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PRODUCTION AND PURIFICATION OF HIGHLY REPLICATION DEFECTIVE 
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Kyle Grant, PhD 
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Herpes Simplex Virus Type 1 (HSV-1) represents an attractive vehicle for a variety of 

gene therapy applications.  To render this virus safe for clinical use, its cytotoxic genes must be 

removed without losing its ability to express transgenes efficiently.  Therefore, complementing 

cell lines that can provide high titer virus are essential for clinical application.  Manufacturing 

methods that can purify these vectors of host cell DNA and protein are also necessary for 

translation of this gene therapy strategy into clinic.  

In this thesis, I have developed complementing cell lines that allow propagation to up to 

1E6 PFU/ml routinely for triple as well as quadruple deleted vectors which are among the most 

difficult to culture to high titer.  Replacement of the ICP4 promoter with the VP16 enhancer 

element enriched ICP0 IE gene promoter resulted in higher induction levels and faster kinetics of 

ICP4 expression and a 10 fold increase in vector yield. 

Along these lines, I investigated the repressive nature of Vero cells to a quadruple IE 

mutant.  A high throughput cell based chemical screen revealed a metal chelator, 1 10 

phenanthroline, that was able to derepress EGFP expression not only from the quadruple 

backbone but of other ICP0 mutant viruses suggesting a unique cell state that was permissive for 

HSV-1 transgene expression.  Interestingly, proteosome inhibition studies reveal that this 

pathway is essential for this effect not only in Vero cells but also normally permissive U2OS 

cells.  
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 Finally, a systematic study into ion exchange chromatography for purification of these 

vectors reveals dramatic differences in infectious yield depending on the matrix chosen.  Anion 

exchange resins bound the virus with high affinity and require high salt concentrations to recover 

adequate titers.  Cation exchange chromatography was able to purify HSV-1 to moderate titers 

while removing a majority of the host contaminating DNA and protein in accordance with FDA 

standards for clinical grade viral based vaccines. 
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1.0  INTRODUCTION 

Viral based gene therapy vectors have long been an active area of research owing to their 

different tissue tropisms and efficient method of gene delivery.  One caveat that has complicated 

this technique is the issue of safety.  Since most viruses are pathogenic they need to be made safe 

for clinical use and this is done through the construction of replication defective viruses.  

Replication defective viruses are constructed in a way that the essential gene functions are 

missing so as to block replication and therefore a major pathogenic effect once inside the host.  

Another barrier to clinic is the issue of scale of manufacture.  Large scale production of  

replication defective vectors remains challenge on both the upstream and downstream sides.  

Historically, these replication defective vectors, which also include vaccines, are manufactured 

through the use of packaging cell lines that provide missing functions in trans. Generation of  

stable complementing cell lines remains a challenge since the products they conditionally 

express are normally quite toxic to the cell.  Additionally, these products must be expressed with 

adequate kinetics and levels that mirror a normal wild type infection.  Compounded with these 

issues are the stringent requirements imposed by the FDA for product purity (contaminating 

cellular DNA and protein) and lot to lot variability.  Purification of viral based products is a 

relatively new field, but recent advances have revealed major breakthroughs in downstream 

processing of these vectors which include optimized size exclusion and ion exchange 

chromatography processes for different viral strains. 
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1.1 BACKGROUND 

1.1.1 Gene Therapy 

With the advent of the human genome project and recent advances in stem cell 

technology, the field of gene therapy is destined to become a frontrunner for new treatments of 

life threatening diseases.  Gene therapy is traditionally defined as the transfer of genetic material 

either from a virus, naked DNA or RNA, or liposomes to treat a certain disease state.  Gene 

therapy has the advantage of delivering the precise gene product to the particular disease state 

while taking advantage of the viral immune evasion mechanisms in vivo.  Viruses are naturally 

derived vehicles that offer the advantage of tissue tropism as well as large genetic payload.   

Typically, gene therapy works well for providing a single missing gene function as is the case 

with parkinson’s, cystic fibrosis, or muscular dystrophy.  However, recent work has shown that 

other avenues can be explored such as chronic pain, bone regeneration, oxidative injury, and 

cancer therapy.  The incorporation of gene therapy as an adjunct therapy is becoming more 

common place and may serve more utility than as an alternative to current approaches (4, 70, 

145).   

 

For gene therapy to be successful, a few criteria must be met.  (1) There must be a suitable 

disease model, (74) specific delivery to the disease state, (2) efficient gene transduction with 

suitable kinetics, and (3) limited toxicity in vivo.  Commonly the rate limiting step for these 
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criteria is effectively targeting the specific malady within a myriad of cellular receptors while 

minimizing toxic effects to normal tissue.  Recent efforts have shown that retargeting of viral 

vectors is possible through genetic modification of the nucleocapsid and glycoprotein coat of 

different viruses mainly for cancer therapy (94, 119, 190).  Removal of toxicity is commonly 

carried out by deleting essential gene functions that allow viral replication and therefore halting 

any pathogenic effect at the level of entry.  These vectors, termed replication defective, exhibit 

reduced toxicity and enhanced gene transduction in a wide range of  tissue types (15, 31, 77, 93).  

In addition to the aforementioned limitations to gene therapy is the issue of efficient 

manufacturing processes for well defined gene therapy products that are suitable for clinical 

trials.  There have been many recent advances in the field of gene therapy vector production 

(133, 134).  Once these processes have been optimized for efficient large scale manufacture the 

full potential of gene therapy can be realized.    

1.1.2 Gene Therapy Vectors 

Gene transduction is the method of expressing an ectopic gene in a particular tissue.  The success 

of this process relies on efficient delivery and stable expression.  The vector itself serves to (i) 

deliver the genetic payload to the desired tissue and (ii) protect the genes from degradation by 

host immune surveillance.  An ideal vector should be able to efficiently deliver the genetic 

material as well as avoid any pathogenicity.  Additionally, these vectors must be able to be 

produced at high concentration easily.  With the wide variety of disease models available it is 

clear that there is no universal method of delivery that is suitable for all applications.  Vector 

mediated gene transfer can be carried out by one of two ways either viral or non-viral.   

Most non-viral methods are composed of synthetic carriers such as liposomes, polyplexes, 

nanoparticles, or alternatively naked DNA injection.  Naked DNA injection has worked well in 

 3 



the case of muscle transduction since there are low levels of nuclease activity (5).  However, 

systemic injection suffers from the presence of serum nucleases that can clear the foreign DNA 

within minutes (78). Synthetic carrier methods are attractive from the standpoint of toxicity since 

there is little immune response to most of the cationic polymers used to house DNA.  These 

polymers consist of positively charged repeating monomers that are tailored to bind to cell 

surface receptors in vivo.  In addition to protection of the genetic material, the polymers chosen 

can interact with multiple biologic interfaces within the cell to alter the functionality of the 

carrier.  Some examples of the systems chosen for liposomal delivery are poly-L-lysine and 

polyethylene glycol that have attractive biocompatibility profiles and suitable clearance rates 

(35).  An active area of research is polymer design to complex foreign DNA that can be targeted 

to specific tissue types.  Lipoplexes with DNA offer the advantage of higher order interactions 

through multi lamellar complexes (79).  As the DNA condenses around positively charged head 

groups different lipid layers can be formed and tightly controlled to specifically interact with 

different subcellular components.  Some of the major hurdles this technology still faces are 

endosomal escape and nuclear transport.  One other limitation to these synthetic systems is the 

lack of an ideal cationic lipid since there are no general correlations with structure and function 

in vivo.  In addition, correlations between in vitro and in vivo work remains unclear complicating 

development in this delivery method due to the presence of multiple interaction possibilities 

within the bloodstream (161).  Even with these limitations, this delivery method will no doubt 

with experience and understanding rival that of the viral based gene therapy due to the tunable 

nature of synthetic polymers and their attractive biocompatibility profiles. 

Viral based gene delivery methods benefit from natural tissue tropisms and exploitation of the 

host cell machinery to amplify the exogenous DNA.  Gene therapy based on a broad range of 

viruses has been the focus of many institutions and each vector system has their own intrinsic 
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limitations and advantages.  Table 1 shows the current state of the art in regard to virus based 

gene therapies and their use in clinical trials dating from 1989 to the present. 

Table 1. Virus Based Gene Therapy Clinical Trials (102) 

Virus Genetic Material Genetic Payload  

Capacity 

Percentage of Clinical 

Trials 

Adenovirus dsDNA < 5kb (n=331)  36.65% 

Retrovirus RNA < 8 kb (n=305) 33.77% 

Vaccinia dsDNA 25 kb (n=91) 10.07% 

Pox Virus dsDNA 25 kb (n=86) 9.52% 

Adeno Associated Virus ssDNA 5 kb (n=47) 5.2% 

Herpes Simplex Virus dsDNA 40 kb (n=43) 4.76% 

 

All of these viruses are rendered therapeutic by insertion of foreign DNA into the viral 

genome in place of a toxic viral gene while leaving the cis acting elements intact such as origins 

of replication and packaging signals.  These deleted genes usually comprise immediate early 

genes, replication machinery, or nonessential structural components. 

1.1.2.1 Retrovirus 

Most retroviral vectors are based on the  betaretrovirus Murine Moloney Leukemia Virus 

(MMLV).  The MMLV genome encodes for three essential genes: gag, pol, and env.  The env 

gene is cleaved within the trans-Golgi network to produce transmembrane and surface unit 

subunits interacts with cell surface receptors to allow binding of the virus on the target cell.  

Once inside the cell, the virus is uncoated and the RNA is reverse-transcribed into proviral 

double stranded DNA by the pol gene and subsequently transported to the nucleus for 

integration.  All that is required for viral replication in cis are the 3’ and 5’ long terminal repeats 
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(LTRs), which house the sites of DNA transcription initiation and polyadenylation.  These sites 

are essential for production of progeny viral genomes and viral mRNA.  A packaging signal 

termed psi is also located near the 5’ repeat sequence which directs incorporation of viral DNA 

into the capsid.  As the viral DNA is packaged, the gag gene directly binds to the viral RNA to 

promote packaging into the virion.  Retroviral vectors are typically propagated on murine based 

cell lines that provide the missing essential genes in trans.  These cell lines have been recently 

developed to contain the env, gag, and pol genes on separate plasmids to reduce the possibility of 

generating replication competent retroviral vectors (107, 115).  Sequence homology limitation is 

another strategy used to minimize recombination events between the gene supplied in trans and 

the deleted virus.  In addition, suspension cell lines are being developed for the use of large scale 

manufacture of recombinant retroviral vectors (143).  Downstream processing and concentration 

of retroviral particles is often difficult due to the fragile nature of the virus (32).  Step-wise 

filtration can be used to purify these vectors but can be clone specific resulting in titer 

improvements from 2-10 fold (141).  Recently, ion exchange chromatography through the use of 

a weak anion exchange matrix allowed superior recovery while minimizing contaminating 

cellular debris and DNA (146).  

For most types of retroviruses, mitosis is required to integrate into the host genome which 

remains a limitation to the development of this as a system for gene therapy.  This stable 

integration contrasts with other viral DNA vectors such as herpes simplex virus and adenovirus 

where the genome remains episomal.  The main drawback to this system of gene transfer is the 

issue of insertional activation.  A recent French trial for severe combined immunodeficiency 

(SCID) resulted in a fatality due to induced expression of lmo2 which is abnormally expressed in 

childhood acute lymphoblastic leukemia (73).  These safety concerns have severely limited the 

number of funded studies using retroviral systems and resulted in a recommendation from the 

NIH that this vector system be used in extreme cases (54). 
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1.1.2.2 Adenovirus 

Adenovirus is a double stranded DNA virus that is the focus of a wide variety of gene 

therapy strategies ranging from oncolytic treatment of glioma to cystic fibrosis.  Structurally, the 

virus is around 200 nm in diameter with the viral capsid extended by fibers with distal knobs that 

interact with specific host cell receptors.  Currently there are approximately 50 serotypes of 

adenovirus with group C being the most studied which contains serotypes 1, 2, 5, and 6.  

Adenovirus serotype 5 is the prototypical vector used for gene therapy. The 36 kb genome is 

flanked at the termini by inverted repeats that each contains an origin of replication and a 

terminal protein binding site.  Unique to this virus and hepadnaviruses is the mechanism of 

protein primed viral DNA replication in which the viral encoded proteins preterminal protein and 

DNA polymerase attach at the 3’ end in association with other cellular factors (Nf-1 and Oct-1) 

to form a preinitiation complex.  The genomic replication occurs continuously through strand 

displacement.  Much like other DNA viruses, the gene expression of adenovirus occurs in a 

temporally regulated cascade with the immediate early gene, E1A, serving as the major 

transactivator.  This gene is commonly removed to generate replication defective vectors and 

supplied in trans in complementing cell lines to propagate viral vectors.  As with other 

replication defective vectors, generation of recombinant replication competent vectors during 

large scale production is a major source of concern. Further deletion of the E2 region of the 

genome, which contains both the preterminal protein and DNA polymerase, attenuates the 

toxicity of these vectors but efforts to complement in trans have shown that this gene product 

may be limiting for efficient  replication defective adenoviral production (208, 209).  Using this 

production strategy viral titers up to 109 pfu/ml to 1012 transducing units/ml have been reported 

making this virus a popular choice on the basis of scaleable production (167). 
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Since transgene expression from adenoviral vectors is temporary, the host immune 

response is a major limitation for application into clinic (200, 201).  Another limitation is the 

generation of a humoral response against this vector which may limit repeated administration 

(104).  However, the knob region of the fiber rods of adenovirus can be modified to pseudotype 

gene therapy vectors such that retargeting to different tissue types and possible circumvention of 

the immune response can occur (188).  Since long term transgene expression is not feasible with 

this vector type, the future of adenovirus gene therapy may be more amenable to diseases that 

require transient gene expression and vaccine generation.  

1.1.2.3 AdenoAssociated Virus 

Adeno associated virus is a parvovirus that requires the aid of helper virus such as 

adenovirus or herpes simplex virus for replication.  This virus is a single stranded DNA virus 

that is able to infect nondividing human cells and stably integrate into a specific locus on 

chromosome 19 (153).  Structurally, these viruses are the smallest among gene therapy vectors at 

25 nm in diameter.  Like adenoviruses, the AAV genome contains inverted terminal repeats 

which upon uncoating within the host nucleus fold to form palindromic structures that serve as 

primers for DNA synthesis.  The viral encoded machinery is derived from overlapping sequences 

that take advantage of alternative splicing to generate multiple genes from the same transcript 

(177).  Two of these genes, Rep78 and Rep68, comprise the regulatory elements that are 

necessary for DNA replication and gene expression regulation (183).   

Therapeutic versions of AAV are gutted vectors that contain only ITR sequences with the 

transgene in place of the capsid genes (154, 155).  Propagation of AAV vectors is commonly 

carried out in 293 cells.  These cells are co transfected with a gutless infectious rAAV vector and 

a plasmid that provides the missing rep and cap genes followed by infection with an E1A deleted 

adenovirus.  Alternatively, stable cell lines can be generated that express the rep and cap genes or 
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HSV-1 and/or Adenoviruses can be engineered to provide these functions in trans.  Recently, a 

cell line has been generated by lentiviral transduction that provides rep, cap, E2, and E4 (125).  

Development of cell lines for production of AAV has been hindered by the toxicity of the 

essential rep gene and elaborate schemes have been devised to complement this gene through 

inducible systems (118, 130, 137, 199).  For clinical applications, however, the helper virus must 

be removed from stocks to avoid toxicity associated with the helper virus and concentrate the 

rAAV.   

Purification of rAAV is traditionally carried out through density gradient centrifugation 

which is not amenable to large scale production. However, recent developments in the field of 

viral purification using ion exchange chromatography have yielded improvements in AAV 

production (36, 138, 168).  Size exclusion chromatography has also been successfully 

implemented due to the small size of the virus (168).  Even with these advances in AAV 

purification the scalability remains an issue.   Another limitation to AAV based gene therapy is 

the need to co- transfect the helper functions which severely limits the economy of scale for this 

vector.  Complicating development of AAV as a gene therapy vector is the lack of correlation 

between in vitro and in vivo functional gene transduction (66, 103).  Furthermore, random 

integration in the absence of helper functions in vivo needs to be investigated in greater detail 

before this vector strategy is implemented as this can lead to insertional mutagenesis.  The risk 

associated with AAV based gene therapy is exemplified by the recent death in a arthritis trial 

where a fatalilty halted the study (87).     

1.1.2.4 Pox Virus 

Poxviruses are among the most complex viruses studied to date.  The double stranded 

DNA genome is on the order of 190 kb and they encode approximately 185 open reading frames 

and contains inverted repeats of about 10 kb at each terminus.  The double enveloped virion has 
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an inner core which houses viral DNA dependent RNA and DNA polymerases and is on the 

order of 350 nm in diameter (41).  Once the virus has entered the cell through uknown 

mechanisms, the viral genome remains episomal due to its large size and the virion associated 

proteins direct gene expression in a temporal cascade.  The early genes are synthesized first 

which include DNA processing and metabolism functions.  A subset of these genes have 

sequence similarity to cellular growth factors and when secreted can induce proliferation to 

neighboring cells.  The intermediate phase of gene expression is concomitant with DNA 

replication and downregulation of early gene synthesis.  Poxviruses are unique in that all DNA 

replication occurs inside the cytoplasm independent of the host cell nucleus (41, 162).  A cellular 

protein, Vitf2, which translocates from the nucleus, is essential for transcription of the 

intermediate genes which suggests tissue type specificity (54).  Once DNA replication has 

ensued the structural components of the virus are expressed by the intermediate genes and the 

immature virion becomes enveloped through the trans-Golgi network.  Subsequent transport to 

the cell surface and actin polymerization either directly transports the virus to surrounding cells 

or it is released as an extracellular enveloped virion.  The kinetics of viral replication and egress 

are quite fast compared to other DNA virus with poxviruses producing up to 10000 infectious 

virions per cell in approximately 7 hours (54, 120).  

Poxviruses as gene therapy vectors have been mainly applied to oncolytic approaches to 

tumor models as well as vaccination strategies.  The most widely used poxvirus is vaccinia virus 

since its inception as a successful vaccine for smallpox ((81).  This vector has many advantages 

over other viral systems such as the large genome and subsequently large transgene capacity.  

There is also the possibility of a vector with multiple gene inserts due to the large encoding 

capacity.    One limitation is the need for a safe permissive cell line for large scale generation of 

recombinant viruses.  This cell line must be able to generate progeny poxvirus with the correct 

post translational modifications for correct antigen presentation in the host as well as support 

 10 



high titer growth.   Another drawback of Poxvirus gene therapy is limited lifecycle within the 

host leading to short term transgene expression.   Poxvirus vector transduction may therefore be 

more amenable to transient expression of an antigen for vaccine application.  Herpes Simplex 

Virus 

1.2 HERPES SIMPLEX TYPE 1 VECTORS 

Herpes Simplex Type 1 is an enveloped 152 kb double strand DNA virus that can infect a wide 

variety of tissue types.  This virus is amenable to gene therapy applications for a number of 

reasons.  The large genomic size can house multiple gene or large transgene cassettes with up to 

40 kb inserts.  The virus has two distinct phases of infection that can be taken advantage of for a 

number or different maladies.  In the latent state of infection the genome remains in a dormant 

state within primary neurons and transcribes a short 2 kb transcript referred to as the latency 

associated transcript (LAT).  This LAT promoter can therefore be used to drive expression in the 

neuron for the life of the host.  Such applications include treatment of chronic pain and ion 

channel modulation (10, 25).  The lytic phase of replication can be taken advantage of for 

oncolytic therapy in particular in the brain.  Since the virus remains dormant in post mitotic cells, 

vectors can be made to selectively replicate a wide variety of neoplasia (89, 124, 164, 180).  The 

growth of these vectors is also straightforward since typically they are only missing one or two 

essential immediate early gene products.  However, these vectors can be quite toxic and therefore 

impaired for gene transfer capacity.  The current state of the art of HSV-1 gene therapy is 

described in the following sections highlighting the importance of this vector and the rationale 

for investigations into bioprocessing this type of gene therapy vector. 
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1.2.1 Basic Biology of HSV-1 

The HSV-1 virion is on the order of 200 nm in diameter and is enveloped by a glycoprotein coat.  

The viral envelope contains 11 glycoproteins of which glycoprotein D, glycoprotein B, the 

complex of glycoprotein L/H are essential for entry into the host cell (8, 20, 95).  An amorphous 

collection of proteins referred to as the tegument lies between the nucleocapsid and the 

glycoprotein envelope.  The tegument contains transactivators necessary to initiate productive 

infection as well as alter the cell state for selective replication of the HSV-1 genome.  Upon 

attachment and entry, the virus sheds the glycoprotein envelope and is transported to the nucleus 

through association with microtubules (45, 91).  Tegument proteins are also liberated upon 

capsid release.  These proteins serve to alter host function during viral replication.  Once the 

nucleocapsid reaches the nucleus, the genomic content is released and transcription occurs 

through host RNA polymerase II.  HSV-1 gene expression is coordinately regulated in an 

ordered temporal cascade (53).  Three kinetic classes of gene expression illustrate the pattern of 

HSV-1 protein production.  Immediate early (IE), early (E), and late (L) are the temporal 

categories assigned to each class. IE genes are characterized by expression in the absence of host 

or de novo protein expression.  These gene products’ functions comprise transcriptional 

regulation, mRNA processing, and host immune evasion.  Dynamics of IE gene expression are 

regulated at the promoter level through viral and host protein DNA interactions.  Tegument 

protein VP16 directs the assembly of viral and host proteins at the site of IE promoters.  Host 

cellular factor (HCF), a proteolytically cleaved protein, associates with VP16 and accumulates 

host transcription factors to cis acting TAATGARAT (R represents any purine) sequences on IE 

promoters (83, 195, 196).  Early genes represent the replication machinery encoded by the virus 

which includes DNA polymerase and ribonucleotide reductase.  Late genes denote the structural 

components of the virion such as capsid and glycoproteins as well as tegument proteins packaged 
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in the virion.  In the absence of IE gene expression, the virus cannot initiate a productive 

infection and the cascade is stalled.   The next three sections highlight the roles of three critical 

immediate early gene products. 

1.2.1.1 ICP4 

Of all immediate early genes, ICP (infected cell protein) 4 has been implicated as a 

requirement for productive infection (6, 11, 37, 39).  This gene is present in two copies within 

the genome on each side of the unique short region adjacent to an origin of replication (121).   

ICP4 contains different functional domains which permit direct DNA binding, transactivation, 

dimerization, and nuclear localization (40).  ICP4 has been shown to interact directly with basal 

transcription factors such as TATA binding proteins (TBP), Transcription Factor IID (TFIID), 

and TFIIA.  The indirect binding of ICP4 to early (thymidine kinase) and late (glycoprotein C) 

promoters infers its ability to transactivate essential downstream genes (98, 165).  Additionally, 

this protein is immunogenic in mouse models and imparts cytotoxicity through sequestration of 

transcription factors by inhibiting host transcription (62, 108).  

1.2.1.2 ICP0 

ICP0 has been shown to transactivate both cellular and viral promoters in a non-specific 

fashion (50, 136).  This viral protein is also a mediator of cytotoxicity most likely due to the E3 

ubiquitin ligase activity that has been implicated in setting the cell cycle and altering the host 

response to infection (65, 113).  The open reading frame of ICP0 contains multiple domains 

necessary for biological activity.  The  amino terminus contains a zinc binding RING finger 

motif with a ubiquitin specific protease, nuclear localization signal, and a self multimerization 

site at the carboxy terminus (48).  These functional domains have been removed to create various 

insertional mutants whose phenotype has allowed clarification of ICP0 activity.  In the absence 
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of the RING finger domain, inhibition of host cellular interferon stimulated genes is ablated 

(100).  Growth phenotypes of ICP0 null mutants are MOI and cell type dependent.  Infections at 

MOIs at or above 1 tend to grow normally in comparison with wild type in Vero cells while 

infections below this threshold display 3 to 4 log differences in productivity (19).  However, in 

osteosarcoma cells, such as U2OS, the ICP0 null mutant grows similar to wild type which 

implicates these cells as having some function that can either rescue the growth phenotype or is 

missing some function that ICP0 specifically targets for selective expression of the viral 

genome(202).   Another feature of this viral protein is the ability to combat host immune 

response to infection.  Several studies have shown that ICP0 can degrade promyelocytic 

leukemia (PML) or nuclear domain (ND10) structures that form at the nuclear membrane in 

punctuate organelles in response to physiological stress such as heat shock or viral infection (47, 

61).  These PML bodies have been shown to repress transcription and gene expression from 

incoming pathogens which has implications on viral spread and productive infection.  The 

toxicity imparted by ICP0 can be attributed to it’s ubiquitin ligase activity.  ICP0 has been shown 

to target specific host response molecules to allow selective replication of the virus  It is 

therefore, critical to disseminate the role of ICP0 and its contribution to the spread of the virus 

for safe clinical mutants that lack this function.  

1.2.1.3 ICP27 

The majority of HSV-1 post-transcriptional processing has been shown to be directed by 

one viral gene, ICP27.  Analogous to the other IE gene products, ICP27 is multifaceted with 

different domains that direct viral functions. This 63 kDa protein has been shown to direct viral 

transcript nuclear transport during infection and is conserved among all herpesviruses.  The N-

terminus contains an RNA binding domain as well as nuclear import and export signals (112, 

156).  Transactivation and early to late gene transition functionalities have been mapped to the 
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C-terminus (169, 170).   Novel studies using fluorescence imaging reveal that this protein has a 

self-interacting domain connecting the N and C termini that is essential for full ICP27 

functionality (207).  These investigations highlight the nature of typical HSV-1 IE genes in that 

they are multifunctional to efficiently associate with host cell machinery to regulate the genetic 

cascade of expression.   

Timely expression of ICP27 is necessary, in conjunction with ICP4, for propagation of 

HSV-1 in culture.  The transcriptional transition from the early to late gene class requires the 

presence of ICP27 in that it can downregulate early transcripts and promote late gene 

transcription (80, 144, 191).   Furthermore, detailed work on prereplicative ND10 bodies reveal 

that ICP27 colocalizes with ICP0 and ICP4 in these nuclear structures upon infection indicating 

that this protein may serve a regulatory role in the viral life cycle (123).  Along these lines of 

evidence, ICP27 interaction with splicing regulatory factors and global inhibition of transcript 

splicing has been implicated by numerous studies (18, 23, 109, 159).   Likewise, ICP27 has been 

shown to shuttle between the nucleus and cytoplasm during infection.  This transport of ICP27 is 

associated with cellular factors linked to RNA binding and RNA export from the nucleus 

indicating that HSV-1 can efficiently exploit the natural RNA transport pathways to aid in gene 

expression.    Relocalization and host shut off function of ICP27 most likely serves to alter the 

host cell in such a way as to selectively allow viral transcription and repress cellular functions 

that could inhibit the progression of infection.   

1.2.2 Construction of HSV-1 Vectors 

HSV-1 vectors can be utilized in three different ways depending on the application and method 

of construction.  Outlined below are the current methodologies for construction of HSV-1 based 

gene therapy vectors. 
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1.2.2.1 Amplicon Vectors 

The safest way to deliver genetic material is by eliminating pathogenic effects of the 

virus while maintaining stable expression of the transgene.  Amplicon vectors are essentially the 

viral DNA backbone in a plasmid form with an origin of replication, a packaging sequences, and 

cis acting elements to drive expression of the exogenous gene.  Since this DNA structure is 

minimal, the payload capacity is up to 100 kb which makes this strategy quite attractive.  

Likewise, since there are no viral genes associated with amplicons, the toxicity profile is superior 

due to the lack of reactivation, complementation, or recombination with latent genomes.  To 

propogate these vectors helper virus must be supplied to provide in trans gene functions that 

amplify and package the amplicon DNA into virions.  This helper virus, however, can 

contaminate viral stocks leading to poor toxicity profiles and difficulties in scale up (84).  

Currently, bacterial articificial chromosomes (BAC) are used to provide the missing HSV-1 gene 

functions.  These BACs lack a packaging signal and one essential gene, usually ICP27.  This 

approach leads to fewer contaminating helper virus particles since (i) the BAC genome cannot be 

packaged into virions and (ii) the virus is defective without the essential gene, and (iii) the helper 

genome containing the BAC is considerably larger so packaging is not as efficient.  Co-

transfection of complementing cell lines with BAC helper virus and amplicons can yield up to 

107 transducing units/ml, but large scale production is limited due to the need for expensive 

transfection reagents. 

1.2.2.2 Conditional Replication Vectors 

HSV-1 vectors that replicate in certain cellular microenvironments are normally devoid 

of viral replication machinery.  The selective replication of HSV-1 vectors has direct application 

 16 



in oncolytic therapy.  These viruses are replication defective in normal post mitotic tissue such as 

primary neurons.  However, in actively dividing neoplasms these viruses are supplied the 

missing functions in trans which include viral gene necessary for DNA metabolism such as 

thymidine kinase, ribonucleotide reductase, and the viral DNA polymerase.  Mutations in these 

genes along with the neurovirulence factor (ICP34.5) which is diploid in the viral genome, allow 

selective replication in the microenvironment of a brain tumor in contrast to normal non-dividing 

glial cells.  HSV-1 mutants lacking neurovirulance factor ICP34.5 have been shown to efficiently 

infect and reduce tumor mass in both mouse, primate, and human models (110, 117).  This 

vector, G207, has been deleted for ICP6, the viral ribonuceotide reductase, and both copies of 

ICP34.5 allowing it to only replication once in the glioma.  Through homologous recombination 

of wild type virus, KOS, with a cotransfected targeting plasmid that encodes the LacZ gene 

flanked by upstream regulatory sequences of ICP6 and a stop codon introduced into the 

downstream elements after the LacZ insertion (58).  This strategy allows for marker transfer and 

relatively simple selection of blue plaques in the presence of beta galactosidase staining.  

Removal of ICP34.5 was confirmed by restriction digest and southern blot analysis (28).  The 

added advantage of using HSV-1 for this mode of therapy is that latency associated genomes is 

apathogenic to the surrounding healthy glial cells.  Oncolytic therapy is an attractive approach as 

it allows selective replication specific to the disease state.  This method of viral construction and 

application is now being extended to other DNA viruses such as adenoviruses and vesicular 

stomatitis viruses (189, 197).   

1.2.2.3 Replication Defective Vectors 

Replication defective vectors represent a broad area of research for the delivery of 

exogenous DNA (160, 205).  These vectors are typically mutated by one or more essential 

functions that will preclude viral DNA replication and thus render the virus replication defective.  
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Normal construction of these viruses is carried out in a similar fashion to selective replication 

vectors.  Marker transfer remains a convenient method to removing a particular locus and 

replacing the viral gene with a colorimetric marker such as EGFP, lacZ, or RFP flanked by the 

homologous sequences in a targeting plasmid via co-transfection and infection with the parent 

virus (92, 93).   

These viruses are normally propagated to high titer through the use of a complementing 

cell line that provides the missing gene products in trans.  The complementing producer cell 

lines are constructed to express the viral genes only under the context of infection.  Varied 

complementation/mutation strategies have been employed to generate and propagate replication 

defective HSV-1 mutants depending on the tissue type and kinetics of expression.  Of the 

immediate early genes, ICP4 and ICP0 are the most toxic in cell culture.  In conjunction with 

deletion of the ICP27 locus, removal of ICP4 and ICP0 dramatically removes the toxicity of the 

vector while allowing multiple or relatively large transgene insertions into the vector backbone.  

This strategy has led to the generation of triple and quadruple mutant vectors devoid of any 

immediate early function (150).  Another approach is to preclude the expression of the 

immediate early class of genes by constructing VP16 mutants.  Since the tegument protein, 

VP16, can efficiently transactivate the immediate early class of genes, its absence should 

theoretically prohibit immediate early synthesis and subsequently viral DNA replication.  

Multiple deleted viruses that lack the VP16 and UL9 (origin binding protein) loci are completely 

incapable of replication within Vero cells up to an MOI of 30 (203).  However, the issue of leaky 

viral promoters in different tissue types remains an issue.  Therefore, the safest vectors for gene 

transfer will have the most cytotoxic IE genes ablated to remove the opportunity for viral 

replication. 
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1.2.3 Applications of HSV-1 Vectors  

The direct application of HSV-1 for gene therapy has proven successful in a wide variety of 

tissue types owing to its natural ability to infect many tissue types.   Gene transfer is possible in 

primary epithelia, peripheral nerves, adipose tissue, hepatic tissue, cancerous tissue, and skeletal 

muscle (1, 33, 55, 59, 135).  This array of potential tissue types for therapy highlights the 

capacity of this vector type for gene transfer applications.      

HSV-1 as a gene transfer vehicle has been exploited for numerous applications of human 

disease.  The use of HSV-1 as an oncolytic therapy has proven successful in both the primate 

model and in humans (106).  The use of vectors attenuated for the virulence factor, ICP34.5, and 

the viral encoded DNA polymerase UL39 have shown improved safety and sensitivity to prodrug 

administration such as ganciclovir.  This strategy allows an extra level of protection since 

delivery of ganciclovir will inhibit virus replication and reduce possibility of herpes encephalitis 

once the virus has been delivered.  These vectors also show no effects on motor or cognitive 

development as assayed by open field maze test task (139).   

Neuropathies associated with pain also represent an active area of research in the field of HSV-1 

gene therapy.  Recent efforts have proven useful in ectopically expressing the transient receptor 

cation potential vanilloid (TRPV1) receptor and subsequently searching for receptor modulators 

using a selective viral replication strategy (172).  These studies have led to enhanced 

understanding in pain signaling and receptor physiology.  Recent efforts have revealed reduced 

pain response by the hind footpad lifting tests in response to heat in a mouse model.  The use of 

HSV-1 as a tool is also employed in the study of early embryogenesis for identifying critical 

components in development.  A selective replication system has been recently developed with 
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replication driven by a developmental promoter controlling ICP4.  This system allows the 

identification of cellular factors that can drive the expression of the essential immediate early 

gene ICP4 that will drive viral replication.  cDNA libraries can be routinely constructed and 

pools clonal isolates of HSV-1 vectors housing these libraries are now being developed.  Since 

HSV-1 can infect and transduce a wide variety of tissue types, a library screen based on certain 

disease states has the potential to uncover previously unknown mechanisms in disease models.   

The use of HSV-1 as a tool for investigating molecular biology dynamics as well as virus host 

cell interactions represents a promising arena of molecular therapy based on HSV-1.  

Furthermore, insight gained from cDNA library screens based on HSV-1 vectors will serve to 

direct gene therapy in a high throughput manner. 

1.3 MANUFACTURING OF HSV-1 VECTORS 

HSV-1 vectors are routinely produced from cell culture and subsequently purified by 

centrifugation.  There are many limitations in both the upstream and downstream components of 

manufacture which represents a major bottleneck to bringing these vectors to clinic.  The main 

areas under current investigation are scale up and downstream purification of HSV-1 vectors and 

transfer of this technology from the bench to cGMP environments. 

1.3.1  Production of HSV-1 Vectors from Cell Culture 

HSV-1 vectors are routinely propagated using a mammalian host cell line.  Vero (African green 

monkey kidney) cells represent the most common cells used for viral vector production owing to 

their lesion in the interferon response and ease of culture (46).  These cells are aneuploid and will 
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grow indefinitely in culture so there are no passage limitations.  Vero based cell culture 

represents similar species origin to humans and therefore has been used to study broad areas of 

disease and molecular virology.    For instance, these cells have been approved by the FDA and 

European governments for biologic production of vaccines against smallpox, rotavirus, and 

poliovirus (85, 140, 192).  Culturing these cells is straightforward, however, viral propagation 

adds another level of complexity.  Critical cell culture considerations are half life of the virus in 

different culture media and relative stability for long term storage.  Studies investigating pH and 

heat sensitivity have outlined important parameters for culture conditions for HSV-1 production 

(134).  Additionally, multiplicity of infection, serum content, and culture confluency at time of 

infection can drastically alter the efficiency of production.  All of these parameters need to be 

optimized to realize scaleable manufacturing methods to transfer technology from bench scale to 

the clinic.     

1.3.1.1 Complementing Cell Lines 

Since most therapeutic viral vectors are missing essential gene functions, complementing 

cell lines need to be generated to provide these functions in trans.  The tissue type used to 

construct these lines is an important parameter for consideration since the FDA imposes strict 

requirements on the acceptable cell lines used for production of biologics.  The most common 

cell types are chinese hamster ovary (CHO), human epithelial cells, PERC6, and Vero cells.  

These cells while, not all continuous, should be free of adventitious agents and non-tumorogenic.  

This last restriction has severely limited production since most tumor lines are able to support 

viral growth to higher titers than normal cell lines.  As well, the limited passage of primary tissue 

makes cell line development difficult.  The more common Vero cells are routinely used since 

they grow continuously while their immortalization has not yet been characterized.   
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The complementing character of the cell line is crucial to propagation of the replication 

defective vector.  Stable complementing cell lines are routinely generated by transfection with a 

plasmid that contains the gene of interest with a drug selectable marker.  The lines then are 

selected by clonal isolation and tested for viral production capacity.  The promoter driving the 

expression of the viral gene is also crucial since uncontrolled expression of the cytotoxic gene 

would normally negate selection.  This promoter must be responsive to infection and be selective 

for the incoming virus.  Since most DNA viruses express their genes in a cascade regulation this 

gene or set of genes are normally of the immediate early class that preclude viral DNA 

replication.  The stability of the complementing cell lines are routinely tested by drug resistance 

as the passage number grows and it has been observed that the complementing activity drops as 

the cell are cultured to higher passages (133). 

1.3.1.2 Cell Culture Configurations 

The type of cell culture configuration can drastically alter the economy of viral vector 

manufacture.  Most common cell culture systems are T-flasks with cells grown in monolayers.  

This configuration however is limited by difficulty in realizing the surface area requirement to 

grow a large scale culture.  Considerable effort is required to culture multiple T-flasks to achieve 

the surface are required to reach manufacturing scale.  Additionally, contamination can easily 

occur as the number of required flasks grows demonstrating this strategy is not efficient for large 

scale cell culture.  An alternative is the use of Nunc cell factories that are monolayers assembled 

in sheets of polystyrene contained in a single unit with one air vent.  While this configuration 

eases the burden of subculturing multiple flasks, inefficient CO2 exchange limits the viability, 

and therefore productivity, of the cells. 

Bioreactor culture remains the choice of most large scale operations due to ease of use 

and limited opportunity for contamination.  For most suspension culture, cell passage is routine 
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while anchorage dependent cell lines require microcarriers to supply substrate for growth.  

Cytodex-1 and Cytodex-3 beads have been shown to support growth of Vero cells in suspension 

as well as production of vaccines and viral vectors (147, 182, 194).   These beads are crosslinked 

dextran with diethylamino ethyl groups that can adhere cells through positive charge interactions 

with the outer cell membrane.  Fibracell disks are an alternative system that relies on the use of 

polyester and polystyrene non-woven fibers that can adhere cells through hydrophobic 

interactions with the outer cellular membrane.  While both microcarrier culture systems support 

growth of anchorage dependent cells in suspension, Fibracell disks rely on the use of perfusion 

culture to deliver nutrients.  The main disadvantage of this system is entrainment that occurs 

when cells adhere to the fibers which has been validated through crystal violet staining.  More 

importantly, virus produced from the cells is also detained within the disks.  For large scale 

manufacture of HSV-1 based viral vectors Cytodex beads remain the state of the art for culture 

configuration.  In this system air is either sparged in through a downcomer or through the 

headspace.  The bubbles that arise from sparged air can lead to reduced cell viability due to 

bursting within the cell monolayer on the microcarriers.  Distributor design has led to decreased 

bubble size that overcome this limitation, however, accurate monitoring of dissolved oxygen 

within large scale systems remains a limitation to development of this cell culture configuration 

due to low specific oxygen uptake rates of the cells, sensitivity of the cells to dissolved oxygen, 

and the kinetics of the response to controlled dissolved oxygen (57, 132, 148).  With advances in 

the areas of membrane detectors and tighter control these issues will become neglible in the 

future for production cell based biologics. 
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1.3.2 Purification of HSV-1 Vectors 

HSV-1 vectors have been routinely purified through a variety of methods which include high 

speed centrifugation, sucrose gradient, and column chromatography.  These methods are 

designed to purify the virus from contaminating host cell protein and DNA with advantages for 

each in regards to efficiency, cost, and scalability.  The purification step represents the most 

active area of research since stringent requirements have been set by the FDA for recombinant 

biologics approved for use in humans. 

The harvest step of virus consists of collecting cellular debris and supernatant once the culture 

has reached 80-100% cytopathic effect (CPE).  This morphology is usually characterized by 

cellular membrane blebbing, rounding up of the cells, and detachment from the monolayer.  At 

this point, the cells and supernatant are collected by scraping the remaining cells and salt treating 

the debris with a moderate concentration (0.45 M) of NaCl to compete off any bound virus to the 

cellular receptors or intracellular organelles.  For most HSV-1 viral vectors there will be a 

significant fraction remaining within the cellular pellet.  As the vector becomes more deleted, the 

ratio retained within the cells is increased due to inefficient complementation during 

propagation.  Triple mutants that are devoid of essential functions ICP4, ICP0, and ICP27 are 

particularly attenuated for growth and therefore require extensive processing of the pelleted 

cellular debris while double mutants missing only ICP4 and ICP27 are not as stringent in this 

requirement.  This harvest step includes sequential salt treatment, freeze thawing, and sonication 

to release cellular bound virions. 

Upon harvest, the virions are further purified through step wise filtration through sequentially 

smaller pore size filters.  However, as the filter size approaches the diameter of the virus (0.22 
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um) significant losses can occur so larger (1.2, 0.8 and 0.45 um) filters are routinely used to 

prefilter the virus before either centrifugation or column chromatography.  Since these methods 

are not amenable to large scale purification other techniques have been employed to clarify cell 

debris.   Our lab has developed tangential flow flow filtration as a method to take advantage of 

size separation for separation of virus from cellular contaminants.  DNA contamination remains 

a challenge due to the fact that it can adhere to the viral membrane.  Steps taken to remove 

include detergent and benzonase treatment.  However, these protocols are far from optimized 

since benzonase removal can complicate the harvest by contributing to the contaminating 

nonviral protein content.         

1.3.2.1 Centrifugation 

Pre polishing steps are necessary to remove large cellular debris that remains upon 

filtration.  Traditionally, this is carried through gradient centrifugation either through sucrose or 

cesium chloride (126, 127).  While these purification steps yield relatively high purity genome 

containing virions, their adaptation to large scale is limited.  Therefore, centrifugation remains a 

common intermediate step in viral vector purification.  High speed centrifugation can achieve 

concentrated stocks however aggregation and cosedimented protein complicate this process.      

1.3.2.2 Ion Exchange Chromatography 

Vigorous purification methods that can separate genome containing vectors which are 

adaptable to large scale remain critical to advancing gene therapy vectors into clinic.  Strict FDA 

requirements for vector purity and concentration have resulted in numerous investigations into 

optimal separation technologies.  These include immunoaffinity, membrane adsorption, ion 

exchange, and molecular imprinting.   Ion exchange chromatography represents a scalable robust 

method for purifying proteins as well as viral vectors.  This strategy relies on electrostatic 
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charge-charge interactions to separate molecules of interest.  Salt, usually in the form of NaCl, is 

loaded onto the column and the appropriate ion binds to the resin.  By exchanging either a cation 

such as sodium or an anion such as the chloride ion, the virus can adsorb to the column matrix.  

These matrices usually consist of crosslinked agarose with functional moieties covalently linked 

to impart charge specificity.  The crosslinked matrix has an added advantage of acting as a 

molecular sieve separating small molecular mass proteins while allowing the virus to pass 

through or bind to the functional groups.  These functional groups are normally represented as a 

strong or weak ion exchanger.  Strong cation exchangers consist of negatively charged 

sulfopropyl (SP) functional groups while strong anion exchangers are usually a positively 

charged quarternary amine (Q).    Loading conditions such as pH, salt composition, and flow rate 

dictate the capture efficiency of the target molecule.  In the case of virus purification, in 

particular enveloped virions such as HSV-1, the glycoprotein layer can be targeted to the matrix 

by altering the electrostatic interactions through ionic strength and proton concentration of the 

load material.  The salt concentration will also alter the viscosity of the loading material which 

can affect the hydrodynamic properties of the virus as it binds to the column.  Furthermore, mass 

transfer effects must be considered as the flow rate will affect contact time as well as the shear 

rate the virus experiences as it traverses the interstitial space of the packed column.  All of these 

parameters are critical to optimizing the purification process and the biophysical properties of the 

virus must be considered to achieve optimal purity while maintaining scalability. 
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2.0  MATERIALS AND METHODS 

2.1 VIRUSES AND CELLS 

All viruses are based on the KOS strain of HSV-1.  Nurel P is a double IE mutant missing ICP27 

and both copies of ICP4 originating from the d120 vector (38, 111).  The promoter of ICP22 has 

been deleted of the VP16 responsive TAATGARAT motifs rendering its expression profile 

under the beta regime of HSV-1 temporal cascade (151).  This mutation also removes the 

immediate early toxicity associated with ICP22 in that it can stabilize the transcript processing of 

the toxic IE ICP0 gene (22).  Additionally, the TNF-α gene driven by the HCMV promoter 

resides in the UL41 (virion host shutoff gene) locus along with the rat connexin 43 cDNA driven 

by the ICP0 promoter and the enkephalin gene in the ICP4 locus (128).  This vector is 

propagated on 7B cells which are Vero cells that  contain the ICP4 and ICP27 genes on a single 

transcript driven by their own natural promoters (105).  The JDTOZHE vector (provided by 

David Krisky) is a progeny of TOZHE (93) which is devoid of the IE genes ICP22, ICP27, and 

both copies of ICP4.  The UL41 locus has been replaced by the LacZ coding sequence driven by 

the ICP0 promoter.  One genomic copy of the joint region spanning UL54 to US2 of the KOS 

backbone comprising 15 kb is also missing in JDTOZHE constraining the genomic configuration 

in a single isoform as opposed to the four equimolar inversion isoforms during normal infection.  

The EGFP transgene is driven by the HCMV promoter and with the SV40 polyA in both of the 

ICP4 loci.  JDTOZHE can be propagated on ICP4 and ICP27 complementing cell lines with 

different efficiencies relative to the complementation profile of ICP4.  Our laboratory uses three 

 27 



different ICP4 and ICP27 complementing cell lines (7b, 433, and Q5) to propagate triple mutants 

depending on the backbone.  433 cells are a progeny of N23 cells transfected with the 4BLA 

plasmid. QOZ22REH1 (provided by David Krisky) is a quadruple mutant vector missing all IE 

gene functions with the HCMV promoter controlled expression of EGFP in the ICP0 locus 

flanked by the SV40 polyA.  The UL41 locus contains the LacZ transgene cassette driven by the 

ICP0 promoter.  In addition, the ICP22 promoter controls expression of the dsRED2 gene at the 

ICP22 locus replacing this gene.  JDQOZEH1 (provided by David Krisky) is another quadruple 

mutant that is a progeny of JDTOZHE that is missing both copies of ICP0 and the HCMV driven 

EGFP cassette in the ICP0 locus.  Both QOZ22REH1 and JDQOZEH1 require ICP4 and ICP27 

to replicate in cell culture.  In addition, ICP0 is also required since the vector backbone is 

severely deficient for essential IE gene functions.  The Q backbone of the KOS virus is routinely 

propagated in our laboratory with 01 cells that are progeny of N23 cells that house the ICP4 gene 

driven by the ICP0 promoter and the ICP0 gene driven by the ICP4 promoter.  All cell lines are 

propagated in Dulbecco’s Modified Eagle’s Medium (DMEM, Life Technologies, Inc. 

Gaithersburg, MD) supplemented with 10% fetal bovine serum (FBS Atlanta Biologics, Atlanta, 

GA), 100 U/ml penicillin/streptomycin, and 2mM glutamine (Invitrogen Corporation, Carlsbad, 

CA) at 37°C in 5% CO2 humidified air.  Q5 cell lines were created by transfecting N23 cells with 

a plasmid containing the ICP0 promoter driving ICP4 and ring isolated after passage in 50 ug/ml 

Blasticidin S HCL (Sigma-Aldrich, St. Louis, MO).  01 cells were constructed by transfecting 

Q5 cells with a plasmid bearing the ICP0 gene driven by the ICP4 promoter and ring isolated 

with 20 ug/ml of Hygromycin (Sigma-Aldrich, St. Louis, MO). 
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2.2 CONSTRUCTION OF IE GENE EXPRESSION PLASMIDS 

The plasmid (4BLA provided by David Krisky) bearing the ICP4 coding sequence driven by the 

ICP4 promoter (SphI (131733)to DdeI (126765) of KOS) used to construct the ICP4/ICP27 

complementing cell line (433) was used to subclone a plasmid devoid of the ICP4 promoter by a 

Sal I digestion which gave a 500 bp  and a 4.5 kb fragment.  This 4.5 kb fragment was gel 

isolated via the Geneclean kit (QBIOgene, Morgan Irvine, CA), blunted via Klenow enzyme 

(New England  Biolabs, Ipswitch, MA), HindII linker ligation, and transformed into GC5 

(GeneChoice, Inc. Gaithersburg, MD) competent E.Coli to create plasmid 4BLA-H.  Plasmid 

pUC19 (New England Biolabs, Ipswitch, MA) was digested with PstI and treated with T4 DNA 

polymerase to remove 3’ overhangs to create pUC19-P.  The full ICP0 promoter was subcloned 

by NcoI digestion of the full ICP0 plasmid 28.4 (provided by Ying Jiang), blunted via Klenow, 

and gel isolated resulting in a 1.7 kb fragment containing the full ICP0 promoter.   The 1.7 kb 

fragment was ligated into the blunted PstI site of plasmid pUC19-P to create plasmid pUC19-O.  

Plasmid pUC19-O was digested with XbaI, blunted via Klenow, and HindIII linker ligation to 

create pUC19-O-H.  Plasmid pUC19-O-H was digested with HindIII and gel extracted to isolate 

the ICP0 promoter flanked by HindIII sites as a 1.7 kb fragment.  This 1.7 kb fragment was then 

ligated into HindIII digested 4BLA-4 via the rapid ligation kit (Roche Diagnostics, Mannheim, 

Germany) to create plasmid S0-7 which has the ICP0 promoter driving ICP4 with the 

mammalian selectable marker blasticidin.  This plasmid was then amplified in GC5 competent 

cells under ampicillin 10 ug/ml (Sigma Aldrich St. Louis, MO) selection. 
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Plasmid HXSc5 (provided by David Krisky) is a sublcone of pREP4 (Invitrogen, 

Carlsbad, CA) with the following modifications: the SacII-BamHI fragment of the ICP4 

promoter from plasmid 4BLA driving the ICP0 coding sequence from the ATG to the HpaI site 

and a EcoRV to ClaI deletion to remove the EBNA-1 gene.  The HpaI site was blunted and 

changed to BglII via linker ligation.  The ICP4 promoter construct driving ICP0 resides as a 

PmeI to XbaI 3 kb fragment. 

2.3 QUANTITATIVE REAL TIME PCR 

RNA was harvested from infected monolayers by first washing the cells twice in fresh 

PBS and subsequently scraping the cells into a lysis buffer provided in the Qiagen RNEasy kit.  

Cells were homogenized using Qiashredder columns and subject to RNA purification according 

to the manufacturers instructions.  cDNA was generated by first annealing random hexamer 

primers (Roche) to RNA eluted from the Qiagen columns.  Reverse transcription was then 

carried out in the presence of 10mM dNTPs and 1 Unit of SuperScript III reverse transcriptase 

(Invitrogen) at 50°C for 50 minutes.  Reverse transcription reactions were heat inactivated at 

75°C for 15 minutes and kept at -20°C for long term storage. Quantitative PCR reactions were 

performed through the use of an ABI PRISM 7700 Sequence Detection System (Applied 

Biosystems).  The double differential method is used to calculate the amount relative to both an 

endogenous gene (18s) and a calibrator (plasmid containing the coding sequence) where ΔΔCT is 

(CT sample – CT 18s) – (CT background – CTcalibrator).  CTbackground is obtained from an RNA sample 

without reverse transcription.  The calibrator plasmid also serves as a control from assay to 

assay.  Primer and probe sequences for HSV-1 and cellular genes are as follows: ICP4 Forward 

Primer: GGTGGCTCCAGAACCCG, ICP4 Reverse Primer: AAGGAGCTGCTGTTGCGC, 
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ICP4 Probe: CAGGCCTGCTTCCGGATCTCGG, ICPO Forward Primer: 

AACGCCAAGCTGGTGTACCT,   ICP0 Reverse Primer: TCACGATCGGGATGGTGC, ICP0 

Probe: TGACGCCCAGCGGGTCGTTC, ICP27 Forward Primer: 

TTGATATGCTAATTGACCTCGGC, ICP27 Reverse Primer: ATTCCAGGTCGTCGCGG, 

ICP27 Probe: TGGACCTCTCCGACAGCGATCTGG, TK Forward Primer: UL1 Forward 

Primer: GGGTTTTTTGGAGGACTTGAGTT, UL1 Reverse Primer: 

CAAGCGCGTTTCTGTTTCC, UL1 Probe: CCCCGCGTTTCCTGCCAACA, gD Forward 

Primer: CCCCGCTGGAACTACTATGACA, gD Reverse Primer: 

GCATCAGGAACCCCAGGTT, gD Probe: CTTCAGCGCCGTCAGCGAGGA, 18s Forward 

Primer: CCCGAAGCGTTTACTTTGAAA, 18s Reverse Primer: 

CCTCAGTTCCGAAAACCAACA, 18s Probe: CGCCTGGATACCGCAGCTAGGAATAAT.    

  

2.4  PROTEIN EXPRESSION ASSAY 

Infected monolayers were rinsed twice with fresh 1X PBS and overlayed with RIPA 

Lysis Buffer (150 mM NaCl, 10 mM Tris, pH 7.2, 0.1% SDS, 1.0% Triton X-100, 1.0% 

Deoxycholate, 5 mM EDTA, 1X Protease Inhibitors (Sigma Aldrich, St. Louis, MO) at 5.5 

uL/cm2.  Collected cell lysate was incubated at 5°C for 15 minutes vortexing every 5 minutes.  

Cell lysate was collected by centrifuging at 10,000 rpm for 10 minutes and collecting the 

supernatant.  Protein concentrations were determined by BioRad BSA kit and the lysates stored 

in aliquots at -20°C if not used immediately.  Equal amounts of protein were boiled for 15 min in 

NuPAGE LDS Sample Buffer (106mM Tris HCL, 141 mM Tris Base, 2% LDS, 10% Glycerol, 

0.51 mM EDTA, 0.22 mM SERVA Blue G250, 0.175 mM Phenol Red) and subjected to 
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resolution by NuPage precast Bis Tris polyacrylimide (4-12%) gels at 100 V run in MOPS SDS 

Running Buffer (50mM MOPS, 50 mM Tris Base, 0.1% SDS, 1mM EDTA).  Resolved proteins 

were transferred to a PVDF membrane using the XCell Blot Module at 22 V for 1.5 hours in 

NuPAGE Transfer Buffer (25 mM Bicine, 25mM Bis Tris (free base), 1mM EDTA).  

Membranes were blocked in 1X PBS containing 6% FBS and incubated overnight with primary 

antibody concentrations (1/1000 ICP27, ICP4, and ICP0 (Fitzgerald, Concord, MA), 1/1000 VP5 

(Virusys Corporation, Sykesville, MD), 1/1000 ICP22 (kind gift from P. Schaffer), gB (gift from 

W. Goins)) at 5°C.  Membranes were washed three times for 15 minutes each in 1X PBS and 

incubated with secondary antibodies (anti-mouse HRP (ICP4), anti-rabbit HRP (ICP0), anti-

mouse alkaline phosphatase (VP5) at 1/1000 concentration or anti-rabbit alkaline phosphatase 

(ICP22 and gB) in 6% FBS in 1X PBS (ICP4 and ICP0) or 1X TBS (VP5, ICP27, ICP22, and 

gB).  Bands were developed by either NBT/BCIP (VP5, ICP27, ICP22, or gB) or horseradish 

peroxidase (ICP4 and ICP0).  Goat anti-SAG (Everest Biotech, Oxfordshire, UK) was used at a 

primary concentration of 1/100 and developed via anti-goat HRP at 1/750.  A prestained 

molecular  marker (Biorad Laboratories, Hercules, CA) was used to match molecular weights. 

 

2.5 VIRAL GROWTH AND CELL GROWTH ANALYSIS 

Complementing cell lines were assayed for growth by trypan blue exclusion dye at selected times 

post seeding in tissue culture flasks or well plates.  Viral propagation was carried out by seeing 

cells at subconfluency in either tissue culture flasks or well plates in accordance with the 

experiment.  For large scale propagation T-150 flasks were seeded with 13E6 cells and infected 

at an MOI of 1 to 0.01 one day post seeding.  For each T-150, 2 ml of virus was incubated at 
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37°C and agitated by rotating the flask every 15 minutes to distribute the virus along the 

monolayer.  10 ml of growth medium was then added to the flask and at 24 HPI the flask was 

moved to 33°C.   JDTOZHE was propagated on Q5 (0d4) cells, Nurel P was grown on 433 (4d4) 

cells, JDQOZEH1 and QOZ22REH1 were grown on 01 and 0440 cells respectively.  JDTOZHE, 

JDQOZEH1, and QOZ22REH1 were grown at an initial MOI of 1 and media was supplemented 

at 400 nM Trichostatin A (91).  Nurel P was grown on complementing cells at an initial MOI of 

0.01.  As CPE approached 100% cells and virus were harvested and treated with 0.45 M (final 

concentration) NaCl to release cellular associated virus.  Salt treatment was carried out by 

rotating cells on a LabQuake rotary shaker (Becton Dickinson, San Diego, CA) for 45 minutes at 

room temperature.  Once in 0.45 M NaCl the virus can be stored for up to a month at 5°C before 

further purification.  As needed the virus stock can either undergo high speed centrifugation or 

ion exchange chromatography.  Prior to either treatment, the virus stock is clarified by passing 

through a 0.8 micron bottle top filter (VWR, West Chester, PA) under house vacuum.  High 

speed centrifugation is carried out in a Sorvall S100 Rotor (Thermo Fisher, Scientific, Pittsburgh, 

PA) at 20,000 rpm at 5°C for 30 minutes in Oakridge tubes (Nalgene, Rochester, NY).  Pelleted 

virus is gradually reconstituted by incubation in PBS overnight at 5°C before vortexing to 

resuspend.    

2.6 VIRAL TITRATION 

Titers of viral stocks were carried out on appropriate complementing cell lines by serial dilution 

of virus into culture media and subsequent infection on 0.8E6 cells per well in 35 mm plates.  

Cells were rotated in a rotisserie manner on a LabQuake rotary shaker at 37°C for one hour 

before plating in 6 well plates.  One day post seeding infected cells, media was removed and 
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replaced with DMEM containing 1.25% methyl cellulose to prevent secondary spread of virus 

while moving plates for viewing the progression of infection as evidenced by cytopathic effect 

(CPE).  Titration of virus was quantified by counting plaque forming units (PFU) by removing 

media when CPE was verified by confocal microscopy and staining with Crystal Violet (2 

mg/ml) in a 50:50 mixture of methanol and deionized water.  One day post staining, the wells 

were washed out with water and plaques counted. 

 

2.7 ION EXCHANGE PURIFICATION 

Viruses used in all experiments were purified via ion exchange.  Virus stocks either stored at 5°C 

in 0.45 M NaCl or resuspended pelleted virus were delivered to either a prepacked HiTrap SP  

(cation exchange) or Q (anion exchange) column (GE Lifesciences, Piscataway, NJ) via a P1 

peristaltic pump (GE Lifesciences, Piscataway, NJ) at 0.3 ml/min.  The columns were 

conditioned before virus loading by washing out the manufacturer’s storage material (70% 

ethanol) with 5 column volumes of 0.22 filter-sterilized deionized water.  Columns were 

sterilized by contacting with 0.5 N NaOH for 1 hour at 0.3 ml/min.  Upon sterilization, NaOH 

was washed out with 5 column volumes of 0.22 filter-sterilized 1X PBS pH = 7.0.  5 column 

volumes of 1 M NaCl in 1X PBS pH = 7.0 was then passed through the column at 0.3 ml/min to 

charge the column with the exchange ion (Na+ for SP and Cl- for Q).  Excess NaCl was washed 

out of the columns with 5 column volumes of 1X PBS pH = 7.0.  Upon virus loading the flow 

through was collected and labeled “Load”.  Unbound virus was then washed out with 5 column 

volumes of 1X PBS pH = 7.0 and this fraction was collected and labeled “Flow Through”.  

Bound virus was eluted with 0.22 filter-sterilized 0.45 M NaCl in water.  Fractions were 
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collected manually in 1.5 ml eppendorf tubes at 0.5 ml per fraction.  Upon collection of 13 

column volumes, each fraction was diluted 1/10 in 1X PBS pH = 7.0 and assayed for protein and 

DNA content by UV spectrophotometry (Perkin Elmer, Waltham, MA).  Fractions with the 

highest 260 absorbance were pooled and resuspended in glycerol 10% v/v final concentration 

and stored at -80°C in cryovials (Corning Life Sciences, Lowell, MA). 
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3.0  DEVELOPMENT OF EFFICIENT COMPLEMENTING CELL LINES  

Herpes Simplex Virus Type 1 is a promising vector for gene therapy applications for a variety of 

reasons.  Large scale propagation of this vector is critical for clinic application.  To provide high 

titer virus requires efficient cell line substrates that can stably provide missing gene functions in 

trans with the appropriate timing.  Replication defective HSV-1 vectors require specialized cell 

lines for propagation.  The replication defective genetic backbone is widely varied depending on 

end application and certain gene products must be supplied in adequate level with appropriate 

kinetics.  These cell lines must also adhere to current FDA guidelines if the vectors are to be 

clinical grade.  Ideally, these cell lines also provide the cytotoxic gene products only in the 

context of infection so as to avoid cell death under normal cell growth conditions.  These genes 

should also lack any homology with the input virus to escape recombination events that could 

lead to replication competent virus (RCV).   An efficient complementing cell line is described 

that provides the IE HSV-1 genes ICP4 and ICP27.  The ICP0 promoter was chosen to drive the 

major transactivator ICP4 in an effort to provide higher levels and faster kinetics of expression.  

Quantitative PCR and western blotting reveals a better complementation profile with respect to 

ICP4 under control of the ICP0 promoter in the context of Vero cells infected with JDTOZHE as 

compared to its natural promoter.  Furthermore, the viral yields of the JDTOZHE vector were 

increased by an order of magnitude as assayed by plaque forming units as well as genomic copy 

number.  By optimizing this complementing cell line, we have created a reagent to propagate 

highly defective HSV-1 vectors.  A progeny of this cell line is also described that can be used to 
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propagate HSV-1 mutants that are devoid of all IE functions.  This cell line has the ICP0 gene 

driven by the ICP4 promoter in addition to ICP4 driven by the ICP0 promoter and ICP27 driven 

by its natural promoter.  This cell line provides a further 10-fold improvement in yields with 

respect to triple HSV-1 mutants but remains the only substrate that can be used to propagate 

quadruple mutants without rescue in our lab.    

 

3.1 INTRODUCTION 

Herpes Simplex Virus type 1 (HSV-1) is a 152 kb double stranded DNA virus in which humans 

are the natural host. This virus has been extensively developed for gene therapy applications 

related to diseases of the central and peripheral nervous system. HSV-1 infects a variety of cell 

types with high efficiency such that single vector particles can deliver and express transgenes in 

infected cells.  The principal utility of HSV-1 vectors is the treatment of diseases of the nervous 

system (72, 160).  This is based on the ability to engineer viruses that establish long-term 

persistence in neurons without neuronal damage or the induction of harmful immune responses. 

HSV-1 can persist in the host in a quiescent state referred to as latency and indeed the majority of 

the population are infected with latent virus. Neurons comprising peripheral ganglia are the 

natural sight for HSV-1 latency and virus persistence can be established without replication. Thus 

the removal of virus genes that prevent reactivation from the latent state circumvents spread to 

other individuals and provides an ideal platform for local expression of therapeutic genes in 

absence of viral lytic functions. The vector can be delivered to peripheral sensory neurons by 

simple inoculation of the skin where nerve terminals take up the vector with subsequent transport 

to the nerve cell body in a retrograde manner (56, 99).  Selection of the dermatome for 
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inoculation thus serves a means of vector targeting to specific ganglia without spread to other 

tissues. Transgene expression can be transient lasting for weeks or long-term lasting for many 

months depending on the promoter system used for transgene expression.  Of particular interest is 

the natural viral latency promoter which can express the viral latency transcript for many years 

and can be similarly exploited for transgene expression (9).  Preclinical studies have shown that 

HSV-1 vectors are effective in the treatment of animal models of glioblastoma (64, 71), spinal 

cord injury (101), chronic pain (68), and peripheral neuropathies (24, 114)  For patient 

applications involving the use of highly defective HSV-1 vectors, it is essential to develop 

scalable manufacturing processes that provide high titer, purified vectors without contamination 

by replication competent virus.  

      Natural HSV-1 infection proceeds in a coordinated fashion which is regulated at the 

gene expression level temporally in three distinct classes (12).  The first class of genes, termed 

Immediate Early (IE), comprise the necessary functions for efficient initiation of the infection 

cycle and proper timing and level of expression of the remaining viral functions. The IE gene 

promoters contain one or more copties of  an enhancer sequence that is recognized by a viral 

structural component termed VP16 which together with several cellular transcription factors 

specifically activates expression of the IE genes in the absence of any viral protein synthesis. Two 

of the IE genes, ICP4 and ICP27, are essential for expression of the virus lytic gene program 

while two additional IE genes, ICP0 and ICP22, are not absolutely required for virus growth but 

increase the efficiency of virus replication through the control of cell cycle genes and innate 

immune responses. ICP4 is the major transactivator encoded by the virus which has roles in DNA 

binding as well as repression of IE transcription(7, 8, 15, 23, 27).  ICP27 has been implicated in 

RNA transport and overall inhibition of mRNA splicing (25, 26, 28).  These genes sequentially 

activate the expression of the early (E) class of genes which support viral DNA synthesis and the 

late (L) class of genes that encode the viral structural proteins.  Efforts over the past decade have 
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shown that removal of the immediate early genes ICP4 and ICP27 render the virus completely 

replication defective (16).  Large scale production of this type of vector requires the use of 

complementing cells that provide ICP4 and ICP27 in trans to permit vector replication. The 

further elimination of additional IE genes and other nonessential functions provides vectors that 

are increasingly inert. However, the production of these vectors is more difficult and less efficient 

(21, 22).  Since the ICP4 and ICP0 genes are found in repeat elements surrounding the unique 

components of the virus genome, these genes are diploid in the natural virus. The repeat elements 

allow for recombination to take place which results in isomerization of the unique long and short 

sequences of the virus genome.  This can pose difficulties in modifying genes in the repeat 

elements and thus removal of one copy of each of the repeats  will stabilize the genome into a 

specific form, provide more space for insertion of foreign DNA sequences, and prevent repair 

events.  

     In this study we evaluated the role of complementing gene promoters in supporting vector 

production.  Vero cells engineered to express ICP4 and ICP27 differed greatly in their ability to 

support the growth of a highly compromised vector (JDTOZHE) which was deleted for ICP4, 

ICP27, ICP22 and the internal repeat elements separating the unique long and short components 

of the vector genome. The results indicate that the use of the enriched copy number of the VP16 

recognition motif found in the ICP0 promoter was useful for driving ICP4 expression in 

complementing cells following vector entry. These data support the conclusion that the timing 

and level of ICP4 expression is critical to high titer vector production.  Furthermore, experiments 

with different histone deacetylase inhibitors support the notion that genome de-repression through 

chromatin remodeling can lead to even more enhanced virus yields.  These studies highlight the 

dynamic nature of the host cell response and how these interactions can be exploited to improve 

vector growth. 
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3.2 RESULTS 

3.2.1 HSV-1 IE Complementing Cell Lines  

The choice of cell line is crucial for the translation of vector from bench to clinic.  We compared 

the productivity of different ICP4 and ICP27 complementing cell lines for the double mutant, 

Nurel P, which is missing both copies ICP4 and ICP27.  These cell lines are derived from the 

same parental ICP27 complementing cell line, N23.  A cell line constructed by stable 

transfection with a plasmid that contains the ICP0 promoter driving ICP4 was compared to a cell 

line with the ICP4 promoter driving ICP4 with respect to complementation over a 12 hour time 

course at an MOI of 3.  Cell lysates were collected (See chapter 2 materials and methods for 

details) and assayed by western blot for ICP4.  The ICP0 promoter allowed faster expression 

kinetics of ICP4 over the 12 hour time course during infection with Nurel P (Figure 1).  It is 

important to note that during infection with this viral backbone the ICP0 gene is expressed from 

the virus with efficient kinetics.  This gene allows efficient expression of all viral gene products 

and while not essential provides a cellular environment that is highly permissive for infection. 
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Figure 1. ICP4 Complementation Profile for 0d4 vs 4d4 Cell Lines. 

109 and 433 cell lines were infected with Nurel P at an MOI of 3 and lysed at times 

 indicated (HPI).  The proteins were resolved on 4-12% SDS-PAGE gels, transferred to 

 PVDF membranes and blotted for ICP4.  All samples were normalized to input protein 

 concentration by the BioRad Protein Concentration Assay.  The lower mobility bands in 

 both blots represent nonspecific binding of the primary antibody. 

 

Nurel P growth was compared on both cell lines and revealed similar kinetics and productivity as 

shown in Figure 2.  These results are straightforward since the virus contains both copies of ICP0 

which can dramatically affect the infectious virus yield but also enhance the cytotoxicity (19, 

34).  
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Figure 2. Nurel P Production is equivalent from 433 and 109 Cell Lines.  

 109 and 433 cells were infected with Nurel P at an MOI of 0.1 and harvested at times post 

infection indicated. 

These data indicate that the earlier ICP4 expression was not as beneficial in the presence of ICP0  

delivered by the virus.  To test the strength of the ICP0 promoter a new cell line, Q5, was created 

in a similar manner to the 109 cell line with the full 2 kb ICP0 promoter driving the expression 

of the major transactivator ICP4.  Figure 3 shows the growth properties of another ICP4 and 

ICP27 mutant, E1G6, on the Q5 and 433 cell lines.  E1G6 differs from Nurel P in that the 

transgene in the ICP4 locus contains the EGFP gene driven by HCMV.  There were statistically 

significant differences between the growth phenotypes of E1G6 on the Q5 cell line suggesting 

that the full ICP0 promoter allowed even more efficient expression of ICP4 allowing the viral 

replication cascade to proceed with faster kinetics. 
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Figure 3. E1G6 Production on 433 and Q5 Cell lines.    

433 and Q5 cell lines were infected with E1G5 and harvested at times post infection indicated.  * 

P < 0.005, ** P < 0.01, *** P < 0.05 

To verify that the enhanced expression was indeed a result of faster ICP4 

complementation kinetics a time course was explored for ICP4 expression at 1-6 hours post 

infection with respect to transcript copy number.  Figure 4 suggests that the ICP0 promoter is 

more efficient in providing ICP4 transcript.  ICP27 and ICP0 RNA copy numbers are similar 

between the two cell lines indicating that these immediate early gene products may not be 

responsible for production differences between the two cell lines.  The ICP0 transcript data is 

straightforward since this gene is provided by the input virus and should therefore be similar 

between both infections.  Likewise, for ICP27, the same parental ICP27 cell line was used for 

construction of both cell lines so its kinetics of expression should be similar. 
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Figure 4. IE Gene Transcription from 433 and Q5 in E1G6 MOI = 0.1.   

433 and Q5 monolayers were infected with E1G6 at an MOI of 0.1 and harvested at times post 

infection indicated.  All copy numbers are normalized relative to 18s.  Mock refers to uninfected 

cells under normal cell culture conditions. 

 To validate that the ICP0 promoter is legitimately responsible for the transcript 

differences, a characterization of both cell lines was performed to assess the basal copy number.  

Total genomic DNA harvested by phenol chloroform extraction was subject to quantitative PCR 

similar to the data presented in Figure 4.  Figure 5 indicates that the basal copy number is similar 

between the two cell lines with respect to both HSV-1 IE genes integrated within the cellular 

genome.  From this point the cell line Q5 will be referred to as 0d4 and 433 cells as 4d4 to 

indicate the promoter driving ICP4. 
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Figure 5. Basal Copy Number of IE Genes within 0d4 and 4d4 Cell Lines.   

Phenol chloform extracted genomes were analyzed by quantitative PCR for ICP4 and ICP27 

normalized to total cell number.  4d4 represents the ICP4 promoter driving ICP4 cell line and 0d4 

represents the full ICP0 promoter driving ICP4. 

The higher copy number of ICP27 reflects the relative toxicity of the gene as more copies 

are able to be tolerated by the host Vero cells.  The equivalent copy number of the integrated 

ICP4 gene per cell suggests that the promoter activity is indeed responsible for the increased 

transcription and subsequent viral production from the 0d4 cell line. 

3.2.2 Growth of Joint Deleted Triple Virus 

The strength of these cell lines was tested against a poor growing vector JDTOZHE.  Figure 6 

shows the genetic structure of both the wild type KOS and the joint deleted triple mutant 

JDTOZHE. 

 45 



KOS

UL USLTR LTRITR ITR

ICP0 ICP4 ICP4ICP0 ICP27 ICP22

JDTOZHE

 

Figure 6. Genetic Backbone of KOS and JDTOZHE. 

 Map of wild type KOS and recombinant HSV-1 constructs.  Schematic of wild type KOS shows 

segmented genome with unique long (UL) and short (US) segments flanked by long and internal 

repeats (LTR and ITR respectively).  Immediate early genes ICP4, ICP27, ICP0, and ICP22 are 

highlighted at their natural loci. 

Figure 6 illustrates the genomic structures of wild-type HSV-1 KOS virus and the highly 

defective derivative JDTOZHE. JDTOZHE has a deletion of the ICP27 gene as well as a large 

deletion spanning the internal repeats between the unique long (UL) and short (US) regions of the 

genome and extending midway through the ICP22 coding sequence in US.  The repeat deletion 

removes one copy each of the ICP0 and ICP4 genes. The second copy of the ICP4 gene, located 

in the remaining US-flanking repeat (TRS), was replaced with the gene for enhanced green 

fluorescent protein (eGFP) controlled by the human cytomegalovirus (HCMV) major IE 

promoter. In addition, an ICP0 promoter-lacZ gene expression cassette is present in place of a 

portion of the UL41 locus.  Thus, JDTOZHE is deleted for all regulatory IE genes with the 

exception of a single copy of the ICP0 gene, and contains two reporter genes (eGFP and lacZ) 
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controlled by different promoters.  This vector requires complementation of the essential ICP4 

and ICP27 genes for growth. 

Complementing cells for JDTOZHE growth were derived from a previously constructed 

Vero cell line that expresses ICP27 from its own promoter following virus infection (105).  This 

cell line was transfected with plasmids containing a selectable gene (Blastidicin S) along with the 

ICP4 coding sequence under control of the ICP4 or ICP0 promoter. Drug-resistant colonies were 

cloned and one of each type, termed 4d4 and 0d4 respectively, were used as the primary lines for 

the studies described here. Using quantitative PCR, we have found that both lines contain 3-5 

copies of the ICP4 gene (Figure 5).  Cell lines were characterized for promoter activity by 

assessing induction of HSV-1 complementing gene transcription in the presence of UV-

inactivated virus.  Upon crosslinking of viral DNA, the virus is unable to replicate and, therefore, 

should provide the transactivating tegument protein VP16 to induce the expression of the 

embedded genes within the cellular chromosome.  Figure 7 shows that the UV-inactivation 

procedure was functional in blocking the expression of ICP4 transcript, determined by randomly 

primed reverse transcription followed by quantitative PCR, from the wildtype KOS on non-

complementing Vero cells at a multiplicity of infection (MOI) of 3 while normal KOS virus was 

able to amplify ICP4 transcript.  Infection with UV-inactivated JDTOZHE on 0d4 and 4d4 cell 

lines display differential activity up to an order of magnitude at 3 and 6 hpi (Figure 7B) 

highlighting the strength of this promoter in the context of VP16 induction.  
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Figure 7. UV-inactivated Virus Induces ICP4 from complementing Cell Lines.  

 A. Vero cells were infected with UV-crosslinked KOS at an MOI of 3 and harvested for RNA at 

times post infection indicated.  ICP4 copy number was obtained from quantitative PCR as 

described in the Methods chapter. 

 

The differential ICP4 induction with the UV-inactivated virus and the basal copy number (Figure 

5) supports the claim that the full ICP0 promoter is substantially more efficient in driving ICP4 

gene expression from the complementing cell line in the context of infection. 

3.2.2.1 Complementing activity of 4d4 cells.   

To determine the complementing efficiency of 4d4 cells for JDTOZHE virus growth, Vero and 

4d4 monolayers were infected with wild-type virus (HSV-1 KOS) and JDTOZHE, respectively, 

at an MOI of 0.01, the standard MOI used in our lab for virus production.  Total virus was 

collected from replicate wells on each of the first 5 days post-infection and titered on Vero or 

4d4 cells.  Virus was added to 1E6 cells in triplicate and seeded into 6 well plates.  Samples were 

collected at times indicated by scraping the monolayer with a cell scraper and incubating at room 

temperature with agitation in 0.45 M NaCl for 25 minutes.  After salt treatment, cell debris was 

spun down at 5,000 rpm for 5 minutes and sonicated for 30 seconds.  Cell debris was pelleted by 



centrifugation again at 5,000 rpm for 5 minutes and the supernatant was frozen at -80°C until 

titration was carried out on 0d4 cells (JDTOZHE on 4d4) or Vero cells (Kos on Vero).   The 

results (Figure 8) showed peak yields of KOS on days 2-5 at or above 1x108 plaque forming 

units (pfu)/ml while the yields of JDTOZHE peaked on day 2 at 1x105 pfu/ml and declined 

rapidly thereafter.  These results showed that complementation of the JDTOZHE growth defect 

by the integrated ICP4 and ICP27 genes of the 4d4 cell line was short-lived and insufficient for 

robust virus growth.  The limited yields of the mutant virus compared to KOS may not be 

surprising as the complementing genes in 4d4 cells, unlike their viral counterparts in the KOS 

genome, are not amplified during virus replication. Hence their expression is not expected to 

increase as a function of viral genome copy number, resulting in a ceiling that may be far lower 

than that reached when the genes replicate with the virus.  This ceiling, in turn, will limit early 

and late gene expression from newly synthesized viral genomes and consequently the formation 

of mature viral particles.  This interpretation supported the suggestion that the expression levels 

of the immediate early complementing genes in 4d4 cells were a key limiting factor in the 

growth complementation of JDTOZHE. 
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Figure 8.  JDTOZHE on 4d4 cells production levels versus KOS on non-complementing Veros 

Viral supernatant and cells were harvested and salt treated at times post infection indiated. 

P values were calculated using the 1 tailed students t test. * = P < 0.01, ** = P < 0.005, *** = P < 

0.001, **** = P < 1E-9. 

3.2.2.2 Expression of complementing viral genes in JDTOZHE-infected 4d4 cells.   

To explore the causes of the weak complementing activity of 4d4 cells, we examined the 

kinetics and levels of ICP4 and ICP27 gene expression induced by JDTOZHE infection.  4d4 cell 

monolayers were infected at an MOI of 3, total RNA harvested at 1, 3, and 6 hpi, and specific 

RNA levels determined by randomly primed reverse transcription followed by quantitative PCR.  

As a positive control, RNA from KOS-infected Vero cells was isolated and processed in the 

same manner.  Typical results normalized to 18S ribosomal RNA amplified from the same 

samples are presented in Figure 9.   
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Figure 9. The ICP0 promoter can deliver ICP4 gene under JDTOZHE infection at MOI = 3 with 

faster kinetics.   

A. ICP4 transcription from JDTOZHE at MOI = 3 at immediate early times post infection. B. 

ICP27 transcription from 0d4 and 4d4 cell lines during JDTOZHE MOI = 3 infection at 

immediate early times post infection.  RNA was harvested and assayed as described in materials 

and methods.  Error bars represent standard error between triplicate samples. 

 

Compared with mock infected cells, ICP4 transcript induction of two orders of magnitude 

indicate that the increase in copy number is due to infecting JDTOZHE.  Figure 9A shows that 

the ICP4 RNA level increased with slower kinetics in the 4d4 cell lines than in the control wild 

type samples, resulting in a greater than 25-fold differential at 6 hpi.  ICP27 RNA levels as 

assayed by quantitative PCR (Figure 9B) are reduced as compared to wild type but the 

differential is a half order of magnitude at a maximum with similar expression kinetics.  While 

the deletion of one copy of the ICP0 gene in JDTOZHE is likely a factor in the lower abundance 

of ICP4 RNA in the 4d4 samples, we do not know whether the reduced levels of ICP4 and ICP27 
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RNA play a role as well.  Overall, since the ICP4 RNA profile showed the greatest disparity 

between the experimental and control samples, these results suggested that insufficient ICP4 

production from the 4d4 genome could be the principal cause of the limited complementing 

efficiency of these cells for JDTOZHE growth. 

To determine whether the RNA measurements based on RT-PCR correlated with protein 

levels, Western blot analyses were performed for ICP4, ICP0, and the major capsid protein VP5 

encoded by the leaky-late UL19 gene.   
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Figure 10. Protein expression kinetics comparing the complementation induction of HSV-1 IE and 

Late gene expression.   

Proteins were collected and resolved on SDS-PAGE gels as described in Materials and Methods.  

A. ICP0 expression at 2-8 hours post infection . 0d4 and 4d4 cells were infected with JDTOZHE 

at MOI = 3.  Vero cells were infected with KOS at MOI = 3.  B. ICP4 expression time course for 

1-12 hours post infection.  C. VP5 expression from 12-20 hours post infection for JDTOZHE on 

0d4 and 4d4 cells.  Kos on Vero cells at MOI = 3 during 2-10 hours post infection. 
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Figure 10A shows that ICP0 accumulated with comparable kinetics in JDTOZHE-

infected 4d4 cells and KOS-infected Vero cells indicating that this immediate early protein was 

not rate limiting in the production discrepancy between JDTOZHE and KOS.  In contrast, ICP4 

appeared with dramatically delayed kinetics in the mutant-virus-infected cells (Figure 10B). 

Thus, compared to the single-copy ICP0 gene of the mutant virus, expression of the ICP4 genes 

integrated in the 4d4 genome was greatly impaired relative to infection with wild-type virus, 

consistent with the RT-PCR data. VP5 was detected as early as 6 hpi in KOS-infected Vero cells 

with increased abundance at 8 and 10 hpi (Figure 10C), whereas no signal was detected at these 

time points in JDTOZHE-infected 4d4 cells (data not shown). VP5 was first observed in infected 

4d4 cells at 12 hpi with a minimal increase in level at 16 hpi (Figure 10B).  Together, these 

analyses supported the suggestion that ineffective induction of primarily the integrated ICP4 

genes in 4d4 cells precluded robust early and late gene expression from the infecting JDTOZHE 

genome and thereby vigorous viral progeny production.  Given the reduced levels of ICP27 RNA 

and the documented effects of ICP27 on viral transcription, RNA processing and translation 

(157, 158), we do not discount the possibility that ICP27 deficiency also contributes to the 

growth defect of JDTOZHE on 4d4 cells. 

 

3.2.2.3 Complementing activity of 0d4 cells expressing ICP4 from the ICP0 promoter.   

In an attempt to gain better infection-dependent inducibility and expression of the ICP4 

gene in complementing cells, we tested the 0d4 line described earlier. Briefly, these cells were 

derived from the same ICP27-complementing line as 4d4 by transfection of an ICP0 promoter-

ICP4 gene construct and clonal isolation of drug-resistant colonies. We chose the complete ICP0 

promoter to control ICP4 expression because various lines of evidence suggested that this 
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promoter is significantly stronger than the ICP4 promoter (3, 42, 50), yet like the ICP4 promoter 

is essentially silent in uninfected cells. Additionally, the ICP0 promoter is downregulated by 

ICP4 (142), thus preventing run-away overexpression of ICP4 which could result in premature 

cell death or deregulation of the viral gene expression program. Figure 9 shows a comparison of 

ICP4 and ICP27 RNA levels detected in JDTOZHE-infected 0d4 cells (MOI=3) with 4d4 cells. 

The ICP27 (Figure 9B) RNA profiles were similar between the two infected cell lines albeit with 

slight reduction in comparison to wild type control KOS infections on Vero cells. Unlike the 

ICP27 transcription profile, ICP4 RNA levels were higher in 0d4 at all times investigated with 

substantial differentials at 6 hpi (Figure 9A).  Protein expression profiles in JDTOZHE-infected 

0d4 cells were examined by Western blot analyses, as before, and the results are included in 

Figure 10.  Comparison of the 4d4 and 0d4 profiles of ICP0, ICP4 and VP5 shows the 

improvement in expression due to higher transcription rates of ICP4.  While the kinetics of ICP0 

accumulation were similar between the two cell lines, ICP4 was observed 2h earlier in 0d4 cells 

than in 4d4 cells and reached significantly higher levels in 0d4 cells in the first 12 hpi (Figure 

10A).  Consistent with this result, VP5 levels were comparatively increased in 0d4 cells at 12-18 

hpi (Figure 10C); the protein was not detected in either line at or before 10 hpi (data not shown). 

ICP27 protein accumulation was similar between the wild type and JDTOZHE infected 

complementing cell lines (data not shown).  Together, these results showed that 0d4 cells 

provided better complementation of the defects in JDTOZHE gene expression than 4d4 cells and 

strongly suggested that this was due to better inducibility and greater peak activity of the 

promoter driving ICP4 expression in these cells. 

3.2.2.4 Virus yields on 0d4 cells  

To determine whether the increases in complementing viral gene expression observed in 

0d4 compared to 4d4 cells translated into better production of the defective JDTOZHE virus, 
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cells were infected at the standard production MOI of 0.01 and total virus collected daily from 

replicate wells over a 5-day period for titration on 0d4 cells.  Figure 11A shows that the yields on 

0d4 cells were some 5-15 fold higher on different days than the yields on 4d4 cells with three 

fold differences on a per cell basis (Figure 11B). 

         

JDTOZHE Production Time Course MOI = 0.01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1 2 3 4 5

Day Post Infection

PF
U

/m
l

4d4
0d4

P < 0.005
P < 0.05

JDTOZHE1 PFU per Cell
MOI = 0.01

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5

Day Post Infection

PF
U

/C
el

l

0d4
4d4

A. B.

 

Figure 11. JDTOZHE production is enhanced on ICP4 complementation from the ICP0 promoter 

versus the ICP4 promoter.  

Infections were carried out and harvested as described in Figure 2.  A. JDTOZHE production on a 

per volume basis.  B. JDTOZHE Production on a per cell basis. 

To validate these results, we used quantitative PCR for the UL1 gene to determine the number of 

genome copies in the samples of Figure 11A.  Figure 12 shows that the genome yields were up to 

two orders of magnitude higher on 0d4 cells than on 4d4 cells.  The results of these growth 

experiments are consistent with the interpretation that the earlier kinetics and higher levels of 

ICP4 expression observed in infected 0d4 cells compared to 4d4 cells provide better 

complementation of the JDTOZHE growth defect.  Further examination of Figure 11 shows that 

the PFU titers of the virus preparations from both cell lines fell after day 2 (Figure 11A) whereas 
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the genome yields generally continued to increase, resulting in a decline in PFU:genome ratios 

and thus the biological quality of the preparations after day 2. 
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Figure 12. JDTOZHE genome copy number accumulation is enhanced in cells with ICP4 

complementation driven by the ICP0 promoter as compared to the ICP4 promoter.   

Ul1 was assayed via qPCR from each sample in figure 6 as described in materials and methods. 

 

 

This may be due in part to virus instability at the production temperature (33oC) or high release 

of lactic acid from the cultured cells, but additional causes have not been excluded.  

Burst experiments were used to determine the virus production capacity per cell for the 

two cell lines.  These experiments were performed at an elevated MOI to accomplish direct 

infection of all cells.  By excluding virus production by cells that are secondarily infected 

through lateral spread, this design is better suited to detect direct correlations between gene 

expression and virus synthesis.  Infection at an MOI of 3 revealed that peak yields of JDTOZHE 

on 0d4 cells were higher than on 4d4 cells and were reached earlier (Figure 13A).  
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Figure 13. High MOI production reveals enhanced production levels and similar differences between 

cell lines as with low level infection.  A. Four day time course of MOI = 3 production of JDTOZHE 

on 4d4 vs 0d4 cell lines.  B. Data in part A cast as per cell basis.  **** = P < 1.7 E -6, *** = P < 

0.0005, ** = P < 0.005, * = P < 0.01  

 

 As illustrated in Fig. 13B, the differences in virus yields per cell ranged from 12-fold at 

1 day post infection to just over 4-fold at 4 days post infection.  These results are consistent with 

the earlier production and greater accumulation of ICP4 seen in infected 0d4 cells and thereby 

support the proposed cause-effect relationship between improved ICP4 expression and better 

JDTOZHE growth on 0d4 cells compared to 4d4 cells.  Furthermore, the normalized infection 

production data indicates that these cells are not only responsive to input virus in a dose 

dependent manner but the promoter strength differential is amplified at higher levels of infection. 
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3.2.3 Heterochromatin Reorganization Effect on Viral Production 

The growth phenotype of the triple mutant, JDTOZHE, was investigated in the presence of 

various concentrations of histone deacetylase (HDAC) inhibitors.  These compounds can alter 

the host chromatin state by binding in the active site of histone deacetylases leading to enhanced 

global transcriptional activity through lysine acetylation (96, 171).  Furthermore, use of HDAC 

inhibitors have been used to increase transgene expression from adenovirus and AAV (26, 131, 

178).   HDAC sodium butyrate enhanced viral yield of the highly replication defective vector 

JDTOZHE in a dose dependent manner (Figure 14). 
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Figure 14. Sodium Butyrate Enhances JDTOZHE Yields. 

0d4 cells infected with JDTOZHE exposed to Na Butyrate either 1 hour prior to infection or co 

administered with virus.  Infectious virus recovery at 72 HPI was assayed by titration on 0d4 cells. 
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JDTOZHE PFU per cell ratios were enhanced up to five fold with either co infection or 1 hour 

pre treatment with sodium butyrate at micromolar concentrations.   Trichostatin A was assessed 

in a similar manner and Figure 15 shows similar improvements at nanomolar concentrations. 
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Figure 15. TSA pretreatment leads to enhanced JDTOZHE production at submicromolar 

concentrations. 

0d4 cells infected with JDTOZHE exposed to Na Butyrate either 1 hour prior to infection or co 

administered with virus.  Infectious virus recovery at 72 HPI was assayed by titration on 0d4 

cells. 

 

Cells were co infected with each HDAC inhibitor or pretreated to investigate whether the cell 

state could be induced to a more permissive environment.  Statistically significant yields were 

obtained at all concentrations of both HDAC inhibitors regardless of the pretreatment or co 

infection regime.  However, TSA pretreatment revealed a subtle improvement in pretreatment at 

much lower concentrations than necessary for sodium butyrate.  The reduction in yield at higher 

concentrations is indicative of drug associated toxicity which is not seen in sodium butyrate.  
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FDA approval of sodium butyrate for use in humans suggests implementation of this production 

scheme will not be limited by safety. 

 

3.2.4   Growth and Expression of Quadruple Mutant Virus 

Viruses that are highly attenuated are attractive for therapy due to a lower toxicity profile.  These 

vectors are the most challenging to propagate due to the nature and complexity of the gene 

expression necessary to complement the multiple missing functions.  A quadruple mutant virus 

which is an offspring of JDTOZHE termed JDQOZEH1 is isogenic but devoid of both ICP0 loci 

replaced with the HCMV promoter driving EGFP cassette.  The genetic map of this virus is 

depicted in Figure 14. 

JDQOZHE

 

Figure 16. Genetic Map of JDQOZEH1 

JDQOZEH1 is an isogenic mutant of JDTOZHE.  The joint deleted quadruple version is devoid 

of ICP0, ICP27, ICP22, and ICP4 with the HCMV-EGFP cassette in the ICP0 locus. 

Construction of an ICP0, ICP27, and ICP4 complementing cell line was carried out to provide an 

efficient substrate for growth for this vector.  Normal ICP27 and ICP4 complementing cell lines 
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are insufficient to grow this vector due the highly crippled backbone.  This difficult growth 

phenotype is hypothesized to be due to lack of sufficient ICP0 expression as this gene can 

markedly affect growth at low input virus (19).  Alternatively, U2OS cells provide a function 

that can substitute for the ICP0 transactivating function (202).  However, since these 

osteosarcoma are not suitable for clinical applications they are not explored for use as a 

complementing cell line for gene therapy use.  Likewise, these cells are very permissive for gene 

expression for a wide variety of viruses therefore selecting a silent gene in this environment 

remains a challenge to cell line construction.  0d4 cells transfected with the ICP4 promoter 

driving ICP0 expression were selected with hygromycin as described in the methods chapter.  

These cells also provide ICP27 under its own promoter and ICP4 under the ICP0 promoter.  

Figure 17 shows the overall productivity from the 4d4, 0d4, and 01 cell lines with respect to 

transgene expression and cell morphology.  

0d4

JDQOZEH1JDTOZHE

01

4d4

 

Figure 17. Enhanced Complementation from 01 Cell Lines 

01, 0d4, and 4d4 cell lines infected with JDTOZHE and JDQOZEH1 at an MOI of 0.1 3 days 

post infection.   
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The presence of ICP0 from the 01 cells allows efficient transduction as evidenced by the overall 

level of EGFP from the JDQOZEH1 vector.  Additionally, this cell line grew the JDTOZHE 

vector more efficiently as shown by the higher percentage of cells with cytopathic effect at three 

days post infection.  The 0d4 line allowed moderate growth of JDQOZEH1 compared to the 4d4 

cells but the lack of ICP0 complementation did not allow sufficient transgene expression as 

suggested by the low levels of EGFP.  Figure 18 shows the productivity differentials for all three 

cell lines.  The 01 cell lines consistently yielded statistically significant yields of this highly 

defective vector suggesting that this cell line can be used to propagate further non-toxic versions 

of HSV-1 vectors.  Furthermore, this cell line has not yielded replication competent vectors as by 

testing on non-complementing Vero cells and PCR for the ICP0 region from 01 cells infected 

with a ICP0 mutant. 
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Figure 18. 01 cells can yield relatively high titer of highly defective HSV-1 backbones. 

4d4, 0d4, and 01 cells were infected with JDQOZEH1 at an MOI of 0.1 and harvested at times 

post infection.  * P < 0.05, ** P < 0.005 
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3.3 DISCUSSION 

In this chapter, the production of highly replication-defective HSV-1 vectors was 

addressed by characterizing the kinetics of RNA and protein expression from cell-based 

complementing genes for a highly mutated vector, JDTOZHE, compared to the expression of the 

same genes from the wild type virus genome.  Replication-defective vectors are useful for 

nontoxic delivery of therapeutic transgenes, but these viruses lack essential functions for 

autonomous propagation which must therefore be supplied in trans.  Constitutive cellular 

expression of these essential functions is cytotoxic, thus preventing the healthy growth and use 

of cell lines modified in this manner.  This problem has been overcome in the past by using 

inducible promoters that are responsive to viral infection, such as the HSV-1 IE promoters (152).  

On infection with the defective virus, these promoters ideally direct expression of the missing 

gene products with the same kinetics and to the same levels as in wild-type virus infections.  

However, since the complementing genes are provided by the cell, their numbers will not 

increase on infection, unlike their viral counterparts in wild-type virus infections which are 

amplified by viral genome replication.  Thus, it is likely that defective virus grown with the 

assistance of cell-based complementing genes will have a lower replication ceiling than wild-

type virus.  This provides a simple explanation for the common observation that complementing 

genes integrated in the host cell genome do not restore defective virus growth to the levels 
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achieved by wild-type virus.  Since this deficiency directly reflects limiting levels of the 

complementing gene products, designs to increase expression of the complementing genes will 

be beneficial.  However, the generation of such complementing cell lines remains a challenge 

due to the lack of control over the number of complementing genes that will integrate or their 

position in the cellular genome; both of these variables affect expression. While viral vector 

systems exist that do provide a degree of control over these parameters, these systems introduce 

additional genetic material into the cell which is undesirable.  Compounded with this drawback 

is the issue of complementation stability for the purposes of cell banking for large scale 

production.  Additionally, as pointed out in this work, the complementation efficiency can 

drastically alter the production of replication defective vectors which becomes more critical as 

the vector needs more gene products to be supplied in trans. 

Vector backbone will also effect vector yields as more essential viral functions are 

removed growth phenotypes can be dramatically reduced.  Certain multiplicities of infection 

(MOI) will dictate how an infection can proceed (133).  As the genotype of the virus is depleted 

of essential gene functions higher MOIs are necessary to grow high titer virus.  This strategy, 

however, can severely limit large scale production since higher amounts of input virus is needed.  

Likewise, the backbone of the virus will influence what type of complementing cell line is 

necessary for growth.  ICP0 mutants grow poorly in standard approved cell types (Vero, Hep-2, 

etc) but an osteosarcoma cell line, U2OS, are highly permissive for reasons yet to be determined 

(202). Likewise, ICP22 mutants grow poorly in rabbit skin cells but have normal growth 

phenotype in Vero cells (17).  Optimal cell line construction is therefore critical for propagation 

of different mutants depending on their intended use for in vivo gene transfer. 

By increasing the level and efficiency of complementation, we have shown that the 

production of more disabled versions of replication defective mutants of HSV-1 can be improved 

dramatically.  Other studies that have examined the culture conditions and genetic background 
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for production of double (ICP4 and ICP27 negative) and triple (ICP22, ICP4, and ICP27 

negative) mutant HSV-1 strains suggest that scale up be the ultimate solution for production of 

large scale quantities of replication defective HSV-1 vectors (133).  The use of microcarrier 

based bioreactors has also been shown to increase overall yield for double HSV-1 mutants as 

well as Vaccinia virus, however, this system has not been explored for the growth of a more 

deleted vector (12, 181).  The authors of this work found that as the virus became more defective 

the productivity dropped off due to lack of complete complementation.  We have shown here that 

by engineering the architecture of the promoter to incorporate the essential viral functions, a 

better yield per cell could be achieved.  Increased expression of ICP4 presumably not only led to 

higher levels of early and late classes of genes but may serve as a protection function in the 

stability of the viral genome as evidenced by enhancement in total HSV-1 genome copy number 

(173, 174).      

There are noticeable differences in RNA translation and protein expression with respect 

to ICP4 where the RNA levels are quite low in the case of the 4d4 cells but the protein 

expression occurs only after 9 hours post infection.  In the case of 0d4 cells the earlier RNA 

transcription presumably led to earlier translation into functional ICP4 protein levels detected by 

western blot analysis.  A possibility for this discrepancy in RNA:protein correlation is that the 

overall copy number of ICP4 has not reached a critical threshold until 7 to 9 hours post infection 

in these complementing cell lines.  In the absence of functional ICP4 there is a significant deficit 

in transcriptional capacity as which can lead to deficits in translation capacity as well since this 

gene product represents the major transactivator of the virus.  Another possibility is a disjointed 

cascade of viral gene regulation without sufficient ICP4 expression which could lead to 

overexpression of viral genes that are normally repressed by ICP4.  Additionally, lack of ICP4 

can lead to inefficient replication compartments since localization of ICP0, ICP27, and ICP4 has 

been shown to occur concomitantly with HSV-1 viral DNA replication (50).  
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Future work on viral genome and ICP4 localization may shed light on the 

complementation of ICP4 from a cell line versus the natural infection and its ability to enhance 

stability.  This work will serve to bolster future developments in the field of replication defective 

viruses such as safer vaccine candidates as well as support clinical applications for future gene 

therapy trials. 
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4.0  HSV-1 DEREPRESSION 

Herpes simplex virus 1 (HSV-1) is a common human pathogen. Following viral infection  

and release of the viral genome in the nucleus of permissive host cells, lytic infection starts a 

temporally regulated program of HSV-1 gene expression. The immediate early genes (IE) ICP0, 

ICP4, ICP22, ICP27, and ICP47 are first expressed and their products are required for expression 

of early and late HSV-1 genes (7, 21, 75, 76).   Among the five IE genes, only ICP0 is known to 

transcriptionally activate all kinetic classes of genes, i.e. the IE, early and late genes (86). 

HSV-1 contains genes classified as essential or non-essential, depending upon their 

requirement for viral replication in cell culture.  However, the so-called non-essential genes play 

critical roles in completion of the virus life cycle in vivo. Among the non-essential genes, ICP0 

is a multifunctional protein which regulates expression of a broad range of viral and cellular 

genes and proteins.  Interestingly, deletion of ICP0 gene alters viral gene expression in a cell-

type dependent manner.  Earlier studies on infection of Vero and U2OS cells with an ICP0 null 

mutant, 7134, showed that expression of the IE protein ICP4 and the early protein gD as well as 

plating efficiency of the mutant virus were significantly higher in U2OS cells than in Vero cells 

(202).   

The mechanism(s) underlying the difference in host cell responses that might contribute 

to the contrasting effects of ICP0 deletion in U2OS and Vero cells has not been defined. A 

plausible hypothesis is that untransformed cells contain an innate defense system that represses 

HSV-1 gene expression and the protein ICP0 counters this innate defense system to allow viral 
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gene expression and growth.  The evidence in support of this hypothesis comes from a recent 

study (67) in which somatic cell hybrids formed between the permissive U2OS cells and highly 

restrictive HEL fibroblasts were as non-permissive as HEL cells to infection with KM110 (a 

mutant that lacks ICP0 and VP16). These observations suggest that the cellular mechanism 

responsive to ICP0 deletion is important in viral gene expression and, possibly, in tumor growth. 

One of the reasons for the slow progress in defining this mechanism has been the scarcity of 

chemical agents that mimic the effects of ICP0 on gene expression.   This chapter describes the 

use of a cell-based, rapid, and simple fluorescence assay for a chemical screen to identify 

compounds that might be important for defining the repressive cellular mechanism that is 

negated by ICP0 expression.  

 

4.1 INTRODUCTION 

HSV-1 represents an attractive vehicle for gene transfer applications in vitro and in vivo.  

A number of facets of HSV-1 biology affirm its utility which include the large genome (84 open 

reading frames) of which half is non essential, ease of manipulation, and latent state of infection 

for long term therapy.   Naturally occurring infections within the nervous system also make 

HSV-1 attractive for neuropathies as well as glioma therapy (25, 128).  Replication defective 

HSV-1 vectors have been used for gene transfer in numerous disease states in different tissue 

models (77, 97, 160).  These vectors lack essential IE genes which render them nontoxic and safe 

for clinical application.  Removal of the IE genes will block expression of the virus lytic gene 

program in non-neuronal cells and therefore transgene expression is severely repressed.  
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However, viral genomic repression in the quiescent model can be relieved by expression of a 

single IE gene, ICP0 (44, 116).    

 HSV-1 mutants that fail to express ICP0 have severe defects in viral gene expression and 

plaque formation in mammalian cells (16, 52, 63).  Despite this critical importance in virus 

propagation, ICP0 severely reduces cell viability and will induce cell cycle arrest (34, 74).  

Additionally, the E3 ligase activity attributed to the RING finger domain of ICP0 has been 

shown to degrade host cell responses to infection (13, 14, 100).  These cell responses include 

accumulation of nuclear organelles which are associated with chromatin reorganization such as 

PML, Daxx, and Sp100 (2, 49).  This effect is clearly marked by punctuate structures associated 

with nuclear domains (ND10) and ICP0 can effectively degrade these structures in a RING 

finger dependent manner (51).   However, in certain tumor cell types (e.g U2OS) ICP0 is not 

required for transgene function and in fact ICP0 deletion mutants grow efficiently in these cells 

and are similar to wild type with respect to virus yields.  Thus, U2OS cells appear to be defective 

in one of more cellular functions that repress the viral genome. This is likely to be a missing 

function based on fusion of non-permissive HEL cells with U2OS in which the fusogenic 

progeny were still non-permissive (67).  Studies to examine the mechanisms underlying the 

permissive effect of U2OS cells suggest that they possess an ability to complement ICP0 

deficiency (166, 202).  However, it is not clear whether this is a direct effect as no molecular 

mechanisms are currently known.  The basis for this interaction has critical importance in cancer 

therapy as well as HSV-1 biology.  

We report the use a high throughput cell based assay for detection of potential agonists 

that can lead to derepression of HSV-1 genomes in the presence of a non-permissive cell 

environment.  The LOPAC (library of pharmacologically active compounds) library was chosen 

for the screen due to the well documented activities of each of the compounds.  Vero cells 

preincubated with the LOPAC library and subsequently infected with a quadrurple IE mutant 
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QOZ22REH1 reveal novel interactions of host cell state that can allow expression of EGFP from 

the HCMV promoter which is otherwise silent during normal infection.  A metal chelator, 1,10 

phenanthroline monohydrate, was the only compound that could release Vero induced repression 

while maintaining a low cytotoxicity profile.  The induction of a novel RING finger protein 

termed sensititive to apoptosis gene (SAG) was observed in the presence of 1 10 phenanthroline 

both with and without infection suggesting a potential role of this gene in depression of the viral 

genome.  This gene has E3 ligase activity much like the viral gene ICP0 and serves as a potential 

derepressor of the viral genome in the context of an IE mutant infection.  Likewise, proteosome 

inhibition experiments reveal a common pathway for this gene and implicate the presence of a 

cellular protein or protein complex in Vero cells that can actively participates HSV-1 gene 

repression   

 

4.2 RESULTS 

4.2.1 Genetic Map of TOZHE and QOZH22REH1 

To assess the effect of ICP0 on the derepression of HSV-1 mediated delivery of a transgene in 

Vero cells two isogenic mutants were used.  The control virus, TOZHE, has the ICP0 gene intact 

but is devoid of ICP27, ICP22, ICP4, and UL41.  This virus is a progeny of TOZ.1 with the 

EGFP transgene driven by the CMV promoter in the ICP4 locus (193).  QOZ22REH1 is a 

quadruple IE mutant with EGFP driven by the HCMV promoter in the ICP0 locus.  Figure 19 

shows the genetic map of each vector. 
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Figure 19. Genetic Map of TOZHE and QOZ22REH1 

Schematic map of QOZ22REH1 and TOZHE.  The dsRed2 gene is driven by the ICP22 promoter 

in the ICP22 locus in QOZ22REH1.  EGFP driven by HCMV in the ICP4 locus in TOZHE and 

the ICP0 locus in QOZ22REH1.  QOZ22REH1 is propagated on the ICP0, ICP4, and ICP27 

complementing cell line 01.  TOZHE is propagated on ICP27 and ICP4 the complementing cell 

line Q5. X at a genetic locus indicates removal of this gene. 

4.2.2 Chemical Library Screen 

The LOPAC (library of pharmaceutically active compounds) was screened for potential 

derepressors of HSV-1 gene expression by gain of signal through EGFP expression.  Vero cells 

were plated in clear bottom, black walled 384 well plates in phenol red free media via a Titertek 

Zoom dispenser.  Twenty four hours post seeding cells were administered the LOPAC library via 

the Vprep mutichannel dispenser at 25 uM.  Two hours post-administration with the library, the  

monolayer was infected with QOZ22REH1 at an MOI of 3 based on transducing units in U2OS 

cells.  Three days post infection, the EGFP signal was assessed by visual confirmation.  

Pretreatment with 1 10 Phenanthroline (OP) was able to give rise to adequate EGFP expression 

compared to the control vector (Figure 20).  Previous reports indicate that histone deacetylase 

inhibitors can relieve cellular repression during quiescence from an HSV-1 mutant devoid of any 
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IE gene function (179).  In contrast, pre-incubation with TSA at effective concentrations for 

growth enhancement of triple mutant viruses yielded no significant increase in EGFP expression 

from the QOZ22REH1 backbone.   

QOZ22REH1
25 uM 
1 10 Phenanthroline

QOZ22REH1
No Drug

QOZ22REH1
400 nM 
TSA

TOZHE
QOZ22REH1
U2OS Cells

1 10 Phenanthroline

N N

 

Figure 20. 1 10 Phenanthroline Aids in EGFP Expression  from QOZ22REH1.   

Confocal fluorescent microscopy of Vero (top row and TOZHE) and U2OS (QOZ2REH1 without 

drug) monolayers either untreated or pretreated with drug at indicated doses for one hour prior to 

infection.  Chemical structure of 1 10 Phenanthroline. 

 QOZ22REH1 transgene expression in U2OS cells was similar to TOZHE expression in Vero 

cells consistent with previous reports suggesting this cell line can substitute for a functionality 

expressed by ICP0 (202). 

4.2.3 Proteosome Pathway Dependency 

The proteosomal pathway is a critical component for HSV-1 derepression as evidenced by ICP0 

specific degradation of innate cellular response to infection (52, 65).  To this end, the effect of 
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proteosome inhibition was examined for derepression of QOZ22REH1 either alone or in 

combination with 1 10 phenanthroline (referred to as OP from here on).  In the presence of 

MG132 the expression of EGFP was significantly altered in both U2OS and Vero cells (Figure 

21). 
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Figure 21. OP Mediated Derepression is Proteosome Dependent 

Fluorescence microscopy of EGFP 72 HPI from QOZ22REH1 (MOI = 3) in either OP pretreated 

(OP), MG132 pretreated (MG132), or OP pretreatment followed by MG132 pretreated (OP 

MG132) U2OS or Vero cells. 

The marked difference in EGFP expression in presence of the proteosome inhibitor MG132 

indicates that HSV-1 mediated gene expression from the viral backbone is dependent on this 

pathway.  Furthermore, OP pretreated Vero and U2OS cells were still able to express EGFP from 

the viral genome in the presence of MG132 suggesting possible degradation of a repressive 

protein before proteosomal inhibition in both cell types.  However, higher viral transgene 

expression with both OP and MG132 in U2OS cells indicates cell type specificity for this 

interaction.  These data support the hypothesis of the induction of a novel gene product or 

pathway upon OP administration. 

In a similar manner, TOZHE was examined for EGFP expression in the presence of MG132 and 

OP or a combination thereof. 
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Figure 22. ICP0 Mediated Transgene Expression blocked by MG132 but not by OP 

Fluorescence microscopy of EGFP 72 HPI from QOZ22REH1 (MOI = 3) in either OP pretreated 

(OP), MG132 pretreated (MG132), or OP pretreatment followed by MG132 pretreated (OP 

MG132) U2OS or Vero cells. 

The induction of EGFP from the TOZHE backbone was independent of OP regimen but 

significant reduction in signal in the presence of MG132 is consistent with reports on the E3 

ligase activity of ICP0 through the proteosomal pathway.  Interestingly, U2OS cells also 

displayed a dependency on the proteosome pathway for EGFP expression indicating the 

degradation of a native moiety involved in HSV-1 genome repression in this cell line. 
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4.2.4 MOI and OP Dose Response 

To further examine the sensitivity of the OP mediated effects of derepression on HSV-1 

mediated transgene expression, a dose escalation with input virus and OP was performed on 

Vero cells.   

MOI = 30

OP 

No 
Drug

MOI = 3 MOI = 0.3 MOI = 0.03

A.

B.

100 uM 10 uM 1 uM No Drug  

Figure 23. MOI and OP dose response with QOZ22REH1 

A. Fluorescence microscopy of Vero cells pretreated with 25 uM OP subject to infection with  

QOZ22REH1 at MOIs indicated. B. Dose escalation of OP.  Vero cell were pretreated with 

concentrations of OP indicated and infected with QOZ22REH1 at MOI = 3. 

The enhanced fluorescence at higher MOIs reflects the sensitivity of the pretreated cells to the 

increasing input viral genomes.  Generally, higher input doses of virus can overcome limitations 

in gene expression for IE mutants, however, this was not the case in absence of OP up to an MOI 

of 30.  This data suggest a strict requirement of cell state to enhanced viral transgene expression 
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in the absence of all IE genes.  Dose response to OP concentration revealed effective phenotype 

reversal at micromolar concentrations.  The lower fluorescence at 100 uM OP is indicative of 

cytotoxicity of this compound at higher concentrations.  These data suggest that OP is effective 

in manipulation of host cell state to allow HSV-1 mediated transgene expression at moderate 

MOIs.  Furthermore, the dramatic enchancement of EGFP expression at higher MOIs suggest 

that the OP pretreatment is the limiting factor in derepression since increasing the number of 

incoming viral particles was not able to overcome this effect in the absence of OP treatment.   

4.2.5 Senstitive to Apoptosis Gene (SAG) Induction 

Previous reports protection from peroxide and free radical induced DNA damage have suggested 

that the gene termed sensitive to apoptosis gene (SAG) is expressed with rapid kinetics in both 

kidney and liver tissue upon stimulation with 10 uM OP (43, 175).  Cell lysates collected from 

the monolayers shown in Figure 21 were assayed for SAG expression by western blot analysis.  

SAG was enhanced in Vero cells upon normal growth in 25 uM OP (Figure 24 Mock Lanes).   
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Figure 24. SAG induction upon 25 uM OP culture 

A. SAG expression in Vero cell lysates from Figure 22 and 23 were separated on 12% SDS-

PAGE blotted for SAG.  ND refers to no drug.  QOZ22REH1 and TOZHE (MOI = 1) 

Infections were lysed at 24 HPI. B. SAG expression in U2OS cells infected either Mock or 

QOZ22REH1 MOI = 3. 

SAG bands present in all lanes infected with TOZHE implies that this gene is protected from 

degradation by the expression of ICP0 and may serve to aid in gene expression from the virus 

backbone.  Increased expression in cultures exposed to MG132 imply that this gene may be 

degraded by the presence of viral genomes in the absence of ICP0 (QOZ22REH1 lanes in Figure 

24).  However, a diminished band at 24 HPI in the presence of OP alone (Figure 24 A 

QOZ22REH1 OP) suggests that at this time point the gene may be active but further degraded at 

later times post infection.  Furthermore, U2OS cells displayed little dependency on OP treatment 

or infection status for SAG expression indicating this protein is constitutively expressed in this 

cell line (Figure 24 B).  These data suggest that the induction of SAG and its expression during 
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derepression of the HSV-1 genome may be a novel mechanism for overcoming the innate barrier 

to viral gene expression. 

4.3 DISCUSSION 

HSV-1 infects a high percentage of any population groups, commonly causing skin and 

mucosal lesions only in a fraction of actual infections.  Thus, HSV-1 has coevolved with its 

human host and is rarely life-threatening in immunocompetent individuals.  This characteristic 

makes HSV-1 an attractive platform for therapeutic vector development. Furthermore, HSV-1 

efficiently infects a wide variety of cell types and the genome has numerous non-essential genes 

whose deletion allows insertion of large transgenes.  However, deleting genes from a genome 

that evolved to survive in a hostile niche weakens the vector and tilts the balance in virus-host 

cell interactions in favor of the repressive mechanisms in the host cell.  Transgene expression 

from ICP0-null mutants in normal cells is inefficient making such vectors of limited 

applicability.  Unraveling the molecular basis of how ICP0 negates repression of gene expression 

in normal cells and why ICP0 is dispensable in a tumor cell microenvironment is of fundamental 

importance to our understanding of regulation of eukaryotic gene expression.    

Immediately upon release of HSV-1 DNA from capsids, a competition ensues between 

cellular factors whose mission is to silence viral DNA and viral proteins that aim to block the 

cell.  The innate immune response has been well documented as an active repressive mechanism 

for viral gene expression (30, 100).  ICP0 as a preemptive viral defense mechanism effectively 

counteracts this response through degradation of key antiviral cellular organelles (52).  The E3 

ligase functionality is essential for this function of ICP0 indicative of exploitation of the 

proteosomal pathway.   
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Efficient infection by ICP0-negative mutants is not limited to cells with a deregulated 

interferon system.  Although ICP0 deletion mutant 7134 (202), displayed reduced plating 

efficiency in Vero cells at low multiplicities of infection, it grew efficiently in the osteosarcoma 

cell line U2OS. Furthermore, Western blot analysis showed that the levels of expression of the 

IE protein ICP4 and the early protein gD in 7134-infected U2OS cells were significantly higher 

than those in 7134-infected Vero cells.  Similar to 7134, a mutant that lacks functional ICP0 and 

VP16, KM110, is impaired for growth in primary human fibroblasts, but replicates efficiently in 

U2OS cells (122).  The underlying mechanism for the contrasting expression patterns of 7134 

and KM110 genes in restrictive and permissive cells is not known.  One possibility is that U2OS 

cells express stimulatory factors that complement ICP0 and VP16 deficiency (202); another is 

that the permissive U2OS cells lack a repressive mechanism that is targeted by ICP0 which has 

not been explored.  To distinguish between these two possibilities, hybrid cells formed by fusing 

the permissive U2OS cells with the highly restrictive human embryonic lung (HEL) cells were 

infected with KM110. The heterokarya were completely non-permissive for KM110 IE gene 

expression, indicating that restrictive cells contain one or more rapidly acting dominant 

inhibitory factors that are absent from permissive U2OS cells (67).  Additionally, HSV-1 

repression has been studied extensively through latency and quiescence in the neuronal as well as 

other tissue models (29, 116, 179).  The current understanding is a mechanism of 

heterochromatin state within the immediate early viral gene promoters preventing the toxicity of 

these genes (29).  However, deregulation of this repression mechanism through small molecule 

inhibitors is yields only moderate recoveries implicating multiple repressive phenomena (see 

Chapter 3 section 3.2.3)   

The mutant we have developed, QOZ22REH1, lacks functional ICP0, ICP4, ICP22 and 

ICP27 and contains EGFP under the control of HCMV.  Unlike the mutants described above, 

7134 and KM110, QOZ22REH1 is a highly defective non-replicating vector that fails to express 
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any viral gene products.  This vector represents an important tool for investigating regulation of 

viral gene expression, independent of the process of viral replication. Consistent with the 

findings described above, we have observed that expression of exogenous enhanced green 

fluorescent protein (EGFP) reporter gene is repressed in Vero cells but not in U2OS cells.  A cell 

based high throughput chemical library screen allowed the identification of a potent compound 

(1 10 phenanthroline) which negated gene silencing in Vero cells to enable efficient expression 

of exogenous genes inserted in the highly defective HSV-1 mutant vector QOZ22REH1.  The 

derepression was specific to the host cell state induced by this compound (Figure 23) and was 

dose responsive to input virus.   Interestingly, at high multiplicities this mutant vector was only 

available to overcome genomic repression in the presence of drug suggesting a cellular factor 

that was either degraded or induced upon drug administration.  Studies with the proteosome 

inhibitor MG132 showed that this effect was slightly reduced in the absence of proteosome 

activity suggesting that this pathway was essential for viral transgene derepression.  More 

importantly, this effect was also observed in U2OS cells indicating the presence of a cellular 

factor involved in active repression whose gene product was not degraded in the presence of 

MG132.  This gene product has yet to be defined but future experiments outlining the 

mechanism perhaps through microarray studies will shed light on this previously unknown 

function. 

  Previous studies have shown that administration of OP to cell cultures will induce the 

presence of the gene termed sensitive to apoptosis gene, SAG(43).  This gene product much like 

ICP0 contains a zinc RING (Really Interesting New Gene) finger domain that has been 

demonstrated to exhibit E3 ligase activity indicating that it could represent a novel target of some 

repressive function that inhibits viral gene expression (69, 176). The presence of this gene was 

consistent in all infections that retained the derepressed phenotype of allowing EGFP expression 

from the viral genome.  In addition, induction of SAG was shown to be sensitive to OP treatment 
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in Vero cells as assayed by western blot.  Interestingly, in Vero cells infected with QOZ22REH1 

the SAG expression was neglible at the resolution of this assay without drug treatment.  This 

could indicate the necessity of this gene product to the derepressed phenotype of the IE mutant 

backbone.  More importantly, SAG was present in all conditions examined with U2OS cells 

indicating that this gene may play a role in the permissive nature of this cell line.  This is the first 

report indicating the presence of a novel gene involved in the proteosomal pathway that can lead 

to enhanced gene expression from an HSV-1 mutant devoid of any IE function.  Future 

experiments investigating the interaction partners and proteosomal targets of this gene will 

elucidate   
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5.0  ION EXCHANGE PURIFICATION OF HSV-1 VECTORS 

Purification of clinical grade viral based gene therapy products must adhere to strict FDA 

requirements with respect to contaminating host cellular DNA and protein.  In addition, these 

processes must be scaleable to meet the demand for early phase trials.  Common methods of 

purification for viral vectors include sucrose and cesium gradients, ultracentrifugation, as well as 

immobilized metal affinity chromatography (IMAC) (90).  These strategies are suitable for 

bench scale production, however, translation to industrial scale is difficult for specific reasons to 

each application.  Gradient centrifugation is costly and not readily amenable to large scale use 

due to specialized equipment and low yields.  Ultracentrifugation, while scalable, can aggregate 

contaminating cellular debris along with virion particles.  IMAC chromatography while 

improving yields and specificity requires further manipulation of the viral backbone which can 

add unnecessary complexity to the purification scheme and time to the development process.   A 

common purification strategy for all backbones would greatly benefit the translation of HSV-1 

gene therapy into the clinic.  HSV-1 is an enveloped DNA virus that requires gentle separation 

methods so as not to rupture the glycoprotein coat and render the virion non-infectious.  Taking 

these considerations into account, an ion-exchange strategy is proposed that takes advantage of 

the robust nature of charge-charge based separation along with the freedom to manipulate 

loading conditions.  Described is an investigation into loading conditions using both ion and 

anion exchange chromatography to purify wild-type HSV-1.  By optimizing loading conditions, 

yields were increased by orders of magnitude.  Furthermore, HSV-1 affinity differences between 
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anion and cation exchange chromatography lead to these differences in recoveries.  Additional 

developments are also suggested.  

 

5.1 INTRODUCTION 

Substantial progress in the field of viral mediated gene therapy has resulted in increased pressure 

to develop methods for large scale production of high titer vectors free of host cell contaminants 

which can induce immunity and therefore decrease the effectiveness of the gene delivery.  In 

addition to purity, downstream process concerns include total injectable volume, mass transfer 

effects, and specificity.   For genetic manipulation of the central nervous system, there is a lack 

of space for large deposits.  The volumes of purified stocks must therefore be minimized to 

enable efficient spread of the virus to only the tissue of interest.  High speed centrifugation is 

commonly used to crudely purify viral vectors, but this method lacks specificity for the virus and 

can co-sediment host cell protein as well as DNA (27).  Sucrose gradients are also employed to 

sediment the virus based on density.  This method is attractive in that genome containing virions 

are separated from empty capsids (126).  However, large shear effects are often encountered in 

high speed centrifugation through sucrose gradients and this strategy is not amenable to large 

scale operation (149).  These shear effects become more critical with respect to enveloped 

virions since they are generally more labile.   Therefore, column based chromatography remains 

the separation method of choice that allows scalability as well as freedom to dictate the relative 

concentration of the virus by controlling elution conditions.  Loading conditions can be 

optimized to avoid mass transfer effects by adjusting flow conditions.  For instance, the mass 

transport limitations can be overcome by loading at higher flow rates but this phenomenon must 
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be balanced by the shear sensitivity of the virus.  More importantly, specificity can also be 

obtained to tailor the separation based on resin density and molecular characteristics (88).  The 

development of ion exchange based chromatography to purify enveloped as well as non-

enveloped gene therapy viral vectors has been well established (60, 88, 198).  While adenoviral 

vector purification remains an active area of research due to the prevalence in clinical trials, there 

is limited work on chromatographic purification of HSV-1 based viral vectors.  The work to date 

consists of either targeting the virus to a ligand based separation such as IMAC (82) or affinity 

adsorption (129).  These techniques are not limited to purification of HSV-1, however, and have 

been used to produce retroviral (204), adenoassociated (206) and lentiviral vectors (163). 

In this chapter, we describe the use of ion exchange chromatography to purify wild type 

strain of HSV-1, Kos.  Infectious virus losses experienced on both anion and cation exchange 

columns were significant and most likely due to inactivation or irreversible binding to the 

column matrix.  Among all pH conditions tested physiologic pH yielded higher recoveries on 

both columns.  However, the cation exchange column was able to provide higher yields due to 

lower affinity for the virus.  This was verified by investigation of loading virus at elevated NaCl 

conditions.  The higher salt concentrations effectively competed off the virus to both columns 

albeit with higher efficiency in the anion exchange column.  Likewise, yields of both ion 

exchange strategies were compared with respect to DNA encapsidated virions and genomic copy 

number.  The cation exchange column was able to purify virus with higher concentration of 

genome containing virions as verified by electron microscopy as well as quantitative PCR for 

genome copy number.  Electron microscopy validated these results showing higher concentration 

of genome containing virions in the cation exchange elution  Loading condition experiments 

reveal a dose response with flow rate suggesting that the mass transfer limitations are minimal 

for both cation and anion exchange chromatography.  Additionally, the total protein content was 

substantially lower in the eluted fractions compared to loaded material suggesting that cation 
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exchange with physiologic pH can yield relatively pure virions that are suitable for clinical 

applications.  .  

5.2 RESULTS 

5.2.1 Cation and Anion Exchange Chromatography Purification of HSV-1 

Ion exchange chromatography was explored as a technique for purification of wild type KOS.  

This vector was crudely purified by high speed centrifugation outlined in chapter 2.  This stock 

was tested for infectious virus recovery in both anion and cation exchange chromatography to 

investigate binding properties.  Kos was loaded onto HiTrap ion cation (SP) and anion (Q) 

exchange columns at 0.5 ml/min driven by a P1 pump.  All samples were loaded at physiologic 

pH in 1X PBS at room temperature.  Fractions labeled flow through (collected as the virus was 

loaded), wash (a 5 column volume wash in 1X PBS), and elution (pooled elution of 9 column 

volumes of 0.45 M NaCl). Viral recoveries as measured by plaque assay on Vero cells are shown 

in Figure 25 for the anion exchange column.   

    

 

 

 

 86 



Anion Exchange (Q) Column PFU Recovery

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1.00E+11

Input FT Wash Elution

Fraction

To
ta

l P
FU

 

Figure 25. Infectious virus recovery with anion exchange chromatography 

1E9 PFU of Kos was loaded at 0.5 ml/min at pH = 7.0 in 1X PBS.  Elution was performed at 0.45 

M NaCl.  Fractions were assayed for infectious virus by titration on Vero cells.  Error bars are 

indicative of three independent experiments. 

 

Viral recoveries are dramatically low with little to no infectious virus appearing in the wash or 

flow through fractions using this ion exchange strategy.  Likewise, recoveries in the elution are 

substantially low compared with input.  Since this column matrix is positively charged, these 

results suggest that the either virus binds with high affinity and at physiologic pH may be 

negatively charged or the virus may inactivated within the column matrix.  A high salt (1 M 

NaCl) elution was performed to assess the relative binding strength of HSV-1 to this column 

matrix.  Figure 26 shows the enhanced recovery with this elution scheme, however, a higher 

contaminating protein level (Table 2) was also experienced compared to the 0.45 M NaCl 

elution.  SP column elution at higher salt concentration was not explored since the higher 

contaminant level would not be satisfactory for clinical grade virus. 
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Figure 26. Elevated salt dependency for efficient elution from anion exchange chromatography 

1E9 PFU of Kos was loaded at 0.5 ml/min at pH = 7.0 in 1X PBS.  Elution was performed at 1.0 

M NaCl.  Fractions were assayed for infectious virus by titration on Vero cells. Error bars are 

indicative of three independent experiments. 

To investigate these results further, genomic content was assayed by quantitative PCR for the 

same samples presented in Figure 25.  Genomic recoveries in the flow through and wash 

fractions are enhanced as compared to infectious virus indicating the presence of contaminating 

DNA from the cellular debris that has cosedimented during the high speed centrifugation.  The 

dramatically high amount of genomes in the elution suggest that viral DNA is bound to the 

column in addition to infectious virus and could possibly compete for binding sites.      

 88 



Q (Anion Exchange) Genomic Recovery 

1.00E+00
1.00E+01
1.00E+02
1.00E+03
1.00E+04
1.00E+05
1.00E+06
1.00E+07
1.00E+08
1.00E+09
1.00E+10
1.00E+11

Input FT Wash Elution

Fraction

H
SV

-1
 G

en
om

es

 

Figure 27. Genomic recovery from anion exchange chromatography 

PCR quantitation of viral genomes from Figure 26.  Error bars are indicative of three 

independent experiments. 

    

Cation exchange chromatography was evaluated similarly as for anion exchange 

chromatography.  Infectious virus recovery for cation exchange was dramatically improved with 

cation exchange chromatography in all fractions tested (Figure 28).  The wash and flow through 

titers indicate weak binding of the virus to this exchange media.  Eluted virus recoveries were 

also enhanced compared to anion exchange further indicating a weaker association within the 

cation exchange matrix.  However, significant losses were experienced in all fractions tested 

suggesting that the virus could be inactivated within this ion exchange media as well. 

Genomic recoveries from cation exchange chromatography were assessed similar to 

Figure 26.  Approximately 20% of the input genomes were recovered in the elution fraction 

(Figure 29).  Likewise, in comparison to anion exchange, there was enhanced recovery in the 

 89 



wash and flow through fractions further suggesting weak association of the viral genome with 

the negatively charged resin. 
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Figure 28. Infectious virus recovery from cation exchange chromatography 

1E10 PFU of Kos was loaded onto the cation SP resin at flow rate of 0.5 ml/min and pH = 7.0 in 

1X PBS.  Elution was performed at 0.45 M NaCl. Error bars are indicative of three 

independent experiments. 
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Figure 29. Genomic recovery from cation exchange chromatography 

Quantitative PCR analysis from fractions in Figure 28.  Error bars are indicative of three 

independent experiments. 

The consistent excess genome copy numbers relative to infectious virus (PFU) indicate there are 

defective interfering particles that can co-elute from the ion exchange columns.  Additionally, 

this viral DNA can originate from either co-sedimentation (during high speed centrifugation) or 

viral DNA that is adherent to the virion particles themselves.  These sources of viral DNA can 

contaminate the virus stock prior to loading onto the ion exchange columns. 

5.2.2 Proton Concentration Effect on Loading Conditions of Ion Exchange 

Chromatography 

 Proton concentration in the load buffer was investigated to assess whether or not there would be 

a possible pH effect on virus binding to each ion exchange resin.  The same flow rate as in 
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Figures 25-29 was chosen to investigate pH loading conditions.  Figure 30 shows the overall 

recoveries at moderately alkaline loading conditions (pH = 8.0) versus slightly acidic (pH = 5.0)  
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Figure 30. Proton concentration effect on infectious recovery from ion exchange chromatography 

Kos equilibrated in either pH = 8.0 or 5.0 loaded onto either (A) cation exchange or (B) anion 

exchange chromatography.  Virus was delivered at a flow rate of 0.5 ml/min.  PFU was assayed 

by titration of virus on Vero cells.  Error bars are indicative of three independent 

experiments. 

 

Similar to Figures 25-29, the anion exchange column yields were substantially lower regardless 

of loading conditions.  In contrast, pH values appear to dictate the binding efficiency in the 

cation exchange column however overall infectious recoveries were still quite low.  From the 

preceding figures, it is clear that regardless of loading pH or resin choice significant infectious 
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virus losses are experienced.  However, cation exchange resins appear to be able to recover virus 

at higher titers due to lower binding affinity.  To further investigate these claims, electron 

microscopy was undertaken to examine the structural features of the viral recoveries.   Figure 31 

shows the input virus before dilution and delivery into the column. Figure 32 reflects both a 

higher concentration of total virions with the cation exchange as well as higher fraction of full 

capsids as obtained by negative staining with uranyl acetate.  

 

Figure 31. TEM of pelleted virus 

1E9 PFU of Kos diluted in 8 ml of 1X PBS stained by uranyl acetate.  Scale bar indicates the size 

of virions.  Dark virions are empty capsids.  White or light colored virions are genome containing 

virions. 
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Figure 32. TEM of eluted virus from anion and cation exchange chromatography 

Purified virions were diluted 1:1 in water and stained with uranyl acetate.  A. Cation (SP) 

exchange puirifed virions. B. Anion (Q) exchange purified virions 

 

5.2.3 Flow Rate Effect on Loading Conditions of Ion Exchange Chromatography  

Mass transfer effects were investigated by varying the feed flow rate into both anion and cation 

exchange column chromatography.  As observed in our laboratory, both columns have 

previously been shown to bind the virus and are able to purify vectors.  A systematic 

investigation, however, has not been performed with respect to optimal loading conditions.  

Typical chromatographic flow rates for HSV-1 purification range from 0.5-0.7 ml/min (82, 129) 

but process economics factors in for larger batches.  Thus, faster processing of larger batches 

with similar recoveries would be dramatically advantageous in the face of time critical 

applications such as vaccinations for new mutations within pandemic strains.  
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Figure 33. Infectious virus recovery dependency on flow rate in anion exchange chromatography 

Infectious virus titered on Vero cells at various flow rates of loading virus at pH = 7.0 1X PBS. 

Error bars are indicative of three independent experiments. 
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Figure 34. Genomic recovery dependency on flow rate in anion exchange chromatography 

PCR quantitation of HSV-1 genomes obtained from samples in Figure 33.  Error bars are 

indicative of three independent experiments. 

 

Slight recoveries were experienced at lower flow rates for anion exchange chromatography but 

overall this effect is neglible in comparison to total input virus.  However, higher flow rates lead 

to lower genomes recovered (Figure 34).  This indicates that there is inactivation within the 

column matrix as the virus binds and flows through.  Likewise, the genomic recovery in the 

elution was around 2 orders of magnitude in comparison with the input virus at the lowest flow 

rate while the infectious recovery displayed a 4.5 order of magnitude differential at this flow 

rate.  The lower flow rate correlation with higher recovery suggests that optimal loading 

conditions for anion exchange chromatography are limited by the binding characteristics of the 

virus. 
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Figure 35.  Infectious virus recovery dependency on flow rate in cation exchange chromatography 

Infectious virus recovered at various feed rates assayed by titration on Vero cells.  Error 

bars are indicative of three independent experiments. 

Cation exchange chromatography flow rate dependency was evident in the flow through and 

wash fractions but not the elution fractions suggesting that the kinetics of binding to the column .  

The elution profile for all flow rates was relatively unaffected even though nearly two orders of 

magnitude differentials were realized in both the flow through and load indicating an inactivation 

event within the column since potentially more virus is bound at lower flow rates.  Likewise, 

there is substantial loss experienced within this strategy when comparing input virus and eluted 

yields which implicates inactivation within the column or irreversible binding.  To explore this 

last point further, genomic data was gathered as described in Figure 35.  Figure 36 shows 

enhanced genomic recovery at higher flow rates in the flow through albeit at a lower level than 
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the load fraction indicating that the virus is not binding as strongly at higher flow rates to this 

negatively charged resin.   
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Figure 36. Genomic recovery dependency on flowrate in cation exchange chromatography 

PCR quantitation of HSV-1 genomes obtained from samples in Figure 36.  Error bars are 

indicative of three independent experiments 

The data point to a strong affinity of the virus for the anion exchange resin with weak binding to 

the cation exchange resin.  Taken together, these date indicate that there is little effect of flow 

rate on either ion exchange resin with respect to eluted infectious virus recovery.  These 

experiments also suggest that loading conditions are not the limiting factor in virus recovery and 

elution conditions may be limiting as evidenced by Figure 26.  

Table 2 highlights the protein and DNA concentrations for all experiments performed with both 

ion exchange resins indicating that there was significant improvement in contaminating protein 

and DNA with all conditions tested adhering to current FDA regulations with regard to cellular 

contaminants per dose. 
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Table 2. Protein and DNA Contamination level from Cation and Anion Exchange Chromatography 

  Input  Elution  
% 

Reduction  

 Q (anion) 
DNA 

(ug/ml) 
Protein 
(ug/ml) 

DNA 
(ug/ml) 

Protein 
(ug/ml) DNA Protein 

pH = 7.0 
Flow Rate 0.5 

11.92 +/- 
0.18 

183.4 +/- 
18.07 

0.065 +/- 
4.2E-5 

2.47 +/- 
0.98 99 98 

 1 
11.99 +/- 

0.02 
194.8 +/- 

1.57 

0.000189 
+/- 1.55 E-

5 
4.83 +/- 

0.39 99 97 

 2 
11.53 +/- 

1.19  
194.1 +/- 

4.91 
0.000225 
+/- 1E-6 

6.77 +/- 
0.78 99 96 

 5 
11.90 +/- 

0.15  
180.94 +/- 

17.6 
0.000185 
+/- 7E-6 

8.72 +/- 
1.96 99 94 

        
Flow Rate 
= 0.5 
ml/min pH 5 

9.37 +/- 
0.59 

196.77 +/- 
1.18 

0.0019825 
+/- 

0.00066 
5.94 +/- 

1.96 99 96 

 8 
11.5 +/- 

1.00 
196.08 +/- 

0.196 
0.0018 +/- 

0.0005 
4.13 +/- 

1.37 99 97 
1M Nacl 
Elution  

12.4 +/- 
0.86 

193.43 +/- 
4.73 

0.0123 +/- 
0.00454 48.83 99 74 

 
SP 
(cation) 

SP 
(cation)      

pH = 7.0 
Flow Rate 0.5 

11.57 +/- 
0.82 

196.08 +/- 
0.19 

0.0017 +/- 
0.0002 

2.47 +/- 
0.98 99 98 

 1 
12.34 +/- 

0.50 
194.83 +/- 

1.57 

0.00195 
+/- 7.07E-

5 
4.83 +/- 

0.39 99 97 

 2 
12.09 +/- 

0.16 
194.14 +/- 

4.9 
0.0012 +/- 

0.0003 
6.77 +/- 

0.78 99 96 

 5 
11.69 +/- 

1.01  
180.94 +/- 

17.6 
0.0017 +/- 

0.0001 
9.41 +/- 

0.98 99 95 
        
Flow Rate 
= 0.5 
ml/min pH 5 

10.93 +/- 
1.49 

180.94 +/ 
17.67 

0.00485 
+/- 0.0021 

9.41 +/- 
0.98 99 94 

 8 
11.75 +/- 

0.48 
192.05 +/- 

1.96 
0.00486 
+/- 0.01 

5.80 +/- 
2.16 99 96 
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5.3 DISCUSSION 

HSV-1 is increasingly becoming the vehicle of choice for gene transfer within the central 

nervous system (68, 99, 172).  Treatments of neuropathic pain, glioma eradication, and sensory 

nerve damage have been well established in animal models and are soon to enter clinic.  To 

realize the potential of these applications, scalable manufacturing methods must be in place to 

provide high purity stocks devoid of any host cell contaminants that can potentially induce 

inflammatory responses to ectopic protein and DNA.  This chapter aimed at achieving an 

improved method for purification of HSV-1 that can provide high titer stocks that conform to 

current FDA standards for injectable biologics. 

Ion exchange chromatography has been used to purify viruses for a wide variety of 

applications (146, 184, 198).  Commercially available HiTrap columns are porous so the strategy 

of using these columns was investigated for obtaining high titer pure viral preparations to 

combine the selectivity of ion exchange with the fractionation capability of size exclusion.  

Anion exchange column liganded with quarternary amines were able to bind the virus with high 

efficiency at all flow rates examined indicating that the virus is highly negatively charged at 

physiologic pH.  Negligible dependency on flow rate on infectious virus recovery indicated that 

the binding efficiency was not altered by increasing the contact time within the chromatography 

media.  However, increased infectious virus recoveries in cation exchange chromatography 

suggest that this resin to be superior in purifying virus at elution in 0.45 M NaCl.  Cation 

exchange chromatography verified these results by yielding higher infectious virus at all flow 

rates examined in all fractions implying that the slight repulsion by negatively charged regions 
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within the glycoprotein coat could play a role in binding efficiency to either ion exchange resin.  

HSV-1 has been shown to exhibit altered electrophoretic mobility in the presence of different 

ionic buffers indicating that the glycoproteins are flexible with respect to ionization state and the 

loading conditions can be altered to selectively bind the virus to cation or anion exchange resins 

(185).  Additionally, it is well known that the virus mediates entry into host cells through 

interaction with heparin sulfate moieties and herpes virus mediators of entry (Hve) that are both 

positively charged (53, 187)  Furthermore, a synthetic polycationic peptide has been shown to 

bind to the glycoprotein C of the virus, which is necessary for cell surface heparin sulfate 

binding, suggesting that virus binding to the cation exchange column was most likely mediated 

through this glycoprotein and there are multiple binding modes of the virus to each ion exchange 

resin (186).  These results implicate a slightly negative charge surrounding the virion 

glycoprotein coat at physiologic pH with zones of positive charge that allow binding to the 

cation exchange resin. 

 Virus binding to both anion and cation exchange resins displayed no dependency on 

proton concentration while the recoveries in cation exchange showed dramatic differences with 

respect to the flow through and load fractions.  Slightly acidic conditions led to enhanced binding 

to the cation exchange resin suggesting that the overall virion charge may have been positively 

shifted under this loading scheme.  However, the binding to the anion exchange resin at this pH 

resulted in no infectious virus recovery indicating that other factors affected binding and elution.  

These factors include irreversible binding which could explain the low yield of infectious virus 

and total viral particles as demonstrated with electron microscopy.  The genomic data also reveal 

enhanced recovery from the cation exchange resin compared to anion exchange chromatography 

further validating the notion that virions could be irreversibly binding to the quaternary amines 

on the anion exchange resin.  
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 By loading the virus on a strong cation exchange resin, there was no strong flow rate 

dependency on infectious virus recovery in the eluted fractions indicating mass transfer played 

little to no role in the capture step to this resin.  Furthermore, these elution fractions contained 

significantly lowered amounts of contaminating protein and DNA with respect to input virus 

stocks.  Weak cation and anion exchangers may be used to further explore relative binding 

efficiency and recovery of virus preparations at different elution and loading conditions.  The 

details of enhanced binding to anion exhange resins may need to be explored further to elucidate 

the mechanism for reduced yields of infectious particles.  Thus, a more mechanistic description 

of virus charge-charge interactions would greatly aid the development of optimized purification 

protocols.  These results reflect progress towards optimal purification of the virus for large scale 

gene therapy applications while maintaining adherence to strict FDA requirements with respect 

to contaminating host cellular DNA and protein.     
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6.0  CONCLUSIONS 

HSV-1 remains an attractive vehicle for treatment of various neuropathies as well as a oncolytic 

vector.  Replication defective HSV-1 based gene therapy vectors are among the safest since they 

are missing most of the toxic IE genes necessary for viral replication.  Therefore, efficient 

manufacturing methods to produce these vectors are paramount for realizing their therapeutic 

potential.  Moreover, a basic understanding of host cell interactions with regard to genomic 

repression in different cellular environments will allow construction of more efficient vectors 

tailored to specific disease states.  Here, we have shown that the engineering of complementing 

cell lines can be optimized to provide high titer vector and purified to match FDA requirements 

by ion exchange chromatography.  We also demonstrate that the host cell interactions can be 

exploited to improve transgene expression from highly replication defective vectors in a 

repressive host cell environment.  The outcomes of this study are as follows. 

(1)  Improving the complementation profile of the essential immediate early gene can 

yield dramatic results with respect to viral yield.  The ICP0 promoter chosen for its 

inducibility in the context of infection was able to deliver ICP4 gene expression with 

faster kinetics leading to order of magnitude improvments in production of the highly 

replication defective vector JDTOZHE.  Likewise, this cell line was further optimized 

through the addition of the ICP0 gene and shown to grow the quadruple mutant 

JDQOZEH1 up to 1E6 PFU/ml. 

 103 



(74)  A high throughput cell based chemical screen revealed a novel pathway that may 

lead to enhanced transgene expression in repressive cellular environments.  By inducing a 

more permissive cell state with the molecule 1 10 phenanthroline, enhanced EGFP from 

the viral backbone was readily observed.  The presence of a novel gene, SAG, was 

observed in the presence of this drug which implicates this function in allowing 

expression from the viral backbone.  Moreover, this gene was expressed consitutively in 

the permissive U2OS cell environment.  This is the first observation of this gene in this 

cell line which has implications in the field of oncology as well as virology. 

 

(3)  Ion exchange purification of HSV-1 was possible by cation exchange.  This strategy 

lead to pure stocks of virus with minimal contaminating protein and DNA.  By choosing 

the correct purification parameters such as pH, flow rate, and elution salt concentration 

high titers of this virus could be recovered.  This purification method is robust and 

amenable to scaleup which will have dramatic impacts as the pressure on manufacturing 

methods are increased to meet clinical demand. 

  In conclusion, the cell lines developed in chapter 3 will serve to aid in the growth an 

propagation of even more deleted vector backbones that have safer toxicity profiles.  These cell 

lines coupled with the use of ion exchange chromatography represent an efficient manufacturing 

platform for clinical grade replication defective HSV-1 based vectors.  The depression of HSV-1 

remains a mystery to the field of virology and the studies described in chapter 4 will aid in the 

field in that these interactions shed new light on the virus-host cell interactions in Vero cells as 

well as the enigmatic U2OS cellular environment.  
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