by Sagiv [3] and alkanethiol monolayers on gold surfaces by Nuzzo et al. [4] in the 

1980’s.  Both types of monolayers are very robust due to the strong bonding between 

head groups and substrates. 

 

1.1.1. Importance of SAMs. 

SAMs may possess different physical, chemical and electronic properties depending on 

their structure and composition.  Not mentioning their importance as a model system to 

study self-organization, intermolecular interactions and molecular-substrate interactions 

[5, 6], SAMs have found applications in a wide range of fields.  Different applications 

utilize different properties of the SAMs.  The numerous existing and potential 

applications of SAMs are summarized in the following three categories.   
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1.1.1.1. Applications that utilize the physical properties of SAMs.  
SAMs can completely change wetting and frictional properties of the substrate.  

Moreover, the terminal groups of the organic molecules are not limited to methyl.  By 

attaching functional groups such as OH, NH2 and COOH, one can tailor the surface 

energy to different requirements [7].  Silanized surfaces have already found applications 

in gas and liquid chromatography [[7].   

1.1.1.2. Applications that utilize the chemical properties of SAMs.  
SAMs that consist of long chain alkanes can be compact and chemically inert.  This 

makes it difficult for chemical reagents to penetrate and react with the substrate surface.  

The SAMs can serve as corrosion protection layers of metal and semiconductor surfaces.  

Siloxane films were demonstrated to be high resolution etching masks for 

microelectronics fabrication [8-10].  The area covered with siloxane remained inert while 

the bare silicon substrate was etched selectively during etching.  Similarly, SAMs can 

serve as templates for area-selective deposition of metals and other materials [11-14].  

One can tailor the interaction between the SAMs and other molecules or particles, by 

modifying the terminal groups on SAMs.  Existing applications include solid-state 

synthesis of proteins, in which the peptide chains are attached to functionalized SAMs, 

eliminating tedious processes of separation [11-14].  Functionalized SAMs are also used 

as model system of biological surfaces [15].  Inspired by the capability of biological 

membranes  to recognize specific chemical and biological stimuli and to convert them to 

measurable signals, researchers are trying to build chemical and biological sensor devices 

based on SAMs [16]. 
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1.1.1.3. Applications that utilize the electrical properties of SAMs. 
SAMs have different electrical characteristics such as conductivity, dielectric constant 

and capacitance.  The flexibility of the electrical characteristics lies in the degree of 

conjugation, polarizability and dipole moment of the molecules and structure of the 

monolayers [17].  SAMs on semiconductor surfaces show promising potential as ultrathin 

gate insulating layers in microelectronics [17-19].  In addition, SAMs are widely 

anticipated to be the building blocks of molecular electronics [20].   

 

1.1.2. Growth of SAMs. 
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Figure 1–1 Proposed mechanism of ODS SAM formation. 
 
Much attention has been paid to the preparation and structure of SAMs [5, 6].  At a first 

glance, the preparation of alkylsiloxane monolayers appears quite simple [3].  A sample 

is dipped into an organic solvent (typically nonpolar) containing chlorosilane 

(concentration is on the order of mM) for a certain period of time ranging from seconds 
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to hours.  It is assumed that the chlorosilane molecules undergo hydrolysis to form 

siloxane and cross-link (R 1-1, R 1-2, and Figure 1–1) [21].   

RSiCl3 + 3H2O→RSi(OH)3 + 3HCl       R. 1-1 

2RSi(OH)3→R(OH)2Si-O-SiR(OH)2 + H2O      R. 1-2 

Eventually, the cross-linked siloxane headgroups become covalently attached to silanol 

groups on the substrate (Figure 1–1) [21].   

 

As simple as the preceding scheme may appear, reproducibly producing a compact 

monolayer of alkylsiloxane remains challenging.  Different laboratories report strikingly 

different results.  ODS SAMs have been reported to require reaction times ranging from a 

few minutes [22] to 24 hours [23, 24] or even days [25].  Equally troubling is that often 

the reaction is not self-limited to monolayers.  Often multilayers with ill-defined 

morphology are formed [26].  The irreproducibility of siloxane SAM preparation severely 

hampers their surface modification applications where well-defined and compact 

monolayers are required [27].  The underlying details of the SAM formation mechanism 

remain controversial.  Central to the irreproducibility issue is silanol’s tendency to 

polymerize.  Horizontal polymerization (cross-linking along the surface plane) is 

desirable since the cross-linking of the siloxane network enhances the stability of 

siloxane SAMs.  However, the bulk polymerization is undesirable since the 

polymerization creates macroscopic islands with ill-defined morphology [26].  The bulk 

polymerization is induced by the hydrolysis of trichlorosilane, and is catalyzed by HCl 

[21], a product of the hydrolysis.  The reaction kinetics therefore is complex and sensitive 

to reaction conditions.  It is believed that subtle variations of some experimental 
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conditions, such as trace amount of water, may alter the growth behavior of monolayer 

significantly [6].  Key factors that affect the growth of silane SAMs are summarized 

below. 

 

1. Concentration of silane and reaction time.  It was confirmed by a number of FT-IR 

experiments that the growth of silane monolayer roughly follows pseudo Langmuir 

kinetics [28, 29].   

θ=1-e(-kct)         Equation 1-1 

θ is the adsorbate coverage,  k represents the reaction rate constant,  c is the 

concentration of the silane solution and t is the reaction time.  However, Langmuir 

kinetics is solely determined by the competition between desorption, which is 

assumed to be proportional to the adsorbate surface coverage θ, and adsorption, 

which is assumed to be proportional to area unoccupied by adsorbate 1-θ.  The 

experimental evidence, however, suggests that the self-assembly of siloxane is clearly 

not a simple Langmuir kinetics.  The adsorption and desorption depend not only on 

adsorbate surface coverage but also diffusion, nucleation, lateral organization [22], as 

well hydrolysis and polymerization [21, 22].  Hence, a pseudo-Langmuir model 

accounts for these effects in an ad hoc manner. 

 

2. Substrate.  The substrate can play an important role because the affinity between the 

surface and the quality of monolayers may vary with the surface density of OH 

groups [24, 30, 31].  The affinity influences the adsorption rate of the silane 

molecules and the structure of the monolayer.  For substrates lacking OH groups, 
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such as mica, steam treatment before silanization appears important for SAM 

formation [24].  Thermal or electric field treatment may significantly reduce the OH 

concentration on SiO2, therefore suppressing the adsorption rate [30, 31].  The precise 

role of the OH groups on the surface remains controversial.  In some reports OH 

groups are assumed to be the source of the affinity since at least some of the silane 

molecules are attached to the surface via reaction with the OH groups[28, 31].  Others 

suggest that the OH groups can adsorb a thin layer of water, which is believed to be 

important for silanization reactions [32-34].  Regardless of the precise mechanism in 

which surface silanol groups promote the self-assembly of alkylsiloxanes, it is 

generally accepted that to facilitate the self-assembly process, surface pretreatments 

that make the substrate clean and hydrophilic are necessary.   

 

3. Water content.  However, even for siloxane monolayer growth experiments carried 

out in a dry nitrogen glove box, trace amount of water is considered to be crucial for 

the covalent attachment of siloxane molecules to the substrate [21].  In the absence of 

significant amount of water, siloxane SAM growth is extremely slow (it may require 

days of reaction) [21].  Water content, which is difficult to control, may be the major 

source of discrepancy among different laboratories.  Experiments showed that water 

promotes the reaction rate [29, 35].  Water is also observed to promote the island 

growth at the initial stage [36].  It is now well established that the presence of water 

in the range of a few monolayers on the substrate promotes the ordering.  Evidence 

include:  
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a. On high surface area silica gel, three monolayers of water is necessary for 

high quality surface film formation[37].  

b. Infrared spectroscopy [21, 32, 38] and sum frequency generation spectroscopy 

[39] provided direction evidence for a thin water film of molecular thickness.  

At the initial stage of SAM growth, silane or silanol molecules are 

physisorbed on the water film and subsequently cross-link to form 2D 

network.  Normally few molecules are directly attached to the substrate [37].  

The molecules are stabilized by lateral attraction with neighboring molecules 

and hydrogen bonding with the substrate.   

c. In addition, the ordering process of alkylsiloxanes was found to depend on the 

temperature in a manner similar to LB films, suggesting the presence of water 

on which the siloxanes float.  This will be discussed in the following 

paragraph.  

4. Temperature.  It was found that silane molecules can reorganize laterally on the 

surface to undergo 2D phase transition [40, 41].  At temperatures higher than the 

critical temperature Tc, the monolayer was completely disordered [40, 41].  Tc 

decreases with decreasing length of the alkyl chains.  This behavior is analogous to 

LB films prepared at air water interfaces.  It is then hypothesized that the silane or 

silanol molecules physisorb on the water thin film with minimal amount of bonding 

to the surface [41, 42].  This hypothesis is supported by an AFM study [41], which 

directly observed the temperature dependant structures indicative of the coexistence 

of Liquid condensed(LC), liquid extended(LE), and Gas(G) -like phases  of the SAM 

on the solid substrate.  These structures and their behavior are indeed analogous to 
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LB films at the air water interface, supporting the notion of liquid water on the solid 

substrate.  Therefore, to achieve high quality SAMs, it is important to keep the 

reaction temperature below Tc. such as 27°C for octadecyl siloxane SAM [40, 41].  

5. Rinsing.  A frequently neglected factor in the quality of prepared monolayers is 

rinsing.  Rinsing may remove molecules that have not yet covalently bonded to the 

substrate.  Studies showed that monolayers that were ordered before rinsing became 

disordered after rinsing [43].  However, if the reaction time is long enough (> 1 hr), 

almost all the molecules attached to the surface can endure the rinsing because the 

molecules are chemisorbed onto the surface [43]. 

 

 

1.1.3. Motivation. 

To date, the knowledge of the influence of different factors in SAM preparation is highly 

fragmented.  It is not yet clear what conditions lead to the reaction kinetics that varied by 

orders of magnitude [22-25].  Due to the large number of parameters, few groups have 

addressed the reproducibility issues in a systematic way.  Many authors can only draw 

conclusions from their specific conditions.  Since our immediate goal is to understand the 

photoreactivity of alkylsiloxane SAMs [44], reproducible preparation of SAMs with well 

defined structure at the molecular level is essential.  There is no guarantee that an 

optimum parameter in one lab is applicable to our conditions.  Therefore there is a need 

to undertake a more systematic study, to explore a wide range of different parameters and 

gain insight into how each parameter affects the self-assembly process and how we can 

optimize these parameters.  A more long term goal in this study is to develop strategies to 
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prepare high quality SAMs, that are easy to reproduce in other research laboratories or 

industrial environments.  Since water appears to play such an important role in the 

reaction, and because its precise roles remain controversial, our study is mainly focused 

on how water affects the reproducibility of ODS SAM formation.   

1.2. Experimental section. 

1.2.1. Substrate treatment. 

Microscope glass slides (VWR Scientific, cat. # 48300-025) and native SiO2 grown on Si 

wafers were used as the substrates.  The substrates were sonicated in acetone, methanol 

and then water.  The substrates were then subjected to cleaning in a UV/ozone chamber 1 

hour or to RCA SC1 H2O:NH4OH:30%H2O2 (4:1:1) treatment at 80-90 °C for 30 min-1 

hour.  After final treatment, the substrates have a water contact angle close to 0°, 

suggesting that both UV/ozone and RCA SC1 treatment are effective in producing clean 

and hydrophilic surfaces. 

 

1.2.2. Self-assembly.  

To achieve good control over the water content in the solvents, all the solvents used for 

the self-assembly of ODS were dehydrated with baked molecular sieves (4A, Davison).  

Water concentration in toluene is controlled by mixing dehydrated toluene with water 

saturated toluene (25 mM H2O) [36, 45] or adding controlled amount of water to 

dehydrated toluene [36, 45].  We found that the exposure of octadecyltrichlorosilane 

(95%, Acros) OTS to ambient was a major source of irreproducibility.  To minimize 

moisture exposure, the OTS bottle was capped with a rubber septum and stored in a 
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desiccator.  OTS was withdrawn with a dry syringe through the rubber septum under a 

positive pressure of argon or nitrogen.   

 

Two types of procedures were adopted for SAM formation.  Both were carried out at 

room temperature (23±2°C).  Procedure 1 was employed to prepare submonolayer 

coverage ODS SAM at reduced temperature as described in Ref. 40. Procedure 2 is 

mainly used to study the effect of water content since the concentration of water in 

toluene can be varied significantly and controllably. 

 

Procedure 1: The cleaned substrates were then immersed in mM OTS solutions prepared 

in mixture of hexadecane (99%, Acros), HCCl3 ( GR grade, EM Science) and CCl4 (GR 

grade EM Science ) [3, 40, 41].  After reaction, the samples were rinsed in CCl4 at least 

three times.   

 

Procedure 2: The cleaned substrate was immersed under toluene (GR grade, EM Science) 

containing mM OTS for a desired period of time [34].  After reaction, the samples were 

immediately rinsed with HCCl3 for at least three times.   

 

A glove bag was used as the environmental chamber when control of ambient humidity 

was necessary.  An Omega CTH 89 humidity recorder was used to monitor the relative 

humidity in the chamber.  The glove bag was purged with a mixture of dry compressed 

air and wet compressed air.  The humidity can be controlled by adjusting the relative flow 

rates of the dry and wet compressed air.      
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1.2.3. Characterization. 

1.2.3.1. Water contact angle. 
Unirradiated SAMs were cleaned with acetone or chloroform prior to characterization.  

Unless otherwise mentioned, irradiated SAMs were characterized without any treatment 

because perturbation induced by rinsing is a concern for the irradiated samples.  Water 

contact angle measurements were performed using the sessile drop method with VCA-

2000 Laboratory Surface Analysis System (AST Productions Inc.).  Static contact angles 

were measured.  4-5 measurements were averaged for each sample.   

1.2.3.2. FT-IR measurement. 
Transmission FT-IR spectra were collected with Nicolet Avatar 360 IR or a Brüker 

Tensor 27 FTIR spectrometer at normal incidence.  Spectral resolution was either 4 cm-1 

or 8 cm-1.  Corresponding uncoated substrates were used as the background.  256 to 512 

scans were averaged. 

1.2.3.3. Atomic force microscopy (AFM). 
Contact mode AFM images were acquired with a Molecular Imaging PicoSPM system.  

Silicon Nitride tips were used.  Cantilevers with spring constant of 0.06-0.12 N/m were 

selected for imaging.  The tips have curvature of radius about 10-20 nm.  A Dimension 

3100 AFM system (Digital Instrument) was used to acquire tapping mode AFM images.  

The integrated sample stage and optical microscope allowed us to reposition the sample 

to a precision within 2-5 microns.  Coupled with marks such as scratches on the surface, 

we were able to image the identical areas on a surface before and after irradiation.  

Noncontact mode Si tips were purchased from Silicon MDT.  The radius of curvature is 
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typically less than 10 nm.  The cantilever with spring constant about 0.3 N/m and 

resonance frequency around 30 kHz was chosen for imaging.  Typical line scan 

frequency was about 1 Hz.  All images are shown as raw data that undergo no filtering 

other than flattening. 

1.3. Results and discussion. 

1.3.1. Criteria for a high quality ODS SAM. 

Evidently to address the reproducibility issue one needs to have reliable criteria for the 

quality of ODS SAMs.  On a microscopic level, a high quality ODS film should consist 

of highly ordered closely packed alkyl chains.  It should have uniform monomolecular 

thickness and it must be terminated with methyl groups on the top.  Common SAM 

characterization techniques include Atomic Force Microscopy (AFM), Fourier Transform 

Infrared spectroscopy (FT-IR), ellipsometry, X-ray photo-electron spectroscopy (XPS), 

and contact angle [46].  Ellipsometry and XPS can reveal the amount of molecules 

deposited on the surface but are less informative than FT-IR and AFM in terms of 

microscopic structural information. 
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Figure 1–2 Water contact angle of ODS on glass as a function of reaction time. 
 

Glass slides were immersed in 2.5mM OTS solution from 5 to 120 min with method 1.  

The results of the contact angle measurements are shown in Figure 1–2.  The increase of 

the contact angle suggests the increasing amount of hydrophobic hydrocarbon chains 

attached to the surface.   There was a sharp increase of contact angle in the first half hour.  

The contact angle reached a plateau after 30min of reaction.  The plateau value of 112 

degrees is in agreement with values from ordered and compact alkanethiol SAMs 

terminated with methyl groups [5].   

 13



1.3.1.1. FT-IR results. 

 

Figure 1–3 FT-IR spectra of ODS on glass for different reaction time spent in OTS 
solution (5 min, 15 min and 30 min) using Procedure 1. 
 
The ODS monolayers on glass were also characterized with transmission FT-IR.  Figure 

1–3 shows FT-IR spectra of ODS samples prepared with different reaction times.  As the 

time spent in OTS solution increases, the CH stretch peaks grow, suggesting increase of 

ODS coverage on the surface (Figure 1–3). 

 

The spectra were fitted using sums of lorentzian functions.  The analytical expression of 

the fitting is shown in Equation 1-2.  I is the intensity in absorbance units.  x represents 

the frequency in wave numbers.  K0 is the offset.  K1, K2 and K3 are the parameters of the 

lorentzian functions.   
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Figure 1–4 An example of deconvolution of the FTIR spectra of ODS SAMs.  
 

The CH3 symmetric stretch mode at 2950 cm-1, CH2 antisymmetric stretch mode at 2918 

cm-1, and CH2 symmetric stretch mode at 2850 cm-1 are easily discernable Figure 1–4 

[47].  There is also a shoulder peak near 2880 cm-1 attributed to the CH3 symmetric 

mode.   

 

Figure 1–5 shows the integrated absorbance of the CH2 antisymmetric mode.  The 

absorbance increases then begins to level after 30 minutes of reaction.  As more surface 

sites are occupied by silane adsorbates, there are less open sites for adsorption.  Therefore 

growth should be limited at monolayer coverage, when all the surface sites are saturated.  

This behavior is similar to the growth kinetics of alkanethiol SAMs.  However, unlike 

alkanethiol SAMs, which display a limiting coverage [5], the coverage of ODS will 

eventually exceed monolayer coverage.  This indicates the formation of multilayers on 

the surface.  After an extended period of time, the OTS molecules in the reaction mixture 

may start to polymerize, resulting in multilayers attached to the surface.  The onset of the 

multilayer growth is dependant on a number of factors such as freshness of OTS, water 
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content, and ambient humidity.  The relative importance of these factors will be detailed 

in the next sections.  What should be noted here is that while FT-IR suggests multilayer 

formation at 120 min, there is no significant change in water contact angle on the same 

sample.  This suggests that compared to FT-IR, water contact angle is less sensitive to 

multilayer formation 1, a central concern in preparing well defined SAMs.  Since peak 

height and integrated absorbance are correlated, when the peak width is constant.  The 

peak absorbance at the CH2 antisymmetric mode, is used as a convenient rough indicator 

for the quality of films.   
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Figure 1–5 Integrated absorbance of SAMs at CH2 antisymmetric mode as a function of 
reaction time. 

1.3.1.2. AFM results. 
AFM is capable of accessing nanometer scale morphological information on surfaces.  A 

typical AFM image of an ODS SAM, with IR absorbance at 3.3 mOD at 2918 cm-1, 

displays only small degree of polymerization, as evidenced by the small number of 

islands 3-5 nm high (Figure 1–6).  Most of the surface appears to be covered with a single 
                                                 
1 We refer to the static contact angle we use.  However, dynamic contact angle may be 
more sensitive to the ordering the SAMs as suggested by Reference 40. 
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monolayer since the surface is smooth.  By contrast B, with absorbance of 5 mOD, 

displays many more islands that can be as high as 10 nm. 

 

Figure 1–6 AFM images of ODS SAMs with A: 3.3 mOD and B: 5 mOD peak 
absorbance at ~2918 cm-1.  Image size: 2 µm× 2 µm. Height scale (5nm) 
 

In addition, AFM can access the structural information of SAM formation at the initial 

stage.  For reasons that will be discussed in chapter 2, surfaces covered with ODS 

monolayers with well defined monolayer islands needed to be prepared.  The latter type 

of sample was successfully prepared using Procedure 1 in the Experimental section by 

reducing the immersion time to about 30 sec and lowering the reaction temperature to 10 

°C.  Images of a sub-monolayer coverage ODS sample are shown in Figure 1–7.  The 

ODS molecules aggregated into flower-shaped islands that were 1.5-2 nm high.  The 

fractural shape is characteristic of diffusion limited 2D growth [22].  A higher resolution 

image showed that the islands were porous.   

 

It had been proposed that under certain conditions OTS molecules cross-link to form 

small patches in the bulk solution [22].  Subsequently, the patches aggregate to form 
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islands.  There is space between the patches.  If the reaction time is short, the ODS 

molecules do not have time to fill the defects.  Therefore many holes appeared on the 

surface.   

 

Figure 1–7 AFM images of ODS images of submonolayer coverage ODS monolayer on 
Si substrate prepared with method 1 at reduced reaction time (30 sec) and temperature 
(10 ºC) 
 

By combining AFM and FT-IR data, one can obtain a fairly complete picture of the 

quality of the ODS SAMs.  Langmuir-Blodgget films are compact and structurally 

ordered.  A high quality ODS SAM should have a similar IR spectrum to that of a LB 

film with the same number of hydrocarbon groups [46].  The IR spectrum should have 

absorbance about 3.5 mOD at the peak of νasCH2 [5, 42, 46].  In an AFM image, a well 

defined compact monolayer should be very smooth, (RMS roughness< 0.5 nm on Si 

substrate) and have few islands.  

 

1.3.2. Effect of freshness of OTS. 

OTS is very moisture sensitive, which has been recognized as a major source of 

discrepancy among the reactions performed in different laboratories [6].  Once exposed 
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to ambient, OTS can absorb trace amount of moisture and become hydrolyzed to silanol.  

White flakes appear in the otherwise transparent OTS liquid or at the surface of the 

liquid.  We found that if aged OTS was used, within 5min, the coverage exceeded 1 

monolayer.  Islands tens of nm height covered the entire surface when aged OTS is used 

(Figure 1–8 B).  Often white flakes became visible in the reaction solution within 1 hr if 

aged solution is used.   

 

Figure 1–8 Typical AFM images of ODS SAMs on SiO2/Si prepared with A: fresh OTS 
and B: old OTS.  Reaction time 1 hour.  (Image size: 2 µm ×2 µm, height scale 2 nm)  
  

It appears that the contact with moisture creates oligomers that act as nucleation centers 

for bulk polymerization processes.  If the oligomer aggregates are too large, they can 

form multilayer on surfaces.  The dramatic difference in growth kinetics for solution 

prepared from fresh OTS, which contains few aggregates and aged OTS with many more 

aggregates, suggest that patches of oligomers have better chance to adsorb onto the 

surface than monomers.  The degree of polymerization may be the major reason for 

irreproducibility.  Therefore, to improve the reproducibility, exposure of the stock OTS to 

moisture must be minimized.  We later employed the sealing procedure described in the 

experimental section to protect OTS from ambient moisture.   
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1.3.3. Effect of water content. 
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Figure 1–9 Effect of water content in the ODS SAM preparation on glass.  20°C, 60% 
relative humidity 60 minute reaction time.   
 

The effect of water concentration is dramatic on the growth of ODS SAMs as illustrated 

in Figure 1–9.  Evidently, water promotes the attachment of ODS to the surface.  Bulk 

water may play several possible roles in ODS SAM formation.  First, water hydrolyzes 

trichlorosilane into silanol.  The silanol molecules should have higher affinity with the 

surface than do OTS molecules because in contrast with trichlorosilane groups, the 

silanol head groups can interact with surface water much more strongly through hydrogen 

bonding.  Another reason for the enhanced reaction rate is that the silanol molecules may 

cross-link to form oligomers (R1-2), having better affinity with the surface because they 

have more groups to interact with the surface than monomers.  The third reason is that the 

bulk water is in equilibrium with the surface water, which is believed to be important for 

high quality monolayer formation.  If the bulk water concentration is high, the water thin 
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film may grow.  If the toluene is anhydrous, it may extract water from the substrate 

surface and consequently inhibit the silanization reaction. 

 

1.3.4.  Roles of ambient humidity.   

In our laboratory, we found that typically the silanization was significantly faster in 

summer than in winter, when the humidity is much lower.  This prompted us to perform 

more systematic studies in which the relative humidity (RH) is controllably varied.  

Humidity may form a surface water film on hydrophilic surfaces [32].  To understand 

whether the presence of a surface water film on the substrate prior to immersion into 

reaction solutions is important in our experiment, we equilibrated glass substrates at 40% 

RH and the substrates were immersed in reaction vessels under the same RH.  After 

immersion, the vessels were sealed with parafilm and the humidity of the surrounding 

was reduced to 5%.   
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Figure 1–10 FTIR spectra of ODS SAMs on glass after 60 min of reaction .  Spectra are 
offset for clarity.  From bottom to the top: A substrate equilibrated at 40% RH.  Sealed 
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container.  B substrate equilibrated 5% and sealed container.  C container opened to 40% 
RH.  Reaction conditions: 12 mM water 2.1mM OTS in toluene. 
 

We found that the equilibration of substrate at a given humidity before reactions has no 

significant effect (Figure 1–10).  Even when the substrate had been equilibrated for 30 

min at 40% prior to immersion, νasCH2 peak absorbance only reached 0.65 mOD after 60 

min and 1.7 mOD after 5 hours of reaction if the reaction container was sealed 

immediately after immersing the substrate into the solution.  When the substrate was 

equilibrated with dry air (RH less than 5%) for 30 min before the silanization reaction, 

the absorbance reached 0.6 mOD.  The difference is rather small.  However, if the 

reaction solution is exposed to ambient environment at 40% RH during the silanization 

reaction, we found that the νasCH2 peak absorbance reached 3.3 mOD within 30 min, 

suggesting a compact monolayer (Figure 1–11).  We found that exposing the solution to 

RH over 50% often led to rapid polymerization as indicated by the IR absorbance 

exceeding that of a monolayer.  Within one hour, the reaction solution became visually 

cloudy, suggesting large amount of polymerization.  Therefore, we decided that the 

optimum humidity is 40%.  
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Figure 1–11 νasCH2 peak absorbance as a function of reaction time when  exposed to 40 
and 50% relative humidity(12 mM water 2.1mM OTS in toluene). 
 

Clearly, exposing the reaction solution to humidity has a much more dramatic effect on 

kinetics of the self-assembly of ODS than simply exposing the substrate to humidity.  

Therefore, in contrast to a number of existing studies, the surface film of water prior to 

reaction does not appear to play a significantly role under our conditions.  Fairbank et al. 

found that it was important to equilibrate the substrate with 50% humidity to achieve 

dense ODS films on high surface area silica gel [37].  At 50% humidity approximately 3 

ML of water is adsorbed [37].  At higher humidity, bulk polymerization started to occur 

as suggested by NMR [37].  On 1g high surface area silica gel (350 g/m2), the amount of 

adsorbed water is 0.7 g if equilibrated at 50% RH [37].  Because the amount of adsorbed 

water far exceeds the extraction capacity of the solvent, 20 ml heptane, the amount of 

surface water should not change significantly when the silica gel was added to the 

heptane.   

 

However, the arguments relevant to high are materials are  not necessarily applicable to 

the SAM formation on planar surfaces.  On a planar substrate, even if the substrate is 

equilibrated at a set RH and several monolayers of water are formed on the surface, the 

amount of water present on the surface is insignificant compared to the water extraction 

capacity of the solvent.  Therefore, after immersion into the reaction solution, equilibrium 

between the surface water and water present in the solvent may change the amount of 

surface water significantly.  Depending on the tendency for the solvent to extract water, 

the water film may grow [21] or dissolve into the solvent [45].  Therefore, we believe the 
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applicability of conclusions from the silica gel to planar surfaces is questionable.  An in 

situ ATR FTIR study on planar surfaces study suggested that even trace amount of water 

in the solvent might be adsorbed by the substrate [21].  It appears that the surface water 

film is largely determined by the water content of the reaction solution and therefore 

surface hydration prior to reaction is not important under our conditions.   

 

The role of ambient humidity is suggested by the observation that after extended 

exposure to ambient environment a white film develops on the surface of the solution.  

This suggests that the solution-air interface is the preferred location for the OTS 

molecules to react with moisture and polymerize.  This points to the importance of 

siloxane oligomers in the formation of ODS SAMs.  As discussed in 3.2, the presence of 

oligomers may promote the reaction.  The water content (12 mM) in the toluene is 

sufficient to hydrolyze all the OTS molecules (2.1mM).  Since the substrate is 

equilibrated in the atmosphere, and 12 mM water is present in toluene, a water film on 

the substrate should be present [36].  Yet the water film alone is not sufficient for self-

assembly.  If fresh OTS was used, the polymerization process was slow on the time scale 

of several hours under a dry environment (when the reaction vessels were sealed).  We 

proposed that attachment of single silanol or chlorosilane molecules to the surface is 

slow.  The importance of humidity manifests itself through the promotion of the 

polymerization process: forming small patches of polymerized silanol that can be 

subsequently attached to the surface.   
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Our results suggest that polymerization prior to attachment to the surface, while deemed 

responsible for multilayer formation [26], may play positive roles in the formation of 

high quality ODS monolayers. Evidently, large oligomers of siloxane can form ill-

defined multilayers, as suggested by Figure 1–6B.  However, smaller oligomers may be 

flexible enough to adopt a geometry that allows all the headgroups attached to the 

surface, thereby forming a dense monolayer (Figure 1–12).  Compared to monomers, 

siloxane oligomers may adsorb onto the surface much faster than since multiple OH 

groups are allowed to interact with the water surface.  Although many authors assume 

that hydrolysis occurs at water films on substrate surfaces after chlorosilanes are 

adsorbed [21, 24, 33], those studies were performed under conditions where the amount 

of water in the bulk is negligible.  Consequently, the reactions may take over 24 hours to 

complete.   

 

In addition to delivering small, polymerized patches at the air-toluene interface, we 

cannot completely rule out the possibility that the solvent may absorb moisture when 

exposed to ambient and consequently the bulk concentration of water may increase.  The 

humidity may change the water concentration in the solvent.  However the absorption of 

moisture by solvent should occur on time scale of hours [21].  To draw a more definitive 

conclusion, absolute water concentrations with different amount of exposure to ambient 

humidity need to be measured.   

 

1.3.5. Conclusions and future work. 
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Our results suggests that the widely varying reported ODS SAM formation kinetics, with 

reaction time ranging from days to minutes [22-25],  can be rationalized by the three roles 

of water discussed above.  We demonstrate that water can be controlled by employing 

relatively simple procedures and reproducibility can be improved dramatically.  If the 

OTS is not fresh, the coverage may exceed a monolayer within 5mins.  This is 

undesirable since bulk polymerization occurs too rapidly.  Under very dry conditions (dry 

solvent and low humidity), although bulk polymerization is suppressed, the reaction is 

very slow and the film is not compact.  We chose the middle ground for our optimum 

conditions.  By using fresh OTS, 12mM water and 40% ambient humidity, compact 

SAMs can be performed within an hour or two with no significant bulk polymerization.   

Air

Toluene

Damp air meeting surface of Toluene

Random silane Molecules

Polymerized silane

Surface water 
layer

 

Figure 1–12 The role of humidity in ODS SAM formation. 
 

Our results suggest that small patches of ODS oligomers may allow facile formation of 

ODS SAMs.  Due to the small size and limited degree of cross-linking, formation of 

dense monolayer may still be possible, in contrast to very large oligomers.  Currently the 

small patches are achieved by exposing the reaction mixture to a controlled ambient 

humidity.  Questions concerning the diffusion of the small patches from liquid air 
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interfaces and whether the reaction can be scaled up to larger containers remain.  On a 

more fundamental level, more investigations on controlling the processes in the bulk 

reaction solution as well as those at the surfaces.  NMR and light scattering techniques, 

for example, may help to understand and control crucial steps such as hydrolysis and 

polymerization of OTS in the bulk solution.  To achieve better control over the 

irreproducible process, we believe that it is also important to use in-situ techniques, 

especially vibrational spectroscopies, to investigate the adsorption of water, chemical 

species and bonding on the substrates.  Such investigations will help to understand the 

equilibration between surface water and the degree of cross-linking between siloxane 

headgroups in the surface plane [48].  Though FT-IR studies of silanization of high 

surface area materials [32, 33, 38, 49, 50] have advanced our understanding, they cannot 

substitute for in-situ studies directly on well-defined planar substrates since many 

conclusions, such as the partition between the water in the surface film and in the solvent, 

are not necessarily applicable to lower surface area materials. 
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2. Mechanism of UV photoreactivity of alkylsiloxane self-
assembled monolayers. 

2.1. Introduction. 

There has been intense interest in the growth of Self-Assembled Monolayers (SAMs) [1].  

In contrast, much less attention has been paid to the reactivity of SAMs.  The stability of 

SAMs is a prerequisite in their technological applications.  Alkanethiol monolayers have 

been found to have lifetimes ranging from hours to months in ambient environment [2] 

and degrade in minutes under ultraviolet (UV) irradiation [3].  The reactivity of 

alkanethiol SAMs has been attributed to the thiolate headgroups, which are prone to 

oxidation [3].  Even the alkyl chains can degrade under harsh conditions, e.g., under 

photo or electron irradiation [4, 5].  Knowledge of SAM photoreactivity may help to 

design and prepare more stable SAMs for technological applications.   

 

While we need to improve the stability of SAMs, controlled degradation can be desirable 

in some cases.  Photoreactivity of SAMs can be exploited to selectively modify SAMs for 

various applications.  As the feature sizes in lithography continue to scale down, there is 

an increasing demand on the resist films.  In the case of photolithography, the thickness 

of the resist films must reduce as the focus depth of the light decreases with ever 

decreasing light wavelength [6, 7].  In the case of electron beam-lithography, the reduced 

thickness is necessary to reduce the scattering of secondary electrons in the resist films, 

which degrades the resolution [6, 7].  In addition, structural uniformity of the films 

becomes increasingly more important.  SAMs have become an attractive candidate for 

nanoscale resist due to their molecular thickness and  well defined structure [8, 9].  
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Understanding the photoreactivity of SAMs is important for optimizing photoresist 

patterning processes involving SAMs [10-12].  In addition, photo-modification of SAMs 

may serve as a convenient route to attach functional groups to SAMs, enabling one to 

tailor wettability, adhesion and electrical properties of the monolayers [13].   

 

On a more fundamental level, the molecularly well-defined structures render SAMs a 

model system to probe the relationship between structure and photoreactivity in 

condensed phase, which has implications from organic aerosol chemistry to photoresist 

micropatterning [14-16].  At this stage, the degree of understanding of the complex 

mechanisms of photooxidation of condensed is far from that achieved for organic 

compounds in gas phase [16, 17].  It would be challenging or impossible to extract the 

rate of each individual steps since each step is sensitive to the environment of the reactive 

sites, which may be highly heterogeneous.  Nevertheless SAMs afford the opportunity to 

systematically vary the structure and composition of organic layers to understand from a 

molecular level how these factors affect the reactivity.   

 

Due to the unique ordered 2D structures of SAMs, one would expect the reaction kinetics 

or even reaction pathways of SAMs to depart significantly from gas phase reactions.  

Indeed, dramatic contrasts have been observed in a limited number of studies.  First, the 

ordered SAM structure may block access to reactive sites.  The reactions of ordered 

organic thin films were found to occur preferentially at the top of the chains [18, 19] or 

defect sites [2, 20, 21].  However, in some cases, surfaces may significantly enhance the 

reaction rates.  It has been shown that the reactions between hydrocarbon chains in SAMs 
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and radicals can be enhanced by orders of magnitude compared to gas phase reactions 

[14, 15, 22].  However, the origin of such enhancement remains unclear.  The impinging 

reactive species may remain on the surface, increasing the probability of reaction, while 

in gas phase most of the colliding reactants are rapidly separated before reactions can 

occur.  The possibility of crossing of potential energy surfaces was also raised to explain 

enhanced reactivity.  Paz et al. proposed that in the reactions between O(3P) and methyl 

groups in SAMs, the long lived collision complex on the surface may result in the 

crossing to a singlet potential energy surface that results in much higher reactivity [19].   

 

2.1.1. Possible mechanisms of photoreactivity of SAMs. 

Depending on the wavelength, the nature of the functional groups in the SAMs, the 

substrate and the ambient environment, photons can modify the SAMs with different 

mechanisms.  We attempt to categorize the mechanisms according to the active agents 

involved (Figure 2-1).   

hν

e-

hν

hν + Air

O3,O

Direct photo-dissociation Chemical reactant mediated Electron mediated
 

Figure 2-1 Probable mechanisms of SAM photoreactivity. 
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2.1.1.1. Direct photodissociation.   
Photons can be directly responsible for the dissociation of the organic molecules in 

SAMs.  UV photons in resonance with electronic transitions in unsaturated SAM layers 

(such as a π-π* transition) can induce photolysis [23].  However, photolysis of saturated 

alkyl SAMs requires a σ-σ* transition of C-H or C-C bonds induced by absorption of 

photons in the vacuum UV range (λ<160 nm).   

2.1.1.2. Electron-mediated.   
Photons can ionize the underlying substrate or the monolayer, which leads to further 

chemical transformation and dissociation.  X-ray induced modification of SAMs is 

believed to proceed via this mechanism [24-26].  Whitesides et al. observed that  under 

identical X-ray fluxes, CF3COO terminated monolayers degraded more rapidly on Au 

than on Si, which is a less efficient electron emitter[24].  Furthermore, when normalized 

to photo-emitted electron fluxes, similar amounts of degradation occurred on different 

substrates[24].  This supports the suggestion that electrons are the primary cause of SAM 

X-ray degradation.  Though there is little absorption of X-rays by organic monolayers, 

photoelectrons generated from the substrate can interact with the organic monolayers.  

Indeed, the damage of SAMs by X-ray degradation [25] is remarkably similar to the 

electron damage of SAMs [27].  Both involve dehydrogenation and cross-linking of the 

alkyl chains.  Both mechanisms result in very little loss of carbon content.  Both 

mechanisms result in the incorporation of oxygenated functional groups upon exposure to 

air.  It is believed that electron impact induces C-H and C-C bond scission, forming 

radicals[27].  The radicals can undergo cross-linking and oxygenation[27].  The proposed 

steps are summarized in Table 2-1.   
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Table 2-1 Proposed mechanism of electron beam degradation of SAMs. 
R-H→R•+H• R 2-1 

R-R’→R•+R’• R 2-2 

R•+R’’•→R-R’’ R 2-3 

R•+ O2→ROO•   R 2-4 

ROO• →-C=O,  C-OH, -COOH R 2-5 

 

2.1.1.3. Chemical reactant mediated.   
In an ambient environment, UV light may generate highly oxidative species, such as 

ozone, atomic oxygen and hydroxyl radicals [28].  The reactive species may subsequently 

react with the monolayers.  A number of studies have attributed the primary degradation 

pathway of alkanethiol SAMs in ambient and under low UV intensity (µW/cm2 to 

mW/cm2) to ozonolysis [2, 3, 29-31].  In this mechanism, it is suggested that photo-

generated ozone attacks the thiolate headgroups to produce solvent-labile species and 

cleavage of the C-S bond.  In contrast, UV photooxidation of alkylsiloxane SAMs has 

been attributed to the reaction between hydrocarbon chains and atomic oxygen or other 

oxygen containing radicals [18, 32].   

 

It should be noted that the photoreactivity of SAMs may involve more than one 

mechanism at the same time.  For example, X-ray degradation of SAMs is initiated by 

electrons, but subsequently chemical reactants may participate in the degradation as 

well[25].    

 

2.1.2. Objectives of this study.             
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We chose to investigate the reactivity of octadecylsiloxane (ODS) SAMs under UV 

irradiation in ambient, which has implications in photopatterning applications and 

heterogeneous chemistry of organic aerosols.  The goals of this study are to understand:  

1.  The active agent for the UV photoreactivity of ODS SAMs.   

2.  The reactive sites in the photochemical transformation.   

3.  The nature of reaction intermediates and products. 

We found evidence that atomic oxygen is the primary agent for the UV degradation of 

ODS SAMs.  UV degradation results in the scission of alkyl chains instead of the 

siloxane headgroups.  We found that degradation introduces microscopic roughness ODS 

SAMs.  Using a novel highly surface sensitive technique, FLOSS, we identified the 

presence of submonolayer quantities of chemical functional groups formed by the UV 

degradation.  We proposed a mechanism based on hydrogen abstraction.  Deeper 

molecular level insight into the mechanism of the UV photoreactivity of ODS SAMs has 

implications in high resolution photopatterning of molecular resists.  

2.2. Experimental Section. 

2.2.1. SAM preparation. 

SAM preparation procedures have been described in detail in Chapter 1. 

 

2.2.2. UV photoreactivity. 

The ODS covered samples were irradiated in a home-made pyrex glass UV chamber with 

a low pressure Hg/Ar lamp (Oriel Instruments) with total intensity of ~2 mW/cm2 at a 

working distance of 3 cm.  The primary wavelength of the lamp is 254 nm.  It is believed 
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that the UV light at 183 nm, albeit constituting only 3% of total intensity, is responsible 

for the ozone generation [31].  Before placing the sample in the UV chamber, the UV 

lamp was powered on for at least 15min to reach stable intensity and steady state ozone 

concentration in the chamber [29].  The ozone concentration was determined by a direct 

photometric method [33].  Briefly, the ozone generated in the chamber was captured in a 

1cm path length quartz cuvette.  Assuming an absorption cross section of 1150×10-20 cm2 

at 255 nm, the UV absorbance was used to calculate the concentration [34].  The steady 

state concentration of ozone in the UV chamber was found to be 100±10 ppm.  A more 

detailed description can be found in Appendix B.   

 

   

Figure 2-2  UV chamber a:  Irradiation configuration 1, where both sides of the sample 
are exposed to the chamber.  b: Irradiation configuration 2, where only a single side is 
exposed to the reactive species produced in the chamber. 
 
 
 
 
 
 
 
2.2.3. Sample characterization. 
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2.2.3.1. Water contact angle and FT-IR measurements. 
These two techniques have been described in Chapter 1.  Most FT-IR spectra were 

obtained from SAMs supported on glass slides.  The only exception was the FT-IR 

measurement in the carbonyl stretch region, which was performed on SAMs supported on 

oxidized silicon substrates.  In that case, the background was N2 instead of a cleaned 

substrate.   

2.2.3.2. AFM. 
Details of AFM measurements have been described in the experimental section of 

Chpater 1. 

2.2.3.3. XPS measurement 
X-ray photoelectron spectra were obtained on a Physical Electronics model 550 

apparatus, equipped with a cylindrical, double-pass analyzer.  The front of the analyzer 

was apertured to restrict the acceptance angle to ±6º.  The energy resolution of the 

apparatus was determined to be 1 eV.  X-ray photoelectron spectra were taken using an 

Al Kα X-ray source (1486.3 eV) and all the spectra were taken at 30º take-off angle.  The 

pressure in the analytical chamber was ~10-9 Torr during analysis.  Spectra of C(1s) 

(binding energy: 280 - 292 eV) region were collected. 

2.2.3.4. Fluorescence labeling of surface species (FLOSS). 
Chromophore labeling:  µM solutions were prepared of either triphenylmethylchloride 

(98%, Aldrich) in dimethylformamide (DMF, ACS grade, Baker), 1-pyrenemethylamine 

(95%, Aldrich) in ethanol (ACS grade, Pharmaco) or 1-napthaleneethanol (99%, Aldrich) 

in methylenechloride (ACS grade, Fisher).  The trityl and pyrene labeling reactions were 

carried out at room temperature for two hours.  The naphthalene labeling reaction was 

refluxed for two hours with a catalytic amount of hydrochloric acid (CMOS grade, 
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Baker).  Fluorescence measurements  were performed on a Jobin Yvon Horiba Spex 

Fluorolog 3 with 5 nm bandpass and 5 scan averages with samples situated at a 45º 

incident angle.  Excitation and emission monochromators are double grating and 

detection is accomplished using a PMT.  Fluorescent signals for all samples were 

corrected for lamp fluctuations by recording the ratio of the fluorescence signal to a 

source reference photodiode.   

 

Post Reaction Cleaning Procedure:  Following the chromophore grafting, sample surfaces 

were rinsed with neat solvent.  The samples were then sonicated in successively less 

polar solvents (methanol or acetone, then CH2Cl2, and finally hexane) to remove residual 

reactant species from the surface.   

 

The calibration sample was marked with a diamond scribe defining the boundaries of the 

spot (4mm × 6mm) illuminated by the fluorometer.  This facilitated realignment of the 

sample and ensured that the solution spread only in the defined area.  A 5 µL drop of 

dilute solution was placed on the marked area of the sample and the solvent was allowed 

to evaporate.   

 

2.3. Results. 

2.3.1. Contact angle results. 

 The ODS SAMs are known to be remarkably stable in ambient over extended periods of 

time.  There was no measurable change in the contact angles of the monolayers stored 
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under ambient in our laboratory over several months.  The water contact angles of the 

ODS monolayers on glass irradiated for different amounts of time in the UV chamber are 

shown in Figure 2-3 .  The contact angle of SAMs dropped significantly following a few 

minutes of UV irradiation in air.  The increasing hydrophilicity of the surface can be 

explained by conversion of alkyl chains to hydrophilic groups, e.g. OH, aldehydes or 

carboxylic acids, or increasing coverage of the hydrophilic substrate due to loss of the 

alkyl chains during the UV irradiation.  When the UV irradiation chamber was flushed 

with argon, there was little change in the contact angle after irradiation.  This suggests 

that the UV alone cannot directly dissociate the alkyl chains.  Remarkably, the side of the 

slides facing away from the irradiation source displayed very low reactivity.  The lifetime 

of ozone is sufficient to maintain a roughly uniform concentration across the UV 

chamber [35].  This long lifetime is confirmed by experiments described in Appendix B.  

As the glass slides are opaque to UV wavelengths below 300 nm (Figure 2-4), the 

backside of the sample is exposed to ozone but not UV with wavelength below 300 nm.  

This result suggests that UV and O2 are both necessary for the reaction to proceed.  In 

agreement with Moon et al. [32], we conclude that ozone alone was not the active reagent 

in our system.   
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Figure 2-3 Contact angles of irradiated ODS SAMs on glass as a function of time under 
different ambient environments. 
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Figure 2-4 UV-vis spectrum of a 1mm thick microscope cover glass slide (VWR). 
 

2.3.2. FT-IR results. 

2.3.2.1. UV irradiation configuration. 
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Figure 2-5 FT-IR spectra of double sided ODS sample and single sided ODS sample on 
glass. 
 

The degradation kinetics on the two sides of the sample is not uniform as indicated in 

Figure 2-3.  The two sides, with different kinetics, contribute to the transmission FT-IR 

spectra, making the results difficult to interpret.  In order to isolate the kinetics of the side 

that faces the UV light using FT-IR, we employed a different irradiation configuration.  

We exposed only one side of the ODS glass slide to UV for a desired period of time using 

irradiation configuration 2 in Figure 2-2 and then exposed the other side to UV, which 

was originally outside the chamber for the same period of time.  Since the glass substrate 

blocks the UV light below 300 nm (Figure 2-3), responsible for monolayer 

photoreactivity, both sides received the same amount of irradiation and hence 

degradation.  This method allows us to study the kinetics of the SAM degradation 

directly exposed to UV.  Extended UV irradiation (>2 hr) of one side of a sample resulted 

in the decrease in FT-IR intensity to almost precisely half the initial IR intensity (Figure 
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2-5).  This indicates that the side that was exposed to UV was completely degraded while 

the other side of the slide was still covered with a full monolayer ODS.  Having the 

assurance that the SAM outside the UV chamber was not degraded during irradiation, the 

FTIR spectra of the monolayer on glass were recorded following UV degradation on each 

side for identical amount of time.   

2.3.2.2. Degradation kinetics. 
The FT-IR spectra in the CH stretch region of the ODS SAMs as a function of irradiation 

time on glass are shown in Figure 2-6.  νasCH3 (CH3 asymmetric stretch mode near 2960 

cm-1), νasCH2 (CH2 antisymmetric stretch mode near 2920 cm-1) and νsCH2 (CH2 

symmetric stretch near 2850 cm-1) modes were resolved.  The spectra were in good 

agreement to those reported for compact monolayers in the literature [36, 37].  To 

perform a more quantitative analysis, we deconvoluted the spectra to calculate the 

integrated absorbance of νasCH2 and  νasCH2.  80% reduction of the νasCH2 and νsCH2 

band is observed in Figure 2-7 after 1 hour of UV irradiation in air.  The reduction in 

absorbance suggests conversion of CH2 groups to other functional groups as well as loss 

of carbon from the surface.  In sharp contrast to the reaction between organic thin films 

and atomic oxygen under vacuum[19], which displayed first order kinetics, the decay rate 

of the νsCH2 νasCH2 mode absorbance did not decrease significantly as the UV 

degradation proceeds until .  Instead, the reaction displays roughly zeroth-order kinetics 

until most of the CH groups are depleted, indicating that the reaction rate does not depend 

on the concentration of CH2 groups.  This result also stands in contrast with previous 

studies of ambient UV degradation alkanethiol monolayers, which display a decrease in 
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the CH2 decay rate as the oxidation proceeds [31].  Further discussion on the degradation 

kinetics can be found in 2.4.4.2.  
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Figure 2-6  FT-IR spectra of ODS SAMs on glass irradiated for different amount of time, 
0, 5 min, 20 min, 30 min, 45 min to 60 min in descending order.  Spectra are offset for 
clarity. 
 

2.3.2.3. Compactness of irradiated SAMs. 
The peak frequencies of the CH stretch modes are sensitive to the local chemical 

environment [37].  The CH2 peak frequency is considered to be a measure of degree of 

ordering in SAMs [37].  The νas CH2 peak frequency is at 2927 cm-1 for liquid OTS and 

2917 cm-1 for solid OTS [37].  At full monolayer coverage, the monolayer has to adopt an 

ordered configuration to accommodate the maximum number of molecules.  The peak 

frequency of the SAMs we used is 2920 cm-1, indicating that the film is largely compact 

but contains slight amount of disordering.  Our results suggested that the molecules 

became more disordered as degradation proceeds as indicated by the blue shift of the CH 
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stretch modes (Figure 2-8).  After 45 min of reaction the peak frequency was at 2926 cm-

1, close to that in liquid phases.   
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Figure 2-7  Integrated absorbance of νas CH2 and νs CH2 vs UV irradiation time (min). 
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Figure 2-8 νasCH2 and νsCH2 peak frequencies of ODS SAMs as a function of UV 
irradiation time. 
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Figure 2-9 νasCH2 and νsCH2 peak width (full width at half maximum) of ODS SAMs as 
a function of UV irradiation time. 

2.3.2.4. Effect of rinsing 
Rinsing the irradiated SAMs in solvent does not change the FT-IR spectra significantly 

(Figure 2-10).  The robustness of SAMs against rinsing indicates that all remaining CH 

chains in irradiated SAMs are firmly attached to the surface.  It also suggests that the 

photo cleaved species are volatile and therefore removed during the irradiation (prior to 

rinsing).  In contrast, dramatic differences in the CH stretch mode intensity are often 

observed on irradiated alkanethiol SAM samples before and after rinsing [3].  In the 

photooxidation of alkanethiol SAMs, the thiolate headgroups react to weaken the bonds 

to the substrate, forming weakly bonded long alkyl chains that do not evaporate easily 

and can only be rinsed off with solvent.  This suggests lack of reactivity in the siloxane 

headgroups of the ODS monolayers.   
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Figure 2-10 Effect of acetone rinsing on a SAM exposed to 15 min of UV irradiation. 

2.3.2.5. Effect of humidity. 
5x10-3

4

3

2

1

0

A
bs

or
ba

nc
e

320031003000290028002700
Wavenumbers(cm-1

)

 5% RH 15min UV
 35% RH 15min UV

 

Figure 2-11 FT-IR spectra of ODS monolayers on glass irradiated with UV for 15 min 
under 35% and 5% relative humidity.   
 

To understand the role of water in the system, the UV ozone chamber was placed in a 

glove bag continuously purged with dry air to reduce the humidity to 5%.  Remarkably, 

the FT-IR spectrum was similar to the spectrum of monolayer irradiated under 35% 
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ambient humidity (Figure 2-11).  The integrated absorbance in the CH2 asymmetric mode 

was 0.065 in both cases.  This suggests that the changes in concentrations of water vapor 

and presumably OH radicals do not alter the reaction kinetics.  Further discussion on the 

role of humidity can be found in 2.4.2.  

2.3.2.6. Detection of other functional groups. 
So far we have focused on CH stretch region (2800-3000 cm-1), in principle, FT-IR 

should be capable of detecting the resulting hydrophilic functional groups formed on the 

SAM surface as well. Carbonyls such as ketones, aldehydes and carboxylic acids have 

absorbance near 1700 cm-1.  However, the FTIR spectra were inconclusive as to their 

presence.  No peaks can be clearly assigned to carbonyls (Figure 2-12).  Difficulties 

associated with the detection of carbonyl groups include: 1. A gas phase IR water 

adsorption band near 1700 cm-1 overlaps with the carbonyl stretch modes.  It is difficult 

to completely subtract out the background due to the presence of water vapor even with 

good purging in FT-IR spectrometers [38].  2. The signal level from submonolayer 

species is very small.    Assume that the minimum detectable carbonyl signal in an IR 

experiment is 0.1 mOD.  A typical IR cross-section for an C=O is 8.4×10-19 cm2 , 

calculated from IR data for acetone [39].  Using these two pieces of information we can 

calculate that there would have to be 2.7×1014 cm-2 carbonyl groups at the surface to 

achieve this magnitude of signal 2.  A full compact OTS monolayer corresponds to 

approximately 4.2×1014 molecules cm-2.  The surface coverage of carbonyls must be 

greater than 65% to achieve a detectable signal level by FT-IR.  This suggests that the 

                                                 
2 The surface concentration c is calculated by c=2.303A/σ, where σ is the absorbption 
cross section and A is the absorbance. 
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surface concentration of carbonyls is less than monolayer coverage and other more 

sensitive tools are necessary to detect the surface functionalities.   

 

Figure 2-12 FTIR spectrum of ODS SAM irradiated for 30 minutes in the carbonyl 
stretch region.   Substrate SiO2/Si.   
 

2.3.3. AFM results. 

To probe the details of alkylsiloxane surface photoreactivity, the evolution of the SAM 

morphology was investigated by AFM.  The unirradiated surface with ODS monolayer 

was flat with RMS roughness less than 0.3 nm on an oxidized Si substrate.  We found 

that there was no evidence that pinholes had been created during after various periods of 

irradiation up to 30 min.  This suggests that the degradation doesn’t proceed via the 

development of defects.  Indeed it was difficult to detect any changes in the samples on 

the sole basis of AFM images of full monolayers. 
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Figure 2-13 Contact mode AFM images of ODS on SiO2/Si irradiated (from left to right) 
for a: 0 min, b: 15 min and c: 30 min.  Height scale 2 nm. 
 

In another experiment, ODS samples with sub-monolayer coverage were investigated 

with AFM.  It was convenient to study flat substrates partially covered with high density 

SAM islands [40].  This made morphological changes easier to follow as well as 

facilitating accurate repositioning of samples after ex-situ irradiation.  This type of 

sample was successfully prepared by reducing the immersion time to about 30 sec and 

lowering the reaction temperature to 10°C.  Images of a sub-monolayer coverage ODS 

sample are shown in Figure 2-14.  The ODS molecules aggregated into flower-shaped 

islands that were 1.5-2 nm high.  A higher resolution image showed that the islands were 

porous.  It had been proposed that under certain conditions OTS molecules cross-linked 

to form small patches in bulk solution [41].  Subsequently the patches aggregate on the 

surface to form islands.  There is space between the patches that cannot be filled other 

monomers or patches in a short period.  Therefore lots of open space appeared on the 

surface. 
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Figure 2-14 Tapping mode AFM images of a submonolayer ODS SAM on SiO2/Si. 
 

The surface covered with submonolayer islands was imaged with tapping mode AFM 

before UV irradiation (Contact mode AFM is not suitable for the surface with high 

frictional contrast.  We observed significant frictional cross-talk on the surface especially 

on the irradiated surface.  See Appendix A for more details.).  Tapping mode was found 

to be effective in eliminating the frictional cross-talk and allowed us to obtain reliable 

topographic information on the surface.  After irradiation, AFM images were acquired at 

the identical region.  A uniform reduction in the height of monolayer ODS islands from 

1.7 ± 0.2 nm to 0.8 ± 0.2 nm occurred after 15 minutes of UV/ozone exposure.  Figure 

2-16 shows that after 60 min of irradiation, the ODS islands disappeared almost 

completely, the residual island height is about 0.2 ± 0.2 nm.  The island height of the 

ODS monolayer dropped to 45 ± 17% of original value after 15 min of irradiation and to 

10 ± 10% of original value after 1 hr of irradiation.  This qualitatively agrees with the 

integrated νasCH2 absorbance in FT-IR which are 69±6% of original value after 15 min of 

irradiation and 20±6% after 1 hour of irradiation.  The drop of the absorbance in FT-IR 
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may be explained by the conversion of C-H to other groups such as C-OH as in the 

atomic oxygen degradation of ODS monolayer [19].  However, the reduction of the 

island height measured by AFM suggests that chain scission indeed occurred during the 

degradation process.   
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Figure 2-15 Tapping mode AFM images and  cross sections of ODS SAM on  SiO2/Si 
surface.  (A) No UV irradiation.  SAM height=1.7 nm (B) 15 min UV irradiation.  SAM 
height=0.8 nm 
 

Interestingly, our AFM results in Figure 2-15 indicate that defect sites do not appear to 

nucleate the degradation of ODS SAM.  The cross sectional AFM segment shows that the 

pinholes in the SAM did not widen during irradiation within the limit of AFM resolution 

(10 nm).  They do not appear to be sites of enhanced reactivity.  There is little evidence 

that the holes grew within the islands.  Furthermore, the shape of the islands remained 

remarkably uniform, suggesting that the island perimeter does not display enhanced 

reactivity.  The AFM results provide direct evidence that the domain boundaries between 
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the ODS covered and bare substrate do not play a significant role in the degradation 

process.  On the contrary, we see a uniform reduction in the height of monolayer ODS 

islands.   

 

Figure 2-16 Tapping mode AFM images of ODS on SiO2/Si at an identical location (A) 
without UV irradiation (B) 60 min UV.   
 

2.3.4. XPS results. 

To determine the chemical nature of irradiated SAMs, XPS spectra were collected on 

ODS SAMs with and without UV irradiation.  After 15 min of irradiation, the C(1s) 

intensity was reduced by 12±4%.  FT-IR suggests that 31±6% of CH2 groups were lost 

after 15 min of irradiation.  It should be noted that due to the attenuation in 

photoelectrons, the photoelectron intensity is a sublinear function of the carbon content, 

i.e., the percentage reduction in the surface concentration of carbon should be higher than 

12%. The photoelectrons from thicker the films experience greater attenuation [42].  The 

attenuation of photoelectrons from atoms covered by a film with a thickness x, can be 

described by the following equation [42].     
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θλ sin/
0

xeii −=  Equation 2-1 

 
where i is the intensity after attenuation per unit depth, i0 correspond to the unattenuated 

intensity, λ is the attenuation length of photoelectrons, and θ is the take off angle with 

respect to the surface.   

 

For a uniform organic film consisting of n alkyl chains with thickness d, the total 

photoelectron intensity of the film can be obtained by integrating the intensity at different 

depths x (distance from the vacuum air interface) [42]. 
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where C∞ corresponds to the intensity of an organic film with infinite thickness. 

 

We assumes that the thickness of the hydrocarbon layer of the unirradiated ODS SAM to 

be 25 Å and the λ of C(1s) photoelectron to be 32 Å [42] and θ is 60°.  According to 

Equation 2-2, a decrease of total intensity of 12±4% after UV irradiation corresponds to a 

reduction of the layer thickness by 18±5%.  It should be mentioned that there is 

significantly uncertainty of the λ of C(1s) photoelectrons in hydrocarbon films [42, 43].  

Therefore, we are unable to conclude whether the difference of loss of carbon measured 

by XPS and the loss of methylene groups measured by FT-IR is significant.    

  

Part of the difference between XPS and FTIR results may be accounted for by the 

appearance of several % coverage of various oxygen containing groups (CO2H, COH and 
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CO).  There were some indications of shoulder peaks at C-O (286.5 eV) and C=O (290 

eV).  However, the peaks were too low for quantitative measurement.  The upper limit of 

oxygenated carbon is estimated to be 8 % by integrating the fitting residue of a Voigt 

function centered at 285 eV. In addition, as the SAM degrades, it may be less resistant to 

contamination. Therefore, we cannot exclude the possibility that the adsorption of 

hydrocarbon contamination from the ambient during the time window after UV 

irradiation and before loading the sample to the XPS chamber 3 . (Our fluorescence 

labeling of surface groups indicated that small amount of alcohol and carbonyl groups 

(on the order of a few percent of monolayer  coverage) are present on the surface [44].)  

Overall, our results suggest that the oxygenated content is small. In contrast, Paz. et al. 

found a pronounced shoulder peak in the C(1s) region after treating ODS SAMs with 

O(3P), suggesting more than 20% of the carbon is converted to oxygen when similar total 

amount of carbon is lost [19].  Similarly the shoulder peaks for oxygenated carbon of 

ODS SAMs were significantly more pronounced under the X-ray or electron beam 

irradiation in vacuum or low pressure oxygen [5, 26].  It suggests that once formed, the 

oxygenated functional groups are more readily cleaved under the UV/oxygen 

environment.  By comparison, due to the lack of ambient oxidants, the oxygenated 

functional groups may accumulate on the surface under low oxygen environments, such 

as in vacuum chambers [19].   

                                                 
3 To more unambiguously identify the surface functional groups, we used fluorescence 
labeling to identify functional groups chemically attached to SAMs. Physisorbed 
functional groups do not contribute to the fluorescence signal in this case. 
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Figure 2-17  XPS spectra of ODS SAMs with no irradiation and after 15 min of UV 
irradiation.  Substrate: SiO2/Si. 
 

2.3.5. Fluorescence labeling of surface species (FLOSS). 

Though we suspected the presence of oxygen containing functionality in UV irradiated 

siloxane SAMs, these could not be detected with FTIR or XPS.  UV/ O3 irradiation may 

produce surface densities of the OH, CHO and COOH functional groups in the range of 

0.01 ML,(ML is defined as the maximum surface concentration of packed alkyl chains, 

4.2×1014 cm-2 [45]).  The sensitivity of IR and XPS was insufficient to detect such low 

concentration species.  In the area of biological [46-50] and polymer chemistry [51-54] 

fluorescent labeling has long been used to both qualitatively and quantitatively monitor 

functionality.  Fluorescent probes have also been used study the structure and reactivity 

of self-assembled monolayers (SAMs) [55-58].  A question is whether the inherent 

sensitivity of fluorescence can be exploited to identify and quantify low concentration 

surface functionalities.   
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Figure 2-18 Schematic of fluorescence labeling of CHO, COOH, and OH surface 
functional groups.   
 
As shown in Figure 2-18, 1-pyrenemethylamine was selected to label aldehyde surface 

groups by formation of imine linkages.  (Formation amide by a reaction between 

carboxylic acid and amine groups can not occur at room temperature. [59])  2-

naphthaleneethanol was used to label carboxylic acid surface groups by formation of 

esters.  Triphenylmethlylchloride was selected to identify surface OH groups.  In all cases 

the fluorescence from irradiated monolayers, that presumably contained oxygen 

functionality, was more intense than from the unirradiated monolayer, which underwent 

the same labeling reactions.  In all these cases, control experiments on unirradiated 

SAMs, exhibited only small residual non-specific adsorption.   
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The specificity of the detection is demonstrated explicitly in the case of the OH groups 

(Figure 2-19).  The bare silicon control substrate displayed specific reactivity due to the 

existence of silanol groups, SiOH, present on the native silicon oxide [45].  The presence 

of OH groups on the UV irradiated SAM is also detected (Figure 2-19).  In addition, the 

presence of CHO and CO2H on UV irradiated SAMs was indicated by the covalent 

attachment of 1-pyrenemethylamine (Figure 2-20) and 2-naphthaleneethanol (Figure 

2-21).   Reinhoudt et al. found that the florescence from ~0.3 ML pyrene attached to a 

NH2 terminated SAM is dominated by excimer emission around 480 nm [58].  While in 

Figure 2-20, the emission is dominated by monomer emission near 390 nm.  This 

provides evidence that the surface coverage of the attached pyrene is less than 0.1 ML, 

and that there is no clustering of surface aldehyde groups.  Due to the large distances 

between the covalent attached chromophores, little aggregation can occur.   
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Figure 2-19 Detection of surface alcohol groups by covalent surface attachment of 
triphenylmethlylchloride to a SAM surface irradiated for 30 minutes in UV/ O3 as well as 
SiO2 and unirradiated monolayer controls.  Inset: calibration plot.   
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Figure 2-20 Detection of surface aldehyde groups by covalent surface attachment of 1-
pyrenemethylamine to a SAM surface irradiated for 30 minutes in UV/ O3 and controls.  
Inset: calibration plot.   
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Figure 2-21 Detection of surface carboxylic acid groups by covalent surface attachment 
of 2-naphthaleneethanol to a SAM surface irradiated for 30 minutes in UV/ O3 and 
controls.  Inset: calibration plot.   
    

To quantify the amount of chemisorbed chromophores corresponding to OH, CHO and 

COOH groups, calibration curves were obtained by measuring the peak florescence 

intensities for known amounts of chromophores deposited on an unirradiated SAM 

surface.  Deposition of chromophores was achieved by uniformly spreading a 

predetermined volume of chromophore solution on the surface and letting the solvent 
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evaporate.  By measuring the peak intensity of the surface labeled by the corresponding 

chromophores, the surface concentrations of the CHO, OH, and CO2H were determined 

from the calibration plots (insets of Figure 2-19, Figure 2-20 and Figure 2-21) 

 

To gain a better understanding of the UV photo-oxidation process and the evolution of 

surface groups, the surface concentrations of the CHO, OH, and CO2H were determined 

as a function of UV irradiation in Figure 2-22.  Up to 4.3% of the ML was functionalized 

by CO2H groups and 0.5% by OH groups.  CHO groups peaked at about 1.3% ML at 30 

min, consistent with Figure 2-20 that little chromophore aggregation occurred.  The CHO 

concentration dropped after 50min of UV.  This trend is expected since the 

concentrations of the intermediates produced by the photoxidation of CH groups should 

also decrease as 80% of the hydrocarbon groups in the SAM are depleted after 50min 

UV.   
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Figure 2-22 Surface concentration of oxygen containing functionality ( OH, CO2H , 
CHO) at the SAM surface as a function of UV irradiation time.   
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It should be noted that FLOSS detects the functional groups on the top of SAMs.  

Functional groups buried deep in the monolayer may not be accessible to chromophores.  

In addition, the chromophores used are large enough to occupy 3-4 surface sites of close 

packed alkyl chains.  This approach is not suitable for measuring high concentration 

surface species (>0.1 ML).  If the surface functional groups are closely packed, the 

chromophores may not be able to attach to all the closely packed surface groups [58].  In 

addition chromophore aggregation and fluorescence quenching at high concentrations 

makes quantification complicated [58].  Therefore, the concentration of functional groups 

may be underestimated. 

   

By adding a long alkyl chain linker between the functional group and the chromophore, 

one may be able to label groups deeper in the monolayer.  In addition, the esterification 

reaction to label COOH groups may not be very efficient.  A more efficient approach to 

label COOH groups is amide formation, which requires converting the COOH groups to 

acid chloride or anhydride, then reacting with amine linked chromophores [58].  These 

questions will need to be addressed to achieve more reliable surface concentrations with 

FLOSS. 

 

On the other hand, this steric limitation can potentially be an advantage of FLOSS, since 

one may use chromophores with different geometries to access information about lateral 

and vertical spatial distributions of functional groups (e.g., phase segregation [38]), 

which is difficult to achieve with XPS or SIMS. 
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2.4. Discussion. 

2.4.1. Summary of results. 

• UV degradation requires the combination of UV and oxygen.  Ozone alone 

does not degrade alkylsiloxane SAMs. 

• Contact angle results suggest that the SAMs become increasingly more 

hydrophilic.  However, water does not completely wet the surface even after 

several monolayers of CH2 groups are removed.  This suggests that the 

coexistence of hydrophilic and hydrophobic groups on the top of irradiated 

SAMs.   

• FT-IR results show decrease of CH groups, consistent with AFM and 

contact angle results.  The kinetics is complicated.  It is more consistent with 

zeroth order kinetics than first order kinetics.  The less compact monolayer 

showed blue shift (gauche defects) as degradation proceeds.   

• XPS results showed a loss of carbon.  However, the concentration of 

oxygenated carbon is too low to unambiguously identify. 

• FLOSS was able to identify and quantify small amount of functional groups 

formed during the UV irradiation.  We estimate that the surface coverage of 

OH COOH and CHO groups is at most a few percent of a monolayer.   

 

2.4.2. Active agents. 
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Our results clearly showed that UV alone does not degrade ODS SAMs.  Photolysis of 

saturated SAMs requires σ-σ* transition induced by absorption of photons in the vacuum 

UV range (<160 nm).  Since our UV source (mainly 254 nm and small amount of 183 

nm) falls short of the required range, the UV light cannot dissociate the saturated 

hydrocarbon chains directly.  This explains the lack of reactivity when the UV chamber is 

purged with inert gas.  The requirement of the combination of UV and oxygen suggests 

that UV generated reactive species, such as OH or O, are responsible for the degradation.   

 

The photochemistry of O3, O and OH are well known [28].  Under UV irradiation in 

ambient, ozone is produced in reactions illustrated in R 2-6 and R 2-8.  Singlet atomic 

oxygen O(1D) is produced by photolysis of ozone.  OH is mainly produced by the 

reaction between O(1D) and H2O (R 2-9).  Most of the O(1D)is rapidly quenched by 

collision with inert molecules (M) such as N2 R 2-7 [60].  In the ambient environment, 

the concentration of N2 1.9×1019 molecule/cm3 reduces the lifetime of O(1D) to ~1ns (R 

2-7).  Only a small fraction (∼1%) of O(1D) is able to form OH under ambient (R 2-9).  

The production rate of OH is proportional to the humidity.  The insensitivity of ODS 

degradation kinetics to humidity (from 5% to 35%) is surprising because OH is widely 

recognized as the major oxidant of hydrocarbons in the atmosphere [17].  It may suggest 

that under our conditions, due to higher concentrations or rate constants, other reactive 

species such as atomic oxygen play dominant roles in hydrogen abstraction and the 

contribution from OH is negligible.  Further investigations, such as quantitative 

measurements of the OH concentration, are necessary to clarify the role of OH radicals.   
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Table 2-2 Reactions to generate atmospheric oxidants [34]. 
O2 + hν(185 nm)→2 O R 2-6 

O3 + hν(254 nm)→O2 + O(1D)             k1 R 2-7 

MP)O(MD)O( 31 +→+                    k2=5×10-11 cm3 molecule-1 s-1 R 2-8 

O(1D) + H2O →2HO•                         k3 = 2.2 ×10-10 cm3 molecule-1 s-1           R 2-9 

MOMOP)O( 32
3 +→++                k4=2×10-33 cm6 molecule-2 s-2 R 2-10 

 

From the preceding discussion, atomic oxygen is a plausible oxidant in ambient UV 

oxidation of ODS SAMs.  More insights on the role of atomic oxygen can be gained if 

the concentration of atomic oxygen can be estimated.  The production rate of atomic 

oxygen is shown in R 2-7, where I0 is the UV light intensity, σ is the absorption cross 

section 1150×10-20 cm2 [34] and hν is the photon energy at 254 nm.  k1 is calculated to be 

3.2×10-2 s-1. 
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Equation 2-4 

R 2-7 and R 2-10 dominate the equilibrium between ozone and O(3P) [28].  Under a 

steady-state condition,  
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Equation 2-5 

 65



 

The ozone concentration in the UV chamber is 100ppm (2.4×1015molecule/cm3),[ O(3P)] 

is estimated to be 3.2×108molecule/cm3. 

The flux[61] of O(3P) is 

2
1

B3
O(3P) )

2
Tk(P)][O(f
mπ

×=
 

Equation 2-6 

 

where kB is the Boltzmann constant and T is the temperature (300K) and m is the mass of 

atomic oxygen.  The flux of O(3P) is calculated to be 5.2×1012 molecule cm-2 s-1.  

Similarly, the flux of O(1D) is calculated to be 9.8×108 molecule cm-2 s-1.  Assuming the 

area of a hydrocarbon chain to be 0.225 nm2 [37], the total surface concentration of 

hydrocarbon groups (CH2 and CH3) in a compact ODS SAM is equivalent to 7.6×1015 

groups.cm-2.  The time to completely oxidize the ODS SAM is observed to be 4200 s.  

Therefore, the average reaction rate RCH is 1.8 ×1012 molecule cm-2 s-1.  The flux of 

O(1D) is too low to account for the oxidation of ODS.  However, the flux of O(3P), 

5.2×1012 molecule cm-2 s-1 compares favorably to RCH, considering the high reaction 

probability of hydrogen abstraction by O or OH on organic surfaces [15, 19].   

 

2.4.3. Probable reaction pathways. 

The hydrocarbon chains are gradually shortened during photooxidation.  AFM and FT-IR 

results point to a microscopic reaction pathway that involves the reactivity of 

hydrocarbon chains instead of siloxane headgroups.  We assume that the mechanism of 

UV degradation of alkyl chains in SAMs also involves hydrogen abstraction as it does in 
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gas phase [62].  It is to be noted that even in the gas phase, photooxidation of compounds 

as simple as butane can have extremely complex reaction pathways [16].  It is much more 

difficult to access information about the individual steps in the condensed phase such as 

SAMs.  However, given the evidence of the role of atomic oxygen in the UV degradation 

of ODS SAMs and the detection of reaction intermediates such as alcohol, aldehyde, and 

carbonyl groups by FLOSS [44], we can propose probable reaction pathways.  The first 

step probably involves hydrogen abstraction to form alkyl radicals (R 2-11).  The alkyl 

radicals rapidly react with O2 to form peroxide radicals (R 2-12).  As illustrated in R 2-13 

and R 2-14, the peroxide has a number of pathways to form alkoxy radicals, which can be 

oxidized to form carbonyls (R 2-15).  The aldehyde groups can dissociate via photolysis 

(R 2-16) or further hydrogen abstraction at the α carbon (R 2-17 and R 2-18), finally 

resulting in loss of carbon.  Hydrogen abstraction in the CHO group (R 2-19) results in 

the formation of peroxyacids (R 2-19), a precursor of carboxylic acids.  

 

Table 2-3 Formation of alkoxy radical 
R-H + O→R• + HO•                                                                                         R 2-11 

R• + O2→ROO•                                                                                                R 2-12 

ROO• + hν→RO•+ O                                                                                       R 2-13  

ROO• + HO•→RO• + HOO•                                                                           R 2-14 

 

Table 2-4 Further oxidation. 

R CH2O• + O2→RCHO + HOO•                                                                      R 2-15     

RCHO + hν→R• + CHO•                                                                                R 2-16 
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R CH2CHO + O→RCH•CHO + HO•                                                               R 2-17   

RCH•CHO→ R CH2• + CO                                                                              R 2-18 

RCHO + O→RCO• R 2-19 

RCO• + O2→ RC(O) O2• R 2-20 

 

2.4.4. Reactive sites. 

2.4.4.1. Headgroups vs. alkyl chains. 
Our results stand in contrast to the degradation mode of alkanethiol SAMs, revealed by 

STM experiments which suggest the nucleation role of defects [2].  The contrasting roles 

of defects in alkanethiol/Au and alkylsiloxane/SiO2 provide insight into the reactive site 

of the SAM degradation.  The thiolate headgroups of alkanethiol SAMs are known to be 

reactive [4].  It is difficult for the reactive species to penetrate the densely packed alkyl 

chains of a full monolayer to reach the thiolate groups.  The impinging reactive species 

can easily access the thiolate group from defect sites in the monolayer.  By contrast, the 

siloxane headgroups in the ODS SAM do not appear to be the reactive site judging from 

the lack of growth of defect sites in the monolayer.  Both AFM and FT-IR results point to 

a microscopic reaction pathway that involves the reactivity of hydrocarbon chains instead 

of headgroups.  The hydrocarbon chains are gradually shortened during photooxidation.  

This also explains why morphological changes in full monolayers could not be observed.  

UV irradiation reduces the SAM thickness, but AFM can only detect this change if there 

are regions of bare substrate from which SAM height can be determined.  Because of the 

lack of reactivity of the headgroups, the coverage of SAM domain remains unchanged 
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throughout the reaction, resulting in the constant decay rate of CH2 groups deduced from 

FT-IR (Figure 2-7).   

 

Our observation that the hydrocarbon chains are the reactive sites of in the 

photooxidation of alkylsiloxane SAMs, stands in contrast to the UV degradation of 

alkanethiol SAMs, in which the thiolate headgroups are reported to be the vulnerable 

groups.  Unlike UV degradation of alkanethiol SAMs, ozone is not the reactive species in 

alkylsiloxane degradation.  The difference can be explained by the different chemical 

reactivity of the two systems.  The terminal thiolate group, with its lone pairs, can be 

oxidized without cleavage of other bonds.  In fact, gas-phase oxidation of thiols with 

atomic oxygen showed nearly zero reaction activation barrier [63].  By contrast, in order 

to oxidize the valence saturated siloxane group, cleavage of the Si-C bond (bond energy 

≈300kJ/mol [64]) is required.  This renders the oxidation of the siloxane headgroup 

kinetically unfavorable.   

2.4.4.2.  Preferential reactive sites in the CH chains. 
Having settled that the degradation of ODS proceeds via the photooxidation of alkyl 

chains instead of headgroups, and that the reaction is initiated by a series hydrogen 

abstraction reactions, we can focus on the molecular scale mechanism of alkyl chain 

oxidation. The pseudo zeroth-order CH2 decay kinetics under ambient contrasts with the 

first order reaction between O(3P) and alkyl organic thin films under vacuum [19].  This 

suggests the role of dioxygen in the ambient and the role of structures of SAMs.  The 

kinetics may be a consequence of a complex oxidation mechanism.  However, a more 

straightforward interpretation is the constant effective surface concentration of CH2 on 
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the surface as degradation proceeds.  This requires that the monolayer degradation 

preferentially initiates from the top of a SAM, which is more accessible to reactive 

species.  Paz et al. found that the reaction between O(3P) and hydrocarbon chains in 

SAMs is limited by the penetration of O(3P) [19].  The loss of CH2 signal is mainly due 

to the loss of carbon, exposing the underlying groups for hydrogen abstraction.  Although 

a group on the top of a chain is cleaved, the effective surface concentration of CH2 

remains the same as long as all the 17 carbon groups in a chain are not cleaved.  In 

contrast, in the reaction between O(3P) and hydrocarbon chains, the oxygenated 

functional groups may accumulate on the surface under vacuum, blocking the access of 

reactive species to the underlying hydrocarbon groups[19].     

]2k[CH
dt

]2d[CH
R ==

 

Equation 2-7 

ML][CH 2 ≡  Equation 2-8 

 

From this pseudo-zeroth order kinetics (Equation 2-7 Equation 2-8), we can extract the 

nominal reaction rate constant of CH2 groups by assuming the effective surface 

concentration to be a monolayer.  From the slope in Figure 2-7, k CH2 is calculated to be 

4.1×10-3 s-1.   

 

More careful analysis of contact angle results affords additional information about the 

microscopic mechanism. The contact angle results indicate that the hydrophobic CH3 and 

CH2 groups (contact angle ~ 110°) are converted to hydrophilic groups such as CHO, OH 

and COOH (contact angle ~0°) during degradation.  However, even after 30min of 

degradation, when half of the CH2 groups are lost, the contact angle still has not dropped 
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to zero.  This suggests that the surface is still not completely covered with hydrophilic 

groups.  The contact angle of a composite surface mixed on molecular level is described 

by[65]. 

2
22

2
11

2 )cos1()cos1()cos1( θθθ +++=+ ff  Equation 2-9 

 

where θ, θ1, and θ2 are the contact angles on the composite surface, hydrophilic surface 

and hydrophobic surface respectively.  f1 is the fractional coverage of the hydrophilic 

groups and f2 is the factional coverage of the hydrophobic groups.  Assuming θ1 to be 0 

and θ2 to be 110 degrees, the fractional coverage of the hydrophilic groups can be 

calculated from the measured contact angle θ.  It is to be noted that the fractional 

coverage does not necessarily correspond to the physical surface composition because it 

does not take into account the effect of surface reconstruction during wetting, as well as 

the degree of probe molecular penetration [65].  Nevertheless, this approach provides 

qualitative insights into the relative contribution of different surface groups to the overall 

wetting.  According to FT-IR results in Figure 2-7, 25% of CH2 groups are lost after 

15min of UV irradiation, corresponding to more than 4 monolayers of CH2 groups since 

each ODS molecule contains 17 CH2 units.  Yet the effective fractional coverage 

indicated by contact angle is only about 30% when more than 4 ML of CH2 groups are 

lost.  This suggests that the top of the reacted monolayer is not entirely covered with 

hydrophilic groups.   

 

There are several possible explanations.   
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1. The oxygenated groups are buried in the monolayer therefore not accessible to the 

probe water molecules.   

2. Even if all the top of the monolayer is completely converted to hydrophilic 

groups, the surface may be rough and the water used to measure the contact angle 

is in contact with the hydrophilic top as well as the hydrophobic side chains.   

3. The reaction of the CH groups does not necessarily lead to conversion to 

hydrophilic groups.  Some of the radicals may recombine, leading to cross-linking 

(R 2-2).   
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Figure 2-23 Estimated fractional coverage of hydrophilic groups as determined by 
contact angle results.   
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Figure 2-24 Possible microscopic mechanisms of alkylsiloxane degradation. 
 

With the information we have about the reactive sites in the ODS SAMs, four possible 

mechanisms are listed(Figure 2-24).   

Mechanism A: Chain scission occurs at the Si-C bond and reaction nucleates from the 

defect sites.  

Mechanism B: The hydrocarbon chain scission occurs exclusive at the top of the 

monolayer and the degree of chain scission is uniform.  Consequently, the top of the 

monolayer is uniformly terminated with hydrophilic groups.   

Mechanism C: The reaction is restricted to the top of the hydrocarbon chains, loss of 

carbon occurs randomly.   

Mechanism D: The chain scission is not limited to the top of the CH chains.  Atomic 

oxygen and other reactive species may penetrate a few groups deep into the monolayer 
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and react with the side of the CH chains.  Radicals resulted from hydrogen abstraction 

may recombine (cross-link). 
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Figure 2-25 Simulated evolution (top to bottom) of a cross section of ODS SAM. Each 
bar represents an individual ODS chain.  Height is in the unit of the height of a CH2 
group (~0.14 nm).  Horizontal distance is in unit of the lateral spacing between chains 
(~0.5 nm).   
 

Mechanism A can be easily excluded as discussed.  Mechanism B is not consistent with 

the observation that the contact angle does not drop to zero even after several monolayers 
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of CH2 is removed.  If the top of the SAM is uniformly terminated with hydrophilic 

groups, the contact angle should be close to zero within 10 min.   

 

To better understand the resultant nanometer scale morphology of Mechanism C, we 

carried out a computer simulation assuming that  

1. Only the top of a CH chain can react.  

2. The reaction result in the loss of one CH group (CH2 or CH3) each time.   

3. The reaction on the top of CH chains occurs with equal probability (totally 

random) regardless of the local environment.   

The simulated cross section is shown in Figure 2-25.  It is apparent that such random 

chain scission introduced significantly roughness, i.e., different chains lose different 

number of CH groups.  
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Figure 2-26 Evolution of simulated morphology assuming that chain scission is restricted 
to the top of chains.  Each time increment represents the time it takes to react 1 ML of 
surface sites.  
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The average fractional coverage of hydrocarbons groups and the RMS roughness are 

shown in Figure 2-26.  The decay rate of CH2 group is mostly constant except the initial 

and final stage.  The zeroth order kinetics is due to the constant effective surface 

concentration of CH2 groups. When a CH2 group is cleaved, the underlying CH2 group is 

exposed.  Therefore, the effective surface concentration remains the same.  The initial 

slower rate is attributed to the presence of CH3 groups, blocking the access of reactive 

species to the underlying CH2 groups.  The decreased rate at the later stage is due to the 

depletion of CH2 groups.  Once the all the CH2 groups in a surface site are reacted, this 

site can no longer participate in the chain scission reaction.  Hence the effect surface 

concentration of CH2 groups decreases. The reaction kinetics from the simulation is 

consistent with the IR results in Figure 2-7 in reproducing the roughly constant decay rate 

of CH2 stretch modes.  However, due to the limited precision of the measured 

absorbance, it is difficult to conclude from the IR data whether the reaction rate is slower 

at the initial and the late stages the irradiation, as suggested by Mechanism C. 

 

The RMS roughness can be as much as the height of 5 CH2 groups (Figure 2-26).  

Although the non-uniform chain scission introduces microscopic scale roughness, the 

roughness is on nm scale and consequently can not be observed with the limited lateral 

resolution of AFM (10 nm). However, such microscopic scale roughness is consistent 

with the fact that the water contact angle does not drop to zero after 20min (Figure 2-3), 

when several monolayers of CH2 groups are removed.  During the contact angle 

measurement, water is in contact with morphologically and chemically heterogeneous 

surfaces.  The hydrophilic top as well as the hydrophobic side of chains of the UV 
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irradiated SAMs are exposed to water during contact angle measurements.  This 

roughness may also explain the blue shift in the CH stretch region in the IR spectrum of 

irradiation SAMs (Figure 2-8) and broadening of the peak widths (Figure 2-9).  Due to 

the roughness on the surface, the top portion of CH chains has more free space, similar to 

a liquid environment.  However, this mechanism does not explain the observation that the 

hydrophilic groups cover only a fraction of monolayer, as suggested by FLOSS.  It may 

be caused by the microscopic roughness of SAMs as the bulky chromophores can not 

label the functional groups at the bottom of the pinholes produced by UV irradiation.  Or 

it may indeed suggest only a small fraction of the monolayer is functionalized by those 

oxygenated functional groups.  This raises the possibility of Mechanism D. 

 

It is also possible that the reactive species penetrate a few groups deep into the ODS 

SAM as suggested by Mechanism D (Figure 2-24).  Also the radicals formed during 

hydrogen abstraction process may recombine, leading to cross-linking.  Cross-linking is 

believed to be prevalent in electron beam or X-ray induced degradation of SAMs [25, 

27].  Mechanism D generates a surface with even lower coverage of hydrophilic groups 

due to the presence of cross-linking.  Therefore, not all chain scission events result in the 

formation of hydrophilic groups.  This appears to be consistent with the FLOSS results 

that only a fraction of a monolayer is functionalized.  Further investigations need to be 

carried out to test the validity of Mechanisms C and D.  For example, to test how much 

the reactive species penetrate into SAMs, one can deuterate the groups at the top or 

bottom of the alkyl chains.  IR can then be used to differentiate the reactivity in different 

sites in the SAMs.     
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2.4.5. Implications on photopatterning. 

A key requirement for photopatterning is to limit oxidation to the irradiated areas.  This 

requirement can be easily fulfilled if the photons can excite the SAMs directly [23].  

However, we observed chemical reactants, such as O(3P), are necessary for the UV 

degradation of ODS SAMs.  These chemical reactants may not be confined to irradiated 

areas.  From the right side of Equation 2-4, the life time of O(3P), τ, is calculated to be 

4.2×10-6 s.  The diffusion coefficient of O(3P)  under 1 atm is D =1 cm2 s-1 [15].   

The free mean path of O(3P)  can be estimated by 

mDl µτ 17==         Equation 2-10 

Therefore, the reactive species O(3P), which is mainly responsible for hydrogen 

abstraction, can diffuse tens of µm away from the irradiated areas, resulting in poor 

resolution in projection photopatterning of SAMs.  Therefore, if the degradation process 

is dominated by chemical reactions, to achieve good resolution, proximity masks are 

necessary to reduce the diffusion of reactants to undesired areas.   

 

However, at 5 W/cm2 intensity, projection UV photopatterning of alkyl based SAMs has 

been reported to achieve sub micron resolution [12].  Clearly, photolysis is involved in 

that case.  Though the hydrogen abstraction, the first step of oxidation of aliphatic chains, 

involves radicals that may not have high spatial confinement.  Photolysis, whose spatial 

resolution is only limited by the spatial confinement of irradiation, may occur on reaction 

intermediates.  The loss of carbon is probably due to the removal of CHO groups by 

hydrogen abstraction at the α carbon or the photolysis of CHO.  The effective rate 
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constant of caused by photolysis of aldehydes can be estimated from the intensity of the 

UV light assuming unity quantum yield.   

]['][0][ CHOkCHO
h

I
dt

CHOd
==

ν
σ

                                                                      Equation 2-11 

Where I0 (2 mW/ cm2) is the incident intensity of UV irradiation, σ is the absorption 

cross section (2×10-20 cm2 [66]) and hν is the photon energy (7.2×10-19 J). 

 

We found that the rate constant to be 5.6×10-5 s-1, nearly two orders of magnitude lower 

than k CH2 (4.1×10-3 s-1).  Therefore, photolysis is not the dominant channel for 

dissociation of carbonyls at this low intensity.  Rather, we suggest that the loss of carbon 

mainly results from the reaction of chemical reactive species, e.g., hydrogen abstraction 

at the α carbon site (R 2-17).  Another important step, that photolysis may significantly 

contribute to, is the photodissociation of peroxide radicals into alkoxy radicals (R 2-13).  

The reported cross section is 360 ×10-20 cm2 at 254 nm [67], which results in a rate 

constant of 1×10-2 s-1.  However, the contribution from competing chemical reactions 

such as R 2-14, is unknown.  Therefore, it is not clear whether the photolysis channel 

dominates (R 2-13).   

 

A better understanding of the mechanism of ODS photoreactivity can provide insight into 

how to favor the reaction pathways that have better spatial confinement during 

photopatterning processes.  One can envision that even if the light is not in the range of 

photolysis of alkyl chains, by increasing light intensity and other reaction conditions, the 
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contribution from photolysis can be increased relative to the contribution from chemical 

reactions.   

 

2.4.6. Conclusions. 

In conclusion, by combining different surface characterization techniques, we gain more 

molecular level insight into the mechanism of the UV photoreactivity of ODS SAMs.  

Our results suggest that atomic oxygen is the primary agent for the UV degradation of 

ODS SAMs.  UV degradation results in the scission of alkyl chains instead of the 

siloxane headgroups.  We found that degradation introduces microscopic roughness to 

ODS SAMs.  Using a novel, highly surface sensitive technique, FLOSS, we identified the 

presence of submonolayer quantities chemical functional groups formed by the UV 

degradation.  We proposed a mechanism based on hydrogen abstraction.  

  

2.4.7. Future work. 

Due to their molecularly well-defined structures, SAMs is a model system to probe the 

relationship between structure and reactivity.  By controlling concentrations of different 

reactive species and reactions on well defined SAMs terminated with different 

oxygenated functional groups, more insight into the possible elementary steps of the 

photochemical reaction on SAMs can be obtained.  To further explore the effect of SAM 

structure, SAMs of various degrees of compactness will need to be prepared.  Placing 

deuterated groups at different locations in SAMs will provide direct information about 

the effect of structure of SAMs on the photoreactivity as well as more microscopic details 

of the hydrogen abstraction.  FLOSS affords a unique opportunity to access information 
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about lateral and vertical spatial distributions of functional groups produced in the UV 

degradation, by using chromophores with different geometries.  We believe that more 

molecular level understanding of SAM reactivity will emerge from such systematic 

investigations. 
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3. Introduction to electrochemical interfaces. 

3.1. Electrochemical interfaces: structure of the double layer. 

3.1.1. The electrochemical interface and the electric double layer. 

The electrochemical interface is the interface between an electrode and an electrolyte.  It 

has been long recognized that a layer of charge resides in the electrode while in the 

electrolyte, a layer of ionic excess charge balances the electrode charge[1, 2].  These two 

layers collectively are commonly referred as electric double layer.  Helmholtz proposed a 

simplistic model of the electric double layer; the double layer consists of two sheets of 

charge, equal in magnitude, of opposite sign and separated by a distance d [1, 2].  The 

capacitance can be described by a parallel-plate capacitor.  The charge density σ is 

related to the voltage drop across the double layer φ by: 

φ
εε

σ
d

0=          Equation 3-1 

The differential capacitance is the derivative of the charge density with respect to φ.  

dd
dCH

0εε
φ

σ
==         Equation 3-2 

where d is the separation between the two layers, ε is the dielectric constant of the 

medium, and ε0 is the vacuum permittivity.  A more sophisticated model, the Gouy-

Chapman model takes into account that the ionic charge in the electrolyte is not confined 

to the surface despite the attractive force of charge residing at the electrode surface [1, 2].  

Instead, the ionic charge density ρ along one dimensional coordinate x follows a 

Boltzmann distribution and forms a diffuse layer near the electrode interface. 
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where n is the number density of ions, Zi is the number of electronic charge on ion i, k is 

the Boltzman constant and T is the absolute temperature. 

The charge densities ρ and the potential in the double layer are described by Poisson 

equation:   

2

2
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dx
dx φεερ −=         Equation 3-4 

By combining the two equations and further transformation [1, 2], one can obtain the 

differential capacitance of the diffuse layer, CD.  
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The Gouy-Chapman model is successful in describing the behavior of the double layer at 

low electrolyte concentrations.  However, the capacitance deviates significantly at higher 

concentrations [1, 2].  It has been found that the values of calculated capacitance are 

significantly higher than experimentally determined values at higher electrolyte 

concentrations.   

 
A more refined model takes into account that unlike true point charges, which can be 

infinitely close to the surface, the finite size of solvated ions implied a minimum distance 

d of approach, defined by the ionic radius.  Stern treated the electrolyte side of the 

electric double layer as comprising a compact layer (outer Helmholtz layer) and a diffuse 

layer [1].  Consequently the differential capacitance corresponds to the overall 

capacitance of two capacitors connected in series [1].   
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Figure 3-1 Structure of double layer and the potential drop across double layer. 
 
A salient feature of the electric double layer is the extremely high capacitance [1], a 

consequence of the small thickness of double layer capacitors.  Assuming the thickness of 

the Helmholtz compact layer to be 0.3 nm, the dielectric constant of the water to be 80, 

the capacitance of the layer is calculated to be 240 µF/cm2 according to Equation 3-7.  

However, a typical observed value is about 30 µF/cm2, suggesting that the dielectric 

constant of the interfacial water is significantly smaller, 5-10, as opposed to 80, the value 
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observed for the bulk water.  The smaller value is attributed to the limited structural 

flexibility of water at interfaces [2].  The capacitance of the Helmholtz layer is 30 

µF/cm2.  The high capacitance is responsible for the high surface charge density (up to 

0.1-0.2 charge/surface atom) and the high electric field (106-108 V/cm) present in the 

double layer [3].  If the potential drop at the double layer is 0.3 V, the effective electric 

field is 108 V/cm at a thickness of 0.3 nm.  Such a high electric field can profoundly 

affect the structure and chemistry of species present at the electrochemical interfaces.  

Therefore, by tuning the electrode potential, the fundamental variable at electrochemical 

interfaces, we have opportunities to drive not only electron transfer processes, but also 

surface processes, such as, adsorption and 2D phase transitions.   

 

3.1.2. Electrode surfaces. 

Electrochemical processes are heavily dependent on the structure and electronic 

properties of the electrode surfaces.  Most of our investigations have been performed on 

gold electrodes.  Therefore it is necessary to briefly mention the surface crystallography 

of single crystal Au electrodes, which, in addition to FCC packing, may have surface 

reconstructions.  In general, surface reconstruction is the deviation of the position of 

surface atoms from the bulk termination, a consequence of the imbalance of surface 

forces at the surface, a highly asymmetric environment [3].  Due to the abrupt surface 

termination, surface atoms have less interaction with other atoms than bulk atoms.  

Therefore, the surface atoms tend to adopt a more close packed structure to minimize 

surface energy.   
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Au is a FCC metal with an atomic radius of 0.288 nm [4, 5].  Au(111) has two stable 

phases: an unreconstructed (1×1), which has the bulk termination, and a reconstructed 

phase (Figure 3-2).  The reconstructed phase on Au(111) is a )322( ×  super structure 

consists of 23 surface atoms compressed along ]011[  orientation into a space of 22 atoms 

(63 Å) for the bulk phase [4, 5].  The )322( ×  phase is rather similar to the (1×1) phase, 

as the surface compression is only about 4.5% (Figure 3-2).  The surface compression 

along ]011[  direction results in double stripes with  vertical corrugation of 0.1 Å [4, 5] 

(Figure I-2).  In addition, the compression results in the displacement of atoms from a 

straight line along ]011[ .  The displacement along ]211[  (perpendicular to ]011[ ) is about 

0.8Å (Figure 3-2).   

 
Figure 3-2 Model for the Au(111) reconstruction.  The solid dots denote the positions of 
atoms in the second layer, whereas open circles denote the positions of atoms in the 
reconstructed top layer.  C and A mark the regions of ABC (fcc) and ABA (hcp) stacking.  
The displacement of atoms from the straight line along the [1⎯10] direction of about 0.8Å 
is apparent [4]. 
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Figure 3-3 STM images of Au(111) surface under 0.1M H2SO4 at different electrode 
potentials, image size: 160 nm × 160 nm.  A: reconstructed surface is observed at 0.05V.  
The double reconstruction stripes are rotated by 120, reflecting the symmetry of the (111) 
surface.  Inset: atomic resolution image of the reconstructed surface (4.5 nm × 4.5 nm).  
The lattice constant is about 3 Å, which is in good agreement of the lattice constant of 
gold 2.88 Å.  B: The reconstruction is lifted at 0.36V.  The 4-5% extra gold atoms are 
released to form the monolayer islands.   
 
By contrast, the reconstructed phase of Au(100) differs from the bulk termination 

dramatically .  The reconstructed phase (commonly denoted as (hex) phase) has 

hexagonal packing while the unreconstructed phase, (1×1), has the square lattice (Figure 

3-4).  The packing density of the (hex) phase is 20% higher than the (1×1) phase [6].  The 

mismatch between the top hexagonal lattice and the underlying squire lattice causes 14.5 

Å wide stripes with corrugation of 0.3 Å(Figure 3-4)[6].  In addition, along the stripes, 

the mismatch causes alternating appearance of single and double stripes(The cross 

section view of Figure 3-4) with a periodicity of 39 Å.   

 

The reconstructed phases are the thermodynamically favored phases at room temperature 

in vacuum [3].  In an electrochemical environment, a phase transition can be induced by 
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changing the electrode potential [3].  It is now well established that a negative surface 

charge density favors the reconstructed phase and that a positive surface charge density 

lifts the surface reconstruction [3].  This trend can be rationalized by suggesting that the 

more close-packed reconstructed surface is stabilized by higher electron density [3].  

Another cause for lifting of reconstruction is the chemisorption of anions [3].  

Chemisorption reduces the imbalance of surface forces by forming chemical bonds with 

surface atoms. Therefore it favors the unreconstructed phase.  

 

 
Figure 3-4 Models for the unreconstructed Au(100) and the reconstructed Au(100) 
surfaces [6]. 

3.2. Adsorption and self-assembly of molecular adsorbates at 

electrochemical interfaces. 

Molecular adsorbates at charged interfaces afford opportunities in molecular level 

engineering of surfaces for applications ranging from electrocatalysis [7], sensors [8], to 

corrosion protection [9].  Central to successful implementation of those applications is to 

the ability to understand and control how molecules arrange at charged interfaces.  The 
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question is two fold. First, one needs to understand the stability of adsorbate structures at 

different surface charge densities.  Second, one may utilize the charge dependence to 

achieve desired structures. 

 

3.2.1. Molecular adsorbates at vacuum-solid and gas-solid interfaces.  

To understand the behavior of molecular adsorbates at electrochemical interfaces, it is 

often instructive to discuss the relevant work carried out on molecular adsorbates at the 

vacuum-solid and gas-solid interfaces.  While electrochemical interfaces have additional 

complexity due to the influence of the electrolyte and the electric field present, the 

information from vacuum-solid and gas-solid studies can often serve as a starting point to 

understand the structures of molecular adsorbates at electrochemical interfaces.   

3.2.1.1. Adsorbate-substrate interactions. 
At vacuum-solid interfaces, it is recognized that the structures of the adsorbates are 

determined by the interplay between surface interactions, such as adsorbate-substrate 

interaction and adsorbate-adsorbate interactions [10].  According to the strength of the 

interactions, the adsorbate-substrate interactions can be categorized as physisorption 

interactions and chemisorption interactions.  Physisorption is caused by van der Waals 

interactions.  Thus the interaction is relatively weak (the adsorption energy is typically 

less than 40 kJ/mol for small molecules).  In contrast, chemisorption involves actual 

chemical bond formation between the adsorbate and substrate.  Hence the adsorbates are 

much more tightly bonded to the surface.  The adsorbate-substrate interaction may play a 

number of roles [11].  First, it confines the adsorbates to the surface, a prerequisite for the 

stability of the self-assembled structures.  Second, the periodic corrugation along the 
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surface imposed by the symmetry of the substrate atomic lattice plays important roles in 

the long range order of adsorbates.  Third, to form ordered structures, the adsorbate must 

be allowed to reorganize laterally to reach the minimum energy position.  The surface 

diffusion barrier is related to the strength of adsorbate-substrate interaction.  A stronger 

adsorbate-substrate interaction typically results in higher diffusion barrier and therefore 

hinders surface diffusion.   

3.2.1.2. Adsorbate-adsorbate interactions. 
Depending on the nature of the functional groups on the adsorbates and their geometry, 

the adsorbate-adsorbate interactions may result from van der Waals [11], hydrogen 

bonding [12], dipole-dipole [13], and π stacking interactions [14].  The adsorbate-

adsorbate interactions often play crucial roles in the lateral arrangement of molecular 

adsorbates.  For example, the weak van der Waals interaction between the alkyl chains is 

largely responsible for the compactness and lattice spacing alkanethiol self-assembled 

monolayers [11].  To create more sophisticated two dimensional self-assembled 

structures on surfaces, non-covalent intermolecular interactions including hydrogen 

bonding [12], weak electron donor-acceptor [15, 16], and dipole-dipole interactions [13] 

have been employed.   

 

3.2.2. Molecular adsorbates at electrochemical interfaces. 

Adsorbate-substrate and adsorbate-adsorbate interactions remain important in 

determining the structure of adsorbates at an electrochemical interface.  However, one 

needs to consider the additional effect of the electrolyte and surface charge. 
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3.2.2.1. Thermodynamics. 
The most fundamental equation governing the equilibrium at electrochemical interfaces is 

the electrocapillary equation [1].  An electrochemical interface, consisting of an electrode 

under a solution of an electrolyte, CA and a surface active neutral species M, the 

infinitesimal change of surface tension, dγ, is given by 

MMCAC dddEd µµσγ Γ+Γ+=− +−       Equation 3-8 

where E is the electrode potential, ΓC+ and ΓM are surface excesses of C+ and M, and µM 

and µCA are the chemical potentials of CA and M.   

 

On a mercury electrode, γ is a directly measurable quantity.  Even for solid surfaces, 

change in γ can be obtained by integration, when the chemical potentials, µM and µCA, 

determined by the concentrations in the bulk electrolyte are held constant [1].  

dE
E

Epzc
σγ ∫ −=∆         Equation 3-9 

 

One of the most important applications of electrocapillary equation is the measurement of 

the surface excess of the adsorbed species M, by taking the derivative of γ with respect to 

the bulk concentration of M, CM [17].  From the surface excess, other thermodynamic 

quantities such as free energy of adsorption can be calculated [17].  

M
M CRTd

d
ln

γ−
=Γ         Equation 3-10 

The electrocapillary equation also provides a thermodynamic description of two 

dimensional phase transitions [18].  Consider two phases, α and β at the electrode surface 

with surface tensions, γα and γβ.  The stability of the two phases on electrode surfaces is 
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determined by the tendency to minimize surface tension γ.  A phase transition from α to β 

occurs when γβ becomes less than γα.  The variation of surface tension is described by: 

M
pzc

aaaa CdRTdEEECdTSd ln)( αγ Γ−−−−=     Equation 3-11 

M
pzc CdRTdEEECdTSd ln)( βββββγ Γ−−−−=     Equation 3-12 

where Sα Sβ are the entropies of the two phases, Γα and Γβ are the surface excesses of the 

two phases, Cα and Cβ correspond to the differential capacitances of α and β, and Epzc is 

the potentials of zero charge for α and β.  From the equation, it is apparent that three 

parameters, temperature T, electrode potential E and the bulk concentration CM can affect 

the surface tension of the two phases and consequently controls the stability of the 

different phases. 

 

Although the electrocapillary equation provides a macroscopic description of the 

electrochemical interface, it does not take into account the properties of adsorbates and 

the role of electric fields.  To understand how electric fields affect the microscopic 

structure of adsorbates, one needs to take into account surface interactions such as 

electrostatic interactions and chemical interactions.  According to the statistical 

mechanical treatment assuming a 2D Ising lattice gas model [18, 19],  the free energy 

change, ∆G(F), when the adsorbate M displaces the solvent molecules and forms an 

ordered layer, is given by  

02/1ln)0()( 2 =∆−∆−+∆=∆ FNFPNCRTGFG SASA α    Equation 3-13 

where ∆G(0) is a field independent term, C is the concentration of adsorbates in the bulk, 

NA is the Avogadro number, F is the electric field present at the interface, ∆Ps is the 
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difference between the permanent dipole moments of the adsorbate and the solvent 

molecules, and ∆αs is the difference between the polarizabilities of the adsorbates and the 

solvent.  Since F is not a measurable quantity, to test this model, one needs to make 

assumptions of the correlation between the electric field and the electrode potential [19].  

A linear relationship between the electric field and electrode potential can be assumed.  

Indeed, this model is in qualitative agreement with experimental results in reproducing 

the quadratic dependence of ∆G on the electrode potential [18].  However, agreement 

between the model and the experimental data must be achieved through fitting of many 

adjustable parameters.  It remains a challenge to correlate these parameters to real 

physical quantities such as polarizability [19].   

 

3.3. SPM study of molecular self-assembly. 

Electrochemical techniques, such as AC impedance, have provided macroscopic 

quantities such as the coverage and adsorption energies of adsorbates at electrochemical 

interfaces from the electrocapillary equation [17, 18].  Ex situ techniques, in which the 

electrode is emmersed from the electrolyte and transferred to a ultra high vacuum 

environment for structural analysis, have provided valuable structural information on the 

adsorbed molecules [20, 21].  However, a persisting challenge in ex situ techniques is that 

one must establish the relevance of the information acquired ex situ to the real processes 

under the electrochemical environment [20, 21].  To gain more direction microscopic 

information, a number of in situ techniques, such as electro-reflectance, second harmonic 

generation, surface enhanced Raman spectroscopy, Infrared spectroscopy, surface X-ray 
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scattering have bee used to directly probe various aspects of the structure and properties 

of adsorbates under electrochemical environments [21].  Electrochemical scanning probe 

microscopy (EC-SPM) has advanced significantly our understanding of electrochemical 

interfaces by in situ “visualization” of the real space arrangement of atoms and 

molecules.  Over the past decade, in situ EC-SPM has played a pivotal role in the studies 

of potential driven surface reconstruction [3], electrodeposition [22], and molecular 

adsorption [23].   

 

3.3.1. Principles of electrochemical SPM. 

3.3.1.1. Scanning probe microscopy 
All scanning probe microscopy techniques involve a local probe in proximity to the 

surface [24].  The position of the probe is controlled by a piezoelectric with sub Å 

precision.  A feedback is necessary to probe the local information of the surface.  In 

Scanning Tunneling Microscopy (STM), a bias is applied between a conductive probe 

and the substrate.  The tunneling current, which is sensitive to the tip-surface distance as 

well as the electronic properties of the surface, is used to probe the topographic and 

electronic information of the surface [24].  In Atomic Force Microscopy (AFM) (Figure 

3-6), the force between the probe and the surface is sensed by the deflection of the 

cantilever and used to map the topography and local adhesion of the surface [24].   

3.3.1.2. SPM under electrochemical environments 
Although originally developed for studies under vacuum and ambient environments [25, 

26], SPM quickly found applications in in-situ probing of electrochemical interfaces [27].  

Electrochemical AFM requires virtually no modification of the regular ambient AFM to 
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image under electrochemical environments except connection to an external potentiostat.  

For electrochemical STM (EC-STM), the tip generates a faradaic current that is 

dependant on the tip potential.  The faradaic current from a bare metallic tip overwhelms 

the tunneling current.  Therefore, it is necessary to coat the tip, except the apex, with an 

insulating material (Figure 3-5) [27].  Another important feature of EC-STM is that a 

bipotentiostat is required to independently control the potential of the tip and the potential 

of the surface (Figure 3-5).  The tip bias is therefore the difference between the potentials 

of the tip and the surface.  It turns out that if cleanliness of samples and electrolytes is 

maintained, EC-SPM is often capable of resolution significant better than that under 

ambient environments or even comparable to that achieved under UHV [27].   

Insulated tip

Sample

 
Figure 3-5 Schematic of EC-STM.  A bipotentiostat is used to control electrode potential 
in four electrode setup, including CE: counter electrode, RE: reference electrode.   
 

 100



Piezoelectric
Scanner

Cantilever

L
se

r
 

Figure 3-6 Schematic of AFM.  The force between the tip and the surface is sensed by the 
deflection of a cantilever.  Reflection of a laser beam from the cantilever, measured by a 
split photodiode, monitors the deflection of the cantilever. 
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3.3.2. EC-SPM study of molecular self-assembly. 

 
In addition to studying substrates and atomic adsorbate [3], SPM has become an 

indispensable tool in elucidating the self-assembly of organic molecules at 

electrochemical interfaces [28].  Unlike most other in situ techniques, which can only 

provide average information of ensembles, EC-SPM has allowed unprecedented levels of 

insight into how molecules self-assemble on electrode surfaces by providing the real 

space structure of adsorbates on an individual molecule basis.  

 

A wide range of molecular adsorbates, such as DNA and its bases [29-31], alkanethiols 

[32, 33], ionic surfactants [34], small aromatic compounds such as, bipyridine [14, 35], 

benzene and naphthalene [36, 37], and macrocycles such as porphyrins [38-40], have 

been imaged under electrochemical conditions.   
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A particularly interesting question is how the microscopic details of potential-induced 2D 

phase transitions , whose existence is suggested by many electrochemical and 

spectroscopic investigations in [17, 18].  Indeed, consistent with capacitance 

measurements, ordered physisorbed guanine structures on HOPG formed near the 

potential of zero charge were observed by STM to desorb at higher surface charge 

densities [29].  Cunha and Tao’s STM study of 2,2’-bipyridine (22BPY) on an Au(111) 

electrode revealed microscopic details of a potential induced order-disorder phase 

transition [14].  The ordering observed at more positive potentials has been attributed to 

the screening of dipole-dipole repulsion between adsorbates by the positive surface 

charge [14, 23].  Therefore, 22BPY can form long polymeric chains like stacked coins 

due to the π stacking interaction.  In some cases, impressive details of the dynamic 

processes of phase transitions, the nucleation and growth process, have been followed by 

EC-SPM at a molecular level [23, 35, 38, 41].  The effect of the substrate has also been 

studied.  Itaya et al., found that for substrates with excessive molecule-substrate 

interaction, iodine modification can reduce the interaction and facilitate the ordering 

processes of adsorbates [39, 42, 43].   

 

3.4. Overview of the EC-STM section of this dissertation. 

Our investigations are aimed at understanding the rules governing self-assembly at 

electrochemical interfaces and how they can be exploited to control the self-assembly 

processes.  Most of the organic adsorbates have a hydrophobic component.  In Chapter 4, 

we focus on the effect of hydrophobic interactions in molecular self-assembly by 

studying a completely hydrophobic molecule, hexadecane.  Our EC-STM study provides 
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molecular level details of the potential induced transformation of a completely 

hydrophobic molecule, hexadecane, at electrochemical interfaces.  A variety of charge 

dependant structures of the hydrophobic phase at the interfaces, including the surface 

charge induced order-disorder phase transitions as well as the formation of nanometer–

sized alkane aggregates, are demonstrated.  In Chapter 5, we demonstrated that we can 

exert active control over the self-assembled structure of porphyrin adsorbates, which are 

much more polarizable than hexadecane molecules and more strongly adsorbed on 

Au(111) electrode.  Our results suggest that the electrode potential, adsorbate surface 

mobility and ordering process are correlated.  Ordered porphyrin adlayers can be 

prepared by adsorption at potentials between 0.2 to -0.2VSCE.  In this potential range, 

molecule substrate interaction is strong enough to confine molecules in ordered array but 

also weak enough to allow facile lateral reorganization of adsorbates, a key requirement 

for self-assembly [11].  In Chapter 6, we performed more systematic STM and 

electrochemical studies to understand the interplay between the redox properties of TPyP, 

the adsorption and self-assembly processes on Au surfaces.  We found that the 

irreversible adsorption of TPyP has a dramatic effect on its electrochemistry.  We 

attribute the distinct reactivity to the strong interaction between TPyP molecules and the 

Au substrate.  Our investigation also shows how redox reactions can influence the 

formation of multilayers, which is probably related to the π stacking interactions of 

porphyrins.  In Chapter 7, we studied the potential dependant structures of surface 

micelles of sodium dodecylsulfate.  We have demonstrated that the intrinsic length scales 

of self-assembled structures may be exploited to grow metal nanostructures of controlled 

spacing.   
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4. The role of hydrophobic chains in self-assembly at 
electrified interfaces: Observation of potential induced 
transformation of two dimensional crystals of 
hexadecane by in-situ scanning tunneling microscopy. 

4.1. Introduction.   

4.1.1. Role of hydrophobic tails in the structure of amphiphilic monolayers.   

Adsorbed organic thin films, often residing at charged interfaces, afford opportunities in 

molecular level engineering of surfaces for applications ranging from sensors [1], 

corrosion protection [2] to bio-membrane functions and colloidal systems[3, 4].  The 

interfacial charge may affect the structure and properties of thin films.  Understanding 

and controlling the charge dependant structures and properties are important for 

preparing and controlling the properties of organic thin films on electrode surfaces for 

various applications [5-8].   

 

Most organic thin films at charged interfaces are composed of amphiphilic molecules, 

consisting of hydrophobic tails and hydrophilic head groups, whose potential dependant 

structure is a result of complex interactions between the hydrophobic tails, the head 

groups, the electrolyte and the substrate.  Changes in molecular orientation and packing 

[9, 10], desorption [9] and formation of surface aggregates such as micelles [11, 12] may 

occur in adsorbed amphiphilic molecules upon modulation of the surface charge.  The 

competitive adsorption of electrolyte and hydrocarbon chains on electrodes is recognized 

as a dominant factor in the structure of weakly adsorbed amphiphilic molecules [9].  Near 

the potential of zero charge (pzc) in aqueous environments, hydrophobic repulsion orients 
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the hydrophobic hydrocarbon chains of physisorbed amphiphilic molecules toward the 

metal surface while the hydrophilic head groups point toward the aqueous electrolyte [9].  

However, at sufficiently high surface charge density, hydrophobic hydrocarbon chains on 

electrode surfaces are displaced by the electrolyte, resulting in a change in orientation or 

desorption [9].  Even for self-assembled monolayers, formed by molecules with 

headgroups binding strongly to the substrate through chemisorption, in which one would 

expect diminishing influence from the weakly interacting tails, the hydrophobic tails 

remain critical in determining the formation and stability of the monolayers at electrified 

interfaces.  For example, increasing the length of the alkyl chains has been found to 

improve the stability at negative potential of alkanethiols monolayers [6, 7, 13].  Hatchett 

et al.  found that the adsorption free energies of n-alkanethiols under aqueous solution 

increased by 1 kcal/mol with each additional methylene unit in the chain[7].  The 

increased stability has been attributed to increasing hydrophobic interactions under 

aqueous solution, improved screening of ions, and the increased stabilization by Van der 

Waals interactions between the chains [6, 7, 13].  It was proposed that for alkanethiols 

with chain length longer than ten carbons, the contribution from alkyl chains to the 

adsorption energy (10-20 kcal/mol) is comparable to that from the chemisorbed sulfur 

head groups (20-30 kcal/mol) [7].  

 

4.1.2. Studies of alkanes at electrified interfaces. 

2D hydrophobic phases, such as normal alkanes confined at electrified interfaces, 

represent an interesting model system to understand the role of hydrophobic tails of 

amphiphilic molecules.  Although the hydrophobic tails are frequently invoked to explain 
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the structure and properties of amphiphilic molecules at solid-liquid interfaces, there has 

been little experimental effort to separately study the structure and dynamics of 

completely hydrophobic molecules, such as alkanes, at these interfaces.  Wu et al. studied 

the penetration of ions across hydrophobic phases in the presence of electric fields by 

depositing hydronium ions on alkane films on Pt(111) [14].  The activation barrier for the 

ion penetration through 3-methylpentane was determined to be 38kJ/mol [14].  Ivosevic 

et al. studied the spreading of hydrocarbon droplets at the dropping mercury electrode 

(DME) [15].  It was found that various hydrocarbons could spread on the DME within a 

potential range near the pzc.  Longer alkanes spread more readily than shorter ones, 

presumably due to higher molecule-substrate finteractions.  However, the existing studies 

are mostly limited to the thermodynamic description of the interfaces, e.g.  measurement 

of interfacial tension.  What is largely unexplored and of particular interest is the surface 

charge driven microscopic structure and dynamics that correspond to the spreading or 

aggregation of alkanes on metal electrodes.  In this respect, STM, capable of tracking the 

evolution of individual molecules, provides a particularly powerful approach to tackle 

this complex problem.    

 

4.1.3. Summary of previous investigations of the structure of alkanes on Au 

surfaces. 

To understand the largely unexplored alkane thin film structures at electrified interfaces, 

it is instructive to review existing studies of alkanes adsorbed on metal surfaces in UHV 

or under nonpolar solvents.  Such studies can elucidate the role of intermolecular and 

molecule-substrate interactions, which should be relevant in determining the structures of 
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alkanes at electrified interfaces despite the additional complexity arising from the electric 

field dependant electrolyte-substrate and electrolyte-adsorbate interactions.   

 

The physisorption of alkanes on single crystal metal surfaces has served as a model 

system.  For long-chain n-alkanes (>C6), the physisorption energy on Au increases 

linearly with the chain length by 6.2 +/- 0.2 kJ/mol per additional methylene unit [16].  

Solvation force measurements, temperature programmed desorption, molecular dynamics 

and Monte Carlo simulations suggest the formation of alkane layered structures near solid 

surfaces due to adsorbate-substrate interactions [17-19].  Reflection absorption infrared 

spectroscopy [20-22] and low energy electron diffraction (LEED) [23] reveal that 

adsorbed linear alkanes adopt an all trans conformation in ordered layers, with the zig-

zag plane of the molecules aligning parallel to the substrate surfaces.   

 

Scanning tunneling microscopy (STM) studies have provided structural details about the 

physisorbed alkanes adsorbed on metal surfaces [24-30]  It was found that the structure of 

the 2D alkane crystals depends on the substrate crystallography [26, 27].  The long 

molecular axis of the alkane molecules was preferentially oriented along the [01⎯1] or 

[1⎯10] direction of the substrate, i.e. at 30º with respect to the stripes of the 

reconstruction on Au(111) [26, 27].  Thus a relatively complete picture of alkane 

adsorption has emerged in UHV and under non-polar solvents, enabling us to address the 

additional complexities that the aqueous electrolyte and electric fields can introduce. 

 

4.1.4. Summary of this work. 
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We report a high resolution STM investigation of potential dependant structures of 

hexadecane on Au(111) under an electrochemical environment.  The experiments 

reported here afford a molecular level understanding of the structure of the hydrophobic 

phase at electrified interfaces.  A variety of charge dependant structures of the 

hydrophobic phase at the interfaces, including the surface charge induced order-disorder 

phase transitions as well as the formation of nanometer–sized alkane aggregates, are 

demonstrated.  Consideration of the role of competitive adsorption between the 

hydrophobic alkane molecules and aqueous electrolyte enables the structures to be 

rationalized.  The observation of rich dynamic behavior, such as the propagation of 

domains, and flipping of molecular orientations, offer insight into the role of 

intermolecular interactions in the dynamics of 2D phase transitions.  In addition, the 

observation of 2D hexadecane crystal on unreconstructed Au(111) under electrochemical 

environment, which could not be observed under non-polar solvent [27], suggests that the 

aqueous electrolyte may promote the ordering of the hydrophobic thin film.  It is hoped 

that such molecular level understanding of the hydrophobic phase under electrolyte will 

contribute to the elucidation of the structure and dynamics of amphiphilic molecules at 

electrified interfaces.   

4.2. Experimental. 

4.2.1. Sample preparation. 

The Au(111) single crystal substrate, a disc 1 cm in diameter and 2 mm thick 

(Monocrystals Co., Ohio), was cleaned by immersion in hot piranha solution (1:3 H2O2 

(reagent grade, J.  T.  Baker) and H2SO4 (reagent grade, J. T. Baker)) for 1 hour, and 
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immersion in hot HNO3 (reagent grade, EM science) for 30 minutes.  (Caution! The 

piranha solution is a very strong oxidizing reagent and extremely dangerous to handle.  

Protective equipment including gloves and goggles should be used at all times.)  After 

each step the sample was rinsed by ultrasonication in ultrapure water (>18 MΩ•cm).  The 

crystal was hydrogen flame annealed, and allowed to cool down to room temperature in 

air.  A drop of hexadecane (Acros, 99%) was placed on the surface and rinsed with 

decane, then allowed to dry in air.  The crystal was transferred to the STM 

electrochemical cell and immersed under potential control (0.25 VSCE) in 0.1 M HClO4 

(Optima grade, Fisher Scientific) solution[31].  A Teflon STM cell ensured that only the 

(111) facet was exposed to electrolyte.  The substrate was occasionally electropolished at 

3 V potential in 1 M H2SO4 solution [32].  All electrode potentials are quoted relative to 

the SCE potential.   

 

4.2.2. STM experiments. 

STM images were obtained with a PicoScan STM system (Molecular Imaging).  A bi-

potentiostat (Molecular Imaging) was used to control the sample and tip potential 

independently.  The electrochemical cell was made of Teflon.  A silver wire and a 

platinum wire were used as a quasi-reference electrode and counter electrode, 

respectively.  All cell components were chemically cleaned in the same way as the 

crystal.  Electrochemically etched STM tips, coated with paraffin wax, yielded less than 

10 pA Faradic current.  All the STM images were obtained under constant current mode 

at 1.1 nA.  The tip potential was kept at 0VSCE, so that the tip-sample bias tracked the 
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sample potential in the range from 0.05 to 0.65 V.  Additional details of the tip 

fabrication and reference electrode can be found in Appendices C and D. 

4.3. Results and discussion. 

4.3.1. Structure of Hexadecane monolayers on reconstructed Au(111) surface.   

STM images of hexadecane at the Au(111)/0.1 M HClO4 solution interface at 0.25 VSCE 

(Figure 4-1) show a molecular row structure crossing the substrate double stripes.  The 

underlying double stripe structure, 0.1 to 0.2 Å high, is due to the reconstruction of the 

Au(111) surface [33, 34]  and is clearly visible even in the presence of adsorbed 

molecules.  The Au(111) surface has two stable phases; the unreconstructed (1×1), 

consistent with a bulk termination, and the reconstructed (22×√3), where the surface 

atoms are slightly compressed in [110] directions [33]. In an electrochemical 

environment, a transition between the two phases can be induced by changing the 

electrode potential [34].  The reconstructed surface is stable at potentials when the 

surface has a negative excess charge.  It is now well established that the reconstructed 

Au(111)-(22×√3) surface transforms to the Au(111)-(1×1) phase at potentials above ~440 

mVSCE, and that the reverse transition occurs for potentials below ~220 mVSCE in HClO4 

solution [35].   The density of the reconstructed phase is estimated to be about 4.5% 

higher than the unreconstructed phase [34].  The periodicity of the double stripes of the 

alkane covered reconstruction is about 63 Å, nearly identical to that observed on a bare 

Au(111) under electrolyte [34].  
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Figure 4-1Hexadecane on reconstructed Au(111)/ 0.1 M HClO4 interface at  0.25 VSCE.  
Molecules adopt extended conformation as 2.2 nm long, and 0.45 nm wide rods parallel 
to the surface.  The molecular axes cross the rows at about 60o.  The domain boundaries 
of the molecular rows are pinned by the domain structure of the reconstruction stripes of 
the gold surface, as indicated by a black arrow.  Scan area (A) 42×42 nm2; (B) 10×10 
nm2. 
 
A high resolution image, Figure 4-1B, shows that the molecular rows consist of rods 2.2 

nm in length, separated by 0.45±0.02 nm, measured perpendicular to the molecular axis.  

The molecular axes cross the rows at about 60o.  The 2.2 nm length is in agreement with 

the calculated length of hexadecane in an all-trans conformation [36], suggesting that the 

rods in the STM images correspond to individual hexadecane molecules in an all-trans 

conformation with the molecular axis parallel to the surface plane.  The clear observation 

of the double stripe substrate structure in the present work indicates that adsorption of 

alkanes does not lift the Au(111) reconstruction. 

 

The molecular layers adopt a well-defined structure with respect to the underlying 

substrate.  The molecular axis was preferentially oriented at 30º with respect to the stripes 
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of the gold reconstruction.  This result is in agreement with the reported STM result for 

hexadecane adsorbed on Au(111) under neat hexadecane, where the preferential 

orientation of the molecular axis is along nearest neighbor (NN) direction (the [01⎯1] or 

[1⎯10] direction of the substrate), i.e., at 30º with respect to the stripes of gold 

reconstruction [24, 25, 27] (Figure 4-2). A consequence of this arrangement is the 

existence of two equivalent directions of the molecular rows, at +30º and –30º with 

respect to the double stripes of the Au(111) reconstruction.  It should be noted that the 

hexadecane molecules are not observed on NN(90) [⎯101] , which is perpendicular to 

stripes of reconstruction.  Uosaki et al. proposed that the the linear alkane chains 

perpendicular to the stripes of reconstruction experience the greatest corrugation of the 

double row reconstruction (Figure 4-2B) and therefore this configuration is unfavorable 

[25].   

 

Figure 4-2  Schematic model of the reconstructed gold surface and the relative 
arrangement of alkanes: (a) NN(30) and (b) NN(90). 
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The influence of the Au(111) surface reconstruction on the structure of the 2D alkane 

crystal is apparent as shown in Figure 4-1A and B.  Noisy domain boundaries indicated 

by a black arrow in Figure 4-1A, are formed between molecular rows with different 

molecular axis orientations.  The noise suggests mobility of molecules at the edges of the 

domains.  Interestingly, the domain boundaries of the molecular rows are located at the 

substrate reconstruction domain boundaries, i.e., the elbows in the double rows of the 

herringbone structure.  Within the same domain, even if the molecular rows change 

direction, the molecular axis direction does not change (Figure 4-1A as indicated by a 

white arrow).  These results are in good agreement with those reported by Uosaki et al. 

under non-polar solvent [24, 25].   

 

4.3.2. Potential-induced transformation of 2D hexadecane crystals on Au(111). 

4.3.2.1. Order-disorder transitions at potentials positive of the pzc 
In order to study the effect of the substrate potential, and the morphology of the Au(111) 

substrate, on the ordered structures, the electrode potential was changed step by step and 

STM images were recorded.  The row structure and the Au(111) reconstruction were 

observed as shown in Figure 4-1A even as the electrode potential was stepped as high as 

0.55 VSCE.  However, when the electrode potential was stepped to 0.65 VSCE, the 

reconstruction was lifted.  The characteristic double stripe structure of the reconstructed 

Au(111) disappeared, and characteristic monoatomic high Au islands, resulting from the 

lifting of the reconstruction at positive potential [33], appeared as seen in Figure 4-3A 

and B.   
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Figure 4-3 Hexadecane on Au(111) in 0.1 M HClO4 solution at 0.65 VSCE .  The 
reconstruction is lifted and Au islands appear.  At the same time, ordered hexadecane 
rows have disappeared, and dots, about 1 nm in diameter appeared on the surface and 
grew in number with time.  (A) after 0-95 seconds after potential step to 0.65 VSCE , (B) 
after 96-190 seconds after potential step.  Scan area: 32×32 nm2.  Scan direction is 
indicated by black arrows at the top left side of each image. 
 

At the same time, the ordered hexadecane layers disappeared, and rings, about 1 nm in 

diameter, appeared on the surface.  These rings are depressions 0.3-0.5 Å deep and are 

present on the Au islands.  We attribute these rings to hexadecane molecules adopting 

vertical or tilted orientations.  Hexadecane molecules lying flat on the surface enhance 

tunneling as evidenced by the imaging of the 2.2 nm long rods as protrusions in the STM 

images.  The enhancement of tunneling of physisorbed insulating molecules has been 

rationalized by the weak coupling between states in the adsorbate and states in the 

substrate near the Fermi level [37].  The coupling of these states, which obviously 

requires geometric proximity, renders the adsorbate an antenna to receive tunneling 

electrons [37].  The flat orientation of hexadecane molecules allows maximum coupling 

to the substrate and therefore enhances tunneling.  However, if the hexadecane molecules 
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adopt another orientation, e.g., vertical or tilted, in which only a small part of the chain is 

in van der Waals contact with the substrate, coupling between the molecules and the 

substrate may be significantly weakened.  Tunneling through the molecules may be 

suppressed to the extent that the tunneling probability through nearby solvent molecules 

is greater, reversing the contrast.  Consequently, the molecules may be imaged in STM as 

depressions on the surface.  Therefore, we speculate that the dark ring structures, 

enclosing a bright core, are Au clusters surrounded by hexadecane molecules.  The 

density of the rings increased with time after the lifting of the reconstruction from less 

than 20/100 nm2 to about 50/100 nm2 after 95 seconds.   

 

The Au islands grew slowly, adopting hexagonal shapes and their edges became more 

well-defined, as shown in Figure 4-3A and Figure 4-3B, as a function of time.  This result 

differs from our previous studies of the growth and dissolution of nanoscale Au islands in 

pure 0.1 M HClO4 solutions, where the Au islands created by the lifting of the Au(111) 

reconstruction formed almost immediately and adopted a shape that was more circular 

than polygonal [31]. Closer inspection of the images reveals that the island edges are 

fuzzy, suggesting that the islands are in the process of dynamic evolution [38].  Atoms 

are continuously attaching, detaching or diffusing along the island edges.  Clearly the 

presence of the hexadecane molecules affects the structures and dynamics of the gold 

islands.  Au adatoms are ejected onto the surface upon lifting of the reconstruction.  The 

growth of Au islands is a consequence of the aggregation of the adatoms.  We suggest 

that the adsorption of alkanes hinders the surface diffusion of these adatoms, which is 

necessary for their incorporation into islands, slowing down the growth the islands.  In 
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pure 0.1 M HClO4 solutions, the Au(111) reconstruction lifts at a significantly lower 

potential, 0.4-0.45 VSCE [33, 35]. The STM results presented here suggest that the 2D 

molecular crystals stabilize the reconstructed herringbone structure of the reconstructed 

Au(111) to a higher potential than in neat  HClO4.   

 

When the potential was stepped back from 0.65 VSCE to 0.25 VSCE, the ring structures 

disappeared and small clusters, imaged as protrusions appeared.  Simultaneously, the 

ordered 2D molecular structures recovered on the unreconstructed Au(111) surfaces as 

shown in Figure 4-4A.  The correlation between the disappearance of the rings and the 

appearance of ordered molecular rows, suggests that the rings may be composed of 

aggregated molecules.  Therefore, as the alkanes incorporate into the molecular rows, the 

rings disappeared and the Au clusters left behind are imaged as protrusions.  This is 

consistent with the finding that alkanes form droplets at potentials far away from the pzc 

but spread out on the metal surface near the pzc [15].  The monoatomic high Au islands 

are observed to assume a hexagonal shape, in sharp contrast to the round shape observed 

in neat 0.1 M HClO4 [31].  This is presumably due to the pinning of the island perimeter 

atoms by hexadecane molecules.  Monoatomic Au islands of similar shape have been 

reported by Lipkowski et al. in their STM study of surfactants adsorbed on Au [12]. 
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Figure 4-4 Hexadecane on Au(111) in 0.1 M HClO4 solution, at 0.25 VSCE after potential 
was stepped back from 0.65 VSCE .  The dots begin to disappear and the ordered 
molecular row structures recover on the unreconstructed Au(111) surface.  (A) after 0-95 
seconds after potential step to 0.25 VSCE , (B) after 96-190 seconds after potential step.  
Scan area:32 × 32 nm2. 
 

At the potential of 0.65 VSCE, the surface is positively charged, attracting the polar 

aqueous solvent that presumably displaces the non-polar hexadecane molecules.  

Hexadecane is insoluble in water.  Hence the adsorbed hexadecane begins to aggregate to 

minimize hydrophobic interactions.  In the SPM study of potential dependant structure of 

dodecyl sulfate on Au(111), Lipkowski et al. observed that dodecyl sulfate forms 

hemimicelles near the pzc but desorbs at negative potential [12].  Unlike surfactant 

molecules, which are soluble in water, the hexadecane molecules cannot leave the surface 

by desorbing into the bulk aqueous phase.  The hexadecane aggregates are probably quite 

mobile as the area of interaction with the surface is reduced, to allow the electrolyte 

access to the surface, with a concomitant reduction in the binding energy of hexadecane 

to the surface.  However, when the potential was stepped back to 0.25 VSCE, close to the 

 120



pzc, the aggregated molecules can re-assemble into ordered layers to maximize the 

adsorbate-substrate interaction.  This releases the gold atoms trapped in the clusters.   

 

It is worth noting that hexadecane molecules can form ordered structures on an 

unreconstructed Au(111) surface.  This is in contrast to the result reported in a nonpolar 

solvent, that, hexadecane molecules can not form ordered structures on the 

unreconstructed Au(111) surface [27]. Comparison with Figure 4-1A, acquired before the 

lifting of reconstruction, allows the determination of the substrate orientations.  It can be 

concluded that the molecular axes are again aligned along nearest neighbor (NN) 

direction (the [01⎯1] or [1⎯10] direction of   the unreconstructed Au(111).  The similarity 

of the molecule orientation with respect to lattice on reconstructed (Figure 4-1A) and 

unreconstructed (Figure 4-4B) suggests that the orientation of the molecular axes in 

determined by the hexagonal packing of the Au lattice.  However, the reconstruction 

plays a role in pining domain boundaries (Figure 4-1A).   

4.3.2.2. Order-disorder transitions negative of the pzc. 
A reversible order-disorder transition is also observed at potentials lower than the pzc.  

When the electrode potential was stepped from 0.15 VSCE to 0.05 VSCE, the ordered 

molecular structures disappeared as shown in Figure 4-5, indicating that the ordered 

adlayer transformed into a disordered structure.  However, no aggregates, dots or rings 

similar to the ones in Figure 4-3 were observed when the potential induced order-disorder 

phase transition was triggered.  It is assumed that this is due to the lack of Au adatoms, 

which can only be produced during the lifting of the Au reconstruction at high potentials.  

These adatoms may be required to form and stabilize the molecule-encapsulated 
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aggregates (rings).  The surface becomes more negatively charged as the potential 

stepped from 0.15 VSCE to 0.05 VSCE.  (The pzc of unreconstructed Au(111) is about 

0.35 VSCE [33].) The more negative the surface charge, the greater the interaction 

between the substrate and the polar solvent molecules and positive ions.  As a result, the 

alkane molecules are displaced by the electrolyte at potentials significantly negative of 

the pzc (Figure 4-8).   

A B

 

Figure 4-5 Hexadecane on Au(111) in 0.1 M HClO4 solution.  When potential was 
stepped from 0.15 VSCE  (A) to 0.05 VSCE  (B), the ordered molecular rows disappeared.  
Scan area: 32 × 32 nm2.   
 
The potential induced order-disorder transitions are quite reversible.  Stepping the 

potentials back to 0.25 V  , results in the appearance of ordered molecular domains that 

initially grew rapidly as evidenced by the almost immediate appearance of molecular 

rows as shown in Figure 4-6B.  Subsequently, the ordered domain grew slowly at the 

expense of the disordered domain.  The boundary between the ordered and the disordered 

domains moved in the direction of the ordered molecular rows.  It is estimated that the 
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2D crystal grew at a rate of about 0.2 nm/sec by comparing the position of the domain 

boundary in Figure 4-6C with Figure 4-6B.   

A B C

 

Figure 4-6 Hexadecane on Au(111) in 0.1 M HClO4 solution (A) obtained at 0.05 VSCE .  
(B) after potential step to 0.25 VSCE , the ordered molecular rows reappear immediately; 
(C) 96-190 seconds after potential step, ordered molecular layers domain continue to 
grow.  Scan area: 65 × 65 nm2. 
 

We also note that the order-disorder transitions are reversible.  This suggests that the 

molecules displaced by the electrolyte on charged surface remain in the vicinity of the 

surface instead of being completely desorbed into the electrolyte and diffusing away from 

the surface (Figure 4-8).  When the potential returns to the pzc, the displaced molecules 

are immediately available to form the 2D molecular crystal.  This is not surprising 

considering the hydrophoebicity of the hexadecane molecules, manifested by negligible 

solubility in bulk water.   

 

4.3.3. Spontaneous molecular domain flipping. 

 There are two different possible molecular orientations in a row.  In one domain, the 

molecules are tilted +60° with respect to the molecular rows.  In the other they are tilted 

at -60°.  The tilt angles are probably related to the symmetry of the Au(111) substrate, 
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indicating the role of adsorbate-substrate interactions in determining the molecular 

orientation.  The presence of two different molecular orientations in a single row is 

sometimes observed as indicated by arrows in Figure 4-7A.  The boundary between two 

domains is the line where the molecular 2D crystals show different orientations of 

molecules in the rows.  The images also reveal features that we attribute to the sudden 

change of molecular orientation that occurs while the image is being acquired.  The 

"partial" molecules observed in Figure 4-7A are in fact molecules "caught" in the action 

of changing orientation.   

 

We suggest that the change of molecular orientation is caused by the merging of 

domains.  When two domains merge (Figure 4-7D), the rows from different domains 

merge to form a single row, as can be seen in the bottom right hand corner of Figure 

4-7D.  If two rows, each containing molecules with a different orientation, are to merge 

seamlessly then the molecules in one of the rows will have to change orientation upon 

merging so that the new row will contain molecules with a single orientation to minimize 

repulsion.  This reorientation presumably initiates at the domain boundary and travels 

down the row, a kind of “domino effect”, resulting in the observation of “partial” 

molecules as the reorientation propagates down the row while the STM scans upward.  

This occurs rapidly as the STM scans because only parts of the flipped molecules are 

imaged. 
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Figure 4-7 Spontaneous molecular domain flipping; Hexadecane on Au(111) in 0.1 M 
HClO4 solution at 0.25 VSCE.  Two different molecular orientations in a single row are 
indicated by arrows.  (A) Sudden change of molecular orientation during scanning results 
in a single orientation.  (B)  The likely cause is the merging of domains, indicated by 
arrows in D.  Scan area (A-B) 34.5 × 34.5 nm2, (C) obtained before (A),  65 × 65 nm2, 
(D) Zoom in of  Figure 6 C, 20 × 20 nm2.   
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The rows indicated by black arrows in Figure 4-7D have merged, i.e.  the molecules in 

the two rows assume the same orientation.  The white arrows in Figure 4-7D indicate 

rows that have not yet merged.  The domain boundary is noisy, probably reflecting 

mobile molecules attempting to find the lowest energy configuration.  When the merging 

is complete, molecules in one of the rows must change orientation in order to minimize 

the repulsion in the new merged row.  When two rows containing molecules with 

different orientations merge, a single orientation ultimately prevails.  This indicates the 

critical role of intermolecular interactions for molecular self-assembly in this system.   

 

The upper limit of the time scale of flipping can be estimated.  The clarity of the imaged 

partial molecules suggest that the flipping of molecules in a row is concerted within the 

time scale of a scan cycle along the fast axis (~0.1 sec).  If all the molecules did not flip 

within a short period of time, the horizontal and tilted molecules would coexist in a row.  

Due to the stress induced by the molecules with different orientations, the molecules in 

the row would not be locked in a stable configuration, and would not be clearly imaged 

by STM.  Therefore, the area indicated by arrows in Figure 4-7A would appear noisy, 

which it does not.  Tip interactions are discounted because (1) the molecules change 

orientation away from parallel to the fast scanning direction of the tip, the direction one 

would expect to be favored if tip induced effects were occurring as reported by Stevens et 

al. [39], to a direction that makes an angle with the scan direction; (2) Further transitions 

were not observed in subsequent images, although there is still a boundary between the 

molecular rows with different orientations, and the tip is still interacting with the 

molecules. 
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4.3.4. Stabilization of substrate by molecular overlayers. 

It should be noted that there is no sign of reconstruction of the Au substrate, from Figure 

4-4 to Figure 4-7, even though the substrate is in a potential range where the Au(111) 

surface should be reconstructed in the absence of adsorbed hexadecane molecules.  This 

indicates that the adsorption of hexadecane stabilizes the unreconstructed Au(111).  This 

is in contrast with the result shown in Figure 4-3, where the assembled hexadecane 

molecules stabilize the reconstructed Au(111).  The results presented here show that the 

adsorption of a physisorbed hexadecane stabilizes both the reconstructed structure and 

unreconstructed structure over a wider potential range than in neat 0.1 M HClO4.  In 

addition to slower diffusion of Au adatoms (discussed in section 3.2.1), another possible 

reason for the observed stabilization is that the adsorption of insoluble alkane molecules 

screens the polar H2O molecules and electrolyte ions from the gold surface, reducing the 

capacitance and charge density of the double layer.  Therefore, in the presence of 

hexadecane, a more positive potential is required to lift the reconstruction and a more 

negative potential is required to form reconstruction.  As a consequence, both the 

reconstructed surface and the unreconstructed surface are stable over a wider potential 

range.  It is worth noting the contrasting role in substrate reconstruction played by 

specifically adsorbed anions, such as Cl-, [33] that destabilize the reconstruction, shifting 

the (1x1) -(22x 3 ) phase transition potential to more negative values.  These anions are 

believed to facilitate the phase transition between the reconstructed and unreconstructed 

phase of Au(111) by weakening the bond between the bulk and Au surface atoms [33].  
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The insoluble hexadecane layer on the contrary probably prevents interactions between 

the electrolyte and the substrate, until the solvent actually displaces the alkanes. 

 

4.3.5. Discussion. 

4.3.5.1. Nature of the potential induced order-disorder phase transition. 
The principal interactions that determine the structure of the molecular monolayer at the 

surface are molecule-substrate interactions and molecule-molecule interactions[40].  If 

only molecule-solvent interactions were important one would not expect a strong effect 

of potential on the observed structures.  Physisorbed alkanes interact with the Au surface 

through weak dispersion forces.  In electrochemical systems, one needs to consider the 

additional effect of surface charge and the electrolyte.  Due to the low polarizability of 

alkanes, any modulation of alkane-substrate interaction by the electric field is expected to 

be much less important than the effect of surface charge in enhancing the adsorption of 

the aqueous electrolyte.  When the electrode potential is at the pzc, the surface is free of 

charge.  It is near this potential that the adsorption of alkane molecules results in the long 

range ordered structures observed in Figure 4-1.  Higher or lower potentials will charge 

the surface with positive or negative charge, attracting ions and water molecules.  This 

eventually results in the displacement of hexadecane molecules, which leads to the 

disordering of the adlayer (Figure 4-8).   
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Figure 4-8 The effect of surface charge on molecular adsorption. At low surface charge 
density, hexadecane lies flat, forming an ordered domain. At high surface charge density, 
positive or negative, the solvent is attracted to the substrate, displacing hexadecane 
molecules. 
 

4.3.5.2. Observation of ordered structures on unreconstructed surface.  
It is worth noting that hexadecane molecules can form ordered structures on an 

unreconstructed Au(111) surface.  This is in contrast to the result reported in a nonpolar 

solvent, that, STM did not observe ordered structures of hexadecane on unreconstructed 

Au(111) surface.  The inability to form ordered structures was attributed to a slight lattice 

mismatch between the van der Waals diameter of alkyl chains and the atomic troughs 

along [01⎯1] [27].  It suggests that electrochemical interfaces may promote the ordering 

of hydrophobic adlayers.  An important origin of the ordering is 2D confinement on the 

surface [17].  To adopt a maximum coverage, adsorbates must form an ordered structure.  

Under an aqueous environment, due to the hydrophobic interaction, segments of adsorbed 

alkane molecules may have less tendency to desorb than under a non polar solvent 

(Figure 4-9).  This confinement effect may lead to the formation of more ordered 

structures.  This effect suggests the role of hydrophobic interactions in self-assembly.    
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Figure 4-9 Alkane adsorbates confined at water/ Au interface and alkane/Au interface. 
 

4.3.5.3. Possible structure of alkane aggregates.  
However, questions concerning the structure of the displaced hexadecane molecules 

arise.  The rings observed in Figure 4-3 can be ascribed to alkane aggregates surrounding 

Au nanoclusters.  So far we only observed the ring structures, that we assign to 

hexadecane containing aggregates, on the surface at positive potential when mobile 

adatoms are also present due to the lifting of the reconstruction.  It is well known that 

amphiphilic surfactant molecules can form well–defined aggregates such as hemi-

micelles at charged interfaces [3].  However, the surfactant hemi-micelle aggregates 

requires the presence of hydrophilic headgroups as well as hydrophobic tails.  The nature 

of the interactions that might hold the alkane molecules together in the well-defined nm-

sized aggregates is unclear, but is probably driven by hydrophobic effects.  We suggest 

the aggregates result from the concerted effect of repulsion by aqueous electrolyte and 

the preferred incorporation of isolated small Au clusters in the core of the aggregate.  The 

nanometer sized Au clusters formed from the lifting of reconstruction may adsorb alkanes 

more strongly due to the lower coordination number of Au atoms in the clusters.  

Therefore Au nanoclusters may nucleate and stabilize the presumed alkane aggregates.  

Despite the high spatial resolution of STM, it is noted that due to the nature of the 

contrast mechanism, which relies on electron tunneling probabilities, it will probably not 

be possible to image aggregates adopting conformations characterized by low 

 130



conductivity, e.g., vertical orientations.  Therefore, it will be useful to use AFM to study 

the structures of alkane aggregates at high surface charge density.   

4.4. Summary. 

This study provides the first direct visualization of potential dependant structures of 

adsorbed alkanes at an electrochemical interface.  Near the pzc, hexadecane monolayers 

under electrolyte remarkably resemble those observed under non-polar solvents in 

forming ordered monolayers, consisting of molecular rows, on Au surfaces [24, 27].  One 

major difference is the observation of ordered monolayers on unreconstructed Au(111).  

The structure of molecular adlayers were found to be heavily dependant on electrode 

potential.  Molecular layers at the Au(111) surface can be reversibly switched between 

ordered and disordered structures by driving the electrode potential away from the pzc.  

Rings, 1 nm in diameter, were observed when the potential was stepped to 0.65 V on a 

reconstructed surface previously covered with an ordered hexadecane monolayer.  The 

rings are tentatively assigned to aggregates of hexadecane molecules.  When the 

electrode potential is lower than 0.15 V, the ordered molecular rows disappeared from the 

negatively charged electrode surface.  The ordered molecular rows recovered when the 

electrode potential returned to voltages close to the pzc of Au(111).  The ordered 

hexadecane rows are observed to stabilize both the reconstructed and unreconstructed 

Au(111) surfaces.  This behavior is assumed to result from the screening of the polar H2O 

molecules and electrolyte ions from the gold surface as well as the hindrance of adatom 

diffusion by adsorbed alkane molecules. 
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5. Porphyrin self-assembly at electrochemical interfaces: 
Role of potential modulated surface mobility. 

5.1. Introduction. 

5.1.1. Molecular self-assembly on surfaces. 

Controlled assembly of individual molecules on surfaces has the potential to supplement 

lithographic techniques in manufacturing, as nanoscale molecular engineering becomes 

an integral part of miniaturization in electronic and photonic devices [1].  However, 

precise control of supramolecular structures on surfaces requires that a number of 

fundamental questions be resolved regarding the nature of the controlled assembly 

process, including the roles of adsorbate-adsorbate and adsorbate-substrate interactions as 

well as related phenomena such as surface diffusion and adsorption.  Non-covalent 

intermolecular interactions including hydrogen bonding [2], weak electron donor-

acceptor [3, 4], and dipole-dipole interactions [5] have been employed to control two 

dimensional molecular self-assembly.  In addition, adsorbate-substrate interactions, and 

resulting surface mobility, play pivotal roles in forming ordered structures.  Strong 

adsorbate-substrate interactions result in low surface mobility, hindering the assembly of 

the ordered structures that are favored by adsorbate-adsorbate interaction.   

 

Common strategies to tune surface mobility at vacuum-solid and gas-solid interfaces 

include annealing at elevated temperature [6, 7] and weakening the adsorbate-substrate 

interaction through surface modification with a passivating layer [6, 8].  Recently, Hipps 

et al. formed ordered adlayers of coadsorbed phthalocyanines, CoPc and F16CoPc.  

F16CoPc, which has sixteen electron-withdrawing fluorine substituents, alone cannot 
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form ordered adlayers due to strong electrostatic interaction with the surface [9].  The 

coexistence of electron-withdrawing F16CoPc and electron-donating CoPc may adjust 

surface partial charges, therefore achieving optimum adsorbate-substrate interaction 

required by self-assembly processes [9].  Under electrochemical conditions, it is known 

that the adsorbate-substrate interaction can be modulated by the surface charge density 

[10].  Therefore electrochemical environments offer additional possibilities to control 

surface dynamics via the surface charge.  Indeed, Cunha and Tao have demonstrated that 

the electrode potential can drive the order-disorder phase transition of 2-2' bipyridine 

(2,2'-BP) on Au(111) [11].  The ordering of 2,2'-BP at high potential was attributed to a 

charge induced reductionion in dipole-dipole repulsion between adsorbates and 

consequent increase in the adsorbate coverage [11].  This raises the question as to 

whether one can tune the surface mobility to achieve optimum self-assembly via potential 

control under electrochemical conditions.   

 

5.1.2. Motivation. 

We chose to investigate the self-assembly of porphyrins for two reasons.   

1.  Porphyrins are polarizable due to the large π systems.  Therefore, it may be possible to 

substantially modulate the adsorbate-substrate interaction via the surface charge density.  

In turn the surface mobility, mainly determined by the adsorbate-substrate interaction, 

may be controlled by the surface charge density.  Moreover, the large planar π systems 

are expected to assume a flat orientation due to their tendency to maximize the π bonding 

to the surface.  Due to the absence of dipoles normal to the surface for porphyrins, we do 

not expect significant deviation from the flat orientation when surface charge density is 
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altered.  By contrast, polar molecules may undergo significant orientational transitions.  

A Second Harmonic Generation study, for example, reveals that 2,2'-BP assumes a flat 

orientation, with the two N pointing to the surface in a dipolar configuration, on 

negatively charged electrode and vertical orientation at positively charged surface [12].  

The change in orientation may fundamentally alter the nature of the adsorbate-adsorbate 

interaction, as illustrated by the vertical orientation induced π stacking interaction 

between the 2,2'-BP, which is impossible under a flat orientation [11].  The consistent flat 

orientation of the large planar π systems may allow one to tune the binding energy, 

without altering the nature of intermolecular interactions at electrochemical interfaces.  

Therefore, by turning surface charge density, one may understand self-assembly on 

surface in a more simplified way and control it in a more predictable fashion.   

 

2.  The second motivation arises from the technological importance of self-assembled 

thin films of porphyrins.  The unique electronic properties and reactivities of porphyrins 

have been recognized and utilized in applications ranging from organic electronics, to 

solar cells and electrocatalysis [13, 14]. The four peripheral groups and metal centers can 

be tailored to precisely control the lateral and vertical spacing and connections between 

porphyrin molecules [3-5]. The combined electronic properties, chemical reactivity and 

structural versatility render porphyrins promising building blocks for the rational design 

of self-assembled supramolecular structures in nano-electronics applications [15]. 

Ordered structures of porphyrin thin films have been extensively investigated in 

UHV[9],[16-18].  However, successful preparation of highly ordered porphyrin adlayers 

directly on metal surfaces from the solution phase, more convenient and compatible with 
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further wet chemistry such as attachment of ligands, has not been reported to our 

knowledge.  Itaya et. al. found that 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)-

21H,23H-porphine (TMPyP) can only form a disordered monolayer on Au(111), 

presumably due to the slow surface diffusion resulting from strong adsorbate-substrate 

interactions [19]. However, ordered TMPyP monolayers can be formed on iodine 

modified metal surfaces that provide weakened adsorbate to substrate binding energies 

[19-21]. 

  

We demonstrate that robust ordered porphyrin monolayers can be prepared by adsorption 

at potentials between 0.2 to -0.2VSCE.  In this potential range, enhanced surface diffusion 

allows the adsorbate to assemble in ordered arrays, reminiscent of annealing in vacuum at 

elevated temperatures to prepare 2D crystalline structures [7]. Our results reveal the 

control over 2D self-assembly one may exert via the modulation of surface charge 

density.   

Scheme 1  5,10,15,20-Tetra(4-Pyridyl)-21H,23H-Porphine (TPyP) 
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5.2. Experimental. 

An Au(111) single crystal (Monocrystals Co., Ohio) and an Au(111) facet of a single 

crystalline bead were used as substrates.  Prior to the experiments the substrate was 

cleaned by immersion in hot piranha solution [1:3 H2O2 (J. T. Baker, CMOSTM) and 

H2SO4 (J. T. Baker, CMOSTM)] for 1 hour, and immersion in hot HNO3 (EM SCIENCE 

GR) for 30 minutes.  (Caution! The piranha solution is a very strong oxidizing agent and 

extremely dangerous.  Eye protection and gloves should be used during handling.) After 

each step the sample was rinsed by ultrasonication in ultrapure water (>18MΩ•cm) 

produced by a Barnstead, Nanopure Infinity system.  After chemical cleaning, the crystal 

was hydrogen flame annealed, and allowed to cool down in air.  The crystal was 

transferred to the STM electrochemical cell and immersed under potential control (0.1 V) 

in 0.1 M H2SO4 solution (Fisher Scientific Co., Trace metal grade). 

 

5,10,15,20-Tetra(4-Pyridyl)-21H,23H-Porphine (TPyP) was purchased from Aldrich 

Chem.  Co., and used without further purification.  The 0.2 mM TPyP solution was 

prepared in 0.1 M H2SO4 solution.  After the bare gold surface was imaged under neat 0.1 

M H2SO4 solution, a drop of the TPyP solution was added to the STM cell, to produce a 

final concentration of about 10-5M TPyP.  In some cases, as indicated in the text, 

preadsorbed TPyP was studied in a porphyrin-free solution.  Preadsorption was achieved 

by holding the Au(111) crystal in 0.1 M H2SO4 solution with 2×10-4M TPyP at a 

potential of –0.25 V for 5 minutes.  The electrode was then withdrawn from the cell, 

rinsed with DI water and immersed in a 0.1 M H2SO4 blank solution under potential 

control (-0.25 V). 
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The electrochemical cell was made of Teflon.  All potentials were quoted against SCE, 

though a silver wire or a Pt wire was actually used as the quasi-reference electrode 

(Appendix D).  A platinum wire was used as the counter electrode.  All cell components 

were chemically cleaned in the same way as the crystal. 

 

STM images were obtained with a PicoScan STM system (Molecular Imaging).  A bi-

potentiostat (Molecular Imaging) was used to control the sample and tip potential 

independently, as well as to perform cyclic voltammetry.  STM tips were 

electrochemically etched Tungsten STM Tips insulated with paraffin wax (Appendix C).  

The Faradaic current of the insulated tips under imaging condition is less than 10 pA.  All 

the STM images were obtained under constant current mode, 0.2-0.3nA.  The tip 

potential was maintained at 0.0V to minimize the Faradaic current.   

5.3. Results and discussions: 

5.3.1. Potential dependant mobility of TPyP. 

Adsorption of 5,10,15,20-Tetra(4-Pyridyl)-21H,23H-Porphine (TPyP) at high electrode 

potential (>0.5 V) typically results in a disordered structure, Figure 5-1A.  Each molecule 

is imaged individually as a square with four bright lobes.  The four bright lobes are due to 

the pyridine rings, as reported for NiTPP on Au(111)[9] and TMPyP on I--Au(111)[19].  

The equivalent appearance of the lobes suggest that the molecule is lying flat on the 

Au(111) surface.  No significant displacement of the molecules was observed for up to an 

hour.  This result is consistent with the observation that immobilized TMPyP molecules 
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adsorb on bare Au(111) at high potential with a disordered structure [19].  The large 

bright structures are Au islands that result from the lifting of the Au(111) reconstruction, 

a process that occurs at high electrode potential (>0.3 VSCE) in neat 0.1 M H2SO4 [22, 

23].  

 

In order to probe the effect of the electrode potential on the binding of TPyP to the Au 

surface, and the resulting structures, the electrode potential was stepped from 0.5 V to –

0.3 V in the middle of the image (Figure 5-1B).  While isolated species, resolved as 

disordered TPyP molecules, were observed at 0.5 V, the TPyP molecules can no longer 

be observed on the surface at –0.3 V.  These STM images suggest two possibilities: (1) 

the TPyP molecules cannot be imaged because they desorb from the surface at negative 

potentials; (2) the TPyP molecules remain on surface, but the adsorbate-substrate 

interaction is too weak for the molecules to remain sufficiently immobilized to be imaged 

by STM.  To test whether TPyP is adsorbed on Au(111) at negative potential, Au(111) 

was immersed in the TPyP solution at –0.25 V for a few minutes.  Then the electrode was 

emmersed and rinsed with water before immersion in TPyP free 0.1 M H2SO4 at –0.25 V.  

The first scan of the CV (Figure 5-2), shows a peak, associated with the oxidation of 

TPyP from Au(111) at a potential of 0.17 V.  This provides evidence that the TPyP is 

adsorbed on the surface at –0.25 V.  The inability to image the molecules at low potential 

(< -0.2V) suggests that they are highly mobile. 

 

The adsorbate-substrate interaction is clearly potential dependent.  At 0.5 V, the 

interaction between the molecules and the substrate is so strong that it hinders surface 
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diffusion, preventing the formation of an ordered adlayer structure.  However, at a lower 

potential, -0.3 V, the adsorbate-substrate interaction is too weak and the molecules are 

too mobile to be imaged by STM.  The process is quite reversible.  When the potential 

was stepped back to 0.5 V in the middle of Figure 5-1C, disordered molecules appeared 

rapidly.  At –0.3 V, TPyP molecules are disordered because the binding energy is not 

sufficient to confine molecules in 2D ordered structures.  Upon applying a potential step 

to 0.5 V, the increased binding energy “freezes” the TPyP molecules rapidly in a 

disordered state.  Due to the low surface mobility, the ordering process is kinetically 

hindered. 

 

Figure 5-1 In-situ STM images (50×50 nm2) of TPyP on Au(111) in 0.1 M H2SO4 +10-5 
M TPyP solution.  Scan directions are indicated by black arrows.  Tip locations when 
potential step occurred are indicated by white arrows.  (A) Electrode potential 0.5 V. (B) 
Electrode potential 0.5 V (upper part), -0.3 V (lower part).  (C) –0.3 V (upper part) 0.5 V 
(lower part). 
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Figure 5-2 Cyclic voltammogram of Au(111) with pre-adsorbed TPyP in a blank 0.1 M 
H2SO4  solution, initially held at –0.25 V, scan rate 2V/s.   
 

The preceding results, namely low mobility at high potential and high mobility at low 

electrode potential, suggest that by tuning the electrode potential one can control the 

mobility of the adsorbates and ultimately the self-assembly process.  Indeed, ordered 

structures of TPyP molecules were observed by STM on Au(111) at –0.05 V.  These 

typically consisted of several domains, rotated by 120 degrees with respect to each other 

(Figure 5-3A).  Concurrent with the formation of ordered adlayers, continuous motion of 

adsorbates at the domain boundaries was observed in STM images, suggesting that the 

molecules can move at this potential.   

 

To further prove that surface mobility is a critical factor in forming ordered structures, 

and that the disordered adlayer at high potential (Figure 5-1A) is a result of the strong 

adsorbate-substrate interaction that hinders surface diffusion, molecules were adsorbed 

on the surface at 0.1 V, by adding TPyP to the neat electrolyte, and observed to form 

ordered adlayers.  Then the electrode potential was increased by increments of 0.1 V at 

intervals of several minutes.  Even at 0.5 V ordered structures are still observed (Figure 
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5-3B).  In fact we observed that the ordered structures were stable up to 0.8V.  The 

ordered structure seen in Figure 5-3B is in contrast to Figure 5-1A, in which molecules 

are adsorbed at the same potential (0.5 V), but where a disordered structure was 

observed.  This is also in remarkable contrast with Figure 5-1C, where disordered 

structure was observed after potential step from –0.3 V to 0.5 V.  The fact that the adlayer 

structure depends on the sample history provides strong evidence that the ordering 

process can be kinetically limited by the low surface mobility at positive potential (>0.5 

V).  If the potential is gradually increased to 0.5 V, the molecules have the opportunity to 

self-assemble into ordered structure at intermediate potentials (from -0.2 to 0.2 V).  Once 

they are locked into ordered arrays, the molecules remain ordered at potentials as high as 

0.8V.  However, if the potential is stepped quickly to 0.5 V, the suddenly increased 

binding energy “freezes” the TPyP molecules rapidly in a disordered state.  This suggests 

the crucial role of potential dependant surface mobility in determining the formation of 

an ordered adlayer.   
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Figure 5-3 STM images of TPyP adlayers on reconstructed Au(111) in 0.1 M H2SO4 
solution.  (40×40 nm2) (A) electrode potential –0.05 V.  (B) The electrode potential was 
stepped progressively to 0.5 V after the ordered monolayer was formed at 0V. 
 
5.3.2. Dynamics of the preadsorbed TPyP adlayer 

One may expect to study the growth of ordered adlayer after addition of TPyP to the 

electrochemical cell.  However this study is rather complicated and not instructive for the 

following reasons.  Upon injection of TPyP solution into the electrochemical cell, one has 

to allow some time (ca. 10min) for the drift of the STM to settle before one can monitor 

the dynamics in-situ.  However, typically 10min after injection, we found that the adlayer 

had already reached equilibrium.  Therefore no dynamics information can be achieved in 

this experiment.  Reducing the TPyP concentration is no more helpful because the 

adsorption is more likely to be the rate-limiting factor, obscuring the role of surface 

mobility in the growth process.  To further understand the role of potential dependant 

adsorbate-substrate interactions and surface mobility in the dynamics of self- assembly 

processes, we instead chose to study the preadsorbed TPyP adlayer in blank electrolyte.  

We applied potential perturbations to the system, expecting to extract dynamics 

information concerning the ordering process.   

 

TPyP molecules were preadsorbed on Au(111) as described in the experimental section.  

Subsequently, the TPyP covered Au(111) was imaged under TPyP free H2SO4 solution.  

The surface packing of TPyP in the presence of neat electrolyte is similar to that in the 

presence of TPyP containing solution, Figure 5-4A.  This proved that ordered adlayer 

endured emersion from the cell and cycles of rinsing with water or H2SO4 solution.  This 

observation highlights the robustness of the supramolecular surface structure formed in 
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this potential controlled manner.  At a potential of –0.05 V, ordered domains of TPyP 

molecules, separated by domain boundaries (Figure 5-4A), are clearly resolved.  The 

presence of multiple domains may result from different nucleation sites from which the 

molecules adsorbed to the surface crystallize into two-dimensional structures.  A 

sequential image, Figure 5-4B, suggests that the domain edges were moving significantly 

at this potential.  Part of the molecular domain indicated by a circle is converted to a 

domain rotated by 60 degrees.  Also there is significant noise in the domain edges, 

suggesting higher mobility of molecules in those areas.  This intermediate potential 

significantly enhanced the mobility of molecules compared to 0.5 V, where no motion of 

molecules was observed over extended periods of time, Figure 5-1A. 

 

Figure 5-4 Sequential STM images (62× 62 nm2) of TPyP on reconstructed Au(111) in 
0.1 M H2SO4 solution at –0.05 V.  A circle highlights a domain that recrystalized 
between images. 
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Figure 5-5 In-situ STM images (62×62 nm2) sequence of TPyP on reconstructed Au(111) 
in neat 0.1 M H2SO4 solution.  Scanning directions are indicated by the black arrows.  
(A) electrode potential –0.05 V.  (B) obtained after electrode potential was stepped to –
0.25 V.  (C) was obtained after electrode potential was stepped back to –0.05 V.   
 

In order to probe the stability of the ordered structure at negative potentials, the potential 

was stepped from –0.05 V to -0.25 V.  The ordered TPyP molecules disappeared rapidly.  

The image (Figure 5-5B) showed clearly the double row reconstruction features of 

Au(111), that were 0.2 Å high and separated from the next pair by 6.3 nm.  We postulate 

that the TPyP molecules remain adsorbed on Au(111) surface at the potential of -0.25 V, 

as verified in the CVexperiment discussed above, but that the adsorbate-substrate 

interaction is too weak to form an ordered phase.   

 

As a probe of the dynamics of self assembly, the potential was stepped from –0.25 V 

back to –0.05 V, and ordered molecular domains grew almost immediately (Figure 5-5C).  

The time scale of the ordering process is estimated to be within seconds.  It should be 

noted that the new molecular domain, imaged in the same area, was rotated with respect 

to the domain observed in Figure 5-5A.  This result suggests that the TPyP molecules 

form a new ordered phase, distinct from the structure seen in Figure 5-5A, after the 
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potential returned to –0.05 V.  Once the potential was stepped to –0.05 V, the TPyP 

molecules self-assembled into an ordered phase from the reservoir of molecules in the 

disordered phase (liquid-like) that had been produced at –0.25 V.  Furthermore, the rapid 

appearance of molecular domains at –0.05 V under clean electrolyte requires the 

availability of high concentration TPyP molecules near the surface.  Since this 

experiment was performed under TPyP free electrolyte, this provides further direct 

evidence that the molecules remain adsorbed on the surface at –0.25 V even in TPyP free 

electrolyte, supporting the CV results in Figure 5-2.  Had the molecules been desorbed by 

stepping the potential from –0.05 V to –0.25 V, the molecules would have diffused away 

into solution, slowing down, or more likely preventing the appearance of ordered 

structures observed in Figure 5-5C.  However, the high concentration of adsorbates is not 

the only prerequisite for such rapid formation of ordered phases.  The enhanced surface 

mobility at –0.05 V (demonstrated in Figure 5-4) ensures facile lateral reorganization of 

disordered molecules, promoting the ordering process.       

 

5.3.3. Summary. 

From our present results, it is clear that TPyP forms ordered or disordered structures at 

the Au(111)/0.1 M H2SO4 solution interface depending on the potential at which the 

molecules self-assembles.  We attributed this to the potential dependant binding energy 

and surface mobility.  An alternative explanation for the disordered structure for Figure 

5-3A is unfavorable adsorbate-adsorbate interaction.  Instead, an ordered adlayer was 

observed in Figure 5-3B.  Therefore, the disordered TPyP at high potential (0.5 V), A, is 
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kinetically limited by slow surface diffusion/strong adsorbate-substrate interaction rather 

than an equilibrium structure caused by unfavorable adsorbate-adsorbate interaction.   

 

A plausible explanation for the modulation of the TPyP-substrate interaction is electron 

donation from the π orbitals of TPyP.  The strong electric field across the double layer 

(107V/m to 109V/m) may significantly modulate the electron donating effect to the 

substrate.  The electron donating effect may be enhanced at high electrode potential 

(positive surface charge density) and reduced at low electrode potential (negative surface 

charge density).  We note that while the electrode potential modulates electrostatic 

interactions between molecules and the substrate, potential induced change of redox state 

of porphyrins may also change the adsorbate-substrate interaction.  A thorough 

understanding of the nature of the potential dependant adsorbate-substrate interaction 

requires further spectroscopic and theoretical investigations.  Notwithstanding of the 

exact origin of potential modulation, the role of potential-dependant surface mobility is 

highlighted in the formation of ordered self-assemblies under electrochemical conditions. 

Ediff ∼ kT

Edesorb

Ediff>>kT
 

Figure 5-6 Influence of adsorbate binding energy Edesorb on surface diffusion.   
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Our results are in agreement with Itaya’s investigation in that the surface diffusion play a 

critical role in formation of highly ordered structure of porphyrins [19].  However, the 

major difference between our result and that of Itaya et al., is that TMPyP molecules, 

structurally similar to TPyP, do not form ordered structures on bare Au(111).  Highly 

ordered adlayers of TMPyP could only prepared on iodine modified Au [19]. Our results 

suggest that it may be a consequence of the higher potential (0.57VSCE), at which TMPyP 

on bare Au(111) was adsorbed.  High electrode potentials result in a strong adsorbate-

substrate interaction, hindering surface diffusion.  The present investigation suggests a 

convenient approach to form ordered porphyrin structures directly on Au surfaces.  One 

can control the adsorbate-substrate interactions by adjusting electrode potential.  Figure 

5-6 illustrates a simplistic view of the relationship between surface diffusion and binding 

energy.  The reduction of binding energy Edesorb is accompanied by a decrease in 

diffusion barrier Ediff.  Once Ediff is reduced to be comparable to thermal energy kT, the 

surface mobility is significantly enhanced.  This is reminiscent of the thermal annealing 

commonly employed at vacuum-solid and gas-solid interfaces to facilitate the surface 

diffusion required for molecular self-assembly.  The difference is that enhanced surface 

mobility in thermal annealing is achieved via increasing the thermal energy (kT) relative 

to a constant diffusion barrier Ediff while the increase in adsorbate diffusivity in potential 

modulation approach is achieved via a lowering of the diffusion barrier Ediff relative to a 

constant thermal energy (kT).  Future spectroscopic and theoretical investigations into the 

nature of the adsorbate-substrate interaction and how it is modulated by the electrode 

potential will be of great interest.  From a technological point of view, it will be 

interesting to utilize the electrode potential to tune surface processes, such as surface 
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diffusion, to direct the growth of self-assembled structures of large planar aromatic 

molecules. 
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6. In-situ STM study of electrode reactions and potential 
induced adsorption-desorption of porphyrin adsorbates. 

6.1. Introduction. 

The unique electronic properties and reactivity of porphyrins have been recognized and 

utilized in applications ranging from organic electronics, to solar cells and 

electrocatalysis.[1, 2]  Often central to these applications are the questions on how to 

control the structures and chemical reactivity of porphyrin thin films on surfaces.   

 

Much attention has been paid to the electrocatalytic properties due to the metal centers in 

the adsorbed porphyrins [2].  It has been recognized that adsorption can affect the 

electrochemistry of porphyrins dramatically.  For example, it remains unclear why the 

most potent oxygen reduction electrocatalyst, cobalt cofacial diporphyrin, displays high 

four electron reduction reactivity only on edge plane graphite [3].  Unlike in bulk 

solution, cobalt porphyrins adsorbed on HOPG does not display well defined redox peaks 

in cyclic voltammetry [4].  The adsorption was suggested to change the energetics of 

redox states and therefore affect the redox potential significantly [4].   

 

The electrochemistry of water soluble free base porphyrins investigated by Wilson and 

Nerri is summarized in (Figure 6-1)[5, 6].  The unreduced form P(0) exists as free base 

P(0)H2 or diacid, P(0)H4
2+.  At about -0.2 V, P(0) can undergo a two electron reduction 

process to form  phlorin, P(-II) via a chemical intermediate, iso-P(-II)H4.  At potentials 

lower than -0.4 V, further reduction of P(-II) occurs.   
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P(0)H4
2+ ISO-P(-II)H4 P(-II)H5

+

P(0)H2
P(-II)H4

+2e- + H+

+2e- +2H+

+ H+
- H++2H+

- 2H+

 

Figure 6-1 Possible electrochemical reaction mechanism of TMPyP under acidic medium 
[5, 6].  
 

Compared to solution phase porphyrins, the reactivity of adsorbed water soluble 

porphyrins is much less understood.  Very sensitive tools are required to study the 

reaction intermediates and products of the redox reactions on surfaces.  Itoh’s surface-

enhanced resonance Raman scattering spectroscopy (SERRS) studies suggested that a 

water soluble porphyrin, meso-tetrakis(4-N-methylpyridyl)porphine (TMPyP), adsorbed 

as diacid form, P(0)H4
2+ on a roughened silver electrode [7].  The diacid is reduced to 

phlorin (P-II) at a more negative potential [7].  However, the roughened surface, which is 

necessary for surface enhancement, causes additional complications as the small silver 

clusters present on the surface may reduce the adsorbed molecules [7].  Therefore 

questions remain on how the SERRS results correlate to the electrochemical behavior on 

a well defined surface.  Devynck et al. reported that in an acidic medium, the TMPyP 

 155



irreversibly adsorbed on Au displayed no redox peaks between -0.4 V to 0.7VSCE in 

cyclic voltammogram [8], in contrast with the bulk electrochemistry.  

 

Not only is the electrochemistry of adsorbed, water soluble porphyrins poorly 

understood, their adsorbed structures have been largely unknown until the development 

of STM.  STM found that on well defined surfaces such as HOPG and single crystal Au 

surface, porphyrins typically adopt a flat orientation to maximize the interaction between 

the π rings and the substrate [9, 10].     

 

In the proceeding chapter, we reported our studies of the structures of a water soluble 

porphyrin, 5,10,15,20-Tetra(4-Pyridyl)-21H,23H-Porphine (TPyP) on the Au(111) 

surface.  We found that TPyP was irreversibly adsorbed on the Au surface.  We 

demonstrated that under an electrochemical environment, 5,10,15,20-Tetra(4-Pyridyl)-

21H,23H-Porphine (TPyP) adsorbing on positively charge surfaces forms a disordered 

layer, that is metastable with respect to the thermodynamically more stable ordered layer, 

on positively charge surfaces due to excessive molecule-substrate interaction.  Ordered 

porphyrin monolayers can be prepared by adsorption at potentials between 0.2 to -0.2 

VSCE.  In this potential range, enhanced surface diffusion allows the adsorbate to 

assemble in ordered arrays, reminiscent of annealing in vacuum at elevated temperatures 

to prepare 2D crystalline structures [11].  Once formed the ordered 2D structures are 

stable up to 0.8 VSCE. 
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In this chapter, we report a more systematic STM and electrochemical study designed to 

understand the interplay between the redox properties, adsorption, and self-assembly 

processes of TPyP on Au surface.  We found the irreversible adsorption of TPyP had a 

dramatic effect on its electrochemistry.  We attribute the distinct reactivity to the strong 

interaction between TPyP molecules and the Au substrate.  Our investigation also shows 

how redox reactions can influence the formation of multilayers.  The multilayer 

formation is probably related to the π stacking interactions of porphyrins.  Our results 

suggest that by controlling the electrochemistry, one can either promote or suppress the 

formation of multilayers.  This may be useful for the ongoing efforts to build 3D 

supramolecular structures from the surface.  

 

6.2. Experimental section. 

The experimental procedures have been described in the experimental section of the 

preceding chapter. 

6.3. Results and discussion. 

6.3.1. Cyclic voltammetry results.  

6.3.1.1. Cyclic voltammograms (CVs) of TPyP in solution. 
Cyclic voltammetry was performed to investigate the redox state of the TPyP in solution.  

The CVs of Au(111) in 0.1 M H2SO4 solution with 2×10-4 M TPyP at different scan rates 

(0.02 V/s-2 V/s) show several new peaks, one cathodic peak(I) and two anodic peaks(II) 

and (III) (Figure 6-2).  At a scan rate of 1 V/s, the redox peaks I, II, and III, appeared at –
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0.05 V, 0.03 V and 0.14 V respectively.  Peak(II) was not apparent at low scan rates, but 

as the scan rate was increased, the anodic peak current associated with peak(II) increased.  

This result suggests that there are two kinds of reduced species that are active in the 

oxidation reaction [5, 6].   

 

The electrochemical reaction mechanisms of porphyrins in the solution phase have been 

extensively investigated as shown in (Figure 6-1) [5, 6].  In acid solution below pH 2, the 

porphyrin molecule P(0)H2 is believed to be protonated to form porphyrin diacid 

P(0)H4
2+.  The reduction of P(0)H2 probably involves a heterogeneous electron transfer 

followed by a homogeneous protonation reaction.               

 

P(0)H4
2++2e- iso-P(-II)H4                                                                              ( Electron 

Transfer) 

iso-P(-II)H4 + H+ P(-II)H5
+                                                                        ( Protonation 

reaction) 

 

Accordingly, we suggest that the two oxidation peaks correspond to the oxidation of iso-

P(-II)H4 and P(-II)H5
+.    

 

iso-P(-II)H4 - 2e- P(0)H4
2+         (peak II) 

P(-II)H5
+- 2e- P(0)H4

2++ H+       (peak III)   

At a low scan rate, sufficient time exists for the protonation reaction to occur before 

oxidation.  All the iso-P(-II)H4 is converted to P(-II)H5
+, and peak II, associated with 
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oxidation of iso-P(-II)H4 is negligible.  As the scan rate is increased, insufficient time is 

allowed for the conversion of iso-P(-II)H4 to P(-II)H5
+. Thus the increased amount of 

remaining iso-P(II)H4 results in a increase of  peak II.   

 

Overall, our cyclic voltammograms of TPyP in solution phase are in good agreement with 

Wilson and Nerri’s [5, 6].  This provides a baseline to discuss the redox chemistry of 

TPyP adsorbed on Au(111) electrodes. 
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Figure 6-2 Cyclic voltammograms of Au(111) in 0.1 M H2SO4 solution with 2×10-4 M 
TPyP. The electrode potential scan rates were 0.02, 0.05, 0.1, 0.2, 0.6, 1, 2 V/s. 
 

6.3.1.2. Cyclic voltammograms of TPyP preadsorbed at negative potentials. 
 

To study the redox chemistry of TPyP adsorbed on Au(111) electrodes without the 

interference of TPyP from the bulk solution, we first immersed the Au(111) electrode in 

TPyP solution at -0.25 V, rinsed the Au electrode with water and 0.1 M H2SO4, and then 
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transferred the Au electrode covered with adsorbed TPyP into an electrochemical cell 

containing 0.1 M H2SO4 for electrochemical measurements. 
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Figure 6-3 Cyclic voltammograms of Au(111) with pre-adsorbed TPyP in a blank 0.1 M 
H2SO4  solution, initially held at –0.25 V, scan rate 2 V/s (first cycle —, second cycle).  
 

The first scan of the CV (Figure 6-3) of the preadsorbed TPyP showed a peak, at a 

potential of 0.15 V.  Since it appeared at the same potential as the oxidation of P(-II) in 

Figure 6-2, we assign this peak to the oxidation of P(-II) species.  Using the second scan 

as the background, which displays no peak near 0.15V, the total amount of charge per 

unit area consumed for the surface oxidation reaction is calculated to be about 30 µC/cm2.  

Dividing the total number of electrons by 2 (number of electrons involved in the 

oxidation) yields a TPyP coverage of 9.4×1013 molecule/cm2, which corresponds to 2.2 

monolayers assuming that each molecule occupies an area of 1.55×1.55 nm2 as 

determined by STM.  Clearly multiple layers of TPyP can be adsorbed on Au(111) and 

survive the rinsing and transfer to another electrochemical cell.  Another pair of redox 

peaks at 0.46 and 0.53 V appear and may reveal the adsorption/desorption of SO4
2- at 

Au(111) [12].   
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However, in sharp contrast to the CV of TPyP solution, on the TPyP covered Au(111), 

the oxidation of P(-II) is irreversible, i.e., the cathodic peak at –0.05 V is absent.  Instead 

a much smaller cathodic peak appeared at 0.08 V.  Moreover, in the second cycle, the 

anodic peak disappeared as well.  In another experiment to test the reversibility of 

oxidation, the electrode was held at a positive potential, 0.8 V, before the CV scans.  

Only small peaks were observed (Figure 6-4).  The irreversibility of the redox reaction 

suggests two possibilities:  

1. The anodic peak at 0.15 V, is accompanied by significant desorption.  Once the TPyP 

molecules are desorbed from the electrode and diffuse into the bulk solution, they can no 

longer contribute to the electron transfer processes at the electrode surface.  

2. The oxidation of P(-II) forms a P(0) species that is difficult to reduce.   
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Figure 6-4 Cyclic voltammograms of Au(111) with pre-adsorbed TPyP in a blank 0.1 M 
H2SO4  solution, initially held at 0.8 V, scan rate 2 V/s (first cycle —, second cycle) .  
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6.3.1.3. Cyclic voltammograms of preadsorbed TPyP: Preadsorbed at positive 
potentials. 
To understand in more detail the electrochemical reactivity of irreversibly adsorbed 

TPyP, another series of CVs were carried out.  TPyP molecules were preadsorbed at a 

positive potential (0.6 V) before the Au electrode was rinsed and transferred to an 

electrochemical cell containing neat 0.1 M H2SO4.  The electrode was held at 0.6 V for 5 

min to ensure that only P(0) species are present.  Then the electrode was held at a 

negative potential -0.05 V for a duration τ, after which a CV scan was initiated (Figure 

6-5).  The anodic peak grew with increasing time spent at -0.05 V.  Though the growth 

appeared to slow for times longer than 5min, there is no clear sign of reaching a plateau.  

Therefore the time constant for the reduction of P(0) should be significantly higher than 

5min.  Similar CVs are obtained after many cycles, suggesting that minimal desorption is 

involved.  This provides evidence that at least some porphyrins adsorbates remain 

adsorbed throughout the electrochemical experiments.   

5min

Holding at -0.05V for a duration τ

CV

τ

0.6V

Potential

-0.05V

Time  

Figure 6-5 Waveform for the cyclic voltammetric experiment of TPyP preadosorbed at a 
positive electrode potential. 
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Figure 6-6 Cyclic voltammograms of preadsorbed TPyP on Au(111). The electrode 
surface was equilibrated at -0.05 V for different durations.  Scan rate 1 V/s.  
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Figure 6-7 Integrated charge of preadsorbed TPyP as a function of duration at -0.05 V 
extracted from the CVs in Figure 6-6. 
 

The presence of redox peaks in Figure 6-6 suggests that at least some of the P(0) 

molecules remain adsorbed at positive potentials.  Therefore the absence of an 

electrochemical signal in the second cycle of Figure 6-3, does not mean that the TPyP 

molecules completely desorb from the surface after oxidation in the first cycle.  Rather, 

the reduction of P(0) adsorbed on the surface is much slower than in the solution.  After 

10min at -0.05 V, only 0.22 ML of TPyP is reduced, based on the integrated charge 

 163



density 4.  Therefore the reduction of adsorbed P(0) is not rapid enough to produce a 

cathodic peak.  The cathodic peak appeared to be greatly suppressed (by several orders of 

magnitude) when the TPyP is adsorbed.  This provides direct evidence that the 

electrochemical reactivity of the preadsorbed TPyP is distinct from that of TPyP in 

solution phase.  The different electrochemical activity of TPyP adsorbed on the Au(111) 

surface is probably due to the interaction with the Au substrate.  Differences in the 

electrochemical behavior of adsorbed and solution phase species have been noted 

previously [4] [8] . 

 

In addition, after holding the electrode at a low potential, there is a cathodic peak that is 

symmetric to the anodic peak along the x axis.  It is noteworthy that at a scan rate of 1 

V/sec, the cathodic and anodic peaks are separated by 0.17 V in the CV under TPyP 

containing solution while the peak separation for the preadsorbed TPyP is negligible.  

The symmetry of anodic and cathodic peaks is characteristic of a reversible redox 

reaction of adsorbed species [13, 14].  The reversibility observed in Figure 6-6 appears in 

contradiction with Figure 6-3, Figure 6-4 and Figure 6-7, which all suggest that the P(0) 

species is slow to reduce.  Therefore it is unreasonable to observe a cathodic peak as 

large as the anodic peak at relatively high scan rate (1 V/sec).   

 

However, the TPyP covered electrode was held at a positive potential (0.6 V) for 5min 

before stepping to the negative potential.  Evidently holding the electrode at positive 

potentials reduces the reduction rate of TPyP.  The apparent contradiction can be 

                                                 
4 The charge density was integrated from 0.02 to 0.25V and subtracted by a straight line 
background. 
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explained by the presence of two kinds of P(0) species depending on the time spent at 

positive potentials.  P(0)a has reactivity similar to that in the bulk solution and P(0)b has 

suppressed reactivity (Figure 6-8).  P(0)a is an intermediate that is produced by the 

oxidation of P(-II).  P(0)a is readily reduced to P(-II), resulting in a cathodic peak that is 

similar to the anodic peak in Figure 6-6.  P(0)a is converted to P(0)b after staying at a 

high potential, e.g. 0.6 V, for a sufficient period of time.  Therefore, after staying at a 

positive potential for a sufficient period of time, the cathodic peak diminishes.   

 

P(0)a 

P(0)b

P(-II)

-2e

+2e Positive potential
+2e

 

Figure 6-8 Proposed surface species of TPyP. 
 
6.3.2. STM results. 

6.3.2.1. Adsorbed TPyP under neat 0.1 M H2SO4. 
To directly answer the question whether the TPyP molecules desorb at positive potentials 

(>0.3 V) in TPyP free solution, we preadsorbed TPyP onto the Au(111) surface at -0.25V 

(see 6.3.1.2) and imaged the TPyP covered surface under neat 0.1 M H2SO4 with EC-

STM (Figure 6-9).   

 

When the electrode potential was stepped from 0.05 to 0.15 V, where the adsorbed TPyP 

molecules were oxidized as suggested by the CV (Figure 6-3), a white linear island 
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appeared, indicated by an arrow at bottom of Figure 6-9 B.  In addition, the image is very 

noisy. The noise in the STM images is most probably due to diffusive motion as has been 

reported by several groups [15-18].  The noisy areas and ordered molecular domains are 

imaged at the same time (Figure 6-9C).  Accordingly, we suggest that the noise in the 

STM images is due to diffusive motion of adsorbates, instead of tip perturbation, which 

should affect the entire image.  Figure 6-9C, taken at about 170 seconds after Figure 6-9 

B, shows several domains containing ordered molecular arrays.  There are still some 

noisy areas between the ordered molecular domains.  The reconstruction stripes can now 

be resolved clearly under the adsorbed molecular adlayer.  In next image, Figure 6-9D, 

the noisy areas have almost completely disappeared.  Both the ordered molecular lattice 

and the reconstruction stripes under the adlayer are resolved clearly.  Compared with 

Figure 6-9B, the domains in Figure 6-9D have assumed different orientations, suggesting 

that the molecules have rearranged.  Furthermore an island, presumably resulting from 

the lifting of the Au(111) reconstruction, has appeared at the bottom right-hand corner.  

Usually, the Au(111) reconstruction does not lift until 0.3 V under sulfuric acid [19].  The 

partial lifting of the reconstruction in some areas is assumed to result from the adsorption 

of P(0) molecules, which may interact with Au(111) surface via a chemisorption 

interaction.  Chemisorption may destabilize Au reconstruction and lift the substrate 

reconstruction [19].   

 

The adsorbed TPyP molecules and the underlying corrugation of the Au(111) 

reconstruction can be observed clearly at even higher potential (0.25 V), Figure 6-9 C.  

After the electrode potential was stepped from 0.25 to 0.35 V (Figure 6-9 E), more 
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unreconstructed areas appeared.  However, some reconstruction stripes were still present.  

When the potential was stepped to 0.45 V (Figure 6-9 F), the surface reconstruction was 

lifted completely.  

 

A B

C D

E F

 

Figure 6-9 In situ STM images of preadsorbed TPyP on reconstructed Au(111) in 0.1 M 
H2SO4 solution. (A) obtained at electrode potential -0.05 V, setpoint I= 0.2nA.  (B-D) 
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obtained after electrode potential was stepped to 0.15 V from –0.05 V, setpoint I = 0.2nA. 
E obtained at electrode potential 0.25 V.  F obtained at electrode potential 0.35 V.  Image 
size: 62 nm× 62 nm.  Scan direction: upward. 
 

 

6.3.2.2. Growth dynamics under TPyP solution. 
To understand the redox reactions and ordering process of TPyP, the potential 

dependence of adlayer structure on the unreconstructed Au(111) was studied in 0.1 M 

H2SO4 solution with 10-5 M TPyP.  A disordered surface was prepared at by stepping the 

surface from -0.2V to 0.5V (see Figure 5-7C).  Then the potential was stepped to 0.1 V, 

where the ordering should start.   

 

Apart from the Au islands resulting from the lifting of Au(111) reconstruction [19], 

clusters containing porphyrin adsorbates can be resolved (Figure 6-10).  Again the size of 

the molecules is between 1.5-1.6 nm.  Interestingly the distribution of island height is 

binary.  The majority of the molecular clusters are 2.5-3.1 Å higher than island free areas 

while some of the molecular clusters are only 1.2-1.5 Å high.  This suggests the presence 

of monolayer and bilayer islands.  However, height in the STM images does not always 

correspond to the physical height of the features.  These STM images are acquired in 

constant current mode.  The higher clusters may correspond to porphyrin molecules that 

have a higher tunneling probability, therefore displaying larger protrusion.  However, 

close inspection of the boundaries between the layer with more apparent height and the 

layer with less apparent height provides evidence that former is adsorbed on top of the 

latter.  The STM image shows that in the boundaries the layer with more apparent height 

sometimes blocks the view of molecules in the layer with less apparent height (Figure 
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6-11).  Only parts of molecules in the “lower” layers are resolved in the STM while 

without exception, the entire molecules in the “higher” layers are resolved.  This provides 

evidence that the molecules at the perimeter of a molecular cluster with higher apparent 

height partially overlap with the molecules at the underlying layer.  Therefore the 

“higher” layer is assigned to bilayer adsorbed on top of a monolayer.  

 

Figure 6-9 in the previous section suggests that monolayer coverage TPyP remain 

adsorbed between -0.05 V to 0.45 V under neat 0.1 M H2SO4.  Therefore, in a TPyP 

containing solution, where the tendency for adsorption is even stronger, we expect TPyP 

molecules to fully cover the electrode surface.  Therefore, we assume that TPyP 

molecules are present even in the areas where no molecules are resolved by STM (Figure 

6-10).  There are probably disordered TPyP molecules in those areas.  Unlike molecules 

at 0.5 V (Chapter 4), where the binding energy is high enough to immobilize disordered 

molecules, the disordered molecules at 0.1 V are not sufficiently immobilized to be 

imaged.  At this potential, only after incorporation into ordered domains can the TPyP 

molecules be resolved by STM. 
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Figure 6-10  Time dependant STM images of TPyP adsorption onto Au(111).  Solution: 
1×10-5M TPyP in 0.1 M H2SO4.  A 0-109 sec after potential step from 0.5 V to 0.1 V.  B 
109-218 sec after potential step from 0.5 V to 0.1 V.  Image size: 62× 62 nm2.  Scan 
direction: downward. 
 

 

Figure 6-11 A: STM image (20×20 nm2) of a TPyP domain boundary under 1× 10-5M/0.1 
M H2SO4 solution Molecular layer2.5-3.1 Å high coexists with molecular layer 1.2-1.5 Å 
high. The molecules in the layer which has higher apparent height are fully resolved 
while only partial molecules in the lower layer are resolved at the boundary highlighted 
by the red line.  B: A model for the proposed multilayer structure.   

 

 170



A B C

 

Figure 6-12 Time dependant STM images of TPyP adsorption onto Au(111) after 
potential step from 0.5 V to 0.1 V.  Solution: 1×10-5 M TPyP in 0.1 M H2SO4.  A. 109-
218 sec. B. 218-327 sec. C. 327-436 sec.  The red arrows point to the same domain which 
grew after potential step.  Image size: 40×40 nm2.  Scan direction: downward. 
 

The fractional coverage of bilayer, θ, is estimated by counting the number of molecules 

N. By assuming that each molecule occupies 2.4 nm2, θ can then be calculated in 

Equation 1, where A is the total area of the image. 

)2

2nm
(

4.2
nmA

N ×
=θ                                                                                                 Equation 6-1 

In the coverage calculation, the image of the first scan (0-109sec) (Figure 6-10A) is 

divided into halves along the slow scan axis, with the top half representing the scan of 0-

55 sec and the bottom half representing 55-109 sec.  This increases the effective time 

resolution to about 1 min and allows better understanding of the time dependant growth 

of ordered domains. 
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Figure 6-13 Fractional coverage of TPyP bilayer as a function of time after potential step 
from 0.5 V to 0.1 V.   
 

By combining time dependant images and calculated fractional coverage (Figure 6-10, 

Figure 6-12, and Figure 6-13), one can recognize that the ordering of TPyP proceeds via 

the nucleation and growth mode.  During the first 55 sec (Top half of Figure 6-10A), only 

a few molecules were resolved.  Only after about 1min did clusters start to appear (lower 

part of Figure 6-10A), but the coverage remained very low (2%).  There was an induction 

period of about 100 sec.  Only after the induction period did the ordered domains grow 

rapidly.  The overall coverage of bilayer domains rapidly increased to 0.16 between 109-

218 sec.   

 

This behavior is characteristic of nucleation and growth [20].  The growth of ordered 

domains proceeds via the radial expansion of nuclei that reach a critical size [20].  Once 

nucleation centers are formed, they can serve as templates for rapid growth.  It is also 

evident that the orientations of the domains are largely determined by the nucleation 

stage.  A careful inspection found that most of the domains imaged in Figure 6-10A 
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remained at the same orientation as their nucleation centers.  However, the growth 

slowed down in the subsequent frames.  The coverage increased to 0.2 between 209 and 

318 sec and remained about 0.2 after 400 sec.  The reduction in the growth rate may 

suggest that the coverage of bilayer has reached an equilibrium coverage.  It may also 

suggest that the some other factors limit the growth of bilayer.  The ordering process is 

dependant on the lateral organization of adsorbates.  At the initial stage of growth, lateral 

reorganization is rapid due to large free volume of adsorbates.  At a later stage, the free 

volume decreases and it is more difficult for the adsorbates reorganize laterally to form 

ordered domains. 

6.3.2.3. Dissolution of TPyP multilayers. 
When the potential was stepped to 0.15 V, the coverage of the bilayer was reduced 

slightly (Figure 6-14B).  However, once the potential reached 0.2 V, the dissolution 

accelerated dramatically (Figure 6-14C,D).  Most of the monolayer and bilayer clusters 

disappeared.  Ordered domains as high as the surrounding, which should consist of 

disordered TPyP domains, appeared at the same locations as the clusters.  The ordered 

domains are stable up to 0.6 V.  We assume that the domains correspond to monolayer 

for the following reasons:   

1. The STM images no longer display different levels of height.  

2. The TPyP molecules are positively charged.  All pyridine units can be protonated, 

therefore each molecule, in principle, carries up to four unit charges.     
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Figure 6-14 In situ STM images of TPyP on unreconstructed Au(111) under 1× 10-5 M/0.1 
M H2SO4 solution. (A) obtained at electrode potential 0.1 V.  (B-C) obtained after 
potential step to 0.15 V 0-109 sec and 109-218 sec respectively.  (D) after potential step 
to 0.2 V., 0-109 sec.  Image size: 62nm× 62 nm2.  Scan direction: downward. 
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The electrostatic repulsion energy E is  

E=nFφ          Equation 6-2 
where φ is the potential drop across the double layer, n is the number of unit charge and F 

is the Faraday constant.  Assuming φ to be 0.2 V and n to be 4, the electrostatic repulsion 

energy is 80 kJ/mol.  Therefore, the positively charged surface is unlikely to adsorb 

multilayers of TPyP because the π stacking interaction is unlikely to be strong enough to 

compensate for the electrostatic repulsion. 

 

The disappearance of the clusters was not due to the change in imaging contrast caused 

by an increase in bias because at least some of the bilayer clusters with similar height are 

still resolved in (Figure 6-14B,C).  Cyclic voltammograms suggest only P(0) should exist 

at potentials higher than 0.2 V.  The similar height of ordered and disordered domains 

reinforces our previous hypothesis that the disordered domains consist of adsorbed P(0).  

The potential of disappearance of clusters in STM images coincides with the potential of 

the anodic peak of P(-II) in CVs (Figure 6-6).  Therefore we assume that after oxidation 

of P(-II), the top layer is oxidized and desorbed, leaving behind a monolayer that has 

lower apparent height.   

 

6.3.3. Surface interactions. 

Our previous STM results on the dynamics of TPyP on Au(111) in Chapter 5 indicated 

that the interaction between the TPyP adsorbate and the Au(111) substrate increased with 

increasing electrode potential [21].  Our results suggest that TPyP molecules are strongly 

adsorbed at positive potentials.  In an acid solution, the pyridine groups of TPyP will be 
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protonated and the molecule will be positively charged.  One would suppose that the 

positively charged TPyP monolayer would tend to desorb on a positively charge electrode 

surface.  A possible explanation for the observation of adsorbed TPyP is that the strong 

contribution from π bonding interaction of the large π system exceeds the effect of 

electrostatic repulsion.  The other reason is that the counter ions near the pyridinium units 

may screen some of the electrostatic repulsion.   

 

Our STM results also suggest that TPyP has a tendency to form multilayers at potentials 

between -0.20 V to 0.15 V, where the surface charge density is moderately negative.  It is 

well known in the solution phase that macrocycles tend to aggregate due to the π stacking 

interaction [22].  Multilayer adsorption of coronene onto a electrode surface was 

observed by Kunitake et al [23].  Coronene monolayers were stable over a wider potential 

range than the multilayers.  The desorption of the insoluble neutral aromatic compound 

occurred when the surface became significantly charged.  While not suggested by 

Kunitake et al., we believe that at a higher surface charge density, the water and ions are 

attracted to the surface, displacing the insoluble neutral adsorbate in the multilayers, 

consistent with our studies of order-disorder phase transitions of insoluble hexadecane at 

charged solid-liquid interfaces [24].  

 

In the case of TPyP, the redox reaction may play an additional important role since the 

disappearance of multilayers in STM images coincided with the oxidation of P(-II).  The 

P(0) species produced by oxidation may experience greater electrostatic repulsion (from 

the neighboring adsorbates as well as from the substrate) to form multilayers because, by 
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assuming a diacid form, the P(0) may have two more positive charges due to the 

protonation of the macrocyle.  The increased repulsion may results in the desorption of 

multilayers at more positive surface charge density.  It is to be noted that STM can only 

resolve immobilized multilayers.  Below -0.25 V (Chapter 5), STM could not resolve 

porphyrin molecules.  Reduced molecule-substrate interaction becomes insufficient to 

confine molecules into ordered 2D structures.  However, CV suggests the multilayers are 

still present on Au surface (Figure 6-3) at -0.25 V.  The multilayers were not sufficiently 

ordered to be resolved by STM.  The presence of multilayers may be caused by 

electrostatic attraction of positively charged TPyP and the electrode surface.   

 

6.3.4. The reactivity of adsorbed species. 

One important question concerns the irreversibility of the oxidation of adsorbed TPyP 

(Figure 6-3).  The irreversibility can be explained by desorption of oxidized species.  

Consequently the species are no longer available to be reduced.  An alternative 

explanation is that the oxidized species remains adsorbed, but it is not readily reduced.  

By combining the STM and CV results, we find that both explanations are correct to 

some degree.  STM results provide definitive evidence that that even under a neat 0.1 M 

H2SO4, monolayer TPyP remains adsorbed on Au(111) over a wide range of potential 

(Figure 6-9).  Therefore the lack of a reduction peak in the CV is due to the adsorbed P(0) 

species with distinct reactivity from P(0) present in solution.  However, the irreversibility 

also has a contribution from the desorption of multilayers upon oxidation.  Both STM and 

CV results suggest that multilayers are formed at potentials below 0.15 V.  STM shows 

that the multilayers are desorbed above the oxidation potential, 0.2 V.   
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A more complete interpretation of the irreversibility takes into account a monolayer and 

multilayers that have different chemical reactivity.  Due to strong interaction with the 

substrate, the electrochemical reactivity of the monolayer is greatly suppressed.  

Chemisorption may destabilize Au reconstruction and lift the substrate reconstruction 

[19].  STM results suggest that the interaction between P(0) and Au(111) has 

chemisorption character since P(0) partially lifts Au reconstruction (Figure 6-9B,C).  

Therefore, the redox properties of TPyP may be profoundly influenced by adsorption.  

The molecules in the more weakly adsorbed multilayers have reactivity similar to those 

in bulk solution.  The oxidation of preadsorbed P(-II) causes the desorption of the 

physisorbed multilayer.  In contrast, the chemisorbed monolayer remains on the surface 

and cannot be oxidized easily.   

 

Another surprising result is that adsorbed P(-II) is oxidized to another P(0) intermediate 

(P(0)a) that has high reactivity as suggested by Figure 6-6.  At a positive potential, P(0)a 

is converted to P(0)b, which does not display a reduction peak at the potential range we 

investigated (-0.25 to 0.6 V).   

 

The nature of these species is unclear for the moment.  The P(0)a intermediate with 

enhanced reactivity may have the same chemical composition as the P(0)b. The 

difference in reactivity may originate from the interaction with the substrate.  P(-II) is 

assumed to be a physisorbed species since its reactivity is similar to P(-II) in the bulk.  
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Therefore, it is reasonable that after oxidation, the P(-II) is converted to another weakly 

adsorbed species, P(0)a, which is a precursor to a chemisorbed species, P(0)b.   

 

Another possibility is that the P(0)a and P(0)b may correspond to two different chemical 

species.  For example, P(0)a may correspond to a protonated species such as P(0)H4
2+ and 

P(0)b may correspond to an unprotonated species such as P(0)H2 (Figure 6-8).  The 

reduction of P(0)H4
2+ should be more facile than P(0)H2 due to the presence of additional 

positive charges.  P(0)H4
2+

 is clearly unfavorable at positively charged surface.  To 

minimize electrostatic repulsion, it may deprotonate to form P(0)H2 at positive potential.  

However, this hypothesis contrasts with the Itoh’s SERRS investigation, which suggests 

that porphyrins always assume P(0)H4
2+ adsorption state under acidic mediums [7].  We 

nevertheless note that the substrate used for their study, electrochemically roughened Ag 

electrodes, may differ dramatically from the planar Au(111) electrode we use and the 

chemical states of adsorbed species may different substantially.   

 

6.4. Conclusions and future work. 

Our findings can be summarized as following. 

• TPyP is irreversibly adsorbed at Au(111) over a wide range of potential, 

from -0.25 V to 0.8 V. 

• Adsorbed TPyP forms monolayers and multilayers with distinct 

electrochemical reactivity.  The monolayer is present at a wide range of 

potentials (-0.25 V to 0.6 V), suggesting that TPyP is irreversibly adsorbed 
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at Au(111).  However, multilayers desorbs near the oxidation potential of 

TPyP.  The desorption of multilayers may be caused by the electrostatic 

repulsion.   

• TPyP adsorbates in the monolayer display distinct electrochemical reactivity 

from TPyP in solution.  By holding the TPyP covered electrode at a lower 

potential, we demonstrate that TPyP adsorbed at positive potentials is 

reduced significantly more slowly.   

• CVs of preadsorbed TPyP suggest the oxidation of reduced TPyP P(-II) 

forms at least two P(0) species.  Immediately after oxidation, a P(0)a 

intermediate is produced, which is readily reduced.  At positive potential, 

P(0)a may be converted to P(0)b, which has suppressed reactivity. 

• Time dependant STM images suggest that the self-assembly of TPyP 

follows a nucleation and growth mode.  The orientations of the nucleation 

centers determine the orientations of molecular domains.  This suggests that 

strategies that reduce nucleation centers may result in the formation of larger 

molecular domains.  

• This study further reinforces our conclusion in Chapter 5 that the potential 

dependant surface interaction can be exploited to control the ordering of 

adsorbates [25].  We have demonstrated that we can induce the ordering and 

study its kinetics by potential perturbation.  We can also direct the formation 

of multilayers.   
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Our combined CV and STM investigation reveals a complex interplay between redox 

reactions, monolayer and multilayer adsorption, and lateral organization of molecules.  

Many studies have shown that adsorption suppresses the electrochemical reactivity of 

porphyrins [26].  In situ STM studies can afford more insight into the origin of the 

distinct electrochemical reactivity of adsorbed species.  The distinct redox chemistry of 

TPyP adsorbates is clearly influenced by their interaction with the substrate, as revealed 

by in situ STM.  On the other hand, the change of chemical nature of adsorbed species 

changes the surface interactions and the resultant surface structures.  This is supported by 

the potential of desorption of multilayers coinciding with the oxidation potential.  

 

Future work includes further investigations of the chemical nature of adsorbed species.  

More systematic electrochemical studies, including the effect of potential and duration at 

positive potentials, as well as the pH dependence, may clarify the chemical nature of 

P(0)b.  It will be very instructive if STM can provide spectroscopic contrast on 

porphyrins with different redox states.  In general it is challenging under an 

electrochemical environment because the contrast may heavily depend on the tip 

condition, which is difficult to reproduce.  However, by controllably varying the 

chemical composition of adsorbates, the ability to differentiate different porphyrin 

species has been demonstrated [27].   

 

Another important area is the self assembly process at electrode surfaces where more 

elaborate control may be possible once the molecular scale dynamics of the ordering 

process is better understood.  Currently our understanding of the dynamics of molecular 

 181



self-assembly at electrochemical interfaces is largely limited to macroscopic 

measurements such as differential capacitance on weakly adsorbed molecules [28].  

Chapters 5 and 6 suggest the critical role of electrode potential in ordering of porphyrin 

adsorbates.  Our results suggest that the electrode potential can trigger the nucleation and 

growth process of self-assembly.  More real space STM studies of the dynamics of 

ordering over a wide range of potentials may help to understand how electrode potentials 

may affect different stages of the ordering process.  It is common in nanoparticle 

synthesis to create a controlled amount of nucleation centers and trigger controlled 

growth of nanoparticles [29].  It should be possible to design potential perturbations that 

control the density of nucleation centers and hence the size of ordered molecular 

domains.  
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7. Electrodeposition onto molecular scale templates. 

7.1. Introduction.  

This chapter describes the effect of surface micelles on the nanoscale metal structures 

created by electrodeposition. Relevant background information concerning 

electrodeposition and organic-metal interactions is provided below. 

7.1.1. Electrodeposition. 

Compared to other metallization techniques, vapor deposition [1] and electroless 

deposition [2], electrodeposition is a simple process that allows good control of surface 

morphology and surface coverage through control of parameters such as electrode 

potential, current density, additives, and plating time [3, 4].  During electrode deposition, 

an electrode is in contact with an electrolyte containing metal ions to be reduced and 

deposited on the electrode.  Electrochemistry distinguishes between bulk deposition and 

underpotential deposition [5-7].  Bulk electrodeposition refers to the electrochemical 

deposition of a metal on a substrate made of the same metal.  The equilibrium electrode 

potential E of bulk deposition is controlled by the well known Nernst equation (Equation 

7-1) [8], where E0 is the standard electrode potential, n is the number of unit charge on 

the metal, F is the Faradaic constant and aM
n+

 is the activity of the metal ions [8].  

)ln(0 ++= nMa
nF
RTEE       Equation 7-1 

At potentials lower than E, the metal ions are reduced to elemental metal which is 

deposited on the electrode surface.   
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Underpotential deposition (UPD) [5-7] occurs when metal is deposited on a foreign 

substrate that has higher affinity for the metal than the interaction between atoms of the 

metal to be deposited.  As a consequence, the metal starts to form atomic layers on the 

foreign substrate at a potential less negative than E.  UPD is a self-limiting process since 

the enhanced interaction with the substrate is limited to a few atomic layers near the 

surface.  As the number of layers increases, the deposition potential quickly approaches 

the bulk deposition value.   

 

7.1.2. Organic molecules as resists.  

One of the most versatile methods to fabricate metal patterns on surfaces is to deposit 

metals in the presence of organic resists.  There have been considerable interests in using 

well defined organic monolayers as resists.  The monolayers can either act as masks to 

block metal deposition or, with metallophilic functional groups, act as the preferential 

sites for metal deposition [9].  Evidently, the organic layers must be patterned, which is 

typically achieved with photolithography, E-beam lithography, scanning probe 

lithography or soft lithoghraphy [10].  Photolithography and soft lithography have limited 

resolution (~100 nm).  E-beam and SPM lithography, though capable of nm resolution, 

write structures in serial fashion and therefore are not suitable for large scale fabrication 

[10].  Molecular self-assembly, in which molecules self-organized into defined patterns, 

is a parallel process and may potentially compliment traditional lithography processes in 

defining nm scale structures [11].  By careful design of molecular building blocks, the 

achieved self-assembled structures are growing in complexity [12-14].   
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An interesting question is whether the features in the 2D self-assembled structures can 

define the lateral placement of metal nanostructures.  Self-assembled structures of 

diblock polymers can act as templates to form perpendicular electrodeposited nanowires 

tens of nm in diameter [15].  In addition to macromolecules, features of truly molecular 

dimension are exploited to create various metal nanostructures.  Hatzor and Weiss 

showed that self-assembled multilayers can act as masks to form gaps as small as several 

nanometers.  The gap width is controlled by the thickness of self-assembled multilayers 

[16].  Kim et al. used self-assembled organic nanotubes to grow atomic silver wires 

perpendicular to the substrate [17].  A recent study suggests that the electrodeposited 

copper oxide grown on achiral surfaces in the presence of chiral molecules can be 

imparted with enantioselectivity [18].  However, little is known how metal atoms are 

deposited on preferential surface sites in these molecular scale templates and how the 

templates are perturbed by the deposited metal atoms.  Studies capable of interrogating 

the structural evolution during deposition process will be helpful to understand and 

optimize formation of nanostructures in these templates.   

 

7.1.3. Metal-organic interfaces.  

In addition to creating lateral metal patterns, metallization on organic structures is also an 

important means to create well-defined metal-organic interfaces.  Molecular electronics 

applications require connecting organic molecules to two or three conducting terminals 

[19].  A common approach to create metallic contacts with organic molecules is to 

deposit metal on  top of self-assembled monolayers [1, 20, 21] or Langmuir Blodget films 

[22].  To achieve good performance, the top metal electrode must only be in contact with 
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the top of the monolayers.  However, in reality, this interface is typically poorly defined.  

Metal atoms tend to penetrate the voids or inter-chain free volumes in monolayers and 

create shorts during metal evaporation [1, 19-21] or electrodepostion [23].  SIMS and 

XPS studies showed that the resulting structures of metal-organic interfaces are very 

sensitive to interactions between metal atoms and functional groups in the monolayers 

[20, 21].  More microscopic details of the interactions need to be understood and 

controlled to form well defined metal-organic-metal contact.  

 

7.1.4. Self-assembled 2D structures of surfactants. 

 

  

Figure 7-1 Proposed model of hemicylindrical structure of CTAB surface aggregates on 
hydrophobic surfaces [24]. 
 

Although surfactants have long been recognized to form micellar structures in bulk 

solutions [25] and evidence also suggested the presence of micelle-like surface 

aggregates when surfactant molecules are adsorbed [26], direct evidence of micelle-like 

surface structures only appeared less than a decade ago [24, 27].  Using AFM, Manne et 

al. observed that cetyltrimethylammonium bromide (CTAB) formed hemicylinders on 
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graphite [27].  The hydrophobic chains aggregate while the hydrophilic head groups are 

exposed to the aqueous environment.   

 

Surface micelles have also been observed by AFM on metal surfaces [28].  The effect of 

surface charge density at metal electrodes on the surface structures of SDS has long been 

suggested by differential capacitance measurement [29, 30].  The Lipkowski group 

applied in situ AFM and STM to study the potential dependant structures of surface 

aggregates on Au(111) [31].  The observed structures of SDS on Au resembles those of 

CTAB on graphite (Figure 7-1).  STM results suggest that on the surface, the molecules 

in the first layer lie flat on the surface to form rows with head to head, tail to tail 

configuration (Figure 7-1).  The unit cell of the ordered structure is 4.4 nm long and 0.5 

nm wide.  The sulfate head groups are about 0.8 nm apart.  On top of monolayer rows, 

the SDS molecules aggregate to form hemicylinders.  On the surface of the hemicylinders 

are hydrophilic sulfate groups, thereby shielding the hydrophobic core from the aqueous 

environment.  It was found that the hemicylindrical structure formed by 16 mM SDS was 

stable at a potential range of -0.2 VSCE to 0.3 VSCE, under which the electrode is 

moderately charged [31].  SDS molecules desorb at a sufficiently negatively charged 

surface.  If the electrode potential is increased to a point where the positive surface 

charge density becomes equal to or exceeds the negative charge of adsorbed SDS, the 

repulsion between the sulfate groups is completely screened and SDS molecules form a 

condensed film [31].  The exact structure of the condensed film at positive potential 

remains unclear.  It is not clear, for example, if SDS molecules form a monolayer or a 

bilayer [32]. 
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7.1.5. Motivation. 

Electrodeposition of metals such as tin [33] and copper [34, 35]  in the presence of 

cationic or anionic surfactants has been investigated.  The adsorbed surfactants were 

observed to be hinder metal deposition [33-35].  It has been proposed that surface 

aggregates blocks the diffusion of metal ions to the surface, which is necessary for 

reduction.  In addition, the adsorbed surfactants can promote the layer by layer deposition 

by reducing the [33-35].   

 

 

Figure 7-2  Hypothetical formation of silver nanowires on the hemicylindrical surface 
micelles.  Parallel silver wires may be preferentially formed at the trench site, the surface 
site between the hemicylinders. 
 

Our hypothesis is that, under optimal conditions, metal atoms may preferentially be 

electrodeposited certain sites in self-assembled molecular templates, such as the trench 

sites between the hemicylindrical surface micelles (Figure 7-2) or space between the 
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hexadecane molecular rows (Chapter 4).  These sites allow interaction with the bare 

substrate as well as the neighboring sulfate groups.  In addition to patterning metal on 

surface, we believe the surface micelles are a model system to understand the interaction 

between organic molecules and the deposited metal.  By imaging the deposition process 

of metals on the two dimensional structure, we can obtain direct information about the 

affinity between the metal atoms and functional groups.   

 

We have demonstrated that the intrinsic length scales of molecular assemblies may be 

exploited to grow metal nanostructures of controlled spacing.  We observed evidence for 

preferential deposition of metals in molecular templates.  We found that the concentration 

of the metal ions is critical for the selective metal deposition on to the templates.  The 

observed metal structures provide insight into the interaction between metal atoms and 

organic functional groups.  We hope that understanding and tailoring the interactions will 

lead to more precise control of over the placement of new strategies to connect organic 

molecules to metal nanostructures. 

 

7.2. Experimental. 

An Au(111) single crystal disc (Monocrystals Co., Ohio) was used as the substrate.  Prior 

to the experiments the substrate was cleaned by immersion in hot piranha solution [1:3 

H2O2 (J. T. Baker, CMOSTM) and H2SO4 (J. T. Baker, CMOSTM)] for 1 hour, and 

immersion in hot HNO3 (EM SCIENCE GR) for 30 minutes. (Caution! The piranha 

solution is a very strong oxidizing agent and extremely dangerous. Eye protection and 
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gloves should be used during handling.)  After each step the sample was rinsed by 

ultrasonication in ultrapure water (>18MΩ•cm) produced by a Barnstead, Nanopure 

Infinity system equipped with a UV lamp to further reduce trace amounts of organic 

impurity.  After chemical cleaning, the crystal was hydrogen flame annealed, and allowed 

to cool down under Argon purging.  The crystal was quickly covered with a drop of water 

and transferred to an STM electrochemical cell to be filled with electrolyte.  

 

The electrochemical cell was made of Teflon. To prevent the leakage of the surfactant 

solution, an O-ring (Chemraz, Ace glassware) was used to seal the gap between the cell 

and the Au single crystal.  A silver wire was used as the reference electrode. The 

potential is quoted against SCE.  A platinum wire was used as the counter electrode.  All 

cell components (with the exception of silver wire) were chemically cleaned in the same 

way as the crystal.  The silver wire was sonicated in methanol and water. 

 

All chemicals: sodium dodecylsulfate (Fluka, >99%) and silver perchlorate monohydrate 

(Aldrich, 99.999%) were used as received.  Sodium dodecylsulfate undergoes slow 

hydrolysis in aqueous solution [36].  Therefore sodium dodecylsulfate solution was 

prepared within 24 hrs prior to each experiment.  

 

STM and AFM images were obtained with a PicoScan SPM system (Molecular Imaging). 

A bi-potentiostat (Molecular Imaging) was used to control the sample and tip potential 

independently, as well as to perform cyclic voltammetry.  STM tips were etched tungsten 

tips coated with polyethylene, since we found that our paraffin wax coating used 
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previously was unstable in surfactant solutions.  More details of the tip fabrication 

procedure can be found in Appendix C. 

Oxide sharpened Si3N4 AFM tips were purchased from Digital Instruments.  The 

cantilever with a nominal spring constant of 0.06 N/m was selected for imaging.  The tips 

were cleaned in hot piranha solution (1:3 H2O2 (J. T. Baker, CMOSTM) and H2SO4 (J. T. 

Baker, CMOSTM)) prior to imaging.   

 

7.3. Results. 

7.3.1. Potential dependant structures of SDS at electrochemical interfaces. 

7.3.1.1. Structure of surface micelles on Au(111). 

 

Figure 7-3 Deflection mode AFM image of surface aggregates on Au(111) under 10 mM 
SDS. Image size 150×150 nm2. Electrode potential: 0.3 V SCE. 
 

AFM images suggest that SDS can form uniformly spaced strips on Au(111) surface 

(Figure 7-3). The stripes in the AFM image have a periodicity of 4.4 nm, in good 

agreement with Lipkowski et al. [31].  The force-distance curve displays an exponential 
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increase of repulsive force as the tip approaches the surface until the repulsion force is 

higher than 0.2nN, beyond which the tip jumps into contact with the surface.   

 

Manne et al. explained the jump-to-contact behavior to the presence of surface micelles 

[27].  The SDS solution has a pH about 6-7.  At this pH, the Si3N4 AFM tip is negatively 

charged [37].  The negatively charged tip experiences electrostatic repulsion from the 

negatively charged top of surface micelles.  When the force is higher than a certain value, 

the surface micelles collapse.  This is reflected in the drop of the force.  The force sharply 

increases after the tip is in contact with the hard surface.  Manne et al. pointed out that the 

surface micelles are only imaged by AFM when the delicate force does not perturb the 

surface micelles but has sufficient force gradient proximity to discriminate the surface 

structures [27].  It has been pointed out by Wanless and Dukker that the apparent height 

of surface micelles, defined as the height difference (0.1-0.2 nm) between the top of 

surface micelles and the trench site between the neighboring surface micelles in AFM 

images does not reflect the true topography of surface micelles[38].  The resolution of 

AFM is largely determined by the force gradient around the local structures.  Compared 

to typical AFM imaging conditions when the tip is in hard contact with the surface, the 

tip is mapping the contour of double layer force, which decays more slowly with 

increasing distance [38].  In addition, due to the finite size of the tip, the tip may not 

reach able to reach the bottom of the “trenches” between the surface micelles [38].  A 

better way to extract the height information is to measure the distance between the jump-

to-contact point, where the micelles begin to collapse, and the hard contact point [27].  

The distance is about 2.5 nm, which is about the length of a SDS molecule.   
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Figure 7-4  Approach force-distant curve of Au(111) under 10 mM SDS at open circuit 
potential.  The force is calculated using the nominal spring constant of the cantilever, 
0.06 N/m.  
 

7.3.1.2. Potential dependant structures. 
Our primary objective is to deposit metal on the templates formed by surface micelles.  

Therefore it is important to study the stability of these structures at different electrode 

potential.  In agreement with Lipkowski et al. [31], AFM images suggest that the highly 

ordered stripes are only present within a certain potential range (Figure 7-5).  The ordered 

structure disappeared at potentials below -0.3 V.  As discussed in Chapter 4, if the surface 

charge density is sufficiently negative, the electrolyte displaces the alkyl chains [39].  

The sulfate ions also experience greater repulsion by the surface charge.  Therefore the 

SDS molecules are desorbed.  Above 0.35 V, the structures become more disordered.  

The stripes are no longer continuous.  The surface aggregates become more spherical 

instead of elongated.   
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Figure 7-5 Surface charge dependant structure of SDS on Au(111). 10 mM SDS.  Image 
size: 100×100 nm2.  
 

As mentioned in the introduction, the structure of SDS at positively charged surface is 

unclear.  Capacitance measurement suggest that the onset of the abrupt capacitance drop 

occurs when the positive surface charge density exceeds the charge density of a 

monolayer of closely packed sulfate groups [30, 31].  Therefore, it is assumed that SDS 

molecules form a closely packed monolayer with head groups anchored to the gold 

surface and hydrocarbon tails pointing towards the aqueous environment (Figure 7-6A).  

However, AFM force curves suggest that the surface remains negatively charged after the 

formation of the condensed film [31].  If there were only a monolayer present, the 

positive surface charge should be sufficient to cancel the negative charge of the head 

groups and consequently the force curve should display attraction instead of repulsion.  

Evidently, there is more than a single monolayer on the surface.   

 

A single monolayer exposes the hydrophobic tails to the electrolyte.  This is an 

unfavorable situation.  Wang et al. hypothesized that SDS forms a lipid-like bilayer at the 

positively charged Au surface (Figure 7-6B)[32].  The second layer minimizes exposure 
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of the hydrophobic monolayer surface to the aqueous environment.  In the end, only the 

hydrophilic head groups are exposed to the aqueous environment.   

 

Supporting the bilayer model is the STM observation of closely packed hexagonal 

structure with spacing of 0.5nm [32].  It was assumed that the top of the bilayer was 

imaged.  However, it is unlikely that the STM can image the headgroups of the bilayer.  

To resolve the headgroups on top of the bilayer by STM, electrons must tunnel through 

24 insulating hydrocarbon groups (CH2 and CH3 groups), which would be extremely 

difficult.  In the literature, the longest alkanethiol successfully imaged by STM has 18 

CH groups at ultra low tunneling current (pA or less) [40].  Therefore, we believe in that 

case, it is unlikely that STM can image the insulating bilayer adsorbed on top of the 

monolayer.  The tip may penetrate the bilayer to image the alkyl chains in the monolayer 

of SDS [32].  From a theoretical point of view, bilayer formation is unlikely because of 

the repulsion between the charged sulfate groups on top of the bilayer.  The excessive 

positive charge density (higher than the charge density of SDS monolayer) is unlikely to 

promote the formation of lipid-like bilayer structures because the positive surface charge 

would attract the sulfate groups in the bilayer toward the monolayer instead of pointing 

away from the monolayer.  

 

We suggest that the SDS molecules form micelle like structures on the hydrophobic 

monolayer surface (Figure 7-6C).   

1. This model can explain the micelle like structure at positively charged surface (Figure 

7-5).  
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2. In this model, only the hydrophilic head groups are exposed to electrolyte.  

3. This model takes into consideration the repulsion between the sulfate groups on top of 

the monolayer.    
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Figure 7-6 Hypothetical structures of adsorbed SDS at positively charged Au(111). A: 
SDS forms a compact monolayer with sulfate groups attached to the positively charged 
surface.  B. A bilayer structure. C. Micelle like structure on top of a monolayer 
 

7.3.2. Electrodeposition on molecular-scale templates. 

7.3.2.1. Growth of electrodeposited islands. 
After 1µM AgClO4 was added to the 10 mM SDS solution, in addition to stripes due to 

the surface micelles, islands appeared (Figure 7-7).  These islands are clearly anisotropic, 

i.e., all the islands are elongated along the direction of hemicylinders.  The preferential 

locations of the elongated islands are less clear.  Some of the islands appear at the Y 

joints, defect sites in the micelles.  Other islands appear to center at the spacing between 

the hemicylinders.  The apparent width of these islands is about 5-10 nm.  As we 

discussed before, the contrast mechanism limits the spatial resolution.  Therefore, it is 

difficult to conclude more precisely the physical width of the islands from the AFM 

results.  We will return to this issue in the discussion of STM results.  The potential at 
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which islands start to appear is about 0.1 V higher than the bulk deposition potential of 

silver.  Therefore, the deposition is an underpotential deposition process.  This suggests 

that certain sites in the surface micelles have strong interaction with electrodeposited 

silver.   

20nm
 

Figure 7-7 Anisotropic electrodeposition on Au(111) under 1 µM AgClO4  and 10 mM 
SDS.  Electrode potential 0.3 V.  Elongated islands were observed to grow along the 
surface micelles. 
 

0.4V
0.3V

0.3V 0.3VA B C

 

Figure 7-8 Time dependant electrodeposition on Au(111) under 1 µM AgClO4 and 10 
mM SDS.  Image size 225×225 nm2.  The electrode potential was stepped from 0.3 V to 
0.2 V at the lower half of the image A. (Scan direction: downward.)   B and C are 
sequential frames of A. Image acquisition speed 80 sec/frame. Solid, dashed and dotted 
arrows identify the same spots in different images.  
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Figure 7-8A, a time dependant image suggests that after stepping the potential from 0.4 V 

to 0.3 V, when the tip is scanning in the middle of the image, islands appear immediately.  

The sequential images of Figure 7-8 suggest that the electrodeposition of Ag+ in the 

presence of SDS surface micelles also follows a nucleation and growth mechanism.  The 

island identified by a dashed arrow in Figure 7-8B is elongated into a 40nm line in Figure 

7-8C.  Some islands merge as coverage increases as indicated by the solid arrows in 

Figure 7-8 B and C.  However, the growth is also accompanied by reorganization.  The 

right segment of an elbow marked by a dotted arrow in Figure 7-8 disappears in C, 

whereas the left segment merges with a wire with the same orientation.   

 

At a longer time scale (>30 min at 0.3 V), much larger islands are resolved. Some of the 

islands are 100 nm wide, suggesting that the deposited silver islands merged.  However, 

these islands remain elongated and their long axes orient along the direction of 

hemicylinders in the island free area.  Height mode images suggest these islands are more 

than 1 nm high.   

 

We speculate that these islands are not purely silver on Au substrate.  The electrode 

potential is 0.1 V above the bulk deposition potential.  Only underpotential deposition 

can occur.  Therefore, the thickness silver should be at most a monolayer (2-3 Å).  To 

explain the height difference, we suggest that silver and surface micelles form adducts 

which are higher than the neighboring silver free surface micelles.  The microscopic 

structure of the adducts is unclear.  Silver may form wires between the hemicylinders, the 

silver may also cover part of the top of hemicylinders, joining the hemicylinders together 
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(Figure 7-10A).  Alternatively, the silver may form elongated monolayer islands, which 

stabilize the surface micelles on the top (Figure 7-10B).  We don’t think silver deposited 

at the bottom of the surface micelles can cause the islands to be more than 1 nm higher.  

A silver monolayer would simply increase the physical height of the surface micelles by 

2-3 Å.  It should be noted that the AFM tip is mapping the double layer force of surface 

micelles, the apparent height difference in the AFM images does not necessarily agree 

with the physical height if the nature of the force and the force gradient differ in different 

area.  However, in this particular case, the AFM tip should experience similar double 

layer repulsion on the top of surface micelles whether a layer of silver is present under 

the surface micelles or not.  Therefore, silver deposited between Au and the surface 

micelles would simply increase the apparent height by 2-3 Å, which is still insufficient to 

account for the actual height difference observed.  Model A may cause such difference in 

height since additional SDS may be adsorbed on the top of deposited silver.  More 

evidence of the microscopic adducts is shown in the next section.  

 

Figure 7-9 AFM image of anisotropic electrodeposition on Au(111) under 1 µM AgClO4 
10 mM SDS.  Electrode potential 0.3 V.  Image size: 300×300 nm2.   
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Figure 7-10 Proposed models for Ag-surface micelle adduct.  A: silver grows in the 
trench sites and on top of surface micelles. B. Silver forms monolayer islands on the Au 
substrate. Surface micelles grow on the silver monolayer.  
 

7.3.2.2. Stability of Ag islands at negative surface charge density.   
At 0.1 V, AFM images suggest that the large Ag islands are porous (Figure 7-11).  

Theses islands consist of interconnected stripes with a periodicity of 4-5 nm, suggesting 

the presence of hemicylindrical surface aggregates.  However, these stripes appear 

isolated.  Surface micelles could not be resolved in other regions, in sharp contrast to 

surface micelles observed without Ag+ (Figure 7-5B).  Without the stabilization by 

neighboring surface micelles, some other interactions must be present to stabilize the 

isolated micelles.  This provides further evidence that Ag and micelles can form adducts.  

The presence of Ag may stabilize the surface micelles so they are stable even if they are 

isolated.   

 

When the electrode potential was stepped to 0 V, the stripes collapsed and more circular 

features appeared at the same location (Figure 7-12).  This again supports our previous 

assumption that the stripes contain both surface micelles and silver.  Without the support 

of the surface micelles, the silver nanowires collapsed to form circular islands.  The area 

of the islands is less than 50% of the area occupied by the stripes.  If there were a 
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monlayer of silver under the surface micelles, the coverage of the circular silver islands 

would be equal to the coverage of the stripes.  We previously argued against Model B in 

Figure 7-10 from the stand point of height difference.  The coverage is again inconsistent 

with Model B, in which Ag forms only monolayer islands under the surface micelles.   

0.1V 0VA B

 

Figure 7-11 AFM images of electrodeposited islands on Au(111) under 1 µM AgClO4 10 
mM SDS.  Image size: 200 × 200 nm2.  A: isolated stripes, as indicated by arrows, are 
observed at 0.1 V.  B: the stripes collapse to form more circular islands at 0 V. 
 

 203



A B

A

B C

 

Figure 7-12 Proposed mechanism for the formation of circular islands at 0 V.  Without 
the support of surface micelles, the silver nanostructures collapse into islands.  
 

Two other points remain unclear.  The first one is the inability to resolve surface micelles 

in majority of the area at 0.1 VSCE (Figure 7-11A).  Only isolated surface micelle-Ag 

adducts were observed.  In a pure SDS solution, the onset of SDS desorption is about -

0.25 V SCE (10 µC/cm2).  SDS molecules should still form full coverage surface micelles 

around 0 VSCE.  The second question is why the surface micelle-Ag adducts collapse at 0 

V.  We can not completely exclude the possibility that surface micelles are still present 

but they can not be imaged due to change of force gradient in the presence of silver.  

However, a more reasonable explanation is partial charge transfer from the Ag 
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nanostructures to the Au substrate.  Atomic clusters of silver are known to be  good 

electron donors [41].  Once deposited on Au, which has higher work function, the silver 

may undergo partial electron transfer.  Hence, the Au substrate becomes more negatively 

charged and less favorable to the presence of surface micelles.  By contrast, the Ag 

structures that undergo charge transfer are less negatively charged or even positively 

charged, which may interact more strongly with the sulfate headgroups in SDS.  This 

strong interaction between charged silver and SDS may explain the observation of 

isolated Ag-surface micelle adducts.  At a more negative potential, such a mutual 

stabilization effect is weakened.  Consequently, the micelles are desorbed and silver wire-

like structures collapse.  

 

7.3.2.3. STM results of Ag deposition on SDS. 
Although AFM is very sensitive to the local structure of surface micelles, the resolution 

of AFM is limited.  In addition, it is difficult to distinguish between silver nanostructures 

and surface micelles with AFM.  The difference in contrast mechanisms makes STM a 

good compliment to AFM.  Ag nanowires deposited on the surface, in principle, can be 

unambiguously identified by STM because they should be significantly more conductive 

than the surface micelles that mainly consist of insulating alkyl chains.   

 

The STM image of SDS on Au(111) shows alternate bright and dark stripes with a 

periodicity of 4.5 nm (Figure 7-13), in good agreement with AFM measurements. The 

height difference between the bright and dark areas is only 0.2 Å.  The resolution is, 

however, insufficient to clearly resolve individual alkyl chains.  According to Lipkowski 
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et al., the lower regions correspond to the spacing between headgroups and the higher 

regions correspond to alkyl chains [31].  In addition to the periodic structure, some small 

islands appear.  These islands are 1 nm wide and 1.5 Å high, suggesting the presence of 

small metal islands.  The immediate question is the origin of the metal.  We found that 

the Ag reference electrode used releases trace amount of silver (see Appendix D).  

Therefore, we assume that the trace amount of Ag was deposited onto the surface to form 

these islands.  Upon close inspection, these islands appear exclusively in the lower 

regions.  Some of the islands appear slightly elongated along the direction of the stripes.  

The width of these islands is about 1 nm, close to the 0.8 nm distance between the sulfate 

groups in adjacent unit cells.  This provides evidence that, at least in the initial stage, the 

silver ions prefer to deposit onto the trenches.  

  

Imaging SDS in the presence of higher metal ion concentration,  1µM of Ag+ , was 

unsuccessful with W tips.  The images appear very noisy and the height kept increasing, 

suggesting electrodeposition on W tips. Electrode deposition can also occur on the tip if 

the tip potential is held about the electrodeposition potential [42]. To minimize leakage 

current, it is necessary to keep the tip potential between -0.1 to 0.2 VSCE.  However, in 

this potential range, silver becomes deposited onto the tip.  Pt-Ir tips, which can operate 

at a potential where silver deposition does not occur, should in principle resolve this 

problem.          
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Figure 7-13 STM image of surface micelles on Au(111) under 10 mM SDS.  Image size: 
125 ×125 nm2. Electrode potential 0.2 V.  Sample bias: 0.3 V.  Tunneling current: 0.5nA.  
Some bright islands are resolved.  The black arrows indicate elongated islands.  Three 
cylinders overlayed with the surface micelles suggest that the islands grow in the trench 
sites.   
 

 

7.3.2.4. STM study of Ag deposition on hexadecane self-assembled templates. 
 

In addition to SDS templates, we also studied the deposition of silver on hexadecane 

adlayers. 

Hexadecane molecules self-assemble into ordered rows 2.2nm wide on Au(111).  The 

long axes of molecules are titled by 60 degree with respect to the direction of the 

molecular rows (Figure 7-14) (See Chapter 4 for more details on structures of adsorbed 

hexadecane.).   
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Figure 7-14  STM image of hexadecane adlayer on Au(111) in 0.1 M HClO4 solution at 
0.25 VSCE.  Image size: 34.5 × 34.5 nm2. 
 

Again silver is introduced by the slight dissolution of the silver wire reference electrode 

instead of intentionally added silver ions.  Figure 7-15A suggests the formation of 

0.7±0.2 nm wide 1.5 Å high parallel wires.  In addition to wires, some islands about 2 Å 

high are present, suggesting that these islands are monolayer metal islands.  Similar to 

STM images in Appendix D, atomic lattice consistent with silver can be observed on the 

islands and such islands structures are only observed with a bare silver quasi reference 

electrode.  Therefore we attribute the nanowires and islands to reduction of silver ions 

that are released from the silver reference electrode.  The precise concentration of Ag+ is 

unknown.  We found that due to electrodeposition, the tungsten tips we use are unstable 

in the presence of 1 µM Ag+.  By contrast, the STM images acquired in this experiments 

are stable.  Therefore we suggest that the concentration of silver should be lower than 1 

µM. 
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The distance between the neighboring wires is 4.8 nm, which corresponds to the length of 

two hexadecane molecules 4.4nm.  However, some of the wires are only 2.4 nm apart, 

which is similar to the length of one hexadecane molecule 2.2nm.  A higher resolution 

image, Figure 7-15A resolves both the nanowires and the features of individual 

hexadecane molecules, which are 2nm long 0.5nm wide rods.  This provides direct 

evidence that metal atoms are preferentially deposited in the surface sites between the 

termini of hexadecane molecules Figure 7-16.   

 

Interestingly, the long axes molecules in the molecular rows are now perpendicular to the 

direction of molecular rows.  By contrast, without the electrodeposited silver, the 

molecules are always tilted by 60° from the direction of the molecular rows.  Therefore, 

the interaction is mutual.  The molecular templates induces site specific deposition of 

silver.  On the other hand the electrodeposited silver induces reorganization of molecular 

scale templates.    

 

It should be noted that most of the wires are not yet uniform enough.  Most of them are 

separated into 10 -20 nm long segments due to the presence of defects.  More 

optimizations such as varying the concentration of metal ions and the electrode potential, 

are necessary to improve the structural perfection of these nanowires. 
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Figure 7-15 Silver deposited onto a surface covered with a hexadecane adlayer at 0.1V 
under 0.l M H2SO4.  1.5 Å parallel lines connect 2 Å high islands.  A: image size 150× 
150nm2. A majority of these lines are 4.8±0.2 nm apart.  B: image size: 30× 30 nm2.  
 

Hexadecane molecules
Metal nanowires

 
Figure 7-16  A model for preferential electrodeposition on a self-assembled hexadecane 
template.  Silver nanowires are selectively deposited in the space between molecular 
rows.   
  

7.4. Discussion and conclusions. 

7.4.1. Discussion. 

The major findings of this study are  
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• The electrode potential affects the stability of the molecular scale templates 

as well as the electrodeposited nanostructures. 

• The trench sites in the surface micelles and the space between the termini of 

hexadecane molecules can be the preferred sites for electrodeposition.  The 

observed preferential electrodeposition on two very different systems 

suggest that this may be a general effect on 2D self-assembled molecular 

structures.  

• The resulting metal nanowires may have a thickness less than 1nm and 

controlled spacing.  However, the wires still have numerous defects. Further 

experiments are necessary to improve the uniformity of the nanowires.   

 

Surface micelles and hexadecane monolayers are physisorbed templates.  One would 

question whether such physisorbed templates can have any effect on the nanometer scale 

structures of metal deposition at all as previous studies only showed that surface micelles 

may suppress the electrodepostion [33-35].   

 

Our results suggest that at appropriate conditions, surface micelles can have a dramatic 

effect the nanoscale structure of electrodeposited silver, in contrast to previous studies 

[33, 35].  Our STM results suggest that at Ag+ concentration <<µM, silver is selectively 

deposited in the trenches between the hemicylindrical surface micelles.  The trenches are 

the preferred sites because  
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1. Au substrate is exposed in these sites.  The silver atoms deposited in the sites interact 

with the Au substrate and the sulfate groups.   

2. Electron transfer should more facile at the trench sites than on top of the insulating 

alkyl chains.   

 

However, at Ag+ concentration of 1 µM, AFM results suggest that the silver atoms are 

not confined to the trenches.  The deposited silver appears to cover part of the top of the 

surface micelles as well.  Clearly the concentration can affect the electrodepostion 

dramatically.   

 

We first consider how the concentration of metal ions affects the deposition rate.  At such 

low concentrations, the electrodeposition of Ag is often diffusion limited.  Consider the 

reduction process, Ag++e→Ag.  Before the electrochemical reduction, the concentration 

of silver ions in solution is uniform.  When the potential is stepped to a value where 

reduction should occur, the silver ions are reduced to metallic silver on the electrode 

surface.  The rate of reduction depends on the electron transfer process at the electrode 

surface and the diffusion of silver ions from the bulk solution [8].  At a very low 

concentration, the reduction process rapidly depletes silver ions near the surface. Hence, 

the reduction is limited by how rapidly the silver ions diffuse from the bulk to the 

surface.   

 

According to the Cottrell equation, the current of the diffusion limited electrode reaction, 

I, as a function of time, t, is described by [8], 
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where n is the number of electrons involved in the reduction (1 for Ag+) , F is the Faraday 

constant, C0 is the bulk concentration of the ion, and D0 (10-5 cm2/s for Ag+ [8])  is the 

diffusion constant of Ag+.   

Therefore, the integrated charge density is 
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Assuming 220 µC/cm2 is required to reduce 1 ML Ag [7], the surface coverage of 

electrodeposited silver under diffusion limited condition can be plotted as a function of 

time(Figure 7-17). 
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Figure 7-17 Time dependant surface coverage of diffusion limited electrodeposition of 
Ag at different concentration of Ag+.    
  

This approach provides an upper limit of deposited silver since the Cottrell equation 

assumes an infinite reservoir of electrolyte.  Our electrochemical cell has solution of 
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finite thickness (<1 cm), therefore the actual amount is less.  Figure 7-17 suggests that the 

surface coverage may rapidly exceed 1 ML at 1 mM, a typical concentration used for 

electrodeposition study.  Assuming the trench between the hemicylinders, where Ag can 

be deposited preferentially, to be 0.8 nm wide, and the periodicity of the surface micelles 

to be 4.4 nm, the coverage of the trench sites is 0.18 ML.  If the coverage of deposited 

silver is higher than 0.18 ML, all the trench sites are saturated and Ag must be deposited 

else where.  In addition, even if the coverage is below saturation, at a high deposition 

rate, the deposited Ag will not be able to discriminate different sites.     

 

Our results also suggest that the electrodeposition potential dramatically affects the 

structure of the surface micelles.  A prerequisite to observe the templating effect is that 

the surface micelles must be stable at the electrodeposition potential.  If the potential is 

too positive, SDS only forms a condensed layer instead of hemicylindrical surface 

micelles.  If the potential is too negative, the surface micelles collapse and the silver 

nanowires also collapse into circular islands.  

 

7.4.2. Future work. 

Our study showed interesting behaviors of electrodeposited metal in the presence of 

surface micelle templates.  Further high resolution STM studies should provide more 

details of how metal structures grow in the templates and more insights into the 

interactions between the organic molecules and metal nanostructures.  To grow uniform 

and evenly spaced atomic wires in the molecular templates, the optimum conditions such 

as sub µM concentration of metal ion and electrode potential need to be explored.  In 
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addition, many other parameters can be explored, for example, the headgroups, which 

affect the affinity of metal in the trench sites, can be systematically varied.  Since our 

results suggest that anisotropic electrodeposition exist on two quite different molecular 

self-assembled systems, this suggests that the templating effect of 2D self-assembled 

structures may be general and One can envision that other 2D self-assembled structures 

with more sophisticated hierarchical structures [11] may serve as templates to grow more 

complexed metal nanostructures.  In addition, silver nanowires may reduce other noble 

metal ions.  Thus nanostructures of other noble metals can be formed.  
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Appendix A: Frictional cross-talk in atomic force microscopy.   

 

Two common operational modes of AFM are contact mode and tapping mode.  When the 

AFM probe scans the surface in contact mode, the feedback loop attemps to maintain 

constant deflection of the cantilever.  In tapping mode, the tip gently taps the surface at a 

set frequency.   

 

The forces exerted on the cantilever in contact mode result in two types of deflection, 

vertical deflection caused by the attractive or repulsive force normal to the surface and 

twist induced by friction which is parallel to the scanning direction [1].   

 

The piezoelectric attempts to maintain the same deflection of the cantilever.  Thus the 

same sample-probe distance is maintained if there is no interference of the friction.  Thus 

the position of piezoelectric reflects the true information of topography.  If the friction 

properties of different areas are not uniform and the tip is tilted, the recorded topography 

during the left scan and right scan may differ dramatically [1].  An example that 

protrusion is measured in left scan and depression is measured in the left at the same area 

is shown in Figure A-1.  In Figure A-2, the friction on the substrate and island to be zero.  

In this case, the topographies collected in both scan directions agree and reflect the true 

topography correctly.  In Figure A-3 and A-4, the island has high friction and the 

substrate still has zero friction.  Probe tilt can result from the friction when the probe is 

scanning the island.  In Figure A-2, the probe tilt from friction adds to the original tilt.  

The piezoelectric must lower the probe to maintain the same probe-sample distance on 
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the island.  If the effect is large enough, the island can appear as depression in contact 

mode AFM image as suggested by Figure A-1.  In Figure A-3, the probe tilt cancels the 

original tilt.  The piezoelectric has to lift the probe to maintain the same probe-sample 

distance.  Therefore the measured island height is larger than the actual height.   

 

Figure A–1 AFM images of ODS monolayer at identical region acquired during a: Left to 
right scan and b: Right to left scan.  Height scale 5nm.  

h
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Figure A–2  Left to right and right to left scans when the friction is zero across the 
surface.   
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Figure A–3 Left to right scan when the island has higher friction.   
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Figure A–4 Right to left scan when island has higher friction.   
 

  Our experiment is especially sensitive to the frictional cross-talk because the frictional 

contrast between the monolayer and bare substrate is large and the monolayer height is 

very low (less than 2nm).  To reduce the cross-talk effect, we choose tapping mode 

instead of contact mode in imaging highly heterogeneous surfaces.  In tapping mode, the 

influence from the later friction is minimal.  Indeed, we found that the islands in UV 
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irradiated ODS SAMs now  appear nearly identical in both left and right scans in tapping 

mode Figure A-5.   

 

Figure A–5 Tapping mode AFM images.  Left to right and right to left scans now display 
nearly identical topography. 
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Appendix B: Measuring ozone concentration. 
 

To understand the chemistry inside a UV chamber, the steady concentration of ozone 

must be determined.  A common method is iodometry [2].  Ozone oxidizes iodide into 

iodine in stoichiometric ratio.  The amount of iodine can be determined by titration with 

S2O3
2- or by light absorption at 352 nm [2].   

O3 + 2I- +H2O = I2 + O2 + 2OH-

S2O3
2- + I2 = I- + S4O6

2-

 

However, the sampling of O3 is challenging under our condition.  Liters of gas would be 

required bubbling through iodide solution to detect O3 whereas the volume of our UV 

chamber is only about 800ml.  We opted for a photometric method because the sensitivity 

is higher and the required amount of gas sample is dramatically reduced [2].  In addition, 

photometry does not require calibration as long as the absorption cross section of ozone is 

known [2].  The absorbance (A) at the maximum adsorption wavelength 255 nm is 

measured and Beer-Lambert’s law is used to calculate the concentration ozone c.  σ is the 

absorption cross section of ozone at the corresponding wavelength, L is the path length of 

the optical cell.   

 2.303A=σcL                                                                                                 Equation  1 

A 1 cm path length quartz cuvette was placed in the UV chamber and UV light was 

turned on for 30min to allow a steady-state concentration of ozone in the chamber.  

Before the cuvette was transferred to a UV-vis spectrometer, a Teflon stopper was placed 

to seal the opening of the cuvette.  If the UV chamber has to be opened during capture of 
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ozone, there is a concern that the ozone concentration will change.  As shown in Figure 

A-6, the stopper is attached to a stainless steel needle.  Therefore the stopper can be 

manipulated without opening the UV chamber.  The absorption spectra of the captured 

ozone as a function of time after transfer from the UV chamber are shown in Figure A-7.  

The change in absorbance is negligible for the first 15 min, suggesting that the reaction 

and leakage of ozone is minimal on the time scale of transferring the sample to the 

spectrometer and taking an initial spectrum (~2 min).  Therefore the calculated 

concentration in the cuvette is an accurate representation of the ozone level in the UV 

chamber.  The absorbance at 255 nm is determined to be 0.012±0.001.  Using the path 

length 1cm and cross section value of 1150×10-20 cm2 [3], the concentration of ozone is 

calculated to be 4×10-6 M, corresponding to a volume fraction of 100 ppm± 10 ppm in 

the UV chamber used in these studies. 

 

Figure A–6 Sampling ozone in the UV chamber. 
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Figure A–7 Absorption spectra of ozone trapped in a quartz cell as a function of time 
after sampling. 
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Appendix C: EC-STM tip preparation. 

 

Etching tungsten tips. 

Tungsten tips are made by etching in 3 M potassium hydroxide.  The tip etching setup is 

shown in Figure A-8.  A 0.25 mm tungsten wire is threaded through a platinum-iridium 

wire loop 8mm in diameter.  The loop is filled with a thin lamella of KOH solution (3 M) 

and a small AC Voltage (1-5 V) is applied between the loop and the wire.  The potassium 

hydroxide etches the tungsten wire and a small “neck” forms in the wire. This etching 

continues until the neck is so thin that the weight of the lower-neck wire causes the lower 

portion of the tip to fall, when the voltage is turned off. Both the lower and upper 

portions are collected and rinsed with water and methanol.   

AC Hypodermic needle

Tungsten wire

0.25mm Tungsten wire

 

Figure A–8 Tungsten Tip etching: a simple illustration of wire etching.  The blue fluid 
represents a lamella of 3 M KOH.  The small cone below is used to receive the fallen tip.  
Closer examination shows neck is formed as the wire is etched. 
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Coating tips with wax.  

To image under electrolyte, the STM tip must be coated with an insulating material save 

the atomically sharp end, which is must be uncoated in order to read tunneling current.  

Two types of coatings are applied.  Typically tips are coated with paraffin wax (Aldrich, 

melting point ~60°C).  The procedure for wax coating is as follows.  The wax is melted 

in a beaker sitting in a water bath at about 75°C.  The tip is briefly dipped into the hot 

wax and withdrawn.  To ensure uniform coating, the dipping may be repeated once or 

twice more.  The temperature of the wax is essential.  If the temperature is too high, there 

is little adhesion of the wax to the tip.  If the temperature is too low, the tip is overcoated.  

We found that if the temperature is well controlled, the coating procedure can be very 

reproducible. Over 80% of the tips have leakage current less than 0.01nA in acidic 

mediums such as HClO4 at optimum tip potentials. 

 

Coating tips with polymer.   

Paraffin wax coating is simple and can be applied with very high success rate.  Paraffin 

wax introduces minimal amount of contamination because its composition, long chain 

normal alkanes, has virtually no solubility in most electrolytes.  However, we found that 

the wax coating is unstable in sodium dodecyl sulfate (SDS) solutions with concentration 

above critical micelle concentration (cmc.).  Once the tip is immersed into SDS solution, 

the leakage current steadily increases (e.g. from 0.01nA to 1nA within a few minutes), 

suggesting that the wax coating is rapidly dissolved by SDS.  
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In such cases a polyethylene coating was applied to the tip.  This requires the extra 

equipment shown in Figure A-9.  A small copper plate is attached to the end of a 

soldering iron.  The temperature is monitored by a thermal couple and controlled by a 

thermostat.  We use a temperature of roughly 168 °C.  After the temperature has 

stabilized, a polyethylene tablet (Aldrich, low density) is melted in the slit in the hot 

plate.  The tungsten tip is inserted into a tip holder whose position is controlled by a 

micromanipulator.  The tip is pushed through the melted polyethylene in the middle of 

the plate from below (Figure A-10).  It is then taken away from the hotplate, through the 

U-shaped slit.  When the tips it cools a hard polyethylene coating forms.  The speed one 

moves the tip through the polyethylene and the temperature of the hotplate both affect 

how well the tip is coated.  Too cool or fast may leave the tip undercoated, whereas too 

hot or slow may leave it overcoated.  Typically, for both wax and polyethylene coatings a 

well-coated tip will read a current of 0.01 nA or less under an optimal electrode potential. 

 

 

Figure A–9 Schematic of copper hot plate for polymer coating.  
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Figure A–10 Schematic of coating STM tips with melted polyethylene. 
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Appendix D: Reference electrode for EC-STM. 
 

Just as UHV surface science, the cleanliness of the electrode surfaces is of paramount 

importance for successful STM imaging.  In addition to the purity of chemicals and 

proper cleaning of the cell components, we found that precautions need to be taken on the 

reference electrode because it may be an important source of contamination.  

 

The reference electrodes used fro EC-STM should fulfill two basic requirements. 

1. The potential of the reference electrode must be stable. 

2. The reference electrode should not introduce impurities to the electrochemical cell. 

 

Ag-AgCl (KCl) reference electrode [4].  

The Ag-AgCl (KCl) reference electrode is an excellent reference electrode commonly 

used in many electrochemical measurements, but Cl- is a contaminant that adsorbs on 

many metal substrates.  The mobility of Au substrate changes significantly in the 

presence of trace amount of Cl-.  The frit on the Ag-AgCl(KCl) reference serves as a 

barrier to slow down the diffusion of the ions in the AgCl/KCl solution.  But it is 

insufficient in EC-STM.  Alternatively, a two compartment cell can be used.  The 

Ag/AgCl electrode is not in direct contact with the electrolyte.  Instead, it is separated 

from the cell by a separate compartment containing the supporting electrolyte as the 

major compartment does.  However, this requires major modification of the EC cells 

commonly used for EC-STM measurements.   
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Ag wire as a quasi reference electrode. 

A common quasi reference electrode used in EC-STM is the Ag wire quasi reference 

electrode.  The potential of the Ag wire quasi reference electrode is stable in many 

electrolytes, but we often found Ag deposition on the working electrode when we used 

the Ag wire as a quasi reference electrode.  Fiugre A-11 B shows Ag islands formed on 

Au substrate when a silver wire is used as the reference electrode.  This suggests that a 

small amount of Ag+ is dissolved in the electrolyte.  The Ag is deposited on working 

electrode at a sufficiently low electrode potential.   

BA

 

Figure A–11 STM images of Au(111) under 0.1 M HClO4, 0.1 VSCE with different 
reference electrodes. A: Acquired with a Pt reference electrode.  Herringbone Au 
reconstruction is observed, suggesting that the surface is free of metal impurities.  Image 
size: 150 nm × 150 nm.  B: Acquired with a silver wire reference electrode.  Image size: 
150 nm× 150 nm.  Many islands appear on the surface.  Suggesting that metal impurity 
from the solution is deposited.  Inset:  An atomic resolution image(6 nm×6 nm).  The 
lattice constant, 3 Å and corrugation 0.4 Å is consistent with Ag(111) surface [5]. 
 
The reproducibility of potential for Pt wire quasi reference electrode is reasonably good, 

20mV.  Due to the ease of handling (it can be cleaned by piranha solution) and excellent 

chemical stability, it becomes our choice in most STM experiments under acidic 

electrolytes.  However, we found that the potential is unstable after potential excursion to 

hydrogen evolution region.  At a sufficiently low electrode potential, H+ is reduced into 
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H2.  We suppose that H2 produced from the working electrode will diffuse and adsorb 

onto Pt electrode, forming a redox pair H+/H2, and hence dramatically alter the potential.  

Pt wire quasi reference electrode is not stable under neutral or basic electrolyte such as 

sodium dodecylsulfate solution.   

 

Sealed Ag quasi reference electrode. 

We have designed a new Ag quasi reference electrode.  This design provides a stable 

reference potential.  We found the reproducibility of this electrode can be better than 5 

mV and the contamination introduced by this electrode is minimal.   

Pt wire

Glass tube

Pt wire

Short Glass tube

Ag wirePt wire Glass tube

Parafilm sealElectrolyte

Glass bead

A B

C D

E F

 

Figure A–12 Schematic of the preparation of a sealed Ag quasi reference electrode.  A 
and B: A short glass tube is melt to form a glass bead on a short Pt wire.  C,D: The glass 
bead is welded to one end of a glass tube. E: The glass tube is filled with supporting 
electrolyte.  And a silver wire is inserted.  F: The other end of the glass tube is sealed 
with parafilm.   
 
The preparation procedure of the sealed electrode is illustrated in Figure A-12.  First, we 

seal a glass tube place Ag wire and the supporting electrolyte such as 0.1 M HClO4 

solution in a small glass tube.  One end of the tube is sealed by a Pt wire in melted glass.  
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Due to the difference between the thermal expansion coefficients of Pt and glass, a small 

gap between glass and Pt wire is produced, which ensures that the reference is 

conductive, while the Ag+ diffusion from the tube to electrochemical cell can be greatly 

diminished.   

 

It should be noted that: 

1. This electrode is a quasi-reference electrode, it should be calibrated with a standard 

reference electrode such as Ag/AgCl (KCl solution) reference electrode or SCE reference 

electrode in every experiment.  This can be performed by reading the open circuit 

potential by connecting the reference electrode such as Ag/AgCl to reference electrode 

terminal and the quasi-reference electrode to the working electrode terminal of a 

potentiostat.   

2. In order to avoid the liquid contact potential difference, the same supporting electrolyte 

in the tube as in the STM cell must be used.  
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