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ABSTRACT

Signature

Ching-Chung Li, Ph.D.

SEPARATION OF SPIKY TRANSIENTS IN EEG/MEG USING

MORPHOLOGICAL FILTERS IN MULTI-RESOLUTION ANALYSIS

Lin-Sen Pon , Ph.D.

University of Pittsburgh

Epileptic electroencephalographic (EEG) data often contains a large number of

sharp spiky transient patterns which are diagnostically important. Background ac-

tivity is the EEG activity representing the normal pattern from the brain. Transient

activity manifests itself as any non-structured sharp wave with dynamically short

appearance as distinguished from the background EEG. Generally speaking, the am-

plitude change of background activity varies slowly with time and spiky transient

activity varies quickly with pointed peaks.

In this thesis, a method has been developed to automatically extract transient

patterns based on morphological filtering in multiresolution representation. Using a

simple structuring element (SE) to match a signal’s geometrical shape, mathematical

morphology is applied to detect the differences of morphological characteristics of

iv



signals. If a signal contains features consistent with the geometrical feature of the

structuring element, a morphological filter can recognize and extract the signal of

interest. The multiresolution scheme can be based on the wavelet packet transform

which decomposes a signal into scaling and wavelet coefficients of different resolu-

tions. The morphological separation filter is applied to these coefficients to produce

two subsets of coefficients for each coefficient sequence: one representing the back-

ground activity and the other representing the transients. These subsets of coefficients

are processed by the inverse wavelet transform to obtain the transient component and

the background component. Alternatively, a morphological lifting scheme has been

proposed for separation these two components. Experimental results on both syn-

thetic data and real EEG data have shown that the developed methods are highly

effective in automatic extraction of spiky transients in the epileptic EEG data.

The interictal spike trains thus extracted from multiple electrode recordings are

further analyzed. Their cross-correlograms are examined according to the stochastic

point process model. Our experiment result has been verified by human experts’

estimation.
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1

1.0 INTRODUCTION

Epilepsy is a common neurological disease affecting about 0.6% of the population.

The syndrome of epileptic seizures involves irregular electrical paroxysmal activities.

It manifests itself in the form of abnormal motor and sensory activity in the brain. In

particular, this neurological disorder of children which produce delay in the develop-

ment of their physiological and psychological capabilities. A tool used to investigate

these behaviors of the brain is electroencephalography (EEG). The EEG is a non-

invasive clinical approach to monitor the electrical activity of the brain. The EEG

is collected by placing a set of electrodes on the scalp or directly on the surface of

the brain. Such a EEG recording contains the spiky transients of short duration in

addition to the background activity. The analysis of these spiky transients between

interictal activities represents the transition of epileptic foci inside the brain.

In this thesis, we have developed a novel method to separate the spiky transients

y from the background activity x, where the observed EEG is z = x + y. The two

components of the observed signal are assumed to be non-stationary. The spatial-

temporal aspects of the two components are different. The background activity is

considered, in an intuitive sense, to be a dominant and spontaneous signal with

relatively moderate amplitude variation. The sharp transient component may be

distinguished from the background activity by sharper amplitude changes than the

background activity. The transient contains salient patterns. In visual inspection,

the background activity appears smoother than these spiky transients. Here we quote

the description of the epileptic spike from Chatrian (16) *: “Spike. A transient, clearly

distinguished from background activity, with pointed peak at conventional paper

*Bracketed references placed superior to the line of text refer to the bibliography.
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speeds and a duration from 20 to under 70 msec, i.e., 1/50 to 1/14 sec, approximately.

Main component is generally negative relative to other areas. Amplitude is variable.”

The spiky transient can be distinguished only by trained experts. This research has

investigated the dissimilarity between spiky components and background activity by

differentiating their morphological characteristics.

Separation of signal components is an important issue in signal processing. Separa-

tion normally includes three processes: decomposition, classification and reconstruc-

tion. Decomposition divides a signal into several pieces, with each piece containing

partial information of the original signal. Classification is a decision process which

requires an intelligent system or knowledge base to categorize the decomposed pieces

into different groups. Reconstruction synthesizes several of the signal pieces into one

resultant signal. These decomposed pieces still maintain the integrity of the original

signal. The complexity of the decomposed signal is equal to the original data, but

the decomposition has divided the original signal into several subsignals, each con-

taining less information, but presented in a clear fashion. The classification includes

recognition and categorization processes. The recognition process needs prerequisite

knowledge to identify the special properties of each class. The simplicity of new data

obtained by decomposition will make it easier to assign data into different categories.

Classifying the decomposed signal may eliminate some difficulty in recognition when

the original signal is used. The reconstruction must have an ability to put all or parts

of the classified pieces together into a “new” signal. Once the subsignals are classified

into separate categories, it is very likely that one or several categories provides the

real target(s) needed for further analysis. To achieve this purpose, the reconstruc-

tion process synthesize the target component into a new signal set and the remaining

pieces form another component. The summation of all reconstructed components
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provides the original data, which is called a perfect signal reconstruction.

Separating complex data, such as biological data, into different components is a

difficult task. Finding the salient transient patterns require the ability to identify

their shapes from the underlying EEG signal and extract them amidst the data in

the neighboring region. One can group these separated waveforms together to form

a new signal where the morphological shapes of the new data are different than

the original EEG data. In this sense, the interictal spiky pattern detection is a

“hunting” process to separate these salient structures which were overlapped with

the background waveforms. To separate a complex-structured signal, e.g. epileptic

EEG signal, into two components the first step is to decompose the signal into several

parts to reduce the complexity of each part. The most popular decomposition method

is by Fourier transformation which decomposes a signal into a set of sinusoidal waves

in the spectral domain. The signal is expressed in terms of its frequency information,

however, the time information is lost. Other signal decomposition methods, including

time-frequency analysis and the wavelet transform, may be used to overcome this

difficulty. But the principle of decomposition to break the original signal into several

smaller parts has not changed. Classification is the second step to separate the

two components from EEG signal. The spectral and statistical properties of target

patterns are widely used as the knowledge base to classify the decomposed signal into

two categories. Other features are also used in classification criterion, e.g. amplitude,

slope, etc. In this thesis, the morphological characteristics are the main features used

to separate the transient from the background activity.

In clinical situations, an epilepsy patient may be monitored with an EEG machine

for a long time. Imaging techniques, such as MRI and CT, are also used to help

physicians understand patient’s situations for the diagnosis. Based on the diagnosis,
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physicians will decide what the best therapy is for that patient. Most patients will

be treated with drugs which can effectively eliminate or control the syndromes of the

epilepsy. But in some instances, these medicines are unable to control the seizure

activity. In these cases, more aggressive treatment, such as surgical operations, may

be used to treat the patient. Computational evaluations of epileptic EEG data are

very critical to these operations. Interictal spiky waveforms are the most recognizable

phenomenon to be analyzed to determine the seizure focus. The reason for this is

that the epilepsy patient normally generates a significant interictal activity which

shows no particular sign of the abnormality in his/her behavior. By analyzing the

EEG data collected from different electrodes, the neurologist finds the temporal and

spatial relationships between electrodes to determine the focus of epilepsy. In order to

collect enough information for analysis, the EEG is normally recorded for a number

of days. Epileptologists and neurologists inspect the traces of EEG displayed on the

computer screen. The visual examination is tedious and time-consuming even though

the data are rendered in 10 to 20 second segments. Thus, the amount of collected

EEG sets are very huge. A computer aided tool would help to reduce both the time

and energies related to recovery of these data sets. In addition, even with usual

analysis, epileptologists tend to focus on only the properties of a few spikes. Thus,

due to the significance of the spikes and the amount of required data processing, an

automatic recognition and separation method would be very useful.

A complete solution for detecting epileptic spiky transient signal has not been

found; part of the reason is that there is no clearly descriptive definition of epileptic

spiky patterns. The shapes of these transients vary widely from patient to patient

and their appearances embedded in the background activity of EEG cannot be pre-

cisely identified. The two categorized components are both non-stationary signals
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and are difficult to be modeled by traditional methods. The mixture of these two

categorized components makes the problem even more complicated. The ambiguous

definition of these waveforms and the laborious identification process involved, make

100% detection of such sharp transients impossible by visual inspection. It has been

reported that no two experts score EEG in exactly the same way and sometimes the

same expert does not identify some features in the same EEG record if it is presented

multiple times (99, 26). Over the past two decades, many approaches to automated

separation of an EEG signal into two categorized components have been proposed.

These approaches are based on either spectral analysis or direct recognition of char-

acteristics. Spectral analysis is a parametric method and characteristic recognition is

a direct analysis method. These methods used different measurements, such as statis-

tical distributions, spectral properties and others in order to threshold out the target

patterns from the ongoing data. Other newer approaches, such as time-frequency

analysis and wavelet transform, are also included to improve the separation results of

the spiky transients (80,102). These will be represented in the following subsection.

1.1 A Brief Review of Existing Approaches for Separation
of Signal Components

The classical spectral analysis of a stochastic signal is the most widely used

method. This method normally treats a whole signal either as stationary or di-

vides the signal into smaller pieces where are stationary. The optimal segmentation

is difficult to determine and requires much computational effort. Spectral analysis is

heavily dependent on statistical predictability and suffers from the uncertainty prin-

ciple requiring that higher spectral resolution will decrease the temporal resolution or

vice versa. Witte (1991) (103) used the Fourier and the Hilbert transforms to map the
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transient signal. Bender (1992) (1) tested the stationarity of the background activity

by using an autoregressive model in a constrained condition. Grieszbach (1994) (32)

developed an adaptive recursive method based on basic spectral parameters. Wang

(1994) (98) studied the “rigidity” of the signal by using spectral analysis.

The parametric method is based on an autoregressive model to represent the back-

ground activity. If the model well-represents the background activity, then any signal

other than the background activity can be easily distinguished from that activity.

Model parameters characterize the statistical properties of the background activity

signal. The signal must satisfy the stationarity condition. Then these parameters of

a model can be obtained. Models have been developed having adaptive segmentation

capability. The drawback of these models is that they are heavily dependent on the

stationarity of the signal. Saltzberg (1971) (77) used the mean of correlated activities

to separate a signal. Lopes da Silva (1975, 1977) (50, 51) modeled the stationary

background activity with an autoregressive prediction filter and detected transients

by examining the prediction error. Rappelsberger (1975) (74) analyzed the spectra of

a signal by using an autoregressive model. Praetorius (1977) (73) also used this model

to evaluate the stationarity of segments. Bodenstein (1977) (7) extracted the features

of spiky signals by using an autoregressive model with the ability to adaptively adjust

parameters. Michael (1979) (62) presented a segmentation procedure, based on the

autocorrelation function, to detect the amplitude and frequency of signals. Isaksson

(1981) (39) surveyed the parametric method to detect the occurrence of transient sig-

nal. Gath (1992) (24) suggested a multivariate autoregressive model combined with

the adaptive segmentation method to track rapid dynamic transient signals. Victor

(1992) (97) used a nonlinear autoregressive model to estimate the characteristics of

subsignals. Kobayashi (1992) (45) used an autoregressive model to utilize coherence
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and phase differences. Florian (1995) (23) used a sequence of autoregressive models

to fit EEG segments which exhibited the best local stationarity and then used several

spectral factors to analyze the data. Schack (1995) (79) used spectral analysis on the

ARMA model. Inouye (1995) (40) investigated the power contribution of transients

based on the multivariate autoregressive model. Sankar (1989) (78) applied a linear

prediction model and found the model’s parameters by minimizing the total errors

of the system. This algorithm judged the residuals for a certain number of consec-

utive samples when their amplitudes were greater than a cutoff threshold and then

determined whether the target patterns are spikes.

There are two approaches to the direct analysis: one is to use a set of well de-

fined features (e.g. using the information of amplitude, slope, sharpness, etc.) of

the spiky transient, the other is to provide different transient examples (typical or

well-recognized patterns) and compare these patterns with EEG data. These two

approaches are known as the mimetic method and the template matching, respec-

tively. The drawbacks of the direct analysis methods are: 1) the precise definitions

of transient may be lacking; 2) the transients are signal-dependent and so cannot

be generalized for other signals; and 3) the typical pattern(s) may not cover all

the cases. The use of the mimetic method has been reported by several groups.

Smith (1974) (84) created a model based on a criterion governing the slope, apex

and lengths on both sides of the apex for detecting two components. Carrie (1972)

(9) used the second derivative function to detect the sharp changes in the signal.

Chatrian (1974) (16) defined the transient patterns for the EEG signal. Pola (1979)

(70) proposed an automatic detection method based on the morphological aspects

of the signal. Ktonas (1987) (47) utilized the context information of signals to de-

tect sharp waveforms. Glover (1989) (27) described a knowledge base of spatial and
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temporal information for finding sharp transient waveforms. Dingle (1993) (21) and

Jones, et al. (1996) (43) used the mimetic approach to build a multistage expert

system to detect parameters such as duration, amplitude and sharpness of transients.

Considerable effort has been made to use the template matching method. Gotman

(1985, 1991) (29, 30) described three general methods to recognize transients. The

first one was a mimetic method which identified signal segments fitting a set of pre-

defined features. The second method was a parametric method which utilized a small

number of parameters, representing statistical properties of the background activity.

The transient, whose features are different from those of background activity, will be

picked up after all the parameters are tested. The third one was a template matching

method which attempted to match the transient with well-defined specific waveform

pattern(s). Gotman used the template matching method to separate transient from

the original signal. James (1997) (41) applied adaptive noise canceling to enhance

nonstationary transients.

Time-frequency analysis (17) and wavelet transforms have also been utilized to

improve epileptic spike separation. Finer time-frequency and time-scale resolutions

provide better information with respect to the two components. The information

helps to model the background activity more precisely or to make the direct analysis

of the transient more reliable.

There are several separation processes related to wavelet transform: Mallat (1991)

(52) explored the properties of sharp variation and characterized transients. Senhadji

(1995) (81) applied a non-orthogonal wavelet transform in a decision machine to sep-

arate two components of a signal. Bertrand (1994) (3) used the wavelet transform

to represent transient responses. Li (1995) (49) developed an algorithm based on

the wavelet transform to detect characteristics of the electrocardiogram. Cha and
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Chaparro (10) proposed a polynomial function using mathematical morphology to

implement a wavelet representation. A signal was decomposed into several frames,

and morphological operations were carried out with adaptive structuring functions

applied to different frames. The morphological interpolation is based on these struc-

turing functions derived from orthogonal polynomials. Popescu (1998) (72) trained

wavelet “children” to detect the epileptic spikes.

Several investigations have used time-frequency analysis to separate the signal

components. Williams (1995) (102) and Choi (1989) (14) suggested that time-frequency

analysis is useful in epilepsy research. Martin (1985) (58) used the Wigner-Ville spec-

tral analysis. Meste (1994) (63) linked the wavelet transform to the time-frequency

representation to characterize and detect the sharp transients. Blanco (1995, 1997)

(4, 5) used a method based on the Gabor transform for simultaneous quantization

in the time-frequency domain. An optimal correlation was found that differentiates

characterizes the background activity and transient alterations. Wendling (1999)

(100) tried to separate the seizure EEG by using time-frequency domain matching

processes, in which the warping information between time and frequency is presented

as the signature of the epileptic EEG activity.

Artificial neural network (ANN) has also been used to detect epileptic EEG sig-

nals. ANNs are known as tools having adaptive and flexible functional ability for

human-like pattern recognition. The multi-layer structure of a neural network pro-

vides a knowledge system which can be trained to recognize, classify and analyze

different patterns of the epileptic EEG data. The trained neural network can detect

the epileptic spikes generated from the brain activity. In order to train a neural

network, one needs to provide a set of spiky transient pattern, that have been recog-

nized, and whose features have been extracted. These training patterns will affect the
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correctness of the spike detection. Khan et al, (44) used an artificial neural network

with feature vectors that quantify slope, sharpness and autoregressive parameters

extracted from the segmented EEG. An ANN was trained to detect two classes of

the EEG data, normal and epileptic. Özdamar et al, (66) designed and evaluated an

artificial neural network with two levels. The first level recognizes candidate spikes

in separated channels, and the second level properly integrates the spatial informa-

tion from the first level to increase the detection accuracy. Although a multilayer

network may function well for small to medium size pattern recognition tasks, it may

be inefficient for larger task, which will will need more training. Meanwhile, a proper

architecture must be chosen to avoid divergence of reaching conclusions. All of these

considerations must be well taken of.

1.2 Correlative Analysis of Multiple Electrode Spike Trains

The separated spike trains from multiple electrode EEG recording are useful for

the clinical diagnosis. Because of the size of the data set, workload of human experts

and the computational effort required, most examinations of epileptic data have been

limited to small segments of EEG data. The drawback of using only small segments is

that the data may not adequately represent the involved neurophysiological progress.

It is desirable to analyze the data of longer periods and explore the spatial transitions

of the brain activity. the time instants at which the peak of epileptic peaks occur in an

EEG recording can be modeled by stochastic point process. To find the relationship

among spike trains monitored by multiple electrodes, correlogram behaves every pair

of electrodes have been used. Maximum correlations show tracks of abnormal behavior

occurring in the brain. Because each epilepsy source in the brain tissue fires an

abnormal signal triggering a sharp spike which travels from the source to the rest area
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of the brain, it will cause the neurons there to act abnormally. The timing of spike

occurrences in different electrodes describes the trajectory of a spiky signal from one

area to another. If the data length is long enough, the statistical correlations between

the spike train of a given electrode and that of every other electrode will reveal the

trajectory of epileptic spikes which describes the timing relationship of the abnormal

activities in the brain.

1.3 Objective of This Research

The objective of this research is to develop a new method which is effective and ef-

ficient for separating spiky transients and the background data. This is formulated as

a problem of detection and extraction of fast rising-and-falling triangular-shape pulses

of various amplitude of short durations embedded in a complex-structured background

which has relatively slower variation in general but yet contains rapid fluctuations as

well. The shape of a target spike transient component is modeled by a triangle with

its peak in the middle having a significant amplitude and its has subtended over a

specified range. Utilizing the shape features, a morphological filter is considered with

a circular disc structuring element (SE), and the morphological filtering applies in

multiresolution schemes to capture and extract various target components in mul-

tiple resolutions. Spiky transients and background EEG are synthesized with these

separated two components on each resolution level. We plan to verify the successful

extraction of spike train indirectly by experimentation on multi-electrode epileptic

EEGs in connection with the epileptic foci confirmed by expert neurologists.
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1.4 Organization of the Thesis

The thesis is organized as follows: chapter one provides an overall introduction.

The second chapter includes general descriptions of the related mathematical back-

ground, including mathematical morphology, wavelet transform, lifting scheme and

stochastic point process. Chapter three describes the development of morphological

filtering in multiresolution representations, including both wavelet packet transform

and lifting schemes, for extracting signal components. Experimental results obtained

by using the proposed methods are provided in chapter four. The experiments were

performed on simulated data and real epileptic EEG data. Chapter five discusses the

advantages and disadvantages of these methods. Chapter six gives conclusions and

contributions of this research as well as suggestions for future development. An ap-

pendix is included detailing information on the EEG data collection and preprocessing

which is needed before the proposed methods are applied.
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2.0 MATHEMATICAL METHODS

Before detailed descriptions of proposed methods, a general mathematical back-

ground is presented. The discussion begins with presenting general concepts of math-

ematical morphology and continues with an introduction of multiresolution schemes,

including the wavelet transform and lifting scheme. Finally, the stochastic point

process is discussed.

2.1 Mathematical Morphology

Mathematical morphology was introduced by G. Matheron (59) and J. Serra (82).

The term of morphology is related to the analysis of the form and structure of a

signal and widely applied to biology, geography and image processing. Mathematical

morphology involves the set of analytic operations based on a prior geometric shape

known as a structuring element (SE). The behaviors of structuring elements operating

on a signal have been studied for years. The set of operations corresponding math-

ematical morphology can be characterized as a morphological filters. Morphological

filters have been applied to black-and-white binary images. But the applications of

mathematical morphology are not only limited to two dimensional binary image pro-

cessing. Mathematical morphology has been expanded to apply to gray level images

and one dimensional signal by using the concepts of umbra (28, 86, 57, 87). The con-

cept of umbra is that of the points on and below the function, and the realizations

are based on max and min operations. The morphological filter is based on a set of

algebraic and integral geometry operations and this process is a nonlinear transfor-

mation. Using the structuring element (SE), a morphological filter can locally detect,

extract, modify and preserve desired geometric features of a signal with respect to
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the properties of the structuring element. The input signal is viewed as a set in an

Euclidean space, and the morphological filter quantifies the geometrical information

of the input signal. Morphological filters have been applied to many applications in-

cluding pattern recognition (85), non-linear filtering (55,56,11), smoothing operation

(18,90), edge detection (64,13), noise suppression (69,12), thinning usage (54), texture

analysis (101), biomedical image processing (60,83) and medical applications (94).

2.1.1 Fundamental Operators of Mathematical Morphology

Before a further explanation of mathematical morphology, several fundamental

concepts are introduced first, including set theory, translation, space definition and

basic set operators.

Let the set A to be a subset of an Euclidean space E. A fixed point inside space

E is assigned as the origin, denoted as 0̄. The second set B known as structuring

element (SE) is also a subset of space E. Set A can have very different spatial

aspects which will be described by the set structuring element B. The shape of the

structuring element B can be defined arbitrarily with respect to the applications.

Set B can extract, eliminate or enhance the different morphological features of set

A. Some basic algebraic operators have been introduced here. These are translation,

Minkowski Subtraction, Minkowski Addition and others.

The set A, a given input signal, is the set needed to be processed and B is a set

called a structuring element (SE). Let Ab = {A + b : a ∈ A} denote the translation

of A by b ∈ B. Let B̌ = {−b : b ∈ B} be the reflection of B. Note that the reflection

is simply B rotating B by 1800 with respect to the origin. Ac = {s : s 6= A} is the

complement of A. The following are the mathematical descriptions for the basic set

operators used in mathematical morphology.
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Figure 2.1 Translation Ab: A is translated by element b, where a is the element of
set A. The element b of set B is a point which has a vector direction from the origin
at the left bottom corner. This operation satisfies the translation invariant property.

Definition 1 (Translation). Let A,B be subsets of E (A,B ⊆ E) and a ∈ A, b ∈ B.

The translation denoted as Ab is defined as

Ab = {A+ b : a ∈ A}, (2-1)

where the plus sign refers to vector addition.

Fig. 2.1 demonstrates the translation operation. The set A is translated by an element

b ∈ B with respect to its vector direction. It shows that the translation of signal A

is merely shifted by a vector b. Here the origin is located at the left bottom corner,

as marked by “+”.

Definition 2 (Translation Invariant). Let A,B ⊆ E and a ∈ A,b ∈ B. An

operator ψ is called translation invariant if it satisfies

ψ(Ab) = [ψ(A)]b = ψ(A) + b. (2-2)
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A

B (3 pts)

A ⊕ B

Figure 2.2 Minkowski Addition A ⊕ B: Set A is a solid circular disk and set B
contains three points. The origin is located at the left bottom corner. The Minkowski
addition has translated and unioned set A three times with respect to the vector
relationships of the elements b (b ∈ B). The result of the Minkowski addition is a
new set, which is like three disk overlapped each other partially.

Fig. 2.1 shows the translation operation of a set A from b that satisfies the translation

invariant property.

Definition 3 (Minkowski Addition). Let A,B be subsets of E (A,B ⊆ E) and

a ∈ A, b ∈ B. The Minkowski addition (33), denoted as ⊕, is defined as follow:

A⊕B = {a+ b : a ∈ A, b ∈ B} =
⋃
b∈B

Ab, (2-3)

where + is referred to vector addition.

Fig. 2.2 shows an example of the Minkowski addition. The set A are the elements in

a circular disc and the set B has three points. The origin 0̄ is located at left bottom

corner marked as marked by “+”. The disk is translated three times with respect
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A

B (line)

A θ B

Figure 2.3 Minkowski Subtraction A 	 B: Set A is a rectangle plate and B is
a line. The origin is located at the left bottom corner. The set A translated with
every elements of the line B with respect to their vector directions of the origin. The
intersection of all the translations is the result of Minkowski subtraction, shown as
the thick solid small rectangle.

to set B and the union of the three translations is the final result of the Minkowski

addition.

Definition 4 (Minkowski Subtraction). Let A and B be subsets of E (A,B ⊆ E)

and a ∈ A, b ∈ B. Then Minkowski subtraction (61), denoted as 	, is defined as

follow:

A	B = (Ac ⊕B)c =
⋂
b∈B

Ab. (2-4)

Fig. 2.3 shows an example of the Minkowski subtraction of set A and B. In this

example, set A is a rectangular plate and B is a segment of line. The origin is located

at the left bottom corner, as marked by “+”. The plate is translated by each element

b ∈ B with respect to their vectors. The intersection of these translation is the result
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of Minkowski subtraction. It is a smaller rectangle shifted to the right from set A

with respect to structuring element B.

2.1.2 Morphological Erosion, Dilation, Closing and Opening

Four basic mathematical morphological operators are introduced here: these are

1.) dilation, 2.) erosion, 3.) opening, and 4.) closing. These operators are defined as

follows (82,34,75):

Definition 5 (Dilation). Let A and B be the subsets in space E (A,B ⊆ E and the

elements a ∈ A, b ∈ B). The dilation of A by a structuring element B is denoted by

A⊕ B̌, and is defined as:

A⊕ B̌ =
⋃
b∈B

A−b (2-5)

Fig. 2.4 demonstrates the operation of morphological dilation. The solid line,

set A, is the signal to be processed and the circular disc set B is the structuring

element. The origin is marked by the “+”. In this example, the structuring element

is the circular disk with its center being the origin. Morphological dilation uses each

element a of set A as a center and each center is translated by element b. The

translated signal will be like the signal A filled with many disks with their center on

the set A. The morphological dilation is the maximum value in the vertical direction.

In this figure, it can clearly be seen that the original signal A has been dilated by the

structuring element B.

Definition 6 (Erosion). Let A and B be subsets of E. The erosion of A by a

structuring element B is denoted by A	 B̌, and is defined as:

A	 B̌ =
⋂
b∈B

A−b, (2-6)
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structuring element

Figure 2.4 Morphological Dilation: Set A is triangular signal (shown as solid line)
and the structuring element is a circular disk with its center located at the origin,
as marked by the “+”. The dash line is the result of morphology dilation operation.
The dilation is the maximum point that the circle B rotating onto the signal A can
reach.

Fig. 2.5 shows the operation of morphological erosion. The solid line, set A, is the

signal to be processed and the circular disc, set B, is the structuring element. with

its center on the origin. Morphological erosion uses every elements of set A as the

center and then translated with element b. A new translated signal will be like the

signal A filled with many circles with their center on the set A with the minimum

value on the vertical direction. In this figure, it can clearly be seen that the original

signal A has been eroded by the structuring element B.

Definition 7 (Opening). Let A and B be subsets of space E. The opening operation

of A by a structuring element B is obtained by first operating with erosion and then

operated on with the dilation. Morphological opening is denoted by A ◦B defined as:

A ◦B = (A	 B̌)⊕B (2-7)
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structuring element

Figure 2.5 Morphological Erosion: The solid line is the original signal A and the
structuring element is a circular disk where its center is located onto origin (as marked
by the “+”). The dash line is the result of erosion A 	 B̌. Visually, the dash line
looks as if the signal A has been eroded by the disk.

Fig. 2.6 demonstrates the morphological opening operation. Set A, a triangular

signal plotted by a thin solid line, is the signal to be processed. Set B, a circular

disk centered onto the origin, is the structuring element. Both sets are the same as

in the previous examples. The origin is marked by the “+”. Signal A is first eroded

by structuring element B̌, where the result is shown as the dash line in the figure.

The dash line is then dilated with set B. The dilation of the dash line is indicated

with a thick solid line which is the final result of the morphological opening process.

Opening smooths the convex peaks of the signal A. In this example, there are two

convex peaks, which have been smoothed by this operation. It should be noted that

the smoothing of the upward peak is equal to the difference between signal A and a

circle just under it with only two points connected.

Definition 8 (Closing). Let A and B be subsets in space E. The closing of A by
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structuring element

Figure 2.6 Morphological Opening: The structuring element B is a circular disk
with its center onto the origin as marked by the “+”. The thin solid line is original
signal, A, and the dash line is result by erosion operator and then it was applied by
dilation operation. The thick solid line is the final result of applying opening operator
on the signal. The opening operation smooths only upward peaks and has no affection
on the downward peaks.

the structuring element B is obtained by operating with the dilation operator with this

result then operated on by the erosion operator. Morphological closing is denoted by

A •B, and is defined as:

A •B = (A⊕ B̌)	B (2-8)

Fig. 2.7 demonstrates the operation of morphological closing. The thin solid line,

set A, is the signal to be processed and the circular disk, set B, is the structuring

element. Both are the same as in the previous examples. The origin is marked by the

“+”. Signal A is first dilated by the structuring element (B̌) shown in the Fig. 2.7.

Then, the dashed line is then eroded by the structuring element. The result is shown

as a thick solid line. In this example, there exists a concave peak in the middle of signal

A, which has been smoothed by morphological closing. Morphological closing has no
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structuring element

Figure 2.7 Morphological Closing: The structuring element is a circular disk with
its center onto the origin as marked by the “+”. The thin solid line is original
signal and the dash line is dilated by the structuring element circle and the result is
then applied with erosion operator. The thick solid line indicates the result of the
morphological closing. The closing operation only smooths the downward peak and
has no affection on the upward peaks.

affect on the convex peak. From this example, it can be seen that the closing operator

can smooth downward peaks. Again, it should be noted that the smoothing thick line

above the downward peak is a curve part of circular disk connecting only two points

above the signal A. Applying a circular structuring element to a triangular signal,

the morphological closing operator smooths the downward peaks without changing

the upward peaks. Morphological opening is the reverses of closing, where upward

peaks are smoothed and the downward peaks are unchanged.

Mathematical morphology analysis is a combination of several set operators in-

volving a prior defined structuring element. The properties of the different operators

will smooth, extract, and separate different parts of a signal with respect to the ge-

ometrical shape of the structuring element. By manipulating these operators, one
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can design a filter to separate an input signal into two categorized signals. One sig-

nal is categorized by the structuring element and other is the residue of the signal.

It has been demonstrated that the morphological opening operator can smooth the

upward peaks and the closing operator can smooth downward peaks. By defining

the structuring element as a circle with its center at the origin, a new morphological

operator combining both closing and opening operators may be used to smooth both

directional peaks. This combined operator can separate the epileptic spiky activity

from the background EEG. This morphological filter is defined as followed:

MB
f (A) = (A ◦B) •B = Am

Ar = A− Am

A
MB
f⇐⇒ Am + Ar, (2-9)

where MB
f is referred as a morphological function with the structuring element B.

The separated component Am is the signal categorized by the structuring element

and Ar is the residue. The lengths of both element are the same to each other and

the summation of these two are equal to the original signal A.

The first operation is applied with the morphology opening and then followed by

the closing operator. The double arrow means that the morphological operation is

merely classified the input signal A into two categorized groups but the signal features

do not change during the operation. The symbol “⇐⇒” indicates that the signal on

the left side is operated by the morphological filter MB
f and right side shows the math-

ematical operation. Fig. 2.8 shows the result of using this proposed morphological

filter. The dash line is the triangular signal and the structuring element is a circular

disk with its center on the origin. The thick solid line is the filtered result where

it estimates the approximation of the smoothed background with the upward and

downward peaks removed from the triangular signal A. This estimation is apparently
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structuring element

Figure 2.8 A morphological filter is shown in this figure where the dash line is
the original signal and the center of the structuring element disk is located onto the
origin marked as “+”. The thick solid line is filtered result which is operated by
morphological opening first followed by closing operators. All the peaks of this signal
are smoothed by this filter with affecting the non-peak regions.

smoother and its amplitude variation is reduced. The difference between the trian-

gular signal and thick line is sharp signal which representing as the approximation of

the spiky transient containing only pointed peak patterns, i.e., the desired result.

2.2 Multiresolution Scheme

Multiresolution analysis captures the properties of a signal at different resolutions.

The multiresolution analysis schemes are introduced here: There are the wavelet

transform, the wavelet packet transform, and the lifting scheme.
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2.2.1 Wavelet Transform and Wavelet Packet Transform

The wavelet transform is a signal processing method which decomposes a signal

into several multiscale components. The concepts of delineating a signal into a spec-

trum domain is based on the assumption that the signal has a spread in the frequency

range over its entire temporal existence. By selecting a subset of the spectral compo-

nents, the wavelet transform divides a signal into two corresponding signals at each

level; represented as two coefficient sets: the approximation coefficient set with lower

frequency components and the detail coefficient set with higher frequency compo-

nents. In our example, each lower level coefficient set is a half scale of higher level

one. The approximation coefficients is approximated from the higher level coefficients

with similar low frequency properties. The detail coefficients is the fast variation of

the higher level coefficients. The coefficients of the wavelet transform maintain the

structure of the higher level signal components. The wavelet transform has been used

in applications in image, speech processing, medicine (96) and biology fields. These

applications have included the detection process (e.g., spikes in EEG, microcalcifica-

tions in mammograms) (89), data compress (image compression) (48), data analysis

(detecting changes in fMRI (76)) and data processing (wavelet de-noising) (95).

A family of wavelet function ψj,n has the property of dilation by a factor 2j at

level j and shifting by a factor n in the orthonormal basis of L2. The integral of

wavelet ψ is zero, i.e.,

ψj,n(t) =
1
√

2j
ψ(
t− 2jn

2j
), (j, n) ∈ Z. (2-10)

and ∫ ∞
−∞

ψ(x)dx = 0. (2-11)
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A scaling function φj,n is family of functions which have an orthonormal basis Vj for

level j. The scaling function is:

φj,n(t) =
1
√

2j
φ(
t− 2jn

2j
), (2-12)

The filter bank algorithm that calculates the orthogonal wavelet coefficients of a

discrete signal a0[n] may be described as follows. Let us define the function f(t) as

f(t) =
∑
n

a0[n]φ(t− n), where φ(t− n) ∈ V0. (2-13)

The V0 is a base space and exist φ such that φ(t − n) is a Riesz basis of V0, where

φ(t−n) is a scaling function and orthonormal. The approximation coefficients, a0[n],

which are the weighted average of f in the neighboring points around location n are

given by:

a0[n] =< f(t), φ(t− n) >= f ∗ φ. (2-14)

While the wavelet coefficients or detail coefficients, dj[n], of function f are given by:

dj[n] =< f(t), ψj,n >= f ∗ ψj,n. (2-15)

The wavelet transform can also be represented as a filtering function. Fig. 2.9

shows the decomposition and reconstruction processes using the wavelet transform.

Let x be an input signal. Two filters h̄ and ḡ are applied to signal x. Filters h̄ and

ḡ must satisfy the properties of wavelet transform, where h̄ is a low pass filter and

ḡ is a high pass filter. The filtered result of x is downsampled by two to get xa and

xd, where xa (approximation coefficient) and xd (detail coefficient) are the lower level

coefficients of the higher level coefficient set x. Xa can be further decomposed to the

next level to get xaa and xda. The reconstruction of lower coefficients xaa and xda

can be done by upsampling by two and filtered by with h and g. The two filter h
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and g are reconstructed filters which are reciprocal with h̄ and ḡ. The coefficients xaa

and xda perfectly reconstruct xa. Using xa and xd can reconstruct back the original

signal x. The filters h̄, h are referred as the low frequency filters and ḡ, g as the high

frequency filters.
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Figure 2.9 The wavelet transform: decomposition and reconstruction

The decomposition of the wavelet transform can be implemented by two filters

, the low-pass filter h̄ and the high-pass filter ḡ. The filtered results will be down-

sampled by two. In reconstruction part, the low pass filter h and high pass filter g

together provide a perfect reconstruction of the original signal. These four filters h,

g, h̄, and ḡ are called conjugate mirror filters (53). The signal analysis algorithm is

as follows: Let x ∈ V0, then the scaling coefficients xa ∈ V1 and wavelet coefficients

xd ∈ W1 are defined as

xa[k] =
∑
n

h̄[n− 2k]x[n], xa ∈ V1,

xd[k] =
∑
n

ḡ[n− 2k]x[n], xd ∈ W1. (2-16)

The scaling coefficient xa and wavelet coefficient xd are half resolution of the signal

x. Similarly, the coefficients xa can be further decomposed into next lower half scale
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Figure 2.10 The schematic diagram of the wavelet packet transform. The integer
number 1, 2, · · · , n indicates the levels of the decomposition.

coefficients xaa ∈ V2 and xda ∈ W2 by using same filters h and g shown as follow:

xaa[k] =
∑

n h̄[n− 2k]xa[n], xaa ∈ V2,

xda[k] =
∑

n ḡ[n− 2k]xa[n], xda ∈ W2. (2-17)

The decomposition of xaa can be repeated to next lower level, and so on. The recon-

struction of the input signal x from the scaling coefficients xa and wavelet coefficients

xd is defined as

x[n] =
∑
k

h[n− 2k]xa[k] +
∑
k

g[n− 2k]xd[k] (2-18)

Fig. 2.9 shows the schematic diagram of the decomposition and reconstruction

of the multiresolution wavelet transform. It can be seen that the signal x has been

convolved with the filters h̄ and ḡ respectively and then down-sampled with 2 to

obtain the next level of coefficients. The new coefficients can be reconstructed by up-

sampling then convoluted with two filter h and g separately. More detail explanations

of wavelet transforms can be obtained from Strang (88).
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The wavelet packet transform can be applied on the detail coefficient. The lower

level detail coefficient is also decomposed into two subgroups by filters h̄ and ḡ.

The two coefficient sets represent the low frequency and high frequency contents of

the detail coefficient. This transform can be further applied on these new sets to

next lower level, and so on. This process creates a binary tree structure (see Fig.

2.10). This is called the wavelet packet transform. The wavelet packet transform

divides a signal into additional coefficient blocks, each block representing different

frequency bands. In this paper, we have used wavelet packet transform to create the

multiresolution templates for the morphological filter classification.

2.2.2 Lifting Scheme

Recently a new approach to the multiresolution scheme was introduced by the

so-called “Lifting Scheme”(92). The lifting scheme provides a novel mechanism of

multiresolution analysis. It can be used to construct the second generation wavelets,

which are not relied on one function for the translations and dilations (91).

Fig. 2.11 shows the basic structure of lifting scheme, where decomposition is

shown on the top and reconstruction shown at the bottom. The basic idea about

lifting scheme can be explained simply. Consider a signal xj+1, the lifting scheme

decomposes the signal xj+1 into xj and dj, both of which are coarser than xj+1. The

lifting scheme performs the decomposition in three steps: split, predict and update.

• Split: This stage splits the input signal into two subsignals: one is composed of

the samples with even indiced, the other with odd indices.

(evenj, oddj) = Split(xj+1). (2-19)

Both separated subsignals are half the size of the original signal.
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Figure 2.11 Lifting Scheme: decomposition and reconstruction

• Predict: If a sample is correlated with its neighboring samples. This sample

can be predicted by a function of neighboring samples. If the odd points in

the signal have strong correlations with the neighboring points, then the error

of the prediction will be very small. The detail dj coefficient is defined as the

differences between the odd samples and then prediction function based on the

even indexed samples:

dj = oddj − Predict(evenj) (2-20)

The detail coefficient dj is the error of the prediction which represents the detail

information unable to be approximated by the prediction function.

• Update: The update stage adjusts the coarser level signal xj, which is the

scaling coefficient in the wavelet transform. The coarser signal is updated by
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using the detail signal dj and the even indexed samples.

xj = evenj + Update(dj) (2-21)

Here the coarser level signal xj is half the sampling scale of the finer level signal

xj+1. The importance of the update procedure is that it maintains the similarity

between the finer and coarser level signal, xj+1 and xj. The prediction stage

finds the differences between the true values of the signal and their predicted

values using a chosen function. But the correlation of the even indexed points

are altered because of the missing the odd points. One can “lift” the correlative

relationship for the even indexed points by using the detail coefficients to update

their correlation. The principle of multiresolution analysis is to approximate a

signal in different scales called as the scaling coefficient and this approximation

is similar to the original signal at the higher levels. The detail coefficients are the

errors between the approximation and the original signal. The two coefficient

sets maintain the integrity of the original signal.

The idea behind the lifting scheme is to use the local correlation of the signal.

If a signal has a high correlation in a local area, the prediction of the relationships

between the neighboring odd and even samples can be estimated accurately. Because

of the correlation in the signal, the correct prediction can be expected for this sig-

nals. Reconstruction using the lifting scheme is as simple as its decomposition. The

bottom panel in Fig. 2.11 shows the reconstruction process. There are three stages

in reconstruction using the lifting scheme.

• Undo Update: Using the decomposition procedure, the coarser signal xj and

detail signal dj were obtained. To undo the update procedure, simply subtract
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the update data.

evenj = xj − Update(dj+1) (2-22)

The update function is the same for both analysis (decomposition) and synthesis

synthesis (reconstruction) in the lifting scheme.

• Undo Predict: Using evenj and dj, one can recover the oddj indexed signal by

adding the prediction information back.

oddj = dj + Predict(evenj−1) (2-23)

The odd indexed signal can be obtained by subtracting the prediction of the

even indexed points from the detail coefficients.

• Join: The join stage simply merges the even and odd indexed samples into

original signal.

xj+1 = Join(evenj, oddj) (2-24)

The join function is the reverse function of the lazy wavelet transform.

The lifting scheme has the same properties as the wavelet transform in most

cases. It replaces the low-pass and high-pass filters with predict and update process.

It decomposes a signal into smaller signal with half scale of the original one and the

decomposition can be repeated until running out of samples. The reconstruction then

uses the scaling and detail coefficients from the lower levels to recover higher level

signal perfectly. It also has one advantage in that it can map the signal from the

integer domain into the integer domain (8). However, most important advantage for

the lifting scheme is its flexibility in generating a multiresolution scheme matching

the properties of a signal. With the newly generated predictive and updated methods,

the lifting scheme can generate a new wavelet families (20).
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2.2.3 Morphological Lifting Scheme

Heijmans and Goutisias (35, 36) proposed a morphology-based multiresolution

analysis called max-lifting scheme which maps the signal into nonlinear morphological

spaces where the lifting scheme may then be utilized in multiresolution mapping.

Using the max-lifting scheme, we investigated a different way to execute three stages

of the lifting scheme.

The lifting scheme is an implementation engine to accomplish multiresolution anal-

ysis, but its flexible structure extends beyond the wavelet transform, i.e., mixing the

nonlinear functions into multiresolution transform. The proposed morphology-based

multiresolution analysis max-lifting scheme maps the signal into nonlinear morpho-

logical spaces by using the operators of mathematical morphology. This new mor-

phological function can divide a signal into two groups where one is the smoothed

background activity and the other the spiky transient. This new morphological lifting

scheme is briefly described as follows:

1. Separate the signal into two groups with one group containing only even indexed

points and the other odd indexed point,

(evenj, oddj) = Split(xj+1). (2-25)

2. Predicting the odd indexed values using morphological erosive operator with

both even and odd points:

xj(i) = P(evenj(i), oddj(i), evenj(i+ 1))

= (evenj(i), oddj(i), evenj(i+ 1))	B, (2-26)

where xj represents lower level scaling coefficients, B is the pre-defined circle

structuring element, and 	 denotes the morphological erosion operator. Unlike
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the standard lifting scheme, the nonlinear erosion operator covers both the odd

and even indexed points of the input data. To overcome the nonlinearity of

morphology operation, the odd indexed signal is saved and will be used for

perfect reconstruction in the reconstruction process.

3. Update the even indexed coefficients with the scaling coefficients

evenj(i) = evenj(i)− U(xj(i), xj(i+ 1))

= evenj(i)− 1
2
(xj(i) + xj(i+ 1)). (2-27)

The detail coefficients are then joined with the difference between even and odd

indexed points and the prediction result from the above, is given by:

dj = Join(oddj − xj, evenj). (2-28)

This is just a short introduction about this morphological lifting scheme. In

section 3.3, we will meet this method again and a more detailed description will be

represented.

2.3 Stochastic Point Process of Spike Trains

Interictal spike is an important indicator of epileptic foci. These spikes can be

identified by using spike detection algorithms, such as the method proposed in this

paper. The stochastic process method investigated here is very useful many neu-

rological applications. Our application of interest is to understand how different

region of the brain interact (67,68). The recorded spike signals from the EEG/MEG

data, produced from localized groups of nerve cells simultaneously firing together,

are considered as a series of events in a spike train. The sequence of these spikes
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are treated by stochastic point process measuring the time intervals between the oc-

currence of these spikes. The idea of a stochastic point process is that this process

determines its statistical relationship by regarding the timing informations between

when events occurred. It is a formulation for finding the correlation only related the

timing information of a sequence of events. In the point process, the spike detection

process is used to identify the occurrence of a spike and track the time interval be-

tween spikes. The stochastic point process may be used to model events in a single

train. Relationships between multiple spike trains may be investigated by using cross

statistical relationships between trains. The following is a brief description of the

cross-correlogram analysis for multiple spike trains.

Assume that there exists two spike trains A and B both consisting of sequence

of several spikes and each spike is treated as an event. The null hypothesis is that

the occurrences of spikes in train A is independent with respect to the occurrence of

spikes in train B. For an observed event in train A, two events occur in train B are

before and after the event in train A. The approach is to determine the relationship

between these events. The morphological characteristics of these spike events, such

as duration and amplitude, are ignored in this analysis. The time interval between

an event in train A and the leading and following events in train B adjacent to the

event of A are denoted as V−1 and V1. The V−1 and V1 are called the backward and

forward recurrence times, respectively (see Fig. 2.12). For the same procedures, one

can find other recurrence times V−2 and V2 by locating the second adjacent events.

This procedure may be repeated to collect the nth recurrence times V−n and Vn, i.e.,

nth adjacent events in B with respect to an event in A.

To construct the pointed cross-interspike statistical relationship, a histogram of

these observed recurrences is computed first. In train A, N spike events are selected.
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Figure 2.12 Two Spike Trains A and B are plotted. The A1 to Ai are the spike
events observed in train A. Meantime, the B1 to Bj are occurred in train B. The
occurrence times of these events are appearing randomly. The event A3 has been
first selected. The backward recurrence times V−1 to V−3 and the forward recurrence
times V1 to V3 are collected from the adjacent spike events in train B with respect to
the event A3.

Each event has J backward and forward recurrence times observed with respect to

the events in train B, denoted as V−j and V j, j = 1, . . . , J , individually. A range

which is capable of of covering the both V−j and Vj are from −∞ to ∞, however

in practical it can set to a reasonable ranges which are covering the most significant

recurrence times, is chosen and divided into several intervals, nk, with each interval

equal to a width ∆. These intervals are equivalent to the bins of a histogram. For

example, the kth interspike bin in in the span [(k−1)∆, k∆]. In statistical terms, the

histogram is an estimator of the probability density function (pdf) of cross-interspike

intervals, f(τ), where

f(τ) = Prob{events in train B | the occurrence of entire in train A}. (2-29)
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If one utilizes enough observations, this calculation will approximate an estimator

corresponding to

lim
N→∞

[ nk
N∆

]
=

1

∆

∫ k∆

(k−1)∆

f(u)du =
F (k∆)− F ((k − 1)∆)

∆
. (2-30)

where F (τ) is the cross-interspike interval distribution function where it satisfies

F (τ) =
∫ τ

0
f(u)du.

To clarify the idea of the cross-interspike histograms (also called as the cross-

correlogram) of stochastic point processes, I include two examples. The first example,

define a spike train A as the master channel, where there are a total of 5000 simulated

events. Spike train B, referred to as the slave channel, has been independently gen-

erated with another 5000 events having no relationship to the events in train A. The

sampling rate of both simulated trains is 250Hz. Parts of these two channels are shown

at the top panel of Fig. 2.13. The events in the two spike trains are uncorrelated with

respect to each other. Each event in the spike train A is used to identify adjacent

events in train B and find their recurrence times, denoted as {V−J , ·, V−1, V1, · · · , VJ}.

In this example, the J is set to 25, thus there are 25 adjacent forward and backward

recurrences times. These recurrence times are used to establish the histogram f(τ)

and show the pdf of the cross-interspike intervals between the two trains. The width

of the bins are set to be 4 msec. Initially, the number of events in each bin is set to

zero. If a recurrence time falls into the range of a bin, then the number of events at

this bin is incremented. This procedure is applied every recurrences to accumulate

the counts in each bin. The pdf of the cross-interspike trains is the final number of in

the bins. The bottom panel of Fig. 2.13 is the cross-correlogram of two uncorrelated

spike trains. It shows that the histogram of two trains is flat with no significant

variation in the figure. The flat line of the histogram indicates that the events of the

two trains are not correlated each other; That is the events in each train is generated
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independently for each other. As expected, the stochastic point process correctly

presents the statistical relationship between these trains.

In the second example, the events of the slave spike train B occur about 0.2

second latency after the adjacent events in train A. It also collected all the forward

and backward recurrences between two trains and plotted the correlogram for the

cross-interspike intervals. If an event occurred in the train A, there exists a latency

until another event appears in the train B. This relationship between A and B can be

shown by using the cross-correlogram. The top panel of Fig. 2.14 shows the simulated

generated spike trains A and B. At the bottom of this figure is the cross-correlogram

of the cross-interspike intervals. A marker ’x’ shows that a maximum count (the most

strong correlation) of the histogram is at the time 0.2 seconds. Around the time of 0.2

second, the count is still relatively large indicating that the events of in train B are

mainly delayed 0.2 second, but with small variations. The flat variation area other

than around 0.2 second implies that there is no statistical correlation in these areas

similar to previous example. This example shows that this technique can successfully

detect the physical relationship between two trains.

If the events in train A have appeared 0.2 second later than the events in train

B, this histogram will be similar to example two, but the maximum count point will

shift to -0.2 second. It indicates that the events in train B has a tendency to lead

the events in train A 0.2 second early.
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(b) Correlogram of the uncorrelated Spike Trains

Figure 2.13 (a) Two uncorrelated spike trains, the top one is the master spike
train A and bottom is slave spike train B. There are 5000 events in each train.
These events are generated independently and randomly. (b) The cross-correlogram
of the interspike events is the histogram of the forward and backward recurrences of
the events of spike train B concluded on the occurrence of events in A. There is no
indication that these two trains have any correlation. The x axis is the time, the y
axis is the count number of the histogram.
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(b) Correlogram of the correlated Spike Trains

Figure 2.14 (a) Two correlated spike trains, the top one is the master spike train
A and bottom is slave spike train B. There are total 5000 spike events in both trains
(only show partly). The events in A are created randomly. Once a event in train A
has been generated, Around 0.2 second, a following event is generated in B. (b) The
correlogram of the cross-interspike trains: this is the histogram of the forward and
backward recurrences of the events of spike train B relating to spike train A. There
exists a peak at the time 0.2 seconds and it is the maximum correlation between the
two trains. The x axis is the time, the y axis is the count number of the histogram.
The calculation is interpreted as the probability of one event occurring in B, given
that an event has occurred in A.
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3.0 METHODS FOR SEPARATION OF SIGNAL
COMPONENTS

A new approach is developed to separate interictal spikes from the ongoing EEG,

based morphological filtering of signal decomposition in multiresolutions. This new

method is different from the classical parametric method or direct analysis methods

because it does not rely on tedious parameter estimation or complex descriptions of

transients. Instead this new approach attempts to differentiate the morphological

features of the two components and extract spiky transients from the background

data. Two methods have been developed as presented in this chapter.

3.1 The Concept of Multi-resolution Morphological
Separation Method

The process of using mathematical morphology can recognize and extract an ob-

ject’s shape characteristics. A signal can be separated into two different components

by using an an appropriate structuring element (SE) taking into account the a priori

knowledge of the target component. Different structuring elements will give different

separation results. In the process, considerations the “spiky” transient activity of

varied triangular shape are of the features of interest. It is known that a circular

disc is a smooth polygon with constant curvature along of its curvature. Using this

structuring element is like using a ruler to measure an object curvature, where the

background activity has constant curvature locally matched with the disc. Complex

structures of target patterns may require a number of different structuring elements

or circular discs with different radii to catch the patterns. Using various disc of radii

may be equivalent to using a single disc of a fixed radius on signal decomposition at
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different scales (resolutions): the latter is what we used to develop a morphological

filter for detecting an separate various triangular-shape spikes.

3.1.1 Effect of Using Different Sizes of Structuring Element

The structuring element (SE) extracts morphological characteristics from the in-

put signal. It is important to understand that this operation using different sizes

of structuring elements. They identify different morphological shapes and produce

different separation results. The SE plays an essential role in this application. In our

case, we decided that a circular disc could be used to measure the degree of the shape

variation for EEG data. This was suggested because a circle is a polygon with con-

stant curvature which is able to detect the curvature variation of the signal. Another

question raised after picking the structuring element, is what size of the structuring

element can lead to best result.

Fig. 3.1 demonstrates the results applying three different structuring elements

(SEs) on a triangle-shape signal, which contains a sharp peak representing a spiky

signal. Three different structuring element discs are shown with different radii. For

the first experiment, the radius of the disc is equal to r, the second one is 2r, and

the final is 4r. Using the morphological opening operation, see section 2.1.2, the

structuring element smooths the upward sharp peak without affecting the remainder

of the triangular signal. From these experiments one can compare the differences of

the smoothed signal and the sharp residue when the size of the SE changed.

On the top Fig. 3.1, the smallest structuring element circular disc with radius r

was applied to smooth the sharp peak. The left of the first row shows that the SE

is under the peak, the middle and right figures are the two separated components,

smoothed and sharp, after the morphological operations. It is immediately seen that
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Figure 3.1 The separation result using Different sized structuring element operated
on a triangle signal. Top row shows that the radius of structuring element circular
disc is r, second row is 2r and the last row 4r. The first column represented the
input signal operated by a morphological opening operation. The middle and right
columns represent the separated background activity and spiky signal, separately. It
shows that the largest SE separates the biggest sharp peak from the input signal.

a small portion of the peak has been recognized and separated from the input signal.

The rest of the original signal was not affected by the morphological filter. The

separated peak is small because the SE is also small. In the second experiment, the

SE is twice as large as the first SE and the same morphological operation is applied on

the identified triangular signal. The middle row of the figure shows the morphological

operation and the two separated components. This time the separated peak is larger

than in the first experiment. The third experiment shows that the structuring element

circular disc, with the largest radius 4r, separates the largest peak from the input
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data. The separated components to all experiments are shown in the middle and

right of the last row in Fig. 3.1.

These three experiments show that the size of the structuring element will affect

the properties of sharp peaks separated from the triangular signal. The numerical

results indicate that different SEs will lead into different results. Once the geometric

shape of SE has been decided, in this case a circular disc, the size of the structuring

element needs to be carefully chosen in order to allow the extraction of the sharp

spiky pattern from the input data. In general, a larger structuring element is able to

separate a larger portion of the sharp peak signal.

3.1.2 Effect of Using Coarse Scale Signals

In section 3.1.1, it has shown that the bigger peak signal will be extracted by

using larger circular structuring element disc. Beyond using these structuring ele-

ments of different radii, it can alter to use other approach to separate the signal

into two components. The size of these SEs are enlarged by the power of two and

the morphological operations are applied to the original scaling domain of the input

signal. If one can alter the size of structuring element, it is also possible to obtain

a similar result by changing the scale of the signal. Thus, instead of enlarging the

size of structuring element, one can shrink the scaling of the input signal and keep

the radius of the structuring element unchanged. Additional experiments have been

conducted in order to compare the results between enlarging the structuring element

and shrinking the scaling of the input signal. In these experiments, It has assumed

that the radius of structuring element is r units and the scaling of the input signal is

reduced by power of two at each time.
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Figure 3.2 The separation results of using coarse scale signal with a fixed sized
structuring element. The resolution of the top row is equal to original one, the second
row is reduced to the half and the third row is a quarter of the original resolution.
The first column shows that the various scale signal operated by a morphological
opening operator. The middle and right columns represent the separated background
activity and “spiky” transient, respectively. The coarser of scale changed, the higher
of the peak signal was.

Let the original scale be indicated as t and the alteration of scale be labeled as t′.

The new scale t′ is reduced by the factor of power two. The relationship between the

scaled signal f(t′) and f(t) is expressed as:

f(t′) = f(2−nt), n ∈ N. (3-1)

The shape of scaled signal f(t′) is to the signal f(t). The SE is defined as r unit in

any scaling resolution and is fixed for any scaling transformation.
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Fig. 3.2 demonstrates the results of changing the scale resolution of the input

signal, with the radius of structuring element circular disc fixed. The input data is

a triangular signal which is the same as in the previous section. The structuring

element is a circular disc with its radius defined as r unit. The top row of Fig. 3.2

shows the operations and results, where the scale t′ is equal to t. It is the same

process as the top row of Fig. 3.1. In this case, the sharp shape peak is very small.

In the middle row of the same figure, the signal, f(t′) = f(2−1t), is presented. The

radius of the SE is set to r in the scale t′. The separated peak and the smoothed

background activity are shown in the right and middle of this row. The bottom row

shows another example by further reducing signal’s scale to a quarter of the original

one. The scale of signal f(t′) is equivalent to f(2−2t). The structuring element is set

to a circular disc with a radius of r units. The morphological operation has divided

the reduced scale signals into two groups. To convert the signal f(t′) into f(t), just

reverse the equation (3-1) shown as

f(t) = f(2nt′), n ∈ N. (3-2)

Eq. (3-2) shows that the reduced scale t′ is converted back into the original resolution

by increasing its scale with power of two.

The results for the varied scale t′ converted back into its original one t are shown

Fig. 3.3 and 3.4. Top row of each figure is the operated result applied on the

t′. The bottom row shows the converted result of its original scale t. The center

and right columns of these figures represent the the smoothed component and sharp

peak, respectively. It can be seen that the conversion results have extracted the peak

from the triangular signal. It is interesting to point out that the circular structuring

element is converted into an ellipse on the original scale. This vertical height of this

ellipse is the same to the radius r, but its horizontal width is twice large than vertical
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Figure 3.3 [Top] The resolution of the triangular data is reduced to half of it
original resolution. The results of the smoothed background activity and peak are
shown in the middle and right columns. [Bottom] The results of the top have been
converted into its original resolution an shown in the bottom row. The separation
process applied on different scale signal is able to divide a triangular signal into two
different components.

dimension. This is because the reduced scaling has shrunk by two, but the amplitude

of the signal did not change during the scale transformation. The conversion of

the original scale has transformed a circular disc into an ellipse. This morphology

operation is like that one has used an ellipse as the structuring element to recognize

and separate the input signal into two components. Fig. 3.4 shows the separated

peak and the smoothed background activity by converting to quarter of the original

scale. This peak is larger than the peak in Fig. 3.3. The background activity is

also smooth. For these experiments, the morphological operators were applied to the

reduced scale signal and separated the peak from a triangular signal. It concludes

that either changing the size of the structuring element or reducing the scale of signal

are capable of separating the spiky sharp patterns from the input signal.
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SE

SE

Figure 3.4 [Top] The triangular data has been reduced into a quarter of it original
resolution. The results of the separated background activity and peak are shown in the
middle and right columns. [Bottom] The bottom row is the results of converting the
top row into its original resolution. The separation process can divide the triangular
signal into two different components by reducing its resolution and changing it back.
The separated peaked transient is higher than the previous one using half-resolution
and converting it back.

3.1.3 The Comparison Between Varying SE Size and Varying Signal Scale

It has been demonstrated that the processes of changing the size of SE and altering

the signal scale are equivalent in terms of separating two components from an input

signal. It is also interesting to compare the differences of these peaked spikes. Figure

3.5 shows the comparisons between the two methods. The left column of Fig. 3.5

is the original signal applied with a structuring element with a radius r. The top

of middle column shows the operation of a structuring element with a 2r radius.

The last column of the top row shows the structuring element with a 4r radius. The

middle bottom figure shows that the operation applied to the half reduced scale signal

transform the structuring element into an ellipse; when the original scale has been

reconstructed back. While the bottom shows that the circular disc of the structuring
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element has been converted into an ellipse with its horizontal radius four times than

vertical one. The ellipse occurred because the input signal has being reduced to a

quarter of its scale and converted back into its initial form. It is clearly seen that by

using different structuring elements have been proven to separate the area of peak

from the triangular signal.

SE

SE

SE

SE

SE

SE

Figure 3.5 Comparison between varying SE size [top], and varying signal scale
(have been converted back into its original scale) [bottom]

The smallest structuring element can only separate a tiny portion of the peak while

a morphological filter with the larger structuring element extracts a larger portion

of the peaked signal from the triangle signal. The structuring element applied on

a reduced scale signal and converted into the original scaling can extract a similar

peak the input data. The result of the morphological operation, using the quarter

scale signal, separates a largest peak. Both methods are capable of extracting the

target patterns from a triangular signal. The changing of signal scale can be obtained

by using wavelet transforms. A wavelet transform is known as a multiresolution

transform which decomposes a signal into two coefficient sets: one is the approximated

coefficient set and the other is detail coefficient set (it also widely called as wavelet
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coefficient set). Each coefficient set is a half scale of the upper level coefficient. The

decomposition coefficient set can then be decomposed into next level, and so on. The

integrity of the signal is not changed or affected by the wavelet transform. It makes

the perfect reconstruction of the decomposed signal into its original form. Our goal

is to separate a signal z into the two components x and y, one of whom contains the

spiky transients of various size. This can be achieved by operating a morphological

filter in signal decomposition at different scales (resolutions).

3.2 A Separation Method Using Morphological Filtering in
Wavelet Packet Transform

Using structuring elements of different sizes, a morphological filter will extract

different magnitudes of the sharp peak. Instead of using different sizes of structuring

elements, the morphological operation can be used on the scaled signal to approximate

similar results. The changing of the signal scale is a multiresolution analysis. The

wavelet transform can decompose a signal into two coefficient sets each with half scale

of the signal. Each coefficient set can be repeatedly decomposed into the next lower

level with coarse scale of the previous level. A morphological filter then separates the

coarser scale coefficients into two components: the background activity and the spiky

transient. The sum of the two separated components is still equal to the original

coefficients. A detail step-by-step descriptions about the proposed method are given

in this section.

3.2.1 Linear Function

A linear transformation is given by

y(t) = T [x(t)] (3-3)
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where y(t) is the output signal and x(t) is input signal, t is time index, and T is a

linear operator.

Definition 9. Let V and W be vector spaces over the field F . A linear transformation

T from V into W is a function T from V into W such that

T (cα + β) = cT (α) + T (β) (3-4)

for all α and β in V and all scalars c in F . (38)

The extension of definition 9 shows as follows:

T (cα + dβ) = cT (α) + dT (β), (3-5)

where α and β are in V space and c and d are scalar. In our case, we are particularly

interested in the case where the scalars c and d are equal to one; i.e.

T (α + β) = T (α) + T (β) (3-6)

3.2.2 Morphological Classification

Define a signal x. The wavelet transform decomposes x into two coefficient sets

xa and xd. The first coefficient set xa is called as approximation coefficients of x and

the second set xd is called as detail coefficients or wavelet coefficients of x. Using

the opening and closing operations, is is possible to design a morphological filter (see

eq. 2-9) with its structuring element as a circular disc with fixed radius set to 1.

This morphological filter is able to classify the approximation coefficient xa into two

subgroups based on their morphological characteristics. One subgroup is the mor-

phological filtered result of the coefficient xa with only smooth variation remaining

and the other subgroup is the residues of the filtering containing only rough shape
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Figure 3.6 The morphology wavelet separation method

and peaked signal of xa. The first subgroup is labeled as xam representing the back-

ground activity. The second subgroup labeled as xar containing the rough shape and

peaked signal which exhibits the spiky transient. The wavelet transform provides

templates equivalent to reducing the scaling of signal and the morphological operator

then separate the scaled signal into two groups. The coefficient set xd can be also

classified into two subgroups by using similar procedures as the classification of xa.

The two subgroups of classification from xd are labeled as xdm and xdr, which includes

the morphological characteristics belonging to the background activity and transient

phenomenon, separately. This morphological classification divides a coefficient set

into two subgroups so that the summation of these two subgroups is same as the orig-

inal coefficients. It can be shown as xa = xam + xar and xd = xdm + xdr, (Fig. 3.6).

The morphological operation is used as a thresholding criterion which only divides

the coefficient into two components, while the properties of signal do not change.
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The wavelet transform decomposes the approximate coefficient xa into the next

lower level coefficient sets xaa and xda. xa has been classified into two groups xam

and xar by the morphological operator. xam is decomposed into xaam and xdam, while

xar is transformed into sets xaar and xdar. The lower level approximation coefficient,

xaa, is equal to the summation of the xaam and xaar. The lower level detail coefficient

xda is equal to the aggregation of xdam and xdar. The two small sets xdm and xdr

of the coefficient xd were decomposed into {xadm, xadr} and {xdam, xdar}, while the

first two groups are equal to xad and the last two are corresponding to xdd. These

divided groups can be further decomposed and classified into the next by repeating

the same morphology wavelet processes until the desired separation results have been

reached. Because the wavelet transform is a linear function, each classified group can

be decomposed separately.

3.2.2.1 Decomposition.

Let x be the signal to be processed, h̄ represent a low-pass wavelet filter and ḡ a

high-pass wavelet filter. The first level wavelet decomposition derives an approxima-

tion coefficients xa and detail coefficients xd using the filters h̄ and ḡ, respectively:

xa[p] =
∑
n

h̄(n− 2p)x[n] (3-7)

xd[p] =
∑
n

ḡ(n− 2p)x[n].

The decomposed coefficients xa and xd can be further decomposed by the wavelet

transform to derive second level coefficients:

xaa[p] =
∑
n

h̄(n− 2p)xa[n], (3-8)

xda[p] =
∑
n

ḡ(n− 2p)xa[n]
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and

xad[p] =
∑
n

h̄(n− 2p)xd[n], (3-9)

xdd[p] =
∑
n

ḡ(n− 2p)xd[n].

The xaa and xda are the approximate coefficients and detail coefficients of the upper

level coefficient xa. Similarly, xda and xdd are the coefficients obtained from xd.

Using the mathematical morphology filter MB
f (see eq. 2-9), xa is divided into

two subgroups xam and xar. Similarly, xd is divided into xdm and xdr. Thus

xa
MB
f⇐⇒ MB

f (xa) = xam + xar (3-10)

xd
MB
f⇐⇒ MB

f (xd) = xdm + xdr.

Eq. (3-10) shows that the separated subgroup of the morphological classification are

still equal to the coefficients xa and xd, it divides them into two parts by morphological

thresholding. It can plug xa = xam + xar into xaa[p] =
∑

n h̄(n − 2p)xa[n] and

xda[p] =
∑

n ḡ(n− 2p)xa[n] (eq. 3-8), one obtains

xaa[p] =
∑
n

h̄(n− 2p)xa[n] (3-11)

=
∑
n

h̄(n− 2p)(xam + xar)[n]

= xaam[p] + xaar[p]

= xaam + xaar,

And xda will obtain

xda[p] = xdam + xdar. (3-12)

Using similar procedures, the coefficients xad and xdd from the upper level coeffi-

cient xd are derived as follows:

xad[p] = xadm + xadr, (3-13)
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and

xdd[p] = xddm + xddr. (3-14)

The two coefficients of first level, xa and xd, are classified into two subgroups by

using the morphological filter. The second level coefficient xaa is divided into two

categories by the same morphological classification filter, see eq. (2-9). This filter

operation applied to the eq. (3-11) is derived as follow:

xaa
MB
f⇐⇒ MB

f (xaa) (3-15)

= (xaa)m + (xaa)r,

= (xaam + xaar)m + (xaam + xaar)r

= (xaam)m + (xaar)m + (xaam)r + (xaar)r

= xaamm + xaarm + xaamr + xaarr

Eq. (3-15) shows the result for the second level coefficients xaa. where this coeffi-

cient has been derived into four subgroups xaamm, xaarm, xaamr and xaarr. With similar

classification procedures, the remaining of coefficient sets xda, xad and xdd are derived

into four subgroups. The classification results of all the second level coefficients are

listed as follows:

xaa
MB
f⇐⇒ MB

f (xaa) = (xaa)m + (xaa)r = xaamm + xaarm + xaamr + xaarr (3-16)

xda
MB
f⇐⇒ MB

f (xda) = (xda)m + (xda)r = xdamm + xdarm + xdamr + xdarr (3-17)

xad
MB
f⇐⇒ MB

f (xad) = (dad)m + (dad)r = xadmm + xadrm + xadmr + xadrr (3-18)

xdd
MB
f⇐⇒ MB

f (xdd) = (ddd)m + (ddd)r = xddmm + xddrm + xddmr + xddrr. (3-19)

The wavelet decomposition and morphological operations are not limited into the

second level only. These operations can be further applied to the third level, and so
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on. The multiresolution property of wavelet transform provides the templates for the

morphology classification. The decomposed coefficient is equivalent to changing the

scaling of the signal and the structuring element size of the morphological operator

is fixed, at one unit for each different level.

3.2.2.2 Reconstruction.

The reconstruction of wavelet transform also used two different filters h and g to

rebuild the original signal from the decomposed coefficients. These two filters h and

g are the synthesis filters related to analysis filters h̄ and ḡ. The reconstruction from

the second level coefficients is shown as follows:

xa[p] =
∑
n

h(p− 2n)xaa[n] +
∑
n

g(p− 2n)xda[n] (3-20)

xd[p] =
∑
n

h(p− 2n)xad[n] +
∑
n

g(p− 2n)xdd[n].

The reconstruction of the first level coefficients is

x[p] =
∑
n

h(p− 2n)xa[n] +
∑
n

g(p− 2n)xd[n]. (3-21)

From the eq. (3-16) - (3-19) and (3-20), one can rewrite the second level wavelet

reconstruction of xa and xd shown as

xa[p] =
∑
n

h(p− 2n)xaa[n] +
∑
n

g(p− 2n)xda[n] (3-22)

=
∑
n

h(p− 2n)[xaamm + xaarm + xaamr + xaarr] +∑
n

g(p− 2n)[xdamm + xdarm + xdamr + xdarr]

= [x̌aamm + x̌aarm + x̌aamr + x̌aarr] + [x̌damm + x̌darm + x̌damr + x̌darr],
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xd[p] =
∑
n

h(p− 2n)xad[n] +
∑
n

g(p− 2n)xdd[n] (3-23)

=
∑
n

h(p− 2n)[xadmm + xadrm + xadmr + xadrr] +∑
n

g(p− 2n)[xddmm + xddrm + xddmr + xddrr]

= [x̌damm + x̌darm + x̌damr + x̌darr] + [x̌ddmm + x̌ddrm + x̌ddmr + x̌ddrr].

The reconstruction of the first level coefficients (initial signal level) is derived from

eq. (3-21)

x[p] =
∑
n

h(p− 2n)xa[n] +
∑
n

g(p− 2n)xd[n] (3-24)

=
∑
n

h(p− 2n)[x̌aamm + x̌aarm + x̌aamr + x̌aarr] +∑
n

h(p− 2n)[x̌aamm + x̌darm + x̌damr + x̌darr] +∑
n

g(p− 2n)[x̌admm + x̌adrm + x̌admr + x̌adrr] +∑
n

g(p− 2n)[x̌ddmm + x̌ddrm + x̌ddmr + x̌ddrr]

= [ˇ̌xaamm + ˇ̌xaarm + ˇ̌xaamr + ˇ̌xaarr] +

[ˇ̌xdamm + ˇ̌xdarm + ˇ̌xdamr + ˇ̌xdarr] +

[ˇ̌xadmm + ˇ̌xadrm + ˇ̌xadmr + ˇ̌xadrr] +

[ˇ̌xddmm + ˇ̌xddrm + ˇ̌xddmr + ˇ̌xddrr]

where the check signˇand double check signˇ̌represent the second level reconstructed

signal and first level reconstructed signal, respectively. The linearity of the morpho-

logical operator does not affect the perfect reconstruction of this process because it

merely divides a signal into two groups.

Equation (3-24) shows the reconstruction from the classified coefficients. The

morphological filters are considered as the classification operators which separate

the decomposed coefficients into two different sub-coefficients at each levels. The
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reconstructed signal can be regrouped by its morphological characteristics to reach

the final separation by the nonlinear morphology classification method.

x[p] = {ˇ̌xaamm + ˇ̌xdamm + ˇ̌dadmm + ˇ̌xddmm}+ (3-25)

{ˇ̌xaarm + ˇ̌xaamr + ˇ̌xaarr + ˇ̌xdarm + ˇ̌xdamr + ˇ̌xdarr +

ˇ̌xadrm + ˇ̌xadmr + ˇ̌xadrr + ˇ̌xddrm + ˇ̌xddmr + ˇ̌xddrr}

= xbackground + xtransient

Equation (3-25) shows that the signal x is separated into two components: one is

the background activity which is filtered by the morphological filter. The other is

the transient phenomenon which is the residue between the morphological filtered

signal and the original signal. The background activity has been smoothed by the

morphological filter and the remaining contains sharp signal. The morphological fil-

ter classifies the input signal by its morphological characteristics at different scaling

coefficient sets. After the classification, a portion of a signal has the same morpho-

logical properties with respect to a priori known structuring element. The similarly

classified signals all put together to form a bigger signal. For the second level decom-

position and classification, the signal ˇ̌xaamm, ˇ̌xdamm, ˇ̌dadmm and ˇ̌xddmm all have similar

morphological shape but different sharpness; the rest of the signal sets belongs to

the residues. This proposed method separates an input signal z into two components

x and y by their morphology properties. It has been shown that a linear wavelet

transform with a morphological classification method can separate a signal into two

different components, which are background activity and transient signal.
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3.2.3 Synthetic Spike Signal Using Morphological Wavelet Packet Trans-
form

A signal z, shown at Fig. 3.7, containing both background activity and a sharp

transient, is used to demonstrate this signal separation process. The structuring

element disc, with its radius equal to one, is used for the morphological operations to

detect the geometrical differences of two components.

Figure 3.7 A synthetic signal composes with a background activity and spiky tran-
sient pattern. In the middle region, the sharp peaked pattern is embedded in the
smooth background activity (the rest areas).

The first level of wavelet packet transformation decomposes the simulated signal z

into two coefficient blocks: one is the approximation coefficient and the other is detail

coefficient. Applying the morphological filter (eq. 2-9) to these coefficient sets with

a circular structuring element, each coefficient is classified into two subgroups. Fig.

3.8 shows the simulated signal and the two first level decomposition coefficients. The

thick line is indicated as xam and xdm which are the morphological filtered result. The

residue xar is the differences between approximation coefficients xa and the classified

signal xam; the residue xdr is the differences between xd and xdm. The xam and xdm

represent the smoothed part of the input signal, where the xar and xdr are the “spiky”

part of the signal. Morphological filter works as a classification process to separate a

set into two groups. To this point, we have successfully divided a signal on its reduced

scaling into two subsets by their geometrical shape. The subsets xam and xdm are

reconstructed back into their original scale. The xar and xdr are reconstructed into

their original scale. The reconstructed signal is equal to the original signal.
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Figure 3.8 [top] The input signal. [bottom, left] The thin line is the approximated
coefficients and the thick line is xam, [bottom, right] The thin line is the detail coef-
ficients and the thick line is xdm. Note that the difference between xa and xam is the
residue xar, while the difference between xd and xdm is xdr.

Fig. 3.9 shows the reconstruction of the original signal from the two classified sets.

The top of the figure is the demonstration signal. The middle is the reconstruction

from xam and xdm, indicating the background activity. The bottom is the reconstruc-

tion result of xar and xdr which is the transient component. It can be clearly seen

that the separated background activity is a smoothed signal with some distortions

at the range of the spike. The transient contains the sharp spike. Visual inspection

shows that the morphological filter applied on decomposed coefficients can be used

to separate the demonstration signal into two different components. However, there

are still some rough shape variations in the middle of background activity. There are

due to the structuring element not being big enough to completely cover the sharp

signal. The separation of the “sharp” transient can be improved by decomposing first

level coefficients into second level coefficients by repeating this process.

Thus the classified sub-coefficients xam and xar are decomposed into the second

levels. The signal xdm and xdr are decomposed to the other sub-coefficients, too.

Figure 3.10 shows that the effort of the second level decomposition with the wavelet
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Figure 3.9 [top] A demo signal, [middle] The background activity reconstructed
from xam and xdm, [bottom] The transient reconstructed from xar and xdr. The
reconstructed background activity looks smoother except some ripples in the middle.
The transient contains the sharp peak signal extracted from input data.

transform and the classification operations of the morphological filter. The top of this

figure is the demonstration signal. The first level decomposition of the input signal

is shown in the middle. The bottom figure shows the second level decomposition of

the new signal xam and xdm from the first-level coefficients. The thick lines of the

bottom of Figure 3.10 are xaamm, xdamm, xadmm and xddmm which are the decomposed

coefficients classified by the morphological operation.

The reconstructed signal from the separated the second level classified coefficients

xaamm, xdamm, xadmm and xddmm represents the final background activity. The differ-

ences between the original signal and separated background activity are the transients.

The sum of the two separated components are equal to the original signal. Fig. 3.11

shows the final result of the morphology wavelet separation method. It can be clearly

seen that the background activity is a smoothed and the transient is a sharp spike
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Figure 3.10 The demonstrative signal [top] has been decomposed and classified
by the proposed morphological filter to level two. [middle] First level wavelet packet
decomposition coefficient and classified morphology subgroups. The thin line is the
decomposed coefficient from the wavelet transform and he thick line is the filtered
morphological coefficients xam and xdm. The xar and xdr are the differences between
xam and xdm and the decomposed coefficients. [bottom] The second level wavelet
packet decomposition. It only shows that the second level decomposition of xam and
xdm and the morphological classification of their decomposition coefficients.

located in the middle.

From the separation process using the demo signal, it is clearly shown that the

developed separation method divides this synthetic signal into two components. We

found that the reconstruction from the second level is necessary because the spiky

signal can be best recognized by the structuring element at this level. The second level

decomposition has reduced the the scale into quarter of original scale. The peaked

pattern is covered by the unit length structuring element. The structuring element

has the best aspect to determine the morphological differences. It can be concluded

that this signal must be processed on the level two of wavelet packet transform. If the

separation using the second level transform does not give a satisfied separation result,
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Background Activity

Transient Phenomenon

Figure 3.11 [top] Demonstration signal; [middle] Separated Background Activity;
[bottom] Transient Phenomenon. The background activity contains only smooth
morphological characteristics and the transient is rough morphological shape. The
small ripples, see Fig. 3.9, exist in the first level reconstruction have been eliminated
on the second level reconstruction. The summation of two components is equal to
the demo signal.

one can continuously decompose signal the n-th level until the optimized separation

results have been reached.

The procedures of morphology wavelet classification method are summarized as

follows:

1. Decompose an input signal x into two lower level coefficient sets by using the

low-pass filter h̄ and high-pass filter ḡ. The two coefficient sets are the approx-

imated coefficient xa and detail coefficient xd, where each one is a half of the

scale of signal x.

xa = h̄ ∗ x, xa ∈ V1

xd = ḡ ∗ x, xd ∈ W1,
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where symbol ∗ denotes the discrete-time wavelet convolution and the V1 and

W1 indicate the first-level spaces for two coefficient sets.

2. Apply the morphological classification filter, MB
f , on both coefficients xa and

xd and partition each of them into two groups:

MB
f (xa) = xam + xar

MB
f (xd) = xdm + xdr,

where {xam, xdm} are the sub-signals containing the smooth morphological shapes

and {xar, xdr} are the sub-signals containing rough variation.

3. Repeat the decomposition process (step 1) and morphological classification (step

2) until reaching level n.

4. Reconstruct the signal using the sub-signal having similar morphological char-

acteristics. For example, if the final level is 2, then the reconstruct will be as

follows: The first group of the smoothed coefficient is xaamm, xdamm, xadmm and

xddmm. The second group is the remaining subgroups which are the resides of

the morphological classification. The reconstruction is equal to eq. (3-25).

3.3 A Separation Method Using Morphological Lifting
Scheme

Heijmans and Goutsias (31) (37) have implemented a non-linear morphological

wavelet transform by using the lifting scheme. Section 2.2.3 has introduced the basic

concept of the morphological lifting scheme. A detail description to explain the

separation of background and transient subsignal is included in this section. The

“lifting scheme” is used to do the wavelet transform. The mechanism of the lifting
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scheme keeps the multiresolution property of the wavelet transform and its structure is

very flexible which makes the embedding of other linear and nonlinear operators into

the lifting scheme easier. For example, the lifting scheme can include a non-linear

rounding operator which makes all the coefficient integers (8). The mathematical

descriptions and the numerical results of a demonstration signal using the lifting

scheme will also be presented at this section.

3.3.1 Decomposition and Reconstruction Processes of the Morphological
Lifting Scheme

The lifting scheme is an implemented method accomplishing multiresolution anal-

ysis similar to the wavelet transform, but its flexible structure extends its ability

beyond the wavelet transform, i.e., allowing the mixing of nonlinear operator into

the multiresolution transform. Heijmans and Goutsias proposed a morphology-based

multiresolution analysis called max-lifting scheme (35) which maps the signal into

nonlinear morphological spaces. Altering the max-lifting scheme, we proposed differ-

ent morphological operators to build the three stage lifting scheme (see section 2.2.2).

The procedures of these three stages are listed as follows:

1. The first stage is to split a signal into two groups by labeling the even and odd

indexed sampling points of the signal.

(evenj, oddj) = Split(xj+1). (3-26)

This split process is called the lazy wavelet which simply splits the signal into

two small group according to the indices without any further operations.
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2. Predict the odd indexed values by using the morphological erosion operator on

the even indexed points and the odd indexed point in between two even points.

xj(i) = P(evenj(i), oddj(i), evenj(i+ 1))

= (evenj(i), oddj(i), evenj(i+ 1))	B (3-27)

where xj represents lower level scaling coefficients, B is a pre-defined structuring

element (circular disc), and 	 denotes the morphological erosion operator. Un-

like the max-lift scheme, the erosion operator uses both odd and even indexed

data points. Thus, this process needs to remember the odd indexed points in

order to perfectly reconstructed the signal. The reason for using both even

and odd indexed points to support the morphological erosion operator is that

the erosive operation detects the downward peaks and smooths them with the

structuring element. In our case, the epileptic spike is a sharp signal with a

peaked point. In order for the morphology operation to find this characteristic

and separate it from the background activity, the centered peak information

must be included to catch this particular morphological shape. The drawback

of this process is that it requires an extra memory to record the values of the

sequential odd points which are critical for the perfect reconstruction process.

3. Update the coefficients amplitude at the even indexed points by finding the

differences between the coefficients of even indexed points and the the average

of the two adjacent even scaling coefficients points.

evenj(i) = evenj(i)− U(xj(i), xj(i+ 1))

= evenj(i)− 1
2
(xj(i) + xj(i+ 1)). (3-28)
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Figure 3.12 Morphological Lifting Scheme: Decomposition. The xj and dj rep-
resent the lower level approximation and detail coefficients. The block contains “S”
means the split process and “J” is the join process.

The detail coefficients, dj, are defined as the joining of the updated even indexed

(as eq. (3-28) and odd indexed point together:

dj = Join(oddj − xj, evenj). (3-29)

The points of the detail coefficient is still same as the higher coefficient xj+1.

This is because the non-linear morphological operation does not have inverse

operation to reconstruct the signal. In order to perfectly reconstruct the orig-

inal signal, the system needs to remember additional information. Additional

memory space is required compared to the standard lifting scheme. The update

procedure tries to correct the prediction errors in the detail coefficient. The

average of two even points is a smoothing operation so that the difference of

the centered even point is the sharp variation. If the neighboring points are a

slowly varying signal, the differences will be small. If the region has a sharp

amplitude change, the differences indicate that they belong to a “spiky” signal.
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Figure 3.13 Morphological Lifting Scheme: Reconstruction. The lower level coeffi-
cients xj and dj are perfectly reconstructed into the higher level coefficient xj+1. The
block containing a alphabet “S” is the split process, and “J” means join process.

Fig. 3.12 shows the schematic diagram of the decomposition process. The input

signal xj+1 is the higher level coefficient set and j + 1 indicates finer resolution. The

decomposition produces the two coefficient set, where xj is approximation coefficient

set with coarser resolution and dj+1 is detail coefficient with the same resolution of

xj+1. The coefficient xj can be further decomposed into next level, and so on.

The reconstruction of this morphological lifting scheme can be performed by

changing the signs of update function with the scaling coefficients xj and dj, Fig-

ure 3.13. The decomposition subtracts the the average of even indexed points and

the reconstruction simply adds the values back. The join function is to regroup

the even and odd indexed points into a larger set xj+1 (the higher level coefficient

set). The reconstruction process will perfectly recovered the original signal xj+1.

The reconstruction procedure does not require a prediction stage. This is because

the decomposition procedure remembers the odd indexed points and the reconstruc-

tion procedure joins the previously recorded information to perfectly reconstruct the
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Figure 3.14 Results of separation: background activity reconstructed from scaling
coefficients x3 only and spiky transients from wavelet coefficients d1, d2 and d3

signal.

3.3.2 Synthetic Spike Signal Using Morphological Lifting Scheme

This example demonstrates the representation of two components by the morpho-

logical lifting scheme. The demonstration signal is the same as in the morphology

wavelet separation method in section 3.2.3 (see Fig. 3.7). Each level of decomposition

creates two coefficient sets: one set is approximation coefficients and the other set is

detail coefficients. The approximation coefficients are decomposed to the next level.

Fig. 3.14 shows three level decompositions of the demonstrative signal using the

morphological lifting scheme. At the top of the figure is the original input signal. The
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Figure 3.15 Separation Result by Using Lifting Scheme [top] A Demo Signal [mid-
dle] Separated Background Activity [bottom] Transient Phenomenon

left and right sides of the second row are the first level decomposed approximation

coefficient x1 and detail coefficient d1. The third row contains the second level de-

composed coefficient sets obtained from the coefficients x1. The bottom row contains

the level three coefficients derived from x2. These coefficients were obtained by using

split, prediction and update stages introduced in section 3.3.1.

Figure 3.15 shows the separation result. The top of this figure is the demonstra-

tion signal. The middle panel of Fig. 3.15 is the separated background activity which

is the reconstruction from the approximation coefficient of the lowest level only. The

bottom of figure is the transient which is reconstructed from all the detail coeffi-

cients. The sum of the two separated subsignals are equal to the input signal. It



71

can be clearly seen that the spiky signal has been extracted from the input signal.

The background activity is a smooth signal without any sharp amplitude variation

and “peaked” points. This demonstration illustrated that the proposed morpholog-

ical lifting scheme can divide a signal into two components by differentiating their

morphological characteristics.
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4.0 EXPERIMENTAL RESULTS ON EEG/MEG DATA

The empirical results using both simulated data and real epileptic EEG/MEG

data are provided in this section. The simulated EEG data, composed of two compo-

nents background and transient activity, is first used to test the developed methods.

The real EEG/MEG signal, collected from an epilepsy patient, is applied later. The

epileptic EEG data is all assumed to have two components: one is the background

activity an the other is “spiky” transient. The separated transient signal is then ana-

lyzed by using stochastic point analysis to indirectly verify these abnormal activities.

4.1 Experiment of Simulation Data

The simulated EEG data was manually generated and then applied by both the

morphology wavelet separation method and the morphological lifting scheme method

to test the performance of the separation. The simulated data is similar to real EEG

signal.

4.1.1 Results of Simulated Data Using Morphological Filtering in Wavelet
Packet Transform

The simulated EEG data was generated to test the performances of the proposed

separation methods. This simulated EEG data is trying to mimic the real epileptic

EEG data composed two components: the background activity and the transient

phenomenon. The transient part of this simulated EEG data is actually extracted

from real EEG “spiky” data. We extracted several segments of spikes from real

subdural epileptic EEG data (see appendix A). The simulated background activity is

manually generated “by hand” with slow amplitude variations. The background and



73

Simulated Background Activity (x)

Simulated Transient (y)

Simulated EEG Signal (z=x+y)

Figure 4.1 [top] The simulated EEG background activity, [middle] The simulated
EEG transient signal, [bottom] The simulated EEG data which is the summation
of two simulated components. The simulated transient has rough shape variation
than the background activity and these two signals are non-stationary with different
morphology characteristics.

transient activities are assumed non-stationary. Fig. 4.1 shows the simulated EEG

signal. The top and middle are the simulated background and “spiky” transients,

respectively. The bottom is the simulated data which is the summation of the two

simulated components.

Visual inspection the simulated EEG data, one can find the simulated transient

signal looks sharp and its amplitude variation is faster than the imitative background

activity. The sharp signals represents the abnormal activity which is widely seen in the

EEG data when a seizures occurred. The shape of the background activity is smoother
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Simulated EEG Data

Simulated Background Activity Result [S/N:26.170] (Blue:Original,Red:Simulated Result)

Simulated Transient Result [64.558] (Blue:Original,Red:Simulated Result)

Figure 4.2 A simulated EEG data is divided into two components by using the
morphology wavelet thresholding method, where the top is the simulated EEG data,
the middle shows the separated background activity and the bottom is the separated
transient. The two separated components visually look very similar to the original
simulated components in Fig. 4.1. The signal noise ratio (the higher is the better) is
26.17 and 64.56 for each components with respect to the original input signals.

than the transient signal. The morphological characteristics of two components are

different to each other: one is smooth and other is rough.

The morphology wavelet separation method, see section 3.2, is applied to the

simulated EEG data. The wavelet packet transform has decomposed the simulated

signal at levels three. The decomposed coefficients of each level are classified into two

components by using the morphological filter. The structuring element is set to a

circular disc with radius equal to one. Fig. 4.2 shows the separated results. The top
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panel of figure is the simulated EEG signal, the middle and bottom panels are the

separated background activity and the transient signal, respectively. The separated

components by using this method are similar to the original ones.

The numerical results demonstrate that the morphological filter is able to extract

the transient signal from the background activity. In order to measure the perfor-

mance, a signal-to-noise ratio (S/N) is provided to give the numerical comparisons.

Let S be the simulated data and Ŝ be the separated result. The S/N is defined as:

S/N =

∑
|S|2∑
|S − Ŝ|2

. (4-1)

The higher value of the signal noise ratio, the better quality of the separated result

is. The S/N ratio of this simulated background activity and the separated result is

26.17. The s/n ratio for simulated transient and the separated result is 64.56.
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Power Spectral Density [dB] (Solid Line:Background; Dash Line:Transient)

Figure 4.3 Power spectrum (dB) of two simulated EEG background activity and
transient. The solid line is the simulated background activity and dash line is the
transient.

The spectral method is also used to divide the simulated signal into two compo-

nents.The spectral method used the a cut-off filter to separate two subsignals. It has

assumed that two components have different frequency ingredients. Fig. 4.3 shows

the power spectrum of two components. The background activity shows that the
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Simulated EEG Data

Low Pass Background Activity [S/N: 6.669] (Blue:Original,Red:LowPass Result)

Low Pass Transient [S/N:16.453] (Blue:Original,Red:LowPass Result)

Figure 4.4 The Separated Result of Simulated EEG Using Low Pass Filter

major energy is on the low frequency domain and the transient has high frequency

ingredients. However, it can be seen that the two components have overlapped in the

frequency domain. The frequency ingredients lower than the cut-off frequency is the

background activity and the higher ones are belongs to transient signal. A low-pass

filter has been applied to the simulated data. The cut-off frequency of this filter is

set to 11 Hz, where two simulated signals are starting to divert. The results by using

this low-pass filter is shown on Fig. 4.4. The S/N ratio of background activity using

low-pass filter is 6.67 and is 16.17 for transient signal. The numbers show that the

the morphology wavelet separation method has a better performance than the cut-off

method.
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Figure 4.5 The experimental result of synthetic data using morphological filtering
of the wavelet packet transform is shown in this figure. The top panel is the synthetic
signal, the middle panel is background activity, where the dash-dot line is original
form and solid line is the separated component. The bottom panel is spiky transient,
where the dash-dot line the original one and solid line is separated result.

Another experiments using different synthetic signal have been performed to com-

pare the results between the morphological filtering method with other approaches.

The synthetic signal contains the background activity (x) and transient (y). The

summation of x and y will be the simulated data. Two different approaches are used

to separate the spiky transient signal from the background signal. The first one is

using a median filtering to separate a input signal into two components and the sec-

ond one is using developed morphological filter but not using wavelet transform to

change signal scale. The second approach is to decimate the input signal into its half

resolution, which the morphological filter is applied to these decimated coefficient.

The filtered result is decimated and the morphological filter is applied again until

reaching levels three. The reconstruction is repeatedly interpolating the last level

results by two by two until the signal has been reconstructed into original scale. The

median method is using a one-dimensional median filter with its length equal to 17

points, which are the maximum duration of a spiky transient.
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Figure 4.6 The experimental result of synthetic data using morphological filter
applied on down-sampled signal (without using wavelet transform to do multireso-
lution decomposition) is shown in this figure. The top panel is the synthetic signal,
the middle panel is background activity, where the dash-dot line is original form and
solid line is the separated component. The bottom panel is spiky transient, where
the dash-dot line the original one and solid line is separated result.

The synthetic transient signals are generated by randomly selecting the duration

of spikes between 5 points to 17 points. The amplitudes of the peak points are

randomly set between -2048 to 2048 and can be located at any points inside the

duration of these spikes (between 5 to 17 points). Each trail has generated 50 spikes

to test the performance for each method. The background activity is a composition

from four sinusoidal waves with different frequencies. These frequency are selected

as 5 Hz, 2.5 Hz, 1.25 Hz and 0.5 Hz. The scalar amplitude for each sinusoidal signal

are randomly selected between the -1024 and 1024, where the strength of 2.5 Hz

is set slightly larger than other frequency components. The synthetic signal is the

summation of these two randomly generated components. These two methods have

divided the synthetic signal into two components: one is background activity (x′) and

the other is spiky transient (y′). To compare the results, a signal-to-noise ratio for
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Figure 4.7 The experimental result of synthetic data using a one dimensional me-
dian filter with support length 17 points is shown in this figure. The top panel is the
synthetic signal, the middle panel is background activity, where the dash-dot line is
original form and solid line is the separated component. The bottom panel is spiky
transient, where the dash-dot line the original one and solid line is separated result.

both synthetic background and transients are defined as follows:

SNx =

∑
x2∑

(x− x′)2
(4-2)

SNy =

∑
y2∑

(y − y′)2
(4-3)

The larger number of the signal-to-noise ratio, the better separation results are given.

Figure 4.5 shows a synthetic data is separated into two components by using

the developed morphological filtering with wavelet packet transform. The top is the

synthetic data composed with spiky transient and background activity. The middle

panel of same figure shows the original background activity (as the dash-dot line) and

the separated background (solid line). On the bottom panel, the separated transient

(shown as solid line) and the original one are shown here.

Figure 4.6 and 4.7 are the the separation results using the down-sampling and

median filter, respectively. The top panels of these figures are the synthetic data

composed with spiky transient and background activity. The middle panels show
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Table 4.1 The Signal-to-Noise Ratio of Synthetic Transient Data for a Single Trial

Morphological Filter on Wavelet Transform Method 2.7208
Morphological Filter on Decimated Data 2.2097
Median Filter 2.2424

Table 4.2 The Signal-to-Noise Ratio of Synthetic Background Data for a Single
Trial

Morphological Filter on Wavelet Transform Method 18.2335
Morphological Filter on Decimated Data 14.8086
Median Filter 15.0272

the original background activity (as the dash-dot line) and the separated background

(solid line). The original transient (dash-dot line) and separated transient (solid

line). The table 4.1 and 4.2 are the numerical result of the signal-to-noise ratio using

this synthetic data shown in the figure. For the background activity, the morphology

wavelet separation method scores 2.72, the decimation method is 2.20 and the median

separation method is 2.24. As the results of of the spiky transients, the first method

scores 18.23, the second is 14.80 and the last is 15.02. Our developed method has a

better separation result than using other approaches.

Similar experiments have been performed 500 times and the average results of

the signal-to-noise ratio are listed on table 4.3 and 4.4. These average numbers show

similar performance as the single trial.

Table 4.3 The Average Signal-to-Noise Ratio of 500 Trials for Synthetic Transient
Data

Morphological Filter on Wavelet Transform Method 2.7118
Morphological Filter on Decimated Data 2.6687
Median Filter 2.1113
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Table 4.4 The Average Signal-to-Noise Ratio of 500 Trials for Synthetic Back-
ground Data

Morphological Filter on Wavelet Transform Method 16.3575
Morphological Filter on Decimated Data 13.8351
Median Filter 13.2639

4.1.2 Results of Simulated Data Using Morphological Lifting Scheme

The morphological lifting scheme, see section 3.3, is applied to same simulated

EEG data to divide the input signal into two components. The simulated data has

been decomposed at levels three and each level created two coefficient sets. One set is

belonging to the background activity, which has slower amplitude variations, and the

other is the spiky transient containing rough shape and fast amplitude variation. This

methods judges the morphological characteristics to separate two components. The

separation results are shown in Fig. 4.8. Top is the simulated EEG data, middle and

bottom of same Figure are the separated background activity and transients. In visual

inspection, the separated spiky transient has fast amplitude variation and contains a

lot sharp peaked spiky pattern. The background activity has slow amplitude changes,

but it contains some small sharp peaked patterns. It is because that the morphological

erosive operator operates only covers three sampling points (center and two adjacent

points) and the update procedure may need more sampling points in order to give a

better estimation to smooth these peaks. The results show that the morphological

lifting method is capable of separating these transient signals from the simulated

signal.
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Origial Signal

Separated Background Activity by Morphological Lifting Method

Separated Transient by Morphological Lifting Method

Figure 4.8 [top] The simulated data [middle] The separated background activity
by using morphological lifting method [bottom] The separated transient by using
morphological lifting method

4.2 Separation Results Using Real EEG Data

After the experiments of using simulated EEG data for both morphology wavelet

separation method and the morphological lifting scheme modeling, the real EEG data

were tested in this section. The real EEG data used is a subdural EEG collected from

an epilepsy patient and a segment of EEG data containing real epileptic spikes.



83

4.2.1 Results of Real EEG Data Using Morphological Filter in Wavelet
Packet Transform

A segment of a subdural EEG data from a young epilepsy patient, has been divided

into two components by using the developed morphology wavelet separation method.

This segment EEG data contains 2000 samples (8 second data with the sampling rate

250 Hz). The input signal has been decomposed on levels three by using biorthogonal

wavelet. The biorthogonal wavelet filter is a FIR filter with compact support, where

this filter is symmetry and can perfectly reconstructs the original signal back. Each

decomposed coefficient is classified by a morphological filter. The filtered result is

the smoothed subcomponents and the residues have fast amplitude variations. Each

filtered signals are repeatedly decomposed by the wavelet transform and classified into

another two subcomponents. The detail algorithm has been discussed on section 3.2.

The stopping level is depended on the durations of the target signal and has been

set to three in this experiment. It is because the span of a spike is about 5 to 17

sampling points and the levels three decomposition reduce the signal scale of one-

eighth of its of original one. At level three, the structuring element (a disc with its

radius equal to one) will cover the span of a reduced spike. Figure 4.9 shows that the

subdural EEG signal has been decomposed at level three by the biorthogonal wavelet

transform. The decomposed coefficient is separated into two smaller subcomponents

by using developed morphological filter (see eq. 2-9). This morphological process

divides the decomposed coefficient sets into two categorized signals by judging their

morphological features. One category contains smooth shape signal and the other is

rough variation pattern. However, the integrity of these divided signals is not affected

by the nonlinear morphological process. The summation of these two classified signals

is the same as the original one. These classified coefficient sets are regroup by their
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Figure 4.9 The three level decomposition of the wavelet packet transform. Top is
the input Subdural EEG data and the following are the decomposed coefficient sets.
Each coefficient set is divided by a morphological classification filter.

category and reconstructed by the inverse wavelet transform. The reconstructed

signal will be the final background activity and “spiky” transients.

Figure 4.10 shows the two separated components. Top panel of this figure is

the subdural EEG data. The middle is background activity, where its shape looks

smoother than the original EEG data. Most of the sharp peaks are eliminated. Small

ripples and overshots can be seen on some areas where the large spikes originally

locates in there. The bottom panel is the separated transient. The shape of the

transient looks rough with fast amplitude variation. It can be seen that the locations

of these spiky patterns are consistent with its original positions. It suggested that the

non-linear morphological filter does not have the phase shifting of this input signal.
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The two separated components are equal to the original EEG signal. The morphology

wavelet separation method is a classification process which separates a signal into two

subcomponents using their morphological characteristics.

Original EEG data [8 seconds] (06:38:22)

Reconstruction from Level 3 [Blue:Original data, Red:Background Activity]

Transient

Figure 4.10 [top] The subdural EEG data [middle] The separated background ac-
tivity [bottom] The separated transient phenomenon. The EEG data is decomposed
and classified by the proposed morphology wavelet thresholding method. Each classi-
fied group signals are reconstructed into two components. The separated background
activity looks smoother than the original EEG. The extracted transient signal con-
tains the spiky pattern, small artifacts. The summation of two components are equal
to original signal.
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4.2.2 Results of Real EEG Data Using Morphological Lifting Scheme

An epileptic EEG data is separated into two components by using morphological

lifting scheme method. The three stages of this method are split, predict and update

stages have been introduced in section 3.3. The input data is decomposed into several

coefficient sets. Figure 4.11 shows the decomposed coefficient sets generated from the

morphological lifting scheme. Top panel of this figure is the subdural EEG data which

is the same as one used in morphological filter in the wavelet packet transform. The

middle panel is the first level decomposed coefficient sets: approximation coefficient

and detail coefficient. The approximation coefficients are further decomposed to the

next scale level to generate another two coefficient sets, shown on third row of this

figure. The decomposition has stopped at levels three, shown on the bottom of Fig.

4.11.

These decomposed coefficient are reconstructed back into its original domain. The

approximation coefficient at levels three are recovered as the background activity.

The three detail coefficient sets are formed to be the transient phenomenon. Figure

4.12 shows the two separated components from a EEG data. Top of figure is the

EEG signal. The middle is the background activity which is reconstructed from

the approximation coefficient of levels three. The bottom is the “spiky” transient

reconstructed from all three detail coefficient sets. The background activity visually

looks smooth, but containing some peak points. It is because that the short supports

of the predict and update filters are lacking the information of neighboring points,

which can provide more information to smooth these peaks. The spiky transients

have rough shape. The summation of these two separated components are equal to

the original EEG signal.
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Figure 4.11 Three levels Decomposition of a subdural EEG data using morpholog-
ical lifting scheme. The top is the original subdural EEG data. The following rows are
the decomposed approximation and detail coefficients for the first to third levels. The
approximation coefficient of level three are reconstructed into the background activity.
The detail coefficient of all three levels are reformed into the transient pattern.

4.3 Results of Spike Train Analysis

The epileptic spikes are important information for the epilepsy diagnose. In this

section, it has investigated three different EEG data sets: subdural EEG, scalp EEG

and MEG. The spiky signal is first extracted from the EEG/MEG data and these

abnormal activities are further analyzed by spike train analysis.
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Figure 4.12 A result of using real EEG data using morphological lifting trans-
form: [top] A EEG data [middle] Separated background activity [bottom] separated
transient phenomenon

4.3.1 Spike Train Analysis Using Subdural EEG Data

The first data is a subdural EEG. This subdural EEG described in appendix

A, is recorded at Children hospital, University of Pittsburgh, Pittsburgh, PA. This

data has used 102 electrodes to collect the information from the brain. The epileptic

spikes are commonly being seen in this EEG data. The developed method using

morphological filter in wavelet packet transform has extracted these spikes from the

background EEG. Their statistical relationships was derived by using the A stochastic
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point process, introduced in section 2.3, is used to analyze the correlation of the spikes

(events) between two electrodes.
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10/29/98 06:37 (Subdural EEG channel 22, ’x’ and ’o’  is marked as positive and negative spikes)

Figure 4.13 The epileptic spikes are marked for representing the incidents of brain
activities. The ’x’ indicates the positive amplitude spikes and ’x’ as the negative
amplitude spikes. The absolute amplitude of selected peaks are larger than 300.

The first step of the spike train analysis is to find the timing informations of spiky

transients. The peak of a triangular spike is used to represent the appearing time of

this spike. Meanwhile, these spiky patterns can be classified into two types. One has

positive peaks and the other has negative peaks. In some cases, the neurologists are

mainly concentrated in negative spikes only. These spikes can also classified by the

amplitude at the peaked point. The larger amplitude spikes are easily recognized by

the human eyes; but smaller spikes still reflects the functionality of the brain. The

spikes with different amplitudes can be analyzed independently to represent the var-

ious status of the brain activities. Fig. 4.13 demonstrates a series of spiky transients

after the separation using morphology wavelet thresholding algorithm. These spikes

are divided into two groups: the ’x’ marker represents the positive amplitude and ’o’
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Figure 4.14 The average number of spikes with amplitude between [400 maximum
amplitude] appearing in each electrodes. Bottom of figure is the line plot which
horizontal axis is average number of spikes appearing in one minute and vertical is the
electrode name. Top of figure is the spatial head plot, each square box represents an
electrode and its color are plotted according the average number of spike appearance.
The darker of color represents the higher number, the lighter is the lower number.

is the negative one. In this figure, only the peaked amplitudes larger than 300 (or

less than -300) are selected. The range of peaked amplitude is manually selected here

and can be changed for different investigations by the experts.

Once the sharp spiky signals spotted, the average number of the spikes appearing

in one electrode is inquired. The EEG signal collects neurons’ activities around the

electrodes. The stronger abnormal signal generated by the neurons in one area,

the sharper of peak point will be recorded in the electrode near the area. If the



91

neurons produce weaker abnormal activity, the electrode will not record any larger

transients. The amplitude of these abnormal spikes can indicate the status of neurons’

activities. In order to observe the wide variety of EEG spikes properly, we have divided

these spikes into different groups by their peaked amplitudes. The range of different

amplitude groups are selected as the amplitudes between {[50 100],[100 200],[200

400],[400 maximum]}. For each hour long data, the average of spikes appeared in one

electrode for different groups are evaluated. The results are plotted in Fig. 4.14 to

4.16. The bottom of these figures are the line plot for the average spike appearing

on each electrode. The x-axis is the average appearances in minute and y-axis is

electrode name. The title of line plot indicates the period of subdural EEG data

processed. The top of figures are the graphical spatial plot of the head. From the

subdural montage, each electrode is represented with one square box and the gray

level of the box manifests the average appearing number of spikes at the electrode.

The dark dots indicate higher average number and light dots have lower value. The

electrodes having higher appearing number are located on left side of brain. Observing

these plots, it can find that the average number for the small spikes is higher because

the low amplitude spikes appeared more often. The high amplitude spikes are major

occurred in the left area of the brain. Hour by hour data has been processed in

the same way, it found that each hour data set shows similar average results. The

consistence of long term spike analysis shows the neurons in left area of the brain

having more abnormal activities.

4.3.2 Spike Train Analysis Using Scalp EEG Data

Another analysis is using scalp EEG, which is recorded from the same epilepsy

patient as previous section at the Children Hospital, University of Pittsburgh, Pitts-

burgh, PA, USA. The patient had stayed in the hospital for five days and EEG signal
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Figure 4.15 The average number of spikes with amplitude between [200 400] ap-
pearing in each electrodes. Bottom of figure is the line plot which horizontal axis is
average number of spikes appearing in one minute and vertical is the electrode name.
Top of figure is the spatial head plot, each square box represents an electrode and its
color are plotted according the average number of spike appearance. The darker of
color represents the higher number, the lighter is the lower number.

is collected 24 hours continuously. While EEG data being recorded, the patient’s

condition has been close watched by nurses. Any possible seizures or abnormal symp-

toms are reported for further analysis. The first one and half day, there are total 35

channels EEG used to collected and the rest days has expanded to 37 channels to col-

lect more information of the brain. The montage covered on the brain is an extended

10-20 system (see appendix D) shown at Fig. 4.17. The referential electrode (ground

point) for EEG recording is located between electrode ’Cz’ and ’Pz’. The sampling
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Figure 4.16 The average number of spikes with amplitude between [100 200] ap-
pearing in each electrodes. Bottom of figure is the line plot which horizontal axis is
average number of spikes appearing in one minute and vertical is the electrode name.
Top of figure is the spatial head plot, each square box represents an electrode and its
color are plotted according the average number of spike appearance. The darker of
color represents the higher number, the lighter is the lower number.

rate of scalp EEG data is 250 Hz and the cutoff low pass frequency and high pass

frequency is set to 100 and 3 Hz. The gain of the amplifier is 600 µV and A/D is

set to 12 bits which the number of raw EEG is between -2048 and 2047 and actual

potential range is between -625 and 625 µV . Unless specified, it has used the digital

number to indicate the amplitude of EEG data than using real voltage amplitude.

Total scalp EEG data is stored in 9 CDROM disks. It is pretty normal to have a

huge size data collection when physician examines the epilepsy disease. One can see
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Figure 4.17 This montage is extended 10-20 system from a young life-long epilepsy
patient, right of graph is right of human brain, left side is left of brain, top indicates
the nose.

why the automatic computer aided recognition processes of spikes are highly needed

because the size of tasks can not be accomplished only by human effort.

This data has been pre-processed by using the common reference method to elim-

inate the reference errors (see appendix C). Fig. 4.18 shows the processed EEG data.

This segment of EEG data is 30 second long. The vertical axis indicates the electrode

names of the electrodes and the horizontal axis is time (second), where top of figure

is first 15 second and bottom is the next 15 second. The title of the figure is the date

to record EEG. The last channel is EKG signal which is collected with EEG data

simultaneously to monitor patient’s heart condition. From the nurse’s log, we have

the exact information when a seizure happened. On the bottom of figure, a marked

thick dash line is the time reported that the patient having a seizure activity. It
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Figure 4.18 This Scalp EEG data is recorded from the Children Hospital, Pitts-
burgh, PA. There are total 32 channels and the montage is shown in Fig. 4.17. This
EEG data has been pre-processed by cutting the common reference. The vertical axis
is the channel names and horizontal axis is time. Top shows the first 15 second long
data and bottom is the next 15 seconds. The thick dash line on the bottom of figure
is a seizure activity being reported by the attendant.

is very important to know when a patient had some abnormal symptoms in clinical

diagnosis because physician will investigate the EEG around this region extensively.

The scalp EEG is segmented into several pieces with each one minutes long. Each

segment is applied with morphological filter in wavelet packet transform to extract

the spiky transients from this EEG data. The wavelet transform filter has chosen

the biorthogonal wavelet basis (6,8) because this wavelet basis is symmetrical having

compact support. Fig. 4.19 shows the separated spiky transients. It can be seen
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Figure 4.19 The spiky transients from the scalp EEG data are extracted from EEG
data, in Fig. 4.18. The vertical axis is the channel names and horizontal axis is time.
Top shows the first 15 second long data and bottom is the next 15 seconds. The thick
dash line on the bottom of figure is a seizure activity being reported by the attendant.

that the triangular spikes are extracted from scalp EEG data. The peak point of

these separated transient has been located to represent these triangular spikes. The

average appearance of spikes of each electrode is investigated to show where the area

of the brain may have the most abnormal activity.

Fig. 4.20 to 4.21 shows the results that average appearing of epileptic spikes on

each electrode. The left side of the figure represents the the left hemisphere of the

brain and right side is right hemisphere of the brain. The top of the figure is toward

to the nose. These spikes are divided into two groups: one group contains the spikes
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Figure 4.20 The separated sharp transients from the scalp EEG data (Fig. 4.18)
The vertical axis is the channel names and horizontal axis is time. Top shows the
first 15 second long data and bottom is the next 15 seconds. The thick dash line on
the bottom of figure is a seizure activity being reported by the attendant.

with peaked amplitudes between 500 to maximum and other is between 200 to 500.

Each electrode is represented with a round circle with gray color face. The dark one

indicates high average number and light is low value. The map on the right side of

the spatial plot is the indication of the value for each gray level. The amplitude of

scalp EEG is normally smaller than subdural EEG data. It is because the skull of

the head will attenuate the strength of neuron’s activity. These figures show that

the electrodes with higher average appearance of spikes are located at the frontal left

area of the brain, such “F7”,“T3” and “C3”, etc. The group containing higher peaks
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Figure 4.21 The separated spiky pattern signals from the scalp EEG data (Fig.
4.18) The vertical axis is the channel names and horizontal axis is time. Top shows
the first 15 second long data and bottom is the next 15 seconds. The thick dash line
on the bottom of figure is a seizure activity being reported by the attendant.

amplitude spikes having dark dots is limited in less electrodes. On the bottom of

figures are the line plot for the average appearance number, where x axis is average

number and y axis indicated the name of electrodes. This results are consistent with

the experiments using subdural EEG, which shows the left and frontal area have

noticeable abnormal activity.

The stochastic point process has been used to analyze the spike trains of two

different electrodes. The hypothesis of point process is the timing of an event occurred

is a random process. The stochastic point process generates a cross-correlogram,
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Figure 4.22 The cross-correlogram of paired spike train from Scalp EEG Data

introduced in section 2.3, to find the timing relationships of spiky events between

two electrodes. If a spike occurred in one electrode, in a moment there will observe

another spike appeared in the second electrodes. The cross-correlogram caught the

timing correlation of the events (spikes) from different electrodes. The number of how

often one observed this relationship repeatedly happened can quantify the strength

of the correlation. Using the located peaked point of the triangular shape spike, it

represents as the appearance time of this event.
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Fig. 4.22 shows the correlograms generated by stochastic point process between

electrode “F7” and the rest electrodes using the spikes with negative peak amplitude.

The title of each sub-figure shows the name of two channels: the first one is the

master channel “F7” and the second is the slave channel. For example, the title “F7-

Fp1” indicates the cross-correlogram of the electrode “F7” and “P1”. The x axis is

time (in second), where the positive time means that the spiky events occurred in

the master electrode before than the events in the slave electrode, and the negative

time means the events in the master electrode happened after the events in the slave

electrodes. The y axis is the count of the histogram indicating how many time one

have observed this relationship. The higher number indicates a strong relationship

between the events of the two trains. After observing these cross-correlograms, it

found that some electrodes, such as “F7-FP1”, “F7-F3”, “F7-T3”, “F7-F7”, etc.,

have similar correlation with respect to correlogram “F7-F7”, Those channels have

highest count number in the zero on the x-axis. Cross examining the locations of these

channels, it found that they are very near the electrode “F7”. This phenomenon can

be explained as follows: when the neurons in one area were excited by some an

abnormal activity, it immediately travels and affects the neurons near this area. The

speed of the abnormal activities traveling may be very fast. Currently the sampling

rate of EEG recording may not have enough resolution to reveal the fine detail of

these information. Other cross-correlograms, such as “F7-P4” and “F7-C4”, have

two highest counts located evenly between the center (zero delay) on the x axis. The

locations of these channels are far away from the electrode “F7”. When a abnormal

seizure signal occurred at channel “F7” and traveled into the area of these electrodes,

the neurons of these regions were triggered and generated an abnormal activity, too.

These internal activities eventually travel back into the neurons located at channel

“F7” and affect them again. These reciprocal responses of the connected circuit in the
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Figure 4.23 Spatial plot of the maximum correlation from the cross-correlograms
using scalp EEG Data

brain make the seizure activity can be revealed by using cross-correlogram analysis.

The stochastic point process can show the interactions between neurons in dif-

ferent area of brain. By selecting the highest count of the correlogram, the spatial

relationship of the strongest correlation between the master electrode, in this case

it is “F7”, and other electrodes can be analyzed. The cross-correlograms contain

two maximum correlation information. One is how early of the events of a master

electrode occurred before to the spike events in the slave electrode, shown as the

maximum correlation in the positive side of the correlogram. The second maximum
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Figure 4.24 Montage of MEG Signal, the marker ’+’ is left pre-auricular, marker
’o’ is right pre-auricular and ’x’ sign is the nasion

correlation is how late the events in master electrode behind the events in slave elec-

trode, indicated at the highest correlation in the negative side of the correlogram. In

order to show both maximum correlation, we show two spatial plots to observe the

correlation graphically. The first one shows the positive maximum correlation (early

appearance) and the second shows the negative maximum correlation (late appear-

ance). Fig. 4.23 shows both spatial plot by analyzing the the maximum correlation of

all the cross-correlograms with respect to master electrode “F7”. The top of figure is

the events in electrode “F7” having early appearances than the rest electrodes. The

bottom is showing that the events having late appearance than the slave electrodes.
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Each circle represents the location of a electrode on the surface of skull. The up

direction indicates the direction of the nose. The left side of figure is pointed to left

ear and right side is to right ear. The face color (gray scales) indicated the magnitude

that the time of delay. The dark color indicates that this electrode has occurred early

and the light one happened after. It can be seen that these spikes traveling between

the up-left and the bottom-right area of the brain. The epileptic signal has been

traveling between the left and right side. By analyzing the maximum correlation

of the cross-correlograms, the trajectory of these extract spikes can be investigated.

Hour long EEG has been used to produce this plot. The amount of data shows the

relationships between the neurons in long period. It may increase the reliability than

only analyzing short range EEG data.

4.3.3 Spike Train Analysis Using MEG Data

The third example for spike train analysis is using MEG signal recorded from the

same patient in the previous examples. The MEG data is collected at Henry Ford

Hospital, Detroit, Michigan, USA. The sampling rate of MEG data is 508.63 Hz and

its sample period is 1.96607 ms. The cutoff low and high pass frequency is 100 Hz and

3 Hz, separately. The notch frequency is 58.3975 Hz. There are total 148 electrodes

used to collect MEG data. The montage of MEG is shown in Fig. 4.24. The name

of electrodes begins with letter “m” following digital number, where “m” indicates

MEG and sequential number is from 1 to 148. In the figure, the ’+’ sign indicates the

position of the left pre-auricular, ’o’ sign is the position of right pre-auricular and ’x’

sign locates at the position of nasion. The vertical axis (x axis) indicates the front

or rear of the head, where the plus indicates the front area of head and the rear side

head has minus value. The horizontal (y) axis represents the left and right side of

face, where plus of y axis is left side and minus indicates the right side of the head.
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The montage is viewed from the top of head which the height of electrodes do not

plotted in here.

Figure 4.25 MEG data: the horizontal axis is the time and vertical axis indicates
the electrode names.

Fig. 4.25 is the MEG data, where the horizontal axis is the time and y axis in-

dicates the name of electrodes. This segment of MEG data is 15 second long. This

“spiky” transients were extracted by using the morphological filter in the wavelet
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transform. It has used the biorthogonal wavelet basis to decompose signal into levels

three. The extract spikes are shown in Fig. 4.26. The x axis and y axis are cor-

responding with raw MEG data. The transient signal has fast amplitude variation

and its shape looks sharp. Visually inspection the rough shape signal, It can see that

most of the sharp triangle spikes are successfully separated from the MEG signal.

Figure 4.26 The separated spike signal from the MEG signal. The horizontal axis
is the time and vertical axis indicates the electrode names.
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Figure 4.27 The result of counting spikes with their amplitude larger than 3000 in
the MEG data. The dark color has higher number and the light color means lower
number.

The average number of epileptic spikes appearing in each electrode is inquired. The

first group analyzed is for those spikes having their peak amplitude larger than 3000

(in the digital conversion number), the second group is for the amplitudes between

2000 and 3000, and the last one is for the amplitudes between 1000 and 2000. The

investigation of three groups of different amplitude spikes shows the abnormal activity

of neurons in different area of brain. The average numbers for all electrodes are plotted

to show the spatial relationship in the head. A circle, representing an electrode, with

its face displayed with gray color is representing an electrode. The dark color indicates

higher number and the light color has lower number. Fig. 4.27 is the spatial plot
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Figure 4.28 The result of counting spikes with their amplitude larger than 2000 in
the MEG data. The dark color has higher number and the light color means lower
number.

for the first group. Fig. 4.27 and 4.29 are the spatial plot for the second and third

groups, respectively. The markers of “+” and “o” are indicating left and right side

of the brain. The “x” sign is the location of the nose. It can clearly be seen that

the electrodes located at frontal left area of the brain have higher average appearance

number. It is more significant when the amplitudes are larger. The electrodes located

frontal right area also have large average number. But in the right side, these number

is not as significant as left side and it seems that these electrodes have spread in a

larger area at the right side of the brain.

The cross-correlograms generated by stochastic point process between electrode
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Figure 4.29 The result of counting spikes with their amplitude larger than 1000 in
the MEG data. The dark color has higher number and the light color means lower
number.

“M96”, located at the frontal left area of the brain, are shown on Fig. 4.30. The

maximum correlation points on both right and left side of the correlogram show the

time relationships between the events of two electrodes. The maximum correlation

on the right side indicates how early of the events in the master electrode appear

than the events in slave electrode. The left side shows how late that the events

in the master electrode showed after the events of the slave electrode. The timing

shifting of the maximum correlation point are plotted on Fig. 4.31 to graphically

show the relationships of the spike events between master electrode “M96” and the

rest electrodes.
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Figure 4.30 The correlogram of MEG data

The left side of Fig. 4.31 is the left maximum correlation of the cross-correlograms

and right side of this figure is right maximum correlation. The gray level indicates

the time differences with respect to the center of the correlogram (the center point

means no time difference). If the number of the maximum correlation is too small,

which indicates that as the correlation between the events in two electrodes is not

significant, is plotted as small dot. On the right column of this figure, the dark circle

means the events in the master channel are leading the events in slave one, which the
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Figure 4.31 The spatial plot indicating the time delaying of maximum peak from
the correlogram

spikes generated near the master electrode appeared early than other area. It can be

seen that the the the circle plate near the master one has on the left side brain have

the abnormal spike events leading other electrodes. This left-frontal area of the brain

has most abnormal activities consistent to the results investigated in other different

EEG data.

At the left side of the this figure shows the maximum correlation on the left side

of the cross-correlograms. The point of the maximum correlation shows the major

leading time of events in the slave electrode occurred before the events in master. The

light circle plates represent the left maximum correlation time is close to zero. It found

that some electrodes on the right hemisphere (located on left of the head model) of

the brain have strong correlations to the electrode “M96”, shown as some dark plated

of the left column of Fig. 4.31. The correlations between these electrodes and the

master electrode caught from the correlogram suggest that there is interactions at

the left and right hemisphere of the brain. In our analysis, all cross-correlograms

between each two electrodes are inspected. Analysis of the correlations of these spike

events, separated by using our developed method, is found that the neurons near the
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Figure 4.32 The Spatial Plot of Cross-correlogram

left-frontal and right-frontal area have generated the major seizure activities. The

correlogram suggests that the left side has more dominant influences. The rest area

of the brain have less or no significant symptoms related to epileptic spikes.

In the end, another subdural EEG, recorded from the same patient, has separated

into spiky transients and background activity by using morphology wavelet separa-

tion method. These spikes of every paired electrodes generated a cross-correlogram

by using stochastic point process. These cross-correlograms have been analyzed by

neurologist. According to the point (timing information) at the maximum correlation

of each correlograms, it has analyzed their interactions depending on the spatial lo-

cation of these electrodes. Figure 4.32 shows this spatial plot of this analyzed results.

Each circle represents an electrode. If the amplitude of the point at maximum corre-

lation in the cross-correlograms between two electrodes is lower than a threshold, the
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experts decide there is no significant relationship between these two electrodes. If this

amplitude is larger than the threshold, it will conclude there is a significant relation-

ship between two electrodes. The empty circle indicates that there is no significant

relationships between one electrode with respect to all other electrodes. The circular

plate indicates that this electrode has significant relationships between the electrodes

near to this electrode. This size of plate indicates the strength of significance, while

the larger one has stronger relationship. The circular plate covered by a circle out-

side shows this electrode has significant relationship between most electrodes. The

trajectories of abnormal activities generated from the brain cells are mainly on the

up-and down in the front area of the brain. It can be seen that the electrodes at the

front and middle area of the brain have the most strongest interactions. This area is

at the temporal and frontal lobes on the left sphere of the brain. This result has been

compared with an neurologist independently inspecting this data with other medical

approaches. Both conclusions are consistent to each other.
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5.0 DISCUSSIONS

This chapter discusses performances of the developed signal separation method of

using morphological filter in wavelet packet decomposition and of using morphological

lifting scheme as well as the application of the stochastic point process analysis to

epileptic EEG signals. Their advantages and limitations are examined.

5.1 Summary

In this study, we have address an important problem in basic and clinical neuro

science, automatic EEG spike separation and have presented a novel approach to

give an improved solution to this problem. The problem has inspired us to theo-

retically analyze a morphological filter with a multiresolution representation. We

first described the problems of automatic spike separation and limitations of current

approaches. We then proposed our approach to solve this problem. This approach

involved the use of the mathematical morphology, wavelet transform and the lifting

scheme. The latter, the interictal spike activity has been analyzed by the stochastic

point process using these separated transients to reveal the dynamic relationship of

neurons.

The automatic spike separation has two parts: one is morphological wavelet sep-

aration method and the other is morphological lifting scheme. The targeted spiky

transients have sharp peaks randomly appearing in the epileptic EEG signal. The

rest of EEG signal is considered as a background activity. This thesis has separated

these transients from the background activity. The stochastic point process is a tool

for analyzing the interictal activity. Using the extracted transient, it generates a

cross-correlogram to find the correlation between two sequences of spiky events. The
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correlation shows the interactions between neurons in the brain. The most interactive

area will be a possible focus generating the seizure.

The whole interictal spike analysis includes automatic spike separation methods

and the followed stochastic point process is trying to find the possible foci of epilepsy.

These methods have applied to the subdural EEG, scalp EEG and MEG data. An

outline of this thesis of automatic spike separation and stochastic point process is

shown in Figure 5.1.

Subdural EEG Data

Scalp EEG Data

MEG Data

Input EEG Data

Automatic Spike Separation

Stochastic Point Process
Spike Train Analysis

1. Morphological Wavelet Transform

2. Morphoglogical Lifting Transform

Spikes Appearance Count

Correlogram Analysis

Figure 5.1 Summary of Automatic Transient Spike Separation and Interictal Spike
Train Analysis
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5.2 Morphological Filtering in Wavelet Packet
Decomposition

The wavelet packet transform is implemented by using a low-pass filter and a

high-pass filter. The decomposed coefficient sets consist of scaling coefficients with

lower frequency components and the wavelet packet coefficients with higher frequency

components, both have coarser resolution than the original signal. The coefficients

are repeatedly decomposed to the next scale level. The wavelet transform essentially

divides a signal into subband frequency components. But the sharp spiky patterns in

the epileptic EEG data are not well recognized by using wavelet packet decomposition

alone. The reason is that the two components in the EEG data have overlapped

frequency components.

Mathematical morphology gives a nonlinear method based on the set algebra and

integral geometric analysis applied to signals. Morphological operations utilize one

or more structuring elements defined a prior, which is chosen as a circular disc with

radius equal to one. With this structuring element, morphological operators, such

as opening and closing, are constituted to form a morphological filter which enables

the detection of the modeled spiky pattern from the wavelet decomposition of the

epileptic EEG data.

The duration of epileptic spikes are in the range of five data points to seventeen

data points compared to 20 to 70 msec duration with a sampling rate of 250 Hz. The

spikes are modeled as a pattern of triangular shape. It has a sharply rising and falling

peak point in the middle. We have chosen a structuring element as a circular disc

of a fixed radius, then structuring element is chosen because a circle has a constant

curvature, while may measure the curvature variation of the background activity. Ap-

proximately, the background activity has constant curvature locally, which matches
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the structuring element. The morphological filter smoothed portion of the signal

where the morphological characteristics are different from the triangular transients.

The residues between the signal and smoothed portion are taken as the “spiky” tran-

sients. Combining a specific morphological filtering and the wavelet packet decompo-

sition, we have developed a new method to separate spiky transients and background

activity in the EEG data. The wavelet bases used is the biorthogonal wavelet with

compact support. We found that using biorthogonal wavelet gave better results.

The summation of two components is equal to original so that the integrity of

the original signal dose not change. The wavelet decomposition and morphological

classification can be repeated to the next levels. The sopping criterion depends on

the minimum scope covering three points and the length of decomposition filter of

the wavelet transform. For the duration of spiky transients of 6 sampling points,

at the coarser scale the first-level decomposition will approximately reduce the spike

span to 3 points. The morphological filter will have the best coverage to detect this

spiky transient at this resolution level. For spiky transients with longer duration, it

will need the second level decomposition to reduce to 3-point coverage at a coarser

level. For spikes duration of 5-17 sampling points, the stopping level is three, where

the spikes of longest duration can be the best detected. The supported length of

biorthogonal filter integrates the local information and keeps the peak point in the

coarser levels. In the end, one can regroup the separated components at final level by

their morphological characteristics. The smooth and residue components are formed

to be the background activity and the spiky transient, respectively.

The span of the circular disc covers three points at each level scale level. The

three samples are the point to be processed and its adjacent neighbors. It covers the

minimum area to detect a sharp spikes where the peaked point is in the middle. Using
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a structuring element with fixed size, the morphological filter can detect and extract

such a local geometric shape at the scale level. Using multiresolution decomposition,

this structuring element adapts to spike patterns of different size. Instead of providing

many different structuring elements for different types of transients, this developed

method separates the targeted patterns from the EEG only using one structuring

element.

Visual inspection of the separated background activity shows similar shapes to

the original EEG without sharp spikes which are shown in the transient component.

However, small ripples occur in the areas where large spikes located. The sharp

spikes are correctly separated from the raw EEG signal. Some small, fast fluctuations

are blended in the separated transients which are assumed as high frequency noise

and highly discernible from the spikes. In practical application, these noises are not

significant and can be eliminated.

The wavelet bases used in this paper have chosen to be the biorthogonal wavelet

which is FIR filter with compact support and multiresolution representation. The

biorthogonal filter is symmetric and the phase of the filter will not be distorted. We

have compared the separated results by using the orthogonal wavelet transform. It

found that the biorthogonal transform gave a better results. Even the morphological

operations are known as non-linear processes, this method can identically separate

two exact spikes with different directions (the upward and downward spikes) with

only a sign difference. It is because the chosen structure element, circular disc, has

symmetric shape. The symmetry property treats the directional signal equally. The

detail descriptions have been included in appendix E.
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5.3 Morphological Filtering in Lifting Scheme

The second morphological method of signal separation uses a morphological lifting

scheme. The lifting scheme also decomposed a signal into two coefficient set: approx-

imation coefficient and detail coefficient. The lifting scheme is easier to implement

and its flexible structure may be embedded in other nonlinear operators in a multires-

olution process. This developed method of the morphological lifting scheme separates

a signal into two components which are the background activity and transient. The

morphological lifting scheme contains three stages: split, predict and update. The

first split stage simply divides a signal into two smaller sets of data by using even-and-

odd indexed data points. The predict stage of the lifting scheme is realized with the

morphological erosion which amounts to predict a signal using its geometrical shape.

The update stage is an average operator designed to find the upward (downward)

spikes. The morphological filter classifies the decomposition coefficients at each scale

in recognition of their morphological characteristics.

This method has been tested on the epileptic EEG data as separation in chapter

4. The EEG was decomposed to the scale level three. The approximation coefficients

at lower scales were reconstructed into the background and the detail coefficients

at each level were regrouped and reconstructed to form the spike transients. When

compared to result obtained by morphological filtering in wavelet packet transform,

the lifting method produced similar background and spiky activity except peaks in

the background appeared sharper visually. There appeared no small ripples in the

separated background activity.

The separated background activity of the subdural EEG data detained by us-

ing the morphological lifting method occasionally looked sharper than that obtained

by using morphological filter in wavelet packet transform. It happened where the
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background activity has larger amplitude change over a longer interval than spikes

patterns. The reason for this is that because the decomposition of morphological lift-

ing scheme used three points to predict the coefficient in the next scale level. Unlike

the morphological filter in the wavelet transform, it used the biorthogonal basis to

do the decomposition, which the basis is longer than three points, for example the

biorthogonal wavelet has a supported width of 17 points for the decomposed filter.

The short support morphological filter tends to keep the peak sharper. The longer

support of the predict and update filters can be added to smooth the background ac-

tivity. The sharp spiky waveforms need less neighboring coverage, the morphological

lifting filter well separates these patterns.

The developed morphological lifting scheme is different from the max-lifting method

(35). The process of max-lifting takes the maximum amplitude of the two even-indiced

points to predict the odd point. The errors of the prediction are used to update the

lower level decomposition coefficients. The maximum operator is related to the mor-

phological dilation. The proposed new morphological lifting scheme is adjusted for

the special structure of the triangular shaped spike model. The sharp waveforms

have salient peaks which are an important factor in spike recognition. In order to

best recognize this characteristic, we involve the peak point in the design of the mor-

phological filter. Instead of only using the even indiced points to predict the odd

indexed point, we used both the even-indexed and odd-indexed points to achieve the

best prediction of the peak. The morphological filter needs to judge this middle point

to classify whether it is a spiky transient or not. The advantage of this way is that

one can have more control about the spike detection, and the disadvantage is that

one needs to store extra information for the perfect reconstruction. This tradeoff for

better recognition of the spike patterns is not a problem because it only temporar-
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ily stores this extra information. Once the spike has been recognized, all of these

intermediate information can be thrown away. The storage required for final sep-

arated components for the morphological lifting scheme is the same as that for the

morphological wavelet packet transform. The developed scheme gives a perfect recon-

struction, but the decomposition process in the morphological lifting does not satisfy

linear superposition. As explained before, it is because the morphological prediction

of the odd-indexed points depends not only on the even-indexed points, but also the

centered point itself, thus the linearity can not be maintained. By comparing model

of the morphological filtering in wavelet transform and the method of morphological

lifting scheme, the first method involves linear composition with a nonlinear thresh-

old to give two components and the second method is a nonlinear process involving

an additional points to reduce the prediction error. The first method adjusts the

smoothness criterion to separate the two components. The second method is adapted

to the model characteristics of the spike in its prediction.

Other issues of the morphological lifting method, like the structuring element

and how many levels that one needs to best separate target signals, are similar to

those in the method of morphological filtering in wavelet packet transform, as already

discussed in the previous section.

5.4 Statistical Point Process of Spike Trains

The statistical analysis of these separated spiky trains is applied for epilepsy diag-

nose. These spikes represent the status of the abnormal brain activity. The defective

neuro cells create some sharply peaked signal seen in the epileptic EEG data. The

complexity of the interactions of neurons in the human brain makes a direct obser-

vation of their activities impossible. The recorded EEG data represents integrated
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information from many brain cells which can be considered as a random process. The

peak occurrence time of each spike is recognized as a random variable, hence the sta-

tistical point process may be used as model to describe one aspect of the statistical

characteristics of a spike train.

Epileptic spikes recorded in one electrode reveal the activity of the nearby neurons

in the brain. If spike appears from a group of neurons, the electrode near these neurons

will collect stronger information and far away electrodes may record weaker signals.

The spiky transient will decay as the traveling distance increases. The larger spike

appearance in an electrode reflects the higher chance that the brain cells near this

area have some abnormal activity. The frequency of spikes occurrence is a simple

measure for a global view of the epilepsy state. Neurologists can manually classify

spikes into different categories the strength at peaked points. The higher amplitude

of a spike represents more severe response of the brain activity, in the area near that

electrode possibly indicating a focus of the epilepsy in the area near that electrode.

The lower amplitude spikes may be interpreted as the spread of an abnormal signal

traveling across the brain. In our case, the frequency of spike appearance of EEG

recorded from one epilepsy patient is measured for hour long data. The number is

collected for every hour and compared the results between hours show they are very

consistent indicating some electrodes in the frontal and temporal area of the brain

having a higher spike appearances.

The stochastic point processes is more elegant way for the spike train analysis.

The idea of this point process is to find the correlations of the appearance time of

the events (spikes) be separated from two spike trains. Each hour long data is con-

sidered. Here, only the timing information of spikes is used while other measures

of these transients, such as amplitudes, are not considered. The cross-correlogram
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between two point process indicates the timing correlation between the events in two

spike trains obtained from two electrodes. If one cell near an electrode generates

an abnormal spiky transient, it will influence other cells in other areas to generate

abnormal activities, too. The cross-correlogram between two electrodes will reveal

this influence. Using a large amount of spiky transients, the correlations between

these transients can be used to catch the dynamical interactions between neurons,

which generate abnormal spiky transients. If a neuron generates a spike, it will travel

through the brain to cause other neurons to generate abnormal signals. The timing

information between two observed spiky transients from two different electrodes can

be caught by the cross-correlogram of two corresponding point processes. By analyz-

ing all cross-correlograms of all electrodes, physicians will have a global observation

of the interactions among brain cells in different areas. The most interactive area

is the possible focus of the epilepsy (which causes seizure). Combining with other

clinical diagnoses, this will aid neurologists to arrive at a better decision for treating

a patient.

In our study, we have taken the hour long EEG recordings for automatic extraction

of spike trains which are used in the stochastic point process analysis. Our results

are more reliable than using only smaller segments of EEG data.
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6.0 CONCLUSIONS

In this study, we have developed two methods for separation of spiky transients

from the background EEG data. The methods investigate a specific morphological

filtering in multiresolutions. One method uses the morphological filtering in wavelet

packet decomposition, and the other uses a morphological lifting scheme. Both have

been shown experimentally to provide reliable extraction of spikes in long recordings

of EEGs, where the detected spike trains in multiple electrodes have been analyzed

through cross-correlograms of stochastic point process in identifying epileptic foci

trajectories.

6.1 Contributions

The major contributions of this thesis is summarized below.

The first contribution is the signal component separation method using morpho-

logical filtering in wavelet packet decomposition. This novel method detects and sep-

arates triangular shape short transients from the background EEG activity. Only a

single circular disc structuring element is used in multiresolution decomposition. The

morphological filter smooths and ,thus, detects both upward and downward triangular

peaks from the decomposition coefficients at appropriate resolution levels which give

the separated transient spikes after reconstruction. The method performed effectively

in our experimentations.

The second contribution is the developed morphological lifting scheme for two

separation. of transient spikes from the EEG background data. This method utilizes
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a morphological prediction filter to detect the triangular shaped peaks. This method

performed equally well as the former method.

These two methods provide automatic separation of spike trains in long record-

ings of epileptic EEG data from multiple electrodes. This enabled us to make an

accurate cross-correlation analyzes of the associated statistical point process, leading

to an inference of epileptic foci trajectories in particular cases. confirmed by expert

neurologists. The successful analysis provides, in times, an indirect verification on

the accessary of the signal separation.

6.2 Future Works

There are several problems worthy to be investigate in future research:

(1) Add new knowledge and physiological descriptors to modeling the transients

so as to further improve the signal separation.

(2) The filters used in prediction and updating stages of the developed morpho-

logical lifting scheme have short supports. Explore the use of longer supports for

achieving more accurate separation results.

(3) Investigate additional information, in addition to the maximum correlation,

derived from cross-correlograms of spike trains for enhancing the determination of

the epileptic foci.
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APPENDIX A Data Acquisition of Subdural EEG Data

The EEG data used in the paper is recorded on 1998 at Children hospital, Uni-

versity of Pittsburgh, Pittsburgh, PA. The patient is a young epilepsy boy. He had

a life-long epilepsy disease. The type to record this data set is called as subdural

EEG data, which the sensors collecting the data are directly attached on the surface

of the brain. In order to do that, a surgery has been operated to open the skull and

attached these sensors on the surface of the brain. The data was collected for several

days, then the physician took the sensors out and recovered the wound. During the

recording time, the patient stayed in the hospital and under intense watch to make

sure everything under control. The subdural EEG signal is a collected information of

the potential activity from the surface of brain by using electronic instruments. The

recorded potential is the responses from the thousand active neurons of the brain

or noises generated from the muscle, eye blinks and artifacts. The EEG machine is

the instrument tools with some adjustable parameters to record and store the data.

Different setting of the parameters will affect the recorded EEG data. In order to get

the best information for the epilepsy analysis, it needs to pre-process the EEG data

carefully in order to get best quality data. The raw EEG data has been pre-processed

before applied by the proposed separation methods.

There are total 102 data channels to collected the EEG, EKG and EMG signal

from 102 electrodes. The first 64 electrodes are put on the frontal area of brain which

32 electrodes are on the left side and 32 electrodes are on the right side. The upper

inter-center region of the brain has covered with 32 channels which each 16 electrodes

are on the right and left sides. There are two electrodes were used to record EKG

signal. The last 4 electrodes are used to record the EMG signal which contains muscle
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activities and eye ball movements. The montage is shown on Fig. A-1 and label names

of each channel can be found on table B-1 to B-4 in the appendix B. Note that the

upper inter-center electrodes are not shown in correct positions; it draws lower than

it should be. These electrodes are located on the very upper area of head and each

right and left electrodes are adjacent to each other where they are attached on the

right and left hemisphere of the brain.

LG1 

LG2 

LG3 
LG4 

LG5 

LG6 

LG7 

LG8 
LG9 

LG10

LG11

LG12

LG13
LG14

LG15

LG16

LG17

LG18

LG19

LG20
LG21

LG22
LG23

LG25

LG26

LG27

LG28

LG29
LG30

LG31 LG32

LI17

LI18

LI19

LI20

LI21

LI22

LI23
LI24

LI25

LI26

LI27

LI28

LI29

LI30

LI31

LI32

RG1 

RG2 

RG3 

RG4 

RG5 
RG6 

RG7 

RG8 

RG9 

RG10
RG11

RG12

RG13

RG14

RG15

RG16
RG17

RG18

RG19

RG20

RG21

RG22

RG23

RG24

RG26
RG27

RG28

RG29

RG30

RG31

RG32

RI1 

RI2 

RI3 

RI4 

RI5 

RI6 

RI7 
RI8 

RI9 

RI10

RI11

RI12

RI13

RI14

RI15

RI16

LG22

RG25

LEFT RIGHT

TOP

Figure A-1 Montage of Subdural EEG. There are total 102 electrodes used to
record the EEG data. In this figure, it only contains 94 channels and the rest of
electrodes are used to record EKG and EMG data.

The EEG data is recorded as UNIQUANT file format which is designed from the

NCI (Network Concepts, Inc.) (65). It has developed a transfer program to convert

UNIQUANT file format to plain binary data. Two EEG machines are used to record

these potentials of 102 channels, which each machine handled 51 channel separately.

These two machines are made from the same manufacturer and have a identical
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Figure A-2 The Analog to Digital Conversion

configuration. Therefore, the amplifier and A/D converter are the same for both

machine. The method used to record EEG signal is called bipolar recording, which

the sensor can measure the differences between the target channel and a reference, see

appendix C for different montage layout. The potential is an analog signal measured

by the differences between the target channel and the reference point, where a A/D

convertor transferred the analog signal to a digital format. The digital information

will be the value stored in the storage device. In this case, the analog signal is

converted as a 12-bit digital value and the conversion of A/D converter is between

[0 4095] and its voltage range is between -625 and 625 µ. The conversion of analog

signals to digital values involves two steps: One is amplifier gain and the other is

analog to digital conversion (see Fig. A-2). The equations for the conversions are:

Vout = Vin × gian, (A-1)

Dv =
Vout

Vin
+ 2047 =

Vin × gain
VperBit

+ 2047. (A-2)

To convert an offset binary digital value (Dv, 0-4095) to its original input potential

(Vin) one should use

Vin =
(Dv − 2047)× VperBit

gain
. (A-3)

The values for VperBit (stored as uV per bit) and gain are stored in the EEG data file.
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The two machines used to record the subdural EEG signal are not synchronized

with each other. The sampling rate of both Each machine are 250 Hz, but each

one is operated by its own clock to record data. The two recorded EEG data may

have time shifting due to the synchronization problem. The analysis of EEG signal

is very critical to the timing. The slight time shifting of two machine can cause a

different results. A correction is given to perfectly align two EEG data sets. The

two machines have monitored the EKG information separately, which are measured

the same variation of heart activity. It gave a very accurate time index to measure

the shifting between the two machines. It has examined the EKG data recording

and found that the peak of heart beat can be aligned perfectly with two machine.

However, between the peaks, the two EKG signals look different, because the two

machines are using different references. The heart beat is a strong signal generating

large amplitude pulse, which is affected less by the references.

We used least mean square error to find the minimum error of the peak-to-peak

duration between the two EKG. Let the EKG data of the first machine be EKGl and

EKGr be the second machine. Note the l and r are indexed as left and right.

LMS = min
s

((EKGl(t)− EKGr(t+ s))2, (A-4)

where E is the error and s is the shift points. The minimum error LMS is found

when EKGr is shifted by s points. The method of least mean square error can find

the optimal shift point which has the minimum peak-to-peak error between two EKG

signals. If the error is being minimized, then EKGr will be aligned together with

EGKl by moving s points. If the EKG has been synchronized, then the EEG data can

be synchronized, too. It has been cross-examined the least mean square error method

by using the correlation between two EKG data. After finding the optimal time shift

s, it calculates the correlation between the well-alignment data. If the peak of the
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correlation result is at center point, it means that it has largest similarity already and

it is being aligned perfectly. After perfectly aligned, a visual examination show the

EKG can use as good indication to measure the shift time. It is not common to have

an alignment problems in the EEG recording. It happened because that the number

of channels to record EEG data are larger than the capacity of a EEG machine and

separated machines can not be synchronized with each other.

The other problem occurred this data set is the A/D conversion. During the con-

versions, if the amplitude of the potential is higher than the maximum range of A/D

converter can handle, it will generate a saturation affection. If a saturation affection

appearing, the convertor records the amplitude as its maximum digital number even

it should be larger. The saturation affection also happened when the amplitude is

lower than the minimum range of convertor. It is the same as the maximum satura-

tion only it is opposite on the other direction. Because the physical limitation and

setting of the EEG machine, the raw EEG data has a short flat line either on the

top of positive spikes or the bottom of negative spikes. These artifacts are coming

from the saturation affection. To correct this type of error, we have used the spline

interpolation on the flat region to approximate the variation of spikes. It used the

neighboring points near the flat saturation line to implement a linear interpolation to

approximate the signal.

The bipolar recording need a reference point to record the differences between

the electrodes and the reference. During the recording time, each machine had used

different reference which caused a alias problem. Bipolar method can only recorded

the potential differences between the channels and reference. If the references for

each machine is not the same, then the difference recording on each machine will

be varied by their reference points. The reference used on the first machine is the
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montage “LG24” and the electrode “RG25” for the second one. The EEG data

is recorded by two same model machines. It is assumed that the recording data

are not affected by using these machines. But each EEG machine has used different

reference and each reference have its own activity during the recording. The variation

of the references make the recording EEG data changes time by time. If the EEG

data changed dramatically, it is possible that the reference varied quickly and the

remaining electrodes are not changed. The results of bipolar recording from the both

machine could not really show the true activity of the brain.

Due to the bias caused from the reference, it tried to cut the affection of the

varied reference. Let ei(t) be the real potential of electrode i at the time t and er(t)

be the actual potential of the reference. There are total n electrodes attached on the

brain. The EEG machine recorded a potential value êi from the channel i. The êi(t)

is measured from the differences between the potential of ei(t) and er(t).

êi(t) = ei(t) + er(t), i = 1, . . . , n, (A-5)

where n indicates the channel number. If the average of the total measured potential

êi(t), it derived as

1

n

n∑
i=1

êi(t) =
1

n

n∑
i=1

(ei + er)(t) (A-6)

=
1

n

n∑
i=1

ei(t) +
1

n

n∑
i=1

er(t)

=
1

n

n∑
i=1

ei(t) + er(t)

Equation (A-6) shows a linear function. It is assumed that human brain is an

independent system and isolated from the outside world. The summation of potential

from an this independent system is zero. The summation of the potential êi(t) is equal
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to zero, shown as
n∑
i=1

ei(t) = 0. (A-7)

From equation A-6 and A-7, it can derived

1

n

n∑
i=1

êi(t) =
1

n

n∑
i=1

ei + er(t) = 0, (A-8)

= er(t).

The average potential of the reference electrode is equal to −er. One can derive

er(t) =
1

n

n∑
i=1

êi(t). (A-9)

If the number of electrodes is large enough, equation (A-9) shows that the mean of

bipolar measured potentials is equal to the potential of reference electrode.

The distortion of using separated references of the two machine can be eliminated

by cutting the potential of the reference. To recover the real potential ei, one can use

the following method

ei(t) = êi(t)−mean(er(t)) (A-10)

= êi(t)−
1

n

∑n
i=1 êi(t)

= êi(t)−mean(êi(t))

Equation (A-10) is called common-reference recording method. Theoretically, this

method is a reference free method. To reduce the affection of the variation of ref-

erences, it has been suggested that one can attach the reference on the ear in most

cases. The ear has less neuro activity and the potential are varied relatively less than

other area. Normally, the stability of the reference provides a better measurements.

The DC voltage will distort the natural of signal, such as mean value and energy

or power. A good calibration can reduce the errors of DC affection, but it is normally
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very hard to avoid it at all. If the amount of a signal is larger enough, the DC

offset will shows on the mean of the signal. The mean will be shifted with the DC

offset. Because the human brain is a independent system, which the summation of all

potentials is equal to zero. We have picked a segment of EEG data to calculate the

mean value. Then the mean value of this segment is assumed as the DC offset of the

machine. To get rid of the DC offset, this segment EEG data must minus the mean

value. In the practical application, we have used one minute EEG data to be the

length of each epoch. The sampling rate is 250 Hz, it means that one epoch contains

total 15000 (250*60) sampling points. The mean of the potential measurement is

based on the one minute long.
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APPENDIX B Collection of EEG Data

The electroencephalography (EEG) is a the brain signal recorded either from the

electrodes on surface of the human skull or the sensors directly attached on the brain.

The second one is also called as subdural EEG signal. The subdural EEG signal

provides better informations of brain activity. It is because it avoids the damping

effect of the skull.

The subdural EEG data used in the paper is recorded at the end of October, 1998

at Children hospital, University of Pittsburgh, Pittsburgh, PA. There are total 102

channels used to collect EEG, EKG, muscle activities and eye ball movements. The

first 64 electrodes are put on the frontal area of brain which 32 electrodes are on the

left side and 32 electrodes are on the right side. The center region of the brain has

put each 16 electrodes on the both right and left sides. The other two electrodes were

used to record EKG. The last 4 electrodes are used to record the muscle activities

and eye ball movements. The label of each channel can be found on table B-1 to B-4.

The montage of these electrodes are shown on Fig. A-1. This montage is trying to

collect the brain activity of the area of frontal lobe and temporal lobe. The EKG,

muscle activity and eye ball movement are the extra information related the brain

signal.
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Table B-1 Electrodes on the Frontal Area

Electrodes Name Description Electrodes Name Description
LG1 Left Frontal RG1 Right Frontal
LG2 Left Frontal RG2 Right Frontal
LG3 Left Frontal RG3 Right Frontal
LG4 Left Frontal RG4 Right Frontal
LG5 Left Frontal RG5 Right Frontal
LG6 Left Frontal RG6 Right Frontal
LG7 Left Frontal RG7 Right Frontal
LG8 Left Frontal RG8 Right Frontal
LG9 Left Frontal RG9 Right Frontal
LG10 Left Frontal RG10 Right Frontal
LG11 Left Frontal RG11 Right Frontal
LG12 Left Frontal RG12 Right Frontal
LG13 Left Frontal RG13 Right Frontal
LG14 Left Frontal RG14 Right Frontal
LG15 Left Frontal RG15 Right Frontal
LG16 Left Frontal RG16 Right Frontal
LG17 Left Frontal RG17 Right Frontal
LG18 Left Frontal RG18 Right Frontal
LG19 Left Frontal RG19 Right Frontal
LG20 Left Frontal RG20 Right Frontal
LG21 Left Frontal RG21 Right Frontal
LG22 Left Frontal RG22 Right Frontal
LG23 Left Frontal RG23 Right Frontal
LG24 Left Frontal RG24 Right Frontal
LG25 Left Frontal RG25 Right Frontal
LG26 Left Frontal RG26 Right Frontal
LG27 Left Frontal RG27 Right Frontal
LG28 Left Frontal RG28 Right Frontal
LG29 Left Frontal RG29 Right Frontal
LG30 Left Frontal RG30 Right Frontal
LG31 Left Frontal RG31 Right Frontal
LG32 Left Frontal RG32 Right Frontal
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Table B-2 Electrodes on the Central Area of Brain

Electrodes Name Description Electrodes Name Description
LI17 Left Middle RI1 Right Middle
LI18 Left Middle RI2 Right Middle
LI19 Left Middle RI3 Right Middle
LI20 Left Middle RI4 Right Middle
LI21 Left Middle RI5 Right Middle
LI22 Left Middle RI6 Right Middle
LI23 Left Middle RI7 Right Middle
LI24 Left Middle RI8 Right Middle
LI25 Left Middle RI9 Right Middle
LI26 Left Middle RI10 Right Middle
LI27 Left Middle RI11 Right Middle
LI28 Left Middle RI12 Right Middle
LI29 Left Middle RI13 Right Middle
LI30 Left Middle RI14 Right Middle
LI31 Left Middle RI15 Right Middle
LI32 Left Middle RI16 Right Middle

Table B-3 Electrodes for Muscle and Eye Ball

Electrodes Name Description Electrodes Name Description
LEMG Left Muscle REMG Right Muscle
LOC Left Eye Ball ROC Right Eye Ball

Table B-4 Electrodes for EKG

Electrodes Name Description Electrodes Name Description
LEKG EKG REKG EKG
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APPENDIX C The Montage of EEG Recording

The EEG data is recorded from EEG recording machine which can measure the

potential variations (similar to voltage) generated from brain cells. It converts the

biological brain signal into digital signal by using A/D (analog/digital) hardware

acquisition method. In order to collect the signal, there are many electrodes attached

on the human brain. The number of sensors is up to requirement. In our cases, it

has been used 32 to 64 sensors. It could go up to more 100 hundred sensors. The

EEG electrodes are often made with gold, having the size in the range in millimeters

to about one centimeter. To measure the variation of potential generating from the

neuro cells, it needs a circuit ground to form a close circuit. Depending on the ground

reference, there are several montage methods to inspect the EEG potential. These

methods are named as: referential montage, bipolar montage and common reference

montage. These methods are described as follows:

1. The first EEG recording method is called as “referential montage”. In this

method, every electrodes are measured the potential differences referred to a

extra electrode which normally placed on a area with less neurons activity, such

as ears. This EEG data recorded by referential method is called as raw EEG

data in this paper.

2. The second methods called as “bipolar montage” which most clinical usages are

based on this montage. The bipolar method is a calibration method revised

from the referential recording. Bipolar montage is a user defined montage.

Let electrodes e1, e2,. . . , en be raw value from the referential montage and the

bipolar montage will be defined as e1 − ref1, e2 − ref2, . . . , en − refn, where

refi could be any electrode recording ek. There is no general rules to assign the
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bipolar montage. It will depend on the clinical usage and need expert to modify

them and sometimes several bipolar montages will be inspected simultaneously.

The advantage of the bipolar montage is to promote an anti-phase relationship

between the two electrode locations. Switching one montage to another montage

may be very easy, but to find a best montage to show the status is a not an

easy task.

3. The last montage is called as “common reference montage”. The common ref-

erence montage is very similar to the referential montage. Both montages are

trying to referred the EEG recording into one electrode. But the common ref-

erence montage is referred from a computed (modified) reference point. The

common reference montage is based on the assumption of the volume conduc-

tivity is total zero for the outside the volume.

The raw EEG data is normally collected by using referential recording method.

All the channel is referred to one ground point which this point is placed on the

surface of the human scalp such as ears or other places. The referential point

has less brain activity because there are not many brain cells near this region.

EEG machine then read the differences of the potential between the reference

and sensors. But the reference is not absolutely no activity, it turns out that

the ground point of the closed circuit is dynamically changed. Because the

variation of ground activity, the raw EEG data is also changing depending the

stability of the referential point. For example, if the generated brain activity of

one sensor is similar to the activity of the referential area, the potential between

them are zero and the EEG recording will be low. But it does not mean the

brain cell is less active at the sensor region, it only indicates at that time, brain

has relatively less differences. To reduce this effect, it can use the common
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reference method to get the theoretical global ground of all the channels.

The mathematical description of these montage is shown as follows: Let the

potential Pi is the real potential of channel i and voltage Vi is the measured

voltage from a EEG recording machine between channel potential Pi and the

potential of the reference ground. The reference channel is labeled as P0. It has

assumed that the EEG machine has no any artifical artifact and noise at all.

The measured voltage is

V1 = P1 − P0

V2 = P2 − P0

· · ·

Vi = Pi − P0 (C-1)

The common reference Vc is defined as the average of every channels’ voltage:

Vc =
1

N

N∑
i=1

Vi

=
1

N

N∑
i=1

(Pi − P0

=
1

N

N∑
i=1

Pi −
1

N

N∑
i=1

P0

=
1

N

N∑
i=1

Pi − P0 (C-2)

The common reference voltage Ṽl of the channel is defined as:

Ṽl = Vl − Vc

= (Pl − P0)− (
1

N

N∑
i=1

Pi − P0)

= Pl −
1

N

N∑
i=1

Pi (C-3)
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Picking any two new common reference voltage Ṽl and Ṽm, one can get a bipolar

montage shown as:

Ṽl − Ṽl = (Pl −
1

N

N∑
i=1

Pi)− (Pm −
1

N

N∑
i=1

Pj)

= Pl − Pm (C-4)

The normal bipolar montage of channels l and m is

Vl − Vm = (Pl − P0)− (Pm − P0)

= Pl − pm (C-5)

From Eq. (C-4) and (C-5), one can find that the bipolar montage is not related

with the reference ground.
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APPENDIX D International 10-20 System

The international 10-20 system (6) is widely used in EEG recording, see Fig.

D-1. Each electrode are placed and named after the anatomical structure of the

human brain. The name of electrodes begin with capital letter {F;C;P;T;O} which

related with lobe of brain: Frontal, Central, Parietal, Temporal, Occipital. The

extra one ’Fp’ means Front polar. After the capital letter, it follows a numerical

number to indicate exact location of the lobe. The electrodes placed on the brain

are geometrically divided. The inter-electrode distance is defined as follows: the odd

number 1,3,5,7,9 are on the left side which designate 10%, 20%, 30%, 40%, 50% of

inion-nasion distance, and the even number 2,4,6,8,10 are used on the right side. The

“10” and “20” refer to the 10% or 20% of the inter-electrode distance. Fig. D-2 shows

the top and side view of the electrode placement of the international 10-20 system.

Figure D-1 International 10-20 system
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(a) Side view of 10-20 system (b) Top view of 10-20 system

Figure D-2 The electrode placements of the 10-20 system
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APPENDIX E The Bi-Directional Spike Detection in EEG
Using Morphological Filtering in Wavelet Transform

Combining mathematical morphology and wavelet transforms, the proposed method

successfully separates the background activity and transient phenomenon from epilep-

tic EEG. The spikes have pointed peak toward positive or negative directions. Al-

though the morphological operation is a non-linear process, we show that, with the

selected structuring element, it has a ability to detect both directional spikes iden-

tically, except for a sign difference. If a function f(x) is a linear process, it obeys

Φ(af(x)) = aΦ(f(x)), where a ∈ R and if Φ is a linear operator. However, the mor-

phological operation Ψ is a non-linear process which means Ψ(af(x)) 6= aΨ(f(x)). If

two pointed spikes are identical except their sign (“+” is for upward peaks and “−”

for downward ones), it indicates the scalar a equal to −1. In this case the separations

two identical spikes with different signs, the upward spikes should be no difference

from the downward ones except for the sign difference. Generally, the nonlinear mor-

phological process cannot reach this. But our structuring element has the ability to

correctly extract the bi-directional spikes.

This multiresolution morphological separation method is capable of extracting

identical spikes with different directions identically, except for their direction signs.

It is because that the structuring element is symmetrical at the point of origin. The

proof is shown as follows:

The morphological operations have the following properties (25):

Definition 10. ∀t ∈ R, t[f ⊕ g] = tf ⊕ tg,

Definition 11. ∀t ∈ R, t[f 	 g] = tf 	 tg.
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The t is any real number and the morphological operators ⊕ and 	 are referred as

the Minkowski addition and subtraction, see chapter 2. Let signal f(n) ⊂ E, where

E represents th Euclidean spaces and n = 1, 2, . . . , N . Using the umbra concept,

the morphological operations can be extended a gray-level signal. The structuring

element g ⊂ E is a solid disk with unit length and its center is located at the origin. A

reflection operation of the signal g is defined as ǧ(n) = −g(−n) which it rotates 1800

around the origin. The pre-requisite structuring element is symmetric with respect

to the origin. Let gc be the disk, It can shown that ǧc(n) = gc(n), gc(n) = gc(−n),

ǧc(n) = gc(−n). Let the M gc
f (−f) be the proposed morphological filter processes the

negative input signal −f and combining the property 10 and 11, we have:

M gc
f (−f) = (−f ◦ gc) • gc

= ((((−f 	 ǧc)⊕ gc)⊕ ǧc)	 gc)

= (((−(f 	−ǧc)⊕ gc)⊕ ǧc)	 gc)

= ((−((f 	−ǧc)⊕−gc)⊕ ǧc)	 gc)

= (−(((f 	−ǧc)⊕−gc)⊕−ǧc)	 gc)

= −((((f 	−ǧc)⊕−gc)⊕−ǧc)	−gc)

= −((((f 	 ǧc)⊕ gc)⊕ ǧc)	 gc)

= −M gc
f (f) (E-1)

The sign of signal f indicates the direction of the signal. If the positive sign

represents the upward spike, then the minus sign represents the downward spike.

Equation (E-1) shows that the bi-directional signal will not be affected using the

morphological process with the selected structuring element except the direction sign.

The reason is that the symmetrical disk plate located at the origin has no geometrical

distortion on the input bi-directional signal.
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