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TEFLON AF MEMBRANE TRANSPORT OF ORGANIC SOLUTES 

Jie Zhang, M.S. 

University of Pittsburgh, 2006  

Teflon AF 2400 membranes containing various weight percent FC-70 were cast from FC-

72 solution. The membrane surface is hydrophobic as shown by contact angle measurement.  

Free volume in Teflon membranes was calculated by measuring the membrane density 

using the hydrostatic method. Differential scanning calorimetry (DSC) and thermomechanical 

analysis (TMA) were conducted to study the thermal transitions of Teflon AF membranes. The 

glass transition temperature of Teflon membranes is -63 °C at 5 wt% FC-70 in comparison with 

240 °C at 0 wt% FC-70.  

The permeability of Teflon membranes was investigated by transport experiments. The 

four probe solutes were toluene, α,α,α-trifluorotoluene, nitrobenzene and 

pentafluoronitrobenzene. The permeability coefficients of the probe solutes are found to be very 

sensitive to the FC-70 content and the temperature. The permeability coefficients of all solutes 

change with FC-70 in a similar way. They decrease initially as FC-70 content increases at low 

FC-70 concentration with reversal of this trend at higher FC-70 concentration, and decrease 

again and finally level off. Teflon AF membranes with less than 10 wt% FC-70 could be 

associated with the polymer’s anti-plasticization, an effect indicated by a reduction in the free 

volume, a decrease in the glass transition temperature and a reduction in the partition ratio and 

permeability coefficient. Teflon AF membranes with 10wt% FC-70 or more could be plasticized, 

resulting in lower glass transition temperature, higher free volume and higher permeability 

coefficient.  
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Selectivity of the membranes was investigated for the pair α,α,α-trifluorotoluene/toluene 

and for the pair pentafluoronitrobenzene/nitrobenzene.  It reaches a maximum at 10 wt% FC-70 

for both pairs at 20 oC. 10 wt% FC-70 is likely a turning point of plasticization, which is quite 

interesting since it is also related to the highest selectivity. 

Teflon AF membranes could also be plasticized by the organic liquid with which it is in 

contact. Chloroform seems to plasticize the membranes (they get pliable) and change the 

properties of the membranes to a less ‘fluorous’ environment. The concentration of FC-70 may 

change during transport experiments. We thus need to find a means to plasticize the films while 

keeping them fluorous.  
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1.0  INTRODUCTION 

1.1 MOTIVATION AND OBJECTIVES 

Molecular recognition is one of the most fundamental processes in chemistry, physics 

and biology. The recognition process is largely driven by non-covalent forces such as hydrogen 

bond interactions, electrostatic interactions, van der Waals forces, π-π interactions, and 

conformational energy.1 Those non-covalent forces can apply to both inter- and intra-molecular 

processes.2 Specific examples of molecular recognition include protein-based catalysis in 

biological systems as well as hydrogen bond-mediated construction of receptors. Artificial 

receptor-based molecular recognition can enhance the selectivity of extraction while minimizing 

the consumption of solvents.3 There are a large number of factors (energetic, entropic and 

kinetic, etc) which have to be taken into account for the theoretical description of molecular 

recognition.4 Recently developed models such as the induced fit models, the proofreading 

models and the lock-and-key models have revealed the importance of complementarity in size, 

shape, and functional groups in molecular recognition.5 The lock-and-key models, proposed by 

Emil Fischer over 100 years ago, are still the most up-to-date principles in molecular recognition. 

The complementarity between the receptor and the substrate is very similar to the "lock-and-key" 

function, with the lock being the receptor such as a protein or enzyme and the key being the 

substrate such as a drug, which is recognized by the receptor to give a well defined receptor-

substrate complex.1, 6, 7 Based on molecular recognition mechanisms, numerous types of 
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receptors have been designed and investigated for the binding of complementary substrates of 

chemical or biological significance. 

The membrane separation based on molecular recognition has received much attention in 

various fields because of its high selectivity for target molecules.8-13 A membrane can be viewed 

as a barrier, which separates two phases and restricts the motion of molecules passing through it 

so that some molecules transfer more quickly than others and separation can thus be achieved. A 

large number of mechanisms are available for this restriction; for example, size variability of the 

molecules, affinity for the membrane material and permeation driving forces, typically 

concentration or pressure gradient. The molecular recognition mechanism is widely used to 

facilitate the membrane-based separation. For example, Yanagioka et al developed a molecular 

recognition polymer membrane with high selectivity.14 They use a thermosensitive polymer 

poly(N-isopropylacrylamide) [P(NIPAM)] to control the molecular recognition ability and a 

receptor β-cyclodextrin (CD) to recognize the specific guest molecule. Artificial receptors can 

act as carriers for the selective transport of various types of substrates through artificial or 

biological membranes. Ideal receptors should possess steric and electronic features 

complementary to those of the substrate to be bound, together with a rigidity-flexibility balance 

suitable for the function to be performed. How well things fit together often depends on their 

predisposition, or preorganization. The molecular recognition based on well-defined interaction 

patterns can thus be used to explore information at the molecular level in membrane separation 

processes. 

Teflon AF is a novel, potentially useful material for separation. Teflon AF is a copolymer 

of tetrafluoroethylene (TFE) and 2,2-bistrifluoromethyl-4,5-difluoro-1,3 dioxole (PDD) (Fig. 1).  
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Figure 1. Teflon AF 

It is commercially available in two polymeric grades, namely Teflon AF 1600 (65% mol 

PDD, Tg 160 ºC) and Teflon AF 2400 (87 mol% PDD, Tg 240 ºC). Some physical parameters of 

the two Teflon AF polymers are presented in Table 1. 

Table 1. Properties of Teflon AF15, 16 

 

Teflon AF exhibits high thermal, chemical, mechanical, and electrical stability and shows 

limited solubility in selected perfluorinated solvents, thus it can be cast into dimensionally stable 

membranes. Teflon AF membranes have been studied in gas separation17-21 and pervaporation.15, 
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16, 22 In membrane-based gas separation, Teflon AF membranes show high permeability 

coefficients, which are only secondary to poly(trimethylsilyl propyne) (PTMSP), the most 

permeable polymer ever known.17, 20 The high gas permeability may be related to the large free 

volume since the average radii of free volume elements in Teflon AF are about 5-6Å, which is 

much larger than those in other polymers. Both Teflon AF membranes reveal high liquid 

permeation rates and similar selectivity for some mixtures in pervaporation, while Teflon AF 

2400 with a larger fractional free volume (FFV) displays higher permeation rate15, 16, 20. In the 

case of membrane separation, attractive materials must meet several requirements: a combination 

of good permeability and selectivity, stability in contact with the penetrants to be separated, 

thermal stability as well as time stability. Besides high permeability, Teflon AF membranes 

show stable transport and mechanical characteristics over time16 and moderate selectivity to a 

variety of gases and organic vapors.15, 17, 20 Moreover, our group investigated Teflon AF 

membrane transport of organic liquids and suggested the selectivity for the pair trifluorotoluene 

/toluene and for the pair pentafluorobenzoic acid /benzoic acid.23, 24 However, more work still 

needs to be done to improve the selectivity of these membranes. 

Emphasis is usually placed on improving both the permeability and selectivity of 

membranes although there always exists a trade-off between them. The development of 

supported liquid membranes gives rise to the possibilities of increasing membrane selectivity. 

Supported liquid membrane (SLM) is a microporous membrane filled with a carrier liquid. The 

carrier liquid can extract one or more chemical species from a feed liquid. The membrane with 

the carrier liquid serves as a selective barrier between two phases immiscible with the liquid. 

Supported liquid membranes have been studied extensively in recent years for separation of 

metals, organic acids and organic pollutants etc, from dilute aqueous solutions.25-28 For instance, 
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Ata investigated different types of supported liquid membranes (kerosene/Teflon; n-

heptane/Teflon; n-octane/Teflon; and kerosene/Durapore) and demonstrated the high selectivity 

for the transport of Cu2+ across the membranes from an aqueous solution containing Cd2+, Zn2+, 

Co2+, and Ni2+ ions.29 Our strategy is motivated by the combination of the high selectivity of 

supported liquid membranes and the large permeability of Teflon AF polymers. Would it result 

in better separation medium? What kind of carrier liquids could work in our system? 

Fluorous liquids are selective solvents for fluorous compounds. Among many 

commercially available perfluorinated solvents, FC-70, primarily perfluorotripentyl amine, has 

the highest boiling point of 201~2210C, considerable stability and solvophobicity. FC-70 is thus 

chosen to aid the selective solvation of fluorous compounds into Teflon membranes. What can 

we anticipate from the addition of FC-70 into the membranes? Can FC-70 accelerate the 

transport of some organic solutes while maintaining the high permeability of the membranes? 

The objective of my research is to explore the possibility of optimizing Teflon AF membranes by 

addition of FC-70. Our strategy has implications in separation science as well as in organic 

synthesis since the unique nature of fluorous solvents makes them significant in fluorous 

biphasic synthesis and fluorous biphasic catalysis.30-34  

1.2 BACKGROUND 

We and others are working on developing Teflon AF polymers as dimensionally stable 

separation medium.15-18, 20, 22-24, 35, 36 Emphasis is usually placed on developing this novel 

material for gas or organic vapor separation.15-22 The permeation process in membrane-based 

separation is describe by many models (the solution-diffusion model, the pore-flow model, etc), 
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among which the solution-diffusion model is the most widely accepted model of transport in gas 

permeation, pervaporation, dialysis and reverse osmosis etc. 37 The penetrant transport through a 

glassy polymeric membrane occurs in three steps:37-39 

1. partition of penetrant from the source phase into the glassy polymeric membrane; 

2. diffusion of the penetrant through the membrane; 

3. release of the penetrant at the receiving phase. 

According to this model, the permeability coefficient (P) is the product of the diffusion 

coefficient (D) and the partition ratio of the penetrant from the source phase to the membrane 

(KD). 

DKDP ⋅=                                                                                                                       (1-1) 

Transport process can thus be categorized in terms of diffusivity- or partition-controlled 

mass transfer. The diffusion coefficient depends on the amount of energy necessary for the 

penetrant to execute a diffusive jump through the polymer membrane. Therefore, it is determined 

by the packing and motion of the polymer segments and by the size and shape of the penetrant 

molecules. The partition ratio is a measure of the polymer-penetrant interaction and the amount 

of free volume existing in the polymer membrane. Hence, it is directly relevant to the nature of 

the penetrant as well as the polymer. In general, permeability decreases with the size of the 

penetrant for diffusion- controlled mass transfer. In the case of partition-controlled mass transfer, 

both permeability and partition ratio increase with the size and mass of the penetrant.  

The selectivity of the membrane can be defined as:17 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

DB

DA

B

A

B

A
BA K

K
D
D

P
P

,α
                                                                                             (1-2)          

 6 



The first term, (DA/DB), is often called the diffusivity selectivity. This term reflects the 

size of the penetrants relative to the inter- and intra-molecular chain spacing of the polymer. The 

second term, (KDA/KDB), is called the partition or solubility selectivity. It reflects the relative 

sorption of the penetrants.  

B

Several models (the dual-mode sorption model, the partial immobilization model, etc) 

have been presented in the literature to explain the sorption behavior of glassy polymeric 

membranes.37, 40-46 Transport properties (sorption, diffusion and permeation) might be explained 

in terms of the structures of the membranes. A glassy polymeric membrane structure is 

composed of two parts: microvoids (frozen free volume or extra hole free volume) and the 

polymer matrix as shown in Fig. 2.44, 47 

 

Figure 2. Schematic representation of polymeric glassy state depicting the matrix and 

microvoids 

Gas sorption into the glassy membrane can be regarded as sorption into the matrix phase 

and the microvoid region. According to the dual-mode sorption model, Henry sorption dominates 

sorption into the matrix phase while Langmuir sorption dominates sorption into the microvoid 

region. The total sorption is thus equal to the sum of Henry sorption and Langmuir sorption. 
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Compared to the glassy polymer, the rubbery polymer does not have extra hole free 

volume as shown in Fig. 3. The lattice sites in Fig. 3(a) represent the hole free volumes 

associated with the gas and the equilibrium liquid polymer respectively, while the lattice sites in 

Fig. 3(b) also include the extra hole free volume due to the nonequilibrium state of the glassy 

polymer. Consequently, the gas sorption in rubbery polymers can be well described at low 

sorption levels by Henry’s law instead of the dual mode sorption model. 

 

Figure 3. Schematic representation of the free volume based lattice. (a) represents gas sorption 

in rubbery polymers where two distinct sites can be identified. (b) represents gas sorption in glassy 

polymers where four distinct sites can be identified.48 

The free volume theory was proposed to interpret the transport behavior of membranes 

on a microscopic level. Gas transport through amorphous glassy polymeric membranes is now 

commonly explained in view of  the free volume concept.48-50 Kanig suggested the definition of 

specific free volume as:51 
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∧∧∧

−= 0VVV F                                                                                                                    (1-

3) 

where  is the specific free volume (cm
∧

FV 3/g),  is the experimentally determined 

specific volume (cm

ρ/1=
∧

V

3/g),  is an estimate of the specific volume (cm
∧

0V 3/g) at the absolute zero of 

temperature. The fractional free volume is defined as: 51 

∧

∧

=
V

VFFV F(%)                                                                                                                (1-4) 

The value of  can be estimated as suggested by Bondi.
∧

0V 52, 53  

∧∧

= wVV 3.10                                                                                                                    (1-

5) 

where  is the van der Waals specific volume of the repeat unit of the polymer.  can 

be calculated using the group contribution methods.  

wV
∧

wV
∧

The free volume theory gives precise explanation on plasticization. On the macroscopic 

scale, plasticization shows an increase in softness and ductility, and a decrease in glass transition 

temperature Tg, while on the microscopic level, it reflects a reduction in the interaction between 

adjacent segments of neighbouring polymer chains and consequently an enhancement in 

penetrant permeability and diffusivity. In terms of the free volume theory, the addition of a 

plasticizer of lower molecular weight would increase the free volume of the polymer by 

increasing the chance of its main chain movement, thus lowering its glass transition temperature. 

Consequently, a plasticizer with lower Tg is more efficient in reducing the Tg of the whole 
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system. A branched plasticizer is more effective than a linear one with the same molecular 

weight, since more free volume can result from the branched plasticizer.  

Hong Zhao et al explored the separation of organic liquids by Teflon AF membranes.23, 24 

The concentration independence of the permeability of benzene and pyrazine is consistent with 

the solution-diffusion transport mode. FTIR showed high solvent uptake into Teflon AF 

membrane, the sorption isotherm of which agrees with the dual-mode sorption model. Teflon AF 

membrane was demonstrated to have high Langmuir sorption capacity and Henry constants 

compared to other glassy polymers. The reduction in permeability of Teflon AF membrane 

doped with Krytox FSH was explained in terms of the free volume theory. Krytox FSH occupies 

free volume and restricts solute diffusion significantly even as it plasticizes Teflon AF 

membrane by increasing its chain mobility. With the addition of Krytox FSH, the environment 

within the free volume becomes more viscous in comparison to the solvent-saturated membrane. 

The decrease in permeability with the addition of Krytox FSH is thus associated with 

antiplasticization,54 i.e., a reduction in glass transition temperature and in permeability. 

1.3 PROPOSALS 

Specifically, here are the questions that I try to answer in this research work in order to 

understand this novel material and maximize its selectivity and permeability.  

1. What is the effect of temperature on transport?  

The diffusion and partition of organic liquids in Teflon membranes are obviously 

thermally activated process. In the case of membrane separation of organic liquids, variation in 

permeability and selectivity with increasing temperature is thus related to the diffusivity and 
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partitioning of penetrants. The temperature dependence of penetrant permeation through 

polymers without any thermal transitions is given by the Arrhenius relationship:16 

⎟
⎠
⎞

⎜
⎝
⎛ Δ−

=
RT

GPP Pexp0                                                                                                        (1-6) 

where P0 is a pre-exponential factor, ∆GP is the activation energy of permeation, R is the 

gas constant and T is the gas temperature. The van’t Hoff equation can be used to describe the 

temperature dependence of partition ratio:16 

⎟
⎠
⎞

⎜
⎝
⎛ Δ−

=
RT

HKK K
DD exp0                                                                                                 (1-7) 

where ∆HK is the enthalpy change due to the partition of penetrant from the source phase 

to the polymer. The temperature dependence of diffusion coefficient is defined by the Arrhenius 

equation:16 

⎟
⎠
⎞

⎜
⎝
⎛ −=

RT
EDD Dexp0                                                                                                          (1-8) 

where ED is the activation energy for diffusion.  

The effects of temperature on the gas transport properties have been reported extensively 

in the literature.15, 16, 55-58 Temperature could change the physical state of a polymer, for instance, 

from a glassy to a rubbery state. An increase in temperature is often accompanied by an increase 

in the polymer free volume, which suggests changes in the structure and morphology of the 

polymer matrix itself. Many models show the relationship between various transport parameters 

and the temperature.59, 60 The gas transport parameter D was generally observed to increase with 

temperature, while KD and P are related to the temperature in a complex way. Up till now, most 

of the published work focused on the temperature influence on transport properties of gas or 

organic vapor. The aim of my study is to investigate the trend for organic liquids. Determining 
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how the ratio of permeability coefficients of two organic liquids, i.e. the selectivity, is affected 

by the temperature is important in selective extraction, since one solute is always desired and 

others are not.  

2. What is the effect of film composition on transport?

FC-70 could function as a plasticizer to Teflon membranes. Preliminary results show that 

the transport parameters of my membranes are very sensitive to the concentration of FC-70. It is 

therefore necessary to understand the role FC-70 plays in the membranes. FC-70 could help 

fluorous liquids partition into the membrane, while restricting their diffusion by occupation of 

free volume, which would be taken by the solutes otherwise. Tg measurement is necessary in 

order to understand the physical properties of Teflon  AF membranes doped with FC-70.54, 60-65 

3. What is the effect of free volume on the transport properties of Teflon AF membranes?

The transport of organic liquids through glassy polymers is believed to be facilitated by 

the presence of free volume in the polymer. One would expect that the greater the amount of free 

volume, the more permeable the membrane, and the lower the activation energies. Nevertheless 

this trend is commonly observed for the transport of gas molecules through various glassy 

polymers, we need to confirm it for the transport process of organic liquids through Teflon AF 

membranes. Although diffusion coefficient is a measure of the polymer chain mobility, it is often 

related to the free volume content of the material. The two parameters, however, may not be 

directly correlated. Therefore, probing the free volume of Teflon AF membranes with different 

contents of FC-70 can at least help us understand qualitatively the effect of film composition on 

the permeability and selectivity of membranes.  
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2.0  EXPERIMENTAL SECTION 

2.1 REAGENTS 

Teflon AF 2400 was purchased from Dupont (Wilmington, DE). FC-72 (perfluorotriethyl 

amine) and FC-70 (perfluorotripentyl amine) were obtained from 3M (Minneapolis, MN). Acid 

red 37, Reichardt’s dye and spectrophotometric grade chloroform were purchased from Aldrich 

(Milwaukee, WI). The analytes used in transport experiments, benzene, hexafluorobenzene, 

toluene, α,α,α-trifluorotoluene, nitrobenzene, pentafluoronitrobenzene were used as received. 

Deionized water were produced from a Milli-Q A10 system (Millipore, Bedford, MA). Other 

chemicals not specified were reagent grade from Aldrich.  

2.2 APPARATUS 

UV spectra were acquired with an Agilent 8453E spectrophotometer (Palo Alto, CA). 

Quartz cuvettes with path lengths of 0.1 cm and 1.0 cm were purchased from Starna Cells 

(Atascadero, CA). IR spectra were obtained on an Excalibur FTS 3000 Spectrometer (DigiLab, 

Randolph, MA). Contact angles were obtained using VCA 2000 Video Contact Angle system 

(Advanced Surface Technology, INC). Transport experiments were carried out on an eight-

position multicell transport device. The homemade glass transport cuvette (1 × 1 × 4 cm) had 
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well-polished walls and a hole of 0.5 cm id on the wall in contact with the film. Film thicknesses 

were measured by a Starrett micrometer (Athol, MA) with an accuracy of ±1 μm.  

2.3 MEMBRANE PREPARATION 

Teflon AF membranes were cast from a 1 wt% solution of Teflon AF2400 polymer in 

FC-72. A defined amount of solution was transferred into a flat-bottomed glass Petri dish with 

the i.d. of 7.5 cm. The solution was capped by a piece of weighing paper and a glass cover. The 

solvent FC-72 was allowed to evaporate overnight or longer at room temperature until constant 

weight of the membranes was reached. The membranes were then stripped from the bottom of 

Petri dish and cut into small pieces (about 1 × 1 cm) with scissors for transport experiments. 

Small amount of water was added to help peal off the membranes if necessary. The membranes 

were dried in an oven at 60 °C for 2 hours, and stored in a container at room temperature.  

To prepare membranes doped with FC-70, the dopant was weighed and mixed with the 1 

wt% solution of Teflon AF2400 polymer in FC-72 in the desired proportions. All doped 

membranes were prepared under the same conditions as described above, and were pealed off 

with a scalpel readily without the water-soaking procedure. The membranes were then placed in 

a covered container with air saturated by FC-70. 

Hence, two types of membranes were investigated, pure Teflon AF2400 membranes and 

membranes doped with FC-70 in the desired ratios.  
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2.4 TRANSPORT OF SOLUTES THROUGH MEMBRANES 

Transport of solutes was conducted with a home-made, three-phase transport device (Fig. 

4)1 at three different temperatures, 20oC, 25oC and 30oC.
 
The subject membrane was sandwiched 

between two pieces of viton rubber with holes of a diameter of 0.5 cm (an area of 0.196 cm
2
) to 

define the transport area. The rubber-secured membrane was then clamped between two 

transport cuvettes. The eight-position multicell transport cell holder holds eight cells in a rack, 

which is kept at a constant temperature by water circulated from a thermostatic water bath. Three 

parallel transport experiments can therefore be conducted simultaneously with one transport 

experiment being the control. The stirring module for the multicell transport can control the 

stirring speed, which was kept the same throughout my experiments. 

 

Figure 4. Schematic diagram of the transport apparatus.1 

1, cuvette for the source phase; 2, cuvette for the receiving phase;  

3, membrane; 4, Vition ruber; 5, stirring bars. 

 21 



The source phase contained 3 mL analyte solution at a defined concentration, while the 

receiving phase contained 3 mL pure solvent at the beginning of the experiments. Transport of 

analytes in chloroform through the membranes was carried out in a three-phase transport 

apparatus. The solute concentration in the receiving phase was monitored by a UV 

spectrophotometer.  

The steady-state flux, J, of a solute through a membrane is obtained from Eq 2-1,2 

J = (dCr/dt)(V/A)  (mol·s-1·cm-2)                 (2-1) 

where A is the effective membrane area, V is the volume of the receiving phase, and dCr/dt is the 

accumulation rate of the solute in the receiving phase. The permeability coefficient, P, is 

deduced from the flux. 

P = J⋅l / (Cs - Cr) ≈ J⋅l / Cs0  (cm2·s-1)                 (2-2) 

where l is the thickness of the membrane. Cs and Cr are the concentrations of the solute in the 

source phase and the receiving phase, respectively. Since Cr is negligible at the beginning period 

of transport, Cs–Cr is taken as the initial concentration of the solute in the source phase, Cs0. The 

permeability coefficient depends on the nature of the solute, the properties of membranes and the 

temperature. 

2.5 DETERMINATION OF DIFFUSION COEFFICIENTS AND PARTITION 

RATIOS OF ANALYTES 

The time-lag method3-5 is widely used in experimental determination of diffusion 

coefficients. The time-lag is a transient period at the beginning of membrane transport during 
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which an analyte diffuses across the membrane and reaches a steady state flux. The basis of the 

time-lag method is that the permeation rate of the analyte will become constant with time. This 

means that the concentration of the analyte in the receiving phase will increase linearly with time 

after a certain short period. Diffusion coefficient is calculated by testing the time lag during 

transport experiments. 

lagtlD 6/2=                                                                                                                                (2-3) 

Nonlinear fit of diffusion curves by Mathcad can also be applied to obtain diffusion 

coefficients. The accumulation of a substance in the receiving phase can be described by Eq. 2-4.  
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Qt denotes the total amount of diffusing substance that has passed through the membrane in time 

t; D is the diffusion coefficient of the diffusing substance; l is the membrane thickness; C1 is the 

concentration of the diffusing substance at the membrane interface contacting the source phase. 

Although this equation is an infinite series, n in the third term of Eq.2-4 can be satisfactorily 

taken as 10. For a diffusing substance with concentration Cs in the source phase, C1 can be 

deduced through the following equation. 

C1 = Cs .KD                 (2-5) 

where KD is the partition ratio of the substance from the source phase to the membrane. The 

diffusion equation is then changed to:6 
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Transport experiments were carried out with a transport device. A quartz cuvette was 

employed as the receiving phase to realize continuous UV measurements of the receiving phase. 

By monitoring the concentration of diffusing substance in the receiving phase, we can get the 

values of partition ratio and diffusion coefficient by nonlinear curve fit. Membranes with various 

thicknesses were chosen to study the effect of membrane thickness on permeability. 

 

2.6 FC-70 CONTENT MEASUREMENT BY FTIR 

The IR absorbance of Teflon AF2400 membranes with and without FC-70 was monitored 

by a FTIR spectrometer. To determine the content of FC-70 in Teflon membranes, membranes 

with thickness of 20μm were used for IR measurements. The control experiments were carried 

out under the same conditions with pure Teflon membranes. The content of FC-70 in membranes 

can be calculated according to the IR absorbance.  

 

2.7 DENSITY MEASUREMENTS 

The regular weighing method and the hydrostatic weighing method were used for the 

determination of membrane densities. In the regular weighing method, membrane density is 

obtained by dividing the mass of a membrane by its volume, which is just the product of the 

membrane area and thickness. In the hydrostatic weighing method, membranes were hung on the 

hook of a suspension system, which is kept immersing into a liquid with known density. The 
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mass change of the suspension system with and without the sample was recorded. Silicone oil 

was chosen due to its relatively high boiling point. It also allows for the neglect of the effects of 

absorption and swelling on density measurement. The density was calculated using the following 

equation,7, 8 

A
W

meas d
dWW

md +
−

=
/)( 0

                                                                                             (2-7) 

where dmeas is the density of the sample, m is the mass of dry sample in air, W –W0 is the mass 

difference of the suspension system with and without the sample, dw is the density of silicone oil 

at the temperature of measurement and dA is a correction for the density of air 

(dA=0.00129g/cm3). 

 

2.8 CONTACT ANGLE MEASUREMENTS 

Contact angle measurements were carried out using a VCA 2000 Video Contact Angle 

Camera under ambient conditions. The probed liquid used was deionized water. Water droplet 

was deposited on the membrane surface and the contact angle was measured immediately upon 

needle removal. Three advancing angles and receding angles were measured. Contact angle 

measurements were used to determine the surface properties of membranes since it is highly 

surface sensitive. 
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3.0   RESULTS AND DISCUSSION 

3.1 MEMBRANE PROPERTIES 

3.1.1 MEMBRANE MORPHOLOGY 

 

 

Figure 5. SEM image of the cross section of Teflon AF membrane (left); AFM image of the 

topography of Teflon AF membrane (right)1 

Hong Zhao et al.1 used SEM and AFM to image the topography of Teflon AF membranes 

(Fig. 5). SEM image shows the relative homogeneity through the cross section, while AFM 

image indicates the smoothness of the membrane surface, with RMS roughness of 0.4 nm over a 

10μm scan range. Neither of these two images shows obvious pinholes or cracks in Teflon AF 

membranes. The smooth surface of the membranes cast from Teflon AF allows for the 

preparation of thin stable membranes with minimal defects. 
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Transport experiments were conducted in order to check the integrity of Teflon AF 

membranes. Acid red 37 and Reichardt’s dye were chosen due to their high molecular weight 

and extremely strong UV absorbance. Figure 6 shows their structures. An aqueous solution of 

acid red 37 and a chloroform solution of Reichardt’s dye were used as the source phases, while 

the same amount of pure water and chloroform was employed as the receiving phase 

accordingly. UV absorbance has been measured every half hour for 3 days. In terms of the 

detection sensitivity, the permeability coefficients are estimated to be no more than 1.1× 10-12 

cm2.s-1 for acid red 37 and no more than 1.2×10-12 cm2.s-1 for Reichardt’s dye. The results 

proved that the membranes did not contain defects that allowed significant passage of polar 

molecules of ~500 Da. 

 

Figure 6. Acid red 37 (left) and Reichardt’s dye (right). 

Membranes made from Teflon AF polymer were prepared on slices to conduct contact 

angle measurement. Contact angle values are around 1150 for all the Teflon AF membranes 

measured. The result confirms the hydrophobic character of the membranes. 
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3.1.2 MEMBRANE DENSITIES 

Transport properties of membranes can be interpreted in terms of free volume, as probed 

by density measurement. The densities of Teflon AF membranes were determined by both the 

regular weighing method and the hydrostatic weighing method. The results are shown in Table 2.  

Table 2. Teflon AF membrane densities measured by the regular weighing method and 

the hydrostatic weighing method 

Membrane density (g/cm3) (±SEM, number of measurement, 

number of batches)  

Membranes a The regular weighing 

method b
The hydrostatic weighing 

method b

100% Teflon AF 1.76±0.03 (5,5) 1.81±0.02 (12,3) 

50% Teflon AF/ 

Krytox FSH7500 

 

1.93±0.05 (4,4) 

 

 

1.94±0.02 (11,3) 

 
a Teflon AF membranes were cast by a perfluorinated solvent FC-72.  

b All the measurements were conducted at ambient temperature. 

The density of pure Teflon AF membrane was reported to range from 1.74 g/cm3 to 

1.77±0.01 g/cm32. These values are in good agreement with my own considering that all these 

membranes were processed under different conditions such as casting solution and evaporation 

conditions, and determined by different measurement methods. In the case of more volatile 

casting solvent, the polymer chains have less time to relax into a dense packing and the density 

of membrane formed would be lower. Even as the boiling points of the casting solutions are the 

same, other factors such as evaporation conditions during membrane formation could also have a 

considerable influence on the density of membranes. Moreover, I determined the membrane 
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density by immersing membranes in silicone oil because silicone oil was found to absorb 

negligible amount of solutes by weighing the membranes before and after the immersion.  

Statistical tests are used to evaluate the data given by the two methods. T tests show no 

statistically significant difference at the 0.05 significance level between the density values 

measured by the two methods. F tests show no significant difference at the 0.05 significance 

level between their variances. Both of these methods can therefore be applied to evaluate the 

membrane density.  

Table 3 shows the densities of pure Teflon AF membranes obtained by the two methods. 

It can be found that the densities in general increase with increasing thickness. The more the 

amount of the casting solution, the slower the solvent evaporates, the denser the membrane 

structure and the higher the membrane density. However, the membrane densities obtained by 

the regular weighing method were found not only noticeably lower than those by the hydrostatic 

weighing method, but showed slight deviation from the trend. This is mainly due to the 

difference in preparation procedures. A piece of weighing paper with an inverted Petri dish on it 

was applied to cover Teflon AF polymer solution to form membranes used in the latter method, 

whereas membranes used in the former method were formed by covering the polymer solution 

only by an inverted Petri dish. Although all the membranes were cast from the same FC-72 

solution, weighing paper could significantly slow down the evaporation process, resulting in 

membranes with higher density and homogeneity.  
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Table 3. Densities of 100% Teflon AF membranes with different thickness 

Membrane density (g/cm3) 

(±SEM, number of measurement, number of batches) Membrane thickness (μm) 

The regular weighing method The hydrostatic weighing method

8 1.61±0.10 (2,2)1 1.71±0.01 (9,3) 

12 1.65±0.06 (2,2)1 1.76±0.01 (7,3) 

20 1.76±0.03 (5,4) 1.81±0.02 (12,3) 

38 1.74±0.07 (9,3)1 1.84±0.02 (7,3) 

Since the membrane density was found to be influenced by the thickness, Teflon AF 

membranes of the thickness of 20μm were consequently used to investigate the effect of FC-70 

content on the membrane density. Table 4 shows the dependence of membrane density on the 

content of FC-70.  

Table 4. Densities of Teflon AF membranes with different content of FC-70 

C FC-70 (wt%) 
Membrane density a (g/cm3) (±SEM, 

number of measurement, number of batches) 

0 1.81±0.02 (12,3) 

5 1.90±0.03 (6,2) 

7 1.92±0.02 (7,2) 

10 1.86±0.01 (6,2) 

a The membrane density was measured by the hydrostatic weighing method. 

The interaction between FC-70 and Teflon AF leads to an increase in membrane density 

at low FC-70 content and then a decrease at higher FC-70 content. The slight increase in the 

density can be attributed to the better packing of the polymer chains, accompanied by a decrease 

in free volume, and vice versa.  
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Figure 7. Dependence of membrane density on the concentration of FC-70 

3.1.3 FREE VOLUME 

 The amount and distribution of free volume in amorphous polymers are of great 

importance to their transport properties. Permeability coefficients of gases were demonstrated to 

correlate well with the size of free volume in different polymers.3-7 A similar correlation also 

holds for diffusion coefficients.3, 8-11 Free volume is characterized by several experimental 

methods such as 129Xe-NMR spectroscopy12, inverse gas chromatography (IGC)13, 14, positron 

annihilation lifetime spectroscopy (PALS)8, 14, 15, as well as computer molecular modeling16. The 

results of various experimental techniques and computer modeling are generally in agreement. 

Radii of free volume elements of Teflons AF based on different methods are presented in Table 

5.  
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Table 5. Radii of free volume elements (Å) based on various methods 

129Xe-NMR PALS Polymer 

R sp R c R sp R c

IGC 

Teflon AF 

2400 

8.04a12

7.83b12

5.12a12

5.02b12

5.9517 

6.08 

 

6.3312 

 

6.413 

Teflon AF 

1600 

6.6612 4.4312 4.8917 

5.28 

5.4312 

 

5.812 

5.513 

Rsp  Assuming holes with spherical geometry; Rc  Assuming holes with cylindrical geometry; a  

Powder; b  Film. 

Teflon AF polymers reveal large free volume according to all the experimental methods 

above. Computer modeling not only shows high free volume of Teflons AF, but provides a more 

detailed insight into free volume distribution. Figure 8 shows a qualitative impression of the free 

volume distributions for Teflon AF polymers. 

 

Figure 8. Qualitative “visual” impression of the free volume distributions for typical packing 

models of Teflons AF. The figures present a series of approximately monatomic layers cut perpendicular 

to the respective z-axis with the distance between successive slices of about 3Å.16 
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The Figure above implies that an assumption that free volume elements have the shape of 

spheres and cylinders is rather rough. Free volume elements in highly permeable polymers can 

instead be represented as a system of interpenetrating pores surrounded by densely packed 

matrix. Specifically, in the case of ultrahigh free volume polymers like Teflons AF, they are 

distinguished by the presence of two qualitatively different regions for penetrants. One region 

has high segmental packing density, where the free volume distribution resembles that in 

conventional glassy polymers. The other region is comprised of large voids, which have a 

tendency to form a partially continuous hole with lateral void widths in the range of 5-20Å. We 

would expect that the presence of such free volume clusters allows the transport of small 

penetrants without overcoming considerable energy barriers. In the cases of less permeable 

polymers such as poly[vinyltrimethylsilane]PVTMS, poly[1-phenyl-2-[p-

(triisopropylsilyl)phenyl] acetylene]PPrSiDPA, and poly[1-phenyl-2-[p-(triphenylsilyl)phenyl] 

acetylene]PPhSiDPA, the free volume distribution comprises only microvoids, with no 

indication of a contionuous hole phase.16 

Figures 9~10 present the accessible free volume distributions of Teflons AF for probes 

with different size. The character of free volume size distribution does not change much as the 

size of the probe used in the modeling increases from 1.1 Å to 1.7 Å. Both figures reveal 

bimodal hole size distributions with a distinct gap between the two modes. Teflon AF 2400 is 

shown to have higher peaks at the high radii range in comparison to Teflon AF 1600. The 

position of peaks is in principle related to the permeabilities in these polymers. With this respect 

Teflon AF 2400 is more attractive than Teflon AF 1600 since it should display higher 

permeability. In this work, I investigate the transport properties of Teflon AF 2400.  
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Figure 9. V_connect accessible free volume distributions for the positronium probe molecule 

(R=1.1Å).16 

 

Figure 10. V_connect accessible free volume distributions for the oxygen probe molecule (R=1.73Å).16 

3.2 DATA VALIDATION 

3.2.1 THE CONTENT OF FC-70 IN TEFLON AF MEMBRANE MEASURED BY FTIR 

According to Beer’s law, the absorbance displays a simple dependence on the cell path 

length and the sample concentration. I use the law to estimate the concentration of FC-70 in 

Teflon AF membranes. Beer’s law is often written in the form of this equation, 
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TTTT lCA ⋅⋅= ε                                                                                                               (3-

1) 

where AT  is the absorbance of pure Teflon AF membrane at the given wavenumber, εT is 

the absorptivity of pure Teflon AF, CT is the concentration of pure Teflon AF membrane and lT 

is the thickness of the membrane. CT is taken as the weight percentage of Teflon AF for the 

convenience of calculation, so CT of 100% Teflon AF is taken as 1. AFC can be defined in the 

same way as below, 

FCFCFCFC lCA ⋅⋅= ε                                                                                                        (3-2) 

where AFC is the absorbance of pure FC-70 at the given wavenumber, εFC is the 

absorptivity of pure FC-70, CFC is the concentration of pure FC-70 and lFC is the thickness of FC-

70. CFC is taken as the weight percentage of FC-70, so the CFC value of 100% FC-70 is 1. 

According to the principles of absorption additivity, the absorbance of a mixture is equal 

to the sum of the absorbance of each colored component. 

FCaFCaFCTaTaTia lClCAA ⋅⋅+⋅⋅== ∑ εε                                                                      (3-3) 

where Aa is the absorbance of Teflon AF membrane doped with FC-70 at the given wave-

number.  

umllll FCTFCaTa 20====                                                                                           (3-4) 

FCaTa CC −= 1                                                                                                                 (3-5) 

By combining the equations 3-3~3-5, the weight percentage of FC-70 in the membrane 

can thus be calculated from the following equation:  

 
TFC

Ta
FCa AA

AAC
−
−

=                                                                                                           (3-6) 
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Figure 11 shows the IR spectra of pure FC-70 and pure Teflon AF membrane. Both FC-

70 and Teflon AF absorb strongly over a wide range between 1450 and 500 cm-1 due to C-F 

stretching modes, whereas FC-70 shows distinct peaks at 578 and 891cm-1 as indicated by the 

arrows. This is probably due to the bending modes of tertiary amine in FC-70.  
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Figure 11. IR absorption spectra of 100% Teflon AF membrane and FC-70 

Figure 12 shows the IR spectra of two Teflon AF membranes doped with different 

amount of FC-70, while the spectrum of pure Teflon AF membrane at the same scale is also 

included for comparison. It is obviously seen that both of these two Teflon AF membranes show 

peaks at 578 and 891cm-1 in comparison to the pure Teflon membrane. This result demonstrated 

that the membranes do contain FC-70. 
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Figure 12. IR absorption spectra of Teflon AF membranes with and without FC-70 

The content of FC-70 in the membrane can be calculated with the equation 3-6. The 

absorbance values of the membranes doped with FC-70 were taken at 5 different wave-numbers. 

The results obtained are shown in Table 6.  

Table 6. The absorbance values and the content of FC-70 obtained 

Wavenumber (cm-1) 557.4 597.4 948.5 1025.2 1388.5 

A T 0.1515 0.0740 0.1037 0.1931 0.0567 

A FC 0.8196 0.6931 0.5835 1.1928 0.5019 

A a 0.2252 0.1248 0.1707 0.2914 0.0953 

A b 0.1857 0.1000 0.1376 0.2490 0.0764 
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CFC-70 (wt%) in a 11.0 8.2 14.0 9.8 8.7 

CFC-70 (wt%) in b 5.1 4.2 7.1 5.6 4.4 

CFC-70 (wt%) (±SEM) in a 10.3±1.0 

CFC-70 (wt%) (±SEM) in b 5.3±0.5 

The contents of FC-70 in membrane a and b are 10.3±1.0 and 5.3±0.5wt% respectively, 

which are in good agreement with the values 10±1 and 5±1wt% from a gravimetric method.  The 

method is based on the assumption that the mass of Teflon AF would not change during the 

membrane preparation process. The mass of FC-70 is obtained by subtracting the initial mass of 

Teflon AF from the final mass of the membrane. The good agreement between FTIR and the 

gravimetric method implies that either of the methods can be used to determine the content of 

FC-70 in the membrane. For simplicity, I used the gravimetric method to calculate FC-70 content 

for the rest of my membranes.  

3.2.2 THE INFLUENCE OF MEMBRANE THICKNESS ON PERMEABILITY 

COEFFICIENTS 

 The permeation of gases and liquids could depend on membrane thickness. The 

evaluation of the influence of thickness on permeability is therefore of importance. The 

permeability of α,α,α-trifluorotoluene was studied for several pure Teflon AF membranes with 

thickness in the range 14-97μm. It can be found from Table 7 that the permeability coefficients 

remain unaffected for membranes with thickness less than about 50μm. For very thick 

membranes (with higher thickness), permeability significantly increases with increasing 

thickness. Hence, the membranes with thickness less than 50μm were used in all transport 
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experiments since permeability coefficient can not be used to characterize a membrane without 

demonstration of its independence of membrane thickness. 

Table 7. Dependence of permeability on membrane thickness 

Film thickness (um) P (×10
8
)* (cm2/s) (±SD) 

14 1.06±0.02 

23 1.05±0.02 

49 1.50±0.08 

58 2.25±0.05 

97 2.80±0.17 

* The permeability coefficient was the average of duplicate experiments at 25oC. 

3.2.3 THE INFLUENCE OF CHLOROFORM EXPOSURE ON PERMEABILITY 

COEFFICIENTS 

Hong found that Teflon AF membranes can imbibe solvent chloroform, the concentration 

of which in equilibrium with saturated vapor is 1.13±0.04M. Compared with chloroform-free 

Teflon AF membrane, the sorbed chloroform in the membrane was found to decrease the 

partition coefficient of benzene.  However, the effect of solvent uptake on the permeability 

coefficient has not been evaluated.  

The permeability coefficients of toluene and α,α,α-trifluorotoluene were measured for 

fresh membranes and the membranes which had been saturated by chloroform. As shown in 

Fig.13, the permeability coefficients of Teflon AF membranes were influenced by chloroform 

exposure. The exposure to chloroform makes the membrane more organic-like. The partition and 

diffusion of fluorocarbons would probably become more difficult due to the decreased free 
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volume and the increased viscosity of the membrane. The partition coefficient of the 

hydrocarbon analogs may also decrease due to the decreased free volume, whereas the diffusion 

coefficient may increase because the sorbed chloroform plasticized the membrane by increasing 

its segmental motion. Hence, the permeability coefficient of toluene does not change much as a 

result of the counteraction. For comparison, I would therefore use fresh membranes for all the 

transport experiments.  
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Figure 13. The dependence of permeability coefficients on the time of membranes soaking in 

chloroform 

3.2.4 THE REUSABILITY OF MEMBRANES 

The reusability of membranes deserves serious consideration due to the needs of 

commercialization. The permeability coefficient of α,α,α-trifluorotoluene was determined for 

fresh Teflon AF membranes. After the first transport experiment, the membranes were washed 

by sufficient amount of chloroform several times in order to extract the penetrants remaining in 

the membranes back into chloroform. The second transport experiment was conducted with the 
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membranes which were dried in oven at 70oC to get rid of the chloroform, whereas the third was 

conducted with the membranes without drying. 

As shown in Table 8, the permeability coefficients obtained by the first two 

measurements were essentially the same, while that of the third measurement was found to 

decrease significantly. On the one hand, the results in Table 8 agree with the decrease in 

permeability of α,α,α-trifluorotoluene shown in Fig. 13. On the other hand, the essentially 

unchanged permeability coefficients suggest the reusability of Teflon AF membranes. The 

structure of the membranes can relax back toward an as-cast state over a short time scale after 

solvent chloroform is removed.  

Table 8. Permeability coefficients of α,α,α-trifluorotoluene 

Measurement

 
P (×10

8
)* (cm2/s) (±SD) 

1st 2.64±0.28 

2nd 2.67±0.13 

3rd 1.08±0.62 

 

3.3 DATA ANALYSIS 

3.3.1 DSC AND TMA RESULTS 

Differential Scanning Calorimetry (DSC) and Thermomechanical analysis (TMA) were 

conducted to study the thermal transitions of Teflon AF membranes. DSC allows the detection of 

heat capacity changes as the polymer matrix goes from the glassy state to the rubbery state. TMA 
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determines the changes in the coefficient of thermal expansion as the polymer changes from 

glassy to rubbery state with an associated change in free molecular volume. DSC is thus 

measuring a heat effect, whereas TMA is measuring a physical effect. The glass transition 

temperature Tg measured with DSC is often higher than the Tg measured with TMA. The 

difference is often estimated to be approximately 5-10oC. Taking this into account, these two 

methods yield Tg values with high correlation. 

Surprisingly, no glass transition events were observed for Teflon AF membranes doped 

with 5wt% FC-70 by DSC. Since the glass transition temperature is just identified as the 

midpoint in glass transition by DSC, the glass transition probably happens at a temperature range 

too broad to be detected. The high sensitivity of TMA allows it to detect weak transitions that 

may not be observed by DSC. If a polymer has a fairly distinct change in thermal expansion 

coefficient at or around its Tg, glass transition can be measured with TMA because TMA is 

sensitive to dimensional changes. Teflon AF membranes doped with FC-70 were therefore 

measured with TMA. Table 9 presents the glass transition temperatures of Teflon AF membranes 

measured with TMA or DSC. The average glass transition temperature was determined from two 

samples prepared from different batches of membranes. The TMA results are shown in 

Fig.14~15. 

Table 9. Dependence of glass transition temperature on the film composition 

Membrane Teflon AF 

membrane 

Teflon AF 

membrane doped 

with 5wt% FC-70 

Teflon AF 

membrane doped 

with 10wt% FC-70 

Teflon AF 

membrane doped 

with 50wt% Krytox 

FSH 

Tg (oC) 240a -63±10b -29±2b -40a
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a The glass transition temperature was measured with DSC. 

b The glass transition temperature was measured with TMA. 

 

Figure 14. Thermal test result on Teflon membrane doped with 5wt% FC-70. (Courtesy of Marie) 
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Figure 15. Thermal test results on Teflon membranes doped with 5wt% (one) and 10wt% (two) FC-70. 

(Courtesy of Marie) 

All polymers undergo a phase transition from a soft, rubbery state to a hard, glassy state 

as the temperature is lowered below their glass transition temperature. It is believed that this 

glass transition arises from the freezing of rotational motions of polymer chain segments. Tg 

measurement can thus provide valuable information on the physical states of polymers. Pure 

Teflon AF membranes would be in glassy state at the experimental temperatures, and Teflon AF 

membranes with FC-70 or Krytox FSH would be in the rubbery state instead. In the rubbery 

state, the polymer chains are in equilibrium state within the timescale of permeation experiments, 

whereas the polymer segments in the glassy state do not have adequate mobility to realize the 

relaxation to their equilibrium configurations. The transport mechanism of the two kinds of 

polymers is quite different. 

A single glass transition temperature of Teflon AF membranes doped with diluents may 

indicate that the blends contain no separated domains or phases. Based on the single Tg and the 

optical clarity of the membranes, One may conclude that the homogeneity of Teflon AF 

membranes was not disturbed by the diluents.  

The decrease in glass transition temperature could be related to plasticization or anti-

plasticization in terms of free volume theory. Hong Zhao et al. found that the permeability 

coefficient of benzene through Teflon AF membranes doped with 50wt% Krytox FSH was 

considerably lower than that through pure Teflon AF membranes. The permeability coefficient 

ratio of Teflon AF membranes with and without Krytox FSH is about 1/101. The structure of 

Krytox FSH is shown in Fig. 16. Although the partition ratio of benzene was found to decrease 

from 0.04 to 0.03, the main reason of reduced permeability was believed to be a reduction in the 

diffusion of benzene molecules in the polymer matrix1. The remarkable reduction in Tg, as well 
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as in permeability coefficient and diffusion coefficient suggested that Teflon AF membranes 

could be anti-plasticized by Krytox FSH1.  

CF3 CF2 CF2 O C

CF3

F

CF2 O CF2 CF2 COOH

m  

Figure 16. Krytox FSH 

The magnitude of the decrease in glass transition temperature is often used as an indicator 

for the plasticization efficiency of an additive. FC-70 could be a better plasticizer than Krytox 

FSH in view of plasticization efficiency. Both FC-70 and Krytox are perfluorinated compounds, 

miscible with Teflon AF polymer, but Krytox is a carboxylic acid, the polar nature of which 

makes it less compatible with the essentially nonpolar polymer. 

3.3.2 FREE VOLUME CALCULATED BY GROUP CONTRIBUTION METHOD 

The fractional free volume of Teflon AF membranes with different FC-70 content is 

estimated from the difference between the experimentally determined specific volume, which is 

the reciprocal of measured density, and an estimate of the specific volume at the absolute zero of 

temperature, which is obtained by simple calculations using the group contribution method. 

Table 10. Values of Van der Waals molar volume of fluorinated contributing groups18 
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Table 11. Fractional free volume of Teflon AF membranes with different FC-70 content 

C FC-70 (wt%) ρ a (g/cm3) ∧

V  (cm3/g)
∧

0V  (cm3/g) FV
∧

 (cm3/g) FFV (%)

0 1.808 0.5531 0.3818 0.1713 30.96 

5 1.899 0.5266 0.3828 0.1439 27.32 

7 1.917 0.5217 0.3831 0.1387 26.58 

10 1.863 0.5369 0.3836 0.1533 28.55 

a Density measurements were conducted at ambient temperature. 

Based on the membrane densities, it can be concluded that small amount of additive (less 

than 10wt% FC-70) results in the densification of the polymer matrix, and hence a reduction in 

free volume. The density increases as more FC-70 is added. The trend of density should be 

parallel to that of permeability. 

Generally speaking, the density would decrease with an increase in temperature. As the 

temperature increases, the polymer would dilate, the amount of free volume would increase, and 

thus the density would decrease. The lower the density or the higher the free volume, the higher 

is the permeability. In this regard, the permeability coefficient and the density have to be 

measured at the same temperature. However, compared with most other fluoropolymers, Teflon 

AF shows low thermal expansion coefficient over wide range of use temperatures. Moreover, 

membrane transport experiments were conducted at 20oC, 25oC or 30oC, all close to ambient 

temperature at which the densities were taken. It seems unnecessary for us to evaluate the density 

value at each temperature respectively.  
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3.3.3 THE INFLUENCE OF FILM COMPOSITION ON PERMEABILITY 

COEFFICIENT 

3.3.3.1 PERMEATION RESULTS 

 

Transport experiments were conducted with a home-made, three-phase transport device 

at three temperatures (200C, 250C, 300C). The eight-position multicell transport cell holder holds 

eight cells in a rack which is kept at a constant temperature with water circulated from a 

thermostatic water bath. Three parallel transport experiments can therefore be conducted 

simultaneously with one transport experiment being the control. Kinetic mode was applied due to 

its automatic nature whereas with standard mode all the measurements had to be taken manually. 

The stirring module for the multicell transport enables us to control the stirring speed. The 

stirring speed was kept the same throughout my experiments. 

Figures 17~20 show the dependence of permeability coefficients of toluene, α,α,α-

trifluorotoluene, nitrobenzene, pentafluoronitrobenzene on Teflon AF membrane composition at 

different temperatures. The permeability coefficient values shown in Fig. 17~20 are the average 

of two or three parallel experiments. All error bars represent the standard errors of the mean. The 

permeability coefficients of all these solutes are found to be very sensitive to the FC-70 content 

and the test temperature. The permeability coefficients of toluene in Fig. 17 decrease initially as 

FC-70 content increases at low FC-70 concentration with reversal of this trend at higher FC-70 

concentration, and decrease again and finally level off. Figures 18~20 display basically the same 

trend.  
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Figure 17. Dependence of permeability coefficients of toluene on the film composition 
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Figure 18. Dependence of permeability coefficients of α,α,α-trifluorotoluene on the film composition 
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Figure 19. Dependence of permeability coefficients of nitrobenzene on the film composition 
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Figure 20. Dependence of permeability coefficients of pentafluoronitrobenzene on the film composition 
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3.3.3.2 PLASTICIZATION OR ANTI-PLASTICIZATION 

The free volume of a polymer could be increased by the introduction of a miscible 

compound, which could add more space between the polymer chains and thus increase their 

segmental motions. When perfluorinated solvent FC-70 was added to fluorous Teflon AF 

membrane, the additive is supposed to increase the free volume of the membrane in view of its 

branched structure and relatively large molecular weight, indications of good plasticizers.  

However, the free volume is found to decrease with the addition of FC-70 at FC-70 

content less than 10wt% with reversal of this trend at higher FC-70 content. I assume that the 

incorporation of a small quantity of FC-70 would create more room for the redistribution of the 

polymer configurations. This would result in an increase in order of chain alignments and a 

decrease in free volume. The addition of a small quantity of FC-70 to Teflon AF polymer could 

therefore lead to the polymer’s anti-plasticization, an effect indicated by a reduction in the free 

volume, a decrease in the glass transition temperature and a reduction in the partition ratio and 

permeability coefficient. When a larger quantity of FC-70 was added, the amorphous polymer 

could be plasticized, resulting in lower glass transition temperature, higher free volume and 

higher permeability coefficient.  

Low molecular weight additives could therefore play a dual role as a plasticizer or an 

anti-plasticizer. A large number of literature focused on the plasticization/anti-plasticization 

effect of low molecular weight additives on the thermal and mechanical properties of 

polymers.19-23 Water in tapioca starch films was demonstrated to have plasticizing or anti-

plasticizing effects in terms of mechanical properties such as tensile strength, toughness and 

strain-at-break.24  On the basis of the discussion above, it can be concluded that Teflon AF 

membranes with FC-70 less than 10wt% could be anti-plasticized, and Teflon AF membranes 

with 10wt% FC-70 or more could be plasticized. 
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Teflon AF membranes could also be plasticized by the organic liquid in contact. Hong et 

al. demonstrated that Teflon AF polymers can imbibe chloroform. The solvent chloroform was 

demonstrated to plasticize Teflon AF membranes by increasing the average interchain distance 

and thus weakening the molecular interactions between neighboring polymer chains.25 

3.3.4 THE DEPENDENCE OF PERMEABILITY COEFFICIENTS ON THE 

TEMPERATURE 

The temperature dependence of penetrant permeation through polymers without any 

thermal transitions is given by the Arrhenius equation:26, 27   

⎟
⎠
⎞

⎜
⎝
⎛ Δ−

=
RT

GPP Pexp0                                                                                                        (3-7) 

where P0 is a pre-exponential factor, ∆GP is the “activation energy” of permeation, R is 

the gas constant and T is the gas temperature. The so-called “activation energy” of permeation is 

just the slope of a plot of Log P versus 1/T. The plot is linear, i.e. P changes exponentially with 

temperature. ∆GP does not have much physical meaning, since the permeation is a function of a 

kinetic term D and a thermodynamic term K. Numerically, ∆GP is just the sum of the activation 

energy for diffusion ED and the enthalpy of partition ∆HK. 8, 27-29

KDP HEG Δ+=Δ                                                                                                           (3-8) 

The partition ratio can be expressed in terms of a van’t Hoff relationship:26, 27 

⎟
⎠
⎞

⎜
⎝
⎛ Δ−

=
RT

HKK K
DD exp0                                                                                                 (3-9) 

where  is a pre-exponential factor and ∆H0DK K is the enthalpy of partition. Partition into 

polymer membranes could involve both Henry’s mode and Langmuir’s mode. Henry’s mode 

requires the formation of a site into which penetrants can dissolve, and consequently, it involves 
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an endothermic contribution to the whole process. With Langmuir’s mode, the pre-existing site 

in the polymer matrix makes the partition more exothermic. 

 The diffusion coefficients also follow an Arrehenius relationship:26, 27 

⎟
⎠
⎞

⎜
⎝
⎛ −=

RT
EDD Dexp0                                                                                                        (3-10) 

Here, D0 is a pre-exponential factor and ED is the activation energy of diffusion. ED is 

thus the energy required to create an opening between polymer chains large enough to allow for 

the diffusion of penetrant molecules. 

3.3.4.1 THE INFLUENCE OF PENETRANTS 

The permeability coefficients of toluene, α,α,α-trifluorotoluene, nitrobenzene, 

pentafluoronitrobenzene were measured for pure Teflon AF membranes at different 

temperatures. Fig. 21 shows the dependence of permeability on temperature. The error bars 

represent the standard errors of the mean. 
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Figure 21. Temperature dependence of permeability 
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The effects of temperature on membrane permeation were analyzed in terms of 

Equation3.7. This equation holds for permeation of organic liquids in pervaporation process, as 

well as in membrane transport of organic liquids as Fig. 21 indicates. The results are shown in 

Table 12. 

Table 12. ∆GP values of some penetrants 

P (cm2/s) 
Compound 

20oC 25oC 30oC 
Correlation ∆GP (kJ/mol) 

C6H5CH3 3.08E-09 3.71E-09 4.53E-09 -0.9995 28.4 

C6H5CF3 8.44E-09 1.05E-08 1.31E-08 -0.9999 32.6 

C6H5NO2 1.21E-09 1.49E-09 1.88E-09 -0.9993 32.7 

C6F5NO2 8.88E-09 9.97E-09 1.04E-08 -0.9688 11.7 

∆GP is comparable to the values of Ea, poorly defined as the activation energy of 

permeation in pervaporation experiments. ∆GP of pure Teflon AF membranes are positive for all 

four solutes, i.e. the permeability coefficients increase with increasing temperature. This result 

implies that temperature has a more effect on diffusion than on partition, which is consistent with 

behaviors reported in most glassy polymers.  

Table 13. ∆HK and ED values of the penetrants investigated 

Compound Tc (K) Vc (cm3/mol) ∆HS (kJ/mol)* ∆HK (kJ/mol) ED (kJ/mol)#

C6H5CH3 592 316 -29.3 4.3 24.1 

C6H5CF3 565 356 -44.2 -11.3 43.9 

C6H5NO2 719 349 -31.9 12.2 20.5 

C6F5NO2 604 393 -47.7 -9.7 21.4 
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* ∆HS values were obtained by extrapolating the data shown in Merkel’s paper, assuming 

that all penetrants are in gas state.30 

# ED values were obtained by subtracting ∆HK from ∆GP. 

Merkel et al investigated gas sorption into Teflon AF 2400 membranes. They viewed gas 

sorption into a polymer matrix as a two-step process: (1) condensation from a gas-phase density 

to a liquid-like density and (2) mixing of condensed penetrant with polymer segments. As a 

result, the enthalpy of sorption ∆HS can be written as the sum of contributions from the two 

steps:30 

MixCondS HHH Δ+Δ=Δ                                                                                                (3-11) 

where ∆Hcond and ∆Hmix are the enthalpy changes associated with gas condensation and mixing, 

respectively. ∆Hcond is always negative, since condensation is an exothermic process. The glassy 

polymer Teflon AF 2400 has nonequilibrium excess volume, also called Langmuir microvoids or 

free volume. The presence of pre-existing free volume allows penetrant to be accommodated in 

the polymer matrix without requiring much energy to create molecular-sized gaps. ∆Hmix is 

therefore very small. Hence, ∆HS is often negative, i.e. organic vapor solubility in glassy 

polymers decreases with increasing temperature.  

My transport experiments deal with liquid sorption and permeation into polymer 

membranes. So I need to correct Merkel’s data for the penetrant condensation process, which 

involves the enthalpy of condensation plus the integral of the heat capacity from the 

experimental temperature to the boiling point. The last part is small and can be neglected. As a 

result, the enthalpy of partition ∆HK can be expressed as:  

CondSK HHH Δ−Δ=Δ                                                                                                  (3-12) 
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As shown in Table 13, enthalpies of partition ∆HK for fluorous penetrants are negative, 

while those for their nonfluorous analogs are positive. The result suggests that fluorous 

penetrants experience a more favorable partition process into fluorinated Teflon polymer than 

their nonfluorous analogs. Enthalpies of partition for fluorous penetrants increase with increasing 

penetrant critical volume but fall on a separate trend from the nonfluorous penetrants. The 

dependence of ∆HK on Vc agrees with Harogoppad’s data27, which showed that the estimated 

enthalpies of partition for four organic liquids increase with increasing penetrant size. Teflon AF 

polymer is distinguished by its high fractional free volume. The more free volume, the more 

sorption sites are available for accommodating penetrant molecules. The presence of non-

equilibrium microvoids in Teflon AF allows penetrant molecules to be accommodated into these 

pre-existing voids, which requires no or little energy. As penetrant size increases, ∆Hmix becomes 

more positive since the penetrant size could be larger than the average free volume in the 

polymer matrix and thus more energy is needed to create larger gap.  

Activation energy of diffusion is related to the size and shape of penetrant molecule. The 

exceptional low ED value of pentafluoronitrobenzene is probably due to the relatively even 

distribution of fluorine atoms in pentafluoronitrobenzene compared to α,α,α-trifluorotoluene. 

The fluorine atoms in pentafluoronitrobenzene have more chance to interact with Teflon AF 

membranes than those in α,α,α-trifluorotoluene. As a result, pentafluoronitrobenzene experiences 

less restriction than α,α,α-trifluorotoluene and hence is associated with lower activation energy 

of diffusion, although it is larger than α,α,α-trifluorotoluene in view of critical volume. Taking 

the polarity and size into account, ED value of nitrobenzene is rather small. This problem is 

worthy of further consideration. 
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Table 14. Transport properties of some penetrants 

Compound Dipole moment P (cm2/s) K* D#(cm2/s) 

C6H5CH3 0.36 3.71E-09 0.35 1.05E-08 

C6H5CF3 2.86 1.05E-08 5.56 1.89E-09 

C6H5NO2 4.22 1.49E-09 0.58 2.55E-09 

C6F5NO2 2.52 9.97E-09 25.9 3.86E-10 

* Partition ratios were calculated by dividing permeability coefficients by diffusion 

coefficients. 

# Diffusion coefficients of the penetrants investigated can be extrapolated from a 

pervaporation study26.  

As shown in Table 14, fluorous penetrants display higher permeability than their 

nonfluorous analogs since they experience more favorable interactions with perfluorinated 

Teflon AF polymers. For fluorous penetrants with similar polarity, the permeability is also 

dependent upon the size of the penetrant. C6H5CF3 reveals higher permeability than C6F5NO2 due 

to its smaller size. For nonfluorous penetrants, C6H5CH3 displays higher permeability than 

C6H5NO2, which can be attributed to its smaller size and much lower polarity considering the 

basically nonpolar nature of the polymer membrane.  

As illustrated in Table 13, enthalpies of partition of fluorous penetrants are more negative 

than those of their nonfluorous analogues. Partition of nonfluorous penetrants such as toluene 

and nitrobenzene into perfluorinated Teflon AF polymer is therefore an unfavorable process in 

terms of hydrocarbon-fluorocarbon interactions. Consequently, partition ratios of nonfluorous 

penetrants are significantly lower than those of their fluorous analogues as indicated in Table 14.  
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The permeability of toluene is three times less than that of α,α,α-trifluorotoluene, 

although the size of toluene is smaller than that of  its fluorocarbon analogue. Similarly, the 

permeability of nitrobenzene is six times less than that of pentafluoronitrobenzene. These results 

suggest that Teflon AF polymer does not have much size-sieving effect as reported for many 

other glassy polymers.   

To sum up, ∆GP of C6H5CF3 is slightly higher than that of its hydrocarbon analog 

whereas ∆GP of C6F5NO2 is much lower than that of non-fluorine analog. This can be attributed 

partly to the fluorous nature of the penetrants as well as Teflon AF membranes. The fluorous 

membranes favor sorption of the fluorous penetrants. In comparison with C6H5CH3, the slightly 

higher ∆GP value of C6H5CF3 results from the counteraction of its size and fluorous nature. The 

larger size of C6H5CF3 makes it harder to diffuse in the membranes, while the fluorous nature of 

the membranes makes partition easier. Although activation energy of diffusion for C6F5NO2 

should be larger in terms of its larger size, C6F5NO2 reveals much lower ∆GP than C6H5NO2 

because the high polarity of nitrobenzene makes it difficult to partition into the essentially 

nonpolar membranes. 

3.3.4.2 THE EFFECT OF FC-70 CONTENT 

In pervaporation, the enthalpies of sorption are similar in Teflon AF 2400 and Teflon AF 

1600, but the activation energies of permeation Ea are markedly larger in Teflon AF 1600 than in 

Teflon AF 2400. These indicate that sorption is not much influenced by free volume, whereas 

diffusion is, since polymers with lower free volume are likely related to higher energy barriers 

for diffusion.  

Figures 22~25 present the dependence of the permeability coefficients of toluene, α,α,α-

trifluorotoluene, nitrobenzene, pentafluoronitrobenzene on temperature at different FC-70 
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content in Teflon AF membranes, respectively. All error bars shown in Fig. 22~25 represent the 

standard errors of the mean. 
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Figure 22. Temperature dependence of permeability of toluene 

-8.6

-8.4

-8.2

-8

-7.8

-7.6

-7.4

3.25 3.3 3.35 3.4 3.45 3.5

1000/T (K-1)

Lo
g 

P

0%FC-70
7%FC-70
10%FC-70
14%FC-70
16%FC-70
29%FC-70
45%FC-70

 

Figure 23. Temperature dependence of permeability of α,α,α-trifluorotoluene 
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Figure 24. Temperature dependence of permeability of nitrobenzene 
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Figure 25. Temperature dependence of permeability of pentafluoronitrobenzene 

Activation energy of permeation can be extrapolated from the figures above. The results 

are shown in Table 15. 
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Table 15. ∆GP values of membranes with different FC-70 content 

∆GP (kJ/mol) 

Compound 0wt% 

FC-70 

5wt% 

FC-70 

7wt% 

FC-70 

10wt% 

FC-70 

14wt% 

FC-70 

16wt% 

FC-70 

29wt% 

FC-70 

45wt% 

FC-70 

C6H5CH3 28.4 - 62.6 107.5 -19.8 -14.7 25.7 18.0 

C6H5CF3 32.6 - 94.8 -96.6 -120.6 -83.1 -23.9 -28.0 

C6H5NO2 32.7 63.2 - 108.6 - 28.2 -100.5 - 

C6F5NO2 11.7 57.9 - 26.4 - -97.6 -155.9 - 

A comparison of ∆GP values in Table 15 shows that ∆GP of all the penetrants changes in 

a similar way. ∆GP values increase initially as FC-70 content increases at low FC-70 

concentration with reversal of this trend at higher FC-70 concentration. At low FC-70 content, 

enthalpies of partition are assumed to remain the same because sorption is not much influenced 

by free volume, while activation energies of diffusion are supposed to increase with increasing 

FC-70 content at low FC-70 content since polymers with lower free volume should display 

higher energy barriers for diffusion. Consequently, ∆GP values increase with increasing FC-70 

content. The negative activation energies of permeation at higher FC-70 content can be attributed 

to the negative enthalpies of partition since mixing of FC-70 with penetrant is probably a quite 

exothermic process. An analysis of permeation behaviors of pentafluoronitrobenzene will be 

helpful to understand further the trend of ∆GP. 

Figures 26~27 present partition ratios and diffusion coefficients of 

pentafluoronitrobenzene as a function of temperature at different FC-70 content, respectively. 

All error bars represent the standard errors of the mean.  
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Figure 26. Temperature dependence of partition ratios 
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Figure 27. Temperature dependence of diffusion coefficients 

According to Figure 26, enthalpies of partition of pentafluoronitrobenzene are almost 

unchanged for the membranes with and without FC-70 since the slope is almost the same. The 
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result may imply that sorption is not much influenced by free volume. I speculate that activation 

energies of diffusion increase with increasing FC-70 content in membranes because the addition 

of FC-70 leads to a reduction in free volume of Teflon AF membranes, which would display 

higher energy barriers for diffusion. The observed decrease in ED with addition of plasticizer is 

probably associated with plasticization, which would enhance penetrant diffusion even as FC-70 

occupies free volume. 
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Figure 28. Dependence of permeability on critical volume 

Fig. 28 presents permeability coefficients of fluorous compounds and their nonfluorous 

analogs as a function of their critical volume for Teflon AF membranes doped with 10wt% FC-

70. It indicates that permeability coefficients decrease with increasing penetrant size. Such 

behavior was reported for glassy polymers and rubbery polymers in much literature.31-35 LogP 

values of fluorous compounds fall on a separate trend from those of their nonfluorous analogs. 

The fluorous penetrants are more soluble in Teflon AF polymer matrix than their nonfluorous 
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analogs, hence, permeability coefficients of fluorous penetrants are higher than those of their 

nonfluorous analogues. 

Permeation through a rubbery polymer membrane is controlled by molecular diffusion, 

with partition equilibrium established very rapidly between the penetrant in the source phase and 

the membrane interface. Since Teflon AF membranes doped with FC-70 are in rubbery states in 

all test temperatures, permeation through the membranes is controlled by molecular diffusion. 

Diffusion through polymer membrane is influenced by penetrant size, which displays good 

correlations with permeation as shown in Fig. 29. 

 

Figure 29. Dependence of permeability coefficient P (Barrer) on critical volume (PDMS-40oC; PTMSP-

23oC; PTFE-25oC; PSF-23oC). 26 

Fig. 29 presents the correlations of permeability coefficients of gases, vapors and liquids 

with the critical volume of penetrants. Permeability coefficients of penetrants decrease with 

increasing penetrant size. It can be found that permeability coefficients of liquids are higher than 
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those of gases and vapors at comparable critical volumes of penetrants. The dependence of 

permeability on penetrant size is weaker for liquids than for gases. This result is consistent with 

my previous conclusion, i.e. Teflon AF membranes do not have much size-sieving effect, typical 

for glassy polymers. 

3.3.5 THE SELECTIVITY OF TEFLON AF MEMBRANES 

Selectivity of Teflon AF membranes was investigated for the pair C6H5CF3/ C6H5CH3 

and for the pair C6F5NO2/ C6H5NO2. The error bars represent the standard errors of the mean. 
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Figure 30. Dependence of selectivity for the pair C6H5CF3/ C6H5CH3 on the FC-70 content  
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Figure 31. Dependence of selectivity for the pair C6F5NO2/ C6H5NO2 on the FC-70 content 

Figures 30~31 present the dependence of selectivity on the FC-70 content in Teflon AF 

membranes. Selectivity generally decreases as temperature increases. Both figures show that 

selectivity reaches maximum at 10wt% FC-70 at 20oC. As shown earlier, Teflon AF membranes 

with FC-70 less than 10wt% could be anti-plasticized, and Teflon AF membranes with 10wt% 

FC-70 or more could be plasticized. To sum up, 10wt% FC-70 is likely a turning point of 

plasticization, which is quite interesting since it is also related to the highest selectivity. 
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4.0  FUTURE PLANS 

Teflon AF is very promising as a platform for selective extractions. However, plasticized 

Teflon AF is quite complex as we have shown. We need to understand the basis of 

fluorophilicity and fluidity in films.  The following is the problems we need to solve in the 

future. 

4.1 HOW FLUOROUS? 

Solute partitioning and forming complexes in Teflon membranes is quite different from 

that in fluorous solvents. Thus, it is quite informative to determine infinite dilution activity 

coefficients and partition coefficients for substituted benzenes in fluorous solvents. HSGC will 

be used to create data for organic solutes partitioning into fluorous phases. 

We need to measure two parameters to gain more insight. One is how much does the 

Teflon film prefer a fluorinated compound over a nonfluorinated analog. The other is how 

soluble is an organic solute, and then what is the association constant between this solute and a 

well-chosen host? It is rather to choose a set of probe compounds and use them across many 

different films. The probe solutes will be the same as what we are using, trifluorotoluene and 

toluene, nitrobenzene and pentafluoronitrobenzene. We can also gain some information from 

studying the films themselves. Hong et al has found that chloroform is imbibed into films, which 
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become less fluorous than expected. We will thus determine solvent uptake by simple weighing 

where appropriate. We will also use FTIR to monitor the concentration change of FC-70.1, 2 

4.2 HOW LIQUIDS? 

We will use our 96-well microtiter plate procedure to determine the partition ratios of 

organic solutes in fluorous/organic system. Diffusion coefficient is determined from permeability 

measurements in conjunction with known partition ratios.  

Again, we can also gain insight from studying the films. We will determine polymer free 

volume, which can be calculated from film density using the hydrostatic method3, 4. There are a 

lot of experimental techniques available to study films, such as thermogravimetry (TG) 5, 6, 

differential scanning calorimetry (DSC)7-13 and dynamic mechanical analysis (DMA)5, 10-12, 14. 

TG exposes the loss of imbibed solvent. DSC determines glass transition temperatures. Most 

importantly, DMA gives very clear information on polymer chain mobility, and can confirm Tg 

measurements. We will use them to characterize the films. 

4.3 WHAT FILMS? 

Our initial hypothesis was that the film would act as a supported liquid membrane15-20. 

However, the preliminary data from transport measurements show that this hypothesis may be 

too naïve. There is compelling evidence that the polymer itself influences transport. The changes 

of selectivity with temperature are dramatic. They lead us to postulate that there is some sort of 

transition near room temperature and the exact temperature depends on the composition of the 
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film. The ‘transition’ could be, or could relate to the imbibed solvent.  

We will use several potential plasticizers, namely FC-70, 

perfluoroperhydrophenanthrene, the perfluorodecalins. We hypothesis that plasticization is 

caused by a fluorous diluent instead of organic solvent in order to permit rapid diffusion within 

the films. Another hypothesis is that transport selectivity is highest when the film is the least 

influenced by the solvent. More generally, we will find out what dominates transport behavior --

diffusion or partition?  
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