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The primary objective and public health relevance of this investigation was to develop a 

chemical-animal model with a toxicological and therapeutic approach.  The results outlined here 

are developed from the latest techniques being employed in the chemical and biomedical fields.   

This research outlines a model building approach that progressed from a preliminary agent 

screening technique (quantitative structure-activity relationship/structure-activity relationship, 

QSAR/SAR) and in vivo testing using the Chernoff-Kavlock  (CK) assay through to in vitro 

testing in transgenic adenocarcinoma of the mouse prostate (TRAMP) cell lines.  

The preliminary investigation involved development of a QSAR/SAR model to predict the 

teratogenicity of a series of related chemical agents (dopamine mimetics).  This QSAR/SAR 

model was then validated using a complete leave one out cross-validation.  The predictivity of a 

more general QSAR/SAR model of developmental toxicity was then tested experimentally in 

vivo using the chemical agent retinoic acid.   

The second model was based on in vivo animal screening using the CK assay.  The CK assay 

involves the dosing of pregnant animals, either mice or rats, during the organogenesis period of 

fetal development.  This assay quantitatively measures effects on fetal viability and growth, and 

allows for a more qualitative assessment of teratogenicity by recording obvious malformations.   
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The third segment of this study was an in vitro evaluation of the effects of a series of 

microtubule perturbing agents on cell viability, cell death and gene expression of the TRAMP  

cell lines.  This research could contribute to the development of drug treatments that would be 

more effective against human prostate cancer. 

In the first section of my thesis, a mathematical model was generated with experimental data 

from the literature on a congeneric series of twelve dopamine mimetics.  Based on a single 

physicochemical parameter, the final model is 100% effective at predicting biological activity 

(teratogenicity) of dopamine mimetics.  We also found inconsistencies in the original biological 

data that might influence the choice of final model. 

The second section of my thesis involves the experimental validation of a general 

QSAR/SAR model that predicted retinoic acid would be positive for developmental toxicity.  

Retinoic acid was therefore tested in a standard mouse CK assay (the same assay used to 

generate the data used to generate the model) to test the SAR model prediction.  Significant 

increases in the incidence of both fetal death and intrauterine growth retardation were observed 

in the offspring of the treated mice.  Statistical analysis revealed these effects were dose-

dependent.  These results demonstrated, in a quantitative manner, the developmental toxic effects 

of retinoic acid in the mouse, as were predicted by the SAR model and as expected from 

developmental literature. 

The final segment of my thesis dealt with the preliminary in vitro screening of four 

promising anticancer agents, Analog II, 4-methoxy Analog II, JR oxime I and TDH 169 on the 

clonal TRAMP cell lines C1A, C2H and C2N.  4-Methoxy Analog II displayed the most 

promising antiproliferative effects and apoptosis inducing effects.  A microarray analysis of 

mRNA expression in response to 4-methoxy Analog II was conducted to determine agent-
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induced expression alterations in the C1A cell line.  Upregulation of the apoptosis activating 

genes Bok and Siva-pending was observed, while the apoptosis inhibiting genes Birc 4, Dad1 

and Atf5 were significantly downregulated.   
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1 INTRODUCTION 

1.1  HISTORY OF THERAPEUTIC AGENTS 

To adequately discuss techniques/methods in toxicology and therapeutics, one must first start 

with the historical approaches used in drug design and discovery.  It is next to impossible to trace 

back the true origin of drug discovery.  Many ancient populations reported the medicinal 

properties of various plant extracts and elixirs, all resulting from a necessarily trial and error 

search for remedies of specific ailments (Sneader, 1985).  The single most important source of 

drugs or drug precursors has always been and continues to be nature (Verpoorte, 1998).  In the 

21st century, natural products such as morphine, cocaine, salicylates, atropine, quinine and 

digitalis are all considered to be ancient.  However, these natural products and their derivatives 

are still useful in therapeutics today, thousands of years after their original discovery.  In early 

civilization, man used elements from his natural surroundings to treat specific ailments.  The use 

of extracts and whole plants as remedies amounted to administration of several entities at once, 

whose constitution and synergism was unknown (Neamati and Barchi, 2002).   

1.2 DEVELOPMENT OF DRUG DISCOVERY 

Throughout most of human history there was little to no knowledge regarding how these 

remedies treated the ailments.  The development of therapeutic agents was a true trial and error 

process that was developed based on experience and passed on from generation to generation.  

The scientists of the 19th century developed techniques for analyzing and determining the 
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specific components of the extracts and were thus able to determine the individual components 

of these ancient therapies.   

True drug discovery as we know it today could not begin to develop until the first 

structures of receptors were found.   The first rational drug discovery effort can be traced back to 

John Langley and Paul Ehrlich, the discoverers of the receptor concept.  In 1897, Ehrlich 

suggested a theory based on what he called side chains or groups on cells that can combine with 

a particular toxin.  Langley had postulated 20 years earlier that alkaloids that caused different 

salivary flow in cats interacted with specific groups or entities on the nerve endings of the gland 

cells.  Ehrlich actually termed his theory side chain receptors.  Without any structural knowledge 

of the entities transmitting the effect, these may have been the first instances of ligand-receptor 

interactions observed and partially defined (Neamati and Barchi, 2002).   

From ancient times through the work of Langley and Ehrlich little was understood about 

drug interactions and how they worked inside the human body.  However, in the early 20th 

century the fields of biology, chemistry and pharmacology increased rapidly and theories about 

drug action and mechanism expanded.  In considering the timeframe of the existence of human 

beings, it’s amazing how rapidly the understanding of human disease, preventative medicine, the 

interactions of chemicals with the human body and the understanding of drug therapies has 

progressed over the last few decades.  Just consider the early history of the United States where 

therapies such as “blood letting” were still accepted and practiced during the infancy of our 

nation.  Also consider the fact that the average life expectancy of a Caucasian U.S. male born in 

1940 was 62.1 years while the life expectancy of a Caucasian U.S. male born in 1994 was 73.3 

years (Singh et al, 1996).  While there are many factors, such as nutrition and lifestyle, that 
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contribute to these changes in life expectancy, this change is also attributable to the progress of 

therapies and medicine. 

1.3 TRADITIONAL “MODERN” DRUG DISCOVERY 

In traditional medicine, drug discovery is a process that begins with a known disease or ailment 

in an organism and a therapeutic theory is developed to alleviate or cure the disease or ailment.  

With the existing knowledge of biological processes and interactions scientists develop a list of 

therapeutic treatments and begin a screening process to determine the viability of these agents at 

combating the ailment.  These screening techniques typically include in vitro and in vivo testing 

of each specific agent.  This traditional method of drug screening and drug development, while 

used to develop many of the treatments of today, may or may not lead to an effective treatment.  

However, even when an effective treatment is achieved it is often through significant failures and 

the elimination of many countless agents during the screening process. 

1.4 MODERN TECHNIQUES IN DRUG DISCOVERY 

Today, there are many new advancements that are leading to the more proficient development of 

therapies.  For example, the ability to sequence a genome and identify every expressed gene will 

lead to the identification of thousands of new molecular targets, many of which will be relevant 

to the onset and persistence of disease.  With this genetic information researchers may know the 

role, function, structure, gene location, biochemical pathway, molecular interactions, and 

expression levels of each and every protein coded for by a particular genome.  These 

developments in genomic sciences on drug discovery will change the course of this field 

remarkably.  In fact, at present in most major pharmaceutical companies, 10% to 25% of new 

discovery projects are based on genomics (Caron et al, 2001). 
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There are several ways to use gene analysis to identify specific molecular targets (Jones 

et al, 1999).  One powerful method for studying differential gene expression is the use of 

microarrays.  Microarrays allow for the rapid analysis of the expression of thousands of genes.  

In microarrays, the oligonucleotides are attached to glass slides to form arrays and then 

hybridized with cDNAs from a particular tissue or cell type of interest.  A fluorescent detection 

system allows for the quantitation of interaction of the cloned gene with the cDNA.  Using 

microarrays, gene expression patterns for many different animal tissues can quickly be obtained 

under different experimental conditions.  A typical application is a comparison of cells that are 

control or drug treated, and hence generate a gene profile of a disease tissue under the stress of a 

toxin or inhibitor.  It follows (but is not always correct) to designate specific proteins encoded by 

those genes more highly expressed in the diseased state to be a potential targets for therapy 

(Neamati and Barchi, 2002).   

With the development of gene analysis there are many new targets to be evaluated in 

drug discovery.  The large amounts of data that are quickly generated from the genome 

sequences and functional genomics leads to the dilemma of determining chemical agents that 

will potentially block the gene(s) associated with the proliferation of the disease or ailment.  New 

techniques have been developed to expedite preliminary drug screenings.  These techniques 

combine elements of biology and chemistry with mathematics, statistics and computer sciences.  

These techniques are referred to as bioinformatics and chemoinformatics and focus on large 

datasets  such as macromolecular structures, genome sequences, 3D chemical databases and 

compound libraries.  Informatic methodologies rely on a variety of computational techniques 

(Manly et al, 2001; Luscombe et al, 2001) including sequence and structural alignment, database 

design and data mining, macromolecular geometry, phylogenetic tree construction, prediction of 
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protein structure and function, gene searching and expression data clustering, chemical-similarity 

clustering, diversity analysis, library design, virtual screening and QSAR (Luscombe et al, 

2001).  Recent advances in informatics include new molecular descriptors, statistical tools and 

novel visualization methods (Hann and Green, 1999).  A major task of informatics in the future 

is to develop software tools that will provide the means to store, extract, analyze, and display 

data in a way that chemists can easily understand and appreciate (Heuer, 1999).  In attempts to 

decipher chemical/biological information, computers require the use of molecular descriptors.  

These descriptors range from simple bulk properties to elaborate three-dimensional formulations 

and complex molecular fingerprints.  A number of studies have been reported that investigate the 

performance of molecular descriptors and the use of informatic techniques to develop 

relationships between a series of chemical agents and their anticipated effects on specific gene 

expression along with the ailment or disease associated with the over- or under-expression of this 

specific gene (Xue et al, 2000).  
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1.5 THE IMPORTANCE OF DEVELOPMENTAL TOXICOLOGY TO PUBLIC HEALTH 

Developmental toxicology is the field that defines exposures and agents that cause abnormal 

development.  It is estimated that 1 in 3 children are born with birth defects, and birth defects are 

the leading causes of infant mortality and disability in the world.  Many birth defects are the  

result of chemical interactions resulting from exposure during pregnancy.  The effects of many 

chemical compounds on the outcome of human pregnancies are unknown.  To determine the 

effects of these chemical compounds on pregnancy, researchers utilize clinical studies and 

animal testing; however, both of these methods have shortcomings.   In clinical research, it is 

difficult to determine all of the chemicals a mother has been exposed to, or whether a 

combination of these chemicals lead to the reproductive defect.  On the other hand, animal 

testing is time consuming and requires each chemical compound be tested individually.  Also, 

results from animal tests are difficult to apply to humans.  Therefore, results obtained by animal 

testing may or may not apply to the developing human fetus. 

1.6 THE IMPORTANCE OF PROSTATE CANCER TO PUBLIC HEALTH 

Adenocarcinoma of the prostate is the most common cancer in American men (Gingrich and 

Greenberg, 1996).  Due to public health awareness and improvements in early detection of 

prostate cancer, the survival rate and treatment of prostate cancer has increased, however, 

prostate cancer remains the second leading cause of cancer deaths in American men (Parker et al, 

1997).  In fact, an estimated 29,900 American men lose their lives to prostate cancer each year, 

with one death occurring every twenty minutes (National Prostate Cancer Coalition, 2003).  

There are many available treatment options for prostate cancer, including, prostatectomy, 
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radiation, brachytherapy (radioactive seeds), hormone deprivation therapy, chemotherapy and 

many other alternative therapies. 

In prostatectomy/radical prostatectomy the entire prostate gland is removed with the aim 

of curing the disease.   There are two types of radical prostatectomy, one in which the an incision 

is made through the abdomen (radical retropubic prostatectomy), and one in which the incision is 

made in the perineum, the area between the scrotum and the anus (radical perineal 

prostatectomy).  Whether the results are the same from either of these two procedures is 

currently unknown.  With the radical prostatectomy complete tumor clearance is not always 

accomplished.  Approximately 40% of patients that have the surgery are found to have capsular 

penetrance or positive resection margins.  This treatment is not recommended for men with less 

than 10 years life expectancy.  Complications of the surgery include operative mortality, 

impotence and incontinence, and the risk of mortality of less than 1% (Huland, 1996).   Several 

factors have been shown to influence postoperative sexual function: age, clinical pathological 

stage and surgical technique ).  Reported frequencies of impotence range from 20% to 80%.  

Incontinence is a significant problem for many patients after the surgery.  Reported incidences of 

incontinence range from 4-21% for mild or stress incontinence and from 0-7% for total 

incontinence (Villers and Rebillard, 2003). 

Radiation treatment uses high-energy radiation from x-rays, gamma rays, neutron, and 

other sources to kill cancer cells and shrink the tumors.  Radiotherapy also aims at curing the 

disease.  This treatment is not usually recommended for men with less than 10 years life 

expectancy (Parker and Dearnaley, 2003).  Short-term side effects relate mainly to bowel and 

bladder problems from the radiation.  Longer-term complications include impotence and urinary 

problems.  Reports of impotence range from 25-60% and reports of incontinence range up to 5%.  

 7



 

Approximately 10% of patients have diarrhea/bowel problems requiring treatment and up to 30% 

have occasional episodes of rectal bleeding (Furst, 1996). 

   Brachytherapy (radioactive seeds) is a form of radiation treatment whereby small 

"radioactive seeds" are implanted in the prostate.  This procedure does not require a surgical 

incision.  Instead, thin needles are passed into the prostate gland through the skin between the 

scrotum and the rectum.  As the needles penetrate the prostate, they are seen on the screen of the 

ultrasound machine and can be accurately guided to their predetermined positions within the 

prostate.  When each needle is in its correct position in the prostate, the needle is slowly 

withdrawn while individual seeds are injected into the prostate gland.  While the needles are 

being inserted, the ultrasound probe is in the rectum.  Both the probe and the needles are 

removed when the procedure is completed. Patients with early-stage, small-volume tumors are 

the best candidates for this procedure. Treatment with implants alone (either iodine-125 or 

palladium-103) is usually adequate for an early stage small volume prostate cancer.  For larger 

volume tumors, brachytherapy is usually performed in combination with external-beam radiation 

(Witt et al, 2003).  Incontinence with radioactive isotope seed implantation in this series was 

noted in 7% of the patients.  Impotence was reported in 25%.  Impotence was absent in the 50-60 

age group, was 15% in the 60-70 age range and increased to 35%+ at ages 70 or greater. Most 

patients had short-term obstructive or irritative urinary symptoms during the first few weeks 

following treatment.  Late complications included 10% with prolonged urinary blockage 

symptoms characterized by increased frequency and decreased urinary stream. These symptoms 

may be treated with Hytrin, an oral medication that relaxes the smooth muscle of the urinary 

sphincter, or with transurethral incision of the prostate (Reijke and Laguna, 2003). 
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   Hormone deprivation therapy, also known as androgen ablation therapy, is a well 

established form of treatment for various stages of prostate cancer.  This treatment works as 

follows the basis that prostate cancer grows in response to testosterone. Testosterone is produced 

in the testicles and the adrenal gland.  Testosterone production can be stopped in two ways.  The 

testicles can be removed with a procedure called an orchiectomy.  Similarly, testosterone 

production can be stopped with medications such as leuprolide or goserelin acetate that suppress 

the pituitary gland and thus decrease production in the testes.  This is know as androgen 

deprivation therapy (ADT). ADT is not a curative therapy, but is reserved for metastatic disease 

or for patients that will not medically tolerate surgery or radiation.  ADT can relieve symptoms 

from painful bone metastases and slow the overall growth rate of prostate cancer cells.  The 

major disadvantage to this therapy is prostate cancer usually responds to 1 or 2 years of hormone 

therapy, after which most tumors start to grow again. Once this happens, the treatment goal is to 

control symptoms.  No treatment can cure prostate cancer after hormone therapy stops helping 

(Trachenberg, 1997). 

   Chemotherapy is the use of specific drugs that can destroy cancer cells.  The drugs 

circulate throughout the body in the bloodstream and can kill any rapidly growing cells, 

including potentially non-cancerous ones.  Chemotherapy drugs are carefully controlled in both 

dosage and frequency so that cancer cells are destroyed while the risk to healthy cells is 

minimized.  Often, chemotherapy is not the primary therapy for prostate cancer patients, but may 

be used when prostate cancer has spread outside of the prostate gland or in combination with 

other therapies.  Because the drugs circulate throughout the whole body, they can affect both 

healthy and cancerous cells.  This can lead to many side effects.  The specific side effects will 

depend upon which drugs and regimens are used.  The most common adverse reactions include 
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hair loss, nausea, vomiting, diarrhea, lowered blood counts, reduced ability of the blood to clot, 

and an increased risk of infection.  Some of these side effects occur only temporarily or are more 

noticeable when treatment is first started.  Most of the side effects disappear when the drugs are 

stopped.  For instance, hair will grow back once chemotherapy is stopped (Oh, 2003). 

   In addition to these readily used treatments for prostate cancer there are also many 

other treatments employed.  However, the methods described in detail represent the treatments 

most commonly utilized.  The problem with all of these treatments are they all have significant 

side effects and are all corrective measures to treat patients once the cancer of the prostate has 

developed.  Ideally, the medical community would prefer to develop a treatment or drug that 

could prevent the onset of prostate cancer altogether.  In order to develop a preventative 

treatment for prostate cancer, research must develop an understanding of the exact cell biology, 

mechanisms and gene regulations that trigger the onset of prostate cancer. 

There are currently many accepted research models for prostate cancer research.   One of 

the most promising models is the Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) 

mouse model.  In the TRAMP model, mice were genetically engineered to express the SV40 

(large T antigen) exclusively in the prostate epithelia and develop prostate cancer.  The TRAMP 

model has advantages over other models, including the prostate cancer progression that mimics 

the development of prostate cancer in humans, and the ability to conduct research in a mouse that 

has an intact immune system.  In addition, the TRAMP mouse develops prostate cancer with age 

and provides a model to conduct preventative studies and observe the effects of environment, 

diet and other factors on prostate cancer development.  Therefore, while the majority of existing 

knowledge and treatment is based on correcting or treating the prostate cancer after it has 
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developed, the TRAMP model allows research into factors and treatments that may lead to actual 

prevention of the onset of prostate cancer altogether. 

 

1.7 RESEARCH CONDUCTED 

This research is the result of multiple screening techniques and experiments to develop a 

chemical-animal model building approach.  The results appear somewhat unsystematic due to 

changes in chemical agents.  However, the basic approach outlines a model building approach 

which progresses from an effective preliminary agent screening technique (QSAR/SAR) and in 

vivo validation (CK Assay), through in vitro testing of resultant compounds optimized for 

biological effect (TRAMP cell lines). 

The preliminary investigation conducted in this study was to develop a QSAR/SAR 

model to predict the toxic effects of a series of related chemical agents with potential therapeutic 

value (dopamine mimetics).  QSAR/SAR are mathematical models that link chemical structure 

to biological activity for a defined series of compounds.  In this study, a mathematical model on 

a congeneric series of twelve dopamine mimetics was generated with experimental data from 

literature.   The resulting model is 100% effective at predicting the developmental toxicity of 

these dopamine mimetics.  This QSAR/SAR model was then validated using a complete leave on 

out cross-validation. 

To go beyond statistical validation, a the predictivity of a more general developmental 

toxicity model was tested in an in vivo system.  The in vivo validation involved exposure of 

timed pregnant mouse study during the organogenesis period of fetal development with the 

chemical agent retinoic acid and evaluation of developmental effects with the CK assay.  This 

assay quantitatively measures effects on fetal viability and growth, and allows for a more 
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qualitative assessment of teratogenicity by recording obvious malformations.  A series of 

chemicals not used for the model development was submitted for prediction.  One chemical that 

was predicted to be positive for developmental toxicity was retinoic acid.  Retinoic acid is a 

chemical related to vitamin A that is used extensively to treat acne (Leyden, 1988).  It has shown 

to affect the expression of genes in the developing embryo (Hart et al, 1990).  Retinoic acid was 

utilized in a standard mouse CK assay to test the SAR model prediction.  Significant increases in 

both the incidence of fetal death and in intrauterine growth retardation were observed in the 

offspring of the treated mice.  Furthermore, statistical analysis revealed these effects were dose-

dependent.  These results demonstrated, in a quantitative manner, the developmental toxicity of 

retinoic acid in the mouse, as was predicted by our SAR model and as was expected from 

developmental literature. 

A similar in vivo assay would have been conducted on the dopamine mimetics, however, 

at this point the direction of the research changed.  Additional experimentation progressed in 

vitro with a different series of compounds.  However, the final testing conducted would be the 

same type of in vitro experimentation used to develop a chemical animal model.   

The in vitro experimentation was conducted on a series of four microtubule perturbing 

agents that have been classified as promising antiproliferative cancer agents (Analog II, 4-

methoxy Analog II, JR oxime 1 and TDH 169).  Research was conducted with these four agents 

to determine their effects on cell viability, cell death and gene expression of the TRAMP cell 

lines C1A, C2H and C2N.  The four antiproliferative cancer agents are Analog II, 4-methoxy 

Analog II, JR oxime I and TDH 169.   

Preliminary screening using the MTT assay revealed that 4-methoxy Analog II treatment 

displayed the most promising antiproliferative effects.  Continuing with just 4-methoxy Analog 
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II, an ELISA assay was conducted on all TRAMP cell lines.  This revealed the minimum 

apoptosis-inducing levels of 4-methoxy Analog II on each cell line.  Additional experiments 

were then limited to the C1A TRAMP cell line, because they showed the most promising results.  

Additional studies (PARP cleavage and flow cytometry) were performed to confirm and quantify 

apoptosis due to 4-methoxy Analog II on the C1A cell line.  Finally, a microarray study was 

conducted to determine alterations in gene regulation of the C1A cell line due to treatment with 

4-methoxy Analog II.  Changes in gene regulation due to treatment were found in the apoptosis 

activating genes Bok and Siva-pending (found to be upregulated) and the apoptosis inhibiting 

genes Birc 4, Dad1 and Atf5  (found to be downregulated).   

Further research would include in vivo testing of the agents identified by the TRAMP cell 

lines experiments that produced the best therapeutic results.  The potential benefits from this 

research could include the development of drug treatments that are more effective at combating 

human prostate cancer. 

 

 

 

 

 

 

 13



 

 

 

2  DOPAMINE MIMETICS   

2.1 QSAR/SAR MODEL 

The leading causes of infant mortality and disability in the world are birth defects.  Many birth 

defects are the result of chemical interactions resulting from exposure during pregnancy.  The 

effects of many chemical compounds on the outcome of human pregnancies are unknown.  

Currently, the accepted method of determining the effects of a compound on the fetus and 

pregnancy outcome is through clinical studies and animal testing.  These methods both have 

major drawbacks.  In clinical research, it is impossible to determine all chemicals a mother has 

been exposed to, or whether a combination of these chemicals led to the reproductive defect.  

The other method of determining the effects of a compound on the fetus and pregnancy outcome 

is animal testing.  This method is very expensive, time consuming and requires each chemical 

compound to be tested individually.  Results from animal tests are also difficult to apply to 

humans, since mechanisms and their outcomes in biological systems vary from species to 

species.  Therefore, the results obtained by animal testing may or may not apply to the 

developing human fetus. 

   As an alternative to these types of studies, Quantitative Structure-Activity Relationships 

(QSAR) have been developed to predict the effect of chemicals on biological systems, including 

the reproductive system.  QSARs are mathematical models linking chemical structure to 

biological activity for a series of compounds (Hansch and Fujita, 1964; Kubinyi, 1993).  QSAR 

models have been extensively used to analyze the toxic effects of compounds.  To identify 

chemicals that result in birth defects and reproductive difficulties, a computer-based model is 
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utilized to implement a Structure-Activity Relationship (SAR) and QSAR.  First, a set of 

chemicals with known biological activity are analyzed using computer software ("learninbg 

set").   In this work, the Molecular Modeling Pro™ program calculates the compound’s 

physicochemical properties.  A compound’s physicochemical parameters can be classified into 

three categories: electronic, hydrophobic, and steric (Hansch and Leo, 1995; Kubinyi, 1993).  

These properties govern how the molecule will (or will not) interact with the biological system.  

The relationship between the compound’s physicochemical parameters and the biological 

activity can, after statistical analyses, then be expressed by a mathematical model.  The model is 

developed using methods such as linear discriminate analysis.  Based on the analysis, specific 

physicochemical parameters that are statistically significantly correlated to the outcome of 

biological response are determined.  With the generated model and critical physicochemical 

parameters, other compounds with unknown biological activity can be analyzed.  By calculating 

the physicochemical parameters of these other compounds, and applying the mathematical 

model, the biological activity of these unknown compounds can be predicted. 

   The models generated using computer modeling and statistical methods may, and, in 

fact, should be verified through animal testing.  For reproductive effects, this validation 

technique is the Chernoff-Kavlock assay.  This in vivo assay measures postnatal growth and 

survival (Chernoff and Kavlock, 1982) of several groups of animals, at various doses, to develop 

a dose-response to a specific compound.   

   Developmental toxicology deals with exposures to agents that cause abnormal 

development (Shepard, 1986; Mattison et al, 1989; Schardein, 1985; Stein et al, 1984).  A 

developmental toxicant can be a chemical agent (i.e., therapeutic agents such as thalidomide), a 
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biological agent (i.e., infections such as rubella virus), a physical agent (i.e., radiation exposure), 

or a deficiency state (i.e., lack of vitamin A and/or E). 

2.2 DEVELOPMENTAL ENDPOINTS 

There are four adverse developmental endpoints:  (1) embryonic, fetal or neonatal death, (2) 

growth retardation, (3) malformations, and (4) functional defects.  There are many examples of 

the endpoints of developmental toxicity.  The fetus is susceptible to the endpoint of death 

throughout the entire pregnancy.  Death refers to fetal death, early and late; stillbirth, the delivery 

of a dead conceptus that is older than 20 weeks of gestation, and perinatal death, which refers to 

death of a conceptus between 20 and 28 weeks of gestation, and the 7th day after birth. 

The growth retardation endpoint includes intrauterine growth retardation.  A fetus may be 

symmetrical, meaning uniform from side to side but smaller than usual, or asymmetrical, 

meaning smaller on one side more so than the other.  Malformations include both major and 

minor structural defects.  Major malformations clearly affect the health, function and/or survival 

of the individual (i.e., malformed heart, valves or vessels).  Minor malformations are less severe, 

not life-threatening, and easily repaired (i.e., extra digits).  Functional defects include mental 

retardation, learning disabilities and developmental disabilities.  These include visual and 

hearing impairment. The fetus is most susceptible to developing malformations during 

organogenesis.  Organogenesis is the time when the major organs are being developed.   In 

humans this is three to eight weeks from the beginning of gestation.  The fetus is most 

susceptible to growth retardation and functional defects from week eight to birth.  This is the 

period of gestation after all organs are developed and the fetus is growing.  The fetus is 

susceptible to death through all of gestation. 
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2.3 ANIMAL ASSAYS FOR DEVELOPMENTAL TOXICITY 

The human species would be the most accurate to study the effects of an exposure to a 

development toxicant.  Ethical reasons obviously make this impossible.  Fortunately, there are 

several experimental animal models that can be used to test a developmental toxicant.  Three 

well known animal assays that can be utilized to test a developmental toxicant are the (1) 

Segment I, (2) Segment II, and (3) Chernoff-Kavlock (CK) assays.   

In the Segment I assay, the test substance is administered to the experimental animal 

(both males and females) prior to and during the period in which the animal mates.  

Administration of the drug to the female subjects is continued up to mid gestation and sometimes 

even up to the moment the young are weaned.   This assay gives information on fertility and 

reproduction.  The drawback is that since both parents and offspring are dosed, it is sometimes 

impossible to attribute the adverse effect to the reproductive or developmental stages. 

In the Segment II assay, the pregnant animals are dosed during the period of 

organogenesis.  The mother is examined during the entire pregnancy for signs of toxicity.  Data 

such as weight increase and general health are monitored.  Just before the young are born, the 

dams are killed to allow in utero inspection.  This test provides information about substance, 

embryonic or fetal toxicity. 

In the CK assay, pregnant animals are dosed during organogenesis.  The dam is examined 

during the entire period for signs of toxicity.  Data such as weight increase and general health are 

monitored.  The dams are allowed to deliver the pups.  The pups are measured for growth 

retardation, fetal death, morphological and behavioral alterations.  This assay is a more 

qualitative with respect to defects, and more quantitative with respect to death. 
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2.4 QSAR/SAR MODEL FOR DEVELOPMENTAL TOXICITY 

Another screening tool that can be utilized in studying a developmental toxicants relationship is 

the computational approach that gives Quantitative Structure Activity Relationships 

(QSAR)/Structure Activity Relationships (SAR).  QSAR and SAR differ in that QSAR yield 

quantitative differences between the biological potency of active compounds, whereas SAR only 

qualitatively discriminates active and inactive compounds.  The underlying assumption in 

QSAR/SAR is that the biological activity is a function of the chemical structure.  After the 

chemical descriptors are calculated, the QSAR/SAR model can be developed mathematically.  

The QSAR/SAR model is a statistical association relating the physico-chemical properties of the 

compounds tested to the biological activity recorded. 

2.5 STEPS IN BUILDING A QSAR/SAR MODEL 

To develop a QSAR/SAR model, these five steps are often conducted: (1) conformational 

analysis; (2) generation of physico-chemical properties; (3) preliminary model development; (4) 

linear discriminant analysis; and (5) choice of the final candidate model.   

Conformational analysis is a process where single (i.e., sp3C-sp3C) bonds are rotated in 

an effort to determine the global low energy conformation of a molecule.  In nature, the lower 

energy conformations are more likely to occur.  Another reason to do conformational analysis is 

that some of the properties calculated are dependent on the final three-dimensional structure of 

the molecule.  The final three-dimensional structure represents the lowest energy (i.e., in terms of 

steric strain) arrangement of atoms comprising a molecular structure (i.e., the global minimum 

energy conformation).  Table 1 shows the calculated physical-chemical parameters generated 

from a typical QSAR/SAR model. 
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Table 1.  Physical-Chemical Parameters from a Typical QSAR/SAR Model 

Steric Properties Electronic Properties Transport Properties
Molecular Weight Hansen Dispersion Log P
Molecular Volume Hansen Polarity Hydrophilic-Lipophilic Balance (HLB)
Density Hansen Hydrogen Bonding Solubility Parameter
Surface Area Hydrogen Bond Acceptor Percent Hydrophilic Surface

Hydrogen Bond Donor Water Solubility
Dipole Moment
Highest Occupied Molecular Orbital (HOMO)
Lowest Unoccupied Molecular Orbital (LUMO)

 

Physiochemical properties are classified into three categories:  steric properties; 

electronic properties; and transport properties.  Steric properties describe the size or shape of the 

compound.  Electronic properties give metrics of the molecule including electronic aspects of 

repulsion and attraction within and with other molecules that might affect potential binding sites.  

Transport properties are surrogate measures of how compounds cross membranes in the body 

and how they are transported through the body. 

There are three preliminary model development tools used to build the model.  These are: 

(1) histograms; (2) correlation matrices; and (3) all possible regression analysis.   

The histograms are generated to determine the normality assumption needed for 

discriminant analysis.  A correlation matrix is made for all possible independent variables to 

determine information redundancy.  All-possible regression is used as a tool to explore all of the 

potential models.  The criteria used to determine the best models from the group of candidate 

models is the r2 value.  The r2 is an analysis technique used to determine the amount of variation 

of measured versus computationally-predicted activity in each model.  

Linear discriminant analysis is used to generate the difference between two or more 

groups with respect to several variables simultaneously.  Linear discriminant analysis is used to 
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generate functions for the classification of chemicals into actives versus inactives.  Discriminant 

analysis can be then used to predict the classification of new observations. 

2.6 QSAR/SAR FINAL CANDIDATE MODEL 

For the choice of the final candidate model, a complete leave one out cross validation procedure 

is often employed.  These are defined steps taken to measure the performance of the discriminant 

model.  The complete leave one out cross validation is a technique where each compound is 

removed once from the total data set and the remaining compounds are used to train and build a 

new model.  The new model on the reduced training set is then applied to the single compound 

that was removed during the generation of the current model.  This procedure repeats until 

models with each of the individual observations removed are generated.  Using this method, the 

sensitivity, specificity and squared distance (deviation) are calculated.  The sensitivity is the 

proportion of the experimental positives that were predicted positive by the model.  Specificity is 

the proportion of the experimental negatives predicted negative by the model.  The squared 

distance shows the separation between the two groups. 

In this study, a twelve compound database consisting of a series of dopamine mimetics 

was analyzed to create a model to predict actives versus inactives.  Figure 1 is the structure of the 

parent compound dopamine, and Table 2 shows the twelve variations from the parent compound. 

 

 

 20



 

 
 
Figure 1  Parent Compound of Dopamine Mimetics 
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Table 2.  Twelve Dopamine Mimetics 
 

 

 

The modeling in this study was based on data published by SmithKline Beecham 

Pharmaceuticals.  Their work consisted of a series of dopamine mimetics developed as potential 

therapeutic agents.  The envisioned population that might use these agents included fertile female 

humans, and reproductive toxicity was therefore a concern.  The dopamine mimetics were tested 

in rats, who were treated orally by gavage from days 6 to 15 post coitum.  A qualitative 

assessment of developmental toxicity was examined (Ridings and Baldwin, 1992).  After 

determining the teratogenic effects in rats, the authors used the data from the twelve dopamine 

mimetics and applied QSAR techniques (Ridings et al, 1992).  From this excercise a model was 

established that would predict biological activity in rats.  For their model, fifty-six physico-

chemical parameters were analyzed for each dopamine mimetic.  Twenty of their descriptors 

were based on specific atoms.  The authors chose a correlation coefficient upper limit of 0.75 to 

eliminate redundant information.  The final result was a 22 parameter model predicting 

biological activity of these dopamine mimetics. 
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In the present study, the original rat study data of these dopamine mimetics, was used to 

construct a hopefully equally accurate but mathematically simpler biological activity predictive 

model, using molecular modeling, physico-chemical properties, and statistical techniques.  The 

outcome of this re-evaluation was a two independent single parameter models of similar 

productivity described by the molecules’ HLB (hydrophilic lipophilic balance) and density. 

2.7 MATERIALS AND METHODS FOR DOPAMINE MIMETIC QSAR 

Computational Methods. The Molecular Modeling Pro™ (Version 3.14) and Molecular 

Analysis Pro™ (Version 2.0) published by ChemSW™ Inc. were used for computational analysis.  

Structures for the twelve dopamine mimetics were manually entered and molecular mechanics-

based conformational analysis was performed on each model to generate its global minimum 

energy conformer.  These lowest energy conformers were used to ensure that analyses using the 

semi-empirical Complete Neglect of Differential Overlap (CNDO) method would reach 

conformational convergence.  CNDO analyses were performed with each model to identify 

eighteen molecule-specific parameters. 

After completing the calculations, Minitab for Windows (Release 11.12) published by 

Minitab Inc. was used to perform statistical analysis.  Histograms of all parameters were 

generated.  It was seen from these metrics that diastereomers created a non-normality.  There 

were four compounds that are diastereomers.  The diastereomers display different electronic 

parameters such as HOMO, LUMO and dipole moment.  The diastereomers were eliminated to 

achieve sufficient normality in the learning set. 

   The next step was to use Pearson’s correlation matrix of all the parameters associated 

with the dopamine compounds, excluding the diastereomers.  A correlation coefficient with an 
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upper limit of 0.9 was utilized to eliminate parameters that were highly correlated.  Table 3 lists 

the parameters with correlations above 0.9.  When two parameters are highly correlated, the final 

predictive model should not include both parameters. 

 

 

Table 3.  Correlations between parameters for Dopamine Mimetics 
 

 

 

 

 

 

 

 PARAMETERS r-Value
molecular weight and surface area 0.951
molecular volume and surface area 0.962
Hansen dispersion and density 0.934
Hansen dispersion and solubility parameter 0.940
LUMO and molecular volume -0.971
Hansen hydrogen bonding and Hansen polarity 0.931
H bond donor and Hansen polarity 0.923
percent hydrophilic surface and H bond donor 0.963
LUMO and MR -0.909

 

 

The parameters with highest correlation coefficients were plotted against each other.  

Analysis of such plots was used to determine if the coefficient in the correlation matrix was 

falsely inflated by a certain outlier.  This was not the case with any of the r-values generated.  

Therefore, the correlation between the parameters was a true correlation.  Using the seventeen 

variables and eight compounds (the four diastereomers excluded), a best subset regression was 

performed using Minitab.  The criterion used to chose the best model was the adjusted 

correlation coefficient, R-Sq (adj).  Based on the R-Sq (adj), density and HLB were the variables 

with the greatest predictive capacity for the biological activity of the dopamine mimetics shown 

in Table 4. 
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Table 4.  R-Squared values of candidate models 
  

 CANDIDATE MODELS

Parameter R-Squared
HLB 0.615
Density 0.587
Hansen Dispersion 0.519
Hydrogen Bond Acceptor 0.329
Molecular Weight 0.327
Dipole Moment 0.323
% Hydrophilic Surface 0.263
Hydrogen Bond Donor 0.220
LUMO 0.160
Solubility Parameter 0.143

 

 

 

 

 

 

 

 

 

 

 Discriminant analysis was then performed using all twelve molecules and the parameters 

HLB and density.  Discriminant analysis creates a final predictive model and evaluates model 

performance.  The two final predictive models were: 

 

Biological Activity of Dopamine Mimetics = 4.45 - 0.528 HLB 

                                         and 

Biological Activity of Dopamine Mimetics = -7.30 + 7.14 density 

 

Cross Validation.  The leave one out cross validation technique was then applied to the two 

final predictive models.  The results of this analysis are listed in Table 5. 
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Table 5.  Leave one out cross validation results 
 
 

 

Model Sensitivity Specificity Proportion Correct Squared Distance
HLB 1.000 0.857 0.917 5.482
Density 0.857 0.800 0.833 4.888

 

2.8 RESULTS OF DOPAMINE MODEL BUILDING 

2.8.1 Modeling overall developmental toxicity based on the original author’s evaluations 

Compounds 1 (BRL 16644; 2-[[3,4-dihydro-2,2-dimethyl-4-[3-[trifluoromethyl]phenyl]-2H-1-

benzopyran-7-yl]oxy]-N,N-dimethylethanamine; CAS 59257-24-8) and 2 (BRL 16657) were 

shown to be potent inhibitors of monoamine uptake in vitro and were developed as possible 

antidepressant agents (Ainsworth et al., 1982; Johnson et al., 1983).  A series of congeneric 

compounds were generated based on their similar chemical structures (Figure 1), and all but 

compound 6 were found to have monoamine potentiating properties (Ridings and Baldwin, 

1992).  The dopaminergic potentiating properties of compounds 1 and 2 had been implicated 

with teratogenic activity (Baldwin and Ridings, 1986), however, so the potential for 

developmental toxicity was evaluated in vivo for the entire series (Ridings and Baldwin, 1992). 

BRL 16644 (2-[[3,4-dihydro-2,2-dimethyl-4-[3-(trifluoromethyl)phenyl]-2H-1-

benzopyran-7-yl}oxy}-N,N-dimethylethanamine) (Figure 1) was developed as a potential 

anorexigenic and antidepressant agent.  Compound 1 is a potent monoamine uptake inhibitor that 

acts mainly as an agonist in the dopaminergic and somewhat in the serotonergic and 

noradrenergic systems.  BRL 16657 (compound 2) is another dopamine mimetic, differing from 

compound 1only in the position of the trifluoromethyl moiety on the 4-phenyl ring.  Compounds 

1 and 2 have similar pharmacological properties (Ridings and Baldwin, 1992).  

 26



 

The 12 compounds chosen for evaluation of development toxicity potential are based on 

a similar chemical structure with alternate substitutions as given in Figure 1.  To determine the 

physicochemical parameters necessary for modeling it was necessary to first determine the 

lowest free energy conformation.  Bond lengths and angles corresponding to these conformations 

are given in Table 2.  Analysis of the physicochemical parameters generated from these 

structures showed that several were highly correlated within this set of chemicals, especially 

lowest unoccupied molecular orbitals (LUMO) and molecular volume (Pearson’s correlation = 

0.971), percent hydrophilic surface and hydrogen bond donor (0.963), molecular volume and 

surface area (0.962), molecular weight and surface area (0.951), Hansen dispersion and solubility 

parameter (0.940), Hansen dispersion and density (0.934), Hansen hydrogen bonding and 

Hansen polarity (0.923) and LUMO and molar refractivity (0.909). 

Ridings and Baldwin concluded that they had evidence for developmental toxicity in the 

testing of five chemicals: compounds 1, 2, 7, 8 and 11.  In their discussions of the results of each 

chemical they considered three aspects of developmental toxicity: lethality, as indicated by post-

implantation fetal loss, intrauterine growth retardation (IUGR), as indicated by fetal weight, and 

teratogenicity, i.e., incidence of structural malformation.  Evidence of significant changes in any 

of these three endpoints was considered sufficient to establish the compound as a developmental 

toxicant.  The three endpoints were highly correlated, with compounds 1, 2 and 7 positive for all 

all three, compound 11 positive for decreased fetal weight and incidence of malformation, and 

compound 11 positive only for teratogenicity (concordances of 83 – 92%). 

Computational analysis of the physicochemical parameters and toxicological activity of 

these 12 dopamine mimetics yielded a number of single parameter models highly predictive for 

overall developmental toxicity.  The most predictive factors are given in Table 6, along with the 
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results of the leave-one-out validations of their models.  They are ordered by correlation 

coefficient, but this did not always perfectly correlate with predictivity, although the five single-

parameter models given were not significantly different in predictivity.  The “best” model, based 

on hydrophilic/lipophilic balance (HLB), misclassifies only compound 6, which is not a true 

dopamine mimetic.  The physicochemical parameters these five models are based on are not 

themselves highly correlated, suggesting that they are classifying the compounds based on 

different properties.  This is supported by the fact that the models misclassify different subsets of 

the input compounds. 

 

Table 6.  Single parameter models  for predicting overall developmental toxicity using the 
original author's determinations. 

 Correlation 
coefficient 

Concordance Sensitivity Specificity Misclassified 
compounds 

HLB 0.784 0.917 1.000 0.857 6 
Density 0.766 0.833 0.800 0.857 5, 8 
Hansen dispersion 0.720 0.833 0.800 0.857 8, 12 
hydrogen bond acceptor 0.574 0.667 0.571 0.800 4, 5, 9, 12 
molecular weight 0.572 0.750 0.429 1.000 5, 9, 12 

 

 

In this study, the original rat study data of these dopamine mimetics was used to construct 

an equally accurate, but mathematically simpler biological activity predictive model, using 

molecular modeling, physico-chemical properties, and statistical techniques.  The outcome of 

this re-evaluation was a pair of single parameter models described by the molecules’ HLB 

(hydrophilic lipophilic balance) and density.  The models are:  

           Biological Activity of Dopamine Mimetics = 4.45 - 0.528 HLB 

                                          and 
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           Biological Activity of Dopamine Mimetics = -7.30 + 7.14 density 

Through statistical methods these models were validated and the results of the analysis 

show that, individually, the parameters HLB and density effectively predicted biological activity 

of all compounds except for compound 6.  Compound 6 is, however, not truly a dopamine 

mimetic.  Compound 6 is without any monoamine potentiating properties.  Therefore, these two 

parameters were 100% effective at predicting the biological activity of the true dopamine 

mimetic compounds analyzed, and 91.7% effective at predicting the biological activity of all 

twelve compounds.  The squared distance was 5.48, which showed that the means of the two 

groups were 5.48 standard deviations apart.  This showed there was very little overlap between 

the groups when using ± 3 standard deviations per group.  This also showed that the predictions 

were divided into two distinct groups (biologically active or inactive).  Table 7 summarizes the 

results of this analysis and lists the five single parameters that individually are most associated 

with biological activity.  In addition, this table provides the sensitivity and specificity of each of 

these physicochemical parameters when applied to the twelve dopamine mimetics as single 

parameter models. 

 
 

 29



 

 30

Table 7.  Best 5 Sin gle Parameter Models for Predicting Fetal Weight/Malformations-
(compounds 1,2,7,11 categorized positive) 
 

 

 Correlation 
coefficient 

Concordance Sensitivity Specificity Misclassified 
compounds 

Density 0.926 1.000 1.000 1.000  
Hansen dispersion 0.860 0.917 1.000 0.875 12 
dipole moment 0.796 0.917 1.000 0.875 12 
hydrogen bond acceptor 0.743 0.750 1.000 0.625 4, 5, 12 
HLB 0.699 0.917 1.000 0.875 8 

 

Modeling individual developmental endpoints based on the original author’s 

determinations 

As mentioned above, developmental toxicity can be broken down into a number of 

specific effects that may or may not be mechanistically related.  Ridings and Baldwin (1992) 

speculated that the dopaminergic potentiating properties of these compounds were directly 

related to their teratogenic activity, which is consistent with the high concordance of the three 

developmental toxicity endpoints of fetal death, IUGR and malformation found in this series (as 

well as with the misclassification of compound 6, which has no dopaminergic biological activity, 

in the HLB model above).  While incidence of any of these harmful toxic effects would be 

sufficient to preclude the pharmacological use of a compound, pooling the developmental 

toxicity endpoints may not be the best way of modeling the phenomenon.  As it stands, the 

models given in Table 6 essentially describe the endpoint of malformation, since all of the 

positive compounds were teratogenic.  Adjustments to the database must be made, however, if 

fetal death and growth inhibition are considered separately. 

Compound 8 was positive only for malformation, so modeling of IUGR can be done 

simply by considering it as negative (Table 8).  Once again, there is no significant difference in 

the predictivity of the 5 single-parameter models given in Table 8, but the “best” model, based 
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on density, successfully predicts the toxicity of all 12 compounds.  Indeed, the parameters in 

these models are very similar to those found in modeling malformation or overall developmental 

toxicity, except that the order has been changed and molecular weight has been replaced by 

dipole moment.  All five models had perfect sensitivity, and compound 12 was misclassified as 

positive by three of the models.  Compound 11 was positive for both teratogenicity and growth 

inhibition, but negative for induction of fetal death.  Modeling fetal loss as an endpoint, with 

only compounds 1, 2 and 7 as positive, yields the single-parameter models given in Table 9.  The 

parameters reiterate those from Table 8 with some changes in the order, and, once again, all 5 

models have perfect sensitivity.  Interestingly, compound 11 was consistently misclassified by all 

five models. 

   

Table 8.  Single parameter models for pred icting IUGR using the orgin al author's 
determinations. 

 Correlation 
coefficient 

Concordance Sensitivity Specificity Misclassified 
compounds 

Density 0.926 1.000 1.000 1.000  
Hansen dispersion 0.860 0.917 1.000 0.875 12 
dipole moment 0.796 0.917 1.000 0.875 12 
hydrogen bond acceptor 0.743 0.750 1.000 0.625 4, 5, 12 
HLB 0.700 0.917 1.000 0.875 8 

 
 
 

Table 9.  Single parameter models for predicting  induction of fetal death using the original 
author's determinations. 

 

 Correlation 
coefficient 

Concordance Sensitivity Specificity Misclassified 
compounds 

hydrogen bond acceptor 0.700 0.833 1.000 0.778 5, 11, 12 
Density 0.680 0.917 1.000 0.889 11 
dipole moment 0.614 0.917 1.000 0.889 11 
HLB 0.587 0.833 1.000 0.778 8, 11 
Hansen dispersion 0.576 0.833 1.000 0.788 5, 11 



 

 32

Next, the endpoints fetal death, fetal weight and malformations were used to generate 

predictive models for these specific endpoint.  The original data was utilized to categorize the 

compounds as active or inactive for these specific endpoints.  For this evaluation the endpoints 

fetal weight and malformations had exactly the same active and inactive compounds.  Therefore 

only one model was run to predict both of these endpoints.  The results of this analysis provided 

results similar to the other analyses, with the same five physicochemical parameters being 

associated with these endpoints.  The results of the model development with the endpoint of fetal 

death produced two single variable models based on density and dipole moment.  The resulting 

predictive equations are: 

                                      Fetal Death = -5.76 + 5.56 density 

                                                           and  

                                      Fetal Death = -0.381 + 0.284 dipole moment 

The sensitivity is 1.00 and the specificity is 0.889 for both of these models.  Table 9 

provides the sensitivity and specificity for the 5 best single parameter models associated with 

fetal death.  The result of the model development with the endpoint of fetal 

weight/malformations produced a single variable model based on density that has a sensitivity is 

1.00 and the specificity is 1.00. The study based on the endpoint of fetal death produced two 

models based on density and dipole moment that were 91.7% correct at predicting the impact of 

the twelve compounds on fetal death.  Both of these fetal death models misclassified compound 

11. Using the fetal death model a compound with a density of approximately 1.22 or greater or a 

dipole moment greater than 4.86 indicates the compound is active for fetal death. 
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Table 10  Maternal toxicity 

Compound Dose 
(mg/kg) 

No. 
mated 

No. 
pregnant

No. 
died 

No. 
stereotypy

Bodyweight 
gain (g) 

control  70 63 0 0 55.5 

1 10 14 12 0 0 57.2 
 20 28 26 0 0 43.6 
 40 14 10 4 5 13.3 

2 10 14 14 0 0 31.6 
 20 42 36 4 8 6.4 
 35 14 7 4 10 -3.0 

3 2 14 11 0 0 56.8 
 4 14 14 0 0 46.4 
 8 14 12 0 0 35.0 
 10 12 9 1 2 34.4 
 12 14 8 3 9 25.3 

4 5 14 14 0 0 53.3 
 10 14 13 1 0 36.4 
 14 14 13 1 3 26.1 

5 1.2 14 10 1 0 45.1 
 2 12 7 1 2 25.1 

6 30 14 12 1 0 43.2 
 100 14 14 0 0 32.3 

7 25 14 12 0 0 25.2 
 50 14 9 2 5 -3.2 

8 20 14 11 2 0 39.1 
 30 14 10 2 2 42.4 
 50 14 4 7 13 20.0 

9 1 14 13 0 0 37.3 
 2 14 12 0 2 39.9 
 3 14 10 2 4 35.6 

10 4 14 5 5 11 22.5 

11 2 14 14 0 0 40.9 

12 20 14 12 0 0 31.4 
 30 14 6 3 11 25.0 
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Table 7 lists the 5 best single parameter models associated with the endpoints fetal weight 

and malformations and the sensitivity and specificity of each. 

The resulting predictive equation for these endpoints is: 

Fetal Weight/Malformations = -8.59 + 8.25 density 

Applying the fetal weight/malformation model a density value of 1.16 or greater is 

indicative of a compound that is active for growth retardation and/or malformations.    

2.8.2 Modeling developmental toxicity after reevaluation of the raw data 

The previous modeling has been based exclusively on the conclusions drawn by the authors of 

the original report containing the data on the possible developmental toxicity of this set of 

compounds.  In some cases, the authors provided enough raw data to allow for an independent 

assessment of their results, as summarized in Table 10.  This allows us to not only confirm for 

ourselves the conclusions they reported, but also go beyond those results by exploring different 

methods of data evaluation.  To be confident in establishing a toxic effect, the experimental data 

on a compound should ideally fulfill two criteria: 1) one or more doses should exhibit a 

significant change in the toxic endpoint, and 2) there should be evidence of dose-dependency.  In 

the current data, only the former criterion was considered, indeed, compounds 10 and 11 were 

analyzed with a single dose, precluding the possibility of establishing dose dependency.  In 

addition, the data in Table 11 was pooled from five original sets of experiments; in the original 

report, each experiment was compared only to the concurrent control.  We have determined that 

the controls for the five experiments were not statistically different from one another, and have 

therefore pooled them—comparison to this pooled control group allows for greater power in 

subsequent analyses. 
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Table 11.  Summary of develop mental toxicity data from Ridings and Bal dwim (1992) 
(pooled from five experiments). 

Compound Dose 
(mg/kg) 

No. 
litters 

Litter 
size 

Perinatal 
loss (%) 

Fetal wt 
(g) 

No. 
fetuses 

No. 
malformed

control  62 11.0 4.3 5.4 681 1 

1 10 12 9.7 4.9 5.8 116 0 
 20 25 10.9 2.8 5.5 272 38 
 40 8 8.9 27.2 4.8 71 57 

2 10 14 10.1 4.0 5.6 141 6 
 20 33 9.5 10.9 5.1 313 288 
 35 4 9.8 9.2 5.1 39 39 

3 2 11 9.3 10.1 5.6 102 0 
 4 14 11.2 3.8 5.6 157 0 
 8 11 12.7 2.7 5.3 140 0 
 10 9 11.0 2.7 5.6 99 0 
 12 7 11.6 2.4 5.4 81 0 

4 5 14 11.2 5.1 5.5 157 0 
 10 13 12.2 3.3 5.3 159 0 
 14 10 11.9 6.1 5.4 119 0 

5 1.2 10 10.8 0.9 5.7 108 0 
 2 7 10.9 3.6 5.4 76 0 

6 30 12 11.7 2.6 5.2 140 0 
 100 14 11.7 5.6 5.4 164 0 

7 25 11 7.6 37.3 5.0 84 66 
 50 6 4.8 60.1 4.4 29 29 

8 20 11 12.2 2.4 5.5 134 0 
 30 9 12.2 4.5 5.5 110 0 (1) 
 50 2 9.5 10.0 5.5 17 0 (1) 

9 1 13 9.9 6.2 5.6 129 0 
 2 10 10.6 5.4 5.5 106 0 
 3 10 11.5 3.1 5.6 115 0 

10 4 4 9.5 8.8 5.8 38 0 

11 2 14 10.4 3.2 4.9 145 2 

12 20 12 10.4 2.6 5.4 125 0 
 30 6 11.0 11.8 5.3 66 0 
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Enough raw data was provided in the original report (or could be regenerated from data 

given in the original report) to reevaluate two of the three toxic endpoints used to establish 

overall developmental toxicity: incidence of post-implantation fetal death and incidence of 

malformations.  Variabilities were not provided for the fetal weights measured in these 

experiments, therefore a rigorous reevaluation of the IUGR data cannot be performed.  Some 

general observations can be made, however.  Evidence for statistically lower fetal weights were 

presented for four compounds, compound 1 (in 1 experiment at the highest dose), compound 2 

(in 2 of 3 experiments at the intermediate dose), compound 7 (in 1 experiment at each of two 

doses) and compound 11 (in 1 experiment at the only dose tested).  There is no evidence of dose 

response in the data from compound 1 (P = 0.23), since the weight of the fetal controls was 

lower than that observed at the lower doses of the compound.  There is also no evidence for 

dose-dependency in the data from compound 2 (P = 0.27); the fetal weight at the highest dose is 

the same (although non-significantly lower than controls) as that at the intermediate dose, despite 

the fact that several other compounds induce lower weights (so the weight attained does not 

represent a lower limit).  There is a trend towards dose-dependency in the data from compound 7 

(P = 0.09), and no opportunity to assess dose-dependence for compound 11.  Thus, if dose-

dependency were required to establish toxicity, none of these data would be sufficient. 

Evidence for teratogenicity, induction of fetal malformation, was presented for five 

compounds.  The number of term fetuses with specific malformations was significantly increased 

by compound 1 at the two higher doses, by compound 2 at all three doses and by compound 7 at 

both doses.  Indeed, the dose-dependence of the first two compounds approached significance 

(both P = 0.053), but not that of compound 7 (P = 0.31).  Compound 8, however, as shown in 

Table 11, had no malformed fetuses at term at any dose and should therefore have been 

considered negative for teratogenicity.  It was classified as a teratogen because malformations 

were noted in two of the dead fetuses “lost” post-implantation, one at each of the upper doses of 
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this chemical.  It is not clear whether similar analyses were performed on the lost fetuses of all of 

the other negative experiments, or of the controls.  Moreover, even if the malformed dead fetuses 

are accepted as relevant data, they fail to establish significant increases in the frequency of 

malformation at either dose: for the 30 mg/kg dose a single malformed fetus added to the total 

number of fetuses is not significant (P = 0.24), regardless of whether the additional “lost” fetuses 

are considered and assumed to be normal.  If the frequency is compared only that of to the 

specific concurrent control (no malformed fetuses out of 110 term, 115 total animals) the results 

are even less compelling (P = 0.38, 0.43, respectively).  The single malformed fetus at the 50 

mg/kg dose occurred in a much smaller population, but also occurred in the experiment where 

there was also a malformed fetus among the control progeny (out of 141 term, 151 total fetuses), 

such that the increase is not significant (P = 0.20).  Only if this frequency is compared with that 

of the pooled controls (one malformed fetus out of 681 term, 712 total fetuses) does it begin to 

approach significance (P = 0.076, 0.053, respectively).  Pooling the results of the 30 and 50 

mg/kg doses still does not infer a significant increase in malformation, whether or not the other 

dead fetuses are taken into account when compared to either concurrent (P = 0.19) or pooled 

controls (P = 0.063, 0.062).  If this compound is reclassified as negative for teratogenicity, 

physicochemical modeling yields the same series of models as those given in Table 8.   

When compound 8 was classified as a negative and also when eliminated the analysis 

yielded predictive models based on density that properly classified all of the compounds used to 

generate the models. Finally, the assessment of fetal weight/malformations generated a model 

based on density that was 100% correct in classifying all twelve compounds. 

Next, new models were generated with compound 8 categorized as both totally 

eliminated from the data set and as a negative (Table 12).  These new models with a 

recategorized compound 8 were generated due to the questionable call of compound 8 being 

biologically active.  When the models were run with compound 8 as a negative the five 
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physicochemical properties associated with biological activity remained the same with the 

exception of molecular weight, which was replaced by dipole moment when compound 8 was 

categorized as a negative.  Additionally, when compound 8 was categorized as a negative the 

discriminant analysis results revealed the physicochemical parameter density produced 

sensitivity and specificity both of 1.00.  The results of the discriminant analysis with compound 

8 eliminated provided the same list of crucial parameters as when compound 8 was categorized 

as a negative, and identical sensitivity and specificity as the model when compound 8 was listed 

as a negative.  These results display that the original categorization of compound 8 as a positive 

biologically active agent are suspect and that the determination that compound 8 is biologically 

active based on 2 dead malformed pups is a questionable call.  The predictive model generated 

with compound 8 categorized as a negative is: 

  Biological Activity of Dopamine Mimetics = -8.59 + 8.25 density 

and the predictive model generated with compound 8 eliminated is:  

Biological Activity of Dopamine Mimetics = -8.55 + 8.21 density 

Finally, the application of the predictive models was completed to determine values of 

the specific parameters in the models that would indicate biological activity of unknown 

compounds with similar structure to those used to develop the model.   Using the model 

generated from the original teratogenicity calls and compound 8 eliminated a density value of 

1.16 or greater is indicative of a compound that is teratogenic. 

Table 12.  Single parameter models for predicting induction of malformation after removal 
of compound 8 from the data set. 

 Correlation 
coefficient 

Concordance Sensitivity Specificity Misclassified 
compounds 

Density 0.922 1.000 1.000 1.000  
Hansen dispersion 0.854 0.909 1.000 0.857 12 
dipole moment 0.788 1.000 1.000 1.000  
HLB 0.777 0.909 1.000 0.857 6 
hydrogen bond acceptor 0.729 0.727 1.000 0.571 4, 5, 12 
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The classification of compound 11 as a teratogen is based on the occurrence of 2 

malformed fetuses in the term population of the only dose tested, 2 mg/kg.  This incidence of 

malformation is also not significantly elevated over either the concurrent controls (once again, 

the one experiment where a malformed fetus was observed amongst the controls) (P = 0.38) or 

the pooled controls (P = 0.076). Models based on this data set with both compounds 8 and 11 

classified as negative for toxicity have already been presented in Table 9 (and consistently 

predict that compound 11 should be positive for toxicity). 

The original authors found only three compounds to induce fetal loss: compound 1, with 

a significant increase in post-implantation loss at the highest drug concentration; compound 2, 

with a significant increase in fetal death in 1 of 2 experiments performed at the intermediate 

dose; and compound 7, with significantly increases in fetal death at both doses examined.  

Reanalysis with pooled data confirms that these observations are highly significant (P < 0.0001).  

The data for compounds 1 and 2 are essentially one point curves, however, and there is no 

evidence of dose-dependency for any of the three compounds (P = 0.15, 0.24 and 0.22, 

respectively).  The highest concentration of compound 2 does induce an increase in post-

implantation loss that approaches significance (P = 0.089).  Several other experiments also reach 

significance when compared to the pooled controls, however; there was a great deal of range 

amongst the five controls in this endpoint, from a low of 1.6% loss to a high of 6.5%, giving 

different experiments different abilities to detect an increase in fetal death.  The lowest 

concentration of compound 3 tested now also has a significantly increased frequency of post-

implantation loss (P = 0.013), as well as the higher concentration of compound 12 (P = 0.007), 

while several other experiments approach significance: the lowest concentration of compound 9 

and the only concentration tested of compound 10, P = 0.089 and 0.085, respectively).  Thus, by 

the criterion that any significant change is sufficient basis for activity, compound 12 should be 
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considered positive for toxicity, despite the fact that there is no evidence of dose-dependency (P 

= 0.67), and although there is not enough evidence to establish compounds 9 and 10 as positive, 

it might be prudent to remove them from the analysis as equivocal.  Compound 3 presents a 

much more difficult problem (akin to that of compound 9), however: the significant point is the 

lowest in the concentration curve, and, indeed, instead of evidence of increased fetal loss with 

increased dose, the regression approaches significance in the opposite direction, that increased 

dose results in less fetal loss (P = 0.085).  Even if a single experiment is sufficient to establish 

toxicity in the absence of evidence of dose-dependence, it is difficult to allow a single 

experiment to establish toxicity in the face of evidence against dose-dependence.   

The only other factor to be considered in the evaluation of this data primarily concerns 

those chemicals determined to have no evidence of developmental toxicity.  To be considered as 

negative for activity, these compounds must have been adequately tested, which in the field of 

developmental toxicity means they must have been tested to the point of maternal toxicity.  A 

summary of the pertinent maternal toxicity data from Ridings and Baldwin (1992) is given in 

Table 9.  Three types of maternal toxicity were measured, of which only the first truly meets the 

requirement for demonstration of significant maternal toxicity: maternal death.  No females died 

in any of the five control groups, whereas death was observed in the animals treated with all 

twelve compounds.  The original authors did not test these data for significance, however, and 

not all of these incidences are significant if compared to the pooled controls.  The following 

compounds were found to induce significantly increased frequencies of death: compound 1 at the 

highest dose (P = 0.0005), compound 2 at the 2 highest doses (P = 0.02 and  0.0005, 

respectively), compound 3 at the highest dose (P = 0.004), compound 7 at the highest dose (P = 

0.03), all three doses of compound 8 (P = 0.03, 0.03 and < 0.0001, respectively), the highest dose 

of  compound 9 (P =0.03), compound 10 at the only dose tested (P < 0.0001) and compound 12 

at the higher of the two doses tested (P = 0.004).   Of these compounds, there was evidence of 
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dose-dependence in the maternal toxicity of only two, compounds 2 (P = 0.048) and 8 (P = 

0.047), with two others showing a trend towards dose-dependence, compounds 3 (P = 0.062) and 

4 (P = 0.097) (despite the fact that no single dose exhibited a significant rate of maternal loss).  

Determining the adequacy of the testing is most important for chemicals not shown to have 

activity in the toxicity tests, therefore these data confirm the validity of subset of the “negative” 

tests that excludes those involving compounds 4, 5, 6 and 11. 

Besides death, two other indicators of toxicity were determined in the treated females in 

these experiments.  First, characteristic behavioral changes, or “stereotypy” were observed in a 

subset of animals (Table 10).  The incidence of stereotypy was highly correlated with maternal 

death (P < 0.0001, R = 0.91), and every experiment but one that showed a significantly increased 

incidence of maternal death also showed a significant increase in stereotypy (no such behavior 

was observed in any of the control groups).  A number of experiments were significantly 

increased for stereotypy in the absence of fetal death, including the second highest dose of 

compound 3 (P = 0.02), the highest dose of compound 4 (P = 0.004), the highest dose of 

compound 5 (P = 0.02) and the intermediate dose of compound 9 (P = 0.026).  None of these 

effects showed clear evidence of dose dependency, although several came close: compounds 2 (P 

= 0.055), 3 (P = 0.079) and 9 (P = 0.054).  If an increase in stereotypy is accepted as 

representative of maternal toxicity, compounds 4 and 5 may then be considered as negative 

compounds for developmental toxicity.  Compounds 6 and 11 are therefore the only compounds 

negative for some or all types of developmental toxicity that may be considered to not to have 

been adequately tested. 
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3 RETINOIC ACID CHERNOFF-KAVLOCK (CK) ASSAY 

3.1 BACKGROUND 

13-cis retinoic acid (cis RA) or isotretinoin is a drug commonly used in the treatment of severe 

cystic acne (Chan et al, 1996).  In humans, cis RA exposure during pregnancy is established as 

being a potent teratogen (No authors listed, 1989).  Clinical observations evidence suggests that 

cis RA is characteristic of heart and craniofacial malformations including ear and palatal defects 

(Goulding and Pratt, 1986).  In animal testing, several studies have indicated that cis RA is 

embryopathic in the monkey, mouse, chick embryo, hamster, rat and rabbit, causing 

malformations and fetal death (Wei, 1999; Hummler, 1990; Mallo, 1997; Hart, 1990; Eckhoff, 

1997; Ward, 1995; Tzimas, 1994).   Malformations of the ear were observed in monkey fetuses 

exposed to cis RA (Wei et al, 1999).  Malformations and fetal death were assessed in the 

cynomolgus monkey with cis RA.  Malformations that included both external ears, hypo- or 

aplasia of the thymus and ventricular septal defects of the heart (Hummler et al, 1990).  In the 

mouse, malformations in the middle ear were observed (Mallo, 1997).  The effects of cis RA in 

the chick embryo occurred in mesenchymal tissues derived from the cranial neural crest cells.  

There were also craniofacial and cardiovascular malformations following the treatment with cis 

RA (Hart et al, 1990).  In whole rat embryos, a study of all trans-, 13-cis- and 9-cis retinoic acid 

was conducted and malformations seen were limb reduction defects associated with short term 

rise in embryonic retinoid levels (Ward et al, 1995).  Cis RA treatment significantly increased 

fetal resorptions and malformations in rabbits at a dose of 15 mg/kg/day (Eckhoff et al, 1994).  

Testing for developmental toxicants can be performed utilizing SAR modeling and animal 
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assays.  Through modeling the compound 13-cis retinoic acid was predicted to be positive for 

developmental toxicity. 

3.2 QSAR/SAR VALIDATION USING THE CK ASSAY  

The validation of this model was then tested by an animal assay.  The animal assay utilized in 

this study was a modified version of the Chernoff-Kavlock (CK) assay.  In this test, pregnant 

female mice were orally gavaged with 13-cis retinoic acid.  The dosing of this compound was 

during the period of major organogenesis.  There were three dosage levels of retinoic acid which 

induce a certain amount of maternal toxicity. The mother is examined during the entire 

pregnancy for signs of toxicity.  The dams are allowed to deliver the pups.  The endpoints 

evaluated in this modified version of the Chernoff-Kavlock assay were fetal death and growth 

retardation.  To determine growth retardation, pups were tagged and weighed on postnatal day 

one and three.  To determine fetal death the number and status of all pups born was monitored.  

After postnatal day three the dams were killed and determination of implantation sites were 

conducted. 

3.3 MATERIALS FOR RETINOIC ACID CK ASSAY VALIDATION 

Chemicals.  Cis-Retinoic acid was obtained from Fisher Scientific.  Diphenylhydantoin, corn oil, 

ammonium sulfide was obtained from Sigma -Aldrich. 

Animals.  Time-pregnant outbred Swiss, Hia® mice, were obtained from Hilltop Lab 

Animals (Scottdale, PA).  The experiment was performed at Magee-Women’s Research Institute 

(MWRI).  MWRI provided animal technicians to assist with animal care and all procedures were 

approved by the Institutional Animal Care and usage Committee. 
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3.4 METHODS FOR RETINOIC ACID CK ASSAY VALIDATION 

Computational Methods.  Molecular Modeling Pro™ (Version 3.14) and Molecular Analysis 

Pro™ (Version 2.0) were used for QSAR/SAR calculations.   

Group Assignment for the Modified Chernoff/Kavlock Assay.  On gestation day (GD) 

3, body weights were recorded and animals were ranked from lightest to heaviest.  Animals were 

excluded based on physical condition or extremes in body weight.  Selection of a permutation 

(i.e., 1, 2, 3) was given to each animal.  The permutations had as many numbers as there were 

groups (i.e., dosing levels).  The permutations were rotated to provide an equal weight 

distribution in all groups.   

Modified Chernoff/Kavlock Assay.  The mice were divided into 20 mice per group 

based on the group assignment.  The groups consisted of a negative control (corn oil), positive 

control (diphenylhydantoin), high (100%), medium (50%), and low (25%) of the 10% lethal dose 

of retinoic acid.  The animals were housed individually in cages with wood shavings for bedding 

and were given standard mouse chow and water.  The room was kept on a 12-hour light/dark 

cycle with constant temperature at 70° F.  Dosing of the animals started on gestation day six.  

Dosing was done by oral gavage.  The animals were dosed in the morning at the same time each 

day.  Treatment continued until day 14 of gestation.  Animals were allowed to deliver.  Some 

animals delivered prematurely on gestation day 15.  None of the dams that delivered prematurely 

survived.  The majority of the dams delivered on day 19.  All living pups were tagged and 

weighed on postnatal days one and three.  The pups and dams were sacrificed on postnatal day 

three.  The uterus of each dam was examined for implantation sites both before and after staining 

with ammonium sulfide. 

Uterine Staining w ith Ammonium Sulfide.  After the third day, postnatal pups and 

dams were humanely sacrificed by cervical dislocation.  Dams were necropsied and the uterus 
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excised.  The uterus was placed in a petri dish.  A solution of 10% ammonium sulfide staining 

solution was prepared in a fume hood.  Each uterus was treated at room temperature with 

approximately 5 ml of the 10% ammonium sulfide solution.  After 15 minutes, each uterus was 

examined for darkly-stained implantation sites.  The number of positively stained implantation 

sites for each uterus was recorded.  The implantation sites that were evident prior to staining 

were also recorded. 

3.5 RESULTS OF RETINOIC ACID QSAR/SAR VALIDATION USING THE CK ASSAY 

The endpoints of interest were maternal toxicity, growth retardation and fetal death.  Even 

though the primary endpoint of interest was developmental toxicity, maternal toxicity was also 

examined to evaluate drug dosing. 

3.6  MATERNAL TOXICITY 

A slight maternal toxicity relationship was demonstrated for all three dose groups of cis RA at 

25%, 50%, and 100% of the 10% lethal dose.  To evaluate maternal toxicity, a plot of change in 

weight from gestation day 4 to gestation day 8 versus dose was generated (grams versus dose 

mg/kg/day) Figure 2. 
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Figure 2  Maternal Toxicity- Acute Reaction of Pregnant Mice to Retinoic Acid 
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This plot was considered to be an acute reaction of the pregnant mice to cis RA at 48 

hours after the initial dosing.  In this case, a statistically significant maternal toxicity relationship 

was not observed, although there was a slight reduction in weight gain of dams as the dose 

increased.  To further analyze maternal toxicity, another plot was generated displaying the 

chronic reaction of pregnant mice to cis RA at 216 hours after initial dosing Figure 3. 
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 CHRONIC REACTION OF PREGNANT MICE TO RETINOIC ACID
216 Hours After Initial Dosing (1st Dosing on Gestation Day 6)
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Figure 3.  Maternal Toxicity- Chronic Reaction of Pregnant Mice to Retinoic Acid 



 

For this plot, the dams change in weight from gestation day 4 to gestation day 15 was 

measured and plotted against dose (grams versus dose mg/kg/day).  Again, there was a slight 

reduction in weight gain as the dose increased; however this was not statistically significant. 

3.7  PUP GROWTH RETARDATION 

Another endpoint of interest was growth retardation.  To evaluate growth retardation, the pups 

were tagged and weighed on postnatal day 1 and postnatal day 3.  A plot of the change in weight 

(grams) versus dose as a percentage of LD10 was generated and is shown in Figure 4. 
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Figure 4.  Growth Retardation- Pup Change in Weight from Postnatal Day 1 to Postnatal Day 3 Versus Dose 



 

   There was no high dose data included in Figure 4 because only 2 pups were 

born alive to a dam and neither of the pups survived to postnatal day 3.  This plot shows a 

slight upward trend in pup weight gain as the dose of cis RA increased. 

3.8 PUP DEATH 

The next step was to examine fetal death.  Fetal death was classified into four categories:  

prenatal; neonatal; postnatal; and total death.  For this study, prenatal death was 

determined as the percentage of implantation sites that never developed into a fetus.   A 

plot of the percentage of implantation sites that never developed into a fetus versus dose 

as a percentage of LD10 is shown in Figure 5. 
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Figure 5.  Prenatal Death- Percent of Implantation Sites That Never Developed Into a Fetus Versus Dose 



 

 
In this case, nonpregnant dams were excluded and, as the dose increased, so did 

prenatal death.  The p value was 0.022, which is statistically significant. 

Neonatal death was determined to be the percentage of pups born dead as a 

proportion of total births.  To evaluate neonatal death, a plot of the percentage of pups 

born dead as a proportion of total births versus dose as a percentage of LD10 was 

generated Figure 6.   
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 NEONATAL (% OF PUPS BORN DEAD AS A PROPORTION OF TOTAL BIRTHS) VS DOSE
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Figure 6.  Neonatal Death- Percent of Pups Born Dead as a Proportion of Total Births Versus Dose 



 

The nonpregnant dams and dams that never gave birth to live pups were excluded 

from this analysis.  This evaluation showed that as the dose increased, so did neonatal 

death.  The p value was 0.001, showing a statistically significant relationship. 

Postnatal death was determined as the percentage of pups that were born alive and 

died before postnatal day 3.  To evaluate postnatal death, a plot of percentage of pups that 

were born alive and died before postnatal day 3 versus dose as a percentage of LD10 was 

generated and shown in Figure 7.   
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Figure 7.  Postnatal Death- Percent of Pups That Were Born Alive and Died Before Postnatal Day 3 Versus Dose 

 



 

In this study, the nonpregnant dams and dams that never gave birth to live pups were 

excluded.  As the dose of cis RA increased, postnatal death also increased.  Based on statistical 

evaluation, this relationship was significant, with a p value of <0.001.  In considering the graph 

of this information, it should be pointed out that there appears to be an influential point in the 

high dose group.  However, this is not the case, because this point actually represents 14 dams.  

In the high dose group there were 14 dams that had complete loss of litter postnatally, and only 

one dam that delivered two pups that survived postnatally. 

Total death was determined as the percentage of implantation sites that did not develop 

into surviving pups.  A plot of the percentage of implantation sites that did not develop into 

surviving pups versus dose as a percentage of LD10 was generated and is shown in Figure 8.  
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Figure 8.  Total Death- Percent of Implantation Sites That Did Not Develop Into Surviving Pups Versus Dose 



 

In this evaluation, nonpregnant dams were excluded.  This evaluation showed that as 

dose increased, total death increased, and this relationship was statistically significant.  The p 

value of this relationship was < 0.001.  In the high dose group there were 15 dams that had 

complete loss of litter (one more than the previous evaluation because one pregnant dam in the 

high dose group did not deliver any pups) and one dam had two surviving pups.    
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3.9 RETINOIC ACID CHERNOFF-KAVLOCK (CK) ASSAY DISCUSSION  

The assay used quantitatively measures effects on fetal viability and growth.  In our assay, 

malformations were not examined.  Instead, death was examined because malformed pups are 

more likely to be transformed into fetal death.  This happens because malformed pups and pups 

with functional defects are more likely to die and more likely to be killed by their mother. 

In this study, maternal toxicity was slightly evident but not significant.  Maternal toxicity 

would be critical if a developmental toxicity relationship was not observed, because this would 

raise the question of whether the dose used was high enough.  In this case, the lack of maternal 

toxicity was not critical since a significant developmental toxicity relationship was observed.   

No effect on fetal growth as the dose increased was observed.  In fact, the reverse was 

seen with a slight increase with change in weight.  This seems contradictory, as it seems 

plausible that a toxic chemical should cause less weight gain.  A possible explanation for this is 

that there were fewer surviving pups as dose increased, and therefore the survivors in the higher 

dose groups had less competition for nutrients from the mother.  

The endpoint that was influenced by cis RA was fetal death.  This can be seen in Figures 

5,6,7 and 8.  In all instances, when the dose increased the number of surviving pups decreased.  

In all categories of fetal death that were evaluated, the relationship between increased dose and 

increased death was statistically significant, giving a p value of 0.05. 
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4 TRANSGENIC ADENOCARCINOMA OF THE MOUSE PROSTATE MOUSE 

MODEL 

4.1 BACKGROUND 

Adenocarcinoma of the prostate is the most common cancer in American men. (Gingrich and 

Greenberg, 1996).  Due to public health awareness, early detection of prostate cancer has 

improved; for example, the implementation of widespread PSA-based screening programs has 

enhanced the ability to diagnose prostate cancer at an early stage (Foster et al, 1997).  Regardless 

of such awareness, prostate cancer remains the second leading cause of cancer deaths in 

American men (Parker et al, 1997). 

The implementation and utilization of newly developing cancer drugs and models is key 

to arresting or curing this commonly diagnosed disease.  The use of an animal model that closely 

mimics prostate cancer development in humans is an ideal way of studying initiation, 

progression and metastasis.  The Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) 

mouse model was developed to study a wide variety of issues in prostate cancer.  The TRAMP 

model was genetically engineered so that each mouse will develop prostate cancer with age.  

Many other mouse models use human prostate cancer cell grafts onto the prostate to produce the 

disease.  However, in this model, the mice usually have a defective immune system that prevents 

rejection of the graft.  This results in an unnatural situation in which researchers cannot evaluate 

the normal interplay between cancer, its native environment and the immune system (SoRelle, 

2003).  The progression of the disease in the TRAMP model closely mimics what is seen in 
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humans, and since the cancer is developed within the TRAMP mouse, preventative studies can 

also be conducted. 

   The TRAMP mouse model was developed by taking a minimal probasin promoter 

containing 426 bp of 5’ flanking sequence and 28 bp of 5’ untranslated sequence of the rat 

probasin gene to target expression of SV40 large T-antigen to the epithelium of the mouse 

prostate.  In the TRAMP model, prostatic disease progresses from mild to severe intraepithelial 

neoplasia, to focal adenocarcinoma that metastasizes to the lymph nodes, lungs, and occasionally 

to the bone, kidney, and adrenal glands (Gingrich et al, 1996).  TRAMP mice develop prostatic 

intraepithelial neoplasia by 8-12 weeks of age that progress to adenocarcinoma with distant 

metastases by 24-30 weeks of age.  Cell lines were derived from the prostatic adenocarcinoma of 

a 32 week old C57BL/6 TRAMP mouse.  From this single animal, three cell lines were 

developed:  TRAMP-C1; TRAMP-C2; and TRAMP-C3.  C1 and C2 are tumorigenic and C3 is 

nontumorigenic.  From C1 and C2, six clonal cell lines were created by three rounds of limiting 

dilutions.  The C1 line produced the C1A and C1D lines.  The C2 line produced C2D, C2G and 

C2N lines.  C1A, C2G, C2H and C2N cells are tumorigenic when grafted into syngenic C57BL/6 

male hosts (Foster et al, 1997).   

   The previous section discussed the utilization of an animal model as a way of studying 

the progression of prostate cancer development.  In this section, four promising  investigational 

antiproliferative cancer agents will be discussed.  These agents are Analog II, 4-methoxy Analog 

II, JR oxime 1 and TDH 169.  These agents inhibit tubulin polymerization  by binding at the 

colchine site of the protein.  Tubulin polymerization is critical for the separation of sister 

chromatids in mitosis and is a proven antitumor target.   

Analog II is a cyclopropyl stilbene derivative first found to be antiestrogenic in the mouse 

(Magarian and Benjamin, 1975).  Several in vitro and in vivo studies have shown Analog II to 



 

have activity against both MCF-7 (estrogen receptor positive) and MDA-MB-231 (estrogen 

receptor negative) breast cancer cells, an effect not mediated by the estrogen receptor (Jain et al, 

1997).  In breast cancer cell lines, Analog II disrupts microtubules and causes apoptosis 

(Balachandran et al, 1999).  Analog II at low concentrations has been shown to block PSA 

production and cell proliferation in the human androgen-responsive prostate cancer cell line 

LNCaP (Balachandran et al, 2000). 

 

 

 

 

 

Figure 9.  Struture of Analog II 

4-methoxy Analog II is a derivative of Analog II.  It is a more potent inhibitor of tubulin 

perturbation and cell proliferation.  This compound has been shown to inhibit prostate specific 

antigen production and to induce apoptosis in both LNCaP and androgen independent human 

prostate cancer PC-3 cell lines (Balachandran et al, 2000). 
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Figure 10.  Structure of 4- Methoxy Analog II 

 



 

JR oxime 1 (3,4,5-trimethoxybenzaldehyde O-(8-hydroxy-5-methyl-8-thiophen-2-ylocta-

2,4-dienyl)oxime) is an analog of the potent tubulin polymerization inhibitor curacin A.  Curacin 

A is derived from the cyanobacterium (blue green algae) Lyngbyna majuscula, found off the 

coast of Curacao (White et al, 1997).  JR oxime 1 is less lipophilic than its parent compound 

curacin A.  JR oxime 1 is more potent at inhibiting tubulin assembly than curacin A, and JR 

oxime 1 is only slightly weaker at inhibiting cell growth than curacin A (Wipf et al, 2002). 

 

 

 

 

 

 

 
Figure 11.  Structure of JR Oxime 1 
 

TDH 169 (5'-hydroxy-4'H-spiro[1,3-dioxolane-2,1'-naphthalen]-4'-one) is a member of a 

library of compounds originally prepared as thioredoxin inhibitors.   Subsequent studies have 

shown it to have effects on tubulin assembly.  It is antiproliferative at low micromolar 

concentrations against human breast, prostate and ovarian cancer cells (Wipf et al, 2001).  
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Figure 12.  Structure of TDH 169 
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The goal of this portion of the studies was to test the effects of the four promising 

antiproliferative agents against TRAMP cell lines.  One of the aims of the study was to identify 

at least one of the compounds as a potential chemopreventative agent for prostate cancer.  To 

accomplish this, at least one of the agents has to have low toxicity and effectively reduce the 

proliferation of the metastasis of the prostate cancer cell.  

4.2 MATERIALS AND METHODS FOR TRAMP CELL LINE SCREENING  

4.2.1 Materials 

Chemicals.  Cells were grown in Dulbecco’s Modified Eagle Medium (DMEM) phenol free 

high glucose with L-glutamine and without sodium pyruvate media obtained from Gibco.  The 

media was supplemented with 10% fetal bovine serum obtained from Hyclone, 5 µg/ml insulin 

obtained from Sigma, 25 u/ml penicillin-streptomycin obtained from Gibco, and 1X10-8 M 

dihydrotestosterone obtained from Sigma.  Media was changed every three days.  Cells were 

split when they reached confluency by rinsing in Ca++, Mg ++-free Hanks balanced salts 

solution obtained from Gibco.  The cells were then detached with 0.25% trypsin until cells were 

released.  The test agents were synthesized in the labs of Professors Billy Day and Peter Wipf, 

University of Pittsburgh.   The compounds were of >99% purity as determined by 1H and 13C 

NMR and high resolution mass spectrometry. 

Cell lines.  The clonal cell lines were isolated from cell lines TRAMP-C1 and TRAMP-

C2 by three rounds of limiting dilution.  Clonal cell lines C1A were isolated from TRAMP-C1 

and C2H and C2N were isolated fromTRAMP-C2.  The cells were obtained from Dr. Barbara 

Foster, Roswell Park Cancer Institute. 
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Doubling Time.  Doubling times of the cell lines in vitro were determined by plating the 

cells in 96 well plates at 1200 cells per well and counting cells in triplicate wells every 12 hours 

using the MTT assay.  Doubling times were calculated from the log phase of the growth curves.  

The doubling times were calculated to be approximately 16 to 18 hours. 

MTT Stock Solution.  The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium 

bromide) stock solution (10 mg/ml) was prepared as follows: 0.3 g MTT dissolved in 30 ml of 

PBS was filtered with a Steriflip 50 ml disposable vacuum filtration system through a 0.22 µM 

Millipore Express™ membrane.  The stock solution of MTT was stored at –20°C.  Each MTT 

stock solution was stored for a maximum of one month before being replaced. 

4.2.2 Methods 

Growth Inhibition Studies.  The C1A, C2H and C2N cells were seeded at 1200 cells/well in 96 

well plates and in 100 µl of complete culture media.  After 24 hours the cells were treated with 

various concentrations of agents dissolved in DMSO (final concentration 0.2%).  The 

concentrations for the first screening was prepared using progressive five-fold dilutions to 

generate seven concentrations (640 pM to 10 µM).  The concentrations used for the second 

screening was a two fold dilution, and was centered around the GI50 from the first screen.  The 

control for each cell line contained DMEM media and 0.2% DMSO.   

The effect of the agents, Analog II, 4-methoxy Analog II, TDH 169, JR oxime 1 on 

viability of the cells was determined using the MTT assay.  The MTT assay is a colorimetric 

assay that measures the reduction of MTT by mitochondrial succinate dehydrogenase.  MTT 

enters the cells and passes into the mitochondria where it is reduced to an insoluble, colored 

formazan product.  Since reduction of MTT occurs in metabolically active cells, the level of 

activity is a measurement of the viability of the cells.  The quantity of formazan product is 

directly proportional to the number of living cells in culture.  Time points of continuous agent 
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exposure considered were 0, 24, 48 and 72 hours.  MTT was added to each well and incubated 

for 3 hours.  After incubation, 100 µl of 20% SDS was added to each well and the plate was 

placed back in the incubator overnight.  The following morning, the plate was read with a 

microplate reader (BioRad).  The absorbance at 595 nM was recorded for each well.  

 Calculation of GI50, TGI and LC 50.  The GI50 is defined as the concentration of agent 

that gives a 50% reduction in the net cell increase as compared to the control cells during the 

period of incubation.  The equation for GI50 is 50= [100 X (1-((average cell count of treatment 

group - average cell count of time 0)/(average cell count of control group - average cell count of 

time 0))].  The total growth inhibition or TGI is defined as the agent concentration that gives 

100% reduction in the net cell increase as compared to the control cells during the incubation.  

The equation for TGI is (average cell count of treatment) = (average cell count of time 0).  The 

LC50 is defined as the concentration of the test agent resulting in a 50% reduction in the measure 

of cell growth at the end of the drug treatment as compared to that at the beginning.  The 

equation for LC50 is –50=[100 X ((average cell count of treatment group -average cell count of 

time 0) / (average cell count of time 0))] (Boyd and Paull, 1995).  After finding the GI50, TGI, 

and LC50 the slope of the line is calculated using at least two points that surround the GI50, TGI, 

or LC50 and solving with the equation y=mx+b.  Using this slope of a line, equations and the 

following values for y, 50 (for GI50), 100 (for TGI) and –50 (LC50).   

 Apoptosis Assay ELISA.  Cells were plated in 6-well plates at 20,000 cells/well.  Cells 

were treated with 4-methoxy Analog II at concentrations based on the MTT assay.  The 

concentrations used were the calculated GI50, GI70 and TGI of 4-methoxy Analog II.  The cells 

were allowed to attach for 24 hours and then the test agent was added.  Twenty-four hours after 

the test agent was added the ELISA (Roche Diagnostics, Indianapolis, IN) assay was performed.  

The ELISA assay measures small DNA fragments and histones, with a mixture of anti-histone 
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and anti-DNA-POD.  During this incubation period, the anti-histone binds to the histone-

component of the nucleosomes and simultaneously captures the immunocomplex to the coated 

microtiter plate.  Additionally, the anti-DNA-POD antibody reacts with the DNA-component of 

the nucleosomes.  The unbound antibodies are removed by washing.  There is quantitative 

determination of the amount of nucleosomes by the POD retained in the immunocomplex.  The 

amount of nucleosomes is determined spectrophotometrically. 

  Protein Extraction and Western Blot Analysis.  The mouse prostate cell line C1A 

was plated and cultured in complete media and allowed to attach for 24 hours, followed by the 

addition of the TGI concentration of 4-methoxy Analog II (1.5 µM) and incubated for 0, 24, 48, 

72 hours.  Control cells were incubated in the media with 0.2% DMSO using the same time 

points.  After incubation, the cells were harvested by scraping from the culture dishes and 

collected by centrifugation.  A cell count was then taken using a Coulter Counter.  Cells were 

resuspended in a 100 µl protease inhibitor cocktail containing 1ml lysis buffer and 20 µl of 50X 

protease inhibitors (PharMingen). A freeze-thaw method was then applied using ethanol and dry 

ice.  The protein concentration was then determined using the Bio-Rad Protein Assay Reagent.  

For each sample, 50 µg of total proteins was resolved on 10% SDS Page and transferred to a 

nitrocellulose membrane.  The membrane was incubated with primary monoclonal PARP rabbit 

antibody (1:1000) purchased from Cell Signaling Technologies for 1 hour and washed two times 

in Tween/PBS. Secondary anti-rabbit antibody from ECL Western blotting system (Amersham) 

was added.  After 1 hour, the membrane was washed three times with Tween/PBS.  The substrate 

from the ECL kit was then added and protein bands were detected using Kodak film.  Films were 

scanned using a Kodak X-Ray Developer, model number X-OMAT 2000 Processor, vendor 

Baldwin. 
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Flow Cytometry.  AnnexinV (PharMingen, San Diego, CA) staining and flow cytometry 

were conducted to detect apoptotic cells.  C1A cells were treated with 1.5 µM 4-methoxy Analog 

II for 0, 12, 24, 48 and 72 hours, or with 0.2% DMSO (control).  There were four controls used 

to set up the flow cytometric parameters.  These were:  blank plus 100 µl of annexin buffer, 5 µl 

of annexin V and 100 µl of annexin buffer, 5 µl of propidium iodide (Sigma) and 100 µL of 

annexin buffer.  Samples were prepared with annexin v and propidium iodide and divided into 

two groups; stained versus unstained.  The samples were then analyzed on an EPICS-XL 

benchtop cytometer (Beckman Coulter) and analyzed using EXPO 32 software. 

RNA Isolation.  The TRIZOL reagent is a ready-to-use reagent for the isolation of total 

RNA from cells and tissues consisting of a mono-phasic solution of phenol and guanidine 

isothiocyanate (Chomczynski and Sacchi, 1987).  Addition of chloroform followed by 

centrifugation separates the solution into aqueous and organic phases.  RNA remains exclusively 

in the aqueous phase.  After transfer of the aqueous phase, the RNA is recovered by precipitation 

with isopropyl alcohol.  After removal of the aqueous phase, the DNA and proteins in the sample 

are recovered by sequential precipitation (Chomczynski, 1993).  Precipitation with ethanol yields 

DNA from the interphase and an additional precipitation with isopropyl alcohol yields proteins 

from the organic phase (Chomczynski, 1993).  Copurification of the DNA is useful for 

normalizing RNA yields from sample to sample.  This technique works well with small 

quantities of tissue (50-100 mg) and numbers of cells (5 X 106).   

      Cells were lysed directly in the 3.5 cm culture dish by adding 1 ml of TRIZOL 

reagent and passing the cell lysate several times through a pipette.  The homogenized samples 

were incubated for 5 min at 15 to 30°C to permit the complete dissociation of nucleoprotein 

complexes.  Add 0.2 ml of chloroform (0.2 ml per 1 ml of TRIZOL reagent) was added and 

tubes were vigorously shaken by hand for 15 seconds, then incubated at 30°C for to 3 minutes.  
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The samples were centrifuged at 12,000 X g for 15 minutes at 8°C.  Following centrifugation, 

the mixture separated into a lower red, phenol-chloroform phase, an interphase, and a colorless 

upper aqueous phase.  RNA remained in the aqueous phase.   

      The aqueous phase was transferred to a fresh tube.  The RNA was precipitated from 

the aqueous phase by mixing with 0.5 ml isopropyl alcohol per 1 ml of TRIZOL reagent used for 

the initial homogenization.  Samples were incubated at 30°C for 10 minutes, then centrifuged at 

than 12,000 X g for 10 minutes at 8°C.  The RNA precipitate, formed a gel-like pellet on the side 

and bottom of the tube. 

     The supernatant was removed and the RNA pellet was washed once with 1 ml of 75% 

ethanol per 1 ml of TRIZOL reagent used for the initial homogenization.  The sample was mixed 

by vortexing and centrifuged at 7,500 X g for 5 minutes at 8°C.   

     At the end of the procedure, the RNA pellet was vacuum-dried for 5-10 minutes.  The 

RNA was dissolved in 0.5% SDS solution by passing the solution a few times through a pipette 

tip, and incubating for 10 minutes at 60°C.  RNA can also be redissolved in 100% formamide 

(deionized) and stored at -70°C (Bracete et al, 1998).   

DNA Microarray.  These studies were carried out in collaboration with the University of 

Pittsburgh Genomics and Proteomics Core Labs.  The Affymetrix Genechip® system is a unique 

microarray technology utilizing a patented photolithographic process to manufacture 25-mer 

oligonucleotides (probes) directly on the array surface.  Each mRNA or EST sequence is 

represented by 11 probe pairs (the probe set for this gene.) Each probe pair consists of one 

feature containing a perfect match probe (PM) and an adjacent feature containing a mismatch 

probe (MM).  The sequences of the two probes differ by one base in the central position. 

Gene expression levels in tissues or cultures are measured from total RNA isolated from 

the sample of interest and processed to create biotinylated cRNA.  Five to forty micrograms of 
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total RNA was used as template in a reverse transcription reaction using oligo(dT)24 primers 

attached to a T7 RNA polymerase promoter sequence (1X Invitrogen 1st strand buffer, 5 µM T7-

(dT)24 primer, 1mM DTT, 500 µM each dATP, dGTP, dCTP, dTTP, 200-1000 U Superscript II, 

incubated for 1 h @ 42oC). This single stranded cDNA was transformed into double stranded 

cDNA by addition of 10 U DNA Ligase, 40 U DNA Polymerase I, additional dNTPs to 200 µM 

each, 2U RNAse H and 2nd strand buffer to 1X, followed by incubation at 16oC for 2 hours.  Ten 

units of T4 DNA Polymerase were added and the reaction incubated at 16oC for an additional 5 

minutes.  The reaction was stopped by the addition of EDTA to 0.03 M and applied to an 

Affymetrix cDNA clean-up column.  At the end of the second strand reaction, the cDNA sample 

was mixed with DNA binding buffer and this mixture applied to the column.  The column was 

spun in a microfuge to bind the cDNA to the membrane.  DNA wash buffer supplied with the kit 

was used to wash the membrane, which was then dried by centrifugation.  The cDNA was eluted 

with the kit-provided elution buffer.  An aliquot of the ds-cDNA equivalent to 5-7 µg of starting 

RNA was added as template to an in vitro transcription reaction as per the ENZO BioArray high 

efficiency RNA transcript labeling kit.  The resulting biotinylated cRNA was purified cleaned 

using an Affymetrix RNA clean up column. The procedure was identical to that for the DNA 

clean up using appropriately modified membranes and buffers as supplied. After elution, the 

cRNA was quantified by reading the OD260 of a 1:100 dilution on a spectrophotometer.  An 

aliquot of 20 micrograms of cRNA was incubated at 94oC in fragmentation buffer (40 mM Tris-

acetate, pH 8.1, 100 mM KOAc, 30 mM MgOAc) for 35 min to break the RNA into segments of 

35 to 200 bases.  A 1 µl aliquot of the sample was run on an Agilent Bioanalyzer to verify that 

fragmentation resulted to give in RNA of the desired size distribution.   

Fifteen micrograms of the fragmented RNA was added to a final volume of 300 µl 

hybridization cocktail (1X hybridization buffer, 100 µg/ml Herring sperm DNA, 50 µg/ml 
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acetylated BSA, 50 pM Affymetrix Control Oligo B2, 1X Affymetrix Eukaryotic Hybridization 

Control the 1X hybridization buffer containeded 100 mM MES, 1M Na+, 20 mM EDTA, 0.01% 

Tween 20.)  An appropriate volume of this sample was applied to the GeneChip® and the chip 

was incubated overnight at 45oC with rotation.  Following hybridization, the sample was 

removed and the GeneChip cassette filled with non-stringent wash buffer.  The chip was loaded 

onto an Affymetrix Fluidics station for washing and staining. Wash and stain protocols were the 

double stain protocols developed by Affymetrix for use with the Affymetrix Fluidics Station.  To 

remove unbound sample, arrays were first washed with non-stringent wash buffer (6X SSPE, 

0.01% Tween 20) followed by a stringent wash in 100 mM MES, 0.1M Na+, 0.01% Tween 20.  

The GeneChips® were then stained for 10 minutes in streptavidin-phycoerythrin (SAPE) 

solution (1X MES stain buffer, 2 mg/ml acetylated BSA, 10 µg/ml SAPE; 1X MES stain buffer 

contained 100 mM MES, 1M Na+, 0.05% Tween 20).  Non-stringent buffer was used to wash 

off the first stain solution.  Signal amplification was achieved by 10 minutes of incubation with 

biotinylated anti-streptavidin (1X MES stain buffer, 2 mg/ml acetylated BSA, 0.1 mg/ml normal 

goat IgG, 3 µg/ml biotinylated anti-streptavidin) followed by a second 10 min incubation with 

SAPE. The chip was washed and filled with non-stringent wash buffer before being removed 

from the fluidics station and scanned using the GeneArray® scanner. 

Basic absolute analysis was performed using the Microarray Analysis Suite (MAS) 5.0 

with each chip scaled to a median signal intensity of 150.  The signal from each probe set was 

calculated from the intensity levels measured for each PM and MM probe pair in that set. Signal 

levels reflected the abundance of expression of a given gene in the sample.  In addition, MAS 5.0 

calculated a detection p value.   This parameter provided a measure of the probability that the 

gene is present in the transcriptome of the sample and therefore a measure of the reliability of the 

calculated signal value.  
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4.3 RESULTS OF TRAMP CELL STUDY 

To test the effects of these four compounds;  4-methoxy Analog II, Analog II, JR oxime 1 and 

TDH 169, on cell growth, three different cell lines, C1A, C2H, C2N,were treated with 0.2% 

DMSO as a control, and a double screening method was used to calculate the GI50, TGI and 

LC50.  Colchicine was used as a positive control.  The first screen consisted of test agent 

concentrations in a five fold dilution series (640 pM to 10 µM).  The second screening was 

centered around the GI50 of the first screen, using 2- fold dilutions (0.625 to 1 µM).  In the first 

screening, Analog II displayed GI50, TGI and LC50 greater than the maximum concentration used 

(10 µM on all three cell lines); therefore, Analog II was eliminated from the second screening.  

Tables 13, 14 and 15 summarize the results of the first and second screenings on all three cell 

lines, and show that 4-methoxy Analog II was the most promising compound to carry forward.  

4-methoxy Analog II was the most potent of the four agents screened, and behaved similarly 

across all three cell lines.  4-Methoxy Analog II also exhibited the most dramatic concentration 

dependent inhibition on growth as compared to the other drugs screened (Figures 13-21). 
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Table 13.  GI50 TGI and LC50 of Test Agents Against the C1A Cell Line 

Compound GI50 (µM) TGI (µM) LC50 (µM)

4-methoxy Analog II 
 
0.29 ± 0.06 1.5 ± 0.70    5.3 ± 1.1 

Analog II > 10 µ M > 10 µ M > 10 µ M 

JR oxime 1 5.4 ± 1.3 > 10 µ M > 10 µ M 

TDH 169 2.0 ± 0.30 3.3 ± 0.0 3.3 ± 0.0 

Colchicine 0.04 ± 0.01 > 10 µ M > 10 µ M 

 

Table 14.  GI50, TGI and LC50 of Test Agents Against the C2H Cell Line 

Compound GI50 (µM) TGI (µM) LC50 (µM) 

4-methoxy Analog II 
 
0.32 ± 0.06 1.7 ± 0.68  4.0 ± 3.5 

Analog II > 10 µ M > 10 µ M > 10 µ M 

JR oxime 1 5.8 ± 0.95 > 10 µ M > 10 µ M 

TDH 169 2.9 ± 0.29 4.8 ± 0.89 8.96 ± 0.0 

Colchicine 0.04 ± 0.008 > 10 µ M > 10 µ M 

 

Table 15.  GI50, TGI and LC50 of Test Agents Against the C2N Cell Line 

Compound GI50 (µM) TGI (µM) LC50 (µM) 
4-methoxy Analog II 0.36 ± 0.06 1.6 ± 0.90  3.7 ± 1.1 

Analog II > 10 µ M > 10 µ M > 10 µ M 

JR oxime 1 5.4 ± 2.1 > 10 µ M > 10 µ M 

TDH 169 0.78 ± 0.23 1.2 ± 0.0 1.1 ±0.82 

Colchicine 0.08 ± 0.02 > 10 µ M > 10 µ M 
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Figure 13.  Concentration-Dependent Growth Inhibition of 4-Methoxy Analog II on the TRAMP C1A Cell Line 
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Figure 14.  Concentration-Dependent Growth Inhibition of 4-methoxy Analog II on the TRAMP C2H Cell Line 
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Figure 15.  Concentration-Dependent Growth Inhibition of 4-methoxy Analog II on the TRAMP C2N Cell Line 
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Figure 16.  JR oxime 1 Concentration-Dependent Growth Inhibition on C1A Cell Line 
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Figure 17.  JR oxime 1 Concentration-Dependent Growth Inhibition on C2H Cell Line 
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Figure 18.  JR oxime 1 Concentration-Dependent Growth Inhibition on C2N Cell Line 
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Figure 19.  TDH 169 Concentration-Dependent Growth Inhibition on C1A Cell Line 
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Figure 20.  TDH 169 Concentration-Dependent Growth Inhibition on C2H Cell Line 
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Figure 21.  TDH 169 Concentration-Dependent Growth Inhibition on C2N Cell Line 
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It was then hypothesized that the 4-methoxy Analog II concentration-dependent 

inhibition could be due to programmed cell death (a.k.a. apoptosis).  In order to test this 

hypothesis, an ELISA assay was conducted to quantify apoptosis and determine the minimum 

apoptosis-inducing concentrations of 4-methoxy Analog II on each cell line.  The results are 

shown in Figures 22, 23 and 24.  In each of these graphs, an increase is seen in apoptosis as the 

concentration of 4-methoxy Analog II was increased.  On cell line C1A, 4-methoxy Analog II 

caused an increase in apoptosis up to the GI70 concentration.  Beyond the GI70, the cytotoxicity 

increased to the extent that the apoptosis was limited due to competing cell death mechanisms, 

likely necrosis.  Table 16 lists the calculated minimum apoptosis-inducing concentrations of 4-

methoxy Analog II on each cell line. 
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Figure 22.  Apoptosis due to 4-methoxy Analog II in the C1A Cell Line 
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Figure 23.  Apoptosis caused by 4-methoxy Analog II on C2H Cell Line
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Figure 24.  Apoptosis caused by 4-methoxy Analog II on C2N Cell Line 
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Table 16.  Minimum Apoptosis-Inducing Co ncentration of 4-Methoxy Analog II in Each 
Cell Line 

Cell Line Minimum Apoptosis-Inducing Concentration (µM) 

C1A 0.14 ± 0.05 (µM) 

C2H 0.10 ± 0.03 (µM) 

C2N 0.12 ± 0.01 (µM) 

 

Figure 25 shows the results of the PARP cleavage assay.  The PARP cleavage assay  is 

another test used to verify the occurrence of apoptosis.  This is a simple test conducted using 

Western blot analysis.  PARP is a nuclear repair enzyme that is involved in the repair of DNA 

damage.  During apoptosis, certain caspase family members cleave PARP.  The full size PARP 

protein is 116 kDa and when apoptosis is occurs PARP is cleaved into a smaller fragments of 89 

kDa and 24 kDa (Satoh and Lindahl, 1992). Due to limitations in resources, the PARP cleavage 

assay was conducted on only the C1A cells, using a concentration of 1.5 µM (TGI concentration 

calculated previously) of 4-methoxy Analog II at times of 0, 24, 48 and 72 h.  The TGI was 

chosen because it was expected that apoptosis would be most detectable at this concentration.  

The analysis showed no detectable PARP cleavage in the control groups (i.e., no band at 89 

kDa), whereas the 48 hour treatment group showed PARP cleavage band at 89 kDa.  Also note 

that in the treated C1A cells at 72 hours, the sample was underloaded.  This can be seen in the 

Western blot analysis of the actin. 
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Figure 25.  PARP Cleavage Western Blots of C1A cells, Untreated (Control) and Treated 
with 1.5mM 4-methoxy Analog II on 10% Resolving Gel at Times of 0, 24, 48 and 72 
Hours.  There were 3 independent experiments performed. 
 

Next, flow cytometry was used to quantify the apoptosis resulting from treatment of C1A 

cells with 4-methoxy Analog II.  C1A cells were again treated with of 1.5 µM (TGI previously 

calculated) 4-methoxy Analog II for 0, 48, and 72 h.  Untreated cells and treated cells were 

sequentially stained with annexin V (green fluorescence) and propidium iodide (PI) (red 

fluorescence), then analyzed by flow cytometry.  Figure 26 shows the dot plots for annexin V 

and propidium iodide staining at time 0 (untreated).  Apoptotic cells stained with annexin V but 

not PI appear in the lower right quadrant of the dot plots.  Necrotic cells appear in the upper right 

quadrant stained with both PI and annexin V.  At 48 h after treatment, 16.12% of the cells treated 

with 4-methoxy Analog II were in the apoptosis quadrant as compared to 8.71% of the control 

cells in the apoptosis quadrant.  In addition, at 72 h of treatment, 29.64% of the cells treated with 

4-methoxy Analog II had demonstrated apoptosis, as compared to 18.13% apoptosis, in the 

control culture.  This is approximately a 50% increase in apoptotic cells when comparing the cell 

culture treated with 4-methoxy Analog II to the control group. 
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[H]FL1 Log/FL3 Log   

Region Number Percent Gated 

B1 112 3.50 

B2 225 7.04 

B3 2426 75.91 

B4 433 13.55 

 

Figure 26.  Two Color Flow Cytometric Evaluation of Cells for Apoptosis.  Control Time 0. 
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[H]FL1 Log/FL3 Log   

Region Number Percent Gated 

B1 61 3.66 

B2 89 5.34 

B3 1310 78.58 

B4 207 12.42 

 

 

Figure 27.  Tw o Color Flow Cytometric Evaluation of Cells for Apoptosis.  Treatment at 
Time 0. 
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[H]FL1 Log/FL3 Log   

Region Number Percent Gated 

B1 21 1.19 

B2 32 1.81 

B3 1561 88.29 

B4 154 8.71 

 
Figure 28.  Two Color Flow Cytometric Evaluation of Cells for Apoptosis.  Control at Time 
48 hours. 
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[H]FL1 Log/FL3 Log   

Region Number Percent Gated 

B1 51 4.09 

B2 114 9.14 

B3 881 70.65 

B4 201 16.12 

 
 
 

Figure 29.  Tw o Color Flow Cytometric Evaluation of Cells for Apoptosis.  Treatment at 
Time 48 hours. 
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[H]FL1 Log/FL3 Log   

Region Number Percent Gated 

B1 16 1.39 

B2 84 7.32 

B3 839 73.15 

B4 208 18.13 

 
Figure 30.  Two Color Flow Cytometric Evaluation of Cells for Apoptosis.  Control at Time 
72 hours. 
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[H]FL1 Log/FL3 Log   

Region Number Percent Gated 

B1 78 6.35 

B2 131 10.67 

B3 655 53.34 

B4 364 29.64 

 
 

Figure 31.  Tw o Color Flow Cytometric Evaluation of Cells for Apoptosis.  Treatment at 
Time 72 hours. 
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Finally, a microarray analysis was conducted on C1A cells treated with 1.5 µM 4-

methoxy Analog II in comparison to a control population of untreated C1A cells.  The objective 

of the microarray analysis was to determine whether apoptosis inhibitor genes and activator 

genes were experiencing altered expression due to 4-methoxy Analog II.  The raw data obtained 

from the microarray analysis was reduced using a two-tailed p value of 0.005 and 0.995 as per 

the manufacturer’s guidelines for significant change in gene expression between the control 

group and the treatment group.  The complete file of the probe IDs were then entered into Onto-

Express to identify the genes associated with apoptosis.  From the probe IDs, Onto-Express 

identified 10 distinct genes associated with apoptosis.  Onto-Express also categorized these 

genes as apoptosis inhibitors or activators.  Table 10 lists the apoptosis related genes identified 

by Onto-Express, along with the change in expression levels of these genes due to treatment with 

4-methoxy Analog II.  The apoptosis activator genes Bok and Siva-pending were upregulated 

due to treatment of C1A cells with 4-methoxy Analog II.  In addition, the apoptosis inhibitor 

genes Birc 4, Dad1, and Atf5 were downregulated due to treatment of C1A cells with 4-methoxy 

Analog II.  
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Table 17.  Results of microarray analysis-change in expression of  apoptosis related genes in the treatment versus the control 
 

Gene Gene Title apoptosis Change in Gene Gene Gene Change
activator Expression (treatment Signal Signal  p-value 

 or inhibitor compared to control) (control) (treatment) (two tailed)

Bok
Bcl-2 related ovarian killer 
protein activator increase 173.6 314.6 0.00002

Siva-pending CD27 binding protein activator increase 441.2 534.1 0.00003
Siva-pending CD27 binding protein activator increase 125.8 168.1 0.00097

sh3glb1
SH3-domain GRB2-like B1 
(endophilin) activator decrease 266.7 165.5 0.99951

PTEN phosphatase & tensin homolog activator decrease 875.1 615.8 0.99976
trim35 tripartite motif-containing 35 activator decrease 458.8 312.9 0.99987

PTEN phosphatase & tensin homolog activator decrease 318.7 194.3 0.99996

sh3glb1
SH3-domain GRB2-like B1 
(endophilin) activator decrease 215.6 147.2 0.99998

Hspa1b heat shock protein 1B inhibitor activity increase 251.4 652.7 0.00002
Hspa1b heat shock protein 1B inhibitor activity increase 214.2 557.4 0.00002
Hspa1b heat shock protein 1B inhibitor activity increase 252.5 973.9 0.00002
Api 5 Apoptosis inhibitor 5 inhibitor activity increase 448.4 633.7 0.00249

Birc 4
baculoviral IAP repeat 
containing 4 inhibitor activity increase 10.2 23.5 0.00336

Birc 4
baculoviral IAP repeat 
containing 4 inhibitor activity decrease 30.9 20.7 0.99696

Dad1 defender against cell death 1 inhibitor activity decrease 483.9 321.7 0.99880

Birc 4
baculoviral IAP repeat 
containing 4 inhibitor activity decrease 25.4 17.3 0.99997

Dad1 defender against cell death 1 inhibitor activity decrease 784.3 620.9 0.99998
Atf5 activating transcription factor 5 inhibitor activity decrease 594.3 186.7 0.99998
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4.4 TRAMP DISCUSSION 

 

The first step in this study was to determine the most desirable of the four promising 

antiproliferative agents Analog II, 4-methoxy Analog II, JR oxime 1 and TDH 169, using the 

MTT assay, in terms of antiproliferative activity against TRAMP cell lines.  The agents Analog 

II and 4-methoxy Analog II have previously been tested in other prostate cancer cell lines (PC-3 

and LNCaP), but never against the prostate TRAMP clonal cell lines C1A, C2H and C2N 

(Balachandran et al, 2000).  The screening revealed that 4-methoxy Analog II showed the most 

potency and reproducibility.   

 4-methoxy Analog II has previously been shown to inhibit the prostate specific antigen 

production of and to induce apoptosis in both LNCaP and PC-3 cell lines (Balachandran et al, 

2000).  In the present study, 4-methoxy Analog II was found induce apoptosis in the C1A, C2H 

and C2N cell lines.  The C1A TRAMP cell line displayed the most severe reaction to 4-methoxy 

Analog II.  Three methods were used to detect apoptosis induction by the agent.  The ELISA 

assay was conducted on all three cell lines to quantify apoptosis and determine the minimum 

apoptosis inducing concentrations of 4-methoxy Analog II.  Apoptosis was verified with the 

PARP cleavage assay on the C1A cell line, giving a minimum apoptosis-inducing concentration 

of 1.5 µM for 4-methoxy Analog II (Darmon et al, 1995; Li et al, 1998).   Two-color flow 

cytometric evaluation was conducted to further verify the induction of apoptosis.  Collectively, 

these results clearly suggest that 4-methoxy Analog II induces apoptosis in the C1A cell line.   

    Microarray analysis was used as a tool to determine whether apoptosis-regulating 

genes were coordinately upregulated or downregulated in the C1A cell line due to treatment with 

4-methoxy Analog II.  The apoptosis activator genes Bok and Siva-pending were found to be 
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upregulated, and the apoptosis inhibitor genes Birc 4, Dad1, and Atf5 were found to be 

downregulated.  Table 17 summarizes the changes in regulation as determined by the microarray.  

Table 18.  Apoptotic Gene Changes in Regulation and Function 

   
Bok ↑ 

-Bok is tissue mediator of cell death & promotes apoptosis by 
interacting with selective anti-apoptotic protein (Hsu et al, 2000; 
Yakovlev et al, 2004). 

 
Siva-pending ↑ 

-Siva binds to CD27 
-Overexpression of Siva in various  cell lines induces apoptosis 
this suggests siva increases CD27 transduced  apoptotic pathway 
(Yoon et al, 1999). 

 
Sh3glb1 ↓ 
 

-Interacts with known  pro-apoptotic Bax 
-Overexpression of sh3glb1 has no major effect on mammalian 
cell death 
-Increase in apoptosis due to binding  with pro-apoptotic Bax 
(Pierrat et al, 2001). 

 
 
 
 
 
PTEN  ↓ 
 

-Known to play a role in progression of prostate cancer 
-Thought to be tumor suppressor gene because it down regulates 
phosphoinositide 3-kinase/Akt pathway 
-Phosphoinositide 3-kinase/Akt pathway induces cellular 
transformation 
-Mouse studies have shown that lack of PTEN is a mechanism of 
progression of prostate cancer (Di Vizio et al, 2005). 
 

Trim35  ↓ -No apoptosis studies on this gene 
-Considered an anti-apoptotic protein 

Hspa1b  ↑ -Also known as Hsp70 
-Hspa1b inhibits the nuclear import of apoptosis-inducing factor 
(Ito et al, 1998). 

Api5  ↑ -No apoptosis studies on this gene 
-Considered an anti-apoptotic protein 

Dad1  ↓ -Loss of Dad1 protein triggers apoptosis 
-Shown to bind with Bok and prevent Bok from generating 
apoptosis (Ayala et al, 2004). 

Atf5  ↓ -Few studies have been performed to characterize Atf5 and its 
biological function 
-Has been shown to inhibit apoptosis (Angelastro et al, 2003). 
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The mechanism by which this occurs is currently unknown but could be due to mitotic 

block induced by 4-methoxy Analog II.  Based on these experimental results, additional work 

would include further investigation of the specific mechanisms at different stages of the cell 

cycle by which the genes identified by microarray actually produce the apoptotic results on the 

C1A cell line. 

   In relating the findings of this research to humans it should be noted that the homology 

of the mouse proteins produced by these genes is similar to that of humans.  Table 19 

summarizes the homology of these genes between mice and humans.  Based on these similarities 

it is reasonable to expect the effects of 4-methoxy Analog II on the human prostate cancer cell 

lines to be similar to the effects found in the TRAMP model.   

Table 19.  Similarities Between Genes in Human and Mouse 

Gene Mouse chromosome 
Human 
chromosome 

% similarity to 
humans over 
the aa 
sequence 

    
Bok chromosome 1 syntenic 2(q37.3) 100% / 213 aa 
Siva-pending 12(F2) 14q32.33 70% / 174 aa 
Sh3glb1 chromosome 3 syntenic 1(p22) 95% / 365 aa 
PTEN 19(24.5cM) 10(q23.3) 99.7% / 403 aa 
Trim35 14(D1) 8(p21.1) 28% / 475 aa 
Hspa1b 17(18.9cM) 6(p21.3) 91.59% / 225 aa 
Api5 2 syntenic 11(p12-q12) 98.2% / 504 aa 
Dad1 14(24.0cM) 14q11-q12 100% / 113 aa 
Atf5 7 syntenic 19(q13.3) 87% / 282 aa 

 

Additional research would include in vivo studies using the TRAMP C57BL/6 mice 

treated with various doses of 4-methoxy Analog II to yield plasma concentrations centered 

around the LC50.  The TRAMP C57BL/6 line is genetically engineered to develop prostatic 

intraepithelial neoplasia by 8-12 weeks of age that progress to adenocarcinoma with distant 
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metastases by 24-30 weeks of age.  This in vivo assay with TRAMP mice would provide 

additional insight into the effectiveness of 4-methoxy Analog II as a potential therapeutic agent 

for human prostate cancer.  Specifically, the in vivo testing would provide insight into the 

biological transport and interactions of 4-methoxy Analog II, as well as its ability to target the 

prostate cancer cells within a living mouse. 

 101



 

5 SUMMARY AND DISCUSSION 

This investigation outlines the development of a chemical-animal model utilizing a toxicological 

and therapeutic approach.  The results are developed from the latest techniques being implored in 

the chemical and biomedical field.   This research outlines a model building approach which 

progresses from a preliminary agent screening technique (QSAR/SAR) based on literature 

studies through in vivo studies using assays such as the  Chernoff-Kavlock Assay (CK Assay) to 

high throughput mechanistic targeted assays, such as the TRAMP model. 

Drug discovery and development is not new to humans.  Many ancient populations 

reported the medicinal properties of various plant extracts and elixirs, all the result of a necessary 

trial and error search for remedies of specific ailments (Sneader, 1985).  In early civilization, 

man used elements from his natural surroundings to treat specific diseases.  In ancient 

civilizations and today, the single most important source of drugs or drug precursors has been 

nature (Verpoorte, 1998).  Up until the 19th century the development of therapeutic agents was a 

trial and error process that was developed and based on experience, and passed on from 

generation to generation.  In the 19th century scientists developed techniques for analyzing and 

determining the specific components of these ancient extracts and were thus able to determine 

the individual components of these natural therapies with therapeutic activity.   

True drug discovery as we know it today began to develop when the first structures of 

receptors were found.   The first rational drug discovery effort can be traced back to John 

Langley and Paul Ehrlich, the discoverers of the receptor concept. By the early 20th century the 

fields of biology, chemistry and pharmacology increased rapidly, and theories about drug action 

and mechanism expanded.   
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      In traditional modern medicine, drug discovery is a process that begins with a known 

disease or ailment in an organism and a therapeutic theory is developed to combat the disease or 

ailment.  With the existing knowledge of biological processes and interactions, scientists develop 

a list of potential therapeutic treatments and begin a screening process to determine the viability 

of these agents at combating the ailment.  Typical screening techniques include in vitro and in 

vivo testing of each specific agent.  This traditional method of drug screening and drug 

development, while used to develop many of the treatments of today, is extremely time 

consuming and may or may not lead to an effective treatment.  

    Today, scientific advancement has created opportunities for researchers to become 

more proficient at drug screening and development, as compared to the accepted development 

process of just a few years ago.  Today scientists are able to identify thousands of new targets 

through the ability to sequence a genome and identify every expressed gene.  This provides 

scientists with the ability to rapidly identify specific gene expression relevant to the onset and 

persistence of a disease. With this genetic information researchers may know the role, function, 

structure, gene location, biochemical pathway, molecular interactions, and expression levels of 

each and every protein coded by a particular genome. The impact of these developments in 

genomic sciences on drug discovery will change the course of this field remarkably. In fact, at 

present in most major pharmaceutical companies, 10% to 25% of new discovery projects are 

based on genomics (Caron et al, 2001). 

     There are several ways to use genomic analysis to identify specific molecular targets 

(Jones et al, 1999). One powerful method to rapidly analyze the expression of thousands of genes 

is the use of microarrays.  In microarrays, oligonucleotides are attached to glass slides to form 

arrays and then hybridized with cDNAs from some particular tissue or cell type. A fluorescent 
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detection system allows for the quantification of interaction of the cloned gene with the cDNA.  

Using microarrays, gene expression patterns for many different animal tissues can quickly be 

obtained under different experimental conditions.  Microarrays can be utilized in research to 

determine the effect of a treatment on gene expression associated with a specific disease.  For 

example, microarrays can be used to analyze groups of cells that are diseased versus not 

diseased.  By comparing the gene expression between diseased and normal cells, scientists can 

designate specific proteins encoded by those genes more highly expressed in the diseased state to 

be a potential target for therapy (Neamati and Barchi, 2002).   In addition, microarrays can be 

utilized on diseased cells that are either treated or untreated.  By determining the changes in 

disease associated gene expression between the control and the treatment group, researchers can 

compare and correlate the effects on the disease due to a specific toxin or inhibitor.   

     With the development of genomic analysis there are many new targets to be evaluated 

in drug discovery.  New techniques have been developed to expedite the preliminary drug 

screenings.  These techniques combine elements of biology and chemistry with mathematics, 

statistics and computer sciences.  These techniques are referred to as bioinformatics and 

chemoinformatics, and focus on large datasets such as macromolecular structures, genome 

sequences, 3D chemical databases and compound libraries.  Informatic methodologies rely on a 

variety of computational techniques (Manly et al, 2001; Luscombe et al, 2001) including 

sequence and structural alignment, database design and data mining, macromolecular geometry, 

phylogenetic tree construction, prediction of protein structure and function, gene searching and 

expression data clustering, chemical-similarity clustering, diversity analysis, library design, 

virtual screening and QSAR (Luscombe et al, 2001). 
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   The informatic technology utilized in this research is the QSAR/SAR model 

(Quantitative Structure Activity Relationship/Structure Activity Relationship).  The QSAR/SAR 

model was developed through (1) conformational analysis; (2) generation of physico-chemical 

properties; (3) preliminary model development; (4) linear discriminant analysis; and (5) choice 

of the final candidate model.   Conformational analysis is utilized to determine the final three-

dimensional structure that represents the lowest energy (i.e., in terms of steric strain) 

arrangement of atoms comprising a molecular structure (i.e., the global minimum energy 

conformation).  Computational analysis is then used to determine the chemicals properties.  The 

chemicals properties describe the size or shape of the compound and provide metrics of the 

molecule.  These metrics include electronic aspects of repulsion and attraction within and with 

other molecules that might affect potential binding sites, and transport properties of how 

compounds cross membranes in the body and how they are transported through the body. 

   Next the preliminary model is developed using statistical analysis.  Histograms are 

generated to examine the normality assumption necessary for discriminant analysis.  A 

correlation matrix is made for all possible independent variables to determine information 

redundancy.  All-possible regression is used as a tool to explore all of the potential models and 

the r2 value is utilized to determine the best models from the group of candidate models.  Next, 

linear discriminant analysis is used to generate the difference between two or more groups with 

respect to several variables simultaneously.  Linear discriminant analysis is used to generate 

functions for the classification of chemicals into actives versus inactives.  For the choice of the 

final candidate model, a complete leave one out cross validation procedure is employed.  The 

complete leave one out cross validation is a technique where each compound is removed once 

from the total data set and the remaining compounds are used to train and build a new model.  
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The new model based on the reduced training set is then applied to the single compound that was 

removed during the generation of the current model.  This procedure repeats until models with 

each of the individual observations removed are generated.  Using this method, the sensitivity, 

specificity and squared distance (deviation) is calculated.   

Once a model is developed, the results need to be confirmed.  Depending on the specifics 

of the application and treatment, researchers typically employ an animal assay or clinical trials.  

For this research, a QSAR/SAR model predicted a chemical compound was positive for an 

adverse outcome on the developing fetus.  Due to the nature of the resulting effect, an animal 

study was the only acceptable in vivo validation technique.  The animal assay utilized in this 

study was a modified version of the Chernoff-Kavlock (CK) assay.  The CK assay utilized 

pregnant female mice that were orally gavaged with 13-cis retinoic acid.  The dosing of this 

compound was during the period of major organogenesis.  The mother is examined during the 

entire pregnancy for signs of toxicity and the dams are allowed to deliver the pups.  The 

endpoints evaluated in this modified version of the CK assay were fetal death and growth 

retardation.  To determine growth retardation, pups were tagged and weighed on postnatal day 

one and three.  To determine fetal death the number and status of all pups born was monitored.  

After postnatal day three the dams were killed and determination of implantation sites were 

conducted to determine the number of absorptions. 

This investigation introduced multiple disease endpoints and multiple treatments during 

the process of summarizing a method for the development of a chemical animal model.  The 

specific adverse health conditions this research was conducted on are developmental toxicity and 

prostate cancer.  Both of this health conditions play a predominant role in the health status of 

society today.    
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Developmental toxicology studies exposures to agents that cause abnormal development, 

and it is estimated that 1 in 3 children born have developmental defects.   In addition, these 

defects are the leading causes of infant mortality and disability in the world.  Many birth defects 

are the result of chemical interactions resulting from exposure during pregnancy, however the 

effects of many chemical compounds on the outcome of human pregnancies are unknown.  

Researchers currently utilize clinical studies and animal testing to determine the effects of 

chemical exposure on the outcome of pregnancies, however both of these methods have 

shortcomings.  In clinical research, it is difficult to determine all of the chemicals a mother has 

been exposed to, and/ or if a combination of these chemicals lead to the defect.   Animal testing 

is expensive, time consuming and requires each chemical compound to be tested individually.  In 

addition, results from animal tests are also difficult to apply to humans, and the results obtained 

may or may not apply to the developing human fetus.  Therefore, a quicker screening process is 

needed to predict the outcome of these chemicals on the human fetus.  A potential screening 

process that can be applied to the exposure of chemicals on the developing fetus is the use of 

QSAR/SAR model development.  Utilizing QSAR/SAR models, preliminary data can be 

developed for chemicals with little to no information on their effects on the developing fetus.  

Thus chemicals can quickly be segregated into active versus inactive for adverse effects on the 

developing fetus and additional studies can be concentrated on those chemicals that are predicted 

to have an adverse effect. 

The other health endpoint utilized in this research is adenocarcinoma of the prostate.  

Prostate cancer treatment and awareness have drastically improved over the last decade, however 

prostate cancer remains the most common cancer in American men. (Gingrich and Greenberg, 

1996).  Public health awareness, improvements in early detection of prostate cancer and new 
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treatments of prostate cancer have increased the survival rate, however prostate cancer remains 

the second leading cause of cancer deaths in American men (Parker et al, 1997).  In fact, an 

estimated 29,900 American men lose their lives to prostate cancer each year, with one death 

occurring every twenty minutes (National Prostate Cancer Coalition, 2003).  There are many 

available treatment options for prostate cancer, including prostatectomy, radiation, brachytherapy 

(radioactive seeds), hormone deprivation therapy, chemotherapy, and many other alternative 

therapies.  However, all of these treatments techniques have drawbacks and side effects.  Ideally, 

researchers would like to understand the specific genes associated with the onset of prostate 

cancer and develop drugs to prevent the expression of these genes, and therefore eliminate the 

onset of the disease. 

There are currently many accepted models for prostate cancer research.  However, one of 

the most promising models is the transgenic adenocarcinoma of the mouse prostate (TRAMP) 

mouse model.  The TRAMP model was genetically engineered so that each mouse will develop 

its own prostate cancer.  The TRAMP model has advantages over other models, including the 

use of a pure developing prostate cancer that mimics the development of prostate cancer in 

humans, and the ability to conduct research in a mouse that has an intact immune system.  In 

addition, since the TRAMP mouse develops prostate cancer on it’s own it’s use presents the 

ability to conduct  preventative studies and observe the effects of environment, diet and other 

factors on prostate cancer development.  Therefore, while the majority of existing knowledge 

and treatment is based on correcting or treating the prostate cancer after it has developed the 

TRAMP model allows research into factors and treatments that may lead to actual prevention of 

the onset of prostate cancer altogether. 
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QSAR are developed to predict the effect of chemicals on biological systems, including 

the reproductive system.  In this research, Molecular Modeling Pro™ was used to calculate the 

physicochemical properties for a series of dopamine mimetics.  The study was conducted on a 

twelve compound database consisting of a series of dopamine mimetics to generate a model to 

predict actives versus inactives.   

   The modeling in this study was based on research conducted by SmithKline Beecham 

Pharmaceuticals.  Their work consisted of a series of dopamine mimetics developed as potential 

therapeutic agents.  These dopamine mimetics were for therapeutic use in a population that 

include fertile female humans.  Therefore, the reproductive toxicity of the dopamine mimetics 

was a concern.  In the original study, the dopamine mimetics were tested in rats, who were 

treated orally by gavage from days 6 to 15 post coitum.  A qualitative assessment of 

developmental followed by the application of  QSAR techniques (Ridings et al, 1992).  The 

results of this study was a 22 parameter model predicting biological activity of these dopamine 

mimetics. 

In the present study, the original rat study data of these dopamine mimetics was used to 

construct an equally accurate, but mathematically simpler biological activity predictive model, 

using molecular modeling, physico-chemical properties, and statistical techniques.  The outcome 

of this re-evaluation was a two parameter model described by the molecules’ HLB (hydrophilic 

lipophilic balance) and density. 
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The two final predictive models were: 

 

Biological Activity of Dopamine Mimetics = 4.45 - 0.528 HLB 

and 

Biological Activity of Dopamine Mimetics = -7.30 + 7.14 density 

 

Through statistical methods these models were validated and the results of the analysis 

show that, individually, the parameters HLB and density effectively predicted biological activity 

of all compounds except for compound 6.  Compound 6 is, however, not truly a dopamine 

mimetic.  Compound 6 is without any monoamine potentiating properties.  Therefore, these two 

parameters were 100% effective at predicting the biological activity of the true dopamine 

mimetic compounds analyzed, and 91.7% effective at predicting the biological activity of all 

twelve compounds.  The squared distance was 5.48, which showed that the means of the two 

groups were 5.48 standard deviations apart.  This showed there was very little overlap between 

the groups when using ± 3 standard deviations per group.  This also showed that the predictions 

were divided into two distinct groups (biologically active or inactive). 

  In addition these results display that the categorization of compound 8 as biologically 

active is a questionable call based on the limited experimental data obtained, and that based on 

the model development techniques compound 8 is likely inactive.  Additionally, analysis was 

conducted using specific endpoints of fetal death, fetal weight and malformations.  Accurate 

predictive models were generated categorizing compounds 1,2,7,11 as positive for the endpoints 

of fetal weight and malformations and accurate predictive models were generated categorizing 
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compounds 1,2,7 as positive for the endpoint of fetal death.  In all models generated density was 

a major physicochemical property associated with activity in this series of dopamine mimetics.  

The parameters HLB, Hansen dispersion, hydrogen bond acceptor and dipole moment are also 

all associated with the biological activity of these dopamine mimetics. 

From the application of the generated models to determine values of the specific 

parameters in the models that would indicate biological activity of unknown compounds with 

similar structure to those used to develop the models, a density value of 1.16 or greater is 

indicative of a compound that is teratogenic, a density of approximately 1.22 or greater or a 

dipole moment greater than 4.86 indicates the compound is active for fetal death, and a density 

value of 1.16 or greater is indicative of a compound that is active for growth retardation and/or 

malformations.  While the specific values determined from the models are not exact limits for 

activity versus inactivity, any compounds that are similar in structure to the compounds used to 

develop these models and have parameters approximately equal to those derived should be 

suspect for the specific activity listed.  As with any QSAR/SAR model, these determinations are 

not exact, however researchers synthesizing similar compounds in the future can utilize these 

parameter values for early initial predictions of the newly synthesized compounds biological 

effects. 

The results of the QSAR/SAR model show that a mathematically simpler model is 

effective at predicting the biological activity of the dopamine mimetics.  This illustrates that 

when developing a QSAR/SAR model a large complex model is not always necessary, and a 

simpler model may be just as effective at predicting biological activity as the complex model.  

The usefulness of generating a QSAR/SAR model is to quickly and accurately screen related 
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compounds for biological activity.  The simpler the model and the more readily available the 

variables are, the more effective and useful a model is in application. 

The next segment of research was validating a reproductive QSAR/SAR model through 

in vivo animal testing.  A series of chemicals not used for the QSAR/SAR model development 

was submitted for prediction and based on the physico chemical properties the model predicted 

retinoic acid was positive for developmental toxicity.  The in vivo validation utilized a timed 

pregnant mouse study using Retinoic Acid as the chemical agent and the CK assay.   The CK 

assay quantitatively measures effects on fetal viability and growth.  The specific endpoints 

analyzed in this study were maternal toxicity, fetal growth and pup death. 

In this study, maternal toxicity was slightly evident but not significant, and no dose 

dependent reduction in fetal growth was evident.  The endpoint that was unambiguously 

associated with influenced cis RA treatment was fetal death.  In all instances, when the dose 

increased the number of surviving pups decreased.  In all categories of fetal death that were 

evaluated, the relationship between increased dose and increased death was statistically 

significant, giving p values of 0.05 or less.  Statistical analysis revealed these effects were dose-

dependent.  These results demonstrated, in a quantitative manner, the developmental toxicity of 

retinoic acid in the mouse, as was predicted by our SAR model and as was expected from 

developmental literature. 

The final segment of research was the in vitro experimentation conducted on a series of 

four microtubule perturbing agents that have been classified as promising antiproliferative cancer 

agents (Analog II, 4-methoxy Analog II, JR oxime I and TDH 169).  Research was conducted 

with these four agents to determine their effects on cell viability, cell death and gene expression 

of three TRAMP cell lines, C1A, C2H and C2N. 
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The MTT assay revealed that 4-methoxy Analog II treatment displayed the most 

promising antiproliferative effects.  Therefore, additional research was conducted with  4 -

methoxy Analog II alone.   An ELISA assay was conducted on all TRAMP cell lines and 

revealed the minimum apoptosis-inducing levels of 4-methoxy Analog II on each cell line.  Due 

to limitations in resources additional experiments were limited to the C1A TRAMP cell line, 

because the C1A cell line showed the most promising results.  The ELISA assay was followed 

by PARP cleavage and flow cytometry assays to confirm and quantify apoptosis attributable to 4 

-methoxy Analog II on the C1A cell line.  Finally, a microarray was conducted to determine 

alterations in gene regulation of the C1A cell line due to treatment with 4 -methoxy Analog II.  

Changes in gene regulation due to treatment were found in apoptosis activator genes Bok and 

Siva-pending (found to be upregulated) and the apoptosis inhibitor genes Birc 4, Dad1 and Atf5  

(found to be downregulated).  Further research would include in vivo testing of the agents 

identified by the TRAMP cell lines experiments that produce the most therapeutic results.  The 

potential benefits from this research would be the development of a drug treatment that would 

combat prostate cancer in the human. 

In summary, this research provides an outline of a chemical animal model building 

approach utilizing the latest techniques being implored in the chemical and biomedical field.  

The process outlined in this research begins with a QSAR/SAR model development by means of 

computational chemistry on a series of dopamine mimetics that are expected developmental 

toxicants.  The research progresses through in vivo model validation using a QSAR/SAR model 

predicted positive developmental toxicant, retinoic acid.  The final portion of this research 

includes in vitro testing on a novel cell lines,  TRAMP, to evaluate four promising 

antiproliferative cancer agents Analog II, 4-methoxy Analog II, JR oxime 1 and TDH 169.   
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The overall results display a systematic approach for use in drug research to evaluate a 

series compounds by developing a chemical animal model.  This systematic approach provides a 

guideline for future efforts in developing therapeutic treatments for various diseases.  In addition, 

the results also provide insight into the toxic effects of several compounds (dopamine mimetics 

and retinoic acid) in the emergent field of developmental toxicology.  The results also present 

information regarding the effect of the promising antiproliferative cancer agents 4-methoxy 

Analog II on the C1A TRAMP cell line.  The microarray analysis provides data of the alteration 

of specific genes expression due to treatment.  Through additional in vivo research, using 

TRAMP mice, may lead to further understanding of the genes associated with prostate cancer 

and insight into therapeutic agents that may control the expression of these prostate cancer genes. 
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APPENDIX A:  MICROARRAY EXPRESSION DATA 
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