
ON SOLVING SELECTED

NONLINEAR INTEGER PROGRAMMING

PROBLEMS IN DATA MINING,

COMPUTATIONAL BIOLOGY, AND

SUSTAINABILITY

by

Andrew Christopher Trapp

BS, Rochester Institute of Technology, 2000

MS, Bowling Green State University, 2006

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2011

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Andrew Christopher Trapp

It was defended on

March 3, 2011

and approved by

Oleg A. Prokopyev, Assistant Professor, Department of Industrial Engineering

Andrew J. Schaefer, Associate Professor, Department of Industrial Engineering

Carlos J. Camacho, Associate Professor, Department of Computational Biology

Juan Pablo Vielma, Assistant Professor, Department of Industrial Engineering

Jayant Rajgopal, Associate Professor, Department of Industrial Engineering

Dissertation Director: Oleg A. Prokopyev, Assistant Professor, Department of Industrial

Engineering

ii

ON SOLVING SELECTED

NONLINEAR INTEGER PROGRAMMING

PROBLEMS IN DATA MINING,

COMPUTATIONAL BIOLOGY, AND

SUSTAINABILITY

Andrew Christopher Trapp, PhD

University of Pittsburgh, 2011

This thesis consists of three essays concerning the use of optimization techniques to solve

four problems in the fields of data mining, computational biology, and sustainable energy

devices. To the best of our knowledge, the particular problems we discuss have not been

previously addressed using optimization, which is a specific contribution of this dissertation.

In particular, we analyze each of the problems to capture their underlying essence, subse-

quently demonstrating that each problem can be modeled as a nonlinear (mixed) integer

program. We then discuss the design and implementation of solution techniques to locate

optimal solutions to the aforementioned problems. Running throughout this dissertation

is the theme of using mixed-integer programming techniques in conjunction with context-

dependent algorithms to identify optimal and previously undiscovered underlying structure.

iii

TABLE OF CONTENTS

PREFACE . xiii

1.0 INTRODUCTION . 1

1.1 Data Mining . 1

1.2 Computational Biology . 4

1.3 Sustainable Energy Devices . 5

1.4 Problem Statements and Contributions . 6

1.5 Overview of the Dissertation . 7

2.0 OPTIMIZATION IN DATA MINING . 8

2.1 Biclustering . 9

2.1.1 Applications of Biclustering . 11

2.1.2 Similarity Measures in Biclustering . 12

2.2 Unsupervised Biclustering under the Biclustering Consistency Conditions . . 14

2.2.1 Acknowledgment . 14

2.2.2 Introduction . 14

2.2.3 Consistent Biclustering . 15

2.2.4 Computational Complexity Issues . 17

2.2.5 Mathematical Modeling of Consistent Biclustering 19

2.2.5.1 Supervised Consistent Biclustering 19

2.2.5.2 Unsupervised Consistent Biclustering 21

2.2.5.3 Linear Mixed 0–1 Reformulation 22

2.2.6 Heuristic Approaches . 24

2.2.6.1 Heuristic 1 (H1): MIP-based Heuristic 24

iv

2.2.6.2 Heuristic 2 (H2): Multi-start Iterative Heuristic 26

2.2.7 Computational Experiments and Results 30

2.2.7.1 Test Data . 30

2.2.7.2 Other Algorithms . 32

2.2.7.3 Environments and Parameter Values 32

2.2.7.4 Results . 35

2.3 Order-Preserving Submatrix Patterns . 40

2.3.1 Acknowledgment . 40

2.3.2 Introduction . 40

2.3.3 Computational Complexity Issues . 43

2.3.4 Mathematical Modeling of OPSM: General IP Formulation 47

2.3.5 Mathematical Modeling of OPSM: Compact Formulation 49

2.3.5.1 Compact Formulation . 50

2.3.5.2 Basic Iterative Algorithm . 51

2.3.5.3 Valid Inequalities . 52

2.3.5.4 Nodal Constraints . 54

2.3.5.5 Further Enhancements . 55

2.3.5.6 Enhanced Iterative Algorithm 57

2.3.6 Computational Experiments and Results 58

2.3.6.1 Experiments with Synthetic Data 58

2.3.6.2 Synthetic Data: Results and Discussion 60

2.3.6.3 Experiments with Real Data 64

2.3.6.4 Finding OPSMs in Real Data Sets 65

2.3.6.5 BRCA Data: Results and Discussion 69

2.3.6.6 HuGE Data: Results and Discussion 69

2.4 Concluding Remarks . 71

2.4.1 Checkerboard Pattern . 71

2.4.2 OPSM Pattern . 71

3.0 OPTIMIZATION IN COMPUTATIONAL BIOLOGY 72

3.1 Acknowledgment . 72

v

3.2 Introduction . 73

3.3 Mathematical Modeling of Protein/DNA Interactions 75

3.3.1 Nonlinear Mixed 0-1 Formulation . 75

3.3.2 Equivalent Nonlinear Mixed 0–1 Reformulation 76

3.3.3 Final Linear Mixed 0–1 Reformulation 77

3.3.4 Mitigating Overfitting and Underfitting 79

3.4 Computational Experiments and Results . 80

3.4.1 Test Data and Environment . 80

3.4.2 Test Results . 80

3.4.3 Validating and Reassessing Submodels with Optimization Results . . . 81

3.5 Concluding Remarks . 83

4.0 OPTIMIZATION IN SUSTAINABLE ENERGY DEVICES 84

4.1 Acknowledgment . 84

4.2 Introduction . 84

4.3 Mathematical Modeling of Thermoacoustic Engines 86

4.3.1 Model Components . 86

4.3.2 Mathematical Programming Formulation 89

4.3.3 Approximating the Heat Flows . 93

4.3.3.1 Estimating the Temperature Distribution 93

4.3.3.2 Determining the Heat Fluxes 93

4.4 Single Objective Optimization . 95

4.4.1 Acoustic Emphasis . 95

4.4.1.1 Emphasizing Work . 96

4.4.1.2 Emphasizing Viscous Resistance 99

4.4.2 Thermal Emphasis . 100

4.4.2.1 Emphasizing Convective / Radiative Heat Fluxes 101

4.4.2.2 Emphasizing Conductive Heat Flux 102

4.4.3 Single Objective Optima: Variable Analysis 103

4.5 Multiobjective Optimization . 104

4.5.1 Normalizing Objective Function Components 104

vi

4.5.2 Emphasizing Work and Viscous Resistance 105

4.5.3 Emphasizing All Objective Components 107

4.5.4 Alternative View: Maximizing Efficiency 108

4.6 Concluding Remarks . 110

5.0 CONCLUSIONS . 111

BIBLIOGRAPHY . 113

vii

LIST OF TABLES

2.1 Synthetic test data: m = 6, n = 6, r = 3 . 30

2.2 Summary of tissues contained in HuGE data set 31

2.3 Performance of main MIP (Section 2.2.5.3) on synthetic data 34

2.4 Computational results of three biclustering algorithms vs. H2 on HuGE data 36

2.5 Algorithmic variations used in computational testing for the OPSM problem . 59

2.6 Comparison of algorithmic run times on synthetic test instances 61

2.7 Run times for Algorithm K to find synthetic OPSMs 63

2.8 BRCA OPSMs found with Algorithm 6 . 69

2.9 OPSMs in HuGE data using Algorithm 6; statistical significance in final column 70

3.1 Parameter reductions . 80

4.1 Tendency of structural variables when optimizing individual objective compo-

nents . 103

viii

LIST OF FIGURES

2.1 Generic scheme of biclustering . 9

2.2 r = 3 biclusters . 10

2.3 Heatmaps illustrating biclusters found using H1 on subsets of HuGE data . . 38

2.4 Heatmaps illustrating biclusters found using H2 on subsets of HuGE data . . 39

2.5 Columns of data matrix permuted to induce 3× 4 OPSM 41

2.6 Relationship between sjk variables and column-position interactions 49

2.7 Heatmaps of OPSMs in real data using Algorithm 6 70

3.1 Typical interaction network of an EGR-like ZF 73

3.2 Nine ways that potential submodels can minimize binding free energy 74

3.3 Parameter reduction effects on ZF-I . 80

3.4 Single parameter reduction . 81

3.5 ZF-I’s optimal parameters on ZF-II, ZF-III 82

3.6 Predicted vs. experimental free energy . 82

4.1 Inputs and outputs of thermoacoustic engine 85

4.2 Computational domain and boundary conditions for variables L, H, Z, N , dc 88

4.3 ζW plotted as a function of N and showing minimum 98

4.4 ζRν plotted as a function of N and showing minimum 101

4.5 Acoustic efficient frontier: simultaneously minimizing −W and Rν 106

4.6 Side profile of efficient frontier: simultaneously minimizing −W , Rν , and Qall 108

4.7 Top profile of efficient frontier: simultaneously minimizing −W , Rν , and Qall 109

ix

NOMENCLATURE: SUSTAINABLE ENERGY DEVICES

A Area (m2)

c Speed of sound (m · s−1)

C Capacitance (m−1)

cp Heat capacity (J · kg−1 ·K−1)

d Diameter

D Dimension

f Frequency (s−1)

g Gravitational acceleration

h Heat transfer coefficient (W ·m−2 ·K−1)

H Height (Cylindrical Radius) (m)

kb Boltzmann constant

k Thermal conductivity (W ·m−1 ·K−1)

l Plate thickness (m)

L Inertance (kg ·m−4), length (m)

p Pressure (N ·m−2)

p̃ Constant for quadratic pressure estimate

Q Heat flow (W)

r Variable radius height (m) along radial direction

r̃ Constant for viscous resistance formulation

R Resistance (kg ·m−2 · s−1)

T Temperature (K, ◦C)

u Velocity (m · s−1)

ũ Constant for quadratic velocity estimate

w Objective function component weight

W Acoustic work (W) per channel

y Plate spacing (m)

z Distance along stack; 0 at “hot side” of stack

Z Stack Placement (along z axis), 0 at closed end

x

GREEK SYMBOLS: SUSTAINABLE ENERGY DEVICES

α Thermal diffusion rate (m2 · s−1)

β Thermal expansion coefficient (taken as 1/T∞)

δ Penetration depth (m)

ε Plate heat capacity ratio

ε Surface emissivity

γ Isentropic coefficient

Γ Temperature gradient ratio

λ Wavelength

µ Dynamic viscosity (kg ·m−1 · s−1)

ν Viscous diffusion rate (m2 · s−1)

ρ Density (kg ·m−3)

ω Angular frequency (s−1)

Π Perimeter (m)

∇T Temperature gradient (K ·m−1)

DIMENSIONLESS GROUPS: SUSTAINABLE ENERGY DEVICES

A Packing Number (≈ 1.25± 0.25)

F Fixed Upper Bounding Constant (4)

Gr Grasshoff Number

Nu Nusselt Number

Pr Prandtl Number

Ra Rayleigh Number

xi

SUBSCRIPTS AND SUPERSCRIPTS: SUSTAINABLE ENERGY DEVICES

o Naught

∞ Ambient, free stream

c Channel, cold

char Characteristic

crit Critical

cond Conductive

conv Convective

D Diameter

h Hot side

κ Thermal

m Time averaged

obj Objective

rad Radiative

s Solid, surface, stable

rr,rz,zr,zz Tensor directions

ν Viscous

w Wall

xii

PREFACE

The contents of this dissertation could only come through the sacrificial help and service

of so many. First and foremost, I would like to thank Jesus, my constant companion and

support throughout this process. Without Your sustaining power I would not be where I am

today. To my family, I would like to thank my parents for noticing my God-given talent,

encouraging me to pursue mathematics, and believing in me throughout this whole process.

To my wife Natasha, your unfailing love and constant companionship through these long

years have made this journey so much easier. Thank you. To my son Jonathan, I hope that

I can be the father that you need. And to the little one that is on the way, I am looking

forward to getting to know you and spending life with you.

Academically, I owe so much to my advisor Dr. Oleg Prokopyev, whose excellent guidance

helped me to navigate the sometimes rough and choppy waters of the doctorate. In addition

to your incredible talent and insight, I also appreciate your patience with me as I have

matured as a researcher. Thank you for the countless hours you invested in me. I also

want to acknowledge Dr. Andrew Schaefer, who while not my advisor, is on my dissertation

committee, and spent much time giving me helpful advice anyway. I consider you a mentor

as well as a friend. I also want to thank my committee members Dr. Jayant Rajgopal, Dr.

Juan Pablo Vielma, and Dr. Carlos Camacho for all of your helpful support.

In addition, I am grateful for the fruitful collaboration shared with coauthors Dr. Andrew

Schaefer, Dr. Carlos Camacho, Dr. Laura Schaefer, Dr. Florian Zink, Dr. Alpay Temiz,

Dr. Sergiy Butenko, and Dr. Stanislav Busygin. Dr. Jeffrey Kharoufeh is another mentor

and friend. I appreciate your advice and consideration, especially during the many inherent

challenges involved in the job search. Dr. Bopaya Bidanda has handled everything that I’ve

brought to him with grace and clarity – I appreciate your kindness more than words can say.

xiii

I also would like to thank Dr. Paul Wilson in the Mathematics Department at the Rochester

Institute of Technology, who first encouraged me to pursue graduate studies.

I am sincerely grateful for the gracious assistance from Dr. Eric Beckman, Dr. Laura

Schaefer, Gena Kovalcik, Kim Wisniewski and other associates at the Mascaro Center for

Sustainable Innovation, who played a pivotal role in my doctoral studies through the GAANN

Fellowship (#P200A060149) and related training that supported my studies for multiple

years. Speaking of support, the IE staff has always been there for me during my stay at Pitt

– thank you Minerva, Richard, Nora, George, Jackie, Jim and Frank!

I am grateful for the friendship of many current and former Pitt students, including

Sakine Batun, Zeynep Erkin, Amin Khademei, John Flory, Dave Sanchez, Anahita Kho-

jandi, Guvenc Degirmenci, Gorkem Saka, Gozde Icten, Murat Kurt, Isil Ondes, Behdad Be-

heshti, Florian Zink, Veronica Miller, Mustafa Baz, Osman Ozaltin, Mehmet Gokhan, Pinar

Yildirim, Serdar Karademir, Mehmet Can Demirci, Michelle Najera, Lu Whaley, Burhaned-

din Sandikci, and Natalie Scala. Also a shout-out to my friends Todd Fytczyk, Vivek Sandela,

Rich Nocon, Erik Bardy, and Dave Voelker. For those I have forgotten to mention by name,

know that I appreciate your support as well.

xiv

1.0 INTRODUCTION

In this thesis we use optimization and context-relevant algorithmic design to identify optimal

and previously undiscovered underlying structure in three distinct application areas. To the

best of our knowledge, there does not appear to be any applications of exact optimization

techniques in the literature for the particular problems we address. We analyze each problem

to understand its structure, and subsequently develop one or more mathematical program-

ming formulations that capture its essence. More precisely, we demonstrate that each of these

problems can be modeled using nonlinear integer programming. After their formulation, we

then take advantage of the particular intricacies of each problem to develop approaches to

obtain an optimal solution using integer programming (IP) techniques. The remainder of

this chapter will provide a brief introduction to each problem domain we consider, as well

as a survey of related literature involving optimization-based solution approaches.

1.1 DATA MINING

Data mining is the art and science of identifying meaningful information according to spec-

ified criteria of interest in typically large records of data using advanced mathematical,

statistical and/or algorithmic methods [109]. The technology proliferation of the last twenty

to thirty years has led to an explosion of data sets that to a large extent have supported, and

continue to promote, the development of data mining techniques. Data mining has found

applications in such diverse areas as fraud detection [17, 81], internet traffic studies [73],

energy demand analysis [39, 90], evaluations for credit ratings [53, 54], customer preference

prediction [25, 91], and biomedical data analysis [6, 19, 69, 94, 101, 102].

1

One of the challenges to successfully mining data is the intensive computation involved in

manipulating large data sets to identify the desired hidden information. It is very common

in the literature to address data mining tasks using heuristics and approximation algorithms,

which while often being relatively efficient at identifying reasonable solutions, they unfor-

tunately lack optimality guarantees. In contrast, our approach is to use optimization-based

techniques to identify exact solutions, a growing practice in the literature [6, 19, 69, 94].

It will be useful to distinguish between supervised and unsupervised learning. Conducting

data mining in the context of supervised learning implies that preclassified training data are

available to assist in performing the desired analysis. Such knowledge is able to guide the

data mining task, though care must be taken to ensure that these training data do not lead

to overfitting, a phenomenon where predictions tend to be based on random error or noise

within the training data, rather than on the data themselves. In the case of unsupervised

learning, training data are not made available, so alternative techniques must be used that

allow the data to self-interpret. Data mining embodies several classes of (semi-)automated

procedures that include prediction and clustering, which we next review briefly and also

discuss optimization-based approaches to handling such tasks.

For large data sets, processing all of the data simultaneously may be beyond current

computational limitations. Dimensionality reduction is the process of distilling from a large

data set only the influential data to explain a relevant phenomenon. When operating on the

set of features, this is called feature selection, and can drastically reduce the size of the data

set by removing that which is determined to have little meaning. Successful applications of

optimization techniques in this context include [13, 15].

Prediction, a type of supervised learning, attempts to make inferences about the future

through the use of prior and current data. Several types of data mining can fall under the

category of prediction, depending upon the desired task to be accomplished. Association is

the task of mining data for potential cause and effect relationships. It involves scouring the

data in search of predictive rules to identify representative data elements that likely imply

one or more different data elements. For example, consumers that purchase wine may also

have a greater likelihood of purchasing salmon [23]. Loyalty cards that track purchases are

one means by which such association rules can be constructed in the retail context.

2

Some examples of optimization in association involve optimal rule discovery [64, 107]. In

general, this approach attempts to find the K best rules that optimize a value measure sub-

ject to a set of constraints, where K is a user-defined integer. It extends previous efforts that

search for a single optimal rule that satisfies all constraints, though has the drawback of po-

tentially lacking in diversity by drawing rules from only one subsection of the data. Chen [23]

considers the use of data envelopment analysis (DEA) to search among a candidate set of pos-

sible rules to identify a subset that is efficient with respect to several discriminating criteria.

Other types of prediction include classification, where training data are used to form

discrete sets to which uncategorized data are assigned according to some measure of proxim-

ity. Optimization is a central component in many classification tasks, appearing for example

in the contexts of supervised biclustering [19], k-means algorithms [12, 28], and support

vector machines [30, 89]. Regression is another type of prediction that uses the training

data. Rather than a discrete classification, it yields a continuous function. It is a classical

statistical technique that attempts to fit data in an optimal way through a function that

explains a dependent variable in terms of one or more independent variables [72].

Clustering is a data mining task involving unsupervised learning. It is similar to classifi-

cation in that it attempts to group data into coherent sets based upon some quality criterion.

In traditional clustering these sets are not predefined, but rather are formed dynamically as

the data are analyzed. Another challenge in clustering is that the number of sets is typically

not known a priori. Applying optimization to the context of clustering dates back to the late

1960’s and early 1970’s [85, 106]. More recently, Bradley et al. [14] use concave minimization

to perform the task of clustering.

In contrast to traditional clustering, which is performed on either the sample sets or the

feature sets individually, biclustering is jointly applied to the feature and sample sets. Bi-

clustering is the specific data mining task we consider in this thesis, addressing the detection

of two important unsupervised biclustering patterns that have significance to the field of

biomedicine. For additional details on optimization in the context of data mining, we refer

the reader to the excellent surveys by Bradley et al. [16] and Olafsson et al. [78].

3

1.2 COMPUTATIONAL BIOLOGY

The biological sciences have experienced significant advancements over the past twenty to

thirty years with the advent of the personal computer. Together with the rise of DNA

technology and the successful sequencing of the human genome, computational biology has

become a burgeoning interdisciplinary field with many subdomains. We next explore some

of the more prominent areas in which optimization-based techniques have been applied.

Sequence analysis involves comparing and contrasting genomic sequences. It includes

sequence alignment, which is concerned with mapping elements of one sequence to one (pair-

wise alignment) or more (multiple alignment) other sequences. A measure of proximity

evaluating the quality of the mapping is typically involved. This could be beneficial, for ex-

ample, when trying to infer attributes of an unknown DNA sequence from those of a known

sequence. Another challenge in the area of sequence analysis is protein structure recognition,

which is necessary to properly understand a protein’s function.

Optimization has been widely and successfully applied to sequence analysis problems in

the literature. Kececioglu et al. [60] as well as Althaus et al. [3] study the multiple sequence

alignment problem from the viewpoint of combinatorial optimization, developing multiple

formulations and demonstrating strong valid inequalities. One of the many examples of

optimization in protein recognition is Xie and Sahinidis [111], who use contact map over-

lap (CMO) optimization to align protein sequences so that the number of common residue

contacts is maximized. Their approach improved upon the performance of then current

technologies, yielding results in strong agreement with standard classifications.

Protein structure prediction is another challenge in computational biology. Accurate pre-

diction can help to understand yet undocumented three-dimensional protein structures at the

molecular level. Xu et al. [112] conduct 3D protein structure prediction via threading. They

introduce the RAPTOR software package that formulates the protein threading problem as

a large scale integer programming problem, which when relaxed to a linear programming

problem has the advantageous tendency of yielding integral solutions.

While our interests lie in this last domain, still other areas of computational biology

exist to which optimization techniques have been successfully applied, among them genome

4

rearrangements [22] and haplotyping [47]. Several excellent surveys covering a broader se-

lection of optimization-based applications to the field of computational biology can be found

in [4, 45, 62].

1.3 SUSTAINABLE ENERGY DEVICES

Sustainability is loosely defined as meeting today’s needs without compromising the needs of

tomorrow [76]. The vast field of energy has received a great deal of attention in the literature

on sustainability, and rightfully so, given the rising global energy demands combined with

the steadily decreasing supply of fossil fuels. We choose to focus on an application in the

field of sustainable energy that touches the environmental, societal and economic aspects of

the ability to sustain life.

In particular we focus on optimizing the design of the thermoacoustic Stirling heat engine

(TAE), a device that takes hot heat input and creates loud acoustic work. It is a main driver

for the thermoacoustic refrigerator (TAR), which receives the acoustic work and, through

a reversal of the process, provides cooling. These devices offer sustainable advances over

standard refrigeration means, in that they contain no toxic gases such as common CFC- and

HCFC-based refrigerants. Additionally, they contain no moving parts, and so maintenance

needs are significantly decreased. While TARs are a reality today, they are not yet compet-

itive with incumbent technology in terms of efficiency. Our goal is the use of optimization

techniques to identify an optimal structural design for the TAE with can then improve the

overall efficiency of the TAR to better compete with incumbent refrigeration technology.

In comparison with the internal combustion engine, the thermoacoustic engine is not

nearly as developed; its relatively poor cycle performance is likely due to the lack of un-

derstanding regarding the thermal and acoustic parameter tradeoffs [50]. Such complex in-

teractions can be better understood through mathematical analysis as well as optimization,

though this approach appears under-utilized in the thermoacoustic literature.

Some existing efforts include Zink et al. [115], who use an optimization-based approach in

conjunction with a finite element solver to identify (locally) optimal solutions to their model

5

featuring two variables. Another study is Minner et al. [71], who consider the optimization

of a thermoacoustic refrigeration system. Through extensive model development they seek

to optimize the coefficient of performance, considering geometric parameters and fluid prop-

erties of the system and the Nelder-Mead simplex algorithm to search for a (locally) optimal

solution. However, in order to account for the thermoacoustic operating conditions, they

rely extensively upon DeltaE, a blackbox simulation tool based on linear acoustic theory

developed by Swift et al. [93]. DeltaE considers a thermoacoustic device as a combination of

individual sections, and analyzes each section with regard to its acoustic properties as well

as the velocity, pressure, and temperature behavior.

Both Wetzel [108] and Besnoin [11] discuss thermoacoustic device optimization in their

studies. While Wetzel focuses on the optimal performance of a thermoacoustic refrigerator,

Besnoin targets heat exchangers. Zoontjens [116] demonstrate the optimization of inertance

sections of thermoacoustic devices, using DeltaE to vary individual parameters to determine

optimal designs. Ueda [103] evaluates how varying certain engine parameters affects pressure

amplitudes. Another work that makes use of DeltaE is Tijani et al. [100], who attempt to

optimize the spacing of the stack.

The inherent nonlinear dynamics in such thermoacoustic systems result in serious difficul-

ties for solution approaches. With the exception of the Zink et al. [115] and Minner et al. [71]

studies, the previous works vary no more than a single parameter, holding all others con-

stant. Moreover, in every case the solution approaches that are used guarantee only a locally

optimal solution, which may potentially be greatly inferior to a globally optimal solution.

1.4 PROBLEM STATEMENTS AND CONTRIBUTIONS

The focus of this dissertation is the mathematical analysis, modeling, design and imple-

mentation of solution techniques to locate optimal solutions (with respect to an appropriate

objective) to problems in the application areas of data mining, computational biology, and

sustainable energy devices. The common thread through these seemingly disparate areas is

the discovery of underlying structure using nonlinear integer programming techniques.

6

In data mining, we seek to identify hidden patterns in real biological data using two pro-

posed biclustering criteria. In so doing, our contributions are twofold: i) the development

of novel optimization-based approaches that will detect such patterns, and ii) the identi-

fication of patterns of optimal size with respect to predefined criteria. In computational

biology, our aim is to use optimization to better understand the underlying interaction code

structure; describing these relationships using a minimum set of parameters is an additional

contribution. Finally, in the area of sustainable energy devices, we identify the structural

variable levels that optimize device design with respect to multiple objectives, with the goal

of making such devices competitive with incumbent refrigeration technology. Our contribu-

tion is the optimization framework that models the thermoacoustic Stirling heat engine and

its subsequent optimization to identify globally optimal design parameters by simultaneously

varying five structural parameters, improving on existing studies that varied only a single

parameter at a time.

1.5 OVERVIEW OF THE DISSERTATION

The remainder of this dissertation is organized in the following manner. In Chapter 2 we

present the application of optimization to data mining in solving two biclustering problems,

while an application of optimization to the field of computational biology is discussed in

Chapter 3. Chapter 4 addresses the design optimization of a sustainable energy device, and

conclusions for these applications are drawn in Chapter 5.

7

2.0 OPTIMIZATION IN DATA MINING

In this chapter we investigate whether a specific class of data mining problems known as

biclustering can be efficiently addressed using mathematical programming techniques. There

are several advantages of using optimization within the context of data mining. Mathemat-

ical programming approaches present an adaptable framework that allows for the modeling

of logical implications and other coherent pattern-specific structure. For example, if an

additional restriction is necessary it can be implemented by simply adding a corresponding

constraint to the optimization model. This flexibility lends itself naturally to the formulation

of data mining tasks.

Standard methods for solving different classes of mathematical programs include ex-

act methods (e.g., branch-and-bound, branch-and-cut, branch-and-price, cutting plane [77]),

metaheuristic techniques [44, 105], as well as approximation algorithms [105]. If optimal

solutions are desired, then mathematical programming approaches have the additional ad-

vantage of the powerful and robust solvers such as CPLEX that are already available. For

data sets that are not particularly large, the corresponding optimization formulations can

typically be solved outright without the need for additional configurations. For larger data

sets, obtaining optimal solutions may require the application of advanced optimization-based

techniques that exploit specific problem structure to enhance stand-alone solver’s capabili-

ties.

While numerous data mining approaches exist in both the literature and practice, often

no guarantee is made on the quality of the output; there are many that obtain decent results

in reasonable amounts of time. In contrast to such heuristic approaches, we leverage math-

ematical programming approaches in conjunction with state-of-the-art solver technology for

the identification of optimal-sized patterns with respect to specified criteria of interest.

8

2.1 BICLUSTERING

Figure 2.1: Generic scheme of biclustering

Input data may be given as a rectangular ma-

trix A = (aij)m×n, where m corresponds to

the number of features (i.e., rows of the data

matrix), and n corresponds to the number of

samples (i.e., columns). Thus entry aij con-

tains the value of the ith feature in the jth sam-

ple. Samples are typically observations sam-

pled from a larger population of data, whereas

features are attributes that describe the char-

acteristics of each sample. Figure 2.1 presents

an initial data set with six samples and nine

features. These data are subsequently grouped into six biclusters, albeit in a rather ideal

manner. Consider partitioning the samples of a data set into r sample biclusters:

S1,S2, . . . ,Sr, Sk ⊆ {1 . . . n}, k = 1 . . . r,

S1 ∪ S2 ∪ . . . ∪ Sr = {1 . . . n}, Sk ∩ S` = ∅, k, ` = 1 . . . r, k 6= `.

Here, samples that are grouped together have certain common properties. At the same time,

consider partitioning the features into r feature clusters:

F1,F2, . . . ,Fr, Fk ⊆ {1 . . .m}, k = 1 . . . r,

F1 ∪ F2 ∪ . . . ∪ Fr = {1 . . .m}, Fk ∩ F` = ∅, k, ` = 1 . . . r, k 6= `.

Clustered features also share certain properties in common, with features of cluster k “re-

sponsible” for creating sample cluster k, and vice versa. This simultaneous clustering of

samples and features according to a specific pattern of interest is known as biclustering,

and contrasts with traditional clustering methods that classify only features or samples in-

dependently. In biclustering each sample (feature) cluster is induced by a specific subset

of samples (features), thereby allowing for the discovery of local patterns of interest that

9

are relevant to a specific subset of features only for a specific subset of samples (and vice

versa). This implies that “clustering derives a global model while biclustering produces a

local model” [66]. Biclustering can be formally defined as follows:

Definition 1. [20] A biclustering of a data set is a collection of pairs of sample and feature

subsets B = ((S1,F1), (S2,F2), . . . , (Sr,Fr)) such that the collection (S1,S2, . . . ,Sr) forms a

partition of the set of samples, and the collection (F1,F2, . . . ,Fr) forms a partition of the

set of features.

Figure 2.2: r = 3 biclusters

We note that it is not necessary to require an exact par-

titioning of sample and feature clusters (Sk,Fk), so that

other pairs (Sk,F`), k 6= ` are also permitted. Overlapping

co-clusters is another potential relaxation to the strict par-

titioning requirement of Definition 1.

Cheng and Church [24] first introduced biclustering in

the context of finding co-regulation patterns in gene ex-

pression data; they provide a measure to evaluate biclus-

ter quality as well as several efficient algorithms to locate

them. Other names for biclustering in the literature in-

clude co-clustering, bidimensional clustering, and subspace

clustering [20, 66]. Cho et al. [27] introduce two further

criteria for evaluating biclusters and propose two efficient

heuristic algorithms for their identification. Dhillon [32]

presents a novel use of biclustering (as opposed to standard

clustering techniques) to analyze common words across

documents; a bipartite spectral graph partitioning algo-

rithm is proposed to locate significant textual biclusters.

Busygin et al. [18] introduce the double conjugated clustering algorithm that enables any

standard clustering algorithm to find biclusters. Kluger et al. [61] establishes the spectral

biclustering approach, which uses a condition based upon singular value decomposition to

create checkerboard biclusters from genetic microarray data.

10

The correspondence between clusters of samples and features becomes evident once they

have been sorted according to their classifications. This correspondence can be depicted

graphically through the use of a heatmap, which represents the magnitude of two-dimensional

data through the intensity of the corresponding pixel color. Figure 2.2 displays a heatmap of

a biclustered data set, revealing three significant biclusters. These biclusters of samples and

features can be readily observed from the dark areas containing predominantly dark pixels,

which correspond to higher values of the elements aij in data matrix A.

2.1.1 Applications of Biclustering

Biclustering is of critical importance in biomedical applications, particularly in the analysis

of DNA microarray data sets. DNA microarrays measure gene expression levels of thousands

of genes simultaneously, allowing researchers to observe their actions across various types of

cells. A typical microarray data set includes multiple sample classes representing medical

conditions or perhaps certain cell types. When conducted in a reliable manner, biclustering

is able to not only diagnose disease conditions represented by sample clusters, but also to

identify the genes (features) that serve as their markers [58].

While the primary application domain for biclustering is biomedical data analysis, other

application areas include text mining, which is crucial for such techniques as text indexing,

web search, text filtering, among others [87]. In marketing contexts, collaborative filtering

is a biclustering technique that groups together customers having similar preferences on a

subset of products. Given data on consumption history, biclustering techniques can then

serve to build robust online and in-store recommendation systems for customers.

Additional uses of biclustering include dimensionality reduction of databases via auto-

matic subspace clustering of high dimensional data [1], electoral data analysis to identify

groups of constituencies in political districts [48], and analyzing foreign exchange data to

locate subsets of currencies whose exchange rates generate related behavior during certain

subsets of time periods [63]. Another potential application of biclustering is to detect spe-

cial structure within the constraint matrices of a given optimization problem, which could

11

then be used in the implementation of advanced decomposition techniques such as Benders’

Partitioning [10], Dantzig-Wolfe Decomposition [31], and others [96].

For more information on a wide variety of biclustering patterns, algorithms and related

applications, we refer to the surveys by Busygin et al. [20] and Madeira and Oliveira [66].

2.1.2 Similarity Measures in Biclustering

The quality of a biclustering can be determined by the proximity of samples and features

within biclusters as well as their distinctness across other biclusters. There are many ways

to establish an acceptable biclustering similarity measure, that is, the process of forming

pairs (Sk,Fk) of sample and feature subsets. Our key idea is to formulate the patterns of

interest as constraints of an optimization problem with an appropriate objective function

that measures the desired biclustering properties. To motivate the two formal biclustering

pattern definitions we consider, we next discuss some exemplary similarity measures.

One of the most established biclustering metrics is the mean squared residue score pro-

posed by Cheng and Church [24]. To formulate this measure, let us introduce:

µ
(r)
ik =

1

|Sk|
∑
j∈Sk

aij (2.1)

as the mean of the ith row in the sample cluster Sk,

µ
(c)
jk =

1

|Fk|
∑
i∈Fk

aij (2.2)

as the mean of the jth column in the feature cluster Fk, and

µk =

∑
i∈Fk

∑
j∈Sk aij

|Fk||Sk|

as the mean value in the bicluster (Sk,Fk). The residue of element aij is defined as:

rij = aij − µ(r)
ik − µ

(c)
jk + µk, i ∈ Fk, j ∈ Sk. (2.3)

Finally, the mean squared residue score of the bicluster (Sk,Fk) is defined as:

Hk =
∑
i∈Fk

∑
j∈Sk

(rij)
2 .

12

This value is equal to zero if and only if the entries of all columns (rows) in the bicluster

are equal to one another. A bicluster (Sk,Fk) is called a δ-bicluster if Hk ≤ δ. After

proving that finding the largest square δ-bicluster is NP -hard, Cheng and Church used a

simple greedy procedure to find biclusters. This approach begins with the entire data matrix

and successively removes columns or rows that contribute most to the mean squared residue

score [24]. The residue in (2.3) is also utilized by Yang et al. [113] in the FLOC algorithm, as

well as by Cho et al. [27] in a manner that simultaneously calculated all biclusters, optimizing

the total squared residue as:

min
K∑
k=1

Hk, (2.4)

where input parameter K is the total number of desired biclusters. Cho et al. [27] also

introduced the residue measure:

rij = aij − µk, (2.5)

which is the same metric used in “direct clustering” (also known as block clustering) by

Hartigan [48]. Cho et al. also demonstrated that their algorithms cause the objective to

monotonically decrease expression (2.4) and converge to a local minimum [27]. Another class

of optimization-based approaches is based on information theory [34, 35], casting the task

of biclustering as an optimization problem that attempts to minimize the resulting loss in

mutual information.

We next demonstrate that two distinct biclustering tasks from the literature can be cast

as mathematical programs, addressing unsupervised biclustering under the biclustering con-

sistency conditions in Section 2.2, and finding order-preserving submatrices in Section 2.3.

13

2.2 UNSUPERVISED BICLUSTERING UNDER THE BICLUSTERING

CONSISTENCY CONDITIONS

2.2.1 Acknowledgment

The following content is reproduced with kind permission from Springer Science+Business

Media: A. Trapp, O.A. Prokopyev, and S. Busygin, “Finding Checkerboard Patterns via

Fractional 0-1 Programming,” Journal of Combinatorial Optimization, 20 (1), pp. 1-26, 2010.

2.2.2 Introduction

As discussed in Section 2.1.2, biclustering approaches use diverse criteria to associate clusters

of samples to clusters of features [20, 66]. The consistent biclustering criteria was introduced

in [19] to locate checkerboard patterns in data, and an algorithm was presented to handle

supervised biclustering under the biclustering consistency conditions. The key advantage of

the proposed criteria is that in contrast to other biclustering schemes, consistent biclustering

is theoretically justified by the conic separation property [19]. We extend this work on con-

sistent biclustering for the case of unsupervised learning, developing new optimization-based

algorithms for handling the unsupervised biclustering problem under the biclustering consis-

tency conditions. In addition, we also present some new computational complexity results.

We organize the remainder of our discussion in the following manner. In Section 2.2.3

we review the notion of consistent biclustering, while computational complexity issues of

the biclustering problem are discussed in Section 2.2.4. We introduce a mathematical pro-

gramming formulation to handle unsupervised biclustering under biclustering consistency

conditions in Section 2.2.5. In Section 2.2.6 two heuristic algorithms for unsupervised bi-

clustering are presented, while in Section 2.2.7 we discuss our computational experiments.

Concluding remarks are presented in Section 2.4.1.

14

2.2.3 Consistent Biclustering

We next introduce the criteria we will use to conduct biclustering in the context of unsuper-

vised learning, namely, biclustering consistency [19]. Let each of the n samples be assigned

to one of the clusters S1,S2, . . . ,Sr. Define a 0–1 matrix S = (sjk)n×r such that sjk = 1 if

j ∈ Sk, and sjk = 0 otherwise. The sample class centroids can be computed as the matrix

C = (cik)m×r:

C = AS(STS)−1, (2.6)

where the kth column represents the centroid of the cluster Sk.

Consider row i of the matrix C. Each of the values cij reveals the average expression

of the ith feature for sample cluster k. Assigning the feature to the cluster where it is most

expressed generates the checkerboard pattern. So, let us assign the ith feature to the cluster

k̂ with the largest cik̂ value:

i ∈ Fk̂ ⇒ ∀ k = 1 . . . r, k 6= k̂ : cik̂ > cik. (2.7)

In the same manner, let us assume that all features have been partitioned into clusters

F1, F2, . . ., Fr. Then individual samples can be clustered using the same principle of

maximal average expression. We want to determine whether the assignment of samples to

feature clusters coincides with the prior assignment of features to sample clusters. To do

so, construct a 0–1 matrix F = (fik)m×r such that fik = 1 if i ∈ Fk and fik = 0 otherwise.

Then, the feature cluster centroids can be computed using matrix D = (djk)n×r:

D = ATF (F TF)−1, (2.8)

whose kth column represents the centroid of the cluster Fk. We want to verify the sample

clustering condition:

j ∈ Sk̂ ⇒ ∀ k = 1 . . . r, k 6= k̂ : djk̂ > djk. (2.9)

Biclustering consistency is defined as:

Definition 2. [19] A biclustering B will be called consistent if both relations (2.7) and (2.9)

hold, where the matrices C and D are defined as in (2.6) and (2.8).

15

Figure 2.2 of Section 2.1 illustrates an exemplary data set with three consistent biclusters

of over-expressed values. The average expression of any feature from bicluster B1 on samples

from bicluster B1 is greater than the average expression of the same feature on samples from

biclusters B2 and B3. Correspondingly, the average expression of any sample from bicluster

B1 on features from bicluster B1 is greater than the average expression of the same sample

on features from biclusters B2 and B3. Similar observations can be made for biclusters B2

and B3. In DNA microarray data, this checkerboard pattern may mean strong up-regulation

of certain genes under a cancer condition of a particular type (whose samples constitute one

class of the data set).

One of the key advantages of consistent biclustering is that it provides a formal setup for

the desired separability of clusters. In particular, consistent biclustering implies separability

of the clusters by convex cones:

Theorem 1. [19] If B is a consistent biclustering, then convex cones P1,P2, . . . ,Pr ⊆ IRm

exist such that all samples from Sk belong to the cone Pk and no other sample belongs to it,

k = 1 . . . r. Similarly, there exist convex cones Q1,Q2, . . . ,Qr ⊆ IRn such that all features

from Fk belong to the cone Qk and no other feature belongs to it, k = 1 . . . r.

It also follows from the conic separability that the convex hulls of clusters are separated, i.e,

they do not intersect. In general, however, the consistent biclustering criteria is rather strict

and data sets may not necessarily contain biclusters satisfying conditions (2.7) and (2.9).

Hence, we say that:

Definition 3. A data set is called biclustering-admitting if there exists some consistent

biclustering for it.

In supervised clustering a training set of samples with known classifications is provided.

Having advanced access to this information permits its use in classifying the test set of

samples. We also present a related notion:

Definition 4. The data set is called conditionally biclustering-admitting with respect to a

given (partial) classification of some samples and/or features if there exists a consistent

biclustering preserving the given (partial) classification.

16

2.2.4 Computational Complexity Issues

The computational complexity of consistent biclustering was left as an open question in [19].

We provide some insight by demonstrating the NP -hardness of finding, for a given data

matrix, the largest conditionally biclustering-admitting submatrix (CBASM), even for two

classes (i.e., r = 2). Consider the following decision version of this problem:

Instance: A real-valued data matrix A = (aij)m×n, S̃1, S̃2 ⊆ {1, . . . , n}, F̃1, F̃2 ⊆ {1, . . . ,m}

such that S̃1

⋂
S̃2 = F̃1

⋂
F̃2 = ∅, and six integers k, k1, k2, and `, `1 and `2 such that k ≤ n,

` ≤ m, k1 ≤ |S̃1|, k2 ≤ |S̃2|, `1 ≤ |F̃1| and `2 ≤ |F̃2|.

Question: Are there sets S1, S2 ⊆ {1, . . . , n} and F1, F2 ⊆ {1, . . . ,m} such that S1

⋂
S2 =

F1

⋂
F2 = S̃1

⋂
S2 = S1

⋂
S̃2 = F̃1

⋂
F2 = F1

⋂
F̃2 = ∅, and |S1| + |S2| ≥ k, |F1| +

|F2| ≥ `, |S̃1

⋂
S1| ≥ k1, |S̃2

⋂
S2| ≥ k2, |F̃1

⋂
F1| ≥ `1, |F̃2

⋂
F2| ≥ `2 and biclustering

B = ((S1,F1), (S2,F2)) is consistent?

The idea behind the above described decision problem is to check if there exists a subma-

trix of size `× k that is biclustering-admitting and partially preserves a given classification

of samples (at least for k1 and k2 samples from S̃1, S̃2, respectively) and features (at least

for `1 and `2 features from F̃1, F̃2, respectively). All other samples and features from S̃i,

F̃i, respectively (i = 1, 2) that do not belong to their respective Si and Fi in the resulting

consistent biclustering are considered to be outliers.

Theorem 2. CBASM problem is NP -complete.

Proof. In the following reduction we use the Balanced Complete Bipartite Subgraph

problem, which is known to be NP -complete [43]:

Instance: Bipartite graph G = (V,E), positive integer K ≤ |V |.

Question: Are there two disjoint sets V1, V2 ⊆ V such that |V1|=|V2|=K and such that

u ∈ V1, v ∈ V2 implies that {u, v} ∈ E?

Given a bipartite graph G = (V, U,E) define that matrix A = (aij)m×n as follows. Let

m = |V |+ 1 and n = |U |+ 1. Define the values of aij as follows:

17

• aij = 1 if i ≤ |V |, j ≤ |U | and (i, j) ∈ E,

• ai,(n+1) = a(m+1),j = 1− ε for i = 1 . . .m, j = 1 . . . n, where ε < min{ 1
m
, 1
n
},

• a(m+1),(n+1) = 1,

• aij = 0, otherwise.

Let S̃1 = {1, 2, . . . , n}, F̃1 = {1, 2, . . . ,m}, S̃2 = {n + 1}, F̃2 = {m + 1}, k = K + 1,

` = K + 1, k1 = K, k2 = 1, `1 = K, `2 = 1.

Next we show that G contains a balanced complete bipartite graph of size K if and only

if the matrix A contains a submatrix of size (K + 1) × (K + 1) conditionally biclustering-

admitting with respect to a given (partial) classification of samples S̃1, S̃2 and features F̃1, F̃2.

The first direction can be proven as follows. Suppose G contains a balanced complete

bipartite subgraph with nodes V1 and V2 of size K. Let F1 and S1 consists of all indices that

correspond to nodes from V1 and V2, respectively, while S2 = {n+ 1} and F2 = {m+ 1} by

construction. Then for any i ∈ F1 and j ∈ S1:

ci1 =

∑
p∈V2

aip

K
= 1 > 1− ε = ai,(n+1) = ci2, and (2.10)

dj1 =

∑
q∈V1

aqj

K
= 1 > 1− ε = a(m+1),j = dj2. (2.11)

For (S2,F2) we have that:

c(m+1),2 = a(m+1),(n+1) = 1 >

∑
p∈V2

a(m+1),p

K
= 1− ε = c(m+1),1, and (2.12)

d(n+1),2 = a(m+1),(n+1) = 1 >

∑
q∈V1

aq,(n+1)

K
= 1− ε = d(n+1),1. (2.13)

Inequalities (2.10) – (2.13) imply that (2.7) and (2.9) are satisfied and the constructed

submatrix is biclustering-admitting.

In order to show the other direction, assume that we have a submatrix of size (K +

1) × (K + 1) that is conditionally biclustering-admitting with respect to a given (partial)

classification of samples and features described above. Let V1 and V2 correspond to indices

from F1 and S1, respectively. Next we show that the subgraph induced by V1 and V2 is

18

complete, i.e., if i ∈ F1 and j ∈ S1 then aij = 1. Suppose this is not true and there exist

i ∈ V1 and j ∈ V2 such that aij = 0. Then:

ci1 =

∑
p∈V2

aip

K
≤ K − 1

K
= 1− 1

K
≤ 1− ε = ai,(n+1) = ci2, (2.14)

and (2.7) is not satisfied. This contradicts the initial assumption that the biclustering is

consistent. Therefore, aij = 1.

2.2.5 Mathematical Modeling of Consistent Biclustering

We next review in Section 2.2.5.1 a fractional 0–1 program from [19] that can handle the

supervised biclustering problem. Afterwards, we discuss how to extend such an approach to

model the case of unsupervised biclustering, which does not use training data to provide an

initial sample classification.

2.2.5.1 Supervised Consistent Biclustering Supervised consistent biclustering con-

sists of two routines. After evaluating training samples to derive classification criteria, these

criteria are subsequently applied to the test samples. When only a small subset of features is

expected to be relevant, such as in biological data analysis, the classification criteria should

involve dimensionality reduction and feature selection. Consistent biclustering can address

such concerns, as it selects a subset of features of the original data set in such a way that

the obtained subset of data becomes conditionally biclustering-admitting with respect to the

given classification of training samples.

We introduce the vector of 0–1 variables x = (xi)i=1...m, and consider the ith feature

selected if xi = 1, and xi = 0, otherwise. The condition of biclustering consistency when

considering only the selected features becomes:∑m
i=1 aijfik̂xi∑m
i=1 fik̂xi

>

∑m
i=1 aijfikxi∑m
i=1 fikxi

, ∀ j ∈ Sk̂, k̂, k = 1 . . . r, k̂ 6= k. (2.15)

The fractional relations (2.15) can then be used as constraints in a mathematical program.

A potential objective function may involve selecting the largest number of features so as to

19

lose the least amount of information provided by the training set. Thus one possible fractional

0-1 programming formulation that enforces the biclustering criterion is:

max
x∈Bn

m∑
i=1

xi (2.16)

subject to

∑m
i=1 aijfik̂xi∑m
i=1 fik̂xi

≥ (1 + t)

∑m
i=1 aijfikxi∑m
i=1 fikxi

, ∀ j ∈ Sk̂, k̂, k = 1 . . . r, k̂ 6= k, (2.17)

where (2.17) is a modified version of (2.15) involving a positive constant t called the parameter

of separation. Larger values of t may strengthen the class separation, thereby providing a

reduced set selected features with higher quality. This also closes the feasible domain by

eliminating the strict inequalities of (2.15).

Test samples are subsequently classified according to (2.9). That is, if b = (bi)i=1...m is a

test sample, then we assign it to the class Fk̂ satisfying:

∑m
i=1 bifik̂x

∗
i∑m

i=1 fik̂x
∗
i

>

∑m
i=1 bifikx

∗
i∑m

i=1 fikx
∗
i

, k = 1 . . . r, k̂ 6= k, (2.18)

where x∗ is the output of (2.16) – (2.17) indicating the optimal feature selection.

Optimization problem (2.16) – (2.17) is a specific type of fractional 0–1 programming

problem [83, 84, 95, 110]. By applying an approach to linearize problems with fractional

0-1 objective functions [110], optimization problem (2.16) – (2.17) can be reformulated as

a linear mixed 0-1 programming problem. This technique as well as a simple heuristic

algorithm for solving (2.16) – (2.17) were discussed in [19]. The obtained features were

used for classification of test data according to (2.18), providing excellent results for two

biomedical data sets (HuGE and ALL vs. AML).

20

2.2.5.2 Unsupervised Consistent Biclustering In contrast to supervised bicluster-

ing, where preclassified training data are available, unsupervised biclustering does not use

training data to develop appropriate classification criteria, instead allowing the data to self-

interpret. Consider assigning each sample to one of the clusters:

S1, S2, . . . , Sr.

To facilitate this, let S = (sjk)n×r now represent a set of 0–1 variables such that sjk = 1

if j ∈ Sk, and sjk = 0, otherwise. Similarly, consider clustering all features into clusters:

F1, F2, . . . , Fr.

Also, we now let F = (fik)m×r represent a set of 0–1 variables such that fik = 1 if i ∈ Fk
and fik = 0, otherwise.

The following sets of constraints:

sjk̂

(∑m
i=1 aijfik̂∑m
i=1 fik̂

− (1 + t)

∑m
i=1 aijfik∑m
i=1 fik

)
≥ 0 ∀ j, k̂, k = 1 . . . r, k̂ 6= k, (2.19)

fik̂

(∑n
j=1 aijsjk̂∑n
j=1 sjk̂

− (1 + t)

∑n
j=1 aijsjk∑n
j=1 sjk

)
≥ 0 ∀ i, k̂, k = 1 . . . r, k̂ 6= k, (2.20)

enforce the biclustering consistency conditions of (2.7) and (2.9). Furthermore, the unsu-

pervised biclustering formulation requires additional constraints related to the clustering of

samples and features, so that each feature and sample can be assigned to at most one cluster:

r∑
k=1

fik ≤ 1 ∀ i and
r∑

k=1

sjk ≤ 1 ∀ j, (2.21)

and each cluster must contain at least one feature and sample:

m∑
i=1

fik ≥ 1 ∀ k and
n∑
j=1

sjk ≥ 1 ∀ k. (2.22)

Constraints (2.21) – (2.22) could also be modified in various ways. For example, we

may allow for certain features to belong to several biclusters, or require each sample to be

clustered so that there are no outliers.

21

Combining constraints (2.19) – (2.20) and (2.21) – (2.22) with a suitable objective func-

tion such as:

n ·
m∑
i=1

r∑
k=1

fik +m ·
n∑
j=1

,

r∑
k=1

sjk (2.23)

yields a fractional 0–1 programming problem. With objective (2.23), this formulation at-

tempts to select as many features and samples as possible while simultaneously satisfying

biclustering consistency conditions. Samples and features that do not appear in any clusters

in the solution of this mathematical program are simply taken to be outliers.

2.2.5.3 Linear Mixed 0–1 Reformulation We next demonstrate a linearization that

transforms formulation (2.23), (2.19) – (2.20) and (2.21) – (2.22), a type of fractional 0–1

programming problem, into a mixed integer program (MIP) that can then be solved using

standard linear mixed integer programming solvers such as CPLEX.

First, observe that conditions (2.19) and (2.20) are equivalent to:

∑m
i=1 aijfik̂∑m
i=1 fik̂

− (1 + t)

∑m
i=1 aijfik∑m
i=1 fik

≥ −Lsj(1− sjk̂) ∀ j, k̂, k, k̂ 6= k, (2.24)

∑n
j=1 aijsjk̂∑n
j=1 sjk̂

− (1 + t)

∑n
j=1 aijsjk∑n
j=1 sjk

≥ −Lfi (1− fik̂) ∀ i, k̂, k, k̂ 6= k, (2.25)

for large enough constants Lfi and Lsj . For instance, these can be chosen as:

Lsj = max
i
aij − (1 + t) min

i
aij, and Lfi = max

j
aij − (1 + t) min

j
aij. (2.26)

The following proposition can then be utilized to linearize our formulation:

Proposition 1. [110] A polynomial mixed 0–1 term z = xy, where x is a 0–1 variable, and

y is a nonnegative variable with upper bound M , can be represented by the following linear

inequalities: (1) y − z ≤M −Mx, (2) z ≤ y, (3) z ≤Mx, and (4) z ≥ 0.

22

Proposition 1 states that a nonlinear variable product containing a binary variable and

another nonnegative variable with upper bound M can be implicitly represented by the

introduction of a new variable together with four auxiliary linear constraint sets. Making

use of Proposition 1, let us introduce new variables:

uk =
1∑m

i=1 fik
, k = 1 . . . r; vk =

1∑n
j=1 sjk

, k = 1 . . . r, (2.27)

zik =
fik∑m
`=1 f`k

, i = 1 . . .m, k = 1 . . . r; yjk =
sjk∑n
`=1 s`k

, j = 1 . . . n, k = 1 . . . r. (2.28)

Then by substituting variables, we can replace nonlinear 0–1 inequalities (2.24) and (2.25)

with the following linear-mixed 0–1 constraint sets:

m∑
i=1

aijzik̂ − (1 + t)
m∑
i=1

aijzik ≥ −Lsj(1− sjk̂) ∀ j, k̂, k, k̂ 6= k, (2.29)

n∑
j=1

aijyjk̂ − (1 + t)
n∑
j=1

aijyjk ≥ −Lfi (1− fik̂) ∀ i, k̂, k, k̂ 6= k, (2.30)

m∑
i=1

zik = 1, k = 1 . . . r,
n∑
j=1

yjk = 1, k = 1 . . . r, (2.31)

uk − zik ≤ 1− fik, vk − yjk ≤ 1− sjk, zik ≤ uk, yjk ≤ vk, ∀ i, j, k, (2.32)

zik ≤ fik, yjk ≤ sjk, zik ≥ 0, yjk ≥ 0, ∀ i, j, k. (2.33)

Objective function (2.23) along with conditions (2.21) – (2.22) and (2.29) – (2.33), which

we subsequently refer to as the main MIP, represents the original nonlinear 0–1 programming

problem with a linear mixed 0–1 program having 2r(m+ n+ 1) variables.

23

2.2.6 Heuristic Approaches

Our linear mixed 0–1 reformulation is not suitable for solving large-scale instances of the

biclustering problem even when coupled with the best techniques implemented in modern

integer programming solvers. As a consequence, we next present two alternative heuristic

approaches for solving this problem. The first algorithm iteratively solves a relaxation of the

main MIP, while the second is a heuristic based upon local search that maintains biclustering

consistency conditions.

2.2.6.1 Heuristic 1 (H1): MIP-based Heuristic The first heuristic is an extension

of the algorithm described in [19]. It solves relaxations of the main MIP in an iterative

manner until specified criteria are met.

To shed light on our motivations for this heuristic, consider the meaning of variables zik

and yjk. We have introduced them so that:

zik =
fik∑m
`=1 f`k

, i ∈ Fk, and (2.34)

yjk =
sjk∑n
`=1 s`k

, j ∈ Sk. (2.35)

Thus, for i ∈ Fk, zik is the reciprocal of the cardinality of cluster Fk after feature selection,

if the ith feature is selected, and 0 otherwise; likewise, for j ∈ Sk, yjk is the reciprocal of the

cardinality of cluster Sk if the jth sample is selected, and 0 otherwise. This reveals that zik

and yjk are also binary variables just as fik and sjk are, however, their nonzero values are

simply not set to 1. Though these nonzero values are not known until the optimal sizes of

feature and sample clusters are obtained, knowing the values of zik and yjk suffices to define

the values of fik and sjk, and the system of constraints with respect only to the continuous

variables 0 ≤ zik ≤ 1 and 0 ≤ yjk ≤ 1 (that is, dropping constraints (2.32) involving uk and

vk) constitutes a linear relaxation of the main MIP. Furthermore, it can be strengthened by

the system of inequalities connecting zik to fik and yjk to sjk. Indeed, knowing that no more

24

than mk features can be selected for cluster Fk and that no more than nk samples can be

selected for cluster Sk, it is valid to impose the following inequalities:

mkzik ≥ fik ∀ i, k, and nkyjk ≥ sjk ∀ j, k. (2.36)

Inequalities (2.36) strengthen the relaxation of the main MIP. Furthermore, we can show:

Theorem 3. If f ∗, s∗ is an optimal solution to (2.23), (2.21) – (2.22) and (2.29) – (2.33),

and if ∀ k mk =
∑m

i=1 f
∗
ik, and if ∀ k nk =

∑n
j=1 s

∗
jk, then f ∗, s∗ is also an optimal solution

to (2.23), (2.21) – (2.22), (2.29) – (2.31), (2.33), and (2.36).

Proof. Because the new program is a relaxation of the original problem (noting that the

two additional constraint sets are satisfied by any feasible solution to the original program),

f ∗ and s∗ must be feasible for the new program as well. Thus, we need only demonstrate

that formulation (2.23), (2.21) – (2.22), (2.29) – (2.31), (2.33), and (2.36) does not have a

better solution in order to prove the result.

Suppose there exists some f ∗∗, s∗∗ such that:

m
n∑
j=1

r∑
k=1

s∗∗jk + n
m∑
i=1

r∑
k=1

f ∗∗ik > m
n∑
j=1

r∑
k=1

s∗jk + n
m∑
i=1

r∑
k=1

f ∗ik.

Because constraint sets (2.36) must hold, then summing over i and k gives:

n
m∑
i=1

r∑
k=1

f ∗∗ik ≤ n
m∑
i=1

r∑
k=1

mkzik,

and

m

n∑
j=1

r∑
k=1

s∗∗jk ≤ m

n∑
j=1

r∑
k=1

nkyjk.

Now summing these equations, and in conjunction with (2.31) along with our assumptions

about mk and nk, we have that:

m

n∑
j=1

r∑
k=1

s∗∗jk + n

m∑
i=1

r∑
k=1

f ∗∗ik ≤ m

n∑
j=1

r∑
k=1

nkyjk + n

m∑
i=1

r∑
k=1

mkzik =

m
r∑

k=1

n∑
j=1

nkyjk + n
r∑

k=1

m∑
i=1

mkzik = m
r∑

k=1

nk

n∑
j=1

yjk + n
r∑

k=1

mk

m∑
i=1

zik =

25

= m

r∑
k=1

nk + n
r∑

k=1

mk = m
n∑
j=1

r∑
k=1

s∗jk + n

m∑
i=1

r∑
k=1

f ∗ik,

which leads us to a contradiction.

Algorithm 1. [Heuristic 1 (H1): MIP-based Heuristic]

1. Assign mk := m and nk := n, k = 1 . . . r.

2. Solve the mixed 0–1 programming formulation consisting of (2.23) together with con-

straints (2.21) – (2.22), (2.29) – (2.31), (2.33), and (2.36).

3. If mk =
∑m

i=1 fik ∀ k And nk =
∑m

j=1 sjk ∀ k, Go To 6.

4. Assign mk :=
∑m

i=1 fik and nk :=
∑n

j=1 sjk ∀ k.

5. Go To 2.

6. Stop.

Our computational experiments indicate that, though this heuristic performs much faster

than solving the main MIP directly, it is still not efficient enough for tackling reasonably

large real-life microarray data sets.

2.2.6.2 Heuristic 2 (H2): Multi-start Iterative Heuristic As an alternative to

Algorithm 1, we also present another iterative-based heuristic that maintains the biclustering

consistency conditions. The heuristic is first primed by generating a random assignment of

the n samples to the r clusters. Using this initial clustering of samples, the m features are

then clustered according to (2.7). Given the obtained partitioning of features, we update

the sample clustering according to (2.9). The process continues in this manner, iteratively

refining both row and column clusters, until two stopping conditions have been met:

1) r clusters have been generated, and

2) no samples or features have switched clusters for one full iteration.

It is possible that we may reach an iteration where one or more clusters may become

empty. If fewer than r clusters have been formed, the algorithm resets by generating another

26

random assignment of samples to clusters and proceeds as before. The pseudocode of the

above described routine (together with some additional enhancements that are subsequently

discussed) is outlined in Procedure 3.

The final result of Procedure 3 can substantially depend on the initial random assignment

of samples to clusters. Therefore, we choose to run multiple trials of the procedure (hence

the term multi-start), in order to determine to which cluster each sample predominantly

belonged based on a simple majority vote, with ties broken arbitrarily. Let us formalize

our terminology by defining a solution as consisting of a particular assignment of samples to

clusters, and let us define a trial as consisting of one pass of Procedure 3, typically consisting

of multiple iterations, until stopping conditions 1) and 2) above have been met.

An initial sample clustering (S0
1 ,S0

2 , . . . ,S0
r) is constructed in Step 1. of Procedure 1.

We obtain our initial solution using multiple trials of Procedure 3. Among generated sam-

ple clusterings, we choose the one with minimum value of a specific metric (see Step 3. of

Procedure 1), so as to ensure that the starting solution is in some sense more diverse than

the others. After generating the initial sample clustering (S0
1 , . . . ,S0

r), the multi-start Pro-

cedure 2 begins. This procedure applies MSLim trials of Procedure 3 to generate a starting

solution for use in the final biclustering of samples and features (Step 3. of Algorithm 2).

For each trial the corresponding sample clusterings are recorded, and upon completion of the

multi-start procedure, there will be a cluster to which each sample was assigned a majority

of times (ties broken arbitrarily). We assign each sample to its “majority” cluster and use

this final sample clustering in the final trial of the algorithm.

A potential issue with this multi-start Procedure 2 is that the actual clusters k = 1 . . . r

are not necessarily unique across trials, that is, it’s possible to have identical sample clus-

terings with differing cluster numbers. For example, in a given trial samples 1 and 2 could

be assigned to cluster 1, while samples 3 and 4 could be assigned to cluster 2. This clus-

tering should be considered identical to the clustering where samples 1 and 2 are assigned

to cluster 2 while samples 3 and 4 are assigned to cluster 1. In order to eliminate such

undesirable symmetry we make use of the initial sample clustering (S0
1 ,S0

2 , . . . ,S0
r) (see Step

3. of Procedure 2 for more information).

27

Algorithm 2. [Heuristic 2 (H2): Multi-start Iterative Heuristic]

1. Call Procedure 1.

2. Call Procedure 2.

3. Using results from Procedure 2 as initial sample clustering, call Procedure 3 to obtain

final biclustering.

Procedure 1. /* Construction of initial sample clustering */

1. Do generate random assignment of samples to clusters.

2. Call Procedure 3.

3. Evaluate “diversity” of the resulting solution by computing

d =
r∑

k=1

(
nk
n
− 1

r

)2

,

where nk is the number of samples in cluster k.

4. If the obtained solution has a lower value of d, store it as the current initial sample

clustering (S0
1 ,S0

2 , . . . ,S0
r).

5. While initTrialCount < initLim;

6. Stop, and Return the obtained solution.

Procedure 2. /* Improve initial sample clustering via voting */

1. Do generate random assignment of samples to clusters.

2. Call Procedure 3 to obtain sample clustering (S1′ ,S2′ , . . . ,Sr′).

3. Permute i′ → j minimizing Euclidean distance of (S1,S2, . . . ,Sr) from (S0
1 ,S0

2 , . . . ,S0
r).

4. Record assignment of samples to clusters for current trial.

5. While MSTrialCount < MSLim;

6. Categorize each sample according to the cluster to which it was assigned a majority of

times; break ties arbitrarily.

28

Procedure 3. /* Iteration-based biclustering */

1. Assign features to clusters according to sample clustering. For a given feature, this is

accomplished as follows:

2. For k = 1 . . . r, determine the number of entries nk and the sum of entries sk in this

feature.

3. Across all k : nk ≥ 1, calculate the average expression sk
nk

. Let cluster k∗ be the cluster

with the largest average expression.

4. For all k̂ : k̂ 6= k∗, nk̂ ≥ 1 in this feature, verify that
s∗k
n∗k
> (1 + t)

sk̂
nk̂

, where t is the

parameter of separation.

5. If the inequality in Step 4. does not hold for at least one k̂, this feature is labeled as

unclustered; otherwise, the feature is assigned to cluster k∗.

6. Once all features have been assigned to a particular cluster according to sample clus-

tering, cluster samples according to feature clustering by repeating similar steps.

7. If an entire pass occurs with no feature nor sample clustering changes, find the number

of non-empty clusters r̂.

8. If r̂ = r, Stop. Otherwise, Go To Step 1. of the calling procedure and restart the

current trial.

Note that in Step 5. of Procedure 3 features (and samples) can be labeled as unclustered,

so that in Steps 1. through 3., only clustered samples are considered in feature clustering,

and likewise in sample clustering.

Algorithm 2 may continue indefinitely due to some features consistently alternating be-

tween a small number of clusters; indeed, in computational testing there was a tendency

for some features to make alternating moves each iteration. Two parameters are introduced

to eliminate this possibility: PercentCutOff and BeginFlopCheck. For each feature, the ac-

tual ratio of the number of alternating moves per total number of iterations is calculated

for a given trial. PercentCutOff specifies the permissible ratio of alternating feature moves

per total number of iterations for a given trial. The BeginFlopCheck parameter works in

conjunction with the PercentCutOff parameter by specifying the number of iterations after

29

which we begin checking for the PercentCutOff ratio; this allows for some early shuffling of

features between clusters. After reaching BeginFlopCheck number of iterations, if the actual

ratio is greater than PercentCutOff, the feature is discarded from future consideration for

the remainder of this trial. These modifications cause rapid convergence for a given trial.

2.2.7 Computational Experiments and Results

Table 2.1: Synthetic test data: m = 6, n = 6, r = 3

(a) Unclassified data

0 1 2 0 1 2

2 0 1 2 0 1

1 2 0 1 2 0

0 1 2 0 1 2

2 0 1 2 0 1

1 2 0 1 2 0

(b) Classified data

2 2 0 0 1 1

2 2 0 0 1 1

1 1 2 2 0 0

1 1 2 2 0 0

0 0 1 1 2 2

0 0 1 1 2 2

2.2.7.1 Test Data We use both

synthetic and real biological data to

test our algorithms. We next detail the

types of data used to conduct our com-

putational experiments.

Synthetic Data Sets. A set of syn-

thetic test instances was generated in

order to test the accuracy of the main

MIP formulation. To create these in-

stances, we varied the values of m and

n, using r = 2, 3, 4. The test instances

were constructed with m rows and n columns, with entries formed by repeating the values

{0, 1, . . . , r}. An example with m = 6, n = 6, and r = 3 is displayed in Table 2.1. Table 2.1a

presents unclassified data, while Table 2.1b presents the data after classification. Three

biclusters appear in Table 2.1b, each consisting of two samples and two features.

HuGE Data Set. Our biclustering algorithms were tested on the Human Gene Expression

(HuGE) Index data set [55]. The purpose of the HuGE project is to provide a comprehensive

database of gene expressions in normal tissues of different parts of the human body as well as

to highlight similarities and differences among the organ systems. We refer the reader to [52]

for the detailed description of these studies. The HuGE data set consists of 59 samples from

19 distinct tissue types. It was obtained using oligonucleotide microarrays capturing 7,070

genes (features). The samples were obtained from 49 human individuals: 24 males with

median age of 63 and 25 females with median age of 50. Each sample came from a different

30

Table 2.2: Summary of tissues contained in HuGE data set

Tissue type Abbreviation # Samples

blood BD 1

brain BRA 11

breast BRE 2

colon CO 1

cervix CX 1

endometrium END 2

esophagus ES 1

kidney KI 6

liver LI 6

lung LU 6

muscle MU 6

myometrium MYO 2

ovary OV 2

placenta PL 2

prostate PR 4

spleen SP 1

stomach ST 1

testes TE 1

vulva VU 3

individual except for the first seven BRA samples that were from different brain regions of

the same individual and the 5th LI sample, which came from that individual as well. The

HuGE data set is summarized in Table 2.2.

We made use of the HuGE data set in testing both Algorithms 1 and 2. We generated

test data for our first algorithm by creating subsets of two of the 12 total tissue types having

31

multiple samples. For these tissue types, all samples were included in the data set, and all

genes were included so long as they contained no negative expressions. Subsets of the HuGE

data set were also used to test the performance of Algorithm 2. We constructed ten test data

sets of tissue groupings; four sets having three tissues each, three sets having four tissues

each, and three sets having five tissues each. Only those tissues having multiple samples were

considered in choosing these groupings. Furthermore, each of these ten tissue groupings were

used to make two sets: one set containing all 7,070 genes, and another set containing only

nonnegative expressions across all tissues in that set.

2.2.7.2 Other Algorithms We compared our unsupervised biclustering algorithms to

three other publicly available [33] biclustering (co-clustering) algorithms:

• Euclidian co-clustering algorithm (further referred to as CC-e) [27],

• Minimum squared residue co-clustering algorithm (CC-r) [27], and

• Information theoretic co-clustering algorithm (CC-i)[34].

These three algorithms represents recent algorithmic implementations of two classes of

biclustering methodologies: (i) algorithms based on minimization of some residue measure

(e.g., (2.3), (2.5)), also utilized in [24, 27, 48, 113], and (ii) information theoretic-based

methods, see [34, 35]. Similar to the algorithms proposed in this paper, these methods

are also optimization-based, but emphasize a different objective function metric in their

respective optimization problems.

2.2.7.3 Environments and Parameter Values Computational testing was performed

on multiple platforms. Both heuristic algorithms were compiled using Microsoft Visual

Studio .NET 2003 and were run on Windows XP with a Pentium 4, 2.4GHz processor and

2GB of RAM. The source code for the three biclustering algorithms (CC-e, CC-i, and CC-

r) was compiled with the GNU GCC compiler (version 4.1.2) and run on a Unix platform

with an AMD Opteron 240, 1.394GHz speed processor using 4GB of RAM.

In testing heuristic H1 we set the parameter of separation t = 3 in order to strongly

differentiate the resulting clusters. The callable library of CPLEX 9.0 [56] was used to both

32

formulate the problem instances as well as to perform the optimization. In order to speed

up the running time we adjusted some of the CPLEX MIP default settings, relying largely

upon the STOP tool described in [7] to aid our knowledge of what adjustments to make.

STOP is an open-source tool that can suggest solver settings to tune based upon one or more

problem instances. With this knowledge, we set the MIP Emphasis parameter to emphasize

feasibility over optimality, which encourages CPLEX to focus on finding a feasible integer

solution quickly. We also adjusted two cutting plane parameters, setting the Mixed Integer

Rounding Cuts parameter to aggressive and the Fractional Cuts to off (so that no fractional

cuts would be generated by CPLEX).

Concerning branching rules, we chose to have CPLEX implement the alternative best

estimate option for deciding subsequent nodes on which to branch, and we set the Dive

parameter to traditional dive. The Variableselect parameter, which decides on which variable

we branch, was set to strong branching. Additionally, we made use of the RINS and node

heuristics of CPLEX to help quickly locate other feasible solutions. Both the RINS and

node heuristic parameters were set to activate every iteration, and we restricted the number

of nodes on which the RINS heuristic could operate to 5,000. Finally, because of our belief

that sample variables have a higher priority than feature variables in terms of branching

strategies, we configured CPLEX to give greater priority to branching on sample variables

over feature variables.

In our testing of the H2 heuristic, we set BeginFlopCheck to 10 iterations and Per-

centCutOff to 0.8. Thus, after 10 iterations, if a feature had alternated more than 80%

of the time, that feature was considered an outlier and no longer available for that trial.

These parameters were chosen so as to refrain from considering a feature as an outlier unless

multiple iterations passed and the feature moved around frequently. Moreover, limited test-

ing revealed that the algorithm’s convergence was not overly sensitive to these parameters.

Ranges of BeginFlopCheck parameter from 5 to 15, and from approximately 60% to 95% for

PercentCutOff, resulted in convergence of the algorithm. Finally, in an effort to provide a

more direct comparison with the three co-clustering algorithms (CC-e, CC-i, and CC-r),

we set the parameter of separation t to 0 for the H2 heuristic, so that, in effect, t had no

influence on our algorithm.

33

Table 2.3: Performance of main MIP (Section 2.2.5.3) on synthetic data

m n r seconds

4 4 2 0.016

8 8 2 0.016

16 16 2 0.047

32 32 2 0.172

64 64 2 0.75

128 64 2 6.735

128 128 2 2.2

256 256 2 20.208

512 256 2 97.545

1,024 256 2 555.395

2,048 256 2 842.359

4,096 256 2 3,534.412

6 6 3 0.093

12 12 3 1.437

24 24 3 9.578

288 24 3 513.794

576 24 3 751.184

1,152 24 3 1,242.25

2,304 24 3 4,791.955

8 8 4 1.485

16 16 4 37.391

24 24 4 104.313

48 24 4 139.891

96 24 4 1,133.384

34

2.2.7.4 Results We next present the computational results we found using the afore-

mentioned algorithms and parameters.

MIP Results on Synthetic Data Sets. In this section we describe our application of the

main MIP (2.23), (2.21) – (2.22) and (2.29) – (2.33) to some synthetic instances we generated

according to Section 2.2.7.1 (Synthetic Data Sets). The size of the synthetic instances,

as well as the time required to solve them to optimality, are reported in Table 2.3. Every

generated synthetic instance appearing in Table 2.3 was successfully solved to optimality by

CPLEX 9.0 [56]. Unfortunately we were not able to experience the same level of success on

subsets of the HuGE data set using the main MIP in conjunction with CPLEX 9.0, and thus

we employed Algorithms 1 and 2 were necessary to perform the unsupervised biclustering.

It is important to note that the results on synthetic instances indicate the potential

for utilizing the main MIP for biclustering rather large instances of data with 0–1 values.

This situation may appear, for example, in the constraint matrix of mathematical programs.

Biclustering could then correspond to finding an arrow-head structure within these matrices,

which could prove very useful in the application of decomposition approaches (e.g., Benders’,

Dantzig-Wolfe) [67].

MIP-based Heuristic Results on Subsets of HuGE Data Set. The MIP-based Heuris-

tic H1 recovered significant biclusters with the subsets of HuGE data chosen as detailed in

Section 2.2.7.1(Huge Data Sets). In order to perform this biclustering, it was helpful to

implement a three hour time limit for the first iteration (in conjunction with an optimality

gap setting of 1%), followed by two-hour time limits for each subsequent iteration (and no

optimality gap). As mentioned previously, the parameter of separation was chosen as t = 3;

this high setting of t yielded tight clusters.

The developed MIP-based heuristic performs fairly well for r = 2 and n = 20 to 30 sam-

ples. Two heatmaps identifying exemplary clusterings with no errors and r = 2 are included

in Figures 2.3a and 2.3b. Figure 2.3a depicts the results of H1 on the HuGE data subset

including all of the (6) liver and (11) brain samples, using only those features with nonnega-

tive values (so that the instance had m = 1, 534 features and n = 17 samples). The resulting

biclusters are characterized by liver tissue in the first 6 samples and 12 features, while the

35

remaining 11 samples and 46 features are characterized by brain tissue. H1 and CC-i have

no errors on this data set, while CC-e and CC-r have seven and three errors, respectively.

Figure 2.3b displays the results of H1 on the HuGE data subset including all liver and

muscle samples with nonnegative feature entries, giving m = 2, 097 features and n = 12 sam-

ples. H1 identified 6 samples and 24 features representing liver tissue, and 6 samples and

35 features representing muscle tissue. As in the previous data set, H1 performed perfectly,

while CC-e, CC-i CC-r have six, three and three errors, respectively.

Unfortunately, the performance of H1 substantially declined when r > 2. We also note

that certain tissue subsets of the HuGE data simply did not lend themselves well to unsuper-

vised biclustering. On such subsets, our clusterings would typically misclassify one or more

samples; we believe this outcome was likely due to similarity of samples across tissue types.

Table 2.4: Computational results of three biclustering algorithms vs. H2 on HuGE data

Organs | S | | F | Cce Cci CCr H2
BRA-LI-MU+ 23 1,309 13 (43.5) 0 (100) 8 (65.2) 0 (100)

BRA-LI-MU 23 7,070 12 (47.8) — 3 (87.0) 0 (100)
KI-MYO-VU+ 11 3,245 4 (63.6) 3 (72.7) 0 (100) 6 (45.5)

KI-MYO-VU 11 7,070 5 (55.6) — 3 (72.7) 4 (63.6)
BRA-BRE-LU+ 19 1,602 8 (57.9) 3 (84.2) 4 (79.0) 2 (89.5)

BRA-BRE-LU 19 7,070 7 (63.2) — 8 (57.9) 4 (79.0)
KI-MU-OV+ 14 2,440 7 (50.0) 3 (78.6) 7 (50.0) 3 (78.6)

KI-MU-OV 14 7,070 6 (57.1) — 5 (64.3) 0 (100)
% Correct r = 3 52.2/53.7 86.6/— 71.6/71.6 83.6/85.8

BRA-BRE-KI-MU+ 25 1,389 10 (60.0) 2 (92.0) 8 (68.0) 0 (100)
BRA-BRE-KI-MU 25 7,070 9 (64.0) — 11 (56.0) 4 (84.0)

LI-LU-PR-VU+ 19 2,301 11 (42.1) 4 (79.0) 7 (63.2) 6 (68.4)
LI-LU-PR-VU 19 7,070 11 (42.1) — 8 (57.9) 6 (68.4)

BRE-KI-PL-PR+ 14 2,564 8 (42.9) 6 (57.1) 6 (57.1) 2 (85.7)
BRE-KI-PL-PR 14 7,070 7 (50.0) — 6 (57.1) 4 (71.4)

% Correct r = 4 50.0/51.7 79.3/— 63.8/60.3 86.2/81.0
BRA-BRE-END-LI-LU+ 27 1,377 16 (40.7) 13 (51.9) 12 (55.6) 9 (66.7)

BRA-BRE-END-LI-LU 27 7,070 12 (55.6) — 9 (66.7) 8 (70.4)
BRA-KI-MU-MYO-VU+ 28 1,429 16 (42.9) 4 (85.7) 9 (67.9) 12 (57.1)

BRA-KI-MU-MYO-VU 28 7,070 13 (53.6) — 7 (75.0) 8 (71.4)
KI-LU-MU-PL-PR+ 24 2,048 13 (45.8) 12 (50.0) 9 (62.5) 7 (70.8)

KI-LU-MU-PL-PR 24 7,070 12 (50.0) — 9 (62.5) 2 (91.7)
% Correct r = 5 43.0/48.1 63.3/— 62.0/65.2 64.6/70.9

Overall % Correct 48.0/51.0 75.5/— 65.7/65.9 77.0/78.7

36

Iterative Heuristic Results on Subsets of HuGE Data Set. As described in Sec-

tion 2.2.7.1 (Huge Data Sets), we created subsets of tissue groupings from the HuGE data

set to test the performance of H2. After obtaining these results, we then compared the per-

formance of H2 with those of publicly available biclustering algorithms (see Section 2.2.7.2).

The computational results have been summarized in Table 2.4. The rightmost four columns

contain the number of misclassifications per algorithm, followed by the percentage of correct

classifications. A “+” superscript on the data set name indicates that only positive genes

from the HuGE data set were used, whereas its absence indicates that all genes were in-

cluded. The “% correct r =” heading contain two percentages for the specified level of r:

the first is the percent correct for only nonnegative data, while the second is for all data.

From Table 2.4 we can see that in 13 of the 20 data sets, H2 had the highest percentage

of correct classifications, while in another two data sets, H2 tied for the highest percentage.

Only in five of the 20 data sets was H2 outperformed, and of these, only once (KI-MYO-

VU without negatives) was it outperformed by all of the three other algorithms. As noted

previously, the CC-i algorithm only operates on nonnegative data, and so its performance

could not be measured on data sets containing negative entries.

Further performance measures are evidenced in the rows with the “%correct r =” head-

ing. For each value of r (r = 3, r = 4, and r = 5, as well as for the overall case), the

percentage of correct classifications for each heuristic was calculated. The first percentage

reported is the performance on nonnegative data, while the second percentage is the perfor-

mance on all data. Among the four algorithms, H2 had the highest percentage of correct

classifications on seven of the eight measures, including both of the overall measures. Fig-

ures 2.4a and 2.4b are heatmaps of exemplary biclusterings located in the HuGE test data.

Some concluding remarks concerning the checkerboard pattern are presented in Section 2.4.1.

37

(a) 11 BRA and 6 LI samples (b) 6 LI and 6 MU samples

Figure 2.3: Heatmaps illustrating biclusters found using H1 on subsets of HuGE data

38

(a) 11 BRA, 2 BRE, 6 KI, and 6 MU samples (b) 11 BRA, 6 LI, 6 MU, and 4 PR samples

Figure 2.4: Heatmaps illustrating biclusters found using H2 on subsets of HuGE data

39

2.3 ORDER-PRESERVING SUBMATRIX PATTERNS

2.3.1 Acknowledgment

The following content is reproduced with kind permission from The Institute for Operations

Research and the Management Sciences: A.C. Trapp and O.A. Prokopyev, “Solving the

Order-Preserving Submatrix Problem via Integer Programming,” INFORMS Journal on

Computing, 22 (3), pp. 387-400, 2010.

2.3.2 Introduction

Another important concept in data mining is tracking trends, for example in disease pro-

gression or stock behavior over time. Continuing with the theme of generalizing traditional

clustering approaches to consider local patterns, we now turn our attention to another type

of biclustering pattern. Namely, we consider the problem of finding an embedded matrix

(submatrix) within a given data set that exhibits coherent increasing and decreasing trends

across the samples (columns) of each feature. We are particularly interested in locating the

largest such submatrix.

Instead of simultaneously identifying biclusters as with the checkerboard pattern in Sec-

tion 2.2, biclusters can also be identified on a one-by-one basis [20]. If it is desirable to locate

additional biclusters in the data, the biclustering procedure can then be repeated. If this is

the case, the corresponding features and samples of the newly identified bicluster are either

amputated from the data or their values masked with random numbers [24]. Otherwise,

the remaining data are not further processed and are simply considered as outliers. The

order-preserving submatrix is a biclustering pattern that may be considered in this manner,

introduced by Ben-Dor et al. [8, 9] in the context of detecting coherent trends in gene expres-

sion data. They both define the OPSM pattern and introduce an efficient greedy algorithm

that quickly locates statistically significant OPSMs.

Given the data set A = (aij)m×n, the OPSM problem consists of identifying a submatrix

of k rows and ` columns from the original data matrix in which there exists a permutation

of the selected columns such that in every selected row the values corresponding to selected

40

columns are strictly increasing. More formally, let F0 be a set of row indices {f1, f2, . . . , fk}.

Then there exists a permutation of a subset of column indices S0 = {s1, s2, . . . , s`} such that

for all i = 1, . . . , k and j = 1, . . . , `− 1 we have that:

afi,sj < afi,sj+1
. (2.37)

The corresponding submatrix (F0,S0) ∈ Nk×` is called order-preserving. A data set and a

corresponding column permutation that induces a 3× 4 OPSM is depicted in Figure 2.5.

Figure 2.5: Columns of data matrix permuted to induce 3× 4 OPSM

The appearance of these types of patterns in real-life data sets has a natural interpreta-

tion. Suppose we have a patient’s DNA microarray data set where each sample corresponds

to a particular stage of a disease. Then there is likely a subset of features that are co-

expressed with the disease progression. Considering the relative orderings of the expression

levels gives an indication of the coherent tendencies, or trends, across the sample set. A

similar situation occurs whenever we consider data representing some temporal progression:

data from drug treatment, data from nominally identical exposure to environmental effects,

data with some genetic abnormalities, etc. [9, 20].

We are aware of several attempts in the recent literature to establish efficient solu-

tion approaches for the OPSM problem. Cheung et al. [26] study the OPSM problem and

propose some additional extensions, employing a specific data structure together with an

algorithm that is able to discover all OPSMs. They further discuss some pruning methods

41

that aid in eliminating portions of the search space, and report on a number of computa-

tional experiments. Hochbaum and Levin [51] develop a 5-approximation algorithm and a

3-approximation algorithm for the OPSM. They approach the OPSM problem from its com-

plementary viewpoint that deletes the least number of non-promising entries in the original

matrix to obtain an OPSM. Unfortunately, no computational tests are provided.

Gao et al. [42] study the problem of locating OPSMs in massive sets of gene expression

data. They argue that, while OPSMs in such data sets are of clear interest to biologists, most

traditional clustering methods would completely overlook such submatrices with small row

support (i.e., small number of rows in the OPSM in relation to the overall row count of the

data set). They introduce the KiWi mining framework that relies on two parameters (k and

w). In short, their algorithm uses a statistical metric to evaluate candidate patterns, keeping

the k most promising that appear in the next w positions of the supporting sequences. While

a heuristic, their approach substantially reduces the search space and problem scale, finding

very large OPSMs embedded in massive real data sets.

The above approaches are all able to identify sizable OPSMs in data, however, the only

performance guarantees provided by any of these studies are the approximation algorithms

of Hochbaum and Levin [51]. This serves to underscore our goal of establishing an approach

that is guaranteed to identify order-preserving biclusters of maximum size (according to

specified performance criterion). In Section 2.3.4 we provide a general linear mixed 0–1

programming formulation that can be solved using standard solvers such as CPLEX, while

in Section 2.3.5 we demonstrate an alternative approach that iteratively solves a series of

smaller linear 0–1 programs in conjunction with valid inequalities and other improvements.

Section 2.3.6 details our computational experiments on both synthetic and real biological

data together with some additional algorithmic enhancements, while Section 2.4.2 contains

some concluding remarks. We next discuss computational complexity issues related to finding

order-preserving submatrices.

42

2.3.3 Computational Complexity Issues

The decision version of the OPSM problem consists of checking whether there exists a k× `

order-preserving submatrix (F0,S0) for given integers k, ` and input data matrix A ∈ Rm×n.

More formally, the decision version of the OPSM problem is defined as follows:

Instance: A real-valued data matrix A = (aij)m×n and two positive integers k ≤ m and

` ≤ n.

Question: In A, is there an order-preserving submatrix of size k-by-`? That is, we need

to check whether there is a set of row indices F = {f1, . . . , fk} and a sequence of columns

indices S = {s1, . . . , s`} such that for all 1 ≤ i ≤ k and 1 ≤ j ≤ `− 1:

afi,sj < afi,sj+1
. (2.38)

Theorem 4. [9] The decision version of the OPSM problem is NP -complete.

In the optimization version of the problem we consider finding the largest OPSM accord-

ing to the number of elements |F0| · |S0|. Because of the NP -completeness of the decision

version, the optimization version of the OPSM problem is clearly NP -hard. We refer the

reader to [43] for background on computational complexity theory.

We can also look at the computational complexity of the OPSM problem from the point

of view of parameterized complexity theory [37]. In this theory a problem is fixed parameter

tractable (FPT) with respect to parameter k if there exists a solution running in f(k)×`O(1)

time, where ` is the input size of the problem and f is a function of k that is independent of

`. In other words, the problem is in FPT with respect to parameter k if it is polynomially

solvable for the fixed value of k. Next we show that OPSM is FPT with respect to the num-

ber of columns n and FPT with respect to the number of rows m. Though the proofs below

are constructive, the enumerative algorithms described there can be utilized for solving the

OPSM problem only in the case of extremely small values of n or m, respectively.

Proposition 2. The OPSM problem is polynomially solvable if the number of columns n in

input data matrix A ∈ Rm×n is fixed.

43

Proof. Because n is fixed, we can enumerate all 2n subsets of the original set of columns

indices. For each subset of size r (r = 1, . . . , n) we can consider all r! permutations of indices.

Then for each row we can check whether the selected permutation of a particular subset of

column indices forms an increasing sequence of values. As observed in [9], this can be done

in O(mr) time, resulting in a
∑n

r=1
n!

(n−r)!O(mr) algorithm for solving the OPSM problem,

which is polynomial for each fixed value of n.

Proposition 3. The OPSM problem is polynomially solvable if the number of rows m in

input data matrix A ∈ Rm×n is fixed.

Proof. Because m is fixed, we can enumerate all 2m subsets of the original set of row indices.

Then for each subset, assuming that all considered rows are in the resulting submatrix, the

objective is to maximize the number of selected columns. Construct a directed graph G =

(N ,A) as follows. For each column j introduce a node j ∈ N . Introduce an arc (j1, j2) ∈ A

if and only if aij1 < aij2 for every row i in the subset of the considered rows. The resulting

graph G is acyclic. The longest directed path in G then corresponds to the maximum number

of columns included in the submatrix. The problem of finding the longest path in an acyclic

graph is polynomially solvable (see, e.g., [2]), which implies the necessary result.

The definition of OPSM can be generalized to finding any fixed pattern. For a fixed

vector w = {w1, . . . , wn−1}, where wj ∈ {−1,+1} for all j = 1, . . . , n−1, consider the decision

version of the following problem, which is further referred to as the w-OPSM problem:

Instance: A real-valued data matrix A = (aij)m×n and two positive integers k ≤ m and

` ≤ n.

Question: In A, is there an order-preserving submatrix of size k-by-` satisfying pattern

w? That is, we need to check whether there is a set of row indices F = {f1, . . . , fk} and a

sequence of columns indices S = {s1, . . . , s`} such that for all 1 ≤ i ≤ k and 1 ≤ j ≤ `− 1:

wj · afi,sj < wj · afi,sj+1
. (2.39)

We can observe from (2.39) that wj = 1 corresponds to up regulation between columns

j and j + 1, (the “up” pattern), whereas wj = −1 corresponds to down regulation between

44

the same columns (the “down” pattern). If wj = 1 for all j = 1, . . . , ` − 1 then we obtain

the original OPSM problem that searches for a permutation of columns obeying a strictly

increasing order. In general, however, the w-OPSM and OPSM problems are not the same.

For example, consider the matrix:

A =

 4 5 2

3 7 6

 . (2.40)

If we are looking for the strictly increasing pattern then the largest submatrix consists

only of two columns (a single “up” relationship). However, in the case of an {“up”,“down”}

pattern, the final answer is the whole matrix. The question we now ask is whether the

w-OPSM problem is difficult for all possible patterns. Is there any pattern w that can be

discovered in polynomial time? Unfortunately, it can be shown that for any fixed pattern

the problem of finding the largest submatrix satisfying this pattern is NP -hard.

Theorem 5. w-OPSM is NP -complete for any fixed pattern w.

Proof. Our proof is similar to the related result for the OPSM problem presented in [9];

we also use the reduction from the Balanced Complete Bipartite Subgraph problem, which is

known to be NP -complete (see [43]):

Instance: Bipartite graph G = (V, U,E), positive integer K ≤ |V |.

Question: Are there two sets V̄ ⊆ V , Ū ⊆ U such that |V̄ |=|Ū |=K and such that u ∈ Ū ,

v ∈ V̄ implies that {u, v} ∈ E?

For a given pattern w let H be a set of indices such that:

H = {j : wj−1 = −1, wj = 1, 1 < j < `} ∪ {1 : if w1 = 1} ∪ {` : if w`−1 = −1}. (2.41)

Given a bipartite graph G = (V, U,E) let m = |V | and n = |U |+ |H|. Define the matrix

A = (aij)m×n as follows: (i) aij = −1, if (i, j) /∈ E, (ii) aij = j, if (i, j) ∈ E, and (iii)

aij = −1, if n− |H|+ 1 ≤ j ≤ n, where i = 1, . . . , |V |.

Next we show that G contains a balanced complete bipartite subgraph of size `− |H| if

and only if the matrix A contains an w-order-preserving submatrix Q of size (`− |H|)-by-`.

Assume that there exists an order-preserving submatrix of size (`−|H|)-by-` that follows

pattern w. It can be verified from (2.39) and (2.41) that the number of columns that has one

45

or more elements equal to −1 is at most |H|. In other words, only columns in positions j ∈ H

in the final submatrix may have elements equal to −1. All other columns can not contain

“-1” elements, which implies that we have `− |H| columns with only positive elements. By

construction, these `−|H| rows and `−|H| columns with all positive entries will correspond

to a complete bipartite subgraph in G.

To show the other direction, assume that there exists a complete bipartite subgraph in

G of size ` − |H|. Next we show that the constructed matrix A contains a submatrix Q

corresponding to pattern w of size (`− |H|)-by-`.

Let I, J be the index sets corresponding to nodes from V̄ , Ū in the complete bipartite

subgraph in G, respectively, i.e. (i, j) ∈ E. We also assume that J is sorted in increasing

order. Let R = {|U |+1, . . . , |U |+ |H|}, i.e., R is the set of indices corresponding to columns

with all elements equal to −1. Thus in Q we keep only rows from A that correspond to nodes

from I. The following procedure constructs the respective w-order-preserving submatrix Q.

a) If w1 = 1, then add column |U |+ 1 to Q. Remove index |U |+ 1 from R.

b) If w1 = −1, then let j∗ ∈ arg max
j∈J

j. Add column j∗ to Q and remove j∗ from J .

c) For every h such that 1 < h < `:

(1) if wh−1 = 1 and wh = 1, add j∗ ∈ arg min
j∈J
{j} to Q and remove j∗ from J .

(2) if wh−1 = −1 and wh = −1, add j∗ ∈ arg max
j∈J
{j} to Q and remove j∗ from J .

(3) if wh−1 = 1 and wh = −1, add j∗ ∈ arg max
j∈J
{j} to Q and remove j∗ from J .

(4) if wh−1 = −1 and wh = 1, add any r∗ from R to Q and remove r∗ from R.

d) If w`−1 = 1, add column j∗ ∈ arg min
j∈J
{j} to Q and remove j∗ from J .

e) If w`−1 = −1, add any column r∗ from R to Q and remove r∗ from R.

The key intuition is that at every step of the construction we look “ahead” one step and

add columns to Q from J or R in a such a way that we will have a column with a smaller

or larger value (depending on the given pattern w) at the next step of the construction. If

we observe an “up”-“up” pattern (see item “(c)-(1)”) in two consecutive columns in given

w, then we add to Q a column with the smallest available value from J . This implies that

we can continue the construction of Q adding columns from J with larger values at the next

step of the procedure. Likewise, if we observe “down”-“down” or “up”-“down” patterns (see

46

items “(c)-(2)” and “(c)-(3)”), we add to Q a column with the largest available value from

J , allowing the next step of the construction. A similar explanation can be provided for

every step in items “(a)”, “(b)”, “(c)-(4)”, “(d)” and “(e)”. It is rather easy to verify that

the construction is valid and that the obtained submatrix satisfies (2.39).

We next discuss two exact approaches for solving the OPSM problem that use mathemat-

ical programming. Section 2.3.4 covers a general linear 0–1 programming formulation, while

our main emphasis is on an alternative approach that iteratively solves a series of smaller

linear 0–1 programs for a restricted version of the initial OPSM problem. It is detailed in

Section 2.3.5, where we also discuss valid inequalities and other improvements to further

enhance this approach. In both cases, we follow the approach of [9] in that we consider only

the relative ordering (i.e., the ranks) of the expression levels for each gene over permutations

of the samples, thereby eliminating any potential scaling issues.

2.3.4 Mathematical Modeling of OPSM: General IP Formulation

Our initial approach to solving the OPSM problem is with a general linear 0–1 programming

formulation. By filling ordered positions with columns from input matrix A, we attempt to

find a permutation of the original columns so that the order induced across a subset of rows

is strictly increasing; of all such column and row subsets, we wish to find the largest such

submatrix. That is, we assume there are 1, . . . , n positions that may be filled by any of the

n columns. We then attempt to fill the first K ≤ n positions with columns such that all

included rows maintain this increasing order.

To facilitate this concept, we introduce a binary variable sjk for each column j and

possible position k, with sjk = 1 implying that column j has been selected for position k.

Figure 2.6 illustrates the relationship between sjk variables and column-position interactions

(for the sake of illustration, we assume that all rows are included in Figure 2.6, and that

columns two and five are not involved in this OPSM).

For each row we introduce a binary variable xi, with xi = 1 indicating that row i is

selected for the OPSM. Likewise, for each column we introduce a binary variable yj, with

47

yj = 1 implying that column j is selected in the OPSM. Finally, we define binary variables

zij as the product of each row and column combination, that is, zij = xiyj. Thus, a single

binary zij variable corresponds to each entry in the input matrix A. These variables are used

in the following GF-OPSM formulation for the OPSM problem.

(GF-OPSM) : max
m∑
i

n∑
j

zij (2.42)

subject to

xi +
k∑

u=1

sju +
n∑

v=k+1

s`v ≤ 2 ∀ j, ` (2.43)

such that aij ≥ ai`, i = 1, . . . ,m, k = 1, . . . , n− 1,

n∑
j=1

sjk ≥
n∑
j=1

sj,k+1, k = 1, . . . , n− 1, (2.44)

n∑
k=1

sjk = yj, j = 1, . . . , n, (2.45)

n∑
j=1

sjk ≤ 1, k = 1, . . . , n, (2.46)

zij ≤ xi, zij ≤ yj, ∀ i, j, (2.47)

xi ∈ {0, 1}, yj ∈ {0, 1}, zij ∈ {0, 1} ∀ i, j. (2.48)

The objective function of this formulation maximizes the number of entries included in

the OPSM, ensuring that we find the largest OPSM by area. Constraint set (2.43) enforces

the condition of strictly increasing order by requiring that, if row i is in the final solution, and

aij ≥ ai` holds, then column j cannot appear to the left of column ` in the final permutation

of columns. Constraints (2.44) ensure that, if position k is not filled in the final permutation

(i.e., there are less than k columns in the final submatrix), then positions k + 1, . . . , n are

also not filled in the final permutation. These constraints enforce a decision hierarchy that

48

removes symmetry (and thus duplicate solutions) from the problem. Constraints (2.45)

ensure that, if column j is chosen, it fills exactly one position in the final permutation. On

the other hand, constraints (2.46) ensure that at most one column can fill any one position

in the final permutation. Finally, constraints (2.47) ensure that element (i, j) may be in the

final OPSM if and only if both row i and column j are included.

Figure 2.6: Relationship between sjk variables and column-position interactions

Formulation GF-OPSM has m+ n+mn+ n2 variables in total, of which m+ n+ n2 are

binary, and at most 2n+2mn+(n−1)+ 1
2
mn(n−1)2 constraints. Unfortunately, this formu-

lation did not perform well in computational testing, motivating the subsequent approach.

2.3.5 Mathematical Modeling of OPSM: Compact Formulation

The key idea of this approach is the formulation of a smaller linear 0–1 program that corre-

sponds to a restricted version of the original OPSM problem. Algorithmically, this formula-

tion can then be solved in an iterative manner, in conjunction with derived valid inequalities

and other enhancements, to find a solution to the initial problem.

49

2.3.5.1 Compact Formulation One of the main difficulties of the GF-OPSM formula-

tion of Section 2.3.4 is the complexity of determining the proper column placements. Instead

of allowing for column permutation, we next temporarily consider the simpler problem of

identifying the largest submatrix exhibiting a simple increasing pattern with fixed column

order. Under this scenario, the OPSM problem simplifies to simultaneously finding:

• a set of row indices {f1, f2, . . . , fk} ⊆ F0,

• a set of column indices {s1, s2, . . . , s`} ⊆ S0, such that s1 < s2 < . . . < s`, and

• for all i = 1, . . . , k and j = 1, . . . , ` − 1 we have that afi,sj < afi,sj+1
; i.e., we do not

permit inversions on values corresponding to the set of column indices on included rows.

These conditions motivate the Compact Formulation, or CF-OPSM. As in GF-OPSM, we

introduce binary variables xi for each row, binary variables yj for each column, and binary

variables zij for each row and column combination. Given this setup, finding the largest

submatrix obeying the strictly increasing pattern can be found by solving the following 0–1

programming problem:

(CF-OPSM) : max
m∑
i

n∑
j

zij (2.49)

subject to

zij + zik ≤ xi ∀ j < k and aij ≥ aik, i = 1, . . . ,m, (2.50)

zij ≥ xi + yj − 1, zij ≤ xi, zij ≤ yj, ∀ i, j, (2.51)

xi ∈ {0, 1}, yj ∈ {0, 1}, zij ∈ {0, 1} ∀ i, j. (2.52)

The objective function of CF-OPSM is identical to that used in GF-OPSM, aiming to find

the largest OPSM by area. Constraint set (2.50) ensures that, for any of included row i’s en-

tries taken pairwise, with both j < k and aij ≥ aik, then at most one of the two zij entries may

be included in the OPSM. That is, for any row i included in the OPSM, constraints (2.50)

prevent inversions on included columns. An alternative view of these constraints is that,

when row xi is included in the OPSM, they represent pairwise clique inequalities that are

50

sufficient to characterize the CF-OPSM polyhedron. Constraint set (2.51) ensures zij = 1

whenever both row i and column j are selected to be in the OPSM. Formulation (2.49)

– (2.52) has m+ n+mn binary variables and at most 3mn+ 1
2
mn(n− 1) constraints.

2.3.5.2 Basic Iterative Algorithm Suppose the first row of A is in the final solution.

If we then permute the columns of A so that the elements of the first row appear in increasing

order, then the solution of CF-OPSM, together with the constraint x1 = 1 will provide the

largest OPSM that includes row 1. Repeating this approach on each subsequent row gives

the largest submatrix for each respective row. Afterwards, assuming there is a single largest

OPSM (we address the possibility of multiple optimal solutions later), then k rows will share

the largest objective value; these rows constitute F0, and together with the set of included

columns S0 form the largest OPSM of A. This motivates the following iterative algorithm.

Algorithm 3. [Basic Iterative Algorithm]

1. Assign h := 1.

2. Permute columns of A such that the entries in row h occur in increasing order; call

new matrix Âh.

3. Generate formulation CF-OPSM for matrix Âh. Add additional constraint xh = 1.

4. Solve the corresponding linear 0–1 formulation, let Zh be the optimal objective value,

and store off the optimal solution for row h.

5. If h < m, assign h := h+ 1 and Go To 2.

6. Assign Z∗ := maxh Z
h.

7. Return Z∗, its corresponding optimal solution, and Stop.

For each row h, Algorithm 3 formulates and solves an instance of the CF-OPSM integer

program, identifying the largest submatrix having an strictly increasing pattern according

to permuted matrix Ah. Because we iteratively consider each row h = 1, . . . ,m, Algorithm 3

finitely terminates. At its conclusion, after searching over all rows h = 1, . . . ,m, Algorithm 3

returns the largest OPSM by area corresponding to input matrix A.

51

2.3.5.3 Valid Inequalities The pairwise constraints (2.50) are reminiscent of classical

pairwise clique inequalities. Indeed, while it is known that pairwise clique inequalities are suf-

ficient to represent the independent set polyhedron, they typically are not facet-defining [79].

However, these pairwise inequalities can be strengthened into facet-defining inequalities by

identifying the maximal clique to which a given node belongs.

In a similar manner, pairwise inversion inequalities (2.50) can be strengthened. In

general, if for row i the relationship aij1 ≥ aij2 ≥ . . . ≥ aijk ≥ . . . ≥ aij` holds, where

j1 < j2 < . . . < jk < . . . < j`, then the corresponding inversion inequality:

zij1 + zij2 + . . .+ zijk + . . .+ zij` ≤ xi (2.53)

is valid to impose on CF-OPSM. The set aij1 , aij2 , . . . , aijk , . . . , aij` defines a maximal decreas-

ing subsequence among the elements of row i if we cannot augment the current decreasing

subsequence with an additional element. In this case we will refer inequality (2.53) as a

maximal inversion inequality.

Theorem 6. Maximal inversion inequalities are facets of the convex hull of integer solutions

to the CF-OPSM polyhedron.

Proof. For a given row i, let C = {j1, j2, . . . , jk, . . . , j`} correspond to the column indices

representing a maximal inversion of size ` on row i. Now if row i is selected for any optimal

OPSM, then at most one of the elements jk may be included in the OPSM. Thus the

maximal inversion inequalities (2.53) are valid inequalities for the CF-OPSM polyhedron.

To demonstrate that maximal inversion inequalities are facet-defining for the CF-OPSM

polyhedron, which has full dimension, we need to identify mn+m+ n affinely independent,

feasible points that satisfy the maximal inversion inequality at equality. Such a set of vectors

can be constructed in the following manner.

The origin is feasible and trivially satisfies (2.53) at equality. The vectors consisting of

yj = 1, j = 1, . . . ,m, and all other components zero, give m more such vectors. Now for row

i containing our maximal inversion, we can construct ` ≤ m additional vectors using each of

the ` elements of the maximal inversion by setting xi = 1, yjk = 1, and zijk = 1, with all other

components zero. Let column jq correspond to one of the m−` elements not in the columns of

the maximal inversion C. For each such column jq, we can construct an additional vector by

52

taking xi = 1, yj1 = 1, zij1 = 1, yjq = 1, and zijq = 1. In this manner we can construct m− `

additional affinely independent, feasible vectors satisfying (2.53) at equality. Finally, for each

row h 6= i (n−1 total), we can construct (m+1) additional vectors as follows. One such vector

is xh = 1, with all other components zero; the other m vectors have the form xh = 1, yj = 1,

and zhj = 1 for j = 1, . . . ,m. This last step constructs an additional (n − 1) × (m + 1) =

mn−m+n−1 such vectors, giving a total of 1+m+`+(m−`)+nm−m+n−1 = mn+m+n

affinely independent, feasible vectors satisfying (2.53) at equality.

Because maximal inversion inequalities (2.53) define facets of the CF-OPSM polyhedron,

this leads to the natural question of how to quickly find such relationships, i.e., maximal

decreasing subsequences. An O(n log n) algorithm was given in [86], utilizing binary search,

to solve the longest decreasing subsequence (LDS) problem; we outline the algorithm with

the following pseudocode.

Algorithm 4. [FindLDS]

1. Declare arrays M [n] and P [n], and variable L.

2. Assign M [0] := 0 and L = 0.

3. Assign j := 1.

4. Do binary search for largest q ≤ L : X[M [q]] > X[j] (If none exists, assign q := 0).

5. P [j] := M [q].

6. If q = L Or X[j] > X[M [q + 1]], assign M [q + 1] := j and L := max(L, (q + 1)).

7. Assign j := j + 1.

8. If j < n, Go To 4.

Let us briefly describe the key idea behind this method. Array X stores the sequence

over which we want to identify the longest decreasing subsequence. For a given row h of

A, X[1] = ah1, X[2] = ah2, . . . , X[n] = ahn. Array M [q] holds the index k of the smallest

value X[k] such that k ≤ j and there is a decreasing subsequence of length q ending at X[k].

The predecessor array P contains the position of the predecessor of X[k] in the longest

53

decreasing subsequence ending at X[k]. The algorithm uses binary search on the discrete

interval [0, L] to locate the index M [q] < j corresponding to the largest value continuing

the longest decreasing subsequence at index j. After making a single pass through all n

elements, it finds the longest decreasing subsequence over the entire sequence.

Algorithm 4 generates maximal decreasing subsequences for row h of data matrix A

that we can use to construct maximal inversion inequalities. In general, there may be an

exponential number of maximal decreasing subsequences in data matrix A, and so while each

subsequence yields a facet-defining inequality, locating all of them would likely be prohibitive.

Instead, we propose a modification of Algorithm 4 to identify a single maximal decreasing

subsequence passing through each element of a given sequence X.

For all elements j = 1, . . . , n, apply Algorithm 4 and find the longest decreasing sub-

sequence up to and including element j; store off this subsequence. Now apply the same

algorithm in reverse (FindLIS), starting with element n, stepping through the FOR loop in

reverse, until element j is reached. This will generate the longest increasing subsequence

up to and including element j. Again, store off this subsequence. Combining the longest

decreasing subsequence up to and including element j on a forward pass, together with the

longest increasing subsequence up to and including element j on a reverse pass, gives the

longest decreasing subsequence through each element j = 1, . . . , n. For each element j,

Algorithm 4 and its counterpart FindLIS each take O(n log n) time to complete. With

n elements in the sequence, this implies O(n2 log n) time. Because in the worst case we

consider sequences corresponding to rows h = 1, . . . ,m, the above described approach to

find maximal decreasing subsequences has an overall run time of O(mn2 log n).

2.3.5.4 Nodal Constraints An alternative set of valid inequalities called nodal con-

straints can effectively impose the necessary inversion restrictions currently enforced in CF-

OPSM using pairwise clique inequalities (2.50) [74, 75]. Nodal constraints are defined in

the context of a graph G, where a constraint for each node ni is generated based on its

neighborhood of adjacent nodes. This definition can easily be extended to our context of

sequences, where for a given row i of A and its elements ai1, . . . , aij, . . . , ain, we define the

neighborhood Nij of element aij as the set of all elements aik such that either: (i) k > j and

54

aik ≤ aij, or (ii) k < j and aik ≥ aij. Based on this definition, for row i we introduce nodal

constraints for each element aij as:

nijzij +
∑
k∈Nij

zik ≤ nijxi ∀ j, (2.54)

where we set the value nij as nij = |Nij|. The nodal constraint (2.54) for element aij efficiently

represents all of the inversion restrictions implied by pairwise clique inequalities (2.50). This

is because, if variable zij = 1 for element aij, then constraint (2.54) forces the nonnegative

variables zik corresponding to all neighbors aik ∈ Nij to be zero. However, if zij = 0, then

no restrictions are forced upon the neighbors of element aij.

For any row i there are exactly n nodal constraints, one for each column. Thus there

are exactly mn total nodal constraints per CF-OPSM instance. Considering that the num-

ber of inversions on a typical row of A is O(n2), using inequalities (2.54) in place of (2.50)

greatly reduces the total number of constraints and corresponding size of the model, es-

pecially because a given CF-OPSM formulation has inversion restrictions for O(m) rows.

Our computational testing reveals that the CF-OPSM formulation using nodal constraints

retains almost all of the tightness of the original CF-OPSM formulation (see Section 2.3.6.2

for further discussion).

2.3.5.5 Further Enhancements Next we present additional strategies aimed at im-

proving the running time of Algorithm 3.

Turning Off Previous Rows. For current row h, observe that for all previous rows

i = 1, . . . , h − 1, we can set xi = 0. This is valid because previously solved row i is either:

(i) not in the OPSM; or (ii) in the OPSM, but since we have already identified the optimal

solution (OPSM) for row i, it is not necessary to locate that solution again. Thus, in either

case, xi = 0 is a valid inequality for all rows i = 1, . . . , h− 1.

Valid Lower Bounds. Another observation is that, for any row h > 1, a valid lower bound

on the objective value for all future rows is Z̄ =

(
max

k=1,...,h−1
Zk

)
+ 1. That is, in order to

55

locate a larger OPSM than the best found in previous rows, the current objective value Zh

must outperform Z̄. Thus the inequality:

m∑
i

n∑
j

zij ≥ Z̄ (2.55)

is valid for all rows h > 1. If for current row h no feasible solution exists having objective

value Zh ≥ Z̄, we are free to move on to the next row. To allow for multiple optimal

solutions in our code, simply removing the increase of one in the definition of Z̄ will permit

this possibility. Furthermore, CPLEX 11.0 [57] offers the solution pool feature, which has

the capability to find all solutions within a certain user-defined tolerance of optimality, as

well as to find diverse solutions to MIPs. Thus, this feature could also be used to find and

store all optimal OPSMs.

LP-based Fathoming. Because linear programming relaxations generally solve much more

quickly than their integer counterparts, after generating the necessary IP formulation for iter-

ation h we choose to solve its LP relaxation by allowing xi ∈ [0, 1], yj ∈ [0, 1], and zij ∈ [0, 1].

Solving this LP relaxation, denote the optimal objective value as Z∗hLP . If the obtained LP

bound Z∗hLP does not at least match Z̄, do not proceed solving the corresponding 0–1 pro-

gramming problem. As the integral optimal solution to this instance cannot yield a larger op-

timal objective value than Z∗hLP , i.e., Z∗h ≤ Z∗hLP ≤ Z̄, we are free to move on to the next row.

LP-based Presorting. For every row h = 1, . . . ,m, generate and solve the m LP re-

laxations of the respective IP formulations and record the corresponding optimal objective

values. Re-sort the rows of the original data matrix A in the following manner. In the first

row place the row corresponding to the largest optimal objective value. Order all remaining

rows 2, . . . ,m into increasing order corresponding to their recorded optimal objective values.

Knowing that the row with the highest LP relaxation optimal objective value gives an upper

bound on the largest OPSM, placing this row first will presumably provide the best chance

of finding a row contained in the largest actual OPSM, thereby achieving the largest possible

initial solution Z̄.

Re-sorting the remaining rows into increasing order can prove very beneficial when com-

bined with other enhancements. In conjunction with valid inequality (2.55), this often forces

the instances of IP formulations for rows h > 1 to become infeasible, as they likely cannot

56

find a feasible solution satisfying such a restrictive inequality. Thus, little time is typically

spent on such rows. Also, when this step is combined with the fathoming process above, we

are often able to fathom quickly, thereby providing additional savings on computation time.

This approach proves very useful in our computational experiments.

Stopping Criteria. Setting xi = 0 for all rows i < h allows us to derive a valid upper

bound on the largest potential objective function value for row h as W = n× (m− h + 1),

corresponding to zij = 1 ∀ j, i = h, . . . ,m. Thus, if the objective value of the current

best solution Z̄ ≥ W , we can safely terminate the algorithm; it is not possible for a larger

submatrix to exist in the remaining rows.

2.3.5.6 Enhanced Iterative Algorithm Algorithm 5 incorporates many of these im-

provements for solving the OPSM problem.

Algorithm 5. [Enhanced Iterative Algorithm]

1. Perform LP-based presorting of rows of A utilizing either pairwise inequalities (2.50)

or nodal constraints (2.54) in the respective LP formulations. Assign h := 1.

2. Permute columns of A such that the entries in row h occur in increasing order; call

new matrix Âh.

3. Generate formulation CF-OPSM for matrix Âh using either pairwise inequalities (2.50)

or nodal constraints (2.54).

3(a). Add additional constraint xh = 1, and For all k < h, add constraints xk = 0.

3(b). Generate mn maximal decreasing subsequences via modified Algorithm 4 (see dis-

cussion in Section 2.3.5.3); add respective valid inequalities (2.53).

3(c). If h > 1 add valid lower bound (2.55).

3(d). If h > 1 solve LP relaxation of the respective IP formulation using either pairwise

inequalities (2.50) or nodal constraints (2.54). Let Z∗hLP be the obtained optimal

objective function value. Go To 6 if Z∗hLP ≤ Z̄.

4. Solve the obtained IP formulation. Let Zh be the obtained optimal objective function

value, and store off the optimal solution for row h.

57

5. Assign Z̄ := max
k=1,...,h

Zk.

6. If h < m, assign h := h+ 1. Check Stopping Criteria and Go To 2, if necessary.

7. Return Z∗ := Z̄, its corresponding optimal solution, and Stop.

2.3.6 Computational Experiments and Results

We use both synthetic and real biological data to verify the effectiveness of our proposed

methods, with our findings from synthetic data testing aiding in our choice of the best

configuration for testing real data. To perform the optimization, we used the callable library

of CPLEX 11.0 [57] and coded our algorithms in C++.

2.3.6.1 Experiments with Synthetic Data Our testing environment consisted of a

Windows XP machine equipped with a 2.4GHz Pentium 4 processor and 2GB of RAM.

Algorithmic Parameters. STOP [7], an automated tool to tune optimization software

parameters, provided us with a suite of parameters that gave us marked performance im-

provements. Specifically, we adjusted the CPLEX default parameter settings for the MIP

Emphasis parameter to Feasibility over Optimality, the Implied Bound, Clique, and

Gomory Fractional Cuts parameters to Aggressive, the Variableselect (Branch-

ing) parameter to Strong Branching, and the RINS Heuristic parameter to Every Iteration.

Moreover, we always implemented the Stopping Criteria from Section 2.3.5.5. Addi-

tionally, in Steps 1. and 3(d). of Algorithm 5, we use the CPLEX barrier algorithm, an

interior-point method, rather than the simplex algorithm (which proved to be less efficient

for our larger instances) to perform the LP-relaxation optimization. Because only the opti-

mal objective values of these relaxations are necessary for our methods, and not the optimal

solutions themselves, we also turn off the expensive crossover routines (BARCROSSALG),

thereby recovering additional computational savings.

Synthetic Data Generation. In order to create our synthetic data, we coded a test

instance generator according to the procedure outlined in [9]. This generator plants an order-

preserving submatrix into an otherwise randomly generated data matrix. It first randomly

chooses the indices for planted rows and columns. Subsequently, it randomly chooses an

58

ordering for planted columns. Finally, the generator randomly assigns ranks to the data

matrix in a way that is consistent with the planted submatrix. The input is the number

of rows m and columns n of A, the number of columns s in the planted OPSM, and the

probability p of a given row being included in the submatrix to be planted. Using this

information the test instance generator randomly embeds a submatrix according to the

input parameters specified, while simultaneously identifying (for the user’s benefit) the actual

submatrix planted within A.

Table 2.5: Algorithmic variations used in computational testing for the OPSM problem

Algorithmic Variations

Formulation / Enhancement A B C D E F G H I J K L M

General Formulation •

All Pairwise Ineqs. (2.50) • • • • • • • •

Nodal Ineqs. (2.54) • • • •

Turning Off Previous Rows • • • • • • • • • •

Max Inversion Ineqs. (2.53) • • • • • • • •

Valid LB Ineq. (2.55) • • • •

LP-based Presorting • • • • • •

Two scenarios are proposed for testing synthetic data in order to determine the best

algorithm configuration for further testing on real data.

Synthetic Data Test Scenario: Vary Algorithms. The first test scenario evaluates the

performance of variations of our algorithm on some smaller test instances. Specifically, there

are six levels of test sets, with data matrix sizes (m,n) ranging from (20, 10) to (50, 20); for

each level, there are three test instances. The embedded OPSMs comprise approximately

25% of the overall data matrix size; that is, we set p = 0.5 and s = 0.5n, to give a mean

embedded OPSM size of p × m × s = 0.25mn. Regarding algorithms, we first test the

General Integer Programming Formulation (Section 2.3.4) and record the run times for

CPLEX 11.0 [57] to locate an OPSM of optimal size on the generated test instances. We

compare these results against variations of the iterative algorithm (Section 2.3.5); starting

59

with Algorithm 3 (Basic Iterative Algorithm), we sequentially augment this algorithm with

valid inequalities and further enhancements, until reaching Algorithm 5 (Advanced Iterative

Algorithm). Run times are recorded for the amount of time necessary to find an optimal

OPSM for each algorithm and test instance combination, and as there are three test cases,

where possible we provide the mean run time for each test level. The algorithmic variations

are reported in Table 2.5; Algorithm A is the General Formulation of Section 2.3.4, while

Algorithms B through M are variations of the Iterative Algorithm.

Synthetic Data Test Scenario: Vary OPSM Size. The second test scenario is to vary

the size of the planted OPSM. For the two mean embedded OPSM sizes of 0.25mn and 0.2mn

(i.e., 25% and 20% of the overall size of data matrix A), we create 15 levels of test sets, with

each test set again having three test instances. Algorithm 5 (Advanced Iterative Algorithm,

version K, which we later ascertain to be the best variation according to Table 2.6) is used

to determine how changes in input data size affect our algorithm.

2.3.6.2 Synthetic Data: Results and Discussion The results of the first test scenario

are reported in Table 2.6, containing m, n, and the optimal OPSM size Z∗. All times are

in seconds, with the fastest run times in bold. Where possible, every fourth line details the

average of the previous three lines, and any average run time that was not within 5 times of

the fastest run time is indicated by “–”. The General Formulation, along with Algorithms

B, C, D, and E, cannot compete with the more advanced iterative algorithms. Algorithms

F and beyond are more competitive, coinciding with their inclusion of the facet-defining

maximal inversion inequalities (2.53).

One general trend is that, holding all else the same, test instances of equal m and n

having larger embedded OPSMs tend to solve more quickly than those with smaller OPSMs.

This is evident, for example, in the second test instance of size m = 30 and n = 15; the

optimal OPSM size of Z∗ was 64, much less than the expected size of 0.25mn = 112.5.

Correspondingly, the run times for this instance are much larger than the first and third test

instances for the same levels of (m,n).

60

Table 2.6: Comparison of algorithmic run times on synthetic test instances

m n Z∗ A B C D E F G H I J K L M
20 10 50 – – – – – 24.5 10 17.8 7.9 17.3 8.3 24.3 9.9
20 10 50 – – – – – 14.7 13.8 14.8 12.1 4.9 12 4 13.7
20 10 40 – – – 161.3 175.4 94.6 125.2 150.5 139.8 87.6 42.5 48.6 50.8

Average – – – 87.4 – 44.6 49.7 61.1 53.3 36.6 21 25.6 24.8
30 10 70 – – – – – – – – – 21.6 23.5 9.5 20.2
30 10 85 – – – – – – 8.9 – 8.6 – 8.9 – 8.6
30 10 50 – – – – – – – – – 169.1 207.1 78.5 136.8

Average – – – – – – – – – 98.5 79.8 60.8 55.2
30 15 144 – – – – – 2.8 – 2.8 – 1.3 – 1.2 –
30 15 64 – – – – – – – – – 2,106.8 466.7 1,074 828.6
30 15 144 – – – – – 3 – 2.6 – 1.5 – 1.4 –

Average – – – – – – – – – 703.2 160.8 358.9 281.7
40 15 160 – – – – – 8.5 11.8 6.9 11.9 3.7 11.5 3.4 12.3
40 15 168 – – – – – 9.3 12.4 8.8 13.1 5.1 13.4 4.7 13
40 15 168 – – – – – – 12.3 – 12.4 – 12.8 – 12.8

Average – – – – – – 12.2 – 12.5 – 12.6 – 12.7
40 20 210 – – – – – – 16.7 – 14.7 – 15.6 – 17.3
40 20 230 – – – – – 12.5 15.8 9.4 14.7 3.6 15.5 3.3 –
40 20 220 – – – – – 9.9 – 10.3 14.7 4 – 3 –

Average – – – – – – 16.2 – 14.7 – 15.6 – 17.2
50 20 210 – – – – – 162.5 146.6 181.8 155.9 99 156.8 79.9 147.6
50 20 200 – – – – – – 140.2 – 234.9 – 233.7 – 117
50 20 170 – – – – – – – – – – 967.9 – 1,648.9

Average – – – – – – – – – – 452.8 – 637.8

61

Furthermore, the results of Table 2.6 indicate that the fastest algorithm is one of Algo-

rithms K, L, and M. Algorithm L has reasonable run times only for those test instances

that happen to have their first row in a rather large OPSM. For such instances, because

Algorithm L does not perform LP-based Presorting and does include the Valid LB In-

equality (2.55), it has a favorable initial optimal objective value from the first row, uses the

lower bounding inequality (2.55), but does not include the additional overhead of perform-

ing the LP-based Presorting step. In general, however, because there is no way to know

whether the first row is included in a rather large OPSM, we prefer to use the LP-based

Presorting step present in Algorithms K or M. This is because the additional compu-

tational time of solving m LP relaxations (via the efficient barrier algorithm) and sorting

the rows accordingly almost always recovers that time by finding a first row with a large

(sometimes optimal) OPSM.

Algorithms K and M seem roughly comparable, though we slightly prefer Algorithm K,

because it has six of the fastest run times, while M reflects only two. More notable, however,

is on difficult test instances where the value of Z∗ is much less than the expected size of

0.25mn (e.g., instance 2 of (30, 15) and instance 3 of (50, 20)), Algorithm K has the fastest

run times. Indeed, this trend continues as the values of m and n grow, with the benefits

of the smaller nodal inequality formulation in Algorithm K outweighing the slightly tighter

formulation (but increasingly unwieldy due to greater constraint matrix expansion) given by

the pairwise inversion inequalities in Algorithm M.

Furthermore, the nodal inequality formulation of Algorithm K does not adversely impact

Step 1. (Presorting), because every one of the m subproblems incurs a small gain in the

LP relaxation optimal objective value. Thus the relative rankings of the optimal objective

function values, needed for Step 1., remained more or less constant over all rows.

Regardless of whether an algorithm uses LP-based Presorting, repeatedly solving

integer programs is the most time-consuming step. This is why Step 1. (Presorting) of

Algorithm 5 is in general advantageous, because after solving the first integer program, we

use its optimal solution as a bound for future integer programs, serving to avoid the solution

of additional integer programs (as detailed in Section 2.3.5.5, Valid Lower Bounds and

LP-based Fathoming).

62

Table 2.7: Run times for Algorithm K to find synthetic OPSMs

Data Algorithm K

Rows Cols 0.25mn 0.2mn

20 10 < 1 < 1

30 10 1 1

30 15 2 1

40 15 < 1 2

40 20 < 1 12

50 20 4 24

100 20 2 8

100 30 2 19

100 40 4 3

100 50 5 6

200 50 29 32

400 50 139 166

600 50 286 337

800 50 503 546

1,000 50 850 916

Table 2.7 displays the results of the second test scenario. It highlights the trend that

Algorithm K has an easier time locating OPSMs of larger expected size. Also, we should

mention that the General Formulation does not perform well in identifying OPSMs in even

modest size input matrices; the maximum size it was able to handle in a reasonable amount

of time was (30, 10), in around two hours of computation.

63

2.3.6.3 Experiments with Real Data Our testing environment consisted of a Win-

dows XP machine equipped with a Dual-Core Intel Xeon 3GHz processor and 3GB of RAM.

In our experiments we considered two real data sets, which we briefly describe below.

Breast Cancer Data Set (BRCA). The BRCA breast tumor data set has m = 3, 226

genes (rows) and n = 22 samples (columns). Of these samples, eight have brca1 mutations,

another eight have brca2 mutations, and the remaining six represent sporadic breast tumors.

This was the same data set utilized by [9]; for further details regarding this data set, we

refer the reader to [49].

Human Gene Expression Index (HuGE). Our second data set was derived from the

Human Gene Expression (HuGE) Index data set [55], the same data set used for checkerboard

pattern detection in Section 2.2.7.1. We preprocessed the HuGE data set to remove all rows

containing at least one incomplete or missing entry, and also retained samples from three

of the main tissues (Brain, Liver, and Muscle), leaving 1, 125 genes and 23 columns. Other

experiments with HuGE appear, for example, in [19].

Detecting Statistical Significance. An important contribution in [8, 9] is the derivation

of statistically significant OPSM patterns. As they explain, for a set T ⊂ {1, . . . , n} of

columns of size γ together with a linear ordering π = (t1, t2, . . . , tγ), the probability that a

random row supports a given model (T, π) is (1/γ!). Further, because the rows are assumed

as independent, the probability of having at least ρ rows supporting model (T, π) is the ρ-tail

of the (m, (1/γ!)) binomial distribution. Because there are n · (n − 1) · · · (n − γ + 1) ways

to choose a complete model of size γ, they provide an upper bound on the probability of

having a model of size γ with at least ρ rows as:

U(γ, ρ) = n · · · (n− γ + 1)
m∑
i=ρ

(
m

i

)(
1

γ!

)i(
1− 1

γ!

)(m−i)

. (2.56)

In the BRCA breast cancer data set, it is reported in [8] that three statistically significant

OPSMs were found, one with γ = 4 tissues (columns) and ρ = 347 genes (rows) with

U(4, 347) = 8.83 · 10−51, another with 6 tissues and 42 genes with U(6, 42) = 8.85 · 10−19,

and a third involving 8 tissues and 7 genes with U(8, 7) = 0.0497.

64

2.3.6.4 Finding OPSMs in Real Data Sets The BRCA data set is considerably larger

than our synthetic data sets. It is not surprising, then, that initial testing on these data

using Algorithm K indicated that while CPLEX locates rather good feasible solutions, it

experiences difficulty in closing the integrality gap from above. We believe this large gap was

due to poor linear relaxations, resulting from both the linearization of 0–1 variable products

as well as incomplete information resulting from not using all maximal clique inequalities.

In order to achieve faster convergence on real data sets, it was therefore necessary to make

some modifications to our solution approach.

Reducing the Feasible Region and Strengthening the Formulation. In order to

facilitate a more rapid closing of the integrality gap, consider temporarily restricting the

number of rows in an OPSM to be no more than a constant ρ. Similarly, let the number of

columns be no more than γ, so that:

m∑
i

xi ≤ ρ, (2.57)

n∑
j

yj ≤ γ. (2.58)

Then adding constraints (2.57) – (2.58) to any of the CF-OPSM variations, with well-chosen

values of ρ and γ, will result in a formulation having a greatly reduced feasible region, one that

CPLEX can much more easily handle. Furthermore, the optimal solution to this restricted

problem forms a valid OPSM that is feasible for the original formulation without (2.57) –

(2.58). Moreover, we can strengthen constraints (2.57) – (2.58) by appropriate multiplication

of binary variables, as per the reformulation linearization technique (RLT) [92]. This yields

the following additional valid inequalities:

m∑
i

zij ≤ ρ · yj ∀ j, (2.59)

n∑
j

zij ≤ γ · xi ∀ i, (2.60)

γ

m∑
i

xi + ρ

n∑
j

yj −
m∑
i

n∑
j

zij ≤ γρ, (2.61)

65

m∑
i

n∑
j

zij ≤ γρ, (2.62)

where (2.59) and (2.60) are derived from (2.57) and (2.58) by multiplication of yj and xi,

respectively, while (2.61) is derived by moving the right-hand sides of (2.57) and (2.58) to

the left and multiplying.

The main idea in the solution approach of [8] is to first restrict the number of columns

to a fixed value γ, and then search for OPSMs over the rows. With this in mind, by

replacing (2.58), (2.60) and (2.61) with:

n∑
j

yj = γ, (2.63)

n∑
j

zij = γ · xi ∀ i, (2.64)

γ
m∑
i

xi + ρ
n∑
j

yj −
m∑
i

n∑
j

zij = γρ, (2.65)

respectively, we are also able to search for feasible OPSMs with fixed value γ. This discussion

then motivates an embedded algorithm that iteratively increases ρ and γ toward m and n.

Embedded Algorithm with Partial OPSMs. For a given row h, define strictly increasing

sequence {ρ}π1 = {ρ1, . . . , ρπ} and nondecreasing sequence {γ}π1 = {γ1, . . . , γπ}, and let

ρ = ρ1, γ = γ1. The optimal solution from Algorithm K augmented with constraints (2.57)

– (2.58) and respective valid inequalities from (2.59) – (2.62) is a partial OPSM, feasible to

the overall OPSM problem for row h. Now assume that both constraints (2.57) and (2.58)

are non-binding for this optimal solution. Then it can be shown that a larger OPSM cannot

be obtained for row h by increasing ρ and γ. On the other hand, if these constraints are

tight, then by increasing the value of ρ to ρ2 and γ to γ2, we obtain a problem with a strictly

larger feasible region, and can likely improve the previous iteration’s solution. Furthermore,

the partial OPSM from the previous iteration is also feasible for the larger region, and we

can use it as a warm start to provide a valid lower bound. Iterating in this manner is a valid

approach that converges to the largest OPSM for row h. Because integer programming solvers

66

can typically handle smaller feasible regions more easily, this strategy provides significant

computational improvements.

The stopping condition of this approach, which is outlined in Algorithm 6, is either 1)

when both constraints (2.57) and (2.58) are not binding, or 2) when we have used the final

values in our sequence (i.e., ρ = ρπ and γ = γπ). Note that it is not necessary to run this

embedded algorithm over all m rows; for example, we can designate it to be run for only the

first r rows. Then, for r = 0, Algorithm 6 is essentially Algorithm 5.

Algorithm 6. [Embedded Algorithm]

1. Perform LP-based presorting of rows of A utilizing CF-OPSM formulation with nodal

constraints (2.54) in the respective LP formulations. Assign h := 1, and read in sequences

{ρ}, {γ}, and embedded algorithm iteration limit r.

2. Assign embedded iteration counter ` := 1, ρ := ρ`, and γ := γ`.

3. Permute columns of A such that the entries in row h occur in increasing order; call

new matrix Âh.

4. Generate formulation CF-OPSM for matrix Âh using nodal constraints (2.54).

4(a). Add additional constraint xh = 1, and For all k < h, add constraints xk = 0.

4(b). Generate maximal decreasing subsequences via modified FindLDS and FindLIS Al-

gorithms (see Algorithm 4 in Section 2.3.5.3); add respective valid inequalities (2.53).

4(c). If h > max{1, r}, add valid lower bound (2.55).

4(d). If h > max{1, r}, solve LP relaxation of the IP formulation. Let Z∗hLP be the

obtained optimal objective function value. If Z∗hLP ≤ Z̄, Go To 9.

4(e). If h ≤ r, add constraints (2.57) – (2.62) (or in the case of γ1 = γπ, instead add the

constraints (2.57), (2.59), (2.62), and (2.63) – (2.65)) to formulation using current

values of ρ and γ.

5. If ` > 1 And h ≤ r, read in initial feasible solution from warm start file.

6. Solve the obtained IP formulation. Let Zh be the obtained optimal objective function

value. If h ≤ r, write optimal solution to a warm start file.

67

7. If h > r, Go To 8. Else h ≤ r, so If ` = π Or both constraints (2.57) and (2.58)

are non-binding (or just constraint (2.57) should constraint (2.58) not be present), also

Go To 8. Else, assign ` := `+ 1, ρ := ρ`, and γ := γ`, and Go To 4.

8. Assign Z̄ := max
k=1,...,h

Zk.

9. If h < m, assign h := h + 1. Check Stopping Criteria, and If it is necessary to

continue, then If h ≤ r, Go To 2. Otherwise Go To 3.

10. Return Z∗ := Z̄ and Stop.

Depending on the sequences {ρ}, {γ} and whether constraints (2.58) or (2.63) are chosen

for Algorithm 6, upon termination we can guarantee that discovered solutions are either:

(a) optimal, if ρπ = m, γπ = n and formulation with (2.58) is used in Step 4(d)., or

(b) optimal for a particular value of γ, if formulation with (2.63) is used in Step 4(d)., or

(c) feasible and of high quality, corresponding to the values in the sequence {γ}.

We should also make note of the solver tuning we performed. Though there are only

n column variables yj in the CF-OPSM formulation (n << m), they are quite powerful,

appearing in every composite product zij. Giving priority to (upward) branching in CPLEX

on this small subset of variables forces many yj variables to 1, and doing so in conjunction

with (2.58) or (2.63) serves to quickly eliminate portions of the branch-and-bound tree due

to the maximal inversion inequalities (2.53) causing poor linear program relaxation values.

Moreover, turning on CPLEX’s barrier algorithm on both the root and child nodes of the

branch-and-bound tree for a given row h helped to solve subproblems more quickly than

the simplex algorithm. Lastly, CPLEX’s tuning tool recommended that we run the RINS

heuristic every 50 iterations, set the CUTPASS parameter to 1, and set the VARIABLE-

SELECT (BRANCHING) parameter to pseudo-reduced costs, which we implemented.

In summary, Algorithm 6 and the associated solver tunings enables us to quickly find

strong feasible solutions. Moreover, any feasible solutions the algorithm outputs in Step 6.

are available for immediate data analysis purposes; it is not necessary to wait for convergence

to the final solution. Lastly, for repeated runs on the same data set, Step 1. needs only be

completed once; the presorted order of the rows can then be written to a file for subsequent

runs. Indeed, we use this tactic to reduce our run times in the following discussion.

68

2.3.6.5 BRCA Data: Results and Discussion It was reported in [9] that statistically

significantly patterns were located in the BRCA data set [49] of size (γ, ρ) = (4, 347), (γ, ρ) =

(6, 42) and (γ, ρ) = (8, 7). We used Algorithm 6 with the initial values of γ (fixed) and ρ set

to match their largest dimensions in order to compare the performance of our algorithm.

Table 2.8: BRCA OPSMs found with Algorithm 6

Cols γ Rows ρ (Time† in min)

4 347 (220) 520 (586) 798 (1,974)

6 42 (71) 63 (166) 127 (2,121)

8 7 (17) 10 (435) 14 (2,370)

Knowing that our approach

will eventually converge to the op-

timal solution, we present some

feasible solutions from our results

in Table 2.8, along with their run

times. The second column dis-

plays initial values of ρ that match

the largest reported in [9], while

the third and fourth columns dis-

play sequential results from allowing Algorithm 6 to iterate. For every case, we were able to

locate OPSMs of larger size than were reported in [9], in reasonable amounts of time. It is

worth noting here that the (8, 14) OPSM we identified has U(8, 14) = 5.88 ·10−17, improving

upon the U(8, 7) = 0.0497 value of [9]. Figure 2.7a displays an exemplary OPSM found

using BRCA. Also, because it was performed only once (taking 623 minutes), we omit the

run time for Step 1. (LP-based presorting).

2.3.6.6 HuGE Data: Results and Discussion As in the previous experiment, we

used Algorithm 6 with a sequence of fixed values for γ. Our results on this data set are

displayed in Table 2.9. Included in the display are the statistical significance levels for the

embedded OPSMs in HuGE. Figure 2.7b displays an exemplary OPSM found using HuGE.

Again, as it was performed only once (taking 64 minutes), the run time for Step 1. (LP-based

presorting) has been omitted from Table 2.9.

We feel these results represent favorable run times for finding large OPSMs in HuGE.

The statistical significance of these solutions indicate that they are of high quality. Only for

fixed γ = 5 did it take more than one day to locate such large OPSMs; all other solutions

were found in well under 12 hours.

69

(a) (6, 127) in BRCA (truncated) (b) (4, 335) in HuGE

Figure 2.7: Heatmaps of OPSMs in real data using Algorithm 6

Table 2.9: OPSMs in HuGE data using Algorithm 6; statistical significance in final column

Cols (γ) Rows (ρ) Time† (min) U(γ, ρ)

3 569 335 2.14 · 10−146

4 335 489 2.23 · 10−176

5 180 1,909 1.84 · 10−158

6 95 437 7.43 · 10−125

7 49 524 6.98 · 10−87

8 22 449 8.87 · 10−46

9 11 311 1.79 · 10−24

70

2.4 CONCLUDING REMARKS

To the best of our knowledge, we provide the first mathematical programming formulations

for two specific biclustering criteria, and moreover they are the first approaches that provide

a guarantee of locating optimal -sized patterns.

2.4.1 Checkerboard Pattern

We consider the case of locating checkerboard patterns using unsupervised learning, extend-

ing previous work on supervised biclustering that establishes consistent biclustering that is

justified by the conic separation property [19]. We discuss the computational complexity

of consistent biclustering and prove that the problem of finding the largest conditionally

biclustering admitting submatrix is NP -hard. We formulate and present a fractional 0–1

program for unsupervised biclustering under the biclustering consistency conditions defined

in [19]. Because the fractional 0–1 program contains nonlinear constraints, we present an

equivalent linear mixed 0–1 programming reformulation that can be handled using mixed

integer programming solvers.

2.4.2 OPSM Pattern

We address exact solution methodologies for the order-preserving submatrix (OPSM) prob-

lem. We discuss computational complexity issues related to finding fixed patterns in matrices,

and propose two exact approaches to solve the OPSM problem to optimality. The first is

a general nonlinear 0–1 programming formulation that can be linearized in straightforward

fashion, while the second is an iterative algorithm that makes use of a smaller nonlinear 0–1

program (again easily linearized) of a restricted version of the initial problem. We discuss

various algorithmic enhancements for the latter approach to improve solution times, enabling

us to solve the OPSM problem to optimality for synthetic instances with up to 1,000 rows

and 50 columns in a reasonable amount of time. We also discuss some additional enhance-

ments to aid in the solution approach for real biological data sets that enable us to identify

OPSMs larger than those reported in [8, 9].

71

3.0 OPTIMIZATION IN COMPUTATIONAL BIOLOGY

We next discuss using optimization in the context of computational biology to gain greater

insight into the behavior of protein/DNA interactions. We introduce an optimization model

that predicts binding free energy levels (∆∆GBind) that most closely match experimental

energy observations (∆∆GExp) at distinct protein/DNA binding sites. We also discuss an

approach to identify a best minimal set of explanatory interaction code parameters (e.g.,

hydrogen bonds, desolvation penalties, water modulation factor) that quantify these energies.

This technique is designed to protect against both overfitting as well as underfitting the

model. Our approach enables the possibility of efficiently designing highly specific zinc

finger protein transcription factors, allowing for a better understanding of how they regulate

gene expression. Such technology can be beneficial to gene therapy, for instance in the design

of zinc fingers that can target HIV and other diseases.

3.1 ACKNOWLEDGMENT

Much of this chapter’s content originally appeared in an open access article, and is reproduced

with kind permission from Oxford University Press: N.A. Temiz, A. Trapp, O.A. Prokopyev,

and C.J. Camacho, “Optimization of Minimum Set of Protein/DNA Interactions: A Quasi-

Exact Solution with Minimum Over-fitting,” Bioinformatics, 26 (3), pp. 319–325, 2010.

72

Figure 3.1: Typical interaction network of an EGR-like ZF

3.2 INTRODUCTION

Zinc finger (ZF) protein transcription factors bind to specific DNA targets and enable the

transfer of genetic information from DNA to mRNA [97]. Determining their cognate DNA

binding sites is a particular challenge that contributes to the general lack of knowledge of

how protein transcription factors regulate gene expression; there are few reliable experimen-

tal techniques that can map the specificity of ZF/DNA interactions to other targets [21].

Computational techniques that aid in decoding these interactions can shed light on gene

behavior and thereby contribute to restoring cell functionality.

It is possible to design new zinc fingers that bind to different DNA targets through muta-

tions on the protein. These mutant ZF/DNA complexes may lead to a better understanding

of the binding interactions, and in principle should select the lowest possible binding free

energy conformation. Using high-quality experimental data from seven mutant complexes

of ZF-I [65] and three mutants of ZF-III [5], Temiz and Camacho [98] manually constructed

an interaction code utilizing potential (i.e., low binding free energy) structural interaction

networks of mutant ZF/DNA complexes based upon measures of distance rather than (im-

perfect) scoring functions. Their work stood on the premise that changes in the affinity

73

Figure 3.2: Nine ways that potential submodels can minimize binding free energy

of a complex due to mutations are uniquely determined by changes in the contact energies

and solvation factors between the structures. For a given complex, an interaction network

represents one possible way that the ZF protein can bind to the DNA through an expression

that quantifies the associated binding free energy. Figure 3.1 (from [38]) displays an exem-

plary interaction network for a mutant complex, characterizing one potential option for the

ZF/DNA binding.

Hereafter, we refer to structural interaction networks as submodels ; they express a mu-

tant complex’s binding free energy as a (non)linear combination of a set of interaction code

parameters (variables) that may include hydrogen bonds (H-bonds) and desolvation penal-

ties, as well as a unique water modulation factor. This same set of parameters is used to

construct every submodel of every complex. Figure 3.2 (from [99]) illustrates two mutant

complexes (top and left), each having three submodels. It demonstrates the 32 = 9 possibil-

ities to minimize the binding free energy, which are determined by the choices of parameter

levels in the interaction code. For additional information on these experimental techniques

as well as graphical interpretations, we refer the interested reader to [98, 99].

74

3.3 MATHEMATICAL MODELING OF PROTEIN/DNA INTERACTIONS

We can model the problem of decoding protein/DNA interactions as a nonlinear mixed 0-1

program that seeks to minimize the distance between experimental energy observations and

energy expressions that are quantified by combinations of variable parameter levels, while

simultaneously satisfying physical constraints.

3.3.1 Nonlinear Mixed 0-1 Formulation

Let the set of ZF/DNA complexes be denoted as I and indexed by i, i ∈ {1, . . . , |I|}. Let

K be the set of interaction code parameters, indexed by k ∈ {1, . . . , |K|}. Individual in-

teraction code parameters ek represent H-bonds and desolvation penalties, and are modeled

using nonnegative continuous variables ek with upper bounds M e
k (typically a small positive

number). The unique water modulation factor λ is nonnegative, continuous and strictly less

than 1. Associate with each complex i a set Si of submodels; each submodel j ∈ Si is rep-

resented by the energy expression
∑K

k w
k
ij(λ)ek, which in turn is a (non)linear combination

of interaction code parameters. Also, wkij is either a known coefficient, or a known function

of λ, and if a particular parameter ek does not appear in submodel j ∈ Si, we simply set

wkij = 0. For complex i and submodel j ∈ Si, binary variable xij = 1 when submodel j has

been assigned to complex i, and xij = 0 otherwise. Finally, input data Ei are the energies

of complex i ∈ I obtained experimentally; these are the values that the energy expressions

of chosen submodels should most closely match through predicted parameter levels.

min
λ,x,e

∑
i∈I

∣∣∣∣∣Ei −∑
j∈Si

{
xij ·

K∑
k

wkij(λ)ek

}∣∣∣∣∣ (3.1)

subject to ∑
j∈Si

xij = 1 ∀ i, (3.2)

xij ·
K∑
k

wkij(λ)ek ≤ xij ·
K∑
k

wkih(λ)ek ∀ i, ∀ j ∈ Si, ∀ h ∈ Si, h 6= j, (3.3)

0 ≤ λ < 1, 0 ≤ ek ≤M e
k ∀ k, xij ∈ {0, 1} ∀ i, ∀ j ∈ Si. (3.4)

75

Expressions (3.1)– (3.4) is a nonlinear mixed 0–1 program. Objective (3.1) minimizes the

cumulative difference between selected submodel energies and experimental data, while con-

straint set (3.2) ensures that exactly one submodel j is selected for every complex i. Con-

straint set (3.3) ensures that if submodel j is selected for complex i, then it must have the

minimum energy among all other submodels j ∈ Si. Variable restrictions are given in (3.4).

3.3.2 Equivalent Nonlinear Mixed 0–1 Reformulation

While succinct, formulation (3.1) – (3.4) has nonlinearities in (3.1) and (3.3). The following

equivalent reformulation removes most by introducing new variables and constraint sets.

min
λ,x,e,t,y

∑
i∈I

ti (3.5)

subject to

ti ≥ Ei −
∑
j∈Si

yij ∀ i, (3.6)

ti ≥ −Ei +
∑
j∈Si

yij ∀ i, (3.7)

∑
j∈Si

xij = 1 ∀ i, (3.8)

0 ≤ yij ≤My
ijxij ∀ i, ∀ j ∈ Si, (3.9)

yij ≤
K∑
k

wkij(λ)ek ∀ i, ∀ j ∈ Si, (3.10)

yij ≥
K∑
k

wkij(λ)ek −My
ij(1− xij) ∀ i, ∀ j ∈ Si, (3.11)

K∑
k

wkij(λ)ek ≤
K∑
k

wkih(λ)ek +My
ij(1− xij) ∀ i, ∀ j ∈ Si, ∀ h ∈ Si, h 6= j, (3.12)

0 ≤ λ < 1, 0 ≤ ek ≤M e
k ∀ k, xij ∈ {0, 1} ∀ i, ∀ j ∈ Si. (3.13)

76

Formulation (3.5) – (3.13) is a mixed 0–1 program that is nonlinear only in λ, that is,

it becomes linear for a fixed λ. The newly introduced variables yij represent the binary

product nonlinearities present in xij
∑K

k w
k
ij(λ)ek. Constraint sets (3.9) – (3.11) implicitly

enforce that yij equals xij
∑K

k w
k
ij(λ)ek if xij = 1, and yij = 0 if xij = 0. Constants My

ij are

large enough to upper bound yij. Continuous variables ti eliminate the absolute values in

objective (3.1) by leveraging the minimization direction while simultaneously upper bounding

both the positive and negative magnitudes in constraint sets (3.6) – (3.7). Constraint (3.12)

equivalently represents (3.3) in a linear fashion, maintaining that selected submodel j has

the minimum energy among all other submodel energies.

3.3.3 Final Linear Mixed 0–1 Reformulation

Formulation (3.5) – (3.13) eliminates most of the nonlinearities in (3.1) – (3.4), including

the absolute values of objective (3.1) as well as the binary product nonlinearities in (3.1)

and (3.3). However, there remains the presence of nonlinearities in some of the submodels∑K
k w

k
ij(λ)ek. These energy expressions are linear combinations of coefficients wkij(λ) and

continuous variables ek, where coefficients wkij(λ) represent either a constant, or else the

product of a constant and a term involving λ. Whereas the latter might cause difficulties

due to the product of continuous variables λ and ek, in our particular case these expres-

sions have a special structure that we can exploit. By representing continuous and bounded

parameter λ using its binary representation, we are able to introduce additional variables

and constraint sets that completely transform formulation (3.1) – (3.4) into a mixed integer

program without nonlinearities.

Assuming we desire to represent λ within an accuracy of ε = 10−κ, where κ is some

positive integer, then with Z =
⌈
log10
log2

κ
⌉

binary variables z we can write λ ≈
∑Z

h=1 2−hzh. In

our particular case the products involving λ and ek appearing in some submodels
∑K

k w
k
ij(λ)ek

show up in two distinct forms:

i) (1− λ)ek, and

ii) ek/(1− λ).

77

To reformulate i) using the binary representation of λ, we introduce new continuous

variable bk as:

bk = ek − λek = ek −
Z∑
h=1

2−hzhek. (3.14)

Then bk can be used to represent any product (1−λ)ek ≈ ek−
∑Z

h=1 2−hzhek, where each

2−hzhek term contains a product of binary variable zh and continuous variable ek. Define new

continuous variable shk = zhek, h = 1, . . . , Z. According to Proposition 1 of Section 2.2.5.3,

the following four constraint sets can impose this equality:

0 ≤ shk ≤ ek ∀ h, k, and ek −M e
k(1− zh) ≤ shk ≤M e

kzh ∀ h, k. (3.15)

Constraint sets (3.15) implicitly enforce the shk = zhek relationship that allows form i) to be

rewritten as bk = ek −
∑Z

h=1 2−hshk. Thereafter any occurrence of form i) can be replaced

with variable bk.

To reformulate ii), we introduce new continuous variable uk:

uk = ek/(1− λ), (3.16)

equivalently writing ek = uk − λuk. The term λuk can be linearized in a similar manner as

previously described with bk. Let vhk = zhuk, h = 1, . . . , Z, and let Mu
k be a constant upper

bound for uk. The four constraint sets are:

0 ≤ vhk ≤ uk ∀ h, k, and uk −Mu
k (1− zh) ≤ vhk ≤Mu

k zh ∀ h, k. (3.17)

We can subsequently replace any occurrence in the form of expression ii) with uk by enforcing

ek = uk−
∑Z

h=1 2−hvhk on the vhk variables together with constraint sets (3.17). The result of

this discretization-linearization procedure is a linear mixed 0–1 programming problem that

can be tackled using standard MIP solvers such as CPLEX.

78

3.3.4 Mitigating Overfitting and Underfitting

One of the inherent benefits of our model is its extensibility, of which we take advantage

to protect against statistical overfitting. Specifically, our initial interaction code may con-

tain too many parameters due to the relative uncertainty of the ZF/DNA interactions. We

next discuss an algorithmic approach that iteratively eliminates the least descriptive element

among a set of potential parameter relationships by adding the corresponding constraint to

the formulation. While the phenomenon of overfitting is in general nearly impossible to

completely eliminate, our technique ensures we can maintain a satisfactory final assignment

by stopping whenever the quality of the final solution falls below an adjustable threshold

criteria, thereby providing an additional safeguard against underfitting the model. We next

present our sequential routine designed to reduce superfluous parameters.

Algorithm 7. [Reduce Parameters]

1. Choose threshold value α and set of potential parameter relations R.

2. Generate linearized reformulation, optimize, and compute R2.

3. If R2 ≤ α Or R = ∅, Go To 7.

4. Choose relation r ∈ R having the closest relation (measured by smallest magnitude

absolute value difference), and set R ← R\{r}.

5. Add relation r to linearized reformulation and re-optimize.

6. Compute R2, and Go To 3.

7. Stop.

Algorithm 7 resembles a standard regression technique called iterative backward elim-

ination. As long as R2 > α, it continues to optimize, compute resultant R2 values, add

the relation causing the least conflict, and re-optimize. Algorithm 7 requires a value α that

indicates an acceptable threshold for correlation coefficient R2, as well as a set R of possible

relations (for example e10 = 0.5e4, or e8 = 1.081e1); α and R are predetermined accord-

ing to specific domain knowledge. In our experiments, R was proposed by our biomedical

collaborators Dr. Camacho and Dr. Temiz (see [97] for more details).

79

3.4 COMPUTATIONAL EXPERIMENTS AND RESULTS

3.4.1 Test Data and Environment

Table 3.1: Parameter reductions

Parameters R2

12 0.99857

11 0.99855

7 0.9983

Our initial test set ZF-I [65] consisted of |I| = 35

mutant complexes, each having between two and

four possible submodels [98]. There were twelve

parameters in our original interaction code, includ-

ing eleven ek parameters representing fundamental

interactions (six H-Bonds, five desolvation penal-

ties) along with a single (implicit) water modula-

tion factor λ. We set κ = 4 to ensure that our

binary representation of λ has an accuracy of at

least ε < 10−4, and after all reformulations were completed there were 786 variables (625

continuous, 161 binary) and 2,510 constraints in the resultant model. Our testing environ-

ment consisted of Windows XP, a Dual-Core Intel Xeon 3GHz processor, 3GB of RAM, and

CPLEX 11.0 [57] with default settings to optimize the reformulated mixed 0-1 programs.

3.4.2 Test Results

Figure 3.3: Parameter reduction effects on ZF-I

The majority of the subprob-

lems in Steps 2. and 5. of Algo-

rithm 7 solved to optimality in

five to ten minutes; the longest

run was under thirty minutes.

The default settings of CPLEX

11.0 were all that were necessary

for the problems to solve to op-

timality in such short run times.

In general, we observed that the more relations from R that had been added in Step 5. of

Algorithm 7, the less time it took to solve the corresponding subproblem to optimality.

80

Figure 3.4: Single parameter reduction

Beginning with the twelve origi-

nal parameters of our original inter-

action code as well as an acceptable

R2 level α, we ran Algorithm 7 until

the R2 value of the current iteration

decreased below the predetermined

value of α. For our data, the R2

value remained relatively unchanged

after enforcing the first five parame-

ter relations. After this point, how-

ever, a sharp drop-off was observed

in the R2 value upon enforcing any

additional relations. Thus seven pa-

rameters remained, including three

H-bonds, three desolvation penalties,

and the water modulation factor λ.

After these initial marginal decreases in R2 values, further reductions appeared to be detri-

mental to the mapping of the binding data. Table 3.1 details the parameter reductions

together with the corresponding R2 values. Graphically, Figure 3.3 (from [99]) depicts this

phenomenon collectively with respect to R2, while Figure 3.4 (from [99]) demonstrates the

convergence of individual parameters using the output obtained from Algorithm 7. The vi-

sual discrepancy that appears after the reduction from seven to six parameters is due to the

subsequent choice of parameter reduction [99].

3.4.3 Validating and Reassessing Submodels with Optimization Results

We validated the optimization results from the ZF-I data set [65] by measuring their per-

formance on related ZF-II and ZF-III data sets having 23 and 31 mutant complexes, respec-

tively [5, 88].

81

Figure 3.5: ZF-I’s optimal parameters on ZF-II, ZF-III

Figure 3.5 (from [99]) il-

lustrates the performance of

ZF-I’s optimal parameter levels

through their simple evaluation

in the submodels of ZF-II and

ZF-III. It depicts the levels ob-

tained from each iteration of Al-

gorithm 7 on ZF-I, from twelve

parameters down to seven. This

led to rather high levels of R2, as depicted in Figure 3.6 (from [99]), where the R2 of ZF-II is

a robust 0.97, while for ZF-III it is still a very respectable 0.93. While not as strong as the

correlation values for ZF-I (likely because our submodel designs are based upon experimental

data from ZF-I), they are particularly noteworthy because no optimization was performed

on either the ZF-II or ZF-III data sets. We attribute these relatively high R2 values to the

intrinsic significance of these seven parameters in characterizing zinc finger protein/DNA

bindings on related, yet distinct data sets.

Figure 3.6: Predicted vs. experimental free energy

We also systematically elimi-

nated all seven ZF-I mutants that

were used to construct the original

code in [98]. The subsequent results

of these optimization runs yielded an

almost equivalent interaction code,

serving as additional evidence that

our optimization approach is captur-

ing the underlying molecular inter-

actions. Moreover, our observations

also helped lead to two structural up-

dates for the submodels correspond-

ing to the ZF-II and ZF-III data sets,

an added benefit that has improved the accuracy of the current experimental models [97, 99].

82

3.5 CONCLUDING REMARKS

Our objective in decoding the interactions between zinc finger protein transcription factors

and DNA was to predict the structure and stability of protein/DNA complexes using a

mathematical programming-based approach. We developed a nonlinear mixed 0–1 program

and subsequently introduced several linearizations and variable substitutions that transform

the problem into an equivalent (albeit somewhat larger in size) mixed 0–1 program, able to

be solved with MIP solvers such as CPLEX. The resulting formulation exhibited relatively

short run times to solve to optimality, yielding optimal parameter levels that improved upon

existing (and labor-intensive) methods [98]. Additionally, through Algorithm 7 we addressed

the issues of overfitting and underfitting. In so doing, we were able to reduce the number of

fundamental interaction parameters from twelve to seven, while retaining a high R2 value.

Our findings indicate a very strong fit to actual experimental data on both optimized data

set ZF-I, as well as non-optimized data sets ZF-II and ZF-III. Additionally, they helped lead

to structural updates for two submodels by highlighting potential context-dependent effects

in submodel definitions [97].

In the future, our framework can serve as a foundation to build more elaborate models, as

it is readily scalable to larger data sets, and it can be easily extended by adding additional

constraints and variables (for example, to forbid certain bindings, or to introduce a new

interaction parameter into the optimization model). Additionally, our models could also be

incorporated into a larger database and server system, enabling open access by researchers

at large. As more complete information is received, the optimization model can then be

automatically adjusted and re-optimized without manual intervention, thereby keeping the

database up-to-date.

83

4.0 OPTIMIZATION IN SUSTAINABLE ENERGY DEVICES

The final application of optimization in this thesis is in the context of engineering design.

In particular, we use optimization to enhance the design of a thermoacoustic engine.

4.1 ACKNOWLEDGMENT

Most of the content in this chapter is based on the following manuscript: A.C. Trapp†, F.

Zink‡, O.A. Prokopyev†, L. Schaefer‡. “Thermoacoustic Heat Engine Modeling and Opti-

mization.” Technical report, Univ. of Pittsburgh, Departments of Industrial Engineering†

and Mechanical Engineering‡, 2011.

4.2 INTRODUCTION

Thermoacoustic devices rely upon sound waves rather than mechanical pistons to drive the

thermodynamic process. Thermoacoustic engines (TAEs) use hot heat input to generate

intense sound; their main use is to drive thermoacoustic refrigerators (TARs), which cool

by transforming intense sound from their surroundings [59, 82, 94, 104]. While TARs are a

reality today, they are not yet competitive with current refrigeration technology in terms of

energy or cost efficiency, even though they compare favorably in that they contain no toxic

chemicals and have no moving parts.

A basic standing wave thermoacoustic engine consists of a resonance tube that is closed

on one end and open on the other. The main component is a porous regenerative unit called

84

Figure 4.1: Inputs and outputs of thermoacoustic engine

the stack, which sits inside the resonance tube between two heat exchangers. One heat

exchanger is used to supply heat at high temperature (on the order of several hundred ◦C),

while the other withdraws heat from the system at ambient temperature. Locating the stack

near the closed end of the resonance tube causes the interior gas to experience large pressure

oscillations yet relatively small displacement. Amplification of pressure disturbances in the

working gas then occur due to the temperature gradient across the regenerative unit, which,

once a steady state has been attained, generates loud acoustic sound. The regenerative unit

is responsible for both creating the sound and cooling, as well as the viscous losses and heat

flows that inhibit thermoacoustic energy conversion. Figure 4.1 (from [114]) illustrates the

features of a thermoacoustic engine, including several heat flows Q, acoustic power P , as

well as the stack which appears as the dark square near the closed end of the resonance

tube [114].

From the literature, it appears that thermoacoustic device designers tend to prefer para-

metric studies, where a single parameter is varied while holding all others constant, over

optimization (see Section 1.3). Such parametric studies are useful, but unfortunately are

unable to capture the nonlinear interactions inherent in multiple variable models. Addi-

85

tionally, the optimization approaches typically used in such studies guarantee only locally

optimal solutions. In contrast, the model we develop allows for the simultaneous varying

of multiple parameters, and we also identify globally optimal values for these variables.

We also conduct multiobjective optimization over several contrasting objectives representing

both acoustic and thermal properties, enabling us to generate the efficient frontier of Pareto

optimal points from the optimal solutions to such contrasting objectives.

The remainder of this chapter is organized in the following manner: the fundamental

components of our mathematical model characterizing the standing wave thermoacoustic

Sterling heat engine are presented in Section 4.3. In Section 4.4, we discuss optimization

with respect to a single objective, identifying globally optimal values of the variables with

respect to the considered objective function while still satisfying the constraints. Section 4.5

considers multiobjective optimization, and concluding remarks are discussion in Section 4.6.

A concise summary of the terminology we use is presented in the preliminary materials.

4.3 MATHEMATICAL MODELING OF THERMOACOUSTIC ENGINES

In this section we introduce the mathematical model we use to represent the underlying

dynamics of thermoacoustic systems.

4.3.1 Model Components

The stack exhibits a symmetry which allows us to reduce the problem domain to two dimen-

sions. We attribute two constant temperature boundaries, one convective boundary, and

one adiabatic boundary to account for the thermal behavior of the device in the reduced

domain. In the thermal calculations, we are primarily interested in the temperature dis-

tribution achieved in the domain, and discuss several approaches to determine the relevant

temperature profiles. Acoustically, we represent the stack’s work flow and viscous resistance

using expressions constructed from several structural variables, that are in turn involved in

a number of structural constraints. The variables are the parameters1that we allow to be

86

varied, while structural constraints are equations and inequalities that enforce restrictions on

permissible variable combinations. We measure the quality of a given set of variable values

using an objective function comprised of multiple components.

Multiobjective optimization is concerned with the optimization of more than one ob-

jective function that are conflicting in nature [70]. They are conflicting in the sense that,

if optimized individually, they do not share the same optimal solutions. When optimized

simultaneously, weights are typically added to each objective to allow the user to place de-

sired emphasis. In this context, a Pareto optimal solution is one in which there does not

exist another solution that strictly improves one of the considered objective components

without worsening another objective component. The set of Pareto optimal solutions over

all objective weights can then be used to generate the efficient frontier.

Variables. We characterize the fundamental properties of the stack using the following five

lower- and upper-bounded variables:

• L: Stack length,

• H: Stack height,

• Z: Stack placement,

• dc: Channel diameter, and

• N : Number of channels.

Figure 4.2 (from [114]) depicts these structural variables [114]. Both the stack length L

and height H take real values between their bounds, where the stack height is defined as the

radius of a cross section of the resonance tube. The placement of the stack in the axial direc-

tion of the resonator is modeled by continuous variable Z; near the closed end of the resonance

tube its value approaches 0 from above. We take the maximum length of the resonator tube

to be a quarter-wavelength, i.e., Zmax = λ
4
, implying that Z can effectively range from Zmin to

Zmax−L to properly account for the stack length. Because the geometry of the porous stack is

based on the monolith structure used in experimentation [115], we model it using square chan-

nels, and represent the channel size with continuous variable dc, so that the channel perimeter

1We differentiate between the terms variables and parameters, in that we use the term variables to indicate
the structural components we allow to fluctuate in order to improve the objective, and the term parameters
to indicate either known quantities (i.e., constants) or auxiliary quantities that are completely dependent on
the values of the structural variables and other constant parameters.

87

Πc = 4dc and area Ac = d2
c . We allow dc to range from the thermal penetration depth δκ to

Fδκ, where F is an integer-valued multiplier on the thermal penetration depth. If we do not

properly cap the size of the stack’s channels, the key interaction between the gas and the wall

does not occur, thus hindering the amplification of acoustic waves [93]. Hence we take F to

be four because it results in a channel dimension that still yields thermoacoustic performance.

Finally, we model the number of channels N within the stack as an integer-valued variable.

Convection/Radiation

Conduction

Adiabatic

Thot Tcold

dc

Z

z
L

r

ϕ

Z=0

Z=λ/4

H

N

}

Figure 4.2: Computational domain and boundary conditions for variables L, H, Z, N , dc

Objectives. Our objective function contains the following five components, each of which

has a weighting factor wi to provide appropriate user-defined emphasis:

• W : Work output,

• Rν : Viscous resistance,

• Qconv: Convective heat flow,

• Qrad: Radiative heat flow, and

• Qcond: Conductive heat flow.

The two acoustic objectives are the work output W of the thermoacoustic engine and the

viscous resistance Rν through the stack. The thermal objectives include both the convective

88

heat flow Qconv and the radiative heat flow Qrad that we evaluate at the top boundary of the

stack, as well as the conductive heat flow Qcond that we evaluate at the end of the resonance

tube. Because work is the only objective to be maximized, we instead minimize its negative

magnitude so that objective directions concur in all components.

As is common in multiobjective optimization, the objective function components in our

model are of varying and conflicting magnitudes and units. We can restore this imbalance by

incorporating normalization factors on each component weight wi. Thus, without loss of gen-

erality, we make the assumption that weights wi are normalized in our following discussions,

which makes each objective function component unitless and nonnegative in magnitude.

Section 4.5.1 provides further details on the normalization procedure we implement.

Structural Constraints. In addition to having lower and upper bounds, variables may only

take values that satisfy certain physical properties governing the engine. One such property

is that the total number of channels N of a given diameter dc is limited by the cross-sectional

radius of the resonance tube H. This relationship yields the constraint AN(dc+tw)2 ≤ πH2,

where tw represents the wall thickness around a single channel, and A represents the ratio of

the area of a filled circle to its optimal packing by smaller square channels. From observations

on optimal packings (see, e.g., [41]), 1 ≤ A ≤ 1.5, so we set A = 1.25. Other model

constraints equate auxiliary parameters used in the optimization.

4.3.2 Mathematical Programming Formulation

The following mathematical model (4.1) – (4.26) is a nonlinear mixed integer program.

(MPF) min
L,H,Z,dc,N

ζ = w1(−W) + w2Rν + w3Qconv + w4Qrad + w5Qcond (4.1)

subject to

AN(dc + tw)2 ≤ πH2, (4.2)

W = 1/4Πcω

[
δκ

(γ − 1)p2

ρc2(1 + ε)
(Γ− 1)− δνρu2

]
LN

= ω

[
δκ

(γ − 1)p2

ρc2(1 + ε)
(Γ− 1)− δνρu2

]
LNdc, (4.3)

89

Rν =
µΠc

A2
cδν

L

N
=

4µ

δν

L

Nd3
c

, (4.4)

Qconv = H

∫ 2π

0

∫ L

0

h(Ts) (Ts − T∞) dzdϕ, (4.5)

Qrad = H kb

∫ 2π

0

∫ L

0

ε
(
T 4
s − T 4

∞
)
dzdϕ, (4.6)

Qcond =

∫ 2π

0

∫ H

0

(
krr

∂T

dr
+ kzz

∂T

dz

)
drdϕ, (4.7)

Qcond|z=Lmax =

∫ 2π

0

∫ H

0

(
kzz

∂T

∂z

)
drdϕ. (4.8)

Heat flow equations (4.5) – (4.8) depend on the following additional parameters:

h(Ts) =
kg
2H

Nu, (4.9)

Nu = 0.36 +
0.518Ra

1
4
D[

1 + (0.559
Pr

)
9
16

] 4
9

, (4.10)

RaD = Gr Pr =
gβ(Ts − T∞)

να
(2H)3, (4.11)

Pr =
ν

α
, (4.12)

krr =
kskg(tw + dc)

kstw + kgdc
, (4.13)

kzz =
kstw + kgdc
tw + dc

. (4.14)

The work expression (4.3) depends on the following four parameters:

ε =
(ρcpδκ)g
(ρcpδs)s

tanh ((i+ 1)y0/δκ)

tanh ((i+ 1)l/δs)
, (4.15)

90

umax =
pmax
ρc

, (4.16)

p = pmax cos

(
2πZ

λ

)
, (4.17)

u = umax sin

(
2πZ

λ

)
. (4.18)

The variables are subject to the following restrictions:

Lmin ≤ L ≤ Lmax, (4.19)

Hmin ≤ H ≤ Hmax, (4.20)

δκ ≤ dc ≤ Fδκ, (4.21)

Zmin ≤ Z ≤ Zmax − L, (4.22)

Nmin ≤ N ≤ Nmax, (4.23)

L, H, Z, dc ∈ R+;N ∈ Z+. (4.24)

The following boundary conditions must also be enforced:

i) Constant hot side temperature (Th),

ii) Constant cold side temperature (Tc),

iii) Adiabatic boundary, modeling the central axis of the cylindrical stack:

∂T

dr

∣∣∣∣
r=0

= 0, and (4.25)

91

iv) Free convection and radiation to surroundings (at T∞) with temperature dependent heat

transfer coefficient (h), emissivity (ε), and thermal conductivity (k):

k
∂T

dr

∣∣∣∣
r=H

= h (Ts − T∞) + εkb
(
T 4
s − T 4

∞
)
. (4.26)

We denote by x the solution vector of structural variables, i.e., x = [L,H, dc, Z,N].

Constraint (4.2) relates the channel diameter dc and the number of possible channels N

to the radius H of the cross-sectional area, while equations (4.3) – (4.7) express our five

objective function components of interest. Equations (4.3) and (4.4) calculate the work W

and viscous resistance Rν , respectively, as functions of L, dc, Z, and N (and indirectly H

through (4.2)). Equations (4.5) – (4.8) represent heat flows. Equations (4.9) – (4.18) express

parameters used in objective function components, (4.19) – (4.24) restrict variables values,

and (4.25) – (4.26) represent heat flow boundary conditions. Note that umax and pmax are

related2 at zo = 0 as evidenced in equation (4.16).

Remark 1. In equation (4.15), the real part of ε is observed to tend to
√

3
2

, and we set ε to

this value.

Remark 2. We set the hot-side temperature Th = ∇TL + Tc, where ∇T and Tc are prede-

termined values. Note that the constant temperature gradient ∇T is an approximation and

its validity is assumed over the entire domain of structural variables (i.e., L ∈ [Lmin, Lmax],

H ∈ [Hmin, Hmax], etc.). This behavior corresponds with experimental observations that

clearly indicate a positive correlation between the stack length L and hot side temperature Th

in order to successfully sustain the thermoacoustic energy conversion. Additional details can

be found in Section 4.3.3.1.

Remark 3. While the heat transfer coefficient h, in this case for natural convection, depends

on the surface temperature Ts (a function of z), this value is calculated separately and treated

as constant; see Section 4.3.3.2 for a related discussion.

Remark 4. We assume that constraint (4.2) is satisfied when variables H, N , and dc are

at their lower bounds, so that ANmin(dcmin + tw)2 ≤ πH2
min holds.

2pmax is determined either by an informed choice based on domain knowledge, or via simulation.

92

4.3.3 Approximating the Heat Flows

We next discuss how we arrived at equations (4.5) – (4.8), (4.25), and (4.26), including their

approximation.

4.3.3.1 Estimating the Temperature Distribution Given an input H (and L), it

is necessary to find the solution of the 2D temperature distribution in our reduced do-

main, subject to boundary conditions detailed above. Due to the nature of the boundary

conditions, the analytical solution is very difficult. Numerical solvers such as COMSOL

Multiphysics [29], MATLAB Finite Element Toolbox [68], etc. are another option to de-

termine the temperature distribution. However, this precision comes at high computational

cost. Considering that the temperature distribution is required for the estimation of the heat

fluxes, only the temperature distribution at the shell surface and the temperature gradient

at the cold side are of interest. For this purpose it is reasonable to reduce the temperature

calculations to those two relevant values. The temperature distribution along the top surface

can be well-approximated by an exponentially decaying temperature distribution throughout

the domain. This behavior was determined through an analysis of the finite element solution.

The final surface temperature distribution as a function of axial direction z is given by:

Ts = The
ln
(
Tc
Th

)
z
L . (4.27)

This distribution is assumed to be valid on the surface characterized by (z, r = H) and

approximates the physical temperature distribution. This same temperature distribution is

used to determine the axial temperature gradient at the cold side (required for the conductive

heat flux). Considering again the rectangular domain, we can see that the temperature

gradient in the center (i.e. bottom, r = 0) will vary linearly from Th to Tc. Assuming

that the temperature gradient at the cold side is exponential for all r will result in an

underestimation of the conductive heat flux.

93

4.3.3.2 Determining the Heat Fluxes The temperature distribution in (4.27) is then

used to determine the convective and radiative heat transfer to the surroundings via:

Qconv = 2πHh

L∫
0

(Ts − T∞) dz. (4.28)

As noted in Remark 3, the temperature dependent heat transfer coefficient h(T) is de-

termined in a preprocessor (derived from the appropriate Nusselt law, as stated in equa-

tion (4.10) and an average surface temperature), and is not considered as part of the integral.

The radiative heat transfer (in the general case) is written as:

Qrad = 2πHkBε

L∫
0

(
T 4
s − T 4

∞
)
dz, (4.29)

which depends on the surface emissivity ε and Stefan-Boltzmann constant kB, both of

which are assumed to be independent of temperature.

After integrating we derive the following heat flow expressions:

Qconv = 2πHLh

 Th

ln
(
Tc
Th

) (Tc
Th
− 1

)
− T∞

 , and (4.30)

Qrad = 2πHLkBε

T
4
h

(
e
4ln
(
Tc
Th

)
− 1

)
4ln
(
Tc
Th

) − T 4
∞

 . (4.31)

In the present case, this approximation of the temperature distribution (equation (4.27))

is also utilized to determine the conductive heat flow at z = L. The temperature distribution

throughout the 2D domain implies that this estimate will fall between the extremes of:

i) the physical case (under anisotropic material properties and physical boundary condi-

tions), and

ii) the assumption of constant temperature gradient determined as dT
dz

= Th−Tc
L

, as the latter

case only exists at the adiabatic boundary z, r = 0 and quickly loses validity.

94

At the top surface z, r = H the exponential distribution is assumed, so we determine

the temperature gradient using this temperature distribution. Determining

∂T

∂z

∣∣∣∣
z=L

=
Tc
L
ln

(
Tc
Th

)
(4.32)

and implementing this in the general statement of the Fourier law of thermal conduction,

we can express this heat flow as:

Qcond =
kzz
L
πH2Tcln

(
Th
Tc

)
. (4.33)

This expression for the conductive heat flow depends on the effective thermal con-

ductivity in the z-direction as defined in equation (4.14). Using mild assumptions, equa-

tions (4.30), (4.31) and (4.33) give expressions for the heat flows that, while still nonlinear,

no longer require external finite element solvers to evaluate.

4.4 SINGLE OBJECTIVE OPTIMIZATION

We have presented a mathematical model that characterizes the essential elements of a stand-

ing wave thermoacoustic engine. Based on the discussion in Section 4.3.3.2, our nonlinear

model can be solved independently of finite element solvers. In the following discussion we

analyze restricted cases of our objectives, and identify general tendencies of the structural

variables to influence individual objective components.

4.4.1 Acoustic Emphasis

The following two sections analyze the cases where objective function (4.1) is restricted to

optimizing work and viscous resistance, respectively.

95

4.4.1.1 Emphasizing Work Setting the objective function weights to w2 = w3 = w4 =

w5 = 0 and w1 = 1, the problem reduces to constraints (4.2), (4.3), (4.16) – (4.18), and

variable restrictions (4.19) – (4.24). Objective function (4.1) becomes:

min
L,H,dc,Z,N

ζW = (−W). (4.34)

By incorporating (4.16) – (4.18) into the initial term of equation (4.3) (which is a function

of Z through p and u), and defining fW (Z) as:

fW (Z) = ωδκ
(γ − 1)

[
pmax cos

(
2πZ
λ

)]2
ρc2(1 + ε)

(Γ− 1) − ωδνρ
[
umax sin

(
2πZ

λ

)]2

, (4.35)

we can then express work as:

W = fW (Z)LNdc. (4.36)

Because work W has a physically nonnegative interpretation, this implies fW (Z) ≥ 0,

and because for our problem parameters Z ≤ λ
4
− L, it is favorable to set Z∗ = Zmin. Also,

because it appears nowhere else in the reduced problem, we set L∗ = Lmax. Regarding

the remaining terms N and dc, increasing either also improves the objective, but consumes

limited resources as per constraint (4.2). Setting H∗ = Hmax to allow both N and dc to

increase, equation (4.2) simplifies to:

AN(dc + tw)2 ≤ πH2
max. (4.37)

Letting cW = −fW (Zmin)Lmax and substituting equation (4.3) into (4.34) and rearrang-

ing gives:

min
dc,N

ζW = cWNdc, (4.38)

subject to (4.21), (4.23), (4.24), and (4.37).

It follows from (4.21), (4.37) and (4.38) that dc takes an upper bound of:

dc = min

{
Fδκ,

√
π

AN
Hmax − tw

}
. (4.39)

The first component of (4.39) is constant, and the second is monotonically decreasing in

N . From (4.37) it also follows that:

N ≤
⌊

πH2
max

A(dc + tw)2

⌋
, (4.40)

96

so we define Nmin = 1 and, because δκ ≤ dc, we define Nmax =
⌊

πH2
max

A(δκ+tw)2

⌋
. Now considering

the continuous value of N for which the two components in (4.39) are equal, let Ñ =

πH2
max

A(Fδκ+tw)2
. This leaves us with two cases:

i) for N : Nmin ≤ N ≤
⌊
Ñ
⌋
, we have dc = Fδκ, and

ii) for N :
⌈
Ñ
⌉
≤ N ≤ Nmax, we have dc =

√
π
ANHmax − tw.

Let us temporarily consider relaxing the integer restriction on N from (4.24), and let Nc

take continuous values over the domain of N , i.e. Nmin ≤ Nc ≤ Nmax. Viewing the two

cases above in light of Nc and (4.38) gives:

i) ζW = cWNcFδκ for Nc : Nmin ≤ Nc ≤ Ñ .

Because cW < 0, ζW is a monotonically decreasing function in terms of Nc, and so the

optimal value of Nc over this domain is the largest value it can obtain, N∗ = Ñ .

ii) ζW = cWNc

(√
π
ANcHmax − tw

)
for Nc : Ñ ≤ Nc ≤ Nmax.

For this case the first and second derivatives of ζW are, respectively:

dζW
dNc

= cW

[√
π

4ANc

Hmax − tw
]
, (4.41)

d2ζW
dN2

c

= −cW
√

π

16AN3
c

Hmax. (4.42)

Because cW < 0, over the domain Nc : Ñ ≤ Nc ≤ Nmax the second derivative of

ζW > 0, implying convexity of ζW and so ζW has a single global minimum. Setting the

first derivative in (4.41) equal to zero and solving, the minimal value of ζW occurs at

Nc = πH2
max

4At2w
. Because of the convexity of ζW in this region, then if Ñ ≤ πH2

max

4At2w
≤ Nmax,

we have N∗c = πH2
max

4At2w
. Otherwise, Ñ > πH2

max

4At2w
, and in this case ζW is increasing on the

interval
[
Ñ ,Nmax

]
, and so N∗c = Ñ .

In light of the previous two cases, to ensure N ∈ ZZ+ we have:

N∗ ∈
{⌊

Ñ
⌋
,
⌈
Ñ
⌉
,

⌊
πH2

max

4At2w

⌋
,

⌈
πH2

max

4At2w

⌉}
, and (4.43)

97

Figure 4.3: ζW plotted as a function of N and showing minimum

d∗c =

 Fδκ if N∗ =
⌊
Ñ
⌋

;√
π
AN∗Hmax − tw otherwise.

(4.44)

We then choose from (4.43) and (4.44) the values of N and corresponding dc that min-

imize (4.38). Based upon our specific problem data, a global minimizer of ζW is:

x∗ =

[
Lmax, Hmax,

√
π

AN∗
Hmax − tw, Zmin,

⌈
πH2

max

4At2w

⌉]
.

Figure 4.3 plots ζW as a function ofN , showing the value ofN∗ =
⌈
πH2

max

4At2w

⌉
that minimizes ζW .

We can physically interpret this optimal solution as making the stack as long and wide

as possible, and making the thermoacoustically active surface area as large as possible by

increasing the number of channels N and the channel diameter dc. Additionally, positioning

the stack near the closed end maximizes the available pressure amplitude for the thermody-

namic cycle and thus work output W .

98

4.4.1.2 Emphasizing Viscous Resistance We emphasize Rν by setting objective func-

tion weights w1 = w3 = w4 = w5 = 0 and w2 = 1. The problem simplifies to (4.2), (4.4),

and (4.19) – (4.24). Objective function (4.1) becomes:

min
L,H,dc,Z,N

ζRν = Rν . (4.45)

Set Z∗ to any value between its lower and upper bounds, e.g. Z∗ = Zmin, and set L∗ =

Lmin. Variables N and dc are constrained by (4.2); setting H∗ = Hmax affords the greatest

flexibility for N and dc to increase. Let cRν = 4µLmin
δν

, then (4.45) can be rewritten as:

min
dc,N

ζRν =
cRν
Nd3

c

, (4.46)

subject to (4.2), (4.23), (4.21), and (4.24). Much of the discussion in Section 4.4.1.1 con-

cerning dc still holds, e.g. equations (4.37), (4.39) and (4.40). Maintaining our definition of

Ñ , the following two cases remain:

i) for N : Nmin ≤ N ≤
⌊
Ñ
⌋
, we have dc = Fδκ, and

ii) for N :
⌈
Ñ
⌉
≤ N ≤ Nmax, we have dc =

√
π
ANHmax − tw.

Instead of minimizing ζRν as in (4.46), let us instead maximize ζRν = Nd3
c , as the optimal

values of N∗ and d∗c are identical. As in Section 4.4.1.1 we temporarily consider relaxing the

integer restriction on N from (4.24), allowing Nc to take continuous values over the domain

of N , i.e. Nmin ≤ Nc ≤ Nmax. Viewing these two cases in light of Nc and ζRν gives:

i) ζRν = Nc(Fδκ)3 for Nc : Nmin ≤ Nc ≤ Ñ .

Here, ζRν is a monotonically increasing function in terms of Nc, and so the optimal value

of Nc over this domain is the largest value it can obtain, Ñ .

ii) ζRν = Nc

(√
π
ANcHmax − tw

)3

for Nc : Ñ ≤ Nc ≤ Nmax.

Over this interval, differentiating ζRν gives:

dζRν
dNc

=
3t2wπ

1
2Hmax

2A 1
2

N
− 1

2
c − 1

2

(π
A
H2
max

) 3
2
N
− 3

2
c − t3w, (4.47)

and upon a second differentiation, we obtain:

d2ζRν
dN2

c

=
3π

3
2H3

max

4A 3
2

N
− 5

2
c − 3t2w

4

(π
A
H2
max

) 1
2
N
− 3

2
c . (4.48)

99

The second derivative of ζRν > 0 over the entire domain Nc : Ñ < Nc ≤ Nmax, implying

ζRν is convex. Thus the maximum over this domain occurs at one of the endpoints of

the interval, i.e., N∗c ∈
{
Ñ ,Nmax

}
.

From these two cases, and because N ∈ ZZ+ we have:

N∗ ∈
{⌊
Ñ
⌋
,
⌈
Ñ
⌉
, Nmax

}
, and (4.49)

d∗c =

 Fδκ if N∗ =
⌊
Ñ
⌋

;√
π
AN∗Hmax − tw otherwise.

(4.50)

We then choose from (4.49) and (4.50) the values of N and corresponding dc that mini-

mize (4.46). For our specific problem parameters, a global minimizer for ζRν is:

x∗ =
[
Lmin, Hmax,Fδκ, Zmin,

⌊
Ñ
⌋]
.

Figure 4.4 plots ζRν as a function of N , illustrating the the value of N∗ =
⌊
Ñ
⌋

=
⌊

πH2
max

A(Fδκ+tw)2

⌋
that minimizes ζRν .

This result can be physically interpreted as reducing the individual (viscous) resistance

of each channel to its minimum by decreasing their length (L∗ = Lmin) and then bundling

as many of those small resistances in parallel to further lower the net resistance. This is

illustrated by the addition of the respective inverse resistances when arranged in parallel to

determine a net resistance:

Rnet =

[
N∑
i=1

1

Ri

]−1

. (4.51)

For instance, in the case where all Ri have the same value, this equation reduces to

Rnet = Ri
N

, indicating that increasing N leads a lowered resistance.

4.4.2 Thermal Emphasis

We have thus far considered how acoustic objectives W and Rν are affected by changes in

the structural variables. We next discuss the individual thermal objectives by isolating each

heat flow objective function component.

100

Figure 4.4: ζRν plotted as a function of N and showing minimum

4.4.2.1 Emphasizing Convective / Radiative Heat Fluxes We can emphasizeQconv

by setting objective function weights w1 = w2 = w4 = w5 = 0 and w3 = 1. The problem

then reduces to constraints (4.2), (4.9) – (4.12), variable restrictions (4.19) – (4.24), and

expression (4.30). Alternatively, we can emphasize Qrad by setting objective function weights

w1 = w2 = w3 = w5 = 0 and w4 = 1, so that the only constraints and variable restrictions

that are active are (4.2), (4.15), (4.19) – (4.24), and (4.31). For these restricted optimization

problems, objective function (4.1) becomes, respectively:

min
L,H,dc,Z,N

ζQconv = Qconv; min
L,H,dc,Z,N

ζQrad = Qrad. (4.52)

Neither of these restricted models are dependent on Z, so Z∗ can be set to any value

between its lower and upper bounds (note our assumption that h is not dependent on Z in

Remark 3). Considering H, for Qcond it can be shown from equations (4.9) – (4.12) that h is

proportional to H−1/4. Because the resulting exponent on the H variable remains positive in

equation (4.30), it is still desirable to set H∗ = Hmin. For Qrad we also set H to H∗ = Hmin

based on (4.31). Setting N∗ = Nmin and d∗c = dcmin ensures that H can take its minimum

value in constraint (4.2) (see assumption in Remark 4).

101

The global optimum x∗ = [Lmin, Hmin, dcmin , Zmin, Nmin] minimizes both ζQconv and ζQrad .

For Qcond, this optimum reduces the surface area and limits the temperature range in the

stack, thereby minimizing the convective heat flow. Similarly for Qrad, this optimum lowers

driving potential and surface area to reduce the radiative heat flow.

4.4.2.2 Emphasizing Conductive Heat Flux We emphasize Qcond by setting objec-

tive function weights w1 = w2 = w3 = w4 = 0 and w5 = 1, so that only (4.2), (4.14), (4.19)

– (4.24), and (4.33) are active. Objective function (4.1) becomes:

min
L,H,dc,Z,N

ζQcond = Qcond. (4.53)

Similar to previous sections, this model is not dependent on Z, so that Z∗ can be set to

any value between its lower and upper bounds. Equation (4.14) can be rearranged as:

kzz = kg +
tw(ks − kg)
(tw + dc)

, (4.54)

and so merging (4.54) with (4.33) and rearranging gives:

Qcond = πTc

[
kg +

tw(ks − kg)
(tw + dc)

] [
ln

(
∇TL+ Tc

Tc

)
1

L

]
H2. (4.55)

Because
[
ln
(
∇TL+Tc

Tc

)
1
L

]
> 0, then setting L∗ to Lmax decreases Qcond, improving (4.53).

We can also improve Qcond by both decreasing H and increasing dc. However, there is tension

in constraint (4.2) between decreasing H and increasing dc. Because N appears only on the

left-hand side of (4.2), we can set N∗ = Nmin = 1 to allow dc and H the most flexibility. Let-

ting cQ1 = πTckg

[
ln
(
∇TLmax+Tc

Tc

)
1

Lmax

]
and cQ2 = πTc [tw(ks − kg)]

[
ln
(
∇TLmax+Tc

Tc

)
1

Lmax

]
,

and noting both are positive, then substituting these into (4.55) and (4.53) gives the following

optimization problem over two continuous variables:

min
H,dc

ζQcond = cQ1H
2 + cQ2

H2

(tw + dc)
, (4.56)

subject to constraint (4.2) and variable restrictions (4.20), (4.21), and (4.24).

For fixed H, it follows from our discussions and (4.2) that dc will take the value of:

dc = min

{
Fδκ,

√
π

A
H − tw

}
. (4.57)

Let H̃ = Fδκ+tw√
π
A

be the value of H for which the value of dc transitions in (4.57). This

leaves us with two cases:

102

i) for H : Hmin ≤ H ≤ H̃, we have dc =
√

π
AH − tw, and

ii) for H : H̃ ≤ H ≤ Hmax, we have dc = Fδκ.

For both intervals ζQcond is nondecreasing, so that H∗ = Hmin, implying d∗c =
√

π
AHmin−

tw. Thus x∗ =
[
Lmax, Hmin,

√
π
AHmin − tw, Zmin, Nmin

]
is a global minimizer of ζQcond .

The optimal solution with respect to minimizing the conductive heat flow differs from

those of the convective and radiative heat flows. For an actual engine design this information

may be useful in designing stacks that require the least amount of cooling for a given input.

4.4.3 Single Objective Optima: Variable Analysis

Table 4.1: Tendency of structural variables when optimizing individual objective components

(−)W Rν Qconv Qrad Qcond

L ↑ ↓ ↓ ↓ ↑

H ↑ ↑ ↓ ↓ ↓

dc ↑† ↑† ↓ ↓ ↑

Z ↓‡ ←→ ←→ ←→ ←→

N ↑† ↑† ↓ ↓ ↓

Table 4.1 summarizes the results of Sections 4.4.1 and 4.4.2. It highlights the behavior of

the structural variables, along the left, when individually optimizing the five objective func-

tion components that appear across the top. For these objectives, ↑ indicates an increasing

tendency, ↓ indicates a decreasing tendency, and ←→ indicates no impact, while †indicates

there is conflicting tension between variables. ‡indicates that Z can be set to Zmin in all cases,

as only objective W depends on it, and decreasing it improves this objective while having no

effect on the other objectives (based on our assumption in Remark 3). Also note the lack of

tension in variables for the Qconv and Qrad heat flows, which share the same optimal solution.

103

4.5 MULTIOBJECTIVE OPTIMIZATION

In Section 4.4 we examine optimization over every individual component of objective func-

tion (4.1), providing analytical solutions that do not require computational solution methods

to identify global optima. In this section we consider multiple objective components simul-

taneously, and suggest straightforward algorithmic approaches to identify optimal solutions

for these cases. Before proceeding, we first discuss our approach to ensure objective function

weights are normalized, commonplace in multiobjective optimization.

4.5.1 Normalizing Objective Function Components

When multiple objective function components are given nonzero weights, objective func-

tion (4.1) of (MPF) can have a predisposed bias towards those components having larger

magnitudes, and unit discrepancies across the various objective components create further

complications. These issues can be simultaneously addressed for each objective component

by obtaining a normalization factor to offset any such disparities.

Our proposed normalization approach is based on a method described in [46]. Let a set

I of objective components of interest from objective (4.1) be indexed by i ∈ I. As (MPF)

contains five objective components, |I| ≤ 5. Then for all indices j /∈ I, we set wj = 0.

For normalization coefficients ni the approach uses the differences of values between certain

Utopia and Nadir vectors that are of the same dimension as the number of considered objec-

tive function components |I|, and are formed using information obtained from independent

optimization of each objective function component.

The Utopia vector U is created as follows. For each i ∈ I, we set wi = 1 and wk =

0 ∀ k ∈ I : k 6= i. Let Gi be the selected objective component. Optimizing the resulting

reduced problem generates optimal objective function value G∗i and optimal solution x∗i =

[L∗i , H
∗
i , d

∗
ci
, Z∗i , N

∗
i]. Then Ui = G∗i . After repeating this process for all i ∈ I, the Nadir

vector N makes use of the optimal solutions x∗i from these optimizations, evaluating each

x∗i in the respective individual objective functions G∗i over all i ∈ I to find its worst value.

Thus, the Nadir vector is constructed as Ni = max
`=1,...,5

{Gi(x∗`)} ∀ i ∈ I.

104

For each i ∈ I, the differencesNi−Ui provide the length of interval over which the optimal

objective functions vary within the set of optimal solutions; note that these differences are

always nonnegative. They are used to construct the normalization factors ni as:

ni =
1

Ni − Ui
. (4.58)

For instance, if we consider for I all five of the objective components of objective func-

tion (4.1), then it can be normalized as:

w1

n1

((−W)−U1) +
w2

n2

(Rν −U2) +
w3

n3

(Qconv−U3) +
w4

n4

(Qrad−U4) +
w5

n5

(Qcond−U5). (4.59)

We use this normalization scheme for all cases involving multiple objective function

components. Note that the Utopia values are subtracted from every component so to ensure

that the term is unitless and nonnegative, thereby eliminating any bias of magnitude.

4.5.2 Emphasizing Work and Viscous Resistance

We can simultaneously optimize the acoustic objectives W and Rν by assigning objec-

tive weights w3 = w4 = w5 = 0 with w1 > 0, w2 > 0. Then (MPF) reduces to con-

straints (4.2), (4.3), (4.16) – (4.18) and variable restrictions (4.19) – (4.24). Objective func-

tion (4.1) reduces to:

min
L,H,dc,Z,N

ζAcoustic = w1(−W) + w2Rν . (4.60)

With respect to (4.35), let cW = −w1fW (Zmin) and cRν = w2
4µ
δν

, so that cW and cRν are,

respectively, the constant terms from Sections 4.4.1.1 and 4.4.1.2 without fixing L. Setting

Z∗ = Zmin and H∗ = Hmax as in Sections 4.4.1.1 and 4.4.1.2, and substituting cW , cRν , W

and Rν into objective function (4.60) gives:

min
L,N,dc

ζAcoustic =

(
cWNdc +

cRν
Nd3

c

)
L, (4.61)

subject to (4.19), (4.23), (4.21), (4.24), and (4.37). The tradeoffs between variables L, N

and dc can be investigated by first fixing N to N ∈ [Nmin, Nmax] ∩ ZZ, then using N in

105

equation (4.39) to fix dc to dc = min
{
Fδκ,

√
π
ANHmax − tw

}
. Depending on the sign of the

resulting coefficient on L in (4.61), L can be set to:

L =

 Lmin if
(
cWN dc +

cRν

N dc
3

)
≥ 0;

Lmax otherwise.
(4.62)

Thus for every fixed N the problem has a fixed value of dc and L. The optimal levels of L∗,

N∗ and d∗c can be found by enumerating over all values N ∈ [Nmin, Nmax]∩ZZ. We implement

such an approach in MATLAB [68], which takes at most a few minutes to solve on a standard

Windows XP-based machine with a 2.16GHz Intel Core2 processor with 2GB of RAM.

By iterating over multiple sets of objective function weights w1 and w2, the frontier

of efficient points can be generated that optimize the respective acoustic objectives. This

frontier is partially illustrated in Figure 4.5.

Figure 4.5: Acoustic efficient frontier: simultaneously minimizing −W and Rν

Setting the stack radius H to its largest value both maximizes the work by allowing

many channels N while simultaneously reducing the viscous resistance (as per discussion

in Section 4.4.1.2). Depending on the values of weights w1 and w2, the optimal length L

is either at its lower or upper bound. Moving the stack nearer to the closed end increases

the available pressure amplitude for the thermodynamic cycle that increases work output W

without adversely impacting Rν .

106

4.5.3 Emphasizing All Objective Components

Lastly, we simultaneously consider all five objective components by regarding work W and

viscous resistance Rν as two distinct objective components, and representing heat with a

third distinct objective component Qall, defined as the sum of the three heat components

Qconv, Qrad, and Qcond. We use three weights, wW , wRν and wQall , and divide wQall equally

among the three heat components comprising Qall.

As in Section 4.5.2, we determine the frontier of efficient points that optimize the three

weighted objectives W , Rν , and Qall by iterating over multiple values of objective function

weights wW , wRν and wQall . However, due to the lack of a closed form solution over the

considered objective function components, this requires an optimization approach that can

identify globally optimal solutions.

For fixed values of wW , wRν and wQall , we call the global optimization routine DI-

RECT [80], a derivative free algorithm based on Lipschitzian optimization with proven finite

convergence. Algorithm 8, which appears below, begins by constructing a hyper-rectangle

that contains the original (continuous) variable space, and progressively improves the ob-

jective by repeatedly subdividing hyper-rectangles as it moves toward the global optimum.

The particular implementation we use is due to Finkel [40], and coded in MATLAB.

Algorithm 8. [Iterative Global Branch-and-Bound Algorithm]

1. Set incumbent objective function value Z = +∞, objective function components weights

wW , wRν , and wQall, and initial lower and upper variable bounds for H, L, Z and dc.

2. Assign fixed value of N as N := Nmin.

3. Pass to DIRECT N and variable bounds for H, L, Z, and dc to optimize (MPF).

4. Obtain the resulting optimal solution and optimal objective function value Z.

5. If Z < Z, set Z := Z and save off optimal solution.

6. Assign N := N + 1.

7. If N < Nmax, Go To 3.

8. Return Z and associated optimal solution, and Stop.

107

Figure 4.6: Side profile of efficient frontier: simultaneously minimizing −W , Rν , and Qall

Algorithm 8 generates an optimal solution corresponding to any set of weights wW , wRν

and wQall . These optimal solutions can then be used to construct the efficient frontier of

optimal solutions, which is partially illustrated by the fitted surface appearing in Figures 4.6

and 4.7. Note the conflicting nature of the three objectives that can be observed in both

profiles. Figure 4.6 provides a side profile of the efficient frontier, where the bottom left

corner is improving for all three objectives, and illustrates how an improvement in a single

objective component causes the remaining two objectives to worsen. Figure 4.7 depicts the

same phenomenon from a top profile, where the rear corner is improving for every objective.

4.5.4 Alternative View: Maximizing Efficiency

An alternative way to simultaneously maximize work and minimize losses (viscous resistance

as well as heat flows) is to consider the thermal efficiency η, which can be defined as the

ratio of the work output over the sum of the work output and losses. Thus we can consider

108

Figure 4.7: Top profile of efficient frontier: simultaneously minimizing −W , Rν , and Qall

the following optimization problem:

max
W

W + w̃2Rv + w̃3Qconv + w̃4Qrad + w̃5Qcond

, (4.63)

subject to the original constraints of (MPF). This results in a mixed integer fractional pro-

gramming problem, the numerator of which represents the work output, and the denominator

being a sum of the work and combined (viscous and thermal) losses.

One way to solve fractional programs is via Dinkelbach’s algorithm [36]. Briefly, Dinkel-

bach’s algorithm eliminates the ratio in objective (4.63) by instead considering a sequence

of problems that parameterize (4.63) with:

η =
W

W + w̃2Rv + w̃3Qconv + w̃4Qrad + w̃5Qcond

, (4.64)

and replace objective function (4.63) by:

max W − η(W + w̃2Rv + w̃3Qconv + w̃4Qrad + w̃5Qcond). (4.65)

109

Dinkelbach’s algorithm optimizes (4.65) subject to the original (MPF) constraints, itera-

tively updating its choice of η in order to identify η∗ for which the maximum value of (4.65)

equals zero. The sequence of choices for η finitely converge to η∗, solving the alternative rep-

resentation and thus the original problem as well. Note the equivalence between the version

of (MPF) as described in Section 4.5.3, and that of a single instance of (4.65) (corresponding

to a fixed value of η) subject to the constraints in (MPF). Therefore solving (4.63) can be

reduced to iteratively applying our procedure until the maximum of (4.65) attains zero.

4.6 CONCLUDING REMARKS

We demonstrate how optimization can improve the structural design of thermoacoustic de-

vices. Whereas previous efforts have largely relied upon parametric studies, our approach

simultaneously considers multiple variables over a set of constraints, and we includes multiple

objective components in our objective function to quantify both acoustic and thermal perfor-

mance. Through the objective function weights, a significant amount of personal preference

is available to place desired emphasis.

We analyze cases of single objective components (two acoustic and three thermal), as well

as two cases of multiobjective optimization. For the single objective cases, we analytically

identify globally optimal solutions, while for the cases of multiple objectives, we generate

the efficient frontier of optimal solutions for two combinations of objective weights. For

both cases (the single objective as well as multiple objective approach), we show that there

are nontrivial solutions to each design that have the potential to improve the energetic

performance of thermoacoustic devices.

Our goal in optimizing sustainable energy devices was the identification of optimal struc-

tural variable levels so as to make the design more competitive with incumbent technology.

We hope that some of the insights gained into optimal TAE designs will serve to benefit

TAR technology and help supplant current refrigeration methods, thereby eliminating the

need for toxic refrigerants and providing clear benefits with respect to sustainability.

110

5.0 CONCLUSIONS

In this dissertation we use optimization in conjunction with context-relevant algorithmic

design to identify optimal underlying structures in three distinct application areas. In each

study we formulate nonlinear mixed-integer programs that appropriately characterize the

physical and/or structural attributes of the problem. We then develop an appropriate so-

lution approach for each nonlinear mixed-integer program, including reformulation to lin-

ear mixed-integer programs (which off-the-shelf optimization software such as CPLEX can

typically solve), algorithmic design that iteratively solves relaxations or restrictions to the

problem, and analytical solutions.

Chapter 2 discusses two applications of optimization-based techniques to the field of data

mining. For two specific biclustering data mining tasks, we successfully develop mathematical

programs to characterize these tasks, and provide algorithms to identify meaningful biclusters

in both synthetic and real biological data. Our results have significance wherever these two

specific patterns may be of interest, for example in the diagnosis of disease conditions that

link a subset of features to a subset of samples.

Chapter 3 presents an application of optimization in the context of computational biology.

We develop a mathematical programming formulation and several subsequent linearizations

that transform the problem into an equivalent mixed-integer program. Computational test-

ing demonstrates that our approach quickly finds the optimal assignment, enabling a highly

accurate prediction of protein/DNA structure using a minimal set of parameters. Our find-

ings may have significance in gene therapy, for instance in modifying genes that produce

malfunctioning proteins, or in the design of proteins that can target specific diseases.

Chapter 4 discusses an application to determine the optimal structure of a sustainable

energy device, namely, the thermoacoustic engine that serves as a main driver for the ther-

111

moacoustic refrigerator. Moving beyond known approaches from the literature, we consider

a nonlinear integer programming model with five structural variables and multiple objec-

tives aimed at improving the engine’s efficiency. We proceed to analyze the formulation and

discuss optimal solutions for each of five individual objectives. We then consider the simul-

taneous optimization of multiple objectives. For the case of two acoustic objectives, as well

as for the overall case combining all objective components, we present an efficient frontier

of Pareto optimal solutions. The insight gained into optimal structural designs of TAEs can

potentially contribute to enhancing the overall efficiency of the TAR to better compete with

incumbent refrigeration technology.

112

BIBLIOGRAPHY

[1] R. Agrawal, J.E. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clus-
tering of high dimensional data for data mining applications. In Proceedings of the
1998 ACM SIGMOD International Conference on Management of Data, pages 94–
105, Seattle, Washington, June 1998. ACM New York, NY.

[2] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, Englewood Cliffs, NJ, 1993.

[3] E. Althaus, A. Caprara, H.P. Lenhof, and K. Reinert. A branch-and-cut algorithm for
multiple sequence alignment. Mathematical Programming, 105(2):387–425, 2006.

[4] E. Althaus, G. Klau, O. Kohlbacher, H. Lehhof, and K. Reinert. Integer Linear Pro-
gramming in Computational Biology, pages 199–218. Lecture Notes in Computer Sci-
ence. Springer Berlin / Heidelberg, New York, 2009.

[5] K.H. Bae, Y. Do Kwon, H.C. Shin, M.S. Hwang, E.H. Ryu, K.S. Park, H.Y. Yang, D.K.
Lee, Y. Lee, J. Park, H.S. Kwon, H.W. Kim, B.I. Yeh, H.W. Lee, S.W. Sohn, J. Yoon,
W. Seol, and J.S. Kim. Human zinc fingers as building blocks in the construction of
artificial transcription factors. Nature Biotechnology, 21(3):275–280, 2003.

[6] B. Balasundaram, S. Butenko, and S. Trukhanov. Novel approaches for analyzing
biological networks. Journal of Combinatorial Optimization, 10(1):23–39, 2005.

[7] M. Baz, B. Hunsaker, P. Brooks, and A. Gosavi. Automated tuning of optimization
software parameters. Technical report, University of Pittsburgh Department of Indus-
trial Engineering, 2007.

[8] A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini. Discovering local structure in gene
expression data: The order-preserving submatrix problem. In Proceedings of the 6th
Annual International Conference on Computational Biology (RECOMB ’02), pages
49–57. ACM, 2002.

[9] A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini. Discovering local structure in gene
expression data: The order-preserving submatrix problem. Journal of Computational
Biology, 10(3-4):373–384, 2003.

113

[10] J.F. Benders. Partitioning procedures for solving mixed variables programming prob-
lems. Numerische Mathematik, 4:238–252, 1962.

[11] E. Besnoin. Numerical Study of Thermoacoustic Heat Exchangers. PhD thesis, Johns
Hopkins University, 2001.

[12] P.S. Bradley and U.M. Fayyad. Refining initial points for k-means clustering. In
J. Shavlik, editor, Proceedings of the 15th International Conference on Machine Learn-
ing (ICML’98), pages 91–99, San Francisco, CA, February 1998.

[13] P.S. Bradley and O.L. Mangasarian. Feature selection via concave minimization and
support vector machines. In J. Shavlik, editor, Proceedings of the 15th International
Conference on Machine Learning (ICML’98), pages 82–90, San Francisco, CA, Febru-
ary 1998.

[14] P.S. Bradley, O.L. Mangasarian, and W.N. Street. Clustering via concave minimization.
In M.C. Mozer, M.I. Jordan, and T. Petsche, editors, Advances in Neural Information
Processing Systems 9 (NIPS), pages 368–374, Denver, CO, December 1996. MIT Press.

[15] P.S. Bradley, O.L. Mangasarian, and W.N. Street. Feature selection via mathematical
programming. INFORMS Journal on Computing, 10(2):209–217, 1998.

[16] P.S. Bradley, U.M. Fayyad, and O.L. Mangasarian. Mathematical programming for
data mining: Formulations and challenges. INFORMS Journal on Computing, 11(3):
217–238, 1999.

[17] R. Brause, T. Langsdorf, and M. Hepp. Neural data mining for credit card fraud
detection. In Proceedings of the 11th IEEE International Conference on Tools with
Artificial Intelligence, pages 103–106, Chicago, Illinois, November 1999. IEEE.

[18] S. Busygin, G. Jacobsen, and E. Krämer. Double conjugated clustering applied to
leukemia microarray data. In Workshop on Clustering High Dimensional Data and Its
Applications (2nd SIAM SDM), Arlington, VA, April 2002.

[19] S. Busygin, O.A. Prokopyev, and P.M. Pardalos. Feature selection for consistent bi-
clustering via fractional 0–1 programming. Journal of Combinatorial Optimization, 10
(1):7–21, 2005.

[20] S. Busygin, O.A. Prokopyev, and P.M. Pardalos. Biclustering in data mining. Com-
puters and Operations Research, 35(9):2964–2987, 2008.

[21] T.D. Camenisch, M.H. Brilliant, and D.J. Segal. Critical parameters for genome editing
using zinc finger nucleases. Mini Reviews in Medicinal Chemistry, 8(7):669–676, 2008.

[22] A. Caprara, G. Lancia, and S.K. Ng. Sorting permutations by reversals through branch-
and-price. INFORMS Journal on Computing, 13(3):224, 2001.

114

[23] M.C. Chen. Ranking discovered rules from data mining with multiple criteria by data
envelopment analysis. Expert Systems with Applications, 33(4):1110–1116, 2007.

[24] Y. Cheng and G.M. Church. Biclustering of expression data. In Proceedings of the
Eighth International Conference on Intelligent Systems for Molecular Biology, pages
93–103. AAAI Press, 2000.

[25] K.W. Cheung, J.T. Kwok, M.H. Law, and K.C. Tsui. Mining customer product ratings
for personalized marketing. Decision Support Systems, 35(2):231–243, 2003.

[26] L. Cheung, D.W. Cheung, B. Kao, and K.Y. Yip. On mining micro-array data by
order-preserving submatrix. International Journal of Bioinformatics Research and Ap-
plications, 3(1):42–64, 2007.

[27] H. Cho, I. Dhillon, Y. Guan, and S. Sra. Minimum sum-squared residue co-clustering
of gene expression data. In Proceedings of the 4th SIAM International Conference on
Data Mining (SDM), pages 114–125, Lake Buena Vista, Florida, April 2004.

[28] C. Cifarelli, L. Nieddu, O. Seref, and P.M. Pardalos. K-T.R.A.C.E.: A kernel k-
means procedure for classification. Computers & Operations Research, 34(10):3154–
3161, 2007.

[29] COMSOL Multiphysics Users Guide. COMSOL AB, Burlington, MA, USA, 2005.

[30] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(13):273–297,
1995.

[31] G.B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations
Research, 8(1):101–111, 1960.

[32] I. Dhillon. Co-clustering documents and words using bipartite spectral graph partition-
ing. In Proceedings of the 7th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pages 269–274, San Francisco, CA, August 2001.
ACM New York, NY.

[33] I. Dhillon. Co-clustering software. http://www.cs.utexas.edu/users/dml/

Software/cocluster.html, 2011.

[34] I.S. Dhillon and Y. Guan. Information theoretic clustering of sparse co-occurrence data.
In Proceedings of the Third IEEE International Conference on Data Mining (ICDM),
pages 517–520, Melbourne, FL, November 2003. IEEE.

[35] I.S. Dhillon, S. Mallela, and D.S. Modha. Information-theoretic co-clustering. In Pro-
ceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), pages 89–98, Washington, DC, August 2003. ACM.

[36] W. Dinkelbach. On non-linear fractional programming. Management Science, 13(7):
492–498, 1967.

115

http://www.cs.utexas.edu/users/dml/Software/cocluster.html
http://www.cs.utexas.edu/users/dml/Software/cocluster.html

[37] R.G. Downey and M.R. Fellows. Parameterized Complexity. Springer Verlag, New
York, 1999.

[38] M. Elrod-Erickson, M.A. Rould, L. Nekludova, and C.O. Pabo. Zif268 protein-DNA
complex refined at 1.6 Å : A model system for understanding zinc finger-DNA inter-
actions. Structure, 4(10):1171–1180, 1996.

[39] V. Figueiredo, F. Rodrigues, Z. Vale, and J.B. Gouveia. An electric energy consumer
characterization framework based on data mining techniques. IEEE Transactions on
Power Systems, 20(2):596–602, 2005.

[40] D.E. Finkel. DIRECT Optimization Algorithm User Guide. Center for Research in
Scientific Computation, North Carolina State University, Raleigh, NC, March 2003.

[41] E. Friedman. Squares in circles. http://www2.stetson.edu/~efriedma/squincir,
2011.

[42] B. Gao, O. Griffith, M. Ester, and S. Jones. Discovering significant OPSM subspace
clusters in massive gene expression data. In Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD), pages
922–928, Philadelphia, PA, August 2006. ACM New York, NY.

[43] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-completeness. W.H. Freeman & Company, 1979.

[44] F. Glover and G.A. Kochenberger. Handbook of Metaheuristics. Springer Verlag, 2003.

[45] H. Greenberg, W. Hart, and G. Lancia. Opportunities for combinatorial optimization
in computational biology. INFORMS Journal on Computing, 16(3):211–231, 2004.

[46] O. Grodzevich and O. Romanko. Normalization and other topics in multiobjective op-
timization. In Proceedings of the First Fields-MITACS Industrial Problems Workshop,
pages 89–102. The Fields Institute, 2006.

[47] D. Gusfield. Haplotype Inference by Pure Parsimony, pages 144–155. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, New York, 2003.

[48] J.A. Hartigan. Direct clustering of a data matrix. Journal of the American Statistical
Association, 67:123–129, 1972.

[49] I. Hedenfalk, D. Duggan, Y. Chen, M. Radmacher, M. Bittner, R. Simon, P. Meltzer,
B. Gusterson, M. Esteller, M. Raffeld, Z. Yahkini, A. Ben-Dor, E. Dougherty,
J. Kononen, L. Bubendorf, W. Fehrle, S. Pittaluga, S. Gruvberger, N. Loman, O. Jo-
hannsson, H. Olsson, B. Wilfond, G. Sauter, O. Kallioniemi, A. Borg, and J. Trent.
Gene-expression profiles in hereditary breast cancer. New England Journal of Medicine,
344(8):539–548, 2001.

116

http://www2.stetson.edu/~efriedma/squincir

[50] C. Herman and Z. Travnicek. Cool sound: The future of refrigeration? Thermodynamic
and heat transfer issues in thermoacoustic refrigeration. Heat and Mass Transfer, 42:
492–500, 2006.

[51] D. Hochbaum and A. Levin. Approximation algorithms for a minimization variant
of the order preserving submatrices and for biclustering problems. Technical report,
University of California, Berkeley, 2009.

[52] L.L. Hsiao, F. Dangond, T. Yoshida, R. Hong, R.V. Jensen, J. Misra, W. Dillon, K.F.
Lee, K.E. Clark, P. Haverty, Z. Weng, G.L. Mutter, M.P. Frosch, M.E. MacDonald,
E.L. Milford, C.P. Crum, R. Bueno, R.E. Pratt, M. Mahadevappa, J.A. Warrington,
G. Stephanopoulos, G. Stephanopoulos, and S.R. Gullans. A compendium of gene
expression in normal human tissues. Physiological Genomics, 7(2):97–104, 2001.

[53] C.L. Huang, M.C. Chen, and C.J. Wang. Credit scoring with a data mining approach
based on support vector machines. Expert Systems with Applications, 33(4):847–856,
2007.

[54] Z. Huang, H. Chen, C.J. Hsu, W.H. Chen, and S. Wu. Credit rating analysis with
support vector machines and neural networks: A market comparative study. Decision
Support Systems, 37(4):543–558, 2004.

[55] HumanGene Expression Index. HuGE Index.org Website. http://www.hugeindex.

org, 2011.

[56] ILOG. CPLEX 9.0 User’s Manual. Incline Village, NV, 2003.

[57] ILOG. CPLEX 11.0 User’s Manual. Incline Village, NV, 2007.

[58] National Human Genome Research Institute. DNA microarray fact sheet. http:

//www.genome.gov/page.cfm?pageID=10000533#2, 2011.

[59] N. Kagawa. Regenerative Thermal Machines. International Institute for Refrigeration,
Paris, 2000.

[60] J.D. Kececioglu, H.P. Lenhof, K. Mehlhorn, P. Mutzel, K. Reinert, and M. Vingron. A
polyhedral approach to sequence alignment problems. Discrete Applied Mathematics,
104(1-3):143–186, 2000.

[61] Y. Kluger, R. Basri, J. Chang, and M. Gerstein. Spectral biclustering of microarray
data: Coclustering genes and conditions. Genome Research, 13(4):703–716, 2003.

[62] G. Lancia. Mathematical programming in computational biology: An annotated bib-
liography. Algorithms, 1(2):100–129, 2008.

[63] L. Lazzeroni and A. Owen. Plaid models for gene expression data. Statistica Sinica,
12(1):61–86, 2002.

117

http://www.hugeindex.org
http://www.hugeindex.org
http://www.genome.gov/page.cfm?pageID=10000533#2
http://www.genome.gov/page.cfm?pageID=10000533#2

[64] J. Li. On optimal rule discovery. IEEE Transactions on Knowledge and Data Engi-
neering, 18:460–471, 2006.

[65] J. Liu and G.D. Stormo. Quantitative analysis of EGR proteins binding to DNA:
Assessing additivity in both the binding site and the protein. BMC Bioinformatics, 6
(1):176, 2005.

[66] S. Madeira and A. Oliveira. Biclustering algorithms for biological data analysis: A
survey. IEEE Transactions on Computational Biology and Bioinformatics, 1(1):24–45,
2004.

[67] R.K. Martin. Large Scale Linear and Integer Optimization: A Unified Approach.
Kluwer Academic Publishers, 1999.

[68] MATLAB User’s Guide. The MathWorks, Inc., 2007.

[69] C.N. Meneses, Z. Lu, C.A.S. Oliveira, and P.M. Pardalos. Optimal solutions for the
closest-string problem via integer programming. INFORMS Journal on Computing, 16
(4):419–429, 2004.

[70] K. Miettinen. Nonlinear Multiobjective Optimization. Springer, 1999.

[71] B. Minner, J. Braun, and L. Mongeau. Theoretical evaluation of the optimal perfor-
mance of a thermoacoustic refrigerator. In ASHRAE Transactions: Symposia, volume
103, pages 873–887, 1997.

[72] D. Montgomery, E. Peck, and G. Vining. Introduction to Linear Regression Analysis.
Wiley-Interscience, Hoboken, NJ, 2006.

[73] A.W. Moore and D. Zuev. Internet traffic classification using Bayesian analysis tech-
niques. ACM SIGMETRICS Performance Evaluation Review, 33(1):50–60, 2005.

[74] A.T. Murray and R.L. Church. Constructing and selecting adjacency constraints.
INFOR, 34(3):232–248, 1996.

[75] A.T. Murray and R.L. Church. Facets for node packing. European Journal of Opera-
tional Research, 101(3):598–608, 1997.

[76] United Nations. Our common future, Chapter 2: Towards sustainable development.
http://www.un-documents.net/ocf-02.htm, 2011.

[77] G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization. Wiley, 1988.

[78] S. Olafsson, X. Li, and S. Wu. Operations research and data mining. European Journal
of Operational Research, 187(3):1429–1448, 2008.

[79] M.W. Padberg. On the facial structure of set packing polyhedra. Mathematical Pro-
gramming, 5(1):199–215, 1973.

118

http://www.un-documents.net/ocf-02.htm

[80] C.D. Perttunen, D.R. Jones, and B.E. Stuckman. Lipschitzian optimization without
the Lipschitz constant. Journal of Optimization Theory and Application, 79(1):157–
181, 1993.

[81] C. Phua, V. Lee, K. Smith, and R. Gayler. A comprehensive survey of data mining-
based fraud detection research. arXiv:1009.6119v1, 2005.

[82] M.E. Poese, R.W.M. Smith, S.L. Garrett, R. van Gerwen, and P. Gosselin. Thermoa-
coustic refrigeration for ice cream sales. In Proceedings of 6th IIR Gustav Lorentzen
Conference, 2004.

[83] O.A. Prokopyev, H.X. Huang, and P.M. Pardalos. On complexity of unconstrained
hyperbolic 0–1 programming problems. Operations Research Letters, 33(3):312–318,
2005.

[84] O.A. Prokopyev, C. Meneses, C.A.S. Oliveira, and P.M. Pardalos. On multiple-ratio
hyperbolic 0–1 programming problems. Pacific Journal of Optimization, 1(2):327–345,
2005.

[85] M.R. Rao. Cluster analysis and mathematical programming. Journal of the American
Statistical Association, 66(335):622–626, 1971.

[86] C. Schensted. Longest increasing and decreasing subsequences. Canadian Journal of
Mathematics, 13(2):179–191, 1961.

[87] F. Sebastiani. Machine learning in automated text categorization. ACM Computing
Surveys CSUR, 34(1):1–47, 2002.

[88] D.J. Segal, B. Dreier, R.R. Beerli, and C.F. Barbas. Toward controlling gene expression
at will: Selection and design of zinc finger domains recognizing each of the 5’–GNN–3’
DNA target sequences. Proceedings of the National Academy of Sciences of the United
States of America, 96(6):2758–2763, 1999.

[89] O. Seref, O.E. Kundakcioglu, O.A. Prokopyev, and P.M. Pardalos. Selective support
vector machines. Journal of Combinatorial Optimization, 17(1):3–20, 2009.

[90] M. Sforna. Data mining in a power company customer database. Electric Power
Systems Research, 55(3):201–209, 2000.

[91] M.J. Shaw, C. Subramaniam, G.W. Tan, and M.E. Welge. Knowledge management
and data mining for marketing. Decision Support Systems, 31(1):127–137, 2001.

[92] H.D. Sherali and W.P. Adams. A Reformulation-Linearization Technique for Solving
Discrete and Continuous Nonconvex Problems. Kluwer Academic Publishers, 1998.

[93] G. Swift. Thermoacoustics: A Unifying Perspective for Some Engines and Refrigera-
tors. Acoustical Society of America, Melville NY, 2002.

119

[94] M.P. Tan, J.R. Broach, and C.A. Floudas. A novel clustering approach and prediction
of optimal number of clusters: Global optimum search with enhanced positioning.
Journal of Global Optimization, 39(3):323–346, 2007.

[95] M. Tawarmalani and N. Sahinidis. Global optimization of mixed-integer nonlinear
programs: A theoretical and computational study. Mathematical Programming, 99:
563–591, 2004.

[96] J.R. Tebboth. A Computational Study of Dantzig-Wolfe Decomposition. PhD thesis,
University of Buckingham, 2001.

[97] N. Temiz. Personal Communication, 2010.

[98] N.A. Temiz and C.J. Camacho. Experimentally based contact energies decode interac-
tions responsible for proteindna affinity and the role of molecular waters at the binding
interface. Nucleic Acids Research, 37(12):4076–4088, 2009.

[99] N.A. Temiz, A. Trapp, O.A. Prokopyev, and C.J. Camacho. Optimization of minimum
set of protein-DNA interactions: A quasi-exact solution with minimum over-fitting.
Bioinformatics, 26:319–325, 2010.

[100] M. Tijani, J. Zeegers, and A. de Waele. Design of thermoacoustic refrigerators. Cryo-
genics, 42:49–57, 2002.

[101] A. Trapp, O.A. Prokopyev, and S. Busygin. Finding checkerboard patterns via frac-
tional 0–1 programming. Journal of Combinatorial Optimization, 20(1):1–26, 2010.

[102] A.C. Trapp and O.A. Prokopyev. Solving the opsm problem via integer programming.
INFORMS Journal on Computing, 22(3):387–400, 2010.

[103] Y. Ueda, T. Biwa, U. Mizutani, and T. Yazaki. Experimental studies of a thermoa-
coustic stirling prime mover and its application to a cooler. Journal of the Acoustical
Society of America, 72(3):1134–1141, 2003.

[104] S. Vanapalli, M. Lewis, Z. Gan, and R. Radebaugh. 120 Hz pulse tube cryocooler for
fast cooldown to 50 K. Applied Physics Letters, 90, 2007.

[105] V.V. Vazirani. Approximation Algorithms. Springer Verlag, 2001.

[106] H.D. Vinod. Integer programming and the theory of grouping. Journal of the American
Statistical Association, 64(326):506–519, 1969.

[107] G.I. Webb and S. Zhang. K-Optimal rule discovery. Data Mining and Knowledge
Discovery, 10(1):39–79, 2005.

[108] M. Wetzel. Experimental Investigation of a Single Plate Thermoacoustic Refrigerators.
PhD thesis, Johns Hopkins University, 1998.

120

[109] I.H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Tech-
niques. Morgan Kaufmann Publishers, San Francisco, CA, 2005.

[110] T. Wu. A note on a global approach for general 0-1 fractional programming. European
Journal of Operational Research, 101(1):220–223, 1997.

[111] W. Xie and N. Sahinidis. A reduction-based exact algorithm for the contact map
overlap problem. Journal of Computational Biology, 14(5):637–654, 2007.

[112] J. Xu, M. Li, D. Kim, and Y. Xu. Raptor: Optimal protein threading by linear
programming. Journal of Bioinformatics and Computational Biology, 1(1):95–118,
2003.

[113] J. Yang, W. Wang, H. Wang, and P. Yu. δ-clusters: Capturing subspace correla-
tion in a large data set. In Proceedings of the 18th International Conference on Data
Engineering, pages 517–528, San Jose, CA, February 2002. IEEE.

[114] F. Zink. Personal Communication, 2011.

[115] F. Zink, H. Waterer, R. Archer, and L. Schaefer. Geometric optimization of a ther-
moacoustic regenerator. International Journal of Thermal Sciences, 48(12):2309–2322,
2009.

[116] L. Zoontjens, C. Howard, A. Zander, and B. Cazzolato. Modelling and optimisation of
acoustic inertance segments for thermoacoustic devices. In Proceedings of ACOUSTICS
2006, 2006.

121

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	2.1. Synthetic test data: m = 6, n = 6, r = 3
	(a). Unclassified data
	(b). Classified data
	2.2. Summary of tissues contained in HuGE data set
	2.3. Performance of main MIP (Section 2.2.5.3) on synthetic data
	2.4. Computational results of three biclustering algorithms vs. H2 on HuGE data
	2.5. Algorithmic variations used in computational testing for the OPSM problem
	2.6. Comparison of algorithmic run times on synthetic test instances
	2.7. Run times for Algorithm K to find synthetic OPSMs
	2.8. BRCA OPSMs found with Algorithm 6
	2.9. OPSMs in HuGE data using Algorithm 6; statistical significance in final column
	3.1. Parameter reductions
	4.1. Tendency of structural variables when optimizing individual objective components

	LIST OF FIGURES
	2.1. Generic scheme of biclustering
	2.2. r = 3 biclusters
	2.3. Heatmaps illustrating biclusters found using H1 on subsets of HuGE data
	(a). 11 BRA and 6 LI samples
	(b). 6 LI and 6 MU samples
	2.4. Heatmaps illustrating biclusters found using H2 on subsets of HuGE data
	(a). 11 BRA, 2 BRE, 6 KI, and 6 MU samples
	(b). 11 BRA, 6 LI, 6 MU, and 4 PR samples
	2.5. Columns of data matrix permuted to induce 3 4 OPSM
	2.6. Relationship between sjk variables and column-position interactions
	2.7. Heatmaps of OPSMs in real data using Algorithm 6
	(a). (6,127) in BRCA (truncated)
	(b). (4,335) in HuGE
	3.1. Typical interaction network of an EGR-like ZF
	3.2. Nine ways that potential submodels can minimize binding free energy
	3.3. Parameter reduction effects on ZF-I
	3.4. Single parameter reduction
	3.5. ZF-I's optimal parameters on ZF-II, ZF-III
	3.6. Predicted vs. experimental free energy
	4.1. Inputs and outputs of thermoacoustic engine
	4.2. Computational domain and boundary conditions for variables L, H, Z, N, dc
	4.3. W plotted as a function of N and showing minimum
	4.4. R plotted as a function of N and showing minimum
	4.5. Acoustic efficient frontier: simultaneously minimizing -W and R
	4.6. Side profile of efficient frontier: simultaneously minimizing -W, R, and Qall
	4.7. Top profile of efficient frontier: simultaneously minimizing -W, R, and Qall

	PREFACE
	1.0 INTRODUCTION
	1.1 Data Mining
	1.2 Computational Biology
	1.3 Sustainable Energy Devices
	1.4 Problem Statements and Contributions
	1.5 Overview of the Dissertation

	2.0 OPTIMIZATION IN DATA MINING
	2.1 Biclustering
	2.1.1 Applications of Biclustering
	2.1.2 Similarity Measures in Biclustering

	2.2 Unsupervised Biclustering under the Biclustering Consistency Conditions
	2.2.1 Acknowledgment
	2.2.2 Introduction
	2.2.3 Consistent Biclustering
	2.2.4 Computational Complexity Issues
	2.2.5 Mathematical Modeling of Consistent Biclustering
	2.2.5.1 Supervised Consistent Biclustering
	2.2.5.2 Unsupervised Consistent Biclustering
	2.2.5.3 Linear Mixed 0--1 Reformulation

	2.2.6 Heuristic Approaches
	2.2.6.1 Heuristic 1 (H1): MIP-based Heuristic
	2.2.6.2 Heuristic 2 (H2): Multi-start Iterative Heuristic

	2.2.7 Computational Experiments and Results
	2.2.7.1 Test Data
	2.2.7.2 Other Algorithms
	2.2.7.3 Environments and Parameter Values
	2.2.7.4 Results

	2.3 Order-Preserving Submatrix Patterns
	2.3.1 Acknowledgment
	2.3.2 Introduction
	2.3.3 Computational Complexity Issues
	2.3.4 Mathematical Modeling of OPSM: General IP Formulation
	2.3.5 Mathematical Modeling of OPSM: Compact Formulation
	2.3.5.1 Compact Formulation
	2.3.5.2 Basic Iterative Algorithm
	2.3.5.3 Valid Inequalities
	2.3.5.4 Nodal Constraints
	2.3.5.5 Further Enhancements
	2.3.5.6 Enhanced Iterative Algorithm

	2.3.6 Computational Experiments and Results
	2.3.6.1 Experiments with Synthetic Data
	2.3.6.2 Synthetic Data: Results and Discussion
	2.3.6.3 Experiments with Real Data
	2.3.6.4 Finding OPSMs in Real Data Sets
	2.3.6.5 BRCA Data: Results and Discussion
	2.3.6.6 HuGE Data: Results and Discussion

	2.4 Concluding Remarks
	2.4.1 Checkerboard Pattern
	2.4.2 OPSM Pattern

	3.0 OPTIMIZATION IN COMPUTATIONAL BIOLOGY
	3.1 Acknowledgment
	3.2 Introduction
	3.3 Mathematical Modeling of Protein/DNA Interactions
	3.3.1 Nonlinear Mixed 0Œ-1 Formulation
	3.3.2 Equivalent Nonlinear Mixed 0--1 Reformulation
	3.3.3 Final Linear Mixed 0--1 Reformulation
	3.3.4 Mitigating Overfitting and Underfitting

	3.4 Computational Experiments and Results
	3.4.1 Test Data and Environment
	3.4.2 Test Results
	3.4.3 Validating and Reassessing Submodels with Optimization Results

	3.5 Concluding Remarks

	4.0 OPTIMIZATION IN SUSTAINABLE ENERGY DEVICES
	4.1 Acknowledgment
	4.2 Introduction
	4.3 Mathematical Modeling of Thermoacoustic Engines
	4.3.1 Model Components
	4.3.2 Mathematical Programming Formulation
	4.3.3 Approximating the Heat Flows
	4.3.3.1 Estimating the Temperature Distribution
	4.3.3.2 Determining the Heat Fluxes

	4.4 Single Objective Optimization
	4.4.1 Acoustic Emphasis
	4.4.1.1 Emphasizing Work
	4.4.1.2 Emphasizing Viscous Resistance

	4.4.2 Thermal Emphasis
	4.4.2.1 Emphasizing Convective / Radiative Heat Fluxes
	4.4.2.2 Emphasizing Conductive Heat Flux

	4.4.3 Single Objective Optima: Variable Analysis

	4.5 Multiobjective Optimization
	4.5.1 Normalizing Objective Function Components
	4.5.2 Emphasizing Work and Viscous Resistance
	4.5.3 Emphasizing All Objective Components
	4.5.4 Alternative View: Maximizing Efficiency

	4.6 Concluding Remarks

	5.0 CONCLUSIONS
	BIBLIOGRAPHY

